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Graphical Abstract: 

 

Powder bed binder jetting additive manufacturing was used for the first time to produce porous 

silicone (polysiloxane) structures. 

 

Abstract: 

The feasibility of a hybrid additive manufacturing (AM) method combining material extrusion and 

powder bed binder jetting (PBBJ) techniques for fabrication of structures made of silicone 

(polysiloxane) is investigated in this paper. A full factorial experimental design was conducted to 

maximize the geometrical accuracy of the parts. The rheological and morphological properties of 

the silicone powders, the thermal characteristics of the liquid silicone binder, and mechanical 

characterization the additively manufactured parts are reported. Using this hybrid AM method, 

porous cylindrical structures (5 mm diameter (D) × 3 mm height (H)) with potential applications 

in biomedical industry were additively manufactured. The final structures are composed of ~ 60% 

silicone powder, ~ 30% silicone binder, and <10% air voids. These three phases are distributed 

throughout the structure in a non-uniform fashion.   
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1 Introduction 

There has been an increased interest in manufacturing of complex-shaped silicone (polysiloxane) 

structures stemming from the commercialization of silicone in 1940’s. This material has enabled 

revolutionary changes in different branches of the biomedical industry including the production of 

prostheses [1], phantoms [2], biosensors [3,4], and drug delivery systems [5]. The wide adoption 

of this family of polymers in fabrication of bio-structures has roots in its unique properties such as 

thermal resistance at high and low temperatures, weatherability, high gas permeability, low surface 

energy, and proven biocompatibility [6]. 

Over the past half a century, a combination of molding and manual refinement has been 

the unrivaled method for production of silicone objects. This method, however, is time-consuming 

and expensive, and requires long patient consultations as the products are highly custom, with 

intricate three-dimensional (3D) features. Moreover, manual methods are largely dependent on the 

skills of the clinicians or technicians executing the work [7]. Additive manufacturing (AM) 

approaches convert complex digital CAD models into layer-by-layer manufacturing execution 

steps to realize the part. AM approaches present opportunities for replacement of casting-based 

silicone manufacturing techniques, as AM enables high complexity in design and flexibility in 

production of custom parts without the need for specialized tooling or molds. Moreover, the layer-

by-layer AM process allows for embedding of smart structures such as sensors, functionally-

graded materials or design features during fabrication. This enables a new generation of smart 

silicone objects such as artificial muscles possible [8,9].  

3D printing of molds was one of the first methods for improving silicone manufacturing 

process via AM techniques [10]. At the time, the deployment of AM significantly decreased the 

part variability by reducing the influence of the clinician on the final product, but the effect on 
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reducing the total production time and cost proved to be limited. Moreover, by employing silicone 

molding, the final product will be a passive object, with homogeneous internal properties or 

features. Other research groups have focused on the AM production of a part precursor from 

various structural biomaterials other than silicone such as the commercial acrylate-based Tango 

Plus (Stratasys, Minnesota, USA) and starch, followed by infiltration or coating with silicone at a 

later stage with methods such as dipping or wrapping [11-13]. These methods were not successful 

due to the faster physical degradation of the structural core material compared to silicone, however, 

the capability of AM in production of geometrically accurate structures with unprecedented level 

of details revealed the benefits of direct AM of silicone [14-16].  

There are significant challenges associated with the AM of silicone. The largest obstacle is 

the high viscosity of the family of silicones available on the market that would result in structures 

with sufficient mechanical properties for biomedical applications (5.5 – 8 N/mm2 for tensile 

strength, 5 – 17 N/mm for tear strength, 500 – 1200% for elongation at break, 16 – 25 IRHD for 

hardness). Even though factors such as additives, fillers, and curing condition affect the 

mechanical properties of crosslinked polymers, it is generally understood that longer polymer 

chains, which result in higher viscosity, are the key to resilient polymers. Except for pneumatic 

extrusion and piezo-pneumatic jetting, current AM material dispensing methods are not able to 

handle highly viscous materials through refined nozzles at high resolution. Moreover, silicones are 

thermoset polymers, hence, their irreversible polymerization process makes them unfit for well-

established polymer 3D printing techniques such as fused deposition modeling (FDM) or selective 

laser sintering (SLS).  

Research and commercial efforts in AM of silicone materials have focused on material 

extrusion, vat photopolymerization or stereolithography (SLA), and material jetting, with various 
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degrees of success and technology-specific limitations. Of these AM methods, most of the research 

in the area of silicone AM has been focused on material extrusion [17-23]. In material extrusion, 

applying pressure using a mechanical or pneumatic system provides enough force to dispense a 

continuous flow of materials with up to 6×107 mPa.s viscosity [24,25]. The material extrusion 

system in the work of Duoss et al. (2014) is able to print silicone features with high quality in 

terms of the surface waviness, uniformity, and geometrical accuracy with a resolution as high as 

100 µm and a maximum dispensing velocity of 20 mm/s [18]. Material extrusion of silicone inside 

a vat of viscoplastic material that acts as a support structure has made this process more reliable 

[26,27]. The first commercial silicone 3D printer (PICSIMA, Fripp Design and Research, UK) has 

been developed based on this approach [28]. Other efforts in the area of AM of silicone have 

focused on vat photopolymerization using SLA systems [7,29,30]. In stereolithography, the 

creation of a uniform layer is obtainable with resins of 300 – 5000 mPa.s viscosity [31,32]. Given 

the high viscosity of medical-grade silicones, in the SLA systems proposed for silicone, the part 

production happens in a static environment in the middle of the vat instead of the liquid-air 

interaction zone, eliminating the need for generating flow of silicone to the process zone. This new 

approach has a poor performance, with a 2 mm resolution resulting in a high degree of discrepancy 

between the 3D printed structures and their CAD models. Although there are technology gaps in 

terms of performance, using this approach, there is a good opportunity of employing mask-

projection SLA instead of vector-scanning beams to enable a high speed AM technique for 

silicone. Aerosol jetting has also been used for printing 30 µm layers of silicone which is the 

highest vertical resolution achieved for this polymer [33]. Aerosol jetting, however, is a sluggish 

process with maximum 5 mm/s printhead speed. This technique is also only compatible with low 

viscous fluids. Generally, in regular inkjet printheads, depending on the jetting mechanism or 
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nozzle size, a maximum viscosity of 10 – 100 mPa.s assures a successful droplet creation 

[24,32,34]. In author’s previous work, a hybrid piezoelectric-pneumatic system was introduced 

that provided a reliable method for rapid (100 mm/s) fabrication of viscous (40,000 mPa.s at 10 s-

1) silicone polymers demonstrating a highly shear-thinning behavior [35].  

To authors’ best knowledge, powder bed binder jetting (PBBJ), also known as three-

dimensional (3D) printing [36], has not been used prior for the fabrication of silicone structures. 

This method relies on AM of parts by converting a CAD model into layer-by-layer images that are 

sequentially printed onto thin layers of powder.  The printed liquid acts as a binder, consolidating 

the powder into a so-called green part once the binder is cured. The thin layers of powder are 

spread using a counter-rotating roller or a blade mechanism from a douser or a feed bed. The green 

part is porous and typically undergoes a series of post-processing protocols, which may involve 

de-powdering, thermal treatments, or matrix infiltration. The materials used for PBBJ AM are 

mainly ceramics, metals, or their composites [34]. In a recent review of AM materials, PBBJ 

methods had not been introduced as a manufacturing method for any kind of thermoset polymer 

including silicone [37].  

The PBBJ AM technique has shown great compatibility with bio-materials for multiple 

applications [38-43]. There are three main advantages for PBBJ manufacturing approaches: (1) the 

ability to use a wide range of materials [34,44-47], (2) the degree of freedom in manufacturing 

complex and scalable parts without the need for support structures [34,48], and (3) the high 

production speed with commercial systems performing often in the order of a few seconds per 

layer. In addition, PBBJ systems are capable of producing functionally graded structures [45,49-

52], with multi-material or multi-colour features [11,53]. The versatility of this methodology is the 

driving factor in exploring PBBJ in manufacturing silicone structures. The most pressing 
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drawbacks in manufacturing silicone parts via PBBJ is that the smallest feature size of 

conventional PBBJ equipment is limited by the size distribution of the powder [44,54,55], by the 

binder jetting dispenser resolution [44], and de-powdering constraints [44,49,55,56]. For PBBJ, 

the minimum cavity feature size is typically considered at 500 µm for de-powdering 

considerations, with a layer thickness in the order of 25-200 µm. The powders used in PBBJ should 

comply with specific rheology and powder size distribution criteria to ensure uniform and defect-

free layer properties in this layer thickness range. In addition, commercial PBBJ systems employ 

a single powder type during the build. The liquid binder is typically dispensed through a thermal 

or piezo printhead, with a general limit in viscosity of approximately 50-60 mPa.s to ensure proper 

material jetting, as well as fast infiltration through the powder substrate.  The parts are typically 

exposed to a post-processing protocol for de-powdering, followed by heat-annealing, chemical 

setting, irradiation or infiltration, depending on the material system used. These post-processing 

steps typically result in part shrinkage or swelling and reduce the overall geometrical accuracy of 

the final product. The dimensional deviation can be considered in the CAD design stage by 

applying dimensional compensation factors.  

To overcome some of the limitations in PBBJ, a new hybrid PBBJ and micro-deposition 

system was developed [48,57] to target manufacturing of functionally-graded parts with multi-

material and custom variable porous structures. This new system employs multiple powder feed 

mechanisms to dynamically select and deploy  up to three different powder compositions to each 

layer, thermal and piezo printhead delivery systems for jetting of various liquid binders, a variable 

counter-rotating roller mechanism to control powder compaction, a solid material dispenser for 

embedding discrete pore-generating sacrificial materials (porogens), and a micro-dispensing head 
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for deposition of liquids throughout the porous matrix of the part at select locations. A view of this 

system is shown in Figure 1. 

In this study, the hybrid PBBJ AM system is used for the direct production of silicone 

structures. The system employs a material system composed of silicone powder as the base 

material in the substrate, a water-based liquid binder that is jetted through a thermal printhead onto 

the powder substrate to develop the wetted layer outline of the parts, and a thermoset silicone 

liquid binder to impart the necessary structural integrity of each layer. The thermoset silicone 

binder is heat cured after printing a fixed number of layers.  Curing the thermoset silicone prevents 

any further permeation of subsequent silicone binder through previous layers, thus preserving the 

dimensions of the parts. The machine and material system is used to manufacture cylindrical 

shapes as part of a design of experiments (DoE). The results of this work are intended to lay the 

ground for hybrid PBBJ manufacturing of complex-shaped silicone parts as part of a forthcoming 

study. 

2 Materials and Methods 

2.1 Material System used in Additive Manufacturing of Parts 

2.1.1 Powder Silicone Materials 

Two hybrid organopolysiloxane powders consisting of spherical silicone rubbers were used as 

received in this research. These powder samples offer all of the unique properties of a regular 

polydimethylsiloxane (PDMS) rubber including high thermal resistance, weatherability, and 

biocompatibility. The first powder (powder A) consists of silicone rubbers covered with a silicone 

resin (KMP-602, Shin-Etsu Chemical, Tokyo, Japan). The resin cover provides high resistance to 

impact by relaxing the stress, and improves the lubricity property. The rubber part is responsible 

for the resistance to extreme temperatures and abrasion. The second silicone powder (powder B) 
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is made of pure spherical silicone rubbers without the resin coating (KMP-598, Shin-Etsu 

Chemical, Tokyo, Japan).  

2.1.2 Liquid Silicone Binder Material 

The two-part thermal-curable liquid silicone rubber (JY-9010, Changzhou Juyou New Material 

Tech Co., China) was used with 100:1 ratio of main precursor component to curing agent weight 

ratio. This silicone liquid is comprised of modified silica and Octamethylcyclotetrasiloxane which 

is a non-toxic organosilicon compound.  The optimum precursor to curing agent ratio was selected 

based on the required crosslinking behavior of silicone inks to avoid clogging of the dispensing 

nozzle. A higher ratio of curing agent has proven to clog the nozzle, with a thermal curing response 

behavior as illustrated in Data in Brief, Figure 2. 

2.1.3 Liquid Water-based Binder Material 

An aqueous liquid binder (Zb®60, 3D systems, SC, USA) was inkjet printed onto the powder-bed 

to form the wetted precursor image of each layer. The Zb®60 includes 85-95% v/v of distilled 

water and 5-15% v/v of humectant and a proprietary polymer as a binding agent.  

2.2 Additive Manufacturing of Parts 

As the proof-of-concept, cylindrical structures (5 mm D × 3 mm H) were printed using the hybrid 

PBBJ AM system. The manufacturing steps are shown in Figure 2.. The process of manufacturing 

the silicone structures starts with designing cylindrical CAD models and slicing the digital data 

into successive layers and execution steps for each layer. The hybrid PBBJ AM of a 3D object 

with both the structural powder material and the binder made from silicone has four stages as 

illustrated in Figure 2. and described in detail as follows: 

ACCEPTED M
ANUSCRIP

T



10 

 

(1) A roller with a linear velocity of 20 mm/s and rotational velocity of 100 rpm spreads the 

silicone powder from a feeding bed (also called supply powder bed) to a build bed. This 

results in a flat layer of silicone powder with a fixed thickness (LT) (Figure 2.a). 

(2) The thermal inkjet printhead jets the water-based Zb®60 binder onto the powder surface 

based on the image corresponding to the layer being manufactured. The Zb®60 liquid 

binder acts as a glue spread onto the silicone powder substrate to generate the structure by 

binding the silicone particles according to the geometry of the slice and to wet the substrate 

in preparation for the liquid silicone binder. Steps (1) and (2) are repeated a fixed number 

of times called dispensing frequency  (Fr) before the deposition of liquid silicone is carried 

out (Figure.2.b) in step (3).  

(3) The nozzle with inner diameter 100 µm is located above the center of the structure with 2 

mm off-set. By applying 100 KPa air pressure through a micro-syringe extrusion system 

(OptimeterTM, Nordson EFD, RI, USA), a droplet of silicone is dispensed to infiltrate the 

binder-wetted porous media substrate (Figure 2.c). 

(4) The structure is then exposed to a temperature of 100 – 120 oC supplied via a thermal lamp 

for 1 min to initiate and complete the polymerization of the two-part heat-curable silicone 

binder solution (Figure 2.d).  

The four steps are repeated until the cylindrical structure is completed in a layer-by-layer 

fashion. The parts are left in the build bed for 2-3 hours. Finally, they are removed from the hybrid 

PBBJ system and air-heated at 85 ºC to ensure the full curing.  ACCEPTED M
ANUSCRIP
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2.3 Liquid Silicone Viscosity 

The viscosity of liquid silicone binder was measured at 25 ± 0.01oC using a digital cone and plate 

rheometer (RST-CPS-P, Brookfield Engineering, MA, USA) at 200-2000 s-1 shear rate range by 

first increasing and then decreasing the shear rate value. The measurement data was collected at 

15 points in 60 s for both ascendant and descendant curves.  

2.4 Liquid Silicone Binder Differential Scanning Calorimetry (DSC)  

The analysis of the thermal behaviour of liquid silicone binder was conducted using a DSC device 

(STA 449 F1, Netzsch, Germany) in the range of 25 – 160 oC with a heating rate of 5 oC/min. In 

order to measure the curing time, the isothermal test was carried out with a DSC device (MTDSC 

2920, TA Instruments, DE, USA) at the equilibrium temperatures of 90 oC, 100 oC, and 110 oC. 

The curing behaviour was investigated in an inert atmosphere (Nitrogen), and each test was 

replicated three times. 

2.5 Silicone Powder Size and Morphology  

The particle size distribution of the silicone powder samples and their sphericity and symmetry 

were verified using a dynamic image processing system (CamSizer XT, Retsch-Technology, 

Germany). The shadow of dispersed silicone particles illuminated by two LED sources were 

captured as they passed through a free-fall feed shaft in front of two CCD cameras. The system 

measured parameters corresponding to the particle size distribution, sphericity, and symmetry in 

real time.  ACCEPTED M
ANUSCRIP
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2.6 Silicone Powder Dynamic Flowability, Shear Rate Sensitivity, and Bulk Properties  

A powder rheometer (FT4, Freeman Technology, UK) was used to determine the rheological 

properties of the silicone powders in response to multiple external conditions such as flow rate, 

aeration, and consolidation, its bulk properties such as compressibility and permeability, and its 

shear rate sensitivity. Before conducting each test, a uniform initial state of stress was achieved at 

the conditioning stage by disturbing the particles gently through the helical movement of a blade. 

2.7 Imaging 

The liquid silicone binder droplet size at multiple pressure values were measured using a digital 

camera (AM7915MZT, Dino Lite, Taiwan) at 21× magnification.  Images of the silicone binder 

droplets pendant from the needle tip were captured at 1 s intervals between the moment the 

pressure was applied, up to the separation of the droplet. The maximum diameter of droplet before 

separation was measured using the image processing software DinoCapture (Dino Lite, Taiwan). 

The powder silicone particle morphology was investigated using a scanning electron microscopy 

(SEM) (Ultra Plus, Carl Zeiss AG, Germany) at accelerating voltages of 10 kV and 3 kV for 

powder A and B, respectively.  

2.8 Part 3D Profilometry 

Three-dimensional (3D) profiles of the additively manufactured samples were obtained using a 

laser confocal microscope (VK-X250, Keyence, Japan) at 100× magnification. The height and the 

diameter of the circles fitted to the cross-section of the cylindrical samples were measured using 

the software MultiFileAnalyzer (Keyence, Japan).   ACCEPTED M
ANUSCRIP
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2.9 Part Computed Tomography (CT) Scan 

The tomography of the entire printed structure was captured using a nano-Computed Tomography 

(CT) scanner (Xradia 520 Versa, Carl Zeiss AG, Germany). The scanning parameters are provided 

in Table 1. 

 

In order to calculate the solid phase density for 4.05 µm resolution CT scan result, the 

original greyscale image was filtered with both a small kernel Gaussian filter, then with a larger 

kernel bilateral filter (2 voxel radius) which is an edge preserving Gaussian filter. A greyscale 

threshold was then determined manually to segment the dense particle phase from the void and 

silicone binder phases. The exterior regions were masked from the part, to not be included in the 

porosity calculations. The masking was performed by eroding the surface down by a localized 

porosity threshold until the mask closely tracked the part surface. Then, each voxel within the 

masked region was given a distance value from the central axis, and another distance value from 

the base of the domain. These distance values were used to group voxels into radial and vertical 

position bins for the respective porosity distributions. 

For separating three different phases of silicone powder, silicone binder, and air voids in 

the nano-scale CT scan results, the original greyscale image was first adjusted with a normalizing 

gradient to correct for artifacts associated with the sample exceeding the scanning field of view. A 

bilateral filter with a spatial radius of 2 voxel lengths was then applied to remove noise. Finally, 

the three phases were separated from each other in a combination of manual greyscale threshold 

selection and morphological image processing steps, including opening, closing, and three 
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dimensional median filters. The image processing routine had to be carefully performed due to the 

large overlap in the histograms of the porous and polymer phases. 

2.10 Hardness 

A Shore 00 handheld durometer (Shore S1, Shore Instruments-Instron, MA, USA) was used to 

measure the hardness of 3D printed samples as well as samples of the silicone binder cured in a 

mold for comparison. The rigid ball was located on the center of the cylindrical samples, and the 

hardness value was captured after 1s dwell time. Each reading was repeated three times for two 

replicates of samples manufactured under similar printing conditions.  

2.11 Statistical Analysis 

In order to optimize the 3D printing parameters, a multi-level experimental design was formed 

with the layer thickness (LT) and the dispensing frequency (Fr) of the silicone binder as the control 

factors. Table 2.shows the levels of each factor. The height (H), inner diameter (ID), and the 

diameter difference (DD) between the inner and outer circles fitted to the cross section of parts. 

The outer diameter (OD) is the diameter of the largest circle fitted to the cross-section of the 

cylindrical parts so that it covers the entire cross-section including the irregular edges. The 

diameter of the circle that only covers the central parts of the cross-section and not the irregularity 

caused by the lateral infiltration of silicone binder is ID. The difference between ID and OD is 

depicted in Figure 3. and is the method used to calculate DD. 

The path to the optimized region for each parameter was found using the response surface 

method. Finally, all three responses were optimized simultaneously using desirability function 

technique (utility transfer function). The levels of significant factors were selected so that DD was 

minimized, and H and ID approached the target values of 3 mm and 5 mm, respectively.  
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A one-way Tukey Analysis of variance (ANOVA) at 95% confidence level was employed to 

compare the hardness of parts manufactured under different 3D printing conditions. 

3 Results 

3.1 Silicone Binder Viscosity and Droplet Size in Dispensing  

Figure 4.a shows the viscosity of the silicone binder at the shear rate range of 200 – 2000 s-1. The 

viscosity vs. shear rate plot shows a Newtonian behavior with the constant viscosity of 78 mPa.s 

at room temperature. The ascendant and descendant plots coincide as well showing the 

independency of the rheological behavior of the fluid on the shearing history. For a fluid with the 

shown viscous behavior, the syringe dispensing was tested under various pressures. It was found 

that varying the dispensing air back-pressure did not affect the volume of the dispensed droplet, 

however, it changed the separation time (see Table 3). With a pressure of approximately 100 KPa, 

the droplet separated 8 seconds after the pressure was applied providing enough time for the 

control of dispensing mechanism. Figure 4.b shows the image of a silicone droplet captured before 

its separation form the needle tip with the inner diameter of 100 µm. The diameter of the shown 

droplet is 1.54 mm.  

 

3.2 Thermal Analysis of Silicone Binder 

The exothermic silicone cross-linking process for the samples of silicone binder at various hold 

temperatures are depicted in Figure 5.a. For all three replications of the experiment, the positive 

peak appears in the range of 75 – 90 oC.  Thus, the maximum temperature of three tests (90 oC) 

was selected for further investigation. The isothermal DSC results (Figure 5.b) at 90 oC show that 

the curing process is accelerated after 3 – 4 min at equilibrium and takes approximately 2 min to 
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reach the maximum curing rate. Similar experiment conducted at 100 oC (Figure 5.c) shows that 

the curing happens right after the temperature equilibrium is reached. Increasing the temperature 

even further results in curing of the binder before reaching the target temperature (Figure 5.d). 

Increasing the amount of curing agent does not reduce the crosslinking speed significantly; 

however, it reduced the temperature at which the crosslinking initiates. The isothermal DSC results 

for a silicone binder with higher content of curing agent (100:2) at 85 – 100 oC are shown in Figure 

2 of Data in Brief. The results show a reduction in immediate initiation of crosslinking to 85 – 90 

oC which will increase the possibility of nozzle clogging. As a result, 100:1 mixing ratio was 

selected for this two-part silicone binder. 

3.3 Silicone Powder Size and Morphology  

The SEM images of powder A (Figure 6.a-c) and powder B (Figure 6..d-f) show their effective 

spherical morphology. The particles of powder A appear segregated, while the particles of powder 

B have cohered together and produced large agglomeration of clusters surrounded by finer satellite 

particles. The powder particles in both powder A and B appear spherical in nature. Powder A had 

a fine coating in the as-purchased state, and this can be seen as surface flakes in Figure 6.c. Powder 

B did not have any coating in the as-purchased state, and appears smooth in nature, as seen in 

Figure 6.f. 

The particle size distribution of powder A can be seen in Figure 7.with an average particle 

size of 30 µm. The shape analysis test for powder A showed a high level of sphericity (average 

value of 0.842 for four test replications where 1 represents the perfect circle). The symmetry index 

for the powder A was 0.963 as well (with 1 representing the full symmetricity). Studying the 

particle size distribution and quantifying the sphericity of powder B was not possible due to its 
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high degree of agglomeration and cohesiveness. However, the manufacturer reports particle size 

distribution of 2 – 30 µm with an average particle size of 13 µm for this powder.  

 

3.4 Silicone Powder Rheology  

The flow properties of silicone powders were measured based on their resistance to the movement 

of a blade which creates a flow pattern by its rotational and vertical movement. Guidelines 

provided at [58-60] have been used to interpret the powder rheology results. The energy required 

to establish this flow pattern for both powders is shown in Figure 8.a. The first 8 repeated tests 

have been conducted at the same blade velocity, followed by the gradual decrease in the velocity 

in tests 9 – 12. At the fixed velocity region, the energy required for the flow is 15 mJ higher for 

the powder B. The same pattern with lower difference in the value of energy can be observed for 

the lower velocities. The lower energy for the powder A shows that it is a non-cohesive powder 

with better flow properties. This conclusion will be reaffirmed through other tests conducted.   

A similar test was conducted for both powder types while they were conditioned with the 

air flow with varying velocities. The aeration test for powder A (Figure 8.b) and powder B (Figure 

8.c) demonstrate drastically different behaviours. The energy required for the flow of blade has 

been reduced to almost zero for powder A even at a low air velocity of 1 mm/s and remained near 

zero for the higher velocities (2 – 5 mm/s) as well. As for the powder B, the zero plateau was never 

achieved even with an air velocity as high as 150 mm/s. The zero energy indicates a virtually 

fluidized powder bed that makes the rotation of the blade through the powder bulk easier. The 

sharp decrease in the amount of energy for the hybrid powder and reaching the fluidization state 

confirms the non-cohesive behavior of powder A.   
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The compressibility and permeability test results are shown in Figure 8.d and Figure 8.e, 

respectively. In these two tests a sample of pre-conditioned powder is compressed under certain 

normal stress values. The compressibility test measures the change in the powder volume when 

exposed to normal stress, and the permeation quantifies the ability of the bulk powder in passing 

a fluid through its porous structure by measuring the air pressure needed in order to maintain a 

constant air flow as the normal stress is increased. Figure 8.d shows that powder B is 4 – 6 times 

more compressible than powder A at any given normal stress. Powders with lower compressibility 

have a more efficient packing of particles, and are less cohesive. On the other hand, the pressure 

drop for powder A is approximately 10 mBar more than that of the powder B which makes the 

hybrid powder highly permeable to air.  

The shear strength was measured at 7, 6, 5, 4, and 3 KPa normal stresses after pre-shearing 

the powder at 9 KPa. The higher value of shear stress at any given normal stress indicates a more 

difficult flow due to cohesiveness, irregular shape of particles, void-free structure etc. Powder A 

demonstrates lower shear yield loci for any normal stress compared to powder B making it less 

resistant to the flow during the recoating process. The results of powder morphology and rheology 

tests are indicative of the superiority of powder A for use in PBBJ process. This powder has been 

used throughout the rest of study for fabrication of samples for shape fidelity, tomography, and 

durometry experiments. 

3.5 Part Shape Fidelity Characterization 

The significance of layer thickness (LT) and silicone binder deposition frequency (Fr) on the 

dimensional accuracy of the 3D printed parts was evaluated using a multi-level experimental 

design. The details of design and the measured values for height and width can be found in Data 
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in Brief, Table 1. The samples were manufactured in a completely randomized order according to 

the designed experiment. The responses were assumed to be independent.  

 The analysis of variance (ANOVA) results are shown in Data in Brief Tables 2, 3, and 4 

for H, ID, and DD, respectively. The results show that for H and ID, Fr has a significant effect at 

95% confidence level. However, none of the parameters are significant at 95% confidence level 

for the DD. The response surface plots (Figure 9.a(i) - c(i)) demonstrate the path to the optimization 

for each of the responses. Marginal mean plots (Figure 9..a(ii) - c(ii)) confirm the ANOVA 

conclusions. The marginal mean plots for H and ID both show that the higher limit of LT (100 

µm) yields dimensional values closer to the target. However, Fr of 1 drop per 200 µm and 1 drop 

per 300 µm produce the best results for H and ID, respectively. Thus, the desirability function 

technique was adopted to optimize the input parameters simultaneously (Data in Brief, Table 5). 

The simultaneous optimization of three responses showed that by setting LT and Fr both at their 

high level (100 µm and 1 drop per 300 µm respectively), the optimum results will be achieved. At 

this condition, the average values of ID, H, and DD will be 5.45 mm, 3.77 mm, and 1.6 mm 

respectively.  

3.6 Part Internal Features 

The CT scanning results at 4.05 voxel resolution for the entire AM-made silicone structure 

manufactured using 100 µm LT and 1 droplet per 3 layers Fr is shown in Figure 10.a. A higher 

concentration of silicone powder is visible in the center of the structure as opposed to its shell. The 

quantified vertical and radial particle phase fraction for each slice are plotted in Figure 11.a and 

Figure 11.b respectively, and demonstrate that the particle phase fraction is dropped from 75% at 

core to 55% at the edge. This change in the density of powder however is less variant along the 
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height of the sample (55% - 65%). A magnified view of two regions of interest inside the structure 

at higher resolution helps in distinguishing between the particle and cured binder phases. 

Figure.10.b shows a zone inside the structure with visibly higher concentration of silicone powder 

particles. Comparing these images with the CT scan results of a central section of the structure 

(Figure 10.c) reveals that the difference in concentration of particles is much higher in radial 

direction. The overall solid particle phase density for this cylindrical structure is 59.8%. The 

remaining 40.2% of the entire volume is comprised of silicone binder and pores.  

 

 

In order to separate the silicone binder and air pores, image processing was conducted on 

the CT scanning data obtained for a small section of the AM-made part at nano-resolution (727 

nm voxel resolution). Figure 12.a shows the overall view of the scanned samples. Silicone binder 

and pores are isolated in Figure 12.b and Figure 12.c, respectively. Based on the quantification 

results of image processing, the sample is made of 70.5% silicone powder, 21.3% silicone binder, 

and 8.2% pore. Five of the largest pores are shown in different colors in Figure 12.d. The 

distribution of pore network throughout the entire structure can also be found in video 1 of 

supporting information.  

3.7 Part Durometry 

Two sets of parts were 3D printed at optimized printing conditions (LT of 100 µm and Fr 1 drop 

per 300 µm). Three cylindrical parts from each batch were selected for the hardness test. The tests 

were replicated three times for each part. Similar testing approach was employed for the cured 

silicone binder molded based on ASTM D2240. The hardness test results are summarized 

inTable.4.. The ANOVA study was used to compare the average hardness of AM-made cylinders, 

ACCEPTED M
ANUSCRIP

T



21 

 

the results of which (Table 4.) failed to show a significant difference between the hardness of the 

parts. The hardness of parts printed at non-optimum conditions are provided in Tables 6 – 10 of 

Data in Brief. The average hardness values compared in Figure 3 of Data in Brief show a positive 

shift of ~ 8 (Shore 00) in the hardness when the layer thickness is increased to 100 µm. No 

systematic change in the average value of the hardness can be attributed to the dispensing 

frequency.  

 

Similarly, the comparison of average hardness values for the AM-made cylinders and the 

pure silicone binder using a t-test does not show a statistically significant difference at 95% 

confidence level. The average hardness is approximately 83.6 (shore A) for the 3D printed parts 

and 79.8 (shore A) for the crosslinked silicone binder. The hardness of powder A, reported in the 

material’s certificate, is 70 (shore A).  

4 Discussion  

The constant diameter of silicone binder droplet before separation from the needle tip under 

different pressure values (1.54 mm) allows the adjusting of the dispensing time by modifying the 

air pressure (Figure 4.a). The viscosity of silicone binder (78 mPa.s) is not very high so that it 

prevents the creation and separation of droplets, at the same time, it is not very low to cause fluid 

dripping (Figure 4.b). However, once dispensed on the dry powder bed, the infiltration process 

takes 10 – 20 s. Moreover, this long infiltration causes the disturbance of silicone powder particle 

distribution in the layer. In order to minimize this issue, the powder surface was pre-wetted with 

the water-based binder. The utilization of the water-based binder helps the proposed hybrid AM 

technique by: (i) binding the silicone particles temporarily together; (ii) speeding up the process 

of silicone binder infiltration to less than 1 s by enhancing the wetting properties of silicone 
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particles. The aqueous binder is used to wet the powder substrate in order to accelerate the 

progression of the silicone liquid droplet from primary to secondary liquid spread [61]. Primary 

spread occurs when the sessile droplet volume (volume above the powder) is not zero, where the 

secondary spread occurs within the porous substrate only. In the absence of the aqueous binder, 

the primary spread could take more than 10s, while in the presence of the aqueous binder, the 

primary spread is reduced to approximately 1s. The difference in the timing of infiltration of 

silicone binder on the dry and wet surfaces is shown in video 2 of the supporting information.  

Investigating the thermal behaviour of the curing process of the liquid silicone binder is 

crucial in designing a curing mechanism that assures the geometrical accuracy of the parts is 

maintained by crosslinking the silicone binder after dispensing as fast as possible to prevent its 

penetration into the surrounding powder environment. The entire curing process for silicone binder 

at 90 oC takes approximately 6 min which can prolong the manufacturing process. As a result, the 

silicone binder was exposed to a curing temperature between 100 – 120 oC for 60 s using a thermal 

lamp. The changes in the powder surface temperature measured using a thermocouple (Data in 

Brief Figure 1) shows that the powder bed temperature reaches 100 oC after 50 s and 110 oC after 

60 s. The isothermal plots at these two temperatures (Figure 5.c-d) demonstrate that curing happens 

immediately after reaching 100 oC, and a full cure takes less than 1 min. As a result, the employed 

curing policy of 1 min exposure to heat prevents both the unnecessary increase in the total 

manufacturing time and permeation of silicone binder outside the region of interest.  

When considering the liquid silicone material and the rheological and thermal behaviour 

during curing, it is recommended that for manufacturing of such silicone structures, the following 

considerations should be met: (i) increasing the infiltration rate of liquid silicone binder by 

enhancing its wettability through pre-wetting of powder-bed (ii) preventing the permeation of 
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silicone binder to the areas that are not supposed to be a part of final structure through instant 

curing  (iii) tailoring the rheological properties of silicone binder (recommended viscosity range: 

70 – 90 mPa.s) so that it not too viscous for common direct write AM techniques, yet viscous 

enough so that it does not permeate too fast before crosslinking, (iv) increasing the resolution and 

accuracy of the technique by replacing the extrusion system with a drop-on-demand AM printhead 

in order to reduce the diameter of silicone binder droplets to less than 300 µm.  

The deep understanding the powder rheology and properties is important in powder-bed 

AM processes in order to obtain a consistent and uniformly spread layer and minimize the printing 

variability. Thus, investigating the rheological properties of a silicone powder with successful 

flowability for AM would be beneficial for future development of silicone powder customized for 

powder bed systems. Comparison of the shape and size of powders A and B (Figure 6 ) suggests 

that powder A could be a viable candidate for powder bed AM. Powders A and B both have a 

narrow particle size distribution range and spherical shape which are both favourable powder 

characteristics for AM. However, the smaller particle size of powder B (almost half the size of 

powder A) increases the free surface area and consequently the friction and static forces between 

the powder particles. This will result in the inefficient packing properties and difficulty in the 

powder spreading and layer recoating process [62]. The lower flowability under static and aerated 

conditions, lower permeability, and higher compressibility of powder B confirm the conclusions 

inferred from particle shape and size analyses. A high degree of agglomeration was observed in 

the SEM image of powder B (Figure 6b). The reason behind the low flowability and permeability 

of silicone B could be the formation of tightly packed structures as finer separated silicone particles 

interlock through static can friction to form powder agglomerations. The high compressibility is 

an indicator of the cohesiveness of powder B which justifies the agglomeration. An important 
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characteristic of the powder feedstock used in AM is their shear stress as the particles slide relative 

to each other when transferred from the feeding compartment to the building compartment by the 

roller, and the initiation of the flow is dependent on overcoming the resistance to the flow. The 

lower shear stress for the powder A shows its better flow properties and less cohesive behavior. 

The lubricating effect derived from the resin coated hybrid powder A also contributes to its 

overcoming of the inter-particular shear forces.  

When considering the powder silicone material and the rheological and morphology of the 

powders, it is recommended that for manufacturing of such silicone structures, the following 

considerations should be met: (i) spherical and symmetric powder particles; (ii) average particle 

size between 30 – 40 µm with a reasonably wide distribution range (± 30 µm) to provide a efficient 

particle packing in the powder-bed; (iii) non-cohesive powder demonstrating limited 

compressibility (10 – 20 %) and high permeability to air; (iv) powder with low shear yield (less 

than 2.5 KPa for normal pressure between 1 – 7 KPa) to decrease the resistance to flow during the 

recoating. 

 The investigation of part shape fidelity through the experimental design showed that at the 

optimum condition, the H and ID of the sample parts are 0.45 mm and 0.75 mm larger than their 

target values, respectively. Moreover, the optimized DD value of 1.7 mm will reduce the 

geometrical accuracy of the shape. The results show that further work in this area must be done in 

order to obtain higher geometrical accuracy. To this end, the effect of surfactants on the surface 

properties and the size of silicone binder droplet and the effect of additives to the powder system 

for controlling its fluid permeability properties will be investigated in the future work. 
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 Based on the CT scan data, the silicone part fabricated at optimum printing condition using 

the hybrid method consists of approximately 8.2% air voids (Figure 12) which are distributed 

unevenly throughout the structure (Figure 11). Moreover, despite the presence of regional pore 

interconnectivity at multiple locations in the AM-made sample (video 1), the pores of larger 

volume are actually isolated and trapped inside the part (Figure 12d). As a result, a new dispensing 

method using piezo-dispensing should be investigated to determine the feasibility of dispensing 

smaller liquid silicone droplet volumes throughout the layer of interest to increase shape fidelity 

and control over the internal porosity. Printing droplets with volumes in the order of pico- or micro-

liter provides higher control and flexibility over the total silicone binder volume infiltrated in each 

layer, and makes it possible to fill a certain percentage of the air voids. In such drop-on-demand 

systems, adjusting the actuation parameters in combination with translational velocity of the 

printhead can change the volume of droplets as well as the deposition frequency. Thus, multiple 

patterns from continuous lines to separate droplets can be laid down on the powder substrate which 

in turn make controlling the overall density of the structure possible. This provides an apparatus 

for fabrication of silicone structures with variable density profile from fully dense to highly porous 

with interconnected channels.  

The CT analysis results illustrated in Figure 11.showed a variability in silicone powder 

volume fraction radially, with more particles clustering in the center compared to the periphery of 

the parts. This is an artefact of the droplet deposition process. When infiltrating polymer solution 

droplets onto a porous substrate [63], the liquid permeation through the porous powder media is 

dependent on the droplet kinetics, porosity of the substrate, as well as the wetting angle of the 

powder material. Considering that the size of the liquid silicone droplet (approximately 1.54 mm) 

is significantly larger than the average powder particle size used in this study (powder Type A, 30 
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µm), the dynamic impact kinetics of the traveling droplet and liquid spreading mechanisms of the 

sessile droplet through the porous media can play a significant role in disturbing the powder [61]. 

The impact kinetics of the falling droplet can explain the regions of higher powder particle 

concentration at the bottom of the parts, as particles are displaced vertically [63]. The difference 

in powder fraction radially, from 75% volume fraction of particles in the centre of the part to 55% 

at the periphery, can be explained by the theory of droplet primary and secondary liquid spread 

[61]. In the primary spread, the liquid droplet meets the substrate and starts to imbibe the powder. 

During this phase, there is an instantaneous flow rate initiated at the liquid-powder interface. This 

generates a net force acting at the inlet powder boundary, thus particles can be dislodged and can 

travel within the sessile droplet radially, which may explain the different concentration of particles 

in the centre of the parts. Overall, the theory seems to suggest that smaller liquid silicone droplets 

would reduce the powder displacement and likely result in a more uniform component, furthering 

the need for a better liquid silicone delivery method.      

The durometry results for the AM-made samples show that different replicates of the same 

manufacturing process produce similar durometry results which indicate the reproducibility of the 

hybrid PBBJ-extrusion process. Moreover, the hardness of these composite parts made with 

different printing parameters is between 70 – 80 (Shore A), so are the hardness of silicone binder 

and powder. No clear relationship between the printing parameters and the hardness was 

established at this time. A full mechanical characterization will be carried out on the products of 

this AM method in the future. Specifically, the effect of the printing parameters on the tensile 

strength, tear strength, and elongation at break of the parts [64] should be investigated in order to 

make any required changes to the system of materials for each particular biomedical application.  
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This study showcased the possibility of manufacturing silicone structures using a hybrid 

powder bed binder jetting and liquid dispensing process, which offers new opportunities to locally 

tailor the material porosity and intrinsically mechanical properties. The experimental results 

indicated that PBBJ technique is capable of processing thermoset powders. The main challenge 

remaining is integration of a multi-nozzle inkjet printhead compatible with medium to high viscous 

silicone binders to the system. Such a binder deposition system will increase the AM speed, 

improves the geometrical accuracy of the final products, and provides higher control over the 

properties of parts. Upon further improvement in the deposition of silicone binder, this hybrid 

method could be used for production of structures with the capability of controlled release of fluids 

for drug-delivery applications.  

5 Conclusion 

In this research work, a novel hybrid method combining PBBJ and deposition techniques for 

fabrication of 3D structures entirely made from silicone was introduced. Cylindrical samples 

optimized in terms of geometrical accuracy were showcased. The permeation of silicone binder in 

the powder bed was sped up by pre-wetting the surface with an aqueous binder. The rapid curing 

mechanism of the parts was designed based on the thermal analysis of the binder. Guidelines for 

efficient flowability of silicone powder were provided based on its rheological properties and shear 

sensitivity. The results of this work show the potential of binder jetting AM techniques in 

fabrication of complex, customized, and intelligent structures for application in pharmaceutical, 

biomedical, and life sciences.    
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Figures: 

 

Figure 1 The hybrid PBBJ AM system schematic (left) and physical system showcasing the multi-powder 

material feedstock capabilities, micro-dispensing syringe system, as well as examples of calcium 

polyphosphate bioceramic and commercially pure titanium parts manufactured using the system (right).  

 

 

 

Figure 2 The schematic of hybrid PBBJ AM system. (a) spreading the silicone powder from feed bed onto 

the build bed; (b) wetting each layer by inkjet printing the water-based binder; (c) dispensing a droplet of 

silicone binder to fill up the silicone porous media using a pneumatic extrusion system; (d) partial curing 

of the silicone binder using a thermal lamp at 100oC temperature. 
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Figure 3 Sample of the 3D profile of the four replications of a part manufactured with similar printing 

parameters. The difference between the two circles fitted to the cross-section of each sample is shown in 

the magnified top view images. 

 

 

Figure 4 (a) The viscosity of silicone binder showing a Newtonian behavior at the shear rate range of 200 

– 2000 s-1; (b) The silicone binder droplet before separation from the needle with a maximum diameter of 

1.54 mm 
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Figure 5 Thermal analysis results for silicone binder (100:1); (a) non-isothermal curves (heat flux vs. 

temperature) ; (b) isothermal curves at 90 oC; (c) isothermal curves at 100 oC; (d) isothermal curves at 110 
oC; (a-d) n=3, solid lines and dashed line corresponds to heat flux and temperature, respectively.  
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Figure 6 (a-c) SEM images for powder A; (d-f) SEM images for powder B. 

 

Figure 7 Particle size distribution for powder A (n=3). 
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Figure 8 Silicone powder characterization results (n=3); (a) flow test for powders A and B; (b) aeration test 

for powder A; (c) aeration test for powder B; (d) compressibility results for powders A and B; (e) 

permeation results for powders A and B; (f) shearing test for powders A and B.  
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Figur 9 The optimization results for separate analysis of responses; (a-i) the contour plot and optimization 

path for H; (a-ii)  the plot of marginal means for H; (b-i) the contour plot and optimization path for ID; (a-

ii)  the plot of marginal means for ID; (c-i) the contour plot and optimization path for DD; (c-ii)  the plot of 

marginal means for DD. 
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Figure 10 CT scanning results for the silicone part made via hybrid PBBJ-extrusion system; (a) overall 

structure, (b) defect region with high particle density; (c) central region with regular particle density; (a-c) 

(i) 3D view, (ii) top view, (iii) front view; (a) CT scanning resolution: 4.05 µm; (b-c) CT scanning 

resolution: 1.4 µm. 
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Figure 11 Silicone particle phase fraction vs. (a) vertical position and (b) radial position. 
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Figure 12 Separation of different phases of AM-made structure; (a) yellow: silicone powder, blue: cross-

linked silicone binder; (b) isolated cross-linked silicone binder; (c) isolated pores; (d) largest air gaps in the 

pore network separated with different colors; (a-d) CT scanning resolution: 727 nm. 
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Tables: 

Table 1 CT scanning parameters 

Parameters 
Voxel size (µm) 

4.05 1.4 0.727 

Source Power (W) 3 3 3 

X-ray Energy (kV) 40 40 40 

Filter LE2 LE1 LE1 

X-ray Optic Lens 4× 20× 20× 

Exposure Time (s) 1 1 10 

Number of Projections 801 801 1601 

Binning Level 4 4 2 

 

 

 

Table 2 Experimental design factor levels.  

Factor Low Level (-1) Center Level (0) High Level (+1) 

LT - Layer Thickness (μm) 50 - 100 

Fr - Dispensing Frequency 1 drop per 100 μm 1 drop per 200 μm 1 drop per 300 μm 

 

 

Table 3 Dispensing duration for one droplet at different air pressure values. 

Pressure (KPa) Dispensing Time (s) 

30 15 

50 10 

100 8 
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Table 4 The durometry results for the 3D printed cylinders and molded silicone binder (n=3). 

Sample 
Hardness (shore 00) 

test 1 test 2 test 3 Avg. 

Cylinder 1 (batch 1) 80.5 85.6 80.9 82.33 

Cylinder 2 (batch 1) 87.3 85.2 82.8 85.10 

Cylinder 3 (batch 1) 80.7 80.1 81.5 80.77 

Cylinder 1 (batch 2) 81.5 85.3 86 84.27 

Cylinder 2 (batch 2) 85.3 84.3 85.2 84.93 

Cylinder 3 (batch 2) 80.9 87.8 84.7 84.47 

Total Avg.  83.64 

Molded silicone binder 1 81.5 80.1 75.4 79.00 

Molded silicone binder 2 81.2 81.2 79.6 80.67 

Total Avg.  79.83 

 

Table 5 ANOVA results for the hardness test. 

Source DF Adjusted Sum of Squares Adjusted Mean Squares F-Value P-Value 

Measurements 5 55.49 11.098 2.54 0.086 

Error 12 52.47 4.373     

Total 17 107.96       

 

 

Table 6 T-test results for comparing the hardness of 3D printed structures and molded silicone binder. 

  
N Mean 

Standard 

Deviation 

Standard 

Error Mean 

3D printed parts 6 83.64 1.72 0.7 

Molded binder 2 79.84 1.18 0.83 
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