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Abstract

This thesis is concerned with the development of novel additive manufacturing (AM) sys-
tems and methodologies for high speed fabrication of complex material-graded silicone
structures with controllable internal features consistently. To this end, two AM systems
were developed, each pertaining to a specific phase of silicone rubber.

The first system integrates material extrusion and material jetting AM systems. This
system is designed to process the paste-like silicone rubbers at high viscosity levels (>
400,000 mPa.s at 10 s71). In this system, the outer frame of each layer is made by extruding
a highly uniform silicone strand at 5 mm/s printhead velocity. Once the perimeter is
laid down on the substrate or the previous layer, a piezoelectric-based printhead with a
translational speed of over 100 mm/s covers the internal section of layer by depositing
uniform droplets of silicone at predefined locations. The printing parameters for both
extrusion and jetting techniques were tuned using statistical optimization tools in order
to minimize the surface waviness of printed parts. The optimized surface waviness values
obtained are 8 um and 3 pm for jetting and extrusion, respectively. Moreover, parts with
solid density of over 99% and mechanical performance similar to the bulk material were
manufactured by tailoring the rheology of silicone ink.

A combination of powder-bed binder-jetting (PBBJ) system and micro-dispensing ma-
terial extrusion form the second hybrid AM system. The three-dimensional (3D) shape
forming of silicone powder is made possible for the first time using this system. The tomog-
raphy results for the fabricated parts reveal a porous structure (~ 8% porosity). This AM
process is introduced as a the proof-of-concept. The porosity of structures can be tuned
by improving the silicone binder delivery method so that binder droplets with pico-liter
volumes can be dispensed.

The characterization techniques used for materials and additively manufactured parts
include confocal-laser profilometry for investigating the surface quality of printed parts,
differential scanning calorimetry (DSC) for investigating the curing mechanism of heat-
curable silicone inks, Fourier transform infrared (FTIR) spectroscopy for controlling the
curing kinetics and surface cohesion of UV-curable silicones, dynamic mechanical analy-
sis (DMA) tests for tuning the rheological properties of silicone inks under different shear
stresses, rheometry for establishing the viscosity threshold for jetting of silicone inks at dif-
ferent temperatures, scanning electron microscopy (SEM), particle size analysis, and pow-
der rheometry for establishing guidelines for the size, shape, cohesiveness, flow, and shear
stress resistance of silicone powders, uniaxial tensile test, tearing test, and durometry for
identifying the mechanical characteristics of 3D printed parts, and computed-tomography
(CT) scanning for quantifying the porosity of parts.



The systems and fabrication methods introduced in this research, with high commer-
cialization readiness levels, were concluded to have great impact on the manufacturing of
functionally-graded complex bio-structures. This has been validated through high speed
fabrication of multiple heterogeneous bio-structures. Moreover, the proposed techniques
can be used for the fabrication of other silicone-based products.
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Chapter 1

Introduction

1.1 Overview

Silicone is a biocompatible material with unique properties that make it suitable for fabri-
cation of biomedical and medical devices. Silicones are inert polymers that are composed
of the metalloid, silicon (Si), as well as other elements like carbon, hydrogen, oxygen etc.
Walter Noll defines it as “an organosilicon polymer in which the silicon atoms are bound
to each other through oxygen atoms, the silicon valences not taken up by oxygen being
saturated by at least one organic group [1]”. Unique properties of silicone such as thermal
stability, strength, flexibility, biocompatibility, and biodurability can be traced back to this
organic-inorganic molecular structure.

Silicone has been used for a variety of medical applications since its initial commer-
cialization in 1946, mainly owing to its biocompatibility and thermal stability. Different
forms of silicone have been used for the production of different classes of implants including
orthopedic [2, 3], stomach [1], heart valve [5], cranio-maxillo-facial [6], and mammary [7].
Medical-grade silicones are also used in phantoms, pharmaceuticals, drug delivery devices,
lubricating injection devices etc. To be considered medical-grade, a silicone is required
to pass certain tests such as histopathology cultures and common biocompatibility tests
before being used in contact with human tissue. Luria has reported different applications
of this class of silicone in a comprehensive review [3].

The numerous biomedical applications of silicone highlight the importance of an efficient
manufacturing method that enables fabricating multi-scale functionally-graded structures
from this material. Recent research findings in the area of manufacturing of silicone prod-
ucts suggest that additive manufacturing (AM) can be used to achieve this goal. AM is a



general term used to describe a family of manufacturing technologies that fabricate a solid
structure layer-by-layer through deposition, polymerization, melting, sintering, or binding
of materials. By eliminating the expensive and time-consuming tooling step, removing
any limits in the design of products, and enabling the control of the properties of every
voxel of the structure, AM has provided the manufacturing industry with unprecedented
flexibility. On the other hand, in the new trend of digitization of manufacturing, known as
industry 4.0, AM is depicted as the main fabrication method for the end-user products. To
realize the smart manufacturing fully, it is crucial to investigate the AM of novel functional
materials. Silicone is one of these new materials.

1.2 Motivation

Conventional methods for the production of silicone structures (e.g. molding, soft lithogra-
phy, and their derivatives. [9—15]) have a number of limitations and disadvantages such as
their inability to fabricate highly complex and integrated structures. To better understand
the limitations of conventional silicone manufacturing techniques and their consequences
in biomedical area, the fabrication of silicone prostheses is considered in the following.

The loss of a body organ and its associated function can cause psychological disorders in
patients, and can lead to their social isolation [16, 17]. Depending on the type and severity
of the body function loss, approaches such as physiotherapy, corrective surgeries, and the
use of prosthetics and/or orthotic devices may be adopted. In many cases, the use of a
reversible prosthetic restoration is the preferred option. This highlights the importance
of realistic-appearing prostheses, especially for those used to correct cranio-maxillo-facial
trauma [18-20], in helping patients to move forward in their recovery process.

Conventional prostheses production methods are costly and time consuming, and the
patients must be physically present for most of the design and manufacturing steps. The
production process also requires high technical experience [21, 22]. In addition, the process
of making an impression of the defect can cause patient discomfort. For example, for the
production of a nasal prosthesis, the airway may need to be covered for a long period of
time. Also, the impression materials, e.g., plaster, are heavy and may cause distortion to
the underlying tissue, potentially resulting in a mismatch between the produced prosthesis
and the morphology of the defect area [23]. In some patients with infectious disease,
makeing an impression using direct contact techniques is impossible [21]. Moreover, the
prostheses need to be replaced after some time (from a few months to a few years) due
to the changes in their color and physical properties, requiring the patient to undergo



this tedious process multiple times. Despite all their shortcomings, these conventional
techniques are still being practiced in most of the prosthetics centers [25].

To address these shortcomings, research on the direct AM of silicone as an alternative
method with higher design flexibility has gained momentum from both academia and
industry in the last few years. In case of the prosthesis production, silicone AM can increase
the products accuracy, decrease the patients consultation time and discomfort during the
impression-taking step of casting, and lower the dependency of final quality on the clinicians
skills. More generally, AM of silicone can positively impact the medical /biomedical sector
through:

e High speed production of functionally-graded silicone structures by varying the prop-
erties of every building unit.

e Converting the passive silicone objects to smart structures by embedding materials
responsive to external signals.

e Fabricating micro-scale silicone patterns which cannot be achieved by conventional
molding techniques.

Motivated by the research gap in this field, we have investigated the feasibility of AM
of silicone in two different phases (high viscous fluid and powder). For viscous silicone
paste (400,000 mPa.s at 10 s7'), we were able to jet uniform droplets of silicone at a
high frequency due to the considerable shear energy produced by piezoelectric-actuated
changes in the volume of the fluid reservoir at an unprecedented printing velocity of 100
mm/s and printing resolution of 500 - 600 pm. This method is the first reliable system for
fast fabrication of viscous thermosets. In another method, the silicone powder scaffold is
three-dimensional (3D) printed in a powder-bed binder-jetting (PBBJ) system followed by
the dispensing of a liquid silicone binder to encapsulate the silicone particles and produce
a soft elastomer object upon thermal curing. This method makes the fabrication of porous
3D structures made from silicone powder possible for the first time.

1.3 Thesis Objectives

The objective of this thesis is “developing high speed AM systems and methods for the
fabrication of heterogeneous silicone structures”. The target speed is at least three times
the translational speed of extrusion-based printheads (> 60 mm/s). On the other hand, the



shape forming of structures where different sections are made of three different materials (at
least one silicone polymer) as well as internally porous silicone parts are the heterogeneity
levels pursued in this research. To this end, the following tasks were undertaken:

e Development of a hybrid multi-nozzle AM system composed of material extrusion
and material jetting for processing highly viscous silicone pastes.

e Optimization of printing parameters for material extrusion and material jetting for
highly viscous silicone pastes.

e Elimination of the quality flaws in material jetting system for highly viscous silicone
pastes through developing a novel trajectory pattern.

e Optimizing the rheological properties of highly viscous silicone pastes for material
jetting.

e Mechanical characterization of silicone parts fabricated via material jetting.

e Development of a hybrid AM system composed of material extrusion and powder-bed
binder-jetting for processing of silicone powder.

e Characterization of internal features of parts fabricated via powder-bed binder-jetting.

1.4 Thesis Outline

This thesis includes 7 chapters. Chapter 1 outlines the problem definition, motivation, and
objectives of the present research. The related literature on the state-of-the-art silicone AM
systems and tailoring silicone properties for AM is reviewed in Chapter 2. The feasibility
of AM of viscous silicone pastes is investigated in Chapter 3 using material extrusion
technology, and in Chapter 4 using material jetting technology. The printing parameters
are optimized for both systems using statistical analysis tools. The rheological properties of
silicone are tuned in Chapter 5 in order to control the level of porosity within the structure,
and in turn reduce the difference between mechanical properties of the AM-made parts and
the bulk material. Chapter 6 introduces a novel method for fabrication of porous silicone
structures from silicone powder. In Chapter 7, conclusions and future work are outlined.
Chapters 2 — 6 are adapted from author’s published work or manuscripts submitted for
publication as following:

Chapter 2:



e Liravi, F., & Toyserkani, E. (2018). Additive manufacturing of silicone structures:
review and prospective. (under review — journal of Additive Manufacturing)

Chapter 3:

e Liravi, F., Darleux, R., & Toyserkani, E. (2015). Nozzle dispensing additive manu-
facturing of polysiloxane: dimensional control. International Journal of Rapid Man-
ufacturing, 5(1), 20-43. [20]

e Liravi, F., Darleux, R., & Toyserkani, E. (2017). Additive manufacturing of 3D
structures with non-Newtonian highly viscous fluids: Finite element modeling and
experimental validation. Additive Manufacturing, 13, 113-123. [27]

Chapter 4:

e Liravi, F., & Toyserkani, E. (2018). A hybrid additive manufacturing method for the
fabrication of silicone bio-structures: 3D printing optimization and surface charac-
terization. Materials & Design, 138, 46-61. [28]

Chapter 5:

e Liravi, F., Salarian, M., Dal Castle, C., Simon, L., & Toyserkani, E. (2018). High
speed additive manufacturing of heterogeneous silicone bio-structures: mechanical
characterization and trajectory planning. (under review — journal of Materials &
Design)

Chapter 6:

e Liravi, F., & Vlasea, M. (2018). Powder bed binder jetting additive manufacturing
of silicone structures. Additive Manufacturing, 21, 112-124. [29]

The content of these publications have been slightly modified to fit within the scope of this
thesis. The license agreements are provided in Letter of Copyright Permission section .



Chapter 2

Background and Literature Review

2.1 Silicone

Silicones are synthetic polymers consisting of an inorganic silicon-oxygen (Si — O) backbone
and organic groups attached to silicon atoms. Hence they inherit the inertness of inorganic
materials as well as the softness and other structural features of macromolecules [1, 30].
Stable Si — O — Si structures are the basis for the generation of silicones. The covalent Si —
O bonds, however, are not completely single bonded. They demonstrate a partial double-
bonded behavior. The Si atoms are saturated with at least one radical organic group such
as methyl (— CHgs), ethyl (— CoHj), and phenyl (- CgHs) and their remaining valences
will be saturated with oxygen. The general formula of silicone is RnSiO%, n =123
Figure 2.1 shows possible silicone structural units.

I I I I I
0 R R R R

I I | | |
—0—8i—0— —0—Si—0— —0—S$i—0— —R—%—0— —R—Si—R—
0 0 R R R

Figure 2.1: Silicone structural units. Adapted from [I]

The great chemical, physical, and surface properties of silicone can be justified through
their chemical structure at molecular level including relatively long and flexible Si — O



and Si — C bonds, repetitive arrangement of silicon and oxygen atoms in the polymer
chain, arrangement and type of the organic substituents, and the low intermolecular forces
between organic groups. Longer backbone bonds and larger bond angles in addition to the
alternation of Si — O — Si and O — Si — O bond angles along the silicone backbone result
in more flexible structures. This highly flexible structure is the reason of silicones' low
glass transition temperature, low melting point, and small viscosity-temperature slope.
Long and flexible Si — O and Si — C bonds allow a freedom of rotation with an almost
zero rotation energy compared to 14 K.J/mol rotation about C — C bonds [31]. Hence
molecules can adopt the lowest energy configuration at interfaces resulting in the reduction
of surface tension [32]. The explained chemical structure makes silicone retain their physical
and chemical properties when exposed to elevated temperatures and also increases their
oxidative resistance.

The Si — O is also a polar covalent bond with partially ionic properties. This property
is a result of relatively large difference in electronegativity of silicon and oxygen atoms
(1.8 and 3.5, respectively). The 1.7 difference in electronegativity causes a 37 to 51% ionic
character for siloxane backbone [32]. This covalent bond is not a complete strong o bond,
but a combination of different linkages including ¢ and w. The partial ionic and partial
double bond character of the siloxane are responsible for the strength of this polymer.

The organic groups in silicone have low intensity interactions with each other. These
interactions between organic groups have a direct influence on surface properties of sili-
cone. As a result, the type of organic group along with the flexibility of backbone chain
can determine the surface tension, water repellency, wetting, and spreading properties of
silicone [32, 33]. The combination of chemical inertness, thermal stability, hydrophobic-
ity, and low surface activity of silicones make them a biocompatible polymer suited for
biomedical applications [31, 34].

2.2 Manufacturing of Silicone Bio-structures

Eggbeer et al. (2012) have evaluated AM against conventional silicone production meth-
ods, and identified its superiority for prosthesis production in terms of the quality of final
products [35]. They categorized silicone-based AM processes used to create maxillo-facial
prosthetics as: (1) indirect AM of silicone; (2) direct AM of silicone. The same catego-
rization is used throughout this thesis. In the indirect AM of prosthetics, casts are first
3D printed (mostly from thermoplastics) followed by the conventional casting of silicone
bio-structure. Indirect approaches eliminate the need for the patient to be present during
the manufacturing [12, 36]. The successful applications of indirect AM for the fabrication
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of prosthetics used in maxillodental surgeries have also been reported by several researchers
[37-39]; however, the indirect use of AM does not have a significant effect on the total pro-
duction time. Another disadvantage in manufacturing of shaped silicone parts using both
conventional and indirect AM techniques is their inability in production of structures with
variable property profiles such as a nasal prosthesis with different mechanical properties at
its different sections [10]. Hence, researchers suggested the direct use of AM for the printing
of elastomeric biomaterials [21, 35]. Although most of the recently introduced methods are
not designed for the manufacturing of bio-structures, it is valuable to review them in order
to identify the specifications of a viable AM process for medical-grade viscous silicones.

2.3 Indirect Additive Manufacturing of Silicone

One of the first attempts to eliminate the drawbacks associated with the conventional
manufacturing of soft tissue prostheses involved the introduction of computer-aided design
(CAD) packages, non-contact morphological measurement systems such as computed to-
mography (CT) scanning [11], and computer numerical control (CNC) systems. Chen et al.
(1997) pointed out the distress induced by the conventional plaster-cast to the patient and
proposed the production of a wax model based on the CT scan data using a CNC machine.
Tsuiji et al. (2004) suggested the fabrication of facial prostheses by direct milling of the
silicone rubber blocks [24].

In the early part of the millennium, researchers tried to incorporate AM techniques
into prosthetic production methods. The indirect AM of silicone changes the fabrication of
prostheses in the following manner: (1) Data acquisition of the target part can be achieved
using CT scan, (2) the virtual reconstruction of the part and designing of the mold can
be done using CAD systems, (3) and the mold can be fabricated using AM [12]. Different
AM methods such as stereolithography (SLA) [13], selective laser sintering (SLS) [11],
fused deposition modeling (FDM) [25], and material jetting [15, 46] have been employed
by researchers for the production of both positive and negative molds for prosthetics.
For instance, FDM-based 3D printers have been used to fabricate molds for a functional
artificial heart [17] and a mitral valve [18]. In an alternative method, Palousek et al. (2014)
proposed the fabrication of a prototype of the target part using AM and then using the
prototype to produce the mold [36].

The indirect application of AM in the prostheses production has decreased the turn
around time and cost of the process, provided a more flexible workflow, eliminated long
patient consultations, and most importantly manufactured more realistic prostheses which
can increase the patients satisfaction and speed up their rehabilitation. However, in these



processes, the extra steps of mold design and casting increases the production time. On
the other hand, in a thorough review of AM-based prosthesis production techniques, Bibb
et al. (2010) demonstrated that the conventional AM technologies, despite their potential
effectiveness are not specifically designed to meet the needs of the prosthetics industry, and
novel and /or modified AM technologies are needed to process biomaterials used in this field
[19]. The application of AM in the prosthesis production can only be sufficient and worthy
of clinical use only if the silicone is printed directly, and the prosthesis is produced without
the use of a mold [11].

2.4 Direct Additive Manufacturing of Silicone

2.4.1 Adding Silicone in the Post-Processing Step

Eggbeer et al. (2012) proposed the first direct application of AM for the production of a
nasal prosthesis using an acrylate-based material, TangoPlus (Stratasys, Minnesota, United
States), in a commercial material jetting AM system (PolyJet). The fabricated body was
wrapped over by a thin pliable silicone sheet [35]. Their experiment showed that the addi-
tively manufactured prosthesis has the same level of appearance quality as a similar nasal
prosthesis made using the conventional molding technique. The direct AM method could
improve the prostheses manufacturing process flow by potentially reducing the patients
required consultation time. However, the mechanical properties of the substitute polymer
were not similar to those of a medical-grade silicone. The poor mechanical properties of
TangoPlus (tensile strength of ~ 1 kN and tear strength of ~ 0.8 N/mm) limit the ap-
plication of this method in reality, as a prosthesis made using this material is susceptible
to pre-mature tearing when used on a daily basis. The research did, however, point out
the limitations of conventional AM methods for handling the viscous soft materials and
showed the benefits of developing a manufacturing system for this class of materials.

The UK-based Company Fripp Design and Research and Zardawi et al. (2013) devel-
oped a different method for the direct fabrication of a prosthesis body from a material
other than silicone. Their methodology was based on the PBBJ AM, in which the pros-
thesis is made from the starch powder and an aqueous binder, then the 3D printed part is
infiltrated with the biocompatible silicone under different pressure conditions [50, 51]. Sim-
ilar to the method presented by Eggbeer et al. [35], producing the prosthesis body from
starch led to a decrease in the durability of prosthesis. These alternative materials are
not as resistant to weathering conditions as silicones, resulting in the degradation of their
mechanical properties and color fade over time. The advantage of the method introduced



by Zardawi et al. is an advanced color-match system and the jetting of colorful binders
based on the patients skin tone resulting in the production of a fully-colored prosthesis
body. Fig. 2.2(a) shows a nasal prosthesis made using this technique. The binding effect
of silicone is demonstrated in Fig. 2.2(b-c).

Figure 2.2: (a) Silicone-infiltrated structure made of starch powder using powder-bed
binder-jetting technique; SEM of starch particles (b) before silicone infiltration and (c)
after silicone infiltration. (b-¢) (adapted from [52]).

2.4.2 Using Silicone as the Main Material

Since the early 2010s, researchers have been trying to directly print silicone using differ-
ent AM methods such as SLA, material extrusion (e.g., nozzle dispensing and freeform
reversible embedding (FRE)), and material jetting. A few companies have also started to
modify these techniques in order to customize them for silicone indicating the existence of
the market potential for 3D printed silicone parts.

Material Extrusion

Compared to other AM technologies, nozzle dispensing systems are well-suited for the
deposition of a wide range of fluids, from low viscous liquids to thick pastes (up to 6 x 107
mPa.s viscosity with a shear-thinning behavior) [53-55]. In comparison, the maximum
material viscosities suggested for SLA and drop-on-demand inkjet printing processes are
in the range of 300 - 5000 mPa.s [56, 57] and 10 - 100 mPa.s [53, 57, 58], respectively. This
capability of material extrusion systems in deposition of viscous pastes is important due
to: (1) the high shape-retention capability of viscous polymers, and (2) the high flexibility
and resilience resulted from highly viscous silicones (> 10,000 mPa.s) with longer polymer
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chains [50]. Different dispensing mechanisms are being used to push fluids through a
nozzle in material extrusion systems with pressure-actuated (pneumatic) and mechanical
dispensing systems being the most popular [59]. The flow of material in these systems has
been numerically modeled for the viscous moisture-curable silicone by Jin et al. (2015)

[60].

Material extrusion AM was used by Mannoor et al. (2013) to print silicone, biological
hydrogel, and conductive polymers to produce the scaffold of a bionic ear to be cultured in
vitro in order to grow the cartilage tissue [01]. Their work was the first attempt to apply
AM in the fabrication of functional prosthetics. The promising results of this research
showed the vital role AM could play in the production of a new generation of prosthetics.
The printed bionic ear is showed in Fig. 2.3(a-c). A micro-syringe dispensing technique
used by Duoss et al. (2014) for the production of porous silicone structures with control-
lable mechanical properties was the first successful example of direct AM of silicone [62].
Moreover, they showed that this technique is able to dispense polymers with a viscosity as
high as 10° mPa.s with reliable quality. Duoss et al. also showed that obtaining designed
mechanical properties is possible with the extrusion-based AM of silicone as they were
able to control the compression and shear strength of the printed structures by modifying
their porosity and micro-structures [62]. This capability of extrusion AM can be used
to produce smart prosthetics with heterogeneous and controllable properties compared to
the passive structures produced via molding. Samples of vascular networks fabricated via
material extrusion are shown in Fig. 2.3(d-f). Material extrusion technique has also been
employed by other researchers to 3D print silicone-based structures for tissue engineering
[63, 64], drug-delivery devices [65], stretchable electronics [66], sensing skin [(7], actuators
[68], foams [09], and membranes with designed properties [70-72].

In most of the abovementioned research, thermal-curable silicones were used as the
raw material. Porter et al. (2017) investigated the feasibility of extruding UV-curable
strands of low viscous silicone (7x10* mPa.s at 10 s7!) followed by in-situ curing [73].
This method involves complications during the print such as nozzle clogging and deflection
of silicone stream from the cured previous layers before reaching the substrate due to
repulsive silicone surface charges. Porter et al. have suggested addition of 0.15 - 1 wt.%
carbon black (CB) to the silicone which eliminates the electrostatic repulsion, and at the
same time reduces the reflection of UV by previously laid silicone which is the main cause
of nozzle clogging. In their research, the controlling factor in the amount of CB additive
is its effect on the reduction of silicone UV curing depth.
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Figure 2.3: (a) Schematic view of the extrusion AM setup for printing of the bionic ear,
(b) 3D printed ear, (¢) in vitro culture of the 3D printed bionic ear for the cartilage tissue
growth, (b-c) scale bars: 1 cm.(a-c) (adapted with permission from [61]. Copyright (2013)
American Chemical Society); Images of (d) 2D and (e) 3D embedded silicone vascular
networks fabricated by material extrusion AM, (f) Fluorescent image of the 3D vascular
network after perfusion with a water soluble fluorescent dye demonstrates performance of
the interconnected channels, (d-f) (adapted with permission from [63]. Copyright (2014)
John Wiley and Sons).

Freeform Reversible Embedding

FRE can be considered as a variety of material extrusion AM. Hinton et al. (2016) have
developed a method based on FRE for AM of polydimethylsiloxane (PDMS) [71]. In this
method, a vat of hydrophilic Bingham plastic acts as a support structure under low stress
while the hydrophobic PDMS is extruded inside the vat. This technique, although only
suitable for the extrusion of low viscous silicones (e.g. 3000 — 4000 mPa.s), is extremely
useful for the fabrication of hollow structures and continuous freeforming. This method
resolves the issue of maintaining the shape of printed structures during the long curing
time required by heat- or moisture- curable silicones by providing a support structure
which does not have an adverse effect on the surface of the features, and is easily removed
using a chemo-mechanical process. Fig. 2.4(a-c) demonstrates the procedure of FRE AM
of silicone and some of the printed parts. The width of the FRE printed PDMS linear
features, height of the printed lines, and the printhead velocity were reported as 140 um
— 400 pm (depending on the nozzle size), 100 pm, and 20 mm/s, respectively. The main
drawback of this method, as reported by the original authors, is the need for the pressure to
be induced by the deposition of upper layers to make sure the layers completely adhere to
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each other. The lack of such a pressure in the XY direction prevents the lateral adhesion.

O'Bryan et al. (2017) improved the quality and resolution of the silicone parts made
using the FRE technique by replacing the aqueous supporting environment with an oil-
based micro-organogel support material [75]. The similar oil-based nature of the silicone
and the proposed micro-organogel facilitates the adhesion of printed silicone features both
laterally and vertically. Moreover, it was found that increasing the viscosity of silicone
resulted in the ability to print 30 um wide features. The reported surface roughness of 150
nm demonstrates the ability of this 3D printing technique to fabricate the very smooth
surfaces required for biomedical applications. Another advantage of this technique is its
compatibility with UV-curable silicone, enabling the use of a material that will decrease
the manufacturing time.

A slightly different FRE method was proposed by Fripp Design Ltd. for the AM of two
part silicones [70]. In their commercial 3D printer, PICSIMA, the vat is filled with the base
of a two-part silicone, and the curing agent is extruded through a nozzle inside the vat.
Upon extrusion of the curing agent, the silicone solidifies and a 3D object is fabricated layer-
by-layer. The major advantage of PICSIMA over other FRE-based techniques is the use of
different commercially available silicones with a wide viscosity range as the raw materials
that facilitates the fabrication of different bio-structures. Moreover, by controlling the
concentration of curing agent or using multiple nozzles, this technique has the potential to
fabricate functionally-graded structures with heterogeneous properties.

Vat Photopolymerization

Femmer et al. (2014) introduced the first application of a vat photopolymerization system
for 3D printing of functional microfluidic PDMS membranes [77]. They have used the
commercial SLA system from EnvisionTEC (MI, USA) equipped with a digital micro-
mirror device for this purpose.

As mentioned before, in vat photopolymerization machines, the viscosity of resin should
be low enough to make sure a thin layer of fresh photopolymer with uniform surface is
generated for printing of the next layer. To address this issue, Kim et al. (2016), modified
SLA method for the fabrication of viscous soft materials [78, 79]. Although this technique is
still in its initial phase, it could have a positive impact on the 3D printing of soft materials
upon further improvements. Similar to regular SLA, the 3D structure is created by laser
curing of the photopolymer inside the vat instead of its surface. In their proposed approach,
there is no movement in the resin vat; this creates a hydrostatic environment which acts as
a support structure. This support-free fabrication technique requires a sophisticated optics
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Figure 2.4: (a) The FRE setup for fabrication of silicone structures in Carbopol support
vat. Samples of printed silicone structures with FRE system: (b) helix, (¢) Cylindrical
tube. (b-i) The toolpath for the helix, (b-ii) FRE printing of the helix structure, (b-iii)
Helix after removal and cleaning, (c-i) The toolpath for the cylindrical tube, (c-ii) FRE
printing of the cylindrical tube, (c-iii) The tube after removal and cleaning. (a-c) (adapted
from [74]).

and low power UV curing system, known as low one-photon polymerization (LOPP), to
control the light intensity. Also, the curing should only happen at the laser focal point.
Hence, the properties of the photoinitiator (PI) used in the polymer should be evaluated
to coordinate with the UV exposure set up. Although the reported resolution of this
technique, 1 — 2 mm, is not comparable to other silicone 3D printing methods, it could
be enhanced by improving the preliminary two-tier model developed for LOPP [20] as has
been done for the other photopolymers used in the SLA process [$1]. Details of this AM
system are shown in Fig. 2.5(a~c). The image of the printed parts shows a high degree of
discrepancy between the cylindrical CAD models and the printed pillars. The hydrostatic
environment required for the 3D printing in this technique eliminates the problem of the
flow of viscous materials during the print, however, the viscosity limit for the silicones
compatible with this method is yet to be determined as highly viscous paste-like silicones
cannot be easily poured into a resin vat. Moreover, degassing the silicone vat to produce
a uniform media free of air-trapped areas would be challenging.

The Folchs research group at the University of Washington is also working on the
fabrication of microfluidic devices for biotechnology applications by developing an SLA
system customized for PDMS [32].
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Figure 2.5: (a) The vat Photopolymerization setup for hydrostatic support-free AM of
silicone structures, (b) The schematic view of the lens array used for the low one photon
absorption polymerization, (¢) The 3D printed silicone cylinders at multiple UV laser
powers, (a-c) (adapted with permission from [78]. Copyright (2016) Elsevier).

Material Jetting

The flexible UV-curable elastomers TangoPlus and TangoBlack were introduced by Strata-
sys to be used in their Connex 3D printer family, and later were used on J750 PolyJet 3D
printers. These systems have been widely used by researchers to produce soft elastic ob-
jects. For example, inspired by the spider leg, Han et al. (2017) 3D printed a finger
[33], and Mohammed et al. fabricated material-graded ear and nose prostheses, both from
TangoPlus [34]. Even though, PolyJet with a vertical resolution of 14 pm is capable of
producing high quality digital colorful parts, it can only be used with the commercial
materials that Stratasys provides. These materials lack the sufficient mechanical proper-
ties for special applications. Moreover, these commercial UV-curable elastomers are no
replacement for silicone in terms of the biocompatibility and biodurability. However, this
technique with an established multi-color printing technology already in place can provide
a robust solution to the 3D printing of silicone, provided that the printheads are modified
based on the rheological properties of the viscous elastomers, and the properties of raw
materials used in the system are tunable [35].
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Reitelshofer et al. (2016) proposed a multi-nozzle AM method for the production of
stacked dielectric elastomer actuator (DEA) made of silicone and graphene using aerosol
jetting [36]. Two aerosol streams containing two parts of a silicone were generated using a
pneumatic atomizer. The two streams were combined in a chamber before being transferred
to the nozzle and then printed on a substrate. This method can produce silicone layers
with a thickness as low as 10 pum. However, in practice its application is limited by
the maximum compatible viscosity (5 mPa.s for ultrasonic atomizer and 1000 mPa.s for
pneumatic atomizer) as well as the manufacturing speed (5 — 10 mm/s). The viscosity of
the sample silicone used in their research is less than 2000 mPa.s, and the ink was heated
up to meet the viscosity requirement.

McCoul et al. (2017) demonstrated the possibility of fabrication of very fine silicone
membranes (2 - 4 pm) with minimum surface waviness for multiple commercial silicones
using piezoelectric drop-on-demand inkjet printing [37]. In these systems, applying a con-
trollable square voltage signal flexes the piezoelectric ceramic behind the ink reservoir and
in doing so jets a droplet of ink out of the nozzle. Fabrication of functional DEAs at a
printhead speed of 50 mm/s has been showcased in this study; however, the inability of
the proposed system in jetting of the electrodes as well as its incompatibility with inter-
mediate to high viscous inks (> 40 mPa.s) are limiting factors in rapid AM of complex
3D structures with tunable mechanical properties

Yang et al. (2013) have investigated the possibility of printing silicones with different
viscosities using material jetting systems with dual piezoelectric-pneumatic jetting (PPJ)
mechanism [$8]. The results of their work show that material jetting methods are promising
for printing of different Newtonian and non-Newtonian silicones with viscosities as high as
100,000 mPa.s. However, droplet formation and jetting procedure in this method should
be controlled and the printing quality should be optimized. Foerster et al. (2017) have
also used this technique to fabricate porous silicone structures [$9]. Similar PPJ system
for jetting of viscous pastes at a velocity above 100 mm/s has been employed by Wacker
Chemie for silicone AM [57]. Unlike regular inkjet printheads which can only handle
fluids with a maximum viscosity of 40 mPa.s, these piezoelectric/pneumatic systems can
generate enough force to even jet pastes with 1,000,000 mPa.s viscosity.

2.5 Silicone Development for Additive Manufacturing

The main challenge in the development of materials for biomedical applications is their
chemical, structural and mechanical biocompatibility [90]. As mentioned in Section 2.1
The biocompatibility and biodurability of silicone can be justified through its chemical
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structure at molecular level including the relatively long and flexible Si — O and Si — C
bonds, the repetitive arrangement of silicon and oxygen atoms in the polymer chain, the
arrangement and type of organic substituents, and the low intermolecular forces between
the organic groups [31, 32]. However, the currently available silicones should be improved
on three fronts for biomedical AM applications: (1) curing mechanism; (2) rheological
properties and printability; (3) mechanical performance. Even though the development of
silicone customized for AM is as important as the development of an AM system compatible
for use with viscous non-Newtonian polymers, little research has been conducted in this
area.

2.5.1 Curing System

The silicones reviewed in Section 2.4.2 were mostly two-part high temperature vulcanized
(HTV) polymers. The HTV silicones need a few minutes to a few hours to at least be
partially cured. This partial curing is necessary to allow the previously laid layers to
tolerate the forces induced by the weight of upper printed layers. This slow polymerization
rate increases the printing time required, if each silicone layer is to be cured after printing.
Transferring the 3D printed structure to the oven after printing each layer also seems
prohibitively cumbersome and reduces the printed part’s accuracy. On the other hand,
curing the silicone after printing multiple layers can result in losing the structural fidelity
of the sample due to the weight of upper layers. Other difficulties associated with the
heat-curable silicones such as the fast gelation time, short range of heat transfer when
the heat beds are used, and potential for geometrical deformation have been pointed out
in the study of Morrow et al. (2017) [91]. Therefore, the UV-curable silicones with the
curing rate in the order of a few seconds can be a suitable replacement for both material
extrusion and material jetting methods. Some silicone manufacturers such as Momentive,
Novagard, Wacker, Elkem Silicones, and Shin-Etsu are already producing different types of
UV-curable silicones. Some researchers have also started to develop their own UV-curable
silicones or tune the commercially available ones for their AM systems.

Femmer et al. developed a UV curable silicone requiring 12 s irradiation at 440 nm UV
for 100 pm features to be cured for the production of separation barriers [77]. The control-
ling factor in their research is the gas permeability of the silicone. Their silicone was used
in a vat photopolymerization system. A sample of the functional 3D printed membrane
made from this silicone and its curing mechanism are shown in Fig. 2.6(a) and Fig. 2.6(b),
respectively. Another UV-curable silicone targeted for vat photopolymerization processes
was introduced by In et al. (2017) [92]. This silicone is a composition of commercially
available UV curable silicone (Momentive), a silicone thinner (to adjust the viscosity of
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the precursor), de-ionized water, and hydrophilic silicone. The results of their research
showed that by adding water to the combination of UV-curable and hydrophilic silicone,
the curing time could be decreased (Fig. 2.6(c)). The optimized curing time reached was
approximately 20 s; however, this would need to be further reduced to be appropriate for
3D printing applications. The target of the research in [92] was manufacturing of solid
phantoms for medical imaging.
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Figure 2.6: (a) Additively manufactured membrane made from the tuned UV-curable
silicone. The change in the color of pH indicator from blue to yellow shows the permeability
of COy gas; (b) The photopolymerization process at molecular level in the developed
silicone ink. (a-b) (adapted with permission from [77]. Copyright (2014) Royal Society
of Chemistry). (c) Decrease in the curing time of UV-curable silicone by increasing the
water content for inks with 10 vol.% and 20 vol.% hydrophilic silicone (HS). (adapted with
permission from [92]. Copyright (2017) Elsevier).

2.5.2 Rheological Properties and Printability

The rheological properties of viscous silicones are important factors in the determination
of their flow, droplet formation, and interaction with the surface. The effect of parameters
such as viscosity, viscoelasticity, contact angle (6,), surface tension (), interfacial energy,
storage modulus (G’), loss modulus (G”), and capillary action, as well as the effect of
fillers and additives on the extrusion, jetting, and flow of the viscous silicones should be
comprehensively investigated.

Controlling the viscoelastic properties of silicone for material extrusion by optimizing
the mixing ratio of low and high molecular weight silicones was used in the work of Robinson
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et al. (2015) [67]. Based on their work, an ink containing 60 wt.% high molecular weight
silicone and 40% low molecular weight silicone showed a solid-like response at low shear
stress region to make sure it will not slump after extrusion and retain its geometrical
fidelity. Similarly, the effect of silica fillers on the rheological properties of PDMS and its
extrusion quality was studied by Lv et al. (2017) [93]. The results of their research show
that adding a controlled amount of filler (15 — 20%) can create a solid-like paste with G’
slightly above the G”, that is not so viscous that it cannot be extruded. Fig. 2.7(a-b) shows
the changes in the viscosity and dynamic moduli by varying the weight percentage of filler.
Similar shear-thinning behavior was reported by addition of 10 - 20 wt.% of treated silica
to poly(diphenylsiloxane-dimethylsiloxane) copolymer (PDMS—-co-PDPS) by Durban et al.
(2017) [94]. The adoption of these approaches for developing customized silicone for AM
assures the flow of silicone ink under the regular shearing at the nozzle while preventing
the collapse of printed features.

Roh et al. (2017) developed a three-phase silicone ink customized for material extru-
sion [95]. Their developed ink consists of micro-particles of cured silicone, liquid silicone
precursor, and water. In their technique, suspensions of cured silicone particles are covered
with liquid silicone resulting in the formation of capillary bridges, which in turn produce
a gel-like printable elastic ink. This procedure has been illustrated in Fig. 2.7(e). This
porous silicone ink can be printed both in air or inside aqueous environment, meaning it
can be used for in vivo 3D printing applications. The presence of cured silicone particles,
however, may limit the resolution of the printed line features. Fig. 2.7(f) shows that adding
a small amount of liquid silicone (2 vol.%) to create capillary bridges changes the viscoelas-
tic properties of PDMS drastically. The cross-linked capillary suspension with G’ higher
than G” acts as an elastic paste. Thus, another mechanism for controlling the flowability
and shape-retention of the silicone inks was introduced through this research.

2.5.3 Mechanical Performance

The mechanical characterization of elastomers including silicone has been extensively stud-
ied [96-102]. Silicones used in biomedical applications should generally demonstrate high
tear strength (7%), tensile strength (of), and elongation at break (ef). Moreover, their
hardness should be tuned for each application. For instance, in the case of the prosthetics,
resilience, high elongation, and soft skin-like properties are necessary as they are usually
removed for sleep and adhered to the skin when awake. This repetitive wearing/removing
should be possible without the risk of damaging the prosthesis. Aziz et al. (2003) have
investigated the mechanical properties of some commercial silicones used in prosthetics
industry [103] (see Table 2.1), and pointed out the need for improvem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>