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Abstract 10 

The use of fluorescence data coupled with neural networks for 11 

improved predictability of drinking water disinfection by-products 12 

(DBPs) was investigated.  Novel application of autoencoders to 13 

process high-dimensional fluorescence data was related to 14 

common dimensionality reduction techniques of parallel factors 15 

analysis (PARAFAC) and principal component analysis (PCA).  16 

The proposed method was assessed based on component 17 

interpretability as well as for prediction of organic matter reactivity 18 

to formation of DBPs.    Optimal prediction accuracies on a 19 

validation dataset were observed with an autoencoder-neural 20 

network approach or by utilizing the full spectrum without pre-21 

processing.  Latent representation by an autoencoder appeared to 22 

mitigate overfitting when compared to other methods.  Although 23 
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DBP prediction error was minimized by other pre-processing 24 

techniques, PARAFAC yielded interpretable components which 25 

resemble fluorescence expected from individual organic 26 

fluorophores.  Through analysis of the network weights, 27 

fluorescence regions associated with DBP formation can be 28 

identified, representing a potential method to distinguish reactivity 29 

between fluorophore groupings.  However, distinct results due to 30 

the applied dimensionality reduction approaches were observed, 31 

dictating a need for considering the role of data pre-processing in 32 

the interpretability of the results.  In comparison to common 33 

organic measures currently used for DBP formation prediction, 34 

fluorescence was shown to improve prediction accuracies, with 35 

improvements to DBP prediction best realized when appropriate 36 

pre-processing and regression techniques were applied.  The 37 

results of this study show promise for the potential application of 38 

neural networks to best utilize fluorescence EEM data for 39 

prediction of organic matter reactivity.   40 

Keywords: Fluorescence spectroscopy; disinfection by-products; 41 

neural networks; autoencoder; dimensionality reduction; water 42 

treatment 43 
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1 Introduction 44 

Presence of naturally occurring organic matter is of ubiquitous 45 

concern for drinking water treatment operations.  Organic matter 46 

(OM) is known to adversely impact treatment processes such as 47 

filtration or adsorption processes and is a major source of 48 

disinfectant demand (Fabris et al., 2008).  Reactions between OM 49 

and oxidants used for disinfection, most commonly chlorine, are 50 

known to produce disinfection by-products (DBPs).  Regulation of 51 

DBPs typically focus on two groupings of organic halides, 52 

trihalomethanes (THMs) and haloacetic acids (HAAs) (Hua and 53 

Reckhow, 2007). Control and management of OM prior to 54 

disinfection is therefore directly tied to DBP formation potential 55 

and is essential to protecting treated water quality.   56 

 One of the major challenges with OM is the breadth and 57 

chemical variability of compounds present in source waters, which 58 

is not readily captured by routine organic measures such as 59 

dissolved or total organic carbon (DOC/TOC) and absorbance of 60 

ultraviolet light at 254 nm (UVA) (Matilainen et al., 2011).  These 61 

organic estimators are used in models which predict DBP 62 

formation potential due to their relative simplicity, allowing for 63 

possible continuous or routine monitoring (Chowdhury et al., 64 

2009).  In an effort to improve DBP predictability and modelling, 65 

fluorescence has been investigated as a sensitive measure of OM 66 
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character and reactivity (Hua et al., 2010; Pifer and Fairey, 2012; 67 

Roccaro et al., 2009).  It is hypothesized that predictability of DBP 68 

formation will increase with use of fluorescence data that reflects 69 

the chemical composition of organic matter ultimately dictating the 70 

reactivity of OM. In contrast to other OM characterization 71 

techniques such as liquid chromatography with organic carbon 72 

detection (LC-OCD) or high resolution mass spectrometry, 73 

fluorescence measurements require little sample preparation or 74 

acquisition time, therefore lending to possible online 75 

implementation (Shutova et al., 2014).   76 

Fluorescence data, collected as a high dimensional 77 

excitation-emission matrix (EEM), present an analysis challenge, 78 

making inclusion in traditional modelling approaches difficult, 79 

such as linear regression.  Reduction of EEM dimensionality is 80 

typically practiced, either through manual selection of peaks or 81 

regions or multiway dimensionality reduction techniques such as 82 

parallel factors analysis (PARAFAC) or principle component 83 

analysis (PCA) (Bridgeman et al., 2011).  In particular, PARAFAC 84 

analysis has been proven effective for identifying underlying 85 

components which most resemble the expected excitation/emission 86 

characteristics of organic fluorophores (Kathleen R Murphy et al., 87 

2014).  In comparison to PCA, it can be argued that PARAFAC is 88 

a more appropriate model to account for the three-dimensional 89 
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nature of EEMs (Bridgeman et al., 2011).  PCA is a two-way 90 

method, which requires data to be unfolded prior to analysis 91 

therefore discarding information regarding the three-way structure 92 

of the data (Bro, 1997).  Furthermore, PCA results in components 93 

with rotational freedom that makes direct relations to real 94 

fluorescence profiles difficult (Stedmon et al., 2003).  However, 95 

PARAFAC can be shown to be a constrained PCA model and as 96 

such, PCA will represent a greater degree of variance within the 97 

dataset (Bro, 1997).  The components produced from PCA are 98 

strictly orthogonal and independent under the assumption of 99 

multivariate normality (Murphy, 2012), which may be 100 

advantageous for subsequent statistical modeling using PCA 101 

results. 102 

A neural network (NN) approach may allow for 103 

dimensionality reduction of fluorescence spectra without explicit 104 

constraints (Bieroza et al., 2011).  For example, when compared to 105 

PCA on several test sets, Hinton and Salakhutdinov (Hinton and 106 

Salakhutdinov, 2006) demonstrated improved performance of 107 

autoencoder NNs; a network where the output is a reconstruction 108 

of input after passing through a constrained bottleneck.  Few 109 

applications of NNs for fluorescence spectroscopy have been 110 

reported.  Wolf et al. (Wolf et al., 2007) showed improvement to 111 

utilizing a NN for prediction of membrane bioreactor performance 112 
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by applying PCA prior to training the NN.  Bieroza et al. (Bieroza 113 

et al., 2011) applied a self-organized map (SOM), a type of NN 114 

with a competitive learning approach, and PARAFAC to a set of 115 

fluorescence data for raw and treated drinking water samples from 116 

16 surface water plants in the UK.  These two methods were used 117 

for reducing fluorescence data dimensionality prior to being used 118 

as input to a NN, as well as a multilinear model, that predicted 119 

TOC removal due to treatment.  Rhee et al. (Rhee et al., 2005) 120 

employed SOMs for non-linear dimensionality reduction of 121 

fluorescence EEMs for monitoring fermentation processes.   122 

Previous studies which have investigated fluorescence as a 123 

surrogate for predicting DBP formation employed a range of 124 

dimensionality simplification reduction techniques.  Roccaro et al. 125 

(Roccaro et al., 2009) reported strong correlations between 126 

changes in the ratio of fluorescence intensities (at 500 and 450 nm) 127 

before and after chlorination to THM and HAA formation.  Hua et 128 

al. (Hua et al., 2010) utilized PARAFAC to identify two 129 

components which were likely THM precursors and better 130 

surrogates than SUVA.  Similarly, Pifer and Fairey (Pifer and 131 

Fairey, 2012) reported that one PARAFAC component was highly 132 

correlated with chloroform concentrations and represented a 133 

marked improvement compared to SUVA.  Bergman et al. (2016) 134 

demonstrated success with utilizing fluorescence PARAFAC data 135 
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for DBP prediction through a binary classification tree approach to 136 

determine adherence with regulations and predicting bromide 137 

incorporation factors.  Interpretation of the fluorescence EEMs by 138 

other means have also been investigated for DBP prediction.  139 

Trueman et al. (2016) applied several novel approaches including 140 

lasso regression, boosted regression trees, and supervised principle 141 

component regression.  Through cross-validation the authors 142 

demonstrated improved accuracy of alternative approaches 143 

compared to linear or unsupervised PCA-based models with both 144 

full and bench-scale samples.  To facilitate the on-line application 145 

of fluorescence sensors, Li et al. (2016) developed a novel UV 146 

fluorescence sensor using a single UV LED 280 nm light-emitting 147 

diodes.  These were used to determine protein and humic-like 148 

fluorescence, which improved overall correlations with THM 149 

formation across 16 drinking water sources.                  150 

This work describes novel use of autoencoder neural 151 

networks to interpret high-dimensional fluorescence spectra.  This 152 

proposed dimensionality reduction method is tested on the basis of 153 

predicting disinfection by-product (DBP) formation during 154 

drinking water treatment.  Dimensionality reduction of 155 

fluorescence EEMs is typically practiced for several reasons 156 

including identifying underlying interpretable components which 157 

resemble organic fluorophores, or simplifying the dataset to 158 
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eliminate noise and improve subsequent modelling.  Methods such 159 

as PCA or PARAFAC achieve these goals to differing degrees and 160 

selection of dimensionality reduction techniques should depend on 161 

the study objectives.  To utilize pre-processed fluorescence EEMs, 162 

use of neural networks for improvements to regression and DBP 163 

prediction was investigated through comparison to commonly 164 

applied linear regression.  Efforts have been taken to report an 165 

accurate assessment of DBP formation predictability and error 166 

rates using validation datasets rather than the more commonly 167 

reported overall correlations over entire datasets.     168 

2 Methods 169 

2.1 WATER QUALITY AND DISINFECTION BY-170 

PRODUCTS 171 

Water samples used in this study were obtained from a 172 

pilot-scale treatment system which continuously receives Otonabee 173 

River water (Peterborough, Ontario, Canada).  Several parallel 174 

treatment trains were used to collect samples with distinct organic 175 

concentrations and character.   Treatment steps for each train 176 

included conventional treatment 177 

(coagulation/flocculation/sedimentation) followed by ozonation or 178 

H2O2 + O3 with varying dose levels.  The pre-treated water was 179 

then passed selectively to six parallel filtration columns, described 180 
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further in Peleato et al. (2017) with varying media types (anthracite 181 

or activated carbon) as well as biological activity levels.  In total 2 182 

sampling days in each of the months of May, September, and 183 

October resulted in analysis of 120 samples.  Each day included 184 

duplicate samples from raw water, post pre-treatment (3 types: 185 

conventional or oxidation), and post filtration (6 distinct filters).  186 

This resulted in a dataset with a large degree of variance in organic 187 

concentrations and characteristics that were all derived from 188 

common source water.       189 

Dissolved organic carbon was quantified by the persulfate 190 

wet oxidation method described in Standard Method 5310 D 191 

(APHA/AWWA/WEF, 2012) with an O-I Corporation Model 1010 192 

TOC Analyzer (College Station, Texas, USA).  Ultraviolet 193 

absorbance was measured at 254 nm with a CE 3055 model 194 

spectrophotometer (Cecil Instruments, Cambridge, England) 195 

following Standard Method 5910 B (APHA/AWWA/WEF, 2012).  196 

Across sample types, DOC ranged from 2.6 to 6.3 mg L-1, UVA 197 

and SUVA varied from 0.024 to 0.125 cm-1 and 0.75 to 2.53 L mg-198 

1 m-1, respectively.  Water temperature ranged between 13.7 and 199 

25.4 oC.  200 

With respect to DBP formation, samples were collected 201 

were dosed with sodium hypochlorite to result in a free chlorine 202 

residual of 1.5 ± 0.5 mg L-1 after 24 hours based on the Standard 203 
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Method 4500-CI G (APHA/AWWA/WEF, 2012).  To achieve this 204 

residual, chlorine doses were between 5 and 7 mg L-1 Cl2.  205 

Following incubation for 24 hours at 20oC, chlorine residual was 206 

measured and free chlorine was quenched using excess ascorbic 207 

acid. Both THMs and HAAs were quantified using liquid-liquid 208 

extraction and gas chromatography.  A Hewlett Packard 5890 209 

Series II Plus gas chromatograph equipped with a DB 5.625 210 

capillary column and electron capture detector was used (Agilent, 211 

Mississauga, ON).  Standard Method 6232 B was followed for 212 

quantification of the four THM species; with Standard Method 213 

6251 B for nine HAA species (APHA/AWWA/WEF, 2012).    214 

2.2 FLUORESCENCE 215 

Fluorescence spectra were collected using an Agilent Cary 216 

Eclipse fluorescence spectrophotometer (Mississauga, Canada).  217 

Optimal instrument settings were determined based on previous 218 

studies and in-house testing (Peiris et al., 2009).  Excitation and 219 

emission wavelength ranges were 250 – 380 nm (5 nm 220 

increments), and 250 – 600 nm (2 nm increments), respectively.  A 221 

fluorescence spectrum of Milli-Q® water was subtracted from 222 

each sample to account for the solvent background.  This spectrum 223 

was also used to apply Raman corrections at an excitation 224 

wavelength of 350 nm and bandwidth of 5 nm in order to report 225 

fluorescence intensities in Raman Units (RU) (Lawaetz and 226 
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Stedmon, 2009).  Absorbance spectra between 250 and 600 nm (1 227 

nm increments) for each sample were recorded using an Agilent 228 

8453 UV-Vis spectrophotometer (Mississauga, Canada) to be used 229 

to correct for any potential inner filter effects (Kothawala et al., 230 

2013).  Corrected and Raman normalized spectra were used for all 231 

subsequent dimensionality reduction and analysis. 232 

2.2.1 PARAFAC 233 

Fluorescence EEMs were analyzed using parallel factors 234 

analysis (PARAFAC).  A methodology as described by Murphy et 235 

al. (Murphy et al., 2013) was followed using the drEEM toolbox 236 

for MATLAB.  Rayleigh and Raman scatter regions were removed 237 

for conformity to the linear assumptions required for PARAFAC.  238 

Several samples were identified as outliers through observation of 239 

sample leverages on the model and were removed.  A total of 12 240 

samples were removed to create a stable and valid model.  The 241 

validity of the PARAFAC model, or determining the correct 242 

number of components, was established through several means.  243 

Spectral loadings of the components were observed to conform to 244 

general guidelines regarding how organic fluorophores signals 245 

appear (e.g. only one emission peak, no abrupt changes in 246 

loadings).  Split-half validation was also carried out based on a 247 

randomized split of the dataset, forming 3 unique comparisons of 248 

dataset halves.  For each unique half an independent PARAFAC 249 
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model was developed; components were matched to all other 250 

combinations as well as the complete model.  Finally, calculated 251 

model residuals were observed to be random with few minor 252 

peaks.  Model results were reported as Fmax values in RU.  The 253 

model was applied to all outliers removed in creating the model, so 254 

no samples were excluded from DBP regressions. 255 

2.2.2 Principal component analysis 256 

PCA was carried out in R (V 3.2.5).  The dataset used was 257 

identical to the one for PARAFAC (including outlier omission).  258 

Prior to analysis, excitation/emission pairs were mean centered and 259 

scaled to unit variance in order to remove bias towards compounds 260 

and spectral regions with higher variability.   261 

2.2.3 Neural networks 262 

In this work neural networks were used both for 263 

dimensionality reduction and regression.  While the general 264 

premise is similar in both applications, the network structures and 265 

objectives are distinct.  Neural networks were constructed and 266 

trained using Google’s TensorFlow™, an open source library for 267 

machine learning in Python (Abadi et al., 2015). The networks 268 

were trained using the Adam optimization algorithm (Kingma and 269 

Adam, 2015).  Network structure and parameters were chosen 270 

based on sequential iterations with the goal of minimizing 271 

prediction or reconstruction error and comparability to other 272 
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dimensionality reduction techniques.  For instance, to allow for the 273 

comparison to PARAFAC results, the number of nodes in the 274 

latent layer of the autoencoder was set to 5.  Two hidden layers of 275 

128 and 64 nodes were used for all trained networks, since this was 276 

found to be a suitable compromise between minimizing prediction 277 

or reconstruction error without overcomplicating the network 278 

structure and making learning good weights difficult.   279 

For networks trained for prediction of DBPs, the cost 280 

function used for network training utilized either mean squared 281 

error (JMSE) or Huber loss (JH).  Typically, the threshold (δ) for 282 

Huber loss is set to 1 and provides a loss function which is more 283 

robust and less sensitive to outliers.   284 

������� = 1
�12 �
�� − 
���
�
���  

����� = 1
��12 �
�� − 
���,																										����
�� − 
�� ≤ �	� ��
�� − 
�� − 12 ��� , ����
�� − 
�� > �
�
���  

Where, W is the set of weights in the network 285 

 n is the number of samples in the training set 286 

 
��  is the estimated target value i 287 

 
� is the measured target value i 288 

 δ is the threshold separating linear and squared loss 289 

 In addition to the error involved in reconstructing x to !", 290 

L1 regularization of the network weights was also applied.  On an 291 
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intuitive level, L1 regularization penalizes large weights; for every 292 

weight in the network, w, a term of #|%| is added to the cost 293 

function, where λ defines the strength of regularization.  This 294 

encourages the network to not heavily focus on a few inputs, 295 

therefore mitigating overfitting.   296 

All network units, or nodes, contained a rectified linear 297 

activation function, which have shown to be both a better model of 298 

biological neurons with improved performance and sparsity.  In 299 

combination with the L1 regularization using rectified linear units 300 

(ReLU) further encourages sparsity in the network, which has 301 

several computational and representational advantages (Glorot et 302 

al., 2011).  Since non-zero weights are penalized, the trained 303 

network is encouraged to only consider inputs which improve 304 

regression accuracy.    305 

�&'()�*� = 	 +*											%ℎ-
	* > 00											%ℎ-
	* ≤ 0 

Where, a is the node activation value 306 

2.2.4 Autoencoder 307 

The basic premise of an autoencoder is to define a neural 308 

network that can recreate a given input through a defined lower 309 

dimensional bottleneck.  This unsupervised feature learning 310 

method allows for limiting information loss while still encoding 311 

features in a lower dimensional space.  An autoencoder comprises 312 

two halves: the encoder and decoder.  The encoder approximates a 313 
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function to convert an input vector (x) into a lower dimensional 314 

representation taken as the output of the latent layer (z) (i.e. 315 

/ = ��!�).  The decoder function receives the encoded vector as 316 

input and outputs the reconstructed input (!") (i.e.  !" = 0�/�) 317 

(Figure 1).  Through imposing a constrained dimensionality to z, 318 

the autoencoder is forced to compress data and cannot simply learn 319 

to copy the input perfectly (Goodfellow et al., 2016). 320 

The objective or cost function comprised of reconstruction 321 

error, as determined by mean squared error (JMSE), along with L1 322 

weight regularization to prevent overfitting and encourage sparsity. 323 

�1���� = 1
�12 �!�� − !���
�
��� + #�3%435

4�� 	 
Where, wp is a weight in the network 324 

 k is total number of weights across all layers 325 

 # is a set parameter controlling the strength of 326 

regularization 327 

 
 is the number of samples  328 

The autoencoder was developed using the same training set 329 

used for PARAFAC and PCA (including outlier omission).  330 

Visualization of the latent layer can be achieved by analysis of the 331 

weights connected to the nodes in z.  This allows for a visual 332 

representation of the features being maximally activated by the 333 
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latent units.  The latent maps or features represented by each latent 334 

unit are like loading values produced by PCA or PARAFAC.   335 

!6 = ��67∑ 9��6:�;6
 

Where, i is the hidden latent unit in the bottleneck z 336 

 j is a position in the input vector, i.e. an 337 

excitation/emission pair 338 

 d is the dimensionality of the input 339 

 Wij is the set of weights in the network connected 340 

between hidden unit i and position j of the 341 

flattened input vector of dimensionality d 342 

3 Results and Discussion 343 

3.1 DIMENSIONALITY REDUCTION 344 

A 5 component PARAFAC model was validated based on 345 

methodology described by Murphy et al. (Murphy et al., 2013).  346 

One protein-like and four humic-like components were identified 347 

(Figure 2).  To provide context to the fluorohpores identified by 348 

PARAFAC, the components were cross-checked with the 349 

OpenFluor database (Kathleen R. Murphy et al., 2014).  350 

Characteristics of components 1 – 3 conformed well to terrestrial 351 

humic-like substances abundant in surface waters (Kowalczuk et 352 

al., 2009; Kathleen R Murphy et al., 2014; Shutova et al., 2014; 353 
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Stedmon et al., 2003).  Evident from the lower fluorescence 354 

emissions, C4 likely represents humic-like material arising from 355 

biological processes (Murphy et al., 2011; Osburn et al., 2011).  356 

The excitation/emission of C5 is typical for tryptophan and 357 

therefore representative of protein-like material (Murphy et al., 358 

2011).  359 

Using the same dataset, PCA was also applied.  As a basis 360 

for comparison to PARAFAC and other dimensionality reduction 361 

approaches, the number of PCs was constrained to 5.  These 362 

explained 99.73% of the variance in the dataset, comparable to the 363 

99.64% by the 5 component PARAFAC model.  Compared to 364 

PARAFAC components, those produced by PC were less 365 

interpretable in terms of individual fluorophores, evident from the 366 

loading plots in Figure 3.  Protein-like peaks both in the range of 367 

tryptophan and tyrosine were observed in PC4 and PC5.  Humic-368 

like fluorophores were not separated by PCA and general 369 

representation of humic-like fluorescence in each PC was 370 

observed.  While physical interpretation is limited when using 371 

PCA, it may still provide a lower dimensional representation 372 

relevant to predicting formation of DBPs. 373 

 Latent representations by the autoencoder were more 374 

comparable to PCA, where multiple fluorophores are represented 375 

in one component and do not necessary conform well to typical 376 
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characteristics of organic fluorophores (Figure 4).  For instance, 377 

LM5 shows the highest representation of peaks in the humic-like 378 

regions, with a secondary peak similar to tryptophan (ex/em 379 

280/340 nm).  However, the latent maps from the autoencoder 380 

show distinction between humic-like peaks (e.g. LM2 and LM5), 381 

similar to PARAFAC components.  It should be noted that humic-382 

like peaks identified by autoencoder do not conform to PARAFAC 383 

components, and this approach has yielded an alternative set of 384 

lower dimensional components.  Both PCA and the autoencoder 385 

emphasized differences in low excitation/emission regions where 386 

protein-like fluorescence is expected.  In particular, the AE 387 

approach identifies fluorescence signals which conform to 388 

tryptophan-like characteristics (ex/em 280/340 nm) as well as 389 

possibly tyrosine-like fluorescence (ex/em 280/300) in LM2 and a 390 

cut-off peak (ex/em 250/300) in LM4.  This is contrary to 391 

PARAFAC which yields differentiation of humic-like components 392 

and only one protein-like component similar to tryptophan. 393 

3.2 PREDICTING DBP FORMATION 394 

Fluorescence data can be used to potentially provide an 395 

improved representation of organic composition and reactivity to 396 

form disinfection by-products.  This hypothesis stems from the 397 

increased representation of chemical characteristics in fluorescence 398 

EEMs.  The excitation-emission maxima and other characteristics 399 
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are dependent on the fluorophore observed, including its molecular 400 

structure, molecular weight, functional groups of compounds, and 401 

environment (Baghoth et al., 2011).  Better representation of the 402 

chemical properties of the OM should therefore improve prediction 403 

of the OM reactivity for DBP formation; a process also heavily 404 

dependent on the molecular properties and functional groups 405 

present, such as aromatic moieties which are implicated as the 406 

primary DBP precursors (Hua et al., 2015).  Previous work has 407 

reported increased correlations between trihalomethanes (THMs) 408 

and haloacetic acids (HAAs) with fluorescence measures including 409 

PARAFAC components (Hua et al., 2010; Pifer and Fairey, 2012), 410 

peak intensities or ratios (Hao et al., 2012; Roccaro et al., 2009), 411 

and PCA (Peleato and Andrews, 2015).  However, results 412 

presented to-date have often been limited by linear correlation 413 

strength on all samples (i.e. no separation of a test dataset) and 414 

utilizing samples with similar organic characteristics.  The reduced 415 

accuracy in DBP prediction shown when using validation sites (i.e. 416 

sites which were not included in the model training) have been 417 

observed when applying binary classification trees, exemplifying 418 

the importance of considering a validation set (Bergman et al., 419 

2016). We address these limitations by using a dataset that 420 

includes water treated by coagulation, ozone, H2O2 + O3, and 421 

biofiltration.  Pre-oxidation by ozone or H2O2 + O3 impacts 422 
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organic character or structure significantly, although the overall 423 

DOC or mass of organics is not expected to change to a large 424 

extent.  Furthermore, to ensure a more accurate assessment of 425 

predictive power of the organic measures and modelling approach, 426 

separation of a validation (20%, n = 24) and training (80%, n = 96) 427 

datasets was carried out by random selection.  The validation set 428 

was not used in dimensionality reduction analysis or modelling of 429 

DBP formation. A 10-fold cross-validation on the training dataset 430 

approach was used to determine optimal model parameters such as 431 

learning rate or the number of nodes in each layer.  All input 432 

variables were normalized to the range of 0 to 1.     433 

3.2.1 Prediction with data pre-treatment 434 

The possible role of dimensionality reduction in improving 435 

DBP formation prediction was investigated.  Separate neural 436 

networks were trained using four versions of fluorescence 437 

information: 1) baseline no dimensionality reduction (full 438 

spectrum), 2) PARAFAC component scores, 3) PCA component 439 

scores, and 4) output of the 5 latent autoencoder nodes.  The 440 

accuracy with varying data pre-treatments both from cross-441 

validation and on the validation dataset are shown in Table 1 and 442 

Figure 5.  Further to testing data pre-treatments, comparison of 443 

using the Huber loss or squared error cost function was examined.  444 

Consistently Huber loss had superior performance on the 445 
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validation set with lower accuracy in cross-validation.  This 446 

observation demonstrated the advantage of using a robust error 447 

function and prevented some degree of overfitting.  The exception 448 

was improved performance of squared error when using the full 449 

EEM spectrum for predicting both THMs and HAAs. 450 

For prediction of THMs, optimum validation performance 451 

(MAE: 7.46 µg L-1) was observed using spectral data pre-452 

processed by an autoencoder with comparable performance (MAE: 453 

7.97 µg L-1) using the full EEM. Dimensionality reduction with 454 

PARAFAC resulted in the poorest performance (MAE: 20.24 µg 455 

L-1), resulting in loss of accuracy compared to the unprocessed full 456 

spectrum.  Based on variance of predictions between all CV-folds 457 

on the validation data, all MAE differences were significant as 458 

determined by t-tests (p < 0.024).  This observation suggests loss 459 

of information related to THM precursors through the application 460 

of PARAFAC and constraints of interpretable components.  Pre-461 

treatment with an autoencoder was observed to result in the most 462 

robust regression, with the lowest discrepancy between CV and 463 

validation set error rates (CV MAE: 4.87 µg L-1, validation MAE: 464 

7.46 µg L-1).      465 

Predictability of total HAA formation was consistently 466 

lower compared to THMs.  Prediction accuracy on the validation 467 

set varied less across all pre-processing approaches (10.75 to 14.22 468 
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µg L-1 MAE).  For HAA prediction, pre-processing was not found 469 

to improve regression accuracy and utilizing the full spectrum 470 

resulted in the greatest CV and validation MAE.  It should be 471 

considered that while pre-processing and organic surrogates are 472 

being compared in this analysis, other factors influence DBP 473 

formation, such as pH, have not been included in the models. 474 

The uniqueness of the separated validation dataset should 475 

be considered when assessing the model performance.  It should be 476 

noted that when considering the variance between CV folds (29.6 477 

to 44.6% coefficient of variation), comparisons of pre-treatment 478 

methods were not found to be significant (p > 0.05).  However, the 479 

validation dataset was separated initially and not utilized for 480 

developing the dimensionality reduction models.  As such, we 481 

believe along with a larger test size (validation n = 24; CV test n = 482 

9-10), the emphasis should be on comparison of validation dataset 483 

error.  With each CV fold, prediction on the validation data was 484 

also carried out.  Considering the variability imparted by data used 485 

for training, all comparisons of the validation MAE were found to 486 

be significant (p < 0.05) for both THMs and HAAs.            487 

The role of NN regression was determined through 488 

comparison with a conventional multi linear regression (MLR) 489 

method.  The fluorescence results derived from dimensionality 490 

reduction were used as the multi-variate inputs to a multi linear 491 
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regression model.  Accuracy of the AE, PCA, and PARAFAC 492 

derived scores in multi linear regression models are reported in 493 

Table 2.  Validation accuracy using MLR was comparable for each 494 

data pre-treatment.  A consistent trend of data pre-treatment 495 

performance on the validation dataset from best to worse was AE > 496 

PCA > PARAFAC.  This relationship was less pronounced for CV 497 

error rates, particularly for HAA prediction.  Improvement of 498 

validation accuracy with AE-NN regression vs MLR for THM 499 

prediction (7.46 µg L-1 vs 9.64 µg L-1) was contrasted to a decrease 500 

in prediction accuracy for HAAs (11.93 µg L-1 vs. 9.64 µg L-1).  501 

However, for all cases the MAE from cross-validation was greater 502 

using MLR (13.52 to 20.92 µg L-1) compared to NN regression 503 

(3.08 to 6.33 µg L-1).  This suggests on average, between all folds 504 

during cross-validation, NN regression may have advantages 505 

despite the comparable performance on the validation dataset.  506 

Trueman et al. (2016) used a comparable cross-validation approach 507 

and bench-scale samples subjected to advanced oxidation, with 508 

reported CV MAE ≥ 9.5 µg L-1.   509 

3.2.2 Comparison to conventional organic measures 510 

The performance of the fluorescence/neural network 511 

approach was compared to baseline models which utilize 512 

conventional organic measures of DOC, UVA (at 254 nm), and 513 

SUVA.  Overall linear model strength between DOC and UVA 514 
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with THM concentrations were moderate (R2: 0.65 and 0.56, 515 

respectively).  The model strength or correlations between DOC or 516 

UVA with THMs were lower compared to those reported by  Li et 517 

al. (2016) (DOC R2: 0.89; UVA R2: 0.79), which included 16 518 

drinking water sources as well as coagulation and anion exchange 519 

treatments.  This supports our expectation that the advanced 520 

oxidation treatments resulted in significant changes to organic 521 

character, while not altering overall measures such as DOC.  Using 522 

a linear model, validation error was minimized using DOC (MAE: 523 

15.15 µg L-1) however it was over 2 times greater when compared 524 

to the autoencoder/fluorescence.  As shown in Figure 6, UVA 525 

resulted in groupings of THM predictions and indicate that this 526 

measure did not capture organic properties which result in THM 527 

formation.  To establish that the difference in performance was not 528 

due to a linear model vs. neural network regression, a neural 529 

network with DOC and UVA as inputs was trained.  Validation 530 

error was comparable to the linear model, however increased CV 531 

performance was observed. 532 

 Correlations with total HAA formation were found to be 533 

low (R2 0.09 to 0.48) although validation set error rates were 534 

comparable to fluorescence results using both NN regression and 535 

MLR.  This is possibly due to the decreased range in HAA 536 

formation, 28.1 to 139.5 µg L-1 HAAs vs. 26.5 to 208.2 µg L-1 537 
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THMs.  The comparable accuracy between organic surrogates and 538 

regression approach may also suggest that HAA formation is more 539 

significantly dependent on other factors that have not been 540 

included in the model such as pH.   541 

3.3 FLUORESCENCE REGIONAL IMPORTANCE FOR 542 

DBP FORMATION 543 

Through the established weights in the models, it is of 544 

interest to understand the relative contributions of each input to the 545 

predictability of DBPs.  The process of determining variable 546 

importance was carried out using the Connection Weight Approach 547 

described by Olden and Jackson (Olden and Jackson, 2002) and 548 

Olden et al. (Olden et al., 2004).  For each input, the product of 549 

connected weights between the network layers is calculated.  This 550 

was performed 20 times with different random weight 551 

initializations for every constructed network.  Normalization of the 552 

calculated variable importance was conducted to diminish 553 

variability based on the absolute value of the initial network 554 

weights.  The relative input variable importance using varying data 555 

pre-processing methods are shown in Figure 7.  Ranking of 556 

PARAFAC variables by connection weights shows predominant 557 

positive association between humic-like fluorophores with THM 558 

and HAA formation.  C4 was observed to have the highest positive 559 

connection weights for THM prediction, indicating this terrestrial 560 
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humic-like fluorophore with one excitation band is likely a major 561 

THM precursor.  Based on the HAA model, increased importance 562 

of C4 (p < 0.01) and increased negative association with C3 (p < 563 

0.01) were noted.  This suggests stronger association between 564 

humic-like substance from possible microbial origins and HAA 565 

formation.  Negative associations with humic-like C3 and protein-566 

like C5 were observed.  C3 in particular is unique in the high 567 

emission characteristics > 450 nm.  Through comparison to 568 

characterization by ultra-high resolution mass spectrometry, it has 569 

been suggested that fluorophores emitting above 450 nm likely 570 

have greater average carbon oxidation states (≥ 0) and higher 571 

double bond equivalency per carbon (Lavonen et al., 2015).  572 

Presence of oxidized organic material is expected based on the 573 

dataset containing samples which have been treated with ozone or 574 

an advanced oxidation process.  The method used here illustrates 575 

sensitivity to identifying fluorescence signal regions associated 576 

with decreased DBP formation potential from the application of 577 

strong pre-oxidants.  A visualization of the fluorescence regions 578 

associated with DBP formation is shown as Figure 8, which were 579 

calculated through weighted reconstruction of EEMs using the 580 

loading values and relative variable importance.  Based on 581 

PARAFAC, positive correlations with humic-like regions in the 582 

ex/em region of 250-340/375-450 nm and THM/HAA formation 583 
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can be seen.  The negative association between protein-like 584 

fluorescence and DBP formation is also illustrated.     585 

Variable importance using the latent maps from the AE 586 

(Figure 7) is less interpretable due to the ambiguity of fluorophore 587 

representation in each latent variable.  The visualization of 588 

fluorescence regions weighted by the autoencoder-neural network 589 

aided in determining variable importance (Figure 8).  Generally, 590 

there is negative association between fluorescence < ex/em 591 

260/310 nm and THM/HAA formation, however positive 592 

connection weights are seen with tryptophan-like fluorescence at 593 

ex/em 280/340 nm.  This observation is contrary to the results from 594 

PARAFAC, in particular, increased importance of tryptophan-like 595 

fluorescence for HAA formation prediction was observed when 596 

using the AE, full spectrum, and PCA approaches.  Furthermore, 597 

autoencoder-neural network regression placed high positive 598 

weights to high emission regions > 550 nm. 599 

Representation of the full EEM weighted connections 600 

yielded a noisier but more nuanced image of fluorescence regions 601 

associated with DBP formation (Figure 8).  Similar to PARAFAC 602 

and PCA but contrary to the autoencoder, humic-like peaks with 603 

emissions ~450 nm had positive weightings.  Specific low ex/em 604 

peaks in the protein-like region were also identified to have 605 

positive weights.  Pronounced high relative weights at 606 
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approximately ex/em 280/310 nm and 380/436 nm correspond well 607 

to expected Raman peaks from water.  While the EEMs were first 608 

pre-processed to remove influence of Rayleigh and Raman regions, 609 

artifacts may have remained which were identified by the model to 610 

be positively correlated with DBP formation.  Comparatively to the 611 

autoencoder regions, fluorescence at high emissions > 550 nm 612 

were also positively associated with both THM and HAA 613 

formation. 614 

Evident from the contradicting regions associated with 615 

DBP formation regression is the influence of the pre-processing 616 

method.  Regions identified by PARAFAC conform to 617 

expectations of types of organic material likely to result in 618 

formation of DBPs and are most interpretable.  However, increased 619 

performance of the autoencoder or using the full EEM when 620 

predicting THMs and HAA formation on the validation dataset 621 

using both NN regression and MLR gives credence that these 622 

approaches were better able to include fluorescence regions 623 

associated with DBP formation.  Our interpretation of the non-624 

conformance of these results is that significant consideration of the 625 

pre-processing method should be taken when interpreting reduced-626 

dimensionality EEM results.  We hypothesize that due to the 627 

apparent influence of data pre-processing, utilizing the full 628 

spectrum with weight normalization to encourage relevant input 629 
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selection may result in a more accurate representation of 630 

fluorescence regions associated with NOM reactivity to form 631 

DBPs.             632 

4 Conclusions 633 

A NN approach to both dimensionality reductions, utilizing 634 

an AE as well as for DBP formation regression was shown to be 635 

advantageous.  Results on a randomly separated validation data set 636 

indicate that, while PARAFAC produces components which 637 

resemble organic fluorophores, the constrained dimensionality 638 

approach likely results in information loss that improves prediction 639 

of both total THMs and total HAAs.  Compared to common 640 

organic measures an AE-NN regression provides greater training 641 

and validation set prediction accuracies for THMs and similar 642 

performance for HAAs.  AE dimensionality reduction appears to 643 

potentially mitigate overfitting based on minor differences between 644 

CV training error and validation errors.  Comparison of MLR to 645 

NN yields similar accuracy on validation data, indicating that pre-646 

treatment methods should be emphasized, and the regression 647 

approach may not be as important.  Through analysis of the 648 

connection weights, variable importance can be quantified 649 

allowing for greater understanding regarding how the trained NN 650 

model functions.  Particularly through the more interpretable 651 
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PARAFAC components, differing positive and negative 652 

correlations between components and DBP formation was 653 

observed.  While humic-like fluorophores or fluorescence regions 654 

were generally observed to be associated with DBP formation, a 655 

PARAFAC component likely representing organic material 656 

transformed by an oxidation process was negatively associated 657 

with formation potentials.   658 

Results presented in this study suggest the novel 659 

applicability of autoencoders for interpretation of fluorescence 660 

results.  Compared to PARAFAC analysis, autoencoders produced 661 

components with more limited in interpretability, however resulted 662 

in increased representation of the data as evidenced from improved 663 

DBP formation prediction.  While autoencoders optimized 664 

prediction of THMs, utilizing the full spectrum without any prior 665 

dimensionality reduction was observed to result in the greatest 666 

performance for HAAs in this study.  Furthermore, improved DBP 667 

formation prediction using a NN approach was observed compared 668 

to linear regression typically practiced.  The approach taken in this 669 

work is well suited for handling large and high-dimensional 670 

datasets, which are increasingly common.  Furthermore, the 671 

possible use of fluorescence as a continuous monitoring device 672 

will require flexible, robust, and scalable analysis methods.      673 
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Table 1 Cross–validation (CV) and validation results for neural networks with varying data pre-
treatments and cost function. MSE: mean squared error, MAE: mean absolute error, AE: 
autoencoder, PCA: principle component analysis, PARAFAC: parallel factors analysis, HL: 
Huber-loss, SE: squared error.   

Data pre-
treatment 

CV MSE 
(µg/L)2 

CV MAE  
(µg/L) 

Validation MSE 
(µg/L)2 

Validation MAE 
(µg/L) 

 HL SE HL SE HL SE HL SE 
THMs         
Full spectrum  66.91 36.03 3.70 3.29 334.85 127.09 9.82 7.97 
AE 77.48 64.41 4.87 4.96 120.03 198.07 7.46 11.93 
PCA 82.57 61.98 4.80 5.43 268.92 245.76 13.39 12.32 
PARAFAC 167.76 96.70 6.33 6.51 753.01 435.07 20.24 16.39 
HAAs         
Full spectrum 25.45 17.10 3.08 2.74 173.95 159.44 10.75 10.28 
AE 49.11 32.05 4.97 4.17 195.53 329.66 11.93 15.23 
PCA 47.63 25.08 5.05 3.71 177.67 249.56 11.85 12.53 
PARAFAC 68.00 36.39 4.74 4.45 363.81 348.93 14.22 18.81 
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Table 2 Cross-validation and validation results (MAE) for multi linear regression using 
fluorescence data pre-processed by a dimensionality reduction method. 

Data pre-treatment CV MAE 
(µg L-1) 

Validation MAE 
(µg L-1) 

THMs   
AE 18.34 9.65 
PCA 20.65 13.19 
PARAFAC 20.92 20.39 
HAAs   
AE 13.52 9.64 
PCA 14.49 11.92 
PARAFAC 13.63 14.00 
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Table 2 Cross–validation (CV) and validation results for linear models with conventional 
organic measures. MSE: mean squared error, MAE: mean absolute error. 

Organic 
measure 

CV MSE 
(µg/L)2 

CV MAE 
(µg/L) 

Validation 
MSE (µg/L)2 

Validation 
MAE (µg/L) 

Full dataset 
R2 

THMs      
DOC 492.39 16.13 303.26 15.15 0.65 
UVA 525.69 17.57 524.82 17.59 0.56 
SUVA 859.87 21.85 864.25 21.13 0.29 
DOC + UVA, 
neural network 

227.33 10.23 365.33 16.33 - 

HAAs      
DOC 227.22 11.97 303.53 12.03 0.48 
UVA 267.81 13.33 396.97 14.46 0.30 
SUVA 312.80 14.57 466.70 15.79 0.09 
DOC + UVA, 
neural network 

84.12 6.94 197.83 10.18 - 
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Figure 1 Schematic of an example autoencoder structure with one hidden layer and latent layer 

(z) with two nodes.   

 

Figure 2  Loading plots for the 5 identified PARAFAC components. 

 

Figure 3 Loading plots from PCA 

 

Figure 4 Latent maps from the constrained layer of the autoencoder 

 
Figure 5 Measured vs. predicted THMs for example models using varying data pre-treatments.  
Circles represent samples in the training dataset; + represent samples from the validation dataset. 
 
Figure 6 Measured vs. predicted THMs using conventional organic measures.  Circles represent 
samples in the training dataset; + represent samples from the validation dataset. 
 

Figure 7 Relative importance of input variables calculated based on connection weights.  
Vertical bars represent one standard deviation from the 20 random initializations.   
 
Figure 8 Mappings of fluorescence regions of relative importance for the prediction of THMs 
and HAAs. a) autoencoder, THMs; b) autoencoder, HAAs; c) full EEM, THMs; d) full EEM, 
HAAs, e) PARAFAC, THMs; f) PARAFAC, HAAs; g) PCA, THMs; h) PCA, HAAs. 
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Highlights 

• Autoencoder applied for dimensionality reduction of fluorescence spectra 

• Improved DBP formation prediction using autoencoder components or full spectrum 

• PARAFAC produced interpretable components, however poor reactivity prediction 

• Improved cross-validation accuracy using neural networks for regression 

• Neural network weights identify fluorescence regions associated with DBP formation 


