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ABSTRACT   

Water chemistry can influence the bioavailability, and therefore the toxicity, of metals 

and other elements. Water chemistry measurements have been incorporated into many water 

guidelines for the concentration of metals in Canada.  However, the application of these 

guidelines requires site-specific measurements of metal concentrations and can also require the 

measurement of water chemistry parameters.  The amphipod Hyalella azteca has been used 

extensively in toxicity testing, and the whole-body concentration of an element in the organism 

can be related to toxic effects for some elements.  The whole-body concentration is, therefore, 

assumed to be proportional to the concentration of the element at the site of toxic action.  

However, it is unknown if the water chemistry variables that influence element bioavailability 

and toxicity will also influence the whole-body concentration that is linked to a toxic effect.  If 

the whole-body concentration of an element in H. azteca causing toxicity is not influenced by 

water chemistry conditions, then it could be a useful site assessment tool.  

Several trace metals, including cobalt (Co) and zinc (Zn), as well as the element selenium 

(Se), are essential to many organisms for metabolic processes.  However, above a certain 

threshold these elements will have toxic effects.  Mortality is often the most sensitive toxic 

endpoint in H. azteca, so the acute and chronic of mortality of H. azteca were determined in 

organisms exposed to a range of concentrations of cobalt, selenium, or zinc in soft water 

exposure media that varied in pH, alkalinity, or dissolved organic carbon.   

Non-linear regression models based on saturation kinetics were used to model mortality 

in both acute and chronic exposures, and to model bioaccumulation in chronic exposures in 

relation to exposure or body concentration of an element.  From these models, lethal exposure 

concentrations and lethal body concentrations were determined for each element and each water 

chemistry scenario.  Dissolved organic carbon (DOC) was protective against chronic exposure-

based Co and Zn toxicity, but increased the toxicity of Se.  The patterns of uptake of Se were also 

influenced by DOC, as well as pH and alkalinity.  Concentrations of DOC greater than 5 mg L-1 

influenced the uptake pattern of Co, but the lethal body concentrations of Co were not influenced 

by water chemistry.  The lethal body concentrations of Zn in H. azteca were similarly not 

influenced by water chemistry, whereas concentrations of DOC greater than 5 mg L-1 decreased 

the Se body burden that caused mortality.  The bioaccumulation models that were developed 

could predict observed body concentrations within two-fold of the actual value over 87% of the 

time for all elements.  
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The resulting non-linear regression models and lethal concentrations were compared to 

studies conducted in hard water that had similar data.  Increased hardness was protective against 

exposure-based toxicity of all elements tested.  Lethal body concentrations for each metal 

exposure were consistent regardless of the water hardness.  The existing bioaccumulation models 

were not appropriate to model soft water data.  However, the existing mortality models for Co 

and Zn were robust enough to estimate the lethal exposure and lethal body concentrations.  Even 

though the existing Se model could predict lethal concentrations from the soft water data, there 

did not appear to be a consistent Se body concentration associated with mortality.   

This research showed that non-linear models can be used to describe mortality and 

bioaccumulation of Co and Zn in many different water chemistry scenarios and predict both 

lethal water and lethal body concentrations.    In addition, it was determined that whole-body 

concentration is a good predictor of mortality caused by Co or Zn exposure, regardless of water 

chemistry.  The body concentration of Se causing mortality varies with water chemistry, so it is 

not advisable to use any Se model for toxicity prediction.   
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1 

 

CHAPTER 1  

General Introduction  

 

1.1 INTRODUCTION 

There are several factors that complicate the development of site-specific water quality 

guidelines or tissue/body concentration guidelines for protection of aquatic life from toxic effect 

due to exposure to metals or other elements.  The effects of physicochemical and biological 

variables and interactions are complex, and the models used to describe and predict toxicity are 

regularly being updated and improved.  The elements of interest for this study are two transition 

metals, cobalt and zinc, as well as one non-metal, selenium.  These elements were selected for 

study because when this study commenced, the guidelines for these elements were out of date 

(Se, Zn) or did not have a federal water quality guideline in Canada (Co).  Water quality 

guidelines for elements indicate concentrations of elements in an aquatic system that are 

considered safe (Canadian Council of Ministers of the Environment, 2001).  However, the 

fraction of the element that can be taken up by an organism (bioavailable) from the environment 

varies greatly with environmental conditions, including pH, organic matter, water hardness, and 

many other biotic and abiotic factors (Niyogi et al., 2008).  Different species will have a range of 

toxic effects when exposed to an element (Mager et al., 2011), as elements will not only be taken 

up into organisms at different rates and through different routes, but they will also be 

metabolized, stored, and eliminated in diverse ways (Rainbow & Luoma, 2011). Organisms also 

have requirements and background concentrations for elements that are essential for life.  There 

will often be a background concentration of non-essential elements present in an organism, as 

well.  However, at a concentration above specific thresholds, there will be toxic effects.  These 

toxic effects may change depending on exposure time and concentration and if there are other 

elements present, as well as the physicochemical and biological factors already stated (Niyogi & 

Wood, 2003).   

This chapter will review the general chemistry, biology, toxicology, availability, and 

environment fates of Co, Se, and Zn. In addition, this chapter will discuss physicochemical 

factors that can alter the bioavailable fraction of these elements in the environment.  It will also 

present exposure-based and whole-body concentration-based models that have been developed to 

model toxicity of trace elements. 
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1.2 ENVIRONMENTAL SOURCES, CONCENTRATIONS, AND FATE 

1.2.1 Cobalt 

Cobalt (Co) is the 33rd most abundant element on earth, composing 0.0025% of the 

Earth’s crust (Smith et al., 1981; Watt, 2007), which is equivalent to about 20 – 25 mg kg-1 

(Smith & Carson, 1981).  Within the crust, Co is not found as a free metal, but combined with 

sulfides, arsenides, hydrates, and oxides to form over 70 different minerals.  Cobalt can naturally 

be released into the environment through erosion, volcanic eruptions, and biogenic emissions 

(Kim et al., 2006; Lison, 2007).  Cobalt is often associated with copper and nickel in the crust 

(Kim et al., 2006) and the majority of Co mining is a secondary product of other metal mining 

(Shedd et al., 2017).  As of 2015, 50% of the world’s Co was mined in the Democratic Republic 

of Congo, with twenty other countries producing less than 6% of the 126 kt mined globally 

(Shedd et al., 2017).  Although Co is relatively scarce and, therefore, expensive, it commonly 

used as a cathode component in lithium-ion batteries.  The demand for Li-ion batteries has 

increased due to its use in portable electronics and electric cars (Gulbinska, 2014; Shedd et al., 

2017).  Properties of Co that make it useful for technological applications include 

ferromagnetism, hardness, low electrical conductivity, and high melting point.  Other 

anthropogenic sources of Co include the burning of fossil fuels, sewage sludge, and the 

processing of Co alloys (Lison, 2007).    

In pristine environments, Co concentrations are less than 1 μg L-1 in freshwater, 1 ng m-3 

in air as particulate matter, and 20 mg kg-1 in fresh water sediments (Smith and Carson, 1981).  

At sites close to historical silver mining operations, total Co concentrations in freshwater were 

reported greater than 2000 μg L-1 in Ontario (Environment Canada 2017) and greater than 

600000 μg L-1 in Idaho (ATSDR, 1995; Kim et al., 2006).  Soil concentrations range from 1 to 40 

mg kg-1 in the United States (Kim et al., 2006).  Cobalt will sorb to particles in the soil and 

sediment, and these two locations are major sinks for Co in the environment.  Several variables 

affect the background concentration of Co in soil, including pH, organic matter, and clay mineral 

content (Hamilton et al., 1994).  Cobalt will also bind strongly to organic matter (Kim et al., 

2006).   

1.2.2 Selenium 

Selenium is widely, but unevenly, distributed in the environment as a naturally occurring 

component of organic and inorganic compounds (Sharma et al., 2014).   Concentrations in the 
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earth’s crust range from 0.05 – 0.09 μg g-1; however, Se concentrations greater than 1000 μg g-1 

can co-occur with sulfur and uranium, as well as in coal deposits (Högberg & Alexander, 2007).  

Selenium concentrations in soils also have a wide range, from 0.01 mg kg-1 to greater than 1000 

mg kg-1 (Sharma et al., 2014).  In freshwater systems, concentrations of Se can range from less 

than 0.1 μg L-1 to greater than 400 μg L-1 (Högberg & Alexander, 2007).   

A major anthropogenic source of Se is coal mining, and its subsequent processing and 

combustion.  Se waste produced during power generation from coal can have Se concentrations 

enriched over 1000 times compared to the surrounding soil (Lemly, 2004).  This waste is stored 

in piles or tailing ponds, and Se can leach into ground or surface water (Lemly, 2004).  Other 

anthropogenic sources include the refining of crude oil, mining, and irrigated agriculture (Young 

et al., 2010).  

1.2.3 Zinc 

  Zinc is the 25th most abundant element in the earth’s crust with an average content of 78 

mg kg-1 (Sandstead & Au, 2007). In natural environments, Zn concentrations will vary greatly. 

Average background concentrations range from 87 to 277 ng Zn L-1 in the Great Lakes (Nriagu et 

al., 1995), but anthropogenic inputs of Zn have increased background concentrations in water 

over 1000 times at some mine sites (CCME, 2016).  However, Zn will generally partition into the 

sediment in aquatic systems, and sediment concentrations can exceed 1000 mg kg-1 (WHO, 

2001).   Depending on the parent material, concentrations in soil can range from 10 mg kg-1 to 

over 100 mg kg-1.  After iron, aluminum, and copper, Zn is the fourth most used metal in the 

world.  Its applications include galvanizing other metals, the production of brass and alloys, 

fertilizers, and batteries (WHO, 2001).   

  

1.3 CHEMISTRY AND SPECIATION  

1.3.1 Cobalt  

Cobalt is a transition metal with atomic number 27, an atomic weight of 58.93, and three 

oxidation states Co(0), Co(II), and Co(III). Co has.  At room temperature (20°C), Co(0) is a silver 

grey metallic solid with a density of 8.9 g cm-1 and a melting point of 1493°C  (Kim et al., 2006).   

Co(0) is not soluble in water; however, several Co(II) compounds are soluble in water including 
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Co(NO3)2 and CoCl2.  CoCl2
 is the species of Co used in the current study and its solubility in 

water is 450 g L-1.  CoCl2 is a blue salt at room temperature (Kim et al., 2006).    

Partition coefficients (Kd) describe the ratio of sorbed metal (in mg kg-1) to dissolved 

metal (in mg L-1).  These coefficients are often reported as log Kd.  The soil/soil water Kd
 is 2.1 L 

kg-1, the sediment/porewater Kd is 3.1 L kg-1, the dissolved organic carbon/inorganic solution Kd 

is 3.8 L kg-1, and the suspended particulate matter (SPM)/water Kd is 4.7 L kg-1 (USEPA, 2005).  

In a literature review by the USEPA (2005), Co was among the elements with the lowest Kd 

values, with only arsenic having less sorbed metal to sediment and nickel and arsenic sorbing less 

to SPM (USEPA, 2005).  Co will bind to a biological ligand (a fish gill) more strongly than it 

will bind to CO3
2- or OH- (Richards & Playle. 1998).  The logarithms of the equilibrium binding 

constants (log K) are 5.1, 3.2, and 4.8, respectively.  The log K for Co to Luther Marsh dissolved 

organic matter (DOM) is also 5.1 (Richards & Playle, 1998).  Copper (Cu) and cadmium (Cd) 

both bind more strongly to a biological ligand and to DOM (Playle, 1998).  With stronger binding 

to a biological ligand, it is more likely the metal will be taken up by the organism and will be 

able to outcompete other ions that have lower a log Kd for uptake.  Stronger binding to DOM 

could lead to a more protective effect from toxicity, as the metal will be less available in solution 

for uptake.     

1.3.2 Selenium  

Selenium is a non-metallic element with atomic number 34 and oxidation states including 

-2, 0, +4, and +6.  There are three different Se allotropes (physical forms) that form under 

different conditions.  The most common allotrope is grey Se, which is the only allotrope that 

exhibits some metalloid behaviour (Di Gregario, 2008; Young et al., 2010). Se is sometimes 

considered a metalloid; however, there is no universally accepted definition of metalloid.  

Selenium can act as an electron donor, like a metal, but also as an electron accepter (Hemat, 

2004). Metals will form cations in aqueous solution, whereas Se will form oxyanions (Young et 

al., 2014).  Partition coefficients (Kd) for Se are less than Co for soil/soil water at 1.3 L kg-1 and 

for DOC/inorganic solution at 2.0 L kg-1.  However, the sediment/porewater Kd is 3.6 L kg-1, 

meaning that more Se will sorb to sediment than Co (USEPA, 2005).   

  In aquatic systems, inorganic species of Se are typically present as Se(VI), Se(IV), or 

Se(0).  Se(VI) and Se(IV) form the oxyanions selenate (SeO4
2-) or selenite (SeO3

2- or HSeO3
-), 

respectively (Cai, 2002).  Selenate will form in strong oxidizing conditions, whereas selenite will 

be the dominant species in mildly oxidizing conditions.  As pH increases in mildly oxidizing 
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conditions, the concentration of SeO3
2- will also increase, while the concentration of HSeO3

- 

decreases (Sharma et al., 2014).  Depending on the redox environment and the pH, there are over 

10 different inorganic species that can form (Saji & Lee, 2013).  Se(-II) can bind to amino acids 

and proteins, forming organoselenium compounds (Besser et al., 1993).  This transformation 

occurs when inorganic Se is taken up by primary producers (Fan et al., 2002).   

1.3.3 Zinc 

 Zinc is a transition metal with atomic number 30 and an atomic weight of 65.38.  Zn has 

a melting point of 420°C and a boiling point of 908 °C (Sandstead & Au, 2007).  At room 

temperature, Zn is a bluish-white solid with a density of 7.13 g cm-1.  The oxidation state of Zn is 

most commonly II and is present as the cation Zn2+ in aquatic systems.  The Zn2+ ion can form 

bonds with chloride, sulfate, nitrate, or hydroxide anions; however, zinc hydroxides have low 

solubility in water (Bradl, 2005).   

Compared with Co and Se, more Zn will bind to soil, sediment, DOC, and SPM, as its Kd 

are 2.7, 4.1, 5.1, and 5.1 L kg-1, respectively.  With higher Kd coefficients, a greater concentration 

of Zn will be taken out of solution by binding to organic and inorganic material (USEPA, 2005).  

At the site of uptake on D. magna, Zn will bind more strongly than Ca2+, Mg2+, and Na+, with 

binding constants of 3.22, 2.69, and 1.90, respectively.  However, H+ binding strength is 5.77, 

which is similar to the Zn binding strength of 5.31 (Heijerick et al., 2005). 

1.3.3.4 General complexation of metals 

In addition to the binding constants and partition coefficients, variables like the 

concentration of complexing ligands can influence the speciation of Co and Zn.   Complexes 

result from the formation of covalent bonds between a ligand and metal cation through a ligand-

exchange reaction (Morel, 1983; Stumm and Morgan, 1996).  Free metal ions are often 

associated with the surrounding water molecules through chemical bonding.  Ligands that can 

replace water have a pair of free electrons and include Cl-, NO3
-, CO3

2-, SO4
2, PO4

3- (Morel, 

1983). The concentration of inorganic ligands that metals form complexes with is unaffected by 

complexation due to the large excess of such ions (Morel, 1983).  When physicochemical 

parameters, such as pH or concentration of dissolved organic matter (DOM), are altered in a way 

that reduces complexation, there will be an increase in the concentration of the free metal ion 

(Rainbow & Dallinger, 1993).  This species of metal can bind to biological ligands and cause 

toxicity (Campbell, 1995; Di Toro et al., 2001), although it has been suggested that it is not the 
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only bioavailable and toxic species of metal (De Schamphelaere et al., 2002; Hoang et al., 2004; 

Boullemant et al., 2011).   

1.4 BIOLOGICAL ROLE AND TOXIC EFFECTS 

1.4.1 Cobalt  

Cobalt is an essential element for humans, animals, some algal species, and legumes.  In 

humans, the required form is vitamin B12, and both the metallic forms and Co salts can have 

toxicological effects (Lison, 2007).  Such toxicological effects are mainly due to oxidative 

damage from the formation of reactive oxygen species. Cobalt can also interfere with hypoxia 

sensing in animal cells (Simonsen et al., 2012).   

Major ions (Ca2+, Na+, Mg2+, K+) in aquatic systems compete with trace metals for uptake 

(Luoma & Rainbow, 2008), as channels in the cell membrane are often permeable to more than 

one type of ion.  Ca2+ can compete with Co2+ for uptake at the gill epithelium and can reduce Co 

toxicity in fish (Richards & Playle, 1998; Kim et al., 2006).   The dimensions of the channel and 

the interactions the ion has with the channel wall will determine whether an ion can pass through 

(Simkiss & Taylor, 1995).  In the case of Ca2+ and Co2+, both ions have the same charge and Co2+ 

has a slightly smaller atomic radius. The relative concentrations of the ions will affect the 

probability that one type of ion will displace another competing ion (Simkiss & Taylor, 1995).  

However, Co2+ can bind to the gill epithelium more strongly than Ca2+. (Richards & Playle, 

1998).  Nutritional Co requirements for fish are 0.05 mg kg-1 in their diet (Watanabe et al, 1997). 

The majority of Co taken up by humans is inorganic, with daily intake ranging from 5 to 

50 μg (Lison, 2007), with a total body burden of 1.1 – 1.5 mg (Kim et al., 2016).  Intestinal 

bacteria can then transform this inorganic Co into cobalamin, a component of vitamin B12 

(Romero, 2017).  Additional Co is in muscle and fat tissue, as well as the liver and heart.  In 

animals, Co will be distributed to the liver, kidneys, and spleen after an oral dose (Domingo, 

1989).   Free Co will precipitate with phosphates and bind non-specifically to a variety of 

proteins (Lison, 2007).  Generally, Co will not accumulate in humans and will be excreted in 

urine (Romero, 2017).   

1.4.2 Selenium 

Selenium, a component of antioxidant glutathione peroxidase, is essential in humans and 

animals (Wantanabe et al., 1997).  Organic Se compounds can be absorbed from dietary sources 

or through inhalation (Högberg & Alexander, 2007). Dietary sources are the main route of 
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exposure to humans and an average of 14% inorganic and organic Se from food are absorbed in 

the small intestine (Peters et al, 2016).   Some forms of Se can be taken up passively through a 

Na-mediated carrier mechanism or by competing with methionine (Peters et al., 2016). Selenium 

can be incorporated into methionine and cystine in the place of sulfur, and selenoproteins contain 

Se-Cys (Bierla et al., 2016).  Selenoproteins are present in mammals and other eukaryotes 

including some algae, fish, and invertebrates (Gladyshev, 2016).  Humans have 25 different 

selenoproteins, whereas an invertebrate like C. elegans only has one.   

It is recommended that humans ingest from 40 to 75 μg per day, depending on their 

geographical location (Peters et al., 2016).  Concentrations above and below what is required can 

lead to diseases and other effects in humans.  Selenium deficiency can impair human 

development and immune function, while high concentrations of Se can lead to selenosis, which 

has symptoms that include gastroenteritis, fatigue, and nerve damage.  Selenium toxicity rarely 

results in death in humans (Peters, 2016).       

Whole-body or tissue Se concentrations as low as 3 μg g-1 can be toxic to fish (Lemly, 

1993). The difference between a beneficial and a toxic dietary intake of Se among fish is very 

small.   Inorganic selenium in an aquatic system can be biotransformed by primary producers to 

form organic Se species, namely selenomethionine, which can bioaccumulate in organisms and 

biomagnify in the foodweb (Lenz & Lens, 2009). Among invertebrate species there are a wide 

range of sensitivities and these sensitivities vary with exposure route (DeBruyn and Chapman, 

2007).  In a flow-through system, the measured 96-h LC50 of sodium selenite to H. azteca was 

340 g L-1 (4310 nmol L-1), while the 14-day LC50 was 70 g L-1 (887 nmol L-1) (Halter et al., 

1980).  The acute toxicity matches closely to the one-week static test LC50 of 371 g L-1 (4700 

nmol L-1) in moderately hard water (Borgmann et al., 2005).  The uptake of Se is reduced at low 

pH, which could reduce its waterborne toxicity (Yu and Wang, 2002).    There is also a wealth of 

literature that show reproductive toxicity is an important endpoint in many organisms, and that 

the egg/ovaries are significant locations for Se storage (Hamilton et al., 2004; Adams et al., 

2010).   

1.4.3 Zinc 

  Zinc is an element essential for life (Watanabe et al., 1997; Sandstead & Au, 2007), as it 

is a component of hundreds of enzymes (Sandstead & Au, 2007; Sosa-Torres & Kroneck, 2009). 

Zn has a role in all six classes of enzymes which include oxidoreductases, transferases, 

hydrolases, lyases, isomerases, and ligases (Sosa-Torres & Kroneck, 2009).   Because of Zn 



8 

 

essentiality, organism have homeostatic regulation of the element.  At high concentrations of Zn, 

the homeostatic pathway can be overwhelmed and metal-binding metallothionein proteins will 

mediate an Zn toxicity (McRae et al, 2016).  Although metallothioneins sequester non-essential 

and potentially toxic metals like Cd, Hg, and Ag, they also sequester the essential metals Cu and 

Zn. Metallothioneins can act as an inducible metal buffer, extending the range of Zn that can be 

tolerated (Mason and Jenkins, 1995).  These metals will be bound by the proteins when metal 

concentrations are high.  When concentrations are lower, these metals will be released and used 

for cellular metabolism (Roesijadi, 1992).  If both homeostasis and further regulatory 

mechanisms are overwhelmed, Zn can have toxic effects.     

In 7-day acute toxicity tests, Borgmann et al. (2005) exposed H. azteca to Zn in both soft 

and moderately hard water.  When the water hardness was increased, there was a four-fold 

increase in the LC50, showing that hardness ions (Ca2+ and Mg2+) are protective against Zn 

toxicity.   In a 6-week exposure of H. azteca to Zn in moderately hard water, the LC50 was 3100 

nmol L-1 (Borgmann et al., 2004).  This lethal concentration was not significantly different from 

the 7-day Zn LC50.  Typically, there would be a difference between acute and chronic lethal 

concentrations, and these results indicate that Zn concentrations are tightly regulated.  

 The toxicity of Zn to rainbow trout (Oncorhynchus mykiss) can vary in exposures to 

different water chemistry.  Increased Ca2+ concentrations caused a 12-fold reduction in both acute 

and chronic Zn toxicity.  There was no significant difference in the acute and chronic lethal 

concentrations.  Increased Mg2+, Na+, and H+ also resulted in at least a two-fold reduction in 

chronic toxicity (De Schamphelaere & Janssen, 2004).    

1.5 WATER CHEMISTRY  

1.5.1 Dissolved organic carbon (DOC)    

  Organic matter in aqueous systems is often reported as the concentration of DOC 

(Morel, 1983).  DOC has phenolic and carboxylic groups with negative charges that can bind free 

metal ions, like Co2+ or Zn2+.  Humic acid can act as an electron accepter or donor in natural 

environments and Se can reversibly bind to N-, S-, or O- containing functional groups (Sharma et 

al., 2014).   The two main components of DOC are humic and fulvic acids.  Humic acids 

precipitate at a low pH, unlike fulvic acids (Stumm and Morgan, 1996).  Humic acids generally 

make up 40-99% of the DOC (Morel, 1983), but the percentage and the overall concentration of 
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DOC depends on the net productivity, production of organic substances by phytoplankton, and 

the import/export of organic matter (Stumm and Morgan, 1996).    

With increasing concentrations of DOC in an aquatic environment, the bioavailability of 

an element is expected to decrease (Richards et al., 1999).    In freshwater, DOC concentrations 

range from 10-1 to 10+1 mM C (Morel, 1983; Stumm and Morgan, 1996), with higher 

concentrations in lakes and streams (Stumm and Morgan, 1996).  Freshwater environments can 

receive organic matter from sources within the aquatic system (autochtonous), such as degraded 

phytoplankton and macrophyte material.  They also have input from the terrestrial environment 

(allochthonous) via runoff and deposition (Wetzel & Likens, 2000).  Natural organic matter 

(NOM) is organic material that contains many different functional groups that can be either 

dissolved, particulate, or colloidal.  The darker the colour of NOM, the greater the concentration 

of aromatic groups, which contribute to its protective effect.  This NOM typically has an 

allochthonous origin (Richards et al., 2001; Gheorghiu et al., 2010).  

 The addition of dissolved organic matter (DOM) reduces the uptake of Cd in Danio rerio 

eggs.  In addition, the concentration of DOM is the most important factor in reducing Cd 

bioavailability (Burnison et al., 2006).  Doig and Liber (2006) also noted that DOM reduced Ni 

toxicity, but the source and fraction of DOM had little to no effect on toxicity or accumulation.  

The binding of metals to DOM has been the basis for metal speciation models including the 

Windermere humic aqueous model (WHAM) and the NICA-Donnan model (non-ideal 

competitive adsorption).  These models describe metal/proton binding and interactions with 

humic and fulvic acids (Tipping, 1998).   

1.5.2 pH 

Metal bioavailability can either increase or decrease, depending on the pH and the metal.  

At acidic pHs, a greater proportion of the dissolved metal concentration will be in the free ion 

form, which is often considered more bioavailable and therefore has the potential to be more 

toxic (Campbell, 1995).  However, at an acidic pH, free metal ions can compete with the greater 

concentrations of hydrogen ions for binding sites and this competition could reduce the toxic 

effects (Simkiss and Taylor, 1995).  At higher pH, with less H+ competition, there can be more 

uptake and toxicity of the metal. However, there are many instances where H+ competition is a 

factor in reducing the uptake and/or toxicity of some metals including Ni in Lemna minor 

(Gopalaapillai et al., 2012), Cd and Zn in Chironomus riparius (Bervoets & Blust, 2000), and Cu 

in P. promelas (Erickson et al., 1996).  It was concluded that speciation, and not competition 
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between H+ and Pb2+, explained Pb toxicity in C. dubia chronic toxicity tests (Esbaugh et al., 

2012).  At higher pH, carbonate and other anionic compounds can form, which will reduce the 

concentration of free metal ions (Parametrix, 1995).  Metals can also be displaced from organic 

matter by H+, increasing the free metal ion concentration and bioavailability (Playle et al., 

1993a). 

1.5.3 Alkalinity 

Alkalinity is a solution’s acid neutralizing capacity in a titration where the endpoint is the 

CO2 equivalence point (Morel, 1983). The most abundant weak acid in natural waters is carbon 

dioxide and with it, the entire carbonate system is responsible for the alkalinity of natural waters 

(Morel, 1983).  Carbonate enters an aquatic system from the weathering of carbonate rock and 

through CO2 dissolving in water.  Aquatic plants also release carbon dioxide during respiration, 

which can change the pH of the water in their immediate environment (Morel 1983).  The 

carbonate cycle is linked to the carbon cycle, as predators and decomposers can reoxidize organic 

material to CO2 or to carbonate (Bowen, 1979).   

With increased alkalinity, there is a greater concentration of anions that can complex 

metal ions, so as alkalinity increases, it is expected that bioavailable metal concentrations should 

decrease.  However, some complexed metal species may contribute to toxicity (Richards & 

Playle, 1998; Santore et al., 2002; Clifford et al., 2009). Alkalinity did not prevent gill 

accumulation of Cd in rainbow trout; however, toxicity was significantly higher when alkalinity 

was increased three-fold from the control (Niyogi et al., 2008).  They suggested that CdHCO3
+ 

may contribute to toxicity (Niyogi et al., 2008).  Mager et al. (2011) saw a protection effect from 

alkalinity in acute toxicity tests in P. promelas, as high alkalinity prevented mortality.  The 

protective effect was not evident for C. dubia (Mager et al., 2011).   

1.5.4 Water Hardness 

Hardness is a measure of the concentrations of calcium and magnesium in an aquatic 

system.  Depending on pH, these two elements can be cations with a charge of 2+ or complexed 

with ions such as CO3
2-

 or OH-.  Some metals currently have hardness-dependent water quality 

guidelines in Canada, including Cu and Pb, as their effect on organisms varies with water 

hardness (CCME, 1999).    As cations, Ca2+ and Mg2+ are of a similar size and charge as other 

metal ions and can compete and block their uptake into an organism (Campbell et al., 1995).  
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Increased water hardness leads to greater competition of metals with Ca2+ and Mg2+ when 

interacting with membrane ions.   

Hardness ions (typically Ca2+) influence uptake and toxicity of several metals including 

Ni in H. azteca, O. mykiss, and P. promelas (Deleebeeck, et al., 2007; Schroeder et al., 2010), Cd 

in D. magna (Tam & Wang, 2012), and Zn in O. mykiss (Alsop & Wood, 1999).  Borgmann et al. 

(2005) determined that pH of the water affected the competition that Ca2+ and Na+ had with the 

free ion of Cu.  Hydrogen ions can also compete with Cu for binding sites (Playle et al., 1993b; 

Borgmann et al., 2005).  Both Ca2+ and Na+ are competing cations yet have varying degrees of 

protectiveness at different pH.   

1.6 WATER QUALITY GUIDELINES 

1.6.1 Canada 

The Canadian Council of Ministers of the Environment is an inter-governmental group of 

provincial environment ministers. This council includes a water management committee that 

develops guidelines for concentrations of many potential toxicants in aquatic systems, including 

metals and other elements (CCME, 2014).   Many Canadian water quality guidelines (CWQG) 

for the protection of aquatic life in freshwater were developed in 1987 from earlier research 

(Canadian Council of Ministers of the Environment, 2008), although some of the guidelines have 

been updated in recent years (CCME, 2016).  Copper, lead, and nickel guideline concentrations 

are calculated from different equations when water hardness is between 82 and 180 mg L-1 

CaCO3 for Cu, greater or less than 60 mg L-1 as CaCO3 for Pb, and when water hardness is 

between 60 and 180 mg L-1 as CaCO3 (CCME 1987).  In addition, there are several procedures to 

modify these guidelines to water quality objectives for specific sites when there is concern that 

the guideline value might be over- or under-protective given the unique physicochemical and/or 

biological conditions at a specific site (CCME, 2003).  Federal Environmental Quality Guidelines 

(FEQG) have been created for elements, including cobalt, that do not have a CCME 

recommended benchmark (Environment and Climate Change Canada, 2017).  The FEQG for Co 

was developed from a species sensitivity distribution that incorporated toxicity to different 

species, including fish, invertebrates, and plants.  This guideline also includes water hardness as a 

variable and a guideline can be calculated for hardness ranging from 52 to 396 mg L-1 as CaCO3
 

using the equation in Table 1.1. Over this hardness range, the guideline will range from 0.78 to 

1.80 μg L-1
 (ECCC, 2017).  The CWQG for Se has not been updated since 1987 and only 
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considers inorganic species of Se in its derivation (CCME, 1987).  An updated CWQG for Zn is 

in draft form (CCME, 2016).  The guideline for chronic exposure to Zn can be calculated over a 

range of water hardness from 28.2 to 190 mg L-1 as CaCO3 and from pH 6.5 to 8.13 using the 

formula in Table 1.1.  At a hardness of 50 mg L-1 as CaCO3 and pH 7.5 the guideline is 12 μg L-1.   

 

Table 1.1 Water quality guidelines for Co, Se, and Zn in North America 

 

1.6.2 United States 

The USEPA last published water quality criteria for the protection of aquatic life in 1986, 

but as with Canadian guidelines some of the criteria have been updated. These criteria are not law 

but provide guidance to States when setting water quality standards.  Water quality standards are 

regulations to control pollution that incorporate these criteria along with designated uses, 

antidegradation requirements, and general policies (USEPA, 2014).  The updated criterion for Se 

is based on dietary exposure and tissue concentrations (USEPA, 2016a). There is a wide variation 

in Se water quality criteria between Canadian federal, Canadian provincial, and US EPA 

guidelines (CCME, 1987; Beatty & Russo, 2014; USEPA, 2016a).  As of 2016, the Cd criterion 

has been updated and is slightly higher than the criterion developed for Canada in 2014, but both 

are hardness-dependent (USEPA 2016b).  A water-effects ratio procedure, similar to the 

Canadian procedures, can be used to modify the criteria for specific sites, (USEPA, 1994). The 

USEPA also adopted a biotic ligand model-based Cu criterion in 2007 (USEPA, 2007).  Different 

Metal Canadian Water quality guideline American Water quality criteria

µg L
-1

µg L
-1

Co e 
{(0.414[ln(Hardness)] - 1.887} --a

0.7
d

Se 1
b

1.5
e 

Zn e
0.995(ln(hardness))+ 0.847(ln(pH)) + 4.932 -- c

e
0.8473(ln hardness)

 
+ 0.884 -- f

a
 Federal Water Quality Guideline (ECCC, 2017)

b 
Water Quality Guideline for the Protection of Aquatic Life (CCME, 1987)

c  
Water Quality Guideline for the Protection of Aquatic Life (CCME, 2016)

d 
Arizona Drinking Water guideline (FSTRAC, 1996)

e 
Aquatic Life Ambient Water Quality Criterion (US EPA, 2016)

f  
Water Quality Criteria for the Protection of Aquatic Life (US EPA, 1996)
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types of metal and element modelling for criteria development will be discussed in the next 

section. 

1.7 EXISTING TOXICITY MODELS 

1.7.1 Cobalt  

The Gill Surface Interaction Model (Pagenkopf, 1983) predicts the speciation and activity 

of metals associated with the fish gill surface using the concept of competitive equilibria.  The 

model assumes that ions contributing to water hardness (Ca2+, Mg2+), would competitively inhibit 

metal ions from binding to the gill membrane.  The model also relies on the assumption that the 

gill membrane had a finite number of binding sites and that death occurs due to the binding of a 

metal causing a change in gill function.  Alkalinity and pH were two other water quality 

parameters considered in the development of this model, as these parameters can change the 

speciation of the metal.  This model does not include complexation with organic matter.  The 

author stated that in laboratory bioassays the water used had a low dissolved organic carbon 

content (Pagenkopf, 1983). 

  Richards and Playle (1998) developed a GSIM (Gill Surface Interaction Model) for Co 

and concluded that Ca2+ competition and complexation with dissolved organic matter (DOM) 

were the two main factors in reducing the binding of Co to rainbow trout gills.  At concentrations 

above 15 mg/L DOC, there was no accumulation of Co in the gills.   

The Biotic Ligand Model (BLM) draws from the GSIM and over 20 years of additional 

research (Paquin et al., 1999; Di Toro et al., 2001; Santore et al., 2002).  The model incorporates 

the relationships and interactions (e.g.: competition, complexation) between the potentially toxic 

free metal ion, other cations (Na+, H+, Ca2+, Mg2+), abiotic ligands, and the biotic ligand (Niyogi 

& Wood, 2004).  A terrestrial Biotic Ligand Model (BLM) was developed for the potworm 

Enchytraeus albidus, with increasing Ca2+, Mg2+, and H+ all decreasing the toxicity of Co (Lock 

et al., 2006). 

The recently developed FEQG for Co uses a species sensitivity distribution to protect 

95% of the species, followed by a multiple linear regression method to account for significant 

water chemistry effects.  This two-part method considers both biological variation and water 

chemistry and does not need to directly account for the uptake or speciation of Co (ECCC, 2017).   
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1.7.2 Selenium 

Measured whole-body residue-based approaches are not widely used, as the accumulation 

pattern of metals and other elements in many organisms do not allow for a relationship between 

whole-body metal concentration and toxicity to be modelled (Adams et al., 2010; Rainbow & 

Luoma, 2011).  However, with certain organisms and with specific experimental conditions some 

whole-body models exist and have been field-validated (Adams et al., 2010).  The USEPA has 

adopted a tissue-based draft criterion for selenium toxicity recommending that fish ovary 

concentrations are given precedence over water column concentrations (USEPA, 2016a).   

1.7.3 Zinc 

There have been several Zn BLMs created for fish, invertebrates, and algae at both the 

acute and chronic levels (Niyogi and Wood, 2004).  The first models were acute models for 

rainbow trout (Oncorhynchus mykiss), fathead minnow (Pimephales promelas) and Daphnia 

magna that were able to predict toxicity within a factor of two (Santore et al., 2002; Heijerick et 

al., 2002).  More recent acute Zn BLMs include a Daphnia pulex model by Clifford and McGeer 

(2009).   The protective effect of calcium (Ca2+) was increased when compared to the other 

BLMs mentioned, which may be due to the difference in species sensitivities or the soft water 

test conditions (Clifford & McGeer, 2009).  A chronic Zn BLM has also been developed 

(Heijerick et al., 2005).  The major difference between the acute and chronic BLMs was that in 

the acute model, pH only influenced the speciation of Zn, but in the chronic model, H+ appeared 

to be in competition with Zn.  In both models, Na+, Ca2+, and Mg2+ also affected Zn toxicity 

(Heijerick et al., 2005).   

1.7.4 Saturation kinetics-based models 

1.7.4.1 Mortality Model  

Michaelis-Menton kinetics-based mortality models, developed by Borgmann et al. (2004) 

to predict mortality in H. azteca, are the focus of this thesis.  The mortality model uses similar 

saturation kinetics to the BLM, but links mortality to measured metal/element concentrations in 

water or whole-body concentrations (Norwood et al., 2007) instead of the level of saturation of 

the critical binding sites (Di Toro et al., 2001).  This mechanistic model assumes that mortality 

rate reaches a maximum (Borgmann et al., 2004; Norwood et al., 2006). Borgmann et al. (2004) 

state that total body concentration is proportional to mortality in H. azteca, and therefore assumed 

to be proportional to the concentration at the site of toxic action. This assumption is necessary for 
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the mortality model to estimate lethal concentration based on whole-body concentrations. In 

many cases, the whole-body concentration is a better predictor of toxicity than the environmental 

concentrations since the whole-body concentration of an organism accounts for (i.e. eliminates 

the need to consider) environmental factors and chemical variables that influence the 

bioavailability and uptake of an element (Borgmann et al., 2004).  Growth is considered a less 

sensitive endpoint in H. azteca than mortality (Borgmann et al., 2004) and therefore will not be 

discussed in this thesis.  However, growth results are available in Appendices A, B, and C.   

The mortality model from Borgmann et al. (2004) will be used in Chapters 2, 3, 4, and 5 

to calculate critical concentrations as follows: 

m = m’ + (ln(2)/t) × [Cw(1/LC50+1/Kw)/(1+Cw/Kw)]nw     (Eq. 1.1)  

or  

m = m’ + (ln(2)/t) × [Cb(1/LBC50+1/Kb)/(1+Cb/Kb)]
nb     (Eq. 1.2)  

 where m is mortality rate, m’ is the control mortality, t is time, C is the measured water 

(w) or body (b) concentration, LC50 (lethal concentration) is the concentration of an element in 

water resulting in 50% of control survival and LBC50 (lethal body concentration) is the whole-

body element concentration resulting in 50% of control survival, Kw or Kb is the half-saturation 

constant (the concentration at which the mortality rate is halfway between the control and 

maximum mortality rates), n is an exponent. The LBC50 is used instead of an LD50, since the 

organisms were exposed to a concentration of an element in water, not a dose.  Body 

concentrations are background corrected and gut-cleared. 

 Formulae 1.1 and 1.2 can be modified as follows to determine LC25 and LBC25 values 

as 

 LC25 = [(LC50-1 + Kw
-1) (ln(4/3) ln(2)-1)1/nw –  Kw

-1]-1       (Eq. 1.3a) 

 and  

 LBC25 = [(LBC50-1 + Kb
-1) (ln(4/3) ln(2)-1)1/nb –  Kb

-1]-1                      (Eq. 1.3b) 

 where LC25 is the concentration of an element in water causing 25% mortality, LC50 is 

the concentration of an element in water causing 50% mortality, LBC25 is the whole-body 

(background corrected and gut-cleared) concentration of an element associated with 25% 

mortality, LBC50 is the whole-body concentration associated with 50% mortality, Kw” is the 

half-saturation constant (where the element concentration in water associated with mortality is 
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half the concentration causing maximum mortality), KTB” is the half-saturation constant (where 

the element concentration in organism’s body causing mortality is half the maximum), and nw 

and nb are exponents. 

 Formulae 1.1 and 1.2 can also be modified for LC10 and LBC10 determination as 

LC10 = [(LC50-1 + Kw
-1) (ln(10/9) ln(2)-1)1/nw –  Kw

-1]-1      (Eq. 1.4a)    

 and  

 LBC10 = [(LBC50-1 + Kb
-1) (ln(10/9) ln(2)-1)1/nb –  Kb

-1]-1                      (Eq. 1.4b) 

 where LC10 is the concentration of an element in water causing 10% mortality, LC50 is 

the concentration of an element in water causing 50% mortality, LBC10 is the whole-body 

(background corrected and gut-cleared) concentration of an element associated with 10% 

mortality, LBC50 is the whole-body concentration of an element associated with 50% mortality, 

KW is the half-saturation constant (where the concentration of an element in water causing 

mortality is half the maximum),  Kb is the half-saturation constant (where the concentration of an 

element in organism’s body causing mortality is half the maximum), and nw and nb are 

exponents. 

1.7.4.2 Bioaccumulation Model 

The mechanistically-based, bioaccumulation saturation model of Borgmann et al (2004) 

is used to determine the relationship between bioaccumulation of cobalt and exposure as follows:  

Cb = max × Cw × (K + Cw)-1 + CBk        (Eq. 1.5a)  

 Where Cb is the whole-body concentration of the element, max is the maximum above-

background body concentration, CW is the concentration of an element in the exposure media, K 

is the half saturation constant, which is the concentration of an element in water at which the Cb is 

half way between the max and the CBk (background body concentration, or control 

concentration). The data used to fit this model was gut-cleared, whole-body concentration of an 

element on a dry weight basis.  Gut-clearance is when organisms are transferred into clean water 

containing ethylenediaminetetraacetic acid (EDTA) for 24 hours to remove metal that has not 

been absorbed from their digestive tract or body surface (Neumann et al., 1999). 

 If the element concentration does not reach a maximum in the organism, the following 

formula can be used to calculate the whole-body concentration as the addition of CW will not 

affect K in this scenario,   
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Cb = max/K × Cw +CBk          (Eq. 1.5b) 

 A bioconcentration factor relating the concentration of the element in an organism to the 

concentration in water can be calculated as: 

BCF = Cb Cw
-1 = max (K + Cw)-1 + CBk Cw

-1        (Eq. 1.6) 

1.8 HYALELLA AZTECA 

H. azteca are a freshwater amphipod species that lives at the water-sediment interface of 

slow moving streams or lakes (Environment Canada, 1997).  It should be noted that H. azteca is a 

species complex (Major et al., 2013), and the effect of toxicants may vary between clades.  The 

clade used in this thesis (clade 1) is more sensitive to Cu and Ni than clade 8 used in most North 

America laboratories (Leung et al., 2016).  H. azteca are tolerant to a wide range of water 

chemistry parameters.  A population of H. azteca can be maintained in water with pH as low as 

5.8 (Grapentine & Rosenburg, 1992) and can withstand pulses of lower pH water (Pilgrim and 

Burt, 1993).  This species is present in alkaline lakes and even estuaries, showing that they can 

adapt to high alkalinity, pH, hardness and salinity (Environment Canada, 1997).   

1.9 PROJECT OBJECTIVES AND HYPOTHESES 

This project was initiated in support of the Canadian Government’s Chemicals 

Management Plan to investigate the toxicity of three elements that were identified as high risk to 

the environment and human health – Co, Se, and Zn.  The amphipod H. azteca was selected to 

observe the toxicity and bioaccumulation of each element in chronic waterborne exposures.  

Endpoints based on both exposure and whole-body were determined using the mortality model 

(Section 1.7.4.1) and the bioaccumulation pattern of each element was determined using the 

bioaccumulation model (Section 1.7.4.2). 

1.9.1 Objectives 

1. Determine if pH or DOC influences the acute toxicity of an element tested singly (Co, Se, or 

Zn) to H. azteca. 

2. Determine if pH, alkalinity or DOC influences the chronic toxicity of an element tested singly 

(Co, Se, or Zn) to H. azteca. The effect of water hardness will also be determined 

incorporating data from previous studies. 

a) Determine how mortality rate and bioaccumulation of an element tested singly in H. azteca is 

related to exposure concentration and if water chemistry affects this relationship. 
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b)  Determine how mortality rate and bioaccumulation of an element tested singly in H. azteca is 

related to whole-body concentration and if water chemistry affects this relationship. 

3. Compare mortality and bioaccumulation relationships in water with different chemistry to 

models developed by Borgmann et al. (2004), Norwood et al. (2006, 2007), and Norwood et 

al. (unpublished) to determine if water chemistry is a variable necessary for the models to be 

good predictors of toxicity.    

1.9.2 Hypotheses  

1. Changes to water chemistry in chronic exposures to metals will have significant effects on 

rates of mortality and bioaccumulation of an element. 

a) The toxicity and bioaccumulation of Co and Se will decrease with increasing pH and 

alkalinity. 

b) The toxicity and bioaccumulation of Zn will have a u-shaped response to pH, with increased 

mortality at neutral pH. The toxicity of Zn will also have a u-shaped response to alkalinity. 

c) The toxicity and bioaccumulation Co, Se, and Zn will decrease with increasing concentrations 

of DOC. 

2. Whole-body concentration-based mortality will not be affected by changing water chemistry. 
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CHAPTER 2  

Dissolved organic carbon and pH effects on the acute toxicity of Co, Se, and Zn to 

Hyalella azteca  

 

 

 

OVERVIEW 

This chapter presents 7-day toxicity data for Co, Se, and Zn to Hyalella azteca in lab-based 

experiments manipulating the pH or DOC concentration of the exposure environments.  The 

toxicity endpoint examined was mortality.  Two methods were applied to estimate the LC50, 

followed by a comparison of the results from each method.  The two models used were the 

Trimmed Spearman-Karber method and the mortality model. The acute toxicity endpoints were 

used to define chronic toxicity testing ranges in Chapter 3, 4, and 5.      
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2.1 INTRODUCTION 

 The acute toxicity of environmental contaminants occurs at high concentrations of a 

compound over a short time.  Typically, this toxicity will only occur in an aquatic environment 

when a contaminant is accidentally introduced or before benchmark environmental 

concentrations have been established (Nikinmaa, 2014).  Chronic exposures occur when an 

organism is exposed for greater than 10% of its lifespan, at concentrations lower than what would 

cause an acute toxic effect (Nikinmaa, 2014).  In terms of creating environmental criteria and for 

risk assessment, chronic endpoints are more useful; however, acute toxicity testing is still 

required to determine short term toxicity mechanisms, as chronic exposures introduce more 

complexity.  During longer exposures, organisms will grow or potentially acclimatize, which can 

redistribute and/or remove toxic element from the organism (Niyogi & Wood, 2004).  Grosell et 

al. (2006) noted that the water chemistry parameters affecting Pb toxicity were similar in both 

acute and chronic exposures.  However, other studies have found that water chemistry can have 

different or no effects on acute and chronic endpoints (Heijerick et al., 2002; Heijerick et al., 

2005; CCME, 2016). 

 The objectives of this chapter were to determine how water chemistry affects the acute 

toxicity of Co, Se, or Zn to Hyalella azteca.  Seven-day exposures of H. azteca to single elements 

in different concentrations of dissolved organic carbon (DOC) and at different pH were 

completed with mortality as the endpoint.  H. azteca have been previously exposed to Co, Se, and 

Zn in 7-day acute exposures in both soft water and hard water by Borgmann et al. (2005).  Seven-

day LC50s were greater in the hard water treatments, with the Co LC50 increasing four times, Se 

7.5 times, and Zn four times.  Schubauer et al. (1993) exposed H. azteca to Zn at three levels of 

pH and identified a four-fold decrease in toxicity between pH 8-8.5 and pH 6-6.5 in 96-hour 

exposures.  

Two methods were used to estimate the concentration causing 50% mortality in H. azteca 

- the Trimmed-Spearman Karber method and the mortality model, as described in Section 1.7.4.1.  

The Trimmed-Spearman Karber method calculates an LC50 and its 95% confidence intervals 

using survival and concentration data.  This method appears in literature; however, its potential 

weaknesses include pooling of replicates and using only monotonic data.  This method has been 

used as tool to determine preliminary LC50s before additional modelling (Environment Canada, 

2005).     
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2.2. METHOD 

2.2.1 Experimental Set-up  

The 7-day acute testing methods used were similar to those of Norwood et al. (2006; 

2007). HDPE containers (500 mL) were acid-washed in 20% HNO3 and rinsed 7-8 times with 

deionized water.  Standard artificial media (SAM-5S) water (Borgmann, 1996) was diluted to 

30% (SAM30: 0.33 mM CaCl2, 0.01 mM NaBr, 0.075 mM MgSO4, 0.33 mM NaHCO3, 0.015 

mM KCl), so the experiments took place in moderately-soft water.  The concentration of the 

bromide ion remained at 0.01mM, as it is an essential ion for H. azteca (Borgmann, 1996). The 

water chemistry was further adjusted for each set of experiments (Table 2.1).  The different 

treatment media were made in 25L carboys initially containing SAM30.  Alkalinity, pH, and 

DOC adjustments were made to these carboys and then equilibrated for 48 hours prior to use in 

experiments.  The animals were cultured in SAM30 and the young randomly transferred to the 

media set to the appropriate water chemistry for an acclimatization period of 4 hours prior to the 

start of the experiment. Fifteen 2-9 day old H. azteca were then transferred to 400 mL SAM 

water in the HDPE containers. Each container had a 2.5 x 2.5 cm piece of 100% cotton gauze as a 

substrate. The containers received 16-hour light/8-hour dark photoperiod in a 25°C walk-in 

incubator.  

 

Table 2.1. Test parameters and methods to maintain the water chemistry 

 

 Test solutions containing a single element were equilibrated 4 hours in test containers 

before H. azteca were added. For the DOC experiments the test solutions were equilibrated 24 

hours, so the element, DOC, and other ions would interact before the addition of organisms 

(Taylor et al., 2002; Niyogi et al., 2008).  

Each test was repeated twice for a total of six control replicates (no element addition) and 

four replicates of exponentially increasing element concentrations (0, 32, 56, 100, 180, 320 μg L-

1 (Table 2.2). The element additions were as follows: Cobalt as CoCl2•6H2O (Cobalt (II) chloride 

Method Reference 

pH 6.7, 7.7, 8.3 
-1M HCl or KOH 

amendments  

Taylor et al. (2002); 

Niyogi (2008) 

Dissolved 

organic 

carbon 

0.5, 2, 5, 10 mg C L
-1 

Luther Marsh, 

natural organic 

matter 

Gillis et al. (2010) 

Parameter measurements 
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hexahydrate, ACS reagent, 98%; Sigma Aldrich), Selenium as Na2SeO3 (Sodium selenite 99%, 

Sigma Aldrich), or Zinc as ZnCl2 (Zinc Chloride puriss. p.a., ACS reagent, reag ISO, reag Ph. 

Eur., >98%, Sigma Aldrich).  The nominal concentrations were selected based on the 7-day 

LC50s of these elements in soft water from Borgmann et al. (2005).  The acute exposures from 

this chapter served as a range-finding tests for the chronic (28-day) element toxicity experiments 

in Chapters 3, 4, and 5.     

 

Table 2.2 Measured concentration of elements in concentration series 

2.2.2 Sample collection and analysis 

Water samples (1-mL unfiltered) were taken at the beginning and end of each one-week 

experiment from the first replicate of each treatment and preserved with 10μL ultrapure HNO3 

(70%, Fisher Scientific) for elemental analysis. Filtered (0.45 µm) 1-mL water samples were 

taken from control, 56 nmol L-1, and 320 nmol L-1 test containers at the beginning and end of two 

turnover periods to determine dissolved element concentration. Total Co in water samples was 

determined with a Varian SpectraAA 400 graphite furnace atomic absorption spectrophotometer 

(GFAAS) with Zeeman background correction, while total Se or Zn in water was analyzed on a 

Thermo Scientific iCE 3000 Series Atomic Absorption Spectrometer with SOLAAR Data Station 

V11.03 software.   For the analyses of Co in water, the ash temperature was 1100°C and the 

atomization temperature was 2200°C, with Zeeman background correction.  For Se, the ash 

temperature was 1100°C and the atomization temperature was 2500°C, with Zeeman background 

correction. Nickel was used as a matrix modifier.  For Zn analyses, the ash temperature was 

700°C and the atomization temperature was 1150°C with Zeeman background correction.  

Ammonium phosphate was used as a modifier.  Method blanks, reference standards (CRM-

TMDW Certified Reference Material - Trace Metals in Drinking Water, High-Purity Standards, 

Charleston, South Carolina), and element standards (High-Purity Standards: 10 µg/mL Co in 2% 

HNO3, 10 µg/mL Se in 2% HNO3, 10 µg/mL Zn in 2% HNO3) were analyzed every five samples 

to ensure quality control (QA/QC) in the determination of background contamination, instrument 

Measured Exposure Concentrations

Element

Co 1.43, 490, 851, 1690, 2790, 4690

Se 4.65, 428, 805, 1630, 2640, 4260

Zn 53.9, 451, 815, 1480, 2240, 4680

nmol L
-1

4890 
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drift, detection limits and element recovery.  Recovery of CRM-TMDW was 88.0 % ± 7.15 for 

the Co program, 99.3% ± 9.11 for the Se program, and 106% ± 6.56 for the Zn program. If any 

blank or reference test failed, the instrument was recalibrated.   

Water samples (500 mL filtered) were collected from control, 56 μg L-1, and 320 μg L-1 

test containers for major ions (Na+, K+, Mg2+, Ca2+, Cl-, SO4
2-) and analyzed by Environment 

Canada’s National Laboratory for Environmental Testing, Burlington, Ontario (NLET).  

Inductively coupled plasma-optical emission spectrometry was used to measure the cations, while 

ion chromatography was used to measure Cl- and SO4
2-.  Water samples (100 mL unfiltered) were 

collected from control, 56 μg L-1, and μg L-1 test containers to measure dissolved organic carbon 

(DOC) and inorganic carbon (DIC).  These samples were analyzed on a Phoenix 8000™ UV-

persulfate TOC Analyzer (Teledyne Tekmar).  Water samples (500 mL filtered) were also 

collected at control, mid-level, and high element concentrations to determine alkalinity. 

Alkalinity was determined by NLET using a PC-Titrate automated system (Mandel Scientific) in 

a potentiometric titration with sulfuric acid (Environment Canada, 2008). Dissolved oxygen 

(Thermo Scientific Orion Model 080510), pH (Thermo Scientific Orion Model 8165BNWP), 

conductivity (VWR Scientific Model 1054), and ammonia concentrations (Aquarium 

Pharmaceuticals, Inc. NH3/NH4 test kit) were measured in subsamples of replicate one at the 

beginning of each experiment and in all containers at the end of the one-week exposure. 

At the end of the seven-day test, the surviving organisms were counted to determine 

mortality. The surviving animals were then transferred into 50 μM ethylenediaminetetraacetic 

acid (EDTA) in SAM30 with a piece of gauze (2.5 X 2.5 cm) and 2.5 mg of TetraMin for 24-

hour gut clearance and to remove external elements (Borgmann & Norwood, 1995b; Neumann et 

al., 1999). After 24h the animals were removed from the solution, placed on a Kimwipe to wick 

away excess water, and wet-weighed (Mettler Toledo micro-analytical balance) for growth 

analysis. The organisms were placed in acid-cleaned cryovials and dried at 60°C for 72 hours.  

Whole-body element concentrations were not measured due to the inability to characterize 

concentrations of elements in such small organisms after one week of growth.  

2.2.3 Calculations and data analyses 

2.2.3.1 Trimmed Spearman-Karber method 

Concentrations of elements in water causing mortality were first determined using 

measured total element concentrations in water and the Trimmed Spearman-Karber method.  The 
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Trimmed-Spearman Karber method estimates an LC50 and its 95% confidence intervals from the 

weighted averages of the midpoints between concentrations (Environment Canada, 2005).  If the 

data does not have 0% and 100% effects, the ends of the distribution can be trimmed. This 

method appears in literature (Brinkman & Wooding, 2005; Ryan et al., 2009); however, its 

potential weaknesses include excessive trimming and using only monotonic data.  If the 

distribution is trimmed without examining a plot of the data, it can shift the LC50 estimate.  

When the data are not monotonic it can be smoothed by taken the average of the non-monotonic 

data points, which can influence the confidence intervals.   This method has been used as a tool to 

determine preliminary LC50s before modelling (Environment Canada, 2005).     

2.2.3.2 Mortality Model  

The mortality model was described in Section 1.7.4.1.  Mortality data were fourth-root 

transformed to normalize the data before the above models were fitted in SYSTAT 10 (Norwood 

et al., 2007), after visual inspection of probability plots (Golding et al., 2013).  In addition, 

Levene’s test was performed on the absolute values of the residuals to ensure equality of variance 

(Environment Canada, 2005).    

2.2.3.3 Confidence Intervals  

To determine significant difference between the various treatment critical concentrations, 

the 95% confidence intervals for the two lethal concentrations must not overlap (Gillis et al., 

2010). If the two confidence intervals do overlap, they were considered not significantly 

different. 
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2.3 RESULTS 

2.3.1 Trimmed-Spearman Karber LC50 values 

Table 2.3.  Trimmed Spearman-Karber method LC50s and 95% confidence intervals in nmol L-1 of Co, Se, and 

Zn with differing water chemistry treatments. 

 

2.3.1.1 Cobalt 

The increased concentration of hydrogen ions had a protective effect, reducing cobalt 

toxicity by 30% between test pH values of 7.6 to 6.5, but not between 8.3 and 7.6 (Table 2.3).  

The addition both 2 and 5 mg C L-1 resulted in a 30% and 50% increase in Co toxicity compared 

to the test with no added DOC at a similar pH (pH 7.6).  At 10 mg C L-1 there was a significant 

protective effect (Table 2.3).   

2.3.1.2 Selenium 

Using the Trimmed Spearman-Karber method, the results showed that selenium was 50% 

more toxic at pH 6.7 compared to pH 8.3.  Increased DOC did not have a significant effect on 

LC50 values (Table 2.3). 

2.3.1.3 Zinc 

At pH 6.5 and pH 8.3 the toxicity of Zn was comparable; however, only the LC50 at pH 

8.3 was significantly lower than at pH 7.6. (Table 2.3).  The addition of dissolved organic carbon 

did not significantly affect the toxicity of Zn until the concentration of DOC was 10 mg C L-1.  

When 2 mg C L-1 and 5 mg C L-1 were present in the solution the Zn LC50s were not significantly 

different from each other nor from the test at a comparable pH (7.6) with no added DOC (Table 

2.3).  However, when 10 mg C L-1 was present, the LC50 was greater than 4890 nmol Zn L-1, but 

it was not possible to establish statistical significance because the LC50 was estimated to be 

greater than the test concentration with the most Zn.     

Treatment pH DOC Alkalinity

mg L
-1 mg CaCO3 L

-1
nmol Co L

-1
nmol Se L

-1
nmol Zn L

-1

pH 6.5 6.53 (6.41 – 6.64) 0.3 15.9 1940 (1600 - 2340)* 1420 (1350 - 1490)* 2550 (2100 – 3100)

pH 7.6 † 7.61 (7.51 – 7.69) 0.3 15.9 1320 (1200 – 1460) 1850 (1630 - 2100) 3480 (3040 – 3980)

pH 8.3 8.29 (8.01 – 8.59) 0.3 15.9 1190 (1060 – 1340) 2870 (2490 - 3310) * 2230 (1960 – 2520)*

DOC 2 7.7 2.4 20.1 945 (788 – 1130)* 1950 (1710 - 2230) 3360 (2900 – 3900)

DOC 5 7.7 4.4 20.1 647 (524 – 800)* nd 3550 (3220 – 4100)

DOC 10 7.7 9.1 20.1 2270 (1870 – 2760)* 2230 (1920 - 2600) >4890

LC50

* Indicates a significant different from unmodified treatment (†) 
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2.3.2 Mortality model LC50 determinations 

Table 2.4 Mortality model LC50s and 95% confidence intervals in nmol L-1 of Co, Se, and Zn with differing 

water chemistry treatments. 

 

2.3.2.1 Cobalt 

The Co LC50s estimated by the mortality model did not change significantly as pH 

increased (Figure 2.1; Table 2.4).   The mortality model estimates were not significantly different 

than those of the trimmed Spearman-Karber method except at pH 8.3 where the LC50 value was 

significantly lower than the trimmed Spearman-Karber value (Table 2.3 and Table 2.4).  The 

DOC-modified Co LC50s were inconsistent in terms of trends.  The addition of 5 mg L-1 DOC 

resulted in significantly reduced LC50 compared to addition of 2 mg L-1.  The addition of 10 mg 

L-1 resulted in a significant increase in LC50 compared to the two lower additions (Figure 2.1).  

However, there were no differences with any of the DOC additions compared to the test with no 

added DOC at a comparable pH (pH 7.6; Table 2.4).  These values were not significantly 

different from the LC50s as determined by the trimmed Spearman-Karber method.    

2.3.2.2 Selenium 

Using the mortality model to estimate LC50s values, there was no change in toxicity 

between pH values of 6.5 and 7.6, but a significant reduction at pH 8.3 (Figure 2.2; Table 2.4).   

The DOC treatments also had similar values to the trimmed Spearman-Karber method 

with a LC50 of 1980 (1740 – 2460) nmol Se L-1 at 2 mg C L-1 and 2370 (1880 – 2860) nmol Se L-

1 at 10 mg C L-1. 

2.3.2.3 Zinc 

The Zn LC50s determined by the mortality model were also not significantly different 

from the trimmed Spearman-Karber method, with values of 2690 (2040 – 3340) nmol Zn L-1 at 

Treatment pH DOC Alkalinity

mg L
-1 mg CaCO3 L

-1
nmol Co L

-1
nmol Se L

-1
nmol Zn L

-1

pH 6.5 6.53 (6.41 – 6.64) 0.3 15.9 1780 (1010 – 2560) 1390 (821 – 1970) 2690 (2040 – 3340)

pH 7.6 † 7.61 (7.51 – 7.69) 0.3 15.9 848 (285  – 1410) 1550 (1200 – 1900) 3600 (3290 – 3910)

pH 8.3 8.29 (8.01 – 8.59) 0.3 15.9 686 (339 – 1030) 2830 (2460 – 3230)* 2290 (1850 – 2720)*

DOC 2 7.7 2.4 20.1 777 (618 – 935) 1980 (1740 – 2460) 3640 (3000 – 4280)

DOC 5 7.7 4.4 20.1 436 (297 – 577) nd 4290 (3130 – 5450)

DOC 10 7.7 9.1 20.1 1710 (748 – 3050) 2370 (1880 – 2860) >4890

LC50

* Indicates a significant different from unmodified treatment (†) 
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pH 6.5, 3600 (3290 -3910) nmol Zn L-1 at pH 7.5, and 2290 (1850 – 2720) nmol Zn L-1 at pH 8.3.  

This inverted u-shaped effect can be seen in Figure 2.3. 

The DOC-modified Zn LC50s were not significantly different. However, increasing DOC 

concentrations in the exposure water provided a protective trend against Zn toxicity (Figure 2.3).   
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Figure 2.1 Acute toxicity of Co to H. azteca as LC50 values in nmol Co L-1 in 

varying pH and DOC exposures.  LC50s were determined using the mortality 

model.  Error bars are 95% confidence intervals.   
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Figure 2.2 Acute toxicity of Se to H. azteca as LC50 values in nmol Se L-1 in 

varying pH and DOC exposures.  LC50s were determined using the mortality 

model.  Error bars are 95% confidence intervals.   
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2.4 DISCUSSION  

2.4.1 Comparison of the two LC50 methods 

 Both the Trimmed Spearman-Karber method and the saturation mortality model predicted 

similar lethal concentrations, with the only significant difference being the LC50 of the Co 

treatment at pH 8.3.  The confidence intervals from the mortality model were larger than those of 

the Trimmed Spearman-Karber method, as the monotonic requirement reduced the variability of 

the small data set.  The sensitivity to variable data may be a weakness of the mortality model.  

Because the trimmed Spearman-Karber method is an accepted method to determine lethal 

concentration values and the two methods estimated similar LC50s, the mechanistic mortality 

model should be a reliable predictive tool. 

2.4.2 Comparison of mortality model LC50s with literature 

2.4.2.1 Cobalt 

 Environments with lower pH had a protective effect against Co toxicity, as the LC50 at 

pH 6.5 was significantly greater than at pH 8.3.  Exposures with the highest DOC also had a 

protective trend against Co toxicity. However, the difference from the treatment with no added 

DOC and from the DOC-2 treatment was not significant.  The trimmed Spearman-Karber method 

estimated that Co in the DOC-10 would be significantly less toxic than with no added DOC (pH 

7.6 treatment); however, Co in the DOC-2 and DOC-5 treatments were significantly more toxic.  

Watanabe et al (2017) concluded that the molecular size of aquatic humic substances could affect 

the toxicity of Co to Ceriodaphnia dubia in a 7-day exposure. The affect the humic substance had 

on toxicity was also influenced by the Co concentration (Watanabe et al., 2017).  The aquatic 

humic substances used in the study by Watanabe et al. (2017) had other metals bound, unlike the 

dissolved organic matter (DOM) used in the current study.  Richards and Playle (1998) used 

DOM from the same source as the current study, observed that 25 mg L-1 DOC was able to 

complex 9 µmol Co L-1.  In the current study, the highest concentration tested was 4690 nmol Co 

L-1 and this concentration would not be completely complexed by the lower concentrations DOC 

added. 

Borgmann et al. (2005) discovered the acute LC50 of Co for H. azteca was over three-

fold less in soft water (18 mg L-1 as CaCO3) compared in hard water (124 mg L-1 as CaCO3) 

(Borgmann et al., 2005).  This LC50 of 1040 (882 – 1220) nmol Co L-1 in hard water from 

Borgmann et al. (2005) was not significantly different from any of the pH treatments from the 
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current study; however, the soft water treatment with an LC50 of 274 (189 – 395) nmol Co L-1 

from Borgmann et al. (2005) was significantly more toxic, which shows that hardness also has a 

protective effect. 

2.4.2.2 Selenium 

 Se was significantly more toxic to H. azteca in the pH 6.5 treatment when compared to 

the pH 8.3 treatment.  DOC did not significantly influence Se toxicity, although it was thought 

that it would be protective as humic acid can be an electron donor or accepter (Kunenkov et al., 

2009; Sharma et al., 2014) the polarity of SeO3
- also allows it to adsorb to DOM (Wiramanaden 

et al., 2010). Borgmann et al. (2005) completed 7-day experiments in soft and hard water for Se 

and the soft water LC50 for Se was 545 (456 – 659) nmol Se L-1 compared to the hard water 

LC50 of 4700 (3580 – 6170) nmol Se L-1.   The soft water Se LC50 was significantly lower than 

any of the treatments tested in the current study, while the hard water LC50 was significantly 

greater.  Although no other specific water chemistry data were provided, it was likely that 

hardness was a factor affecting acute Se toxicity in H. azteca because Se can interfere with Ca 

metabolism in invertebrates (Short & Wilbur, 1980; Johnston, 1987; Ingersoll et al., 1990).  

Therefore, Ca-limited invertebrates in softer water would be more susceptible to toxicity.   

2.4.2.3 Zinc 

DOC has a protective trend against the toxicity of Zn to H. azteca.  However, since the 

LC50 at the highest concentration of DOC was greater than the highest concentration tested, 

confidence intervals could not be determined, and the trend was not significant.    Several studies 

have concluded that increased concentrations of DOC will decrease the toxicity of Zn (De 

Schamphelaere et al., 2005; Bringolf et al., 2006; Clifford & McGeer, 2009). At lower Zn 

concentrations, a greater proportion was complexed with DOC (De Schamphelaere et al., 2005).   

pH changes caused an inverted u-shaped effect with the pH 7.6 LC50 significantly greater than 

the LC50 at pH 8.3.  The LC50s for the pH 6.5 and pH 7.6 treatments were not significantly 

different.  It was possible that Zn2+ competed with H+ for uptake and at pH 8.3 it complexed with 

anions (-OH, -CO3), which reduced the bioavailability and toxicity (USEPA, 1980).   

 The soft water LC50 for Zn from (Borgmann et al., 2005) was 858 (704 – 1040) nmol Zn 

L-1 and 3400 (3080 – 3750) nmol Zn L-1 in hard water.  The soft water LC50 was significantly 

lower than any of the treatments tested in the current study, indicating that hardness affects the 

toxicity of Zn.  However, the hard water treatment was not significantly different from the DOC 
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treatments or the lower pH treatments.  Without further pH data, it was difficult to discern the 

reason for these trends, but the higher hardness likely has a similar protective effect to the DOC 

treatments.  In addition, the organisms used in the tests by Borgmann et al. were cultured in hard 

water, which could affect the number of binding sites for metal toxicity to occur compared to the 

organisms cultured in soft water of the current study (Khan et al., 2011).   

2.4.3 Future work  

 Using the data from this study, water chemistry effects on both bioaccumulation and 

toxicity of these three elements will be determined in 28-day exposures.  The concentration range 

selected for these chronic experiments will be based on the 7-day toxic endpoint.   

2.5 SUMMARY 

Acute toxicity of all three elements was influenced by varying pH.  There was a trend of 

increased Co toxicity with increased pH, while Se became significantly less toxic as pH 

increased.  Zn had an inverted u-shaped toxic response, with moderate pH contributing to lower 

toxicity.  There were no significant effects with changing DOC concentrations.   
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CHAPTER 3 

Using saturation kinetics-based non-linear regression models to predict the chronic toxicity 

and bioaccumulation of cobalt to Hyalella azteca under different water chemistry conditions 

 

 

 

OVERVIEW 

Water-based exposures of cobalt causing mortality in H. azteca can be influenced by water 

hardness and dissolved organic carbon concentrations.  Using non-linear regression saturation-

based mortality models, changes in water chemistry influenced the lethal concentrations of Co in 

water, but not lethal whole-body Co concentrations.   In soft water the LC50 was 25.4 ± 5.4nmol 

L-1, which increased to 80.6 ± 38.3 nmol L-1 with 5 mg C L-1 added and to 183 ± 63 nmol L-1 in 

moderately hard water. The LBC50 was 144 ± 28 nmol g-1 in soft water, 192 ± 54 nmol g-1 in 

hard water, and 146 ± 31 nmol g-1 with added DOC.   Varying alkalinity and pH did not affect 

mortality or bioaccumulation of Co.  In soft water treatments, H. azteca had greater accumulation 

of Co than in hardwater at the same exposure concentrations, although the predicted maximum 

whole-body concentrations were not significantly different. The whole-body concentration of Co 

in Hyalella azteca was a more consistent predictor of toxicity over a range of water chemistry 

conditions when compared to exposure concentrations.   
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3.1. INTRODUCTION 

Cobalt is a metallic element that is a micronutrient for humans and many other organisms 

including fish (Watanabe et al., 1997).  Cobalt is not regulated in some invertebrates, including 

the marine amphipod Echinogammarus pirloti (Rainbow & White, 1990).  However, other 

micronutrients, including Cu and Zn, are also not always regulated in invertebrates.     Aquatic 

environments typically have background concentrations of Co less than 1 µg L-1 with 

concentration increasing to 10 µg L-1 in more populated areas (Smith & Carson, 1981; 

Environment Canada, 2017).  Anthropogenic activity such as metal mining and smelting have led 

to Co concentrations in some aquatic systems greater than 2000 µg L-1 (Environment Canada, 

2017).  Canadian Water Quality Guidelines for the Protection of Aquatic Life developed by the 

Canadian Council of Ministers of the Environment currently do not have a recommended 

maximum acceptable concentration of Co; however, Environment Canada has developed a 

Federal Water Quality Guideline of 1.0 µg L-1 (17.0 nmol L-1) which is the 5th percentile of a 

species sensitivity distribution indicating where there is a low risk of adverse effects to aquatic 

life (Environment Canada, 2017).  The province of British Columbia has implemented a 30-d 

average concentration of 4 µg L-1 (67.9 nmol L-1) and a maximum exposure concentration of 110 

µg L-1 (1866 nmol L-1). These guidelines were developed using long-term toxicity data for a 

variety of species and based on the most sensitive groups of species (Nagpal, 2004). 

 Water chemistry parameters have proven effects on the uptake of metals, which will 

affect bioaccumulation patterns (Richards & Playle, 1998; Verschoor et al, 2012) and 

toxicological endpoints (Heijerick et al., 2003; Niyogi & Wood, 2004).  Guidelines for some 

metals, including zinc and lead, are dependent on hardness to determine a site-specific guideline 

(CCME, 2007); however, many guidelines do not account for water chemistry and may not be 

reflective of metal bioavailability and toxicity under different conditions.  When there is a pH 

effect on metal toxicity, it is predicted that H+ competes with metal ions for binding sites on the 

surface of the organism, so there is more competition for uptake at a lower pH.  However, a 

higher proportion of metal is in a cationic form at low pH, which is more readily taken up by an 

organism (Di Toro et al., 2001).  Cobalt carbonate forms at higher pH though covalent bonding, 

which will reduce the concentration of free metal ions and cause increase alkalinity (Parametrix, 

1995).  Dissolved organic carbon (DOC) has phenolic and carboxylic groups with negative 

charges that can complex free metal ions. With increasing concentration of DOC in an aquatic 

environment, the effect that the metal would have on an organism is expected to decrease, as it 
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would have reduced bioavailability through complexation (Richards et al., 1999).   The effect of 

water chemistry on Co chemistry for this study is presented in Table 3.3.   Richards and Playle 

(1998) studied cobalt binding to rainbow trout (Oncorhynchus mykiss) gills and the effect of 

water chemistry on accumulation.  It was established that Ca competition and DOM 

complexation were the main factors in preventing Co accumulation on fish gills.  DOC 

concentrations in south-central Ontario tertiary watersheds rarely exceed 10 mg L-1 (David et al., 

1997), but can reach concentrations exceeding 14 mg L-1 in soft water lakes in the same region 

(Welsh et al., 1996). 

 The mortality model does not consider the previously mentioned water chemistry 

parameters, but instead links mortality to measured concentrations of Co in water or whole-body 

Co concentrations (Norwood et al., 2007) instead of the level of saturation of the critical binding 

sites (Di Toro et al., 2001).  This mechanistic model assumes that mortality rate reaches a 

maximum (Borgmann et al., 2004; Norwood et al., 2006). Borgmann et al. (2004) state that total 

body concentration causing mortality in H. azteca is often proportional to the concentration at the 

site of action and is a better predictor of toxicity than environmental concentrations. In addition, 

the use of organism whole-body concentrations should eliminate the need to consider 

environmental factors and chemical variables that could affect the bioavailability of a metal.   

Using this model, a lethal concentration causing 50% mortality in H. azteca was 16 µg Co L-1 

(271 nmol Co L-1) in a one-week exposure (Borgmann et al., 2005).  H. azteca were exposed to 

Co in moderately hard water for 28-days by Norwood et al., (2007).  The concentration of Co in 

water causing 50% mortality was 183 nmol L-1 and the whole-body concentration causing 50% 

mortality was 192 nmol L-1.   

 The research in this chapter investigated how manipulating pH, alkalinity, and DOC 

affects mortality of H. azteca based on whole-body or water concentrations of Co.  Lethal 

concentrations were determined using the mortality model described in section 1.7.4.1 and 

compared to previous Co exposures in moderately hard water by Norwood et al. (2007). The 

influence of these water chemistry variables on the bioaccumulation of Co was also determined 

using the bioaccumulation model from section 1.7.4.2.  It was hypothesized that the toxicity and 

bioaccumulation of Co will decrease with increasing pH, alkalinity, or DOC.   
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3.2. METHOD 

3.2.1 Experimental Set-up  

The 28-day chronic testing methods used were similar to those described in section 2.2.1, 

deviations were described in the subsequent text.  In addition to testing different pH and DOC 

concentrations, alkalinity was also adjusted (Table 3.1), with final water chemistry recorded in 

Table 3.2.   

Table 3.1. Test parameters and methods to maintain the water chemistry. 

 

  Test solutions containing CoCl2•6H2O (Cobalt chloride, 99%, Sigma Aldrich) were 

equilibrated 24 hours in test containers before H. azteca were added, so the metal, DOC, and 

other ions would interact before the addition of organisms (Taylor et al., 2002; Niyogi et al., 

2008).  The water in each container was renewed and the organisms counted every 7 days. Each 

test consisted of three control replicates (no metal addition) and two replicates of exponentially 

increasing metal concentrations (e.g.: 10, 18, 32, 56, 100 nmol L-1).  The organisms were fed 2.5 

mg finely ground TetraMin fish food (Tetra GMBH, Melle, Germany) twice during this period. 

3.2.2 Sample collection and analysis 

Water samples (1-mL unfiltered) were taken at the beginning and end of each one-week 

experiment from the first replicate of each treatment and preserved with 10μL ultrapure HNO3 

(70%, Fisher Scientific) for metal analysis. Filtered (0.45 μm) 1-mL water samples were taken in 

0, 18, and 100 nmol L-1 Co concentrations at the beginning and end of two turnover periods to 

determine dissolved metal concentration. Total and dissolved Co concentrations in water samples 

were determined with a Varian SpectraAA 400 graphite furnace atomic absorption 

spectrophotometer (GFAAS), using the program described in Section 2.2.2. 

Method Reference 

pH 6.7, 7.7, 8.3 
1M HCl or KOH 

amendments  

Taylor et al. (2002); 

Niyogi (2008) 

Alkalinity 16, 50, 100 mg L
-1

 as CaCO3 

Adjust NaHCO3, 

maintain sodium 

ions using NaCl 

Deleebeeck et al. 

(2007) 

Dissolved 

organic carbon 
0.5, 2, 5, 10 mg C L

-1 

Luther Marsh, 

natural organic 

matter 

Gillis et al. (2010) 

Parameter measurements 
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Water analysis methods were the same as those described in section 2.2.2.  Water 

samples (500-mL filtered) were collected from containers containing 0, 18, or 100 nmol L-1 Co 

for major ions (Na+, K+, Mg2+, Ca2+, Cl-, SO4
2-).  Water samples (100 mL unfiltered) were 

collected from these treatments for dissolved organic carbon (DOC) and inorganic carbon (DIC) 

analysis.  Water samples (500 mL filtered) were also collected from containers containing 0, 18, 

and 100 nmol L-1 Co to measure alkalinity. Dissolved oxygen, pH, conductivity, and ammonia 

concentrations (Aquarium Pharmaceuticals, Inc. NH3/NH4 test kit) were measured in subsamples 

of replicate one at the beginning of each experiment and in all containers at the end of the one-

week. 

After 28 days, the surviving organisms from each container were counted.  This count 

and the survival from each previous week was used to determine mortality per week to be input 

into the mortality model.   The surviving organisms from each container were treated with the 

other organisms from the same container for the rest of the procedure.  Replicates were not 

pooled.  The organisms were then transferred into 50 mL containers containing 50 μM 

ethylenediaminetetraacetic acid (EDTA) in SAM30 with a piece of gauze (2.5 X 2.5 cm) and 2.5 

mg of TetraMin for gut clearance and to remove external Co.  After 24 h the animals were 

removed from the solution, placed on a Kimwipe to wick away excess water, and wet-weighed 

(Mettler Toledo micro-analytical balance) for growth analyses.  Wet weights per treated 

organism ranged from 0.113 to 1.063 mg, with an average weight of 0.623 mg for the control 

organisms.   The organisms were placed in an acid-cleaned cryovial and dried at 60°C for 72 

hours.  

3.2.3 Whole-body Digests  

The dried organisms were weighed and digested for 6 days using concentrated ultrapure 

nitric acid (70%, Fisher Scientific) followed by the addition of 30% analytical grade hydrogen 

peroxide (J.T. Baker) for 24 hours. Milli-Q water was added, so the final digest concentrations 

were 1.75% ultrapure HNO3 and 0.60% H2O2 (Golding et al., 2013).  The weight of the dried 

organisms ranged from 0.034 – 0.224 mg, with a control average weight of 0.145 mg.  Digests of 

a certified reference material had a recovery value of 107 ± 14% (TORT2: lobster 

hepatopancreas; Co certified as 0.51 ± 0.09 mg kg-1 from the National Research Council of 

Canada).   
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3.2.4 Total Cobalt Analyses  

Total Cobalt in water and whole-body samples was determined with a Varian SpectraAA 

400 graphite furnace, atomic absorption spectrophotometer with Zeeman background correction.  

The ash temperature was 1100°C and Co was atomized at 2200°C.  Method blanks, reference 

standards, and metal standards were analyzed to ensure quality control (QA/QC) in the 

determination of background contamination, instrument drift, detection limits and metal 

recovery. All samples were corrected for background contamination and instrument drift. 

 There was no significant difference between filtered and unfiltered water samples (Two-

way ANOVA, p= 0.469, N=12) or between day 0 and day 7 sample concentrations with an 

average % loss of 3.55 ± 13.6 (Two-way ANOVA, p=0.144, N= 90).  Detection limits were 

calculated as three times the standard deviation of the method blanks (Norwood, 2008).  The 

detection limit was 7.9 nmol L-1 for water samples. The detection limit for whole-body methods 

was 8.77 nmol L-1.  When measurements were below the detection limit, they were set at the limit 

for input into the models.  

Exposure concentrations were mean measured dissolved Co concentrations of samples 

taken at the beginning and end of all turnover periods in nmol Co L-1. Whole-body concentrations 

were mean measured Co concentrations of all surviving organisms in a replicate at each exposure 

concentration after 28 days in nmol Co L-1 d.w. 

3.2.5 Data analyses  

3.2.5.1 Mortality Model  

The mortality model, as described in Section 1.7.4.1, was used to determine lethal water 

and lethal body concentrations.  Mortality data were fourth-root transformed to normalize the 

data before the above models were fitted in SYSTAT 10 (Norwood et al., 2007), after visual 

inspection of probability plots (Golding et al., 2013) and the Shapiro Wilk test for normality 

(W=0.777, p=0.000 on untransformed data).  In addition, Levene’s test (F = 0.977, p = 0.512) 

was performed to ensure equality of variance of 4th root transformed data (Environment Canada, 

2005).   Mortality rate was determined by converting percent survival (S) to mortality using the 

formula, 

mortality = -ln(S)         (Eq. 3.1) 
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The slope of these mortality values was then calculated over four weeks to determine the 

mortality rate (Norwood et al., 2007).  

3.2.5.2 Bioaccumulation  

The bioaccumulation saturation model, as described in Section 1.7.4.2 was used to 

determine the relationship between bioaccumulation of cobalt and exposure.    

3.2.5.3 Confidence Intervals  

 To determine significant effects, confidence intervals were used as described in section 

2.2.3.3. 

 

3.2.5.4 Comparison with Norwood et al. (2006, 2007) 

 Cobalt concentrations in water and whole-body concentration causing mortality in hard 

water have been previously determined by Norwood et al. (2007).  Lethal concentrations and 

mortality model parameters for cobalt from Norwood et al. (2007) were used in this study to 

determine the effect of water hardness on Co toxicity.  In addition, raw mortality data from 

Norwood et al. (2007) were used to calculate an LC10 and LBC10 in hard water.   

 The saturation model for the bioaccumulation of Co in hard water and its parameters 

from Norwood et al. (2006) were used to compare bioaccumulation in soft water to hard water. 

 

3.2.5.5 Cobalt Speciation 

The Windermere Humic Aqueous Model VI (WHAM VI) was used to estimate the free 

ion activity and Co-complex concentrations in the different water chemistry treatments (Table 

3.3).  WHAM VI is a program that simulates the chemical reactions of metals in water or soil, 

notably the reactions with humic substances. Luther Marsh DOM is 74% humic acid-like 

material (Gheorghiu et al., 2010) and humic and fulvic acids were assumed to be in particulate 

form.   
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Table 3.3. Cobalt speciation (% total Co) determined by WHAM VI. 

    

  

Free ion activity

% of Co

DOC10 34.5 40.9 0.2 0 0.5 1.9 0 0 48.1 4.61

DOC5 45.9 54.2 0.4 0 0.6 3.6 0.1 5.2 32.9 3.2

DOC2 53.6 63.7 0.1 0 0.8 4.3 0.1 6.2 22.03 1.96

pH 6.5 76.1 94 0.1 0 1.1 0.2 0.3 1.6 1.57 1.15

pH 7.5 54.7 65.1 0.8 0 0.8 15.8 0.1 13.4 2.81 1.21

pH 8.5 21.4 26 1.1 0.2 0.3 56.5 0 13 2.8 0.61

Alk 100 10.7 14.4 0.6 0.1 0.1 66.9 0.1 15.8 1.46 0.53

Alk 50 25.9 35 0.7 0.1 0.3 42.3 0.2 20 1.01 0.37

Hard water
a

18.5 26.1 0.8 0.1 3.8 53.3 0 15.9 0.01 0.02

a- Calculated from data in Norwood et al. (2007)

CoCO3 CoCl
+

CoHCO3
+

Co-HA Co-FATreatment Co
2+

CoOH
+

Co(OH)2 CoSO4
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3.3. RESULTS 

3.3.1 Exposure-related mortality 

3.3.1.1 DOC 

The concentration of Co in water causing mortality decreased as the concentration of 

added DOC decreased (Table 3.4).  The 28-day LC50s for DOC-10 (9.05 ± 0.44 mg C L-1; DOC 

± standard deviation), DOC-5 (4.37 ± 0.19 mg C L-1), DOC-2 (2.42 ± 0.32 mg C L-1), and DOC-

0.5 (0.28 ± 0.03 mg C L-1) were 90.2, 80.6, 68.3, and 24.7 nmol Co L-1, respectively, with models 

that had r2 values between 0.600 and 0.700 (Table 3.4).  With increasing concentrations of DOC, 

the concentrations of Co causing mortality were not significantly different from each other when 

compared stepwise, but the differences between the DOC-0.5 and DOC-5 treatments were 

significant (Table 3.3).  The DOC-10 treatment 28-day LC50 of 90.2 nmol Co L-1 was near the 

upper end of the Co exposure concentration range tested, so there was high variability in the 

estimate compared to the variability in the 28-day LC25 and LC10 estimates.  Between the 

lowest and highest DOC concentration treatments there was over a three-fold increase in lethal 

Co concentrations (Table 3.4). 

 The mortality model parameters (Table 3.4) were used to generate mortality curves 

(Figure 3.1).  The curve with the highest mortality rates on the graph represents the mortality 

rates of the DOC-0.5 treatment.  The mortality rate in the DOC-2 treatment began to increase at 

Co concentrations of 15 nmol Co L-1, while DOC-5 treatment did not deviate from control 

mortality until the Co concentration reached 30 nmol Co L-1.  Unlike the other DOC treatments, 

the DOC-0.5 treatment had a gradual increase in mortality rate.   Except for the DOC-10 curve, 

all the other models approached a maximum (saturated) mortality rate within the concentration 

range tested.  The mortality rate did not reach a maximum in the DOC-10 treatment, which 

indicates that the true LC50 was likely higher than 100 nmol Co L-1.  Control mortality was 

plotted at the detection limit of 7.9 nmol Co L-1 for all exposure-based mortality figures.   

3.3.1.2 pH 

There were no significant differences among the 28-day LC50s as pH was adjusted 

(Table 3.5).  However, it should be noted that the control mortality rate in the pH-6.7 treatments 

(m′ in Table 3.5) was greater than 10% per week in several replicates, indicating that this pH was 

getting close to the tolerance for H. azteca.  Acceptable control survival/mortality rates are 65% 

survival over 4 weeks or <10% mortality week-1 (Borgmann, 2002).  The control mortality rate of 
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the pH-8.3 treatment was also higher than the pH-7.7 treatment, but the survival was acceptable 

for a 28-d test.  The parameters in Table 3.5 were modelled in Figure 3.2.  The pH-6.7 curve was 

the highest curve on the graph; however, the data points for all treatments were overlapping.  

3.3.1.3 Alkalinity  

The mid-range alkalinity treatment Alk-50 (51.7 ± 0.54 mg L-1 as CaCO3 equivalents) had 

a 28-day LC50 1.8 times greater than the high (Alk-100; 101 ± 0.17 mg L-1 as CaCO3 

equivalents) and low (Alk-16; 16.1 ± 0.15 mg L-1 as CaCO3 equivalents) alkalinity treatments; 

however, there were no significant differences among these values (Table 3.6).  The alkalinity 

treatment mortality model r2 values were greater than 0.650. The models for Alk-100 and Alk-16 

gradually increase in mortality rates as the Co exposure concentration (Figure 3.3).  The Alk-50 

treatment had sharp increase in mortality rate at about 20 nmol Co L-1 and reached a greater 

maximum mortality rate than the other treatments. 

3.3.1.4 Hardness 

The concentrations of Co causing mortality in soft water were significantly lower when 

compared to experiments by Norwood et al. (2007) conducted in hard water. (Table 3.7).  The 

28-day LC50 in Hardness-37.5 was 25.4 nmol Co L-1 and in Hardness 122 it was 183 nmol Co L-

1, while the 28-day LC25 were 16.6 and 68 nmol Co L-1, respectively.  Both models had r2 values 

greater than 0.850.  The two mortality curves (Figure 3.4) intersect at a low concentration of Co 

in water and deviate above this concentration.  The curve of the mortality rate for hardness-37.5 

has a greater increase and approaches a maximum mortality rate, whereas the hardness-122 curve 

has a lesser increase and does not approach a maximum over this concentration range.   
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Figure 3.1. Waterborne Co mortality models with modified DOC based on parameters in 

Table 3.4. Data points are mortality rates at measured concentrations of Co in water. □ are 

data from DOC-0.5 experiments,  are DOC-2, ○ are DOC-5, are DOC-10.  The solid 

lines represent the corresponding Co mortality model.    
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Figure 3.2. Waterborne Co mortality models with modified pH based on parameters in Table 

3.5.  Data points are mortality rates at measured concentrations of Co in water.  are data 

from experiments pH-6.8, ○ are pH-7.7, and □ are pH-8.3.  The solid lines represent the 

corresponding Co mortality model. 
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Figure 3.3. Waterborne Co mortality models with modified alkalinity based on parameters in 

Table 3.6.  Data points are mortality rates at measured concentrations of Co in water.  are 

data from Alk-100 experiments, ○ are Alk-50, and □ are Alk-16.  The solid lines represent 

the corresponding Co mortality model. 
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Figure 3.4. Waterborne Co mortality models with modified hardness based on parameters in 

Table 3.7.  Data points are mortality rate at measured cobalt water concentration in SAM30 

with modified hardness.  ○ are Hardness-37.5 and □ are Hardness-122.  The solid lines 

represent the corresponding Co mortality model. 
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3.3.2 Bioaccumulation   

There was greater accumulation of Co in H. azteca in the soft water treatments of the 

current study when compared to hard water exposure of Norwood et al. (2006) over the exposure 

concentration ranged tested (Table 3.8).  The pooled soft water model, based on pooled data 

except DOC-10 and DOC-5 treatments, predicted a maximum Co whole-body concentration of 

720 nmol Co g-1 dry weight (d.w.), while the hard water model predicted a maximum of 674 

nmol Co g-1 d.w.  The DOC-10 and DOC-5 treatments had an accumulation pattern similar to the 

hard water model.  The measured body concentrations in these DOC treatments were 

significantly different from other soft water treatments at several concentrations of Co in water 

(Figure 3.5), so were not included in the pooled soft water model (Tukey’s HSD post hoc test, p 

< 0.05).  At high DOC concentrations, the hard water model was a better predictor of 

bioaccumulation than the pooled soft water model.  

 Although the maxima were not significantly different for all models, the bioaccumulation 

factor for the soft water treatments was 2.5 times greater than the hard water treatment, which 

indicates a greater proportional rate of uptake at low concentrations of Co in water.   The max/K 

value of the pooled soft water model was significantly higher than both other models (Table 3.8).  

The max/K ratio can be used to compare how bioaccumulation changes with the surrounding 

media as it is the ratio of maximum Co accumulation to the concentration of Co in water where 

half the maximum Co was accumulated.  A higher max/K was indicative of greater Co 

accumulation.   

 The bioaccumulation models’ predictions of Co body concentration were within two 

times the measured body concentrations 87.5% of the time and were used to predict body 

concentrations for exposures that did not have enough organisms alive at the end of 28-days to 

determine measured body concentrations (Figure 3.6).  These predicted body concentrations were 

used in body concentration mortality models (Section 3.3.3).  
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Figure 3.5.  Influence of concentration of Co in water on Co concentration accumulated in H. 

azteca in a 4-week exposure in different soft water treatments (red) as compared to 

accumulation in hard water treatments by Norwood et al. (2007) (black). Dashed lines are 

bioaccumulation models calculated from parameters in Table 3.8. 
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based on average dry weight for each replicate. The solid line indicates a 1:1 relationship and 

the dashed line is 2x overpredicted or 2x underpredicted 
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3.3.3 Body concentration-related mortality 

3.3.3.1 DOC 

DOC concentrations did not have a significant effect on the total body accumulation of 

cobalt causing mortality (Table 3.9).  Although the lethal body concentration increased from 140 

to 230 nmol Co g-1 d.w. between the DOC-0.5 and DOC-2 treatments, the DOC-10 28-day 

LBC50 was 174 nmol Co g-1 d.w.  The 28-day LBC25 values were the most similar among the 

treatments ranging from 87.0 to 112 nmol Co g-1 d.w.   

Three of the DOC models (DOC-0.5, DOC-5, DOC-10) had similar shapes (Figure 3.7), 

with a sharp increase in mortality rate when the whole-body Co concentrations reached 60 – 70 

nmol Co g-1 d.w.  The DOC-2 treatment had a more gradual increase in mortality; however, at 

body concentrations of about 100 nmol Co g-1 d.w., the treatments with added DOC (DOC-2, 

DOC-5, DOC-10) had the same mortality rate.  

3.3.3.2 pH  

The 28-day lethal body concentrations in the pH-6.7 treatment were lower than other 

treatment due to increased mortality from the effect of H+, as previously described in Section 

3.3.1.2.  The lower pH resulted in whole-body lethal concentrations that were significantly lower 

than the pH-8.3 lethal body concentrations.  The pH-8.3 lethal body concentrations were not 

significantly different from the pH-7.7 lethal body concentration or any of the DOC treatments’ 

lethal body concentrations, despite the control mortality rate also being elevated (Table 3.10).   

The mortality models for pH-8.3 and pH-7.7 were similar (Figure 3.8), with a slight 

difference due to the control mortality rate.  The pH-6.7 model had a higher mortality rate over 

the body concentration range and deviated from the control mortality rate at 30 nmol g-1, whereas 

the other two treatments had a sharp increase between 50 – 70 nmol Co g-1 d.w. 

3.3.3.3 Alkalinity 

The 28-day LBC50s for the three alkalinity treatments of Alk-16, Alk-50, and Alk-100 

were 140, 166, and 144 nmol Co g-1 d.w., respectively (Table 3.11).  There were no significant 

differences among the lethal concentrations.  The mortality models (Figure 3.9) were virtually 

indistinguishable and all had inflection points between 60 and 80 nmol Co g-1 d.w. 
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3.3.3.4 Hardness 

The 28-day lethal body concentrations for the two different hardness treatments were not 

significantly different from each other with the Hardness-37.5 28-day LBC50 at 144 nmol Co g-1 

d.w. and the Hardness-122 LBC50 at 192 nmol Co g-1 d.w. (Table 3.12).  The 28-day LBC25 

values were 98.1 nmol Co g-1 d.w. for Hardness-37.5 and 90 nmol Co g-1 d.w. for Hardness-122. 

The models (Figure 3.10) indicate that at 500 nmol Co g-1 d.w. mortality rates were 

similar, as the curves intersect; however, at lower Co concentrations the curves had different 

shapes due to lack of data in this range from Norwood et al (2007).  The soft water curve had an 

increase in mortality at about 70 nmol Co g-1 d.w., but no such value can be accurately stated for 

moderately hard water.   
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Figure 3.7. Co body-concentration mortality models based on parameters in Table 3.9 with 

modified DOC concentrations in the exposure water.  Data points are mortality rate at the 

mean of measured whole-body concentrations of Co on a dry weight basis in organisms.  □ 

are data from DOC-0.5 experiments, are DOC-2, ○ are DOC-5, and are DOC-10.  The 

solid lines represent the corresponding Co mortality model. 
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Figure 3.8. Co body-concentration mortality models based on parameters in Table 3.10 with 

modified pH of the exposure water. Data points are mortality rate at the mean of measured 

whole-body concentrations of Co on a dry weight basis.  are data from experiments in pH 

6.8, ○ are pH 7.7, and □ are pH 8.3. The solid lines represent the corresponding Co mortality 

model. 
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Figure 3.9. Co body-concentration mortality models based on parameters in Table 3.11 with 

modified alkalinity of the exposure water. Data points are mortality rate at the mean of 

measured whole-body concentrations of Co on a dry weight basis. are data from Alk-100 

experiments, ○ are Alk-50, and □ are Alk-16.  The solid lines represent the corresponding Co 

mortality model. 
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Figure 3.10. Co body-concentration mortality models based on parameters in Table 3.12 with 

modified exposure water hardness. Data points are mortality rates at the mean of measured 

whole-body concentrations of Co on a dry weight.  are data from Hardness-37.5 

experiments and ○ are Hardness-122.  The solid lines represent the corresponding Co 

mortality model. 
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3.4. DISCUSSION 

It was hypothesized in section 1.9.2 that treatments with increased DOC concentrations 

would decrease the toxicity of Co to H. azteca.  It was also hypothesized that increased pH and 

alkalinity would also be less toxic.  Higher hardness was protective against metal toxicity and it 

was expected that the concentration of Co in water causing mortality would be less than 183 

nmol Co L-1 (Norwood et al. 2007) in moderately hard water, as Ca2+ will compete with Co2+ for 

uptake.  In addition, it was hypothesized that the lethal Co body concentrations would not be 

affected by the concentration of Co in water.   

3.4.1 DOC 

The addition of 5 mg L-1 of DOC significantly reduced the waterborne toxicity of Co to 

H. azteca.  The 28-day LC50 increased three-fold with this addition (Table 3.4). Wantanabe et al. 

(2017) discovered that 10 mg TOC L-1 of aquatic humic substances extracted from water in Brazil 

could not reduce the toxicity of 50 µg Co L-1 to Ceriodaphnia dubia; however, this concentration 

was much greater than the range tested in this study.  The bioaccumulation patterns between low 

DOC treatments (DOC-0.5, DOC-2) and high DOC treatments (DOC-5, DOC-10) were different, 

as more Co was accumulated at lower Co exposure concentrations when there was less DOC 

present (Figure 3.5).  The maximum Co body concentration predicted for all DOC models were 

predicted to be not significantly different, even with these different uptake patterns (Table 3.8).  

Richards and Playle (1998) observed that greater than 25 mg C L-1 of dissolved organic matter 

(DOM) was required to adequately complex 9000 nmol Co L-1 and prevent it from accumulating 

on the gills of rainbow trout.  In the current study, 5 mg DOC L-1 prevented the accumulation of 

Co, which indicates that rainbow trout and H. azteca Co accumulation was not comparable. 

  The mortality caused by Co body concentrations was not affected by increasing DOC 

concentrations (Table 3.9).  When comparing the 28-day LBC50 of DOC-0.5 to DOC-5, there 

was no significant different between the two values or between any of the other DOC additions.  

Ouelett et al. (2013) did not find any significant effect on mortality related to Chironomus dilutus 

body concentrations in media with 4.0 mg C L-1 compared to 6.4 mg C L-1; however, this study 

was an effluent study with other metals present.        

3.4.2 Alkalinity and pH  

In this study, there was no significant difference in mortality influenced by the 

concentration of Co in water when pH was adjusted (Table 3.5).  Decreasing pH can cause an 
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increase in the concentration of the free metal ion, which is more readily taken up in an organism 

(Di Toro et al., 2001).  Conversely, metal toxicity and bioavailability can also be reduced with 

decreasing pH due to H+ competition for binding to uptake sites (Playle, 1993; De Schamphelaere 

& Janssen, 2004). It is possible these two competing processes produced no net pH effect on the 

concentration of Co causing mortality or that the pH range tested did not significantly affect the 

concentration of toxic species.    

It was expected that the whole-body concentration of Co causing mortality would not be 

affected by pH; however, whole-body concentrations causing mortality were significantly lower 

at pH 6.7.  Low survival of H. azteca was observed by Borgmann et al (2001) in control 

containers after 4-weeks at pH 5.6 - 6.6 and was attributed to pH stress.  However, in this study, 

the pH-8.3 treatment also had higher control mortality (but still within the acceptable range), and 

this treatment was significantly different from the pH 6.7 treatment.   

The prediction of Richards & Playle (1998) of a decrease in Co binding to the site of 

uptake in alkaline water was not supported by accumulation data from this study (Table 3.11).  

There was no significant difference in the body concentrations causing mortality among the 

different alkalinity treatments and these treatments had the same accumulation patterns over the 

exposure range tested.  However, after a 21-day exposure to mine process water effluent that had 

a five-fold increase in alkalinity compared to the reference water there was a two-fold increase in 

Co body concentration in Chironomus dilutus that did not cause mortality (Ouelett et al., 2013).  

It was unclear whether the organisms were gut-cleared in that study and it was also a multi-metal 

exposure in a mesocosm, so other interactions could have influenced the Co accumulation.  It 

was also predicted by Richards and Playle (1998) that Co accumulation would decrease because 

concentrations of OH- and CO3
2-

 compounds would increase in more alkaline water.  The authors 

theorized that CoOH+ could also contribute to accumulation.  The concentration of CoOH+ was 

around 1% of the total aqueous Co (Table 3.3).  However, in this study, there was no evidence 

that other Co species other than the free ion were taken up by H. azteca, so there was greater 

importance for this fraction.  In systems with greater alkalinity and higher concentration of 

CoOH+, this species could have a major influence on overall Co toxicity.    

3.4.3 Hardness 

It was expected that the Co lethal concentrations in the soft water of this study would be 

less than Co lethal concentrations in moderately hard water from Norwood et al. (2007) due to 
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the decrease in Ca2+ competition for uptake. With the decrease in hardness from 122 mg L-1 to 

37.5 mg L-1 as CaCO3 equivalents, the toxicity increased.   

  A similar increase in toxicity was seen in a 7-day toxicity test with H. azteca.  In hard 

water (124 mg L-1 as CaCO3 equivalents) and soft water (18 mg L-1 as CaCO3 equivalents) the 7- 

day LC50s were 1035 nmol Co L-1 and 271 nmol Co L-1, which was a decrease of 7 times to 

hardness and 3.5 times decrease to the lethal concentration (Borgmann et al., 2005).  In 96h acute 

lethal bioassays using the fish Capoeta fusca, it was determined that decreasing the water 

hardness from 350 to 130 mg L-1 as CaCO3 equivalents caused a similar decrease in toxicity of 

about 2.5 times, with the 96-h LC50 decreasing from 204.8 mg Co L-1 to 91.7 mg Co L-1 

(Pourkhabbaz et al., 2011).    

 The accumulation of Co that caused 50% mortality in H. azteca in Norwood et al. (2007) 

was 192 ± 72 nmol Co g-1 d.w. and in this study, it was 106 ± 44.4 nmol Co g-1 d.w.  Verschoor et 

al. (2012) compared 3-week bioaccumulation of Co and survival of D. magna and Gammarus 

roeseli at sites that varied in hardness from 113 to 303 mg L-1 as CaCO3 equivalents.  The most 

cobalt was accumulated in D. magna at the site that had the lowest hardness; however, it should 

be noted that the pH of some sites could also affect the uptake pattern (Verschoor et al., 2012).  

In water at a hardness of 122 mg L-1 as CaCO3 equivalents, G. roeseli accumulated 390 nmol Co 

g-1 when exposed to 407 nmol Co L-1 over 3 weeks (Verschoor et al., 2012).  In the current study, 

H. azteca were exposed to Co for four weeks and roughly the same concentration was 

accumulated; however, the exposure concentrations were lower by a factor of 4 and the hardness 

was three times lower than those stated in Verschoor et al. (2012).  Despite the different species 

and experimental lengths, in all cases the increase in water hardness caused toxicity to decrease.  

Hardness is known to affect the toxicity of many metals including copper, cadmium, and zinc due 

to competition for uptake with calcium (Di Toro et al., 2001; Clifford & McGeer, 2010; Clifford 

& McGeer, 2009).    

3.5 CONCLUSION 

As expected, the different water chemistry treatments resulted in a wide range of toxic 

effects with a six-fold difference in 28-day LC50s.  Hardness appears to be protective, as 28-day 

LC50 values in this study were lower when compared to those from a study done in harder water 

(Norwood et al 2007). However, decreasing pH was not protective and there were no significant 

differences in mortality. Changes in alkalinity treatments did not have a significant effect on 

toxicity but did show considerable variation. Therefore, because of the effect different water 
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chemistry treatments have on cobalt toxicity, it was apparent that concentrations of Co in water 

were not as reliable as predictors of toxicity than whole-body concentrations. 

Lethal body concentrations ranged less than two-fold in all water chemistries tested. As 

expected, the LBC50s, LBC25, and LBC10s were not statistically different from each other, nor 

was there a statistical difference between the lethal body concentrations in soft water and the 

lethal body concentration in moderately hard water determined by Norwood et al. (2007), except 

for the lowest pH treatment which appeared to have a cumulative toxic effect from both the 

cobalt exposure and toxicity due to the low pH exposure. 

Whole-body concentrations of Co causing mortality were less variable than 

concentrations of Co in water causing mortality over a wide range of water chemistries.  These 

data support the hypothesis that the whole-body concentration of Co is a better predictor of toxic 

effects than the concentration of Co in water. 

3.6 SUMMARY 

1. Hardness was the most important water chemistry parameter influencing exposure-related 

Co toxicity in 28-day exposures based on the concentration of Co in water. Greater 

hardness reduces Co toxicity. 

2.  Dissolved organic carbon was protective against Co toxicity in 28-day exposures based 

on the concentration of Co in water. 

3. The bioaccumulation of Co can be predicted by a saturation model in soft water.   

4. The whole-body concentration of Co causing mortality in H. azteca was not significantly 

affected by different water chemistry parameters.   

5. The whole-body concentration of cobalt was a better predictor of toxic effects than the 

concentration of Co in water  
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CHAPTER 4 

Using saturation kinetics-based non-linear regression models to predict the chronic 

toxicity and bioaccumulation of selenium to Hyalella azteca under different water 

chemistry conditions 

 

 

 

OVERVIEW 

The effects of varying different water chemistry parameters on the toxicity of selenite to Hyalella 

azteca were investigated in 28-d exposures.  Dissolved organic carbon, pH, alkalinity, and 

hardness all significantly affected the 28-day LC50s of Se, which ranged from 240 – 957 nmol Se 

L-1.  The highest DOC concentration of 10 mg L-1 was associated with the greatest Se toxicity. 

The bioaccumulation pattern of Se was also affected by these variables, with uptake increased at 

lower pH and increased DOC.  The concentration of Se accumulated by H. azteca was not 

consistently associated with mortality, although this is the case for several metals.  The 28-day 

lethal body concentrations (LBC50) ranged three-fold. The highest concentration of DOC was 

associated with the greatest Se toxicity on a body concentration basis as well.       
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4.1. INTRODUCTION  

Selenium (Se) is an abundant element in the earth’s crust associated with sulfur and in 

high concentrations in coal (Shamberger, 1981).  The presence of Se in these environments 

means that it can be released into aquatic environments during the refining process of metal 

sulfide ores or into the atmosphere during the combustion of coal.  Coal combustion is also a 

major source of Se aquatic contamination, as the coal combustion residues from coal plants are 

transported into settling ponds and can later be discharged (Lemly, 2004; Harkness, 2016).  

Human activity has also increased the leaching of Se from seleniferous soils in alkaline, 

oxidizing conditions due to agricultural irrigation (Lemly, 2004) and from waste rock from coal 

mining (Miller et al., 2013).  Selenium can also be released into the environment from natural 

processes such as the weathering of rock and other anthropogenic sources like agricultural usage 

and oil refining (Pieterek and Pietrock, 2012).  In aquatic systems, Se can have inorganic (-2, -1, 

0, +4, +6) and organic forms; however, the most abundant species are the most oxidized forms 

selenite (SeO3
2-) and selenate (SeO4

2-) (Lenz & Lens, 2009).  The speciation is dependent on 

water chemistry variables such as pH, redox conditions, and organic matter, as well as physical 

and biological processes (Sharma et al., 2015).  Concentrations of Se in fresh water average 1 µg 

L-1 (12.7 nmol L-1) (Saiki and Lowe. 1987; Ingersoll et al., 1990) and are often less than 0.1 µg L-

1 (1.27 nmol L-1) when there is no anthropogenic input (Sharma et al., 2015).   

Selenium is commonly an essential trace element to animals, including humans.  It has an 

important role as an antioxidant in glutathione peroxidase and as part of thyroid hormone 

metabolism in thioredoxin reductase, and over 25 other selenoproteins in mammals (Choi et al., 

2013).  Such proteins are also present in algae, fish, and crustaceans (Pacitti et al., 2013; 

Qunitaneiro et al., 2015; Martínez-Ruiz et al., 2016).   Although Se is an essential element, there 

is a small margin between essential and toxic concentrations of Se.  At concentrations as low as 2 

µg Se L-1 in the water, Se can cause adverse effects in fish and aquatic birds, notably their 

reproductive success (Lemly, 1993).  To protect aquatic life, the Canadian water quality guideline 

for concentrations of Se in freshwater is 1 µg L-1 (12.7 nmol L-1) (CCME, 2007) and the USEPA 

(2016) has reduced the selenium criterion from 5 µg L-1 (63.3 nmol L-1) to 1.5 µg L-1 (19.0 nmol 

L-1).    However, algal and bacterial species can biotransform the abundant inorganic species of 

Se to organic forms, which are more toxic when ingested than waterborne inorganic Se 

(Hamilton et al., 2004).  Food sources with concentrations greater than 3 µg/g Se dry weight can 

cause adverse effects, including lethality (Lemly, 1993).  DeBruyn and Chapman (2007) 
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investigated how invertebrates have mainly been considered a food source, in that the 

bioaccumulation of Se and ingestion by fish is of greater significance than the mortality caused 

by Se.  While organisms such as benthic invertebrates and zooplankton can accumulate Se up to 

30 µg g-1 (380 nmol g-1) in their tissue without major effects, dietary Se in wildlife and fish 

should not exceed a toxic dose of 3 µg g-1 (3.80 nmol g-1) (Lemly et al., 1993).  Selenite 

exposures caused 50% mortality in Hyalella azteca when whole-body Se concentrations reached 

8.47 µg g-1 (107 nmol g-1) (Norwood et al., unpublished manuscript).  The USEPA has tissue 

concentrations for fish egg-ovary, whole-body, and muscle that range from 8.5 to 15.1 mg kg-1 

dry weight (USEPA, 2016a), whereas the CCME has not introduced any dietary guidelines.      

The objectives of this study were to determine the concentration of Se that can be 

accumulated from a waterborne SeO3
2- source in different water chemistry conditions and how 

body concentration of Se relates to mortality.  In addition, waterborne toxicity of Se was 

determined in the different water chemistry conditions.  Lethal concentrations and 

bioaccumulation was modelled using saturation kinetics-based models described in Section 

1.5.6.1 and 1.5.6.2. 

 

4.2. METHODS 

4.2.1 Experimental Set-up  

The 28-day toxicity test methods were the same as Section 3.2.1, with the following 

deviations. The water chemistry was adjusted for each set of experiments as detailed in Table 4.1.  

pH adjustments were made using HCl for pH 6.8 treatments and KOH for pH 8.3, without 

alkalinity adjustments; however, control animal survival was not acceptable as it was less than 

65% survival over 4 weeks (or <10% mortality week-1) (Borgmann, 2002).  Alkalinity was 

adjusted using NaHCO3
 and this adjustment also altered the pH. 

 



70 

 

Table 4.1. Test parameters and methods to maintain the water chemistry.  

Na2SeO3 (Sodium selenite 99%, Sigma Aldrich) additions to each container were 

equilibrated 24 hours before animals were added, so the Se and DOC would have time to interact 

(Taylor et al., 2002; Niyogi et al., 2008). Alkalinity, pH, and DOC adjustments were made to 25L 

carboys of 30% SAM water 48h in advance, so it was equilibrated at the start of each experiment.  

The water in each container was renewed every 7 days and the organisms were counted at 

each turnover. The organisms were fed 2.5 mg finely ground TetraMin fish food (Tetra GMBH, 

Melle, Germany) twice during this period.  TetraMin contains trace amounts of Se (10 nmol g-1).  

Control animals did not accumulate more than 10 nmol g-1 over the 28-day exposure.   

4.2.2 Sample collection and analysis  

The methodology for collection and analysis of water and whole-body samples was the 

same as section 3.2.2.  Water chemistry is summarized in Table 4.2.   Total selenium in water and 

whole-body samples was determined with Thermo Scientific iCE 3000 Series Atomic Absorption 

Spectrometer and SOLAAR Data Station V11.03 software using the method described in Section 

2.2.2.  Detection limits were calculated as three times the method blank standard deviations 

(Norwood, 2008) and were 9.78 nmol L-1 for water samples and 21.2 nmol g-1 for whole-body 

samples.  

4.2.3 Whole-body Digests  

Digest methodology was described in section 3.2.3.  Digests of certified reference 

material had an average recovery value of 5.36 ± 0.36 mg kg-1 [TORT2: lobster hepatopancreas; 

Se certified as 5.63 ± 0.67 mg kg-1 from the National Research Council of Canada].   

Method Reference 

pH
a 6.8, 7.7, 8.3 

1M HCl or KOH 

amendments  

Taylor et al. (2002); Niyogi 

(2008) 

5, 16, 100 mg L
-1

 as CaCO3 

equivalents 

pH 6.8, pH 7.7, pH 8.3

Dissolved 

organic carbon 
0.5, 2, 5 mg C L

-1 Luther Marsh, natural 

organic matter 
Gillis et al. (2010) 

a- pH adjustments were made using HCl for pH 6.8 treatments and KOH for pH 8.3, without alkalinity adjustments;   

however, the survival of control animals was unacceptable.

Alkalinity/pH 

Adjust NaHCO3 - 

maintained sodium ions 

using NaCl 

Deleebeeck et al. (2007) 

Parameter measurements 
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4.2.4 Data analyses  

4.2.4.1 Mortality Model  

The mortality model, as described in Section 1.7.4.1, was applied to determine lethal 

water and lethal body concentrations. Mortality data were log transformed before the above 

models were fit in SYSTAT 10, to ensure normality and equal variance.  Normality was assessed 

by visual inspection of the probability plots and the Shapiro Wilk test on the mortality data (W = 

0.607, p = 0.000 on untransformed data).  Levene’s test was performed for equal variance of log 

transformed data (F=2.099, p=0.058) (Golding et al., 2013).  

4.2.4.2 Bioaccumulation  

The bioaccumulation saturation model, as described in Section 1.7.4.2, was used to 

determine the relationship between bioaccumulation of Se and exposure. 

4.2.4.3 Confidence Intervals  

To determine significant difference between the various treatment critical concentrations, 

confidence intervals were used as described in section 2.2.3.3. 

4.2.4.4 Comparison with Norwood et al. (unpublished data) 

 Selenium concentrations in water and whole-body concentrations causing mortality in 

hard water were previously determined by Norwood et al. (unpublished).  Lethal concentrations 

and mortality model parameters for selenium from Norwood et al. (unpublished) were used in the 

current study to determine the effect of water hardness on Se toxicity.  In addition, raw mortality 

data from Norwood et al. (unpublished) was used to calculate a 28-day LC10 and LBC10 in hard 

water.      
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4.3. RESULTS 

4.3.1 Exposure-based mortality 

4.3.1.1 DOC 

Increased concentrations of DOC led to a trend of decreasing 28-day lethal 

concentrations when H. azteca were exposed to selenite from 240 (183 – 297) nmol Se L-1 with 

6.05 mg added C L-1 (DOC-5) to 319 (134 – 504) nmol Se L-1 with 1.77 mg C L-1 (DOC-2) and 

620 (334 – 906) nmol Se L-1 with 0.5 mg C L-1 (DOC-0.5) (Table 4.3).  The DOC-0.5 LC50 was 

significantly higher than the DOC-5 treatment.  The mortality models for DOC treatments had 

different shapes when the concentration of Se was greater than 100 nmol Se L-1.  However, the 

half saturation constants, Kw″, which is the concentration where mortality rate is half the 

maximum is extremely variable.  In addition, the r2 values for the DOC-2 and DOC-0.5 show a 

moderate correlation between the exposure concentrations and mortality.   The curves for both 

DOC-5 and DOC-2 began to reach a maximum mortality rate near 1000 nmol Se L-1, whereas the 

DOC 0.5 curve was still increasing.  The mortality rate between 100 – 1000 nmol Se L-1 was 

highest for the DOC-5 treatment (Figure 4.1).  However, the differences were not statistically 

significant.  In low DOC water, the lower mortality rate at high Se concentrations is of interest 

for H. azteca as a potential food source, since Se can biomagnify in the food web.    

4.3.1.2 pH/alkalinity 

Se toxicity increased at low pH and low alkalinity.  Reducing the alkalinity from 101 mg 

L-1 (pH 8.3/Alk-100) to 7.54 mg L-1 as CaCO3 (pH 6.8/Alk-5) halved the 28-day LC50 from 600 

(432 - 764) nmol Se L-1 to 274 (184 – 365) nmol Se L-1.  The 28-day LC25 for Alk-5 was also 

significantly lower than the 28-day LC25 at Alk-100 (Table 4.4).  Until the concentration of Se 

reached 600 nmol Se L-1, the resulting mortality model curves for the pH 7.7 /Alk-16 and pH 8.3 

/Alk-100 treatments had similar shapes; however, at 600 nmol Se L-1, the pH 8.3 mortality rate 

increased at a greater rate than the pH 7.7 curve.   Both Kw″ and nw, were markedly different for 

the pH 6.8/Alk 5 model, as the other two models did not reach a maximum mortality rate, so the 

concentration at maximum mortality could not be determined (Figure 4.2). 
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4.3.1.3 Hardness 

Hardness had a significant effect on the lethal Se concentrations, with increased hardness 

being protective against Se toxicity.  The Hardness-130 28-day LC50 was almost two-fold 

greater than the Hardness 37.5 28-day LC50 (Table 4.5). In both hardness treatments mortality 

does not reach a maximum over the concentration range tested (Figure 4.3).    
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Figure 4.1. Waterborne Se mortality models with modified DOC based on parameters in 

Table 4.3.  Data points are mortality rates (mortality per week) at measured Se water 

concentrations in SAM30 with modified DOC concentrations.  □ are data from DOC 0.5 

experiments, ○ are DOC-2, and are DOC-5.  Solid lines are corresponding mortality 

models. 

 

10 100 1000

Se (nmol-L-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

10 100 1000

Se (nmol-L-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

10 100 1000

Se (nmol-L-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)
L
o
g
(M

o
rt

a
lit

y
 R

a
te

) (
m

 w
k

-1
) 



77 

 

10 100 1000

Se (nmol-g-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

10 100 1000

Se (nmol-g-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

10 100 1000

Se (nmol-g-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

10 100 1000

Se (nmol-g-1)

-3.0

-1.5

0.0

1.5
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

 

  

Figure 4.2. Waterborne Se mortality models with modified pH/alkalinity based on parameters 

in Table 4.4.  Data points are mortality rates (mortality per week) at measured Se water 

concentrations in SAM30 with modified pH/alkalinity. ○ are data from pH 6.8/Alk 5 

experiments, □ are pH 7.7/Alk 15, and are pH 8.3/Alk 100.  Solid lines are corresponding 

mortality models. 
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Figure 4.3. Waterborne Se mortality models with modified hardness based on parameters in 

Table 4.5.  Data points are mortality rates (mortality per week) at measured Se water 

concentrations in SAM30 with modified hardness.  are data from Hardness-37.5 

experiments and ○ are Hardness-130.  The Hardness-130 data are from Norwood et al. 

(unpublished manuscript).  Solid lines are corresponding mortality models.  
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4.3.2 Bioaccumulation 

At low concentrations of Se in water, the whole-body concentrations in the different 

treatments were not significantly different between treatments (at 70.9 nmol Se L-1 p=0.123 and 

at 127 nmol Se L-1 p=0.293, two-way ANOVA using Tukey post hoc analysis).  However, at 228 

nmol L-1, the H. azteca in the Alk-5 treatment had significantly different bioaccumulated Se from 

both the DOC-5 (p=0.045) and the Alk-100 treatment (p=0.009).  At the highest nominal 

concentration of Se, the two alkalinity treatments had significantly different bioaccumulation 

from each other and from the DOC treatments.   

 Body concentration of Se increased with increasing Se exposure concentrations in all 

water chemistry treatments (Figure 4.4).  The concentration at which body concentration started 

to increase and the Se uptake pattern varied with the water chemistry.  In addition, a maximum 

Se value could not be accurately predicted for any of the treatments from the observed results, as 

the concentration of Se in the organisms did not reach a maximum/point of saturation.  This was 

likely due to mortality at higher exposure concentrations and thus there were no living organisms 

available for Se body concentration analysis.   Therefore, the max/K ratio was used to compare 

the bioaccumulation patterns as it is the ratio of Se accumulation to the exposure concentration at 

half saturation.  The max/K of the hard water and the Alk-100 treatment were both significantly 

lower than the pH-7.7 and Alk-5 treatments (Table 4.6).  In addition to the hard water treatment 

having greater Ca and Mg, it also had an alkalinity of 85 mg L-1 and a pH of 8.3, which were 

similar pH and alkalinity values to the Alk-100 treatment.   

If it was assumed that the treatments all have the same theoretical maximum Se body 

concentration, therefore the greater max/K ratio indicates a greater Se accumulation at lower 

concentrations of Se in water.  The highest max/K value occurred in the treatment with the lowest 

alkalinity and pH, indicating this treatment had increased uptake of Se at lower concentrations of 

Se in water.   

 Using the bioaccumulation model parameters (Table 4.6), the body concentrations that 

could not be determined due to mortality can be predicted.  Figure 4.5 shows all the observed Se 

body concentrations and how well the above models can predict the body concentrations.  The 

model could predict the observed body concentration within 2x the observed concentration for 

87% of the data points, with the remainder of the points close to the 2x overpredicted or 2x 

underpredicted lines.  It should be noted that there were no experimental data at high Se exposure 

concentrations, so the model cannot predict where bioaccumulation would saturate.  The 
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predicted body concentrations from the model could therefore be greater than actual body 

concentration if organisms had survived for body Se analysis.  Nevertheless, the predicted data 

were used to estimate the lethal body concentrations in the next section.  

  

Table 4.6.  Saturation model parameters for selenium bioaccumulation with the max/K ratio of the predicted 

maximum Se accumulation (max) and half saturation constant (K) with 95% confidence limits (CL), coefficient 

of determination (r2), number of data points (N), mean dry to wet weight ratio (D/W), bioconcentration factor 

(BCF) calculated as max × K-1 × D/W × 1000, and background Se concentration in H. azteca (Cbk). 

  

Modifier N r
2 MAX/K CL D/W ratio BAF Cbk

nmol g
-1

DOC 5 14 0.851 0.382 (0.125 - 0.507) 0.283 108 21.2

DOC 2 22 0.697 0.959 (-0.111 - 2.03) 0.236 226 21.2

pH 8.3/Alk 100 24 0.873 0.162 (0.133 - 0.192) 0.276 44.7 21.2

pH 7.7/Alk 15 25 0.831 0.309 (0.215 - 0.404) 0.266 82.2 21.2

pH 6.8/Alk 5 20 0.740 0.754 (0.466 - 1.04) 0.240 181 21.2

Hard water
a 60 0.589 0.131 (0.045 – 0.176) 0.258 33.8 6.67

a
 Norwood et al. (unpublished)

L g
-1

BCF



81 

 

  

Figure 4.4.  Selenium concentrations accumulated in H. azteca in a 4-week exposure of pH 

DOC2 (□), 6.8/Alk-5 ( ), DOC10 (□), pH 7.7/Alk-16 ( ), and pH 8.3/Alk-100 (◊) 

compared to increased hardness treatments (○) by Norwood et al. (unpublished manuscript).  

Body Se concentration are mean dry weight of surviving H. azteca in each replicate at each 

concentration after 4-weeks.  Water Se concentrations are mean measured concentrations.   
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Figure 4.5.  The predicted concentrations are based on the bioaccumulation models from 

Figure 4.4 and calculated using the parameters in Table 4.6.  The observed Se whole-body 

concentrations was based on average dry weight for each replicate. The solid line indicates a 

1:1 relationship and the dashed line is 2x overpredicted or 2x underpredicted. 
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4.3.3 Body concentration-based mortality 

4.3.1 DOC 

The 28-day LBC50 for the highest DOC treatment, DOC-5, was significantly lower than 

treatments where there was less DOC present (Table 4.7).  The 28-day LBC50 for DOC-5 was 

54.9 (48.1 – 61.6) nmol Se g-1 d.w., while it was 162 (117 – 207) nmol Se g-1 d.w. with 2 mg C L-

1 and 128 (88.9 – 168) nmol Se g-1 d.w. with 0.5 mg C L-1.  There was also a significant different 

between the 28-day LBC25 values for the DOC-5 and DOC-2 treatment.  The lethal body 

concentrations for DOC-2 and DOC-0.5 were not significantly different.  The DOC-5 treatment 

curve in Figure 4.1 had a sharp inflection at a lower Se concentration than the DOC-2 treatment, 

although the curves had similar shapes.  The mortality rate in DOC-5 treatments increased more 

quickly at lower body concentrations.  The DOC-0.5 treatment mortality rate gradually increased 

rate, but once whole-body Se exceeded 40 nmol Se g-1 d.w. the mortality rates were similar to the 

DOC-2 treatment (Figure 4.6).   

4.3.2 pH/alkalinity 

As alkalinity in treatments Alk-5, Alk-16, and Alk-100 increased, the 28-day LBC50s 

decreased from 178 (153 – 203), 128 (88.9 – 168), to 113 (92.1 – 134) nmol Se g-1 d.w (Table 

4.8).  There was a significant difference between the 28-day LBC50s and 28-day LBC25s for 

Alk-100 and Alk-5 treatments.  There were similar lethal body concentrations for the Alk-16 and 

Alk-100 treatments.  The mortality model for both pH-8.3/Alk-100 and pH-7.7/Alk-16 treatments 

had similar mortality rates at Se body concentrations up to 100 nmol Se g-1 d.w. (Figure 4.7).  At 

higher concentrations, the pH-8.3/Alk-100 treatment mortality rate had a greater increase over a 

smaller concentration range.  The pH-6.8/alk-5 treatment mortality rate had a sharp increase at 

100 nmol Se g-1 d.w., whereas the other treatments had gradual increases in mortality rates.   

4.3.3 Hardness 

Hardness did not have a significant effect on the 28-day lethal body concentrations in 

Table 4.9.  The LBC50 in soft water was 113 (92.1 – 134) nmol Se g-1 d.w. and 107 (74.0 – 141) 

nmol Se g-1 d.w. in hard water.  At body concentrations below 100 nmol Se g-1 d.w., the two 

models predicted similar mortality rates and both model predicted the LBC50 for the data sets to 

be around 110 nmol Se g-1 d.w. (Figure 4.8).  When the body concentrations were greater than 

200 nmol g-1, the treatment in soft water was predicted to have a greater mortality rate.  However, 
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there were few surviving animals in either treatment that have body concentrations that exceeded 

200 nmol Se g-1 d.w.  
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Figure 4.6. Se body-concentration mortality models based on parameters in Table 4.7 with 

modified DOC concentrations in the exposure water.  Data points are mortality rate (mortality 

per week) at mean measured selenium body concentrations on a dry weight basis in organisms 

exposed to Se in SAM30 with modified DOC concentrations.   □ are data from DOC-0.5 

experiments, ○ are DOC-2 , and are DOC-5.  Solid lines are corresponding mortality 

models. 
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Figure 4.7. Se body-concentration mortality models based on parameters in Table 4.8 with 

modified pH/alkalinity exposure water. Data points are mortality rate (mortality per week) at 

mean measured selenium body concentrations on a dry weight basis in organisms exposed to 

Se in SAM30 with modified pH/alkalinity.  ○ are data from pH 6.8/Alk 5 experiments, □ are 

pH 7.7/Alk 15, and are pH 8.3/Alk 100. 
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Figure 4.8. Se body-concentration mortality models based on parameters in Table 4.9 with 

modified exposure water hardness. Data points are mortality rate (mortality per week) at mean 

measured selenium body concentrations on a dry weight basis in organisms exposed to Se in 

SAM30 with modified hardness.   are data from Hardness-37.5 experiments and ○ are 

Hardness-130.  The Hardness-130 data are from Norwood et al. (unpublished manuscript).     
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4.4 DISCUSSION 

4.4.1 Dissolved organic carbon 

Increased DOC was not protective against Se toxicity based on both the concentration of 

Se in water (Table 4.3) and the concentration of Se in the organism (Table 4.6) even though it 

was hypothesized that the polarity of the oxyanion SeO3
2- would bind to DOC and reduce its 

toxicity (Wiramanaden et al., 2010).  In many organisms, Se is more toxic when taken up in an 

organic form and from a dietary source (Lemly, 1993; DeBruyn & Chapman, 2007).  In the 

present study, H. azteca had visible organic material from the added DOC in their digestive tract.  

The DOC could also promote the growth of bacteria and algae that can convert the selenite into 

an organic form that could be taken up through their diet or in a dissolved form (Schlekat et al., 

2002; Phibbs et al., 2011).   

 Different species (inorganic versus organic) of Se may be bioaccumulated differently, as 

there could be different uptake rates or mechanisms of action.  In the invertebrate Lumbriculus 

varuegatus, it has been shown that exposure to both dissolved selenite or selenomethionine 

significantly reduces Na/K ATPase activity and increases lipid peroxidation; however, uptake of 

selenomethionine was greater, with over 30 times greater accumulation (Xie et al., 2016). 

4.4.2. Alkalinity and pH 

Se was more toxic at lower pH and lower alkalinity (Table 4.4).  It was hypothesized that 

an increase in pH would decrease toxicity, as uptake of SeO3
2- is less rapid when compared to the 

HSeO3
- (Riedel & Sanders, 1996) and the ratio of SeO3

2- to HSeO3
- increases as pH increases. 

Halter et al. (1980) determined that the two-week selenite LC50 for fathead minnow was 7 times 

lower than the lethal concentration observed by Cardwell et al. (1976).  This difference was 

attributed to fish age and study duration as it was assumed all Se would be of the form HSeO3
-. 

However, there were marked differences in the water chemistry including a two-fold difference 

in hardness and pH 7.3 versus pH 7.8 water.  This change in pH would cause a change in 

speciation, which could affect Se uptake (Riedel & Sanders, 1996).  

 Wang et al. (2016) determined that acute HC10s from the species sensitivity distribution 

for freshwater organisms from the USEPA’s ECOTOX database were significantly higher at pH 

above 7.8 versus at pH 7.3 and pH 7.4.  The HC10 at pH 7.3 was determined to be 63 (5.6 – 261) 

μg L−1 and increased to 573 (301 – 972) μg Se L−1 at pH 8.1.  Both HC10s were greater than the 
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lethal concentrations from the current study.  It should be noted that the other water chemistry 

parameters in Wang et al. (2016) were not significantly different; however, there were not 

enough DOC data to perform statistics.  The pH 7.3 factor had one DOC concentration of 33 mg 

C L-1 and pH 8.1 had one DOC concentration of 4.0 mg C L-1.  Both pH and DOC had significant 

effects on the toxicity of Se to H. azteca in the current study.     

 The current study also found a significantly greater 28-day LBC50 at lower pH (Table 

4.7).  This result does not follow the concept of a single lethal body concentration in H. azteca 

for Se (Norwood et al., 2013).  It is suspected the form and route of Se uptake influenced the 

lethal body concentration, as inorganic Se can be taken up more rapidly at lower pH.   Franz et al. 

(2011) established that the speciation of Se within C. dilutus is not dependent on its uptake 

speciation.  The internal Se speciation is predominantly organic selenides or diselenides when 

exposed to either inorganic or organic Se (Franz et al., 2011).  However, since there were 

different lethal Se body concentrations in H. azteca, the internal mixture of Se forms is still 

potentially important and may cause variation in the concentration that causes mortality. 

 In higher alkalinity water Se can adsorb to iron-oxyhydroxides or co-precipitate with 

calcite, reducing its bioavailability; however, there was no significant difference between the 28-

day LBC50s of the treatment at 100 mg L-1 as CaCO3 equivalents (at pH 8.3) and 16 mg L-1 1 as 

CaCO3 equivalents (at pH 7.7).   Ouelett et al. (2013) determined that alkalinity increase from 

23.6 ± 2.5 to 103.8 ± 4.3 mg L-1, with a pH increase from 7.2 to 8.1 caused the Se body burden to 

decrease in C. dilutus, but it was not significant.   

4.4.3 Hardness/calcium interference  

The 28-day LC50 in soft water was significantly lower than in hard water (Table 4.5).  

There was also no significant difference between the lethal body concentrations between the two 

levels of hardness for soft and moderately hard water (Table 4.8).  This indicates that the 

hardness level influenced the uptake of selenium so that at higher hardness, increased selenium 

exposure concentrations were required for selenium to accumulate in the body to have a toxic 

effect.  This is consistent with the findings of Ingersoll et al. (1990) who noted that daphnids 

were more sensitive to Se in soft water in a 48-h exposure.  Se has been shown to interfere with 

Ca metabolism in invertebrates (Short & Wilbur, 1980; Johnston, 1987; Ingersoll et al., 1990).  

When there is less Ca2+ available for uptake, the same concentration of Se will have a greater 

influence than if there was more Ca2+ present in the surrounding media.   
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4.4.4 Water quality guidelines and toxicity predictions 

The water quality guideline for Se is set at 1 µg L-1 in Canada (CCME, 1987), which is 

equal to 12.7 nmol L-1.  This water quality guideline for Se is protective for H. azteca.  However, 

the USEPA fish whole-body concentration guideline is set at 8.5 mg kg-1 (107 nmol g-1) (USEPA, 

2016a) and whole-body concentrations of Se in H. azteca that contribute to 50% mortality were 

around this concentration.  Therefore, despite the concentration of Se in water being acceptable, 

the concentration of Se in a dietary source may contribute to toxic effects higher in the food 

chain.     

 

4.5 CONCLUSION  

The process to determine a site-specific guideline for Se is complicated, as both 

concentrations of Se in water causing mortality and whole-body concentrations of Se causing 

mortality in H. azteca can be affected by the water chemistry of the surrounding media.  DOC, 

pH/alkalinity, and hardness can all affect the LC values of Se, with a 3.5-fold range in 28-day 

LC50s.  DOC and pH can also affect the lethal body concentrations of Se, with a similar range of 

3.3-fold LC50s.  To improve estimates of both LC and LBC values, the speciation and source of 

Se should specifically be considered.   The effect on water chemistry guidelines will be discussed 

in Chapter 6.     

4.6 SUMMARY 

1.  Dissolved organic carbon can increase the toxicity of Se on both a body and water 

concentration basis.   

2.  Lower pH/alkalinity has a somewhat protective effective against Se toxicity on a body 

concentration basis.  Lower pH/alkalinity increase Se toxicity based on concentrations of Se in 

water.   

3.  Increased hardness affects Se toxicity based on concentrations of Se in water, but not in terms 

of body concentration.  

4.  Se speciation alters uptake of Se into an organism, with HSeO3
-, the form with the highest 

concentration at lower pH, having the greatest uptake at low concentrations of Se in water. 
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CHAPTER 5 

Using saturation kinetics-based non-linear regression models to predict the chronic 

toxicity and bioaccumulation of zinc to Hyalella azteca under different water chemistry 

conditions 

 

 

 

OVERVIEW 

 Zinc is an essential metal to Hyalella azteca and it is partially regulated within the 

organism when it is accumulated from waterborne exposures.  Hyalella azteca were exposed to 

Zn over 28-days in conditions with varying water chemistry.  Using a bioaccumulation model, 

the maximum body concentration was not dependent on water chemistry; however, this 

accumulation pattern was dependent on water hardness. Twenty-eight-day lethal concentrations 

were determined using a saturation kinetics-based mortality model.  Both water hardness and 

dissolved organic carbon can protect H. azteca from Zn toxicity in 28-day exposures and LC10s 

ranged from 103 to 1290 nmol L-1.  Twenty-eight-day lethal body concentrations were also 

predicted using this non-linear model, as H. azteca body metal concentration is a good indicator 

of toxicity.  Water chemistry parameters did not significantly affect the critical body 

concentrations causing toxicity, which was approximately 2000 nmol g-1.  

    

  

 

  



93 

 

5.1 INTRODUCTION 

Zinc (Zn) is a metallic element that is essential to living organisms.  It is required for the 

proper function of enzymes and other proteins. However, if internal Zn concentrations are not 

effectively regulated, there can be toxic effects including changes to growth, reproduction, and 

survival.  Background concentrations are less than 0.3 µg L-1 (4.59 nmol L-1) in the Great Lakes 

(Nriagu et al., 1995), although other systems in Canada have higher background concentrations 

that range from 0.434 µg L-1 (6.64 nmol L-1) dissolved Zn in the St. Lawrence River to 20 µg L-1 

(306 nmol L-1) in British Columbia (CCME, 2016).   Zn can enter the environment from both 

natural and anthropogenic sources, including metal mining and industrial effluent (CCME, 2016). 

Sites affected by mining activity can have concentrations of Zn in water over 6000 µg L-1 (91800 

nmol L-1) (Bonnail et al., 2016). 

The Canadian water quality guideline for the protection of aquatic life is 30 µg L-1 (459 

nmol L-1) (CCME, 1987), although there are draft guidelines for both short-term and long-term 

exposure that sets the recommended Zn concentration in the environment based on a species 

sensitivity distribution, and includes water hardness, dissolved organic carbon (DOC) 

concentration, and pH (CCME, 2016).  The ions that contribute to water hardness (Ca2+ and 

Mg2+) can both interact with Zn to affect its bioavailability to organisms.  The concentration of 

Ca2+ is the most important factor in decreasing the toxicity of Zn2+ in both rainbow trout 

(Oncorhynchus mykiss) (De Schamphelaere & Janssen, 2004), Daphnia manga (Heijerick et al., 

2005), and Daphnia pulex (Clifford & McGeer, 2009).  It has been suggested that Zn2+ and Ca2+ 

compete for the same uptake channel in the cell membrane (Santore et al., 2002), as Zn2+ can also 

inhibit the uptake of Ca2+ (Muyseen et al., 2006).  In experiments with D. magna, the 21-day 

EC50 of Zn increased from 1.94 to 5.25 µmol L-1 as the concentration of Ca2+ increased from 

0.25 to 3.00 mmol L-1 (Heijerick et al., 2005).  In addition to water hardness, pH (Heijerick et al, 

2005) and DOC concentrations (Bringolf et al., 2006; Clifford & McGeer, 2009) also affect the 

waterborne effective and lethal concentrations of Zn to different organisms.   

  Previous studies of Zn toxicity to Hyalella azteca have been conducted by many different 

groups (Schubauer-Berigan et al., 1993; Borgmann et al., 1995a, Eisenhauer et al., 1999).   The 

average background concentration of Zn in H. azteca is 1000 nmol g-1 ranging from 740 to 1200 

nmol g-1 (Borgmann et al., 1995b).  Borgmann et al. (1993) determined that Zn is significantly 

toxic to H. azteca at double the background body concentration of 1140 nmol g-1 in 10-week 

toxicity tests.  The lethal body concentration causing 50% mortality was 2020 (1880 – 2180) 
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nmol g-1 using the data from Borgmann et al. (1993) in a saturation-kinetics based mortality 

model (Borgmann, 2004).  A saturation-based bioaccumulation model, described in Chapter 1, 

has also been used to predict maximum Zn accumulation in H. azteca using data from Borgmann 

et al. (1995a).  This model predicted a maximum Zn body concentration of 3550 (2980 – 4110) 

nmol g-1 (Borgmann, 2004).  The objectives of this chapter were to show if and how water 

chemistry effects 1) concentrations of Zn in water causing mortality, 2) bioaccumulation of Zn, 

and 3) whole-body concentrations of Zn in H. azteca causing mortality. A final objective of this 

chapter was 4) to observe if water quality guidelines for Zn should consider water chemistry.    

 

5.2 METHODS 

5.2.1 Experimental Set-up  

The 28-day toxicity test methods used were the same as Section 2.2.1 and 3.2.1, with the 

following deviations. The water chemistry was adjusted as follows in Table 5.1 for each set of 

experiments:    

Table 5.1. Test parameters and methods to maintain the water chemistry 

 

 Zinc as ZnCl2 (Zinc Chloride puriss. p.a., ACS reagent, reag ISO, reag Ph. Eur., >98%, 

Sigma Aldrich) additions to each container were equilibrated with the appropriate water 

chemistry 24 hours before animals were added (Taylor et al., 2002; Niyogi et al., 2008). 

Alkalinity, pH, and DOC adjustments were made to 25L carboys of 30% SAM water 48h in 

advance.  

 The organisms were fed 2.5 mg finely ground TetraMin fish food (Tetra GMBH, Melle, 

Germany) twice during this period.  TetraMin contains 1150 nmol Zn g-1 dry weight, which is the 

approximate background concentration of Zn required by H. azteca as determined by Borgmann 

et al. (1995b).    

Method Reference 

pH 6.8, 7.7
a
, 8.3 M HCl or KOH amendments  

Taylor et al. (2002); Niyogi 

(2008) 

Alkalinity 5, 16
a
, 100 mg L

-1
 CaCO3 

Adjust NaHCO3 - maintained 

sodium ions using NaCl 
Deleebeeck et al. (2007) 

Dissolved 

organic carbon 
0.5

a
, 2, 10 mg C L

-1 Luther Marsh, natural organic 

matter 
Gillis et al. (2010) 

a
 unmodifed SAM30 exposures

Parameter measurements 
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5.2.2 Sample collection and analysis 

Water and whole-body samples were collected and analyzed as stated in Section 2.2.2.  

Measurements of water chemistry were summarized in Table 5.2.  Total zinc in water and whole-

body samples were determined with a Thermo Scientific iCE 3000 Series Atomic Absorption 

Spectrometer and SOLAAR Data Station V11.03 software. The ash temperature was 700°C and 

the atomization temperature was 1150°C with Zeeman background correction.  Ammonium 

phosphate was used as a modifier.  Method blanks, reference standards, and metal standards were 

analyzed to ensure quality control (QA/QC) in the determination of background contamination, 

instrument drift, detection limits and metal recovery.  Detection limits were calculated as three 

times the method blank standard deviations (Norwood, 2008) and were 71.1 nmol L-1 for water 

samples and 76.2 nmol g-1 for whole-body samples. The recovery value of Zn from certified 

reference material CRM-TMDW Trace Metals in Drinking Water (High Purity Standards) was 

106% ± 6.56.  All samples were corrected for background contamination and instrument drift.  

Filtered Zn samples were contaminated, so all further references to Zn were total Zn 

measurements.   
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5.2.3 Whole-body Digests  

Organisms were digested following the method of section 3.2.3.  Digests of a certified 

reference material had an average recovery value 185 ± 18 µg g-1 d.w. [TORT2: lobster 

hepatopancreas; Zn certified as 180 ± 6 µg g-1 dry weight from the National Research Council of 

Canada]. 

 

5.2.4 Data analyses  

5.2.4.1 Mortality Model  

The mortality model as described in Section 1.7.4.1 was used to determine lethal water 

and lethal body concentrations.  Mortality data were log transformed before the above models 

were fit in SYSTAT 10, to ensure normality and equal variance.  Normality was assessed by 

visual inspection of the probability plots and the Shapiro Wilk test on the mortality data (W = 

0.421, p = 0.000 4 on untransformed data; W=0.979, p =0.074 on log transformed).  Levene’s test 

was performed for equal variance of log transformed data (F=0.967, p=0.122) (Golding et al., 

2013).    

5.2.4.2 Bioaccumulation  

The bioaccumulation saturation model, as described in Section 1.7.4.2 was used to 

determine the relationship between bioaccumulation of zinc and exposure.  Measured 

concentrations were log transformed before the above models were fit in SYSTAT 10, to ensure 

normality and equal variance.  Normality was assessed by visual inspection of the probability 

plots and the Shapiro Wilk test on the mortality data (W = 0.716, p = 0.0004 on untransformed 

data; W=0.982, p = 0.055 on transformed data).  Levene’s test was performed for equal variance 

of log transformed data (F=0.427, p=0.252).   

5.2.4.3 Confidence Intervals  

 To determine significant effects, confidence intervals will be used as described in section 

2.2.3.3. 

5.2.4.4 Comparison with Borgmann et al. (2004) 

 Zinc concentrations in water and whole-body concentrations causing mortality in hard 

water have been previously determined by Borgmann et al. (2004).  Lethal concentrations and 
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mortality model parameters for zinc from Borgmann et al. (2004) were used in the current study 

to determine the effect of water hardness on Zn toxicity.   

 

5.2.4.5 Zinc speciation 

The Windermere Humic Aqueous Model VI (WHAM VI) was used to estimate the free ion 

activity and Zn-complex concentrations in the different water chemistry treatments, as described 

in section 3.2.5.5 (Table 3.3). 

 

Table 5.3. Zinc speciation (% total Zn) determined by WHAM VI 

 

 

5.3. RESULTS  

5.3.1 Exposure-based mortality 

5.3.1.1 DOC 

The toxicity of Zn to H. azteca decreased as the concentration of DOC increased (Table 

5.4).  The 28-day LC10 of the DOC5 treatment was significantly higher than that of the DOC2 

treatment, with a 28-day LC10 of 1290 (364 – 2220) nmol L-1 compared to 103 (11.0 – 196) 

nmol L-1.  Since the predicted 28-day LC50 and 28-day LC25 of the DOC5 treatment were 

greater than the exposure concentration range, the model was extrapolated, which caused wide 

confidence intervals. However, the lethal concentrations were ten times greater than those of the 

DOC2 and the unmodified DOC0.5 treatment.  The DOC2 treatment and the DOC0.5 treatments 

lethal Zn concentrations were not significantly different. 

The mortality rate of the DOC5 treatment did not increase from control until the 

concentration of Zn in water was almost 1000 nmol L-1, whereas the DOC2 and DOC0.5 

Free ion activity

% of Zn

DOC5 5.67 6.75 0.47 0.44 0.08 0.39 0.01 1.17 79.9 10.7

DOC2 10.8 12.9 0.79 0.55 0.02 0.09 0.002 2.46 79.8 2.56

pH 6.5 71.4 88.3 0.41 0.02 1.05 0.03 0.38 1.21 6.01 2.64

pH 7.5/DOC 

0.5/Alk 16
52.0 61.8 3.55 2.32 0.80 2.55 0.09 10.1 14.7 3.98

pH 8.5 26.7 32.6 6.83 16.5 0.40 12.0 0.04 12.9 15.6 3.13

Alk 100 20.3 27.3 5.32 12.5 0.26 21.4 0.13 23.7 7.76 1.74

Alk 5 49.6 68.9 6.58 7.66 6.15 1.36 0.62 3.0 3.84 1.89

Hard water
a

24.0 32.6 5.63 11.7 5.07 16.9 0.04 21.1 5.69 1.26

 a - Calculated from water chemistry measurements from Norwood et al. (2007) and Zn concentrations from Borgmann et al., (1993)

ZnCl+ ZnHCO3
+ Zn-HA Zn-FATreatment Zn2+ ZnOH+ Zn(OH)2 ZnSO4 ZnCO3
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mortality rates increased at a lower concentration of Zn in water (Figure 5.1).  Both treatments 

with added DOC (DOC2, DOC5) approached a mortality rate maximum as the curves began to 

plateau, while the unmodified treatment (DOC0.5) did not approach a maximum rate.  Control 

exposure concentrations were plotted at 71.1 nmol L-1 when they were less than the detection 

limit; however, the detection limit was not used for modelling.        

5.3.1.2 pH  

There were no significant pH effects on Zn toxicity (Table 5.5).   There was also no 

significant difference between the 28-day LC25s or 28-day LC10s over all the pH treatments.  As 

well, the adjusted pH Zn lethal concentrations were not significantly different from the DOC2 

28-day lethal concentrations.  The pH models plotted in Figure 5.2 were overlapped. 

5.3.1.3 Alkalinity 

 Alkalinity had little effect on the toxicity of Zn to H. azteca.  The only significant effect 

was low alkalinity treatment 28-day LC10 which was greater than the high alkalinity treatment 

(Table 5.6).  The Alk-16 treatment was not significantly different from either adjusted alkalinity 

treatments at any endpoint.  The Alk-100 treatment (pH 8.33) when compared to the pH-8.3 

treatment (alkalinity of 43 mg L-1 as CaCO3 equivalents) did not cause significantly different 

lethal concentrations (Table 5.5 and Table 5.6).  The lethal concentration for the Alk-5 treatment 

(pH 7.05), was also not significantly different from the pH-6.8 treatment.  The alkalinity models 

also have a moderately strong fit to the data with an r2 value of 0.718 for the Alk-100 treatment 

and 0.683 for the Alk-5 treatment (Table 5.5).  Overall the model parameters and trends indicate 

that alkalinity does not affect mortality due to Zn exposure (Figure 5.3).   

5.3.1.4 Hardness 

The 28-day lethal concentration of Zn in soft water was significantly lower than in hard 

water experiments completed by Borgmann et al (2004) (Table 5.7).  No control mortality rates 

were provided in Borgmann et al (2004), so the mortality rate for their controls was set to the soft 

water control mortality rate of the current study to plot the curve in Figure 5.4.  The two curves 

have different shapes and the data points from the soft water experiments do not fit the hard 

water model. 
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Figure 5.1. Waterborne Zn mortality models with modified DOC based on parameters in 

Table 5.4. Data points are mortality rate (mortality per week) at mean measured Zn exposure 

concentrations in SAM30 with modified DOC concentrations.  □ are data from DOC-0.5 

experiments,  are DOC-2 , and ○ are DOC-5.  The solid lines represent the corresponding 

Zn mortality model. 
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Figure 5.2. Waterborne Zn mortality models with modified pH based on parameters in Table 

5.5.  Data points are mortality rate (mortality per week) at mean measured Zn exposure 

concentrations in SAM30 with modified pH.  ○ are data from the pH 6.8 treatment, □ at pH 

7.7, and at pH 8.3.  The solid lines represent the corresponding Zn mortality model. 
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Figure 5.3. Waterborne Zn mortality models with modified alkalinity based on parameters in 

Table 5.6.  Data points are mortality rate (mortality per week) at mean measured Zn exposure 

concentrations in SAM30 with modified alkalinity.  ○ are Alk-100 treatments, □ are Alk-16 

treatments, and are Alk-5 treatments.  The solid lines represent the corresponding Zn 

mortality model. 
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Figure 5.4. Waterborne Zn mortality models with modified hardness based on parameters in 

Table 5.7.  Data points are mortality rate (mortality per week) at mean measured Zn exposure 

concentrations in SAM30 with modified hardness.  ○ are the Hardness-37.5 treatment, the 

black line is the mortality model for Zn Hardness 37.5 and the red line is the mortality model 

for Zn Hardness-130 from Borgmann et al. (2004). 
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5.3.2 Bioaccumulation 

The bioaccumulation of Zn in soft water increased with increasing Zn exposure 

concentrations (Figure 5.5). Whole-body concentration of Zn did not significantly increase above 

control levels until Zn exposure concentration reached 490 nmol L-1 (p = 0.322). Data for all 

experiments (DOC, pH, and alkalinity) from this study were pooled, as bioaccumulation at each 

nominal Zn exposure concentration were not significantly different between all water chemistry 

conditions (Two-way ANOVA at 153 nmol L-1 p = 0.558, at 276 nmol L-1 p = 0.086, at 490 nmol 

L-1 p=0.217, 858 nmol L-1 p=0.561, 1530 nmol L-1 p = 0.149). When the pooled soft water 

bioaccumulation data were compared to hard water accumulation data from Borgmann et al., 

2004, water hardness did not affect the maximum predicted concentration of Zn accumulated in 

H. azteca after 28-days (Table 5.8).   

The geometric mean control body concentration for H. azteca, determined in the current 

study, was 591 (501- 680, 95% CI) nmol g-1 (Table 5.8).  This was significantly different from 

1000 (980 – 1030) nmol g-1 determined by Borgmann et al. (1995b); however, it was similar to 

the background concentration of 705 (595–835) nmol g-1 determined by Neumann et al. (1999), 

using the same H. azteca culture as Borgmann et al. (1995b). These values indicate that there 

wass variation in the background concentrations of Zn in H. azteca.  This variation may be due to 

slightly different analytical techniques, feeding regimes, or the exposure duration (Borgmann et 

al 1993, Borgmann et al 1995a & 1995b, Neumann et al 1999). 

The max/K value is the uptake ratio of bioaccumulation to exposure, and there was a two-

fold greater max/K in soft water compared to hard water (Table 5.8).  This indicates greater 

accumulation of Zn at lower Zn exposure concentrations in soft water compared to the 

accumulation in hard water.  Therefore, the bioaccumulation model from Borgmann et al. (2004), 

did not fit the data for the current study well, but indicated a similar trend (Figure 5.5). 

Calculated whole-body concentrations obtained with the bioaccumulation model were 

used to determine body concentration-based lethal concentrations.  This was done since some 

high exposure concentrations did not have surviving organisms for whole-body Zn analysis.  

Predicted values were within the 2:1 line of predicted versus observed Zn whole-body 

concentrations for 88.5% of data points (Figure 5.6).     
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Figure 5.5.  Zinc concentration accumulated in H. azteca in a 4-week exposure in soft water 

treatments (○). Solid black line is the soft water bioaccumulation model from this study 

calculated from parameters in Table 5.8.  Dashed red line is hard water Zn bioaccumulation 

model from Borgmann et al. (2004). 
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Figure 5.6.  The predicted concentrations are based on the bioaccumulation models from 

Figure 5.5 and calculated using the parameters in Table 5.8.  The observed Zn whole-body 

concentrations are based on average dry weight for each replicate. The solid line indicates a 

1:1 relationship and the dashed lines are 2x overpredicted or 2x underpredicted.  
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5.3.3 Body concentration-based mortality 

5.3.3.1 DOC 

The lethal body concentration of Zn at which 50% of the organisms survived (LBC50) 

increased as the DOC concentration increased (Table 5.9), which is indicative of a somewhat 

protective effect.  However, this increase was not significant, due to the large variation in the 

data.  There were significant differences between LBC25s and LBC10s.  There was over a two-

fold increase in the LBC25s between the DOC0.5 and DOC5 treatments and an almost three-fold 

increase of the LBC10s of the same treatments. 

  There was only a slight increase in mortality rate at the highest body concentration of Zn 

for the DOC5 treatment (Figure 5.7).  Both added DOC treatments had a weak fit to the mortality 

model, which can also be attributed to greater data variability than the other treatments.   

5.3.3.2 pH, Alkalinity, and Hardness 

Changes in pH, alkalinity, and water hardness did not significantly affect the 28-day 

lethal body concentrations of Zn (Table 5.10, Table 5.11, Table 5.12).  Hard water and soft water 

28-day lethal body concentration were almost identical at 2020 (1880 – 2180) and 2260 (1720 – 

2800) nmol Zn g-1, respectively. The model curves have slightly different shapes, but the data 

points have overlapping distributions (Figure 5.8, Figure 5.9, Figure 5.10).  The models have 

moderate to strong fits with r2 values ranging from 0.584 to 0.937 for these remaining treatments.   
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Figure 5.7. Zn body-concentration mortality models based on parameters in Table 5.9 with 

modified DOC concentrations in the exposure water.  Data points are mortality rate (mortality 

per week) at mean measured Zn body concentrations on a dry weight basis in organisms 

exposed to Zn in SAM30 with modified DOC concentrations.  Mortality rate was determined 

as the slope of mortality over 4-weeks.  □ are from the DOC0.5 treatment, are DOC2, and 

○ are DOC5.  The solid lines represent the corresponding Zn mortality model. 
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Figure 5.8. Zn body-concentration mortality models based on parameters in Table 5.10 with 

modified pH exposure water. Data points are mortality rate (mortality per week) at mean 

measured Zn body concentrations on a dry weight basis in organisms exposed to Zn in 

SAM30 with modified pH.  ○ are data from experiments in pH 6.8, □ at pH 7.7, and at pH 

8.3.  The solid lines represent the corresponding Zn mortality model. 

 

1000

Zn (nmol-g-1)

-2.3

-1.3

-0.3

0.7
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

1000

Zn (nmol-g-1)

-2.3

-1.3

-0.3

0.7
lo

g
(M

o
rt

a
lit

y
	R

a
te

)

1000

Zn (nmol-g-1)

-2.3

-1.3

-0.3

0.7
lo

g
(M

o
rt

a
lit

y
	R

a
te

)
L
o
g
(M

o
rt

a
lit

y
 R

a
te

) (
m

 w
k

-1
) 

Zn (nmol g-1 d.w.) 



115 

 

  

Figure 5.9. Zn body-concentration mortality models based on parameters in Table 5.11 with 

modified alkalinity exposure water. Data points are mortality rate (mortality per week) at 

mean measured Zn body concentrations on a dry weight basis in organisms exposed to Zn in 

SAM30 with modified alkalinity.  ○ are data from Alk-100 experiments, □ are Alk-16, and 

are Alk-5.  The solid lines represent the corresponding Zn mortality model. 
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Figure 5.10. Zn body-concentration mortality models based on parameters in Table 5.12 with 

modified exposure water hardness. Data points are mortality rate (mortality per week) at mean 

measured Zn body concentrations on a dry weight basis in organisms exposed to Zn in 

SAM30 with modified hardness.  ○ are from hardness-37.5 experiments.  The solid lines 

represent the corresponding Zn mortality model, with the red line representing the model for 

Zn at hardness 130 mg L-1 as CaCO3 equivalents from Borgmann et al., (2004).  
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5.4 DISCUSSION 

5.4.1 Exposure-based concentrations  

5.4.1.1 DOC 

  The addition of 5.74 mg DOC L-1 (DOC5 treatment) led to a marked decrease in the 

toxicity of Zn when compared to other treatments.  This is consistent with Bringolf et al. (2006) 

who determined 11 mg L of dissolved organic carbon would provide a protective effect against 

Zn toxicity in larval fathead minnows (Pimephales promelas).  DOC also had a protective effect 

in D. pulex at 6.1 mg DOC L-1 (Clifford and McGeer, 2009).  Lower concentrations were not 

tested, so it is uncertain what the threshold is for a protective effect in this species.  

5.4.1.2 pH and Alkalinity  

  In H. azteca it was determined that decreasing the pH of the exposure media from pH 8.3 

to pH 6.8 did not significantly affect the Zn lethality.  Change in alkalinity also did not alter 

mortality due to Zn exposure, except for the 28-day LC10s.  The biotic ligand model for Zn by 

Santore et al. (2002) predicted a u-shaped toxic response in rainbow trout, with lower and higher 

pH being somewhat protective against Zn toxicity.  At lower pH (< pH 6) there would be 

competition with H+ and at higher pH (> pH 8) there is less free Zn available for uptake as 

Zn(OH)2 forms at higher concentrations.   At values between pH 6 and pH 8 the predicted LC50 

concentrations do not differ greatly (Santore et al., 2002), as observed in the current study.  There 

was also no significant effect of pH on Zn toxicity in D. pulex over a pH range of 6.0 to 8.3 

(Clifford and McGeer, 2009).  In addition, the difference in the lethal concentrations of Zn to 

rainbow trout at pH 6.5 and 7.5 was not significant, but when the pH was lowered to pH 5.5 Zn 

was significantly less toxic (De Schamphelaere & Janssen, 2004).  However, in 96-h experiments 

by Schubauer-Berigan et al. (1993) increasing pH from 6.3 to 8.3 made Zn significantly more 

toxic in very hard water. This trend was also seen in Ceriodaphnia dubia, but the u-shaped toxic 

response was seen in the fish species, P. promelas (Schubauer-Berigan et al., 1993).   

    It should be noted that the 28-day LC10s of the alkalinity treatments were significantly 

different, such that increased alkalinity resulted in increased mortality. Increased alkalinity 

results in greater concentrations of Zn complexes like ZnOH+ and ZnCO3
.  This may have 

contributed to the increased toxicity of Zn at these lower exposure concentrations in the high 

alkalinity treatment.  However, these complexes did not contribute to Zn toxicity in the 

development of an acute Zn BLM for D. pulex in soft water (Heijerick et al., 2002) or for a 
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chronic BLM for D. magna (Heijerick et al., 2005).  However, ZnOH+ was included as a 

parameter in the BLM for D. magna by Santore et al. (2002).  Clifford et al. (2009) discovered 

only 4% of total Zn was of the form ZnOH+ at pH 8.0, but did not discount that it could 

contribute to toxicity.  In the further development of Zn multi-species, multi-metal BLMs ZnOH+ 

is to be included as a toxicologically active species (Santore & Ryan, 2015).   

5.4.1.3 Hardness  

The 28-day lethal concentrations of Zn in soft water to H. azteca were significantly lower 

than the lethal concentrations determined by the mortality model in Borgmann et al., (2004).  The 

ions that contribute to water hardness (Ca2+ and Mg2+) can both interact with Zn to affect its 

bioavailability to organisms.  The concentration of Ca2+ wass the greater factor in decreasing the 

toxicity of Zn2+ in both rainbow trout (Oncorhynchus mykiss) (De Schamphelaere & Janssen, 

2004), D. manga (Heijerick et al., 2005), and D. pulex (Clifford & McGeer, 2009).  It has been 

suggested that Zn2+ and Ca2+ compete for the same uptake channel in the cell membrane (Santore 

et al., 2002), as Zn2+can also inhibit the uptake of Ca2+ (Muyseen et al., 2006). Hardness, and 

more specifically the Ca2+ ion, has been shown to affect the uptake and toxicity of other metals 

including Cd2+ (Bourgeault et al., 2010) and Ni2+ (Leonard & Wood, 2013).    

5.4.2 Bioaccumulation and lethal body concentrations 

Total bioaccumulation was not affected by water hardness; however, the max/K value in 

soft water was two-fold greater than in hard water, which indicates greater uptake of Zn in soft 

water at lower Zn exposure concentrations.  This difference in the uptake pattern did not 

significantly alter the lethal body concentrations.  These 28-day lethal concentrations were two to 

three times greater than the background concentrations, discussed in section 5.3.2.   The threshold 

body concentration for Zn toxicity was 2080 nmol g-1 in ten-week exposures, which was double 

the background Zn concentration (Borgmann et al., 1993). The predicted LC10 values for DOC 2 

and pH 6.8 treatments in the current study were less than the physiologically required 

background concentration of Zn.  

Increased DOC concentrations had a protective effect against Zn toxicity on a body 

concentration basis compared to all other treatments.   Nguyen et al. (2012) determined that H. 

azteca had increased body burdens of Zn when the organisms were fed Zn-spiked food in 

sediment tests.  It was noted in the current study that H. azteca ingested organic matter in the 
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DOC treatments that may have adsorbed Zn. This exposure route was not considered to be an 

important route of toxic exposure (Nguyen et al., 2012).  

Rainbow and Luoma (2011) have argued against the use of critical accumulated body 

concentration to predict toxicity in aquatic invertebrates, as total internal metal concentrations 

were often stored in detoxified form.  However, in some rare cases where no detoxification 

method is present, a critical body concentration could be possible.  For H. azteca, internal Zn 

concentration were only partially regulated (Borgmann et al., 1993).  In the current study, some 

organisms that were exposed to the highest concentration of Zn had body concentrations more 

than five times the control concentration, despite a 24-hour depuration period in EDTA.  This 

excess Zn could be due to an excretion process failure due to the toxic concentrations, as seen by 

Rainbow & White (1989) in the shrimp Palaemon elegans that can only regulate Zn up to 

exposure concentrations of 316 µg L-1.  However, this would require extended time measures of 

Zn body concentrations to determine if there was a Zn loss over time (i.e. a slow depuration rate). 

5.4.3 Water quality guidelines and toxicity predictions 

 The existing Zn Canadian Water quality guideline (CCREM, 1987) of 30 µg L-1 (459 

nmol L-1) exceeded or was not significantly different from the 28-day LC25s and 28-day LC10s 

for many of the soft water treatments, in contrast to the protective hard water and high DOC 

scenarios.  

 The draft Canadian guideline includes water hardness and DOC in its derivation.  For the 

non-DOC treatments from this study, the Zn short-term benchmark would be about 400 nmol L-1.  

The long-term Zn benchmark is calculated using water hardness and pH. Although the studies 

used in creating the model for the draft Canadian guideline included a significant DOC term, the 

toxicity predictions were more accurate using the two-factor model. In the current study, there 

were no significant differences in the lethal concentrations at different pH values, but at pH-8.3 

the 28-day LC50 was 1.5 times lower than at pH 6.7.  The long-term Zn benchmark is 3.5 times 

lower at pH 8.0 compared to pH 6.5, with benchmarks of 72.0 compared to 260 nmol Zn L-1, 

which would be protect at least 90% of H. azteca in all water chemistry tested (CCME, 2016). 

 Body concentrations were not typically used for metal toxicity predictions, as not all 

organisms accumulate metals so that their whole-body concentrations would not be proportional 

to the concentration of metal at the site of action and therefore would not be related to toxicity 

(Rainbow & Luoma, 2011). However, except for a higher DOC environment, there is a consistent 
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lethal body concentration for H. azteca in all other exposure conditions.  The use of metal body 

burden in H. azteca to predict toxicity will be discussed in detail in Chapter 6. 

5.5 SUMMARY 

1.  Soft water can lead to greater uptake of Zn in H. azteca at low Zn exposure concentrations 

compared to hard water. 

2.  Increased water hardness and dissolved organic carbon have protective effects against 

waterborne Zn toxicity. 

3.  High concentrations of DOC have a protective effect against the body burden of Zn that 

causes a toxic effect.    
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CHAPTER 6 

General Discussion and Project Summary  

 

The overall objectives of this study were to determine if and how water chemistry 

affected the individual toxicity of three elements to H. azteca in different water chemistry.  It was 

of interest to observe how water chemistry influenced the whole-body concentration of a single 

element associated with mortality, as it was previously assumed to be specific and constant in H. 

azteca.  If whole-body concentration associated with mortality in H. azteca remained constant 

regardless of water chemistry, it would potentially be a useful site assessment tool. The following 

chapter details the findings and conclusions for the main objectives. 

6.1. Objectives and findings 

1. Determine if pH or DOC influences the acute toxicity of an element tested singly (Co, Se, 

or Zn) to H. azteca [Chapter 2]. 

Table 6.1.  LC50 trends for Co, Se, or Zn when altering one water chemistry in a 7-day toxicity test. 

 

 

 

 

 

 

 

 

 The first set of experiments presented in Chapter 2 were 7-day toxicity tests that served as 

range finding experiments for the further chronic toxicity testing.  The LC50s were determined 

using the Trimmed Spearman-Karber method, which is a commonly used method for preliminary 

LC50 calculations.  The mortality model was also used to compute the LC50s at different water 

chemistries.  Both LC50 determination methods output similar results and trends.  Using these 

morality models, pH significantly influenced the toxicity of Se and Zn.  DOC did not have any 

effects on the acute toxicity of Co, Se, or Zn (Table 6.1).  However, the LC50 for both Co and Zn 

exceed the concentration range of the experiments.   
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2. Determine if pH, alkalinity or DOC influences the chronic toxicity of an element tested 

singly (Co, Se, or Zn) to H. azteca. The effect of water hardness will also be determined 

incorporating data from previous studies [Chapter 3, 4, 5]. 

a) Determine how mortality rate and bioaccumulation of an element tested singly in H. 

azteca is related to exposure concentrations and if water chemistry affects this relationship. 

Table 6.2. Effects of water chemistry on the chronic toxicity (LC50, LC25, and LC10) of Co, Se, or Zn to H. 

azteca. 

 

Both DOC and hardness had significant effects on the waterborne toxicity of all elements 

considered in this study (Table 6.2).  The toxicity of the two metals, Co and Zn, were both 

reduced as these water chemistry parameters were increased.  The toxicity of Se was also reduced 

by increased hardness, as well as by increasing pH and alkalinity.  However, increased 

concentrations of DOC led to the greater toxicity of Se and was thought to be due to the potential 

contribution of dietary Se.  Chapters 3, 4, and 5 concluded that water chemistry can affect the 

toxicity of these elements in chronic exposures to H. azteca and that water chemistry needs to be 

considered for these elements when developing and updating water quality guidelines.   

Table 6.3.  Select lethal concentrations of Co, Se, and Zn from soft water experiments compared to Canadian 

water quality guidelines. 

 

Element Increase pH Increase Alkalinity Increase DOC Increase Hardness

Co No significant effect No significant effect Decrease toxicity Decrease toxicity

Se Decrease toxicity Decrease toxicity Increase toxicity Decrease toxicity

Zn Increase toxicity No significant effect.  1.8-fold decrease 

in LC25, 4-fold decrease in LC10

Decrease toxicity Decrease toxicity
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 The water quality guideline for Co was developed using a species sensitivity distribution 

and the most sensitive species in that distribution was H. azteca in a hard water experiment.  The 

guideline can be modified for water hardness between 52 and 396 mg L-1; however, there is no 

modifying factor for DOC as the results from the current study would suggest is necessary (Table 

6.2).  Despite this guideline not being protective for H. azteca in some water chemistry 

conditions (Table 6.3), it was protective of 95% of species 95% of the time (Environment 

Canada, 2017). 

 The water quality guideline for Se was set very low to prevent known bioaccumulation in 

organisms and biomagnification in the food web (CCME, 1987).  Thus, this guideline would be 

protective against all waterborne Se toxicity in the current study, as guideline is lower than the 

lowest Se concentration tested in the current study (Table 6.3).  However, the current study also 

indicated that Se toxicity is more complicated than a waterborne route of uptake, so the inclusion 

of water chemistry variables would not lead to an improvement of the guideline.   

 The CCME guideline for Zn has been 30 µg L-1 since 1987, which would not be 

protective of H. azteca in soft water conditions.  Updated draft Zn criteria include hardness and 

pH modification in a multiple linear regression to calculate site specific water quality guidelines.  

The study found DOC to significant affect Zn toxicity as well; however, its inclusion did not 

improve the accuracy the regression model (CCME, 2016).  With these additional factors, this 

guideline would be protective against Zn toxicity in H. azteca, as no significant mortality 

occurred at or below the concentrations of 6.2 – 22 µg L-1 (Table 6.3).  

 

Table 6.4.  Effect of water chemistry on the bioaccumulation of Co, Se, or Zn in H. azteca in chronic single 

metal exposures.    

 

Element Increase pH Increase Alkalinity Increase DOC Increase Hardness

Co No significant effect No significant effect Reduces uptake at low 

concentrations, does 

not impact maximum 

biaccumulation

Reduces uptake at low 

concentrations, does not 

impact maximum 

biaccumulation

Se Decrease uptake Decrease uptake No effect Reduces uptake at low 

concentrations, unable to 

determine impact on 

maximum concentration

Zn No significant effect No significant effect No significant effect Reduces uptake at low 

concentrations, does not 

impact maximum 

biaccumulation
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Water chemistry did not change the predicted bioaccumulated concentrations of Co and Zn 

(Table 6.4).  The bioaccumulation model was unable to predict the maximum Se concentration, 

as the body concentration of Se in H. azteca did not approach a maximum concentration.  An 

increased in the exposure hardness, caused the bioaccumulation pattern for all metals to change, 

as there was less uptake at low exposure concentration due to a greater ratio of competing ions.  

Bioaccumulated Se concentrations were not pooled, as the body concentrations accumulated at 

the exposure Se concentrations were statistically different among the water chemistry conditions.  

Both Co and Zn bioaccumulated concentrations were not statistically different among the soft 

water treatments of this study, except for Co in high DOC scenarios, which had a pattern more 

similar to Co hard water accumulation.  

The bioaccumulation model was useful when there were no or few surviving organisms at 

high exposure concentrations.  An expected body concentration was calculated using the 

bioaccumulation model, and this value was used for body concentration to mortality rate 

modelling and calculation of lethal body concentrations.  However, maximum bioaccumulation 

should be verified in short-term exposures, in which greater survival is expected, resulting in 

available tissue for whole-body metal analysis. 

   

 b)  Determine how mortality rate and bioaccumulation of an element tested singly in H. 

azteca is related to whole-body concentrations and if water chemistry affects this 

relationship. 

Table 6.5. Effects of water chemistry on the chronic body concentration-based toxicity (LBC50, LBC25, and 

LBC10) of Co, Se, or Zn to H. azteca. 

 The body concentration of Co or Zn where H. azteca have reduced survival was not 

significantly affected by changes in exposure water chemistry (Table 6.5).   However, Zn toxicity 

changed by 1.5-fold when the hardness or DOC conditions of the exposure environment were 

altered.  Zinc is partially regulated in H. azteca, so while not statistically significant, this change 

could be important.   

Element Increase pH Increase Alkalinity Increase DOC Increase Hardness

Co No significant effect No significant effect No significant effect No significant effect

Se Increase toxicity Increase toxicity Increase toxicity No significant effect

Zn No significant effect No significant effect No significant effect, 

1.5 fold increase in 

LBC50

No significant effect, 1.5 

fold decrease in LC50
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 Water chemistry significantly affects Se body concentrations causing toxicity.  An 

increase in exposure pH, alkalinity, and DOC contributed to greater mortality with less total Se in 

an organism.  It was suspected the different exposure environments altered the Se species and 

exposure routes, which are known to alter Se toxicity.     

   

3. Compare mortality and bioaccumulation relationships in different water chemistry to 

models developed by Borgmann et al. (2004), Norwood et al. (2006, 2007), and Norwood et 

al. (unpublished) to determine if water chemistry is a variable necessary for the models to 

be good predictors of toxicity.    

Maximum concentrations of Co and Zn accumulated by H. azteca were not significantly 

affected by different water chemistry.  However, at low exposure concentrations the “hard water” 

bioaccumulation model did not accurately describe the soft water bioaccumulation data.  

Selenium did not have a bioaccumulation model that fit all soft water data, so water chemistry 

must be considered in order to predict Se accumulation.   

Mortality models can be used to predict lethal endpoints in different water chemistry 

scenarios in soft water.  Mortality models have been developed previously for Co, Se, and Zn in 

hard water.  Although hard water had significant effects on the waterborne toxicity of these 

elements throughout this study, the lethal body concentrations were not significantly altered by 

changes in hardness.     

Using the whole-body based mortality models, a metal effects addition model (MEAM) 

was created by Norwood et al. (2013) to predict the toxicity of metal mixtures.  This model uses 

the critical body concentrations causing toxicity in H. azteca to predict toxicity in up to a 10-

element mixture.  Mortality models for Se and V have since been developed.  However, these 

models were developed in hard water and it was unknown if water chemistry would affect the 

critical body concentration of H. azteca and if it would change the toxicity prediction of the 

MEAM.   

The remainder of this section will examine whether the current “hard water” mortality 

models used in the MEAM were robust enough to accurately predict the same lethal water and 

lethal body concentrations as the models that were developed in different water chemistries for 

Co, Se, and Zn in the previous chapters of this study. The model will be considered robust if 

there were no significant differences among the predicted LBC50s and LBC25s. Mortality model 

parameters and lethal concentrations predicted using the “hard water” models are in Appendix D.   
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Table 6.6. Robustness of “hard water” Co model when predicting lethal body concentrations from experiments 

conducted in soft water. 

 

 The “hard water” model for lethal body concentrations had few significant differences in 

endpoint predictions (Table 6.6); however, this “hard water” model overpredicted soft water 

LC50s and under-predicted soft water LC10s.   

 

Table 6.7. Robustness of “hard water” Se model when predicting lethal body concentrations from experiments 

conducted in soft water. 

 

The lethal body concentrations predicted by the Se “hard water’ model were not 

significantly different from the models used in the current study to predict the endpoints (Table 

6.7).  Some LC10s were under-predicted and can be attributed to the lack of data at low 

concentrations to fully develop the “hard water” model.  Even though the “hard water” model can 

Treatment Change in lethal body concentrations when determined using a "hard water" model r
2

DOC 10 No significant differences, but overpredicts LBC50 two-fold. 0.429

DOC 5 No significant differences, but overpredicts LBC50 by 1.59. 0.496

DOC 2 No significant differences. 0.684

DOC 0.5 No significant differences, but underpredicts LBC10 over two-fold. 0.475

pH 6.7 No significant differences, but overpredicts LBC50 by 1.5. 0.479

pH 7.7 No significant differences, but underpredicts LBC10 over two-fold. 0.475

pH 8.3 LC10 significantly lower. 0.550

Alk 100 LC10 significantly lower. 0.822

Alk 50 LC10 significantly lower. 0.693

Alk 16 No significant differences, but underpredicts LBC50 over two-fold. 0.475

Treatment Change in lethal body concentrations when determined using a "hard water" model r
2

DOC 5 No significant differences. 0.760

DOC 2 No significant differences. 0.498

DOC 0.5 No significant differences. 0.684

pH 8.3/Alk 100 No significant differences, but underpredicts LBC10 two-fold. 0.737

pH 7.7/Alk 15 No significant differences. 0.684

pH 6.8/Alk 5 No significant differences, but underpredicts LBC10 over two-fold. 0.584
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predict the lethal body concentrations adequately, Se body concentrations were not a consistent 

predictor of toxicity under different water chemistry conditions, as stated previously (Table 6.4).  

   

Table 6.8. Robustness of “hard water” Zn model when predicting lethal body concentrations from experiments 

conducted in soft water. 

 

 The lethal body concentrations predicted by the “hard water” model were not 

significantly different from the soft water models’ predictions in all cases except for the pH 8.3 

treatment, where the endpoints were over-predicted (Table 6.8).  The over-predictions by the 

model at this pH were all by less than 1.6 times the prediction by the other model.  The “hard 

water” model does not have a good fit to the DOC data; however, the fit was comparable to the 

soft water models’ fit, as the DOC data were variable. 

 

6.2 Implications for metal mixture toxicity predictions 

 The MEAM uses mortality models based on gut cleared, background correct body 

concentrations for 10 different metals to calculate the predicted toxicity at a given site (Norwood 

et al., 2013).  It set parameters for LBC50, KTB, and nb.  The present study has shown that water 

chemistry does not affect the lethal body concentrations of Co or Zn.  This chapter also showed 

that the “hard water” whole-body models can be used to predict the soft water LBC50s.  The 

“hard water” model did not perform as well when predicting LC10s, but these values were not 

required for the MEAM.  

The lethal body concentrations of Se were variable in different water chemistry scenarios 

and this is an issue since the MEAM uses a constant LBC50 value.   Although the “hard water” 

Modifier Change in lethal body concentrations when determined using a "hard water" model r
2

DOC 5 No significant differences. 0.305

DOC 2 No significant differences, but LBC25 is two-fold greater and LBC10 is over four-fold greater. 0.268

DOC 0.5 LC25 and LC10 significantly greater.  0.960

pH 8.3 All endpoints significantly greater.  0.777

pH 7.7 LC25 and LC10 significantly greater.  0.960

pH 6.8 No significant differences, but LC25 is 1.5 times greater and LC10 is almost three-fold greater. 0.681

Alk 100 No significant differences. 0.496

Alk 16 LC25 and LC10 significantly greater.  0.960

Alk 5 No significant differences. 0.574
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mortality model can by used to adequately predict the lethal body concentrations of Se in soft 

water, the lethal body concentration would need to be modified for use in the MEAM in other 

water chemistry scenarios, like environments with different DOC concentrations.    

 

6.3 Additional research considerations  

1.  Additional DOC experiments with expanded concentration ranges of both added DOC and of 

each element. 

 DOC can have protective effects against metal toxicity but can enhance Se toxicity.  

Future work should include an expanded range of DOC to assess what concentrations have a 

significant effect compared to a control without added DOC.  The concentration of DOC in 

wetlands can range upwards of 30 mg L-1 (Mann & Wetzel, 1995).   In addition, the exposure 

concentrations of Co and Zn should be increased, as some lethal concentrations could only be 

determined by extrapolation as low mortality was observed.  The expanded concentration ranges 

should follow the ranges tested in previous hardwater studies, for better comparison between soft 

and hard water.    

 

2.  Short term exposure to confirm bioaccumulation. 

 Since there was low or no survival in some treatments, one-week bioaccumulation 

experiment should be conducted to determine actual body concentrations at high exposure 

concentrations.  This work will confirm the predicted bioaccumulation models developed in this 

study. 

 

3.  Se speciation and targeted uptake route experiments. 

 An area of further research is what form of Se is taken up by H. azteca and speciation 

inside the organism.  Other research questions include how the forms of Se can influence both the 

bioaccumulation and toxicity to H. azteca. 

 

4.  Water chemistry effects of other metal toxicity to H. azteca. 

 It has been shown that body concentrations of Co and Zn were related to the mortality 

rate of H. azteca and it is of interest to determine if this holds true for other elements that were 
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included in the MEAM.  Critical body concentrations of H. azteca could have potential to be used 

for site-specific evaluations if water chemistry conditions do not affect other lethal body 

concentrations. 

5.  The effects of water chemistry on two-metal or metal mixture toxicity. 

 Since metals rarely occur in isolated environments, combining water chemistry effects 

with metal mixtures is important to see if and how different scenarios change the above 

conclusions.  Single element effects would first need to be established for additional elements, 

followed by binary-element or multi-element exposures in a range of water chemistry.   
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Growth model outline 

Growth inhibitory concentrations will be determined using the growth model (Norwood 

et al., 2007) as follows:  

W = W'(1 + aCn)-1
          (Eq. A.1)  

where W is the wet weight, W' is the control wet weight, C is the concentration of metal 

in water, and a and n are constants. Using the constants from the above equation, critical growth 

inhibition concentrations IC10, 25 and 50 can be calculated as follows:  

IC50 = (a)-(1/n)              (Eq. A.2)  

IC25 = (3a)-(1/n)              (Eq. A.3)  

IC10 = (9a)-(1/n)                (Eq. A.4)  

Where IC50, IC25, and IC10 are the concentrations where growth is inhibited 50%, 25%, 

or 10%, and a and n are constants.   
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1. COBALT EXPOSURE CONCENTRATION-BASED GROWTH MODELS  

 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

DOC 10 0.015 0.868 0.797 125 (-13.9 - 265) 35.3 (12.6 - 58.1) 9.96 (-4.77 - 24.7) 0.260

DOC 5 0.036 0.757 0.648 81.9 (28.8 - 135) 19.2 (6.51 - 31.9) 4.5 (-1.88 - 10.89) 0.395

DOC 2 0.083 0.669 0.623 41.4 (18.4 - 64.4) 8.01 (-0.346 - 16.4) 1.55 (-1.58 - 4.68) 0.362

DOC 0.5 0.002 1.48 0.400 65.4 (18.3 - 113) 31.1 (6.17 - 56.1) 14.8 (-6.35 - 36.0) 0.258

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

pH 6.5 0.000 2.28 0.283 82.6 (28.7 - 136) 51.0 (13.8 - 88.1) 31.5 (-10.2 - 73.2) 0.211

pH 7.5 0.002 1.48 0.400 65.4 (18.3 - 113) 31.1 (6.17 - 56.1) 14.8 (-6.35 - 36.0) 0.258

pH 8.5 0.029 0.938 0.524 43.8 (16.0 - 71.5) 13.6 (0.679 - 26.4) 4.20 (-3.14 - 11.6) 0.318

a
 higher control mortality than acceptable for a 28-d exposure

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

Alk 100 0.025 1.14 0.736 24.9 (14.7 - 35.1) 9.53 (3.35 - 15.7) 3.65 (-0.453 - 7.75) 0.463

Alk 50 0.076 0.685 0.629 42.7 (4.52 - 80.8) 8.59 (-3.26 - 20.4) 1.73 (-3.06 - 6.52) 0.368

Alk 16 0.002 1.48 0.400 65.4 (18.3 - 113) 31.1 (6.17 - 56.1) 14.8 (-6.35 - 36.0) 0.258

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

Hardness 37.5 0.025 1.14 0.736 24.9 (14.7 - 35.1) 9.53 (3.35 - 15.7) 3.65 (-0.453 - 7.75) 0.463

Hardness 122b 0.013 0.829 0.944 48.7 (10.7 - 221) 0.490

b
 Norwood et al., 2007

nmol L-1 nmol L-1 nmol L-1

Table A.1.1. Growth model parameters based on Co water concentrations in treatments with different dissolved organic 

carbon concentrations.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

Table A.1.2. Growth model parameters based on Co water concentrations in treatments with different pH.  Bolded values 

are significantly lower than corresponding lethality endpoint. 

 

Table A.1.3. Growth model parameters based on Co water concentrations in treatments with different alkalinity.  Bolded 

values are significantly lower than corresponding lethality endpoint. 

 

Table A.1.4. Growth model parameters based on Co water concentrations in treatments with different water hardness.  

Bolded values are significantly lower than corresponding lethality endpoint. 
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2. COBALT WHOLE-BODY CONCENTRATION-BASED GROWTH MODELS 

 

 

 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

pH 6.5
a

0.001 0.993 0.260 1050 (-6940 - 9050) 348 (-850 - 1546) 115 (-198 - 428) 0.199

pH 7.5 0.001 1.22 0.400 283 (-7.57 - 574) 115 (21.6 - 209) 47.0 (-32.7 - 127) 0.269

pH 8.5 0.02 1.20 0.524 172 (88.6 - 255) 68.6 (17.0 - 120) 27.4 (-10.4 - 65.3) 0.335

a
 higher control mortality than acceptable for a 28-d exposure

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

Alk 100 0.001 1.39 0.736 111 (74.3 - 148) 50.5 (23.4 - 77.6) 22.9 (1.74 - 148) 0.478

Alk 50 0.013 0.838 0.629 171 (47.4 - 294) 46.1 (-6.16 - 98.3) 12.4 (-15.8 - 40.7) 0.375

Alk 16 0.001 1.22 0.400 283 (-7.57 - 574) 115 (21.6 - 209) 47.0 (-32.7 - 127) 0.269

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

Hardness 37.5 0.001 1.39 0.736 111 (74.3 - 148) 50.5 (23.4 - 77.6) 22.9 (1.74 - 148) 0.478

Hardness 122b 0.000 09 1.71 0.890 117 (52.1 - 258) 0.498

b
 Norwood et al., 2007

nmol L-1 nmol L-1 nmol L-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

DOC 10 0.006 0.979 0.797 205 (-0.740 - 411) 65.5 (27.3 - 104) 20.9 (-7.30 - 49.1) 0.262

DOC 5 0.016 0.839 0.648 139 (57.9 - 220) 37.6 (15.0 - 60.1) 10.1 (-2.95 - 23.2) 0.397

DOC 2 0.013 0.849 0.623 164 (94.1 - 235) 45.1 (8.38 - 81.7) 12.4 (-6.95 - 31.7) 0.384

DOC 0.5 0.001 1.22 0.400 283 (-7.57 - 574) 115 (21.6 - 209) 47.0 (-32.7 - 127) 0.269

nmol L
-1

nmol L
-1

nmol L
-1

Table A.2.1. Growth model parameters based on Co body concentrations in organisms exposed to treatments 

with different dissolved organic carbon concentrations.  Bolded values are significantly lower than 

corresponding lethality endpoint. 

 

Table A.2.2. Growth model parameters based on Co body concentrations in organisms exposed to 

treatments with different pH.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

Table A.2.3. Growth model parameters based on Co body concentrations in organisms exposed to 

treatments with different alkalinity.  Bolded values are significantly lower than corresponding lethality 

endpoint. 

 

Table A.2.4. Growth model parameters based on Co body concentrations in organisms exposed to 

treatments with different water hardness.  Bolded values are significantly lower than corresponding lethality 

endpoint. 
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1. SELENIUM EXPOSURE CONCENTRATION-BASED GROWTH MODELS 

 

2.  SELENIUM BODY CONCENTRATION-BASED GROWTH MODELS 

 

 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

DOC 10 0.001 1.01 0.967 913 (-2510 - 4340) 309 (-141 - 759) 104 (-193 - 402) 0.126

DOC 2 0.001 1.08 0.955 607 (169 - 1040) 219 (58.7 - 379) 79.0 (-33.4 - 191) 0.438

pH 7.5/DOC 0.5/Alk 15 0.158 0.12 0.734 >5000 483 (-2170 - 3140) 0.053 (-1.22 - 1.33) 0.014

Alk 100/pH 8.3 0.120 0.234 1.12 >5000 79.7 (-150 - 309) 0.724 (-7.45 - 8.90) 0.044

Alk 5/pH 7.0 0.001 0.991 0.674 1070 (-343 - 2480) 352 (95.3 - 609) 116 (-73.7 - 306) 0.397

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

DOC 10 0.001 1.10 0.967 535 (-1890 - 2960) 197 (-144 - 539) 72.5 (-104 - 249) 0.102

DOC 2 0.001 1.19 0.955 337 (-37.2 - 712) 134 (48.8 - 219) 53.0 (35.8 - 142) 0.365

pH 7.5/DOC 0.5/Alk 15 0.011 0.809 0.734 272 (-104 - 648) 70.0 (27.6 - 112) 18.0 (-8.62 - 44.6) 0.136

Alk 100/pH 8.3 0.024 0.706 1.12 202 (-191 - 595) 42.7 (3.34 - 82.0) 9.00 (-15.7 - 33.7) 0.081

Alk 5/pH 7.0 0.001 1.29 0.674 212 (11.6 - 412) 90.3 (40.9 - 140) 38.5 (-4.25 - 81.3) 0.427

nmol L
-1

nmol L
-1

nmol L
-1

Table B.1.1. Growth model parameters based on Se water concentrations in treatments with different water 

chemistry.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

Table B.2.1. Growth model parameters based on Se body concentrations in organisms exposed to treatments 

with different water chemistry.  Bolded values are significantly lower than corresponding lethality endpoint. 
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1. ZINC EXPOSURE CONCENTRATION-BASED GROWTH MODELS  

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

Hardness 37.5 0.001 0.832 0.846 2840 (-1300 - 6980) 759 (220 - 1300) 203 (-131 - 537) 0.243

Hardness 122a nd

a
 Borgmann et al., 2004

nmol L-1 nmol L-1 nmol L-1

Table C.1.1. Growth model parameters based on Zn water concentrations in treatments with different 

dissolved organic carbon concentrations.  Bolded values are significantly lower than corresponding lethality 

endpoint. 

 

Table C.1.2. Growth model parameters based on Zn water concentrations in treatments with different pH.  

Bolded values are significantly lower than corresponding lethality endpoint. 

 

Table C.1.3. Growth model parameters based on Zn water concentrations in treatments with different 

alkalinity.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

Table C.1.4. Growth model parameters based on Zn water concentrations in treatments with different water hardness.  

Bolded values are significantly lower than corresponding lethality endpoint. 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

DOC 10 0.001 0.791 0.707 6220 (-3980 - 16400) 1550 (494 - 2610) 387 (-104 - 877) 0.458

DOC 2 0.001 0.708 0.589 >10000 3660 (-5700 - 13000) 776 (-841 - 2390) 0.242

DOC 0.5 nd

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

Alk 100 0.001 0.832 0.846 2840 (-1300 - 6980) 759 (220 - 1300) 203 (-131 - 537) 0.243

Alk 16 nd

Alk 5 0.016 0.444 0.634 >10000 990 (-2300 - 4270) 83.3 (-481 - 648) 0.037

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

pH 6.5 0.006 0.705 0.668 1320 (127 - 2520) 278 (20.9 - 536) 58.6 (-61.1 - 178) 0.371

pH 7.5 nd

pH 8.5 0.001 1.21 0.779 304 (179 - 430) 123 (16.8 - 228) 49.4 (-25.8 - 125) 0.923

nmol L
-1

nmol L
-1

nmol L
-1
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2.  ZINC BODY CONCENTRATION-BASED GROWTH MODELS 

 

 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

Hardness 37.5 0.001 0.749 0.846 >10000 2330 (127 - 4540) 538 (-723 - 1800) 0.236

Hardness 122a nd

a
 Borgmann et al., 2004

nmol L-1 nmol L-1 nmol L-1

Table C.2.1. Growth model parameters based on Zn body concentrations in organisms exposed to 

treatments with different dissolved organic carbon concentrations.  Bolded values are significantly lower 

than corresponding lethality endpoint. 

 

Table C.2.2. Growth model parameters based on Zn body concentrations in organisms exposed to treatments 

with different pH.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

pH 6.5 0.006 0.705 0.668 1320 (127 - 2520) 278 (20.9 - 536) 58.6 (-61.1 - 178) 0.371

pH 7.5 nd

pH 8.5 0.001 1.21 0.779 304 (179 - 430) 123 (16.8 - 228) 49.4 (-25.8 - 125) 0.923

nmol L
-1

nmol L
-1

nmol L
-1

Table C.2.3. Growth model parameters based on Zn body concentrations in organisms exposed to treatments 

with different alkalinity.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

Table C.2.4. Growth model parameters based on Zn body concentrations in organisms exposed to treatments 

with different water hardness.  Bolded values are significantly lower than corresponding lethality endpoint. 

 

Treatment a N CON W IC50 CI IC25 CI IC10 CI r2

mg

pH 6.5 0.001 0.833 0.668 3990 (-1250 - 9240) 1070 (193 - 1940) 286 (-414 - 986) 0.387

pH 7.5 nd

pH 8.5 0.001 0.92 0.779 1780 (-931 - 4500) 543 (-1010 - 2090) 165 (-926 - 1260) 0.922

nmol L
-1

nmol L
-1

nmol L
-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

DOC 10 0.001 0.676 0.707 >10000 5390 (-7700 - 18500) 1060 (-753 - 2880) 0.451

DOC 2 0.001 0.587 0.589 >10000 >10000 3080 (-7730 - 13900) 0.181

DOC 0.5 nd

nmol L-1 nmol L-1 nmol L-1

Treatment a N CON W IC50 CI IC25 CI IC10 CI r
2

mg

Alk 100 0.001 0.749 0.846 >10000 2330 (127 - 4540) 538 (-723 - 1800) 0.236

Alk 16 nd

Alk 5 0.001 0.739 0.634 >10000 2600 (-3460 - 8650) 587.0 (-2090 - 3260) 0.040

nmol L
-1

nmol L
-1

nmol L
-1
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1. CO EXPOSURE CONCENTRATION-BASED LETHAL CONCENTRATIONS PREDICTED USING A 

“HARD WATER MODEL” 

Table D.1.1.  Mortality model LC output using Co water model parameters from Norwood et al. (2007) and data 

from soft water modified DOC experiments.  

Table D.1.2.  Mortality model LC output using Co water model parameters from Norwood et al. (2007) and data 

from soft water modified pH experiments.  

 

Table D.1.3.  Mortality model LC output using Co water model parameters from Norwood et al. (2007) and data 

from soft water modified alkalinity experiments.  

Table D.1.4.  Mortality model LC output using Co water model parameters from Norwood et al. (2007) and data 

from modified hardness experiments.  

 

Treatment m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

DOC 10 0.010 201 (95.9 - 307) 74.5 (36.7 - 112) 24.5 (12.2 - 36.7) 0.417

DOC 5 0.010 134 (60.8 - 207) 50.1 (23.3 - 76.9) 16.5 (7.76 - 25.3) 0.483

DOC 2 0.019 79.4 (54.1 - 105) 29.9 (20.5 - 39.4) 9.92 (6.81 - 13.0) 0.684

DOC 0.5 0.033 39.3 (22.7 - 56.0) 14.9 (8.34 - 21.2) 4.95 (2.87 - 7.04) 0.468

nmol L-1 nmol L-1 nmol L-1

Treatment m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

pH 6.7
a

0.059 22.2 (13.8 - 30.7) 8.45 (5.24 - 11.7) 2.81 (1.74 - 3.87) 0.479

pH 7.7 0.033 39.3 (22.7 - 56.0) 14.9 (8.34 - 21.2) 4.95 (2.87 - 7.04) 0.468

pH 8.3 0.042 40.0 (21.5 - 58.6) 15.2 (8.20 - 22.2) 5.04 (2.73 - 7.36) 0.550

a 
higher than acceptable control mortality for 28-d assay

nmol L
-1

nmol L
-1

nmol L
-1

Treatment m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

Alk 100 0.029 31.3 (18.6 - 44.1) 11.9 (7.08 - 16.7) 3.95 (2.36 - 5.55) 0.826

Alk 50 0.027 57.4 (38.3 - 76.4) 21.7 (14.6 - 28.8) 7.19 (4.83 - 9.55) 0.693

Alk 16 0.033 39.3 (22.7 - 56.0) 14.9 (8.34 - 21.2) 4.95 (2.87 - 7.04) 0.468

nmol L
-1

nmol L
-1

nmol L
-1

Treatment m′ LC50 CL LC25 CL LC10 CL r2

weeks-1

Hardness 37.5 0.029 31.3 (18.6 - 44.1) 11.9 (7.08 - 16.7) 3.95 (2.36 - 5.55) 0.826

Hardness 122b 0.05 183 (120 - 279) 68.0 (33 - 140) 22.3 (4.76 - 39.9) 0.860

b From Norwood et al. (2007)

nmol L-1 nmol L-1 nmol L-1
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2. CO BODY CONCENTRATION-BASED LETHAL CONCENTRATIONS PREDICTED USING A 

“HARD WATER MODEL” 

Table D.2.1.  Mortality model LBC output using Co body model parameters from Norwood et al. (2007) and 

data from soft water modified DOC experiments. 

 

Table D.2.2.  Mortality model LBC output using model Co body parameters from Norwood et al. (2007) and 

data from soft water modified pH experiments. 

 

Table D.2.3.  Mortality model LBC output using model Co body parameters from Norwood et al. (2007) and 

data from soft water modified alkalinity experiments. 

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks-1       

DOC 10 0.019 318 (192 - 444) 165 (76.2 - 253) 64.3 (23.8 - 105) 0.429

DOC 5 0.020 233 (125 - 342) 110 (46.6 - 174) 40.7 (14.6 - 66.8) 0.496

DOC 2 0.019 273 (219 - 327) 135 (100 - 169) 51.0 (36.1 - 65.8) 0.684

DOC 0.5 0.026 159 (110 - 209) 70 (45.0 - 95.0) 24.9 (15.4 - 34.3) 0.475

nmol g
-1

nmol g
-1

nmol g
-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1       

pH 6.7a 0.059 105 (70.9 - 139) 43.9 (28.3 - 59.6) 15.2 (9.57 - 20.9) 0.479

pH 7.7 0.026 159 (110 - 209) 70 (45.0 - 95.0) 24.9 (15.4 - 34.3) 0.475

pH 8.3 0.042 170 (109 - 230) 75.3 (44.2 - 106) 26.9 (15.0 - 38.7) 0.550

a
 higher control mortality than acceptable for a 28-d exposure

nmol g
-1

nmol g
-1

nmol g
-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1       

Alk 100 0.042 149 (93.5 - 205) 65.1 (37.2 - 92.9) 23.0 (12.6 - 33.4) 0.822

Alk 50 0.027 220 (170 - 271) 103 (73.9 - 132) 37.7 (26.0 - 49.5) 0.693

Alk 16 0.026 159 (110 - 209) 70 (45.0 - 95.0) 24.9 (15.4 - 34.3) 0.475

nmol g
-1

nmol g
-1

nmol g
-1
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Table D.2.4.  Mortality model LBC output using model Co body parameters from Norwood et al. (2007) and 

data from modified hardness experiments. 

 

3. SE EXPOSURE CONCENTRATION-BASED LETHAL CONCENTRATIONS PREDICTED USING A 

“HARD WATER MODEL” 

Table D.3.1.  Mortality model LC output using Se water model parameters from Norwood et al. (unpublished) 

and data from soft water modified DOC experiments. 

 

Table D.3.2.  Mortality model LC output using Se water model parameters from Norwood et al. (unpublished) 

and data from soft water modified pH/alkalinity experiments. 

 

Table D.3.3.  Mortality model LC output using Se water model parameters from Norwood et al. (unpublished) 

and data from modified hardness experiments. 

 

 

 

 

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1       

Hardness 37.5 0.042 149 (93.5 - 205) 65.1 (37.2 - 92.9) 23.0 (12.6 - 33.4) 0.822

Hardness 122b 0.050 192 (138 – 264) 90.0 (42 – 177) n/a 0.858

b
 From Norwood et al., 2007

nmol g-1 nmol g-1 nmol g-1

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

DOC 10 0.022 430 (340 - 519) 305 (253 - 367) 207 (166 - 249) 0.659

DOC 2 0.020 361 (279 - 444) 257 (199 - 315) 175 (167 - 214) 0.589

DOC 0.5 0.011 544 (435 - 654) 384 (309 - 460) 260 (210 - 310) 0.693

nmol L
-1

nmol L
-1

nmol L
-1

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

pH 8.3/Alk 100 0.016 486 (407 - 564) 343 (289 - 398) 233 (197 - 270) 0.801

pH 7.7/Alk 15 0.011 544 (435 - 654) 384 (309 - 460) 260 (210 - 310) 0.693

pH 6.8/Alk 5 0.033 361 (305 - 418) 257 (217 - 297) 175 (149 - 202) 0.727

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks-1

Hardness 37.5 0.016 486 (407 - 564) 343 (289 - 398) 233 (197 - 270) 0.801

Hardness 130
a 0.046 957 (710 – 1210) 665 (375 - 954) 445 (100 - 788) 0.788

a
 Norwood et al. (unpublished)

nmol L-1 nmol L-1 nmol L-1
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4. SE BODY CONCENTRATION-BASED LETHAL CONCENTRATIONS PREDICTED USING A “HARD 

WATER MODEL”  

Table D.4.1.  Mortality model LBC output using Se body model parameters from Norwood et al. (unpublished) 

and data from soft water modified DOC experiments. 

 

Table D.4.2.  Mortality model LBC output using Se body model parameters from Norwood et al. (unpublished) 

and data from soft water modified pH/alkalinity experiments. 

 

Table D.4.3.  Mortality model LBC output using Se body model parameters from Norwood et al. (unpublished) 

and data from modified hardness experiments. 

 

 

5.  ZN EXPOSURE CONCENTRATION-BASED LETHAL CONCENTRATIONS PREDICTED USING A 

“HARD WATER MODEL”  

Table D.5.1.  Mortality model LC output using Zn water model parameters from Borgmann et al. (2004) and 

data from soft water modified DOC experiments. 

 

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1

DOC 10 0.023 75.3 (57.7 - 92.9) 43.8 (33.6 - 54.0) 23.7 (18.2 - 29.2) 0.760

DOC 2 0.022 162 (97.6 - 227) 94 (56.9 - 131) 50.6 (30.8 - 70.5) 0.498

DOC 0.5 0.007 107 (75.5 - 139) 62.4 (44.0 - 80.8) 33.7 (23.8 - 43.5) 0.684

nmol g
-1

nmol g
-1

nmol g
-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1

pH 8.3/Alk 100 0.014 99.3 (65.4 - 133) 57.7 (38.1 - 77.3) 31.1 (20.6 - 41.7) 0.737

pH 7.7/Alk 15 0.007 107 (75.5 - 139) 62.4 (44.0 - 80.8) 33.7 (23.8 - 43.5) 0.684

pH 6.8/Alk 5 0.036 183 (117 - 248) 106 (68.3 - 143) 56.9 (36.9 - 76.8) 0.584

nmol g
-1

nmol g
-1

nmol g
-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1

Hardness 37.5 0.014 99.3 (65.4 - 133) 57.7 (38.1 - 77.3) 31.1 (20.6 - 41.7) 0.737

Hardness 130
a 0.046  107 (74.0 - 141) 62.3 (41.0 - 83.7) 33.7 (5.07 - 62.3) 0.555

a
 Norwood et al. (unpublished)

nmol g
-1

nmol g
-1

nmol g
-1

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

DOC5 0.019 2730 (2220 - 3240) 2250 (1870 - 2630) 1850 (1570 - 2130) 0.277

DOC2 0.020 2680 (1910 - 3460) 2220 (1640 - 2800) 1820 (1390 - 2250) 0.161

DOC0.5 0.035 1420 (1320 - 1520) 1230 (1150 - 1310) 1060 (989 - 1120) 0.872

a 
Greater than Zn exposure range. 

nmol L
-1

nmol L
-1

nmol L
-1
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Table D.5.2.  Mortality model LC output using Zn water model parameters from Borgmann et al. (2004) and 

data from soft water modified pH experiments. 

 

Table D.5.3.  Mortality model LC output using Zn water model parameters from Borgmann et al. (2004) and 

data from soft water modified alkalinity experiments. 

 

Table D.5.4.  Mortality model LC output using Zn water model parameters from Borgmann et al. (2004) and 

data from modified hardness experiments. 

 

6. ZN BODY CONCENTRATION-BASED LETHAL CONCENTRATIONS PREDICTED USING A 

“HARD WATER MODEL” 

Table D.6.1.  Mortality model LBC output using Zn body model parameters from Borgmann et al. (2004) and 

data from soft water modified DOC experiments. 

 

 

 

 

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

pH-8.3 0.036 1570 (1260 - 1870) 1350 (1110 - 1600) 1150 (960 - 1350) 0.649

pH-7.7 0.035 1420 (1320 - 1520) 1230 (1150 - 1310) 1060 (989 - 1120) 0.872

pH-6.8 0.020 1460 (1290 - 1640) 1270 (1120 - 1410) 1090 (968 - 1200) 0.590

nmol L
-1

nmol L
-1

nmol L
-1

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

Alk-100 0.015 1590 (1330 - 1860) 1370 (1160 - 1590) 1170 (1000 - 1340) 0.386

Alk-16 0.035 1420 (1320 - 1520) 1230 (1150 - 1310) 1060 (989 - 1120) 0.872

Alk-5 0.033 1260 (1060 - 1470) 1100 (935 - 1270) 952 (814 - 1090) 0.393

nmol L
-1

nmol L
-1

nmol L
-1

Modifier m′ LC50 CL LC25 CL LC10 CL r
2

weeks
-1

Hardness 37.5 0.015 1590 (1330 - 1860) 1370 (1160 - 1590) 1170 (1000 - 1340) 0.386

Hardness 130
b nd 3100 (2600 – 3690) 2520 (2050 – 3100) nd nd

b
 Borgmann et al. (2004)

nmol L
-1

nmol L
-1

nmol L
-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1

DOC5 0.023 3430 (3090 - 3780) 3070 (2770 - 3370) 2710 (2450 - 2960) 0.305

DOC2 0.032 3140 (2770 - 3510) 2810 (2490 - 3130) 2480 (2210 - 2760) 0.268

DOC0.5 0.035 2510 (2430 - 2590) 2260 (2190 - 2330) 2010 (1950 - 2070) 0.960

nmol g
-1

nmol g
-1

nmol g
-1
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Table D.6.2.  Mortality model LBC output using Zn body model parameters from Borgmann et al. (2004) and 

data from soft water modified pH experiments. 

 

Table D.6.3.  Mortality model LBC output using Zn body model parameters from Borgmann et al. (2004) and 

data from soft water modified alkalinity experiments. 

 

Table D.6.4.  Mortality model LBC output using Zn body model parameters from Borgmann et al. (2004) and 

data from modified hardness experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1

pH 8.3 0.035 2330 (2100 - 2550) 2100 (1900 - 2300) 1870 (1690 - 2040) 0.777

pH 7.7 0.035 2510 (2430 - 2590) 2260 (2190 - 2330) 2010 (1950 - 2070) 0.960

pH 6.8 0.015 2390 (2220 - 2570) 2160 (2000 - 2310) 1920 (1790 - 2050) 0.681

nmol g
-1

nmol g
-1

nmol g
-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks-1

Alk100 0.025 2510 (2300 - 2710) 2250 (2070 - 2440) 2000 (1840 - 2160) 0.496

Alk 16 0.035 2510 (2430 - 2590) 2260 (2190 - 2330) 2010 (1950 - 2070) 0.960

Alk5 0.032 2140 (1960 - 2320) 1930 (1770 - 2090) 1720 (1580 - 1860) 0.574

nmol g-1 nmol g-1 nmol g-1

Modifier m′ LBC50 CL LBC25 CL LBC10 CL r
2

weeks
-1

Hardness 37.5 0.025 2510 (2300 - 2710) 2250 (2070 - 2440) 2000 (1840 - 2160) 0.496

Hardness 130
a nd 2020 (1880 - 2180) 1840 (1660 - 2030) nd nd

a
 Borgmann et al. (2004)

nmol g
-1

nmol g
-1

nmol g
-1
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1. RAW MORTALITY DATA FOR COBALT EXPERIMENTS. 

Table E.1.1. DOC-10 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-10 0 0.000 0.143 0.143 0.223 0.059

DOC-10 0 0.000 0.000 0.223 0.223 0.067

DOC-10 0 0.069 0.069 0.069 0.223 0.045

DOC-10 0 0.000 0.000 0.069 0.069 0.021

DOC-10 0 0.000 0.000 0.000 0.034 0.007

DOC-10 0 0.000 0.069 0.069 0.069 0.021

DOC-10 10 0.000 0.000 0.069 0.069 0.021

DOC-10 10 0.000 0.000 0.000 0.034 0.007

DOC-10 10 0.069 0.069 0.069 0.069 0.014

DOC-10 10 0.000 0.000 0.000 0.034 0.007

DOC-10 18 0.000 0.069 0.069 0.069 0.021

DOC-10 18 0.143 0.143 0.143 0.143 0.029

DOC-10 18 0.000 0.000 0.000 0.034 0.007

DOC-10 18 0.000 0.000 0.000 0.034 0.007

DOC-10 32 0.143 0.223 0.223 0.310 0.070

DOC-10 32 0.143 0.143 0.143 0.143 0.029

DOC-10 32 0.069 0.143 0.143 0.143 0.036

DOC-10 32 0.069 0.069 0.069 0.069 0.014

DOC-10 56 0.143 0.143 0.310 0.310 0.079

DOC-10 56 0.511 0.629 0.762 0.762 0.178

DOC-10 56 0.000 0.000 0.000 0.069 0.014

DOC-10 56 0.000 0.000 0.069 0.143 0.036

DOC-10 100 0.310 0.405 0.511 0.511 0.122

DOC-10 100 0.310 0.405 0.511 0.511 0.122

DOC-10 100 0.069 0.223 0.223 0.310 0.077

DOC-10 100 0.511 0.762 0.916 0.916 0.224
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Table E.1.2. DOC-5 treatment data by week and with slope of four weeks (mortality rate). 

 

Table E.1.3. DOC-2 treatment data by week and with slope of four weeks (mortality rate).  

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-5 0 0.069 0.143 0.223 0.223 0.060

DOC-5 0 0.000 0.069 0.069 0.143 0.036

DOC-5 0 0.000 0.000 0.069 0.069 0.021

DOC-5 0 0.000 0.000 0.223 0.223 0.067

DOC-5 0 0.000 0.000 0.000 0.069 0.014

DOC-5 0 0.143 0.223 0.223 0.223 0.053

DOC-5 10 0.000 0.000 0.000 0.034 0.007

DOC-5 10 0.000 0.069 0.143 0.143 0.043

DOC-5 10 0.000 0.000 0.000 0.034 0.007

DOC-5 10 0.000 0.000 0.000 0.034 0.007

DOC-5 18 0.000 0.000 0.000 0.069 0.014

DOC-5 18 0.000 0.000 0.000 0.000 0.000

DOC-5 18 0.000 0.000 0.000 0.143 0.029

DOC-5 18 0.000 0.000 0.000 0.034 0.007

DOC-5 32 0.000 0.000 0.000 0.000 0.000

DOC-5 32 0.000 0.000 0.000 0.143 0.029

DOC-5 32 0.069 0.069 0.143 0.143 0.036

DOC-5 32 0.405 0.511 0.511 0.511 0.113

DOC-5 56 0.069 0.143 0.762 0.762 0.222

DOC-5 56 0.069 0.069 0.405 0.762 0.186

DOC-5 56 0.000 0.143 0.223 0.310 0.084

DOC-5 56 0.000 0.000 0.069 0.069 0.021

DOC-5 100 0.000 0.405 0.629 0.629 0.189

DOC-5 100 0.000 0.511 1.099 1.609 0.432

DOC-5 100 0.000 0.069 0.223 1.099 0.242

DOC-5 100 0.223 0.223 0.511 0.511 0.131

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-2 0 0.000 0.000 0.000 0.034 0.007

DOC-2 0 0.143 0.143 0.143 0.143 0.029

DOC-2 0 0.000 0.069 0.143 0.143 0.043

DOC-2 0 0.000 0.069 0.069 0.223 0.052

DOC-2 0 0.223 0.223 0.223 0.223 0.045

DOC-2 0 0.143 0.143 0.143 0.310 0.062

DOC-2 10 0.000 0.000 0.000 0.034 0.007

DOC-2 10 0.069 0.069 0.143 0.143 0.036

DOC-2 10 0.223 0.223 0.223 0.223 0.045

DOC-2 10 0.310 0.310 0.310 0.310 0.062

DOC-2 18 0.069 0.069 0.143 0.223 0.052

DOC-2 18 0.000 0.069 0.223 0.223 0.067

DOC-2 18 0.000 0.000 0.069 0.069 0.021

DOC-2 18 0.143 0.143 0.223 0.405 0.089

DOC-2 32 0.069 0.143 0.511 0.762 0.197

DOC-2 32 0.223 0.310 0.511 0.629 0.154

DOC-2 32 0.143 0.143 0.405 0.405 0.107

DOC-2 32 0.069 0.143 0.143 0.223 0.052

DOC-2 56 0.000 0.310 0.310 0.310 0.093

DOC-2 56 0.223 0.069 0.310 0.511 0.111

DOC-2 56 0.143 0.223 0.511 1.099 0.256

DOC-2 56 0.000 0.000 0.000 0.511 0.102

DOC-2 100 0.069 0.310 0.629 0.629 0.182

DOC-2 100 0.000 0.405 1.099 1.099 0.330

DOC-2 100 0.143 0.511 0.629 0.762 0.201

DOC-2 100 0.143 0.916 1.322 1.099 0.338
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Table E.1.4. pH 6.7 treatment data by week and with slope of four weeks (mortality rate). 

 

Table E.1.5. pH 7.7/Alk-16/DOC-0.5 treatment data by week and with slope of four weeks (mortality rate). 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-6.7 0 0.069 0.069 0.143 0.310 0.069

pH-6.7 0 0.000 0.000 0.000 0.069 0.014

pH-6.7 0 0.000 0.069 0.069 0.310 0.069

pH-6.7 0 0.000 0.143 0.223 0.223 0.067

pH-6.7 0 0.069 0.223 0.405 0.405 0.115

pH-6.7 10 0.223 0.310 0.916 0.916 0.253

pH-6.7 10 0.223 0.310 0.629 0.916 0.224

pH-6.7 10 0.069 0.223 0.223 0.223 0.060

pH-6.7 10 0.069 0.310 1.099 1.099 0.323

pH-6.7 18 0.000 0.000 0.000 0.629 0.126

pH-6.7 18 0.069 0.310 0.762 1.322 0.334

pH-6.7 18 0.069 0.405 1.099 1.099 0.323

pH-6.7 18 0.000 1.322 1.099 1.099 0.330

pH-6.7 32 0.000 0.511 0.762 0.762 0.229

pH-6.7 32 0.310 1.099 2.015 2.708 0.712

pH-6.7 32 0.310 1.099 1.322 1.322 0.366

pH-6.7 32 0.069 1.099 1.099 2.708 0.645

pH-6.7 56 0.223 1.099 2.708 2.708 0.790

pH-6.7 56 0.629 2.015 2.708 2.708 0.750

pH-6.7 56 0.511 0.762 0.916 1.609 0.362

pH-6.7 56 0.143 0.511 0.762 0.916 0.245

pH-6.7 100 0.405 0.916 2.708 3.401 0.910

pH-6.7 100 0.310 0.762 1.609 3.401 0.810

pH-6.7 100 0.310 0.629 0.629 0.762 0.184

pH-6.7 100 0.069 0.310 0.762 1.322 0.334

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-7.7/Alk-16/DOC-0.5 0 0.069 0.069 0.069 0.069 0.014

pH-7.7/Alk-16/DOC-0.5 0 0.069 0.069 0.143 0.143 0.036

pH-7.7/Alk-16/DOC-0.5 0 0.069 0.223 0.310 0.310 0.086

pH-7.7/Alk-16/DOC-0.5 0 0.069 0.069 0.069 0.069 0.014

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.223 0.223 0.223 0.067

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.000 0.000 0.143 0.029

pH-7.7/Alk-16/DOC-0.5 10 0.143 0.310 0.310 0.310 0.079

pH-7.7/Alk-16/DOC-0.5 10 0.143 0.223 0.762 0.762 0.214

pH-7.7/Alk-16/DOC-0.5 10 0.000 0.000 0.000 0.034 0.007

pH-7.7/Alk-16/DOC-0.5 10 0.223 0.310 0.310 0.405 0.090

pH-7.7/Alk-16/DOC-0.5 18 0.000 0.223 0.223 0.405 0.103

pH-7.7/Alk-16/DOC-0.5 18 0.000 0.405 0.405 0.310 0.103

pH-7.7/Alk-16/DOC-0.5 18 0.069 0.310 0.405 0.511 0.136

pH-7.7/Alk-16/DOC-0.5 18 0.223 0.916 0.916 0.916 0.253

pH-7.7/Alk-16/DOC-0.5 32 0.000 0.405 0.511 0.511 0.153

pH-7.7/Alk-16/DOC-0.5 32 0.069 0.511 0.629 0.629 0.182

pH-7.7/Alk-16/DOC-0.5 32 0.069 0.916 1.099 1.099 0.323

pH-7.7/Alk-16/DOC-0.5 32 0.223 1.322 1.609 1.609 0.461

pH-7.7/Alk-16/DOC-0.5 56 0.223 0.916 1.322 1.099 0.330

pH-7.7/Alk-16/DOC-0.5 56 0.223 0.511 0.629 0.762 0.193

pH-7.7/Alk-16/DOC-0.5 56 0.405 1.609 1.609 2.015 0.523

pH-7.7/Alk-16/DOC-0.5 56 0.143 1.099 1.322 1.322 0.382

pH-7.7/Alk-16/DOC-0.5 100 0.223 0.310 0.405 0.511 0.120

pH-7.7/Alk-16/DOC-0.5 100 0.223 0.762 0.762 1.099 0.274

pH-7.7/Alk-16/DOC-0.5 100 0.223 1.099 1.322 1.322 0.374

pH-7.7/Alk-16/DOC-0.5 100 0.310 0.916 0.916 0.916 0.244
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Table E.1.6. pH 8.3 treatment data by week and with slope of four weeks (mortality rate). 

 

 

Table E.1.7. Alk-100 treatment data by week and with slope of four weeks (mortality rate). 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-8.3 0 0.069 0.223 0.223 0.223 0.060

pH-8.3 0 0.069 0.069 0.143 0.223 0.052

pH-8.3 0 0.223 0.223 0.223 0.223 0.045

pH-8.3 0 0.000 0.000 nd 0.069 0.018

pH-8.3 0 0.000 0.069 nd 0.143 0.039

pH-8.3 0 0.000 0.143 nd 0.223 0.061

pH-8.3 10 0.143 0.223 0.223 0.310 0.070

pH-8.3 10 0.143 0.223 0.223 0.223 0.053

pH-8.3 10 0.000 0.000 nd 0.034 0.009

pH-8.3 10 0.000 0.405 nd 0.511 0.143

pH-8.3 18 0.310 0.310 0.511 0.629 0.146

pH-8.3 18 0.143 0.310 0.310 0.310 0.079

pH-8.3 18 0.223 0.405 nd 0.762 0.188

pH-8.3 18 0.000 0.762 nd 1.322 0.362

pH-8.3 32 0.143 0.223 0.223 0.223 0.053

pH-8.3 32 0.105 0.143 0.143 0.143 0.032

pH-8.3 32 0.223 1.609 nd 2.015 0.545

pH-8.3 32 1.003 0.762 nd 1.609 0.350

pH-8.3 56 0.405 1.609 1.609 2.015 0.523

pH-8.3 56 0.629 0.629 0.629 0.629 0.126

pH-8.3 56 0.223 0.629 nd 1.609 0.413

pH-8.3 56 0.310 0.629 nd 1.322 0.331

pH-8.3 100 1.322 2.015 2.015 2.708 0.611

pH-8.3 100 0.629 2.015 2.015 2.015 0.542

pH-8.3 100 0.405 1.099 nd 1.609 0.410

pH-8.3 100 0.405 0.762 nd 1.322 0.327

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

Alk-100 0 0.000 0.069 0.069 0.069 0.021

Alk-100 0 0.069 0.143 0.143 0.143 0.036

Alk-100 0 0.000 0.069 0.069 0.069 0.021

Alk-100 0 0.069 0.069 0.069 0.069 0.014

Alk-100 0 0.143 0.143 0.223 0.223 0.053

Alk-100 0 0.069 0.143 0.143 0.223 0.052

Alk-100 10 0.000 0.000 0.000 0.034 0.007

Alk-100 10 0.069 0.143 0.143 0.223 0.052

Alk-100 10 0.223 0.310 0.310 0.310 0.071

Alk-100 10 0.069 0.223 0.223 0.223 0.060

Alk-100 18 0.143 0.310 0.310 0.310 0.079

Alk-100 18 0.069 0.223 0.143 0.223 0.052

Alk-100 18 0.143 0.143 0.223 0.223 0.053

Alk-100 18 0.000 0.143 0.143 0.143 0.043

Alk-100 32 0.069 0.511 0.511 0.629 0.170

Alk-100 32 0.069 0.629 0.762 0.762 0.222

Alk-100 32 0.143 0.405 0.511 0.511 0.139

Alk-100 32 0.405 0.916 0.916 1.099 0.271

Alk-100 56 0.405 0.762 0.762 0.916 0.219

Alk-100 56 0.629 2.708 2.708 2.708 0.750

Alk-100 56 1.099 2.015 2.015 2.015 0.495

Alk-100 56 0.223 0.310 0.762 1.322 0.318

Alk-100 100 0.916 2.708 2.708 2.708 0.721

Alk-100 100 1.099 2.708 2.708 2.708 0.703

Alk-100 100 0.629 1.099 2.015 2.708 0.680

Alk-100 100 0.629 0.762 0.916 1.099 0.248
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Table E.1.8. Alk-50 treatment data by week and with slope of four weeks (mortality rate). 

 

 

  

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

Alk-50 0 0.000 0.223 0.143 0.143 0.043

Alk-50 0 0.000 0.000 0.069 0.069 0.021

Alk-50 0 0.143 0.143 0.223 0.223 0.053

Alk-50 0 0.143 0.143 0.143 0.143 0.029

Alk-50 0 0.000 0.000 0.000 0.034 0.007

Alk-50 0 0.143 0.143 0.143 0.143 0.029

Alk-50 10 0.223 0.143 0.310 0.310 0.071

Alk-50 10 0.223 0.310 0.223 0.223 0.045

Alk-50 10 0.223 0.223 0.310 0.310 0.071

Alk-50 10 0.223 0.223 0.405 0.405 0.099

Alk-50 18 0.143 0.143 0.143 0.143 0.029

Alk-50 18 0.000 0.143 0.143 0.143 0.043

Alk-50 18 0.069 0.069 0.069 0.223 0.045

Alk-50 18 0.143 0.310 0.310 0.310 0.079

Alk-50 32 0.143 0.405 0.762 0.762 0.214

Alk-50 32 0.223 0.310 0.629 0.511 0.143

Alk-50 32 0.143 0.310 0.405 0.405 0.107

Alk-50 32 0.511 0.511 0.511 0.629 0.126

Alk-50 56 0.143 0.629 0.762 0.762 0.214

Alk-50 56 0.069 0.511 0.629 0.629 0.182

Alk-50 56 0.000 0.069 0.143 0.511 0.116

Alk-50 56 0.223 0.762 0.916 1.609 0.391

Alk-50 100 0.069 0.916 0.916 0.916 0.268

Alk-50 100 0.223 1.322 1.322 1.322 0.374

Alk-50 100 0.223 0.629 0.629 0.762 0.193

Alk-50 100 0.143 0.223 0.629 0.916 0.232
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2. RAW MORTALITY DATA FOR SELENIUM EXPERIMENTS. 

Table E.2.1. DOC-5 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-5 0 0.000 0.000 0.000 0.034 0.007

DOC-5 0 0.000 0.069 0.069 0.069 0.021

DOC-5 0 0.069 0.000 0.069 0.069 0.014

DOC-5 5.6 0.000 0.000 0.069 0.069 0.021

DOC-5 5.6 0.000 0.000 0.143 0.037

DOC-5 10 0.000 0.000 0.069 0.069 0.021

DOC-5 10 0.000 0.000 0.069 0.143 0.036

DOC-5 18 0.223 0.223 0.310 0.405 0.090

DOC-5 18 0.069 0.069 0.310 0.405 0.105

DOC-5 32 0.000 0.000 0.762 0.762 0.229

DOC-5 32 0.000 0.000 2.708 3.401 0.951

DOC-5 56 0.069 0.916 3.401 1.105

DOC-5 56 0.143 0.629 3.401 1.069

DOC-5 100 0.511 1.609 3.401 1.445

DOC-5 100 1.322 3.401 2.079

DOC-5 0 0.000 0.000 0.069 0.069 0.021

DOC-5 0 0.143 0.143 0.223 0.223 0.053

DOC-5 0 0.069 0.143 0.223 0.223 0.060

DOC-5 5.6 0.143 2.708 2.708 2.708 0.798

DOC-5 5.6 0.310 3.401 1.701

DOC-5 10 0.223 1.322 3.401 1.130

DOC-5 10 0.069 0.405 2.015 0.638

DOC-5 18 0.629 2.015 1.007

DOC-5 18 1.099 3.401 1.701

DOC-5 32 3.401 3.401

DOC-5 32 3.401 3.401

DOC-5 56 3.401 3.401

DOC-5 56 3.401 3.401



171 

 

Table E.2.2 DOC-2 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-2 0 0.051 0.051 0.163 0.163 0.044

DOC-2 0 0.000 0.000 0.000 0.034 0.007

DOC-2 0 0.069 0.143 0.223 0.223 0.060

DOC-2 5.6 0.069 0.069 0.069 0.223 0.045

DOC-2 5.6 0.000 0.069 0.223 0.405 0.103

DOC-2 10 0.143 0.223 0.511 0.511 0.139

DOC-2 10 0.069 2.015 2.015 2.708 0.736

DOC-2 18 0.000 0.000 0.310 0.405 0.112

DOC-2 18 0.143 0.223 1.609 3.401 0.827

DOC-2 32 0.069 2.015 2.708 2.708 0.806

DOC-2 32 0.069 1.099 2.708 0.915

DOC-2 56 0.143 3.401 1.701

DOC-2 56 0.069 3.401 1.701

DOC-2 0 0.000 0.069 0.069 0.069 0.021

DOC-2 0 0.069 0.069 0.143 0.069 0.021

DOC-2 0 0.000 0.000 0.000 0.034 0.007

DOC-2 5.6 0.000 0.000 0.000 0.034 0.007

DOC-2 5.6 0.000 0.000 0.000 0.034 0.007

DOC-2 10 0.000 0.000 0.000 0.069 0.014

DOC-2 10 0.000 0.069 0.143 0.143 0.043

DOC-2 18 0.000 0.069 0.000 0.034 0.007

DOC-2 18 0.310 0.310 0.310 0.310 0.062

DOC-2 32 0.000 0.223 0.310 0.916 0.214

DOC-2 32 0.069 0.143 0.310 0.310 0.086

DOC-2 56 -0.065 0.223 1.609 1.609 0.489

DOC-2 56 0.069 0.223 0.762 1.322 0.334
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Table E.2.3. pH 6.8/Alk-5 treatment data by week and with slope of four weeks (mortality rate).  

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-6.8/Alk-5 0 0.000 0.143 0.143 0.223 0.059

pH-6.8/Alk-5 0 0.000 0.000 0.069 0.143 0.036

pH-6.8/Alk-5 0 0.069 0.069 0.069 0.143 0.029

pH-6.8/Alk-5 5.6 0.000 0.000 0.000 0.034 0.007

pH-6.8/Alk-5 5.6 0.000 0.000 0.069 0.069 0.021

pH-6.8/Alk-5 10 0.143 0.143 0.143 0.223 0.045

pH-6.8/Alk-5 10 0.000 0.143 0.310 0.629 0.157

pH-6.8/Alk-5 18 0.069 0.069 0.143 1.322 0.272

pH-6.8/Alk-5 18 0.143 0.143 0.223 0.310 0.070

pH-6.8/Alk-5 32 0.000 0.223 1.099 3.401 0.790

pH-6.8/Alk-5 32 0.000 0.762 2.708 3.401 0.951

pH-6.8/Alk-5 56 0.000 1.609 3.401 1.181

pH-6.8/Alk-5 56 0.000 2.015 3.401 1.222

pH-6.8/Alk-5 0 0.223 0.310 0.310 0.310 0.071

pH-6.8/Alk-5 0 0.069 0.069 0.069 0.143 0.029

pH-6.8/Alk-5 0 0.143 0.143 0.223 0.310 0.070

pH-6.8/Alk-5 5.6 0.069 0.143 0.143 0.223 0.052

pH-6.8/Alk-5 5.6 0.000 0.069 0.069 0.069 0.021

pH-6.8/Alk-5 10 0.223 0.405 0.405 0.916 0.201

pH-6.8/Alk-5 10 0.069 0.223 0.223 0.511 0.118

pH-6.8/Alk-5 18 0.069 0.143 0.143 0.405 0.089

pH-6.8/Alk-5 18 0.000 0.143 0.069 0.629 0.133

pH-6.8/Alk-5 32 0.000 0.629 1.322 0.916 0.315

pH-6.8/Alk-5 32 0.000 0.069 0.629 2.015 0.466

pH-6.8/Alk-5 56 0.000 0.310 2.015 2.708 0.743

pH-6.8/Alk-5 56 0.000 0.069 1.322 3.401 0.812
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Table E.2.4. pH 7.7/Alk-16/DOC-0.5 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.051 0.051 0.163 0.038

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.000 0.000 0.051 0.010

pH-7.7/Alk-16/DOC-0.5 0 0.051 0.051 0.051 0.051 0.010

pH-7.7/Alk-16/DOC-0.5 5.6 0.000 0.000 0.000 0.025 0.005

pH-7.7/Alk-16/DOC-0.5 5.6 0.000 0.000 0.000 0.025 0.005

pH-7.7/Alk-16/DOC-0.5 10 0.000 0.000 0.000 0.025 0.005

pH-7.7/Alk-16/DOC-0.5 10 0.051 0.105 0.105 0.105 0.026

pH-7.7/Alk-16/DOC-0.5 18 0.105 0.105 0.105 0.105 0.021

pH-7.7/Alk-16/DOC-0.5 18 0.000 0.000 0.000 0.051 0.010

pH-7.7/Alk-16/DOC-0.5 32 0.000 0.223 0.288 0.431 0.115

pH-7.7/Alk-16/DOC-0.5 32 0.000 0.000 0.051 0.051 0.015

pH-7.7/Alk-16/DOC-0.5 56 0.051 0.916 1.386 1.609 0.455

pH-7.7/Alk-16/DOC-0.5 56 0.000 1.050 1.386 1.609 0.461

pH-7.7/Alk-16/DOC-0.5 100 0.223 1.609 1.897 2.303 0.653

pH-7.7/Alk-16/DOC-0.5 100 0.000 2.303 3.689 1.844

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.000 0.000 0.034 0.007

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.000 0.000 0.034 0.007

pH-7.7/Alk-16/DOC-0.5 0 0.000 0.000 0.000 0.034 0.007

pH-7.7/Alk-16/DOC-0.5 5.6 0.000 0.069 0.143 0.310 0.079

pH-7.7/Alk-16/DOC-0.5 5.6 0.000 0.143 0.143 0.223 0.059

pH-7.7/Alk-16/DOC-0.5 10 0.000 0.143 0.310 0.511 0.136

pH-7.7/Alk-16/DOC-0.5 10 0.000 0.223 0.223 0.223 0.067

pH-7.7/Alk-16/DOC-0.5 18 0.069 0.223 0.223 0.405 0.099

pH-7.7/Alk-16/DOC-0.5 18 0.143 0.143 0.143 0.223 0.045

pH-7.7/Alk-16/DOC-0.5 32 0.000 0.223 0.405 0.511 0.143

pH-7.7/Alk-16/DOC-0.5 32 0.000 0.405 2.015 2.708 0.937

pH-7.7/Alk-16/DOC-0.5 56 0.000 0.069 0.629 0.762 0.215

pH-7.7/Alk-16/DOC-0.5 56 0.000 0.223 0.629 1.099 0.289
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Table E.2.5. pH 8.3/Alk-100 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

  

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-8.3/Alk-100 0 0.000 0.000 0.069 0.069 0.021

pH-8.3/Alk-100 0 0.000 0.000 0.143 0.223 0.059

pH-8.3/Alk-100 0 0.000 0.069 0.000 0.069 0.014

pH-8.3/Alk-100 5.6 0.000 0.069 0.000 0.223 0.045

pH-8.3/Alk-100 5.6 0.000 0.000 0.000 0.069 0.014

pH-8.3/Alk-100 10 0.000 0.000 0.069 0.069 0.021

pH-8.3/Alk-100 10 0.143 0.069 0.069 0.223 0.037

pH-8.3/Alk-100 18 0.069 0.223 0.223 0.223 0.060

pH-8.3/Alk-100 18 0.000 0.000 0.000 0.143 0.029

pH-8.3/Alk-100 32 0.000 0.310 0.310 0.310 0.093

pH-8.3/Alk-100 32 0.143 0.223 0.223 0.511 0.110

pH-8.3/Alk-100 56 0.000 1.609 1.609 3.401 0.841

pH-8.3/Alk-100 56 0.069 2.015 2.015 3.401 0.875

pH-8.3/Alk-100 100 0.405 3.401 2.996

pH-8.3/Alk-100 100 0.916 3.401 2.485

pH-8.3/Alk-100 0 0.000 0.069 0.069 0.069 0.021

pH-8.3/Alk-100 0 0.000 0.000 0.000 0.034 0.007

pH-8.3/Alk-100 0 0.000 0.000 0.000 0.034 0.007

pH-8.3/Alk-100 5.6 0.000 0.000 0.000 0.034 0.007

pH-8.3/Alk-100 5.6 0.069 0.143 0.143 0.143 0.036

pH-8.3/Alk-100 10 0.223 0.143 0.143 0.143 0.021

pH-8.3/Alk-100 10 0.000 0.000 0.000 0.034 0.007

pH-8.3/Alk-100 18 0.000 0.000 0.000 0.034 0.007

pH-8.3/Alk-100 18 0.143 0.143 0.223 0.223 0.053

pH-8.3/Alk-100 32 0.000 0.000 0.069 0.143 0.036

pH-8.3/Alk-100 32 0.223 0.310 0.310 0.310 0.071

pH-8.3/Alk-100 56 0.000 0.223 0.405 0.144

pH-8.3/Alk-100 56 0.000 0.000 0.143 0.043
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3. RAW MORTALITY DATA FOR ZINC EXPERIMENTS. 

Table E.3.1. DOC-5 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-5 0 0.000 0.143 0.143 0.143 0.043

DOC-5 0 0.143 0.000 0.069 0.069 0.006

DOC-5 0 0.000 0.069 0.143 0.223 0.059

DOC-5 0 0.069 0.069 0.069 0.223 0.045

DOC-5 0 0.143 0.223 0.223 0.223 0.053

DOC-5 0 0.000 0.000 0.000 0.034 0.007

DOC-5 5.6 0.069 0.069 0.069 0.069 0.014

DOC-5 5.6 0.069 0.069 0.069 0.069 0.014

DOC-5 5.6 0.000 0.000 0.000 0.143 0.029

DOC-5 5.6 0.143 0.143 0.143 0.143 0.029

DOC-5 10 0.000 0.000 0.000 0.034 0.007

DOC-5 10 0.143 0.143 0.223 0.310 0.070

DOC-5 10 0.069 0.143 0.069 0.069 0.014

DOC-5 10 0.000 0.000 0.000 0.069 0.014

DOC-5 18 0.000 0.143 0.143 0.143 0.043

DOC-5 18 0.069 0.069 0.069 0.069 0.014

DOC-5 18 0.143 0.223 0.223 0.223 0.053

DOC-5 18 0.000 0.069 0.069 0.069 0.021

DOC-5 32 0.069 0.143 0.223 0.223 0.060

DOC-5 32 0.223 0.310 0.310 0.310 0.071

DOC-5 32 0.143 0.143 0.223 0.223 0.053

DOC-5 32 0.000 0.000 0.000 0.034 0.007

DOC-5 56 0.310 0.223 0.310 0.405 0.081

DOC-5 56 0.143 0.310 0.310 0.405 0.098

DOC-5 56 0.223 0.223 0.223 0.310 0.062

DOC-5 56 0.143 0.143 0.223 0.310 0.070
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Table E.3.2 DOC-2 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

DOC-2 0 0.143 0.223 0.223 0.223 0.053

DOC-2 0 0.069 0.143 0.143 0.143 0.036

DOC-2 0 0.069 0.143 0.143 0.143 0.036

DOC-2 0 0.000 0.143 0.223 0.223 0.067

DOC-2 0 0.000 0.223 0.223 0.223 0.067

DOC-2 0 0.069 0.069 0.069 0.069 0.014

DOC-2 5.6 0.143 0.223 0.310 0.405 0.098

DOC-2 5.6 0.143 0.405 0.405 0.511 0.128

DOC-2 5.6 0.223 0.629 0.629 0.629 0.166

DOC-2 5.6 0.000 0.310 0.405 0.511 0.143

DOC-2 10 0.000 0.143 0.223 0.223 0.067

DOC-2 10 0.069 0.069 0.069 0.069 0.014

DOC-2 10 0.069 0.223 0.511 0.629 0.170

DOC-2 10 0.143 0.405 0.405 0.405 0.107

DOC-2 18 0.405 0.629 0.916 1.099 0.271

DOC-2 18 0.143 0.405 0.511 0.629 0.162

DOC-2 18 0.143 0.223 0.223 0.223 0.053

DOC-2 18 0.223 0.405 0.405 0.511 0.120

DOC-2 32 0.223 0.223 0.310 0.405 0.090

DOC-2 32 0.143 0.405 0.511 0.762 0.189

DOC-2 32 0.310 0.405 0.405 0.511 0.112

DOC-2 32 0.511 0.916 1.322 1.322 0.345

DOC-2 56 0.223 0.310 0.629 1.099 0.260

DOC-2 56 0.223 0.629 0.762 0.762 0.206

DOC-2 56 0.511 0.762 0.916 1.099 0.260

DOC-2 56 0.405 0.762 1.322 1.609 0.414
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Table E.3.3. pH 6.8/Alk-5 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

pH-6.8 0 0.000 0.000 0.000 0.069 0.014

pH-6.8 0 0.069 0.069 0.069 0.069 0.014

pH-6.8 0 0.000 0.000 0.000 0.069 0.014

pH-6.8 0 0.000 0.000 0.000 0.069 0.014

pH-6.8 0 0.069 0.143 0.143 0.223 0.052

pH-6.8 0 0.000 0.223 0.310 0.310 0.093

pH-6.8 5.6 0.000 0.069 0.069 0.223 0.052

pH-6.8 5.6 0.000 0.000 0.000 0.034 0.007

pH-6.8 5.6 0.000 0.069 0.310 0.405 0.112

pH-6.8 5.6 0.000 0.069 0.223 0.405 0.103

pH-6.8 10 0.069 0.069 0.143 0.223 0.052

pH-6.8 10 0.069 0.143 0.143 0.310 0.069

pH-6.8 10 0.069 0.069 0.143 0.143 0.036

pH-6.8 10 0.069 0.143 0.405 0.405 0.115

pH-6.8 18 0.223 0.310 0.310 0.405 0.090

pH-6.8 18 0.000 0.223 0.405 0.629 0.166

pH-6.8 18 0.223 0.310 0.310 0.629 0.134

pH-6.8 18 0.000 0.223 0.223 0.223 0.067

pH-6.8 32 0.405 0.405 0.405 0.405 0.081

pH-6.8 32 0.762 0.762 0.916 0.916 0.199

pH-6.8 32 0.405 0.511 0.916 1.609 0.373

pH-6.8 32 0.629 0.762 0.762 1.099 0.233

pH-6.8 56 1.322 1.322 1.322 1.322 0.264

pH-6.8 56 1.099 1.609 2.708 3.401 0.841

pH-6.8 56 0.405 0.916 1.609 1.609 0.442

pH-6.8 56 0.762 0.916 2.015 2.015 0.528
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Table E.3.4. Alk-5 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

Alk-5 0 0.000 0.000 0.000 0.034 0.007

Alk-5 0 0.000 0.143 0.143 0.143 0.043

Alk-5 0 0.143 0.143 0.223 0.223 0.053

Alk-5 0 0.000 0.000 0.069 0.143 0.036

Alk-5 0 0.000 0.000 0.000 0.034 0.007

Alk-5 0 0.143 0.223 0.223 0.223 0.053

Alk-5 5.6 0.143 0.143 0.223 0.223 0.053

Alk-5 5.6 0.069 0.069 0.143 0.143 0.036

Alk-5 5.6 0.000 0.069 0.069 0.069 0.021

Alk-5 5.6 0.000 0.310 0.405 0.405 0.122

Alk-5 10 0.143 0.143 0.143 0.143 0.029

Alk-5 10 0.069 0.069 0.069 0.069 0.014

Alk-5 10 0.069 0.069 0.143 0.143 0.036

Alk-5 10 1.322 1.322 1.322 1.322 0.264

Alk-5 18 0.916 0.916 0.916 0.916 0.183

Alk-5 18 1.322 1.322 1.322 1.322 0.264

Alk-5 18 0.069 0.069 0.069 0.069 0.014

Alk-5 18 0.000 0.223 0.310 0.310 0.093

Alk-5 32 3.401 3.401

Alk-5 32 3.401 3.401

Alk-5 32 0.405 0.223 0.405 0.405 0.081

Alk-5 32 0.762 0.762 0.511 0.511 0.077

Alk-5 56 2.708 2.708 2.708 2.708 0.542

Alk-5 56 3.401 3.401

Alk-5 56 0.916 0.916 1.099 3.401 0.698

Alk-5 56 0.762 0.762 0.762 2.015 0.403
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Table E.3.5. Alk-100 treatment data by week and with slope of four weeks (mortality rate). 

 

 

 

 

 

 

 

 

 

Nominal Concentration Mortality during week

Treatment nmol L
-1

1 2 3 4 m

Alk-100 0 0.000 0.000 0.000 0.034 0.007

Alk-100 0 0.000 0.000 0.000 0.034 0.007

Alk-100 0 0.000 0.069 0.069 0.069 0.021

Alk-100 0 0.069 0.223 0.223 0.223 0.060

Alk-100 0 0.000 0.000 0.000 0.069 0.014

Alk-100 0 0.069 0.069 0.069 0.143 0.029

Alk-100 5.6 0.069 0.069 0.069 0.143 0.029

Alk-100 5.6 0.143 0.143 0.143 0.310 0.062

Alk-100 5.6 0.000 0.069 0.143 0.223 0.059

Alk-100 5.6 0.000 0.069 0.069 0.143 0.036

Alk-100 10 0.223 0.310 0.310 0.310 0.071

Alk-100 10 0.069 0.143 0.143 0.143 0.036

Alk-100 10 0.000 0.000 0.000 0.034 0.007

Alk-100 10 0.069 0.000 0.069 0.069 0.014

Alk-100 18 0.405 0.511 0.511 0.629 0.136

Alk-100 18 0.223 0.223 0.310 0.310 0.071

Alk-100 18 0.000 0.223 0.405 0.405 0.122

Alk-100 18 0.069 0.000 0.000 0.762 0.146

Alk-100 32 0.143 0.223 0.223 0.511 0.110

Alk-100 32 0.629 0.629 0.762 1.099 0.233

Alk-100 32 0.069 0.143 0.143 0.143 0.036

Alk-100 32 0.000 0.511 0.511 0.511 0.153

Alk-100 56 2.708 2.708 1.354

Alk-100 56 1.609 2.015 2.015 2.015 0.444

Alk-100 56 0.916 0.511 0.511 0.629 0.085

Alk-100 56 0.629 2.708 2.708 1.020


