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Abstract

The use of fluorescence data coupled with neurélvarés for
improved predictability of drinking water disinfémt by-products
(DBPs) was investigated. Novel application of aumtoders to
process high-dimensional fluorescence data wastetklao
common dimensionality reduction techniques of pelrdhctors

analysis (PARAFAC) and principal component analy&#€A).

The proposed method was assessed based on component

interpretability as well as for prediction of orgamatter reactivity
to formation of DBPs. Optimal prediction accuescon a
validation dataset were observed with an autoemeoeleral
network approach or by utilizing the full spectruathout pre-
processing. Latent representation by an autoemcageeared to

mitigate overfitting when compared to other methoddthough
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DBP prediction error was minimized by other preqassing
techniques, PARAFAC vyielded interpretable composenhich
resemble fluorescence expected from individual mima
fluorophores. Through analysis of the network \hesg
fluorescence regions associated with DBP formattcam be
identified, representing a potential method toingatish reactivity
between fluorophore groupings. However, distireguits due to
the applied dimensionality reduction approachesewarserved,
dictating a need for considering the role of da&pgrocessing in
the interpretability of the results. In comparistm common
organic measures currently used for DBP formatioedigtion,
fluorescence was shown to improve prediction aaiesa with
improvements to DBP prediction best realized whpprepriate
pre-processing and regression techniques were eajppli The
results of this study show promise for the potérajplication of
neural networks to best utilize fluorescence EEMadéor
prediction of organic matter reactivity.

Keywords: Fluorescence spectroscopy; disinfection by-products
neural networks; autoencoder; dimensionality rdadactwater

treatment
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1 Introduction

Presence of naturally occurring organic matter fisulmiquitous
concern for drinking water treatment operationstgaDic matter
(OM) is known to adversely impact treatment proesssuch as
filtration or adsorption processes and is a majource of
disinfectant demand (Fabris et al., 2008). Reastizetween OM
and oxidants used for disinfection, most commoriijoicne, are
known to produce disinfection by-products (DBPRegulation of
DBPs typically focus on two groupings of organiclides,
trihalomethanes (THMs) and haloacetic acids (HA/dya and
Reckhow, 2007). Control and management of OM pitor
disinfection is therefore directly tied to DBP faation potential
and is essential to protecting treated water gualit

One of the major challenges with OM is the breaaitd
chemical variability of compounds present in sousegers, which
is not readily captured by routine organic measusash as
dissolved or total organic carbon (DOC/TOC) andodtsnce of
ultraviolet light at 254 nm (UVA) (Matilainen et.aP011). These
organic estimators are used in models which pred&P
formation potential due to their relative simphgitallowing for
possible continuous or routine monitoring (Chowdhwt al.,
2009). In an effort to improve DBP predictabiland modelling,

fluorescence has been investigated as a sensigasure of OM
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character and reactivity (Hua et al., 2010; Pifed &airey, 2012;
Roccaro et al., 2009). It is hypothesized thatjotability of DBP
formation will increase with use of fluorescenceadthat reflects
the chemical composition of organic matter ultirhatBctating the
reactivity of OM. In contrast to other OM charactation
techniques such as liquid chromatography with da@rbon
detection (LC-OCD) or high resolution mass specttm
fluorescence measurements require little sampl@apatgion or
acquisition time, therefore lending to possible il
implementation (Shutova et al., 2014).

Fluorescence data, collected as a high dimensional
excitation-emission matrix (EEM), present an analyhallenge,
making inclusion in traditional modelling approashdifficult,
such as linear regression. Reduction of EEM dinosadity is
typically practiced, either through manual selactof peaks or
regions or multiway dimensionality reduction tecques such as
parallel factors analysis (PARAFAC) or principle ngoonent
analysis (PCA) (Bridgeman et al., 2011). In paiac, PARAFAC
analysis has been proven effective for identifyingderlying
components which most resemble the expected excitamission
characteristics of organic fluorophores (KathleeM&phy et al.,
2014). In comparison to PCA, it can be argued BRBRAFAC is

a more appropriate model to account for the thigesdsional
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nature of EEMs (Bridgeman et al., 2011). PCA isna-way
method, which requires data to be unfolded priorat@lysis
therefore discarding information regarding the ¢y structure
of the data (Bro, 1997). Furthermore, PCA resutsomponents
with rotational freedom that makes direct relatiotes real
fluorescence profiles difficult (Stedmon et al.,03). However,
PARAFAC can be shown to be a constrained PCA maddlas
such, PCA will represent a greater degree of vaeanithin the
dataset (Bro, 1997). The components produced fREA are
strictly orthogonal and independent under the aptiom of
multivariate normality (Murphy, 2012), which may be
advantageous for subsequent statistical modelinggu®CA
results.

A neural network (NN) approach may allow for
dimensionality reduction of fluorescence spectréheut explicit
constraints (Bieroza et al., 2011). For exampleenvcompared to
PCA on several test sets, Hinton and Salakhutd{ibrton and
Salakhutdinov, 2006) demonstrated improved perfooea of
autoencoder NNs; a network where the output iscangruction
of input after passing through a constrained botitd. Few
applications of NNs for fluorescence spectroscomyeh been
reported. Wolf et al. (Wolf et al., 2007) showaspbrovement to

utilizing a NN for prediction of membrane bioreacperformance
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by applying PCA prior to training the NN. Bieroetal. (Bieroza
et al.,, 2011) applied a self-organized map (SOMjype of NN
with a competitive learning approach, and PARAFACatset of
fluorescence data for raw and treated drinking wséeples from
16 surface water plants in the UK. These two nutheere used
for reducing fluorescence data dimensionality ptmibeing used
as input to a NN, as well as a multilinear modegttpredicted
TOC removal due to treatment. Rhee et al. (Rhea.e005)
employed SOMs for non-linear dimensionality redoicti of
fluorescence EEMs for monitoring fermentation peses.
Previous studies which have investigated fluoresees a
surrogate for predicting DBP formation employed amge of
dimensionality simplification reduction techniqueRoccaro et al.
(Roccaro et al., 2009) reported strong correlatidretween
changes in the ratio of fluorescence intensitiesQ@ and 450 nm)
before and after chlorination to THM and HAA fornost. Hua et
al. (Hua et al., 2010) utilized PARAFAC to identifjwo
components which were likely THM precursors and tdvet
surrogates than SUVA. Similarly, Pifer and Fair@ifer and
Fairey, 2012) reported that one PARAFAC componegd highly
correlated with chloroform concentrations and repreed a
marked improvement compared to SUVA. Bergman .e{28116)

demonstrated success with utilizing fluorescenc® RPAC data



136 for DBP prediction through a binary classificatitnee approach to
137 determine adherence with regulations and predictingmide
138 incorporation factors. Interpretation of the flascence EEMs by
139 other means have also been investigated for DBMRigbien.
140 Trueman et al. (2016) applied several novel appresadncluding
141 lasso regression, boosted regression trees, amdvisgd principle
142 component regression. Through cross-validation #uwhors
143 demonstrated improved accuracy of alternative aqires
144  compared to linear or unsupervised PCA-based mauidisboth
145 full and bench-scale samples. To facilitate thdioa application
146 of fluorescence sensors, Li et al. (2016) develogedovel UV
147 fluorescence sensor using a single UV LED 280 mymtiemitting
148 diodes. These were used to determine protein amdicHike
149 fluorescence, which improved overall correlationghwTHM
150 formation across 16 drinking water sources.

151 This work describes novel use of autoencoder neural
152 networks to interpret high-dimensional fluorescespectra. This
153 proposed dimensionality reduction method is testethe basis of
154 predicting disinfection by-product (DBP) formatiomluring
155 drinking water treatment. Dimensionality reductioof
156 fluorescence EEMSs is typically practiced for selereasons
157 including identifying underlying interpretable cooments which

158 resemble organic fluorophores, or simplifying thataget to
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eliminate noise and improve subsequent modellidgthods such
as PCA or PARAFAC achieve these goals to diffedegrees and
selection of dimensionality reduction techniquesuthi depend on
the study objectives. To utilize pre-processedrééscence EEMSs,
use of neural networks for improvements to regoessind DBP
prediction was investigated through comparison tmmmonly

applied linear regression. Efforts have been takemeport an
accurate assessment of DBP formation predictabditg error
rates using validation datasets rather than theenmommonly

reported overall correlations over entire datasets.

2 Methods

2.1 WATER QUALITY AND DISINFECTION BY-
PRODUCTS

Water samples used in this study were obtained feom
pilot-scale treatment system which continuouslenees Otonabee
River water (Peterborough, Ontario, Canada). S¢vearallel
treatment trains were used to collect samples digtinct organic
concentrations and character.  Treatment stepsedoh train
included conventional treatment
(coagulation/flocculation/sedimentation) followey bzonation or
H,O, + Oz with varying dose levels. The pre-treated wates wa

then passed selectively to six parallel filtratmsiumns, described

8



181 further in Peleato et al. (2017) with varying metjipes (anthracite
182 or activated carbon) as well as biological actiwyels. In total 2
183 sampling days in each of the months of May, Sep&mand
184  October resulted in analysis of 120 samples. Hhaohincluded
185 duplicate samples from raw water, post pre-treatn{d8ntypes:
186 conventional or oxidation), and post filtration gétinct filters).
187 This resulted in a dataset with a large degreeadgamce in organic
188 concentrations and characteristics that were ativei@ from
189 common source water.

190 Dissolved organic carbon was quantified by the ydtate
191 wet oxidation method described in Standard Meth&05D
192 (APHA/JAWWA/WEF, 2012) with an O-I Corporation Mod2D10
193 TOC Analyzer (College Station, Texas, USA). Ultcdet
194 absorbance was measured at 254 nm with a CE 30%eImo
195 spectrophotometer (Cecil Instruments, Cambridge,gldfrd)
196 following Standard Method 5910 B (APHA/JAWWA/WEF, 22)).
197 Across sample types, DOC ranged from 2.6 to 6.3LmhgUVA
198 and SUVA varied from 0.024 to 0.125 ¢rand 0.75 to 2.53 L mg
199 'm?, respectively. Water temperature ranged betwéed and
200 25.4°C.

201 With respect to DBP formation, samples were codiéct
202 were dosed with sodium hypochlorite to result ifreee chlorine

203 residual of 1.5 + 0.5 mg Lafter 24 hours based on the Standard
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Method 4500-CI G (APHAJAWWA/WEF, 2012). To achietras
residual, chlorine doses were between 5 and 7 nigCl..
Following incubation for 24 hours at %D, chlorine residual was
measured and free chlorine was quenched using xseprbic
acid. Both THMs and HAAs were quantified using ldpiquid
extraction and gas chromatography. A Hewlett Patliz890
Series Il Plus gas chromatograph equipped with a &5
capillary column and electron capture detector used (Agilent,
Mississauga, ON). Standard Method 6232 B was viab for
guantification of the four THM species; with Stardidvethod

6251 B for nine HAA species (APHA/AWWA/WEF, 2012).

2.2 FLUORESCENCE

Fluorescence spectra were collected using an Agiany
Eclipse fluorescence spectrophotometer (Mississa@gnada).
Optimal instrument settings were determined basedgrmvious
studies and in-house testing (Peiris et al., 200RXcitation and
emission wavelength ranges were 250 — 380 nm (5
increments), and 250 — 600 nm (2 nm incrementspedively. A
fluorescence spectrum of Milli-Q® water was subtedc from
each sample to account for the solvent backgrodrids spectrum
was also used to apply Raman corrections at antatioci
wavelength of 350 nm and bandwidth of 5 nm in ordereport

fluorescence intensities in Raman Units (RU) (Lawaand

10

nm
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Stedmon, 2009). Absorbance spectra between 25@@Mham (1
nm increments) for each sample were recorded umindgilent
8453 UV-Vis spectrophotometer (Mississauga, Cantalbg used
to correct for any potential inner filter effects€othawala et al.,
2013). Corrected and Raman normalized spectra uwsse for all

subsequent dimensionality reduction and analysis.

2.2.1 PARAFAC

Fluorescence EEMs were analyzed using parallebifact
analysis (PARAFAC). A methodology as describedviyphy et
al. (Murphy et al., 2013) was followed using th&BM toolbox
for MATLAB. Rayleigh and Raman scatter regions evexmoved
for conformity to the linear assumptions required PARAFAC.
Several samples were identified as outliers throolggervation of
sample leverages on the model and were removetbtah of 12
samples were removed to create a stable and valgkln The
validity of the PARAFAC model, or determining theormect
number of components, was established through aslewesans.
Spectral loadings of the components were obsemwexnform to
general guidelines regarding how organic fluoropkosignals
appear (e.g. only one emission peak, no abrupt gasarin
loadings). Split-half validation was also carriedt based on a
randomized split of the dataset, forming 3 unigaemparisons of

dataset halves. For each unique half an indepériR@RAFAC

11
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model was developed; components were matched tamthér
combinations as well as the complete model. Rinaklculated
model residuals were observed to be random with fenvor
peaks. Model results were reported agxalues in RU. The
model was applied to all outliers removed in cregthe model, so

no samples were excluded from DBP regressions.

2.2.2 Principal component analysis

PCA was carried out in R (V 3.2.5). The datasedusas
identical to the one for PARAFAC (including outliemission).
Prior to analysis, excitation/emission pairs weeamcentered and
scaled to unit variance in order to remove biasatol& compounds

and spectral regions with higher variability.

2.2.3 Neural networks
In this work neural networks were used both for

dimensionality reduction and regression. While theneral
premise is similar in both applications, the netwstructures and
objectives are distinct. Neural networks were tmased and
trained using Google’s TensorFlow™, an open solibcary for
machine learning in Python (Abadi et al., 2015)e Tietworks
were trained using the Adam optimization algorittfimgma and
Adam, 2015). Network structure and parameters vetresen
based on sequential iterations with the goal of immizing

prediction or reconstruction error and comparabilio other

12
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dimensionality reduction techniques. For instanagllow for the
comparison to PARAFAC results, the number of noaeghe
latent layer of the autoencoder was set to 5. Midden layers of
128 and 64 nodes were used for all trained netwasikse this was
found to be a suitable compromise between minirgizrediction
or reconstruction error without overcomplicatinge tmetwork
structure and making learning good weights difficul

For networks trained for prediction of DBPs, thestco
function used for network training utilized eitherean squared
error (dise) or Huber loss (). Typically, the thresholds] for
Huber loss is set to 1 and provides a loss funatibich is more

robust and less sensitive to outliers.
11
Juse (W) = ;le G —»)?
=

1
1w |5 00— for(h, —y;) <8
Jaw) =347

1
i=1 6|(37l—yi)—§52 ) for(j’:_yi)>6

Where,Wis the set of weights in the network

n is the number of samples in the training set

y, is the estimated target value

y; is the measured target value

o is the threshold separating linear and squared loss
In addition to the error involved in reconstrugtixto %,

L1 regularization of the network weights was alppleed. On an

13



292 intuitive level, L1 regularization penalizes langeights; for every
293 weight in the networkw, a term ofA|w| is added to the cost
294  function, wherel defines the strength of regularization. This
295 encourages the network to not heavily focus onwa ifgputs,
296 therefore mitigating overfitting.

297 All network units, or nodes, contained a rectifilear
298 activation function, which have shown to be botie#ter model of
299 Dbiological neurons with improved performance andrspy. In
300 combination with the L1 regularization using reetf linear units
301 (ReLU) further encourages sparsity in the netwavkich has
302 several computational and representational advasté@lorot et
303 al, 2011). Since non-zero weights are penalizbd, trained
304 network is encouraged to only consider inputs whiciprove
305 regression accuracy.

whena > 0
whena <0

freru (@) = {g

306 Where,a is the node activation value

307 2.2.4 Autoencoder

308 The basic premise of an autoencoder is to defineusal
309 network that can recreate a given input throughefindd lower
310 dimensional bottleneck.  This unsupervised featlgarning
311 method allows for limiting information loss whiléils encoding
312 features in a lower dimensional space. An autoggrcoomprises

313 two halves: the encoder and decoder. The encqgeoximates a

14
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333

function to convert an input vectox)(into a lower dimensional
representation taken as the output of the lateyerldz) (i.e.
z = f(x)). The decoder function receives the encoded vexdo
input and outputs the reconstructed inpflj (i.e. X = g(2))
(Figure 1). Through imposing a constrained dimamality to z,
the autoencoder is forced to compress data andtamply learn
to copy the input perfectly (Goodfellow et al., B).1

The objective or cost function comprised of recangton
error, as determined by mean squared erpge(Jalong with L1

weight regularization to prevent overfitting anccearage sparsity.

n k
11
LeW) === (@ =) + 1) [w)
i=1 p=1

Where,w, is a weight in the network
k is total number of weights across all layers
A is a set parameter controlling the strength of
regularization
n is the number of samples
The autoencoder was developed using the samentyeset
used for PARAFAC and PCA (including outlier omissio
Visualization of the latent layer can be achievgdbalysis of the
weights connected to the nodeszn This allows for a visual

representation of the features being maximallyvattid by the

15
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latent units. The latent maps or features repteddny each latent
unit are like loading values produced by PCA or P&RC.
w;;
Xj = ———
«/ HUNDE
Where,i is the hidden latent unit in the bottleneck
j is a position in the input vector, i.e. an
excitation/emission pair
d is the dimensionality of the input
Wi is the set of weights in the network connected
between hidden unii and positionj of the

flattened input vector of dimensionalidy

3 Reaultsand Discussion

3.1 DIMENSIONALITY REDUCTION

A 5 component PARAFAC model was validated based on
methodology described by Murphy et al. (Murphy kf 2013).
One protein-like and four humic-like components evetentified
(Figure 2). To provide context to the fluorohpordentified by
PARAFAC, the components were cross-checked with the
OpenFluor database (Kathleen R. Murphy et al., 2014
Characteristics of components 1 — 3 conformed teeterrestrial
humic-like substances abundant in surface watemvéfczuk et

al., 2009; Kathleen R Murphy et al., 2014; Shutevaal., 2014;

16
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Stedmon et al.,, 2003). Evident from the lower rfeszence
emissions, C4 likely represents humic-like mateaasing from
biological processes (Murphy et al., 2011; Osburrale 2011).
The excitation/emission of C5 is typical for tryptan and
therefore representative of protein-like materiglufphy et al.,
2011).

Using the same dataset, PCA was also applied. lesis
for comparison to PARAFAC and other dimensionatgguction
approaches, the number of PCs was constrained toTbese
explained 99.73% of the variance in the datasehpamable to the
99.64% by the 5 component PARAFAC model. Compared
PARAFAC components, those produced by PC were less
interpretable in terms of individual fluorophorewvident from the
loading plots in Figure 3. Protein-like peaks botithe range of
tryptophan and tyrosine were observed in PC4 anbl Pllumic-
like fluorophores were not separated by PCA andegen
representation of humic-like fluorescence in eacB ®as
observed. While physical interpretation is limitaden using
PCA, it may still provide a lower dimensional regpgatation
relevant to predicting formation of DBPs.

Latent representations by the autoencoder weree mor
comparable to PCA, where multiple fluorophores ragresented

in one component and do not necessary conform teetypical

17
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characteristics of organic fluorophores (Figure 4or instance,
LM5 shows the highest representation of peaks énhibimic-like
regions, with a secondary peak similar to tryptophax/em
280/340 nm). However, the latent maps from theoetoder
show distinction between humic-like peaks (e.g. LMl LM5),
similar to PARAFAC components. It should be notieat humic-
like peaks identified by autoencoder do not confetsriPARAFAC
components, and this approach has yielded an atieenset of
lower dimensional components. Both PCA and th@endoder
emphasized differences in low excitation/emissiegians where
protein-like fluorescence is expected. In paraculthe AE
approach identifies fluorescence signals which @onf to
tryptophan-like characteristics (ex/em 280/340 nms) well as
possibly tyrosine-like fluorescence (ex/em 280/3@0)LM2 and a
cut-off peak (ex/em 250/300) in LM4. This is camyr to
PARAFAC which yields differentiation of humic-likeomponents

and only one protein-like component similar to toghan.

3.2 PREDICTING DBP FORMATION

Fluorescence data can be used to potentially peoeid
improved representation of organic composition egaktivity to
form disinfection by-products. This hypothesisnsefrom the
increased representation of chemical charactesistiluorescence

EEMs. The excitation-emission maxima and otheradttaristics

18
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are dependent on the fluorophore observed, inaiuitsnmolecular
structure, molecular weight, functional groups oimpounds, and
environment (Baghoth et al., 2011). Better repreg®n of the
chemical properties of the OM should therefore orprprediction
of the OM reactivity for DBP formation; a procedscaheavily
dependent on the molecular properties and fundtigmaups
present, such as aromatic moieties which are igd as the
primary DBP precursors (Hua et al., 2015). Previawrk has
reported increased correlations between trihaloamstt (THMS)
and haloacetic acids (HAAs) with fluorescence messincluding
PARAFAC components (Hua et al., 2010; Pifer andéyai2012),
peak intensities or ratios (Hao et al., 2012; Roxe al., 2009),
and PCA (Peleato and Andrews, 2015). However, ltsesu
presented to-date have often been limited by lirearelation
strength on all samples (i.e. no separation ofsa dataset) and
utilizing samples with similar organic charactadst The reduced
accuracy in DBP prediction shown when using vaiaresites (i.e.
sites which were not included in the model traipihgve been
observed when applying binary classification treessmplifying
the importance of considering a validation set (Bwan et al.,
2016). We address these limitations by using a sdatdhat
includes water treated by coagulation, ozongDH+ O;, and

biofiltration.  Pre-oxidation by ozone or,8, + O; impacts
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organic character or structure significantly, alto the overall
DOC or mass of organics is not expected to change large
extent. Furthermore, to ensure a more accuratesasent of
predictive power of the organic measures and miode#ipproach,
separation of a validation (20%, n = 24) and tragn(80%, n = 96)
datasets was carried out by random selection. vakidation set
was not used in dimensionality reduction analysisnodelling of
DBP formation. A 10-fold cross-validation on thaifing dataset
approach was used to determine optimal model pdessnsuch as
learning rate or the number of nodes in each layail input

variables were normalized to the range of O to 1.

3.2.1 Prediction with data pre-treatment
The possible role of dimensionality reduction irpnaving

DBP formation prediction was investigated. Separatural
networks were trained using four versions of flsoence
information: 1) baseline no dimensionality reduatio(full

spectrum), 2) PARAFAC component scores, 3) PCA compt
scores, and 4) output of the 5 latent autoencodelesn The
accuracy with varying data pre-treatments both frenoss-
validation and on the validation dataset are showhable 1 and
Figure 5. Further to testing data pre-treatmeotsnparison of
using the Huber loss or squared error cost functias examined.

Consistently Huber loss had superior performance tba
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468

validation set with lower accuracy in cross-validat This
observation demonstrated the advantage of usingbast error
function and prevented some degree of overfittiipe exception
was improved performance of squared error whengusie full
EEM spectrum for predicting both THMs and HAAs.

For prediction of THMs, optimum validation perforntae
(MAE: 7.46 pg LY) was observed using spectral data pre-
processed by an autoencoder with comparable pesfuoen(MAE:
7.97 ug ) using the full EEM. Dimensionality reduction with
PARAFAC resulted in the poorest performance (MAB:22 g
L™, resulting in loss of accuracy compared to theracessed full
spectrum. Based on variance of predictions betvedle@V-folds
on the validation data, all MAE differences wergndiicant as
determined by t-tests (p < 0.024). This obsermatioggests loss
of information related to THM precursors througle @pplication
of PARAFAC and constraints of interpretable compuse Pre-
treatment with an autoencoder was observed totrestihe most
robust regression, with the lowest discrepancy betwCV and
validation set error rates (CV MAE: 4.87 ud,Lvalidation MAE:
7.46 pg L.

Predictability of total HAA formation was consisthn
lower compared to THMs. Prediction accuracy on\takdation

set varied less across all pre-processing appredd@ers to 14.22
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ng LY MAE). For HAA prediction, pre-processing was notiid
to improve regression accuracy and utilizing thé $pectrum
resulted in the greatest CV and validation MAE. slitould be
considered that while pre-processing and organicogates are
being compared in this analysis, other factorsugrice DBP
formation, such as pH, have not been includedemtbdels.

The uniqueness of the separated validation datsetld
be considered when assessing the model performadnsieould be
noted that when considering the variance betweerfdiis (29.6
to 44.6% coefficient of variation), comparisons pre-treatment
methods were not found to be significant (p > 0.09pbwever, the
validation dataset was separated initially and uoblized for
developing the dimensionality reduction models. #sh, we
believe along with a larger test size (validation 84; CV test n =
9-10), the emphasis should be on comparison oflattin dataset
error. With each CV fold, prediction on the valida data was
also carried out. Considering the variability impd by data used
for training, all comparisons of the validation MAkere found to

be significant (p < 0.05) for both THMs and HAAs.

The role of NN regression was determined through

comparison with a conventional multi linear regress(MLR)
method. The fluorescence results derived from dsimmality

reduction were used as the multi-variate inputs towulti linear
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514

regression model. Accuracy of the AE, PCA, and RERC
derived scores in multi linear regression models r@ported in
Table 2. Validation accuracy using MLR was compbedor each
data pre-treatment. A consistent trend of datatneegment
performance on the validation dataset from bestdrse was AE >
PCA > PARAFAC. This relationship was less pronaditor CV
error rates, particularly for HAA prediction. Ingwement of
validation accuracy with AE-NN regression vs MLRr foHM
prediction (7.46 ug tvs 9.64 pg ') was contrasted to a decrease
in prediction accuracy for HAAs (11.93 pg'lvs. 9.64 pg b).
However, for all cases the MAE from cross-validatiwas greater
using MLR (13.52 to 20.92 pg™) compared to NN regression
(3.08 to 6.33 ug ). This suggests on average, between all folds
during cross-validation, NN regression may have aathges
despite the comparable performance on the validatiataset.
Trueman et al. (2016) used a comparable crossatalidapproach
and bench-scale samples subjected to advancedtioridavith

reported CV MAE> 9.5 ug L.

3.2.2 Comparison to conventional organic measures

The performance of the fluorescence/neural network
approach was compared to baseline models whichizeutil
conventional organic measures of DOC, UVA (at 254),nand

SUVA. Overall linear model strength between DOQ divA
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515 with THM concentrations were moderate*(R0.65 and 0.56,
516 respectively). The model strength or correlatibasveen DOC or
517 UVA with THMs were lower compared to those reporbsd Li et
518 al. (2016) (DOC R 0.89; UVA R: 0.79), which included 16
519 drinking water sources as well as coagulation andnaexchange
520 treatments. This supports our expectation that adeanced
521 oxidation treatments resulted in significant change organic
522 character, while not altering overall measures .cbOC. Using
523 alinear model, validation error was minimized gsidOC (MAE:
524 15.15 pg [') however it was over 2 times greater when compared
525 to the autoencoder/fluorescence. As shown in Eigir UVA
526 resulted in groupings of THM predictions and ingicahat this
527 measure did not capture organic properties whishlren THM
528 formation. To establish that the difference infpenance was not
529 due to a linear model vs. neural network regressameural
530 network with DOC and UVA as inputs was trained. liddgtion
531 error was comparable to the linear model, howenereased CV
532 performance was observed.

533 Correlations with total HAA formation were found be
534 low (R? 0.09 to 0.48) although validation set error ratesre
535 comparable to fluorescence results using both Ni¥ession and
536 MLR. This is possibly due to the decreased rangeHAA

537 formation, 28.1 to 139.5 pg'LHAAs vs. 26.5 to 208.2 pg'L
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538 THMs. The comparable accuracy between organiogates and
539 regression approach may also suggest that HAA ficomés more
540 significantly dependent on other factors that hawa been

541 included in the model such as pH.

542 3.3 FLUORESCENCE REGIONAL IMPORTANCE FOR

543 DBP FORMATION

544 Through the established weights in the modelss iof
545 interest to understand the relative contributiohsazh input to the
546 predictability of DBPs. The process of determiniagriable
547 importance was carried out using the Connectiongiitehpproach
548 described by Olden and Jackson (Olden and Jack&f?) and
549 Olden et al. (Olden et al., 2004). For each ingu, product of
550 connected weights between the network layers mutstbd. This
551 was performed 20 times with different random weight
552 initializations for every constructed network. Nw@lization of the
553 calculated variable importance was conducted to irgkm
554  variability based on the absolute value of theiahinetwork
555 weights. The relative input variable importancengvarying data
556 pre-processing methods are shown in Figure 7. iRgnkf
557 PARAFAC variables by connection weights shows pneidant
558 positive association between humic-like fluoroplsoveith THM
559 and HAA formation. C4 was observed to have théésg positive

560 connection weights for THM prediction, indicatingg terrestrial
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humic-like fluorophore with one excitation bandlilely a major
THM precursor. Based on the HAA model, increaseddrtance
of C4 (p < 0.01) and increased negative associatitin C3 (p <
0.01) were noted. This suggests stronger associdietween
humic-like substance from possible microbial orggiand HAA
formation. Negative associations with humic-lik8 é&nd protein-
like C5 were observed. C3 in particular is unignethe high
emission characteristics > 450 nm. Through cormsparito
characterization by ultra-high resolution mass spetetry, it has
been suggested that fluorophores emitting above th0likely
have greater average carbon oxidation state®)(and higher
double bond equivalency per carbon (Lavonen et 2015).
Presence of oxidized organic material is expectaset on the
dataset containing samples which have been tregatbdozone or
an advanced oxidation process. The method usedilhestrates
sensitivity to identifying fluorescence signal regs associated
with decreased DBP formation potential from the li@pgon of
strong pre-oxidants. A visualization of the fluscence regions
associated with DBP formation is shown as Figure/l@ch were
calculated through weighted reconstruction of EEMsng the
loading values and relative variable importance.asdl on
PARAFAC, positive correlations with humic-like regis in the

ex/em region of 250-340/375-450 nm and THM/HAA faition
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can be seen. The negative association betweereimptike
fluorescence and DBP formation is also illustrated.

Variable importance using the latent maps from Ate
(Figure 7) is less interpretable due to the amibygoii fluorophore
representation in each latent variable. The vizatbn of
fluorescence regions weighted by the autoencoderah@etwork
aided in determining variable importance (Figure &enerally,
there is negative association between fluorescencex/em
260/310 nm and THM/HAA formation, however positive
connection weights are seen with tryptophan-likeféscence at
ex/em 280/340 nm. This observation is contrarhéoresults from
PARAFAC, in particular, increased importance ofptgphan-like
fluorescence for HAA formation prediction was olsel when
using the AE, full spectrum, and PCA approachearthérmore,
autoencoder-neural network regression placed higisitipe
weights to high emission regions > 550 nm.

Representation of the full EEM weighted connections
yielded a noisier but more nuanced image of flumeese regions
associated with DBP formation (Figure 8). SimiaPARAFAC
and PCA but contrary to the autoencoder, humic-pkaks with
emissions ~450 nm had positive weightings. Spedifiv ex/em
peaks in the protein-like region were also ideatifito have

positive weights. Pronounced high relative weighéd
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607 approximately ex/em 280/310 nm and 380/436 nm sped well
608 to expected Raman peaks from water. While the E&#t® first
609 pre-processed to remove influence of Rayleigh aahd&h regions,
610 artifacts may have remained which were identifigdi® model to
611 be positively correlated with DBP formation. Comgdévely to the
612 autoencoder regions, fluorescence at high emissior50 nm
613 were also positively associated with both THM and\AH
614 formation.

615 Evident from the contradicting regions associateith w
616 DBP formation regression is the influence of the-processing
617 method. Regions identified by PARAFAC conform to
618 expectations of types of organic material likely tesult in
619 formation of DBPs and are most interpretable. Hmweincreased
620 performance of the autoencoder or using the fulME®&hen
621 predicting THMs and HAA formation on the validatiaiataset
622 using both NN regression and MLR gives credencé these
623 approaches were better able to include fluorescemggons
624 associated with DBP formation. Our interpretatmithe non-
625 conformance of these results is that significamsateration of the
626 pre-processing method should be taken when intémgreeduced-
627 dimensionality EEM results. We hypothesize thae do the
628 apparent influence of data pre-processing, uttjzithe full

629 spectrum with weight normalization to encouragesvaht input
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651

selection may result in a more accurate representaof
fluorescence regions associated with NOM reactitdy form

DBPs.

4 Conclusons

A NN approach to both dimensionality reductiondjaimg
an AE as well as for DBP formation regression wasws to be
advantageous. Results on a randomly separatethtiah data set
indicate that, while PARAFAC produces componentsictvh
resemble organic fluorophores, the constrained usmeaality
approach likely results in information loss thapnoves prediction
of both total THMs and total HAAs. Compared to coom
organic measures an AE-NN regression provides @régdining
and validation set prediction accuracies for THM= aimilar
performance for HAAs. AE dimensionality reductiappears to
potentially mitigate overfitting based on minorfdiences between
CV training error and validation errors. Companisaf MLR to
NN yields similar accuracy on validation data, oating that pre-
treatment methods should be emphasized, and thessgn
approach may not be as important. Through analgsishe
connection weights, variable importance can be tfigoh
allowing for greater understanding regarding how titained NN

model functions. Particularly through the moreeiptetable
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652 PARAFAC components, differing positive and negative
653 correlations between components and DBP formatioas w
654 observed. While humic-like fluorophores or fluaresce regions
655 were generally observed to be associated with Di8Rdtion, a
656 PARAFAC component likely representing organic mater
657 transformed by an oxidation process was negatiesigociated
658 with formation potentials.

659 Results presented in this study suggest the novel
660 applicability of autoencoders for interpretation ffiorescence
661 results. Compared to PARAFAC analysis, autoensodesduced
662 components with more limited in interpretabilitygpvirever resulted
663 in increased representation of the data as evideinom improved
664 DBP formation prediction. While autoencoders ojmed
665 prediction of THMs, utilizing the full spectrum waibut any prior
666 dimensionality reduction was observed to resultthia greatest
667 performance for HAAs in this study. Furthermoraproved DBP
668 formation prediction using a NN approach was obsgmompared
669 to linear regression typically practiced. The aggh taken in this
670 work is well suited for handling large and high-éinsional
671 datasets, which are increasingly common. Furthezmaohe
672 possible use of fluorescence as a continuous morgtalevice

673 will require flexible, robust, and scalable anatysiethods.
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Table 1 Cross—validation (CV) and validation results foura# networks with varying data pre-
treatments and cost function. MSE: mean squaredr,eMAE: mean absolute error, AE:

autoencoder, PCA: principle component analysis, RPA&C: parallel factors analysis, HL:
Huber-loss, SE: squared error.

Data pre- CV MSE CV MAE Validation MSE | Validation MAE
treatment (ng/L)? (ng/L) (ng/L)? (ng/L)

HL SE HL SE HL SE HL SE
THMs
Full spectrum 66.91 36.03 3.70 3.29 334.85 127.09.82 7.97
AE 77.48 64.41 4.87 4.96 120.03 198.07 7.46 11/93
PCA 82.57 61.98 4.80 5.43 268.92 24576 13.39 12.32
PARAFAC 167.76  96.70 6.33 6.51 753.01 435/07 20.2416.39
HAAs
Full spectrum 25.45 17.10 3.08 2.74 173.95 159.440.75 10.28
AE 49.11 32.05 4.97 4.17 195,53 329.66 11.93 15|23
PCA 47.63 25.08 5.05 3.71 177.67 24956 11.85 12.53
PARAFAC 68.00 36.39 4.74 4.45 363.81 348093 14.228.81




Table 2 Cross-validation and validation results (MAE) for multi linear regression using
fluorescence data pre-processed by a dimensionality reduction method.

Data pre-treatment CcVv MAlE Validation_lMAE
(Mg L) (Mg L)

THMs

AE 18.34 9.65

PCA 20.65 13.19

PARAFAC 20.92 20.39

HAAs

AE 13.52 9.64

PCA 14.49 11.92

PARAFAC 13.63 14.00




Table 2 Cross—validation (CV) and validation results fonelar models with conventional
organic measures. MSE: mean squared error, MAEnrabsolute error.

Organic CV MSE CV MAE Validation Validation Full dataset
measure (ng/L)? (ug/L) MSE (ug/L)? | MAE (ug/L) R?
THMs

DOC 492.39 16.13 303.26 15.15 0.65
UVA 525.69 17.57 524.82 17.59 0.56
SUVA 859.87 21.85 864.25 21.13 0.29
DOC + UVA | 55733 10.23 365.33 16.33 :
neural network

HAAs

DOC 227.22 11.97 303.53 12.03 0.48
UVA 267.81 13.33 396.97 14.46 0.30
SUVA 312.80 14.57 466.70 15.79 0.09
DOC + UVA, 84.12 6.94 197.83 10.18 -
neural network




Figure 1 Schematic of an example autoencoder structure with one hidden layer and latent layer

(2) with two nodes.

Figure2 Loading plots for the 5 identified PARAFAC components.

Figure 3 Loading plots from PCA

Figure 4 Latent maps from the constrained layer of the autoencoder

Figure 5 Measured vs. predicted THMs for example models using varying data pre-treatments.
Circles represent samples in the training dataset; + represent samples from the validation dataset.

Figure 6 Measured vs. predicted THMs using conventional organic measures. Circles represent
samplesin the training dataset; + represent samples from the validation dataset.

Figure 7 Relative importance of input variables calculated based on connection weights.
Vertical bars represent one standard deviation from the 20 random initializations.

Figure 8 Mappings of fluorescence regions of relative importance for the prediction of THMs
and HAAs. @) autoencoder, THMs; b) autoencoder, HAAS;, c) full EEM, THMs; d) full EEM,
HAAs, ) PARAFAC, THMs;, f) PARAFAC, HAASs;, g) PCA, THMs; h) PCA, HAAs.
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Highlights

» Autoencoder applied for dimensionality reduction of fluorescence spectra

» Improved DBP formation prediction using autoencoder components or full spectrum
* PARAFAC produced interpretable components, however poor reactivity prediction
* Improved cross-vaidation accuracy using neural networks for regression

» Neura network weights identify fluorescence regions associated with DBP formation



