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Summary

Inverse probability weighted estimating equations and multiple imputation are two of the most
studied frameworks for dealing with incomplete data in clinical and epidemiological research.
We examine the limiting behaviour of estimators arising from inverse probability weighted es-
timating equations, augmented inverse probability weighted estimating equations and multiple
imputation when the requisite auxiliary models are misspecified.We compute limiting values for
settings involving binary responses and covariates and illustrate the effects of model misspecifica-
tion using simulations based on data from a breast cancer clinical trial. We demonstrate that, even
when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented
inverse probability weighted estimators are often smaller than the asymptotic biases of estimators
arising from complete-case analyses, inverse probability weighting or multiple imputation. We
further demonstrate that use of inverse probability weighting or multiple imputation with slightly
misspecified auxiliary models can actually result in greater asymptotic bias than the use of naive,
complete case analyses. These asymptotic results are shown to be consistent with empirical re-
sults from simulation studies.
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I INTRODUCTION

Failure to collect intended data in clinical and epidemiological research can seriously compromise
the integrity of a study by rendering standard complete-case estimators inconsistent [12]. Ad hoc
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approaches for dealing with incomplete data such as non-responder imputation or lastobservation-
carried-forward are generally not recommended since they only lead to consistent estimators under
strong implicit assumptions [7, 11, 15], and typically give conservative variance estimates. More re-
fined procedures based on inverse probability weighted estimating equations or multiple imputation
rely on auxiliary models to exploit information available in subjects with incomplete data. The auxil-
iary models in these two frameworks rely on quite different assumptions but, subject to their correct
specification, consistent estimators may be obtained when data are missing at random [12]. These
approaches can also be used to conduct sensitivity analyses in setting where the data are thought to
be missing not at random [11, 23, 25].

Multiple imputation [12] involves augmenting the available data to create several complete pseu-
dodatasets. Each of these pseudo-datasets is made complete by randomly drawing from an imputation
model whenever information is missing. There has been much discussion and research regarding the
development of suitable imputation models, and care must be taken to ensure that variance estimation
is valid [25, 26, 31].

Inverse probability weighted estimating equations [13, 17, 21] involve restricting attention to indi-
viduals with complete data but achieve consistent estimation by weighting each contribution accord-
ing to the inverse probability that the data are complete. The so-called selection models are specified
to determine the weights and ensure suitable adjustment for the “bias” sample obtained by restrict-
ing to individuals with complete data. Augmented inverse probability weighted estimating equations
extend the inverse probability weighted approach to increase the efficiency and robustness of the resul-
tant estimator [21, 29]. With augmented inverse probability weighted analyses, consistent estimators
result if one or both of the auxiliary models are correctly specified; the term “double-robustness” was
coined to reflect this [20].

The efficiencies of weighting and multiple imputation methods have been compared in a variety of
settings when the auxiliary model assumptions are correct [3, 18, 25, 27], but limited empirical work
has been directed at comparing such methods when the auxiliary model assumptions are incorrect.
Bang and Robins [1] and Kang and Schafer [9] both conducted simulation studies to compare the em-
pirical performance of double-robust (DR) and outcome-regression estimators of a mean. Bang and
Robins highlight the additional robustness of the DR estimator which “offe the analyst two chances
to make nearly correct inference” [1], while Kang and Schafer argued that “in at least some settings,
two wrong models are not better than one” [9]. Kang and Schafer suggested that the simulation study
conducted by Bang and Robins was unduly favourable toward their DR methods, while Robins and
Wang [22] remarked that “[Kang and Schafer’s] chosen data-generating distribution was as if opti-
mized” for the outcome-regression estimator. In this paper, we give an accessible presentation of
the various approaches to estimation with incomplete data and examine the asymptotic properties of
these resulting estimators when one or both of the auxiliary models are misspecified. We focus on
the estimation of regression parameters and consider a common outcomeregression model to examine
the effects of misspecification in analyses based on multiple imputation and augmented inverse prob-
ability weighted estimating equations. We also examine the empirical behaviour of these estimators
through a simulation study with parameter values chosen to reflect the setting of a breast cancer clin-
ical trial. Throughout this paper, misspecification is considered in the auxiliary models through the
omission of a common confounder, or through the omission of an interaction term; in this way, we
hope to allay the concerns raised by some authors when simulation studies allowed different auxiliary
models to adjust for different confounders [9].

The remainder of this paper is organized as follows. In Section 2, we define inverse probability
weighted and augmented inverse probability weighted estimating equations and describe the proce-
dure of multiple imputation for incomplete response data. We also demonstrate in Section 2 how
the asymptotic properties of the resulting estimators can be derived using the results of Robins et al.
[21], Robins and Wang [22], Pierce [16] and Lawless et al. [10], and we review the simplifications
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that occur under correct model specification. In Section 3, we focus on the simple case in which
all variables are binary and derive the asymptotic bias and variance of these estimators when model
assumptions are incorrectly specified. In Section 4, we demonstrate the empirical properties of the es-
timators under misspecification by simulating incomplete data consistent with a breast cancer clinical
trial. Concluding remarks are made in Section 5.

2 ESTIMATORS AND THEIR LIMITING BEHAVIOUR

Consider a random sample of N individuals yielding data {(Y;, X;),i = 1,..., N} where Y] is the
univariate response and X is a vector of explanatory covariates for individual ¢. Suppose that interest
lies in estimating the p x 1 vector of regression parameters for the conditional mean model of Y given
X, u(X;a). An estimator of o can be found as the solution to the estimating equation
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where h(X) is a known p x 1 function of X such that F[h(X)0u(X;; a)/0c’] is non-singular [21].
If the conditional distribution of the response is in the exponential family, the canonical link is used
to relate the mean p(X;; ) to the linear predictor X/«, and h(X;) is specified as X/, then (1) is the
score function and the root of this equation is the maximum likelihood estimator for «.

More generally, under mild regularity conditions which we assume henceforth [21, 22], the solu-
tion to the estimating equation in (1), denoted @, is a v/ N-consistent estimator of the parameter of
interest o satisfying E[U;(«)] = 0, with

NYA(@ = ap) S MVN(0, A3 Bo A, @)
where A5 By[A;'] is called the asymptotic variance of @ and

Ay = —E[0U;() /0| a=a, and By = E[U;(@)U}(@)]a=aq -

(2

2.1 ANALYSIS WITH INCOMPLETE DATA

If responses are only observed for a subset of individuals in the sample, we let R; be the indicator
that Y; is observed. Estimation of a based on (1) would require solving 0 = Y77 [RiUi(a) + (1 —
R;)U;(c)], but this clearly cannot be done since U; () = h(X;)[Y; — pu(X;; )] is unknown when
R; =0.

A natural estimator when data are incomplete is obtained by restricting attention to individuals
who provide complete information. That is, we could estimate « with the complete-case (CC) esti-
mator Q.. obtained by solving the estimating equation

N
0=> R;-Uia). (3)
=1

The limiting behaviour of this estimator can be derived analogously to (2) and it can be shown that
alee Will consistently estimate .., the solution to E[R;U;(«)] = 0 [24]. Thus

NY2(Gge — tee) B MVN(0, A7 Beo[ A2,

where
Ace = —FE[R; 0Ui(a) /0 |a=a.. and Be. = E[R;U;(a)U ()] a=a. -



Here a.. is equivalent to oy if F[R;U;(«)] = E[U;(«)], which in turn occurs if Y L R| X (i.e. if Y and
R are conditionally independent given X'). Thus, complete-case analyses will consistently estimate oy
only in the special case where, for a given X, the subsets of individuals that are completely observed
are representative of the original sample; i.e. the missing data mechanism is missing at random (MAR)
[12] in the presence of X. We will refer to the difference between a.. and « as the asymptotic bias
of the CC estimator.

More sophisticated methods for accommodating missing data are possible if auxiliary information
is available and suitable assumptions are made. We suppose in what follows that there exists an
auxiliary covariate vector V' which is known for all individuals and which is associated with both
the response and the missingness indicator in such a way that Y L R|X, V; that is conditioning on
V, in addition to X, renders the missingness mechanism MAR. When the objective is to fit simple
descriptive response models, there may be several covariates known to be associated with the response
that are not contained in X. Any such covariates that are also associated with missingness could be
represented in V. In smoking prevention studies, for example, social model risk scores give useful
information about children’s peers and risk of smoking, but this also reflects risk of noncompliance
and study withdrawal [5]. We explore the use of such variables in what follows.

2.2 MULTIPLE IMPUTATION

Imputation allows for use of the complete-data estimating equation (1) by replacing missing re-
sponses with imputed values; if one could replace missing Y; values with suitable Yiimp , then the
complete-data estimator could be approximated by solving 0 = Ef\il [R; - h(X,)[Y; — p(Xi50)] +
(1= Ry) - h(X)[Y™ — p(Xi; @)]]. Two challenges arise with this approach: (i) one must find ap-
propriate values for imputation in order to avoid introducing bias, and (ii) treating the imputed values
as known will result in underestimation of the true variability in the estimator. The first challenge
can be addressed by relying on implicit models to define a measure of similarity between individuals
and replacing missing responses with observed responses from “similar” individuals (e.g. hot-deck
imputation [30] or the approximate Bayesian Bootstrap [12]), or through parametric imputation by
simulating missing responses using random draws from an explicit imputation model. The second
challenge can be addressed by simulating missing responses multiple times (say, M times) to create
M complete pseudo-datasets and examining the variability between the estimators obtained from the
multiple “complete” datasets. Thus correct specification of the imputation model ensures consistent
estimators, while imputing multiple times enables estimation of the variability over different imputed
samples. Naive methods of single imputation, such as non-responder imputation or last-observation
carried forward, are commonly employed [15], but only result in consistent estimators if strong im-
plicit assumptions hold and typically result in incorrect variance estimates [7, 14]. We therefore focus
attention on a parametric multiple imputation procedure and examine asymptotic biases that result if
the parametric modelling assumptions do not hold.

A common framework for this type of imputation is proper parametric multiple imputation, which
has a Bayesian flavour in that the parameter indexing the imputation model is itself randomly drawn
from a “posterior density” of the parameter given the observed data [12, 30]. Commonly used for-
mulae for the asymptotic variance of estimators obtained under proper multiple imputation are given
by Rubin [25]. We consider improper multiple imputation here, however, in which missing responses
are drawn from an imputation model based on the maximum likelihood estimate of the parameters in
the imputation model. This type of multiple imputation procedure is advocated by Wang and Robins
[30] who show that the resulting estimator has a strictly smaller asymptotic variance than the one ob-
tained by proper imputation when models are correctly specified and M is finite; as M — oo, these
estimators become asymptotically equivalent. [30]

In order to facilitate comparisons with the augmented inverse probability weighted estimators, we
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consider a non-iterative estimator based on a conditional imputation model g(Y'| X, V, R; n) [22] that
is known up to the ¢ x 1 parameter 1 indexing m(X,V’; n), the model for the conditional mean of
Y given the available covariates (as in the mean score imputation of Clayton et al. [6]); model of
this sort arises in the outcome-regression approach employed in Bang and Robins [1] and Kang and
Schafer [9]. If Y L R| X, V/, then a consistent estimator of 7, the parameter indexing the imputation
model, can be obtained as the solution to the complete-case estimating equation

N N
0= S Wiln) = 37 Ri- hu(Xe, VI)[Y: — m(Xe, Vi), 0
=1 =1

where it is assumed that (i) the ¢ x 1 function h,;(X;, V;) is a defined analogously to h(X;) in (1),
(ii) 17 converges to a limit 7,,; and (iii) there exists an appropriate finite variance influence function of
7 with finite variance.

A multiple imputation estimator based on M imputations can be found by solving

0=2 Ura,i) = ZM Zh Y™ () = (X a)]

where V7" (7)) are drawn independently from g(Y'|X,V, R;7) if R; = 0 and Y] (7)) = Y;if R; = 1
[22]. Under mild regularity conditions, the resultant estimator Qi has the property that, for
solving E[h(X,)[V,]™ () — u(Xs; @)]] =0,

NY2(@ni — i) 2 MVN(0, A B[ AZ1),

where,

Awi = B[=0U™ (@, 1hi) /00 Ja=a,., = E[=0Ui(@)/00/|a=a,,,

and, temporarily suppressing the dependence on (i, 7mi)>

Bui =E[UUM] = ks EIWV;UPY ) = E[UM W] Kppy + b BV 1y
with Ky = E[UMS! JE[OW; /00|~ and Sy = 0log g(Y'| X, V, R;n)/On. In the aforementioned
expressions, expectations are taken with respect to the imputation distribution [g(Y| X, V, R = 0; )|t
[fo(Y|X,V,R = 1)]® fo(X,V, R), where fo(-) represents the true joint density [22]. These asymp-
totic results hold even if the imputation model is incorrectly specified or incompatible with the re-
sponse model [22]. Misspecification of the imputation model will, however, directly impact the

asymptotic bias of the resultant estimator (a,,; — ag); this imputation approach is asymptotically
unbiased when the imputation model is correctly specified.

2.3 INVERSE PROBABILITY WEIGHTING

The auxiliary data V' can alternatively be used to help make an analysis based solely on the individuals
with complete data more suitable. This is done by reweighting these observations so the completely-
observed pseudo-sample is representative of the original sample. So in this framework, we focus on
individuals with R; = 1, but instead of solving the complete-case estimating equation (3) which only
yields a consistent estimator if Y | R| X, we solve the Horvitz-Thompson-style estimating equation

N

0= U (a,5) =

i=1 i=1

Mz

m XZ,VM i),



where 7(X;, V;;9) is a model for the “selection” probability P(R; = 1|X;,V;;d) [21]; this gives a
consistent estimator of « if Y 1L R| X, V. We call this the inverse probability weighted (IPW) estimat-
ing equation and refer to the resulting estimator, iy, as the IPW estimator.

The unknown s x 1 selection parameter 6 can be replaced by g, the solution to an appropriate
estimating equation

N N

0= Si(8) =D hupw(Xs, V)[R — m(X;, Vi 9)],

i=1 i=1

where we assume that the known s x 1 function hiy, (X, V;) is defined analogously to 4 (X;) and that
gconverges to a limit which we denote d;,,,. Logistic regression is often used to estimate J since R is
binary.

Provided that (X, V; 6) is bounded away from 0, this IPW estimator will consistently estimate
Qipw, the root of the function E[U; lpw(a dipw)] (i.e. the value of « such that E[U, 1pw(a Sipw)] = 0),
and

NY2(@ipy — atipw) 2> MV N(0, AL B [ALL]),
where, as shown in Appendix A,

Aipw = = E[OU;*™ (0, 8) /00| amaipns 55

ipw

and, again suppressing the dependence on (Qipy, Oipw )

Bipw = E[UPUPY| — ki BIS,UP] — E[UPY S + Kipw E[SiS1 L,

with ki, = E[OUPY /06" E[0S; /06!

If .S; is the score function based on the true model (i.e. if ¢ is modelled correctly and gconsistently
estimates the true dy), then E[R;7'U;(a)] = E[U;()], $0 qipw = g and Aipy, = Ajg. Furthermore,
in this case, E[0S;(8)/06'] = —FE[S;(6)S.(8)] and E[QU™" (v, 6)/06'] = —E[U (av, §)S}(6)] by the
“generalized information equality” of Pierce [16], and the asymptotic variance of this IPW estimator

A {E[UP U - E[U™S)E[S,S]~ E[UP™ S} AT -

We also note here that if the true dp was known instead of estimated, then the asymptotic variance
would be Ay E[UPYUPY|[A;] 110, 21].

2.4 AUGMENTED INVERSE PROBABILITY WEIGHTING

Robins, Rotnitzky, and Zhao [21] showed that the IPW estimating equation could be augmented to
better exploit the partial information available from individuals with incomplete data. As a result, an
augmented inverse probability weighted (AIPW) estimating equation of the form

N
0="> U™ (a,6,7) ZRﬂT (X;, Vis ) Ui(a) — [Ri — m(X;, Vi )7 (Xa, Viy 0)b(Xa, Vi v, 1)
i=1

can be asymptotically more efficient than the IPW estimator. In the absence of further auxiliary
covariates, the optimal choice for the augmentation function can be asymptotically more efficient
than the IPW estimator. ¢(-) is E[U(«)|X, V] [21, 29, 32]. In practice, this optimal augmentation
term can be approximated by specifying an appropriate conditionalmean model m(X;, V;;n), as in
the imputation approach. We will denote the resultant augmentation term by U;(«, n7), where by (1),

Ui(o,n) = h(X3)[m( X5, Vism) — n(Xs; 0]
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For the remainder of this paper, we will focus on this AIPW approach which requires specification of
both an “imputation” model, m(X;, V;;7), and a “selection” model, 7(X;, Vi; §). The resulting AIPW
estimator, Qlipy consistently estimates Quaipy, the root of E[U;™" (v, dipw, mi)] and the estimating
function can equivalently be written as [9]

N N
0="> U™ (a,0,7) =Y _ Ui(a, d) + Rim(X;, Vi; 0) ' [Ui(ar) — Us(r, 7). (5)

i=1 i=1

The estimator Qipy, satisfies

NY2(@Qipw — Qaipw) 2 MVN(0, AL Baipw [ At ),

aipw aipw
where, as shown in Appendix A,
Aipw = —E[0U;(a)) /00 |am i
and, suppressing the dependence on (Qaipy, Gaipw )
Bipw =E[USPY UM 4wt E[SW][K5) + ri EIWiSH 15, )

- RlpwE[S UaIPW ] - E[UaIPWSZ/H 1pw] + 'Lilpw [S Sz“ 1pw]
— ki EIWVUS™ ] = BUMP W] [kn) + ma BV )

where k5, = E[OU™ /05| E[0S;/08']7", and k%, = E[0U;™ /on/| E[0S; /05"

The AIPW approach is “double robust” in the sense that the estimator will be asymptotically
unbiased for data that are MAR if either auxiliary model is correctly specified. This is easy to see
from the form of (5) by noting that correct specification of the so-called imputation model leads to
Uila,n0) = By irxv|[Ui(@)] so E[US (ag, Gipw,m0)] = E[Ui(ag)] = 0. Moreover, with correct
specification of the selection model, Egjy x.v{R;}7(X;, Vi;80) ™" = 1, so E[U (ap, do, i)] =
Ey x.v|Ui(ap)] = 0; in this case, the asymptotic variance matrix can be simplified through application
of the generalized information equality:

E[QU /98") = —E[UY™ S!] and  E[0S;/08'] = E[S;S!]

(see Appendix A).

3 ASYMPTOTIC BEHAVIOUR OF ESTIMATORS UNDER MISSPECIFIED AUXIL-
IARY MODELS

We now consider simple violations to the model assumptions necessary for achieving asymptoti-
cally unbiased estimators through inverse probability weighting and multiple imputation. Suppose
V' can render the response and missingness indicator conditionally independent —i.e. Y Y R|X, but
Y L R| X, V. Availability of V in this case results in a MAR mechanism and asymptotically unbiased
estimation is possible through the methods of analysis described in the previous section if the nec-
essary models are correctly specified. We consider violations of model assumptions that arise from
neglecting to accommodate the interaction terms between V" and X in the models.
Suppose that Y, X, V' and R are scalar binary variables and arise according to the models

E[Y|X,V;n] = expit(m + 1. X + 10,V + 0.0 XV), (6)



and
P(R=1|Y,X,V;6) = expit(d; + 0, X + 6,V + 5, X V), @)

where X and V' are independent. Further suppose the model of interest for the conditional mean
response is
(X ) = expit(an + @, X),

and we consider the optimally efficient complete data estimating function U;(a) = [1, X;]'[Y; —
1(X; «)]. Note that the true value of ¢ can be recovered from 7y and E[V'] by exploiting the fact that
here

EY|X;00] = Ev{E[Y|X,V;no]}. (8)

We consider the limiting behaviour of estimators that attempt to accommodate the missing data using
the incorrectly specified imputation model

m(X,V;n") = expit(n] +n, X +n,V),
and selection model
(X, V; %) = expit(d] + . X + 0;V),

where the maximum likelihood estimators arise by solving the estimating equations

2

=D (L X VIR — (X, Vi 67)] ©

=1

Mz

=1

Multiple imputation then involves replacing missing values of Y with simulated Bernoulli-distribute
data with conditional mean m (X, V;7),i.e. weuse (Y |X, V, R; 7)) = [m(X,V; )Y -(1-m(X, V; 7)) =Y ]' A,

For further insight to the asymptotic biases resulting from model misspecification, consider the
asymptotic biases that result from a specified parameter set where 7, = 0, = 0, E[Y] = 0.5,
E[X] = 0.5, E[V] = 0.5, and E[R] = 0.5, and we consider the effect of a range of values for
Nws Ouy Naw, and d,,,. The asymptotic bias of estimators of the log odds ratios (o) using the above
methods can be found in Figure 1; the asymptotic bias of the complete-case (CC) estimator is also
included for comparison with the multiple imputation (MI), inverse probability weighted (IPW) and
augmented inverse probability weighted (AIPW) estimators. Coverage probabilities for nominal 95%
confidence intervals are given in Figure 2. These coverage probabilities are calculated using the lim-
iting distributions (see Section 2) and are functions of both the asymptotic bias and variance of the
estimators; the corresponding empirical coverage probabilities are explored in Section 4.

The panels in Figures 1 and 2 display information for the same four cases: in panel 1 (top left),
only the selection model is misspecified (we set 6, # 0 and 7., = 0); in panel 2 (top right), only the
imputation model is misspecified (we set d,, = 0 and 7, # 0); in panels 3 and 4 (bottom row), both
the imputation model and the missingness model are misspecified (we set both ¢,., # 0 and 7,, # 0);
the choice of ¢, differs between panels 3 (bottom left) and 4 (bottom right).

Not surprisingly, all estimators were consistent when the required model assumptions were satis-
fied (see Figure 1). When 7)., = 0, the imputation model was correctly specified and the MI estimator
was asymptotically unbiased (panel 1); when 6., = 0, the selection model was correctly specified
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Figure 1: Asymptotic bias: difference between the truth and the limiting value of estimators of log odds ratios from
analyses with potentially misspecified models when the response is incomplete; the four panels allow for a range of values
of N, 8y, Nayy and &, while taking n, = d, = 0, E[Y] = 0.5, E[X] = 0.5, E[V] = 0.5, and F[R] = 0.5.

and the IPW estimator was asymptotically unbiased (panel 2); when either 7., = 0 or d,, = 0,
the AIPW estimator was asymptotically unbiased (panels 1 and 2). The double robustness of the
AIPW analysis is observable here since, unlike the other methods of analysis, the AIPW estima-
tors were asymptotically unbiased unless both models were incorrectly specified. When both models
were incorrectly specified, no method of analysis was universally best; however, the AIPW estimators
generally demonstrated the least asymptotic bias (panels 3 and 4).

Interestingly, the AIPW estimator often had the largest asymptotic variance of the considered
methods when models were misspecified; however, this apparent asymptotic inefficiency is offset by
the greater robustness to model misspecification. This can be seen by examining Figure 2 which
displays the probability that the true value of «, will be contained in a nominal 95% confidence
interval for o, based on a sample of N = 1000 individuals, given by (&, & 1.96+/asvar(a,)/1000),
where asvar(a,) represents the asymptotic variance derived in Section 2.

Here the AIPW analysis is the only approach which results in confidence intervals that are consis-
tently near the nominal 95% level for all considered parameter sets (see Figure 2). It is also important
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Figure 2: Coverage: probability that nominal 95% confidence intervals of estimators of «,, from samples of N = 1000
individuals contain the true value; the four panels are based on calculations from large-sample distributions and allow
for a range of values of 7,, d,, 7z, and d,,,, while taking n, = 6, = 0, E[Y] = 0.5, E[X] = 0.5, E[V] = 0.5, and
E[R] = 0.5.

to note that the coverage probability for the IPW and MI estimators are at times worse than those from
the CC estimator. We have considered coverage probabilities of nominal 95% confidence intervals
based on samples with N = 1000 individuals. Larger sample sizes will result in narrower confi-
dence intervals, but since these intervals will be centered on the estimators incorrectlimiting value,
the coverage of corresponding confidence intervals will be lower with larger sample sizes.

The general trend seen in Figures 1 and 2 was not unique to the case of independence between
X and V; Figure 3 shows that, when both auxiliary models are misspecified, the AIPW analysis
generally resulted in smaller asymptotic bias and better coverage probabilities than the CC, IPW and
MI methods regardless of the odds ratio OR(X,V) = P(X = 1|V = 1)P(X =0|V =0)/{P(X =
1|V = 0)P(X = 0|V = 1)} characterizing the association between X and V. Figure 3 Figure 3 is
presented for the case that 7, = 1, but similar results were seen for other choices (not presented).
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Figure 3: Asymptotic bias (left panels) and coverage probability of nominal 95% confidence intervals based on N =
1000 individuals (right panels) of estimators of o, when X and V' are not necessarily independent; a range of odds ratios
relating X and V' is considered. Both auxiliary models are misspecified by ignoring the non-zero parameters 7,,, = log(5)
and 0., = log(5); we consider both d,, = log(5) (top panels) and §,, = 0 (bottom panels) and set n, = 1, 7, = 0, = 0,
E[Y]=0.5, E[X] = 0.5, E[V] = 0.5, and E[R] = 0.5.

4 EMPIRICAL BEHAVIOUR OF ESTIMATORS

Here we illustrate the use of the various methods and examine the empirical properties through simu-
lation studies based on an application to a recent trial of breast cancer patients with skeletal metastases
[8]. The response Y is an indicator of a skeletal complication (event) during the first year following
randomization to either monthly IV infusions of a bisphosphonate therapy pamidronate (X = 1) or
a placebo control (X = 0). We consider the auxiliary variable V' as indicating if the patient had an
elevated pain score at study entry, a marker of the extent of skeletal metastases. In this trial, complete
information on these binary variables was available for 214 individuals, and analyses of these data
were used to determine the parameters for use in our simulations.

In the simulation study, data for N = 1000 individuals were generated according to model (6)
with the parameters chosen to be consistent with data from the breast cancer trial. Indicators of
missingness were generated according to the selection model (7) with the selection parameters taken
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to be dsim1 = [011,0,log 5,1og 5]’ or dgme = [012, 0, 0, log 5]’, where the intercept terms were chosen
so that F[R] = 0.50, representing the situation where responses were unavailable for 50% of the
patients. These simulated data were then analysed by fitting misspecified models involving n* and
0* which ignored the interaction term between X and V as described in the previous section. This
process of simulating missingness and analysing the resulting dataset was repeated 2000 times and
the empirical properties of the estimators of «, were recorded so they could be compared with the
asymptotic results.

A similar simulation was conducted for the situation in which an additional covariate, V5, was
associated with both Y and R; misspecification of the auxiliary models here comes from omission of
V; rather than omission of an interaction term. The response was generated according to the models
EY|X,V, Va; ] = expit(y1+ 7. X +7%V +72Va) and P(R = 1|Y, X, V, V3;6) = expit(d; + 0, X +
0,V + 0,0V5) where the 7 is derived from corresponding analysis of the breast cancer trial data with
Vj taken to be an indicator of advanced age at disease onset; we again consider the selection models
5sim1 and 5sim2‘

Tables 1 and 2 present the asymptotic bias of the estimators under model misspecication (i.e. we
present the difference between the limiting value of the estimator, o, and the true value, o) as well
as the observed bias of the estimators (the difference between the mean estimate, Ex, and the true
value). We also report the large-sample standard errors averaged over all simulated datasets (SE) and
the empirical standard error (ESE), defined as the square root of the sample variance of the point
estimates over all simulations. The coverage probabilities (CP) of nominal 95% confidence intervals
are reported based on large-sample theory (as in Section 3), as well as the empirical coverage prob-
ability (ECP), defined as the proportion of simulations in which nominal 95% confidence intervals
contained the truth. We note that these confidence intervals would have the nominal 95% coverage if
all auxiliary models were correctly specified; more generally, however, for a given sample size, the
coverage of these intervals will decrease as the asymptotic bias increases.

Table 1 contains results from the simulation setting where the auxiliary models are misspecified
due to omission of the interaction between X and V. Table 2 contains similar results for the simulation
setting where the auxiliary models are misspecified due to omission of the covariate V5 in the main-
effect models.

Table 1: The asymptotic and empirical properties of estimators of o, when using misspecified auxil-
iary models that omit the interaction between X and V.

( —a,) (ap—a,) SE ESE CP ECP

6sim1
CC -0.122 -0.132  0.198 0.197 90.5 90.6
MI -0.209 -0.219  0.192 0.191 804 80.7
IPW 0.186 0.177 0.217 0.218 86.2 85.7
AIPW 0.024 0.014 0.215 0.216 949 952
6sim2
CC 0.135 0.134 0.190 0.189 89.0 89.5
MI -0.048 -0.048  0.186 0.184 942 94.7
IPW 0.230 0.231 0.192 0.191 77.5 76.7
AIPW 0.029 0.030 0.189 0.187 94.8 94.6

Note: Here i = [0.071, —0.439, 1.898, —1.007)', E[X] = 0.509, E[V] = 0.430, and OR(X,V) = 1.
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Table 2: The asymptotic and empirical properties of estimators of a,, when using misspecified auxil-
iary models that omit the covariate V5.

(at—a,) (Qy—a,) SE ESE CP ECP

5sim1
CC 0.016 0.014 0.188 0.193 949 944
MI -0.029 -0.031  0.184 0.190 94.7 94.1

IPW 0.050 0.049  0.194 0.198 942 94.0
AIPW  -0.003 -0.005  0.190 0.194 95.0 943

6511112
CC 0.061 0.056 0.184 0.186 93.7 94.0
MI 0.002 -0.004  0.181 0.183 95.0 95.0

IPW 0.058 0.053 0.184 0.187 93.8 94.2
AIPW  -0.001 -0.007  0.180 0.182 95.0 94.6

Note: Here v = [0.696, —0.767,1.303, —1.007]", E[X|V, V5] = expit(0.247 — 0.768V — 0.154V; +
1.021VV,), E[V|Va] = expit(—0.111 — 0.350V4), E[Va] = 0.495.

The empirical results tracked the asymptotic calculations very closely in terms of bias, variance
and coverage probability. Here again we see that a complete-case analysis can lead to substantial
bias and poor coverage when data are not missing at random (Table 1). Furthermore, it can also be
seen that use of inverse probability weighted estimating equations and multiple imputation can lead
to even greater bias and worse coverage than the CC estimator when the weighting and imputation
models are misspecfied (Tables 1 and 2). However, in all cases the augmented inverse probability
weighted estimating equations, which exploit both of these misspecified models, led to an estimator
with small bias and good coverage. As would be expected, additional simulations (not presented)
showed that the magnitude of the biases decreased with decreasing levels of missingness (i.e. all
estimators were closer to the truth for lower values of E[R]). However, the relative sizes of biases
among these estimators were similar regardless of the amount of missing data.

5 GENERAL REMARKS

Commonly used, naive methods for analysing incomplete data (e.g. complete-case analysis, non-
responder imputation, last-observation carried forward imputation) yield consistent estimators only
in very special circumstances. Weighted estimating equations and model-based multiple imputation
approaches can be more generally appropriate, but they can require further explicit modellingassump-
tions. Greater understanding of the underlying causes of missingness in a given study will provide
analysts with a greater hope of making correct modelling decisions. However, it is very difficult in
practice to ensure that modelling assumptions made to account for missing data are correct. We have
demonstrated that using misspecified models to adjust for response-biased observed data can result
in increased rather than decreased bias, and this problem is especially problematic when the rate of
missingness is large. The double robustness property of the augmented inverse probability weighted
estimator makes this method appealing since it allows for two chances to get the model right. Bang
and Robins [1] suggested that this double robustness property will be advantageous even when both
models are slightly misspecified; however, Kang and Schafer [9] demonstrated empirically that this
is not always the case. In the settings we explored, the double robustness property of the augmented
inverse probability weighted estimating equations was evident and we found that this estimator had
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relatively small asymptotic and empirical biases when both models were incorrectly specied, despite
the fact that use of the misspecfied selection model in inverse-weighted estimating equations or the
misspecied imputation model in multiple imputation could actually result in larger asymptotic biases
than use of a naive complete-case analysis. As discussed in Kang and Schafer [9] and in the published
comments to that paper [22], there are situations in which estimators arising from augmented inverse
probability weighted estimating equations can have poor empirical properties and other approaches
may be preferable. In particular, augmented inverse probablity weighted estimators may have poor
empirical properties when the weights are highly variable. We did not observe such a problem in the
settings considered in our simulation studies, although the double-robust approach may have bene-
fited from the stability of the weights arising from the categorical nature of our data. If variability in
the weights is a concern, stabilized weights [19] or an enhanced propensity score model [2] may be
implemented to improve performance of the double-robust estimator.

In this paper and its appendices, we derived explicit forms for the limiting values of certain esti-
mators and have shown that there is no universally least-biased approach to handling incomplete data
when necessary model assumptions are wrong. Therefore, it is important to consider carefully the
models that are specified to accommodate missingness, to ensure that these modelling decisions are
tenable, and to carry out sensitivity analyses exploring the robustness of conclusions to changes in the
missing data model [14, 15, 16, 22].

A DERIVATIONS ON THE ASYMPTOTIC BEHAVIOUR FOR ESTIMATORS

A.1 INVERSE PROBABILITY WEIGHTING
If 0 = (a/, "), the inverse probability weighted estimator is found by solving the estimating equation
N N :
_ _ U™ (a, 0)
-2m0 -2 (75

for § = (@, 3/)’ . Under mild regularity conditions

NY2 (0, — 600 ) B MVN(0, E[—0T; /00| E[T,T/||E[—0T,/00') "],
p p )

where these expressions are evaluated at ¢y, [2, 10, 21, 28].
Now, suppressing the dependence on iy,

ipw / ipw ;7L
E[—aﬂ/ae']—lz—E[an /0! U, /85}

9S;/0a’  9S;/dd
[ —EUP /o)t E[OUPY /0’| E[OUPY [0 E[0S; /05"
0 —E[0S;/08) !

and

E[TT) = F

PV v gr
S,uP g5 |

and the desired asymptotic variance for Qi can be found by extracting the p x p upper left sub-matrix
of the asymptotic variance of 6.
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Let f(Z) represent the true density function for the data Z = (Y, X, V, R). If the estimating
function for ¢ is correctly specified as the score function for the true log-likelihood so that S; =
dlog f(Z)/d4, then

0= B[UF (6y)] = [ UF"(Bin) F(2)d2.
So,

0

[ {owrenrzyor} az
[ {00 61105 1(2) + U 600) - 0l1(2)) 05"} a2

- / {OUF" )08 - (2) } dZ + / (U ) - Ollog £(2))/00 - £(2)} a2
= E[anipW(eipW)/aéq + E[U;pw(gipw)sz{(‘gip\v)]a (A-l)

which establishes the generalized information equality E[OU”™ (0ipy,)/06'] = — E[U™™ (Bipy ) St (Bipw )]

(2

A.2 AUGMENTED INVERSE PROBABILITY WEIGHTING

The augmented inverse probability weighted estimator is found by solving the estimating equation
for Q = (a/,77,¢")

N N UiaipW(Oéa 57 77)
0= T(Q)=) Wi(n) ,
i=1 i=1 S;i(9)

and under mild regularity conditions and suppressing dependence on the parameter 2,;,, as before

~

N/2 (Qaipw _ Qaipw) B MVN(0, E[-9T, /oY) E[T,T|[E|-T; /o] 1]"),

evaluated at Qi [10, 21, 28]. Here, E[—0T;/0Q/ ! is

-1

[ QUM /0o DU Jon'  dUM /96
- E 0 OW;/onf 0
I 0 0 d5;/08'

[ —E[oU™ /0a/]™t E[OU™™ /0d/| ks E[OUM™ /00/) ks,

mi

0 —E[8S:/95) !

and

U-aipWU'aipW, U-aipWW/ U'aipWS{
E[LT]=E| WU™  ww, ws |,
SUSY gW! S,

where 1f,, = E[0U™" /0§'|E[0S;/06') ! and k%, = E[OU;™ /on/| E[OW;/on']~Y; the desired
asymptotic variance for &y, can be found by extracting the p x p upper left sub-matrix of the asymp-
totic variance of €2 and by noting that E[0U;™" /0a/] = E[0U;(«)/0d’] since E[0U;(a,n)/0c] =
E[oU;(a)/0d/]. .

By following similar arguments to those used to establish (A.1) (i.e. by replacing U;”" (6y,) with
U™ (Baipw ) or S;(Gaipw ), it can be shown that if S; = dlog f(Z)/d4, then

E[QUM™ /98") = — E[UX™™ 5] and  E[0S;/08'] = E[S;S]).



16

B EXPLICIT FORMS OF LIMITING VALUES OF ESTIMATORS

Here, we consider the explicit forms of the limiting values of estimators, and therefore the asymptotic
biases, arising in the problem introduced in Section 3. We note again that, as in (8), under correct
model specification, the conditional mean model will satisfy

(X5 ap) = Ev{E[Y|X,V;no]}

and we derive here the limiting value of the conditional mean model under the model misspecification
described in Section 3.

B.1 COMPLETE-CASE ANALYSIS

Here, a.., the root of the estimating equation Zfil R; [Yi — p(X; oz)} [1, X;]', will not consistently
estimate oy since (Y Y R)|X. In fact, the limiting value of the estimator of the conditional mean is

Ev{EY|X,V;n|P(R=1|X,V;é)}

X: e :EYX,R:1’ ’(5 — )
p(X; ace) = E[Y| "ho; do] By {P(R = 11X, V;0)}

(B.1)

since X LV and Y 1 R| X, V. Note that this estimator is asymptotically unbiased if Y L R| X, which
occurs if Y LV|X or RLV|X (that is, if here 1, = 1., = 0 or §, = 0, = 0), as then (B.1) reduces
to (8).

B.2 ESTIMATORS FROM MULTIPLE IMPUTATION UNDER MISSPECIFICATION

We are supposing that the imputation model is misspecified as in (10). Such an estimator consistently
estimates the 7,,; which solves

0= E{Ri [Yi —m(X;, V;;nmi)} 1, X, V;]I }
= EXV{P(Ri = 11X;, %;50)[E[Y;|Xia Viimo] — m(Xi, Vi%ﬁmi)] 1, Xi, Vi], }
Thus, the limiting imputation estimator «,,; solves
0 =E{U;" (o, i) }
=E{[R:[Yi — (X 0)] + (1 = R) [Yi7" (i) — (X3 0)]] [1, X'}
_E{ [[Yimp nml) (X“ Oé)} [Y Yzmp(nml)” [1’ Xi]l }

—EXV{[ (X, Vis i) + P(R; = 1|Xz,Vz,50)[ Y3 X, Vismo] — m(XuV%;Umi)] - M(Xz‘;@)] 1 Xi]/}
—EXV{[ Xza‘/;anml) M(Xi;a)} [17 Xz] }

and so «,; satisfies
M(X; C‘~/111i) = EV{m(Xa Vi nmi)}' (B.2)

Note that an expected conditional mean (ECM) or outcome-regression estimator estimates E[Y | X; o]
through estimation of Ey{m(X,V;n)} [4], so the misspecified imputation approach described here
has the same asymptotic bias as a misspecified ECM estimator. If the imputation model was correctly
specified so that m(X, V) = E[Y|X, V;no] (i.e. if here 7, = 0), then (B.2) reduces to (8).
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B.3 MISSPECIFIED INVERSE PROBABILITY WEIGHTED ESTIMATING EQUATIONS

Under this misspecification of the selection model, a root of E[U”™ (cv, §ipy )] i Qipw» such that

Ev{E[Y|X,V;no]P(R = 1|X,V;8)/m(X,V;8ipw) }

X i) = , B.3
(X tipw) Ev{P(R=1|X,V;60)/m(X,V;bpw) } ®-3)
since
R; /
0= ERYXV{W[Y /L(XZ, Oé)] [1, XZ] }
iy Yy Vipw
P( i — 1‘X17‘/7,750) /
=F Y, — (X5 1, X; 1Y) X
YXV{ 7T<Xi7‘/;';6ipw> [ 7 ,u( za@)] [ ) z] 3 as (R )‘ >V
P(R; = 1|1X;, Vi;60) P(R; = 1|X;,Vi; &) /
=F E EY;| X, Vi, —F X 1, X;| ».
X{|: V{ W(X’h‘/i;éipw) [ z’ 17‘/27770] 1% W(Xi,‘/};&pw) ,U( 1704) [ 9 z]

This conditional mean estimator is asymptotically unbiased if the missingness model is correctly
specified so 7(X,V) = P(R = 1|X,V;¢) (i.e. if 0., = 0, 50 dipw = 0), since then (B.3) reduces
to (8). Note that d;,y, the value that is being consistently estimated by solving (9), can be found
by solving 0 = E{[R; — m(X;,V;;6)][1, X;, Vi]'}. With binary data, this expectation can be easily
calculated as a sum over eight distinct types of individual (correpsonding to the 23 possibilities of
R, X, V), each weighted by the corresponding probability P(R, X, V).

B.4 AUGMENTED INVERSE PROBABILITY WEIGHTING UNDER MISSPECIFICATION

The AIPW estimator is consistently estimating o, Which satisfies

0 :E{Ufipw(aa Sipws Tipw) }
=E{Ui(a,n) + R (X, Vi; 6) 7' Ui(@) — U, n)]}
=Ery xv{[[m(Xi, Vi; i) — (X3 )] + R (X, Vi Oipw) ' Vi — (X5, Vi )] [1, Xi]' }
=Exv{[m(X;, Vi;nmi) + P(R; = 11X, Vi; 80)7 (X5, Vi; Sipw) " [E[Y:] X4, Vis o] — m( X, Vis )]
—u(Xs )] [1, Xi]' }

SO

P(R =1|X,V;6))
X; aipw =L
uX; a p) V{ W(va;(sipw)

EYIX, Vo] — m(X, Vinm)] + m(X, V: nmi>} (B4

Note that if either the selection or imputation model was correctly specified, then (B.4) would reduce
to (8) and the AIPW estimator would allow for consistent estimation of the true conditional mean
response.
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