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Abstract 

Mercury (Hg) is a contaminant of concern due to the very high toxicity and bioaccumulating 

nature of organic Hg and the persistent leaching of Hg to water bodies from contaminated soils 

and sediments. The deleterious properties of Hg pose challenges for remediation as point source 

contamination can expand over time to affect much wider areas.  

 Saturated, flow-through column experiments were conducted with riverbank sediment 

and floodplain soil collected from a contaminated reach of the South River near Waynesboro, 

VA. In one experiment, the composition of input solutions was varied to observe relationships 

among mobilized Hg, aqueous parameters and effluent constituents and identify dominant 

mechanisms and controls on Hg transport. Effluent Hg concentrations increased and remained 

elevated when a higher pH and alkalinity solution was input to the column. Effluent Hg and 

DOC concentrations were generally positively correlated. Increased effluent Hg concentrations 

broadly coincided with increased effluent iron (Fe) and manganese (Mn) concentrations and 

redox (Eh) minima. The lowest effluent Hg concentrations were observed upon decreasing the 

input solution pH from ~8.7 to ~6, whereas an increase in input pH from ~6 to ~12 coincided 

with the highest effluent Hg concentrations along with spikes in effluent Fe, Mn and DOC 

concentrations.  

 Saturated flow-through column experiments with floodplain soil were conducted under 

both aerobic and anaerobic environments. Greater concentrations of effluent Hg were observed 

from the column operated in an aerobic environment as opposed to in an anaerobic environment. 

Two distinct effluent Hg concentration maxima were observed from the aerobic column with 

increased Hg concentrations observed together with a relatively high Eh (490 mV compared to 

average Eh of 360 mV) and low Fe and Mn concentrations, whereas the latter and greater Hg 

maximum broadly coincided with a sharp decrease in Eh (85 mV) and increased effluent Fe and 
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Mn concentrations. The maximum effluent Hg concentration from the anaerobic column also 

broadly coincided with an increase in effluent Fe and Mn and a minimum Eh but the Hg release 

was of a much lower magnitude than from the aerobic column. Despite higher total effluent Hg 

concentrations from the aerobic column, methylmercury (MeHg) concentrations were 

consistently higher from the anaerobic column.  

A potassium polysulfide (KPS) solution (1 mM S) was applied to a fully-saturated, flow-

through column of floodplain soil for approximately 10 pore volumes (PVs) under anaerobic 

conditions to assess the potential for polysulfide to stabilize Hg. Effluent Hg concentrations were 

very high during the application of the KPS solution and remained elevated above the control for 

the remainder of the experiment after the KPS application ceased; most other parameters were 

similar in the KPS and control column effluents for the duration of the experiment. An increase 

in effluent Hg from the KPS column was observed post-KPS application that broadly coincided 

with a decrease in Eh and increased effluent Fe and Mn. The relationship between increased Hg, 

Mn and Fe and decreased Eh was also observed in the control column, but the magnitude of Hg 

release was lower than from the KPS column. XANES sulfur spectra collected from the KPS-

treated soil and the control were similar indicating that there was not an apparent change in solid-

phase sulfur in the KPS-treated soil compared to the control soil. Dissolution of HgS and 

formation of highly mobile HgSx
2- was likely the dominant mechanism for the Hg release. In situ 

immobilization of Hg in the floodplain soil was not achieved with the flow-through application 

of a polysulfide solution; contrary to past studies where immobilization was achieved by in situ 

formation of HgS via polysulfide application to elemental Hg0 in a glass bead medium.  
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1 Chapter 1: Introduction 

 
Mercury (Hg) has been sought after and utilized by humans for thousands of years due to its 

unique properties - notably its use in amalgamation processes first discovered in the 1st century 

BCE (Parsons & Percival, 2005). Over the years Hg, mined primarily in the ore mineral cinnabar 

(HgS), has been used for many processes and products; as pigment, in industry (e.g. as a cathode 

in the chlor-alkali industry) and in scientific instrumentation (e.g. the Hg barometer, Hg 

thermometer and in the study of electricity and development of early electronics) (Parsons & 

Percival, 2005). It has since been discovered that Hg, particularly in the organic methylmercury 

(MeHg) form, is highly toxic to humans and animals, with adverse effects to the nervous system, 

kidneys, cardiovascular system and increasing evidence of damage to the immune and 

reproductive systems of animals (Gupta et al., 2005; Goyer et al., 2000). Inorganic Hg can be 

converted to MeHg in aquatic environments, which bioaccumulates (concentrates) in the food 

chain (Environment and Climate Change Canada, 2013). Thus, the most common human 

exposure to Hg is through the consumption of fish and other marine foods (United Nations 

Environment Programme, 2013). Elevated Hg concentrations have broad ecosystem health and 

socioeconomic implications for those who rely on aquatic food stocks for both sustenance and 

income. Such is the case in Northwestern Ontario, Canada where the Ojibwa communities of 

Grassy Narrows and White Dog, located downstream of a chlor-alkali plant that discharged Hg 

from 1962 to 1970, were found to be exposed to high levels of Hg through fish consumption. 

Aside from food, fish provide these communities with an economic source in the form of tourism 

and commercial fishing. Thus, advising the Ojibwa to not eat the fish in the effected watercourse 

has had a crippling effect on their livelihood (Gupta et al., 2005).      
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Having a comprehensive understanding of the physical and chemical conditions that 

influence the transport and transformation of Hg is of utmost importance to characterizing Hg, 

identifying factors or perturbations that could impact the stability of Hg and developing 

remediation approaches for Hg-contaminated sites.  

 

1.1 Mercury in the Environment: Speciation and Transport 
 

Mercury occurs in the environment in a variety of forms including elemental Hg (Hg0), inorganic 

Hg (Hg+, Hg2+) and organic MeHg [monomethylmercury, CH3Hg+, dimethylmercury, 

(CH3)2Hg]. Mercuric sulfide (HgS), which occurs naturally as the mineral cinnabar, is the most 

common form of Hg in the environment and, due to its extremely low solubility when in 

crystalline form, is considered to be relatively low toxicity (Boening, 2000; Greenwood & 

Earnshaw, 1997).  

Transport of Hg and Hg complexes through soil depends on many factors including the 

characteristics of the soil surfaces, composition and particle size of Hg complexes, electrostatic 

forces between Hg complexes and soil surfaces and water chemistry (Bengtsson and Picado 

2008; Zheng et al., 2016). The presence of natural organic matter (NOM) is very important in 

controlling the mobility of Hg, and the affinity of Hg for reduced sulfur sites within NOM 

compounds has been well documented (Loux, 1998; Ravichandran, 2004; Dittman et al., 2010). 

The Hg transported from soils and sediments into water bodies often forms complexes with 

particulate or dissolved organic matter (DOM). In aerobic, fresh waters aqueous Hg complexes 

with DOM ligands are dominant (Hintelmann & Harris, 2004; Hammerschmidt et al., 2008), 

whereas in anaerobic waters, Hg complexation with reduced sulfur species is favoured and HgS 

is the dominant form of Hg (Krabbenhoft et al., 2005). However, DOM can both dissolve, and 
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inhibit the precipitation and aggregation of HgS, resulting in a greater portion of smaller particle-

size HgS particles that are more bioavailable (Ravichandran et al., 1998; Ravichandran et al., 

1999; Zhang et al., 2011). Hg also has an affinity for clay minerals (Farrah & Pickering, 1978; 

Sarkar et al., 2000) and the presence of clay particles has been shown to increase Hg mobility 

through porous media (Zhu et al., 2012).    

 

1.2 Site Background 
 
The South River is located in Virginia, USA, within the Shenandoah Valley and with the North 

River and Middle River forms the South Fork of the Shenandoah River (Landis et al., 2014). 

Between 1929 and 1950, Hg was used in the production of textile fibres at a manufacturing plant 

in Waynesboro, Virginia and was discharged to the South River (Virginia Department of 

Environmental Quality, 2016). Elevated concentrations of Hg in the South River have resulted in 

MeHg in fish tissue well over the guideline for safe consumption of wild fish (consumption 

advisories are currently in effect over a 169-km span of river)(Brent & Berberich, 2013; Foran et 

al., 2015). Due to erosional processes, inundation of the South River bank and surface and 

groundwater transport, Hg contamination has developed into complex, non-point Hg sources up 

to 40 km downstream of the historical discharge point that continue to release Hg and MeHg to 

the river at elevated concentrations despite the long period of time that has passed since Hg was 

initially discharged to the environment (Flanders et al., 2010; Eggleston, 2009; Bergeron et al., 

2010; Rhoades et al., 2009). The contaminated reach of the South River is relatively high 

gradient (4.25 m3/s mean flow measured at Waynesboro, VA) with a coarse-grained substrate 

and low organic carbon (OC) and dissolved sulfate in surface water (Eggleston, 2009; Flanders 

et al., 2010).  
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The study area included two sampling locations: a riverbank sediment and a floodplain 

soil. The South River in the area where the riverbank sediment was acquired - relative river mile 

(RRM) 2.4, approximately 4 kilometers downstream of Waynesboro, VA - has a bankfull width 

and depth of 2.6 m and 1.9 m, respectively (Pizzuto, 2012). The floodplain study soil was 

acquired at RRM 11.8 at the Augusta Forestry Center, Crimora, VA, where studies identify 

higher MeHg biomagnification in floodplain food webs relative to aquatic foodwebs in the 

adjacent South River (Newman et al., 2011; Wang et al., 2013).        

 

1.3 Mercury Remediation 
 
The remediation of mercury contaminated sites is often challenging due to the large volumes of 

contaminated material that are frequently involved (Randall & Chattopadhyay, 2013). Due to the 

ability of Hg to methylate into a highly toxic form and enter food webs, relatively low 

concentrations of Hg necessitate evaluation of the environmental impact of Hg in the 

environment and whether remediation is required. Anthropogenic Hg sources near aquatic 

environments are problematic because they can continually release Hg to the environment long 

after initial placement, due to the formation of mobile Hg complexes like Hg-DOM (Gai et al., 

2016). For example, increasing Hg concentrations in fish in lower East Fork Poplar Creek in Oak 

Ridge, Tennessee have been observed into the 2000s despite the cessation of Hg discharge in the 

1960s (Han et al., 2006; Brooks & Southworth, 2011). The distribution of Hg at contaminated 

sites pose issues for remediation as contamination can be highly variable and not evenly 

distributed within sediments (Horvat et al., 2003). At South River, Hg contamination is widely-

dispersed and ex situ remediation via extensive excavation or dredging of contaminated soil or 

sediment or pumping and treating of groundwater is unfeasible due to the environmental 

disruption, potential for resuspension of contaminants, and high costs and labour associated with 
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remediating large volumes of material necessary to capture complex and variable Hg 

distributions (Wang et al., 2012; Ghosh et al., 2011). Thus, in situ remediation techniques 

involving the adsorption or precipitation of immobile Hg compounds may be required to address 

wide-spread, non-point-source Hg contamination. 

The introduction of reactive materials or solutions into contaminated soil and sediments 

may represent a practical and effective approach to stabilization and immobilization of Hg 

(Ghosh et al., 2011; Devasena & Nambi, 2013; Patmont et al., 2014). Removal of mobile Hg(II) 

from aqueous solutions has been achieved by addition of several reactive solids including 

metallic iron filings and zerovalent iron (Vernon & Bonzongo, 2014; Weisener et al., 2005), clay 

treated with thiol-containing complexes and high-temperature biochars with Hg forming Hg-O 

bonds in oxic, SO4
2—poor environments (P. Liu et al., 2016; P. Liu et al., 2017) or forming Hg-S 

in the presence of sulfur thiols (Gibson et al., 2011). Stabilization of Hg has also been achieved 

by applying solutions including sodium thiosulfate (Na2S2O3) to promote enhanced coagulation 

of Hg and the in situ formation of Mn- and Fe- (hydr)oxides as complexation surfaces for Hg (Lu 

et al., 2014; Lu et al., 2014).  

While immobilization of Hg through adsorption to Fe- and Mn-(oxyhydr)oxides is viable 

in controlled and/or short-term circumstances, these mineral surfaces are not stable in 

environments where fluctuating redox environments and exposure to reducing bacteria can result 

in reductive dissolution of Fe- and Mn-(oxyhydr)oxides and release and mobilization of sorbed 

Hg (Chadwick et al., 2006; Harris-Hellal et al., 2011). Such is the case in the contaminated reach 

of the South River where fluctuations in river stage and inundations of the river bank result in the 

establishment of anoxic conditions in river sediments and floodplain soils where Hg could be 

adsorbed to (oxyhydr)oxide mineral surfaces. In sites such as South River, the promotion of Hg-
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S binding or formation of HgS would be more thermodynamically favourable in the environment 

and preferable to less stable oxide binding (Gibson et al., 2011).          

 

1.4 Research Objectives 
 
This thesis presents two main research components: 1) an examination of the changes in Hg 

mobilization and transport from contaminated sediment in response to perturbations in solution 

chemistry, and 2) an evaluation of a sulfur solution as a stabilizer of Hg and a remediation option 

for Hg-contaminated soil. As part of the second component, Hg transport from both an aerobic 

and anaerobic control is also examined.  

In the first component, perturbations to the input solution composition were made 

sequentially and applied to Hg-contaminated riverbank sediments in a saturated, flow-through 

column simulating groundwater conditions. The objective of this experiment was to identify 

changes in Hg transport as solution composition was varied in ways that could occur naturally or 

as a result of human intervention.  

In the second component, a dilute sulfur (as polysulfide) solution was applied to an Hg-

contaminated floodplain soil and the mobility of Hg and other parameters was observed both 

during and after the polysulfide application. Successful stabilization of Hg using a polysulfide 

solution has been achieved previously in a flow-through experiment (Devasena & Nambi, 2013). 

However, the experiment by Devasena and Nambi (2013) was carried out using a glass-bead 

porous media and elemental Hg. Thus, the objective of the research presented in this component 

was to assess Hg stabilization with a polysulfide solution application in a soil acquired from a 

contaminated field site. The anaerobic and aerobic control column experiments allow for a 

comparison of Hg transport from the same floodplain soil but under different redox conditions; 
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of interest when dealing with Hg contamination on a floodplain that undergoes inundation and 

fluctuating aerobic and anaerobic conditions.  

The operational goal for the experiments of both research components is to simulate actual 

conditions that would be encountered at a contaminated site and thus, soil and sediment derived 

from the South River (i.e., a historic contaminated site with Hg that has aged with the 

soil/sediment for over 60 years) is examined and flow rates approximate groundwater flow rates. 

Additionally, considering the serious detrimental impact of MeHg on human and environmental 

health, MeHg was also monitored throughout this research to examine how perturbations in 

solution chemistry may affect the Hg bioavailability to methylating bacteria. The overall goal for 

this research is to better understand the controls on Hg mobility in the soil and sediment of South 

River with attention to implications related to potential remediation strategies at South River and 

similar Hg contaminated sites.            

 

1.5 Thesis Organization 
 
This thesis is composed of two main research components introduced in Section 1.4 presented as 

two independent journal articles. Chapter 2 discusses saturated, flow-through column 

experiments with South River sediment where the input solutions are varied and effluent Hg, 

MeHg and other parameters are observed over time. Perturbations to the solution composition – 

including pH, ionic strength and alkalinity adjustments - approximate those that could occur 

naturally in the environment or due to human activity - and effluent concentrations provide 

indications of Hg release mechanisms and the dominant controls of Hg mobility. In Chapter 3, 

the mobility of Hg from a contaminated floodplain soil in a saturated, flow-through column 

experiment with the application of a dilute sulfur (as polysulfide) solution is presented. The 

experiment is conducted in an anaerobic environment to simulate a flooded, anoxic floodplain. 
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The results and discussions presented in both chapters aim to better understand the mechanisms 

involved in Hg transport by identifying relationships between solution chemistry and mobilized 

Hg while observing any potential connections to MeHg production.      
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Figure 1.1 - Maps showing the historic discharge point in Waynesboro, VA and the two sample 
locations: riverbank sediment from RRM 2.4 and floodplain soil from RRM 11.8. Satellite 
images acquired from Google Earth.    
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2 Chapter 2: Input Solution Amendments on Mercury Transformation and 
Release from Contaminated Soil under Saturated Flow Conditions 

 

2.1 Synopsis 
 
Mercury is a highly neurotoxic element that bioaccumulates in aquatic ecosystems. Historic 

discharge of Hg to the environment often leads to pervasive and extensive contamination due to 

persistent mobilization and transport of Hg from the initial release point for long periods of time 

after the discharge has occurred. Saturated, flow-through column experiments were conducted at 

relatively low flow rates to simulate natural groundwater flow. The input solutions to the 

columns varied in pH, ionic strength and alkalinity; effluent Hg and other parameters were 

measured to better understand the controls on Hg mobility. Release of weakly-bound Hg was 

observed in the early stages of the control and experimental column experiments. More reducing 

conditions and higher concentrations of Hg were observed in the effluent after changing to an 

input solution with increased pH (pH 8.2 to pH 8.7) and alkalinity (130 to 700 mg L-1 as CaCO3). 

The increase in effluent Hg coincided with Fe and Mn maximum concentrations, suggesting that 

reductive dissolution of Fe-/Mn- (oxyhydr)oxides may have occurred and resulted in the release 

of Hg bound to these Fe-/Mn- (oxyhydr)oxide phases. Higher Hg concentrations also coincided 

with increased DOC in the effluent (26 mg/L in effluent relative to ~3 mg/L in the influent) and 

is attributed to strong complexation between Hg and organic matter contained in the sediment. 

The increased pH of the input solution was within the pH range in which electrostatic repulsive 

forces between DOC and Fe oxide minerals is favoured which may be another potential 

mechanism for Hg release at elevated pH. Effluent Hg concentrations rapidly decreased to 

control concentrations when the input pH was decreased from pH 8.7 to pH~6, which is 

consistent with the pH at which maximum Hg2+ sorption to various soils (pH ~6) has been 
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reported. The decreased pH would also favour electrostatic attraction between Hg-DOM 

complexes and Fe oxide mineral surfaces. A pronounced increase in input solution pH (pH~12) 

(Stage 4, 132 PVs) coincided with a sharp increase in Hg release along with elevated 

concentrations of effluent Fe, Mn and DOC and a drop in Eh, indicative of reductive dissolution 

of Fe-/Mn-(oxyhydr)oxides and associated release of Hg. This study suggests that Hg is 

mobilized with increasing pH and alkalinity and with the onset of more reducing conditions due 

to the reductive dissolution of Fe-/Mn-(oxyhydr)oxides and DOC and modification of 

electrostatic forces between DOC and Fe oxide mineral surfaces. Implications of these findings 

are: 1) the use of calcareous aggregate or cement for construction or remediation activities in Hg 

contaminated soil could significantly increase groundwater pH and mobilize Hg; 2) increased 

saturation of normally oxic sediments and soils could induce reducing conditions and increase 

mobilization of Hg; and 3) generation of slightly acidic conditions in Hg contaminated sediments 

or soils could potentially decrease Hg mobilization.            

 
2.2 Introduction 
 
Mercury (Hg) is a neurotoxin that can bioaccumulate in foodwebs and cause extreme health 

effects to ecosystems and has been classified as a major pollutant by Environment Canada 

(Environment and Climate Change Canada, 2011). Due to its unique properties, Hg has been 

used for numerous purposes - in base metal smelting and in the chlor-alkali industry – and in 

consumer products such as lightbulbs, thermometers and batteries. Since the 1950s and 1960s, 

the detrimental environmental impacts have become better understood and the use of Hg in 

manufacturing and industry has been greatly reduced. Stringent regulations for the disposal of 

Hg and Hg-containing goods have been developed and enforced, especially in the developed 

world. However, prior to the 1950s, the toxic nature of Hg was not well understood and proper 
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handling practices were not established and enforced resulting in unregulated discharge of Hg to 

the environment from many industries and users (Environment and Climate Change Canada, 

2011). In Canada, the two main types of Hg-contaminated sites are former gold mines that used 

Hg amalgamation and chlor-alkali plants (Environment Canada, 2000).  

Methymercury (MeHg) is considered the most toxic form of Hg. Severe detrimental 

health effects, including damage to the central nervous system and reproductive and 

development effects, can occur from both acute and chronic exposure to MeHg at lower 

concentrations than elemental and inorganic Hg (United States Environmental Protection 

Agency, 2000). Inorganic Hg is transformed to MeHg by dissimilatory iron- and sulfate-reducing 

and methanogenic bacteria (Graham et al., 2012; Gilmour et al., 2013; Paulson et al., 2016). 

Thus, MeHg concentrations in the environment significantly depend on the bioavailability of the 

form of inorganic Hg to methylating bacteria (Hsu-kim et al., 2013). Once MeHg is produced, it 

can biomagnify in aquatic food webs and reach concentrations in piscivores that are 107 times 

greater than aqueous concentrations (Environment and Climate Change Canada, 2013).    

Due to industry often being proximal to water sources, Hg released to the environment is 

also often found accumulated in riparian soils (Poulin et al., 2016). Mercury(II) in soil bonds 

readily with soil organic matter (SOM) to form Hg-SOM complexes within days or weeks of 

deposition (Skyllberg et al., 2006; Hintelmann et al., 2002; Biester et al., 2002). Over time, Hg 

can form mercury sulfide phases in anoxic conditions (Barnett et al., 1997) and has recently been 

discovered to also form through the breaking of Hg-sulfur bonds of thiol-bound Hg in oxic 

conditions (Manceau et al., 2015).  Mercury sulfide can be a desirable form of Hg in the 

environment, as it is very insoluble, less mobile relative to other Hg species and aggregation and 

growth of crystalline HgS can make Hg less bioavailable to methylating bacteria (Patnaik, 2003; 
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Gai et al., 2016; Zhang et al., 2011. However, in the presence of SOM, growth and aggregation 

of HgS can be inhibited or limited to the formation of nanoparticulate HgS particles or Hg-SOM 

complexes that are more bioavailable and mobile in the environment than more ordered, 

crystalline HgS (Ravichandran et al., 1999; Aiken et al., 2011; Graham et al., 2013; Deonarine & 

Hsu-Kim 2009; Pham et al., 2014). The mobility of Hg-SOM complexes through soils is 

relatively higher than other common Hg species (Zhu et al., 2014; Gai et al., 2016). Organic 

matter can release Hg through the enhanced dissolution of mercuric sulfide (Ravichandran et al., 

1998) and organic acids can desorb and mobilize particulate-associated Hg or release colloidal 

HgS by dissolving mineral cements (Slowey et al., 2005).  

As riparian soils periodically become saturated by river inundations, fluctuating water 

tables, and precipitation, it is important to understand the chemical controls that influence Hg 

mobility, as well as the mobility and stability of Hg complexes in saturated conditions. Changes 

in chemical characteristics of water as a result of natural processes or anthropogenic activities, 

such as remediation efforts, construction, or road runoff, can affect pore water pH, alkalinity and 

ionic strength. For example, groundwater pH could be greatly elevated proximal to deposition of 

cement or basic oxygen furnace slag (Lundén & Andersson, 1991; Stimson et al., 2010). 

Perturbations in ionic strength, for example, can arise from high precipitation events that dilute 

porewater ion concentrations or from road salt runoff or soil treatments that may raise ionic 

strength.  

The pH of water in contact with Hg-contaminated soil can influence Hg mobility by 

affecting the sorption of Hg and Hg complexes to soil surfaces. Desorption of Hg2+ from soils is 

pH-dependant and generally follows a U-shape pattern where Hg2+ sorption to soil is strongest 

between pH 5 and 7 and decreases at pH<5 and pH>7 (Jing et al., 2007; Barrow & Cox, 1992; 
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Meng et al., 1998). At high pH (high -OH- concentrations), Hg(II) forms very stable Hg(OH)2 

complexes, weakening Hg2+ adsorption to soil surfaces and potentially mobilizing Hg (Gabriel & 

Williamson 2004). However, variations in this sorption pattern have also been observed. Xu et 

al. 2014, noted increased sorption of Hg to soil as pH increased from pH 7 to 9, attributing it to 

the greater concentration of negative charges in the soil that can attract Hg(II) ions (Xu et al., 

2014).  

It is important to consider how solution pH affects natural organic matter (NOM) 

mobility as Hg discharged from industrial uses would likely associate with NOM over time 

(Biester et al., 2002) and NOM stability would be the primary control on Hg mobility. NOM 

with strong acid functional groups can coat particles and dominate surface charges, establishing 

negative surface charges on NOM-complexes if the pH is greater than pH ~3 (Santschi et al., 

2002; Thompson et al., 2006). Commonly occurring iron (oxy)hydroxides have points of zero 

charge ranging from pH 8.1 to 9.5 (goethite; Kosmulski, 2011) and at circumneutral or slightly 

acidic pH, ligand exchange of the carboxyl and hydroxyl functional groups of NOM to iron 

oxide surfaces strongly adsorb NOM and limit mobility of NOM complexes (Vermeer et al., 

1998; Gu et al., 1994). At pH values that are at or above the point of zero charge of iron oxides, 

neutralization or reversal of the positive surface charges of iron oxides occurs, leading to the 

development of repulsive forces between NOM-associated particles and soil surfaces (Tipping, 

1981; Avena & Koopal, 1998). This same interaction would also be expected with NOM on 

aluminum and manganese oxide surfaces (Zuyi et al., 2000; Tipping & Heaton, 1983). 

Additionally, at much higher pH (pH 11-13), dissolution of NOM would occur (Grybos et al., 

2009), releasing complexed Hg into solution (Xu et al., 2014).  
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Ionic strength can impact the mobility of Hg by affecting Hg adsorption to soil (Semu et 

al., 1987) and result in the release of colloidal HgS particles (Lowry et al., 2004). With other 

chemical properties held constant (i.e., constant pH), a decrease in ionic strength typically results 

in higher concentrations of mobilized colloids (Grolimund & Borkevec, 1999). Conversely, a 

change in solution chemistry to an ionic composition with higher concentrations of divalent than 

monovalent cations can decrease colloid mobilization if concentrations approach the critical 

coagulation concentration (CCC) for colloids and destabilization occurs (Bunn et al., 2002; 

Bouby et al., 2011). The stronger charges of divalent cations than monovalent cations more 

effectively neutralize repulsive negative surface charges of colloids and promote deposition of 

colloids (Sen & Khilar 2006). For example, at sufficiently high Ca2+ concentrations, aggregation 

of metacinnabar has been observed (Ravichandran et al., 1999). Additionally, in the presence of 

divalent cations, the adsorption capacity of Fe and Mn oxide surfaces for NOM increases as 

cations compete for the negatively charged humic acid groups causing settlement and sorption 

(Tipping, 1981; Tipping & Heaton, 1983). Chloride can interfere with Hg binding and an inverse 

relationship between increasing Cl- concentrations and Hg bound to organic matter has been 

observed (Gabriel & Williamson 2004).   

In this study, saturated, controlled-flow column experiments were conducted to observe 

the release of Hg as the chemical composition of the input solution was varied. The experiments 

were designed to observe how changes to groundwater chemistry (i.e., ionic strength, pH, 

alkalinity) affect Hg mobilization and methylation. Other constituents of the column effluent 

were quantified to identify relationships with Hg mobility and to better understand Hg release 

mechanisms. River bank sediment from the contaminated reach of a river impacted by Hg 

derived from a former textile manufacturing plant was acquired and used in the experiment. Five 
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different solutions were used in sequence as the column input. The five input solutions were 

amended from river water acquired upstream of the contaminated site and are summarized as 

follows: 

1. Increased ionic strength with the addition of a divalent cation salt. 

2. Increased pH and carbonate alkalinity without changing the ionic strength from input 1 

but using a monovalent cation amendment.  

3. Decreasing the pH and alkalinity keeping the ionic strength similar to inputs 1 and 2 with 

the addition of a monovalent cation salt.  

4. Increasing the pH (with hydroxide) without increasing carbonate alkalinity (as in input 2) 

and without changing the ionic strength from inputs 1, 2 and 3 but by using a monovalent 

cation amendment.  

5. Decreasing the pH of input 4 through acid addition to a value similar to the unamended 

input.   

Two additional experiments were conducted to observe Hg mobilization when the input solution 

was amended to have:  

1. a very low ionic strength input solution; and  

2. an ionic strength (via divalent cation addition) at the CCC for typical soil colloids.  

The details of these latter two experiments can be found in the Supporting Information for 

Chapter 2.  

 
 

2.3 Methods and Materials 
 
Sediment was obtained from within the Hg contaminated reach of the South River, 2.4 miles (3.8 

km) downstream from the historic site of the textile manufacturing plant in Waynesboro, VA. 
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The sediment was collected in 5 L buckets from the bank of the river and shipped to the 

University of Waterloo where it was stored at 4oC for approximately two years before use. The 

sediment was mechanically homogenized in 1 L Nalgene bottles before use in column 

experiments.  

 THg content in the sediment was determined after aqua regia digestion by cold vapour 

atomic fluorescence spectroscopy (CVAFS, Tekran© 2600 Sample Analysis System) following 

the U.S. Environmental Protection Agency (U.S.-EPA) 1631 Revision E method (U.S. EPA, 

2002). Sequential extraction analyses were conducted on the sediment according to the 

methodology of Bloom et al. (2003) to determine the solid-phase THg soluble in the following 

reagents: deionized water (F1 fraction), 0.1 M CH3COOH and 0.01 M HCl at pH 2 (F2 fraction), 

0.1 M KOH (F3 fraction), 12 M HNO3 (F4 fraction), and aqua regia (F5 fraction). The THg 

fractions were measured using the CVAFS and method outlined above.  

Water (SRW) was collected regularly from South River upstream from the point of 

historic Hg release and was shipped to the University of Waterloo. Acrylic columns of 14.6 cm 

length and 3.81 cm inner diameter were constructed by fastening circular end-plates to the 

hollow cylindrical column with rubber gaskets for a water-tight seal. The bottom plate was 

fastened to the bottom (influent) end of the column and a layer of approximately 1 cm of silica 

sand was placed at the bottom of the column. Sediment was packed on top of the silica sand 

layer to approximately 1 cm from the top of the column as water flowed into the influent of the 

column using a high-precision multi-channel peristaltic pump (Ismatec, Switzerland). A silica 

sand layer was then placed at the top (effluent) end of the column to be flush with the end of the 

column and the top plate was fastened to the top of the column.  Packing was completed in a 

fume hood and the columns were kept in an aerobic atmospheric environment. The pore volume 
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(PV) of the columns was determined as the mass difference between the final packed column and 

the column filled completely with water (measured before packing). Calculations of PV were 

made using the dry weight of the sediment to account for moisture contained in the sediment 

prior to packing.  

Input solutions stored in 1.5 L amber bottles were pumped to the influent (bottom) of the 

columns through Teflon tubing using a high-precision peristaltic pump. Effluent flowed from the 

top of the columns through Teflon tubing and was collected in N2-purged 250 mL amber bottles 

(Figure 2.1). Sample collection bottles were connected via Teflon tubing to overflow bottles 

containing water traps to reduce O2 ingress into the collected effluent.  

Input solutions were prepared in 0.5 L reaction flasks. Reagent masses were weighed and 

added to the reaction flasks with 0.5 L of SRW. The solutions were agitated manually until 

reagents were fully dissolved. Input solutions were applied to the column sequentially over 

various durations. Descriptions of the input solutions and the durations they were applied (in 

PVs) are provided in Table 2.1.   

Water samples were collected regularly from a three-way valve at the top of the sample 

collection cell using sterile, single-use polypropylene/polyethylene 24 mL luer-lock syringes 

(Norm-Ject). The samples were passed through 0.45 μm Supor membrane filters (Acrodisc, 

Pall Corporation) except for when periodic unfiltered (THg-unf) and 0.1 μm-filtered THg (THg-

0.1) or unfiltered organic carbon (TOC) samples were collected. Samples for analysis of total Hg 

(THg), MeHg, dissolved organic carbon (DOC) and nutrients (phosphate and ammonia) were 

stored in 15 mL amber borosilicate vials (Qorpak) with PFTE-lined screw caps; cation and 

anion samples were stored in 15 mL HDPE narrow mouth bottles (Nalgene). All samples 

except anions were acidified to pH <2 immediately after collection; samples for THg and cation 
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analyses were acidified with ACS grade 69-70% HNO3 (JT Baker), samples for MeHg analysis 

were acidified with ACS grade 36.5-38% HCl (JT Baker), and samples for organic carbon and 

nutrient analyses were acidified with High Purity H2SO4 (OmniTrace Ultra, EMD Millipore 

Corporation). Samples for THg, OC, nutrients and cation analyses were stored at 4°C and 

samples for MeHg and anion analysis were frozen at -20°C immediately after collection and until 

analysis.  

Concentrations of THg were determined using CVAFS and the technique stated above for 

the aqua regia digested sediments. MeHg analysis was carried out with the distillation, aqueous 

ethylation and purge and trap CVAFS technique (Tekran® 2750 methylmercury distillation 

system and a Tekran® 2700 automated methyl mercury analyzer) according to the U.S.-EPA 

1630 method (U.S. EPA, 2001). Cation analysis was completed using inductively coupled 

plasma optical emission spectrometry (ICP-OES, iCAP 6000, Thermo Scientific) for major 

cations and inductively coupled plasma mass spectroscopy (ICP-MS, X-Series 2, Thermo 

Scientific) for trace elements. Anions were analyzed using ion chromatography (Dionex DX 600, 

Thermo Scientific) using a carbonate eluent for major anions. 

Measurements of pH were made on unfiltered samples with an ROSS combination pH 

electrode (Orion 815600, Thermo Scientific) calibrated with pH 4, 7 and 10 buffer solutions 

(Orion, Thermo Scientific). Redox potential (Eh) was measured with a platinum redox 

combination electrode with a Ag/AgCl2 reference electrode (Orion) checked against Zobell’s 

(Nordstrom 1977) and Light’s (Light 1972) solutions. Alkalinity was measured on 0.45 μm-

filtered samples at the time of collection with a digital titrator and standardized 0.16 M H2SO4 

(HACH).  Bromocresol-green methyl-red was used as an indicator to measure bicarbonate 

alkalinity (reported as mg L-1 CaCO3).  
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Ionic strength and saturation index calculations were made using the PHREEQCi 

geochemical speciation program (United States Geological Survey, 2017) and the PHREEQC 

database (Parkhurst et al., 1990).  

 

2.4 Results and Discussion 
 
2.4.1 South River Water and Sediment 
 
The composition of South River bank sediment used in the flow through column experiments is 

presented in Table 2.2. The sediment contained 7.8 μg g- dry weight Hg. The results of Hg 

content obtained through sequential extraction analyses are presented in Table 2.3. The highest 

proportion (50.4%) of Hg was found in the F3 (organo-complexed compounds) fraction, with 

30.5% and 18.7% of Hg in the F5 (Hg sulfide/residual) and F4 (elemental/strong complexes) 

fractions, respectively. The chemical composition of the South River water used for column 

influent solutions is presented in Table 2.4.  

2.4.2 Control Column Effluent 
 

Effluent THg-0.45 increased initially in the control column to a maximum concentration of 113 

ng L-1 after 6.2 PVs then decreased sharply to 37 ng L-1 at 22 PVs. Aside from an increased 

effluent THg-0.45 concentration plateau of between 60 and 71 ng L-1 from 63 to 92 PVs, effluent 

THg-0.45 varied between 13 and 24 ng L-1. Effluent pH generally decreased throughout the 

experiment from pH 7.5 in the first sample to a minimum of pH 6.76 at 131 PVs before 

rebounding slightly to a pH of 7 at 179 PVs. Effluent Eh decreased sharply from an initial 

measurement of 462 mV in the first sample to a minimum of -41 mV at 15 PVs, increased to a 

maximum of 482 at 81 PVs, then remained relatively stable for the remainder of the experiment 

between ~300 and 400 mV. Effluent concentrations of NO3, Mn, Fe and SO4
2- are consistent 
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with the typical terminal electron acceptor sequence commonly observed from the submersion of 

organic carbon-rich soils (Weber et al., 2009); effluent NO3
- concentrations decreased rapidly, 

effluent Mn increased after, then effluent Fe concentrations increased while SO4
2- concentrations 

remained very low. Alkalinity in the effluent increased sharply to a maximum concentration of 

446 mg L-1 as CaCO3 then decreased and was generally between 96 and 169 mg L-1 as CaCO3 

from 36 to 178 PVs. Effluent THg-0.45 and DOC concentrations were strongly correlated 

throughout the experiment (r2 = 0.78), as shown in (Figure 2.5).   

2.4.3 Stage 1 – CaCl2 Input 
 

Stage 1 consisted of applying an input solution of SRW with 3.5 mM Ca (as CaCl2) over 0 to 29 

pore volumes (PVs). The input solution had a pH of 8.0 (control pH 8.2), alkalinity of 65 mg L-1 

as CaCO3 (control 130 mg L-1) and ionic strength of 15 mM (control 5.7 mM).  

During Stage 1, effluent THg-0.45 concentrations were similar to the control, decreasing 

steadily from 132 ng L-1 after 0.6 PVs to 31 ng L at 29 PVs (Figure 2.2). Initially, Hg bound to 

weaker binding sites in the soil, such as carboxyl or phenol functional groups, was likely 

mobilized by the Hg-free input solution and was eluted from the column (Drexel et al., 2002). 

The pool of weakly bound Hg became depleted during Stage 1 and correspondingly, a decreasing 

trend in effluent Hg was observed. Concentrations of NO3
- and SO4

2- did not decrease during 

Stage 1 as rapidly as observed in the control column. Effluent Mn concentrations were elevated 

during Stage 1, likely due to Mn(IV) reduction to Mn(III) and the dissolution of Mn(IV)-

(hydr)oxide minerals within the column (Poulin et al., 2016). The maximum Fe concentration in 

the effluent (14.8 mg L-1) also occurred during Stage 1 (12.5 PVs) and coincided with the lowest 

Eh value (61.5 mV) during Stage 1. The spike of effluent Fe suggests that reductive dissolution 

of Fe(III)-(hydr)oxides and release of Fe(II) into solution could be occurring in the column 
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(Poulin et al., 2016). Effluent dissolved organic carbon (DOC) was relatively high in early pore 

volumes reaching a maximum concentration of 35.6 mg L-1 at 2.2 PVs and decreased steadily to 

7.4 mg L-1 at 29 PVs (Figure 2.3). As shown in Figure 2.5, DOC and effluent THg-0.45 

concentrations appear to be correlated, albeit less strongly so than in the control column effluent. 

The pattern of effluent DOC concentrations resembled that of effluent Hg concentrations over 

time, suggesting a similar release mechanism for Hg and DOC. Dissolved organic carbon has a 

strong sorption affinity to Fe(III)/Mn(IV)-(hydr)oxides and would be desorbed from the 

(hydr)oxide soil surfaces upon reductive dissolution of Fe(III)/Mn(IV)-(hyrd)oxides (Grybos et 

al., 2009). Thus, in the event of Fe(III)/Mn(IV) dissolution and DOC release, Hg complexed with 

DOC would also be released into solution. The Ca2+ concentration in the input (3.5 mM Ca2+) 

was above the critical coagulation concentrations (CCC) for typical soil colloids (1.9 to 2.6 mM 

Ca2+) (Séquaris, 2010) and thus colloidal mobilization should have been suppressed. Unfiltered 

THg (THg-unf) reached a greater maximum concentration (209 ng L-1 at 8.9 PVs) than the 

control and THg-0.45 concentrations did not vary significantly from the control during Stage 1 

with a relatively higher ionic strength input solution. Effluent DOC concentrations, however, 

were often lower with the increased Ca2+ concentrations in Stage 1 than in the control. Binding of 

Ca2+ to negatively charged humic acid molecules reduce the negative repulsive forces between 

molecules and can cause aggregation and deposition of humic-associated particles (Kloster et al., 

2013). Similar effluent DOC results were observed in an additional column experiment in which 

the same elevated Ca2+ input solution was used and it is possible aggregation of DOC complexes 

occurred resulted in reduced mobility of DOC (see Supporting Information for Chapter 2).  

Effluent MeHg increased initially reaching a maximum of 3.8 ng L-1 at 6.0 PVs then 

decreased to 0.65 ng L-1 by the end of Stage 1. The higher MeHg concentrations coincide with 
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the development of more reducing conditions in the column as suggested by the decreasing Eh 

and NO3
- and increased Mn and Fe potentially indicating Mn(IV) and Fe(III) reduction. It is 

possible that bioavailable Hg was transformed to MeHg during Stage 1 as conditions became 

more reducing by dissimilatory iron-reducing or sulfate-reducing bacteria (DIRB and DSRB, 

respectively) and was eluted from the column with the initial mobilization of Hg from the 

column (Kerin et al., 2006). Effluent MeHg concentrations decreased as redox rebounded to 

more oxidizing conditions in the later pore volumes of Stage 1. The concentration of effluent 

MeHg was similar to that of the control and, as a percent of THg-0.45, was less during Stage 1 

than the control which reached 11.0% MeHg at 19 PVs (compared to 5.3% MeHg at 13 PVs). 

DOM has been found to limit particle growth and aggregation and thus, increase bioavailability 

of small HgS particles to methylating bacteria (Graham et al., 2013). DOC concentrations were 

often lower than the control during Stage 1, potentially due to the relatively elevated Ca2+ 

concentration and ionic strength of the input solution. It is possible that the amended input 

solution suppressed methylation or decreased transport of MeHg by aggregating and reducing the 

mobility of DOC-associated Hg complexes.  

 

2.4.4 Stage 2 – KHCO3 Input 
 
During Stage 2, a solution of SRW with 11 mM K+ as KHCO3 was input to the column from 29 

to 108 PVs. The input solution pH (pH 8.7) and alkalinity (706 mg L-1 as CaCO3) were greater 

than the Stage 1 input solution pH and alkalinity of pH 8.0 and 65 mg L-1 as CaCO3 alkalinity 

and the control input (pH 8.2 and 130 mg L-1 as CaCO3). The ionic strength of the Stage 2 input 

solution of 13 mM was similar to that of the Stage 1 input (15 mM) and greater than the control 

(5.7 mM).  
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    Significant Hg mobilization occurred when the input was changed to the higher alkalinity 

and pH input solution, as shown in Figure 2.2, with a marked increase in cumulative THg-0.45 

released during Stage 2. Effluent THg-0.45 increased steadily from 29 PVs reaching a maximum 

of 226 ng L-1 at 52 PVs. Effluent THg-0.45 concentrations decreased slightly throughout Stage 2 

but remained elevated well above the control. The last sample taken during Stage 2 at 108 PVs 

(after 79 PVs of the Stage 2 input solution) of 173 ng L-1 THg-0.45 was an order of magnitude 

greater than the control (17 ng L-1).  Effluent alkalinity increased sharply to input concentrations 

within 3 PVs. Effluent pH increased from pH 6.74 at the end of Stage 1 to pH 7.47 at 39 PVs, 9 

PVs after changing to the Stage 2 input solution. Effluent pH continued to increase after 39 PVs 

but at a slower rate reaching pH 7.8 at 108 PVs.  

The Eh of the effluent initially decreased after the input change to a minimum of 35 mV 

at 43 PVs – less than the Eh in the control of 115 mV at 43 PVs. Redox increased to 370 mV at 

56 PVs and was fairly stable for the remainder of Stage 2. Effluent Fe concentrations were less 

than 1.4 mg L-1 apart from a very high Fe concentration of 13.5 mg L-1 measured at 43 PVs. 

Effluent Mn concentrations decreased after the change of input solution and throughout Stage 2 

from 7.6 mg L-1 at 30 PVs to 0.46 mg L-1 at 98 PVs. Effluent sulfate decreased sharply after the 

Stage 2 input switch from 33 mg L-1 at the end of Stage 1 to 0.15 mg L-1 after 1 PV in Stage 2. 

Effluent sulfate remained low (between 0.75 and 2.2 mg L-1) until 84 PVs then increased to near 

input concentrations at 98 PVs and was 32 mg L-1 at the end of Stage 2 (108 PVs).  

Effluent MeHg increased following the change to the Stage 2 input, reaching a maximum 

of 3.86 ng L-1 at 43 PVs which comprised 2.3% of THg-0.45 in the effluent sample. 

Concentrations of MeHg remained fairly stable for the remainder of Stage 2 ranging between 1.1 

and 2.2 ng L-1 from 49 to 98 PVs. Effluent MeHg concentrations were greater than or similar to 
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the control throughout the Stage 2 PVs. However, effluent MeHg as a percentage of THg-0.45 

released was lower than the control, ranging from 0.7 to 2.3% of THg-0.45 compared to 1.0 to 

3.5% of THg-0.45 in the control effluent.  

Dissolved organic carbon concentrations increased in the effluent following the input 

solution change reaching a maximum concentration during Stage 2 of 26.3 mg L-1 at 43 PVs 

(Figure 2.3). DOC concentrations decreased after 43 PVs but remained elevated relative to DOC 

concentrations in the control, resulting in a higher rate of cumulative DOC release relative to the 

control (Figure 2.4). 

There is evidence for the contribution of several mechanisms to the increased 

mobilization of Hg from the column during Stage 2 relative to during Stage 1 and the control. 

Iron (III)-reducing conditions likely developed in the column during Stage 2; the maximum 

effluent Fe concentration in Stage 2 was coincident with the lowest Eh measured during Stage 2. 

The maximum Fe concentration preceded the maximum Hg concentration in the effluent during 

Stage 2, suggesting reductive dissolution of Fe(III)-(hydr)oxides resulted in the release of Hg 

and/or Hg-associated particles previously bound to Fe(III)-(hydr)oxide mineral surfaces.  

Effluent THg-0.45 remained elevated after the high effluent Fe concentration was 

observed at 43 PVs and effluent Mn concentrations decreased to below control levels. A 

potential explanation for the consistent, elevated release of Hg from the column is the association 

of Hg to DOM complexes and mobilization of DOM with increased solution pH. The affinity of 

Hg to DOM complexes has been well documented (Ravichandran et al., 1998; Drexel et al., 

2002) and the mobility of Hg-DOM is greater relative to inorganic Hg species (Gai et al., 2016). 

Correlations between DOC and Hg release have been observed in the environment (Brigham et 

al., 2009; Johannesson & Neumann, 2013) and in laboratory leaching experiments where high 
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pH reagents were used (Biester & Zimmer 1998). A strong correlation between THg-0.45 and 

DOC concentrations was also evident in the effluent of the control column (Figure 2.5). 

Adsorption of DOC to Fe and Mn oxides decreases with increasing pH as the electrostatic 

attraction between the negatively and positively charged surfaces of humic matter and oxide 

minerals, respectively, weaken (Gu et al., 1994; Avena & Koopal, 1998; Tipping, 1981; Tipping 

& Heaton, 1983). Effluent pH increased steadily throughout Stage 2 to within the point of zero 

charge (PZC) range of goethite (pHPZC 7.2 to 9.6; for synthetic goethite) and the input solution of 

pH 8.7 was within the PZC range for ferrihydrite (pHPZC 8.2 to 8.7) (Kosmulski, 2011). As the 

pH of the pore water in the column increased the surface charge of ferric (oxyhydr)oxide would 

become neutral or negative and mobilize humic complexes with negative surface charges 

through electrostatic repulsion (Vermeer et al., 1998). Desorption of DOM can increase the 

saturation of DOM on soil surfaces and subsequently mobilize more DOM complexes through 

molecule-molecule repulsion (Avena & Koopal, 1998). The stability of DOM in solution would 

then be maintained due to electrostatic repulsion (Angelico et al., 2014). Thus, DOM molecule-

molecule repulsion, as well as the migration of higher pH pore water through the column 

developing electrostatic repulsion between DOM molecules and soil surfaces, could explain the 

continual, enhanced release of DOM and Hg occurring throughout Stage 2. Effluent Al 

concentrations during Stage 2 followed a similar trend to THg-0.45 and DOC. This correlation 

between Al and DOC is expected as dissolved organic matter controls the mobility of aluminum 

through soil (Hughes et al., 1990).  

Another potential factor for the elevated Hg release is the increase of DOM solubility 

with increased pH as Hg bound to DOM would be released into solution upon DOM dissolution 
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(Grybos et al., 2009). Additionally, at higher pH and increased concentrations of –OH ligands, 

Hg could form Hg(OH) complexes which adsorb less strongly (Kim et al., 2004).  

The maximum MeHg in the effluent during Stage 2 coincided with the most reducing Eh 

value of 34.8 mV, the maximum value effluent Fe concentration during input 2 and relatively 

very low sulfate concentrations at 43 PVs. Thus, transformation of Hg to MeHg is likely 

occurring in the column via DSRB and/or DIRB respiration (Kerin et al., 2006). However, after 

redox conditions increased, MeHg concentrations decreased to control levels and were stable for 

the remainder of Stage 2. As a percentage of THg-0.45, MeHg was consistently lower than the 

control after the maximum concentration at 43 PVs and could suggest that the MeHg 

concentrations in the effluent in Stage 2 could also be a factor of higher effluent THg 

concentrations overall and not necessarily greater MeHg production during Stage 2 relative the 

control. 

    

2.4.5 Stage 3 – KCl Input 
 

Stage 3 consisted of a solution of SRW with 11 mM K as KCl with pH adjusted to pH ~6 with 

HCl input to the column from 108 to 132 PVs. The input solution of Stage 3 was lower than in 

Stage 2 (pH 8.7) and the control (pH 8.2). The alkalinity of the Stage 3 input solution (38 mg L-1 

as CaCO3) was lower than alkalinity of the Stage 2 input (706 mg L-1 as CaCO3) and the control 

(130 mg L-1 as CaCO3). The ionic strength of the KCl input solution was 22 mM – greater than 

the ionic strengths of the Stage 1 (15 mM) and Stage 2 (13 mM) inputs. 

Effluent THg-0.45 concentrations decreased sharply after the input was switched at Stage 

3 from 173 ng L-1 at the end of Stage 2 (108 PVs) to 13 ng L-1 at 131 PVs after 23 PVs of the 

Stage 3 input solution (Figure 2.2). Effluent pH also decreased after the input was changed and 
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was pH 6.6 at 131 PVs, compared to pH 6.8 in the control column effluent. Effluent alkalinity 

decreased sharply from the Stage 2 input concentration to 102 mg L-1 at 114 PVs and decreased 

more gradually to 53 mg L-1 at 131 PVs. Effluent DOC concentrations also decreased throughout 

Stage 3 and reached 1.3 mg L-1 at 131 PVs, similar to the control effluent DOC concentration of 

1.0 mg L-1 (Figure 2.3).  

A strong correlation between effluent pH and THg-0.45 concentrations was evident 

throughout Stage 3. The decrease in THg during Stage 3 was expected as the pH of the input was 

within the pH 6-6.5 range where maximum Hg sorption has been reported in the literature (Jing 

et al., 2007; Barrow & Cox, 1992; Meng et al., 1998).  

The decrease of both THg and DOC supports the hypothesis that a significant portion of 

mobilized THg is controlled by or associated with DOC. The pore water pH rapidly decreased to 

below the PZC of ferric (oxyhydr)oxides and thus, positive surface charges would form on ferric 

(oxyhydr)oxide minerals. Desorption of humic matter resulting from a pH increase is reversible 

(Avena & Koopal 1998). Therefore, DOC mobilized during Stage 2 that was not yet eluted from 

the column would be electrostatically attracted to soil surfaces and settlement and 

immobilization would become more favourable. Mercury associated with the mobilized DOC 

would also be immobilized in this scenario. 

 

2.4.6 Stage 4 – KOH Input 
 
 
During Stage 4, an input solution of SRW with 11 mM K+ as KOH was applied to the column 

from 132 to 143 PVs. The Stage 4 input solution was pH 12.2, much greater than the control 

input and other experimental stages. The input alkalinity of 569 mg L-1 as CaCO3 was greater 
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than Stage 3 but less than Stage 4. The ionic strength of the Stage 4 input solution was 6.4 mM, 

lower than Stage 3 (22 mM) and slightly higher than the control (5.7 mM). 

When the input was changed to the highly basic pH, effluent THg-0.45 concentrations 

increased sharply and dramatically (Figure 2.2). Effluent THg-0.45 increased by two orders of 

magnitude from Stage 3 at 134 PVs (after 2.3 PVs) and reached a maximum of 6420 ng L-1 at 

138 PVs. Effluent pH increased throughout Stage 4 reaching pH 8.27. Redox decreased sharply 

to a minimum Eh of 69 mV. Effluent NO3
- increased throughout Stage 4 to 23 mg L-1 at the end 

of Stage 4. Effluent Mn and Fe also increased during Stage 4 reaching maximums of 2.3 and 7.0 

mg L-1, respectively, at 138 PVs. However, both Mn and Fe decreased in the next sample at 143 

PVs. Effluent SO4
2+ also increased throughout Stage 4 reaching a maximum of 125 mg L-1. 

Effluent MeHg increased to 25.3 ng L-1 at 138 PVs and was 0.4% of THg-0.45 in the effluent. At 

the end of Stage 4, MeHg in the effluent was 16.6 ng L-1 and comprised 0.3% of THg-0.45. 

Effluent DOC also increased sharply during Stage 4 to 32.9 mg L-1 at 138 PVs.  

The sharp increase of the Stage 4 input solution pH would have resulted in significant 

dissolution of Hg complexes, minerals and adsorption surfaces as evidenced by the increase in 

effluent DOC, Fe and Mn during Stage 4. Dissolution of OM would occur at the very alkaline 

pH of the input and release in complexed Hg into solution (Xu et al., 2014). Effluent Mn and Fe 

concentrations increased during Stage 4 as solubility of solid-phase Fe(OH)3 and MnO2 would 

greatly increase at the pH of the input. Dissolution of mineral phases at high pH likely was the 

predominant factor in the high effluent concentrations during Stage 4 as a portion of the soil 

matrix would have been solubilized. At pH 12, the concentration of OH- ligands present is high 

enough to dissolve HgS (Ravichandran et al., 1998). Once in solution, pore water conditions 

within the column would favour the formation of higher mobility, uncharged Hg-OH species like 
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Hg(OH)2 (Kim et al., 2004). Uncharged Hg species adsorb much less strongly to mineral 

surfaces and would eluted from the column more readily (Xu et al., 2014).  

The high concentrations of THg-0.45 in the effluent during Stage 4 was likely a 

significant factor in the relatively elevated effluent MeHg concentrations. The MeHg in the 

effluent comprised a very small fraction of THg-0.45 (0.3-0.4%).  

 
2.4.7 Stage 5 – KOH with Decreased pH Input 
 
During Stage 5, the input solution pH was lowered to pH 8.5 with HCl while maintaining the 

same concentration of K+ (as 11 mM K+). This solution was input to the column from 143 PVs 

until 171 PVs when the column was terminated. The alkalinity of the input of 38 mg L-1 as 

CaCO3 was similar to the Stage 3 input solution. The ionic strength of the Stage 3 input solution 

was 11 mM, similar to the Stage 1 and 2 input solutions.  

Effluent THg-0.45 concentrations decreased rapidly upon switching to the Stage 5 input 

solution (Figure 2.2). Concentrations of effluent THg-0.45 decreased from 1790 ng L-1 at 146 

PVs to 20 ng L-1 at 158 PVs, similar to the concentrations in the control at this PV (15 ng L-1). 

Effluent pH decreased rapidly from pH 8.3 at the end of Stage 4 to pH 7.4 at 158 PVs. Redox 

rebounded from the Stage 4 Eh of 69 mV to more oxidized conditions in Stage 5 ranging from 

Eh of 299 to 328 mV from 149 to 171 PVs. Effluent NO3
- decreased following the input change 

and was <1 mg L-1 at 171 PVs. Effluent Mn and Fe concentrations continued to decrease from 

Stage 4 into Stage 5 and were 0.04 and 0.14 mg L-1, respectively, at 158 PVs. Effluent SO4
2- 

continued to increase from Stage 4 to a maximum of 450 mg L-1 at 146 PVs. Effluent DOC 

decreased from Stage 4 and was 4.9 mg L-1 at 158 PVs (Figure 2.3). Effluent MeHg 

concentrations in Stage 5 decreased from Stage 4 and ranged from 0.9 to 1.5 ng L-1. However, 

MeHg concentrations at 158 and 171 PVs comprised 7.5 and 9.1% of effluent THg-0.45.  
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The decrease of both DOC and THg-0.45 with the input change further suggests a 

relationship between Hg and DOC association and transport mechanisms. Although, the decrease 

in DOC could also be due to the gradual depletion of mobile DOC from the column soil over the 

course of the experiment. The percentage of MeHg in the effluent as a fraction of THg-0.45 

during Stage 5 was much higher than the control during these PVs and the highest of all 

experimental stages. A possible explanation for these relatively high MeHg fractions in the 

effluent during Stage 5 is that dissolution of Hg complexes, minerals and sorption surfaces that 

occurred during Stage 4 produced a larger pool of inorganic Hg(II) that was readily bioavailable 

to methylating bacteria (Hsu-kim et al., 2013).   

 

2.5 Conclusions  
 
This research demonstrates that Hg in contaminated riparian soils can be mobilized by increasing 

pH from pH~8.2 to pH~8.7 through bicarbonate addition and that the elevated release rate can be 

maintained for the duration of the increased pH input application (79 PVs) at 4 to 10 times the 

concentration of the control column (pH~8.2). Lowering input pH to pH ~6.1 resulted in 

decreased effluent Hg and DOC concentrations  – in agreement with maximum Hg adsorption 

pH values reported in the literature (pH 6-6.5). The greatest flux of Hg occurred with hydroxide 

addition when the pH increased to pH~12, likely due to the dissolution of Hg organic complexes 

and Hg-bearing minerals and formation of highly mobile Hg-OH complexes. DOC and Hg 

concentrations were shown to be correlated, particularly in the control column. This correlation 

supports the hypothesis that Hg complexation with organic matter in the study sediment are 

significant and that controls on Hg and DOC mobility are similar. 
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It was also evident in this research that Hg mobility was sensitive to changes in redox 

variations. Increased Hg concentrations coincided with relatively low Eh and relatively high 

concentrations of aqueous Fe and/or Mn. Reductive dissolution of Mn(IV) and Fe(III)-

(hydr)oxide minerals and consequent release of previously adsorbed Hg and associated 

complexes provides an explanation for the seemingly redox-dependent Hg mobilization.  
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Table 2.1 - Description of input solutions used in the varied input column experiment.    

 
Input 

Solution 
Description Duration 

Control SRW - 

1 SRW + 3.5 Ca as CaCl2 0 to 29 PVs 

2 SRW + 11 mM K as KHCO3 29 to 108 PVs 

3 SRW + 11 mM K as KCl (adjusted to pH ~6 with HCl) 108 to 132 PVs 

4 SRW + 11 mM K as KOH 132 to 143 PVs 

5 SRW + 11 mM K as KOH (adjusted to pH ~8.5 with HCl) 143 to 171 PVs 

CAa SRW + 3.5 Ca as CaCl2 0 to 116 PVs 

NPa Ultra-pure water (Milli-Q) 0 to 65 PVs 

a Input solutions for columns in Supporting Information for Chapter 2. 
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Table 2.2 - Chemical composition of South River bank sediment used in column experiments.  

(μg g-1) dry weight 

Hg Fe Mn TOC TIC Total C Total S 

7.6 25 000 560 34 600 19 560 54 000 0.5 
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Table 2.3 – Hg (by dry weight and percent of total) obtained through sequential extraction in the 
South River bank sediment before used in the column experiments. (Ma & Paulson, 2014). 

Fraction Description Targeted 
Compounds

Hg (ng g-1, dry 
weight) 

% 

F1 Water Soluble HgCl2, HgSO4 16 0.3 

F2 Stomach Acid HgO, HgSO4 5 0.1 

F3 Organo-complexed Hg2Cl2, CH3Hg 3270 50.4 

F4 Elemental/Strong 
complexes 

Hg2Cl2, Hg0 1210 18.7 

F5 Hg Sulfide/Residual HgS, HgSe, HgAu 1980 30.5 
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Table 2.4 - Chemical composition of South River water (SRW) from upstream of historic 
mercury contamination source. 

 
Influent Solution 

Parameter SRW 

pH 8.21 

Eh (mV) 362 

Alkalinity (mg L-1 as 

CaCO3) 130 

Cl- (mg L-1) 60.2 

NO3
- (mg L-1) 14.6 

SO4
2- (mg L-1) 39.4 

Ca (mg L-1) 29.0 

K (mg L-1) 2.15 

Mg (mg L-1) 10.8 

Na (mg L-1) 5.16 

Si (mg L-1) 3.14 

Mn (μg L-1) 1.78 

Fe (μg L-1) 14.3 

DOC (mg L-1) 2.8 

Ionic Strength (mM) 5.7 
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Figure 2.1 - Schematic diagram showing the experimental set-up. 
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                 1   2          3     4       5           1                  2           3     4      5           

 
 
Figure 2.2 - Aqueous concentrations monitored over time in the varied input column effluent. 
Note vertical lines indicate a change of input solution, dashed lines represent control column 
effluent concentrations over time and dotted lines represent the input concentrations of the 
experimental column. Numbers 1 through 5 at the top of the page represent the five input 
solutions: 1) CaCl2; 2) KHCO3; 3) KCl; 4) KOH; and 5) KOH with decreased pH.  
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       1                   2                3     4      5            1       2                 3     4       5 

 
 
 
Figure 2.3 – Additional aqueous concentrations monitored over time in the varied input column 
effluent. Note vertical lines indicate a change of input solution, dashed lines represent control 
column effluent concentrations over time and dotted lines represent the input concentrations of 
the experimental column. Numbers 1 through 5 at the top of the page represent the five input 
solutions: 1) CaCl2; 2) KHCO3; 3) KCl; 4) KOH; and 5) KOH with decreased pH.  
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Figure 2.4 – Cumulative mass of 0.45 μm-filtered Hg (top) and DOC (bottom) measured in the 
control column and varied input column effluents over time. Note vertical lines indicate a change 
of input solution.   
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Figure 2.5 – Correlation between 0.45 μm-filtered Hg and DOC concentrations in control and 
varied input column effluents. Note: Hg-0.45 concentrations of 6,420 and 572 ng L-1 from the 
varied input column effluent are not shown on the plot. 
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3 Chapter 3: Addition of Polysulfide on Mercury Release from 
Contaminated Soil under Saturated Flow Conditions 

 

3.1 Synopsis 
 
Mercury is a persistent pollutant that is highly neurotoxic in its organic MeHg form. Historic Hg 

contaminated sites can leach Hg long after initial deposition, resulting in widespread 

contamination that presents many remediation challenges. Hg has a high affinity for sulfur 

species and HgS is less soluble and generally bioavailable to methylating bacteria and thus, in 

situ promotion of HgS precipitation is attractive as a remediation approach. Flow-through, 

saturated column experiments were conducted to investigate the effects of a dilute potassium 

polysulfide (KPS) solution on Hg mobility in contaminated floodplain soil. Additionally, the 

effects of aerobic and anaerobic conditions on Hg transport were investigated. Higher Hg 

concentrations were observed from sediment in aerobic conditions than sediment in an anaerobic 

environment receiving an anoxic input solution. Under aerobic conditions, two distinct effluent 

Hg maxima were observed and two separate release mechanisms were hypothesized: 1) oxidative 

dissolution of disordered HgS releasing Hg at earlier pore volumes of flow and 2) reductive 

dissolution of Fe-/Mn-(oxyhydr)oxides releasing sorbed Hg compounds at later pore volumes 

with the onset of more reducing conditions. A similar early pore volume Hg maximum was not 

observed in the anaerobic column effluent and the later Hg maximum was much less pronounced 

suggesting that oxidative processes in the aerobic column were significant in increasing the pool 

of mobile Hg in the column. Effluent Hg concentrations increased by three orders of magnitude 

relative to the control when a dilute KPS solution (1 mM S) while no significant changes in other 

effluent concentrations were observed. The increase effluent Hg is consistent with the increase in 

HgS solubility in the presence of polysulfide as reported in the literature and Hg likely was 
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released from the column in the mobile Hg(Sx)2
2- form. In addition to the dissolution of HgS, Hg 

could also be stripped from NOM thiol groups which would be outcompeted by polysulfide Hg 

complexation. An additional Hg increase observed after the cessation of KPS solution 

application coincided with the onset of reducing conditions in the column. The magnitude of the 

second effluent Hg increase was greater than the increase observed in the control column when 

more reducing conditions were identified, suggesting that the KPS application increased the 

overall mobility of the Hg pool by increasing the amount of Hg compounds sorbed to Fe-/Mn-

(oxyhydr)oxides. XANES analysis of the column soil after the KPS application indicated that S 

species in the soil did not vary from the control column suggesting the addition of KPS did not 

substantially alter the soil S speciation. This research demonstrated that remediation of Hg-

contaminated soil with addition of polysulfide is problematic due to the formation of mobile Hg-

S species.  

 
3.2 Introduction 
 
Mercury (Hg) is a metal with unique properties and detrimental environmental impacts; 

particularly when present as the highly neurotoxic, organic methylmercury (MeHg) (Hsu-kim et 

al., 2013). Despite stricter regulations regarding the use and disposal of Hg, past anthropogenic 

activities such as mining, metal refining, manufacturing and chemicals production have 

discharged large quantities of Hg and caused contaminated sites worldwide (Pacyna & Pacyna, 

2005). Mercury in the environment can be methylated in reducing, anoxic environments by 

sulfur-reducing bacteria (SRB) or iron-reducing bacteria (FeRB) (Gilmour et al., 1992; Fleming 

et al., 2006). MeHg can be taken up in vegetation or biomagnify in aquatic food chains with a 

very high bioaccumulation factor and can be found in fish at concentrations 3 million times 
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greater than in the water (Wang et al., 2012; Zillioux et al., 1993), presenting the need for the 

development of remediation methods for sites with very low concentrations of Hg (<100 ng L-1). 

For sites with Hg contamination above 260 mg kg-1, excavation is generally used for 

removal and the contaminated material is either stored or treated ex situ (Wang et al., 2012). In 

the case of a more disseminated contaminant distributed both laterally and at depth in low 

concentrations, extensive excavation and treatment or storage of large quantities of material may 

not be a practical or feasible remediation option. Immobilization through the addition of sulfur-

containing solutions has shown promise as a method of in situ treatment of Hg due to the high 

affinity of Hg, a soft Lewis acid, for soft bases; particularly sulfide (S(-II)) and organic thiolate 

(RS-) (Behra et al., 2001; Haitzer et al., 2003). In the presence of sulfide minerals, Hg is 

removed from solution through adsorption to sulfide mineral surfaces or is coprecipitated as Hg 

sulfide (HgS) (Wolfenden et al., 2005). Formation of HgS (or cinnabar) is desirable due to its 

water insolubility (Patnaik, 2003) and the decreased bioavailability of Hg to methylating bacteria 

as crystalline HgS as opposed to dissolved and nanoparticulate species (Zhang et al., 2011). In 

situ mercuric sulfide formation in the subsurface of a contaminated site has been identified 

(Barnett et al., 1997).     

Successful stabilization of aqueous Hg with iron sulfide has been demonstrated in several 

experiments (Liu et al., 2008; Piao & Bishop, 2006). Bower, et al. decreased Hg mobility in a 

flow-through column experiment with a reactive barrier containing pyrite (Bower et al., 2008); 

which could be implemented as an in situ treatment option. However, where subsurface Hg 

contamination is wide-spread and flow paths through groundwater cannot be predicted or 

sufficiently contained, application of a reactive solution may be more feasible than a reactive 

barrier that requires the contaminant to pass through. Xiong, et al. demonstrated a 67% reduction 
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of water-leachable Hg in flow-through column experiments with a solution containing stabilized 

iron sulfide nanoparticles (Xiong et al., 2009). Treatment of Hg-spiked, natural soil with 

colloidal sulfur significantly reduced Hg transport in laboratory pot experiments (Kot et al., 

2007). In a flow-through, glass bead-porous media micromodel experiment, a sodium polysulfide 

solution was used to in situ stabilize elemental Hg by conversion to HgS (Devasena & Nambi 

2013). In the experiment by Devasena and Nambi, ~10% of entrapped elemental Hg was 

stabilized as HgS and the remainder of Hg was immobilized through encapsulation within the 

precipitated HgS.                

In this study, the application of polysulfide to a soil from a site with historic Hg 

contamination was investigated. Polysulfide (Sx
2-, where x = 3 – 6) is formed through sulfur and 

sulfide reaction or as an intermediate in sulfur cycling (Jay et al., 2000). While stabilization of 

Hg with the addition of sodium polysulfide via HgS formation and entrapment has been 

successful with inorganic Hg, this approach has not been investigated with Hg contaminated soil 

where the Hg has been present in soil for a long time (~50 years) and at relatively low 

concentrations. Increasing the sulfur concentration can have adverse environmental effects on Hg 

form and stability. Mercury solubility can increase in the presence of excess sulfur by forming 

soluble Hg disulfide (HgS2
2-), especially under alkaline conditions (Svensson et al., 2006). 

Additionally, concentrations of elemental sulfur contained in polysulfides can redissolve stable 

HgS that had formed (Paquette & Helz, 1995; Paquette & Helz, 1997). It was found that calcium 

polysulfide needed to react with air and breakdown to thiosulfate and sulfide species in order to 

be effective and otherwise increased the leachability of elemental Hg and HgS (Osborne-Lee et 

al., 1999). Forming sulfate species would not be desirable however, due to an increased potential 

for Hg methylation by sulfate-reducing bacteria.  
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The objective of this study is to observe Hg release from soil obtained from within the Hg-

contaminated reach of the South River, downstream from the historic site of a textile 

manufacturing plant in Waynesboro, VA. The experiments were conducted in fully-saturated, 

flow-through columns in an anaerobic environment with and without the addition of a potassium 

polysulfide (KPS) solution. For comparison, an additional control column was conducted in an 

aerobic environment. Effluent Hg concentration and other parameters were measured temporally 

and spatially along the length of the column. 

 

3.3 Methods and Materials 
 
 
Soil containing approximately 47.6 μg g-1 dry weight Hg was obtained from within the Hg-

contaminated reach of the South River, 11.8 miles (19 km) downstream from the historic site of 

the textile manufacturing plant in Waynesboro, VA. The soil was collected from the floodplain 

and stored in 5 L buckets. The soil was shipped to the University of Waterloo, stored at 4oC and 

used in the columns after approximately 20 months of storage.  

 The soil was digested in aqua regia and analyzed for THg using cold vapour atomic 

fluorescence spectroscopy (CVAFS, Tekran© 2600 Sample Analysis System) according to the 

U.S. Environmental Protection Agency (U.S.-EPA) 1631 Revision E method (U.S. EPA, 2002). 

Fractionation of inorganic Hg in the soil was determined via sequential extraction with the 

following leaching media (Bloom, et al. 2003): deionized water (F1 fraction), 0.01 M HCL and 

0.1 M CH3COOH (F2 fraction), 1 M KOH (F3 fraction), 12 M HNO3 (F4 fraction), and aqua 

regia (F5 fraction). THg in the leachate was measured using the CVAFS method stated above.  

Water not impacted by the historic Hg contamination (SRW) was acquired from the 

South River upstream of the historic contamination source. The columns were constructed by 
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fastening two circular acrylic plates to a hollow cylindrical acrylic column of 14.6 cm length and 

3.81 cm i.d.. Before packing, perforated Teflon tubing was adhered to a threaded fitting 

(Suagelock©) and inserted into the port openings. Rubber tubing with two-way valves at one end 

was connected to the fittings along the lengths of the columns for sampling of pore water during 

the experiment. To pack the column, the bottom plate was fastened to the column and SRW 

allowed to flow into the influent (bottom) end of the column using a high-precision, multi-

channel peristaltic pump (Ismatec, Switzerland). A 1 cm layer of silica sand was first placed at 

the bottom of the column, followed by soil up to approximately 1 cm below the top of the 

column. A top layer of silica sand was placed to be flush with the top of the column and then the 

top plate was fastened to the effluent end of the column. The anaerobic columns were packed in 

an oxygen-free glovebox and were housed there for the duration of the experiment. The pore 

volume (PV) of each column was calculated using the difference between the weight of the final 

packed column and the column packed fully with water (measured before packing) taking in 

consideration the starting water content of the soil.   

Input solutions were stored in 1.5 L amber bottles. Influent was pumped to the columns 

through Teflon tubing using a peristaltic pump. Flow occurred upwards from the bottom to the 

top of the columns against gravity. Effluent was collected in 250 mL amber bottles via Teflon 

tubing as shown in Figure 3.1. For the anaerobic columns, input solutions were purged with Ar 

gas inside the glovebox before use.  

A 1 mM sulfur as KPS solution was prepared by mixing 59.2 mg of K2Sx (Sigma-

Aldrich) with 1 L of Ar-purged SRW inside the glovebox. The solution was manually agitated 

until the K2Sx was dissolved. For the first 3 PVs, Ar-purged SRW was inputted to the 

experimental column. The input solution was changed to the KPS solution from ~3 to ~11 PVs in 
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order for 1 mmol to enter the column. The input was then returned to purged SRW for the 

duration of the experiment (61 ± 2.1 PVs). The aerobic and anaerobic control columns received 

unamended SRW for the duration of the experiment.  

Effluent samples were collected regularly from a 3-way valve at the top of the sample 

collection bottle with a sterile, single-use polypropylene/polyethylene 24 mL luer-lock syringe 

(Norm-Ject). Port samples were collected at 7.0 (± 0.1) and 47.5 (± 1.2). Samples were 

collected from these ports by attaching a 30 mL glass syringe to the two-way valve of one port 

and opening the valve while closing off all other effluent openings. Sample collection occurred 

at the flow rate held constant by the peristaltic pump over the duration of the experiment and was 

completed sequentially from the top to the bottom port.  

Samples were passed through 0.45 μm Supor membrane filters (Acrodisc, Pall 

Corporation) at the time of sampling except for periodic unfiltered THg (THg-unf) and organic 

carbon (TOC) samples or 0.1 μm filtered THg (THg-0.1). Total Hg (THg), MeHg, dissolved 

organic carbon (DOC) and nutrients (phosphate and ammonia) were stored in 15 mL amber 

borosilicate vials (Qorpak) with PFTE-lined screw caps. Cation and anion samples were stored 

in 15 mL HDPE narrow mouth bottles (Nalgene©). Samples for THg and cation analyses were 

acidified with ACS grade 69-70% HNO3 (JT Baker), samples for organic carbon and nutrient 

analyses were acidified with High Purity H2SO4 (OmniTrace Ultra, EMD Millipore 

Corporation) and samples for MeHg analysis were acidified with ACS grade 36.5-38% HCl (JT 

Baker) to pH <2 immediately after collection. Samples for T-Hg, TOC, DOC, nutrients 

(phosphate and ammonia) and cation analysis were stored at 4°C and samples for MeHg and 

anion analysis were frozen and stored at -20°C immediately.  
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Mercury was analyzed using CVAFS (Tekran© 2600 Sample Analysis System) and the 

EPA 1631 Revision E method (U.S. EPA, 2002). MeHg analysis was carried out with the 

distillation, aqueous ethylation and purge and trap CVAFS technique (Tekran® 2750 

methylmercury distillation system and a Tekran® 2700 automated methyl mercury analyzer) 

according to the EPA 1630 method (U.S. EPA, 2001). Cation analysis was completed using 

inductively coupled plasma optical emission spectrometry (ICP-OES, iCAP 6000, Thermo 

Scientific) for major cations and inductively coupled plasma mass spectroscopy (ICP-MS, X-

Series 2, Thermo Scientific) for minor cations. Anions were analyzed using ion chromatography 

(Dionex DX 600, Thermo Scientific) using a hydroxide eluent for organic acids (lactate, acetate, 

propionate and formate) and a carbonate eluent for major anions.  

Measurements of pH were made on unfiltered sample with a ROSS combination pH 

electrode (Orion 815600, Thermo Scientific) calibrated with pH 4, 7 and 10 buffer solutions 

(Orion, Thermo Scientific). Redox potential (Eh) was measured using a platinum redox 

combination electrode with a Ag/AgCl2 reference electrode (Orion, Thermo Scientific) 

checked against Zobell’s (Nordstrom, 1977) and Light’s (Light, 1972) solutions. Bromocresol-

green methyl-red indicator was used to measure bicarbonate alkalinity (reported as mg L-1 

CaCO3). Alkalinity was measured on 0.45 μm-filtered samples at the time of collection with a 

digital titrator and standardized 0.16 M H2SO4 (HACH). 

K-edge X-ray absorption near edge structure (XANES) spectra were collected for sulfur 

on samples and reference materials at the Soft X-ray Microcharacterization Beamline (SXRMB) 

at the Canadian Light Source (CLS, University of Saskatchewan, Saskatoon, SK, Canada). 

Inorganic S reference materials analyzed were gypsum, pyrite and K2Sx. The spectra of ferrous 

sulfate (FeSO4), pyrrhotite (Fe1-xS), dimercaptan (an organosulfide compound), tetramethylene 
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sulfoxide (C4H8OS), butyl sulfone ([CH3(CH2)3]2SO2) and sodium methanesulfonate 

(CH3SO3Na) were obtained from a previous beamtime and thianthrene was obtained from an 

online database (European Synchrotron Radiation Facility 2017). The solid K2Sx used for the 

KPS input solution was also analyzed. Solid samples were acquired from the bottom and top 

ports of each column after ~30 PVs by stopping flow, removing the port tubing and scraping a 

small (<0.5 g) amount of material out of the top and bottom port openings with a sterilized, 

single-use needle. Samples were freeze-dried for a minimum of 24 hours and transported in an 

anaerobic container to CLS. Samples were homogenized and ground with pestle and mortar then 

spread evenly on double-sided tape adhered to a copper plate. The sample plate was placed in a 

chamber under vacuum for synchrotron analysis. Total electron yield spectra were collected for 

each sample and reference materials.  

Three scans were collected for the samples, K2Sx and reference materials. The ATHENA 

program was used to aggregate data and compare sample and reference material spectra (Ravel 

& Newville, 2005). Linear combination fitting (LCF) was performed with Athena to estimate 

relative percentages of S species in each sample and K2Sx using reference material spectra with 

peaks at the same energy as sample spectra peaks in the Athena LCF computations.   
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3.4 Results and Discussion 
 
 
3.4.1 Input Solution Aqueous Chemistry 
 
The SRW was pH 8.5 and alkalinity of 170 mg L-1 as CaCO3. Calcium (33 mg L-1), Mg (12.3 mg 

L-1) and Na (6.6 mg L-1) were the dominant cations and Cl (4.5 mg L-1), SO4
2- (4.1 mg L-1) and 

NO3
- (1.8 mg L-1) were the dominant anions. The SRW aqueous chemistry is summarized in 

Table 3.1.  

The input solution to apply KPS to the experimental column had a S concentration of 

34.2 mg L-1 and K concentration of 29.7 mg L-1, compared to 4.2 mg L-1 S and 3.4 mg L-1 K in 

SRW. The SO4
2- concentration in the KPS solution was 18.3 mg L-1 compared to 4.1 mg L-1 in 

SRW. 

 
3.4.2 S XANES Characterization of KPS 
 
The S XANES spectra collected from the K2Sx used for the KPS input solution showed peak 

positions that indicated the presence of reduced sulfur species (2471.9 eV) and oxidized sulfur 

species represented by sulfoxide-like (2476.2 eV), sulfone-like (2479 eV) and sulfonate-like 

(2481.4 ev) peak positions (Figure 3.2).  

 The relative proportions of S species in K2Sx estimated using LCF are shown in Table 

3.4. The best fit was achieved with the reference material S spectra for pyrite, tetramethylene 

sulfoxide, butyl sulfone and sodium methanesulfonate. Sulfide-like sulfur was estimated to 

comprise the greatest proportion of sulfur in the K2Sx (39%), followed by sulfone-like (30%) and 

sulfoxide-like sulfur (28%).   
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3.4.4 Floodplain Soil Solid Phase 
 
The solid phase concentrations of the floodplain soil used in the saturated flow-through column 

experiment are summarized in Table 3.2. The mass of solid-phase Hg of the soil was determined 

through sequential extractions and the results are tabulated by dry weight and percent of total Hg 

content in Table 3.3. The majority of Hg (89% of total) was found in the F5 fraction with a 

reagent that targets Hg sulfides, while the F4 fraction targeting strongly-complexed and 

elemental Hg and the F3 fraction targeting organo-complexed Hg comprised 6.0% and 4.4% of 

solid-phase Hg in the soil, respectively.     

 
 
3.4.5 Aerobic and Anaerobic Control Column Effluent  
 

The aqueous concentrations in the effluent of the aerobic and anaerobic control columns over 

time are shown in Figure 3.3. As shown in Figure 3.5, a greater mass of THg was released from 

the aerobic column relative to the anaerobic column over the course of the experiment. Two 

distinct THg concentrations maxima were observed in the aerobic column effluent: a lesser 

maximum of 5.93x103 ng L-1 at 14 PVs and a maximum THg concentration of 7.11x103 ng L-1 at 

33 PVs. The anaerobic control had a maximum THg concentration of 1.47x103 ng L-1 at 27 PVs.  

The effluent pH in both columns increased from pH~6.3 to maximum values then 

decreased at a more gradual rate for the remainder of the experiment. The maximum pH was 

observed in the anaerobic column effluent at 16 PVs (pH 7.7) and in the aerobic column effluent 

at 33 PVs (pH 7.4). Effluent pH in the anaerobic column was consistently higher than the aerobic 

column effluent. Similar to pH, effluent alkalinity increased at a higher rate in the anaerobic 

column than the aerobic column. The maximum alkalinity concentrations were 274 mg L-1 as 
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CaCO3 in the anaerobic effluent at 16 PVs and 307 mg L-1 as CaCO3 in the aerobic column at 33 

PVs. Alkalinity decreased gradually in both control effluents after the maxima were observed.  

Redox determinations (Eh) were lower in the anaerobic column for the entirety of the 

experiment with the exception of between 33 and 38 PVs when Eh increased to a maximum 

value of 260 mV at 34 PVs in the anaerobic effluent while Eh decreased to a minimum of 82 mV 

in the aerobic column effluent. The anaerobic column Eh was a minimum of -110 mV at 16 PVs. 

Effluent NO3
- concentrations in the anaerobic column decreased from 2.4 mg L-1 at 2.4 PVs and 

were <1.1 mg L-1 for the duration of the experiment. The aerobic column effluent had a very 

high NO3
- concentration at 1.4 PVs but decreased and was <1.2 mg L-1 for the duration of the 

experiment. The maximum Mn concentration in the anaerobic column effluent was 25.8 mg L-1 

at 21 PVs and the maximum Mn concentration in the aerobic column effluent 29.0 mg L-1 at 33 

PVs. Concentrations of Fe were generally greater in the anaerobic column effluent than the 

aerobic column effluent. The maximum Fe concentration in the anaerobic effluent was 10.2 mg 

L-1 at 45 PVs compared to a maximum Fe concentration of 8.0 mg L-1 at 46 PVs from the aerobic 

column. Effluent SO4
2- concentrations were generally higher in the anaerobic column than the 

aerobic column. The maximum SO4
2- concentration in the anaerobic effluent of 38 mg L-1 was 

observed at 6.3 PVs and was much greater than the maximum SO4
2- concentration in the aerobic 

effluent of 22 mg L-1 at 60 PVs.  

The maximum DOC concentration of 50.8 mg L-1 observed in the anaerobic column 

effluent at 21 PVs was much greater than DOC concentrations in the aerobic column effluent 

which did not exceed 18 mg L-1 during the 60 PVs.  

Effluent MeHg concentrations were much higher in the anaerobic column effluent than 

the aerobic column reaching a maximum concentration of 31.7 ng L-1 at 46 PVs before 
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decreasing to <0.02 ng L-1 at 61 PVs. The maximum MeHg concentration in the anaerobic 

column comprised 3.4% of THg-0.45, and was the highest MeHg fraction measured in the 

aerobic or anaerobic control column effluent. The maximum MeHg concentration in the aerobic 

column effluent was 10.2 ng L-1 at 33 PVs and comprised 0.14% of THg-0.45 in the effluent at 

the corresponding PV. At 60 PVs, the MeHg concentration in the aerobic effluent was 5.6 ng L-1, 

but was a higher fraction of THg-0.45 (1.7%) than at the maximum observed MeHg 

concentration.   

The two distinct THg maxima in the aerobic column effluent could indicate two potential 

release processes or mechanisms. The first THg maximum could be the release of Hg following 

oxidative dissolution of HgS. It has been found that elemental Hg discharged to a floodplain in 

the 1950s and 1960s at a similar contaminated site had since formed authigenic HgS through 

sulfate reduction (Barnett et al., 1997). Manceau et al., found that HgS could also form in soil 

organic matter through Hg(II)-thiol sulfur complexes (Manceau et al., 2015). Synchrotron 

analysis of several riverbank sediments and floodplain soils from the South River site indicate 

Hg in the form of HgS (Gibson, 2013). Therefore, it is likely that a significant fraction of Hg in 

the experiment soil had undergone transformation from elemental Hg to crystalline HgS during 

annual inundations of the South River that could result in anoxic, sulfate-reducing conditions. 

Due to the reduced sulfur component, HgS is thermodynamically unstable, as evident by the 

equilibrium constant for oxidative dissolution by aqueous O2 (Barnett et al., 2001; Desrochers, 

2013):  

HgS(s) + 2O2(aq) + 2H2O  Hg(OH)2
0 + SO4

2- + 2H+  K = 1093 (I = 0 M, 25oC)  Eq. 1 

The elevated dissolved O2 in the aerobic column influent relative to the anaerobic column 

influent thus makes oxidative dissolution of HgS and/or other sulfides relatively more 
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favourable, as shown in Equation 1. Barnett et al., observed very low Hg release rates from flow-

through column experiments and found the weathering rate of HgS to be very slow relative to 

other minerals considered to be stable in soil (Barnett et al., 2001). Holley et al. found oxidative 

dissolution rates of HgS by O2 were 10-100 times higher than Barnett et al. when 10 times less 

initial solid-phase HgS was used in the experiment (Holley et al., 2007). As the initial THg 

concentration in this experiment was much lower than that in Holley et al., it is possible that the 

oxidative dissolution rate of HgS is perhaps exponentially higher still.  

Oxidative dissolution would be catalyzed by the presence of dissolved organic matter 

(DOM) present in the soil and, at lesser concentrations, in the input solution. The facilitation of 

HgS dissolution by DOM has been observed extensively (Ravichandran et al., 1998; Waples et 

al., 2005; Slowey, 2010). Sulfur-Hg bonds could be weakened through sulfide oxidation by 

oxidized DOC, resulting in surface complexation and release of Hg according to the following 

(Ravichandran et al., 1998):  

>HgS + DOMoxidized  > new site + Hg2+ + S0 + DOMreduced  Eq. 2  

Ravichandran et al. did not detect sulfide oxidation by DOM in a deoxygenated experiment 

indicating that the effect of DOM on HgS-sulfide oxidative dissolution is of a catalytic nature as 

opposed to the driving factor (Ravichandran et al., 1998). Under anaerobic conditions, the impact 

of DOM on HgS dissolution would likely be reduced, and could be a factor in the lower Hg 

release from the anaerobic column.   

Additionally, HgS formed in the presence of DOM is more disordered and is much more 

soluble and more readily dissolved than HgS (Slowey, 2010). It is reasonable to assume that any 

HgS that formed in the study soil in situ occurred with significant DOM concentrations that 

would increase the solubility of HgS to higher values than observed by Barnet et al. (2001) and 
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Holley et al (2007). The likelihood of a more unstable form of HgS form would be greater at the 

relatively low Hg concentration in this soil compared to at higher Hg concentrations where larger 

aggregates of HgS particles would likely form (Slowey, 2010). 

The early Hg release could also be in part due to a release of relatively poorly sorbed Hg 

from the soil upon the onset of pumping. Mercury can be initially sorbed to strong organic thiol 

functional group binding sites or weak carboxyl or phenol functional group binding sites (Drexel 

et al., 2002). When the Hg-free input solution flowed through the column, poorly sorbed Hg 

could desorb from the soil and be eluted from the column. This early PV release of Hg has been 

observed in other flow-through experiments (Xiong et al., 2009; Desrochers, 2013; Paulson et 

al., 2016).  

The second Hg maximum in the aerobic column effluent at 33 PVs could be the result of 

Hg sorbed to the surface of Fe- and/or Mn-(hydr)oxides minerals that are reductively dissolved 

following a decrease in Eh. Following dissolution of HgS, an amount of THg(II) and Hg-DOM 

complexes would likely sorb to Mn(IV)/ Fe(III)-(hydr)oxide mineral surfaces in the soil (Kim et 

al., 2004) (Grybos et al., 2009). At 33 PVs, the Eh of the aerobic column effluent decreased from 

349 mV to 85 mV and then to a minimum of 82 mV at 38 PVs. Effluent NO3
- concentrations 

were <1 mg L-1. Effluent Mn increased to a maximum concentration of 29.0 mg L-1 at 33 PVs 

and effluent Fe increased sharply to 5.9 mg L-1 at 33 PVs. Decreasing NO3
-, followed by 

increases in Mn and Fe concentrations agrees with the expected sequence of electron acceptor 

reduction (Stumm & Morgan, 1981) and provides evidence for the reductive dissolution of 

Mn(IV)- and Fe(III)-(hydr)oxides minerals. The THg release following the observation of 

electron receptor reduction in this experiment has been observed in other soil flooding 

experiments conducted both with and without the presence of atmospheric oxygen (Hofacker et 
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al., 2013; Poulin et al., 2016) as well as in field measurements of a deep confined aquifer where 

increased Hg concentrations coincided with a region of dissimilatory Fe reduction and increased 

dissolved Fe(II) concentrations (Johannesson & Neumann, 2013).     

The relatively lower release of THg from the anaerobic column could be a result of the 

lack of dissolved oxygen in the input solution and the aerobic conditions in which oxidative 

dissolution of HgS is favoured. The maximum THg-0.45 concentration of 1470 ng L-1 (1710 ng 

L-1) in the anaerobic control effluent was measured at 27 PVs, later than the aerobic control 

THg-0.45 maximum (27 PVs). At 21 PVs, effluent NO3
- concentrations were <1 mg L-1, effluent 

Mn concentrations increased from <0.5 mg L-1 to a maximum concentration of 25.8 mg L-1 and 

effluent Fe increased from <1 mg L-1 to 8.6 mg L-1. As the maximum effluent THg concentration 

was observed at 27 PVs and followed the maximum effluent Mn and a sharp increase in effluent 

Fe concentrations, it is possible that reductive dissolution of Mn(IV)- and Fe(III)-(hydr)oxide 

minerals occurred releasing sorbed THg species. In the aerobic column, Hg could have been 

released following HgS oxidative dissolution and either be eluted from the column or sorb onto 

Mn(IV)- and Fe(III)-(hydr)oxide minerals to later be released as Mn(IV) and Fe(III) reduction 

occurred. However, in the anaerobic column where dissolution of HgS may be limited due to 

relatively low O2 concentrations, Hg mobilization was dominated by the reductive dissolution of 

sorption surfaces in the form of Mn(IV)/Fe(III)-(hydr)oxide minerals. Thus, the pool of Hg 

sorbed to Mn(IV)/Fe(III)-(hydr)oxide mineral surfaces was likely smaller relative to the aerobic 

column where HgS dissolution occurred and less Hg is released following Mn and Fe reduction. 

Additionally, DOC, which can enhance the dissolution of HgS and was hypothesized to be a 

catalyst for Hg release in the aerobic column, does not oxidize sulfide in the absence of oxygen 

(Ravichandran et al., 1998).   
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Methylmercury production was higher in the anaerobic column than the aerobic column 

which is in agreement with the requirement for reducing conditions in an anoxic environment for 

Hg methylation to occur (Gilmour et al., 1992). Effluent MeHg from the anaerobic column 

increased throughout the experiment and reached a maximum of 31.7 ng L-1 at 46 PVs (3.4% of 

THg-0.45) before dropping to below detection level (<0.02 ng L-1) by 61 PVs. In the aerobic 

column, MeHg reached a maximum effluent concentration of 10.2 ng L-1 (0.14% of THg-0.45) at 

33 PVs. The MeHg maximum concentration coincided with the maximum effluent Hg 

concentration from the aerobic column. This correlation could suggest a shared release 

mechanism for inorganic and MeHg or a potential analytical artifact that can occur with the 

analysis of samples with relatively high inorganic Hg content (Perez et al., 2017). Effluent Eh 

was lowest at around this PV, and Mn and Fe increased in the effluent indicating Mn(IV)/Fe(III)-

(hydr)oxide reductive dissolution could be occurring. A significant fraction of MeHg adsorbed to 

these (hydr)oxide minerals, along with inorganic Hg, could therefore be released at their highest 

concentrations at the onset of the dissolution of the sorbing surfaces.  

While MeHg decreased to below detection level in the anaerobic column at 61 PVs, 

MeHg continued to be eluted from the aerobic column at significant concentrations (<3.7 ng L-1) 

until 86 PVs (not pictured in Figure 3.3). This difference could be due to the less efficient 

methylation of Hg in the aerobic column. More reducing conditions were established earlier and 

generally maintained in the anaerobic column which would likely stimulate Hg-methylating 

bacteria populations at an earlier PV than in the aerobic column. The aerobic column had higher 

Eh and increased effluent Fe - an indicator of Fe(III) reduction - at a later pore volume than the 

anaerobic column. The establishment of Fe-reducing conditions is particularly important as 
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dissimilatory FeRB have been found to be significant methylators of Hg (Fleming et al., 2006; 

Kerin et al., 2006).   

 

3.4.6 Polysulfide Application 
 

For the first 3.3 PVs of the experiment, Ar-purged SRW without KPS was input to condition the 

column. A 1 mM KPS solution was applied from 3.3 to 15 PVs. During the KPS application, 

THg was eluted from the column at much greater concentrations than from the anaerobic control 

(as shown in Figure 3.4, and as cumulative mass in Figure 3.5) and aerobic control column. The 

effluent THg-0.45 concentration reached a maximum of 129x103 ng L-1 (244x103 ng L-1 THg-

unf) at 6.2 PVs, three orders of magnitude greater than the anaerobic control. Effluent pH, 

alkalinity and Eh in the KPS column were similar to the anaerobic control for the duration of the 

experiment. The similarity of the measured effluent parameters in the KPS and control columns 

during the KPS application suggests that the interaction between Hg and polysulfide is the 

dominant factor in the large flux of effluent THg-0.45. 

Solubility of HgS increases in the presence of excess sulfur as polysulfide (Paquette & 

Helz, 1997) and thiols will be outcompeted by polysulfide at S(-II) concentrations greater than 

0.01 M (Skyllberg, 2008). In the presence of polysulfide and in the pH range encountered in 

this experiment, HgS solubility was found to be 200 times greater than without polysulfide due 

to the form of the dominant aqueous complex Hg(Sx)2
2- (Jay et al., 2000). This increase in 

solubility is approximately equal to the difference between the maximum effluent THg 

concentration in the control and the KPS column and it is reasonable to assume that the initial 

maximum of Hg eluted during KPS application was caused by the dissolution of HgS and the 

formation of aqueous Hg(Sx)2
2-.  
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Another process potentially contributing to the observed Hg release is the displacement 

of Hg sorbed to Fe(III)-hydr(oxides) by polysulfide. This could occur via exchange of bisulfide 

for a hydroxyl group (Slowey & Brown Jr., 2007):  

=FeOHHgOH + HS-  =FeSH- + Hg(OH)2  Eq. 3 

or by complexing to Hg and weakening the surface bonds (Slowey & Brown Jr., 2007): 

=FeOHHgOH + HS-  =FeOHHgSH + OH-  =FeOH + Hg(SH)(OH)aq  Eq. 4 

With the KPS application occurring for ~12 PVs, it is likely that the process of HgS dissolution, 

adsorption of a fraction of aqueous Hg not eluted from the column to (hydr)oxide minerals and 

subsequent displacement by polysulfide was an ongoing process during the KPS application. 

Effluent THg concentrations remained elevated relative to the control after the KPS 

application ceased and the input was returned to unamended SRW, as demonstrated by the 

higher slope of cumulative THg released after 13 PVs (Figure 3.5). These elevated 

concentrations were likely due to an increased pool of aqueous Hg species formed through HgS 

dissolution sorbed to the soil matter. An increase in effluent Hg concentrations occurred after the 

KPS application at 21 PVs to 12.7x103 ng L-1 THg-0.45 (17.6x103 ng L-1 unfiltered). This spike 

in Hg concentration followed an increase in effluent Mn at 18 PVs suggesting reductive 

dissolution of Mn(IV)-(hydr)oxides. Another slight increase in effluent Hg at 45 PVs coincided 

with an increase in Fe eluted from the column. This suggests, as was observed with the control, 

that Hg complexes are sorbed to Mn(IV) and Fe(III) (hydr)oxides and are released upon Mn(IV) 

and Fe(III) reduction and dissolution of (hydr)oxide minerals (Kim et al., 2004; Poulin et al., 

2016). It is reasonable to assume that during the KPS application when pore water Hg 

concentrations were very high, Hg complexes sorbed to weak binding sites like carboxyl or 

phenol functional groups (Drexel et al., 2002). When the KPS application was ceased and pore 



 61

water Hg concentrations decreased, weakly sorbed Hg would be gradually mobilized from the 

column resulting in a gradual decrease in effluent Hg concentration as opposed to a sharp 

decrease.  

 
3.4.7 Pore Water Aqueous Concentrations 
 
 
Sampling of the ports along the length of the column was conducted at 7 PVs during the KPS 

input application and at 49 PVs – 38 PVs after the KPS input application was changed to the 

SRW. Aqueous concentrations of the sampled pore water at 7 and 49 PVs are shown in Figure 

3.6 and Figure 3.7, respectively.  

 

3.4.7.1 Early Pore Water Sampling (7 PVs) 
 
At 7 PVs, THg-0.45 concentrations in water extracted from the KPS column ports increased 

along the length of the column in the direction of flow and were roughly two orders of 

magnitude greater than the control. The maximum THg-0.45 concentration of 1.86x106 ng L-1 -  

in the top port of the KPS column – was approximately 200-fold greater than the maximum THg-

0.45 concentration sampled from the control column ports (1.47x104 ng L-1). This discrepancy in 

aqueous THg-0.45 concentrations in the KPS and control column ports was similar to the 

discrepancy in THg-0.45 concentrations in the KPS and control column effluent. The relatively 

higher aqueous THg-0.45 concentration in the KPS column was also in agreement with the 200-

fold increase of HgS solubility in the presence of polysulfide as opposed to without polysulfide 

reported in the literature (Jay et al., 2000).  

Concentrations of Mn and Fe were greater in the water from the bottom port of the KPS 

column relative to the control column and could indicate reductive dissolution of Mn(IV)/ 
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Fe(III)-(hydr)oxides facilitated by polysulfide (Chrysochoou & Johnston, 2015; Zhong et al., 

2009). Increases in aqueous Fe and Mn concentrations were observed in other experiments where 

polysulfide was applied to soils (Chrysochoou et al., 2012; Ridley, 2007). Pore water Fe and Mn 

concentrations were not elevated relative to the control in the middle and top ports indicating that 

mobilized Fe and Mn could have adsorbed to the soil as it flowed upward. The reducing effect of 

the polysulfide is supported by the more reducing Eh in the lower and middle ports of the KPS 

column compared to the control.       

Concentrations of MeHg were elevated well above the control in the water extracted from 

the bottom and top ports of the KPS column at 7 PVs. The maximum MeHg concentration was 

119 ng L-1 in the bottom port pore water and was <0.03 ng L-1 in the middle port of the KPS 

column. The maximum MeHg concentration in the control column was 2.9 ng L-1 in the bottom 

port and was also <0.03 ng L-1 in the middle port. As a fraction of THg-0.45, however, MeHg 

concentrations were similar in the KPS and control columns and comprised a very low 

percentage of THg-0.45 – evidence of potential analytical bias of MeHg in samples with 

relatively higher inorganic Hg. In the bottom port pore water, MeHg concentrations were 0.028% 

and 0.039% of THg-0.45 in the KPS and control columns, respectively.         

 
3.4.7.2 Late Pore Water Sampling (49 PVs) 
 
At 49 PVs, the pore water chemistry of the KPS column was very similar to that of the control. 

The bottom and middle ports of the KPS column had lower pore water THg-0.45 concentrations 

(38 and 66 ng L-1, respectively) compared to the control (151 and 462 ng L-1, respectively). 

During the KPS input application, the soil at the bottom of the column would be exposed to KPS 

first, mobilizing THg as dissolved Hg-Sx
2- complexes upwards in the direction of flow. 

Polysulfide would also react with other constituents (e.g. DOM, surface minerals), decreasing the 
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pool of reactive Sx
2- along the flow path. Thus, the impact on THg by polysulfide would be 

greatest at the bottom of the column and decrease along the flow path. Lower concentrations of 

reactive Sx
2- at the top of the column would have resulted in less THg mobilized from the soil at 

the top of the column relative to the bottom. Thus, at later PVs, concentrations of THg-0.45 

would be greater in the water extracted from the port at the top of the column than the bottom of 

the column, where a large fraction of the THg pool had already been mobilized and eluted from 

the column by the KPS input.  

Pore water MeHg concentrations were greatest in the top ports relative to the middle and 

bottom ports in both the KPS and control columns. The maximum MeHg concentration was 

higher in the top port of the control column at 341 ng L-1 than the KPS column at 86.3 ng L-1. As 

a fraction of THg-0.45, MeHg was highest in the bottom ports of the KPS and control columns 

(12.6  0.2% MeHg).     

 

3.4.8 S XANES Characterization of Column Soil 
 

The S XANES spectra collected for the soil samples extracted from the bottom and top ports of 

the anaerobic control and KPS-treated columns after approximately 30 PVs along with the 

reference materials used in analyses are displayed in Figure 3.8. The XANES reference spectra 

represent reduced sulfur species (pyrrhotite through thiophene) to oxidized sulfur species (SO4
2-) 

(P. Liu et al., 2016). The spectra for all four samples display peaks that are consistent with 

thianthrene- and thiophene-like (2474.3 eV), sulfoxide-like (2476.2 eV) and sulfate-like (2482.5 

eV) S species. A peak corresponding to sulfide-like S species (pyrrhotite, 2470.4 eV), however, 

only appeared to be present in the spectra from the samples extracted from the bottom ports of 

the control and KPS columns and not from the top port samples. The peaks corresponding to 
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sulfate-like S species in both the top ports are more pronounced in the top port sample spectra 

than the bottom port sample spectra.      

Analysis by LCF was conducted to determine the relative concentration of S species in the 

four columns, as shown in Table 3.4. 

The reference material S spectra for the HgS, dibenzo-thiophene, butyl-sulfone and ferrous 

sulfate were used to provide the best fit for the spectra of top port samples, whereas pyrrhotite, 

dibenzo-thiophene, butyl-sulfone and ferrous/potassium sulfate were used to provide the best fit 

for the bottom port spectra. The best fits as determined by LCF for the top ports of each column 

are essentially identical, confirming the visual inspection. The best fits for the bottom ports are 

also quite similar with the exception of the sulfate-like peak coinciding more closely to FeSO4 

for the bottom port sample from the KPS-column and to K2SO4 for the bottom port sample from 

the control column. From visual inspection and LCF analysis it did not appear that the KPS-

application had a significant impact on sulfur species that remained in the column soil.  

  

3.5 Conclusions 
 
Mercury release from contaminated flood plain soil in a series of fully-saturated, flow-through 

column experiments was observed to compare Hg transport in aerobic and anaerobic 

environments and to observe and quantify the impact of a 1 mM polysulfide application on Hg 

transport under anaerobic conditions. Higher concentrations of THg were mobilized from the soil 

receiving an oxygenated input than the column receiving an input purged of oxygen, both in the 

early stages of the experiment and continually for the duration of the experiment. The proposed 

hypothesis is that poorly crystalline and more soluble HgS undergoes oxidative dissolution with 

the aerobic input and Hg is converted to a more mobile form. A fraction of THg from the 
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dissolved HgS is eluted from the column earlier in the experiment and a fraction adsorbs to soil 

mineral surfaces like and Mn(IV)/ Fe(III)-(hydr)oxides. As reducing conditions develop in the 

columns during the experiment, reductive dissolution of Mn(IV)/ Fe(III)-(hydr)oxides release 

adsorbed Hg species into solution. Increased effluent Hg concentrations in both the anaerobic 

and aerobic column are preceded by or coincide with minimum Eh, and maximum Fe and Mn 

concentrations. However, due to the initial oxidative dissolution of HgS in the aerobic column, a 

higher fraction of Hg is weakly adsorbed to Fe/Mn-(hydr)oxide surfaces and released upon 

development of reducing conditions resulting in a greater flux of Hg from the aerobic column.   

Very high concentrations of Hg were released from the soil during when a 1 mM 

potassium polysulfide (KPS) solution was applied over ~12 PVs. The maximum concentration of 

effluent Hg from the treated column was approximately 200 times that of the control and 

reflected the solubility of HgS in the presence of polysulfides as the aqueous Hg(Sx)2
2- would be 

the dominant Hg species. The rate of Hg release remained elevated above the control after the 

application of the KPS solution was ceased. The prolonged relatively elevated Hg release was 

likely due to some dissolved Hg species adsorbing to Fe(III)- and Mn(IV)-(hydr)oxide surfaces 

after dissolution of HgS by KPS occurred, as hypothesized in the aerobic control column. When 

reducing conditions develop and Fe(III)/Mn(IV)-(hydr)oxide minerals undergo reductive 

dissolution, the adsorbed Hg is released into solution and eluted from the column. Analysis of 

sulfur species by XANES did not indicate that the KPS application altered sulfur speciation in 

the soil suggesting that KPS significantly increased Hg mobility but stripped Hg from the soil 

without transforming sulfur species in the column soil. The results from this experiment indicate 

that applying polysulfide as a source of sulfur to promote in situ HgS formation would be 

difficult in practice in the field as it would be difficult to apply the correct dosage of polysulfide 



 66

to a low Hg concentration disseminated over a wide area. It would be expected that Sx
2- at too 

great of concentrations would be expected to dissolve HgS and transport Hg in full saturated soil 

systems.     

  



 67

Table 3.1- Aqueous chemistry of South River water. 

Influent Solution 

Parameter SRW 

pH 8.5 

Eh (mV) 145 

Alkalinity (mg L-1 as 

CaCO3) 170 

Cl- (mg L-1) 4.5 

NO3
- (mg L-1) 1.8 

SO4
2- (mg L-1) 4.1 

Ca (mg L-1) 33.0 

K (mg L-1) 2.5 

Mg (mg L-1) 12.3 

Na (mg L-1) 6.6 

Si (mg L-1) 3.1 

Mn (μg L-1) 7.5 

Fe (μg L-1) 15.0 

DOC (mg L-1) <0.01
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Table 3.2 - Solid phase concentrations of floodplain soil from RRM 11.8 on the South River. 

 Hg Fe Mn Total C Total S 

(μg g-1) dry weight 47.6 25 000 2 400 26 400 430 
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Table 3.3 – Hg (by dry weight and percent of total) obtained through sequential extraction in the 
South River floodplain soil before used in the column experiments. (Ma & Paulson, 2014). 

Fraction Description Targeted 
Compounds

Hg (ng g-1, dry 
weight) 

% 

F1 Water Soluble HgCl2, HgSO4 0.11 0.23 

F2 Stomach Acid HgO, HgSO4 0.09 0.19 

F3 Organo-complexed Hg2Cl2, CH3Hg 2.06 4.4 

F4 Elemental/Strong 
complexes 

Hg2Cl2, Hg0 2.82 6.0 

F5 Hg Sulfide/Residual HgS, HgSe, HgAu 42.0 89.2 
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Table 3.4 - Percentage (%) of different S forms calculated by LCF. 

4 Standards KPS 
Control Column Soil KPS-treated Column Soil 

Bottom Port Top Port Bottom Port Top Port 

Pyrite 0.39 - - - - 

Pyrrhotite - 0.31 - 0.34 - 

Metacinnabar - - 0.21 - 0.2 

Dibenzo thiophene - 0.25 0.24 0.27 0.23 
Tetramethylene 

Sulfoxide 
0.28 - - - - 

Butyl-sulfone 0.30 0.24 0.36 0.23 0.37 
Sodium 

Metanesulfonate 
0.03 - - - - 

FeSO4 - - 0.19 0.17 0.2 

K2SO4 - 0.21 - - - 

Reduced Chi squared 0.034 0.022 0.019 0.022 0.019 
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Figure 3.1 - Schematic diagram of the experimental set-up. 
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Figure 3.2 - S K-edge XANES spectra for ten S reference materials (left; DibTh = dibenzo 
thiophene; TeSu = tetramthylene sulfoxide; BuSu = butyl sulfone; NaMeSu = sodium 
methansulfonate). S K-edge XANES spectra for K2Sx used for KPS input solution (right). The 
LCF fitted curve for the K2Sx spectra is depicted with a blue, dashed line and the peak energy for 
(from left to right) sulfide-, sulfoxide-, sulfone-, and sulfonate-like spectra are represented by 
black, dashed vertical lines.  
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Figure 3.3 - Aqueous concentrations monitored over time in the aerobic (orange triangles) and 
anaerobic (green circles) control columns.  
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Figure 3.4 - Aqueous concentrations in the effluent of the KPS-application column over time. 
The concentrations of the 0.45 μm passing fractions are represented by blue circles and the 
unfiltered concentrations are shown by green squares. The dashed red line represents 0.45 μm 
filter-passing aqueous concentrations in the anaerobic control column effluent. The two vertical 
lines indicate the start of the KPS solution application at 3.3 PVs and the return to the SRW input 
at 15 PVs. The dashed, grey line represents the average input solution (SRW) concentration.  
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Figure 3.5 – Cumulative mass of 0.45 μm-filtered Hg measured in the aerobic and anaerobic 
control column effluents (top) and anaerobic control and KPS-application column effluents 
(bottom) over time. Note two vertical lines on bottom plot indicate a change of input solution. 
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Figure 3.6 - Aqueous concentrations of THg-0.45, MeHg, pH, alkalinity (as CaCO3), redox (Eh), 
NO3

-, Mn, Fe and SO4
2- along the column length at 7 PVs. The dashed, red line represents the 

control. Note that flow was from the bottom to the top of the column.   
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Figure 3.7 - Aqueous concentrations of THg-0.45, MeHg, pH, alkalinity (as CaCO3), redox (Eh), 
NO3

-, Mn, Fe and SO4
2- along the column length at 49 PVs. The dashed, red line represents the 

control. Note that flow was from the bottom to the top of the column.  
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Figure 3.8 – S K-edge XANES spectra for ten S reference materials (left). S K-edge XANES 
spectra for soil extracted from the top and bottom ports of the control column and the KPS-
application column extracted at ~30 PVs (middle). The LCF fitted curves for each spectra are 
represented by blue, dashed lines and the peak energy for (from left to right) sulfide-, 
thianthrene-/thiophene-, sulfone- and sulfate-like spectra represented by black, dashed vertical 
lines. The top port sample S spectra (dashed red) overlying the corresponding bottom port 
sample S spectra (solid black) (right).     
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5 Chapter 4: Conclusions and Recommendations 

 
Mercury-containing soils and sediments in riparian environments can be persistent sources of Hg 

contamination due to complex factors controlling Hg mobility and prolonged release of Hg from 

an initial discharge point to extend to widespread areas. Additionally, the sensitivity of aquatic 

ecosystems to the highly neurotoxic and bioavailable MeHg warrants concern for relatively low 

concentrations of Hg-contaminated material. Understanding the controls on Hg mobility is 

essential for the management and remediation of extensive Hg-contaminated areas as removal of 

large swaths of soil and sediment is unfeasible due to high costs, invasiveness and potential to 

spread contamination further. Saturated, flow-through column experiments were conducted to 

investigate the impact of solution chemistry and redox conditions on Hg transport as well as the 

feasibility of polysulfide as a method of in situ stabilization of Hg, the results of which are 

presented in Chapter 2 and Chapter 3 of this thesis. 

 Mercury mobility increased when the solution pH and alkalinity increased and appeared 

to be closely tied to DOC mobility. Due to the affinity of Hg for organic matter, it is likely that a 

significant portion of Hg in the column was complexed with DOC, a relatively highly mobile Hg 

compound (Gai et al., 2016). The increase in pH to around the PZC of iron oxide minerals 

typically found in soil likely reversed the attractive electrostatic forces between NOM and soil 

surfaces and mobilized Hg-NOM complexes. Increases in effluent Hg concentrations coincided 

with the onset of more reducing conditions in the column indicated by increases in effluent Fe 

and Mn concentrations and decreased redox Eh. The increased Fe and Mn suggest that reductive 

dissolution of Fe-/Mn-(oxyhydr)oxides was occurring and releasing Hg complexes that were 

previously adsorbed to the Fe-/Mn-(oxyhydr)oxide surfaces. Decreasing the solution to pH~6 

supported the pH reported in the literature at which Hg adsorption is greatest (Jing et al., 2007).  
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 The findings of this research have implications for use of construction materials in the 

vicinity of Hg contamination that could contribute alkalinity, raise groundwater pH and mobilize 

Hg and Hg complexes (e.g. limestone-rich aggregate, cement, etc.). The observed relationship 

between reducing conditions, the dissolution of Fe-/Mn-(oxyhydr)oxides and Hg transport 

identifies Fe-/Mn-(oxyhydr)oxide mineral stability as a significant control on Hg mobility and 

suggests that significant Hg transport could occur if reducing conditions develop in normally 

well-oxidized soils (e.g,. in a flooding event).  

 Higher Hg mobilization was observed from a control column in aerobic conditions than 

in anaerobic conditions. Two separate Hg maxima concentrations were observed in the aerobic 

column effluent. It was hypothesized that HgS formed in situ since the initial discharge of Hg 

that is more disordered and less stable than more crystalline HgS formed in reducing conditions 

goes through oxidative dissolution when submitted to a solution in equilibrium with atmospheric 

oxygen (Holley et al., 2007). A fraction of the Hg released into solution following HgS 

dissolution was eluded from the column (i.e., the first effluent Hg maximum) while some Hg 

adsorbed to Fe-/Mn-(oxyhydr)oxides. Upon the onset of more reducing conditions, indicated by 

increased effluent Fe and Mn and decreasing Eh, Fe-/Mn-(oxyhydr)oxide dissolution took place 

releasing adsorbed Hg complexes (i.e., the second effluent Hg maximum). Increased effluent Hg 

concentrations were observed from the anaerobic control column that coincided with indicators 

of reducing conditions. However, the magnitude of the Hg release from the anaerobic column 

was smaller relative to the aerobic column suggesting that the initial aerobic phase of the 

experiment played a significant role in increasing the pool of Hg adsorbed to Fe-/Mn-

(oxyhydr)oxide surfaces. The results of this experiment demonstrate the discrepancy in Hg 

mobility from the same floodplain soil given either an oxic or anoxic flow-through solution 
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which has important implications for Hg-contaminated soils that frequently fluctuate between 

aerobic and anaerobic conditions (e.g. within a frequently inundated floodplain). Future research 

on this subject should further investigate the effects of several sequences of alternating oxic and 

anoxic flow-through solutions to identify consistent indicators of Hg mobilization and the 

longevity of Hg release with cycling aerobic/anaerobic solutions over time.   

 Much higher concentrations of Hg were mobilized from the column when KPS was 

applied over approximately ~12 PVs. The maximum effluent Hg concentration observed during 

the KPS application was approximately 200 times greater than from the control – in line with the 

increase in solubility of HgS in the presence of polysulfides and the formation of highly mobile 

aqueous Hg(Sx)2
2- (Jay et al., 2000; Slowey & Brown Jr., 2007). At a later PV, after the cessation 

of KPS application, a second increase in effluent Hg concentration coincident with indicators of 

Mn-/Fe-(oxyhydr)oxide reductive dissolution and while a similar phenomenon was observed in 

the control column, the magnitude of Hg release was much less than from the KPS column. This 

relatively greater mobilization from the experimental column alongside dissolution of Mn-/Fe-

(oxyhydr)oxides suggest that solubilisation of HgS and displacement of Hg by KPS increased the 

pool of Hg adsorbed to Mn-/Fe-(oxyhydr)oxide surfaces that was then mobilized upon reductive 

dissolution of those surfaces (Poulin et al., 2016). S XANES analysis of soil from the top and 

bottom ports at approximately 30 PVs did not show a discernable difference in S species 

between the control and KPS application column. The results of this flow-through experiment 

with application of a KPS solution do not support the use of KPS as a method of in situ 

immobilization of Hg via HgS formation, as the opposite effect – solubilisation of existing HgS – 

was likely achieved.  
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7 Appendix A: Supporting Information for Chapter 2 

 
The aqueous concentrations of the Chapter 2 control column effluent over time are presented in 

Figure A.1. Additional effluent concentrations from the varied input column are presented in 

Figure A.2. The ionic strengths and saturation indices of select minerals calculated by 

PHREEQC for effluent samples from the control and varied input solution columns are presented 

in Table A.1 and Table A.2.    

In addition to the varied input solution column, two saturated, flow through column 

experiments were conducted with the riverbank sediment described in Chapter 2. One column 

received Nano-pure, deionized water as the input solution and the other column received a 3.5 

mM Ca (as CaCl2) input solution prepared identically to the Stage 1 input. The effluent 

concentrations from these two column experiments are presented in Figure A.3 and Figure A.4. 

The ionic strength and select mineral saturation indices as calculated by PHREEQC for effluent 

samples from the Nano-pure and 3.5 mM Ca (as CaCl2) are provided in Table A.3 and Table 

A.4.  
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Table A.1 - Ionic strength and saturation indices of select minerals of control column effluent 
samples calculated by PHREEQC.   

Sample 
ID 

Pore 
Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%)

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite

MC-1-
CTL-2 

2.5 
0.0101 -3.7 0.37 0.38 1.97 -1.88 -1.31

MC-1-
CTL-3 

6.2 
0.0119 12.0 0.63 0.90 2.74 -2.69 -7.25

MC-1-
CTL-9 

14.8 
0.0081 4.4 0.30 0.16 -1.83 -3.19 -17.37

MC-1-
CTL-11 

22.1 
0.0088 19.6 0.08 -0.29 1.95 -2.95 -10.76

MC-1-
CTL-18 

42.5 
0.0050 7.4 -0.58 -1.46 1.08 -3.28 -13.59

MC-1-
CTL-27 

81.3 
0.0046 6.1 -0.77 -1.73 1.63 -4.40 -1.66

MC-1-
CTL-29 

106.4 
0.0035 9.3 -1.00 -2.15 2.13 -4.04 -6.67

MC-1-
CTL-31 

130.8 
0.0030 6.9 -1.27 -2.71 0.89 -3.09 -8.29
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Table A.2 - Ionic strength and saturation indices of select minerals of varied input solution 
column effluent samples calculated by PHREEQC.  

Sample 
ID 

Pore 
Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%)

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite 

MC-4-
K-2 

2.2 
0.0153 -22.3 0.14 -0.06 2.12 -1.46 -2.32

MC-4-
K-3 

6.0 
0.0137 -13.3 0.44 0.53 2.34 -1.70 -7.13

MC-4-
K-13 

29.3 
0.0123 -32.1 -0.54 -1.91 1.51 -1.85 -9.23

MC-4-
K-18 

43.1 
0.0457 9.6 0.44 -0.04 1.38 -3.58 -14.74

MC-4-
K-24 

65.5 
0.0453 9.5 0.21 -0.11 3.50 -4.08 -1.87

MC-4-
K-28 

97.5 
0.0460 2.1 -0.01 -0.04 3.32 -3.32 -3.75

MC-4-
K-29 

107.8 
0.0450 2.0 0.52 0.85 1.54 -2.84 -4.98

MC-4-
K-32 

117.3 
0.0496 19.3 -1.41 -2.74 1.80 -3.40 -7.55

MC-4-
K-38 

134.2 
0.0138 15.2 -1.85 -3.55 0.73 -3.97 -6.84

MC-4-
K-39 

137.5 
0.0307 -26.0 -0.75 -1.38 3.39 -2.67 -5.98

MC-4-
K-43 

148.6 
0.0230 -36.8 -0.63 -1.30 4.19 -2.60 -5.96

MC-4-
K-45 

158.2 
0.0517 -15.5 -0.89 -1.84 3.55 -2.64 -6.09

MC-4-
K-48 

170.8 
0.0442 21.0 -0.74 -1.51 2.35 -3.75 -8.09
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Table A.3 - Ionic strength and saturation indices for select minerals, calculated by PHREEQC, 
for effluent derived from column with ultrapure water as input solution. 

Sample ID 
Pore 

Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%)

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite

MC-2-NP-2 2.3 0.0075 13.0 0.48 0.62 2.50 -2.56 -0.63

MC-2-NP-3 6.2 0.0079 14.2 0.21 0.06 2.99 -3.35 -4.06

MC-2-NP-7 13.4 0.0054 11.0 -0.15 -0.72 -0.99 -3.77 -17.95
MC-2-NP-

10 21.2 0.0047 4.8 -0.39 -1.25 2.90 -3.10 -10.01
MC-2-NP-

17 44.6 0.0020 -3.0 -1.37 -3.27 2.49 -3.79 -5.54
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Table A.4 - Ionic strength and saturation indices of select minerals of column effluent samples 
from the 3.5 mM Ca (as CaCl2) input solution column calculated by PHREEQC. 

Sample ID 
Pore 

Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%)

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite

MC-3-CA-2 2.5 0.0140 56.0 0.21 0.08 1.45 -3.03 -3.67

MC-3-CA-4 8.8 0.0206 -1.8 0.41 0.35 1.91 -2.12 -12.10

MC-3-CA-6 11.3 0.0196 -6.4 0.34 0.05 0.44 -2.18 -14.92

MC-3-CA-8 15.0 0.0165 -16.3 -0.09 -1.02 2.31 -2.07 -2.62
MC-3-CA-

12 29.8 0.0172 -17.9 -0.29 -1.47 0.83 -2.08 -13.48
MC-3-CA-

21 79.5 0.0096 54.9 -0.84 -2.46 1.59 -3.56 -5.79
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Figure A.1: Aqueous concentrations monitored over time in the control column effluent. The 
dashed, grey line represents the average input solution (SRW) concentration.  
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Figure A.2: Additional aqueous concentrations monitored over time in the varied input solution 
column effluent. Dashed, red lines represent control column effluent concentrations over time. 
Dashed, grey lines represent the average input solution concentration for each input solution.   
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Figure A.3: Aqueous concentrations monitored over time in the nano-pure input solution 
column effluent. Dashed, red lines represent control column effluent concentrations over time.  
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Figure A.4: Aqueous concentrations monitored over time in the CaCl2 input solution column 
effluent. Dashed, red lines represent control column effluent concentrations over time. Dashed, 
grey lines represent average input solution concentrations.  
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8 Appendix B: Supporting Information for Chapter 3 

 

The ionic strength and saturation indices of select minerals for the aerobic control, anaerobic 

control and KPS-application columns are provided in Table B.1, Table B.2 and Table B.3, 

respectively.  
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Table B.1 - Ionic strengths and saturation indices of effluent samples from the aerobic control 
column calculated with PHREEQC. 

Sample 
ID 

Pore 
Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%)

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite

MC11.8-
1-4 

9.4 0.0069 34.6 -0.47 -1.49 2.98 -2.43 -0.18 

MC11.8-
1-5 

13.7 0.0057 8.1 -0.40 -0.99 1.63 -2.68 -0.04 

MC11.8-
1-10 

33.3 0.0087 7.5 0.17 0.13 1.50 -4.87 -12.46 

MC11.8-
1-13 

43.6 0.0060 1.1 -0.31 -0.86 3.97 -3.96 -4.60 

MC11.8-
1-17 

59.9 0.0047 7.1 -0.75 -1.72 1.20 -2.46 -11.89 

MC11.8-
1-19 

74.4 0.0037 -0.2 -0.90 -2.03 2.42 -2.80 -5.27 
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Table B.2 - Ionic strengths and saturation indices of effluent samples from the anaerobic control 
column calculated with PHREEQC. 

Sample 
ID 

Pore 
Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%)

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite

MCGB-2 2.4 0.0034 20.2 -3.64 -4.93 2.50 -5.84 -7.21
MCGB-4 6.3 0.0045 11.9 -2.88 -3.56 3.73 -7.05 -6.89
MCGB-5 10.1 0.0039 -33.6 -3.44 -3.68 -0.02 N/A -13.47
MCGB-9 20.8 0.0047 -0.2 -2.11 -2.65 1.19 -6.11 -15.44
MCGB-

12 
45.5 0.0038 -2.0 -2.04 -2.86 0.89 -5.76 -15.50 

MCGB-
13 

56.3 0.0036 -24.2 -2.26 -3.15 1.00 -6.34 -15.30 
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Table B.3 - Ionic strengths and saturation indices of effluent samples from the KPS-application 
column calculated with PHREEQC. 

Sample ID 
Pore 

Volume 

Ionic 
Strength 

(mol/kgw) 

Charge 
Balance 

Error 
(%) 

Saturation Indices 

Calcite Dolomite Ferrihydrite Gypsum Pyrolusite

MCKS-2 2.2 
0.0038 11.8 -3.36 -4.37 1.31 -5.58 -10.66

MCKS-5 6.2 
0.0042 3.7 -3.29 -4.33 2.74 -6.33 -9.21

MCKS-9 18.1 
0.0048 0.5 -1.78 -1.54 2.56 -6.49 -13.14

MCKS-12 23.8 
0.0052 -2.5 -1.64 -1.31 1.96 -6.39 -14.67

MCKS-15 45.0 
0.0037 -15.4 -1.63 -1.77 3.30 -6.63 -11.80

MCKS-16 47.8 
0.0033 -9.3 -1.74 -1.96 2.52 -6.35 -13.30

MCKS-18 56.9 
0.0048 -13.7 -3.03 -3.37 -0.05 -6.56 -17.11
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9 Appendix C: Quality Assurance and Quality Control for Chapter 2 and 3 

 
Table C.1 - QA/QC for THg analyses from Chapter 2 columns (MC-1-CTL, MC-2-NP, MC-3-
CA and MC-4-K). 

Sample ID 
Date of 

Sampling 
Date of 

Analysis 
THg  

(ng L-1) 

Repeat 
THg  

(ng L-

1) 

Relative 
Standard 
Deviation 

(%) 

Matrix Spike 
Recovery (%) 

MC-1-CTL-5-0.45 11-Aug-14 18-Sep-14 100 109 5.7 

MC-1-CTL-3-THG 05-Aug-14 01-Oct-14 237   93.85

MC-1-CTL-BP1 31-Jul-14 16-Apr-01 266 234 9.07 

MC-1-CTL-TP3 22-Oct-14 21-Jul-15 76 60 16.16 
MC-2-NP-5-0.45 12-Aug-14 19-Sep-14 237 128   90.27 

MC-2-NP-7-0.45 19-Aug-14 18-Sep-14 167 179 5.12 

MC-2-NP-10-0.45 03-Sep-14 25-Sep-14 109 110 0.73 

MC-2-NP-17-0.45 21-Oct-14 06-Nov-14 35 38 6.56 

MC-2-NP-19-THG 06-Nov-14 17-Dec-14 79.7 77.8 1.68 

MC-2-NP-21-0.45 20-Nov-14 17-Dec-14 93.9 84.6 7.4 

MCMP1-2-NP 28-Aug-14 16-Apr-15 163 166 1.41 

MC-3-CA-1-0.45 14-Aug-14 18-Sep-14 74.4 73.8 0.56 

MC-3-CA-3-0.45 26-Aug-14 19-Sep-14 214 114   94.2

MC-3-CA-6-THG 08-Sep-14 01-Oct-14 68 67 1.22 

MC-3-CA-14-THG 27-Oct-14 06-Nov-14 38.3 36.7 2.92 

MCTP1-3-CA 18-Aug-14 16-Apr-15 478 471 1.01 

MC-4-K-2-0.45 25-Aug-14 18-Sep-14 54.8 55.8 1.35 

MC-4-K-5-0.45 09-Sep-14 25-Sep-14 74.8 73 1.76 

MC-4-K-5-THG 09-Sep-14 01-Oct-14 394 209   96.74

MC-4-K-3-THG 03-Sep-14 01-Oct-14 183 188 1.82 

MC-4-K-16-THG 03-Nov-14 06-Nov-14 70.7 68.6 2.16 

MC-4-K-18-THG 20-Nov-14 17-Dec-14 188 196 2.85 

MC-4-K-21-0.45 11-Dec-14 17-Dec-14 237 226 3.24 

MCBP2-4-K 30-Oct-14 16-Apr-15 39.3 37.7 3.04 

MC-4-K-TP2 23-Sep-14 21-Jul-15 48.9 47.7 1.72 

MC-4-K-39-0.1 22-Jun-15 15-Jul-15 958 886 5.54 
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Table C.2 - QA/QC for THg analyses from Chapter 3 columns [MC11.8-1-1 (aerobic control), 
MC11.8-CPSA, MCGB (anaerobic control) and MCKS]. 

Sample ID 
Date of 

Sampling 
Date of 

Analysis 
THg 

(ng L-1) 

Repeat 
THg 

(ng L-
1) 

Relative 
Standard 
Deviation 

(%) 

Matrix 
Spike 

Recovery 
(%) 

MC11.8-1-1-THG 17-Dec-15 14-Jan-15 384 366 3.42   

MC11.8-1-3-0.45 22-Dec-14 14-Jan-15 391   101.57
MC11.8-1-5-0.45 06-Jan-15 14-Jan-15 6106 5929 2.07 
MC11.8-1-6-0.45 11-Jan-15 14-Jan-15 3848 3716 2.46 
MC11.8-1-18-0.45 15-Apr-15 16-Apr-15 273 266 1.75 
MC11.8-1-21-0.45 28-May-15 21-Jul-15 588   103.18
MC11.8-1-25-THG 31-Aug-15 15-Sep-15 1509 1393 5.66 

MC11.8-CPSA-9-0.45 03-Mar-15 10-Mar-15 7789 7545   100.99
MC11.8-CPSA-BP2 06-Mar-15 10-Mar-15 272 266 1.57 
MC11.8-CPSA-10-

THG 09-Mar-15 10-Mar-15 15394 15124 1.25 
MC11.8-CPSA-11-

THG 17-Mar-15 16-Apr-15 6250 6058 2.21 
MC11.8-CPSA-23-0.45 31-Aug-15 15-Sep-15 478 440 5.84 

MCGB-4-0.45 27-Apr-15 12-May-15 534 544 1.27 
MCGB-10-0.45 08-Jun-15 09-Jun-15 2250 1469   102.05

MCGB-TP2 14-Jul-15 21-Jul-15 10739 11118 2.45 
MCGB-12-0.45 13-Jul-15 15-Jul-15 940 991 3.71 
MCKS-5-0.45 04-May-15 12-May-15 129056 118965 5.75 
MCKS-11-0.45 03-Jun-15 09-Jun-15 12658 11736 5.34 
MCKS-18-0.45 26-Aug-15 15-Sep-15 512 505 0.97 
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Table C.3 - THg method detection limits from Hg analyses.  

Date Method Detection Limit (ng L-1) 

18-Sep-14 0.19 
25-Sep-14 0.25 
30-Sep-14 0.14 
05-Nov-14 0.19 
17-Dec-14 0.08 
14-Jan-15 0.09 
19-Feb-15 0.31 
10-Mar-15 0.14 
09-Jun-15 0.32 
Average 0.19 

 
 


