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Abstract

Background: In this paper, we propose a nonlinear minimally supervised method based on autoencoding (AEN) of
EMG for myocontrol. The proposed method was tested against the state-of-the-art (SOA) control scheme using a
Fitts’ law approach.

Methods: Seven able-bodied subjects performed a series of target acquisition myoelectric control tasks using the
AEN and SOA algorithms for controlling two degrees-of-freedom (radial/ulnar deviation and flexion/extension of
the wrist), and their online performance was characterized by six metrics.

Results: Both methods allowed a completion rate close to 100%, however AEN outperformed SOA for all other
performance metrics, e.g. it allowed to perform the tasks on average in half the time with respect to SOA. Moreover, the
amount of information transferred by the proposed method in bit/s was nearly twice the throughput of SOA.

Conclusions: These results show that autoencoders can map EMG signals into kinematics with the potential of providing
intuitive and dexterous control of artificial limbs for amputees.
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Background
Myoelectric signals (EMG) have been used to drive pros-
thetic devices for more than half a century. However, the
commercially available products still mainly rely on a sim-
ple direct and sequential control. This control strategy
offers robust and reliable handling of the prosthetic in
daily life, but it allows limited recovery of functionality
and requires high cognitive load by the user [1, 2]. There-
fore, several attempts have been made for establishing a
more intuitive interface for active prosthesis control.
Major advances in myocontrol have been made with

pattern recognition approaches. These methods are
based on the assumption that sufficiently distinguishable
patterns can be observed in the EMG recordings during
different motions. Each signal can be represented using
a certain set of features which can be used as input to a
classifier. The trained classifier is then capable of
discriminating the intended motions. With state of the
art pattern recognition methods, the classification accur-
acy exceeds > 95% when discriminating > 10 classes [3].

Despite their good performance and their recent transla-
tion in commercial systems [4], pattern recognition
algorithms for myocontrol have some intrinsic limitations.
For example, it is difficult to implement simultaneous and
proportional control of multiple degrees of freedom (DoFs)
with these algorithms since they do not allow a direct map-
ping of EMG into kinematics. This issue can be mitigated
by the classification of complex movements as the combin-
ation of motions in combined classes [5–7], although this
approach increases the training time and complexity.
More recently, regression approaches have been pro-

posed for estimating the user activation intentions
simultaneously and proportionally over multiple DoFs of
wrist and hand [8–11]. When comparing linear and
non-linear regression methods for myocontrol, differ-
ences were observed during offline processing [12].
However, in online tests, with the user in the loop,
different regression methods performed similarly [13],
indicating the important role of user adaptation to the
interface. It has also been observed that regression al-
lows a greater degree of user adaptation to the mapping
as well as to signal non-stationarities than classic pattern
recognition [14]. The high degree of user adaptation

* Correspondence: d.farina@imperial.ac.uk
1Department of Bioengineering, Imperial College London, London, UK
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Vujaklija et al. Journal of NeuroEngineering and Rehabilitation  (2018) 15:21 
https://doi.org/10.1186/s12984-018-0363-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-018-0363-1&domain=pdf
http://orcid.org/0000-0002-7394-9474
mailto:d.farina@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


promoted by regression may allow the effective use of
minimally supervised schemes. An example of these
approaches is the factorization of the multi-channel
EMG recordings with non-negative matrix factorization,
which does not require labeling of the kinematics during
training/calibration.
In this study, we propose and test a nonlinear mapping

of EMG based on autoencoders (AEN), which exploits
the advantage of unsupervised learning and the power of
non-linear regression. AEN have been used in sleep
analysis [15, 16], classification of arrhythmia [17], and
detection of atrial fibrillation [18], as well as for the ex-
traction of muscle synergies [19] and data compression
[20]. Nevertheless, they have not been applied to myo-
electric control. The aim of this study is therefore the
development and validation against direct control of a
method of autoencoding for proportional and simultan-
eous myocontrol.

Methods
Autoencoder
Feed-forward neural networks, also referred to as multi-
layer perceptron (MLP), with one hidden layer have been
widely used for learning continuous and bounded associ-
ation functions between input data and a target output
[21]. MLPs have also been previously used for estimating
the kinematics of multiple DoFs from EMG features [9,
22]. In this study, we propose a different neural network
approach for these estimates, based on AEN. Given the
R-dimensional features of the surface EMG, denoted
as P(t) = [p1(t), p2(t),⋯, pR(t)], the goal is to estimate the
activation intentions, or motor control signals, for each
DoF. In this study, we used the root mean square (RMS)
values of the R-channel surface EMG as P(t). The RMS
values were obtained by non-overlapping 100 ms

processing windows [23], which resulted in an output
rate of the control of 10 Hz. The RMS feature vector
was used simultaneously as both the input and the out-
put of the AEN network, as shown in the structure of
the network in Fig. 1.
The standard MLP structure with one hidden layer

containing two neurons was used for each DoF for map-
ping the association of the EMG feature vector P(t) to
itself, while capturing the low-dimensional controls in
the hidden layer, with reduced number of neurons. To
obtain the activation signals a1(t), a2(t) in both positive
and negative directions at each DoF (i.e., flexion/exten-
sion or radial/ulnar deviation) in the hidden layer, two
positive linear neurons with no biases from the input
layer were used. This configuration was motivated by a
physiological generative model based on muscle syner-
gies [8] that suggests direction–wise estimation of DoF
control. The output of the hidden layer is expressed as:

a1 tð Þ
a2 tð Þ

� �
¼ IW ∙P tð Þj j ð1Þ

where |·| stands for the absolute value and IW(2 × R)
represents the weights applied to the input layer in the
network. The output layer has the same dimension as
the input layer, and the transfer function of the output
layer neurons was linear. The output of the network Q(t)
is expressed as:

Q tð Þ ¼ LW ∙a tð Þ þ B ð2Þ
where LW(R × 2) represents the weight of the output
layer and B represents the biases from the hidden neu-
rons to the output neurons. The purpose of this network
is to regenerate its input at the output, i.e. it imposes
Q(t) ≈ P(t). However, the output is generated from a

Fig. 1 The structure of Autoencoder neural network for extracting control signals in two opposite directions (a1,a2) for each DoF
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signal of reduced dimensionality with respect to the
input and this lower-dimensional signal is used for con-
trol in this study.
For each DoF, the EMG feature vector was applied to

the input and the output of an AEN with the structure
shown in Fig. 1. The network was then trained using the
Levenberg-Marquardt back-propagation algorithm, the
combination of Gauss-Newton and the steepest descent
methods [24]. The training was repeated 10 times with
different initial weights, resulting in 10 AEN networks
with different internal parameters for each DoF. Since
the two outputs of the hidden layer estimate the activa-
tion of one DoF in opposite directions, the optimal set
of network parameters was selected as that correspond-
ing to the minimum correlation between the two
outputs. Once the parameters were selected, the control
signals ½ai1ðtÞ; ai2ðtÞ� for the i-th DoF could be extracted
from each new feature vector by projection on the
weight matrix IWi:

ai1 tð Þ
ai2 tð Þ

� �
¼ IW i∙P tð Þ�� �� ð3Þ

The indeterminacy of signal power for the activation
signals was resolved by scaling them with correction
factors τij to obtain the final control signals with appro-
priate range of movement in the respective DoF:

ci tð Þ ¼ τi1∙ai1 tð Þ−τi2∙ai2 tð Þ ð4Þ
where the correction factors τij were determined such
that the resulting control signal ci(t) matched the range
of movement in the ith DoFs, determined during the
calibration phase (see Section IIC).
In the current application, two AEN networks were

used to extract the activation signals corresponding to
two DoFs (i.e., wrist flexion/extension and radial/ulnar
deviation). The trained AEN input weight matrixes IWi

were used to control the DoFs simultaneously, according
to Eqs. (3) and (4). The selected DoFs have been previ-
ously shown to have a fundamental functional relevance
for patients [25]. Moreover, we limited the tests to 2
DoFs since the concurrent activation of 3 DoFs was
challenging for most subjects. Therefore, the focus was
on decoding and mapping flexion/extension and ulnar/
radial deviation as representative wrist functions [12].

Subjects
Seven able-bodied subjects without any neuromuscular
disorders (5 M, 2 F, age: 29 ± 3 yrs) participated in the ex-
periments. All subjects were presented with the detailed
experiment protocol, which they had read and signed
along with the informed consent approved by the research
ethics committee of the University Medical Center
Göttingen and conformed to the Declaration of Helsinki.

Experimental protocol
The experimental protocol was similar to the one
described in [23, 26]. Each participant was seated com-
fortably approximately 1 m in front of a computer
screen, with the dominant arm extended at the side, fin-
gers pointing towards the ground, and palm facing
inside. Sixteen monopolar pre-gelled surface electrodes
(Neuroline® 720, Ambu, Denmark) were placed around
the forearm, with equal distance along the arm circum-
ference. This resulted in two 8 electrode rings. The aver-
age inter-electrode distance within each ring was
23 mm, and the average distance between the rings was
20 mm. The electrode rings were mounted at a distance
from the elbow of 1/3 of the length from the olecranon
process to the styloid process of the ulna. The selected
electrode arrangement provided EMG signals of high
dimensionality, suited for the proposed analysis. Surface
EMG was acquired by a commercial biosignal amplifier
(EMGUSB2, OT Bioelettronica, Italy) at a sampling rate
of 2048 Hz (12 bit A/D, 3 Hz to 900 Hz 6th-order
Butterworth band-pass). A wrist band was used as refer-
ence electrode.
Other methods based on artificial neural networks re-

quired sample-by-sample labeled data with respect to
joint kinematics for training (as in [22]). Conversely, in
the current study, no kinematics was recorded. Rather,
the intended activations at the multiple DoFs of each
subject were estimated ‘blindly’ from the surface EMG.

Calibration phase
The calibration of the AEN relied solely on the EMG
signals obtained during unconstrained, dynamic move-
ments without kinematic labeling. The only restriction
imposed during calibration was to articulate movements
of one DoF at a time. Wrist flexion/extension (DoF1)
and ulnar and radial deviation (DoF2) were the two
DoFs used in this study. During calibration, for each
DoF, six contractions covering the full range of motion
were performed. These recordings were referred to as
calibration contractions and their execution took ap-
proximately 3 min. The entire acquisition was made
using a custom developed Matlab® program. Upon the
successful calibration of the estimator, the online valid-
ation phase started.

Online validation phase
Once the calibration phase was completed, the subjects
were prompted to perform an online validation test. A
cursor was presented on the user’s screen (Fig. 2). The
2-D displacements (horizontal and vertical) of the cursor
were proportional to the wrist movements estimated
from the surface EMG recordings in the two DoFs.
Wrist flexion/extension movements were mapped to the
horizontal displacement of the cursor, while wrist
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adduction/abduction (ulnar/radial deviations) move-
ments were mapped to the vertical displacement. This
virtual task paradigm is an adaptation of a system we
have previously applied [23, 26, 27]. While there are
more complex virtual environments to test myocontrol
[28], this system offers an intuitive interface and associ-
ated quantitative evaluation metrics. The control was in
position mode, i.e. when no EMG activity was detected
the cursor returned to its original position at the origin
of the workspace (at the center of the subject view). The
correction factors (τij) were fine tuned for each subject
to achieve effortless coverage of the full range of motion.
This step took in total less than 1 min.
For the test phase, 20 circular targets were displayed

in the subject view at predetermined positions (Fig. 7),
one by one in a random order. The radius of each target
was 8 density-independent pixels (dp), covering 0.7% of
the entire workspace. On an audio cue, the subject was
instructed to place the cursor within the circular targets
and to keep it on the target for at least 300 ms for the
task to be considered as successful. The dwelling time of
300 ms was chosen based on the previous work [23, 27],
as a compromise between the functional evaluation and
subject efforts, while at the same time preventing any
bias towards either of the tested control strategies. The
task execution time was limited to 20 s, after which the
task was considered failed. The locations of the targets
were chosen to ensure the need for activating all DoFs.

Comparison with the state-of-the-art
In order to have a complete assessment of the capabil-
ities of the proposed control algorithm, a comparison
with the industrial state-of-the-art (SOA) control has
been made. Therefore, the subjects repeated the same
experiment using a direct control paradigm. The indus-
trial SOA was implemented as standard sequential and
proportional control requiring two bipolar measuring
sites chosen so that a reliable one-site-one-function

control could be achieved. For this control strategy, the
experimenter chose the two bipolar derivations that led
to the best control by the subject. Thresholds for each
activation site were chosen using standard prosthesis fit-
ting techniques, allowing easy control as well as the
comfortable mode switch during co-contractions. For
the SOA control scheme, the RMS values of the EMG
signals were translated into the displacement velocity of
the cursor, i.e. when the activation of one activation site
passed the set threshold, the cursor moved along the
mapped direction at a speed proportional to the RMS
amplitude. When the EMG amplitude was below the
threshold, the cursor would remain in its last position.
This is the common control paradigm in commercial
prostheses. While position control with the proposed
technique required the concurrent activation of the
DoFs to reach the targets, with velocity control all of
them could essentially be completed with only sequential
activations of the DoFs. Using position control for the
SOA approach would have made the task completion
impossible since the SOA approach does not allow sim-
ultaneous control. We chose to test the AEN with pos-
ition control to specifically address the full potential of
the new system. The same 20 targets were presented to
the subjects for both control systems. Since the imple-
mentation of the SOA control was made in velocity
mode, all the targets were reachable by switching
between the two DoFs (sequential activations). The two
control strategies were performed in random order be-
tween different subjects.

Performance metrics
During each task execution, the trajectory of the cursor
over time was recorded. The following six performance
matrices were calculated in order to quantify the
subject’s online control performance [29, 30]: Comple-
tion rate (in %) - the number of completed tasks over

Fig. 2 An example of virtual target scenario where the large circle on the right represents the currently active target and the smaller circle on the
left is the next target. The red circle connected to the origin is the cursor controlled by the user which, during AEN-based control, moves vertically for
ulnar/radial deviation and horizontally for wrist flexion/extension
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the total number of attempted tasks. Completion time
(tc, [s]) - the average time it took the subject to
complete the successful attempts. Overshoots - the
number of incidents that the tip of the arrow passed
through the target before the dwelling time was
reached. Throughput (TP, [bit/s]) – the average ratio of
the index of difficulty (ID) of each target and the com-
pletion time (CT). Speed (dp/s) - the ratio of the trajec-
tory length formed by the center of the moving cursor
(Fig. 2) and the completion time (CT). Path Efficiency
(in %) - the ratio between the length of the optimal
path from the initial point to the target and the actual
trajectory realized [30] (a value of 100% indicates a per-
fect execution). The values of the controlled angles
were mapped to the Cartesian coordinates.
The throughput (TP) is the amount of information

that the user transmits through the interface and is
defined as:

TP ¼ ID
CT

ð5Þ

where ID is the task index of difficulty, and tc is the task
completion time. TD represents the Shannon’s extension
of the Fitts’ law [29], as presented in [30]:

ID ¼ log2
A
W

þ 1

� �
ð6Þ

where the target width W is the radius of the targets and
the target amplitude A was defined as:

A ¼ 0:5γ1 þ 0:5γ2ð Þ2 ð7Þ
where γ1 and γ2characterize the necessary angles which
are needed to be reached with respect to the first and
the second DoF. The value of W was fixed to 0.08 and
the values of A were 0.8, 1.2 and 1.4. Using Eq. (6), the

Fig. 3 DoF wise mapping of the EMG signals (bottom traces) using the autoencoder for extension/flexion (upper trace) and adduction/abduction
(middle trace)
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tested indices of difficulty were 3.4 for targets requiring
small angle displacements along both DoFs, 4.0 for large
displacements along only one DoF, and 4.2 for large dis-
placements along both DoFs.

Statistics
For each performance metric, a two-way repeated mea-
sures analysis of variance (ANOVA) was used with fac-
tors methods (AEN vs. SOA) and IDs in order to assess
the performance of the proposed approach with respect
to SOA. P-values less than 0.05 were considered signifi-
cant and Bonferroni correction was applies for pairwise
comparison for significant difference in IDs. Results are
reported as mean ± standard error.

Results
During the calibration phase, AEN was used to estimate
the output for each DoF. Figure 3 shows its performance
for a representative subject.
A strong linear relation was found between CT and ID

for both control approaches, supporting the suitability of
applying the Fitts’ Law test (Fig. 4).
Subjects were able to complete nearly all the tasks with

completion rate of 99.4 ± 0.06% and 100% for AEN and
SOA, respectively (not significantly different). Completion
time was significantly lower using AEN (3.75 ± 0.32 s)
than SOA (6.91 ± 0.79 s) (p = 0.004). There was a signifi-
cant difference between the first and third ID (p = 0.033)
with no interaction (p = 0.295). A significant difference

(p < 0.001) in Throughput was found between AEN
(1.19 ± 0.08 bit/s) and SOA (0.66 ± 0.06 bit/s). The
throughput for each subject is shown in Fig. 5.
AEN showed significantly higher (p = 0.029) Speed

than SOA, with associated significant difference in ID,
but without interaction (p = 0.590). This implies that the
difference in Speed did not depend on the difficulty of
the task. Figure 6 depicts the distribution of speed for
both control schemes.
Path efficiency was better (p < 0.001) using AEN

(73.80 ± 4.98%) than SOA (54.10 ± 2.47%). The number

Fig. 4 Linear relation between completion time (CT) on the vertical axis and index of difficulty (ID) on the horizontal axis for (a) autoencoder
based control (AEN) and (b) state-of-the-art control scheme (SOA)

Fig. 5 Throughput values for each subject
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of overshoots was significantly lower when using AEN
than SOA (p = 0.008). Figure 7 shows an example of the
best and worst path efficiencies for the AEN and SOA
methods for all targets, showing the users activating
both DoFs to reach the targets.

Discussions
We proposed a minimally supervised method for EMG
mapping based on autoencoding and tested it in online
tasks against direct sequential control (i.e. SOA) using
a Fitts’ law approach. Both methods allowed a

Fig. 6 Distribution of speed across all targets and all subjects

Fig. 7 Visualization of best and worst path efficiencies with all targets for (a and b) autoencoder (AEN), (c and d) state-of-the-art (SOA)
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completion rate close to 100%, however, AEN outper-
formed SOA for all other performance metrics, e.g. it
allowed to perform the tasks on average in half the time
with respect to SOA.
The performance of the proposed method is similar to

that of previous studies using non-negative factorization,
linear regression and artificial neural networks, with [22,
31] and without [26, 32, 33] the use of kinematics label-
ing during training. The performance of SOA in this
study was also similar to previously reported results [23]
for completion rate and completion time. Moreover, we
observed a skewness of the distribution of speeds with
SOA towards low values.
Previously proposed methods for EMG mapping that

do not require supervised training are based on signal
factorization. Here we presented a different approach
that projects the EMG signals into a lower-dimensional
space for control based on autoencoding. This method
requires a brief calibration procedure during which the
user performs single DoF contractions only prompted by
the visual cue and without any additional kinematic
recordings. Therefore, the mapping does not require
amputee users to perform bilateral motions in order to
obtain kinetic or kinematic labels from the contralateral
limb [9, 22, 34]. In addition, this makes the system fully
applicable even in the case of bilateral amputees. In the
proposed method, the calibration provides estimates of
the projecting matrices by two AEN (one for each DoF)
which are then used concurrently for simultaneous and
proportional control. The amount of information trans-
mitted by the proposed method was almost twice the
throughput of SOA.
The possibility to train without kinematic recordings

makes the system practical in clinical applications. On
the other hand, it makes the assumption of a linear
association between primitives extracted from the
EMG and kinematics. Nonetheless, even if this as-
sumption is not exactly met, reliable simultaneous and
proportional myoelectric control does not require a
high accuracy in the mapping between EMG and kine-
matics during online control. Indeed, accurate online
myoelectric control can be achieved by the continuous
interaction and adaptation of the user to the myoelec-
tric controller [13].
This feasibility study allowed rigorous testing of the

proposed concept in a controlled laboratory environ-
ment that showed high potential of the approach. Future
efforts should focus on implementing a full clinical as-
sessment on patients.

Conclusions
We presented a new approach for mapping EMG signals
into commands for multiple degrees of freedom to

achieve simultaneous and proportional control. The
method has been validated in online tests in a group of
able-bodied individuals and has shown high transfer rate
with respect to direct SOA control.
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