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Abstract 

Previous studies have shown that geostatistics-based transient hydraulic 

tomography (THT) is robust for subsurface heterogeneity characterization through the 

joint inverse modeling of multiple pumping tests. However, the hydraulic 

conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous 

for areas where pumping/observation densities are not high. This renders the imaging 

of interlayer and intralayer heterogeneity of highly contrasting materials including 

their unit boundaries difficult. In this study, we further test the performance of THT 

by utilizing existing and newly collected pumping test data of longer durations that 

showed drawdown responses in both aquifer and aquitard units at a field site underlain 

by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT 

is highlighted through the comparison of different degrees of model parameterization 

including: (1) the effective parameter approach; (2) a geological zonation approach 

relying on borehole logs; and (3) a geostatistical inversion approach considering 

different prior information (with/without geological data). Results reveal that the 

simultaneous analysis of eight pumping tests with the geostatistical inverse model 

yields the best results in terms of model calibration and validation. We also find that 

the joint interpretation of long-term drawdown data from aquifer and aquitard units is 

necessary in mapping their full heterogeneous patterns including intralayer 

variabilities. Moreover, as geological data are included as prior information in the 

geostatistics-based THT analysis, the estimated K values increasingly reflect the 

vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard 
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units. Finally, the comparison of various THT approaches reveals that differences in 

the estimated K and Ss tomograms results in significantly different transient 

drawdown predictions at observation ports.  
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1. Introduction 

Investigations of groundwater problems have relied heavily on the accurate 

knowledge of the subsurface parameters such as hydraulic conductivity (K) and 

specific storage (Ss). Usually, these hydraulic properties are determined by fitting 

pumping test data from individual tests to analytical solutions with the assumption 

that the subsurface is homogeneous. Estimates of such traditional analyses can yield 

biased parameter estimates (e.g., Wu et al., 2005; Wen et al., 2010; Illman et al., 2010; 

Alexander et al., 2011; Huang et al., 2011; Berg and Illman, 2011a,b; 2013, 2015) 

due to the fact that the subsurface is heterogeneous at multiple scales. Alternatively, 

small-scale measurements of cores, slug, single-hole, and flowmeter tests require a 

large number of measurements in order to adequately characterize subsurface 

heterogeneity. Thus, Carrera et al. (2005) advocated the more common use of inverse 

models to estimate hydraulic parameters based on observations of ambient hydraulic 

heads, artificial changes in heads, as well as other data such as solute concentration 

through either stochastic or deterministic groundwater flow and transport models 

(Pool et al., 2015).  

Among the various techniques to characterize the subsurface, pumping tests are 

considered to yield large-scale estimates of hydraulic parameters through the 

interpretation of drawdowns in both aquifer and aquitard layers. However, drawdown 

responses to such tests are only typically monitored in aquifers. In addition, as the 

tests are usually not run long enough, drawdown signals are detected only in high K 

zones connected to the pumped interval, leading to parameter estimates only for 
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aquifers (Fogg and Zhang, 2016; Neuzil, 1994, 1986). While the characterization of 

aquifers is important, the same applies to low K zones and aquitards (and their 

connectivity) for groundwater resource evaluation (e.g., Scanlon et al., 2003; Konikow 

and Neuzil, 2007), solute transport (e.g., Johnson et al., 1989; Hendry and 

Wassenaar, 2000), land subsidence (Galloway and Burbey, 2011; Zhuang et al., 

2017a, b) and also waste storage (Montazer and Wilson, 1984; Neuzil, 1994).  

Aquitard hydraulic parameters are typically obtained by performing laboratory 

permeameter tests together with consolidation tests on small-scale samples (e.g., 

Keller et al., 1989; Alexander et al., 2011). However, laboratory tests can yield 

hydraulic parameter estimates that may not be representative of field conditions. As 

reviewed by van der Kamp (2001), field testing methods for aquitard characterization 

include the analysis of slug and pumping tests (e.g., Neuman and Witherspoon, 1972; 

Keller et al., 1989), monitoring of pore-pressure changes and settlement due to 

surface loading (van der Kamp and Maathuis, 1985), as well as monitoring of 

seasonal head fluctuations (Davis, 1972; Keller et al., 1989). 

van der Kamp (2001) noted that the most common methods provide only a 

one-dimensional value of hydraulic diffusivity (α = Kv/Ss) of the aquitard, where Kv = 

vertical hydraulic conductivity and a value of Kv is inferred by relying on a laboratory 

estimate of Ss. He also noted that laboratory estimates of Ss are typically several 

orders of magnitude larger than those estimated in the field. The commingled use of 

field and laboratory values can be problematic and can result in inaccurate estimates 

of Kv.  
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Other information, such as land subsidence data recorded by multiple vertical 

extensometers (e.g., Cleveland et al., 1992; Zhuang et al., 2015, 2017b), could also be 

analyzed to determine aquitard hydraulic parameters. However, despite its 

importance, very little work has been done to map the variability of hydraulic 

parameters in aquitards. This may partly be a result of significant difficulties in 

obtaining even a single reliable hydraulic parameter estimate of aquitard units, 

notwithstanding their heterogeneities. Clearly, new methods are necessary for 

obtaining more reliable hydraulic parameter estimates within aquitards and mapping 

heterogeneities within them. 

Hydraulic tomography (HT) has become a mature inverse modelling technique 

to map both high and low K features of the subsurface. It relies on the joint inverse 

modeling of multiple sets of pressure heads that are obtained from different 

observation intervals, while pumping and/or injecting water at different locations of 

target aquifers. Thus far, HT has been investigated by several research groups through 

synthetic studies (e.g., Yeh and Liu, 2000; Bohling et al., 2002; Zhu and Yeh, 2005, 

2006; Cardiff et al., 2009, 2013; Liu and Kitanidis, 2011; Mao et al., 2013), 

laboratory experiments (e.g., Liu et al., 2002, 2007; Brauchler et al., 2003; Illman et 

al., 2007, 2008, 2010; Berg and Illman, 2011a; Liu and Kitanidis, 2011; Zhao et al., 

2015; Zhou et al., 2016) and testing at the field-scale (Bohling et al., 2007; Cardiff et 

al., 2009, 2012; Illman et al., 2009; Berg and Illman, 2011b, 2013, 2015; Brauchler et 

al., 2011; Hochstetler et al., 2016; Paradis et al., 2016; Zhao and Illman, 2017). 

Compared to traditional aquifer characterization approaches, HT has shown to be 
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superior in recovering the heterogeneity as well as predicting independent pumping 

tests not used for model calibration (Illman et al., 2010, 2015; Berg and Illman, 

2011a,b, 2015). 

In order to interpret multiple pumping and observation data from HT tests, 

different inverse modeling methods have been developed. Two most frequently used 

inverse modeling algorithms are the quasi-linear geostatistical approach (QL) 

(Kitanidis, 1995) and the successive linear estimator (SLE) (Yeh et al., 1996), both of 

which rely on the cross-covariance between hydraulic head and aquifer parameters 

(e.g., Yeh and Liu, 2000; Zhu and Yeh, 2005; Illman et al., 2009; Berg and Illman, 

2011a,b; Cardiff and Barrash, 2011; Mao et al., 2013). Alternatively, the Kalman 

filter (KF) as well as its low rank versions, such as the ensemble KF (e.g., Nowak, 

2009; Li et al., 2012; Schöniger et al., 2012), generalized compressed state KF (e.g., 

Kitanidis, 2015; Li et al., 2015), and the spectral KF (e.g., Ghorbanidehno et al., 2015, 

2017), have also been increasingly used for hydraulic parameter estimation, through a 

Bayesian framework to continuously assimilate hydraulic head and/or concentration 

data. 

For the majority of the above HT studies, geostatistics forms the backbone of 

various inverse methods. While the geostatistics-based HT offers many advantages 

(Yeh and Šimůnek, 2002), it could produce overly smooth distributions of subsurface 

heterogeneity, when only few pumping tests and monitoring data are available (Yeh 

and Liu, 2000; Cardiff et al., 2013; Illman et al., 2015; Zhao and Illman, 2017). For 

example, in the field studies at the North Campus Research Site (NCRS) located on 
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the University of Waterloo campus in Waterloo, Ontario, Canada, both the THT (Berg 

and Illman, 2011b) and steady state hydraulic tomography (SSHT) (Berg and Illman, 

2013) analyses of four pumping tests captured the most salient heterogeneity patterns 

of the highly heterogeneous glaciofluvial deposits. However, despite the relatively 

large number of monitoring intervals installed within the well field, stratigraphic 

boundaries between aquifer and aquitard units were ambiguous. More importantly, 

high K values were estimated for the lower portion of the model domain, where the 

known geology indicates the presence of an aquitard consisting of clay. Berg and 

Illman (2011b, 2013) pointed out that little to no drawdown responses were observed 

in monitoring wells located in the low K material during the relatively short-duration 

pumping tests, thus leading to unsatisfactory results. Later, Berg and Illman (2015) 

were able to map those low K zones, but only after using permeameter K values for 

conditioning. Therefore, one could question whether the geostatistics-based inversion 

approach could be reliably used to map unit boundaries and more importantly, 

aquitard units consisting of low K materials with pumping test data alone or not. 

Thus far, HT studies have not been previously conducted to map both aquifer 

and aquitard units and their connectivity. Because geostatistics-based HT yields 

smoothed hydraulic parameter distributions when data are sparse, the inclusion of 

other types of information becomes necessary to map the various units (i.e., interlayer 

heterogeneity) and the heterogeneity within them (i.e., intralayer heterogeneity). 

Lessons from our previous studies (Berg and Illman, 2011, 2013) also point to the 
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need for longer pumping tests to stress the aquitard units to characterize them with 

pumping tests alone.  

In order to overcome the issue of smooth hydraulic parameter estimates of the 

geostatistics-based inversion approaches, the importance of geological data was 

investigated for HT analyses. In particular, Zhou et al. (2014) proposed an 

image-guided method which extracts the structure information from the cross sections 

of geology and incorporating it in the inversion process. Later, Zhou et al. (2016) 

extended this method by including the Markov-chain Monte Carlo sampler to update 

and select the most plausible geological models for the inverse problem. This 

image-guided inversion approach was then tested in synthetic HT studies by Soueid 

Ahmed et al. (2015), but not through laboratory sandbox or field experiments. 

On the other hand, Illman et al. (2015) compared the SSHT analyses based on 

geostatistical inversion to those based on effective parameter and geological models, 

to test whether subsurface conceptualizations of the K structure at lower resolutions 

for a sandbox aquifer could yield similar results to the geostatistical inverse modeling 

approach or not. They found that the geostatistical inversion approach performed best 

in terms of model calibration and validation, but the geological model with perfectly 

known stratigraphy came a close second. Then, Zhao et al. (2016) evaluated the 

performances of geological zonation models of varying accuracy for SSHT through 

the same laboratory sandbox, and Luo et al. (2017) extended the work of Zhao et al. 

(2016) to the THT case. Results from the sandbox studies revealed that, both accurate 

and inaccurate geological models could be well calibrated, despite the estimated K 
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values for the poor geological models being quite different from the actual values. 

These studies also concluded that: (1) using a geological model as prior mean K 

distributions in geostatistical inverse models resulted in the preservation of geological 

features, especially in areas where drawdown data were not available; and (2) 

transient inversions are necessary by treating both K and Ss to be heterogeneous to 

jointly obtain reliable K and Ss estimates for making accurate predictions of transient 

drawdown events. The findings by Zhao et al. (2016) and Luo et al. (2017) were 

based on experiments conducted in a laboratory synthetic aquifer constructed with 

various types of sands, which did not contain low K materials (e.g., clay, silty clay) as 

encountered at the NCRS (Alexander et al., 2011; Berg and Illman, 2011b). Therefore, 

efforts other than Berg and Illman (2011b, 2013, 2015) are needed to examine 

whether the HT approach can map aquitard units consisting of low K materials 

through pumping tests alone. 

Most recently, Zhao and Illman (2017) performed a new SSHT study at the 

NCRS. The unique contribution of Zhao and Illman (2017) was that they tried to 

stress the low K layers and included both steady and quasi-steady state drawdown data 

from low K zones into the SSHT analysis. Compared to the previous HT analyses of 

Berg and Illman. (2011b, 2013) in which the bottom aquitard layer was incorrectly 

mapped as a high K zone, slight improvements in the characterization of the lower 

aquitard were obtained by Zhao and Illman (2017). Yet, the consistency between the 

estimated and permeameter test K values was still poor in silt and clay layers, due to 

the fact that only late time pressure heads indicating steady or quasi-steady state were 
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selected for model calibration. However, when transient data are available from 

aquitard units, more complete information could then be utilized for THT analysis.  

Following this line of thought, the first purpose of this study is to perform THT 

analysis using long-term transient drawdowns obtained from both aquifer and aquitard 

units to investigate whether more accurate maps of both units as well as their 

intralayer heterogeneity could be obtained through the inversion of pumping test data 

alone.  

Furthermore, the importance of geological data for THT has not been 

investigated rigorously in the field. In order to examine these issues, the second 

purpose of the study is to extend the work of Zhao and Illman (2017) to the transient 

case and compare the model calibration and validation performances among several 

approaches: (1) the effective parameter approach by treating the site to be 

homogeneous, both isotropic and anisotropic; (2) the geological zonation approach 

treating each layer to be homogeneous; and (3) the highly parameterized geostatistical 

inversion approach.  

2. Data Used for Analysis 

2.1 Site Description and Geology 

Data for this THT study has been collected at the North Campus Research Site 

(NCRS) located on the University of Waterloo (UW) campus in Waterloo, Ontario, 

Canada. Previous investigations revealed that the near surface is highly heterogeneous 

and composed of multiple layers of glacial tills (Alexander et al., 2011; Karrow, 
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1979; Sebol, 2000). Based on the continuous core samples of a 30-m deep borehole, 

the geology beneath the NCRS consists of, from younger to older age, the Tavistock 

Till, Maryhill Till and Catfish Creek Till (Karrow, 1979). The surface layer in our 

study area is recognized as the Maryhill Till, which consists mainly of silty clay 

accompanied with few stones, while the overlying Tavistock Till only exists as 

erosional remnants at the site. The Catfish Creek Till is composed of stiff stony silt to 

sandy silt, which is hard and difficult to drill, thus is treated to be the base of our 

groundwater models (Berg and Illman, 2011b). 

The main aquifer zone of the NCRS, composed of high K sand to sandy gravel, 

is located from 8 to 13 m below ground surface (mbgs). Detailed descriptions of core 

samples indicate that the aquifer zone consists of two high K units separated by a 

discontinuous low K layer. The thin aquitard layer separating the two aquifers is 

discontinuous and is known to contain stratigraphic windows allowing for hydraulic 

connection (Alexander et al., 2011). Situated below and above the main aquifer zone 

are aquitard layers composed of low K silts and clays. The overlying aquitard layer also 

is known to contain stratigraphic windows at various locations (Martin and Frind, 

1998). Previous pumping tests performed at the site (Alexander et al., 2011) indicated 

that the aquifer at the NCRS behaves as a confined to semi-confined system. 
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2.2 Field Data for Building Groundwater Models 

2.2.1 Collection of core samples and laboratory analyses 

In previous studies by Alexander et al. (2011) and Berg and Illman (2011b), 

four continuous multichannel tubing wells (CMT1, CMT2, CMT3, CMT4), three 

multi-screened wells (PW1, PW3, PW5) and two well clusters (PW2, PW4) were 

installed in an area of 15 m by 15 m at the NCRS. Fig. 1a is a plan view showing well 

locations, while Fig. 1b provides a three-dimensional perspective view of wells, 

corresponding pumping and observation intervals, as well as intervals sealed with 

bentonite at the site.  

Each CMT well has seven 10-cm long screens and the screens are spaced 2 m 

apart. The upper most screens are installed between 4.5 and 5.5 mbgs, and the deepest 

screens are placed from 16.5 to 17.5 mbgs. PW1 is completed to an approximate 

depth of 18 m and screens are placed at eight different elevations. PW3 and PW5 are 

multi-screened at five different elevations and extends approximately to 12 mbgs. 

PW2 and PW4 are well clusters that each consists of three separate wells and screened 

over a 1 m interval. Screen elevations for PW2 are 4, 7, and 8 mbgs, while screen 

elevations for PW4 are 5, 8.5, and 11.5 mbgs.  

During the drilling and installation of all CMT and PW wells, continuous cores 

were collected to characterize the site geology. After splitting the core into half along 

its length, soil texture was classified based on the layering observed at the scale of the 

core. Then, samples were extracted at 10 or 50 cm intervals for laboratory falling head 

permeameter tests. Specifically, core samples from five wells (CMT1, CMT2, CMT3, 
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CMT4 and PW1) were initially tested by Alexander et al. (2011) and samples from 

the other four wells (PW2, PW3, PW4, PW5) were tested by Zhao and Illman (2017). 

These K values were used in later sections to quantitatively and qualitatively compare 

the K estimates from different approaches along each borehole. 

The borehole logs of the above nine wells, together with additional nine wells 

summarized from previous work by Sebol (2000), were compiled to construct a 

geological model for the NCRS. Fig. 1a shows the distribution of wells from which 

geological information was obtained. Based on the soil types and corresponding depth 

information, 19 different layers representing seven different material types were 

defined along all boreholes. 

2.2.2 Description of pumping tests 

To date, a total of 15 pumping/injection tests have been conducted at the NCRS 

to stress the multiple aquifer-aquitard system in a tomographic fashion. We have 

summarized the details to the pumping/injection tests in Table S1. Nine pumping tests 

(PW1-3, PW1-4, PW1-5, PW3-3, PW3-4, PW4-3, PW5-3, PW5-4, and PW5-5) have 

been conducted by Berg and Illman (2011b) for previous HT analyses (Berg and 

Illman, 2011, 2013, 2015). These pumping tests mainly stressed the aquifer layers of 

the NCRS, since groundwater can be readily pumped from these units. Although 

pressure transducers were installed in observation ports located in aquitard layers, no 

drawdown responses have been observed by Berg and Illman (2011b) from the 

bottom ports consisting of Catfish Creek Till. Berg and Illman (2013) suggested that 
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it may take several days to even weeks to induce observable drawdowns into the 

lower aquitard zones of the system, when pumping from the aquifer zones. Therefore, 

to obtain more complete drawdown information, six additional pumping and injection 

tests were conducted by Zhao and Illman (2017) to directly stress the aquitard zones 

at PW1-1, PW1-6, PW1-7, PW2-3, PW3-1, and PW5-1. Due to the low permeable 

nature of surrounding deposits, pumping and injection tests at these six well locations 

were conducted at flow rates that were generally no more than 2.0 L/min, as shown in 

Table S1. Noticeable drawdowns (> 0.1m) were generally observed within 6.5 hours 

from the ports whose elevations were similar to the pumping port, except for the test 

at PW1-7 which lasted up to 26.5 hours. In particular, the PW1-6 and PW1-7 intervals 

could only be pumped at approximately 1.0 L/min. Such low flow rates have induced 

measureable drawdowns at the bottom intervals within the aquitard zone (i.e., CMT -6 

and -7 ports), while no drawdown has been observed from upper intervals (i.e., CMT 

-1, -2, -3, -4 and -5 ports). 

During each pumping/injection test, pressure transducers were placed at all 

available observation intervals. Specifically, all CMT wells from the top to bottom 

intervals (e.g., CMT1-1 to CMT1-7) were instrumented with 0 - 15 psig (model 

MP100: Micron Systems) pressure transducers, while the bottom intervals (e.g., 

CMT1-7, CMT2-7, CMT3-7, and CMT4-7) were monitored with an electronic water 

level tape by Berg and Illman (2011b). PW2 and PW4 wells were monitored with 0 - 

5 or 0 - 10 psig pressure transducers (model 3001 LT Leveloggers Junior: Solinst). 

FLUTe water systems (FLUTe Ltd.) were installed in the multi-screened pumping 
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wells (e.g., PW1, PW3, and PW5) during pumping/injection tests. A blank FLUTe 

liner was installed, when the wells were not being pumped. Each FLUTe water system 

contained five vented pressure transducers (Level Troll: In Situ) that were designed to 

fit the screened intervals of PW1, PW3, and PW5. The FLUTe systems seal off the 

entire well to prevent short circuiting of pressure across the multiple open screened 

intervals.  

We utilized data from 12 pumping/injection tests to perform the THT analysis at 

the NCRS. Data from eight tests (PW1-1, PW1-4, PW1-6, PW1-7, PW2-3, PW3-3, 

PW4-3, and PW5-3) were selected for model calibration, while the other four tests 

(PW1-3, PW1-5, PW5-4, and PW5-5) were reserved for model validation. Test data 

from PW3-1, PW3-4, and PW5-1 were not selected due to the fact that drawdowns 

were insignificant or only observed at very few ports. In addition, test data affected by 

the Noordbergum effect (Verruijt, 1969; Berg et al., 2011, 2015) were not included in 

the analysis.  

For the data recorded by the transducers in the CMT wells, a 10-point centrally 

weighted moving average was applied to remove the static sensor noise. Since the 

data were collected at a high frequency (4 Hz at early time and 1 Hz at late time), the 

application of this filter did not significantly impact the shape of the drawdown curve. 

Three to five points were selected manually from the early, intermediate, and late time 

of each transient drawdown curve. In total, we selected 522 pressure head data for 

model calibration and used 348 head data for model validation. 
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3. Description of Models Used for Hydraulic Tomography Analysis 

We compared three approaches different in model conceptualizations and 

complexities for HT analysis namely, (1) the effective parameter approach, both 

isotropic and anisotropic; (2) the geological zonation approach; and (3) the highly 

parameterized geostatistical approach. 

In order to simulate transient groundwater flow for all models, a 

three-dimensional model with dimensions of 70 m × 70 m × 17 m was constructed 

and discretized into 31,713 variably-sized rectangular finite elements. We note that 

the groundwater flow model did not consider poroelastic effects.  

This model was larger than the 45 m × 45 m × 15 m model used by Berg and 

Illman (2011b, 2013, and 2015). Such a new domain, on one hand, was designed to 

incorporate additional borehole logs for constructing a site geological model. On the 

other hand, this larger model minimizes the impacts of boundary conditions, when 

including new pumping and injection tests of longer durations.  

The elements were gradually refined from the model boundary to the central 15 

m × 15 m × 17 m well clustering area, with the block size decreasing from 5 m × 5 m 

× 0.5 m to 0.5 m × 0.5 m × 0.5 m. The top and bottom faces were defined as no-flow 

boundaries due to the presence of low K units at the top and bottom areas of the 

modeling domain, while constant heads were assigned to the remaining boundaries. 
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3.1 Case 1: Effective Parameter Approach 

We first estimated the effective K and Ss values for the multiple aquifer-aquitard 

system, by coupling the groundwater flow model HydroGeoSphere (HGS) (Therrien 

et al., 2005) with the parameter estimation code, PEST (Doherty, 2005). Two cases 

were considered in this approach. Case 1a treated the aquifer-aquitard system as 

homogeneous/isotropic, in which only the effective K and Ss values were estimated. 

Case 1b treated the system as being homogeneous/anisotropic and the effective Kx, Ky, 

Kz and Ss values were estimated. The initial values of K and Kx/Ky/Kz were 8.0 × 10
-6

 

m/s, with a minimum bound of 1.0 × 10
-10

 m/s and a maximum bound of 1.0 × 10
-1

 

m/s. The initial value of Ss in both Case 1a and 1b was 1.0 × 10
-4

 /m with minimum 

and maximum bounds of 1.0 × 10
-8

 /m and 1.0 × 10
-3

 /m, respectively. These initial 

values were geometric means of individual K and Ss estimates obtained by Berg and 

Illman (2011b) through matching the transient drawdown curve at each observation 

port for a pumping test conducted at PW1-3. 

3.2 Case 2: Geological Zonation Approach 

As introduced previously, borehole logs of 18 wells completed to different 

depths were compiled based on determined soil type information. In total, 19 different 

layers representing seven different material types were defined along all boreholes. To 

investigate the value of geological data for THT data interpretation, we constructed a 

three-dimensional geological model with dimensions of 70 m × 70 m × 17 m using a 

commercial software Leapfrog Hydro (ARANZ Geo. Limited, 2015). Leapfrog Hydro 



  

 19 

utilizes the Fast Radial Basis Function method, which is an effective way of 

implementing dual kriging to interpolate stratigraphy between boreholes based on the 

known geological layering information from available wells. Fig. 2 shows four 

cross-sections (A-A′, B-B′, C-C′, and D-D′, as indicated in Fig. 1a) extracted along 

different directions among the central nine wells to illustrate the interpolated 

geological layers. We also present the locations of wells and screens for cross-sections 

C-C′ and D-D′.  

Based on the interpolated stratigraphy, two geological models were built: (1) a 

5-layer geological model (Case 2a), constructed by merging some layers with low K 

material, specifically layers 1 through 10 as layer 1*, layers 12 through 14 as layer 

12*, and layers 16 through 19 as layer 16*; and (2) a 19-layer geological model (Case 

2b) to take full advantage of the available stratigraphy information. Both geological 

models were then utilized to create groundwater flow models using the same grid as 

described earlier. 

 Calibrations of the 5-layer (Case 2a) and the 19-layer (Case 2b) geological 

models were also performed by coupling HGS with PEST. For both model 

calibrations, the initial K value was set as 8.0 × 10
-6

 m/s for all layers, with a 

minimum bound of 1.0 × 10
-10

 m/s and a maximum bound of 1.0 × 10
-1

 m/s, while the 

initial Ss value was 1.0 × 10
-4

 /m with minimum and maximum bounds of 1.0 × 10
-8

 

/m and 1.0 × 10
-2

 /m, respectively. In both Cases 2a and 2b, the estimated parameters 

were treated to be uniform and isotopic in each layer. 
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3.3 Case 3: Geostatistical Inversion Approach 

We analyzed the eight pumping tests using the geostatistics-based Simultaneous 

Successive Linear Estimator (SimSLE) code developed by Xiang et al. (2009). 

SimSLE inverts all the data sets simultaneously, thus providing more constraints to 

the inverse problem (Xiang et al., 2009) compared to the sequential inversion 

approach (Yeh and Liu, 2000). The model domain used for the SimSLE is identical to 

the one introduced for the other models and we assume that each element is isotropic 

during the estimation process. 

In SimSLE, natural log values of hydraulic parameters (i.e., ln K and ln Ss) are 

treated as a stochastic process, and the corresponding unconditional means, spatial 

covariance functions and structure parameters (correlation scales λx, λy, λz and the 

variances, σlnK
2
, σlnSs

2
) of hydraulic parameters are assumed to be known a priori. The 

inversion process starts with cokriging using available measurements of hydraulic 

property and pressure heads to produce the conditional property field. The stochastic 

conditional means of these parameters are used for predictions of pressure heads at 

observation ports. The cokriged parameter field is then iteratively updated by SimSLE 

to minimize the differences between observed and simulated heads.  

In this study, the exponential covariance model is adopted for the parameter 

fields. The initial correlation scales of the K- and Ss- fields are assumed as λx = λy = 4 

m, λz = 0.5 m, and the variances are set to σlnK
2
 = σlnSs

2
 = 5.0, which are the values 

used in previous HT studies at the NCRS (Berg and Illman, 2011b, 2013; Zhao and 
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Illman, 2017). Other initial inputs to the inverse model include initial guesses for the 

K and Ss fields. 

Zhao et al. (2016) and Luo et al. (2017), through laboratory sandbox 

experiments as well as Zhao and Illman (2017) through their field study found that the 

geostatistical inversion approach using a geological model as prior information 

preserved geological features where drawdown measurements were lacking compared 

to using a homogenous K as a prior. Therefore, we considered four scenarios (Cases 

3a, 3b, 3c and 3d) different in the initial guesses of K for the geostatistical inversion 

approach to meet our study purposes. In Case 3a, the inversion starts with 

homogenous mean fields of K = 8.0 × 10
-6 

m/s and Ss = 1.0 × 10
-4 

m
-1

, which are the 

same as the initial values used in the effective parameter and geological zonation 

approaches. For the other three cases (Cases 3b – 3d), heterogeneous mean K fields 

based on geological zonations are used as prior information. Specifically, inverse 

estimations of K and Ss distributions in Cases 3b and 3c start with the estimated K 

values from model calibrations of Cases 2a and 2b, respectively. In Case 3d, instead 

of starting from the calibrated K fields, we use the 19-layer geological model 

populated with permeameter tested K values as the prior mean K distribution. These 

permeameter test K values are geometric means calculated from laboratory 

measurements of soil samples located in the same layer of the geological model, 

shown in Table S2 (Supplementary Information section). For the layers that have no 

core sample data, measurements of similar soil material are assigned. 
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4. Results and Discussions 

4.1 Model Calibration Results 

THT analysis of eight tests for the effective parameter and geological zonation 

approaches were performed on a PC with a quad-core CPU and 24 GB of RAM. The 

computational time increased with model complexity. Specifically, Case 1a took less 

than 2.5 hours and Case 1b took approximately 4.5 hours. Calibration of the 5-layer 

geological model (Case 2a) took approximately 11.5 hours, while the calibration of 

the 19-layer geological model (Case 2b) was completed in seven days after 1,075 

PEST model calls to estimate 38 unknowns. Note here that each ‘‘model call’’ 

consisted of transient forward simulation of eight tests and PEST optimization 

sequentially, which took about 9.5 minutes using a single CPU. This long 

computational time could have been reduced if a parallel computing environment was 

implemented. On the other hand, geostatistical inversions (Cases 3a – 3d) using 

SimSLE were performed on a PC-cluster using 16 processors with 192 GB of RAM 

and all cases of the geostatistical inversion approach converged within two days. 

4.1.1 Case 1: Effective parameter approach 

The estimated K and Ss values as well as their corresponding posterior 95% 

confidence intervals of the effective parameter models are summarized in Table 1. 

Examination of Table 1 reveals that, when treating the medium to be homogeneous/ 

isotropic, Case 1a yields a K value of 2.38 × 10
-5

 m/s and a Ss value of 9.34 × 10
-6

 /m. 

For the homogeneous/anisotropic case (Case 1b), Kx, Ky, and Kz are estimated as 1.85 
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× 10
-5

 m/s, 2.55 × 10
-5

 m/s, and 3.77 × 10
-7

 m/s, respectively, and Ss is estimated as 

1.39 × 10
-5

 /m. 

When the medium is treated to be homogeneous, the estimated parameters are 

found to vary with the observation and pumping locations (e.g., Wen and Chen, 2006; 

Liu et al., 2007; Huang et al., 2011). By individually calibrating one anisotropic 

effective parameter model to four pumping test, Berg and Illman (2015) estimated 

that Kx ranged between 4.0 × 10
−6

 and 2.9 × 10
−5

 m/s depending on the pumping 

location, Ky ranged between 4.8 × 10
−6

 and 7.3 × 10
−5

 m/s, Kz ranged between 3.0 × 

10
−8

 and 1.0 × 10
−6

 m/s, and Ss ranged between 1.0 × 10
−7

 and 6.8 × 10
−4

 /m.  

By performing grain size analysis of 270 core samples and permeameter test 

analyses for 471 core samples, Alexander et al. (2011) obtained K estimates ranging 

between 3.2 × 10
-11

 m/s to 2.5 × 10
-3

 m/s and from 5.8 × 10
-10

 m/s to 2.8 × 10
-4

 m/s, 

respectively. Our estimates of K and Ss fall within the range of these previous studies, 

suggesting the validity of the estimated values for Cases 1a and 1b. 

In a recent SSHT study at the NCRS, Zhao and Illman (2017) simultaneously 

calibrated the same effective parameter models, but used steady state and quasi-steady 

state data from seven pumping tests. The estimated effective K value was 8.43 × 10
-6

 

m/s for the isotropic case. For their anisotropic case, Kx, Ky, Kz were estimated as 1.04 

× 10
-5

 m/s, 1.19 × 10
-5

 m/s and 6.37 × 10
-7

 m/s, respectively.  

Through controlled sandbox studies, Illman et al. (2015) concluded that, when 

calibrated to a large number of observation data from multiple pumping tests instead 

of data from an individual pumping test, the effective groundwater model yields 
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improved drawdown predictions for pumping tests not used in the calibration effort. 

Yeh et al. (2015) also stated that, in order to predict the average spatial trend of 

observed heads in a heterogeneous aquifer, many head measurements distributed in 

the aquifer must be used so that the effective hydraulic properties of the equivalent 

homogeneous groundwater model could be determined. Compared to all previous HT 

studies at the NCRS, the THT analysis performed in this study included transient data 

from additional pumping tests performed in aquitard layers, instead of selecting only 

one data point from each curve for the steady state case (Zhao and Illman, 2017) or 

transient data only from individual pumping tests (Berg and Illman, 2015). 

Consequently, the differences between the effective values of the current study and 

those of previous studies could be attributed to the inclusion of more transient 

drawdown data. Meanwhile, we can expect that the estimated K and Ss values to be 

more representative of the heterogeneous properties of the multiple aquifer-aquitard 

system in an averaged sense than those obtained from previous HT studies. 

4.1.2 Case 2: Geological modeling approach 

Calibrations of the geological models are performed by treating each layer to be 

homogeneous and isotropic. The estimated K and Ss distributions are plotted in Figs. 

3a and 4a for the 5-layer model, and in Figs. 3b and 4b for the 19-layer model, 

respectively. The estimated values and their 95% confidence intervals are summarized 

in Tables 2 and 3. 

As previously noted, the main aquifer zone of the NCRS consists of two high K 

units separated by a thin discontinuous aquitard layer. Situated below and above the 



  

 25 

aquifer zone are aquitard layers composed mainly of low K silts and clays. Calibration 

results of the 5-layer geological model (Case 2a; Fig. 3a and Table 2) reveal that a 

high K value is estimated for the sand and gravel layer 15 of the aquifer zone in the 

middle model domain, while relatively low K values are obtained for the merged 

aquitard layers 12* and 16*, which consist of low permeable silt and clay. For the 

merged layer 1* containing both low permeable silt and clay and high permeable sand 

layers, the K estimate is close to the initial value of 8.0 × 10
-6

 m/s, which could be a 

result of using only one geological layer to represent multiple soil types. However, 

sand layer 11, expected to have a high K, has the lowest K value among the five layers 

as shown in Fig. 3a, which is inconsistent with geological data. Through a controlled 

laboratory sandbox study, Zhao et al. (2016) showed that the estimated K values for 

some layers of a simplified geological model by merging layers of similar material 

can also be inconsistent with permeameter test values. Therefore, this kind of 

inconsistency could potentially result through the use of a less complex geological 

model for the NCRS aquifer and aquitard system which contains both interlayer and 

intralayer heterogeneity. 

When the 19-layer geological model is used for model calibration, we see from 

Fig. 3b and Table 3 that, although the general distribution pattern of K is similar to 

Fig. 3a, there are more variations in K values compared to the 5-layer model. 

Specifically, in the upper part of model domain, low K layers are more clearly 

recovered in Fig. 3b.  
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The estimated Ss values are found to vary in the range of 2.29 × 10
-7

 /m and 9.28 

× 10
-6

 /m for the 5-layer geological model, while for the 19-layer geological model, Ss 

varies between 1.02 × 10
-6

 /m and 5.88 × 10
-3

 /m. In Fig. 4a, Ss estimates obtained by 

calibrating the 5-layer geological model show a pattern of an obviously low value 

assigned to the top portion of the domain, which may have resulted by merging layers 

1 through 10. In contrast, the Ss distribution estimated by calibrating the 19-layer 

geological model (Case 2b) shows a pattern with high Ss values at the top and bottom 

areas and relatively low values in the central domain. More specifically, the estimated 

Ss values for layers 17 and 18 are one order of magnitude higher than Ss estimates of 

the other layers. During the previous site characterization effort at the NCRS, 

Alexander et al. (2011) obtained a range of Ss estimates between 2.6 × 10
−8

 /m and 3.8 

× 10
−3

 /m with a geometric mean of 3.1×10
−5

 /m through type curve analyses of 11 

individual drawdown curves from observation intervals, when pumping at well 

PW1-4 by treating the medium to be homogeneous. Although the highest Ss value 

(5.88 × 10
-3

 /m for layer 18) of our Case 2b is slightly higher, it is still in a reasonable 

range (from 9.19 × 10
−4

 /m to 2.03 × 10
−2

 /m) as reported in Batu (1998) for clayey 

material. In later sections, all these estimates are evaluated by comparing the 

performances of model calibrations and validations 

In terms of the reliability of estimated parameters, Tables 2 and 3 reveal that the 

estimated 95% confidence intervals of K and/or Ss are relatively large for some layers 

(e.g., layers 1* and 11 in Case 2a, and layers 1, 2, 3, 5, 17, 18 and 19 for Case 2b), 

which could be a result of merging layers and fixing the layer geometry during model 
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calibrations. PEST then forcefully estimates K and Ss for each layer and does not 

truncate the confidence intervals at the maximum and minimum bounds as assigned to 

parameters (Doherty, 2005).  

The 95% confidence intervals are calculated on the basis of the linearity 

assumption that is used to derive the equations for parameter improvement in each 

optimization iteration, while the relationships between hydraulic head and hydraulic 

parameters are non-linear. Thus, a breakdown in the underpinning linearity 

assumption considered to calculate the confidence intervals may exaggerate the 

widths of the confidence intervals (Christensen, 1997; Blessent et al., 2011). 

Meanwhile, unreasonably large confidence intervals imply that information or 

measurements provided for the optimization process are insufficient to uniquely 

determine these parameters (Doherty, 2005). Therefore, another possible reason for 

the unreasonably large confidence intervals in Tables 2 and 3 is that relatively few 

observations or even no observation data are available for layers in which the 

hydraulic parameters are estimated, as indicated in Fig. 2.  

Large confidence intervals of K estimates were also found in a sandbox study 

for different geological models (Zhao et al., 2016). However, confidence interval 

widths have been found to be reduced by providing prior information of estimated 

parameters (Christensen, 1997; Blessent et al., 2011; Zhao et al., 2016).  
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4.1.3 Case 3: Geostatistical inversion approach 

Four scenarios are considered in the geostatistical inversion approach (Cases 3a 

- 3d) to test the impact of using different prior information for parameter estimations. 

Specifically, Case 3a starts with homogenous prior mean K and Ss fields; Cases 3b 

and 3c use heterogeneous prior mean K information based on geological zonations 

and estimated K and Ss values from model calibrations of Cases 2a and 2b, 

respectively. In Case 3d, the 19-layer geological model populated with K values 

obtained from permeameter tests is used as the prior mean K distribution.  

The L2 norm changes are plotted in the Supplementary Section as Fig. S1. We 

select inversion results from iteration step 110 at which the L2 norm has stabilized, 

indicating the convergence of the inversion process as suggested by Xiang et al. 

(2009). 

The estimated K and Ss fields for all four cases are shown in Figs. 3c - 3f and 4c 

- 4f, respectively. In addition, K estimates along the A-A′, B-B′, C-C′, and D-D′ 

cross-sections (as indicated on Fig. 1a) are extracted from the estimated K 

distributions of Cases 2 and 3 (Figs. S3, S4, S5, and S6 in the Supplementary 

Information section). Meanwhile, to facilitate the qualitative comparison of the site 

geology with the THT results from Cases 2 and 3, stratigraphy slices along A-A′, B-B′, 

C-C′, and D-D′ cross-sections (Fig. 2) are included as Figs. S3g - S6g.  

In Fig. 3c (Case 3a), we find that the estimated K distribution clearly shows the 

double-aquifer feature in the centre of the modeling domain. More importantly, the 

bottom aquitard is now correctly identified as a low K zone, instead of a high K zone 
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as mapped in previous HT studies at the NCRS (Berg and Illman, 2011b, 2013, 2015; 

Zhao and Illman, 2017), when inversions relied solely on drawdown data. Unlike the 

previous works by Berg and Illman (2011b, 2013, 2015) in which they used no 

drawdowns observed from the low K layers, and the work by Zhao and Illman (2017) 

in which only limited number of steady state and quasi-steady state drawdowns were 

used for the SSHT analysis, we used more transient data from the low K zone 

obtained through additional pumping tests conducted at PW1-6 and PW1-7. Thus, we 

are feeding the inverse analysis with additional drawdown responses from the low K 

clay layers which carry non-redundant information regarding heterogeneity of the 

field site (Oliver, 1993; Wu et al., 2005; Mao et al., 2013a).  

The above results indicate that, in order to obtain accurate K tomograms, it is 

necessary for future field implementations of HT to monitor drawdowns from both 

aquifer and aquitard layers. Otherwise, K estimates from permeameter (Berg and 

Illman, 2015) and/or slug/single-hole tests could be used to condition the K tomogram. 

Alternatively, complementary information other than pressure heads will have to be 

considered for jointly calibrating a geostatistical inverse model with pressure head 

data in HT analysis, such as with flowmeter tests (Li et al., 2008; Zha et al., 2014), 

seismic (Brauchler et al., 2012), and/or self-potential surveys (Soueid Ahmed et al., 

2014). Other types of data may also be used for improving the inverse model as 

discussed by Illman (2014), but this needs to be done carefully. 

The estimated K distributions for Cases 3b and 3c, in which the calibrated 

geological models are included as prior mean K fields in the SimSLE inversion, are 
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shown in Figs. 3d and 3e, respectively. We see from Case 3b (Figs. 3d and S3d - S6d) 

that the locations of high and low K zones in the domain centre are quite similar to 

those of Case 3a (Figs. 3c and S3c - S6c), whereas the zone shapes outside the centre 

are quite different. Specifically, a comparison of Cases 3a (Figs. 3c and S3c- S6c) and 

3b (Figs. 3d and S3d - S6d) reveals that, (1) the low K zones at the top of model 

domain are similar in terms of locations and shapes; (2) the high and low K layers at 

the middle of model domain are recovered only for the central 15m × 15m area for 

Case 3a (Figs. 3c and S3c - S6c), while heterogeneity features extend to domain 

boundaries for Case 3b (Figs. 3d and S3d - S6d); and (3) the bottom aquitard layer is 

more clearly shown throughout the entire domain for Case 3b (Figs. 3d and S3d - 

S6d).  

Similar findings are evident when comparing Case 3c (Figs. 3e and S3e - S6e) 

with Case 3a (Figs. 3c and S3c – S6c), in which the 19-layer geological model (Fig. 

3b) is used as prior information for Case 3c instead of the 5-layer model (Fig. 3a). 

As noted in Section 4.1.2, the calibration of the 5-layer geological model 

estimates a K value that is inconsistent with geological data for sand layer 11 due to 

the simplification of the geology and fixing the stratigraphy geometry. A comparison 

of estimated K tomograms between Cases 2a (Figs. 3a and S3a - S6a) and 3b (Figs. 3d 

and S3d - S6d) reveals that, the low K zone representing layer 11 (~ z = 10m) in Case 

2a (Figs. 3a and S3a - S6a) is preserved in Case 3b (Figs. 3d and S3d - S6d) for 

regions near domain boundaries, where no pumping test data are available. Since 

SimSLE iteratively updates the prior K fields based on the differences between 
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simulated and observed pressure heads (Xiang et al., 2009), it is reasonable that some 

stratigraphic features from prior K distributions are preserved in the estimated K 

tomograms where the monitoring ports are not dense enough.  

As shown through the comparison of Cases 2a (Figs. 3a and S3a - S6a) and 2b 

(Figs. 3b and S3b - S6b), the inconsistency between the estimated K value of the 

5-layer model and geological data has to some extent been ameliorated when using 

the higher resolution 19-layer geological model for THT. 

Meanwhile, refinement to the resolution of the K tomogram is evident within 

the central 15m × 15m area for Cases 3b (Figs. 3d and S3d - S6d) and 3c (Figs. 3e and 

S3e - S6e) when compared to the K tomograms for Cases 2a (Figs. 3a and S3a - S6a) 

and 2b (Figs. 3b and S3b - S6b). This is due to the sequential updating of the 

calibrated parameter fields with the highly parameterized geostatistical inversion 

approach. 

The estimated K distribution for Case 3d is shown in Figs. 3f and S3f - S6f. We 

note from Figs. 3f and S3f – S6f that the estimated K tomogram captures the 

double-layer aquifer feature of the multi-aquifer-aquitard system, as seen from the 

other three Cases 3a, 3b and 3c. However, the very top and bottom areas in Case 3d 

(Figs. 3f and S3f - S6f) are now more clearly recovered as low permeable zones than 

those in Case 3a (Figs. 3c and S3c – S6c), Case 3b (Figs. 3d and S3d – S6d) and Case 

3c (Figs. 3e and S3e – S6e). 

As previously mentioned, Case 3d uses the 19-layer geological model, with 

each layer populated with the geometric mean of K values from the same layer 
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obtained via permeameter tests, as the prior mean K distribution for the SimSLE 

inversion. This case represents a particular scenario which utilized the most field (i.e., 

drawdowns and geological information) and laboratory (i.e., permeameter K) data. 

Consequently, we anticipate that Case 3d to perform the best for purposes of model 

validation discussed later.  

The estimated K tomograms of Cases 3a through 3d collectively suggest that, 

when more accurate geological data are incorporated into the inversion process, the 

geostatistical approach yields a heterogeneity pattern more consistent with 

stratigraphy (Figs. S3g - S6g) in areas both near and far away from the pumping and 

observation wells, without incorporating additional data such as flowmeter and/or 

geophysical surveys. While the incorporation of geological data leads to more details 

in heterogeneity being recovered through SimSLE inversions, we note that the 

19-layer geological model and the stratigraphy map are also interpolated from 

borehole logs, thus likely differ from the true stratigraphy. Therefore, the SSHT study 

by Zhao et al. (2016) and THT study by Luo et al. (2017) in the laboratory sandbox, 

where stratigraphy could be accurately mapped, were necessary in providing 

important insights on the usefulness of geological data for field HT analyses. Both 

studies found that HT analysis using accurate geological models yields results that are 

comparable to the highly parameterized geostatistical inverse models. 

Meanwhile, the estimated Ss tomograms for Cases 3a – 3d are shown in Figs. 4c 

- 4f, respectively. We see from Figs. 4c - 4f that, although different prior mean K 

distributions are used for the four geostatistical inversion cases, the estimated Ss 
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tomograms, in general, do not reveal too many differences, all showing high values at 

the top and bottom of the domain, while low values are found in the central portion.  

Physically, this is reasonable since the top and bottom areas of the modeling 

domain are known to consist of low K silt and clay layers, for which the Ss values are 

considered to be relatively higher (Batu, 1998) than the middle double-aquifer layer 

materials. In comparison to the K tomograms (Figs. 3c – 3f and Figs. S3 – S6), the Ss 

tomograms (Figs. 4c - 4f) are very smooth and do not reflect the aquitard layers 

known to be present in the middle of the double-layer aquifer zone, as indicated in the 

geological model (Fig. 2).  

These results suggest that pumping test data alone cannot yield finer resolution 

heterogeneity for Ss estimates with current pumping and observation density. 

Additional information on Ss will be needed to obtain estimates at finer resolutions 

and this will be a future research topic. 

4.2 Performances of Model Calibrations 

Performances of different approaches are next evaluated by comparing the 

simulated versus observed drawdowns of eight pumping tests used for model 

calibrations, as plotted in Figs. 5a - 5h. A linear model is fit and included in each plot 

to assess the performance. Generally, the fit improves from the simple homogeneous 

models (Cases 1a and 1b) to the highly parameterized geostatistical inversion models 

(Cases 3a through 3d), with values of the coefficient of determination (R
2
) increasing 

from 0.34 to 0.87, and the slopes of the linear model increasing from 0.19 to 0.87. 
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This is consistent with the results obtained by Zhao and Illman (2017) whom 

calibrated the same models, but to steady state and quasi-steady state drawdown data. 

Next, model calibration performances of the different THT analysis approaches 

are quantitatively assessed by comparing the mean absolute error (L1) and mean 

square error (L2) norms. Those quantities are computed as: 
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where n is the total number of pressure heads used for calibration,    is the i
th

 

observation head, and   
  is the corresponding simulated head. The L1 and L2 norms 

of model calibrations, as well as the corresponding ranks for all cases are provided in 

Fig. S2 of the Supplementary Information section. The cells of each entry in the table 

are color-coded to facilitate an easier comparison of different entries. In particular, we 

assign the minimum value in the table a color of green, the maximum value a color of 

red, and the 60-percentile value a color of yellow. We utilize a 60-percentile value 

instead of the median to enhance the contrast in color. We also calculate the 

arithmetic mean of the L1 and L2 norms to rank the various models. 

Examination of Fig. S2 reveals that model calibrations of the geostatistical 

inversion approach yield consistently better L1 and L2 ranking than the geological and 

effective parameter models. Such improvements, could be attributed to the use of 

highly parameterized models, which have larger degrees of freedom to adjust the 

model parameters to better fit the observation data.  
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In the previous SSHT study for a sandbox (Illman et al. 2015), the geological 

model faithfully representing the true stratigraphy was found to yield model 

calibration results that was similar in quality when compared to the highly 

parameterized geostatistical model. Here, the large difference of model calibration 

performances between the 19-layer geological model (Case 2b) and the geostatistical 

models (Cases 3a - 3d) could be attributed to: (1) the imperfect knowledge of 

geological zonations, since we are using stratigraphy information interpolated from 

discrete borehole logs; (2) calibration of a 19-layer geological model with transient 

data instead with steady state and quasi-steady state data as in Illman et al. (2015); (3) 

the NCRS site is highly heterogeneous with the variance (σ
2

lnK) estimated to be 6.50 

(Alexander et al., 2011), while the variance (σ
2

lnK) of the sandbox investigated by 

Illman et al. (2015) is much lower, estimated to be between 0.38 and 1.32 depending 

on the approach used for characterization (Berg and Illman, 2011a). 

Comparisons among different geostatistical inverse models (in Figs. 5 and S2) 

reveal that, when the geostatistical inversion approach starts from the geologically 

distributed K fields (Cases 3b, 3c and 3d) instead of the uniform K value (Case 3a), 

the calibration performances are generally improved as indicated by the fitting 

parameters (R
2
, L1 and L2) of the linear model.  

Previously, Berg and Illman (2015) performed a comparative study of different 

traditional methods with THT in terms of characterizing the heterogeneity of the 

aquifer-aquitard system. Specifically, in order to correctly identify the low K clayey 

zones near the bottom of the modelling domain, they conditioned the geostatistical 
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model to the permeameter K data by fixing the K values of computational elements 

along five boreholes (PW1, CMT1 to CMT4) during the inversion process. Although 

the estimated K distributions were found to be consistent with known geology, the 

THT inversions also yielded slight deterioration in model calibration when 

permeameter K data were used to condition the model. Unlike the approach adopted 

by Berg and Illman (2015), geological information was used as the starting K 

distributions of the geostatistical inversions in this study and in Zhao and Illman 

(2017). Thus, the improved model calibration of Cases 3b, 3c and 3d compared to 

Case 3a shown in Fig. 5, is a result of both including reliable geological data and 

enabling the pumping tests data to freely update the prior mean values.  

Here, we need to clarify that, due to the availability of a large number of 

borehole logs and laboratory measurement data at the NCRS, the geological model 

based on the interpolation between wells may be more reliable. In contrast, at other 

sites, the well network may be sparse and the geological data could contain large 

errors (e.g., boundary locations, zone structures, misidentification of layers, etc.). 

Under such circumstances, a general framework proposed by Zha et al. (2017) that 

allows the inclusion of site-specific geologic features/hydraulic properties as well as 

their associated uncertainties, could be adopted to further improve HT results. Their 

framework adopts a nested covariance function to conceptualize the site heterogeneity, 

which requires site-specific geological information at both small and large scales to 

construct the prior mean and covariance. Unlike the approach proposed by Zha et al. 
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(2017), the approach that we utilize in this study uses kriging of borehole data to 

construct geological models and is very practical. 

4.3 Comparison of Estimated K with Permeameter Test K 

In order to further examine the ability of geological and geostatistical inverse 

models to capture the heterogeneity of the NCRS, the estimated K values are extracted 

from the THT tomograms and compared with permeameter test K values along all PW 

and CMT wells (Figs. 6 and S7). Meanwhile, the K estimates from SSHT analysis of 

seven pumping tests starting with a uniform K value of K = 8.0 × 10
-6 

m/s by Zhao 

and Illman (2017) are jointly plotted as red lines in Figs. 6 and S7 to provide direct 

comparisons with the THT estimates. 

As seen in Figs. 6 and S7, calibrations of the 5-layer and 19-layer geological 

models to eight pumping tests yield K estimates (blue lines) that generally follow the 

vertical variations of permeameter test K values (black dashed lines with dots). 

However, the intralayer heterogeneity in K values of each unit is not captured by both 

geological models due to the assumption of constant K values in each layer. Still, the 

K profile estimated by the 19-layer geological model reveals more variations than the 

simplified 5-layer geological model. We also see that the results of eight-test THT 

analysis (blue lines) are quite similar to those of the seven-test SSHT steady state 

analysis (red lines), although there are minor differences. This finding suggests that 

both geological models with low degrees of parameterizations for this highly 

heterogeneous site may be justified (Schöniger et al., 2015) given the availability of 

multiple pumping test data to conduct the inverse modeling at the NCRS. 
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On the other hand, the calibration of the highly parameterized geostatistical 

inverse model starting from the uniform mean K field (Case 3a) captures the overall 

changes in the K profile from the top to the bottom of all PW and CMT wells. The 

most striking improvement is that the transient inversion results (blue lines) fit the 

permeameter K measurements quite well at depths of 0 - 5 m and 10 - 15 m above the 

bottom of the modeling domain, whereas relatively high K values (red lines) are 

obtained by Zhao and Illman (2017) when only using steady state data. This result 

indicates that the inclusion of additional pumping tests conducted at aquitard layers 

(i.e., PW1-1, PW1-6, and PW1-7) and more transient drawdown data into the 

inversion has led to the correct identification of aquitard zones and the improved 

characterization of intralayer K heterogeneity. 

In Cases 3b, 3c and 3d, the geologically distributed prior K mean fields are used 

as starting values for the geostatistical inversion approach. Compared to the results of 

Case 3a in Figs. 6 and S7, Cases 3b, 3c and 3d yield K profiles that are more 

consistent with the permeameter test K values, in terms of the locations and 

thicknesses of aquifer and aquitard layers. That is, the boundaries between aquifer and 

aquitard layers are better delineated in Cases 3b, 3c and 3d than those in Case 3a.  

Meanwhile, unlike the significant differences between the results of steady state 

and transient analyses in Case 3a, the blue and red lines representing the vertical K 

variations in Cases 3b, 3c and 3d in general show satisfactory matches, especially for 

Cases 3c and 3d in which 19-layer geological models are used as prior K distributions.  
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These results collectively suggest that the inverse modeling of transient 

pumping test data can yield reliable heterogeneous distributions of K for both aquifer 

and aquitards including its intralayer heterogeneity even at a highly heterogeneous site 

such as at the NCRS. Joint inverse modeling of transient drawdown data from aquifer 

and aquitard layers is necessary in accurately characterizing the site with a highly 

parameterized geostatistical approach. Moreover, using reliable geological models as 

initial distributions are helpful for the geostatistical inversion approach of THT in 

improving the correspondence of estimated K for both the aquifer and aquitard layers 

to those from permeameter tests. 

4.4 Model Validation Results 

We next evaluate the performances of different models in their abilities of 

predicting pumping tests not used during the calibration process. As previously noted, 

four pumping tests (PW1-3, PW1-5, PW5-4, and PW5-5) are selected for model 

validation purposes. The drawdown predictions of different models and various tests 

are plotted as Figs. 7 (PW1-3), S8 (PW1-5), S9 (PW5-4), and S10 (PW5-5). 

Meanwhile, the simulated drawdowns are extracted at selected times and compared 

with corresponding observed drawdowns to provide more quantitative comparisons 

(Figs. 8 and S11). 

In Figs. 7, S8, S9 and S10, the drawdown predictions of the 

homogeneous/isotropic model (Case 1a: solid gray lines), the 

homogeneous/anisotropic model (Case 1b: dashed gray lines), the 5-layer geological 

model (Case 2a: dash-dotted gray lines), the 19-layer geological model (Case 2b: 
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dotted black lines) and different geostatistical models (Cases 3a - 3d: lines in red color) 

are compared to the drawdowns observed (solid blue lines with open circles) from 

different locations of the aquifer-aquitard system. Through visual examinations of the 

match quality between different simulated drawdowns to observed curves in Fig. 7 for 

the pumping test at PW1-3, we find that geostatistical models of Case 3 yield 

drawdown predictions that are close to each other and in general, capture the blue 

lines observed from different observation intervals. In contrast, obvious poor matches 

are found between drawdown predictions of the homogeneous models (solid and 

dashed gray lines) and the observations (blue lines), either at early time or late time of 

the drawdown curves. On the other hand, the simplified 5-layer geological model 

(Case 2a) consistently over-predicts the drawdowns for observation ports (e.g., 

CMT1-1, CMT2-1, and PW5-1) located within the top layer of the aquifer-aquitard 

system, and also yield poor matches to the blue curves in the rest of observation 

intervals as the homogeneous models (Cases 1a and 1b). When the complex 19-layer 

geological model (Case 2b) is used, the match qualities improve for drawdown 

predictions over the 5-layer model (Case 2a). At several observation intervals, the 

matches are comparable to those of the highly parameterized geostatistical models 

(Cases 3a - 3d). 

In Fig. 8, the observed drawdowns are compared to the simulated values 

selected from different monitoring intervals and times indicated by blue circles in Figs. 

7, S8, S9, and S10. The linear fits show that the homogeneous/isotropic model (Case 

1a) yields biased predictions (Fig. 8a) and underestimates the drawdowns of four 
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pumping tests, with a coefficient of determination (R
2
) value of 0.23 and a very 

shallow slope for the linear model fit with a value of 0.08. The prediction results are 

improved slightly when using either the homogeneous/anisotropic model (Case 1b) or 

the simplified 5-layer geological model (Case 2a), as shown in Figs. 8b and 8c. In 

addition, performances of the 19-layer geological model (Case 2b) show obvious 

improvements over the above three models (Cases 1a, 1b and 2a), with the R
2
 and the 

slope of the linear model fit increasing to 0.65 and 1.15, respectively. 

It is worth noting that the 19-layer geological model (Case 2b) performed 

closely to the geostatistical inversion approach (Case 3a) starting with K = 8.0 × 10
-6

 

m/s as a prior mean. On the other hand, compared to the effective parameter (Cases 1a 

and 1b) and the geological modeling (Cases 2a and 2b) approaches, models of the 

highly parameterized geostatistical inversion approach using geologically distributed 

K prior means (Cases 3b – 3d) yield consistently improved R
2
 and L1, while the L2 

ranking behaves differently. 

The lowest L2 norm is reached by the geostatistical inversion model using the 

calibrated 19-layer geological model as prior K distribution (Case 3c). Since the L2 

norm magnifies large discrepancies between the simulated and the observed 

drawdowns compared to the L1 norm, the high L2 norm values in Cases 3a, 3b and 3c 

mainly represent the impact of poor fittings of drawdowns at several observation 

intervals such as at CMT2-2 and PW3-3 in Fig. 7. Such an inconsistent L2 ranking 

among Cases 3a - 3d indicate that, while the K (Fig. 3) and Ss (Fig. 4) tomograms 

show similar overall patterns, the fine-scale differences in these K and Ss tomograms 
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could lead to drastically different drawdown predictions at some observation intervals. 

Thus, the geostatistical inversion approach that can correctly capture both interlayer 

and intralayer heterogeneity should be more favored for future HT applications. 

5. Summary and Conclusions 

In this study, we investigated whether transient drawdown data collected in both 

the aquifer and aquitard units can be used in transient hydraulic tomography (THT) 

analysis to reliably map the interlayer and intralayer heterogeneity of these units, at a 

field site underlain by a highly heterogeneous multi-aquifer-aquitard system. In 

addition, we examined the value of geological data for THT analysis by constructing 

geological zonation models based on available stratigraphy information and using 

them as prior distributions for the geostatistical inversion approach. We selected 12 

pumping tests for model calibration and validation. Eight tests containing hydraulic 

response information observed in aquifer and aquitard layers are jointly used to 

calibrate groundwater models of different complexities and parameterization schemes, 

including: (1) two effective parameter models (isotropic/anisotropic); (2) two 

geological zonation models of varying numbers of layers and (3) four highly 

parameterized geostatistical inverse models that consider different prior K means. Our 

study resulted in the following major findings and conclusions: 

1. Despite the large number of data used for model calibration, the effective 

parameter models calibrated to eight pumping tests yielded biased calibration and 

validation results. In contrast, THT analyses based on geological models and highly 

parameterized geostatistical models led to much improved model calibration and 
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drawdown prediction performances. This suggests that it may be difficult to represent 

site heterogeneity with an effective parameter model at the scale of site investigation 

conducted at the NCRS. 

2. Although the layer boundaries were fixed, geological models calibrated to 

eight pumping test data yielded K estimates that were close to the general patterns of 

vertical K distributions from permeameter tests. Meanwhile, the calibration of the 

geostatistical inversion model to drawdown data with initially uniform hydraulic 

parameter fields correctly recovered both the low and high K zones within the well 

field, although smoothed results were obtained for areas where no drawdown data 

were available. 

3. Instead of using an effective K estimate, calibrated groundwater models based 

on geological zonation used as an initial guess was very helpful for the geostatistical 

inversion approach in improving the correspondence of estimated K to those from 

permeameter tests, and in preserving geological features/connectivity in K 

heterogeneity patterns. Different from the previous hydraulic tomography study by 

Zhao and Illman (2017) who relied on steady state inversions, the joint inverse 

modeling of transient drawdown data from aquifer and aquitard layers yielded reliable 

heterogeneous distributions of K and Ss for both aquifer and aquitards even at a highly 

heterogeneous site. 

4. We conclude that the inclusion of reliable geological data is useful for THT 

analysis to better image the full heterogeneity patterns of complex groundwater 

systems. In addition, sufficiently long records of pumping and observation data should 
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be collected not only from aquifer layers, but also from aquitard layers for future HT 

studies when relying only on pumping test data.  

5. Collection of long drawdown records will require the judicious selection of 

data that should be fed into inverse models to avoid information overload, and 

inclusion of redundant as well as erroneous data. Therefore, it is necessary to 

systematically examine the quality of data, the information content of observed heads 

from both high and low K zones, as well as the value of other types of complementary 

data. Data-worth estimation methods such as the Preposterior Data Impact Assessor 

(PreDIA) (Leube et al., 2012) and the linear predictive uncertainty quantification 

(PREDUNC) utility (Wöhling et al., 2016) may be applied to evaluate monitoring 

strategies and to identify potentially redundant information, both of which can 

potentially improve the quality of HT analyses. 
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Fig. 1. (a) Plan view showing well locations used in this study at the North Campus 

Research Site (NCRS) situated on the University of Waterloo (UW) campus. Solid 

circles indicate the locations where only geological data are available. Dashed lines 

indicate four geological cross sections: A-A′, B-B′, C-C′ and D-D′ provided in Fig. 2. 

(b) Well screen locations shown for wells clustering in the inner 15 by 15 meter 

square area where pumping tests are conducted (from Berg and Illman, 2011b). 
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Fig. 2. Cross sections of the geological model: A-A′, B-B′, C-C′, and D-D′, at the 

NCRS. Numbers in cross section C-C′ and D-D′ indicate the 19 layers of different 

materials: Clay (1, 4, 8, 12, 16, 18); Silt and Clay (17, 19); Silt (2, 7, 10, 14); Sandy 

Silt (6, 9, 13); Sand and Silt (5); Sand (3, 11); Sand and Gravel (15). Screened 

locations are shown on wells depicted in cross sections C-C′ and D-D′ (from Zhao 

and Illman, 2017). 
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Fig. 3. Estimated K fields from the inversion of eight pumping tests for: (a) Case 2a: 

the 5-layer geological model; (b) Case 2b: the 19-layer geological model; (c) Case 3a: 

SimSLE starting with a uniform K = 8.0 × 10
-6

 m/s; (d) Case 3b: SimSLE using the 

calibrated 5-layer geological model as prior distribution; (e) Case 3c: SimSLE using 

the calibrated 19-layer geological model as prior distribution; and (f) Case 3d: 

SimSLE calibration case using the uncalibrated 19-layer model assigned with 

permeameter test K values for each layer as prior distribution. 
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Fig. 4. Estimated Ss fields from the inversion of eight pumping tests for: (a) Case 2a: 

the 5-layer geological model; (b) Case 2b: the 19-layer geological model; (c) Case 3a: 

SimSLE starting with a uniform K = 8.0 × 10
-6

 m/s; (d) Case 3b: SimSLE using the 

calibrated 5-layer geological model as prior distribution; (e) Case 3c: SimSLE using 

the calibrated 19-layer geological model as prior distribution; and (f) Case 3d: 

SimSLE calibration case using the uncalibrated 19-layer model assigned with 

permeameter test K values for each layer as prior distribution.  
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Fig. 5. Scatterplots of observed versus simulated drawdowns for model calibrations 

using eight pumping tests for the: (a) Case 1a: isotropic effective parameter model; (b) 

Case 1b: anisotropic effective parameter model; (c) Case 2a: geological model with 

five layers; (d) Case 2b: geological model with 19 layers; (e) Case 3a: SimSLE 

starting with K = 8.0 × 10
-6

 m/s as prior mean; (f) Case 3b: SimSLE using the 

calibrated five-layer geological model as prior distribution; (g) Case 3c: SimSLE 

using the calibrated 19-layer geological model as prior distribution; and (h) Case 3d: 

SimSLE using the uncalibrated 19-layer geological model assigned with permeameter 

K values as prior distribution. The solid line is a 1:1 line indicating a perfect match. 

The dash line is the best fit line. The linear fit results are also included on each plot.  
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Fig. 6. Vertical log10K profiles along nine boreholes of PW1 and CMT1-4 wells, for 

different Cases 2a, 2b, 3a, 3b, 3c and 3d.  
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(a) 
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(b) 

 

Fig. 7. Observed and simulated drawdowns from validation pumping test at PW1-3 in 

(a) CMT and (b) PW ports. The solid blue lines represent observed drawdowns; the 

solid gray lines represent simulated drawdowns by Case 1a; the dashed gray lines 

represent simulated drawdowns by Case 1b; the dash-dotted gray lines represent 

simulated drawdowns by Case 2a; the dotted black lines represent simulated 

drawdowns by Case 2b; the solid red lines represent simulated drawdowns by Case 3a; 

the dashed red lines represent simulated drawdowns by Case 3b; the dash-dotted red 

lines represent simulated drawdowns by Case 3c; the dotted red lines represent 

simulated drawdowns by Case 3d; the blue circles represent time points selected for 

validation comparisons.  
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Fig. 8. Scatterplots of observed versus simulated drawdowns for model validation 

using four pumping tests for the: (a) Case 1a: isotropic effective parameter model; (b) 

Case 1b: anisotropic effective parameter model; (c) Case 2a: geological model with 

five layers; (d) Case 2b: geological model with 19 layers; (e) Case 3a: SimSLE 

starting with K = 8.0 × 10
-6

 m/s as prior mean; (f) Case 3b: SimSLE using the 

calibrated five-layer geological model as prior distribution; (g) Case 3c: SimSLE 

using the calibrated 19-layer geological model as prior distribution; and (h) Case 3d: 

SimSLE using the uncalibrated 19-layer geological model assigned with permeameter 

K values as prior distribution. The solid line is a 1:1 line indicating a perfect match. 

The dash line is the best fit line. The linear fit results are also included on each plot.  
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Table 1: Estimated K and Ss values as well as their posterior 95% confidence 

intervals for the effective parameter approach. 

 

 

Estimated 

K (m/s) 

95% Confidence Intervals Estimated 

Ss (/m) 

95% Confidence Intervals 

Lower limit Upper limit Lower limit Upper limit 

Case 1a 2.38×10
-5

 2.06×10
-5
 2.76×10

-5
 9.34×10

-6
 2.56×10

-6
 3.41×10

-5
 

Case 1b 

Kx 1.85×10
-5

 1.42×10
-5
 2.42×10

-5
 

1.39×10
-5

 7.12×10
-6
 2.72×10

-5
 Ky 2.55×10

-5
 2.04×10

-5
 3.20×10

-5
 

Kz 3.77×10
-7

 2.73×10
-7
 5.21×10

-7
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Table 2: Estimated K and Ss values as well as their posterior 95% confidence 

intervals for the 5-layer geological model. Italicized numbers indicate unrealistic 

confidence interval limits. 

Layer 
Estimated 

K (m/s) 

95% Confidence Intervals Estimated 

Ss (/m) 

95% Confidence Intervals 

Lower limit Upper limit Lower limit Upper limit 

1
*a

 7.86×10
-6

 6.56×10
-6

 9.42×10
-6

 2.29×10
-7

 7.99×10
-18

 6.58×10
+3

 

11 8.73×10
-8

 4.76×10
-8

 1.60×10
-7

 1.43×10
-6

 4.00×10
-16

 5.12×10
+3

 

12
*b

 7.21×10
-7

 2.46×10
-7

 2.11×10
-6

 6.09×10
-6

 1.68×10
-8

 2.22×10
-3

 

15 1.47×10
-4

 1.28×10
-4

 1.69×10
-4

 9.28×10
-6

 4.42×10
-8

 1.95×10
-3

 

16
*c

 5.78×10
-7

 2.81×10
-7

 1.19×10
-6

 7.28×10
-6

 7.70×10
-8

 6.89×10
-4

 
a
 Layer 1

*
 is a merged layer of the original Layers 1 through 10;  

b
 Layer 12

* 
is a merged layer of the original Layers 12 through 14; 

c
 Layer 16

*
 is a merged layer of the original Layers 16 through 19. 
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Table 3: Estimated K and Ss values as well as their posterior 95% confidence 

intervals for the 19-layer geological model. Italicized numbers indicate unrealistic 

confidence interval limits. 

Layer 
Estimated 

K (m/s) 

95% Confidence Intervals Estimated 

Ss (/m) 

95% Confidence Intervals 

Lower limit Upper limit Lower limit Upper limit 

1 9.21×10
-07

 7.12×10
-14

 1.19×10
+01

 8.14×10
-05

 4.60×10
-12

 1.44×10
+03

 

2 5.77×10
-06

 7.18×10
-12

 4.63×10
+00

 3.97×10
-05

 2.58×10
-65

 6.12×10
+55

 

3 6.49×10
-07

 2.35×10
-33

 1.79×10
+20

 2.22×10
-04

 2.11×10
-39

 2.33×10
+31

 

4 6.86×10
-06

 3.07×10
-08

 1.53×10
-03

 3.61×10
-04

 5.19×10
-11

 2.51×10
+03

 

5 1.86×10
-06

 5.90×10
-33

 5.85×10
+20

 1.08×10
-04

 1.08×10
-304

 1.08×10
+296

 

6 6.29×10
-08

 1.22×10
-09

 3.26×10
-06

 7.92×10
-04

 4.04×10
-07

 1.55×10
+00

 

7 2.86×10
-08

 5.10×10
-09

 1.61×10
-07

 2.66×10
-05

 2.75×10
-06

 2.57×10
-04

 

8 5.02×10
-06

 1.42×10
-06

 1.78×10
-05

 1.62×10
-06

 2.53×10
-144

 1.04×10
+132

 

9 9.92×10
-05

 5.85×10
-05

 1.68×10
-04

 4.34×10
-06

 1.18×10
-94

 1.59×10
+83

 

10 1.91×10
-05

 8.89×10
-06

 4.11×10
-05

 4.80×10
-06

 1.12×10
-57

 2.05×10
+46

 

11 7.63×10
-07

 7.63×10
-07

 7.63×10
-07

 1.02×10
-06

 5.87×10
-109

 1.77×10
+96

 

12 2.53×10
-09

 3.08×10
-10

 2.07×10
-08

 1.89×10
-04

 2.38×10
-05

 1.50×10
-03

 

13 4.71×10
-09

 6.62×10
-10

 3.36×10
-08

 8.59×10
-06

 9.41×10
-09

 7.84×10
-03

 

14 3.04×10
-06

 1.27×10
-06

 7.30×10
-06

 1.36×10
-05

 1.65×10
-09

 1.12×10
-01

 

15 1.07×10
-04

 9.13×10
-05

 1.26×10
-04

 1.90×10
-06

 1.13×10
-18

 3.19×10
+06

 

16 2.90×10
-07

 1.25×10
-07

 6.73×10
-07

 1.14×10
-05

 1.07×10
-09

 1.21×10
-01

 

17 2.10×10
-06

 2.34×10
-11

 1.88×10
-01

 5.01×10
-03

 1.11×10
-08

 2.26×10
+03

 

18 1.42×10
-06

 4.82×10
-12

 4.16×10
-01

 5.88×10
-03

 1.30×10
-04

 2.66×10
-01

 

19 3.61×10
-05

 1.13×10
-10

 1.15×10
+01

 1.22×10
-04

 1.22×10
-304

 1.22×10
+296
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Highlights 

 Long-term transient drawdown data from both aquifer and aquitard layers are used 

for Transient Hydraulic Tomography (THT) analyses. 

 Geostatistical inverse modeling yields the best calibration and validation 

performances when compared to lower resolution approaches. 

 Drawdowns from aquitards improve hydraulic conductivity estimates for the 

geostatistical inversion approach.  

 Reliable geological data are useful for THT analyses at highly heterogeneous sites 

when pumping/monitoring intervals are sparse. 

 


