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Abstract 

By 2030 the worldwide energy demand is expected to increase by twofold, in which 

fossil fuels inevitably will still play a major role in this transition. Canadian oil sands, the 

second largest proven oil reserves, represent a major pillar in providing energy and 

economic security in North America. Their development on a large scale is hindered due 

to associated environmental impacts, which include greenhouse gas emissions, water 

usage, and management of by-products of downstream operations (e.g. Sulfur, petroleum 

coke, etc.). In this work optimization techniques are employed to address the 

management of various environmental issues while minimizing the cost of operations of 

the oil sands industry. In this context, this thesis makes four principal contributions. 

First, an extensive review is conducted on potential production pathways of renewable 

energy that can be integrated in the energy infrastructure of oil sands. Renewable 

technologies such as wind, geothermal, hydro, bioenergy, and solar are considered the 

most environmentally benign options for energy production that would contribute in 

achieving significant carbon emissions reductions. A mixed integer non-linear 

optimization model is developed to simultaneously optimize the capacity expansion and 

new investment decisions of both conventional and renewable energy technologies, and 

determine the optimal configurations of oil producers. The rolling horizon approach is 

used for the consecutive planning of multiple operational periods. To illustrate the 

applicability of the model, it was applied to a case study based on operational data for oil 

sands operators in Alberta for the period of 2010 – 2025.   

Second, a generalized optimization model was developed for the energy planning of 

energy intensive industries. An extensive superstructure was developed that incorporates 
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conventional, renewable, nuclear, and gasification of alternative fuels (e.g. petroleum 

coke, asphaltenes, etc.) technologies for the production of energy in the form of power, 

heat and hydrogen. Various carbon mitigation measures were incorporated, including 

carbon capture and sequestration, and purchase of carbon credits to satisfy emission 

targets. Finally, the superstructure incorporated the possibility of selling excess energy 

commodities in competitive markets. The superstructure is represented by a multi-period 

mixed integer optimization model with the objective of identifying the optimal set of 

energy supply technologies to satisfy a set of demands and emission targets at the 

minimum cost. Time-dependent parameters are incorporated in the model formulation, 

including energy demands, fuel prices, emission targets, carbon tax, construction lead 

time, etc. The model is applied to a case study based on the oil sands operations over the 

planning period 2015–2050. A scenario based approach is used to investigate the effect of 

variability in energy demand levels, various carbon mitigation policies, and variability in 

fuel and energy commodity prices.  

Third, a multi-objective and multi-period mixed integer linear programming model is 

developed for the integrated planning and scheduling of the energy infrastructure of the 

oil sands industry incorporating intermittent renewable energy. The contributions of 

various energy sources including conventional, renewable, and nuclear are investigated 

using a scenario based approach. Power-to-gas for energy storage is incorporated to 

manage surplus power generated from intermittent renewable energy sources, particularly 

wind. The wind-electrolysis system incorporates two hydrogen recovery pathways, which 

are power-to-gas and power-to-gas-to-power using natural gas generators. The model 

takes into account interactions with the local Alberta grid by incorporating unit 
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commitment constraints for the grid’s existing power generation units. Three objective 

functions are considered, which are the total system cost, grid operating cost and total 

emissions. The epsilon constraint method is used to solve the multi-objective aspect of 

the proposed model. 

Fourth, extensive research has been done on the components that constitute the sulfur 

supply chain, including sulfur recovery, storage, forming, and distribution. These 

components are integrated within a single framework to assist in the design optimization 

of sulfur supply chains. This represents a starting point in understanding the trade-offs 

involved in the sulfur supply chain from an optimization point of view. Optimization and 

mathematical modeling techniques were implemented to generate a decision support 

system that will provide an indication of the optimal design and configuration of sulfur 

supply chains. The resulting single-period mixed-integer linear programming model was 

aimed at minimizing total capital and operating costs. The model was illustrated through 

a case study based on Alberta’s Industrial Heartland. A deterministic approach in an 

uncertain environment was implemented to investigate the effect of supply and demand 

variability on the design of the supply chain. This was applied to two scenarios, which 

are steady state operation and sulfur surplus accumulation. The model identified the 

locations of forming facilities, the forming, storage and transportation technologies, and 

their capacities. 

The contributions of this thesis are intended to support effective carbon mitigation policy 

making and to address the environmental sustainability of the oil sands industry. 
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HSS Change in enthalpy of SAGD steam (MJ/ton) 

HPS Change in enthalpy of process steam (MJ/ton) 

HHW Change in enthalpy of hot water (MJ/ton) 

HHG Hydrogen requirement for hydrotreatment of HGO (tonne H2/tonne LGO) 

𝐻𝐻ℎ
𝑚𝑎𝑥 Maximum production capacity of hydrogen plant h (tonne/h) 

HHVb High  heating value of fuel used in boiler technology b i.e. natural gas, biomass etc. 

(MJ/tonne) 

HHVh High  heating value of fuel used in hydrogen technology h i.e. coal, natural gas, etc. 

(MJ/tonne) 

HHVp High  heating value of fuel used in power technology p i.e. coal, natural gas, etc. (MJ/tonne) 

HLG Hydrogen requirement for hydrotreatment of LGO (tonne H2/tonne LGO) 

HN Hydrogen requirement for the hydrotreatment of naphtha (tonne H2/tonne naphtha) 

HNG Heating value of natural gas (GJ/Nm
3
) 

𝐻𝑃ℎ
𝑐𝑜𝑔𝑒𝑛

 Power co-produced or consumed by hydrogen plants (kW/tonne H2) 

HRPp Heat rate of power plant p (MJ/kWh) 

HRHh Heating rate of hydrogen production technology h (MJ/tonne H2)  

HRUo Hydrogen requirement for hydrocracking in low and high conversion LC-finers (tonne 

H2/tonne feed) 

HRGEO
max

 Maximum heat rate provided by a geothermal plant (MJ/h) 

FRo Natural gas requirement for LC-finers and delayed cokers (GJ/tonne VTB) 

L Length of CO2 pipeline (km) 

MDC Diesel consumption for mining extraction (L diesel/bbl bitumen) 

b Efficiency of boiler type b 

OMBb Operating and maintenance cost of boiler type b ($/yr) 

OMGEO Operating and maintenance cost of geothermal plants ($/yr) 

OMHh Operating and maintenance cost of hydrogen plant h ($/yr) 

OMHE Operating and maintenance cost of electrolyzer ($/yr) 

OMPp Operating and maintenance cost of power plant p ($/yr) 

PFBb Unit cost of fuel utilized by SAGD boiler b ($/GJ or $/tonne) 

PFm Pumping factor for hydrotransport (kWh/tonne/m) 

PFHh Unit cost of fuel utilized by hydrogen plant h ($/GJ or $/tonne) 

PFPp Unit cost of fuel utilized by power plant p ($/GJ or $/tonne) 

PFTm Pumping factor for transport of tailings (kWh/tonne/m) 

PD Unit cost of diesel ($/L) 

PNG Unit cost of natural gas utilized by natural gas boilers ($/GJ) 
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𝑃𝑃𝑝
𝑚𝑎𝑥  Maximum power production capacity of plant p (kWh) 

PVF Annuity factor for newly established technologies 

EPVFe Annuity factor for existing technologies 

𝑆𝑏
𝑚𝑎𝑥 Maximum production capacity of boiler type b (tonne/h) 

SSC Unit sequestration cost ($/tonne CO2) 

SCm Steam requirement for conditioning stage (tonne steam/tonne feed) 

SF Steam requirement for bitumen extraction (tonne steam/tonne froth) 

SOR Steam to oil ratio (tonne of steam/tonne of bitumen) 

SRD Steam requirement for the diluent recovery unit (tonne steam/tonne feed) 

SRF Steam requirement for the fluid coker (tonne steam/tonne feed) 

SRV Steam requirement of vacuum distillation units (tonne steam/tonne feed) 

t Annual hours of operation (8760 hr/yr) 

TC Unit transportation cost of CO2 ($/tonne CO2/km) 

WCm Water requirement for conditioning (tonne water/tonne oil sands) 

WH Water requirement for hydrotransport (tonne water/tonne oil sands) 

WR Water requirement for bitumen recovery (tonne water/tonne oil sands) 

WTCF Wind turbine capacity factor 

%RED Percentage reduction of CO2 emission levels 

%S Fraction of boiler capacity dedicated for steam production 

 

 𝐵𝑀𝐴𝑋𝑏
  Maximum production capacity of boiler technology b (t h

-1
) 

𝐶𝐶𝐵𝑏
  Capital cost factor for boiler production technology b during time period t (CAD/t h

-1
) 

𝐶𝐶𝐻ℎ𝑡
  

Capital cost factor for hydrogen production technology h during time period t (CAD/tH2 

h
-1

) 

𝐶𝐶𝐾𝑘𝑡
  

Capital cost factor for gasification production technology k during time period t (CAD/t 

syngas h
-1

) 

𝐶𝐶𝑁𝑈𝑢𝑡
  

Capital cost factor for nuclear production technology u during time period t 

(CAD/MWth) 

𝐶𝐶𝑂𝑐𝑡
𝐺𝑇/𝑆𝑇

 
Capital cost factors for gas and steam turbines in combined heat and power production 

technology c during time period t (CAD/MW) 

𝐶𝐶𝑃𝑝𝑡
  Capital cost factor for power production technology p during time period t (CAD/MW) 

𝐶𝐶𝑅𝑟
  Capital cost factor for syngas processing option r during time period t (CAD/t syngas h

-1
) 

𝐶𝐹𝑝𝑡
𝑅  

Is the estimated annual capacity factor of renewable power production technology p 

during time period t (%) 

𝐶𝐹𝐵𝑏𝑡
  Unit cost of fuel utilized by boiler production technology b (e.g. CAD/GJ) 

𝐶𝐹𝐶𝑂𝑐𝑡
  Unit cost of fuel utilized by CHP production technology c (e.g. CAD/GJ) 

𝐶𝐹𝐻ℎ𝑡
  Unit cost of fuel utilized by hydrogen production technology h (e.g. CAD/GJ) 

𝐶𝐹𝐾𝑘
  Unit cost of fuel utilized by gasification technology k (e.g. CAD/kg) 

𝐶𝐹𝑃𝑝𝑡
𝐹  Unit cost of fuel utilized by power production technology p (e.g. CAD/GJ) 

𝐶𝑀𝐴𝑋𝑖𝑒𝑡′𝑡
𝐿𝑇  

Maximum production capacity matrix of energy production technology i, incorporating 

construction lead time 

𝐶𝑀𝐼𝑁𝑖𝑒𝑡′𝑡
𝐿𝑇  

Minimum production capacity matrix of energy production technology i, incorporating 

construction lead time 

𝐶𝑁𝐴 Cost of nuclear accident (CAD) 

𝐶𝑂2𝑡
𝑙𝑖𝑚𝑖𝑡  Carbon dioxide emission cap for time period t (tCO2 h

-1
) 

 𝐶𝑂𝑀𝐴𝑋𝑐
𝐺𝑇/𝑆𝑇

 Maximum capacity of CHP technology c (MW) 

𝐶𝑜𝑠𝑡𝐶𝑟𝑒𝑑𝑖𝑡𝑡 Cost of purchasing carbon credits (CAD tCO2
-1

) 

𝐶𝑜𝑠𝑡𝐶𝑆 CO2 sequestration cost (CAD tCO2
-1

) 

𝐶𝑜𝑠𝑡𝐶𝑇 CO2 transport cost (CAD tCO2
-1

 km
-1

) 

𝐸𝐶𝑂2𝑖𝑛𝑡
  Total CO2 emissions generated from energy production unit n of technology i (tCO2 h

-1
) 

𝐸𝐼𝑒𝑞𝑗
  

Energy intensity factor represent the amount consumed of energy commodity e for the 

production of a unit of q using production route j (units of e/units of q) 

𝜀𝑖 CO2 capture factor for energy production technology i (%) 

𝐹𝐶𝑓
  Cost of fuel f (CAD kg

-1
 or GJ

-1
) 
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𝐹𝐶𝑂𝑐𝑡
𝐺𝑇/𝑆𝑇

 Fixed operating cost of cogeneration production technology c (CAD/MW) 

𝐹𝑂𝐵𝑏
  Fixed operating cost of boiler production technology b (CAD/t h

-1
) 

𝐹𝑂𝐻ℎ
  Fixed operating cost of hydrogen production technology h (CAD/tH2 h

-1
) 

𝐹𝑂𝐾𝑘
  Fixed operating cost of gasification technology k (CAD/t syngas h

-1
) 

𝐹𝑂𝑁𝑈𝑢
  Fixed operating cost of nuclear technology u (CAD/MWth) 

𝐹𝑂𝑃𝑝𝑡
  Fixed operating cost of power production technology p (CAD/kW) 

𝐹𝑂𝑅𝑟
  Fixed operating cost of syngas processing option r (CAD/t syngas h

-1
) 

𝐹𝑅𝐻ℎ
𝐹  Fuel requirement for hydrogen technology h (kg or GJ of fuel/tH2) 

𝐻2𝑃𝑟𝑖𝑐𝑒𝑡 Selling price of hydrogen during time period t (CAD/tH2) 

𝐻𝑒𝑎𝑡ℎ
𝐻 Heat requirement for hydrogen technology h (GJ/tH2) 

 𝐻𝑀𝐴𝑋ℎ
  Maximum production capacity of hydrogen technology h (tH2 h

-1
) 

𝐻𝑅𝑀𝐴𝑋𝑏′ 
𝑃𝑟𝑒ℎ𝑒𝑎𝑡 Maximum preheating rate available from preheating technology b’ (GJ h

-1
) 

𝐾𝑀𝐴𝑋𝑘
  Maximum production capacity of gasification technology k (t syngas h

-1
) 

𝑁𝑃𝑌𝑝𝑡
  

Nominal power production capacity of renewable power production technology p during 

time period t (kW) 

𝑁𝑈𝑀𝐴𝑋𝑢
  Maximum production capacity of nuclear technology u (MWth) 

𝑃𝐾𝑀 Pipeline length for CO2 transport (km) 

 𝑃𝑀𝐴𝑋𝑝
  Maximum production capacity of power production technology p (MW) 

𝑃𝑁𝐴 Probability of occurrence of a nuclear accident (reactor.yr)
-1

 

𝑃𝑜𝑤𝑃𝑟𝑖𝑐𝑒𝑡 Power buying and selling price from and to the grid during time period t (CAD/kWh) 

𝑃𝑅𝑒𝑞ℎ
𝐻 Power requirement for hydrogen technology h (kWh/tH2) 

𝑄𝑃𝐶𝐸𝑞𝑗𝑡
𝑀𝐴𝑋 

Maximum capacity expansion available for the production of product q through route j 

during time period t (units of q/units of time) 

𝑄𝑃𝐶𝐸𝑞𝑗𝑡
𝑀𝐼𝑁 

Minimum capacity that can be added for the production of product q through route j 

during time period t (units of q/units of time)  

𝑄𝑃𝑅𝑞𝑡
  Rate of production of q during time period t (units of q/units of time) (e.g. bbl of SCO h

-1
) 

𝑅𝐴𝐹 Individual risk perception parameter for a nuclear accident 

𝑅𝑀𝐴𝑋𝑟
  Maximum capacity of syngas processing option r (t syngas h

-1
) 

𝛿𝑌𝐾𝑘
𝑠𝑦𝑛

 Yield of syngas from gasification technology k (t syngas/t fuel) 

𝛿𝑌𝑅𝑟𝑒
𝐸𝐶  Yield of energy commodity e from syngas processing option r (units of e/t syngas) 

𝛿𝑌𝑈𝑢𝑒
𝐸  Yield of energy commodity e from nuclear production technology u (units of e/MWth) 

𝑉𝐶𝑂𝑐𝑡
𝐺𝑇/𝑆𝑇

 Variable operating cost of cogeneration technology c (CAD/kWh) 

𝑉𝑂𝐵𝑏
  Variable operating cost of boiler production technology b (CAD/t) 

𝑉𝑂𝐻ℎ
  Variable operating cost of hydrogen production technology h (CAD/tH2) 

𝑉𝑂𝐾𝑘
  Variable operating cost of gasification production technology k (CAD/t syngas) 

𝑉𝑂𝑁𝑈𝑢
  Variable operating cost of nuclear production technology u (CAD/kWh) 

𝑉𝑂𝑃𝑝𝑡
  Variable operating cost of power production technology p (CAD/kWh) 

𝑉𝑂𝑅𝑟
  Variable operating cost of syngas processing option r (CAD/t syngas) 

 

𝐴𝐸𝐿𝑍 Electrolyzer constant (kg H2/kWh) 

𝐴𝑟𝑜𝑡𝑜𝑟  Rotot area of the wind turbine  (m
2
) 

𝜙𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑆𝑌𝑆𝑇𝐸𝑀  Weight set on emissions of the energy system [0,1] 

𝜙𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝐺𝑅𝐼𝐷  Weight set on emissions of the grid [0,1] 

𝛽𝑘𝑘′
  Transmission line susceptance 

𝐶𝐻_𝑀𝐼𝑁𝑐
  Minimum generation capacity of electrolyzer of capacity level c (kg H2) 

𝐶𝐻_𝑀𝐴𝑋𝑐
  Maximum generation capacity of electrolyzer of capacity level c (kg H2) 

𝐷𝐸𝐶𝑒𝑡
  Demand for energy commodity e during time period t of oil sands operators 

𝜀2 Epsilon constraint on objective function 2 

𝜀3 Epsilon constraint on objective function 3 

𝐺𝑟𝑖𝑑_𝑑𝑒𝑚𝑎𝑛𝑑𝑘𝑡 Total demand of regional bus k of the grid during period t (MW) 

𝐺𝑟𝑖𝑑_𝐷𝑒𝑚𝑎𝑛𝑑𝑡
𝑇𝑜𝑡𝑎𝑙  Total power demand of the grid during period t (MW) 

𝐺𝑈_𝑀𝑖𝑛_𝑢𝑝𝑡𝑖𝑚𝑒𝑖 Minimum uptime of grid generating unit i (hour) 

𝐺𝑈_𝑀𝑖𝑛_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑖  Minimum downtime of grid generating unit i (hour) 
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𝐻𝑅_𝑀𝐴𝑋𝑢
𝑁𝑈 Maximum heat production from nuclear unit u (MWth) 

𝐻_𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑀𝐴𝑋 Maximum storage capacity of storage tanks (kg H2) 

𝐻_𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑 
𝑀𝐴𝑋 Maximum capacity of transportation mode p (kg H2) 

 𝐻𝑉𝐻2
  Heating value of hydrogen (GJ/kg) 

 𝐻𝑉𝑁𝐺
  Heating value of natural gas (GJ/kg) 

𝑀𝑖𝑛_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑛𝑔𝑐𝑐  Minimum up time of NGCC generators (hours) 

𝑀𝑖𝑛_𝑢𝑝𝑡𝑖𝑚𝑒𝑛𝑔𝑐𝑐 Minimum down time of NGCC generators (hours) 

𝑀𝑎𝑥_𝐶𝑅 
𝑛𝑔𝑐𝑐  Maximum capacity rate of NGCC unit (MW) 

𝑀𝑖𝑛_𝐶𝑅 
𝑛𝑔𝑐𝑐  Minimum capacity rate of NGCC unit (MW) 

𝑀𝑖𝑛_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑐𝑜𝑔𝑒𝑛 Minimum down time of cogeneration units (hours) 

𝑀𝑖𝑛_𝑢𝑝𝑡𝑖𝑚𝑒𝑐𝑜𝑔𝑒𝑛 Minimum up time of cogeneration units (hours) 

𝑀𝑎𝑥_𝐻𝑅𝑆𝐺 
𝑐𝑜𝑔𝑒𝑛  Maximum heat produced from heat recovery steam generators (GJ h

-1
) 

𝑀𝑖𝑛_𝐶𝑅 
𝑐𝑜𝑔𝑒𝑛  Minimum capacity rate of cogeneration units (MW) 

𝑀𝑎𝑥_𝐶𝑅 
𝑐𝑜𝑔𝑒𝑛  Maximum capacity rate of cogeneration units (MW) 

𝜂𝑊𝑇 Efficiency of wind turbine 

𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 Efficiency of gas turbine of cogeneration units 

𝜂𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 Efficiency of generation from heat recovery steam generators of cogeneration units 

𝜂𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  Efficiency of recovery of heat of heat recovery steam generators of cogeneration units 

𝜂𝑁𝐺𝐶𝐶  Efficiency of NGCC units 

𝑃_𝑅𝑎𝑚𝑝𝑖
𝑔𝑢

 Maximum ramping rate of generation unit i of the grid (MW hr
-1

) 

𝜌𝑎𝑖𝑟  Density of air (kg m
-3

) 

𝜌𝐻2
  Density of hdyrogen (kg m

-3
) 

𝜌𝑁𝐺
  Density of natural gas (kg m

-3
) 

𝑅𝐴𝑖𝑡
ℎ𝑦𝑑𝑟𝑜&𝑤𝑖𝑛𝑑

 Resource availability of hdyro and wind resources 

𝑅𝑎𝑚𝑝 
𝑛𝑔𝑐𝑐 Ramping rate of NGCC units (MW hr

-1
) 

𝑅𝑎𝑚𝑝 
𝑐𝑜𝑔𝑒𝑛 Ramping rate of cogeneration units (MW hr

-1
) 

𝑆𝑅𝑡
  Spinning reserve requirement of the grid during period t (MW) 

𝑆𝑅_𝑙𝑖𝑚𝑖
𝑀𝐴𝑋 Spinning reserve limit for each unit i (MW) 

𝛿𝑃𝑢𝑒
𝑁𝑈 Yield of energy commodity e from nuclear unit u (units of e /MWth) 

𝑇𝐸𝐶𝑀𝐼𝑁 
𝑆𝑌𝑆𝑇𝐸𝑀 Minimum emissions of the energy system (tCO2) 

𝑇𝐸𝐶𝑀𝐴𝑋 
𝑆𝑌𝑆𝑇𝐸𝑀 Maximum emissions of the energy system (tCO2) 

𝑇𝐸𝐶𝑀𝐼𝑁 
𝐺𝑟𝑖𝑑 Minimum emissions of the grid (tCO2) 

𝑇𝐸𝐶𝑀𝐴𝑋 
𝐺𝑟𝑖𝑑  Maximum emissions of the grid (tCO2) 

𝑇𝑟𝑎𝑛𝑠𝑘𝑘′
𝑀𝑎𝑥  Capacity of power transmissions between buses k and k’ of the grid (MW) 

𝑉𝑡
  Wind speed during period t (m/s) 

𝑊𝑖𝑛𝑑_𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑡
  Wind potential during period t (MWh) 

𝜔 Weight used to calculate epsilon constraint 3 [0, 1] 

𝑧3
𝑚𝑎𝑥  Maximum value of objective function 3 used to calculate epsilon constraint 3 

𝑧3
𝑚𝑖𝑛 Minimum value of objective function 3 used to calculate epsilon constraint 3 

𝜑𝐻2
𝐻𝐸𝑁𝐺 

Maximum allowable share of hydrogen in hydrogen enriched natural gas sent to 

NGCC units (%) 

∅ 
𝑇𝐸 

Allowable amount of excess power generated from the grid units and installed energy 

production units presented as a share of the total demand (%). Set to zero in this study. 

 

grfn Yield of product form f to raw material r using technology n 

cp A binary indicator of whether or not customer c accepts product form p 

𝑄𝐹𝑛𝑞
𝑚𝑖𝑛 Minimum capacity of forming technology n of a capacity level q, T yr

1
 

𝑄𝐹𝑛𝑞
𝑚𝑎𝑥  Maximum capacity of forming technology n of a capacity level q, T yr

1
 

𝐹𝑗𝑓𝑛
𝑚𝑖𝑛 Lower limit on the amount of product f produced by technology n at site j, T yr

1
 

𝐹𝑗𝑓𝑛
𝑚𝑎𝑥  Upper limit on the amount of product f produced by technology n at site j, T yr

1
 

es Storage holding period of storage facility s at forming facilities and distribution centers (e ∈ 

J ∪ D), d yr (365 d
1

) 
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𝑄𝑆𝑇𝑠𝑞
𝑚𝑖𝑛 Minimum storage capacity for storage type s of capacity level q, T 

𝑄𝑆𝑇𝑠𝑞
𝑚𝑖𝑛 Maximum storage capacity for storage type s of capacity level q, T 

𝑆𝑇𝑒𝑠
𝑚𝑖𝑛  Lower limit on the amount of product stored in technology s at site e, T 

𝑆𝑇𝑒𝑠
𝑚𝑎𝑥  Upper limit on the amount of product stored in technology s at site e, T 

nnq Area required for forming technology n of capacity level q, m
2
 

ssq Area required for storage facility of type s of capacity level q, m
2
 

e
T
 Total area available at site e, m

2
 

𝑄𝑇𝑡
𝑚𝑖𝑛  Minimum flow rate by transportation mode t, T yr

1
 

𝑄𝑇𝑡
𝑚𝑎𝑥  Maximum flow rate by transportation mode t, T yr

1
 

LCe Investment cost (e.g. cost of land) for establishing forming or storage facilities at a given 

location (e ∈ G ∪ U) , $ 

FFCgnq Investment cost of technology n of capacity level q at forming facility g, $ yr
1

 

FSCesq Investment cost for technology s of capacity level q at any of the forming facilities and 

distribution centers (e ∈ G ∪ U), $ yr
1

 

FCFjn Fixed production cost for forming technology n at forming facility j, $ yr
1

 

FCSes Fixed storage cost for storage technology s at any of the forming facilities and distribution 

centers (e ∈ J ∪ D), $ yr
1

 

OFCjn Variable production cost for forming technology n at forming facility j, $ T
1

 

OSCes Variable storage cost for storage technology s at any of the forming facilities and 

distribution centers (e ∈ J ∪ D), $ T
1

 

FITee’t Fixed cost of establishing transportation link t between nodes e and e’, $ yr
1

 

FTCee’pt Fixed cost of transporting product form p between nodes e and e’ using mode t, $ T
1

 

VTCee’pt Variable cost of transporting product form p between nodes e and e’ using mode t, $ T
1

 

km
1

 

Dee’ Distance between nodes e and e’, km 

𝐷𝑐
𝑇  Total demand of customer c for sulfur, T 

 

Continuous variables 

A Annual cash flow ($/yr) 

ATBo Atmospheric topped bitumen fraction sent to vacuum distillation unit and/or LC-finers 

(tonne/h) 

ATBFo Atmospheric topped bitumen transferred from the DRU to the fluid cokers (tonne/h) 

BITm Amount of bitumen produced from mining production route m (tonne/h) 

BITs Amount of bitumen produced from SAGD production route s (tonne/h) 

BMFm Bitumen froth in primary extraction (tonne froth/h) 

BFo Amount of bottoms from LC-fining sent to fluid cokers in combined thermocracking and 

hydrocracking upgrading route (tonne/h) 

Ci Amount of CO2 captured from power and hydrogen plants (tonne CO2/h) 

CB Flow rate of commercial bitumen (tonne/h) 

CCPD Total power requirement for carbon capture and transportation (kWh) 

CCSC Total net present value of carbon capture and sequestration cost ($) 

CO2ei CO2 emission of energy producer i (tonne CO2/h) 

CO2T Total CO2 emission of energy producers (tonne CO2/h) 

CSCPp Total CO2 captured from power technology p (tonne CO2/h) 

CSCHh Total CO2 captured from power technology h (tonne CO2/h) 

DBCm Amount of diluted bitumen transferred to the centrifugation stages (m
3
/h) 

EFC Total net present value of extraction fuel (NG + Diesel) cost ($) 

FHh Amount of fuel consumed by hydrogen plant h (fuel/h, e.g. Nm
3
 of NG/h) 

FPp Amount of fuel consumed by power plant p (unit fuel/h, e.g. Nm
3
 of NG/h) 

GW Hot water produced by a geothermal plant (tonne/h) 

HC Total net present value of hydrogen production cost ($) 
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HGOo Heavy gas oil flow rate (tonne/h) 

HHh Hydrogen produced by plant h (tonne H2/h) 

HHE Hydrogen produced by electrolyzers (tonne H2/h) 

HRGEO Heat rate provided by a geothermal plant (MJ/h) 

HWb Total amount of hot water produced by boiler type b (tonne/h) 

HWGC Total net present value of geothermal hot water production cost ($) 

LGOo Light gas oil flow rate (tonne/h) 

MEDD Total diesel demand for mining extraction (L/h) 

MEPD Total power demand for mining extraction (kWh) 

MEPSD Total process steam demand for mining extraction (tonne/h) 

MEWD Total hot water demand for mining extraction (tonne/h) 

MOm Oil sands mining rate (tonne oil sands/h) 

No Naphtha flow rate (tonne/h) 

NPV Total net present value of energy production cost for oil sands operations ($) 

PC Total net present value of power cost ($) 

PHh Power co-produced or consumed by hydrogen (kWh) 

PPp Electricity produced by power plant p (kWh) 

PSb Total process steam produced by boiler b (tonne/h) 

PWT Total power production by wind turbines (kWh) 

SCm Process steam consumption for conditioning stage (tonne steam/tonne oil sand) 

SEPD Total power demand for SAGD extraction operations (kWh) 

SESD Total SAGD steam demand (tonne/h) 

SF Process steam required for mining bitumen extraction (tonne steam/tonne froth) 

SLm Oil sands slurry rate (tonne/h) 

SMRPD Total power requirement of SMR plants (kWh) 

SSb Total SAGD steam produced by boiler b (tonne/h) 

SC Total net present value of steam production cost ($) 

TPEm Tailings production from primary extraction stage (tonne/h) 

TSEm Tailings production from secondary extraction stage (tonne/h) 

UHD Total hydrogen demand for hydrocracking and hydrotreatment stages in upgrading operations 

(tonne H2/h) 

UFD Total fuel demand (natural gas) for upgrading operations (GJ/h) 

UPD Total power requirement for upgrading operations (kWh) 

UPSD Total process steam requirement for upgrading operations (tonne/h) 

VTBo Vacuum topped bitumen feed to LC-finers or delayed cokers (tonne/h) 

XBb Amount of fuel consumed by steam boiler b (unit fuel/h, e.g. Nm
3
 of NG/h) 

 

𝐵𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total production cost from boilers during time period t (CAD) 

𝐵𝑃𝑏𝑛𝑡
  Production rate from boiler unit n of technology b during period t (t h

-1
) 

𝐵𝑃𝑏𝑛𝑏′𝑛′𝑡
𝐺𝑡𝑜𝑃  Flow rate of water between unit n of boiler b and unit n’ of preheat option b’ (t h

-1
) 

𝐶𝑂𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total cost of production from combined heat and power technology c during time period t 

(CAD) 

𝐶𝑟𝑒𝑑𝑖𝑡𝑏𝑢𝑦𝑡  Carbon credits purchased from global carbon markets or carbon exchanges to offset the 

emissions of industries that are not capable of meeting their emission reduction 

requirements (tCO2 h
-1

) 

𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑒𝑙𝑙𝑡 Carbon credits sold by industries that are capable of achieving emission below the imposed 

cap and have a surplus of carbon credits (tCO2 h
-1

) 

𝐷𝐸𝐶𝑒𝑡
  Total requirement of energy commodity e during time period t (Units of e/units of time) 

𝐸𝐶𝑂2𝑖𝑛𝑡
𝑛𝑒𝑤 Total CO2 emissions from all newly installed energy producing units during time period t 

(tCO2 h
-1

) 

𝐸𝐶𝑂2𝑖𝑛𝑡
𝑒𝑥𝑖𝑠𝑡  Total CO2 emissions from all existing energy producing units during time period t (tCO2 h

-

1
) 
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𝐸𝐶𝑟𝑒𝑛𝑡
𝑃𝐶𝐾 Amount of energy commodity e produced from syngas processing option r (units of e h

-1
) 

𝐸𝐶𝑖𝑛𝑒𝑡
𝑛𝑒𝑤 Amount of energy commodity e produced from energy production technology i (units of e 

h
-1

) 

𝐸𝑃𝑈𝑢𝑒𝑛𝑡
𝑁𝑈  Amount of energy commodity e produced from nuclear production technology u  (units of e 

h
-1

) 

𝐹𝐶𝐵𝑏𝑛𝑡
  Fuel consumption rate of unit n of technology b during time period t (GJ h

-1
) 

𝐹𝐶𝐶𝑐𝑛𝑡
𝑇𝑜𝑡 Total fuel consumption by cogeneration technology c during time period t (GJ h

-1
) 

𝐹𝐶𝐶𝑐𝑛𝑡
𝐺𝑇  Fuel consumption by gas turbines in combined heat and power technology c (GJ h

-1
) 

𝐹𝐶𝐶𝑐𝑛𝑡
𝐺𝑅−𝑝𝑜𝑠𝑡

 Fuel consumption for post firing of exhaust gas in HRSG’s in combined heat and power 

technology c (GJ h
-1

) 

𝐹𝐶𝐺𝑘𝑛𝑡
  Fuel consumption (coal, petcoke, biomass, etc.) in unit n of gasification technology k 

during time period t (t h
-1

) 

𝐹𝐶𝐻ℎ𝑛𝑡
  Fuel consumption rate of unit n of technology h during time period t (GJ h

-1
) 

𝐹𝐶𝐻ℎ𝑛𝑡
ℎ𝑒𝑎𝑡  Fuel consumption rate for heat production used by unit n of technology h during time 

period t (GJ h
-1

) 

𝐹𝐶𝑃𝑝𝑛𝑡
𝐹  Fuel consumption rate of unit n of technology p during time period t (GJ h

-1
) 

𝐹𝑢𝑒𝑙𝑓𝑡
  Fuel consumption for industrial operations such as transportation, heating, etc. (GJ h

-1
) 

𝐺𝐴𝑆𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total cost of production of energy from gasification during time period t (CAD) 

𝐻2𝑆𝑒𝑙𝑙𝑡  Hydrogen sold to the market during time period t (tH2 h
-1

) 

𝐻𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total cost of hydrogen production during time period t (CAD) 

𝐻𝑒𝑎𝑡𝑈𝑢𝑛𝑡
𝑈𝑃𝐺  Direct heat from nuclear energy used for industrial operations (e.g. heat used in 

thermocracking for upgrading bitumen) (kWh) 

𝐻𝑒𝑎𝑡𝑈𝑢𝑛𝑡
𝐻  Heat from nuclear energy used for hydrogen production technologies (e.g. steam methane 

reforming) (kWh) 

𝐻𝐻𝐶ℎ𝑛𝑡
𝐻  Heat consumption rate of unit n of technology h during time period t (GJ h

-1
) 

𝐻𝑃ℎ𝑛𝑡
  Hydrogen production rate from unit n of technology h during period t (tH2 h

-1
) 

𝐻𝑃𝐶ℎ𝑛𝑡
  Power consumption rate of unit n of technology h during time period t (kWh) 

𝐻𝑅𝑈𝑢𝑛𝑡
𝑁𝑈  Heat production rate of nuclear technology u (MWth) 

𝐻𝑅𝑋𝑏′𝑛𝑡
𝑃𝑟𝑒ℎ𝑒𝑎𝑡  Preheating rate provided by unit n of preheat technology b’ during period t (GJ h

-1
) 

𝑁𝑈𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total cost of production from nuclear energy during time period t (CAD) 

𝑃𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total production cost of power during time period t (CAD) 

𝑃𝑃𝑝𝑛𝑡
  Power production rate of unit n of technology p during time period t (kWh) 

𝑃𝑃𝑝𝑛𝑡
𝐺𝑅𝐼𝐷 Power sold to the grid from technology p during t (kWh) 

𝑃𝑃𝑝𝑛𝑡
𝐷𝐸𝑀  Power used to satisfy the demand of industrial operations from technology p during t (kWh) 

𝑃𝑃𝑝𝑛𝑡
𝐻  Power exported to hydrogen production facilities to satisfy the electricity requirement (e.g. 

electrolyzers) from technology p during t (kWh) 

𝑃𝑃𝐶𝑐𝑛𝑡
𝐺𝑇  Power production from gas turbines in cogeneration technology c (kWh) 

𝑃𝑃𝐶𝑐𝑛𝑡
𝑆𝑇  Power production from steam turbines in cogeneration technology c (kWh) 

𝑃𝑃𝑈𝑢𝑛𝑡
𝐷𝐸𝑀 Power produced from nuclear energy used to satisfy the electricity demand of industrial 

operations (kWh) 

𝑃𝑃𝑈𝑢𝑛𝑡
𝐺𝑅𝐼𝐷  Power produced from nuclear energy that is sold to the grid (kWh) 

𝑃𝑃𝑈𝑢𝑛𝑡
𝐻  Power produced from nuclear energy used to satisfy the electricity requirements of 

hydrogen production technologies (e.g. electrolyzers) (kWh) 

𝑃𝑃𝑈𝑢𝑛𝑡
𝑁𝑈  Total power production from unit n of nuclear technology u in time period t (kWh) 

𝑃𝑢𝑟𝐺𝑟𝑖𝑑𝑡  Total power purchased from the local grid during time period t (kWh) 

𝑄𝑃𝑞𝑓𝑡
𝑇  Production level of product q through production route f during time period t (Units of 

q/units of time) 

𝑄𝑃𝐶𝐸𝑞𝑓𝑡
  Capacity of production of product q through route f added during time period t (units of 

q/units of time) 

𝑆𝑒𝑙𝑙𝐺𝑟𝑖𝑑𝑡  Total power sold to the local grid during time period t (kWh) 

𝑆𝑃𝑐𝑛𝑡
𝐺𝑅  Steam produced from the heat recovery of exhaust gases from gas turbines of cogeneration 

facility c (t h
-1

) 

𝑆𝑃𝐶𝑐𝑛𝑡
𝐺−𝑆 Steam produced from the heat recovery of exhaust gases from gas turbines of cogeneration 

facility c that is sent to steam turbines (t h
-1

) 
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𝑆𝑃𝐶𝑐𝑛𝑡
𝐻𝑃𝐵 High pressure steam generated to be used in steam turbines of cogeneration facility c (t h

-1
) 

𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇2 Steam extracted from steam turbines at a medium pressure level (t h

-1
) 

𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇3 Steam extracted from steam turbines at a low pressure level (t h

-1
) 

𝑆𝑃𝐷𝑐𝑛𝑡
𝐻𝑃  High pressure steam produced from cogeneration technology c that is sent to satisfy the 

high pressure steam requirements of industrial operations (t h
-1

) 

𝑆𝑌𝑁𝑘𝑛𝑡
𝐾𝑇  Syngas produced from gasification technology k (t syngas h

-1
) 

𝑆𝑌𝑁𝑟𝑛𝑡
𝑅𝑇  Syngas used by processing option r (t syngas h

-1
) 

𝑆𝑌𝑁𝑘𝑛𝑟𝑛′𝑡
  Flow rate of syngas between unit n of gasification technology k and unit n’ of syngas 

processing option r (t syngas h
-1

) 

𝑆𝑌𝑁𝑘𝑛𝑡
𝑒𝑥𝑝

 Syngas exported to other energy production facilities (e.g. boilers) (t h
-1

) 

𝑆𝑦𝑛𝑆𝑏𝑛𝑡
𝐺  Syngas from gasification facilities consumed by utility boiler b (t h

-1
) 

 

𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝐹𝐹𝑒𝑥𝑖𝑠𝑡 Capital cost of existing fossil fuel energy production unit n of technology p (CAD) 

𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝐹𝐹𝑛𝑒𝑤  Capital cost of new fossil fuel energy production unit n of technology p (CAD) 

𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝑁𝑢𝑐𝑙𝑒𝑎𝑟  Capital cost of nuclear energy production unit n of technology p (CAD) 

𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝑆𝑜𝑙𝑎𝑟&𝑊𝑖𝑛𝑑  
Capital cost of renewable (i.e. solar and wind) energy production unit n of 

technology p (CAD) 

𝐶𝑐𝑎𝑝𝑒𝑥 𝑑𝑒𝑛𝑛′
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

Capital cost of energy transportation technology d transporting energy commodity 

e between energy production units n and n’ (CAD) 

𝐶𝑓𝑢𝑒𝑙𝑝𝑛𝑡

𝐹𝐹𝑒𝑥𝑖𝑠𝑡 Cost of fuel utilized in existing fossil fuel production unit n of technology p during 

time period t (CAD) 

𝐶𝑓𝑢𝑒𝑙𝑝𝑛𝑡

𝐹𝐹𝑛𝑒𝑤  
Cost of fuel utilized in new fossil fuel production unit n of technology p during 

time period t (CAD) 

𝐶𝑓𝑢𝑒𝑙𝑖𝑡

𝐹𝐹  
Cost of fuel utilized in fossil fuel production unit i of the grid during time period t 

(CAD) 

𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝐹𝐹𝑒𝑥𝑖𝑠𝑡 Operating cost of existing fossil fuel energy production unit n of technology p 

during time period t (CAD) 

𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝐹𝐹𝑛𝑒𝑤  Operating cost of new fossil fuel energy production unit n of technology p during 

time period t (CAD) 

𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝑁𝑢𝑐𝑙𝑒𝑎𝑟  
Operating cost of nuclear energy production unit n of technology p during time 

period t (CAD) 

𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝑆𝑜𝑙𝑎𝑟&𝑊𝑖𝑛𝑑 
Operating cost of renewable energy production unit n of technology p during time 

period t (CAD) 

𝐶𝑜𝑝𝑒𝑥𝑑𝑒𝑛𝑛′𝑡

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 
Operating cost of energy transport of mode d of energy commodity e between units 

n and n’ during time period t (CAD) 

𝐶𝑜𝑝𝑒𝑥𝑖𝑡

  
Operating cost of power generating unit i belong to the Alberta grid during time 

period t (CAD) 

𝐶_𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑡
𝐼𝑚𝑝𝑜𝑟𝑡

 
Cost of importing energy commodity e during time period t into the energy system 

of the oil sands industry (CAD) 

𝐶_𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑡
𝐸𝑥𝑝𝑜𝑟𝑡

 Revenue earned from selling energy commodity e during time period t (CAD) 

𝐶𝑠𝑡𝑎𝑟𝑡𝑢𝑝𝑖𝑡

  Cost of starting power generating unit i during time period t (CAD) 

𝐶𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 𝑘𝑡

  Cost of unserved demand of regional bus k during time period t (CAD) 

𝐶_𝑔𝑟𝑖𝑑𝑒=𝑝𝑜𝑤𝑒𝑟,𝑡
𝐼𝑚𝑝𝑜𝑟𝑡

 Cost of power sent to the grid during time period t (CAD) 

𝐶_𝑔𝑟𝑖𝑑𝑒=𝑝𝑜𝑤𝑒𝑟,𝑡
𝐸𝑥𝑝𝑜𝑟𝑡

 
Cost of power sold by the grid during time period t 

 (CAD) 

𝐶𝐻1𝑐𝑡
  

Hydrogen produced by electrolyzer c during time period t in electrolyzer farm 1 

(kg H2) 

𝐶𝐻2𝑐𝑡
  

Hydrogen produced by electrolyzer c during time period t in electrolyzer farm 2 

(kg H2) 

𝐸𝐶𝑂2𝑝𝑛𝑡
𝐹𝐹𝑒𝑥𝑖𝑠𝑡 

Total emissions generated by existing fossil fuel generation unit n of technology p 

during time period t (tCO2) 

𝐸𝐶𝑂2𝑝𝑛𝑡
𝐹𝐹𝑛𝑒𝑤  Total emissions generated by new fossil fuel generation unit n of technology p 
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during time period t (tCO2) 

𝐸𝐶𝑂2
𝑑𝑒𝑛𝑛′𝑡

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
 

Total emissions generated from energy transport of mode d of energy commodity e 

between units n and n’ during time period t (tCO2) 

𝐸𝐶𝑂2𝑖𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 
Total emissions generated from power generating unit i belong to the Alberta grid 

during time period t (tCO2) 

𝐸𝐶𝑂2𝑖𝑡
𝑠𝑡𝑎𝑟𝑡𝑢𝑝 

 
Total emissions generated from the startup of power generating unit i belong to the 

Alberta grid during time period t (tCO2) 

𝐸𝐶𝑔𝑡 Power generated from combined heat and power unit g during time period t (MWh) 

𝐸𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡
𝑤𝑖𝑛𝑑  

Electrolytic hydrogen generated from wind power sent to bitumen upgraders in 

Alberta Industrial Heartland during time period t (kg H2) 

𝐸𝑃𝑈𝑢𝑒𝑡
𝑁𝑈  

Production level of energy commodity e from nuclear unit u during time period t 

(units of e) 

𝐺𝑟𝑖𝑑_𝑡𝑜_𝑂𝑆𝑡 Power sent to oil sands operators from the grid during time period t (MWh) 

𝐹𝑢𝑒𝑙_𝑇𝑔𝑡 
Total amount of natural gas consumed by the turbines of CHP unit g during period 

t (GJ) 

𝐹𝑢𝑒𝑙_𝐺𝑔𝑡  
Total amount of natural gas consumed by the heat recovery steam generators of 

CHP unit g during period t (GJ) 

𝐹𝑢𝑒𝑙_𝑐𝑜𝑔𝑒𝑛𝑔𝑡
𝑡𝑜𝑡𝑎𝑙  Total amount of natural gas consumed by CHP unit g during period t (GJ) 

𝐹𝑢𝑒𝑙_𝑁𝐺𝐶𝐶𝑓𝑡 Total amount of natural gas consumed by NGCC unit f during period t (GJ) 

𝐻𝑒𝑎𝑡_𝑐𝑜𝑔𝑒𝑛𝑔𝑡 Total amount of heat produced by CHP unit g during time period t (GJ) 

𝐻_𝑡𝑜_𝑁𝐺𝐶𝐶𝑡
  

Total amount of electrolytic hydrogen used in hydrogen enriched natural gas 

burned in NGCC units during time period t (GJ) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑤𝑖𝑛𝑑 

Total amount of electrolytic hydrogen produced from wind power during time 

period t (kg H2) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑁𝑈 

Total amount of electrolytic hydrogen produced from nuclear power during time 

period t (kg H2) 

𝐻_𝑖𝑛𝑝𝑢𝑡 𝑡
  

Total amount of excess electrolytic hydrogen sent to hydrogen storage tanks during 

time period t (kg H2) 

𝐻_𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡
   Hydrogen in inventory in storage tanks during time period t (kg H2) 

𝐻_𝑜𝑢𝑡𝑝𝑢𝑡 𝑡
  Hydrogen retrieved from storage during time period t (kg H2) 

𝐻𝑅𝑃𝑢𝑡
𝑁𝑈  Heat generated from nuclear energy from technology u during time period t (MWth) 

𝑁𝐺_𝑁𝐺𝐶𝐶𝑡 Total amount of natural gas consumed in NGCC units during time period t (GJ) 

𝑃_𝐸𝐶𝑔𝑡
𝑔𝑟𝑖𝑑

 
Power sent to the grid from natural gas cogeneration unit g during time period t 

(MWh) 

𝑃_𝐸𝐶𝑔𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 

Power from natural gas cogeneration unit g used to satisfy the power requirements 

of the oil sands industry during time period t (MWh) 

𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑓𝑡 
Total power production from natural gas generators (NGCC) unit f during time 

period t (MWh) 

𝑃_𝑁𝑈𝑢𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠

 
Total amount of nuclear power from technology u sent to electrolyzers during time 

period t (MWh) 

𝑝𝑝𝑖𝑡  
Total power generated from existing unit i in the Alberta grid during time period t 

(MWh) 

𝑃𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝑘𝑡
  

Total amount of unserved power demand for regional bus k of the grid during 

period t (MWh) 

𝑃𝑒𝑥𝑐𝑒𝑠𝑠𝑘𝑡
  

Total amount of excess power generated from regional bus k of the grid during 

period t (MWh) 

𝑃_𝑁𝑈𝑢𝑡
𝑔𝑟𝑖𝑑

 Power sent to the grid from nuclear generation technology u during period t (MWh) 

𝑃_𝑁𝑈𝑢𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 

Power sent to oil sands operators from nuclear generation technology u during 

period t (MWh) 

𝑆𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡
  Hydrogen retrieved from storage and sent to bitumen upgraders (kg H2) 

𝛿𝑘𝑡
   

𝑠𝑟𝑖𝑡 Spinning reserve from generation unit i during period t (MWh) 

𝑇𝐸𝐶 
𝑆𝑌𝑆𝑇𝐸𝑀 Total emissions of the energy system (tCO2) 

𝑇𝐸𝐶 
𝐺𝑟𝑖𝑑 Total emissions of the grid (tCO2) 

𝑇𝐶 
𝑆𝑌𝑆𝑇𝐸𝑀 Total cost of the energy system (CAD) 
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𝑇𝐶 
𝐺𝑟𝑖𝑑 Total operating cost of the grid (CAD) 

𝑊𝑖𝑛𝑑_𝑃 𝑡
 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠

 Wind power sent to electrolyzers during period t (MWh) 

𝑊𝑖𝑛𝑑_𝑃 𝑡
 𝑔𝑟𝑖𝑑

 Wind power sent to the grid during period t (MWh) 

𝑧1
 (𝑥) Total cost of the energy system (CAD) 

𝑧2
 (𝑥) Total operating cost of the grid (CAD) 

𝑧3
 (𝑥) 

Total emissions generated from the energy infrastructure of oil sands operators and 

the Alberta grid (tCO2) 

 

RSri Production rate of raw material r by producer i, T yr
1 

Fjfn Production rate of product form f by forming technology n at forming facility j, T yr
1

 

Bjb Amount of sulfur sent to blocking facility b at facility j, T yr
1

 

Qee’pt Flow rate of product form p between nodes e and e’ by transportation mode t, T yr
1

 

STes Inventory level for storage facility s at any of the forming facilities and distribution centers (e 

∈ J ∪ D), T 

 

 

Binary variables 

EGEOe =1 if existing geothermal plant number e is operating in the investigated year; 0 otherwise 

ENBbe =1 if existing boiler number e of type b is operating in the investigated year; 0 otherwise 

ENHhe =1 if existing hydrogen plant number e of type h is operating in the investigated year; 0 otherwise 

ENHEe =1 if existing electrolyzer is operating in the investigated year; 0 otherwise 

ENPpe =1 if existing power plant number e of type p is operating in the investigated year; 0 otherwise 

EWTe =1 if existing wind turbine number e is operating in the investigated year; 0 otherwise 

IMBITm =1 if integrated mining upgrading route is selected; 0 otherwise 

ISBITs =1 if integrated SAGD upgrading route is selected; 0 otherwise 

 

𝑏𝑝𝑏𝑛𝑏′𝑛′𝑡
  Indicates if that path between unit n’ of preheating option b’ and unit n of boiler type b exists 

(1), otherwise (0) 

𝑘𝑟𝑘𝑛𝑟𝑛′𝑡
  Indicates if that path between unit n of gasification option k and unit n of syngas processing 

option r exists (1), otherwise (0) 

𝑛𝑏𝑏𝑛𝑡
  Indicates if boiler production unit n of technology type b is constructed during time period t 

(1), otherwise (0) 

𝑛𝑐𝑐𝑛𝑡
𝐺𝑇/𝑆𝑇

 Indicates if gas or steam turbines in industurial cogeneration c facility n are constructed in time 

period t (1), otherwise (0) 

𝑛ℎℎ𝑛𝑡
  Indicates if hydrogen production unit n of technology type h is constructed during time period t 

(1), otherwise (0) 

𝑛𝑘𝑘𝑛𝑡
  Indicates if gasification production unit n of technology type k is constructed during time 

period t (1), otherwise (0) 

𝑛𝑝𝑝𝑛𝑡
  Indicates if power production unit n of technology type p is constructed during time period t 

(1), otherwise (0) 

𝑛𝑟𝑟𝑛𝑡
  Indicates if syngas processing option unit n of type k is constructed during time period t (1), 

otherwise (0) 

𝑛𝑢𝑢𝑛𝑡
  Indicates if nuclear production unit n of technology u is constructed during time period t (1), 

otherwise (0) 

𝑦𝑏𝑏𝑛𝑡
  Indicates if boiler production unit n of technology b is operational during time period t (1), 
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otherwise (0) 

𝑦𝑐𝑐𝑛𝑡
𝐺𝑇/𝑆𝑇

 Indicates if gas or steam turbines production unit n of cogeneration technology c are 

operational during time period t (1), otherwise (0) 

𝑦ℎℎ𝑛𝑡
  Indicates if hydrogen production unit n of technology h is operational during time period t (1), 

otherwise (0) 

𝑦𝑘𝑘𝑛𝑡
  Indicates if gasification production unit n of technology k is operational during time period t 

(1), otherwise (0) 

𝑦𝑝𝑝𝑛𝑡
  Indicates if power production unit n of technology p is operational during time period t (1), 

otherwise (0) 

𝑦𝑟𝑟𝑛𝑡
  Indicates if syngas processing unit n of technology r is operational during time period t (1), 

otherwise (0) 

𝑦𝑢𝑢𝑛𝑡
  Indicates if nuclear production unit n of technology u is operational during time period t (1), 

otherwise (0) 

𝑧𝑒𝑞𝑗𝑡
  Indicates if production capacity 𝑄𝑃𝐶𝐸𝑞𝑓𝑡  is added during time period t (1), otherwise (0) 

 

𝑢𝑐𝑜𝑔𝑡
  Commitment of cogeneration unit g during period t 

𝑢_𝑔𝑢𝑖𝑡
  Commitment of grid unit i during period t 

𝑢_𝑛𝑔𝑐𝑐𝑓𝑡
  Commitment of NGCC unit f during period t 

𝑌_𝐻𝑝𝑖𝑝𝑒𝑑
  Investment in pipeline capacity d 

𝑌𝑁𝐶𝑂𝑔
  Investment in cogeneration unit g 

𝑌𝑁𝐺𝐶𝐶𝑓
  Investment in NGCC unit f  

𝑦𝑐𝑜𝑔𝑡
  Shutdown of cogeneration unit g during period t 

𝑦_𝑔𝑢𝑖𝑡
  Shutdown of grid unit i during period t 

𝑦_𝑛𝑔𝑐𝑐𝑓𝑡
  Shutdown of NGCC unit f during period t 

𝑧𝑐𝑜𝑔𝑡
  Startup of cogeneration unit g during period t 

𝑧_𝑔𝑢𝑖𝑡
  Startup of grid unit i during period t 

𝑧_𝑛𝑔𝑐𝑐𝑓𝑡
  Startup of NGCC unit f during period t 

 

Xjn 1 if forming technology n is selected at forming facility j, 0 otherwise 

Zes 1 if storage technology s is selected at any of the forming facilities or distribution centers (e 

∈ J ∪ D), 0 otherwise 

Ve 1 if new forming or storage facilities are established at the given locations (e ∈ G ∪ U), 0 

otherwise 

Yee’t 1 if transportation link t exists between nodes e and e’, 0 otherwise 

 

Integer variables 

NBb Number of newly installed boilers of type b 

NGEO Number of newly installed geothermal plant 

NHh Number of new installed hydrogen plant h 

NHE Number of new electrolyzers 

NPp Number of newly installed power plant p 

NWT Number of newly installed wind turbines  

 

𝑁_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑐
𝑓𝑎𝑟𝑚1 

 
Number of electrolyzer of capacity level c installed in 

electrolyzer farm 1 

𝑁_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑐
𝑓𝑎𝑟𝑚2 

 
Number of electrolyzer of capacity level c installed in 

electrolyzer farm 2 

𝑁𝐻𝑇 Number of hydrogen storage tanks 

𝑁𝑁𝑈𝑢
  Number of units of nuclear technology u 

𝑁𝑊𝑇 Number of wind turbines 
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NFgnq Number of units of technology n and capacity level q installed at forming facility g 

NSesq Number of storage units of technology s and capacity level q installed at forming facilities 

and distribution centers (e ∈ G ∪ U) 
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List of Abbreviations 

ATB Atmospheric Topped Bitumen 

BCL Battelle Columbus Laboratory biomass gasifiers  

CCS Carbon Capture and Sequestration 

DC Delayed Coker 

DRU Diluent Recovery Unit 

EGS Enhance Geothermal System 

FC Fluid Coker 

GHG Greenhouse gas emissions 

GTI Gas Technology Institute biomass gasifiers 

HGO Heavy Gas Oil 

HT Hydrotreatment 

IGCC Integrated Gasification Combined Cycle 

LCF LC-Fining 

LGO Light Gas Oil 

MP1 Mined bitumen + Conditioning upgraded by LCF + FC + HT 

MP2 Mined bitumen upgraded by LCF + FC + HT 

MP3 Mined bitumen upgraded by DC + HT 

MP4 Mined bitumen upgraded by LCF + HT 

NGCC Natural Gas Combined Cycle 

NPV Net Present Value 

SAGD  Steam Assisted Gravity Drainage 

SCO Synthetic Crude Oil 

SCPC Supercritical Pulverized Coal 

SOR Steam-to-oil ratio 

SP1 SAGD bitumen upgraded by LCF + FC + HT 

SP2 SAGD bitumen upgraded by DC + HT 

SP3 SAGD bitumen upgraded by LCF + HT 

VDU Vacuum Distillation Unit 
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Chapter 1 

Introduction 

1.1 Motivation 

The majority of oil reserves in Canada are located in the Western Canada Sedimentary 

Basin, of which the oil sands in Alberta comprise the majority of reserves. The majority 

of Canadian oil sands are located in Alberta in three major deposits, which are Peace 

River, Cold Lake and Athabasca. The largest and most heavily developed among them is 

the Athabasca oil sands deposit, which includes deposits that can be surface mined and 

extensive in situ reserves. The Canadian Oil Sands is the third largest crude oil proven 

reserves in the world, which amount to proven reserves of about 168 billion barrels 

constituting approximately 97% of Canada’s total oil reserves [1]. The oil sands are a 

mixture of bitumen, sand, clay and water. Bitumen is heavy viscous crude that requires 

significant amounts of energy for production, upgrading and transportation.  

Oil still remains the major energy source and it is involved in a wide variety of 

applications. Even though, it is expected in the future that its use will mainly shift 

towards the transportation and petrochemicals sector, it will still dominate the energy 

market and be the premier energy resource for many years to come as its production is 

economically attractive compared to other energy alternatives, e.g. wind and solar 

energy, biofuels, etc. The reliance on unconventional oil resources is expected to 

significantly increase in the future as conventional resources are becoming scarce 

accompanied with demands and prices elevation [2]. According to the International 

Energy Agency (IEA) the growth of production of Canadian oil sands will continue over 
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the next decades, which will significantly contribute to the world’s energy supply and 

security [3]. 

Currently available production capacity is 2.8 million barrels per day (MBPD) and 

additional projects will add a capacity of 0.9 MBPD by 2020. If proposed and announced 

projects are completed, it is expected that oil sands production will increase by more than 

two-folds from the current level reaching approximately 4.5 MBPD by 2035 [3]. The 

availability of energy commodities (i.e. power, hydrogen, steam, etc.), and management 

of the environmental impacts of production while maintaining economic feasibility are 

crucial factors to the further development of the oil sands industry. Alberta provincial 

government and Canadian Federal government are required to address various 

environmental issues that hinder the large-scale development of this resource, which 

include: 

 Greenhouse Gas (GHG) Emissions: Operations of oil sands require significant amounts 

of energy derived from burning natural gas, making the industry the largest contributor 

to growth of GHG emissions in Canada, and an increase in production offsets achieved 

reductions in GHG emissions. 

 Sulfur By-product: Imposes a physical problem due to its stockpiling in limited 

inventory. 

According to a report from the Organization for Economic Co-operation and 

Development (OECD), for Canada to meet its climate change goals it will have to make 

significant reductions to emissions generated from oil sands operations. Moreover, the 

projected increase in oil production will add serious risks to the achievement of Canada’s 

climate mitigation goals. Even though emissions have decreased in most Canadian 
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provinces, they increased by 18 per cent in Alberta since 2005, which is mostly attributed 

to the development in oil sands projects and results in the province accounting to over 40 

per cent of Canada’s emissions. In addition, Canada’s environmental tax regime is 

considerably low in comparison to other OECD countries, which discourages industries 

including oil sands operators to further reduce their emissions. Consequently, the 

implementation of the Pan-Canadian Framework for Clean Growth and Climate Change 

is considered to be imperative for achieving Canada’s emission reduction targets. This 

requires adequate approaches for pricing carbon pollution, and the incorporation of 

technologies and emission reduction measures that ensure competitiveness of Canadian 

industries in the global low-carbon economy. Moreover, an ensemble of proven energy 

production technologies is available to be utilized to contribute in the reduction of GHG 

emissions generated from the energy infrastructure of oil sands operations. These include 

nuclear, renewable (i.e. wind, geothermal, biomass, etc.), fossil based (i.e. coal, natural 

gas, petroleum coke, etc.) integrated with carbon capture and sequestration. Exploiting 

untapped non-emitting renewable and nuclear energy sources provide significant 

potential in achieving the required emission reduction targets while satisfying the rising 

energy requirements of Canada’s industrial, transportation and household sectors.  

Efficient and robust mathematical models that describe the operations of the Canadian oil 

sands industry are useful tools that can be used to assess current and future production 

scenarios, and their associated environmental impacts. These models are useful in order 

to determine the energy infrastructure required to meet the oil production demands 

projected over the upcoming years, which will be of great assistance as a decision making 

tool in planning future operations of the industry. Variability and uncertainties in key 
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process operational parameters, such as natural gas prices, GHG emission targets, etc., 

can be evaluated easily using these modeling tools.  

Several mathematical models that address various operational aspects of the oil sands 

industry have been reported in the literature [4-7]. The main focus of these models was 

the estimation of the energy requirements of the oil sands operations and the 

quantification of the GHG emissions associated with these energy requirements. 

Furthermore, the models focused on the optimization of the energy infrastructure required 

to power the oil sands industry. These models provided promising results that give insight 

of the future operational scenarios of the oil sands industry. However, there are various 

limitations associated with these mathematical models that if addressed can provide a 

more realistic representation of future oil sands operations. The previous models 

considered only conventional technologies (i.e. fossil fuel based) in the proposed energy 

infrastructure disabling the model from reaching high emission reduction targets. Nuclear 

technologies can provide promising potential in terms of reducing GHG emissions. 

However, investing in them is judged critically since there are significant external costs 

associated with them for the national economy due to security reasons and very long 

construction times. Finally, all the previously formulated models were aimed at 

optimizing instances of oil sands operations eliminating the effects of time variable 

parameters.  

1.2 Research Objectives and Contributions 

Achieving emission reductions from the energy infrastructure of the oil sands industry 

requires investment in low carbon intensive energy production technologies. The existing 

energy infrastructure is considered to be economically long-lived, which complicates 
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incorporating investment decisions of new technologies in its planning. Increasing the 

favorability of these investments requires the design and implementation of effective 

carbon mitigation measures that result in the achievement of the highest possible 

emission reductions at the lowest possible costs. Similarly, encouraging the effective 

management of excess by-products generated from oil sands operations (e.g. petroleum 

coke, sulfur, etc.) instead of stockpiling them in limited inventory requires the application 

of supply chain management techniques. This research focuses on developing 

optimization mathematical models to assist policy makers in:  

1- Determining the optimal energy commodities infrastructure required for oil sands 

operations considering conventional and non-conventional (i.e. renewables, low 

carbon footprint) energy sources 

2- Designing, planning and operating the sulfur supply chain  

To achieve the objectives, mathematical models geared towards minimizing costs and 

increasing operational efficiency, resource utilization and environmental sustainability 

will be formulated. This will require obtaining adequate estimates of marginal carbon 

mitigation costs of all the low-carbon intensive mitigation technologies considered (i.e. 

nuclear, renewable, fossil based, etc.). Renewable energy production technologies (i.e. 

wind, geothermal, hydro, bioenergy, etc.) are critical environmentally benign 

technologies that can play a significant role in achieving significant emission reductions 

from oil sands operations and any industrial sectors that exchange energy with oil sands 

operators (e.g. Alberta grid). This will require a thorough evaluation and review of 

renewable energy potential in Alberta, and outlining all the possible and feasible 

configurations that can be employed to provide the energy requirements of oil sands 
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operators. The incorporation of wind power in the energy infrastructure of oil sands 

requires the utilization of hydrogen as an energy carrier due to the geographical 

hindrance of transmitting wind power to oil sands operators. Moreover, due to the 

variable nature of wind power generation, incorporating a large wind generation capacity 

will require modeling interactions with the local Alberta grid, in which the effect on the 

unit commitment of power generation units is investigated. The feasibility of 

incorporating energy storage (i.e. hydrogen storage) to mitigate  

One of the objectives of this thesis is to provide a generalized multiperiod optimization 

model that can be applied for the energy planning of energy-intensive industries. 

Moreover, a key feature of this work is the application of this generalized model. There 

has been no multi-period energy planning optimization models applied to the case study 

based on the energy intensive oil sands operations in Alberta over a long time horizon 

(i.e., 2015–2050). This facilitates the investigation of the economical and structural 

impact of time-dependent parameters on the energy production fleet. These parameters 

include the variability in oil sands production levels, energy demand intensities, carbon 

mitigation policies, and fuel prices. This will assist governmental or industrial policy 

makers in making decisions of the energy planning for oil sands operations. The 

development of the globally valuable oil sands resource is essential for Canada’s 

economic growth, and it is dependent on the ability to comply with environmental 

regulations while maintaining economic competitiveness of Canadian oil industries. The 

research provides tools for oil sands industries to increase their development and 

production through cost-effective strategies that allow reaching higher environmental 

sustainability. 
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The final objective of this thesis is to investigate the components that comprise the sulfur 

supply chain (i.e. recovery, storage, forming and distribution) and implement 

optimization techniques in mathematical modeling to describe the design and operation 

of sulfur supply chains and integrate these components within a single framework. It 

could serve as a useful decision support system in the early stages of developing sulfur 

supply chains and understanding the trade-offs involved in the sulfur supply chains. The 

model will be used to estimate the total investments required to establish and operate 

sulfur forming and storage facilities and distribution networks. It will provide an 

indication about the optimal configuration of the sulfur supply chain, which will assist 

governmental or industrial policy makers in making strategic decisions. These decisions 

include the number, location, type, and capacity of sulfur forming plants and storage 

facilities, required transportation links among nodes in the network, and production rates 

of forming technologies and flow rates of sulfur. 

1.3 Thesis Structure 

The rest of the thesis is organized as follows. 

Chapter 2: This chapter outlines the general methodology utilized to achieve the four 

contributions of this thesis. 

Chapter 3: An energy optimization model for the integration of renewable technologies 

into the energy infrastructure of the oil sands industry is presented. The proposed model 

determines the optimal configuration of oil producers and the energy infrastructure 

required to meet their energy demands. The model is geared towards the minimization of 

cost subject to carbon dioxide emission constraints. A mixed integer non-linear 

optimization model is developed that simultaneously optimizes capacity expansion and 
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new investment decisions of conventional and renewable energy technologies. To 

illustrate its applicability, the proposed model was applied to a case study using data 

reported in the literature for various years of oil sands operations. A rolling horizon 

approach was implemented to determine the effect of investment decisions of previous 

operational years on the selection of new investment options. Results were compared 

with and without the incorporation of renewable energy technologies. The results 

obtained indicate that the proposed model is a practical tool that can be employed to 

evaluate and plan oil sands and energy producers for future scenarios. Moreover, the 

results show that renewable energy technologies have significant potential in reducing 

reliance on fossil-fuel based technologies and their associated CO2 emissions. The 

emission constraints set for the operational year 2025 can only be achieved by the 

incorporation of renewables in the energy production mix. 

Chapter 4: A multi-period optimization model is developed for the energy procurement 

planning of industries including renewable energy. The model is developed with the objective of 

identifying the optimal set of energy supply technologies to satisfy a set of demands (e.g. power, 

heat, hydrogen, etc.) and emission targets at minimum cost. Time dependent parameters are 

incorporated in the model formulation, including demands, fuel prices, emission targets, carbon 

tax, lead time, etc. The model is applied to a case study based on the oil sands operations over the 

planning period 2015 – 2050. Various production alternatives were incorporated, including 

renewable, nuclear, conventional and gasification of alternative fuels. The results obtained 

indicated that the energy optimization model is a practical tool that can be utilized for identifying 

the key parameters that affect the operations of energy-intensive industrial operations, and can 

further assist in the planning and scheduling of the energy for these industries.  
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Chapter 5: The energy infrastructure for oil sands operations can be classified as a 

decentralized energy system, in which energy requirements (i.e. power, heat and hydrogen) are 

generated near the end-users, and can operate with interactions with the local Alberta grid, in 

which it feeds surplus power generated to it. In this study a mathematical optimization model is 

developed for the integrated planning and scheduling of the energy infrastructure of the oil sands 

industry. The contributions of various energy sources including conventional, renewables, and 

nuclear are investigated. Power-to-gas for energy storage is incorporated to manage surplus 

power generated from intermittent renewable energy sources, particularly wind. The wind-

electrolysis system included incorporates two hydrogen recovery pathways, which are power-to-

gas and power-to-gas-to-power using natural gas generators. The problem is modeled as a 

multiobjective and multiperiod mixed integer linear programming model that minimizes the 

system cost (energy production and storage), grid cost, and total greenhouse gas emissions. In 

addition to including the grid cost and emissions in the objective function, grid-interaction is 

incorporated in the optimization model through the unit commitment operations of the existing 

power generation units of the grid. The proposed model is designed to evaluate the optimal 

operation and sizing of the energy producers and the energy storage system, as well as the 

interactions between them. The epsilon constraint method is used to solve the multi-objective 

aspect of the proposed model. To illustrate its applicability, the model is applied to a case study 

based on the oil sands industry in Alberta for the integrated planning and scheduling of its energy 

infrastructure for the year 2017.  

Chapter 6: Extensive research has been done on the components that constitute the 

sulfur supply chain, including sulfur recovery, storage, forming and distribution. The 

research focus was on improving the efficiency and environmental sustainability of each 

of these areas rather than focusing on the supply chain as a whole. The aim of this work 

is to design a sulfur supply chain that integrates these components within a single 



10 
 

framework. It represents a starting point in understanding the trade-offs involved in the 

sulfur supply chain from an optimization point of view. Optimization and mathematical 

modeling techniques were implemented to generate a decision support system that will 

provide an indication of the optimal design and configuration of sulfur supply chains. The 

resulting single-period mixed-integer linear programming (MILP) model was aimed at 

minimizing total infrastructural and operational costs. The model was illustrated through 

a case study based on Alberta’s Industrial Heartland (AIH). A deterministic approach in 

an uncertain environment was implemented to investigate the effect of supply and 

demand variability on the design of the supply chain. This was applied to two scenarios, 

which are steady state operation and sulfur surplus accumulation. The results for the 

investigated case study reveal that the optimum sulfur supply chain might consist of 

medium-to-large sulfur forming facilities serving multiple producers. The model also 

identified the locations of forming facilities, the forming, storage and transportation 

technologies, and their capacities.  

Chapter 7: This chapter summarizes the conclusions and the contributions of the thesis. 
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Chapter 2 

Methodology 

This section outlines the methodology undertaken to develop the optimization models 

used for determining the energy planning and sulfur supply chain for the Canadian Oil 

Sands operations. The general methodology comprises the steps shown in Figure 2.1.  

The first step involves a clear identification of the problem to be addressed. This included 

defining the proper decision variables and the data and parameters required to solve the 

problem. Finally, the problem definition encompasses identifying a proper set of 

alternatives that requires the utilization of a mathematical optimization model to provide 

an indication of an optimal solution. This set of alternatives is represented in the form of 

a superstructure. A mathematical model that describes the superstructure is then 

formulated. The mathematical model constitutes unknown decision variables (i.e. 

positive, integer, binary, etc.) and data (i.e. scalars, parameters, etc.). The required data is 

gathered and the mathematical model is programmed in an optimization-software, such as 

the General Algebraic Modelling Software (GAMS) [8]. The data gathered is dependent 

on the case studies investigated, which illustrate the applicability of the formulated 

mathematical model, and includes obtaining values of parameters incorporated in the 

formulated model. These include, for example, future projections of bitumen and SCO 

production levels, forecasts of fuel prices, lead time for construction of new plants, etc. 

The results obtained are then analyzed and sensitivity analyses are conducted when 

appropriated to provide an indication of the optimal solution.  
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In this thesis several single and multi-period mathematical programming models and 

solution strategies for planning and scheduling under carbon management have been 

developed. These models offer the appropriate scheme for selecting available reduction 

strategies while minimizing total investment and operating costs. In the area of energy 

production planning, a generalized modeling framework has been developed for 

assessing the feasibility of industrial networks in order to demonstrate environmental and 

economic benefits of industrial facilities working cooperatively to share energy and 

materials, including the production of hydrogen to support a future hydrogen economy. 

Multi-period optimization models and solution strategies that determine the optimal mix 

of energy supply sources that meet specified energy demands (i.e. heat, electricity, 

process fuels, etc.) and CO2 emission targets have been developed. The models 

Figure 2.1 General methodology utilized to achieve the 

contributions of the thesis 
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considered the use of different CO2 control strategies, employed fuel balancing, 

incorporated alternative energy sources, and advanced energy production technologies. In 

order to take further steps in integrating renewables, we focused on the transition from a 

fossil-based economy to incorporating various forms of energy produced from renewable 

energy. This includes bioenergy, wind-electrolysis for power-to-gas and power-to-gas-to-

power, and geothermal energy. These have been incorporated in a robust mathematical 

programming based framework that incorporates the synergism, conflicts, and 

interdependence among feedstocks and which accounts for the simultaneous production 

of energy and fuels. To enable the exchange of power in energy infrastructures that can 

supply the various forms of energy services to industrial, commercial, and residential 

consumers, we embarked on the modeling of complex networks of energy hubs and 

provided financial viable solutions which have the potential to significantly reduce 

greenhouse gas emissions. We developed also generic mathematical models for the 

optimal energy management of future communities where hydrogen is used as an energy 

vector. 

For the energy planning model the use of different CO2 control strategies, which include 

making enhanced use of alternative energy and/or advanced technologies, and employing 

CO2 removal technologies have been incorporated. Also, the model included the 

scheduling component or energy storage considerations. The model considers renewable 

energy integration and planning of the whole network including energy storage. Finally, 

also incorporated in the model was the conversion of electricity into hydrogen during 

price troughs and the possible use of the stored hydrogen to produce electricity during 

peak hours, for the hydrogen economy, or for power-to-gas. One common approach that 
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has been employed for integrated scheduling and planning problems is detailed 

scheduling whereby a small time step is employed for the entire planning horizon. In this 

fashion the planning decision variables are replaced by those of scheduling.  Though such 

formulation ensures optimality, it usually leads to large scale models which are 

computationally expensive. In rolling horizon approaches the time frame is divided into 

serval subintervals. At every iteration, the early interval is represented in detail while the 

other intervals are aggregated. After that, the early interval is fixed, and the next interval 

will be in detail until all intervals are considered. The problems discussed involve making 

multiscale decisions of system components, interconnections of units, operating 

conditions, and interactions along supply chains. Furthermore, variabilities can be present 

at several levels such as prices, production rates and costs, labor, demand, and raw 

material availability and this will require the investigation of various scenarios. The 

planning and scheduling decisions will be integrated in order to obtain solutions 

pertaining the location and capacity of components such as renewable energy resources 

and energy storage, the charge/discharge of hydrogen tanks, energy resources 

commitment, and Power-to-X decisions. The overall objective will include installation, 

operation, reliability, and penalty costs. The installation cost includes the investment and 

replacement costs of all components. The operation cost includes the operation and 

maintenance cost of all energy system components, power purchased, and emission 

pollution credit cost. The reliability cost will be calculated based on energy not supplied 

by the energy system. Modeling will be based on the superstructures of alternatives 

developed and which account for alternative energy sources as well as for conventional 

sources and for pollution prevention technologies. 
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Chapter 3 

Optimized Integration of Renewable Energy Technologies into 

Alberta’s Oil Sands Industry
1
 

3.1 Introduction 

3.1.1 Alberta’s oil sands industry – Current and future challenges 

The majority of oil reserves in Canada are located in the Western Canada Sedimentary 

Basin, of which the oil sands in Alberta comprise the majority of reserves. The majority 

of Canadian oil sands are located in Alberta in three major deposits, which are Peace 

River, Cold Lake and Athabasca. The largest and most heavily developed among them is 

the Athabasca oil sands deposit, which includes deposits that can be surface mined and 

extensive in situ reserves. The Canadian Oil Sands is the third largest crude oil proven 

reserves in the world, which amount to proven reserves of about 168 billion barrels 

constituting approximately 97% of Canada’s total oil reserves [9, 10].  

The oil sands are a mixture of bitumen, sand, clay and water. Bitumen is a heavy viscous 

crude that requires significant amounts of energy for production, upgrading and 

transportation. Extracted bitumen can be diluted by solvents (e.g. naphtha) to reduce its 

viscosity for further transportation to be sold as commercial crude bitumen or to be 

upgraded to higher quality synthetic crude oil (SCO). Bitumen upgrading operations can 

be integrated with mining or steam assisted gravity drainage (SAGD) extraction 

operations, and they typically consist of hydrocracking or thermocracking processes to 

break the heavy hydrocarbon molecules into lighter ones. Mining extraction is typically 

                                                           
1
 A variant of this chapter is published: M. Elsholkami, A. Elkamel, F. Vargas, Computers and Chemical 

Engineering, 2016, 90(1), 1-22.  
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employed for bitumen deposits located at depths up to 75 meters. The Oil Sands are 

mined by electric and hydraulic shovels, which are then transported by trucks to 

separation units in which hot water and solvents are used to extract the bitumen from the 

Oil Sands mixture.  In-situ methods are used for deep bitumen deposits that are located 

more than 75 meters below the earth’s surface, and they have been employed to recover 

deposits at depths within the range of 350 – 600 meters below the surface. In-situ 

methods rely on the use of steam, solvents or thermal energy to extract the bitumen from 

the oil sands in order to enhance its flow, which is then pumped to the surface. The two 

prominent production technologies are mining and in-situ, the latter being more 

economically and environmentally preferable and will account to approximately two-

thirds of future oil sands production capacity. Mining extraction is currently the dominant 

method used for bitumen extraction [10, 11, 12]. 

Continued reliance on crude oil is expected to persist in future years and dominated the 

world’s energy supply. Global oil demand is expected to reach 111 million barrels per 

day by 2040 [13], and approximately one fourth of this oil will be supplied by Canada 

and the United States. The continuing decline of conventional crude oil resources is 

increasing the reliance on unconventional crude oil production (e.g. bitumen). 

The significant drop in oil prices that occurred in 2014 has a major negative impact on 

Canada’s economy. By taking into consideration the forecasted oil price profiles, it is 

estimated that the damage to Alberta’s gross domestic product will be around 0.8 parts 

per thousand in 2015, which would eliminate the chance of falling into a recession with a 

growth rate maintained at 2.7% [14]. Therefore, it is expected that development of oil 

sands projects will continue as planned and the production of Canadian unconventional 
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oil will continue on an increasing trend. The situation is likely to resemble that of the 

recession in 2008-2009, in which oil production of Alberta continued to rise steadily as 

oil sands producers adopted the view of long term market conditions [15, 16, 17].  

However, there are uncertainties associated with the further development of the oil sands 

industry as a result of the concerns associated with the availability of energy commodities 

(e.g. power, steam, etc.). Moreover, environmental issues regarding the greenhouse gas 

(GHG) emissions associated with the production of the energy commodities required for 

oil sands operations represent a major concern for Alberta provincial and Canadian 

federal governments, and their management is essential for sustaining the further 

development of oil sands operations [18].  

The availability of energy commodities (i.e. power, hydrogen, steam, etc.) and managing 

the environmental impacts of production while maintaining economic feasibility is a 

crucial factor to the further development of the oil sands industry. Under the United 

Nations Framework and Kyoto protocol Canada is obligated to reduce GHG emissions to 

achieve international environmental standards. This in return has focused efforts of 

research on the development of sustainable energy pathways that impose minimum 

environmental burdens [19, 20].  

Operations of oil sands require significant amounts of energy, which are derived from 

burning natural gas, making the industry the largest contributor to the growth of GHG 

emissions in Canada, and an increase in production offsets achieved reductions in their 

intensity [10]. The natural gas supporting the energy production for the oil sands industry 

is obtained from the Mackenzie Basin south through the Mackenzie Valley Pipeline, 

which is currently in regulation processes. It is projected that by 2025 the oil sands 
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operations will require 1.6-2.3 billion cubic feet of natural gas daily, which is equivalent 

to the maximum capacity of the Mackenzie pipeline that also provides natural gas used 

for heating Canadian homes. All of these factors contribute to the requirement of 

diversifying the energy infrastructure of the oil sands industry [21]. A potential 

alternative source of energy for the Oil Sands industry is nuclear energy, which was 

recently considered to provide steam and electricity for bitumen extraction and upgrading 

operations. Nuclear based technologies have near zero emissions associated with their 

operations, and the commodities produced can replace natural gas based plants 

significantly reducing emission intensity. The environmental impacts and public 

perceptions of the risks associated with employing nuclear technologies present a major 

resistance to their penetration in the energy infrastructure mix. There are various 

challenges associated with the introduction of nuclear based technologies in Alberta’s 

energy infrastructure, which include public and government acceptance, environmental 

concerns associated with radioactive waste storage, water consumption, and very long 

construction times [22].  

Efficient and robust mathematical models that describe the operations of the Canadian oil 

sands industry are useful tools that can be used to assess current and future production 

scenarios, and their associated environmental impacts. These models are useful in order 

to determine the energy infrastructure required to meet the oil production demands 

projected over the upcoming years, which will be of great assistance as a decision making 

tool in planning future operations of the industry. Variability and uncertainties in key 

process operational parameters, such as natural gas prices, GHG emission targets, etc., 

can be evaluated easily using these modeling tools. Several models have been developed 
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in previous studies to describe the operations of the oil sands industry. Ordorica et al. 

modeled the energy demands and GHG emission of the oil sands industry [4]. They 

formulated a mathematical model referred to as the oil sands operations model in order to 

estimate the energy requirements associated with SCO and bitumen production. Their 

formulations were based on production data available from current commercial oil sands 

operators. The production schemes incorporated in their model include integrated mining 

and upgrading, integrated in-situ extraction and upgrading, and diluted thermal bitumen 

production. In addition, they considered three different upgrading routes based on 

hydrocracking and thermocracking processes. The computation of GHG emissions 

associated with supplying the energy requirements (i.e. power, hydrogen, steam, hot 

water, natural gas, and diesel) for oil sands producers is also considered. They later 

developed a mixed integer linear programming optimization model that determines the 

optimal infrastructure required to meet the energy demands modeled in their previous 

work with an objective of minimizing total annual costs of energy supply that is subject 

to CO2 emission constraints [5]. In their model, only conventional power and hydrogen 

plants within the energy infrastructure. They illustrated the applicability of the energy 

optimization model by investigating a case study of the oil sands operations for the year 

2003. Their results included the quantified energy costs and emissions associated with 

bitumen and SCO production.  

Betancourt-Torcat et al. [6] later developed an optimization model that simultaneously 

determines the optimal energy infrastructure and oil sand production schemes, and 

referred to it as the integrated oil sands energy optimization model. In comparison to the 

work done by Ordorica et al. [5] the energy demands are not determined a priori, instead 
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they are calculated internally in the optimization model since both energy and oil 

producers are set as decision variables. Their model was also formulated with the 

objective of minimizing total annual cost subject to CO2 emission constraints. They 

applied the model on two case studies for the operational years 2003 and 2020. In a later 

work they incorporated nuclear energy for power and steam production, and also imposed 

an additional environmental constraint (i.e. water withdrawal limits from the Athabasca 

River) [7]. The model was formulated as a mixed integer non-linear programming model 

and was applied for a case study for the oil sands 2030 operational year. In a later study 

they investigated the effect of varying key environmental and operational parameters on 

the oil sands operations. These are CO2 capture levels, natural gas prices, and steam-to-

oil ratios (SOR) [27].  The CO2 emission targets are expected to become increasingly 

stringent in order to satisfy emissions policies set by the government of Alberta. Natural 

gas prices and SOR are the two parameters that have the most significant impact on the 

total annual costs of producing SCO and commercial bitumen. They later extended their 

work to develop a stochastic optimization model that accounts for the uncertainty in 

natural gas prices and SOR [28]. They also offered a comparison of the results of their 

deterministic and stochastic optimization models.  

To the authors’ knowledge all of the optimization models developed for the modeling of 

oil sands operations up to this point do not incorporate capacity expansion decisions, or 

incorporate renewable energy technologies in the proposed energy infrastructure. This 

paper introduces a new capacity expansion energy optimization model for the Canadian 

oil sands industry. It also presents an approach for the integration of renewable energy 

technologies in the Alberta oil sands energy infrastructure, and illustrates the effect of 
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incorporating renewable energy production on reducing the reliance of the oil sands 

industry on fossil fuel resources (i.e. natural gas). A feature of the proposed model is the 

incorporation of capacity expansion decisions. A rolling horizon approach is 

implemented, in which the results obtained for a certain planning period are used as input 

for the following planning step. This allows for determining the effect of the existing 

energy infrastructure on new investment decisions, and allows for optimizing the capacity 

expansion decisions of both renewable and conventional energy production technologies. 

The key aspect in the proposed optimization model is the inclusion of renewable energy 

technologies as potential resources to provide energy for oil sands producers.   

3.1.2 Renewable energy potential in Alberta 

Renewable energy production can provide significant potential in reducing GHG 

emissions in Alberta. An assessment of selected renewable energy technologies that was 

conducted by the government of Alberta provides insight on the potential of renewable 

energy production in Alberta. The criteria used to conduct the assessment included 

applicability to Alberta, level of commercialization, environmental footprint and cost 

[29].  

The potential of integrating renewable energy technologies depends significantly on their 

applicability to Alberta’s physical characteristics. The results obtained indicated that 

Geothermal, Enhanced Geothermal Systems (EGS), Hydropower and Wind are the most 

complimentary to Alberta’s physical environment. On the other hand, Concentrated Solar 

Power technologies required minimum direct normal irradiance values that are higher 

than the average available in Alberta. Solar PV showed strong compatibility with 

Alberta; however, their potential is only limited to small scale applications (e.g. 
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residential). Over the past few decades wind and hydropower had high levels of 

commercialization in various European countries and over Canada. Technologies, such as 

EGS have low levels of commercialization and their implementation is not considered to 

be viable in the near future. Geothermal and EGS systems have GHG emissions relatively 

higher than those of other renewable technologies considered in the conducted 

evaluation. However, these emissions are negligible in comparison with fossil-fuel based 

energy production technologies. For example, geothermal plants emissions range from 

near-zero emissions to 5% of the CO2, 1% of the SO2, and less than 1% of the N2O 

emitted by coal-fired plants of a similar size [29]. 

Geothermal 

There are two major incentives for utilizing geothermal energy in oil sands operations, 

which are natural gas cost, and reduction in GHG emission intensity. Most of the energy 

utilized for heating water for oil sands operations is obtained from natural hydrocarbons 

or by heat recovery techniques in cogeneration technologies. Significant efforts are being 

made to implement alternative sources of thermal energy. Low-grade geothermal heat can 

economically compete with burning natural gas and reduce the overall demand for it [30].  

In the Athabasca region of Northern Alberta heat is present at depths within the earth, and 

to extract thermal energy in such a region requires artificially created porosity (i.e. 

fractures) and fluids injected into the hot dry rocks. This is referred to as an engineered 

geothermal system. Northern Alberta is characterized by having low thermal gradient and 

geothermal energy is unsuitable for electricity production applications. However, it is 

applicable for direct heating, producing hot water for oil sands operations. Bitumen 

extraction in oil sands mining operations requires significant volumes of water at 
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temperatures within the range of 50 – 60
o
C. Critical environmental concerns are 

associated with these operations, including significant fresh water consumption and GHG 

emissions, in addition to concerns associated with the availability of the large volume of 

natural gas required. Geothermal energy provides the potential of mitigating two of these 

issues to significant extents [31].  

Table 3.1 Characteristics of a geothermal plant producing hot water for oil sands operations 

Geothermal system One injection and two production wells 

Temperature increase T 35oC 

Water flowrate  100 kg s-1 

Project lifetime 30 yr. 

Capital cost (i.e. drilling, fracturing, 

and pumps and surface installations) 

$33 million 

Operating cost (i.e. pumping, water 

treatment, transportation, etc.) 

$2 million yr-1 

Total cost of EGS $0.013 per kWh thermal 

 

The extraction of bitumen from oil sands requires significant volumes of hot water, which 

are provided by burning natural gas. Approximately 80% of oil sands reserves are located 

at great depths and require SAGD extraction methods, which mostly utilize steam in their 

operations. Geothermal energy has the potential to provide heat for bitumen extraction 

and upgrading operations, which would significantly reduce GHG emission levels. 

Geothermal resources are classified according to their subsurface temperatures as high (> 

150
o
C), medium (50 

o
C – 150 

o
C) and low (< 50

o
C). Low temperature resources are 

found within the upper 2 km of the Western Canadian Sedimentary Basin, which are 

suitable for direct heating applications. Power generation using geothermal technologies 

requires very high temperatures (>150
o
C), which to obtained requires drilling at great 

depths.  
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Majorowicz et al. conducted a research focused on evaluating potential heat sources that 

can be implemented for supporting oil sands operations in areas with existing leases. 

Their study was based on a detailed fracture modeling of the proposed geothermal 

system, in which they took into account the sensitivity of energy recovery to various well 

properties (e.g. fracture dimensions), the effect of reservoir temperatures and well 

spacing and sustained water flow rates and temperatures, and determined the optimal 

design of the EGS for the proposed location. The main area of interest for geothermal 

applications in the oil sands industry is located in the Athabasca region. The extraction of 

heat for power production applications would require the development of EGS. The heat 

is produced by circulating fluids at depths after creating artificial porosity zones. 

Temperatures greater than 80
o
C are typically required for EGS electricity production 

applications. High temperatures can be found in the deep Alberta basin within 

sedimentary aquifers and requires drilling to the depth of several kilometers. However, 

temperatures in Northern Alberta are considerably low to be suitable for electricity 

production and the main focus is to utilize geothermal resources to provide heat for oil 

sands operations [31].   

Majorowicz et al. conducted an economic analysis of utilizing geothermal energy for heat 

and power production for oil sands operations in Alberta. For direct heating applications 

the calculations were done for drilling a well doublet up to 6 km in depth, in which the 

flow rate of water is sustained for 10 years and production temperature is maintained at 

60
o
C. At a sustained flowrate of 40 – 60 L/s the cost of direct geothermal heating is 

similar to the cost range of burning natural gas ($3 – 6/GJ at 50% boiler efficiency). The 

results they obtained were used as input for the techno economic data of geothermal 
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systems in the optimization model (Table 3.1). It was concluded from their results that 

direct geothermal heating is economic in comparison with burning natural gas 

considering expected future increases in natural gas prices and significant incurred 

carbon mitigation costs associated with the increasingly stringent environmental 

constraints. The total cost of burning natural gas to provide the same amount of hot water 

for oil sands operations costs approximately $0.012 per kWh.  Considering future 

increases in natural gas prices and added cost of mitigating the associated GHG 

emissions, it can be concluded that geothermal energy production has an economic 

advantage [32]. The utilization of geothermal heat for the production of electricity 

requires the use of an Organic Rankine Cycle, which is characterized with efficiency 

levels in the range of 8 – 12%. For a system of one injection and two producing wells at a 

rate of 50 L/s and temperatures in the range of 50 – 150 
o
C will require a cost of 

approximately $22 million per MW. Great drilling depths will be required as the 

temperature gain with depth in crystalline rocks of the Athabasca region is considerably 

low. As a result electricity production from EGS for oil sands operations is considered 

uneconomic [32, 33].  

Wind power-to-hydrogen via electrolysis 

The oil sands industry in Alberta is highly dependent on hydrogen for the upgrading of 

bitumen, for which the demand is expected to reach approximately 3.1 million tonnes per 

year by 2023. This translates to a significant projected increase in hydrogen requirement 

since hydrogen production for Canada as a whole was approximately 2 million tonnes per 

year in 2004. This in return will require an increased reliance on renewable alternatives in 

order to maintain or achieve higher GHG emission reduction levels. Hydrogen used for 
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oil sands upgrading processes is mostly produced using steam methane reforming, which 

contributes significantly to increase in GHG emissions associated with oil sands 

operations. The production of hydrogen from wind energy can contribute to considerably 

reduce GHG emissions associated with bitumen upgrading operations [34].  

Hydrogen production from renewable energy sources is considered the long-term goal for 

the hydrogen economy. Hydrogen production from wind energy via electrolysis has 

received global recognition as a potentially viable hydrogen production pathway among 

renewable resources. It is also considered to be one of the hydrogen production pathways 

that imposes the least environmental impact based on life cycle assessment analysis 

studies. The production of hydrogen from wind energy has received little attention in 

Canada, and its employment is typically in conjunction with other renewable energy 

sources or a part of an energy mix. Other than utilization in the automobile industry, the 

production of hydrogen from renewable sources for other industrial sectors in Canada is 

rarely investigated [35].  

Alberta’s installed wind capacity is currently determined to be 1,434 MW, which 

accounts to approximately 9% of total electricity generation capacity, and is expected to 

increase by 58% by 2024. There has been a considerable increase in installed wind 

capacity over the base decade by seven-fold, and considering the required abatement of 

GHG emissions the installed capacity of wind power is expected to further increase. 

Therefore, increasing utilization of wind power is an attractive solution to decrease 

reliance on fossil-fuel based technologies for both power and hydrogen production, which 

will allow significant reductions in GHG emissions [34, 35].  
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Electrolysis of water is mature technology that generates hydrogen with very high purity 

(>99.9%), which is highly desirable for bitumen upgrading operations to produce 

synthetic crude oil. The wind hydrogen plant incorporated in the proposed energy model 

is based on the expansion of an existing wind farm (i.e. Summerview wind farm) in 

Pincher Creek, Alberta. Currently the wind farm has an installed capacity of 134 MW. In 

2010 the Summerview wind farm has undergone a capacity expansion where they 

approximately doubled their power production capacity, which was established in the 

Summerview 2 wind farm located adjacent to Summerview 1. This provides plausibility 

for the further expansion of the wind farms to accommodate for the production of 

hydrogen given the entailed environmental benefits. A proposed expansion project of a 

wind hydrogen plant in such a location will reduce the cost of hydrogen production due 

to the eliminated costs of land purchase, grid connections, infrastructure, etc. This can 

facilitate a cost effective approach for hydrogen production.  

Southern Alberta is the primary area with significant wind resources in the province, in 

which all wind farms of Alberta are currently allocated. The transmission infrastructure 

in this region requires significant improvements to transport wind power to large load 

centers. Therefore, the wind hydrogen plant will incorporate electrolyzers to be installed 

in conjunction with wind turbines at Pincher Creek, and the produced hydrogen is then 

transported to bitumen upgraders in Fort McMurray [35].  

Due to the variability of wind power resources, it is necessary to quantify the available 

wind energy potential by accounting for the average hourly wind speed variation in 

Pincher Creek (Fig. 1) [36]. A Vestas V-90 1.8 MW wind turbine is used for the wind 

hydrogen plant, which is the type of wind turbine currently used in the Summerview 
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wind farm. The power curve for the selected wind turbine is shown in Figure 3.1 [37]. 

The power characteristics of a wind turbine are defined in their associated power curve. 

These include cut-in and cut-out speeds, rated power, efficiency and power coefficient. 

The power curve can be used to translate a certain wind speed to the amount of power 

that can be generated, and considering the variability of wind speed in a certain region the 

capacity factor of the wind turbine can be calculated. Using the wind speed data for 

Pincher Creek and the Vestas power curve the annual energy yield and capacity factor 

can be calculated using the methodology outlined in Olateju and Kumar [38]. They are 

determined to be 7.4 MWh and 46.7%, respectively.  

 

 

 

 

 

 

 

 

 

There are three main types of electrolyzers, which are alkaline, proton exchange membrane and 

high-temperature electrolyzers.  The scale of hydrogen flow rate is one of the most important 

factors influencing the selection of a suitable type of electolyzer for the wind power-to-hydrogen 

plant application. This is affected by achieving economies of scale reducing the capital cost of 

hydrogen production with the increase in production capacity. Moreover, maximizing the 

capacity factor of an electrolyzer considerably decreases the unit cost of hydrogen production; 

however, the capacity factor is also affected by the relative size of the electrolyzer and the wind 

Figure 3.1 Average wind speed data for Pincher Creek and power curve for Vestas V90 wind turbine 
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turbine. Alkaline electrolyzers are determined to be the most suitable for the considered 

application for their scale of hydrogen flow rate, efficiencies, and relatively low capital costs.  

Olateju et al. [38, 39] conducted two studies on the techno-economic evaluation of electrolytic 

hydrogen production from wind energy for the upgrading operations of bitumen from oil sands. 

This system would have virtually no GHG emissions during operation. The wind-hydrogen plant 

they proposed has a capacity of 563 MW with the delivery of hydrogen to the bitumen upgraders 

via pipeline. They assessed several plant configurations to determine the optimum electrolyzer 

size and quantity. The optimal plant configuration they obtained consists of 80 electrolyzers with 

a production capacity of 760 Nm
3
 h-

1
 each and a hydrogen production cost of $8.43 kg

-1
.  

Running electrolyzers strictly from wind electricity can result in annual capacity factor as low as 

30%, and in low wind electricity seasons the capacity factor of electrolyzers can be considerably 

lower (10% of high season). This requires significant amounts of hydrogen storage. Reducing 

hydrogen storage by relying on other sources of electricity production (e.g. fossil fuels, nuclear, 

biomass, etc.) will result in a considerably low capacity factors for these resources as well [34].  

Hydropower 

Oil Sands operators are allowed to withdraw up to 441 million m3 of water from the Athabasca 

River annually, which is expected to increase by as much as 200% over the upcoming few years. 

In addition, there are no regulations on freshwater withdrawal by oil sands operators even during 

low-flow periods, which represent the highest threats for downstream ecosystems. Less than 5% 

of the withdrawn water is returned to the river, and most of it ends up in toxic tailing ponds. 

Annual runoff in the Athabasca River has considerably declined over the past few decades by up 

to 30%, and a further 30% reduction in runoff is projected to occur in the future with the 

sustained water withdrawal. If the projected decline in river flowrates persists, then future water 

supplies may be insufficient to support future development of oil sands operations and sustain 

ecosystems [40, 41]. The river reach between Fort McMurray and Lake Athabasca was 
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considered to have low potential for the development of hydropower applications due to several 

factors. These include flat gradient, low banks, wide valley, and the considerable water resources 

assigned for bitumen extraction operations. Even though hydropower has significant potential in 

reducing GHG emission, the potentially threatened river ecosystems hinders their development to 

support oil sands operations. Therefore, hydropower production is disregarded in the proposed 

optimization model [42, 43].  

Biomass 

Western Canada hosts significant amount of forest and agricultural residues remaining from 

logging operation by pulp and lumber industries. These residues are abandoned on roadsides 

where they rot and release GHG emissions to the atmosphere. Agricultural residues in Western 

Canada also include straw from wheat and barley crops. Utilizing these agricultural residues for 

energy production can allow achieving reductions in GHG emissions and reliance of fossil-fuel 

sources of energy. The pulp and timber industry is where most of whole-forest biomass is 

allocated, which makes it unavailable for bioenergy production. However, most of the residues 

remain unused, which can be allocated for energy production to support the oil sands operations. 

Utilizing biomass for the production of energy will reduce the intensity of GHG emissions 

associated with oil sands operations. The emissions from bioenergy production include emissions 

from the production processes, biomass transportation, plant construction, and energy commodity 

transportation [43, 44].  

Sarkar and Kumar [34] investigated the feasibility of incorporating biohydrogen production from 

forest and agricultural residues for upgrading of bitumen from oil sands. On average, there is 

approximately 6.48 million dry tonnes yr
-1

 of forest and agricultural residues for biohydrogen 

production, which can provide potential for reducing GHG emissions as well as dependence on 

hydrogen production from fossil fuels. They considered two types of gasifiers, which are the 

Battelle Columbus Laboratory (BCL) and the Gas Technology Institute gasifiers (GTI). The latter 
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is more preferable for large-scale biohydrogen production. The optimal plant sizes for BCL and 

GTI gasification technologies were determined to be approximately 3000 dry tonnes day
-1

 and 

6000 dry tonnes day
-1

, respectively. Both technologies were considered for the proposed energy 

optimization model [45]. Other options that were considered for the utilization of biomass as a 

source of fuel are for the production of SAGD steam using fluidized bed gasification boilers [46] 

and for power production [47]. On average, there is approximately 6.48 million dry tonnes yr
-1

 of 

forest and agricultural residues that could be utilized for producing energy for the oil sands 

industry [43]. The considered energy commodity producers that can utilize biomass as a fuel are 

biomass gasification boilers for the production of SAGD steam, biomass IGCC power plants, and 

biohydrogen gasification plants.  

3.2 Optimization model formulation 

 

The methodology used for the optimized integration of renewable energy technologies 

into the oil sands energy infrastructure is outline in Figure 3.2. After determining 

potentially viable renewable energy technologies that can provide adequate energy 

Figure 3.2 General structure of the renewable energy capacity expansion optimization model 
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supply, techno-economic data about different energy commodity producers are used as an 

input to the optimization model. The energy requirements of oil producers for steam, 

electricity, hot water, hydrogen and process fuels supplies from energy producers. 

Finally, the capacity expansion of conventional and renewable energy technologies is 

optimized using the developed model, which is the core of the methodology used to 

integrate renewable energy in the oil sands infrastructure.  

This section presents the renewable energy and capacity expansion optimization model. 

The proposed model is used to select the optimal set of oil producers and quantify their 

energy requirements. Integrated extraction (SAGD or mining)/upgrading and SAGD 

extraction are considered for the production of SCO and commercial bitumen, 

respectively. Their energy requirements are supplied by power plants, hydrogen plants 

and steam boilers. Renewable energy technologies were also considered for power, 

hydrogen, steam and hot water production. Natural gas is also used in upgrading 

operations, and diesel is used to fuel trucks and shovels for mining operations. The model 

imposes CO2 emission constraints on the energy infrastructure, which are met by 

integrating carbon capture and sequestration (CCS) technologies and producing energy 

through renewable systems. Figure 3.3 shows a schematic representation of the proposed 

energy optimization model. The optimization model is geared toward the minimization of 

the total cost (i.e. net present value) of producing energy, while being subject to energy 

commodity and oil producers’ capacity, environmental, energy requirements and supply 

constraints. 
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3.2.1 Energy commodity producers 

Energy commodity producers are included in the proposed model to provide the energy 

requirements for oil sands operations. The energy commodities considered include 

power, hydrogen, steam and hot water that can be produced by non-renewable and 

renewable energy technologies. The energy producers used to satisfy the energy 

requirements include boilers and geothermal energy for the production of SAGD steam, 

process steam and hot water. Power plants are used to satisfy the electricity requirements 

of oil sands extraction and bitumen upgrading processes. Hydrogen plants are used to 

satisfy the hydrogen demands of bitumen upgrading operations.  

 

Figure 3.3 Schematic presentation of the energy optimization model 
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Boilers 

The proposed model considers two types of boilers, which are conventional natural gas 

boilers and biomass-fired boilers. The boilers are also classified based on the type of 

steam they produce. A set of natural gas and biomass boilers are defined for the 

production SAGD steam, which produce 80% quality steam at 8000 kPa. The amount of 

SAGD steam (SSb) produced from natural gas and biomass boilers is calculated as 

follows [48]:  

𝑆𝑆𝑏 =  
𝐻𝐻𝑉𝑏 𝜂𝑏 

∆𝐻𝑆𝑆
𝑋𝐵𝑏 (3.1) 

where HHVb is the heating value (kJ/Nm
3
 NG or kJ/tonne biomass) of the fuel used by 

boiler type b, ∆𝐻𝑆𝑆 is the change in enthalpy (kJ/tonne steam), 𝜂𝑏 is the boiler 

efficiency, and XBb is the amount of fuel consumed (Nm
3
 of NG/h or tonne biomass/h).  

Another type of steam considered in the optimization model is process steam, which is 

generated at 6300 kPa and 500
o
C. Process steam is used in the mining extraction process 

of bitumen and in the upgrading process of bitumen to produce synthetic crude oil. The 

amount of process steam produced can be calculated as follows:  

𝑃𝑆𝑏 =  
𝐻𝐻𝑉𝑏 𝜂𝑏 %𝑆

∆𝐻𝑃𝑆
𝑋𝐵𝑏 (3.2) 

Hot water is also used in the mining extraction process of bitumen, and it is produced at 

35
o
C. In the proposed model it is assumed that hot water is coproduced in the boiler 

dedicated for the production of process steam. The amount of hot water produced can 

then be calculated as presented in Eq. 3.3, where %S is the percentage of boiler capacity 

dedicated for the production of process steam.  
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𝐻𝑊𝑏 =  
𝐻𝐻𝑉𝑏 𝜂𝑏 (1 − %𝑆)

∆𝐻𝐻𝑊
𝑋𝐵𝑏 (3.3) 

The number of new natural gas boilers (NBb) installed and existing boilers (ENBbe) must 

satisfy the total production requirements of SAGD steam (SSb), process steam (PSb) and 

hot water (HWb). The maximum capacity of each boiler is defined by the parameter 𝑆𝑏
𝑚𝑎𝑥 

(tonne steam/h). The capacity constraints for SAGD steam, process steam and hot water 

boilers are defined by Eqs. 3.4 – 3.6. 

𝑆𝑆𝑏
 ≤ (𝑁𝐵𝑏 + ∑ 𝐸𝑁𝐵𝑏𝑒 

𝑒𝜖𝐸𝑏

) 𝑆𝑏
𝑚𝑎𝑥   (3.4) 

𝑃𝑆𝑏
 ≤ (𝑁𝐵𝑏 + ∑ 𝐸𝑁𝐵𝑏𝑒 

𝑒𝜖𝐸𝑏

) 𝑆𝑏
𝑚𝑎𝑥 %𝑆 (3.5) 

𝐻𝑊𝑏
 ≤ (𝑁𝐵𝑏 + ∑ 𝐸𝑁𝐵𝑏𝑒

𝑒𝜖𝐸𝑏

) 𝑆𝑏
𝑚𝑎𝑥 (1 − %𝑆)

∆𝐻𝑃𝑆

∆𝐻𝐻𝑊
 (3.6) 

Power plants 

The conventional power generation plants considered in the energy infrastructure are 

natural gas combined cycle (NGCC), oxyfuel, integrated gasification combined cycle 

(IGCC), and supercritical pulverized coal (SCPC) [49, 50]. Natural gas is used as a 

feedstock in NGCC and oxyfuel plants. Coal is used as a feedstock in IGCC, SCPC and 

oxyfuel technologies. For each technology integration with carbon capture and 

sequestration was also considered. Biomass gasification was considered as a renewable 

option for the production of power [47].  
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The production from natural gas and coal power plants can be modeled as presented in 

Eq. 3.7 [51 – 53], given the heating value of fuel utilized (HHVp, NG: kJ/Nm
3
 or coal and 

biomass: kJ/kg) and the heating rate (HRp, kJ/kW) of power production technology p.  

The amount of power produced (PPp) can then be calculated based on the amount of fuel 

consumed (FPp, NG: Nm
3
/h or coal and biomass: kg/h) as follows: 

𝑃𝑃𝑝 =
𝐻𝐻𝑉𝑝

𝐻𝑅𝑃𝑝
𝐹𝑃𝑝        ∀𝑝 (3.7) 

The capacity constraint for each power production technology p is defined in Eq. 3.8. The 

amount of power produced (PPp) must be less than or equal to the maximum capacity of 

technology p (𝑃𝑃𝑝
𝑚𝑎𝑥) multiplied by the number of new (NPp) and existing (ENPpe) units 

selected by the optimization model.    

𝑃𝑃𝑝
 ≤ (𝑁𝑃𝑝 + ∑ 𝐸𝑁𝑃𝑝𝑒

𝑒𝜖𝐸𝑝

) 𝑃𝑃𝑝
𝑚𝑎𝑥        ∀𝑝 (3.8) 

Hydrogen plants 

Steam methane reforming and coal gasification [54 – 56] are the two conventional 

hydrogen production technologies considered within the energy infrastructure for the oil 

sands operations. Biomass gasification is also considered as a renewable hydrogen 

production technology. For each type of fossil-fuel based hydrogen production plant 

integration with carbon capture and sequestration was also considered. The amount of 

hydrogen produced by each technology can be modeled based on Eq. 3.9 [57, 58], given 

the heating value (HHVh, NG: kJ/Nm
3
 or coal and biomass: kJ/kg) of the fuel utilized and 

the heating rate required to produce one tonne of hydrogen (HRHh, kJ/tonne H2) for each 
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hydrogen production technology h. The amount of hydrogen produced can then be 

calculated based on the amount of fuel consumed (FHh, NG: Nm
3
/h or coal and biomass: 

kg/h). 

𝐻𝐻ℎ =
𝐻𝐻𝑉ℎ

𝐻𝑅𝐻ℎ
𝐹𝐻ℎ       ∀ℎ (3.9) 

Coal gasification hydrogen production plants are used to cogenerate electricity. Part of 

the synthetic gas that is produced from the gasification process is used to drive gas 

turbines for power generation. Cogeneration can be incorporated in the Oil Sands energy 

infrastructure as an option to increase energy efficiency. It is therefore necessary to 

quantify the net power (PHh) required or produced by these technologies, which is 

assumed to be a factor (𝐻𝑃ℎ
𝑐𝑜𝑔𝑒𝑛

, kWh/tonne H2) of the amount of hydrogen produced 

(HHh) by technology h. This can be presented as follows:  

𝑃𝐻ℎ = 𝐻𝑃ℎ
𝑐𝑜𝑔𝑒𝑛

𝐻𝐻ℎ    ∀ℎ (3.10) 

The capacity constraint for each hydrogen production technology h can be defined as 

illustrated in Eq. 3.11. The maximum capacity for technology h is defined by the 

parameter 𝐻𝐻ℎ
𝑚𝑎𝑥 (tonne H2/h). The total amount of hydrogen produced by technology h 

(HHh) must be satisfied by the total number of newly installed (NHh) and existing plants 

(ENHhe). 

𝐻𝐻ℎ
 ≤ (𝑁𝐻ℎ + ∑ 𝐸𝑁𝐻ℎ𝑒

𝑒𝜖𝐸ℎ

) 𝐻𝐻ℎ
𝑚𝑎𝑥    ∀ℎ (3.11) 
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Geothermal 

The geothermal heating system used in the proposed optimization model is based on the 

results obtained by Pathak et al. [33]. They determined that the optimum geothermal 

direct heating system is composed of three wells (one injector and two producers) with a 

horizontal spacing of 500 – 600 m. Compared to other systems this arrangement provided 

improved heat transfer due to the increase in contact between injected water and the hot 

dry rocks. Such a system is capable of providing a thermal power output as high as 29.4 

MW [33].  

The geothermal heating system is most suitable to provide the heating requirements for 

hot water production used in oil sands mining operations [33]. The amount of hot water 

produced from geothermal heating (GW, tonne/h) can be calculated as the ratio of the 

heating rate (HRGEO, MJ/h) of the geothermal system to the change in enthalpy of water 

(∆𝐻𝐻𝑊, MJ/tonne), and can be presented as follows: 

𝐺𝑊 =
𝐻𝑅𝐺𝐸𝑂

∆𝐻𝐻𝑊
 (3.12) 

The total amount of hot water production (GW) must be less than or equal to the 

maximum capacity of a geothermal system (HRGEO
max

/∆𝐻𝐻𝑊, MJ hr
-1

 / MJ tonne
-1

) 

multiplied by the number of new (NGEO) and existing (EGEOe) units selected by the 

optimization model. The capacity constraint can be presented as follows: 

𝐺𝑊 ≤ (𝑁𝐺𝐸𝑂 + ∑ 𝐸𝐺𝐸𝑂𝑒

𝑒𝜖𝐸𝐺𝐸𝑂

)
𝐻𝑅𝐺𝐸𝑂𝑚𝑎𝑥

∆𝐻𝐻𝑊
 (3.13) 
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Wind power-to-hydrogen via electrolysis 

Olateju et al. [38, 39] investigated the feasibility of integrating various electrolyzer 

capacities that can be integrated with wind power. According to their results the optimum 

size of the electrolyzer in the wind power-to-hydrogen plant is 3496 kW. This is the 

capacity of the electrolyzer considered in the proposed optimization model. The 

electrolyzer will utilize power from the Vestas V-90 1.8 MW turbines considered in this 

model, which is the type of turbine used in the Summerview wind farm in southern 

Alberta.  

Power production from the wind turbines must satisfy the power requirements of the 

electrolyzers. The power produced from a wind turbine can be estimated by the product 

of its annual power yield (AWP, kW) and its capacity factor (WTCF). These were 

estimated by the methodology outlined by Olateju et al. [38, 39] based on the wind data 

available the Summerview wind farm in Southern Alberta [36], and were determined to 

be 7400 kWh and 46.7%, respectively.  The total amount of power produced from the 

wind turbines can be estimated by multiplying the power yield of a turbine multiplied by 

the number of newly installed (NWT) and existing (EWTe) units selected by the 

optimization model, which can be represented as follows:  

𝑃𝑊𝑇 = (𝑁𝑊𝑇 + ∑ 𝐸𝑊𝑇𝑒

𝑒𝜖𝐸𝑊𝑇

)  𝑊𝑇𝐶𝐹 𝐴𝑊𝑃  (3.14) 

The yield of hydrogen from water electrolysis (EER
1

) is assumed to be 0.018 tonne 

H2/MWh [39]. The total amount of hydrogen produced from newly installed and existing 

electrolyzers can therefore be calculated as follows: 
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𝐻𝐻𝐸 = 𝑃𝑊𝑇 𝐸𝐸𝑅−1 (3.15) 

The number of electrolyzers selected depends on the maximum (𝐻𝐻𝑒𝑙𝑒𝑐𝑡
𝑚𝑎𝑥 ) allowable 

hydrogen flowrates produced. Eq. 3.16 presents the capacity constraint for newly 

installed and existing electrolyzers. NHEelect is an integer variable representing the 

number of new electrolyzers selected by the optimization model during a certain time 

period. ENHEelec is a binary variable that determines whether an existing electrolyzer is 

operational during the investigated time period (i.e. 1 if the electrolyzer is operational or 

0 otherwise).    

𝐻𝐻𝐸 ≤ (𝑁𝐻𝐸 + ∑ 𝐸𝑁𝐻𝐸𝑒

𝑒𝜖𝐸𝑒𝑙𝑒𝑐

) 𝐻𝐻𝑒𝑙𝑒𝑐𝑡
𝑚𝑎𝑥  (3.16) 

3.2.2 Energy requirements  

The calculation of energy demands for oil sands operations depends on the extraction 

method, as well as the upgrading route of bitumen to produce synthetic crude oil. The 

two extraction methods considered are oil sands mining and steam assisted gravity 

drainage (SAGD).  The bitumen produced from the extraction processes is then upgraded 

to synthetic crude oil. The production schemes incorporated in the optimization model 

are integrated mining/upgrading, integrated SAGD/upgrading, and standalone SAGD 

extraction for the production of commercial diluted bitumen. The upgrading route can be 

based on a thermocracking process (delayed coking and hydrotreatment), a 

hydrocracking process (LC-fining and hydrotreatment), or a combination of both (LC-

fining, fluid coking and hydrotreatment). All these stages require energy in the form of 

power, hydrogen, steam, heat and fuel (i.e. natural gas and diesel). The quantification of 
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these energy demands is explained in details in the following sections. The procedure 

used to model the energy requirements for the considered oil sands operations is based on 

the approach developed by Ordorica et al. [23]. 

Bitumen extraction 

Oil sands that are within 75 m from the surface are recoverable through mining 

operations. However, deeper deposits are only recoverable through in-situ extraction 

methods. In the proposed optimization model, it is assumed that only in-situ extraction 

methods are suitable for the production of commercial bitumen, whereas SCO can be 

produced through both integrated mining/upgrading and integrated SAGD/upgrading 

production schemes. The bitumen produced through mining operations typically contains 

high levels of solids and water, and therefore, it is usually upgraded to SCO on site 

instead of being marketed as it is unsuitable for shipping to conventional refineries.  

Mining extraction 

Mining extraction is a surface method used for the production of bitumen from oil sands. 

The energy commodities used in mining extraction operations are diesel, electricity, 

process steam and hot water. An energy resource that is extensively used in mining 

extraction is diesel. It is consumed by trucks and shovels used in mining operations. 

Diesel consumption depends on the specifications of the vehicles used and their number. 

A parameter is used to quantify the amount of diesel consumed per barrel of bitumen 

produced (MDC = 0.17 L diesel/bbl bitumen), which is based on a model of a typical 

Canadian Oil Sands mining operation [4]. The total amount of diesel consumed can be 

estimated from the amount of bitumen produced in the mining production routes as 
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illustrated in Eq. 3.17, where BITm is the amount of bitumen produced through integrated 

mining/upgrading route m, and IMBITm representing the selection of route m. 

𝑀𝐸𝐷𝐷 = 𝑀𝐷𝐶 (∑ 𝐼𝑀𝐵𝐼𝑇𝑚 𝐵𝐼𝑇𝑚

𝑚

) (3.17) 

The electricity demand for mining operations can be calculated as illustrated in Eq. 3.18. 

The power used is mostly required for driving pumps, and the pumping factors are 

adopted from Ordorica et al. [4], which were determine based on simulations conducted 

in Aspen Plus. The power demand for hydrotransport depends on the slurry rate in tonnes 

per year (SLm), the distance from the mine to the extraction plant in meters dm, and a 

pumping factor PFm (0.0787 kWh /tonne slurry/m) that indicates the power requirements 

necessary to transfer oil slurry into the following stage [4].  

The power demand for bitumen recovery is associated with the transportation of tailings 

and centrifugation stages. TPEm and TSEm are the tailings produced from primary and 

secondary extraction stages, respectively. The distance in meters between the extraction 

plant and the tailing ponds is defined by dTm. The electricity requirement is defined by 

the pumping factor PFTm (0.0016 kWh /tonne/m) [4]. The amount of diluted bitumen 

transferred to the centrifugation stages is defined as DBCm (m
3
/hr) and ECR is the power 

requirement for centrifugation (kWh /m
3
). 

𝑀𝐸𝑃𝐷 = ∑(𝑆𝐿𝑚𝑑𝑚𝑃𝐹𝑚 + (𝑇𝑃𝐸𝑚 + 𝑇𝑆𝐸𝑚)𝑑𝑇𝑚𝑃𝐹𝑇𝑚

𝑚

+ 𝐷𝐵𝐶𝑚𝐸𝐶𝑅) 𝐼𝑀𝐵𝐼𝑇𝑚  

(3.18) 

Process steam is required for conditioning and bitumen recovery stages. The amount of 

process steam can be calculated as presented in Eq. 3.19. MOm is the oil sands mining 
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rate (tonne oil sand/hr) and SCm is the steam requirement for the conditioning stage 

(0.036 tonne steam/tonne oil sand [59]). Some of the mining production routes m do not 

incorporate a conditioning stage, therefore, the parameter SCm takes the value of zero in 

these routes.  BMFm is the bitumen froth produced in primary extraction (tonne froth/hr) 

and SF is the steam requirement in bitumen extraction (0.04 tonne steam/tonne froth) 

[59].  

𝑀𝐸𝑃𝑆𝐷 = ∑(𝑆𝐶𝑚𝑀𝑂𝑚 + 𝑆𝐹 𝐵𝑀𝐹𝑚)  𝐼𝑀𝐵𝐼𝑇𝑚 

𝑚

 (3.19) 

The hot water demand for mining operations includes consumption in the conditioning, 

hydrotransport and bitumen recovery stages. Eq. 3.20 illustrates the calculation of the 

total water demand for mining operations. The water requirements for these stages are 

defined by the parameters WCm (0.333 tonne water/tonne oil sand and zero for route m 

that does not include a conditioning stage), WH (0.30 tonne water/tonne oil sand) and WR 

(0.41 tonne water/tonne oil sand extraction wash water requirement), respectively [59].   

𝑀𝐸𝑊𝐷 = ∑(𝑊𝐶𝑚 + 𝑊𝐻 + 𝑊𝑅) 𝑀𝑂𝑚

𝑚

 𝐼𝑀𝐵𝐼𝑇𝑚 (3.20) 

SAGD extraction 

The two energy commodities required for SAGD extraction operations are steam and 

electricity. The demand for SAGD steam (SSD) can be calculated as illustrated in Eq. 

3.21. The SOR is the steam to oil ratio parameter, which is assumed to be 2.4 tonnes of 

steam per tonne of bitumen extracted [60]. The amount of commercial crude bitumen 

extracted is presented by the term CB (tonne bitumen hr
1

), and BITs is the amount of 

bitumen considered for SCO production by each considered route (s).  
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𝑆𝐸𝑆𝐷 = 𝑆𝑂𝑅 (𝐶𝐵 + ∑ 𝐼𝑆𝐵𝐼𝑇𝑠 𝐵𝐼𝑇𝑠

𝑠

) (3.21) 

The power required for the production of commercial bitumen and bitumen used for the 

production of SCO through integrated SAGD/upgrading operations can be calculated as 

presented in Eq. 3.22. ECB is a parameter that represents the electricity requirement for 

the production of bitumen by SAGD extraction (3.1 kW/tonne bitumen) [61]. 

𝑆𝐸𝑃𝐷 =  𝐸𝐶𝐵 (𝐶𝐵 +  ∑ 𝐵𝐼𝑇𝑠 𝐼𝑆𝐵𝐼𝑇𝑠

𝑠

) (3.22) 

Upgrading operations 

Energy is required for the upgrading stages that are integrated with SAGD and mining 

extraction processes in order to convert the bitumen extracted to synthetic crude oil 

(SCO). There are three upgrading routes that are considered in the presented model, and 

each of them can be integrated with the mining or SAGD extraction methods. The three 

upgrading routes considered are: 1) LC-fining and hydrotreatment; 2) delayed coking and 

hydrotreatment; 3) LC-fining, fluid coking and hydrotreatment. LC-fining is a 

hydrocracking based process, and delayed coking and fluid coking are thermocracking 

based processes. There are significant amounts of energy required for these upgrading 

processes. The energy consumed is in the form of hydrogen, electricity, process steam, 

and process fuel (i.e. natural gas) for heating. 

The first step in all upgrading routes is the diluent recovery unit (DRU), which involves 

the recovery of the diluent (i.e. naphtha) used to dilute the crude bitumen to facilitate its 

transportation by pipelines. The products generated in the first stage are naphtha, light 
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gas oil (LGO), and atmospheric topped bitumen (ATB). The naptha is recycled, and the 

LGO and ATB are sent for further treatment to produce SCO. 

The LGO is transferred to the hydrotreatment unit for sulfur and nitrogen removal. The 

ATB is sent to the vacuum distillation unit (VDU), or is split between the VDU and the 

LC-finer unit. LGO and heavy gas oil (HGO) are products from the VDU, which are sent 

to the hydrotreatment unit. The second upgrading stage involves mixing the bottom 

products of the VDU, which is known as the vacuum topped bitumen (VTB), with any 

residual ATB generated from the DRU. The mixture is then sent to LC-finers or delayed 

cokers. In delayed cokers the heavy hydrocarbons are cracked to lighter compounds using 

thermal energy, whereas in LC-finers they are cracked using hydrogen. There are two 

types of LC-finers considered in the proposed model, which are low and high conversion. 

The products from LC-finers and delayed cokers, which include LGO, HGO and naphtha 

are treated with hydrogen for the removal of impurities. For the low conversion LC-

finers, the bottom products are further treated in fluid cokers to yield additional light 

hydrocarbons. The products remaining from the final upgrading stages are SCO from 

hydrotreatment and petcoke residue from LC-finers and cokers.  

The upgrading units (i.e. LC-finers, cokers and hydrotreatment) included in the proposed 

model are modeled according to the approaches proposed in [59 – 65]. The parameter 

representing the power, hydrogen and thermal (i.e. process steam and fuel) requirements 

of bitumen upgrading operations were obtained from these studies.  

Power demand 

The power demand for the upgrading stages can be quantified as presented in Eq. 3.23. 

VTBo represents the amount of vacuum topped bitumen sent to the LC-finers or delayed 
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cokers in the hydrocracking and thermocracking routes, respectively. For the upgrading 

route of LC-fining plus fluid coking an additional stream is sent to the LC-fining unit, 

which is a fraction of the atmospheric topped bitumen (ATBFo). For this upgrading route 

the bottom oil from the LC-fining is sent to the fluid coker, which is presented by the 

variable BFo. The power requirement of the LC-fining for each upgrading route is 

presented by the parameter ELo, which is 23.3 kWh/tonne, 99.8 kWh/tonne for the 

delayed coker and LC-finer, respectively [59, 61]. The power requirement of the fluid 

coker is presented by the parameter EDo, which is 36.3 kWh/tonne [62].  

𝑈𝑃𝐷 =  ∑ 𝐸𝐿𝑜(𝑉𝑇𝐵𝑜 +  𝐴𝑇𝐵𝐹𝑜) + 𝐸𝐷𝑜 𝐵𝐹𝑜

𝑜 𝜖 (𝑆∪𝑀)

 (3.23) 

Process steam demand 

Process steam is required for diluent recovery, vacuum distillation and fluid coking. The 

total process steam demand for bitumen upgrading can be calculated as illustrated in Eq. 

3.24. DR is the parameter that defines the fraction of diluent, and SRD (0.30 tonne 

steam/tonne feed) is the steam requirement for the DRU. The steam requirement in the 

VDU is presented by the parameter SRV (0.07 tonne steam/tonne feed) [61], and the ATB 

recovered from the DRU that is transferred to the VDU is presented by the variable ATBo 

(tonne/hr), which excludes the fraction of ATB that is sent to the low conversion LC-

finers (ATBFo, tonne/hr). The steam requirement for the fluid coker unit is SRF (0.308 

tonne steam/tonne feed [61]) and the amount of bottom oil from the LC-finer sent to the 

fluid coker is BFo (tonne/hr).  
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𝑈𝑃𝑆𝐷 = ∑ 𝐵𝐼𝑇𝑜

𝑜 𝜖 (𝑆∪𝑀)

(1 + 𝐷𝑅) 𝑆𝑅𝐷 + (𝐴𝑇𝐵𝑜 − 𝐴𝑇𝐵𝐹𝑜) 𝑆𝑅𝑉 + 𝐵𝐹𝑜 𝑆𝑅𝐹 (3.24) 

Hydrogen demand 

The total hydrogen demand for the upgrading stages in integrated SAGD/upgrading and 

mining/upgrading operations is calculated as illustrated in Eq. 3.25. Hydrogen is 

consumed in two stages, which are hydrocracking and hydrotreatment. The hydrogen 

requirement for hydrocracking is defined by the parameter HRUo. For the hydrocracking 

based route the hydrogen requirements for the LC-finer is 0.020 kg H2/tonne feed [54 – 

56]. For the LC-finer plus fluid coking upgrading route, the hydrogen requirement of the 

LC-finer is 0.014 kg H2/tonne feed [59]. The hydrogen requirements for the 

hydrotreatment of naphtha, LGO and HGO are presented by the parameters HN (0.0185 

tonne H2/tonne naphtha), HL (0.0186 tonne H2/tonne LGO) and HHG (0.0175 tonne 

H2/tonne HGO), respectively [52, 54]. 

𝑈𝐻𝐷 =  ∑ 𝐻𝑅𝑈𝑜

𝑜 𝜖 (𝑆∪𝑀)

(𝑉𝑇𝐵𝑜 + 𝐴𝑇𝐵𝐹𝑜) + 𝐻𝑁 𝑁𝑜 + 𝐻𝐿𝐺 𝐿𝐺𝑂𝑜 + 𝐻𝐻𝐺 𝐻𝐺𝑂𝑜 (3.25) 

 Fuel demand 

The total requirement of natural gas for oil sands upgrading operations can be calculated 

as shown in Eq. 3.26. Natural gas is required for operating both hydrocracking (LC-

fining) and thermocracking (delayed coking) based upgrading routes. The natural gas fuel 

requirements for LC-fining and delayed coking is presented by the parameter FRo (LC-

fining: 0.562 GJ/tonne; Delayed coking: 0.911 GJ/tonne) [62], where o is the sub index 

representing the integrated mining or SAGD/upgrading route. HNG represents the 

heating value of natural gas (0.038 GJ/Nm
3
). 



48 
 

𝑈𝐹𝐷 =
1

𝐻𝑁𝐺
∑ (𝑉𝑇𝐵𝑜 + 𝐴𝑇𝐵𝐹𝑜)

𝑜 𝜖 (𝑆∪𝑀)

 𝐹𝑅𝑜 (3.26) 

Additional energy requirements 

The hydrogen production technologies have electricity requirements to drive pumps and 

compressors. Power is required for the operation of steam methane reforming plants that 

are utilized for hydrogen production. This energy requirement (SMPRD) can be 

calculated as illustrated in Eq. 3.27, where ESMR represent the electricity requirement 

(kW/tonne H2).  

𝑆𝑀𝑅𝑃𝐷 =  𝐻𝐻𝑆𝑀𝑅𝐸𝑆𝑀𝑅 (3.27) 

Power consumption takes place during the transportation of CO2 to sequestration sites, 

which is calculated as illustrated in Eq. 3.28. Ci (tonne CO2/hr) represents the amount of 

CO2 captured in power and hydrogen plants, ECCi (1.34 kWh/tonne CO2/km) is the 

electricity requirement for compressing CO2 for transport, and L (km) is the length of the 

CO2 pipeline connecting Fort McMurray and the depleted oil fields located near 

Edmonton, which is approximately 600km [6]. The sub index i represents the set of 

energy producers and commodities that are incorporated in the oil sands optimization 

model, which include power plants, hydrogen plants, steam and hot water producers, 

diesel and natural gas. 

𝐶𝐶𝑃𝐷 =  ∑ 𝐶𝑖𝐸𝐶𝐶𝑖𝐿

𝑖∈ (𝑃∪𝐻)

 (3.28) 
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3.2.3 Environmental restrictions 

The CO2 emissions associated with energy commodity producers is determined by 

multiplying the CO2 emission factor (Table 3.3) of each producer by its total production 

capacity. As shown in Eq. 3.29 the total CO2 emissions (tonne CO2/hr) associated with 

energy production for the oil sands industry can be calculated as the sum of emissions of 

energy producers (CO2ei). 

𝐶𝑂2𝑇 = ∑ 𝐶𝑂2𝑒𝑖

𝑖

 (3.29) 

The CO2 emission constraint incorporated in the model is shown in Eq. 3.30. The CO2 

emission target is set by the right hand side of the inequality equation. CO2E (tonne/hr) is 

an input parameter to the model the maximum allowable emission level for a certain 

operational year, and the %RED is a parameter that indicates the percentage emissions 

reduction that is required to be achieved.  

𝐶𝑂2𝑇 ≤ 𝐶𝑂2𝐸 (1 − %𝑅𝐸𝐷) (3.30) 

3.2.4 Objective function 

The NPV is used to facilitate incorporation of capacity expansion decisions. This 

facilitates the comparison between existing and newly established facilities. The annuity 

costs (A) are converted to NPV by using the following general formula: 

𝑁𝑃𝑉 = 𝐴 𝑃𝑉𝐹 (3.31) 

The present value annuity factor (PVF) is defined by the following formula: 

𝑃𝑉𝐹 =  
1 − (1 + 𝑖)−(𝐿−∆𝑇)

𝑖
 (3.32) 
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where i is the annual interest rate, which is assumed to be 15%. L is the life of plant for 

which the NPV is calculated. T is the time difference between the current year of 

operation and the year at which the plant was established.  

The individual cost of each commodity is calculated by multiplying the number of newly 

established and existing units of each commodity producer by the capital and operating 

cost factors associated with each technology. The capital cost factors represent the 

amortized investment cost over the plants operating lives. The total cost of commodity 

production also depends on the fuel (i.e. natural gas, coal, etc.) consumption and the price 

of fuel. The production costs of power, hydrogen, steam and hot water are represented as 

follows.  

Power cost 

The net present value of the cost of power production (PC, $) can be calculated as 

illustrated in Eq. 3.33. NPp is an integer variable that indicates the number of new plants 

installed from each power production technology. EPpe is a binary variable that indicates 

whether or not an existing plant is operational during an investigated year. CCPp ($/yr) 

and OMPp ($/yr) are the amortized capital cost and operating and maintenance cost 

factors, respectively, for each power production technology p. FPp (GJ/hr) is the amount 

of fuel consumed by production technology p, and PFp ($/GJ) is the associated fuel price.  

𝑃𝐶 = ∑ 𝑁𝑃𝑝(𝐶𝐶𝑃𝑝 + 𝑂𝑀𝑃𝑝)

𝑝

 𝑃𝑉𝐹𝑝 + ∑ ∑ 𝐸𝑃𝑝𝑒(𝐶𝐶𝑃𝑝 + 𝑂𝑀𝑃𝑝)

𝑒𝜖𝐸𝑝

𝐸𝑃𝑉𝐹𝑝𝑒

𝑝

+ 𝐹𝑃𝑝 𝑃𝐹𝑝 𝑡 𝑃𝑉𝐹𝑝  

(3.33) 
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Hydrogen cost  

The cost of hydrogen production (HC, $) can be determined as defined in Eq. 3.34. NHh 

and EHhe are integer and binary variables that indicate the number of new hydrogen 

plants to be installed and existing plants operating in the investigated year, respectively. 

The capital cost hydrogen plants is represented by the parameter CCHh ($/yr) and the 

operating and maintenance cost by OMHh ($/yr). Fuel consumption by each hydrogen 

production technology is presented by the variable FHh (GJ/hr) and the associated fuel 

cost is accounted for by the parameter PFh ($/GJ). 

𝐻𝐶 =

∑ 𝑁𝐻ℎ(𝐶𝐶𝐻ℎ + 𝑂𝑀𝐻ℎ) 𝑃𝑉𝐹ℎℎ  + ∑ ∑ 𝐸𝐻ℎ𝑒(𝐶𝐶𝐻ℎ + 𝑂𝑀𝐻ℎ)𝑒𝜖𝐸ℎℎ 𝐸𝑃𝑉𝐹ℎ𝑒 +

𝐹𝐻ℎ𝑃𝐹ℎ 𝑡 𝑃𝑉𝐹ℎ + 𝑁𝐻𝐸(𝐶𝐶𝐻𝐸 + 𝑂𝑀𝐻𝐸) 𝑃𝑉𝐹𝑒𝑙𝑒𝑐 + ∑ 𝐸𝐻𝐸𝑒(𝐶𝐶𝐻𝐸 +𝑒𝜖𝐸𝑒𝑙𝑒𝑐

𝑂𝑀𝐻𝐸) 𝐸𝑃𝑉𝐹𝑒𝑙𝑒𝑐 

(3.34) 

Steam and hot water cost 

The cost of producing SAGD and process steam is calculated as illustrated in Eq. 3.35. 

NBb is the integer variable representing the number of boiler of type b (i.e. natural gas or 

biomass fueled) producing SAGD extraction and process steam. ENBbe is the binary 

variable representing the operation of an existing boiler during an investigated year. 

CCBb and OMBb are the associated capital and operating cost factors for each type of 

boiler. XSBb is the amount of fuel consumed by newly installed and existing boilers, and 

PFBb is the associated fuel price.  
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𝑆𝐶 = ∑ 𝑁𝐵𝑏(𝐶𝐶𝐵𝑏 + 𝑂𝑀𝐵𝑏)𝑃𝑉𝐹𝑏 

𝑏

+ ∑ ∑ 𝐸𝑁𝐵𝑏𝑒(𝐶𝐶𝐵𝑏 + 𝑂𝑀𝐵𝑏)

𝑒𝜖𝐸𝑏

𝐸𝑃𝑉𝐹𝑏𝑒

𝑏

+ 𝑋𝑆𝐵𝑏𝑃𝐹𝐵𝑏 𝑡 𝑃𝑉𝐹𝑏 

(3.35) 

Process hot water is also produced using geothermal heating. The cost of production 

associated with this technology is estimated as illustrated in Eq. 3.36, where the capital 

(CCGEO) and operating (OMGEO) cost factors account for the cost of drilling, 

sustaining the flow rate of water for a period of 10 years, and providing water at 60
o
C and 

a flow rate of 50 L/s [33]. 

𝐻𝑊𝐺𝐶 = 𝑁𝐺𝐸𝑂(𝐶𝐶𝐺𝐸𝑂 + 𝑂𝑀𝐺𝐸𝑂) 𝑃𝑉𝐹𝑔

+ ∑ 𝐸𝐺𝐸𝑂𝑒(𝐶𝐶𝐺𝐸𝑂 + 𝑂𝑀𝐺𝐸𝑂)

𝑒𝜖𝐸𝐺𝐸𝑂

𝐸𝑃𝑉𝐹𝑔𝑒 
(3.36) 

Extraction fuel (Natural gas and Diesel) cost 

Diesel and natural gas are consumed in bitumen extraction operations. Diesel is 

consumed by the trucking and shoveling fleet used in oil sands mining operations and its 

total cost is calculated by multiplying the total diesel requirements MEDD (L/hr) by the 

price of diesel (PD, $/L). Natural gas is consumed in hydrocracking and thermocracking 

upgrading operations for SCO production. Total natural gas requirement for integrated 

SAGD/upgrading and mining/upgrading operations is expressed by the variable UFD 

(GJ/hr), respectively. PNG is the price of natural gas ($/GJ). 

𝐸𝐹𝐶 = [𝑀𝐸𝐷𝐷 𝑃𝐷 +  𝑈𝐹𝐷 𝑃𝑁𝐺] 𝑡 𝑃𝑉𝐹𝑓 (3.37) 
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Carbon transportation and sequestration cost 

The transportation and sequestration cost of captured CO2 from power and hydrogen 

plants is calculated as illustrated in Eq. 3.38. TC ($/tonne/km) and SC ($/tonne) are the 

unit transportation and sequestration costs of CO2, respectively. CSCPp and CSCHh are 

the amounts of CO2 captured by power and hydrogen plants (tonne/hr)), respectively.  

𝐶𝐶𝑆𝐶 = (𝑇𝐶 𝐿 + 𝑆𝐶) (∑ 𝐶𝑆𝐶𝑃𝑝

𝑝

+ ∑ 𝐶𝑆𝐶𝐻ℎ

ℎ

) 𝑃𝑉𝐹𝑐𝑐𝑠 (3.38) 

The formulated optimization model is directed towards the minimization of the total cost 

of energy production. It incorporates the individual costs of producing each energy 

commodity (i.e. power, hydrogen, SAGD steam, process steam, hot water, and fuel). The 

objective function also incorporates the carbon capture and sequestration costs. The 

optimization model searches for the set of energy commodity producers, as well as 

bitumen and SCO producers that minimize the total cost of oil sands operations while 

being subject to CO2 emission constraints. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑁𝑃𝑉 = 𝑃𝐶 + 𝐻𝐶 + 𝑆𝐶 + 𝐻𝑊𝐺𝐶 + 𝐸𝐹𝐶 + 𝐶𝐶𝑆𝐶 (3.39) 

3.2.5 Energy supply  

The total energy commodity requirements for oil sands extraction and upgrading 

operations must be satisfied by the supply from the energy producers. The supply 

constraints defined in Eq. 3.40 – 3.44 specify that the total amounts energy commodities 

produced from newly established and existing energy producers must be greater than or 

equal to that required by oil sands operations.  
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∑ 𝑃𝑃𝑝

𝑝

+ ∑ 𝑃𝐻ℎ

ℎ𝜖𝐻𝐶𝑂

≥ 𝑀𝐸𝑃𝐷 + 𝑆𝐸𝑃𝐷 +  𝑈𝑃𝐷 + 𝑆𝑀𝑅𝑃𝐷 + 𝐶𝐶𝑃𝐷 (3.40) 

∑ 𝐻𝐻ℎ

ℎ

+ 𝐻𝐻𝐸 ≥ 𝑈𝐻𝐷 (3.41) 

∑ 𝑆𝑆𝑏

𝑏

≥ 𝑆𝐸𝑆𝐷 (3.42) 

∑ 𝑃𝑆𝑏

𝑏

≥ 𝑀𝐸𝑃𝑆𝐷 + 𝑈𝑃𝑆𝐷 (3.43) 

∑ 𝐻𝑊𝑏

𝑏

+ 𝐺𝑊 ≥ 𝑀𝑊𝐷 (3.44) 

3.3 Case Study 

The developed renewable energy capacity expansion optimization model for the oil sands 

industry was applied to consecutive operational periods (i.e. 2010, 2015, 2020 and 2025). 

The results of one operational period was used as an input for the following periods, for 

which capacity expansion decisions were optimized. Data for oil sands production levels 

(i.e. bitumen and SCO), producers’ capacities, techno-economic data of energy 

producers, fuel prices, and environmental regulations for these operational years are 

readily available in the literature. Different scenarios were considered to illustrate the 

benefits of incorporating renewable energy technologies and capacity expansion 

decisions in the oil sands energy optimization model. The sequential approach is applied, 

in which the results of one operational year are used as an input for the following 

investigated period, and was investigated with and without the incorporation of 

renewable energy technologies [66, 67]. In the sequential approach the existence of a mix 

of energy infrastructure influences investment decisions in the following investigated 
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period. The preference of the model to incorporate new technologies (e.g. renewable 

energy) in the new energy mix is dependent on the technologies in the existing 

infrastructure. The production capacity of oil producers is also affected by the energy 

production technologies included. An increment of five years is considered between the 

investigated operational years, which is used by decision makers to review investment 

decision in the oil sands industry [68].  

Table 3.2 lists the oil and energy producers incorporated in the model. The oil producers 

included in the investigated case study depend on the oil sands extraction method and 

upgrading route. The two considered extraction methods are oil sands mining and in-situ 

SAGD. Each extraction method can be possibly integrated with any of the three 

considered upgrading routes. The upgrading routes can be based on hydrocracking, 

thermocracking, or a combination of both. The technology considered for the 

hydrocracking only route is high conversion LC-fining. Delayed coking was the 

technology considered for the thermocracking upgrading route. Low-conversion LCF 

plus fluid coking was considered for the combined hydrocracking and thermocracking. 

Hydrotreatment is a required stage in all upgrading routes. The energy producers 

incorporated include technologies for the production of SAGD steam, process steam, hot 

water, hydrogen, and power.   

Table 3.2 Oil and energy producers considered in the optimization model 

Oil producers 

MP1 – Mined bitumen + Conditioning upgraded by LCF + FC + HT  

MP2 – Mined bitumen upgraded by LCF + FC + HT 

MP3 – Mined bitumen upgraded by DC + HT 

MP4 – Mined bitumen upgraded by LCF + HT 

SP1 – SAGD bitumen upgraded by LCF + FC + HT 

SP2 – SAGD bitumen upgraded by DC + HT 

SP3 – SAGD bitumen upgraded by LCF + HT 
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SAGD commercial diluted bitumen production 

Energy producers 

Steam and hot water producers 

S1 – NG at 6300 kPa and 500oC steam w/o CO2 capture [42] 

S2 – NG 80% steam at 8000 kPa w/o CO2 capture [42] 

S3 – Biomass Fluidized Bed Gasification Steam Plant 1250 psig steam [37] 

S4 – Geothermal System for Direct Heating of Water  [24] 

Power producers 

P1 – NGCC w/o CO2 capture [41] 

P2 – Supercritical coal w/o CO2 capture [41] 

P3 – IGCC w/o CO2 capture [40] 

P4 – IGCC with 88% CO2 capture via Selexol [40] 

P5 – IGCC with 88% CO2 + H2S co-capture via Selexol [40] 

P6 – NGCC with 90% CO2 capture via MEA [41] 

P7 – NG Oxyfuel with CO2 capture [41] 

P8 – Coal Oxyfuel with CO2 capture [41] 

P9 – Pulverized coal with 90% capture via Selexol [41] 

P10 – Wind turbines Vestas V90 1.8MW [29] 

P11 – Biomass IGCC plant [38] 

Hydrogen producers 

H1 – SMR w/o CO2 capture [45, 46] 

H2 – SMR with 90% CO2 capture via MEA [47] 

H3 – Coal gasification w/o CO2 capture [45, 46] 

H4 – Coal gasification with 90% CO2 capture via Selexol [47] 

H5 – Coal gasification with 90% CO2 + H2S co-capture via Selexol [47] 

H6 – Electrolyzer Indutstrie Haute Technologie (IHT) Type S-556 [29, 30] 

H7 – BCL Biomass gasification [34] 

H8 – GTI Biomass gasification [34] 

 

The individual cost parameters, fuel rates and emission factors for each energy 

commodity producer are summarized in Table 3.3, and other key economic parameter 

required for the model are summarized in Table 3.4.  

Table 3.3 Techno-economic parameters of energy producers 

Technology Capacity Capital Cost O&M Cost 

Factor 

Fuel Rate Emission factor Reference 

Boiler Tonne hr-1 $ / tonne hr-1 % Capital Cost MJ tonne-1 tonne CO2 Nm-3 NG  

S1 340 376,576 0.006 3,415 1.72e-3 [60] 

S2 340 376,576 0.006 2,470 1.72e-3 [60] 

S3 117 336,410 0.0323 2,469 7.13e-5  [37] 

S4 920 $922 kW-1 0.06 115 0 [24] 

Power kW $ kW-1 % Capital Cost MJ kWh-1 Tonne CO2 kWh-1  

P1 507,000 570 0.018 7.17 3.67e-4 [41] 
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P2 524,000 1,230 0.038 9.16 8.11e-4 [41] 

P3 539,000 1,760 0.026 8.76 8.00e-4 [40] 

P4 448,000 2,400 0.025 11.06 1.31e-4 [40] 

P5 513,000 1,890 0.026 10.17 1.18e-4 [40] 

P6 432,000 930 0.037 8.41 4.3e-5 [41] 

P7 492,000 1,980 0.049 12.04 1.07e-4 [41] 

P8 440,000 1,250 0.086 7.70 1.20e-5 [41] 

P9 532,000 1,950 0.076 9.72 8.4e-5 [41] 

P10 1,180 785 0.25 0 0 [29] 

P11 50,000 3,542 0.034 13.2 4.6e-5 [38] 

Hydrogen Tonne H2 h
-1 M$/tonne H2 

h-1 

% Capital cost MJ tonne-1 H2 Tonne CO2 tonne-1 H2  

H1 6.25 1,113 0.060 174,900 8.992 [45, 46] 

H2 6.25 1,776 0.060 204,200 1.050 [47] 

H3 32.09 2,378 0.036 209,000 18.732 [45, 46] 

H4 32.09 2,507 0.036 209,000 1.502 [47] 

H5 32.09 234 0.036 209,000 0.810 [47] 

H6 760  145,220  0.000117 4.8  1.05 [29, 30] 

H7 10.5 3,079 0.096 0.0834  1.355 [34] 

H8 20.85 4,578 0.0434 0.0834  1.355 [34] 

 

Table 3.4 Key techno-economic parameters [14 – 18] 

Parameter Value 

Boiler feed water cost ($ tonne-1) 1.5 

Coal cost ($ GJ-1) 3.0 

Diesel cost ($ L-1) 1.5 

Natural gas cost ($ GJ-1) 7.3 – 9.6 

CO2 transport cost ($ 100km tonne-1) 1.4 

CO2 injection cost ($ tonne-1) 8.0 

Natural gas heating value (MJ Nm-3) 38.05 

Coal heating value (MJ kg-1) 24.05 

Biomass heating value (MJ kg-1) 20.5 

Biomass availability (tonne hr-1) 740 

Annual operating hours (hours yr-1) 8,760 

Boiler’s capacity for process steam (%) 0.82 

CO2 emission base case (tonne hr-1) 9,195 

 

The input data dependent on the specific operation period investigated include total 

bitumen and synthetic crude oil production levels, fuel prices, and emission targets. The 

values for these inputs for the operational periods investigated are summarized in Table 

3.5.  
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Table 3.5 Data for the investigated periods [61, 62] 

 2010 2015 2020 2025 

SCO production (bbl d-1) 570,000 943,471 1,490,000 1,900,000 

Bitumen production (bbl d-1) 400,000 566,082 1,290,000 1,480,000 

Natural gas price ($ GJ-1) 7.3 8.0 9.0 9.6 

CO2 emission target (%) 0 15 30 52 

 

3.4 Results and Discussion 

A stepwise capacity expansion optimization for the Alberta oil sands energy 

infrastructure has been conducted for a time frame of ten years (i.e. 2015 to 2025). For 

the planning steps 2015, 2020 and 2025, the capacity expansion of the energy 

infrastructure was optimized. Two scenarios were considered for the planning period 

investigated. The first scenario involved the inclusion of renewable technologies in the 

energy infrastructure, while the second only incorporated conventional fossil fuel based 

technologies.  The input data to the optimization model include the total production rates 

of bitumen and synthetic crude oil, techno-economic data of existing and new energy 

production technologies, CO2 emission constraints, and fuel prices (i.e. natural gas, coal 

and diesel). The results for the year 2010 were used as the initial energy infrastructure 

and used as an input for the following year. This was assumed to be the existing energy 

production capacity. The model simultaneously selects the optimal set of SCO and 

bitumen producers, quantifies their energy requirements, and selects a set of energy 

commodity producers that will meet the energy demands at minimum costs while 

complying with the imposed CO2 emission constraints. In the capacity expansion model 

the results of one planning step was used as input for the next planning step. This data 

includes the number of units and techno-economic data of energy production plants 

installed (i.e. existing technologies). It also includes the production capacities of oil 
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producers, which is used as a lower bound for the production capacities of producers in 

the following period.  

Table 3.6 shows a summary of the total production volumes of mined and SAGD 

produced synthetic crude oil and the total energy requirements over the planning period 

(2015 – 2025) for both the renewable and conventional energy scenarios. For the 

renewable energy scenario the total integrated SAGD upgrading capacity is higher for the 

entire planning period in comparison to the scenario in which only fossil fuel-based 

technologies are considered.  On the other hand, integrated mining upgrading capacity 

constitute a higher share of total synthetic crude oil production in the conventional energy 

scenario. The total production of commercial bitumen is achieved through only SAGD 

extraction as its production route in both the renewable and conventional energy 

scenarios. The total requirements for each energy commodity depends on the total 

production capacities of integrated mining/upgrading, integrated SAGD/upgrading and 

SAGD extraction for commercial bitumen. For example, the higher production level of 

integrated SAGD/upgrading for the renewable energy scenario results in a higher amount 

of SAGD steam requirements over the planning in comparison to the conventional energy 

scenario. Similarly the requirement of hot water, process steam and diesel, which are 

extensively used in mining extraction, are higher for the conventional energy scenario 

due to the higher production capacity of integrated mining/upgrading.  

Table 3.6 Total production from mining and SAGD oil producers, and their energy 

requirements for both the renewable and conventional energy scenarios over the planning 

period (2015 – 2025) 
  Renewable Conventional 

 
2015 2020 2025 2015 2020 2025** 

Total mined SCO (TB d-1) 500 691 910 500 794 965 

Total SAGD SCO (TB d-1) 443 799 990 443 696 935 

Total SCO (TB d-1) 943 1,490 1,900 943 1,490 1,900 
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Total bitumen (TB d-1) 567 1,290 1,480 567 1,290 1,480 

Energy demand       

    Power (MWh) 817 1,215 1,450 817 1,323 1,687 

    SAGD steam (kt h-1) 16 36 38.9 16 33 37.7 

    Water (kt h-1) 24 29 42 24 31 44 

    Process steam (kt h-1) 3.8 5.3 7.4 3.8 5.6 7.9 

    Diesel (kL h-1) 37 42 66.8 37 48 67.9 

    Hydrogen (t h-1) 149 253 305 149 235 323 

    Natural gas  (Mm3 h-1) 1.1 2.3 3.1 1.5 2.5 2.9 

    Coal (kt h-1) 1.3 2.4 2.0 1.3 2.2 2.8 

    Biomass (kt h-1) 0.74 1.5 2.2 NA 

**The results shown for this scenario are those obtained for the maximum emission 

reduction target (37%) achieved by the conventional energy mix. This value is 

lower than the emission reduction target required for the year 2025 (52%) 

The requirements for each energy commodity also depend on the type of upgrading route 

integrated with the extraction method. For integrated mining/upgrading four production 

routes have been considered, which include a combination of thermal and hydrogen 

cracking (MP1), a combination of thermal and hydrocracking and an additional 

conditioning stage for extraction (MP2), thermal cracking (MP3), and hydrocracking 

(MP4). For integrated SAGD/upgrading three upgrading routes were also considered, 

which include a combination of thermal and hydrogen cracking (SP1), thermal cracking 

(SP2), and hydrogen cracking (SP3). Figure 3.4 shows the distribution of synthetic crude 

oil production among the considered production routes over the planning period. The 

upgrading routes that contribute the highest share (up to 75%) of synthetic crude oil 

production are based on hydrocracking (MP2, MP4 and SP3). MP4 and SP3 were 

selected among the most suitable integrated mining/upgrading and SAGD/upgrading 

SCO producers, because they are based on the highest conversion hydrocracking 

production routes, which yield higher SCO conversion compared to thermocracking 

processes and other hydrocracking routes. The hydrocracking production routes are 

characterized by having higher conversion of bitumen to synthetic crude oil compared to 
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thermocracking-based bitumen upgrading routes. Hydrocracking is a process that 

involves the utilization of hydrogen to breakdown large molecules in the heavy oil 

feedstock to smaller molecules, whereas thermocracking relies on the utilization of heat 

for the cracking process, which is mostly produced from burning natural gas (i.e. process 

fuel).   

 

 

 

 

 

 

 

 

 

Hydrogen can be inexpensively produced through coal gasification plants. Coal is an 

economical fuel and is considerably lower in cost compared to natural gas (Table 4). 

However, burning coal results in significantly higher CO2 emissions compared to natural 

gas due to its higher carbon content. This tradeoff affects the selection of oil producers 

over the planning period, in which the emission reduction target becomes more stringent 

over the years, which in return requires cleaner methods of energy production. This can 

be a contributing factor to the reduction in the percentage share of some of the 

hydrocracking-based oil producers (i.e. MP4) over the planning period as shown in 

Figure 3.4. Even though the share of some hydrocracking upgrading routes in the total 

production of synthetic crude oil is decreasing, their total share in production is 

Figure 3.4 Distribution of oil proudction among mining and SAGD producers for 

the renewable scenario over the planning period (2015 – 2025) 
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considerably high. The integrated mining/upgrading routes MP1 and MP2 both have the 

same upgrading processes; however, MP1 incorporates an additional bitumen treatment 

stage during the extraction process, which is bitumen conditioning. This step requires the 

utilization of additional process steam and hot water. The additional requirements of 

energy commodities by this bitumen processing route reduces the likelihood of its 

selection by the optimization model.   

 

 

 

 

 

 

 

 

 

Figure 3.5 shows the distribution of the percentage share of synthetic crude oil production 

among the oil producers for the conventional energy scenario. It can be observed that the 

distribution among the synthetic crude oil producers is similar to that obtained for the 

renewable energy scenario. The only difference that can be observed is in the total share 

of integrated mining/upgrading routes (MP1 – MP4) relative to integrated 

SAGD/upgrading (SP1 – SP3). The share of mining producers in the conventional 

scenario is higher than that in the renewable scenario. Moreover, the percentage increase 

in mining producers (MP2) is higher compared to that of SAGD producers (SP3). This is 

due to the significant steam requirements by SAGD producers, which can only be 

Figure 3.5 Distribution of oil proudction among mining and SAGD producers for 

the conventional scenario over the planning period (2015 – 2025) 
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produced by natural gas boilers in the conventional scenario. SAGD producers’ 

consumption of natural gas is highly intensive compared to mining producers, which 

results in higher cost of energy production and CO2 emissions. The second factor 

affecting the selection of oil producers is the type of upgrading route, which can be based 

on hydrocracking and thermocracking processes. Similar to the renewable energy 

scenario the largest share of synthetic crude oil production is contributed to by 

hydrocracking-based upgrading routes (MP2, MP4 and SP3). This is due to the 

availability of coal gasification in the optimization model, which results in hydrogen 

production being more economically attractive than utilizing natural gas for heat 

production in thermocracking upgrading processes.   

The highest increase in the share of oil producers in the production capacity is attributed 

to mining production routes. The production of SCO through integrated 

mining/upgrading technologies represent a more preferable route compared to SAGD 

operations. This is due to the significant steam requirements of SAGD operations, which 

is mostly satisfied through the use of natural gas boilers. Another reason for favoring 

mining operations is due to the high steam to oil ratio (SOR) that is based on current 

SAGD operations, which is 2.4 tonne steam/tonne bitumen. However, with technological 

advances the SOR for SAGD extraction is expected to considerably decrease in the 

future. This is also evident in the comparison between renewable and non-renewable 

energy production scenarios. In the case were natural gas boilers are the only source of 

SAGD steam, the production from mining operations is preferred due to the lower 

process fuel requirements. This trend is likely to continue in the short-term future despite 

the fact that 80% of bitumen deposits are only recoverable through in-situ methods, 
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which are expected to contribute significantly to oil sands production given the expected 

technological advancements that will lead them to become the primary extraction 

processes. Even though SAGD extraction methods are expected to dominate oil sands 

operations in the future, a significant portion of their production is expected to be 

marketed as commercial bitumen instead of being upgraded to SCO. This is because 

crude bitumen produced through mining operations consists of significant amounts of 

water and suspended solids making its commercialization unfavorable. An increase in the 

production capacity of mining operations was accompanied by a significant increase in 

hot water demand, which can be attained through geothermal direct water heating that has 

a considerably lower carbon foot print compared to natural gas boilers.  

It is important to note that the change in the environmental constraint affects the 

distribution of oil producers. As the environmental constraints become more stringent, 

the optimization model will require the selection of energy producers that minimize 

energy production costs for the imposed constraints. This is in agreement with data 

reported in the literature, which in indicated that in-situ production results in emissions 

that are on average 2.5 times higher than those associated with mining operations. 

Therefore, the model is gravitated towards increasing the capacity of integrated 

mining/upgrading schemes over integrated SAGD/upgrading schemes. This will in return 

affect the selection of oil producers, as it will increase reliance on mining based 

operations to reduce the steam requirements. Moreover, since the emissions from natural 

gas boilers are not controlled, and they are the only producers for steam and hot water for 

the scenario where no renewable technologies were considered, the emission constraint 

for the year 2025 was not met, and a lower emission reduction target was achieved 
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compared to the renewable scenario. However, with the incorporation of renewable 

technologies, particularly biomass boilers for SAGD steam production and geothermal 

energy for hot water production, significant GHG emission reductions were achieved. 

The higher production capacities available from geothermal sources increased the 

reliance on integrated mining/upgrading production operations. 

Figure 3.6 shows the cost distribution of the net present value for each investigated 

scenario. The NPV was used in the cost analysis of the renewable capacity expansion 

optimization model. The existence of certain energy commodity producers in the oil 

sands energy infrastructure can affect investment decisions in future operational years. 

The major energy commodities that contribute to the total cost are hydrogen, SAGD 

steam production, and process steam production. Hydrogen is used extensively for the 

upgrading of bitumen to SCO in hydrocracking, which can comprise up to approximately 

85% of total SCO production. Hydrogen is also extensively used in hydrotreatment 

processes for the removal of sulfur and other impurities. Since SAGD extraction is the 

only production route considered for commercial bitumen, SAGD steam represents the 

most important energy commodity for its production. SAGD steam is also extensively 

used in the production of SCO through integrated SAGD/upgrading routes considering 

the high SOR required for their operations. Moreover, process steam is also extensively 

utilized in oil sands operations as it is required for mining extraction processes, such as 

hydrotransport and bitumen recovery, as well as for upgrading stages. The total cost of 

energy production increases with the increase of the CO2 emissions constraints.  This is 

due to the inclusion of CO2 capture technologies, which require an additional energy 

supply to compensate for the power consumption for the transportation of CO2 through 
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pipelines to the underground sequestration sites. This imposes the requirement of 

additional independent power suppliers to satisfy the increased demand. 

 

 

 

 

 

 

 

 

 

 

It can be observed from the results in Figure 3.7, which shows the total emissions for 

each operational year for both the renewable and conventional energy scenarios, that the 

incorporation of renewable technologies in the oil sands energy infrastructure facilitates 

the achievement of higher emission reductions in comparison to conventional energy 

technologies.  

Moreover, the use of renewable energy technologies results in lower total cost of energy 

production for the same level of emissions reduction. This is particularly evident from the 

results obtained for the operational year 2020, for which the total cost of energy 

production was 14% higher for the conventional energy scenario. For the conventional 

energy scenario SAGD steam can only be produced through natural gas boilers, while 

biomass-fired boilers are available for SAGD steam production in the renewable energy 

scenario. Biomass is considerably lower in cost compared to natural gas (Table 3.4). In 

Figure 3.6 Cost distribution for the production of energy for both the Renewable (R) and 

Conventional (C) energy scenarios over the planning periods (2015 - 2025) 
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this study the consumption of biomass was assumed to be carbon neutral, from which 

emissions are considerably lower compared to the consumption of natural gas. Moreover, 

the availability of geothermal energy for hot water production also significantly 

contributes to the reduction of natural gas consumption. The unavailability of renewable 

technologies requires the integration of carbon capture and sequestration into the energy 

infrastructure in order to be able to comply with the imposed emission constraints. This 

translates to a substantial increase in the cost of energy production in the conventional 

energy scenario.  

 

 

 

 

 

 

 

The Alberta government plan to the Kyoto protocol requires the reduction of CO2 

emissions from the oil sands industry to a level of at least 50 million tonnes per year by 

2020, which can be estimated as approximately 6000 tonnes per hour and will become 

more stringent in future years. The emission reduction constraint set for the year 2025 

(50%) was not achievable through a fossil-fuel-based energy infrastructure and the 

optimization model returned an infeasible result. The maximum level of achievable 

emission reduction for the conventional energy scenario was determined to be 35%, 

Figure 3.7 Carbon dioxide emissions for both the renweable and conventional energy 

scenarios over the planning periods (2015 - 2025) 
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which is equivalent to a total emission level of 5976 tonne CO2 h
-1

. For the renewable 

energy scenario an emission reduction level of 52% was achieved, which corresponds to 

a total emission level of 4400 tonne CO2 h
-1

. The higher level of emission reduction 

achieved in the renewable energy scenario justifies the higher cost required for energy 

production during the operating year 2025. For the renewable energy scenario the cost of 

power is relatively high for the year 2025 as the production switches to the lowest 

emission technology (i.e. NG oxyfuel with CCS) included in the energy infrastructure, 

from which the majority of power is produced. The increase in the cost of power is driven 

by a substantial increase in the power demand combined with the higher capital and 

operating cost of the low-emission technology. The selection of biomass fired boilers for 

SAGD steam production and geothermal energy for the heat requirements of mining 

extraction played a significant role in achieving the required emission reduction levels. 

Table 3.7 summarizes the set of energy commodity producers selected by the 

optimization model and the capacity expansion decisions for both the conventional and 

renewable energy scenarios over the investigated time period (2015 – 2025). The 

majority of hydrogen produced for both the renewable and conventional energy scenarios 

is achieved through coal gasification plants. Coal is a relatively economical fuel, 

particularly in comparison with natural gas. Moreover, this type of hydrogen plants can 

cogenerate electricity, which contribute in providing the electricity requirements of oil 

sands operations. This makes the production of hydrogen through coal gasification more 

efficient and economically attractive compared to other options considered in the 

optimization model. Cogeneration is currently incorporated in the Oil Sands energy 

infrastructure as an option to increase energy efficiency by using the output of one 
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technology (e.g. hydrogen) to drive turbines for power generation. As the GHG emission 

constraint becomes more stringent, the hydrogen production fleet switches to IGCC with 

integrated carbon capture and sequestration technologies. The incorporation of renewable 

energy technologies facilitates the utilization of existing-fossil fuel based producers 

without the requirement of emission mitigation options as overall emissions do not 

exceed the imposed constraint. For example, for the operational year 2020 lower 

capacities for CCS are required for power and hydrogen production and there is 

decreased reliance on less CO2 intensive fossil-fuels (i.e. natural gas), which translates to 

lower production costs of these commodities.  

Table 3.7 Distribution of energy producers and their production capacities (existing and 

newly installed) for both the conventional and renewable energy scenarios over the planning 

period (2015 – 2025) 

 Energy Producers 
Renewable Conventional 

2015 2020 2025 2015 2020 2025 

Hydrogen (tonne h-1) 149 253 331 149 235 301 

    Existing IGCC 80 80 0.0 80 53 0.0 

    New IGCC 70 0.0 0.0 70 0.0 0.0 

    Existing IGCC wCC 0.0 0.0 186 0 0.0 235 

    New IGCC wCC 0.0 173 42 0 182 44 

    Existing SR wCC 0.0 0.0 0.0 0.0 0.0 0.0 

    New SR wCC 0.0 0.0 102.5 0.0 0.0 22.5 

Power (MWh) 817 1,240 2,409 817 1,231 1,449 

    Existing PC 0.0 0.0 0.0 0.0 0.0 0.0 

    New PC 0.0 472 0.0 0.0 472 0.0 

    Existing NGCC 452 363 0.0 452 409 0.0 

    New NGCC 0.0 0.0 0.0 0.0 0.0 0.0 

    New NG Oxyfuel 0.0 0.0 2,160 0.0 0.0 0.0 

    IGCC co-gen 365 195 0.0 365 130 0.0 

    IGCC w CC co-gen 0.0 210 277 0.0 220 1,449 

Steam and Hot water 

(tonne h-1) 
44,140 73,924 105,810 44,339 75,913 91,874 

    Process Steam –  

    existing NG boilers 
3,063 3,899 5,570 3,063 4,177 5,848 

    Process Steam –  
    new NG boilers 

798 1,451 2523 998 2228 3,013 

    Existing NG  SAGD 

    boilers 
10,200 10,540 21,573 10,200 16,320 33,320 

    New NG SAGD 

    boilers 
321 19,720 0.0 6,054 15,300 4,919 
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For the operation year 2025 the majority of hydrogen is still produced through coal 

gasification integrated with carbon capture. However, the stringent emissions constraint 

for this operational year requires the utilization of a cleaner fuel (i.e. natural gas). In order 

to comply with the imposed emissions constraints a portion of hydrogen is produced 

through steam methane reforming integrated with carbon capture, which is observed for 

the results obtained for both the renewable and conventional energy scenarios. The 

utilization of wind power for the production of hydrogen through water electrolysis was 

not selected by the optimization model. The hydrogen production capacity of the 

integrated wind power and electrolysis system is relatively low compared to other 

hydrogen production technologies in the optimization model. Moreover, the unit cost of 

hydrogen is considerably high due to the transportation costs from the wind-electrolysis 

facility in southern Alberta to the bitumen upgrading facilities. The low-emission 

technology does not justify the high unit production and transportation cost of hydrogen.  

The power plants selected by the optimization model for the renewable scenario are 

natural gas gasification combined cycle (NGCC), pulverized coal (PC) and natural gas 

oxyfuel technologies. The power infrastructure switches from NGCC and PC to natural 

gas oxyfuel in order to reduce the total CO2 emissions. Natural gas oxyfuel is the lowest 

emission power production technology in the energy production mix used in the 

    Existing Biomass 

    SAGD boilers 
0.0 5,733 5,751 NA NA NA 

    New Biomass 

    SAGD boilers 
5,733 18 0.0 NA NA NA 

    Water – Existing 

    NG boilers 
18,120 23,062 14,921 18,120 24,709 34,593 

    Water –New NG 

    boilers 
4,723 8,581 32,946 5,904 13,178 17,822 

    Existing geothermal 0.0 920 1,841 NA NA NA 

    New Geothermal 1,181 0.0 20,687 NA NA NA 
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optimization model. Other economical and environmentally friendly options are available 

for power production, such as biomass gasification. However, the utilization of biomass 

for power production is limited due to its availability. The biomass feedstock available 

for energy production for oil the sands operations is used for the production of SAGD 

steam. For the conventional energy scenario the electricity requirements are mostly 

satisfied by the power cogenerated from coal gasification plants integrated with carbon 

capture. 

It is evident from the results that the use of renewable energy is important in providing 

the heat requirements for oil sands operations. A significant portion of SAGD steam is 

provided by biomass fired boilers and hot water for mining extraction is provided by 

geothermal energy. These sources of energy were used to replace natural gas boilers in 

order to achieve the required emission reduction targets. The incorporation of renewable 

energy technologies plays a vital role in satisfying emission constraints for the year 2025, 

and their elimination from the energy infrastructure reduces the maximum achievable 

emission reduction target. For the conventional energy scenario the maximum reduction 

of CO2 emissions was determined to be 35%. However, the use of renewable energy 

facilitates an emission reduction target of 52%. 

The developed mathematical models was solved using an Intel Core 2 Duo, 2.33 GHz 

machine running the DICOPT solver accessed via the general algebraic modelling 

software [8]. The corresponding computational statistics are summarized in Table 3.8. 

The resulting computational times and optimality gaps for the simulation runs are 

satisfactory. 
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Table 3.8 Model computational results for all the investigated scenarios 

 

 

 

 

 

3.5 Conclusions 

An energy optimization model that can be used to determine a well-balanced mix of 

renewable and conventional energy technologies that can provide the significantly 

increasing energy demands of Alberta’s oil sands industry without increasing reliance on 

fossil-fuel based and nuclear energy production. The optimization model selects the 

optimal set of oil sands producers and energy commodity producers that minimizes the 

total net present value of the oil sands industry. By the large-scale introduction of 

renewable energy into the oil sands energy infrastructure, considerably higher emissions 

reductions can be achieved without being offset by the rapidly increasing energy 

production required to support the developments in the industry.  

The model was applied to a case study to illustrate its capability using data for various 

years of oil sands operations (i.e. 2010, 2015, 2020 and 2025). The results were 

compared for the sequential (i.e. the results of one year are used as an input for the 

following) and the non-sequential model approaches. The sequential approach was 

investigated for both the incorporation and elimination of renewable technologies in the 

energy infrastructure. The results from the sequential approach indicate that the existing 

infrastructure has an impact on new investment decisions. Due to the lower cost of 

existing technologies, the model is more reluctant to switch to cleaner alternatives (i.e. 

 Configuration 

Renewable Conventional 

2015 2020 2025 2015 2020 2025 

Optimality gap (%) 0 0 0 0 0 0 

CPU time (s) 280 260 280 290 265 296 
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less carbon intensive fuels and renewables). However, the sequential approach provides a 

more realistic presentation of the oil sands operations.  

The results also show that renewable energy technologies have significant potential in 

reducing emissions from energy production for the oil sands operations. The 

incorporation of these technologies allowed achieving the same or higher emission 

reductions at lower total cost of energy production. Moreover, for the year 2025 the 

emission constraints were considerably high to be achievable using only fossil-fuel based 

technologies, which resulted in the model becoming infeasible. However, including 

renewables in the energy mix facilitated the achievement of the required emission 

reduction levels.  

In all the investigated scenarios the model preferred the selection of upgrading routes that 

are based on hydrocracking processes. This is because hydrogen can be inexpensively 

produced through coal gasification technologies in addition to coproducing power to be 

supplied to other oil sands operations. Integrated mining/upgrading production routes 

were generally favored by the optimization model, which is a trend that is expected to 

prevail in the short-term future. This is due to the lower steam requirement by these 

production routes compared to SAGD operations. These production routes require 

significant amounts of hot water; however, this can be provided by geothermal plants, 

which are economically attractive and have low carbon emissions associated with them. 

However, based on oil production forecasts in the literature it is expected that in the long-

term future SAGD production routes will be dominant in the production of commercial 

bitumen and SCO. The provision of steam to support these operations was unfavorable 

based on the results of the optimization model. Besides the limited resources of steam 
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production from biomass, natural gas boilers were the only other production routes for 

which carbon mitigation options were not incorporated. This will hinder the achievement 

of the desirable emission reductions, and therefore, in future work it is important to 

consider other less carbon intensive alternatives for steam production in the energy 

infrastructure (e.g. steam production from nuclear energy). 

The results obtained indicate that the proposed energy optimization model is a powerful 

tool that allows the scheduling and planning of future production scenarios of oil sands 

operations. However, the disadvantage of the proposed model is that it does not involve 

the optimization of the entire planning time frame at once. The results obtained from 

optimizing the entire time frame are expected to be different from the sequential 

approach used in this paper. This can be accounted for by the incorporation of a time 

index in the energy optimization model, which will be addressed in future work. This will 

also facilitate the incorporation of time variable parameters, such as oil production levels, 

fuel prices, government emission regulations, construction lead times, etc. Accordingly, 

the authors developed the multi-period energy optimization model to represent the 

operations of the Canadian oil sands industry, which is studied in Chapter 4. 
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Chapter 4 

General optimization model for the energy planning of industries 

including renewable energy: A case study on oil sands
2
 

4.1 Introduction 

After fossil fuel and electricity production, Canada’s most energy-intensive industries 

(e.g. industrial chemicals, cement, smelting, etc.) are considerably large and typically 

represent the mainstay of their regional and local economies. The industries are an 

important and defining element of the Canadian economy [68]. However, their energy 

production costs can represent more than 20% of the value added, and up to 60% of the 

operating costs. The cost of production from these industries is expected to significantly 

increase in the future due to the expected continuous increase in the prices of the fuels 

used to provide their energy requirements, as well as the governmental legislations to 

achieve GHG emission reductions [69]. Therefore, it can be deduced that the integration 

of clean energy production technologies to reduce GHG emissions in the context of any 

energy-intensive industry is a challenging problem, considering the uncertainty revolving 

around future environmental legislation, fuel supply and prices, and future production 

levels and their associated energy intensities. This is particularly evident for the oil sands 

industry, which is the most energy-intensive industry and the largest contributor to the 

growth of GHG emissions in Canada. 

The province of Alberta is currently facing a significant challenge in balancing the 

development of the growing oil sands industry and the reduction in the provincial annual 

                                                           
2
 A variant of this chapter is published: M. Elshokami and A. Elkamel. AIChE J, 2017, 63(2), 610-638. 
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greenhouse gas (GHG) emissions. In the Climate Change Strategy of Alberta in 2008 the 

province committed to reducing its 2005 GHG emissions levels by 50 megatonne per 

year by 2020, and achieve a reduction of 200 megatonne per year by 2050 [70]. The 

production of unconventional fossil fuels such as bitumen extraction from oil sands is 

facing challenges due to the energy-intensive nature of their production, from which 

emissions are expected to increase by threefold by the year 2030. As a result, in order to 

achieve the required emission targets, the province will have to reduce the production of 

emissions from oil sands operations, which have contributed to making it the most GHG 

intensive province in Canada. In the future the contribution of oil sands extraction 

operations to the production of emissions in the province will be largely dictated by the 

supply of energy required to support them [71].  

The Alberta Oil Sands are the third largest crude oil proven reserves in the world after 

Saudi Arabia and Venezuela, which amount to 168 billion barrels constituting 

approximately 97% of Canada’s total oil reserves [72]. Approximately 20% of these 

reserves are shallow enough to be recovered through mining operations. However, the 

remaining volumes are only recoverable through in situ techniques, in which the oil sands 

formations are heated in order to enhance the flow of bitumen to the surface [73]. The 

exploitation of oil sands reserves is dependent on their Energy Return on Investment 

(EROI), which is the ratio of the energy in the extracted bitumen or produced synthetic 

crude oil to the energy used for their production. The EROI has a significant impact on 

the long term viability of oil sands operations, and it is affected by several factors which 

include the bitumen extraction and upgrading processes selected and the type of energy 
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(i.e. electricity, heat, hydrogen, etc.) production technologies used to satisfy their energy 

requirements [74].   

The oil sands are a mixture of bitumen, sand, clay and water, from which bitumen (a 

heavy viscous form of crude oil) is extracted and upgraded to a refinable form of oil (i.e. 

synthetic crude oil). A significant amount of energy is required for these operations, 

which makes the Canadian oil sands one of the most energy intensive crude oil 

production industries in the world
 

[75]. The most prominent bitumen extraction 

techniques are surface mining and steam assisted gravity drainage (SAGD), and the most 

prominent upgrading processes are based on thermocracking and hydrocracking 

technologies. In these processes energy is consumed in the form of electricity, steam, 

hydrogen, and fuel (i.e. heating and transportation). Currently, this energy is mostly 

provided by burning natural gas, in which the energy production mix for it is constituted 

by grid electricity, stand-alone steam generation, on-site cogeneration, steam methane 

reforming, and natural gas furnaces [76].  

Natural gas was initially utilized as a measure to reduce the GHG emissions associated 

with energy production for oil sands operations. However, the continuously increasing oil 

sands production levels are offsetting the achieved emission reductions
 
[71]. GHG 

emissions associated with oil sands operations accounted for approximately 12% of 

Canada’s total emissions in 2014, and represent the mostly rapidly increasing source of 

GHG emissions in the country
 
[77]. In addition, further restrictions are imposed on the 

lifecycle GHG emissions of transportation fuels, such as California’s Low Carbon Fuel 

Standard. All of this provide an incentive for oil sands operators to implement measures 

for further reduction in GHG emissions associated with bitumen extraction and upgrading 
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processes. Moreover, there are growing concerns regarding the resource availability and 

price volatility of natural gas, which have prompted industries to consider alternative 

fuels and options for energy production. The oil sands industry utilized approximately 

3,400 million cubic feet per day (MMcf/day) of natural gas in 2015, and the industry’s 

consumption rate of natural gas is expected to reach up to 5,800 MMcf/day by 2030 [78].  

According to Reilly et al. [79], global climate policies have a significant impact on the 

development of the oil sands industry in Alberta. This indicates that it is in the interest of 

oil sands operators and developers to reduce the GHG emissions associated with their 

bitumen extraction and upgrading processes. The oil sands industry considered numerous 

options to reduce the utilization of natural gas. Several studies in the literature have 

proposed less carbon-intensive energy production methods for the Alberta oil sands, 

which include nuclear energy for power and heat production [80-85], integrated wind-

electrolysis for hydrogen production [86, 87], bioenergy [88], and geothermal energy [89-

93]. Several studies also investigated the possibility of utilizing alternative fuels, such as 

bitumen, asphaltenes, petroleum coke and coal, which are readily available fuels in 

Alberta. These alternative fuels have variable properties (e.g. carbon content, energy 

density, cost, etc.) and, therefore, they have different life cycle effects [94 -96]. Other 

studies considered reducing the consumption of natural gas by improving the efficiency 

of energy production, for example, through increasing the capacity of combined heat and 

power generation instead of the currently utilized standalone systems [76, 97]. Moreover, 

the government of Alberta is expecting significant reductions in CO2 emissions to be 

achieved through the integration of carbon capture and sequestration technologies with 

the large emitters in the province [81]. In each of these studies a potential alternative is 
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compared to the currently utilized energy mixture using a scenario-based analysis in 

terms of factors such as cost, environmental impacts, accessibility, system reliability, 

energy use, etc.  

Based on the above considerations, it is important to develop reliable modeling tools that 

can be utilized to estimate the production and environmental costs for providing energy 

for the Canadian oil sands operations. Optimization mathematical modeling tools can be 

used for the planning and scheduling of the energy production requirements of the 

Canadian oil sands, which can provide an indication of the potential optimal energy 

infrastructure that can be utilized by the industry. Similarly, these tools facilitate the 

investigation of the effects of uncertainty in key techno-economic parameters, such as 

natural gas prices, CO2 emission targets and credits, oil sands production levels and their 

energy intensities, etc., on the selection of energy production technologies and the cost of 

energy production. Mathematical optimization models describing the Canadian oil sands 

operations have been recently introduced in the literature [98 – 104]. In these studies, the 

most suitable energy infrastructure is selected for a given oil production infrastructure. 

They only considered fossil fuel-based (natural gas and coal) and standalone energy 

production technologies. However, there have been various studies proposing the 

possibility of including less carbon intensive technologies in the oil sands energy 

infrastructure, such as nuclear energy, renewable energy (i.e. wind, bioenergy, and 

geothermal), and cogeneration (power, heat and hydrogen) energy systems [82 – 96]. 

Moreover, the mathematical models proposed in these studies adopt a deterministic 

snapshot approach, in which the operations of oil sands are investigated only for a given 
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point in time without considering the variability of parameters over a long-term planning 

horizon that would lead to a phased infrastructure development.  

There are various factors that have a significant impact on planning the energy 

infrastructure of the oil sands industry that are variable with time. These include the 

continuously increasing CO2 emission reduction targets required in order to achieve 

international environmental standards as per the United Nations Framework and Kyoto 

protocol [105, 106]. Moreover, emitters in Alberta that are unable to meet the emission 

reduction targets will be required to pay a carbon tax, which was CAD 15 per tonne of 

CO2 in 2015 and is expected to considerably increase in the future [107, 108]. A major 

driver for the cost of natural gas energy production systems that constitute the majority of 

oil sands energy infrastructure is the fuel price, for which there are concerns regarding its 

volatility over the next few decades [76]. Other time-dependent parameters include 

forecasted energy demand intensities and oil sands production levels, construction lead 

time, capital and operating costs, etc. Although the above issues can be addressed 

individually, a comprehensive approach that integrates their interaction is currently 

lacking.  Based on these considerations, it is important to develop a mathematical model 

that optimizes the development of the energy infrastructure over an entire planning time 

frame (e.g. 20 – 30 years).  

Several studies have been published on using multi-period optimization methods for 

energy planning purposes. Numerous works have been published on optimizing the 

power generation planning of electric systems in the power sector [68, 108-115]. The 

models are typically geared towards minimizing the cost of electricity production to meet 

specified energy demands subject to a set of emission constraints. The time dependent 
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parameters considered include forecasts of energy demand, lead time and costs of energy 

systems, conservation initiatives, fuel prices, etc. Several studies have also considered the 

incorporation of multiple energy carriers as well as different forms of energy demands, 

particularly electricity and heat (i.e. space and water heating). The models developed in 

these studies are formulated to incorporate regional energy demands, some of which 

incorporate industrial energy requirements. However, models that focus on incorporating 

the needs of energy intensive industries (e.g. chemical, steel, cement, pulp and paper, 

etc.) to integrate energy efficiency performance in production management are scarce. 

This necessitates the development of an optimization based approach to apply the current 

knowledge of clean energy production technologies with an emphasis on energy-

intensive industrial operations to achieve CO2 emission reductions in an emission-

constrained environment considering variability in time-dependent parameters.  

Within the above context, this study proposes a generalized multi-period mathematical 

optimization model that is geared towards minimizing the costs of supplying the energy 

requirements of an energy-intensive industry, such as the oil sands industry in Alberta, 

subject to various CO2 mitigation policies.  The formulated mixed integer linear 

programming (MILP) model considers multi-period factors, low-carbon intensive energy 

production, and CO2 abatement technologies. Moreover, the implementation effects of 

different carbon mitigation policies are investigated and compared quantitatively. The 

results obtained can provide an indication of the optimal configuration of the energy 

infrastructure that will meet the current and future energy requirements and the required 

emission reduction targets over the specified planning period. This is accomplished by 

selecting the types, number and production capacities of energy production technologies 
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and carbon mitigation options. To the author’s knowledge, generalized multi-period 

mathematical optimization models used for the energy planning of energy-intensive are 

not available in the literature. Moreover,  the application of the proposed model is novel, 

as there have been no multi-period energy planning optimization models applied to the 

case study based on the energy intensive oil sands operations in Alberta over a long time 

horizon (i.e. 2015 – 2050), in order to examine the economical and structural impact on 

the energy production fleet when considering variability in oil sands production levels, 

energy demand intensities, carbon mitigation policies, and fuel prices, as well as 

variability in time-dependent parameters. This will assist governmental or industrial 

policy makers in making decisions of the energy planning for oil sands operations. It is 

important to note that the superstructure-based optimization energy planning model built 

is generalized, and is suitable to be utilized to determine the optimal energy infrastructure 

required for any energy-intensive industry.  

4.2 Optimization model formulation 

The proposed optimization model is based on the superstructure shown in Figure 4.1. The 

energy requirements for an energy intensive industry is supplied by a set of energy 

commodity producers. These include fossil-fuel based (i.e. coal and natural gas), 

combined heat and power, renewable, nuclear, and polygeneration gasification of 

alternative fuels (i.e. coal, bitumen, asphaltene, petcoke, and biomass) technologies. 

These producers are used to generate electricity, heat (i.e. steam, hot water, etc.), fuels 

(e.g. hydrogen, synthetic gas, synthetic diesel, etc.). The model also consider the 

possibility of integrating carbon capture and sequestration as an emission mitigation 
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option. The energy optimization model will be used to estimate the cost of energy 

production subject to a carbon mitigation policy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The carbon mitigation constraint consists of an emission cap, an allocated carbon 

credit/tax, carbon credit buying (i.e. agents can buy a required amount of carbon credits 

from global carbon markets or carbon exchanges to offset their emissions), and carbon 

credit selling (i.e. an additional incentive to reduce their emissions; agents can earn 

Figure 4.1 Superstructure of the proposed energy optimization model 
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revenue by selling their surplus carbon credits) [115]. The results of the optimization 

model include the capacity of energy producers, the cost of energy production, and the 

total annual emissions generated. Each of the modeling aspects included in the 

formulation of the mathematical optimization model are discussed below. The indices, 

sets, variables, and parameters used in the proposed energy planning model are presented 

in Appendix A. The time scale of this energy planning model is annual. 

4.2.1 Energy requirements 

In the proposed mathematical model the inputs are represented by the required annual 

total production of the final products (e.g. synthetic crude oil and commercial bitumen), 

the carbon dioxide emission targets, and the type and number of energy producers 

available over the planning period. The production data and the emission targets are 

either obtained from forecast data or are specified by the user. 

The amount of energy required is represented by an energy-intensity factor, which can be 

defined as energy consumption per unit of production.  The total amount of each energy 

commodity required for the production of each final product can be calculated as follows. 

𝐷𝐸𝐶𝑒𝑡
 = ∑ ∑ 𝐸𝐼𝑒𝑞𝑗

 𝑄𝑃𝑞𝑗𝑡
𝑇

𝑗∈𝐽𝑞𝑞

          ∀ 𝑒, 𝑡 
(4.1) 

where EIeqj is the energy intensity of each energy commodity e (e.g. electricity, heat, 

steam, hydrogen, etc.) per each product q (e.g. synthetic crude oil, commercial bitumen, 

etc.) produced through production route j, QPqjt is the production rate for each product 

via production route j during time period t, and DECet is the total amount of each energy 

commodity required. The production capacity for each product (e.g. SCO) from all 
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production routes j must satisfy the production requirements for each operational year, 

which can be presented by the following constraint. 

∑ 𝑄𝑃𝑞𝑗𝑡
𝑇

𝑗∈𝐽𝑞

≤ 𝑄𝑃𝑅𝑞𝑡
           ∀ 𝑞, 𝑡 

(4.2) 

It is also important to ensure that the production capacity for each production route added 

during a certain time period is carried over for the following time periods, which is 

enforced by the following constraint. 

𝑄𝑃𝑞𝑗𝑡
𝑇 = 𝑄𝑃𝑞𝑗,𝑡−1

𝑇 +  𝑄𝑃𝐶𝐸𝑞𝑗𝑡
       ∀ 𝑞, 𝑡 (4.3) 

where QPCEqjt is the capacity added during time period t. Finally it is important to limit 

the capacity added during each time period t to the maximum available capacity 

expansion, which is presented by the following constraint. 

𝑄𝑃𝐶𝐸𝑞𝑗𝑡
𝑀𝐼𝑁  𝑧𝑒𝑞𝑗𝑡

 ≤ 𝑄𝑃𝐶𝐸𝑞𝑗𝑡
 ≤ 𝑄𝑃𝐶𝐸𝑞𝑗𝑡

𝑀𝐴𝑋 𝑧𝑒𝑞𝑗𝑡
        ∀ 𝑞, 𝑡 (4.4) 

4.2.2 CO2 mitigation constraint 

In order to not exceed the emission cap imposed on an industry, the following constraint 

on CO2 emissions is incorporated. 

∑ ∑ (𝐸𝐶𝑂2𝑖𝑛𝑡
𝑛𝑒𝑤 + 𝐸𝐶𝑂2𝑖𝑛𝑡

𝑒𝑥𝑖𝑠𝑡)

𝑛∈𝑁𝑖𝑖

− 𝐶𝑟𝑒𝑑𝑖𝑡𝑏𝑢𝑦𝑡 + 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑒𝑙𝑙𝑡 ≤ 𝐶𝑂2𝑡
𝑙𝑖𝑚𝑖𝑡    ∀ 𝑡 

(4.5) 

where the amount of CO2 produced from the all newly established (𝐸𝐶𝑂2𝑖𝑛𝑡
𝑛𝑒𝑤) and 

existing (𝐸𝐶𝑂2𝑖𝑛𝑡
𝑒𝑥𝑖𝑠𝑡) energy producers must not exceed the imposed emission cap 

(𝐶𝑂2𝑡
𝑙𝑖𝑚𝑖𝑡) for each time period t. The CO2 constraint presented in Eq. 3.5 also considers 

the potential reduction of CO2 by means of purchasing carbon credits (𝐶𝑟𝑒𝑑𝑖𝑡𝑏𝑢𝑦𝑡). The 

carbon emissions produced by the entire energy production fleet can be reduced by 
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purchasing CO2 credits for that year in order to satisfy the emission cap. An additional 

incentive is also added in order to encourage industries to further reduce their emissions, 

in which they can earn revenue by selling their surplus carbon credits (𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑒𝑙𝑙𝑡). This 

is achieved if their emissions are lower than the imposed cap for any of the investigated 

years.  

4.2.3 Power module 

In this section, only standalone power plants are discussed, which are defined to be 

energy producers from which the net energy output is only in the form of electricity. 

These include fossil-fuel based technologies and renewable technologies (e.g. 

hydropower and wind turbines). The fossil-fuel based standalone power plants considered 

in this optimization model include natural gas combined cycle (NGCC), supercritical 

pulverized coal (SCPC), and oxyfuel. The technologies are considered with and without 

carbon capture, which could either be post-combustion or oxy-combustion. The first is 

utilized in integration with NGCC and SCPC power plants and the latter is integrated 

with oxyfuel plants. The oxyfuel plants considered can utilize either natural gas or coal as 

a fuel [116-120]. Other standalone power production options considered in the model 

include renewable options such as wind turbines, solar panels, hydropower, etc. The 

production of power from technologies that can produce multiple energy commodities 

(e.g. nuclear, gasification, and combined heat and power) will be discussed later in the 

upcoming sections. The total cost of power production from standalone plants can be 

calculated as follows. 
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𝑃𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐶𝐶𝑃𝑝𝑡

  𝑃𝑀𝐴𝑋𝑝𝑡𝑡′
  𝑛𝑝𝑝𝑛𝑡′

 

𝑛∈𝑁𝑝

+ ∑ ∑ 𝐹𝑂𝑃𝑝𝑡
  𝑃𝑀𝐴𝑋𝑝

  𝑦𝑝𝑝𝑛𝑡
 

𝑛∈𝑁𝑝𝑝𝑝

+ 𝑉𝑂𝑃𝑝𝑡
  𝑃𝑃𝑝𝑛𝑡

 𝑇𝑇 +  ∑ ∑ 𝐶𝐹𝑃𝑝𝑡
𝐹 𝐹𝐶𝑃𝑝𝑛𝑡

𝐹 𝑇𝑇

𝑛∈𝑁𝑝𝑝∈𝑃𝐹

 

(4.6) 

where nppnt is a binary variable that indicates if unit n of power plant type p is constructed 

during period t, CCPpt is the capital cost, yppnt is a binary variable that indicates if the 

power plant is operational during time period t, PPpnt is the amount of power produced 

from each unit, FOPpt and VOPpt are the fixed and variable operation and maintenance 

costs, respectively, 𝐹𝐶𝑃𝑝𝑛𝑡
𝐹  is the amount of fuel consumed by each fossil-fuel based 

power plant, and 𝐶𝐹𝑃𝑝𝑡
𝐹  is the cost of fuel utilized by technology p. The amount of fuel 

consumed (𝐹𝐶𝑃𝑝𝑛𝑡
𝐹 ) by each fossil-fuel based power plant can be calculated as follows. 

𝐹𝐶𝑃𝑝𝑛𝑡
𝐹 =

𝐻𝑅𝑃𝑝
𝐹 𝑃𝑃𝑝𝑛𝑡

𝐹

𝐻𝑉𝑃𝑝
𝐹

      ∀ 𝑝 ∈ 𝑃𝐹 , 𝑛 ∈ 𝑁𝑝 , 𝑡 
(4.7) 

where 𝐻𝑅𝑃𝑝
𝐹 is the heating rate (MJ/kWh) and 𝐻𝑉𝑃𝑝

𝐹 is the heating value of the fuel 

utilized.  Power production from renewable technologies can be estimated by using the 

production potential of a production unit (e.g. wind turbine) and the capacity factor, 

which is estimated based on the renewable energy potential for the location of interest. 

For example, a wind turbine with a rated power of 1800 kW located in Pincher Creek 

Alberta will have a nominal annual energy yield of 15,768,000 kWh, which is the amount 

of power produced if the wind turbine is operated at maximum capacity (i.e. depicts the 

ideal scenario in which the wind speed is maintained at the rated turbine wind speed). 

The capacity factor can then be defined as the ratio of the actual annual energy yield to 

the nominal energy yield. The annual energy yield is determined based on the variability 
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of the wind resource over a particular year, and can be estimated using various methods 

in the literature [86, 87]. Therefore, the amount of power produced (𝑃𝑃𝑝𝑛𝑡
𝑅 ) from 

renewable technologies can be estimated as follows. 

𝑃𝑃𝑝𝑛𝑡
𝑅 = 𝐶𝐹𝑝𝑡

𝑅  𝑁𝑃𝑌𝑝𝑡
         ∀ 𝑝 ∈ 𝑃𝑅 , 𝑛 ∈ 𝑁𝑝 , 𝑡 (4.8) 

where 𝐶𝐹𝑝𝑡
𝑅  is the estimated annual capacity factor and 𝑁𝑃𝑌𝑝𝑡

  (kWh) is the nominal 

power yield for each technology. The total power produced from each unit can potentially 

be directed towards satisfying the power requirements of the industry (e.g. oil sands 

operations), exported to the grid, and used to satisfy the power requirements of other 

energy production technologies (e.g. power for electrolytic hydrogen production). It is 

assumed that only power from fossil-fuel based plants integrated with carbon capture and 

from renewable plants can be exported to the grid or utilized to produce clean hydrogen 

via electrolysis. This is illustrated in Eq. 4.9 as follows. 

𝑃𝑃𝑝𝑛𝑡
 = 𝑃𝑃𝑝𝑛𝑡

𝐺𝑅𝐼𝐷 + 𝑃𝑃𝑝𝑛𝑡
𝐷𝐸𝑀 + 𝑃𝑃𝑝𝑛𝑡

𝐻         ∀ 𝑝 ∈ (𝑃𝐹−𝐶𝐶𝑆 ∪ 𝑃𝑅), 𝑛 ∈ 𝑁𝑝 , 𝑡 (4.9) 

where 𝑃𝑃𝑝𝑛𝑡
𝐷𝐸𝑀 is the power used to satisfy the demand of the industrial operations, 

𝑃𝑃𝑝𝑛𝑡
𝐺𝑅𝐼𝐷 is the excess power exported to the grid, and 𝑃𝑃𝑝𝑛𝑡

𝐻  is the power exported to 

hydrogen production facilities to satisfy their electricity requirements. 

4.2.4 Hydrogen module 

In this section, only standalone hydrogen plants are discussed, which are defined to be 

energy producers from which the net energy output is only in the form of hydrogen. For 

standalone hydrogen production plants, the proposed superstructure considers fossil-fuel 

based technologies, such as steam methane reforming (SMR). These plants are modeled 

according to [121 – 125], and are considered with and without CO2 capture. Another 
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option considered for hydrogen production involves the use of water electrolysis utilizing 

power from the grid, nuclear energy and renewable power. The electrolyzers considered 

in this study are modeled according to the approach in Olateju et al. [86, 87]. The total 

cost of hydrogen production from these options can be estimated as follows. 

𝐻𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐶𝐶𝐻ℎ𝑡

  𝐻𝑀𝐴𝑋ℎ𝑡𝑡′
  𝑛ℎℎ𝑛𝑡′

 

𝑛∈𝑁ℎ

+ ∑ ∑ 𝐹𝑂𝐻ℎ
  𝐻𝑀𝐴𝑋ℎ

  𝑦ℎℎ𝑛𝑡
 

𝑛∈𝑁ℎℎℎ

+ 𝑉𝑂𝐻ℎ
  𝐻𝑃ℎ𝑛𝑡

 𝑇𝑇 + ∑ ∑ 𝐶𝐹𝐻ℎ𝑡
 𝐹𝐶𝐻ℎ𝑛𝑡

 𝑇𝑇

𝑛∈𝑁ℎℎ

   

(4.10) 

where nhhnt is a binary variable that indicates if unit n of hydrogen plant type h is 

constructed during period t, CCHht is the capital cost, yhhnt is a binary variable that 

indicates if the hydrogen production unit is operational during time period t, HPhnt is the 

amount of hydrogen produced from each unit, FOHht and VOHht are the fixed and 

variable operation and maintenance costs, respectively, 𝐹𝐶𝐻ℎ𝑛𝑡
𝐹  is the amount of fuel 

consumed by each fossil-fuel based hydrogen plant, and 𝐶𝐹𝐻ℎ𝑡
𝐹  is the cost of fuel utilized 

by technology h. The production of hydrogen might require the consumption of other 

energy commodities. For example, SMR requires the consumption of fuel (i.e. natural 

gas) for the chemical reaction of generating hydrogen from methane, and for heat 

production through combustion that is required for the endothermic reaction to occur. In 

this model the heat required for hydrogen production can be produced from fuel 

combustion or from nuclear energy [83, 84]. Moreover, the production of hydrogen 

through water electrolysis requires the consumption of power, which is imported from the 

grid or from renewable and nuclear energy. The fuel, power and heat requirements for 

hydrogen production can be modeled according to Eq. 4.11 – 4.13.   
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𝐹𝐶𝐻ℎ𝑛𝑡
𝐹 = 𝐹𝑅𝐻ℎ

𝐹 𝐻𝑃ℎ𝑛𝑡
𝐹       ∀ ℎ ∈ 𝐻𝐹, 𝑛 ∈ 𝑁ℎ , 𝑡 (4.11) 

𝐻𝑃𝐶ℎ𝑛𝑡
 = 𝑃𝑅𝑒𝑞ℎ

𝐻𝐻𝑃ℎ𝑛𝑡
        ∀ ℎ ∈ 𝐻𝐸𝐿𝐸𝐶 , 𝑛 ∈ 𝑁ℎ , 𝑡 (4.12) 

𝐻𝐻𝐶ℎ𝑛𝑡
𝐻 = 𝐻𝑒𝑎𝑡ℎ

𝐻𝐻𝑃ℎ𝑛𝑡
        ∀ ℎ ∈ 𝐻𝑆𝑀𝑅 , 𝑛 ∈ 𝑁ℎ , 𝑡 (4.13) 

The amount of heat required for hydrogen production must be equal to the amount of heat 

produced specifically for hydrogen production that is obtained from fuel combustion and 

nuclear plants as presented in the following equation. 

∑ ∑ 𝐻𝑒𝑎𝑡𝑈𝑢𝑛𝑡
𝐻

𝑛∈𝑁𝑢𝑢

+ ∑ ∑ 𝐹𝐶𝐻ℎ𝑛𝑡
ℎ𝑒𝑎𝑡𝐻𝑉𝐻ℎ

𝐹

𝑛∈𝑁ℎℎ

 = ∑ ∑ 𝐻𝐻𝐶ℎ𝑛𝑡
𝐻

𝑛∈𝑁ℎℎ

       ∀  𝑡 
(4.14) 

where 𝐻𝑒𝑎𝑡𝑈𝑢𝑛𝑡
𝐻  is the amount of heat available from nuclear energy, and 𝐹𝐶𝐻ℎ𝑛𝑡

ℎ𝑒𝑎𝑡 is the 

amount of fuel consumed for the production of heat. Moreover, the amount of power 

consumed by hydrogen production plants must be equal to the amount of power imported 

from the grid, and the amount of power from standalone power plants and nuclear plants 

produced specifically for hydrogen production, which is presented by the following 

constraint. 

∑ ∑ 𝐻𝑃𝐶ℎ𝑛𝑡
 

𝑛∈𝑁ℎℎ

= ∑ ∑ 𝑃𝑃𝑝𝑛𝑡
𝐻

𝑛∈𝑁𝑝𝑝∈(𝑃𝐹−𝐶𝐶𝑆∪𝑃𝑅)

+ ∑ ∑ 𝑃𝑜𝑤𝑈𝑢𝑛𝑡
𝐻

𝑛∈𝑁𝑢𝑢

+ 𝑃𝐺𝑟𝑖𝑑𝑡
𝐸𝐿𝐸𝐶                     ∀  𝑡 

(4.15) 

where 𝑃𝑃𝑝𝑛𝑡
𝐻  and 𝑃𝑜𝑤𝑈𝑢𝑛𝑡

𝐻  are the amounts of power available for export from 

standalone power plants and nuclear plants, respectively, and 𝑃𝐺𝑟𝑖𝑑𝑡
𝐸𝐿𝐸𝐶 is the amount of 

power exported from the grid to by utilized by electrolyzers. Finally, the amount of 
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hydrogen produced via electrolysis can be used to satisfy the demand of industrial 

operations or sold to the market, which is illustrated as follows. 

𝐻𝑃ℎ𝑛𝑡
 = 𝐻𝑃ℎ𝑛𝑡

𝐷𝐸𝑀𝐴𝑁𝐷 + 𝐻𝑃ℎ𝑛𝑡
𝑀𝐴𝑅𝐾𝐸𝑇                    ∀ ℎ = 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠, 𝑛 ∈ 𝑁ℎ

 , 𝑡 (4.16) 

4.2.5 Boilers 

In the proposed model any technology utilized to heat water to generate high pressure 

steam, low pressure steam and hot water is classified under the set of boilers. For 

example, natural gas boiler and any preheating technology (e.g. geothermal energy, solar 

energy, waste heat recovery) utilized to heat feed water sent to boilers or heat recovery 

steam generators are classified under the set of boilers.  The total cost of producing steam 

and hot water from boilers can be calculated as follows. 

𝐵𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐶𝐶𝐵𝑏

  𝐵𝑀𝐴𝑋𝑏𝑡′𝑡
  𝑛𝑏𝑏𝑛𝑡′

 

𝑛∈𝑁𝑏𝑏

+ ∑ ∑ (𝐹𝑂𝐵𝑏
  𝐵𝑀𝐴𝑋𝑏

  𝑦𝑏𝑏𝑛𝑡
 + 𝑉𝑂𝐵𝑏

  𝐵𝑃𝑏𝑛𝑡
 𝑇𝑇)

𝑛∈𝑁𝑏𝑏

 

+ ∑ ∑ 𝐶𝐹𝐵𝑏𝑡
 𝐹𝐶𝐵𝑏𝑛𝑡

 𝑇𝑇

𝑛∈𝑁𝑏𝑏

+ ∑ ∑ 𝐶𝐶𝐵𝑏′
𝑃𝐻  𝐻𝑅𝑀𝐴𝑋𝑏′𝑡′𝑡 

𝑃𝑟𝑒ℎ𝑒𝑎𝑡 𝑛𝑏𝑏′𝑛𝑡′
𝑃𝐻

𝑛∈𝑁𝑏′𝑏′∈𝐵𝑃𝐻

+ ∑ ∑ (𝐹𝑂𝐵𝑏′
𝑃𝐻𝐻𝑅𝑀𝐴𝑋𝑏′ 

𝑃𝑟𝑒ℎ𝑒𝑎𝑡 𝑦𝑏𝑏′𝑛𝑡
𝑃𝐻

𝑛∈𝑁𝑏′𝑏′∈𝐵𝑃𝐻

+ 𝑉𝑂𝐵𝑏′
𝑃𝐻 𝐻𝑅𝑋𝑏′𝑛𝑡

𝑃𝑟𝑒ℎ𝑒𝑎𝑡𝑇𝑇) 

(4.17) 

where nbhnt is a binary variable that indicates if unit n of boiler type b is constructed 

during period t, CCBbt is the capital cost, ybbnt is a binary variable that indicates if the 

boiler unit is operational during time period t, BPbnt is the amount of steam or hot water 
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produced from each unit, FOBbt and VOBbt are the fixed and variable operation and 

maintenance costs, respectively, 𝐹𝐶𝐵𝑏𝑛𝑡
𝐹  is the amount of fuel consumed by each boiler, 

and 𝐶𝐹𝐵𝑏𝑡
𝐹  is the cost of fuel utilized by boiler b. 

Boilers convert energy from fuel or electricity to produce heat. The heat is utilized to 

generate high pressure steam, low pressure steam, and hot water. The efficiency of the 

boiler determines the energy loss and is specific to each type of boiler. This has an effect 

on the actual amount of energy input consumed. Moreover, the feed water to the boiler 

can be preheated through various options. For example, renewable energy sources, such 

as solar and geothermal energy, could be integrated with conventional boilers and steam 

cycles to preheat the feed water to the system. Also, preheated water can be utilized 

directly by end users (e.g. hot water used in the bitumen extraction process from oil 

sands). In many industrial applications it is also possible to recover waste heat streams 

for preheating water
 
[126 – 128]. For example, Butler and Dwa [129] investigated various 

possibilities to capture low grade heat from existing plants (e.g. coal power plants) and 

potential benefits of utilizing the heat in low grade thermal energy applications (e.g. 

preheating boiler feed water), which provides significant potential in reducing fuel 

consumption and emission intensity in heavy industrial applications (e.g. pulp and paper 

industry). It will be assumed that the change of enthalpy achieved in the boiler is equal to 

the total amount of heat produced from fuel combustion, as well as the amount of heat 

obtained from the preheating sources. This is expressed by the following constraint. 

𝐵𝑃𝑏𝑛𝑡
𝐺  ∆𝐻𝐵𝑏

 = (𝐻𝑉𝑁𝐺𝐹𝐶𝐵𝑏𝑛𝑡
𝐺 + 𝐻𝑉𝑠𝑦𝑛𝑆𝑦𝑛𝑆𝑏𝑛𝑡

𝐺 )𝜂𝑏
𝐺  

+ ∑ ∑ 𝐻𝑅𝑋𝑏′𝑛′𝑡
𝑃𝑟𝑒ℎ𝑒𝑎𝑡𝜂𝑏′

𝑝𝑟𝑒ℎ𝑒𝑎𝑡

𝑛′∈𝑁𝑏′𝑏′

∀ 𝑏, 𝑛 ∈ 𝑁𝑏 , 𝑡 

(4.18) 
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where 𝐵𝑃𝑏𝑛𝑡
𝐺  is the amount of steam or hot water produced from boiler type b, ∆𝐻𝐵𝑏

  is 

the required change in enthalpy per unit mass of steam or hot water, 𝐹𝐶𝐵𝑏𝑛𝑡
𝐺  is the 

amount of fuel consumed, 𝑆𝑦𝑛𝑆𝑏𝑛𝑡
𝐺  is the amount of syngas exported from gasification 

facilities and consumed by each boiler, HV
NG

 and HV
syn

 are the heating values of fuel and 

syngas, respectively, 𝐻𝑅𝑋𝑏′𝑛𝑡
𝑃𝑟𝑒ℎ𝑒𝑎𝑡 is the amount of heat available from each preheating 

option b’, and 𝜂𝑏
𝐺  and 𝜂𝑏′

𝑝𝑟𝑒ℎ𝑒𝑎𝑡
 are the efficiencies of boiler and preheating technologies, 

respectively. The feed water entering each boiler from which steam or hot water is 

produced is written as the sum of water flowrate coming from all preheating options 

associated with boiler type b. This is presented as follows. 

𝐵𝑃𝑏𝑛𝑡
𝐺 = ∑ ∑ 𝐵𝑃𝑏𝑛𝑏′𝑛′𝑡

𝐺𝑡𝑜𝑃

𝑛′∈𝑁𝑏′𝑏′

            ∀ 𝑏, 𝑛 ∈ 𝑁𝑏 , 𝑡 
(4.19) 

Similarly, the amount of feed water entering each preheating option must be equal to the 

sum of flowrates to each boiler, and is presented as follows. 

𝐵𝑃𝑏′𝑛′𝑡
𝑃𝑟𝑒 = ∑ ∑ 𝐵𝑃𝑏𝑛𝑏′𝑛′𝑡

𝐺𝑡𝑜𝑃

𝑛∈𝑁𝑏𝑏

            ∀ 𝑏′, 𝑛′ ∈ 𝑁𝑏′ , 𝑡 
(4.20) 

The flow of water from preheating option b’ to boiler b should not exceed the maximum 

capacity of the boiler or the preheating option. This is presented by the following 

constraints. 

𝐵𝑃𝑏𝑛𝑏′𝑛′𝑡
𝐺𝑡𝑜𝑃 ≤ 𝐵𝑀𝐴𝑋𝑏

𝐺𝑏𝑝𝑏𝑛𝑏′𝑛′𝑡
     ∀ 𝑏, 𝑛 ∈ 𝑁𝑏 , 𝑏′, 𝑛′ ∈ 𝑁𝑏′ , 𝑡 (4.21) 

𝐵𝑃𝑏𝑛𝑏′𝑛′𝑡
𝐺𝑡𝑜𝑃 ≤ 𝐵𝑀𝐴𝑋𝑏′

𝑃𝑟𝑒𝑏𝑝𝑏𝑛𝑏′𝑛′𝑡
  ∀ 𝑏, 𝑛 ∈ 𝑁𝑏 , 𝑏′, 𝑛′ ∈ 𝑁𝑏′ , 𝑡 (4.22) 

where 𝑏𝑝𝑏𝑛𝑏′𝑛′𝑡
  is a binary variable that indicates the existence of the interconnection 

between a boiler and a preheating technology. Moreover, it is assumed that each boiler 
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technology can only be connected to one preheating option, which is presented by the 

following constraint. 

∑ ∑ 𝑏𝑝𝑏𝑛𝑏′𝑛′𝑡
 

𝑛′∈𝑁𝑏′𝑏′

≤ 1          ∀ 𝑏, 𝑛 ∈ 𝑁𝑏 , 𝑡 
(4.23) 

The heat rate from each preheat option can raise the enthalpy of feed water by a certain 

amount, which can be expressed as a percentage of the total enthalpy change. This 

constraint is imposed in order to ensure that the preheating results only in a certain 

change in the specific enthalpy, and is expressed as follows.  

𝐻𝑅𝑋𝑏′𝑛′𝑡
𝑃𝑟𝑒ℎ𝑒𝑎𝑡𝜂𝑏′

𝑝𝑟𝑒ℎ𝑒𝑎𝑡
=  𝐵𝑃𝑏′𝑛′𝑡

𝑃𝑟𝑒  ∆𝐻𝐵𝑏′
𝑃𝑟𝑒ℎ𝑒𝑎𝑡           ∀ 𝑏, 𝑏′ ∈ 𝐵𝑃𝐻

′ , 𝑛 ∈ 𝑁𝑏 , 𝑡 (4.24) 

4.2.7 Industrial combined heat and power system 

The industrial natural gas combined heat and power system consists of gas turbines 

and/or extraction condenser steam turbines that are used for power generation. The steam 

turbines might be fed by high pressure steam produced by boilers or from heat recovery 

steam generators, which recover heat from the exhaust of gas turbines. Supplementary 

fuel might be combusted in addition to the heat recovered in order to raise the enthalpy of 

steam to a desired state. The gas turbines utilize natural gas and syngas from gasification 

facilities as fuel in the combustion chambers, and the high pressure steam generators can 

utilize various fuels (Figure 4.2). The industrial cogeneration system is modeled 

according to the approaches in
 
[76, 112, 130, 131]. It is assumed that the system consists 

of depressurizing valves to control the pressures of steam to the desired levels. 

 

 



95 
 

 

 

 

 

 

 

 

 

 

 

The cost of cogeneration facilities can be calculated as follows. 

𝐶𝑂𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐶𝐶𝑂𝑐𝑡

𝐺𝑇 𝐶𝑂𝑀𝐴𝑋𝑐𝑡′𝑡
𝐺𝑇  𝑛𝑐𝑐𝑛𝑡′

𝐺𝑇

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ (𝐹𝐶𝑂𝑐𝑡
𝐺𝑇 𝐶𝑂𝑀𝐴𝑋𝑐

𝐺𝑇 𝑦𝑐𝑐𝑛𝑡
𝐺𝑇 + 𝑉𝐶𝑂𝑐𝑡

𝐺𝑇 𝑃𝑃𝐶𝑐𝑛𝑡
𝐺𝑇 𝑇𝑇)

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ 𝐶𝐶𝑂𝑐𝑡
𝑆𝑇 𝐶𝑂𝑀𝐴𝑋𝑐𝑡′𝑡

𝑆𝑇  𝑛𝑐𝑐𝑛𝑡′
𝑆𝑇

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ (𝐹𝐶𝑂𝑐𝑡
𝑆𝑇 𝐶𝑂𝑀𝐴𝑋𝑐

𝑆𝑇 𝑦𝑐𝑐𝑛𝑡
𝑆𝑇 + 𝑉𝐶𝑂𝑐𝑡

𝑆𝑇 𝑃𝑃𝐶𝑐𝑛𝑡
𝑆𝑇 𝑇𝑇)

𝑛∈𝑁𝑐𝑐

 

+ ∑ ∑ 𝐶𝐹𝐶𝑂𝑐𝑡
 𝐹𝐶𝐶𝑐𝑛𝑡

𝑇𝑜𝑡𝑇𝑇

𝑛∈𝑁𝑐𝑐

              ∀ 𝑡 

(4.25) 

The amount of fuel (i.e. natural gas) consumed in the combustion chambers of gas 

turbines and supplementary fuel consumed in the heat recovery steam generator can be 

calculated as illustrated in Eq. 4.26 and Eq. 4.27, respectively.  

Figure 4.2 Schematic representation of an industrial combined heat and power system 
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𝐹𝐶𝐶𝑐𝑛𝑡
𝐺𝑇 =

3.6 𝑃𝑃𝐶𝑐𝑛𝑡
𝐺𝑇

𝜂𝑐
𝐺𝑇   ∀ 𝑐, 𝑛 ∈ 𝑁𝑐 , 𝑡 

(4.26) 

𝐹𝐶𝐶𝑐𝑛𝑡
𝐺𝑅−𝑝𝑜𝑠𝑡

=
𝑆𝑃𝑐𝑛𝑡

𝐺𝑅 ∆𝐻𝑆𝑐
 − (1 − 𝜂𝑐

𝐺𝑇)𝐹𝐶𝐶𝑐𝑛𝑡
𝐺𝑇 𝜂𝑐

𝐺𝑅 − ∑ ∑ 𝐻𝑅𝑋𝑏′𝑛𝑡
𝐺𝑅−𝑝𝑟𝑒𝜂𝑏′

𝑝𝑟𝑒ℎ𝑒𝑎𝑡
𝑛∈𝑁𝑏′𝑏′

𝜂𝑐
𝐺𝑅   ∀ 𝑐, 𝑛

∈ 𝑁𝑐, 𝑡 

(4.27) 

where PPCcnt is the power generated from the gas turbine and 𝑆𝑃𝑐𝑛𝑡
𝐺𝑅  is the amount of high 

pressure steam produced from the heat recovery from exhaust gases, which can be sent to 

steam turbines to produced power or used for the high pressure steam requirements of the 

industrial operations. 

𝑆𝑃𝑐𝑛𝑡
𝐺𝑅 = 𝑆𝑃𝐷𝑐𝑛𝑡

𝐻𝑃 + 𝑆𝑃𝐶𝑐𝑛𝑡
𝐺−𝑆   ∀ 𝑐, 𝑛 ∈ 𝑁𝑐, 𝑡 (4.28) 

The amount of steam produced from high pressure boilers used in steam turbines can be 

calculated as follows. 

𝑆𝑃𝐶𝑐𝑛𝑡
𝐻𝑃𝐵  ∆𝐻𝑆𝑆 = 𝐻𝑉𝑁𝐺𝐹𝐶𝑆𝑐𝑛𝑡

𝑆𝑇 𝜂𝑐
𝐺 + 𝐻𝑉𝑠𝑦𝑛𝑆𝑦𝑛𝑆𝑆𝑐𝑛𝑡

𝑆𝑇 𝜂𝑐
𝐺

+ ∑ ∑ 𝐻𝑅𝑋𝑏′𝑛𝑡
𝑆𝑅−𝑝𝑟𝑒𝜂𝑏′

𝑝𝑟𝑒ℎ𝑒𝑎𝑡

𝑛∈𝑁𝑏′𝑏′

   ∀ 𝑐, 𝑛 ∈ 𝑁𝑐 , 𝑡 

(4.29) 

where 𝐹𝐶𝑆𝑐𝑛𝑡
𝑆𝑇  and 𝑆𝑦𝑛𝑆𝑆𝑐𝑛𝑡

𝑆𝑇  are the amounts of natural gas and syngas from gasification 

facilities consumed, respectively. The power produced in steam turbines can then be 

calculated as follows. 

𝑃𝑃𝐶𝑐𝑛𝑡
𝑆𝑇 = 𝜂𝑐

𝑆𝑇(𝑆𝑃𝐶𝑐𝑛𝑡
𝐻𝑃𝐵ℎ1

 + 𝑆𝑃𝐶𝑐𝑛𝑡
𝐺−𝑆ℎ𝐺−𝑆

 − 𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇2ℎ2

 − 𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇3ℎ3

 )  ∀ 𝑐, 𝑛

∈ 𝑁𝑐 , 𝑡 

(4.30) 
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where 𝑆𝑃𝐶𝑐𝑛𝑡
𝐻𝑃𝐵 and 𝑆𝑃𝐶𝑐𝑛𝑡

𝐺−𝑆 are the amounts of high pressure steam produced in high 

pressure boilers and steam produced from heat recovery from exhaust gas, respectively. 

𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇2 and 𝑆𝑃𝐶𝑐𝑛𝑡

𝐸𝑋𝑇3 are the amounts of steam extracted from the steam turbine at the 

required pressure levels. The total amount of fuel consumed in the industrial cogeneration 

facility is calculated as follows. 

𝐹𝐶𝐶𝑐𝑛𝑡
𝑇𝑜𝑡 = 𝐹𝐶𝐶𝑐𝑛𝑡

𝐺𝑇 + 𝐹𝐶𝐶𝑐𝑛𝑡
𝐺𝑅−𝑝𝑜𝑠𝑡 + 𝐹𝐶𝑆𝑐𝑛𝑡

𝑆𝑇     ∀ 𝑐, 𝑛 ∈ 𝑁𝑐 , 𝑡 (4.31) 

4.2.8 Nuclear energy system 

In the proposed model nuclear energy can be used to cover the energy requirements of 

industrial operations in the form of power and heat. The heat generated can be used to 

produce high, medium and low pressure steam, and/or used for other heating applications 

for which typically fuel combustion is used. For example, in the oil sands industry, 

nuclear energy can be used to produce power, SAGD steam, process steam, hot water, 

upgrading heat, and heat utilized by SMR plants for hydrogen production. The excess 

power produced from nuclear facilities can also be sold to the grid or used in 

electrolyzers for hydrogen production, which can also be used to satisfy the hydrogen 

requirements of bitumen upgrading operations or sold to the market (Figure 3.3). Nuclear 

energy is a low-carbon footprint technology, which make it an attractive alternative to the 

reduction of emission from energy intensive industries. Moreover, a carbon emission 

trading and tax system is being considered to control and penalize industries that do not 

meet their GHG emission requirements. Therefore, nuclear energy can play a significant 

role in the energy infrastructure of these industries.  
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The cost of nuclear energy production can be estimated as follows. 

𝑁𝑈𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ ∑ 𝐶𝐶𝑁𝑈𝑢

 𝑁𝑈𝑀𝐴𝑋𝑢𝑡′𝑡
  𝑛𝑢𝑢𝑛𝑡′

 

𝑡′𝑛∈𝑁𝑢𝑢

+ ∑ ∑ (𝐹𝑂𝑁𝑈𝑢
  𝑁𝑈𝑀𝐴𝑋𝑢

  𝑦𝑢𝑢𝑛𝑡
 + 𝑉𝑂𝑁𝑈𝑢

  𝐻𝑅𝑈𝑢𝑛𝑡
𝑁𝑈 𝑇𝑇)

𝑛∈𝑁𝑢𝑢

+ ∑ ∑ 𝐶𝑁𝐴 𝑃𝑁𝐴 𝑅𝐴𝐹 𝑦𝑢𝑢𝑛𝑡
 

𝑛∈𝑁𝑢𝑢

  ∀ 𝑡 

(4.32) 

where nuunt is a binary variable that indicates if unit n of nuclear facility type u is 

constructed during period t, CCNUut is the capital cost, yuunt is a binary variable that 

indicates if the nuclear facility is operational during time period t, 𝐻𝑅𝑈𝑢𝑛𝑡
𝑁𝑈  is the heat rate 

produced from each unit, FONUut and VONUut are the fixed and variable operation and 

maintenance costs, respectively, CNA is the cost incurred as a result of a nuclear accident, 

PNA is the probability of a nuclear accident occurring during time period t, and RAF is a 

factor associated with the individual-risk perception. The yield of producing energy 

Figure 4.3 Schematic representation of the nuclear energy system 



99 
 

commodities from a nuclear plant are expressed per MWth of nuclear energy. The 

amount of each energy commodity produced can therefore be calculated as follows 

𝐸𝑃𝑈𝑢𝑒𝑛𝑡
𝑁𝑈 = 𝛿𝑌𝑈𝑢𝑒

𝐸 𝐻𝑅𝑈𝑢𝑛𝑡
𝑁𝑈                     ∀ 𝑢, 𝑒, 𝑛 ∈ 𝑁𝑢, 𝑡 (4.33) 

where 𝛿𝑌𝑈𝑢𝑒
𝐸  is the yield of energy commodity e generated from nuclear technology u 

(units of e/MWth). The amount of heat produced from nuclear facilities can be used to 

satisfy the heating requirements of downstream industrial operations (e.g. bitumen 

upgrading heat) and could be also utilized for providing heat for energy production plants 

(e.g. SMR for hydrogen production). This can be expressed by the following constraint 

𝐸𝑃𝑈𝑢𝑒𝑛𝑡
𝑁𝑈 = 𝐻𝑒𝑎𝑡𝑈𝑢𝑛𝑡

𝑈𝑃𝐺 +  𝐻𝑒𝑎𝑡𝑈𝑢𝑛𝑡
𝐻                  ∀ 𝑢, 𝑛 ∈ 𝑁𝑢, 𝑒 = 𝐻𝑒𝑎𝑡, 𝑛 ∈ 𝑁𝑢 , 𝑡 (4.34) 

The power produced from nuclear plants can be used to provide the electricity 

requirements of industrial operations, exported to the grid, or sent to satisfy the energy 

requirement of other energy production facilities, such as electrolyzers or other nuclear 

facilities dedicated only for heat production. This can be written as follows 

𝐸𝑃𝑈𝑢𝑒𝑛𝑡
𝑁𝑈 = 𝑃𝑃𝑈𝑢𝑛𝑡

𝐷𝐸𝑀 + 𝑃𝑃𝑈𝑢𝑛𝑡
𝐺𝑅𝐼𝐷 + 𝑃𝑃𝑈𝑢𝑛𝑡

𝐻 + 𝑃𝑃𝑈𝑢𝑛𝑡
𝑁𝑈         ∀ 𝑢 ∈  𝑈𝑃 ∪ 𝑈𝐶𝐻𝑃 , 𝑛

∈ 𝑁𝑢, 𝑒 = 𝑃𝑜𝑤𝑒𝑟, 𝑛 ∈ 𝑁𝑢, 𝑡 

(4.35) 

4.2.9 Gasification polygeneration system 

Polygeneration gasification systems that can utilize various fuels are considered in the 

proposed optimization model. Petcoke, asphaltenes, coal, bitumen, biomass or a 

combination of these can be utilized as alternative fuel inputs into the gasification reactor. 

Therefore, it is assumed that the different types of gasification and synthetic gas cleaning 

technologies considered depend on the type of fuel used as an input to the gasification 

process. The synthetic gas (syngas) produced is rich in hydrogen and carbon monoxide, 
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which can then be combusted to generate steam and/or electricity, or it can be purified to 

produce hydrogen. The effluent gas stream from the process of hydrogen purification can 

also be combusted to generate heat. Heat can also be recovered from waste heat streams 

to generate additional steam and/or hot water. The syngas produced can be used to 

generate synthetic natural gas, which can be exported to natural gas fueled facilities (e.g. 

boilers, furnaces, etc.) requiring little or no retrofit for their combustion chambers. 

Transportation fuels is a commonly required energy commodity in industrial operations. 

For example, oil sands mining operations require significant amounts of fuel to operate 

vehicles and trucks, for which diesel is currently used. Switching to low carbon intensive 

fuels can be achieved through the conversion of biomass to biofuels. The syngas 

produced from gasification can be purified and transformed into fuels (e.g. synthetic 

diesel, synthetic gasoline, etc.) (Figure 4.4).  

 

Figure 4.4 Schematic representation of the proposed gasification system 
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Accordingly, five types of processing options are considered for the produced syngas, 

which include GPR1: hydrogen, GPR2: power and hydrogen, GPR3: power, steam and 

hydrogen, GPR4: power and steam, and GPR5: fuel production (e.g. synthetic natural 

gas, biofuels, etc.). The gasification system is modeled according to [131 – 134]. The cost 

of polygeneration gasification facilities can be calculated as follows. 

𝐺𝐴𝑆𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ ∑ 𝐶𝐶𝐾𝑘

 𝐾𝑀𝐴𝑋𝑘𝑡′𝑡
  𝑛𝑘𝑘𝑛𝑡′

 

𝑡′𝑛∈𝑁𝑘𝑘

+ ∑ ∑ (𝐹𝑂𝐾𝑘
  𝐾𝑀𝐴𝑋𝑘

𝑇 𝑦𝑘𝑘𝑛𝑡
 + 𝑉𝑂𝐾𝑘

  𝑆𝑌𝑁𝑘𝑛𝑡
𝐾𝑇 𝑇𝑇)

𝑛∈𝑁𝑘𝑘

+ ∑ ∑ 𝐶𝐹𝐾𝑘
  𝐹𝐶𝐺𝑘𝑛𝑡

 

𝑛∈𝑁𝑘𝑘

+ ∑ ∑ ∑ 𝐶𝐶𝑅𝑟
 𝑅𝑀𝐴𝑋𝑟𝑡′𝑡

  𝑛𝑟𝑟𝑛𝑡′
 

𝑡′𝑛∈𝑁𝑟𝑟

+ ∑ ∑ (𝐹𝑂𝑅𝑟
  𝑅𝑀𝐴𝑋𝑟

𝑇 𝑦𝑟𝑟𝑛𝑡
 + 𝑉𝑂𝑅𝑟

  𝑆𝑌𝑁𝑟𝑛𝑡
𝑅𝑇 𝑇𝑇)

𝑛∈𝑁𝑟𝑟

   ∀ 𝑡 

(4.36) 

The amount of syngas produced from a certain gasification technology depends on the 

type of fuel utilized and can be calculated as follows. 

𝑆𝑌𝑁𝑘𝑛𝑡
𝐾𝑇 = 𝛿𝑌𝐾𝑘

𝑠𝑦𝑛
𝐹𝐶𝐺𝑘𝑛𝑡

    ∀ 𝑘, 𝑛 ∈ 𝑁𝑘, 𝑡 (4.37) 

where FCPCknt is the amount of fuel (i.e. coal, biomass, asphaltene, petcoke) utilized, 

𝛿𝑌𝐾𝑘
𝑠𝑦𝑛

 is the yield of syngas, and 𝑆𝑌𝑁𝑘𝑛𝑡
𝐾𝑇  is the amount of syngas produced. The 

amount of syngas produced can be distributed among the available gas processing options 

to produce energy or to be exported to other energy commodity producers (e.g. natural 

gas boilers). This constraint is represented as follows. 

𝑆𝑌𝑁𝑘𝑛𝑡
𝐾𝑇 = ∑ ∑ 𝑆𝑌𝑁𝑘𝑛𝑟𝑛′𝑡

 

𝑛′∈𝑁𝑟𝑟

+ 𝑆𝑌𝑁𝑘𝑛𝑡
𝑒𝑥𝑝    ∀ 𝑘, 𝑛 ∈ 𝑁𝑘, 𝑡 

(4.38) 
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The amount of syngas produced from gasification that is available for export is 

distributed among natural gas combined heat and power and boilers as follows. 

∑ ∑ 𝑆𝑌𝑁𝑘𝑛𝑡
𝑒𝑥𝑝

𝑛∈𝑁𝑘𝑘

= ∑ ∑ 𝑆𝑦𝑛𝑆𝑆𝑐𝑛𝑡
𝑆𝑇

𝑛∈𝑁𝑐𝑐

+  ∑ ∑ 𝑆𝑦𝑛𝑆𝑏𝑛𝑡
𝐺

𝑛∈𝑁𝑏𝑏

   ∀  𝑡 
(4.39) 

Also, the amount of syngas entering a processing option must be equal to the amount of 

syngas sent to it from all gasification technologies, which is presented as follows. 

𝑆𝑌𝑁𝑟𝑛𝑡
𝑅𝑇 = ∑ ∑ 𝑆𝑌𝑁𝑘𝑛𝑟𝑛′𝑡

 

𝑛∈𝑁𝑘𝑘

   ∀ 𝑟, 𝑛 ∈ 𝑁𝑟 , 𝑡 
(4.40) 

where 𝑆𝑌𝑁𝑟𝑛𝑡
𝑅𝑇  is the amount of syngas sent from gasification technology k to gas 

processing option r. The flow of syngas from gasification technology k to processing 

options r should not exceed the maximum capacity of gasification technology k or the 

maximum capacity of processing option r. This is presented by the following constraints. 

𝑆𝑌𝑁𝑘𝑛𝑟𝑛′𝑡
 ≤ 𝑆𝑌𝑁𝐾𝑘

𝑀𝐴𝑋𝑘𝑟𝑘𝑛𝑟𝑛′𝑡
     ∀ 𝑘, 𝑛 ∈ 𝑁𝑘, 𝑟, 𝑛′ ∈ 𝑁𝑟 , 𝑡 (4.41) 

𝑆𝑌𝑁𝑘𝑛𝑟𝑛′𝑡
 ≤ 𝑆𝑌𝑁𝑅𝑟

𝑀𝐴𝑋𝑘𝑟𝑘𝑛𝑟𝑛′𝑡
     ∀ 𝑘, 𝑛 ∈ 𝑁𝑘, 𝑟, 𝑛′ ∈ 𝑁𝑟 , 𝑡 (4.42) 

Moreover, it is assumed that each gasification technology can only be connected to one 

gas processing options, which is presented by the following constraint. 

∑ ∑ 𝑘𝑟𝑘𝑛𝑟𝑛′𝑡
 

𝑛′∈𝑁𝑟𝑟

≤ 1     ∀ 𝑘, 𝑛 ∈ 𝑁𝑘, 𝑡 
(4.43) 

The amount of each energy commodity produced from each syngas processing option can 

be calculated as follows. 

𝐸𝐶𝑟𝑒𝑛𝑡
𝑃𝐶𝐾 = 𝛿𝑌𝑅𝑟𝑒

𝐸𝐶𝑆𝑌𝑁𝑟𝑛𝑡
𝑅𝑇     ∀ 𝑟, 𝑒, 𝑛 ∈ 𝑁𝑟 , 𝑡 (4.44) 
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where 𝛿𝑌𝑅𝑟𝑒
𝐸𝐶 is the yield of energy commodity e from processing option r, and 𝐸𝐶𝑟𝑒𝑛𝑡

𝑃𝐶𝐾  is 

the amount of energy commodity e produced from each unit n of processing option r. 

4.2.10 Capacity constraints 

A feature of the developed multi-period model is the consideration of construction lead 

time for new energy producers, which is important because energy cannot be supplied 

until the construction of the plant is complete. The variation in construction lead time 

depends on the type of energy production technology considered. Therefore, in order to 

ensure that during the construction phase of energy production technology no energy is 

provided by it, a capacity constraint that takes into account construction lead time is 

formulated. This constraint is formulated according to the matrix method provided in 

Sirikitputtisak et al. [114]. The maximum capacity of an energy production plant is 

defined by two time indices. One time index represent the construction year t’, and the 

other time index t refers to years of regular operation, which can be presented as follows. 

𝐶𝑀𝐼𝑁𝑖𝑒𝑡′𝑡
𝐿𝑇 𝑛𝑖𝑛𝑡′

𝑛𝑒𝑤 ≤ 𝐸𝐶𝑖𝑛𝑒𝑡
𝑛𝑒𝑤 ≤ 𝐶𝑀𝐴𝑋𝑖𝑒𝑡′𝑡

𝐿𝑇 𝑛𝑖𝑛𝑡′
𝑛𝑒𝑤    ∀ 𝑖, 𝑒, 𝑛 ∈ 𝑁𝑖 , 𝑡, 𝑡′ (4.45) 

where 𝑛𝑖𝑛𝑡′
𝑛𝑒𝑤 is a binary variable that indicates if unit n of plant type i is constructed 

during time period t’, and 𝐶𝑀𝐼𝑁𝑖𝑒𝑡′𝑡
𝐿𝑇  and 𝐶𝑀𝐴𝑋𝑖𝑒𝑡′𝑡

𝐿𝑇  are the minimum and maximum 

capacities, respectively. Moreover, the capacity constraints accounts for limits on energy 

production from renewable energy sources (heat and power) as they have limits on their 

potential. In other words, limitations are imposed on the output of hydropower, solar, 

geothermal, wind, etc. The capacity constraint for existing and new energy production 

technologies can be presented as follows. 
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𝐶𝑀𝐼𝑁𝑖𝑒𝑡
 𝑦𝑖𝑛𝑡 

 ≤ 𝐸𝐶𝑖𝑛𝑒𝑡 ≤ 𝐶𝑀𝐴𝑋𝑖𝑒𝑡
 𝑦𝑖𝑛𝑡  

   ∀ 𝑖, 𝑒, 𝑛 ∈ 𝑁𝑖 , 𝑡 (4.46) 

where yint is a binary variable that represents if unit n of plant type i is operations during 

time period t. Moreover, the construction of any energy production unit can only take 

place during a certain time period, which is enforced by the following constraint. 

∑ 𝑛𝑖𝑛𝑡  
𝑛𝑒𝑤

𝑡

≤ 1   ∀ 𝑖, 𝑛 ∈ 𝑁𝑖 
(4.47) 

Moreover, a limit can be set on the number of energy production units installed during a 

certain time period for each technology, which is illustrated as follows. 

∑ 𝑛𝑖𝑛𝑡 
𝑛𝑒𝑤

𝑛∈𝑁𝑖

≤ 𝑁𝑀𝐴𝑋𝑖𝑡
𝑛𝑒𝑤    ∀ 𝑖, 𝑡 

(4.48) 

4.2.11 Fuel availability constraint 

Limits on energy production from available fuels (e.g. biomass, natural gas, petcoke, etc.) 

are accounted for by incorporating maximum thresholds on fuel consumption. Fuel 

consumption is related power, hydrogen, thermal (i.e. boilers), gasification plants, and 

other needs (e.g. vehicles, furnace heating, etc.). The entire sum of the contribution of 

these energy suppliers to fuel consumption for a certain type of fuel f during time period t 

has to be comprised to an upper bound, which is illustrated by the following constraint. 

   ∑ 𝐹𝐶𝑃𝑝𝑛𝑡
𝐹

 

𝑛∈𝑁𝑝

+ ∑ 𝐹𝐶𝐻ℎ𝑛𝑡
𝐹

 

𝑛∈𝑁ℎ

+ ∑ 𝐹𝐶𝐵𝑏𝑛𝑡
𝐹

 

𝑛∈𝑁𝑏

+ ∑ 𝐹𝐶𝐶𝑐𝑛𝑡
𝑇𝑜𝑡

 

𝑛∈𝑁𝑐

+ ∑ 𝐹𝐶𝐺𝑘𝑛𝑡
 

 

𝑛∈𝑁𝑘

+ 𝐹𝑢𝑒𝑙𝑓𝑡 ≤ 𝐹𝑢𝑒𝑙𝑓𝑡
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒   ∀ 𝑝 ∈ 𝑃𝑓

 , ℎ ∈ 𝐻𝑓
 , 𝑏 ∈ 𝐵𝑓

 , 𝑐 ∈ 𝐶𝑓
 , 𝑘

∈ 𝐾𝑓
 , 𝑡 

(4.49) 
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4.2.12 Demand constraints 

The total energy requirements of the industrial operations in the model must be satisfied 

by the proposed energy commodity producers. Therefore, the total amount of energy 

commodities produced by the energy technologies considered must be greater than or 

equal to the amount of energy required, which is presented by the following constraints. 

∑ ∑ 𝑃𝑃𝑝𝑛𝑡
𝐷𝐸𝑀

𝑛∈𝑁𝑝𝑝

+ ∑ ∑ 𝑃𝑃𝑈𝑢𝑛𝑡
𝐷𝐸𝑀

𝑛∈𝑁𝑢𝑢

+ ∑ ∑ 𝑃𝑃𝐶𝑐𝑛𝑡
𝐷𝐸𝑀

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ 𝐸𝐶𝑟,𝑒=𝑝𝑜𝑤,𝑛𝑡
𝑃𝐶𝐾

𝑛∈𝑁𝑟𝑟

≥ 𝐷𝐸𝐶𝑒=𝑝𝑜𝑤,   𝑡
      ∀  𝑡 

(4.50) 

∑ ∑ 𝐻𝑃ℎ𝑛𝑡
 

𝑛∈𝑁ℎℎ

+ ∑ ∑ 𝐸𝐶𝑟,𝑒=𝐻2,𝑛𝑡
𝑃𝐶𝐾

𝑛∈𝑁𝑟𝑟

≥ 𝐷𝐸𝐶𝑒=𝐻2,   𝑡
      ∀  𝑡 

(4.51) 

∑ ∑ 𝐵𝑃𝑏𝑛𝑡
𝐺

𝑛∈𝑁𝑏𝑏∈𝐵𝐻𝑃

+ ∑ ∑ 𝑆𝑃𝐷𝑐𝑛𝑡
𝐻𝑃

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ 𝐸𝐶𝑟,𝑒=𝐻𝑃 𝑠𝑡𝑒𝑎𝑚,𝑛𝑡
𝑃𝐶𝐾

𝑛∈𝑁𝑟𝑟

≥ 𝐷𝐸𝐶𝑒=𝐻𝑃 𝑠𝑡𝑒𝑎𝑚,   𝑡
      ∀  𝑡 

(4.52) 

∑ ∑ 𝐵𝑃𝑏𝑛𝑡
𝐺

𝑛∈𝑁𝑏𝑏∈𝐵𝐿𝑃

+ ∑ ∑ 𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇2

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ 𝐸𝐶𝑟,𝑒=𝐿𝑃 𝑠𝑡𝑒𝑎𝑚,𝑛𝑡
𝑃𝐶𝐾

𝑛∈𝑁𝑟𝑟

≥ 𝐷𝐸𝐶𝑒=𝐿𝑃 𝑠𝑡𝑒𝑎𝑚,   𝑡
      ∀  𝑡 

(4.53) 

∑ ∑ 𝐵𝑃𝑏𝑛𝑡
𝐺

𝑛∈𝑁𝑏𝑏∈𝐵𝐻𝑊

+ ∑ ∑ 𝑆𝑃𝐶𝑐𝑛𝑡
𝐸𝑋𝑇3

𝑛∈𝑁𝑐𝑐

+ ∑ ∑ 𝐸𝐶𝑟,𝑒=𝐻𝑜𝑡 𝑤𝑎𝑡𝑒𝑟,𝑛𝑡
𝑃𝐶𝐾

𝑛∈𝑁𝑟𝑟

≥ 𝐷𝐸𝐶𝑒=𝐻𝑜𝑡 𝑤𝑎𝑡𝑒𝑟,   𝑡
      ∀  𝑡 

(4.54) 

𝐹𝑢𝑒𝑙𝑓𝑡
 + ∑ ∑ 𝐸𝐶𝑟,𝑒=𝑆𝑦𝑛 𝑓𝑢𝑒𝑙,𝑛𝑡

𝑃𝐶𝐾

𝑛∈𝑁𝑟𝑟

≥ 𝐷𝐸𝐶𝑒=𝐹𝑢𝑒𝑙,   𝑡
      ∀  𝑡 

(4.55) 
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4.2.13 Objective function 

The objective of the proposed deterministic multi-period MILP model is to minimize the 

total present value of the cost of energy production over a specified planning period, 

which is presented as follows. 

𝑚𝑖𝑛    𝐶𝑜𝑠𝑡𝑇 = ∑(𝑃𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 + 𝐻𝐶𝑡

𝑡𝑜𝑡𝑎𝑙 + 𝐵𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 + 𝐶𝑂𝐶𝑡

𝑡𝑜𝑡𝑎𝑙 + 𝑁𝑈𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 + 𝐺𝐴𝑆𝐶𝑡

𝑡𝑜𝑡𝑎𝑙)

𝑡

+ ∑ ∑ ∑(𝐶𝑜𝑠𝑡𝐶𝑇 𝑃𝐾𝑀 + 𝐶𝑜𝑠𝑡𝐶𝑆)𝑇𝑇 
 𝐸𝐶𝑂2𝑖𝑛𝑡

 

𝑡𝑛∈𝑁𝑖

𝜀𝑖

𝑖

+ ∑ 𝐶𝑜𝑠𝑡𝐶𝑟𝑒𝑑𝑖𝑡𝑡𝑇𝑇(𝐶𝑟𝑒𝑑𝑖𝑡𝑏𝑢𝑦𝑡 − 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑒𝑙𝑙𝑡)

𝑡

+ ∑ ∑ 𝐹𝐶𝑓
 

𝑓

𝐹𝑢𝑒𝑙𝑓𝑡
 

𝑡

+ ∑ 𝑃𝑜𝑤𝑃𝑟𝑖𝑐𝑒𝑡

𝑡

𝑇𝑇(𝑃𝑢𝑟𝐺𝑟𝑖𝑑𝑡 − 𝑆𝑒𝑙𝑙𝐺𝑟𝑖𝑑𝑡) − ∑ 𝐻2𝑃𝑟𝑖𝑐𝑒𝑡

𝑡

𝐻2𝑆𝑒𝑙𝑙𝑡  

(4.56) 

The total cost function is estimated by the cost of individual energy commodities required 

for industrial operations. The objective function also incorporates the environmental costs 

associated with carbon capture and sequestration, and the purchase of carbon emission 

credits. Finally, the possibility of buying energy commodities (e.g. power from grid) or 

selling excess energy commodities produced, such as selling excess power to the grid or 

excess hydrogen to the market, is incorporated in the proposed objective function.   

4.3 Case Study 

In order to investigate its applicability, the formulated model is applied to a case study 

based on the oil sands operations in Alberta. This is an active area for recovering and 

upgrading bitumen, where significant quantities are transported to refineries in Canada 

and the United States. Energy consumption data and factors affecting the operations of 

the industry that are required to complete the evaluation of the application of the energy 

production technologies are readily available in the public domain.  
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The oil sands industry is one of the biggest contributors to the production of primary 

energy in Canada, and it is also one of the largest end-users of energy. The oil sands 

industry consumes thermal energy (i.e. steam, hot water, and heat) and hydrogen, which 

are currently produced from natural gas, electricity from the grid, and diesel fuel. 

Continued growth in oil sands production levels and the associated increase in energy use 

will result in a substantial increase in GHG emissions produced from fuel combustion. In 

2014, the oil sands operations accounted for approximately 21% of the electricity demand 

in the province, 30% of natural gas demand (excluding the production of electricity), and 

20% of diesel fuel demand. Various projections of bitumen and synthetic crude oil 

production are provided in the literature. Moreover, various scenario based estimates of 

the energy requirements associated with the oil sands production levels are also available 

in the literature. These scenarios include the business as usual scenario that provides the 

energy estimates expected to unfold based on historical trends, the increased energy 

efficiency scenario that assumes technology learning and innovation that reduces energy 

consumption, and the decreased reservoir quality scenario in which the reservoir quality 

deteriorates resulting in an increase in the energy intensity of bitumen extraction [135]. 

Based on these scenarios, six demand levels for the various energy commodities required 

for oil sands operations were developed (Fig. A1 in Appendix), reflecting the different 

levels of energy intensities associated with oil sands operations.  

Although Canada has withdrawn from the Kyoto Protocol in late 2011, and there are 

concerns among political parties about carbon mitigation policies that will be adopted in 

the future, in order to evaluate the impact of a carbon mitigation policy on the operations 

of the oil sands industry, it will be assumed that the emission targets once proposed are 
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still going to be applied by the government of Alberta. In 2013, the GHG emissions from 

the oil sands sector accounted for 23% of the provincial emissions and 8.5% of national 

emissions of 726 million tonnes CO2, which represented a 94% increase from the 2005 

levels of 32 million tonnes CO2. This called for a reduction in emissions from the 2005 

levels by 20% and 60% - 70% by 2020 and 2050, respectively. In addition, it is expected 

that the oil sands industry will account for 12% of Canada’s total emissions by 2020. 

Therefore, the proposed emission target can be presented as shown in Figure A2 

(Appendix) for the planning period 2015 – 2050. These reduction targets are large on 

paper only, since oil sands operators are permitted to comply by these emission target 

through purchasing offset carbon emission credits from projects in Alberta, and by 

making payments of CAD 15/tonne CO2 into the Climate Change and Emissions 

Management Fund. However, tougher governmental regulations are expected to take 

place in the future were Alberta’s Environment Minister announced an increase in the 

province’s carbon tax, which is expected to increase from the current price of CAD 

15/tonne CO2 to CAD 20/tonne CO2, and possibly further to CAD 30/tonne CO2 by 2017. 

Accordingly, a carbon credit/tax profile is used as an input for the optimization model 

over the investigated planning period (Figure A2 in the Appendix). Six scenarios for the 

carbon mitigation policies are considered for this case study, which are the business as 

usual emission targets and the proposed emission targets, each accompanied with high, 

low and no carbon credit/tax costs [79, 105 – 108].  

In order to meet the forecasted energy demand requirements for the different CO2 

mitigation policies investigated, several energy supply sources are considered. The 

technologies considered include nuclear (PBMR, ACR-700, ACR-1000, CANDU, and 
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HTGR) for power and heat production, natural gas combined cycle and oxyfuel for power 

production, pulverized coal and coal oxyfuel for power production, steam methane 

reforming for hydrogen production, gasification (coal, petroleum coke, biomass, and 

asphaltenes) for power, hydrogen and thermal energy production, industrial natural gas 

combined heat and power production, natural gas boilers, integrated wind power, nuclear 

power and water electrolysis for power and hydrogen production, biodiesel, and 

geothermal energy. Each fossil-fuel based technology considered can be integrated with 

carbon capture and sequestration. The renewable energy (i.e. wind, biomass, and 

geothermal) production technologies considered were selected based on an evaluation of 

Alberta’s renewable energy potential [136]. The supply technologies’ techno-economic 

data, as well as factors required for the implementation of these technologies (e.g. fuel 

prices) are presented in the appendix [76, 80-97, 116-151]. The model is solved using the 

CPLEX solver in the General Algebraic Modeling System (GAMS) [8]. 

4.4 Results and discussion 

This section summarizes the outcomes of the model’s decisions on the construction of 

energy production technologies required for the oil sands industry over the considered 

planning period (2015 – 2050). 

4.4.1 Scenario I: Variability in energy demands 

Figure 4.5 shows the distribution of the energy production from the technologies selected 

over the planning period. It can be observed that the level of demand intensity has a 

significant effect on the types of energy production technologies selected by the 

optimization model. Since the lower range of annual CO2 emission limits were imposed 

for this scenario, the selection of the energy production technologies by the optimization 
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model is more influenced by economic factors (i.e. capital and operating cost, and fuel 

price forecasts). This is particularly evident at low energy demand levels. However, as 

the energy demand levels increase, which have higher emission levels associated with 

their production, the selection of energy production technologies is more geared towards 

low-emission technologies in order to minimize the purchase of carbon credits. 

At the lowest demand level the majority of energy produced is derived from fossil fuel 

based technologies. During the first few years the existing energy production 

technologies provide the energy requirement for oil sands operations. Hydrogen is 

produced from existing steam methane reforming plants, heat is produced from burning 

natural gas in dedicated boilers, and power is supplied from the grid. However, these 

alternatives are later replaced by more economically and environmentally favorable 

technologies. Hydrogen production is later replaced with petcoke gasification integrated 

with carbon capture. Petcoke is a byproduct of bitumen upgrading that is considered as 

waste by oil sands operators, and ends up stockpiled next to upgrading facilities. Petcoke 

is a low-cost fuel compared to natural gas.  

The gasification of the high-sulfur and high-carbon waste provides significant potential in 

reducing the natural gas requirements when integrated with carbon capture and 

sequestration. The production of heat (i.e. SAGD steam, process steam and hot water) 

and power is achieved through dedicated natural gas boilers and natural gas combined 

heat and power cogeneration facilities. Around the middle of the planning period, the 

cogeneration facilities are integrated with carbon capture technologies in order to achieve 

the emission requirements and reduce the cost of emission credits. The upgrading heat 

and diesel requirements are also provided by bioheat and biodiesel production.  
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It can also be observed from Figure 4.5 that for higher energy requirements the share of 

natural gas cogeneration integrated with carbon capture increases in the energy 

infrastructure, as well as the capacity of nuclear energy. The majority of nuclear energy 

production capacity selected is used to satisfy the power and SAGD steam requirements 

of oil sands operations. For example, more than 50% of the energy production for the 

highest energy demand level is accounted for by nuclear cogeneration facilities and 

natural gas combined heat and power by the year 2050. Due to the considerably low fuel 

cost, and the advantage of no carbon emissions, nuclear energy production has a cost 

advantage for higher energy demand requirements.  

Standalone natural gas fired boilers required for SAGD steam, process steam and hot 

water account for a significant share of total energy production. At the low range of 

natural gas prices considered for this scenario, the production of heat from burning 

natural gas in dedicated boilers represents the most economical option, which is 

supported by the low capital and operating cost associated with this energy production 

alternative.  

It can be observed that it is uneconomical to produce power from any of the considered 

standalone power production technologies, and that it is more favorable to be produced 

from cogeneration facilities. Despite the higher onsite fuel use, cogeneration facilities 

have a higher operating efficiency on the order of 70 – 80% when compared to 

standalone electricity or heat (e.g. steam) production. The main requirement to justify the 

incorporation of cogeneration facilities is the steady availability of thermal energy 

demand. Due to the significant heating requirements of oil sands operations, the power 

production from a cogeneration facility will typically exceed the onsite electricity 
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requirements. This excess power might be sold to the Alberta grid, which would provide 

an additional benefit of reducing the emissions of the most carbon intensive power 

system in Canada that mostly relies on coal and natural gas for power generation. 
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Figure 4.5 Energy generation composition for the optimal pathways under the investigated six demand 

levels. SMR: Steam methane reforming, PCK/CC: petcoke gasification, NGB: natural gas boiler, NGCO: 

Natural gas cogeneration, EH2: Electrolytic hydrogen, BioCO: Biom 

Bioheat and biodiesel production contributed significantly to providing the upgrading 

heat and diesel requirements for all the demand levels over the entire planning period. 
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Their inclusion in the energy infrastructure contributes significantly in reducing the total 

carbon emissions, which minimizes the purchase of emission credits. The synthetic 

natural gas produced from biomass has a very high energy content, and it can be used in 

existing natural gas-fired infrastructure, which is the current technology used to provide 

heat for thermal upgrading operations, without retrofitting requirements.  

Figure 4.6 shows the annual CO2 emissions over the planning period for all the demand 

levels. The emission cap that was imposed for all scenarios is shown by the red line in the 

figure. The model has an option of selecting low-carbon emission technologies or 

purchasing carbon credits in order to satisfy the emission constraints for each operational 

year. It can be observed that for low demand scenarios (Demand 1 – 3), the selected 

energy mix (Figure 4.5) is capable of satisfying the imposed emission constraints. The 

selected energy production technologies for these scenarios are capable of minimizing the 

total cost of energy production, while satisfying the emission constraints without the 

requirement of purchasing carbon credits. However, as the demand level increases 

(Demand 4 – 6), it becomes more economical to purchase carbon emission credits at the 

proposed rate (i.e. 15 CAD/tonne CO2) than to increase the capacity of lower carbon 

emission technologies and carbon mitigation options (e.g. nuclear and carbon capture). 

This is mainly due to the substantial heat requirements in oil sands operations in the form 

of SAGD steam, process steam and hot water that are used for oil sands extraction, 

recovery and upgrading processes, and are mainly produced by standalone natural gas 

boilers that have low capital and operating costs. However, as will be observed from the 

following scenarios changing the natural gas price forecasts, the imposed emission limits, 
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and the cost and availability of carbon emission credits have a major impact on the 

energy mix distribution and the annual emissions generated.  
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Figure 4.6 CO2 emission level of the energy infrastructure for the optimal pathways under the six 

investigated energy demand levels for the assigned carbon emissions cap 

 

Figure 4.7 presents a comparison of the total expenditure for all the demand levels for the 

entire study period of 2015 – 2050. It can be observed that the total cost of energy 

production increases with the increase in energy demand levels. In addition to the 

increase of the required energy production capacity, the increase in total cost is also 

attributed to by the increase of the share of low-CO2 emission technologies, such as NG-

cogeneration integrated with carbon capture and nuclear energy facilities. The increase in 

fuel costs is due to the increase in utilization of natural gas in dedicated boilers and 

combined heat and power cogeneration facilities. A significant increase is observed for 

the cost of carbon capture and carbon credits for the higher demand levels (Demand 4 – 

6).  
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This is associated with the considerable gap between the total annual emissions and the emission 

cap for these three scenarios (Figure 4.6), which is covered by purchasing carbon emission 

credits. It can be observed that the cost of CO2 mitigation decreases with the increase in demand 

level. Increasing the demand for energy commodities results in a significant increase in the 

amount of CO2 generated if the energy production mix remains unchanged. Moreover, if the 

energy infrastructure remains the same, then the additional emissions generated would have to be 

managed with the cost of CO2 mitigation associated with that system. In order to reduce the cost 

of CO2 mitigation, a shift was observed in the energy infrastructure distribution as the demand 

level was increased. 

 

4.4.2 Scenario II: Variability in carbon mitigation policy 

In this scenario the demand level was fixed (Demand 5), and the carbon mitigation policy 

was varied in order to determine its effect on the results of the optimization model. In this 

scenario two different sets of emission limits over the planning period were considered, 

and for each set two different ranges of carbon credit prices were considered (i.e. low and 

high) (Figure A2 in the Appendix). Moreover, the possibility of carbon emission credits 

being unavailable was also modeled for each set of emission limits. Figure 8 shows the 

distribution of the energy production mix over the planning period for the investigated 

carbon mitigation scenarios. It can be observed that increasing the carbon emission 

constraint results in significant changes in the energy infrastructure, which is expected 

due to the increase in the cost of carbon emission credits that would occur if the energy 

production mix remains unchanged.  
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Figure 4.7 Total net present value of the cost of energy production and the unit cost of energy production over the 

entire planning period under the six investigated demand levels 
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As can be observed from the results in Figure 4.8, for the lower emission limit, the 

majority of the thermal energy is produced by standalone natural gas boilers with a low 

contribution of carbon mitigation options. As the emission constraint is increased, a 

significant increase in the production capacity of natural gas combined heat and power, 

nuclear energy, and geothermal energy is observed. However, standalone thermal energy 

production still contributes to a noticeable share of the energy mix.  

From Figure 4.8 it can also be observed that the price of carbon emission credits has a 

significant effect on the energy production mix. As the price of credits is increased the 

majority of the energy infrastructure switches to low-carbon emission technologies, such 

as natural gas cogeneration with carbon capture and nuclear energy. It can also be 

observed that the capacity of renewable energy production considerably increases. The 

capacity of standalone thermal energy production is substantially reduced. For example, 

for the low emission limit and high carbon credit price scenario, the energy production 

mix is accounted for by approximately 30% natural gas cogeneration with carbon 

capture, 23% nuclear energy and 23% renewables (geothermal, bioheat, biodiesel and 

biohydrogen) by the year 2050. 

The remaining production capacity is produced by standalone thermal energy production 

technologies. However, their production is completely diminished for the higher emission 

limit scenario by the year 2050, and the production mix is accounted for by 

approximately 60% nuclear energy, 26% natural gas cogeneration, and the remaining 

capacity is produced from bioenergy and petcoke gasification with carbon capture.  The 

significant share of nuclear production plants is attributed to their cost advantage that is 

due to their long operating life time, low fuel cost, and the advantage of no carbon 
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emissions, which justifies its fast development in the energy infrastructure over the 

planning period. 
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Figure 4.8 Energy generation composition for the optimal pathways under the six investigated carbon 

mitigation policy scenarios using demand level 5. SMR: Steam methane reforming, PCK/CC: petcoke 

gasification, NGB: natural gas boiler, NGCO: Natural gas cogeneration 

The elimination of the possibility of purchasing carbon credits requires the energy 

infrastructure to be able to satisfy the emission constraints over all the years in the 

planning period. In this case the CO2 emitted by the entire fleet for a particular year 
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cannot be reduced by purchasing CO2 credits. It can be observed from Figure 8 that for 

the no carbon credit scenario the production of thermal energy (i.e. steam and hot water) 

from natural gas boilers is diminished towards the end of the planning period. Instead 

thermal energy is coproduced with power in nuclear plants and natural gas cogeneration 

plants with carbon capture. A considerable share of the thermal energy requirements is 

also produced from geothermal energy. The production of hydrogen is mainly from 

petcoke gasification with carbon capture. Diesel and upgrading heat requirements are 

satisfied from biodiesel and bioheat energy production.  
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Figure 4.9 CO2 emissions of the energy production infrastructure for the optimal pathways under the six 

investigated carbon mitigation policy scenarios for demand level 5 

  

Figure 4.9 shows the annual emissions for the various carbon mitigation policies 

considered for this scenario over the planning period. As can be observed both carbon 

emission targets were not met at the low range of carbon credit prices. In other words, it 

is more economical to purchase carbon emission credits, which is presented as the gap 
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between the emission levels and the emission targets, than to produce energy from low-

carbon intensive technologies. The low price range of carbon credits was assumed to be 

the price level currently used in Alberta, which is CAD 15 – CAD 50 per tonne CO2. 

However, as observed from the results this price range is not sufficient to provide an 

incentive for oil sands operators to reduce their emission levels to the imposed targets. 

However, at a higher price range of carbon credits (CAD 15 – CAD 70 per tonne CO2) 

the developed energy infrastructure is mainly composed of low-carbon intensive (e.g. 

natural gas cogeneration with carbon capture) and non-emitting technologies (e.g. nuclear 

energy), which results in achieving emission levels that are well below the set emission 

targets. The emission levels achieved are actually lower than those achieved for the no 

carbon credit scenarios. This is mainly due to the added incentive of selling the excess 

offset carbon emissions as carbon credits to neighboring industries. 
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Figure 4.10 Annual unit cost of energy production over the planning period under the six investigated 

carbon mitigation policy scenarios for demand level 5 
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Figure 4.10 shows the cost profile of energy per unit barrel of oil sands produced for all 

the carbon mitigation policy scenarios over the planning period. In all scenarios the 

majority of new units are installed within the first 10 – 15 years. This results in a trough 

forming during this time period in the cost of energy plot, which is a results of the high 

capital expenditure relative to the amount of energy and oil sands production. As the 

energy infrastructure is established and the oil sands production and their energy 

requirements increase, the cost of energy production decreases until it reaches a steady 

value. The rise in cost in the first few years is also due to the purchase of carbon credits 

required to satisfy the emission constraints until the low-carbon emission technologies 

come into operation after their construction (i.e. construction lead time). As can be 

observed from the results in Figure 4.10, a higher emission constraint will result in a 

higher cost of energy production, which is due to the utilization of the low-carbon 

intensive and/or non-emitting energy production technologies that are characterized by 

having higher capital and operating costs in comparison with the more mature and 

existing fossil fuel based technologies. For example for the low range of carbon credit 

price the average cost of energy production was determined to be 32.7 CAD/bbl and 54.9 

CAD/bbl for the low and high emission constraints, respectively. A similar effect is 

observed when the price range of carbon credits is increased, which for the high range the 

average cost was determined to be 45.8 CAD/bbl and 68.5 CAD/bbl, respectively. 

However, the scenarios in which carbon credits are incorporated result in a lower cost of 

energy production than scenarios in which they are eliminated from the model. 

Figure 4.11 shows the total cost and the unit cost of energy production over the entire 

planning period for the investigated carbon mitigation policies. It can be observed that the 
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total cost and unit cost of energy production are considerably higher for the scenarios in 

which the purchase of carbon credits is eliminated and for the higher emission reduction 

target and carbon credit price. The increase in cost is significantly accounted for by the 

increase in total capital investment. This is due to the higher nuclear energy production 

capacity. The cost of CO2 mitigation is considerably high for the scenarios in which 

carbon credits are eliminated due to the increased requirement of carbon capture and 

sequestration and investment in low-carbon emitting energy production technologies. A 

similar behavior was observed for the case of a high emission cap and a high cost of 

carbon credit, in order to avoid purchasing a considerably higher amount of the more 

expensive carbon credits. 
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Figure 4.11 Total net present value of the cost of energy production and the unit cost of energy production for the 

optimal pathways under the six investigated carbon mitigation policy scenarios for demand level 5 
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4.4.3 Scenario III: Variability in fuel prices 

The fuel with the highest expected variability in its price and availability is natural gas. 

Due to the considerably high demand for natural gas in the future, it is expected that its 

price will steadily increase over the next few decades. There are various forecasts of the 

natural gas prices in Alberta available in the literature (Figure A3 in the Appendix). The 

base case demand level at high emission reduction target and low credit price was 

investigated for the various forecasts of natural gas prices. Figure 4.12 shows the 

consumption of natural gas over the planning period for various natural gas prices. It can 

be observed that as the natural gas price increases its consumption decreases, and the 

energy infrastructure switches to alternatives of natural gas. For example, from Figure 

4.13 it can be observed that for a higher natural gas price the capacity of natural gas 

standalone boilers and cogeneration, and their preheat options (i.e. geothermal) are 

considerably reduced. On the other hand, the capacity of energy production from petcoke 

gasification (i.e. hydrogen, power and heat) and nuclear energy are significantly 

increased over the planning period. For brevity, only the results for the case in which the 

average natural gas price over the planning period is $9.6/GJ are shown for the 

distribution of the energy infrastructure, as the results for the other fuel prices show a 

similar comparison with the base case.  
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Figure 4.12 Annual natural gas consumption at various fuel prices over the entire planning period 

(Demand level 5, high emission cap, low credit price) 
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Figure 4.13 Energy production composition for the base case scenario (demand level 5, high emission cap, 

and low carbon credit price) compared with the scenarios in which excess power and hydrogen sold to the 

market (at H2 selling price of $5/kg), the natural gas price is increased (at NG price 3: $8.4/GJ), the 

incorporation of external nuclear penalty cost, and the elimination of nuclear energy from the energy 

infrastructure. SMR: Steam methane reforming, PCK/CC: petcoke gasification, NGB: natural gas boiler, 

NGCO: Natural gas cogeneration, EH2: Electrolytic hydrogen, BioCO: Biomass cogeneration 
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Figure 4.14 shows the total costs and unit costs of energy production over the entire 

planning period for the different natural gas prices. It can be observed that there is a 

generally increasing trend in the cost of energy production. However, this increase is 

mainly contributed to by the increase in nuclear energy production capacity, which is 

observed in the increase in capital cost. The cost of fuel, on the other hand, slightly 

decreases, which is explained by the considerable decrease in fuel consumption. From 

this scenario it can be observed that nuclear energy and alternative fuels, such as petcoke 

gasification, play a significant role in replacing the utilization of natural gas as a fuel in 

the operations of the oil sands industry. 

 

 

Figure 4.14 Total net present value of the cost of energy production and unit cost of energy production for 

the entire planning period for various fuel prices (Demand level 5, high emission cap, low credit price) 
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4.4.4 Scenario IV: Selling excess power and hydrogen 

The incorporation of cogeneration and polygeneration facilities might result in one of the 

energy commodities to be produced in excess. Considering the high ratio of heat to power 

demand for oil sands operations, electricity is one of the energy commodities that is most 

likely to be produced in excess from these facilities. Electricity in Alberta is mostly 

produced from coal, which provides an incentive for the grid to purchase clean power 

produced from nuclear, wind and fossil-fuel based technologies integrated with carbon 

capture. Another options considered was utilizing the excess power from nuclear and 

renewable technologies for the production of hydrogen via water electrolysis, which can 

be used to satisfy the hydrogen demand of oil sands operations or sold to the market. It 

was observed that the amount of excess electricity sold to the grid and the production of 

hydrogen through water electrolysis are highly sensitive to the selling price of hydrogen. 

Figure 4.15 shows the amounts of hydrogen produced via electrolysis that are sent to 

satisfy the demand and sold to the market. It can be observed that the hydrogen to 

demand and hydrogen to market follow opposite trends over the planning period, in 

which the former increases and the latter decreases. Moreover, the total amount of 

hydrogen production via electrolysis is higher at higher hydrogen selling prices. At 

hydrogen selling prices below $2.3/kg, production via electrolysis is not economically 

attractive.  
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Figure 4.15 Electrolytic hydrogen produced to satisfy the demand for upgrading operations and hydrogen 

sold to the market at different hydrogen selling prices (Demand level 5, High emission cap, low carbon 

credit price) 

It was also observed that the amount of excess electricity sold to the grid increases as the 

selling price of hydrogen increases. Figure 4.16 shows the amount of power exported to 

the grid at different hydrogen selling prices. This indicates that the additional power 

production capacity and electrolyzers capacity is justified by the additional revenue 

obtained from selling hydrogen and electricity to the market. The higher selling price of 

hydrogen provides an incentive to sell more hydrogen to the market, which will require a 

higher amount of excess power production to be used by electrolyzers. Figure 4.13 shows 

the distribution of the energy infrastructure for the scenario in which excess electricity is 

sold to the grid and excess hydrogen is sold to the market. It can be observed that selling 

the excess from these commodities provides an incentive to install a higher capacity of 

cogeneration facilities, such as nuclear and natural gas combined heat and power.  For 

brevity, only the results for the case in which the hydrogen price is $5/kg are shown for 
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the distribution of the energy infrastructure, as the results for the other hydrogen prices 

show a similar comparison with the base case.  
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Figure 4.16 Excess power sold to the grid at various hydrogen selling prices (Demand level 5, high 

emission cap, low carbon credit price) 

Figure 4.17 shows the total and unit cost of energy production for the different levels of 

hydrogen selling prices. It can be observed that selling excess power and hydrogen has a 

significant impact on reducing the unit cost of energy production. The increase in the 

production capacity of nuclear energy, which is utilized to provide power, heat and 

hydrogen (i.e. via electrolysis) requirements, will significantly reduce fuel consumption, 

and in return will reduce fuel costs. Moreover, the cost of CO2 mitigation is significantly 

reduced due to the higher capacity of clean energy production.   
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Figure 4.17 Total net present value of the cost of energy production and unit cost of energy production for 

the entire planning period at various hydrogen selling prices (Demand level 5, high emission cap, and low 

carbon credit price 

4.4.5 Scenario V: Nuclear external penalty cost 

An important aspect of using nuclear energy technologies for the production of power 

and heat is associated with the social, political and environmental impacts involved with 

their construction and operation. In this scenario the penalty cost factor that determines 

the effect of the environmental and social implications of nuclear accidents on the 

selection of these technologies is investigated.  Accounting for the costs associated with 

nuclear accidents involves the incorporation of the cost of environmental and social 

damage incurred due to a nuclear accident and the probability of occurrence of a nuclear 

accident per reactor based on historical data of the operation of these facilities in 

Canada
70

. The remaining inputs to the optimization model are the same as those used for 

the base case scenario. Based on the results shown in Figure 4.13, it can be observed that 

the incorporation of nuclear penalty costs has a slight effect on the distribution of energy 
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production technologies over the planning period. A small percentage of the nuclear 

production capacity is replaced by natural gas cogeneration facilities with carbon capture. 

These results show that the penalty factors considered do not represent a significant 

burden on the economic performance of energy production for oil sands operations, 

which can be attributed to the assumed low probability of a nuclear accident occurrence. 

Moreover, these results were obtained for the lowest price of natural gas considered. 

Based on the results obtained from the sensitivity analysis of the variability in natural gas 

price, the selection of natural gas based technologies was considerably reduced at higher 

price levels. This indicates that the effect of nuclear penalty costs might have an even 

lower impact at higher natural gas prices. 

Figure 4.18 compares the CO2 emission levels of the scenarios in which the natural gas 

prices are increased, excess power and hydrogen are sold, and nuclear penalty cost are 

incorporated to the base case scenario (i.e. demand level 5, high emission reduction cap, 

low carbon credit price, and $2.4/GJ of natural gas). It can be observed that increasing the 

natural gas price and selling excess power and hydrogen will result in considerably lower 

annual emissions compared to the base case scenario. This is due to the increased 

production capacity of nuclear generation facilities. The emission levels in the scenario in 

which nuclear penalty cost is incorporated is slightly lower compared to the base case 

scenario. This is due to the higher capacity of natural gas combined heat and power 

integrated with carbon capture.  

4.4.6 Scenario VI: Elimination of nuclear energy 

It was observed from the previous results that nuclear energy plays a significant role in 

providing energy for oil sands operations and reducing the total emissions associated with 
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providing these energy requirements. Nuclear energy accounts to approximately 15% of 

Canada’s energy mix, and several Canadian provinces have experience in nuclear energy 

production. However, with respect to Alberta, there has been no experience with the 

production of nuclear energy in the province, which indicates the existence of significant 

uncertainties in the licensing process and provincial legislation regarding nuclear 

facilities. Even though other Canadian provinces have experiences with the licensing 

process, which might provide guidance in licensing Alberta’s first nuclear facilities, 

provincial governments adopt different positions. Moreover, based on licensing 

experiences in other provinces, licensing new nuclear projects are typically faced with the 

challenge of divided powers involved in conducting their environmental impact 

assessment, which results in uncertainty in redefining the terms of the licensing process 

[153]. As a result, it is important to consider the effect of the possibility that nuclear 

reactors cannot be incorporated in the energy production portfolio for oil sands 

operations.  

It can be observed from the results in Figure 4.13 that the technologies that contribute 

significantly to the energy production mix for this scenario include natural gas 

cogeneration with carbon capture and boilers for the production of SAGD steam, process 

steam and power, petcoke gasification for the production of hydrogen, steam and power, 

bioenergy (heat, diesel and cogeneration), and geothermal energy. Figure 18 shows the 

total emissions generated for this scenario. The total emissions generated were 

considerably higher compared to the other scenarios in which nuclear energy was 

incorporated. Moreover, even with applying the higher carbon tax (Figure A2 in the 

appendix), the emission cap imposed (high emission cap) was not achieved. This is 
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because it was more economical to purchase carbon credits than to significantly increase 

the capacity of technologies integrated with carbon capture and renewable technologies. 

The total cost of energy production for this scenario over the entire planning period was 

determined to be CAD 5,890 billion, which corresponds to a cost of carbon mitigated of 

CAD 1,214 per tonne of CO2. 
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Figure 4.19 CO2 emission level over the entire planning period of the base case scenario compared with 

the scenarios in which excess power and hydrogen sold to the market (H2 selling price of $5/kg), the natural 

gas price is increased (at NG price 3: $8.4/GJ), the incorporation of external nuclear penalty cost, and 

elimination of nuclear energy 

The cost of carbon mitigated for this scenario is considerably higher than that obtained 

for the scenario in which nuclear energy was incorporated. Achieving the significant 

required emission reductions is difficult without the introduction of nuclear facilities in 

the oil sands energy infrastructure. This supports the renewed interest of Alberta’s 

Provincial Energy Strategy in nuclear energy as a low-emission source for the growing 

demands of heat and electricity of oil sands operations. The government of Alberta has 

been striving to achieve emission reductions in the power sector and heat generation for 
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oil sands operations (main source of oil sands CO2), for which nuclear energy can be a 

strong candidate, based on experience in other Canadian provinces (e.g. Ontario) [154]. 

The efforts of the government of Alberta has been mainly focused on developing carbon 

capture and sequestration projects, which might be more uneconomic when integrated 

with the dominantly utilized coal-based power plants in Alberta and natural gas boilers 

utilized for heat production of oil sands operations. This is due to the difficult and 

expensive chemistry of the process that involves the separation of CO2 from nitrogen, 

which is present in significant amounts as air is used as the oxygen source for the 

combustion of these fuels [154, 155].  

4.5 Conclusions 

In this paper a deterministic multi-period mixed integer linear programming model for 

the planning of energy production for energy intensive industrial operations was 

described and evaluated. The optimization model is developed with the objective of 

identifying the optimal mix of energy supply and CO2 emission mitigation options to 

satisfy a set of energy demands (e.g. power, heat, hydrogen, etc.) and emission targets at 

minimum cost. In order to accomplish this, an objective function is formulated that is 

geared towards the minimization of the net present value of the total cost of energy 

production over the entire planning period. Moreover, the model formulation 

incorporated time dependent parameters in order to account for the variability in major 

factors affecting the operations of the industry. These include energy demands, fuel 

prices, CO2 emission reduction targets, CO2 credit/tax cost, construction lead time, and 

techno-economic parameters of energy production technologies. In order to illustrate the 

applicability of the proposed mathematical model, it was applied to a case study based on 
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the energy-intensive oil sands operations in Alberta over the planning period 2015 – 

2050. The application of the proposed model on the oil sands operations in Alberta 

addresses potential long term issues associated with extracting and upgrading bitumen, 

which include GHGs emission and instability in fuel prices associated with the 

continuously increasing quantities of natural gas consumed as the main energy source. 

The energy supply technologies considered include nuclear (PBMR, ACR-700, ACR-

1000, CANDU, and HTGR) for power and heat production, natural gas combined cycle 

and oxyfuel for power production, pulverized coal and coal oxyfuel for power 

production, steam methane reforming for hydrogen production, gasification (coal, 

petroleum coke, biomass, and asphaltenes) for power, hydrogen and thermal energy 

production, industrial natural gas combined heat and power production, natural gas 

boilers, integrated wind power, nuclear power and water electrolysis for power and 

hydrogen production, biodiesel, and geothermal energy. Carbon mitigation options also 

included carbon capture and sequestration, and purchase of carbon credits to satisfy 

emission targets. In addition, the model incorporated the possibility of selling excess 

power production to the Alberta grid, and excess hydrogen to the market. Several 

scenarios were investigated in order to account for the variability in time dependent 

parameters. These include variability in energy intensities, carbon mitigation policies, 

fuel prices, and price of energy commodities (e.g. H2 selling price). 

In the first investigated scenario, in which six demand levels were investigated based on 

variability in energy intensities for a certain oil production level, the optimal energy 

infrastructure switched from mostly natural gas based production (i.e. boilers, CHP and 

SMR) at low demand levels to nuclear, renewable and alternative fuels at higher demand 
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levels. For example, at demand level 1 the energy production mix consisted of newly 

installed NG-boilers and NG-CHP for power, steam and hot water production, SMR and 

petcoke gasification with carbon capture for hydrogen production, biodiesel, and natural 

gas combustion for upgrading heat. During the middle of the planning period, the NG-

CHP were integrated with carbon capture. However, at demand level 6 a considerable 

portion of the energy production mix was contributed to by nuclear energy production 

and NG-CHP with carbon capture, and bio-SNG for upgrading heat. For the demand 

level 1 – 6, the total and unit energy production costs ranged from CAD 446 – 2586 

billion and 8.45 – 48.9 CAD/bbl SCO, respectively. The average annual emissions 

generated ranged from 1100 – 12000 tonne h
-1

 for demand levels 1 – 6. The currently 

applied $15/tonne CO2 carbon tax in Alberta was not sufficient to achieve the required 

emission reductions. Moreover, an average price of natural gas of $2.48/GJ was assumed 

for this scenario, which is actually expected to considerably increase in the future, 

explains the high dependency on natural gas-based energy production.   

In the second scenario, the carbon mitigation policy was varied. A high and low range of 

emission reduction targets was considered. For each, a low and high range of carbon 

credit prices was considered, as well as the unavailability of carbon credits. The results of 

this scenario showed that increasing the emission reduction target at the low range of 

carbon tax caused the model to increase the production capacity of clean energy 

production technologies (e.g. nuclear, renewables, and carbon capture). However, the 

average annual emissions were still considerably high at 3200 tonne CO2 h
-1

. At both a 

high emission reduction target and carbon tax, the average annual emissions achieved 

was less than 1000 tonne CO2 h
-1

, which is well below the imposed emission target. For 
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the cases in which the availability of purchasing carbon credits is eliminated, the annual 

emissions achieved were approximately equal to the imposed targets. However, the cost 

of energy production were the highest for these scenarios due to the high cost of carbon 

capture and sequestration.  

Other scenarios were investigated in order to examine the effect of the variability in fuel 

prices, the possibility of selling excess energy commodities (i.e. hydrogen and power), 

and the incorporation of factors such as the social effect of utilizing nuclear energy on the 

selection of the optimal mix of energy production technologies. At higher prices of 

natural gas, the capacity of nuclear, combined heat and power, renewables (geothermal), 

and alternative fuels (petcoke and biomass) increases. The use of these technologies 

resulted in a considerable reduction in the consumption of natural gas. For example, at an 

average natural gas price of $2.4/GJ the natural gas consumption continuously increases 

over the planning period reaching levels of 2.4x10
5
 GJ h

-1
 by 2050. However, at average 

natural gas prices in the range of $8/GJ – $9/GJ, the consumption of natural gas drops to 

levels of 3.1x10
4 

– 7.0x10
4
 GJ h

-1
, which translates to a considerable decrease in the cost 

of fuel consumption. The lowest range of the unit cost of energy production was obtained 

for the scenario in which excess power is sold to the grid and excess hydrogen is sold to 

the market, which was in the range of $32.9/GJ – $34.9/GJ. The hydrogen selling price 

was found to have an effect on the amount of power and hydrogen sold. The higher 

hydrogen selling price justified the investment in electrolyzers that utilized excess power 

produced from nuclear facilities. This provided an incentive to increase the capacity of 

clean energy producers, resulting in a considerable reduction of CO2 emissions, which 

reached average annual levels of 1100 tonne CO2 h
-1

 that are well below the imposed 
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emission targets. The final scenario investigated involved the eliminations of nuclear 

energy from the energy infrastructure, which clarified their significant contribution in 

achieving high emission reductions in oil sands operations.  

Based on the results obtained, it can be observed that the proposed model provides 

potential benefits as a tool to study future production scenarios for oil sands operations 

over a long planning period. Moreover, the model can be employed for the planning and 

scheduling of future configurations of oil sands producers and energy commodity 

producers in the Canadian oil sands. However, it is important to note that the results 

obtained might considerably vary depending on the values of the input parameters. For 

example, if emission factors of energy production technologies that are based on detailed 

life cycle assessment analyses are incorporated, they can considerably affect the results 

obtained from the model, and hence the conclusions drawn. This is because there are 

various concerns that are associated with upstream emission of various energy production 

technologies (e.g. natural gas based, nuclear, biomass-based, etc.) that depend on their 

location and source of fuel
89-91

. These indirect emissions might render a low-carbon 

emitting (i.e. direct emissions) technology to be considered carbon intensive for the 

specified location and fuel source, which might affect the selection of these technologies 

by the model. Moreover, even though the proposed model takes into account the time 

variability in various parameters affecting the operations of oil sands over a long 

planning period, it does not account for the uncertainty in these parameters at a certain 

time period. These uncertainties arise in the energy demand intensities, fuel prices, 

selling prices of energy commodities, etc. For example, a more realistic scenario would 

consider a user defined probability distribution of the natural gas prices. Accordingly, the 
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proposed deterministic multi-period model will be adjusted into a stochastic energy 

optimization model. A stochastic energy optimization model will help to provide an 

indication of the most suitable configurations given the probability distribution in key 

input parameters.  
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Chapter 5 

Multi-objective integrated planning and scheduling of the energy 

infrastructure of the oil sands industry incorporating intermittent 

renewable energy
3
 

5.1 Introduction 

The Canadian Oil Sands represent the third largest crude oil proven reserves in the world, 

and they account for approximately 97% of Canada’s total oil reserves. Bitumen 

extraction from oil sands and its upgrading to higher quality crude (i.e. synthetic crude 

oil; SCO) requires significant amounts of energy [163]. The energy required is in the 

form of steam, hydrogen, power, and operating fuel that are mostly derived from burning 

natural gas, which was initially utilized instead of more carbon-intensive fuels in order to 

achieve reductions in total greenhouse gas (GHG) emissions from the industry’s 

operations [164]. However, the increase in the production levels from the industry over 

the past decade had offset the achieved emissions reductions, resulting in the industry 

becoming the largest contributor to the growth of GHG emissions in Canada. Moreover, 

the majority of this natural gas is obtained via the Mackenzie Valley pipeline, which has 

a capacity that will not be capable of supporting the natural gas requirements of oil sands 

operations by 2030 (5800 million cubic feet/day) [165, 166].  

Further governmental and global climate policies (e.g. California’s Low Carbon Fuel 

Standard) are imposed on the lifecycle GHG emissions of transportation fuels and are 

                                                           
3
 A variant of this chapter has been accepted: M. Elsholkami and A. Elkamel. Industrial & Engineering 

Chemistry Research, 2018. 
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becoming increasingly strict, which has a significant impact on the development of the oil 

sands industry [167, 168]. All of these factors provide an incentive for oil sands operators 

to implement measures for achieving further reductions in their total GHG emissions. 

Moreover, there are rising concerns regarding the resource availability and price volatility 

of natural gas, which has prompted the industry to consider alternative options for energy 

production (e.g. alternative fuels, renewables, etc.) [169, 170]. As a result, oil sands 

operators are progressively interested in utilizing technologies and implementing 

operational techniques that allow further reductions in the GHG emissions associated 

with bitumen extraction and upgrading operations [171, 172], as well as reducing the 

reliance on natural gas for providing their energy requirements [173, 174]. Several 

studies in the literature have investigated the utilization of less-carbon intensive 

technologies and alternative fuels for natural gas for the production of energy for oil 

sands operations. These include nuclear energy for the cogeneration of heat and power 

[175, 176], electrolytic hydrogen production from wind power [177], bioenergy [178], 

geothermal energy [179, 180], and alternative fuels that are widely available in Alberta 

(e.g. bitumen, asphaltenes, coal [181, 182], petroleum coke [183], etc.). Other studies 

have investigated increasing the efficiency of energy production from natural gas, such as 

the capacity expansion of facilities for the cogeneration of heat and power [184, 185]. 

In each of the studies previously mentioned, the scenario-based analyses of comparing 

the alternative energy production technologies to the currently existing energy 

infrastructure incorporate economic, environmental, and sustainability (e.g. accessibility, 

reliability, etc.) factors. There are models that have been developed to assess the total 

energy demands of the oil sands industry [185]. Moreover, there have been studies that 
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proposed mathematical optimization models that take into account these factors 

simultaneously in order to support the decision making process for the planning and 

scheduling of energy production required for the Canadian oil sands operations [186, 

187]. In the development of these models various energy production technologies were 

considered, including conventional fossil-fuel based, nuclear, renewable (i.e. wind, 

bioenergy, and geothermal), and petroleum coke-fired energy production units, which 

were also integrated with carbon capture technologies [188, 189]. These models 

generated solutions that provide an indication of the optimal energy infrastructure 

required to meet the energy demands (i.e. steam, hydrogen, power, etc.) for a given oil 

production infrastructure.  

The mathematical models proposed in these studies address the optimization of the 

energy infrastructure of oil sands operations using a deterministic snapshot approach or 

multi-period models that are geared towards long-term planning (i.e. annual), in which 

average annual estimates of input parameters (e.g. fuel prices, electricity prices, etc.) are 

used. Moreover, these proposed models assumed that the production infrastructure that 

provides the energy requirements for oil sands operations is stand-alone. However, in 

reality the energy infrastructure of the industry interacts with the local grid in several 

ways [190]. For example, the natural gas combined heat and power units that generate a 

significant share of the steam required for bitumen extraction and upgrading supply more 

than 50% of Alberta’s cogeneration electrical capacity. It is estimated that if cogeneration 

is used within oil sands operations to its full potential, the technology can contribute to a 

reduction of more than 40% of the emissions of the power sector in Alberta [191]. 

Another example is the penetration of wind power that is part of the potential wind-
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electrolysis system that can provide a portion of the hydrogen requirements of bitumen 

upgraders [176], which will have an effect on the unit commitment operations of the 

grid’s existing power generation units.  Similarly, this interaction must be accounted for 

with the introduction of any multi-commodity generation capacity (e.g. nuclear heat and 

power, petcoke gasification, etc.) into the energy infrastructure of oil sands operations.  

There are numerous studies in the literature that focus on the optimization of distributed 

energy systems. These systems can be viewed as a network of nodes comprising energy 

generation suppliers, storage, and consumers that are connected via energy carrier lines 

(e.g. electricity transmission lines, water pipes, hydrogen pipelines, etc.). The energy 

generation, storage, and consuming components are commonly connected to the local 

grid. The optimization of the investment planning and operations management of these 

systems is typically carried out using multi-objective optimization techniques in order to 

account various energy efficiency and sustainability measures. Somma et al. [192] and 

Majewski et al. [193] investigated exergy in distributed energy systems design using a 

multi-objective optimization approach, in which economic and sustainability measures 

are incorporated. Falke et al. [194] applied multi-objective optimization approaches to the 

planning of residential energy systems that supply heat and power, in which various 

economic, environmental and energy efficiency measures are incorporated. Haikarainen 

et al. [195] provided a generalized approach for the optimization of distributed energy 

systems. Barbato et al. [196] developed an energy management framework that integrates 

local renewable energy sources and facilitates power management and scheduling in 

smart campuses.  Another area of interest in the literature involves the performance 

analyses (i.e. economic, environmental, etc.) of unit commitment with distributed energy 
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systems, particularly in the presence of intermittent renewable energy resources. These 

models focus on the scheduling of the concerned energy infrastructures [197, 198]. Yang 

et al. [199] further incorporated uncertainties associated with renewable energy 

generation sources. Gamage [190] proposed a unit commitment mathematical model in 

order to investigate the effect of wind power penetration on the operations of the existing 

power generation units in the Alberta grid. The model was geared towards the 

minimization of total grid cost and the results outlined the performance of the grid’s units 

with increased penetration of wind generation capacity. Integrated planning and 

scheduling is receiving increased interest in the literature, as the problem regularly arises 

in the process industry and supply chain. The problem has been approached by 

developing multi-scale mathematical optimization models that can facilitate the 

integration of decisions over a wide range of time scales [200, 201]. Hemmati et al. [202] 

later incorporated stochastic optimization techniques for the short-term scheduling and 

long-term planning of microgrids, and Vahid-Pakdel et al. [203] incorporated them using 

the energy hub approach in demand response markets.  The models can serve as tools in 

the decision making process of policy makers and industrial operators that can assist in 

simultaneously determining long-term (e.g. monthly, annually, etc.) planning decisions 

including facilities’ (i.e. production, storage, transportation, etc.) technologies, capacities 

and locations, as well as medium and short-term (e.g. weekly, daily, hourly, etc.) 

decisions including the assignment and sequence of production, storage and 

transportation tasks among the established entities.  

Within the above context, this study proposes a mathematical programming model for the 

integrated planning and scheduling of the energy infrastructure of the oil sands industry. 
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The developed model is multi-period with an hourly increment over an annual span that 

can capture details in the variability of input parameters (e.g. electricity prices and 

demand, wind speed, etc.). The energy production units incorporated in the infrastructure 

of the industry are grid-connected, from which electricity can be sold to the grid. A unit-

commitment model is incorporated to schedule the operations of the existing units of the 

grid and the newly installed technologies. Multiple objectives are incorporated in the 

model, which are the system cost, grid cost, and total GHG emissions. These distinctive 

features of the proposed model were not addressed before in the literature of oil sands 

operations. The model is applied to a case study for the year 2017 to illustrate its 

applicability. 

5.2 System description and Problem Statement 

The current energy infrastructure that provides the energy requirements (i.e. steam, 

hydrogen, heat, and power) is composed of natural gas boilers, natural gas combined heat 

and power plants, steam methane reformers, and power imported from the grid [189]. 

Figure 5.1 shows the superstructure of alternatives based on which the optimization 

model is developed. The energy requirements for the oil sands industry are assumed to be 

supplied by a set of energy commodity producers. These include fossil-fuel based (i.e. 

natural gas), combined heat and power, renewable, and nuclear technologies. These 

producers are used to generate electricity, heat (i.e. steam, hot water, etc.), and hydrogen. 

Two new subsystems are introduced into the energy infrastructure, which are the wind-

electrolysis and nuclear energy systems. The wind-electrolysis system consists of wind 

turbines, electrolyzers, and hydrogen storage tanks. Southern Alberta is the primary area 

with significant wind resources in the province, in which all wind farms are currently 
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allocated. The transmission infrastructure in this region requires significant 

improvements to transport wind power to large load centers, which hinders the possibility 

of sending electricity to oil sands operators in the north-eastern region of the province 

[204].  

 

Figure 5.1 Superstructure representation of the proposed energy system for the oil sands industry (right) and its interaction with the local 

Alberta grid (left) [190]. The Alberta grid is divided into six regional buses. The power generation technologies connected to each bus and 

its total capacity is shown in brackets.  The demand fraction (DF) for each bus is also shown. PC: Pulverized coal; SCGT: Simple cycle gas 

turbine; COGEN: Natural gas cogeneration; Biomass: Biomass; Hydro: Hydro power; CCGT: Combine cycle gas turbine; HENG: Hydrogen 

enriched natural gas; NG: Natural gas; SMR: Steam methane reforming; SAGD: Steam assisted gravity drainage; PBMR: Nuclear pebble 

bed modular reactor; HTGR: Nuclear high temperature gas reactor. 
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The wind power generated can be sent to electrolyzers for the production of hydrogen or 

sold to the grid. The electrolytic hydrogen produced can be sent directly via pipelines to 

bitumen upgraders, and the excess can be stored to be retrieved for later use. Hydrogen 

retrieved from storage tanks can be sent to bitumen upgraders or used in hydrogen 

enriched natural gas used as a fuel in natural gas combined cycle (NGCC) power 

generation units. The power produced can be sold to the grid. The nuclear energy system 

consists of nuclear reactors (i.e. Pebble bed modular reactor; PBMR and high temperature 

gas-cooled reactor; HTGR), power cycle, and electrolyzers. The heat generated from the 

nuclear reactors provides the heat requirements of oil sands operations, particularly steam 

for steam assisted gravity drainage (SAGD) bitumen extraction. The electricity generated 

from the power cycle provides the power requirements for the operators in the vicinity, 

sold to the grid, or sent to electrolyzers to produce hydrogen for bitumen upgraders.  

Based on Gamage [190] the Alberta grid can be represented by six regional buses with 

transmission lines among them as shown in Figure 5.1. The total installed power 

generation capacity in Alberta currently amounts to 16,661 MW, of which approximately 

38% is coal-based generation capacity. The peak demand of the system is estimated to be 

approximately 12,523 MW with an annual load factor of approximately 80% [205, 206]. 

The Alberta Electric System Operator (AESO) is an independent system operator in 

Alberta, in which the electricity market is deregulated and power production is 

considered to be a competitive business. The transmission system is composed of a high 

voltage power line (240 kV) that is connected to four capacities of low voltage regional 

transmission centers (69 kV, 72 kV, 138 kV, and 144 kV) [190, 204]. The Alberta power 

system is considered to be the most carbon intensive power generation system in Canada. 
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This is attributed to significant share of electricity produced from coal-based generation 

units, which annually accounts to approximately >60%. As shown in Figure 5.1 the 

model developed in this study depicts the Alberta power system to consist of six regional 

buses and seven transmission lines connecting them. The generation capacity of each 

generation technology and the demand fraction for each bus is also shown. Based on 

Gamage [190], this representation provides satisfactorily accurate results for the 

operations of the power system as validated by actual historical operating data [190].  

There are various configurations and tradeoffs that can be realized from the proposed 

energy system as well as the scheduling of the operations of the existing production units, 

for which it is required to apply integrated planning and scheduling optimization tools in 

order to determine the optimal set of decision variables in the system. The planning 

variables include the capacity of energy producers and carriers (i.e. NG cogeneration, 

NGCC, wind turbines, nuclear reactors, electrolyzers, hydrogen storage tanks, and 

hydrogen pipeline capacity), energy flows between energy producers, energy flows 

between energy producers and end users. It is assumed that there exists sufficient 

capacity of natural gas boilers and SMR units to meet the energy demands of oil sands 

operators. Scheduling decisions will determine the hourly dispatch of the existing power 

generation units of the grid, as well as the newly installed plants. Exogenous parameters 

such as hourly power demand, hydrogen demand, fuel prices, electricity prices, and 

techno-economic data are considered. To the author’s knowledge there is no work 

available in the literature that focus on the optimized planning of a grid-connected energy 

infrastructure for oil sands operations using mathematical optimization techniques. The 
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distinctive features of the optimization model presented in this work can be summarized 

as follows: 

 A multi-objective and multi-period mixed integer linear programming (MILP) 

model that minimizes the total system cost, total grid cost, and total GHG 

emissions with the consideration of grid interactions (i.e. grid connected). The 

total system cost comprises the capital and operating costs associated with 

providing and managing the generators of multiple energy commodities (i.e. heat, 

power and hydrogen) for oil sands operators. The Alberta grid operating cost 

comprises the cost of managing power generation and distribution facilities, 

which are owned by various companies. Minimizing the grid cost can be of 

interest to the Alberta Electric System Operator (AESO), which is a non-profit 

organization that works with industrial partners to manage and distribute power 

sold by generators in a competitive electricity market. The electricity generated 

with the lowest cost is sold first, followed by higher cost electricity until the total 

demand is satisfied. Another reason the system and grid operating costs have been 

separated into two different objective functions is because they have considerably 

different orders of magnitude (the system cost is at least an order of magnitude 

higher). This is a necessary step, as otherwise the optimization model results 

would have been dominated by the objective function with the higher order of 

magnitude. 

 Incorporates a unit commitment model to determine the effect of the penetration 

of new power production technologies, including renewables (i.e. wind), on the 

dispatch of the existing grid units and newly installed units.  
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 The developed model allows for the integrated planning and scheduling of the 

proposed energy system for the oil sands industry (Figure 1).  

 Considers the development of potential energy hubs that incorporates hydrogen 

economy to manage the off-peak surplus of intermittent renewables, for which 

multiple recovery pathways are considered (i.e. power-to-gas-to-users and power-

to-gas-to-power). The model considers the sizing of the electrolyzers and 

hydrogen storage farms.  

5.3 Optimization model formulation 

The mathematical model proposed in this study for the integrated planning and 

scheduling of the energy infrastructure of the oil sands industry is presented as multi-

period and multi-objective mixed integer linear programming model (MILP). Three 

objective functions are incorporated, which are the total system cost, grid cost, and total 

GHG emissions. Interactions with the grid are accounted for by unit commitment 

constraints for the existing grid power generation units. Each of the modeling aspects 

included in the formulation of the mathematical optimization model are discussed below. 

The indices, sets, variables, and parameters used in the proposed integrated planning and 

scheduling model are presented in Appendix B. The time scale of the model is annual 

planning with hourly scheduling over a single year.  

5.3.1 Objective functions 

The objective functions, which are the total energy system cost, grid operating cost, and 

total GHG emissions, are presented below. The epsilon constraint method is used as the 

solution method to address the multi-objective aspect of the proposed model. The total 
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system cost and grid operating cost have been separated into two different objective 

functions because they have considerably different order of magnitudes.  

5.3.1.1 System Cost 

Eq. 5.1 shows the first objective function, which is the total cost of the energy system. It 

determines the total system cost for the selected planning year, for example, the year 

2020. The total system cost is composed of the capital, operating and fuel costs of the 

new and existing (if not yet depreciated) fossil-fuel based generating units, as well as 

renewable technologies (e.g. wind, biomass, geothermal, etc.) and nuclear technologies. 

In addition, costs for the transport of energy commodities (e.g. hydrogen) among the 

nodes of the system are included. Finally, the cost of importing of energy commodities, 

and the revenues earned from exports are part of the total system cost. 

𝑇𝐶 
𝑆𝑌𝑆𝑇𝐸𝑀 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1

 = 𝑧1
 (𝑥)

= ∑ ∑ 𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝐹𝐹𝑒𝑥𝑖𝑠𝑡

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ ∑ 𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝐹𝐹𝑒𝑥𝑖𝑠𝑡

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ ∑ 𝐶𝑓𝑢𝑒𝑙𝑝𝑛𝑡

𝐹𝐹𝑒𝑥𝑖𝑠𝑡

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ 𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝐹𝐹𝑛𝑒𝑤

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ ∑ 𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝐹𝐹𝑛𝑒𝑤

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ ∑ 𝐶𝑓𝑢𝑒𝑙𝑝𝑛𝑡

𝐹𝐹𝑛𝑒𝑤

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ 𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝑆𝑜𝑙𝑎𝑟&𝑊𝑖𝑛𝑑

 

𝑛∈𝑁

 

𝑝∈𝑃𝑆𝑊

+ ∑ ∑ ∑ 𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝑆𝑜𝑙𝑎𝑟&𝑊𝑖𝑛𝑑

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝑆𝑊

    

+ ∑ ∑ 𝐶𝑐𝑎𝑝𝑒𝑥𝑝𝑛

𝑁𝑢𝑐𝑙𝑒𝑎𝑟

 

𝑛∈𝑁

 

𝑝∈𝑃𝑁𝑈

+ ∑ ∑ ∑ 𝐶𝑜𝑝𝑒𝑥𝑝𝑛𝑡

𝑁𝑢𝑐𝑙𝑒𝑎𝑟

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝑁𝑈

+ ∑ ∑ ∑ 𝐶𝑎𝑐𝑐𝑖𝑑𝑝𝑛𝑡
𝑁𝑢𝑐𝑙𝑒𝑎𝑟

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝑁𝑈

+ ∑ ∑ ∑ 𝐶𝑐𝑎𝑝𝑒𝑥𝑞𝑒𝑛𝑛′
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

 

𝑛′∈𝑁,𝑛≠𝑛′

 

𝑒∈𝐸

 

𝑞∈𝑄

+ ∑ ∑ ∑ ∑ 𝐶𝑜𝑝𝑒𝑥𝑑𝑒𝑛𝑛′𝑡

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝑡∈𝑇

 

𝑛′∈𝑁,𝑛≠𝑛′

 

𝑒∈𝐸

 

𝑑∈𝐷

+ ∑ ∑ 𝐶_𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑡
𝐼𝑚𝑝𝑜𝑟𝑡

 

𝑡∈𝑇

 

𝑒∈𝐸

− ∑ ∑ 𝐶_𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑡
𝐸𝑥𝑝𝑜𝑟𝑡

 

𝑡∈𝑇

 

𝑒∈𝐸

 

(5.1) 
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5.3.1.2 Grid Cost 

Eq. 5.2 shows the total operating cost of the grid [190]. The objective function 

incorporates the operating costs, startup costs, and fuel costs of the grid’s operating units, 

as well as the cost of the unserved demand for all the regional buses. In this study, the 

import cost shown in the objective function is only for the cost of power that is imported 

from the energy infrastructure of the oil sands industry, and the export revenue is from 

the power sent to the energy system.  

𝑇𝐶 
𝐺𝑟𝑖𝑑 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2

 = 𝑧2
 (𝑥)

= ∑ ∑ [𝐶𝑜𝑝𝑒𝑥𝑖𝑡

 + 𝐶𝑠𝑡𝑎𝑟𝑡𝑢𝑝𝑖𝑡

 ]

𝑡∈𝑇

 

𝑖∈𝐼

+ ∑ ∑ 𝐶𝑓𝑢𝑒𝑙𝑖𝑡

𝐹𝐹

𝑡∈𝑇

 

𝑖∈𝐼𝐹𝐹

+ ∑ ∑ 𝐶𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑑𝑒𝑚𝑎𝑛𝑑𝑘𝑡

 

𝑡∈𝑇

 

𝑘∈𝐾  

 

+ ∑ 𝐶_𝑔𝑟𝑖𝑑𝑒=𝑝𝑜𝑤𝑒𝑟,𝑡
𝐼𝑚𝑝𝑜𝑟𝑡

 

𝑡∈𝑇

− ∑ 𝐶_𝑔𝑟𝑖𝑑𝑒=𝑝𝑜𝑤𝑒𝑟,𝑡
𝐸𝑥𝑝𝑜𝑟𝑡

 

𝑡∈𝑇

 

(5.2) 

5.3.1.3 GHG emissions 

Eq. 5.3 represents the total GHG emissions from the energy system, which is mainly 

generated from the combustion of fuels consumed from fossil-fuel based technologies. 

Emissions can be generated from the transportation of energy commodities among the 

nodes of the energy system. For example, power consumed by compressors of hydrogen 

pipelines is obtained from the grid, which has an average emission factor associated with 

it. Eq. 5.4 represents the total GHG emissions generated from operating the power 

generation units of the grid, which is associated with the fuel consumed for operation and 

fuel consumed during the startup of the units.  
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𝑇𝐸𝐶 
𝑆𝑌𝑆𝑇𝐸𝑀 = ∑ ∑ ∑[𝐸𝐶𝑂2𝑝𝑛𝑡

𝐹𝐹𝑒𝑥𝑖𝑠𝑡 + 𝐸𝐶𝑂2𝑝𝑛𝑡
𝐹𝐹𝑛𝑒𝑤 ]

𝑡∈𝑇

 

𝑛∈𝑁

 

𝑝∈𝑃𝐹

+ ∑ ∑ ∑ ∑ 𝐸𝐶𝑂2
𝑞𝑒𝑛𝑛′𝑡

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝑡∈𝑇

 

𝑛′∈𝑁,𝑛≠𝑛′

 

𝑒∈𝐸

 

𝑞∈𝑄

 

(5.3) 

𝑇𝐸𝐶 
𝐺𝑟𝑖𝑑 = ∑ ∑[𝐸𝐶𝑂2𝑖𝑡

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝐶𝑂2𝑖𝑡
𝑠𝑡𝑎𝑟𝑡𝑢𝑝 ]

𝑡∈𝑇

 

𝑖∈𝐼

 (5.4) 

Eq. 5.5 shows the third objective function incorporated in the optimization model, which 

represents the total GHG emissions generated from the energy infrastructure of the oil 

sands industry and the Alberta grid. The system and grid emissions have the same order 

of magnitudes, and can be added together to represent the total GHG emissions objective 

function. The possibility of incorporating different weights for the grid and system 

emissions was incorporated in order to provide flexibility for the user of the mathematical 

model. For example, if the users of the mathematical model are companies in the oil 

sands industry, then they might be interested in only taking into account reductions in 

GHG emissions associated with their facilities as taking into account both the system and 

grid emissions will have a considerable impact on the economic objective function and 

investment decisions. In order to take into account the possibility of setting different 

weights on the emissions from the energy system and the emissions from the grid, the 

approach outlined in Fakhfakh et al. [207] is adopted. The approach involves determining 

the ranges (i.e. minimum and maximum values) of the system (Eq. 5.3) and grid 

emissions (Eq. 5.4), which are then normalized. The normalized values of emissions are 

then multiplied by their desired weights (between 0-1), similar to the weighted sum 

approach.   
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒3
 = 𝑧3

 (𝑥)

= 𝜙𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑆𝑌𝑆𝑇𝐸𝑀 (

𝑇𝐸𝐶 
𝑆𝑌𝑆𝑇𝐸𝑀 − 𝑇𝐸𝐶𝑀𝐼𝑁 

𝑆𝑌𝑆𝑇𝐸𝑀

𝑇𝐸𝐶𝑀𝐴𝑋 
𝑆𝑌𝑆𝑇𝐸𝑀 − 𝑇𝐸𝐶𝑀𝐼𝑁 

𝑆𝑌𝑆𝑇𝐸𝑀)

+ 𝜙𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝐺𝑅𝐼𝐷 (

𝑇𝐸𝐶 
𝐺𝑟𝑖𝑑 − 𝑇𝐸𝐶𝑀𝐼𝑁 

𝐺𝑟𝑖𝑑

𝑇𝐸𝐶𝑀𝐴𝑋 
𝐺𝑟𝑖𝑑 − 𝑇𝐸𝐶𝑀𝐼𝑁 

𝐺𝑟𝑖𝑑
) 

(5.5) 

`     

The proposed multi-objective MILP formulation considers Eqs. 5.1, 5.3 and 5.5 as the 

objective functions, which are labelled z1, z2 and z3, respectively. The multi-objective 

optimization problem can then be represented as shown in Eq. 5.6.  

𝑚𝑖𝑛⏟ 
𝒙∈𝐹

{𝑧1(𝒙), 𝑧2(𝒙), 𝑧3(𝒙) } (5.6) 

where x is the vector of decision variables in the space of feasible region F. The solution 

approach of the proposed multi-objective mathematical model is the epsilon-constraint 

method adopted from Liu and Papageorgiou
 
[208]. The objective functions can be 

represented as follows. 

𝑚𝑖𝑛⏟ 
𝒙∈𝐹

𝑧1(𝒙)

𝑠. 𝑡.   𝑧2(𝒙)  ≤ 𝜀2 

        𝑧3(𝒙)  ≤ 𝜀3

 (5.7) 

Two sub-problems are solved individually in order to determine the minimum and 

maximum values of 𝜀3. These are represented in Eqs. 5.8 and 5.9.  

𝑚𝑖𝑛⏟ 
𝒙∈𝐹

𝑧1(𝒙)

𝑠. 𝑡.   𝑧2(𝒙)  ≤ 𝜀2 
 (5.8) 
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𝑚𝑖𝑛⏟ 
𝒙∈𝐹

𝑧3(𝒙)

𝑠. 𝑡.   𝑧2(𝒙)  ≤ 𝜀2 
 (5.9) 

In both sub-problems the objective z2 is constrained by 𝜀2, which is a predetermined 

value of the objective function. The highest possible value of z2 is determined from the 

problem defined in Eq. 5.8, in which z1 is the objective, while z3 is eliminated. The least 

possible value of z2 is determined from the problem defined in Eq. 5.8, in which z2 is the 

objective, while z1 is eliminated. The problem defined in Eq. 5.7 can then be solved by 

defining 𝜀3   as represented in Eq. 5.10.  

𝜀3 = 𝜔𝑧3
𝑚𝑎𝑥 + (1 − 𝜔)𝑧3

𝑚𝑖𝑛 (5.10) 

where 𝜔 ∈ [0,1] indicates the weight set on the emissions objective function. For each 

selected value of 𝜀2, the value of 𝜀3 is obtained by varying  𝜔 ∈ [0,1] with an increment 

of 0.1. 

5.3.2 Energy production technologies 

The energy production technologies incorporated in this study include fossil-fuel based 

facilities, particularly natural gas cogeneration units for the cogeneration of power and 

heat, and natural gas combined cycle power generators. Included in the energy system is 

wind power production integrated with water electrolysis for hydrogen production. To 

manage the intermittent behavior of wind power, hydrogen storage is included with two 

recovery pathways, which are power-to-gas (i.e. hydrogen sent to bitumen upgraders) and 

power-to-gas-to-power (i.e. hydrogen in HENG used as fuel in natural gas generators). 

Finally, nuclear energy for power and heat production is included, from which excess 



154 
 

power can be utilized to produce electrolytic hydrogen for bitumen upgrading. The 

constraints that define the operations of each of these technologies are represented below.  

Natural gas combined heat and power 

The industrial natural gas cogeneration units included consist of gas turbines that are used 

for power generation. The steam used to satisfy the heat requirements of oil sands 

operations is produced by heat recovery steam generators, which recover heat from the 

exhaust of gas turbines [209, 210]. Supplementary fuel might be combusted in addition to 

the heat recovered to raise the enthalpy of steam to a desired state. The gas turbines and 

the high pressure steam generators utilize natural gas as fuel in the combustion chambers. 

The industrial combined heat and power system is modeled according to the approaches 

in [211, 212]. The constraints representing the operations of the system are shown in Eqs. 

5.11-5.22. The amount of fuel consumed by the gas turbines is calculated based on the 

amount of power generated and the efficiency of the turbines (Eq. 5.11). The power 

generated is used to satisfy the power requirements of the host facility, and the excess is 

sent to the Alberta grid (Eq. 5.12). The amount of supplementary fuel required to achieve 

the heat demand of the host facility is calculated as shown in Eq. 5.13, which depends on 

the efficiencies of generation and recovery of the heat recovery steam generator. The total 

fuel consumed in the cogeneration units is the sum of fuel consumed in the gas turbines 

and supplementary fuel consumed in heat recovery steam generators (Eq. 5.14). The 

decision to install cogeneration unit g is determined by the binary variable 𝑌𝑁𝐶𝑂𝑔
  (Eq. 

5.15). The operation of each cogeneration unit g is constrained by Eqs. 5.17 – 5.22. The 

operations of the gas turbines and heat recovery steam generators are limited by their 

minimum and maximum operating capacities (Eqs. 5.16-5.17). The startup and shutdown 
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of each cogeneration unit g during each hour t are defined by the binary variables 𝑧𝑐𝑜𝑔𝑡
  

and 𝑦𝑐𝑜𝑔𝑡
 , respectively (Eqs. 5.18-5.19). After startup during a certain hour t, the 

cogeneration unit g must operate for a minimum number of hours before shutdown, 

which is defined in Eq. 5.20. Similarly, after shutdown there is a minimum down time for 

each unit g before startup (Eq. 5.21). The ramping of each cogeneration unit is limited by 

the constraint in Eq. 5.22.  

𝐹𝑢𝑒𝑙_𝑇𝑔𝑡 = 0.0036 𝐸𝐶𝑔𝑡/𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 (5.11) 

𝐸𝐶𝑔𝑡 = 𝑃_𝐸𝐶𝑔𝑡
𝑔𝑟𝑖𝑑

+ 𝑃_𝐸𝐶𝑔𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 (5.12) 

𝐹𝑢𝑒𝑙_𝐺𝑔𝑡 𝜂𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝐻𝑒𝑎𝑡_𝑐𝑜𝑔𝑒𝑛𝑔𝑡 − 𝜂𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(1 − 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒)𝐹𝑢𝑒𝑙_𝑇𝑔𝑡 (5.13) 

𝐹𝑢𝑒𝑙_𝑐𝑜𝑔𝑒𝑛𝑔𝑡
𝑡𝑜𝑡𝑎𝑙  = 𝐹𝑢𝑒𝑙_𝑇𝑔𝑡 + 𝐹𝑢𝑒𝑙_𝐺𝑔𝑡 (5.14) 

𝐸𝐶𝑔𝑡 ≤ 𝑀𝑎𝑥_𝐶𝑅 
𝑐𝑜𝑔𝑒𝑛𝑌𝑁𝐶𝑂𝑔

  (5.15) 

𝑀𝑖𝑛_𝐶𝑅 
𝑐𝑜𝑔𝑒𝑛𝑢𝑐𝑜𝑔𝑡

 ≤ 𝐸𝐶𝑔𝑡 ≤ 𝑀𝑎𝑥_𝐶𝑅 
𝑐𝑜𝑔𝑒𝑛𝑢𝑐𝑜𝑔𝑡

  (5.16) 

𝐻𝑒𝑎𝑡_𝑐𝑜𝑔𝑒𝑛𝑔𝑡 ≤ 𝑀𝑎𝑥_𝐻𝑅𝑆𝐺 
𝑐𝑜𝑔𝑒𝑛𝑢𝑐𝑜𝑔𝑡

  (5.17) 

𝑧𝑐𝑜𝑔𝑡
 ≥ 𝑢𝑐𝑜𝑔𝑡

 − 𝑢𝑐𝑜𝑔,𝑡−1
  (5.18) 

𝑦𝑐𝑜𝑔𝑡
 ≥ 𝑢𝑐𝑜𝑔,𝑡−1

 − 𝑢𝑐𝑜𝑔𝑡
  (5.19) 

∑ 𝑧𝑐𝑜𝑔𝑡
 

𝑡

𝜏=𝑡−𝑀𝑖𝑛_𝑢𝑝𝑡𝑖𝑚𝑒𝑐𝑜𝑔𝑒𝑛

≤ 𝑢𝑐𝑜𝑔𝑡
  (5.20) 
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∑ 𝑦𝑐𝑜𝑔𝑡
 

𝑡

𝜏=𝑡−𝑀𝑖𝑛_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑐𝑜𝑔𝑒𝑛

≤ 1 − 𝑢𝑐𝑜𝑔𝑡
  (5.21) 

−𝑅𝑎𝑚𝑝 
𝑐𝑜𝑔𝑒𝑛 ≤ 𝐸𝐶𝑔𝑡 − 𝐸𝐶𝑔,𝑡−1 ≤ 𝑅𝑎𝑚𝑝 

𝑐𝑜𝑔𝑒𝑛 (5.22) 

Natural gas combined cycle 

The natural gas combined cycle (NGCC) units are used as highly dispatchable power 

generation facilities in the proposed model. The power plant consists of a gas turbine 

generator fueled by natural gas or a mixture of natural gas and hydrogen (i.e. hydrogen 

enriched natural gas; HENG), a heat recovery steam generator, and a triple pressure, 

reheat and full condensing steam turbine generator. The hourly fuel consumption and 

power generated by NGCC units is calculated as shown in presented in Eq. 5.23, which 

depends on the efficiency of power production. As previously mentioned, the fuel 

supplied to the NGCC units might incorporate hydrogen retrieved from the power-to-gas 

system, which is presented by Eq. 5.24. Based on various sources in the literature [211], 

the share of hydrogen that can be safely used in NG-fired facilities without significant 

retrofits is 5%. This is represented in the constraint shown in Eq. 5.25, in which the share 

of hydrogen in the HENG cannot exceed the maximum allowable limit (𝜑𝐻2

𝐻𝐸𝑁𝐺). The 

selection of each NGCC unit f is determined by the binary variable 𝑌𝑁𝐺𝐶𝐶𝑓
  in Eq. 5.26. 

The binary variable 𝑢_𝑛𝑔𝑐𝑐𝑓𝑡
  determines if unit f is operational during hour t in Eq. 5.27, 

which also limits the operation of each unit between its maximum and minimum 

capacities. The startup, shutdown and ramping constraints (Eqs. 5.28-5.32) are similar to 

those of the natural gas cogeneration units.  
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𝐹𝑢𝑒𝑙_𝑁𝐺𝐶𝐶𝑓𝑡 = 3.6 𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑓𝑡/𝜂𝑁𝐺𝐶𝐶 (5.23) 

∑ 𝐹𝑢𝑒𝑙_𝑁𝐺𝐶𝐶𝑓𝑡

 

𝑓

= 𝑁𝐺_𝑁𝐺𝐶𝐶𝑡 + 𝐻_𝑡𝑜_𝑁𝐺𝐶𝐶𝑡
  (5.24) 

𝐻_𝑡𝑜_𝑁𝐺𝐶𝐶𝑡
 

𝜌𝐻2

  𝐻𝑉𝐻2

 ≤ 𝜑𝐻2

𝐻𝐸𝑁𝐺 (
𝐻_𝑡𝑜_𝑁𝐺𝐶𝐶𝑡

 

𝜌𝐻2

  𝐻𝑉𝐻2

 +
𝑁𝐺_𝑁𝐺𝐶𝐶𝑡

𝜌𝑁𝐺
  𝐻𝑉𝑁𝐺

 ) (5.25) 

𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑓𝑡 ≤ 𝑀𝑎𝑥_𝐶𝑅 
𝑛𝑔𝑐𝑐𝑌𝑁𝐺𝐶𝐶𝑓

  (5.26) 

𝑀𝑖𝑛_𝐶𝑅 
𝑛𝑔𝑐𝑐𝑢_𝑛𝑔𝑐𝑐𝑓𝑡

 ≤ 𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑓𝑡 ≤ 𝑀𝑎𝑥_𝐶𝑅 
𝑛𝑔𝑐𝑐𝑢_𝑛𝑔𝑐𝑐𝑓𝑡

  (5.27) 

𝑧_𝑛𝑔𝑐𝑐𝑓𝑡
 ≥ 𝑢_𝑛𝑔𝑐𝑐𝑓𝑡

 – 𝑢_𝑛𝑔𝑐𝑐𝑓,𝑡−1
  (5.28) 

𝑦_𝑛𝑔𝑐𝑐𝑓𝑡
 ≥ 𝑢_𝑛𝑔𝑐𝑐𝑓,𝑡−1

 – 𝑢_𝑛𝑔𝑐𝑐𝑓𝑡
  (5.29) 

∑ 𝑧_𝑛𝑔𝑐𝑐𝑓𝑡
 

𝑡

𝜏=𝑡−𝑀𝑖𝑛_𝑢𝑝𝑡𝑖𝑚𝑒𝑛𝑔𝑐𝑐

≤ 𝑢_𝑛𝑔𝑐𝑐𝑓𝑡
  (5.30) 

∑ 𝑦_𝑛𝑔𝑐𝑐𝑓𝑡
 

𝑡

𝜏=𝑡−𝑀𝑖𝑛_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑛𝑔𝑐𝑐

≤ 1 − 𝑢_𝑛𝑔𝑐𝑐𝑓𝑡
  (5.31) 

−𝑅𝑎𝑚𝑝 
𝑛𝑔𝑐𝑐 ≤ 𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑓𝑡 − 𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑓,𝑡−1 ≤ 𝑅𝑎𝑚𝑝 

𝑛𝑔𝑐𝑐 (5.32) 

 

Wind-electrolysis system 

The considered on-shore wind turbines have an average capacity of 1.91 MW, which is 

the average nameplate capacity installed in Pincher Creek in Alberta. The location of 

Pincher Creek, Alberta is selected to install the wind turbines used in the energy system 
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due to the high wind speed potential and its close proximity to nearby on-shore wind 

farms. The expected wind speed in this location varies on average from 5.81 m/s during 

the summer to 9.02 m/s during the winter, and the average annual wind speed is 

estimated to be approximately 6.5 m/s [213, 214]. The power generated from wind 

energy is sent to electrolyzers for hydrogen production (i.e. power-to-gas), or sold to the 

Alberta grid. The hydrogen is sent to bitumen upgraders, and excess hydrogen can be 

stored in storage tanks, which can be retrieved and sent to upgraders or used in HENG 

utilized in natural gas power generators (i.e. power-to-gas-to-power). The advantage of 

electrolyzers over other methods for producing hydrogen is the suitability of the 

technology to adjust to variable energy inputs, such as intermittent wind energy. This is 

due to their wide operational range, in which they respond quickly to variations in input 

power [215]. Therefore, they have the potential to increase the availability and reliability 

of wind energy sources incorporated in the proposed distributed energy system. Alkaline 

electrolyzers are selected for this study, as they have high efficiencies that can reach 

values >70% [216]. Six capacity levels were considered for the electrolyzer sizes 

included in this study, which have different operational ranges. This was included in 

order to improve the operational range and capacity factor of the total electrolyzer 

capacity installed. The electrolyzer capacity factor is defined as the ratio of the actual 

total annual production of hydrogen to the maximum possible annual production level 

(i.e. total installed capacity of electrolyzers for all operational hours in a year).    

The total amount of power generated from wind turbines each hour was estimated as the 

available wind potential multiplied by the installed number of turbines (Eq. 5.33). The 

wind potential in megawatts was estimated as shown in Eq. 5.34; it depends on the air 
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density (kg/m
3
), rotor area (m

2
), wind speed (m/s) and wind turbine efficiency. It is 

important to note that the effect of rising extremes, which instantaneously shuts down 

wind plants by turning the blades into neutral position for operational safety, is not 

incorporated in Eq. 5.34. Extension of the model in future work can allow for the 

implementation of alternative input data sets that take into account climate models and 

forecasts of more frequent storm events simultaneously. The power generated from wind 

turbines is sent to electrolyzers or sold to the grid (Eq. 5.35). The electrolytic hydrogen 

produced depends on the electrolyzers’ power constant (𝐴𝐸𝐿𝑍), which is on average 53.4 

kWh/kg H2 (Eq. 5.36). The total amount of electrolytic hydrogen produced from wind 

power is divided among the different capacity levels of electrolyzer farm-1 to determine 

its size (Eq. 5.37). In Eq. 5.38, the number of electrolyzers selected from each 

electrolyzer capacity level c depends on its operational range (i.e. maximum and 

minimum flowrates when operational). The total electrolytic hydrogen produced is sent to 

bitumen upgraders in the Alberta Industrial Heartland, and the excess is sent to storage 

tanks (Eq. 5.39). The material balance on the total hydrogen storage capacity during each 

hour t is shown in Eq. 5.40. The number of hydrogen storage tanks installed depends on 

the maximum capacity level of a single tank (Eq. 5.41). In Eq. 5.42, the hydrogen stored 

can be retrieved for two purposes: 1- sent to bitumen upgraders during hours of low 

electrolytic hydrogen production (i.e. low wind potential), 2- used in HENG utilized in 

natural gas generators (i.e. power-to-gas-to-power). The electrolytic hydrogen produced 

and hydrogen retrieved from storage is sent to bitumen upgraders via the available 

pipeline capacities (Eq. 5.43). Only one pipeline capacity level is selected (Eq. 5.44) 
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𝑊𝑖𝑛𝑑_𝑃 𝑡 = 𝑊𝑖𝑛𝑑_𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑡
  𝑁𝑊𝑇 (5.33) 

𝑊𝑖𝑛𝑑_𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑡
 = 0.5𝜌𝑎𝑖𝑟𝐴𝑟𝑜𝑡𝑜𝑟  𝑉ℎ

3 𝜂𝑊𝑇/1,000,000 (5.34) 

𝑊𝑖𝑛𝑑_𝑃 𝑡 = 𝑊𝑖𝑛𝑑_𝑃 𝑡
 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠

+ 𝑊𝑖𝑛𝑑_𝑃 𝑡
 𝑔𝑟𝑖𝑑

 (5.35) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑤𝑖𝑛𝑑 = 𝑊𝑖𝑛𝑑_𝑃 𝑡

 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠
/𝐴𝐸𝐿𝑍 (5.36) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑤𝑖𝑛𝑑 = ∑ 𝐶𝐻𝑐1𝑡

 

 

𝑐1

 (5.37) 

𝐶𝐻_𝑀𝐼𝑁𝑐1
  𝑁_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑐1

𝑓𝑎𝑟𝑚1 
≤ 𝐶𝐻𝑐1𝑡

 

≤ 𝐶𝐻_𝑀𝐴𝑋𝑐1
  𝑁_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑐1

 𝑓𝑎𝑟𝑚1
 

(5.38) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑤𝑖𝑛𝑑 = 𝐻_𝑖𝑛𝑝𝑢𝑡 𝑡

 + 𝐸𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡
𝑤𝑖𝑛𝑑  (5.39) 

𝐻_𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡
  = 𝐻_𝑖𝑛𝑝𝑢𝑡 𝑡

 – 𝐻_𝑜𝑢𝑡𝑝𝑢𝑡 𝑡
 + 𝐻_𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡−1

   (5.40) 

𝐻_𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡
  ≤ 𝐻_𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑀𝐴𝑋 

  𝑁𝐻𝑇 (5.41) 

𝐻_𝑜𝑢𝑡𝑝𝑢𝑡 𝑡
 = 𝑆𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡

 + 𝐻_𝑡𝑜_𝑁𝐺𝐶𝐶𝑡
  (5.42) 

𝐸𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡
𝑤𝑖𝑛𝑑 + 𝑆𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡

 ≤ ∑ 𝐻_𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑 
𝑀𝐴𝑋𝑌_𝐻𝑝𝑖𝑝𝑒𝑑

 

 

𝑑

 (5.43) 

∑ 𝑌_𝐻𝑝𝑖𝑝𝑒𝑑
 

 

𝑑

≤ 1 (5.44) 
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Nuclear energy system 

In the proposed model nuclear energy can be used to contribute to the energy 

requirements of the oil sands industry in the form of power and heat. The heat generated 

can be used to produce steam at different pressure levels, and used for other heating 

applications. For example, nuclear energy can be used to produce SAGD steam, process 

steam, and heat utilized by SMR plants for hydrogen production. The power generated 

can also be used to satisfy the electricity requirements of the host facility, sold to the grid, 

or used in electrolyzers for hydrogen production for bitumen upgraders. Nuclear energy 

is a low-carbon intensive technology, which makes it an attractive alternative for the 

reduction of emission from oil sands operations. The amount of each energy commodity 

produced can be calculated as presented in Eq. (5.45),  where 𝛿𝑃𝑢𝑒
𝑁𝑈 is the yield of each 

energy commodity e generated from nuclear technology u (units of e/MWth). The power 

produced from each nuclear plant u during hour t can be used to provide the electricity 

requirements of oil sands operators, sent to the grid, or sent to electrolyzers for the 

production of hydrogen for bitumen upgrading (Eq. 5.46). The number of nuclear 

reactors installed from each nuclear technology u depends on its maximum capacity and 

the total energy requirements (Eq. 5.47). Similar to the wind-electrolysis system, the size 

of electrolyzer farm-2 that is located in the Alberta Industrial Heartland in the vicinity of 

bitumen upgraders is determined by the set of constraints in Eqs. 5.48-5.50.  

𝐸𝑃𝑈𝑢𝑒𝑡
𝑁𝑈 = 𝛿𝑃𝑢𝑒

𝑁𝑈𝐻𝑅𝑃𝑢𝑡
𝑁𝑈 (5.45) 

𝐸𝑃𝑈𝑢,𝑒=𝑝𝑜𝑤𝑒𝑟,𝑡
𝑁𝑈 = 𝑃_𝑁𝑈𝑢𝑡

𝑔𝑟𝑖𝑑
+ 𝑃_𝑁𝑈𝑢𝑡

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠
+ 𝑃_𝑁𝑈𝑢𝑡

𝑑𝑒𝑚𝑎𝑛𝑑 (5.46) 
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𝐻𝑅𝑃𝑢𝑡
𝑁𝑈 ≤ 𝜉𝑢

𝑁𝑈𝐻𝑅_𝑀𝐴𝑋𝑢
𝑁𝑈𝑁𝑁𝑈𝑢

  (5.47) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑁𝑈 = (∑ 𝑃_𝑁𝑈𝑢𝑡

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟𝑠

 

𝑢

) /𝐴𝐸𝐿𝑍 (5.48) 

𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑁𝑈 = ∑ 𝐶𝐻𝑐2𝑡

 

 

𝑐2

 (5.49) 

𝐶𝐻_𝑀𝐼𝑁𝑐2
  𝑁_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑐2

𝑓𝑎𝑟𝑚2 
≤ 𝐶𝐻𝑐2𝑡

 

≤ 𝐶𝐻_𝑀𝐴𝑋𝑐2
  𝑁_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑐2

 𝑓𝑎𝑟𝑚2
 

(5.50) 

5.3.3 Demand constraints 

The total energy requirements of the oil sands operators (i.e. power, heat and hydrogen) 

in the model must be satisfied by the incorporated energy providers. Therefore, the total 

amount of energy produced by the energy producers included in the energy system must 

be greater than or equal to the total energy demand for each commodity, which is 

presented by the set of constraints in Eqs. (5.51-5.53). It is assumed that the existing 

capacity of natural gas boilers (for heat requirements) and steam methane reforming 

plants (for hydrogen production) is sufficient to meet any heat and hydrogen 

requirements that are not fulfilled by the newly installed energy producers. 

∑ 𝑃_𝐸𝐶𝑔𝑡
𝑑𝑒𝑚𝑎𝑛𝑑

 

𝑔

+ ∑ 𝑃_𝑁𝑈𝑢𝑡
𝑑𝑒𝑚𝑎𝑛𝑑

 

𝑢

+ 𝐺𝑟𝑖𝑑_𝑡𝑜_𝑂𝑆𝑡 ≥ 𝐷𝐸𝐶𝑒=𝑝𝑜𝑤𝑒𝑟,𝑡
  (5.51) 

𝐸𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡
𝑤𝑖𝑛𝑑 + 𝑆𝐻_𝑡𝑜_𝑢𝑝𝑔𝑟𝑎𝑑𝑒𝑟𝑡

 + 𝐻_𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑡
 𝑁𝑈 + 𝐻_𝑆𝑀𝑅 𝑡

  

≥ 𝐷𝐸𝐶𝑒=ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛,𝑡
  

(5.51) 
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∑ 𝐸𝑃𝑈𝑢,𝑒=ℎ𝑒𝑎𝑡,𝑡
𝑁𝑈

 

𝑢

+ ∑ 𝐻𝑒𝑎𝑡_𝑐𝑜𝑔𝑒𝑛𝑔𝑡

 

𝑔

+ 𝐻𝑒𝑎𝑡_𝑏𝑜𝑖𝑙𝑒𝑟 𝑡
  ≥ 𝐷𝐸𝐶𝑒=ℎ𝑒𝑎𝑡,𝑡

  (5.53) 

5.3.4 Grid constraints (unit commitment) 

One of the objective functions incorporated in the proposed optimization model is the 

minimization of total grid cost and grid emissions are also incorporated in the emissions 

objective function. This affects the operations of the grid’s power generation units, which 

are subject to the unit commitment constrains outlined in Eqs. 5.54-5.68, which are based 

on the methodology proposed by Gamage [190].  

For each regional bus k, the power generation units i connected to it must satisfy the sum 

of demand for that bus during hour t, as well as the power flow in transmission lines 

between this bus k and other buses k’, which is presented by the power balance constraint 

in Eqs. 5.54-5.56.  A variable is incorporated in the power balance constraints to account 

for any unserved demand, for which their cost is included in the objective function. For 

regional buses 1 and 5, power is sent to them from generation units in the energy system 

of the oil sands industry. New wind turbines are installed in regional bus 1, as well as 

natural gas generators that utilize HENG. Power generated from these units is assumed to 

be connected to bus 1 (Eq. 5.54). Similarly, natural cogeneration facilities and small-scale 

nuclear reactor used to produce power and heat requirements for oil sands operators are 

installed in the Alberta Industrial Heartland. Therefore, excess power generated from 

these units is assumed to be connected to regional bus 5 (Eq. 5.55). Power generated by 

the units connected to bus k that is in excess to the total demand at the bus is limited to a 

percentage of the total demand (∅ 
𝑇𝐸), which is set to zero in this study (Eq. 5.57). 
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The total power flow in transmission lines among buses is calculated as represented in 

Eq. 5.58, which is based on the DC power flow method that incorporates that susceptance 

of the transmission lines (𝛽𝑘𝑘′
 ) and the voltage angles among the buses (𝛿𝑘𝑡

 , 𝛿𝑘′𝑡
 ) at a 

certain time [190]. This is limited by the transmission capacity (Eq. 5.59). Eq. 5.60 is a 

capacity constraint on each generation unit i during time t, in which its power output and 

the amount of spinning reserves provided by it are within its operational capacity. The 

binary variable 𝑢_𝑔𝑢𝑖𝑡
  represents the commitment of unit i during hour t.  The total 

amount of spinning reserves generated by all the generation units must satisfy the total 

spinning reserves of the system (Eq. 5.61), and the spinning reserves generated by a 

certain unit is limited by its reserve capacity (Eq. 5.62). Eq. 5.63 ensures that the 

generation of wind and hydro power is below the resource availability in hour t. The 

constraints in Eq. 5.64 and Eq. 5.65 are state transition constraints, in which the binary 

variables 𝑧_𝑔𝑢𝑖𝑡
  and 𝑦_𝑔𝑢𝑖𝑡

  indicate the startup and shutdown of generation unit i during 

hour t, respectively. The unit commitment constraints in Eq. 5.66 and 5.67 control the 

amount of time during which a unit must run after startup before the next shutdown (i.e. 

minimum up-time) and the amount of time a unit must remain off after shutdown before 

startup (i.e. minimum down-time). Eq. 5.68 represents the ramping control constraint of 

the grid’s units.  
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∑ 𝑝𝑝𝑖𝑡

 

𝑖 ∈ 𝐼_𝑏𝑢𝑠1

+ 𝑊𝑖𝑛𝑑_𝑃 𝑡
 𝑔𝑟𝑖𝑑

+ ∑ 𝑃𝑜𝑤𝑒𝑟_𝑁𝐺𝐶𝐶𝑛𝑡

 

𝑛

= 𝐺𝑟𝑖𝑑_𝑑𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠1,𝑡 − 𝑃𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝑏𝑢𝑠1,𝑡
 + 𝑃𝑒𝑥𝑐𝑒𝑠𝑠𝑏𝑢𝑠1,𝑡

 

+ 𝑃𝑡𝑟𝑎𝑛𝑠𝑏𝑢𝑠1,𝑡
  

(5.54) 

∑ 𝑝𝑝𝑖𝑡

 

𝑖 ∈ 𝐼_𝑏𝑢𝑠5

+ ∑ 𝑃_𝐸𝐶𝑔𝑡
𝑔𝑟𝑖𝑑

 

𝑔

+ ∑ 𝑃_𝑁𝑈𝑢𝑡
𝑔𝑟𝑖𝑑

 

𝑢

= 𝐺𝑟𝑖𝑑_𝑑𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠5,𝑡 + 𝐺𝑟𝑖𝑑_𝑡𝑜_𝑂𝑆𝑡 − 𝑃𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝑏𝑢𝑠5,𝑡
 

+ 𝑃𝑒𝑥𝑐𝑒𝑠𝑠𝑏𝑢𝑠5,𝑡
 + 𝑃𝑡𝑟𝑎𝑛𝑠𝑏𝑢𝑠5,𝑡

  

(5.55) 

∑ 𝑝𝑝𝑖𝑡

 

𝑖∈ 𝐼_𝑏𝑢𝑠𝑘 

= 𝐺𝑟𝑖𝑑_𝑑𝑒𝑚𝑎𝑛𝑑𝑘𝑡 −  𝑃𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝑘𝑡
 + 𝑃𝑒𝑥𝑐𝑒𝑠𝑠𝑘𝑡

 + 𝑃𝑡𝑟𝑎𝑛𝑠𝑘𝑡
       ∀ 𝑘

∈ {𝑘2, 𝑘3, 𝑘4, 𝑘6}, 𝑡 

(5.56) 

∑ 𝑃𝑒𝑥𝑐𝑒𝑠𝑠𝑘𝑡
 

 

𝑘

≤ ∅ 
𝑇𝐸𝐺𝑟𝑖𝑑_𝐷𝑒𝑚𝑎𝑛𝑑𝑡

𝑇𝑜𝑡𝑎𝑙  ∀𝑡 (5.57) 

𝑃𝑡𝑟𝑎𝑛𝑠𝑘𝑡
 = ∑ – 𝛽𝑘𝑘′

 (𝛿𝑘𝑡
 – 𝛿𝑘′𝑡

 )

 

𝑘′∈𝐾

 (5.58) 

−𝑇𝑟𝑎𝑛𝑠𝑘𝑘′
𝑀𝑎𝑥 ≤ −𝛽𝑘𝑘′

 (𝛿𝑘𝑡
 – 𝛿𝑘′𝑡

 ) ≤ 𝑇𝑟𝑎𝑛𝑠𝑘𝑘′
𝑀𝑎𝑥 (5.59) 

𝑀𝑖𝑛_𝐶𝑅 
𝑔𝑢𝑢_𝑔𝑢𝑖𝑡

 ≤ 𝑝𝑝𝑖𝑡 + 𝑠𝑟𝑖𝑡 ≤ 𝑀𝑎𝑥_𝐶𝑅 
𝑔𝑢𝑢_𝑔𝑢𝑖𝑡

  (5.60) 

∑ 𝑠𝑟𝑖𝑡

  

𝑖

≥ 𝑆𝑅𝑡
  (5.61) 
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𝑠𝑟𝑖𝑡 ≤ 𝑆𝑅_𝑙𝑖𝑚𝑖
𝑀𝐴𝑋 (5.62) 

𝑝𝑝𝑖𝑡 ≤ 𝑅𝐴𝑖𝑡
ℎ𝑦𝑑𝑟𝑜&𝑤𝑖𝑛𝑑

    ∀𝑖 ∈ 𝐼 
𝐻𝑦𝑑&𝑊𝑖𝑛𝑑, 𝑡 (5.63) 

𝑧_𝑔𝑢𝑖𝑡
 ≥ 𝑢_𝑔𝑢𝑖𝑡

 – 𝑢_𝑔𝑢𝑖,𝑡−1
  (5.64) 

𝑦_𝑔𝑢𝑖𝑡
 ≥ 𝑢_𝑔𝑢𝑖,𝑡−1

 – 𝑢_𝑔𝑢𝑖𝑡
  (5.65) 

∑ 𝑧_𝑔𝑢𝑖𝑡
 

𝑡

𝜏=𝑡−𝐺𝑈_𝑀𝑖𝑛_𝑢𝑝𝑡𝑖𝑚𝑒𝑖

≤ 𝑢_𝑔𝑢𝑖𝑡
  (5.66) 

∑ 𝑦_𝑔𝑢𝑖𝑡
 

𝑡

𝜏=𝑡−𝐺𝑈_𝑀𝑖𝑛_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑖

≤ 1 − 𝑢_𝑔𝑢𝑖𝑡
  (5.67) 

−𝑃_𝑅𝑎𝑚𝑝𝑖
𝑔𝑢

≤ 𝑝𝑝𝑖𝑡 − 𝑝𝑝𝑖,𝑡−1 ≤ 𝑃_𝑅𝑎𝑚𝑝𝑖
𝑔𝑢

 (5.68) 

5.4 Data and Assumptions 

To investigate the applicability of the proposed optimization model, it is applied to a case 

study based on the oil sands operations in Alberta, which is one of the major contributors 

to the production of primary energy in Canada. The extraction and upgrading of bitumen 

that is sent in significant quantities to refineries in Canada and the United States requires 

substantial amounts of energy making the industry one of the largest end-users of energy. 

The energy consumption data attributed to the industry is readily available in the public 

domain. The energy consumed by the oil sands operations is mainly in the form of power, 

hydrogen and heat, particularly steam for SAGD bitumen extraction. These energy 

commodities are currently produced from natural gas, and obtained as electricity from the 

grid. The continuous development of oil sands extraction and upgrading processes will 
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further increase the energy requirements and the associated GHG emissions resulting 

from fuel consumption. The current average requirements of these energy commodities 

(i.e. power, heat and hydrogen) are quantified to be approximately 1,460 MWh, 163,853 

GJ/h, and 81 t/h, respectively [217]. With the current energy infrastructure, the emissions 

generated from the production of these commodities are on average 72.1 MtCO2. By 

2020 the energy requirements are projected to be approximately 2,718 MWh, 266,990 

GJ/h, and 105 t/h, respectively, which correspond to an emission level of approximately 

91.6 MtCO2 accounting to approximately 12% of Canada’s projected total GHG 

emissions. Even though Canada has withdrawn from the Kyoto Protocol in 2011, there 

are still growing concerns among political parties about the mitigation policies that will 

be adopted in the future [218]. Moreover, tougher environmental regulations are expected 

to take place in the future, which is evident from the continuous increase in the price of 

the carbon tax, which is currently valued at 20 CAD/tCO2 [219, 220]. In a previous work 

[189], the carbon tax was incorporated in the cost objective function. However, it was 

concluded that the currently utilized carbon tax was not sufficient to provide an incentive 

for investment in new low carbon intensive technologies from an economic standpoint. 

Therefore, the total GHG emissions were accounted for in a separate objective function, 

and the effect of their reduction on the total system and grid costs were investigated in 

this work. It is in the interest of oil sands operators to adopt measures that will facilitate 

reductions in emissions associated with their operations. In order to be able to achieve 

lower emission levels, carbon mitigation measures should be incorporated in the energy 

infrastructure of the industry.   
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To achieve reductions in total GHG emissions, several low-carbon intensive energy 

supply sources are considered, which include natural gas combined heat and power, 

nuclear (PBMR and HTGR) for power and heat production, natural gas combined cycle 

for power production, and integrated wind power, nuclear power and water electrolysis 

for power and hydrogen production. It is important to note that different capacity levels 

of electrolyzers were incorporated were the model can select a mix of them in order to 

provide a wider range of operation for electrolytic hydrogen production. Four scenarios 

are investigated in this study, in which each energy supply technology is added to the 

potential energy production mix to investigate its effect on the energy infrastructure of 

the oil sands industry and on the Alberta grid operations. These scenarios are outlined as 

follows: 

 Scenario 1: Wind-electrolysis for electrolytic hydrogen production is 

incorporated. Hydrogen storage is included to store hydrogen produced from 

excess wind power generated. The hydrogen can be retrieved to be sent to 

bitumen upgraders in the Alberta Industrial Heartland or utilized in HENG for 

power production from NGCC units. 

 Scenario 2: In addition to the wind-electrolysis system in scenario, the capacity 

expansion of natural gas combined heat and power generation capacity of the oil 

sands industry is incorporated. Realizing the full potential of this technology can 

allow the achievement of emission reductions of up to 46% from the power 

sector. However, increasing its capacity will affect the planning and scheduling of 

the wind-electrolysis system, which is investigated in this scenario. 
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 Scenario 3: In the first two scenarios equal weights were set on the total GHG 

emissions from the energy infrastructure of the oil sands industry and the grid 

units. In this scenario, a higher weight is set on the total GHG emissions from the 

energy infrastructure of the oil sands industry relative to the grid in the objective 

function. The energy production technologies included are the same as in scenario 

2.  

 Scenario 4: In this scenario the effect of incorporating nuclear energy is 

incorporated. Nuclear energy has significant potential in providing a substantial 

share of the heat requirement for SAGD extraction, which contributes to a 

significant share of the energy requirements and emissions of the oil sands 

industry. Combined heat and power production from nuclear energy can provide 

additional benefits, in which the power co-produced can be sold to the grid or sent 

to electrolyzers to production hydrogen for bitumen upgrading.  

The supply technologies’ techno-economic data, as well as factors required for the 

implementation of these technologies (e.g., fuel prices) are presented in Table 5.1 and 

Table 5.2. It is assumed that the operating cost factors of nuclear facilities include the 

cost of fuel. The data for the grid generation units required as an input for the unit 

commitment submodule are readily available in the public domain. The current 

generation fleet for the year 2017 will be used as a baseline for this study.  

Table 5.1 Techno-economic data for the energy production technologies included in the energy infrastructure of the oil 

sands industry. This includes the maximum capacity, capital and operating costs, and heat rate or yield. NGCC: Natural 

gas combined cycle; COGEN: Natural gas cogeneration; WT: Wind turbine; SMR: Steam methane reformer. 

Technology Capacity Capital F-O&M (%) V-O&M Heat rate/Yield Reference 

Electrolyzer 

E1:0-50; 

E2:50-150; 

E3:150-300; 

E4:300-377; 

7895(𝐸𝑙𝑒𝑐_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)−0.439 1 
0.0019 

CAD/kWh 
53.4 kWh/kg [14, 59] 
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E5:300-485; 

E6:190-760 

Nm3 h-1 

WT-Vestas 1.8 1.8 MW 1,443 CAD/kW 1 
0.011 

CAD/kWh 
- [60, 61] 

Nuclear HTGR 
2,400 

MWth 
1,887K CAD/MWth 1.5 

62 

CAD/MW 
0.11 Mwe/MWth [62, 63] 

NG COGEN 
85 MW 

1600 GJ h-1 
1,491 CAD/kW 4 

0.02 

CAD/kWh 
- [22, 64] 

SMR 6.25 t h-1 11.2M CAD/t h-1 4 76 CAD/t 174,886 MJ/tH2 [65, 66] 

NG boilers 340 GJ h-1 377K CAD/t h-1 4 9.8 CAD/t -  [27, 67] 

Nuclear PBMR 565 MWth 771K CAD/MWth 1.5 
54 

CAD/MW 
0.096 Mwe/MWth [68, 69] 

NGCC 100 MW 567 CAD/kW 5 
0.002 

CAD/kWh 
7.17 MJ/kWh [27, 70] 

H2 storage 0 – 240 kg 471(𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)−0.0896 1 
0.00315 

CAD/kg h-1 
- [71, 72] 

H2 pipeline 
196,250 kg 

h-1 
23,823(𝑃𝑖𝑝𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)−0.4142 1.5 0.7 kWh\kg - [72, 73] 

 

Table 5.2 Important techno-economic parameters used as an input in the optimization model. 

Hydrogen pipeline distance between Pincher  Creek and 

Alberta Industrial Heartland (km) 
480 [14] 

Emission factor for natural gas (tCO2/Nm3 NG)  0.00179 [74, 75] 

Emission factor for coal (tCO2/t coal) 1.702 [75] 

Heating value of process fuel natural gas (MJ/kg) 48 [27, 54] 

Heating value of process fuel coal (MJ/kg)  24 [27, 55] 

Boiler supplementary boiler efficiency 85% [27, 67] 

Gas turbine electricity generation efficiency 30% [22, 27] 

HRSG heat recovery efficiency 50% [22, 27] 

HRSG supplemental firing efficiency 95% [22, 27] 

NGCC thermal efficiency 52% [27, 70] 

Total cost of a nuclear accident (CAD) 1.28e11 [27] 

Probability of occurrence of a nuclear accident (reactor yr-1) 0.000001 [27] 
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As was shown in the superstructure in Figure 5.1, the Alberta grid was divided into six 

regional buses, which was adopted from Gamage [190], and as described by the AESO 

long-term transmission plan [205]. The total generation capacity of each generation 

technology belonging to the grid, the total generation capacity of each bus, and the 

demand fraction of each regional bus from the total power demand is illustrated in the 

superstructure in Figure 5.1. Detailed information for each unit used as an input in the 

optimization model is included in Table B1 in the Appendix. This includes parameters for 

the heat rate, start-up fuel consumption, minimum up-time, minimum down-time, 

ramping rate, and minimum and maximum operating capacity for the generation units 

[204, 205, 190]. The hourly energy demand [228, 229], wind speed data [213], electricity 

price, and natural gas price in Alberta [189, 229] were obtained from public databases 

and are depicted in Figure B1 in the Appendix. It is important to note that the cost of fuel 

of other energy production technologies, such as coal and nuclear were assumed constant. 

However, their variability can affect the outcome of the model. The model is solved using 

the CPLEX solver in the General Algebraic Modeling System (GAMS) [8].  

5.5 Results and Discussions 

In this section the results obtained from applying the proposed optimization model to a 

case study based on the energy system for oils sands operations and its interaction with 

the Alberta Electric System Operator are presented. Several scenarios have been 

generated and investigated in this study including the integration of renewables (i.e. wind 

energy) into the energy infrastructure of oil sands operations and utilizing hydrogen as an 

energy carrier.  The hydrogen produced can be sent via pipelines to bitumen upgraders 

and/or stored in hydrogen tanks to be utilized later in HENG that is injected into NGCC 
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units, from which the power generated can be sold to the grid. Moreover, the role of 

incorporating natural gas combined heat and power and nuclear energy is also 

investigated. These technologies mainly provide the heat requirements of oil sands 

operations, which constitutes a significant portion of their energy requirements. Power is 

produced as a byproduct from these technologies, which will be mainly supplied to the 

Alberta grid or used to produce hydrogen via electrolysis for bitumen upgrading. Finally, 

a scenario is investigated in which the emphasis on the emissions generated from 

providing energy for oil sands operations and grid emissions is varied (i.e. a lower weight 

is set on grid emissions in Eq. 5.5). The consideration of multiple objectives (i.e. system 

cost, grid cost and emissions) in the optimization model generates different results at 

different weight factors, which is also presented. The results presented include the Pareto 

front plots for each investigated scenario, as well as the energy infrastructure proposed by 

the model and the dispatch of energy production among the different technologies.  

5.5.1 Pareto fronts and energy infrastructure planning 

Figure 5.2 shows the Pareto optimality front for the four investigated scenarios, which 

presents the relationship among the three objective functions incorporated in the 

proposed optimization model (i.e. the annual total system cost, total grid cost, and total 

GHG emissions).  A similar trend is exhibited in the four investigated scenarios. It can be 

observed that the lowest attainable emissions can only be achieved at a high system cost 

and only the lower range of the total grid cost. Increasing the grid cost translates to an 

increase in the total operation of its units, which is majorly constituted of fossil-fuel 

based technologies particularly coal generation units. This in return results in a 

significant increase in total emissions. Similarly, the lowest attainable values of the total 
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system cost can only be achieved at the highest emission levels and total grid cost values. 

However, at the highest range of the grid cost, lower emission levels can be achieved. 

This is because of the increase in operation of less carbon intensive generation 

technologies, mainly natural gas cogeneration facilities, as well as natural gas combined 

cycle and biomass facilities. 

However, decreasing the system cost at the high range of grid cost, results in a significant 

increase in total emissions. This is because of the lower availability of new installations 

Figure 5.2 Pareto optimality fronts of the four investigated scenarios. The horizontal x and y-axes show the total system cost and total grid cost, 

respectively, and the vertical z-axis shows the total emissions. (a) Scenario 1: Wind-electrolysis and NGCC; (b) Scenario 2: Wind-electrolysis, 

NGCC, and cogeneration; (c) Scenario 3: Variable weights on the system and grid emissions; (d) Scenario 4: Wind-electrolysis, NGCC, 

cogeneration, and nuclear energy.  
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of wind energy, lower carbon intensive fossil-fuel based technologies (i.e. CHP and 

NGCC), and nuclear facilities. The higher availability of these generation units decreases 

the total load on higher carbon intensive units of the grid (i.e. coal). Similarly, at a certain 

total system cost, increasing the operation of natural gas based and biomass generation 

facilities of the Alberta grid will facilitate achieving lower emissions, but at a higher grid 

cost due to the increase of fuel cost. Even though the Pareto optimality front plots for the 

four investigated scenarios exhibit a similar trend as can be observed from Figure 5.2, 

there are key differences among them to be noted. First, the lowest attainable value of 

total emissions generated is lower for the scenario in which cogeneration facilities are 

incorporated (Figure 5.2-b) and considerably lower when nuclear facilities are included 

(Figure 5.2-d). The incorporated cogeneration and nuclear facilities provides a significant 

portion of the energy requirements of oil sands operations, which displaces the current 

carbon-intensive conventional technologies, particularly natural gas boilers, steam 

methane reforming and power from the grid. In addition, the excess power generated as a 

byproduct is sent to the grid. Moreover, it can be observed that the same emission level 

can be achieved at a lower total system cost and grid cost with the incorporation of more 

low-carbon intensive technologies (i.e. CHP and nuclear).  For the scenario in which a 

higher weight is set on the total emissions from the energy infrastructure of oil sands 

operations (Figure 5.2-c) it can be observed from the vertical axis that a wider range of 

total emissions is attainable. Moreover, lowering the weight on the grid’s total emissions 

increases the availability of its carbon-intensive generation technologies (i.e. coal), which 

constitutes a significant share of its infrastructure. This translates to a significant increase 

in the total operation of the grid’s units, which increases the total emissions generated 
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and the grid cost. Even though the range of total emissions is wider in comparison to the 

other scenarios, a lower total system cost can be achieved for a particular emission level 

due to the higher flexibility of grid operations.  

 

The Pareto optimality front plots shown in Figure 5.2 were created by performing various 

runs of the optimization model for each scenario. Based on the epsilon constraint method 

the grid cost and total emissions objectives were set as constraints, and the system cost 

Figure 5.3 The optimal planning of the energy infrastructure for the investigated scenarios for each run. Primary axis: Number of units from each 

technology selected, which is also indicated by the numbers on top of the bars for clarity. Secondary axis: Normalized value of each objective 

function (i.e. system cost (SC); grid cost (GC); total emissions (TE)). (a) Scenario 1: SC (7.92 – 105 billion CAD), GC (0.005 – 2.04 billion CAD), 

and TE (153.6 – 202.7 MtCO2); (b) Scenario 2: SC (7.66 – 86.4 billion CAD), GC (0.005 – 2.02 billion CAD), and TE (127.1 – 202.7 MtCO2); (c) 

Scenario 3: SC (6.02 – 63.2 billion CAD), GC (0.060 – 2.21 billion CAD), and TE (103.2 – 276.3 MtCO2); (d) Scenario 4: SC (7.66 – 127 billion 

CAD), GC (0.005 – 2.02 billion CAD), and TE (7.16 – 202.5 MtCO2). 
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objective is minimized. First the grid cost is fixed at a certain value, at which the epsilon 

constraint of the emissions objective is varied, and the system cost is minimized. This 

procedure is then repeated for various grid cost values. This is illustrated in Figure 5.3, 

which presents a few selected runs for each scenario. For these selected runs, the 

normalized curves of the system cost, grid cost and total emissions are shown, as well as 

the optimal mix of the energy production technologies incorporated for each scenario.  

From Figure 5.3, it can be observed that the system cost, grid cost, and total emissions 

follow a similar trend for the four investigated scenarios. For a particular grid cost, as the 

epsilon constraint on the emission objective is relaxed, which translates to a higher value 

of the emissions objective, the total system cost decreases. This is shown in the plot for 

each scenario, in which a cyclic behavior is observed for the total emissions and the 

system cost as the grid cost is increased. In other words, for a particular grid cost the 

minimum achievable value of emission and the highest system cost occur at the 

beginning of the cycle, and the highest value of emissions and the least achievable system 

cost occur at the end of the cycle. As the grid cost is increased, two things can be 

observed. First, a lower value of the minimum total emissions can be achieved. Second, 

the system cost required to achieve a certain emissions value decreases in comparison to 

the lower grid cost. This is because relaxing the epsilon constraint on the grid cost allows 

for the operation of more expensive technologies in the grid’s infrastructure (i.e. biomass, 

and natural gas fueled technologies). Further increase in the grid cost translates to an 

increase in the operation of all the power production units that constitute the grid, which 

include carbon-intensive technologies (e.g. coal generation units). This combined with a 

strict constraint on excess power generation (i.e. power generation from all production 
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technologies including new installments should not exceed the total demand) will limit 

the installation of new low-carbon intensive technologies. This as a result increases the 

value of the minimum achievable total emissions, and decreases the total system cost. 

For the first scenario, as the epsilon constraint on the emissions objective is relaxed the 

capacity of installed wind turbines, electrolyzers, hydrogen storage tanks and NGCC 

decrease. Moreover, the ratio of the installed capacity of electrolyzers to wind turbines, 

and hydrogen storage to electrolyzers also decrease. Relaxing the epsilon constraint on 

the emissions objective allows for an increase in the operation of the more carbon 

intensive and less expensive energy production technologies (e.g. hydrogen production 

from SMR and power generation from coal). Moreover, at a higher grid cost, fewer 

installations of new technologies are required to achieve a certain level of emissions. In 

addition, a higher grid cost translates to an increase in the operation of the grid’s existing 

technologies over the year’s span, which reduces the capacity available for new 

installations. For the second scenario, in which natural gas cogeneration facilities are 

incorporated, the penetration of wind power occurs only at points of very low emission 

factors. Moreover, a higher hydrogen storage capacity is required to alleviate the 

intermittency of the installed wind power production capacity. The incorporation of 

cogeneration facilities plays a significant role in reducing the total emissions. This is 

because a major energy requirement for oil sands operations is in the form of SAGD 

steam, and the power that is produced as a byproduct is utilized to satisfy their electricity 

demand and the remaining is sent to the grid. Increasing the cogeneration capacity 

hinders the penetration of wind power in order to avoid excess power generation (i.e. 



178 
 

difference between total electricity generation and total demand) and increases the 

requirement of energy storage (i.e. hydrogen storage).  

Placing different weights on the emissions generated from oil sands operations and that 

from the grid had a significant impact on the optimal energy infrastructure as can be 

observed from the results of the third scenario. Setting a higher weight on reducing 

emissions from oil sands operations in comparison to the grid gears the model towards 

selecting an optimal energy infrastructure that emphasizes reducing emissions from oil 

sands operations. For example, the installed capacity of wind power is significantly lower 

than that obtained for the second scenario as can be observed from the magnitude of the 

vertical axis. Moreover, the ratio of the installed capacity of electrolyzers to wind 

turbines is higher. In addition, the production of electrolytic hydrogen occurs over a 

wider range of emission reduction. This is indicative of less wind power being sent to the 

grid. For the fourth scenario, combined heat and power from nuclear energy plays a 

significant role in achieving very high emissions reductions. This is because they fulfill 

the heat requirements of oil sands operations mainly in the form of steam, and the 

electricity generated from the power cycle is utilized to produce hydrogen via 

electrolyzers for bitumen upgraders or sent to the grid. As a result, they dominate the 

energy infrastructure selected by the optimization model. However, as the epsilon 

constraint on the emissions objective is relaxed the capacity of natural gas cogeneration 

facilities increases to achieve lower system costs. The incorporation of combined heat 

and power technologies (i.e. natural gas based and nuclear) is restricted by the total 

power demand of oil sands operations and the grid. Therefore, small nuclear reactors (i.e. 

PBMR) utilized for the production of SAGD steam only play a significant role in 
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reducing total emissions from oil sands operations, especially with the increase in the 

operation of the grid’s units. 

5.5.2 Cost distribution and CO2 abatement cost 

Figure 5.4 shows the total system cost distribution as well as the CO2 abatement cost for 

the four investigated scenarios. It can be observed that the investment cost accounts for 

the highest share (>60%) of the total system cost for the points at which high emissions 

reductions is achieved. This is expected due to the high penetration of low-carbon 

intensive technologies in the energy infrastructure. As the epsilon constraint on the 

emissions objective is relaxed, the operating and fuel cost becomes more dominant.  

This is due to the increase in operation of the existing conventional technologies (i.e. 

natural gas boilers, SMR, etc.). The large share of operating cost in the fourth scenario is 

attributed to the high operating cost factor of the incorporated nuclear technologies.  

The CO2 abatement cost is calculated as the ratio of the total additional cost to the total 

emissions reduction achieved (i.e. (Total cost – Minimum cost) / (Maximum emissions – 

Total emissions)). It can be observed from Figure 4 that for a particular grid cost value at 

first there is a significant decrease in CO2 abatement cost as the epsilon constraint on the 

emissions objective is relaxed. This provides an indication of the major additional cost 

required to be imposed with the installation of new low carbon intensive technologies in 

order to achieve a reduction of a ton of CO2. It can be observed then that the CO2 

abatement cost reaches a minimum and then increases towards the point of maximum 

value of emissions. This indicates that by imposing a reasonable increase in the total cost 

of operations, considerable reductions in emissions can be achieved from the point of 

maximum emissions. Further reductions in emissions will require considerable 
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investment, which is indicated by the increase in the CO2 abatement cost towards the 

point of minimum achievable emissions. As the grid cost is increased the overall CO2 

abatement cost decreases. This is because an increase in grid cost translates to an increase 

in the operation of existing grid technologies and fewer installations of new low-carbon 

intensive technologies.  

It can be observed from Figure 5.4, that the highest CO2 abatement cost (538 CAD/tCO2) 

is attributed to the first scenario, in which emissions reductions are only achieved by the 

incorporation of wind power and electrolytic hydrogen production. The incorporation of 

natural gas cogeneration units can significantly lower the CO2 mitigation cost as can be 

observed from Figure 5.4-b and Figure 5.4-c. The CO2 abatement cost for the third 

Figure 5.4 Breakdown of the total cost and the CO2 abatement cost for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, and (d) Scenario 4. 



181 
 

scenario (Figure 5.4-c) in which less emphasis was placed on grid emissions, is 

considerably lower compared to the other scenarios. This is because the grid emissions 

are generally higher for this scenario, and therefore, the values of the emissions 

reductions achieved from the point of maximum emissions are also higher. However, this 

does not translate to the lowest emissions achieved as was previously discussed for the 

Pareto optimality front (Figure 5.2). The lowest emissions were achieved in the scenario 

in which nuclear facilities were incorporated. Moreover, to achieve a certain level of 

emissions, the CO2 abatement cost for this scenario is considerably lower than the other 

scenarios. This is because the incorporation of nuclear facilities plays a significant role in 

reducing emissions associated with the production of heat for oil sands operations, 

particularly in the form of SAGD steam, which accounts for the highest share of 

emissions associated with bitumen production and upgrading. Moreover, the power 

produced as a byproduct from the cogeneration nuclear plants can be sent to the grid or 

utilized to produce electrolytic hydrogen for upgrading operations with significant 

reductions in hydrogen transportation costs.  

5.5.3 Energy production dispatch and unit commitment 

Figure 5.5 shows the total power demand and the share of electricity produced by the 

different generation technologies considered. Also, the behavior of the energy production 

infrastructure for the oil sands operations and its interaction with the Alberta grid is 

depicted for the four investigated scenarios. For the first scenario, it can be seen that for a 

high weight on the epsilon constraint of the emissions objective the penetration of wind 

power is substantial and displaces coal generated electricity. At these points, a significant 

amount of power is sent to electrolyzers for the production of hydrogen, a large share of 
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which is sent to bitumen upgraders. The remaining hydrogen is stored and utilized later in 

HENG sent to NGCC for electricity generation. As the epsilon constraint on the 

emissions objective is relaxed electricity generation from coal facilities increases. 

Similarly, hydrogen production from SMR increases, eventually providing all the 

hydrogen requirements of bitumen upgraders. For the first scenario, the production of 

heat and electricity from natural gas cogeneration facilities remains fairly constant for the 

majority of runs. This is expected as the cogeneration facilities mainly follow the thermal 

energy demand of oil sands operators. Their operation decreases and the operation of 

natural gas fired boilers increases as the weight on emissions is reduced and cost of 

operation is emphasized. For the second scenario, the increase in the capacity of 

cogeneration facilities limits the penetration of wind power in comparison to the first 

scenario, which occurs in order to avoid wastage of power generated. Moreover, the ratio 

of power sent to electrolyzers for hydrogen production to the power sent to the grid is 

higher, which further reduces emissions from bitumen upgraders.  For the third scenario, 

one observation that must be noted is that an increase in grid cost results in an overall 

reduction in power utilized from cogeneration facilities. This is because increasing the 

grid cost translates to an increase in the operation of its existing power generation units. 

This combined with a lower weight set on emissions generated from the grid, results in an 

increase in the operation of the existing high carbon intensive technologies, such as coal 

generation units. For the fourth scenario, it can be seen that nuclear facilities provides a 

significant share of the energy requirements of oil sands operations. A major energy 

requirement for oil sands operations is steam utilized for SAGD bitumen extraction. 

Nuclear facilities can provide the heat requirements of SAGD operators, and with the 
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incorporation of a power cycle, electricity can be cogenerated. The electricity generated 

is utilized to satisfy the power requirements of the host facilities, and the excess can be 

sent to the grid or utilized for the production of electrolytic hydrogen. The electrolyzers 

can be located in the vicinity of the bitumen upgraders, which considerably reduces the 

hydrogen cost by eliminating the requirement of hydrogen transportation (e.g. pipelines).  

As was previously discussed and observed from previous results, the fossil-fuel based 

electricity generation units considered, particularly coal, NGCC, and NG cogeneration 

units, provide a significant share of electricity to the grid even at high penetration levels 

of non-conventional technologies. However, this indicates that these units will be often 

re-dispatched in order to manage for example the intermittency of wind power. The 

cyclical behavior of the dispatch of coal, NGCC, and NG cogeneration units is depicted 

in Figure 5.6 for the four investigated scenarios. The operational level of each type of 

technology is shown as a percentage of their maximum capacity rating (MCR). It can be 

observed that for the runs, in which there is a high penetration of wind power, the 

behavior of the conventional power generation units becomes increasingly cyclical. For 

the first scenario, the NGCC units operate cyclically to mitigate the intermittency of wind 

power and the variability of power demand, in order to achieve a lower total operational 

cost. This occurs because the operational and maintenance cost of coal generation units 

increases significantly at increasingly cyclical behavior.  
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Figure 5.5 Power production distribution among the different generation technologies satisfying the total grid demand (Left). Energy 

production dispatch satisfying the total energy (i.e. power, heat, and hydrogen) demand of oil sands operations. (a) Scenario 1, (b) Scenario 2, 

(c) Scenario 3, and (d) Scenario 4. 
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Moreover, the cogeneration units follow the heat demand of their host facilities, and 

therefore, they operate in a narrow range of their MCR. At a specific grid cost, and at a 

high weight of the epsilon constraint on the emissions objective, the NGCC units operate 

over a wide range of their MCR, which becomes increasingly narrower as the epsilon 

constrain on emissions is relaxed due to the reduction in the penetration of wind power. 

Figure 5.6 Box plots representing the unit operations of natural gas cogeneration (COGEN), natural gas combined cycle (NGCC) and coal generation units 

for all the runs for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3 and (d) Scenario 4. The box plot are represented as a percentage of the maximum capacity 

rating (MCR) of the total production capacity of each technology. 
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This is also accompanied with a start in the operation of coal generation units. The 

narrower range of operation of NGCC units also occurs due to a reduction in the 

production of electrolytic hydrogen and its utilization in the HENG feed. This behavior is 

also observed with an increase in grid operational cost, in which there is a reduction in 

the penetration of wind power. 

A similar behavior is observed for the second scenario; however, the only difference is 

due to the considerable increase in the available capacity of cogeneration units, in which 

their operation takes place over a wider range of their MCR. This occurs in order to 

accommodate the variability in power demand as they provide a considerable share of the 

total power demand for this scenario as was previously discussed (Figure 5.5). For the 

third scenario, reducing the weight on the emission objective for the grid in comparison 

to the emission objective of oil sands operators had a significant impact on the operations 

of existing and new conventional units. It can be observed that there is an increasing 

trend in the range of the percentage of MCR at which the coal generation units are 

operational. In addition, the range of percentage of MCR becomes increasingly narrower. 

This indicates that the coal generation units are operating at a high share of their available 

capacity, without being frequently re-dispatched. This is also accompanied with a 

decrease in the range of percentage of MCR of the available cogeneration units. This is 

expected as the coal generation units provided a significant share of the total power 

demand as was previously discussed (Figure 5.5).  
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For the fourth scenario, nuclear units are not shown as it was assumed in the 

mathematical model that their operation cannot be re-dispatched over the 8760 hours of 

the time index. However, the decrease in their capacity that occurred as the epsilon 

constraint on the emissions objective was relaxed had an effect on the operation of the 

cogeneration units. As can be observed, there is an increasing trend in the percentage of 

MCR, and the range of operation is becoming narrower.   

Figure 5.7 shows the hourly dispatch of power generation technologies for the four 

investigated scenarios during winter (10
th

-12
th

) and summer (39
th

-41
st
) weeks. For brevity 

Figure 5.7 Hourly disptach of power generation units during winter (10th-12th) and summer (39th-41st) weeks for run 2 for (a) Scenario 1, (b) Scenario 2, 

(c) Scenario 3, (d) Scenario 4. 
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purposes, these results are shown for a single run of the optimization model for each 

scenario. It can be observed that during the hours of the winter weeks wind power 

represents a firm generation capacity providing a considerable share of the total power 

demand. Wind power in excess to the total demand is sent to electrolyzers to produce 

hydrogen that is utilized in HENG as a fuel for NGCC units during peak hours. The 

incorporation of the production of electrolytic hydrogen to be utilized for bitumen 

upgrading and in HENG contributes as a fossil fuel saver, and its introduction increases 

significantly the share of renewable energy (i.e. wind power) in the overall power 

generation infrastructure. During the hours of the summer weeks NGCC units plays an 

important role in mitigating the variability in demand in addition to the intermittency of 

wind power generation. This is attributed to their flexibility in operation, in which they 

can be re-dispatched without imposing significant additional operating costs in 

comparison to other available power generation units (e.g. coal and NG cogeneration). In 

the second and third scenarios, in which cogeneration units provided a considerable share 

of the total power demand, ramping of these units occurs in order to match, for example, 

the variability in demand associated with off-peak and on-peak hours. This is not 

observed for scenarios in which coal and nuclear generation units provide a firm share of 

the total demand, as they operate continuously at a steady load.  

5.5.4 Wind-electrolysis performance 

The incorporation of the wind-electrolysis system in the energy infrastructure for oil 

sands operations is an important component of the proposed optimization model. This is 

because, as previously discussed, the integration of renewable energy (e.g. wind power) 

is challenged by the geographic accessibility by oil sands operators. Utilizing hydrogen 
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as an energy carrier facilitates increasing the share of renewable energy in the energy 

infrastructure of oil sands operations, which in return will also increase its share in the 

overall  power generation infrastructure in Alberta. The performance of the hydrogen 

production system is depicted in Figures 5.8 and 5.9.  

Figure 5.8 shows the average capacity factor of electrolyzers and hydrogen storage, and 

the hydrogen production cost for the four scenarios. It is important to note that the 

production of electrolytic hydrogen is selected by the optimization model only when the 

weight on the emissions objective function is at its high range. At this range the 

normalized value of total emissions is within (0 – 0.3), which translates to achieving high 

emission reductions. At a specific grid cost it can be observed that a common trend 

among all scenarios is an increase in the capacity factor of electrolyzers accompanied 

with a decrease in the capacity factor of hydrogen storage as the epsilon constraint on the 

emissions objective is relaxed and the total emissions increase. Relaxing the epsilon 

constraint on the emissions objective will set a higher emphasis on decreasing the total 

cost of the energy system. The optimization model will try and minimize the number of 

energy production facilities installed, including electrolyzers. Therefore, as the weight on 

emissions is marginally reduced, instead of installing a high number of electrolyzers and 

wind turbines to utilize more wind power during hours of high wind energy potential, the 

optimization model selects a smaller total capacity of electrolyzers that utilizes a higher 

share of the total generated wind power. This in return increases the average capacity 

factor. However, the total amount of electrolytic hydrogen produced decreases as the 

weight on the emissions objective is reduced. As a result, less hydrogen is produced in 

excess to the total demand, which in return reduces the requirement for hydrogen storage 
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(i.e. a lower storage capacity factor). The installation of a smaller capacity of wind power 

generators and electrolyzers results in a reduction in the cost of electrolytic hydrogen 

production.  

 

Moreover, the ratio of power sold to the grid to the power sent to electrolyzers increases, 

which increases revenue and contributes to the reduction in hydrogen cost. The average 

Figure 5.8 Total electrolytic hydrogen production cost and its distribution (Primary axis). Electrolyzer capacity factor (ECF) and storage 

capacity factor (SCF) (Secondary axis). (a) Scenario 1, (b) Scenario 2, (c) Scenario 3 and (d) Scenario 4. Cost distribution is shown in text in 

percentage of total cost (W = Wind and nuclear power cost; E = Electrolyzer cost; S = Storage cost; T = Transportation cost, GC = Normalized 

grid cost). 
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capacity factor of electrolyzers, hydrogen storage, and the hydrogen production cost 

generally decrease as the grid cost is increased. This is as previously discussed, is due to 

the reduction in the installed capacity of wind turbines and electrolyzers.  

The system components that constitute the total hydrogen production cost include the 

capital and operating costs of wind and nuclear power generating units, electrolyzers, 

storage tanks, and transportation pipeline. The hydrogen production cost was determined 

to be within the ranges of 7.64-17.5 CAD/kg, 9.1-14 CAD/kg, 7.64-16.6 CAD/kg, and 

5.97-15.99 CAD/kg for the first, second, third and fourth scenarios, respectively. As can 

be observed, the cost of wind power constitutes the major share of the total cost of 

hydrogen production, which accounts to approximately >60%. In this analysis the 

minimum hydrogen production cost achieved is affected by the capacity of electrolyzers 

selected. Generally, the production cost of electrolytic hydrogen decreases as the capacity 

factor increases. The trend of the hydrogen production cost curve decreases until a 

minimum value is reached, after which the cost escalates with an increase in electrolytic 

hydrogen production capacity. This is because the grid electricity sales are not high 

enough to compensate for the high capital investment required, and the reduction in the 

electrolyzer farm capacity factor. The capacity factor of farms constituted of larger sized 

electrolyzers generally has a lower magnitude in comparison to farms consisting of 

smaller sized electrolyzers.  This is due to the lower power requirements of farms 

constituted of smaller sized electrolyzers relative to the power available from the wind 

farms.  
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The cost competitiveness of an electrolyzer farm depends on the aggregate capacity 

factor of the wind farms providing the power requirements of the electrolyzer farm. For 

example, the average aggregate capacity factor of the Pincher Creek wind farm amounts 

to approximately 35%. Therefore, in order for the electrolyzer farm to be economically 

viable, it must have a capacity factor that is greater than that of the wind farm supplying 

its power requirements.  

As a result, it can be observed that the lower hydrogen production costs are attributed to 

the scenarios in which the capacity factor is in the range of 35% - 45%. Another factor 

that plays a significant role in determining the capacity factor of the electrolyzer farm is 

Figure 5.9 (a) Average weekly electrolytic hydrogen injected in hydrogen enriched natural gas sent to natural gas generators. (b) Average 

weekly electrolytic hydrogen held in hydrogen storage inventory. (c) Average weekly electrolytic hydrogen sent to bitumen upgraders. The 

results are shown for the four investigated scenarios at different normalized values of total emissions (e). Scenario 1: E (153.6 – 202.7 

MtCO2); Scenario 2: E (127.1 – 202.7 MtCO2); Scenario 3: E (103.2 – 276.3 MtCO2); Scenario 4: E (7.16 – 202.5 MtCO2). 
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the operational range of individual units. The wider the range is (i.e. higher operational 

flexibility), the higher the number of hours during which the electrolyzers can be 

operational, and hence the higher the capacity factor of the electrolyzer farm. The 

hydrogen transportation cost decreases as the capacity of the hydrogen production plant 

increases, which is attributed to the economies of scale that can be achieved. The 

hydrogen transportation cost is considerably dependent on the scale of the electrolytic 

hydrogen production plant, and is unaffected by the amount of electricity sold to the grid. 

As a result, reducing the hydrogen transportation cost favors increasing the capacity of 

the electrolyzer farm, and hence the hydrogen flow rate, which facilitates the 

achievement of higher economies of scale. It is important to note that for the nuclear 

scenario the electrolyzers can operate at capacity factor >90%, and the transportation 

costs can be significantly reduced as the electrolyzers can be installed in the vicinity of 

bitumen upgraders.  

Figure 5.9 shows the behavior of the operations of the electrolytic hydrogen production 

system, including the weekly average injection of hydrogen in HENG, hydrogen 

inventory in storage tanks, and hydrogen sent to bitumen upgraders. The trend of the 

hydrogen injection in HENG increases during the winter months, and then diminishes 

during the summer months, during which the hydrogen storage capacity is mostly 

utilized. A similar trend was observed for all the investigated scenarios, and for all the 

considered runs. It can be observed that for each scenario the curves of electrolytic 

hydrogen injection in HENG, hydrogen inventory, and hydrogen sent to upgraders are 

shifted upwards when the normalized emission level is decreased (i.e. high weight on the 

epsilon constraint of the emissions objective). The availability of hydrogen storage 
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contributes to the increase in the hydrogen injection levels into the natural gas sent to 

NGCC units. This is because the model provides flexibility for the power system, in 

which more of the surplus wind power can be used to produce hydrogen, and the excess 

hydrogen that is not injected is then stored in the available tanks to be retrieved later. For 

the fourth scenario, in which electrolytic hydrogen production from nuclear energy is 

considered, it can be observed that there is a constant supply of hydrogen is sent to 

upgraders. This is because the model selects a constant portion of the power generated 

from nuclear facilities to be sent to the electrolyzers, which considerably reduces the 

reliance on natural gas for SMR during the entire year of operation.  

5.5.5 Computational results 

The developed mathematical models was solved using an Intel Core 2 Duo, 2.33 GHz 

machine running the CPLEX solver accessed via the general algebraic modeling software 

[8]. The corresponding computational statistics are summarized in Table 5.3, including 

number of variables, computation time and optimality gap. The resulting computational 

times and optimality gaps for the simulation runs are satisfactory. However, it can be 

concluded that the model is computationally expensive as a result of using the fine mesh 

approach, and future work can incorporate methods in order to improve its tractability.  

Table 5.3 Summary of computational results including number of equations and variables, computational time, and 

optimality gap. 

Equations 5,334,881 

Continuous variables 4,651,613 

Discrete variables 1,708,209 

CPU time (s) 23,100 – 28,000 

Optimality gap (%) 0.0001 
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5.6 Conclusions 

In this study an energy optimization model is developed for the integrated planning and 

scheduling of the decentralized energy infrastructure of the oil sands industry. 

Conventional, nuclear, and renewable energy production technologies are incorporated in 

the potential energy production mix. The proposed model incorporates power-to-gas for 

the management of the wind-electrolysis system. The model is presented as a multi-

period and multi-objective MILP model that takes into account the total system cost, grid 

cost, and total emissions. Unit commitment constraints are incorporated to manage the 

operations of the existing and new grid power generation units to account for grid 

interactions with the energy infrastructure of the oil sands industry. The model is applied 

to a case study for the year 2020 in order to illustrate its applicability. For the first 

scenario, the planning of the wind-electrolysis and its effect on the operations of existing 

grid units was investigated. The ranges of total system cost, grid cost, and total emissions 

were determined to be 7.92 – 105 billion CAD, 0.005 – 2.04 billion CAD, and 153.6 – 

202.7 MtCO2, respectively.  The cost of wind power production had the highest share of 

the cost of the wind-electrolysis system, and hence the highest share of the cost of 

electrolytic hydrogen production. It was concluded that in order for wind-electrolysis to 

be competitive with conventional SMR a high weight has to be set on the emissions 

objective function. The cost of hydrogen production was determined to be in the range of 

7.64-17.5 CAD/kg H2. The lower range of the hydrogen production cost was attributed to 

a high capacity factor of the electrolyzer farm and a high share of wind power sales to the 

grid.  
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For the second scenario, the ranges of total system cost, grid cost, and total emissions 

were determined to be 7.66 – 86.4 billion CAD, 0.005 – 2.02 billion CAD, and 127.1 – 

202.7 MtCO2, respectively. In comparison to the first scenario, significant emission 

reductions were achieved at lower system costs. This is due to the significant emission 

reductions associated with supporting the heat requirements of oil sands operators, 

particularly SAGD steam, and the power exported to the grid. However, high penetration 

levels of cogeneration units impede the penetration of wind power generation, as well as 

the production of electrolytic hydrogen. This increases the share of electricity sales of 

wind power to the grid, which reduces the electrolytic hydrogen production cost (9.1 – 14 

CAD/kg H2). For the third scenario, a higher weight was set on the emissions generated 

from energy system in comparison to the grid’s emissions. The ranges for the objective 

function were determined to be 6.02 – 63.2 billion CAD, 0.060 – 2.21 billion CAD, and 

103.2 – 276.3 MtCO2 for the of total system cost, grid cost, and total emissions, 

respectively. Lower system costs were obtained for this scenario due to the increased 

commitment of the grid’s existing units, which was accompanied with an increase in the 

total grid’s operating cost and emissions. This facilitated increasing the capacity of the 

wind-electrolysis system for a higher range of weights on the emissions objective 

function. The cost of electrolytic hydrogen production was determined to be in the range 

of 7.64-16.6 CAD/kg H2. 

For the fourth scenario, nuclear energy had a significant impact on achieving further 

emission reductions. The ranges for the objective function were determined to be 7.66 – 

127 billion CAD, 0.005 – 2.02 billion CAD, and 7.16 – 202.5 MtCO2 for the of total 

system cost, grid cost, and total emissions, respectively. The nuclear energy system 



197 
 

covered a major share of the heat requirements of oil sands operators with the additional 

benefits of sending the byproduct power to the grid and electrolyzers that are in vicinity 

of the bitumen upgraders in the Alberta Industrial Heartland, which significantly reduces 

the wind-electrolysis hydrogen transportation cost from Pincher Creek. The hydrogen 

production cost for this scenario was determined to be in the range of 5.97-15.99 CAD/kg 

H2. Moreover, in comparison to the other scenarios, the capacity factor of the electrolyzer 

farm supplied by nuclear power was >90% due to the constant available supply of power.   

Based on the results obtained, it can be observed that the proposed model provides 

potential benefits as a tool to study future production scenarios for oil sands operations 

for the integrated planning and scheduling of its energy infrastructure. The strength of the 

model is that it provides an indication of the potential detailed interactions with the 

Alberta grid with the high penetration of new power production capacity (e.g. renewable, 

natural gas cogeneration, nuclear, NGCC, etc.), particularly in the presence of 

intermittent renewable energy. This provides the user of the model with a realistic 

overview of the impact of possible planning decisions on the operations of the energy 

infrastructure of the system and the local grid. However, this leads to large scale models, 

which are computationally expensive even with current computing resources. This is 

because the approach utilized is converting the different time scales in this multiscale 

model to the shortest planning period, which is hourly in this study. A potentially 

promising approach that has been receiving increased attention in the literature and will 

be utilized in future work is the use of a data clustering algorithm to reduce 

computational time.  

This will allow the planning and scheduling of multiple operational years, possibly over a 
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time span of 15-25 years. This will allow the investigation of time dependent parameters, 

such as construction lead time, variability in carbon mitigation policies and fuel prices, 

etc. It will also allow for the investigation of situations in which uncertain input data are 

utilized that will require the incorporation of numerous scenarios to address the 

uncertainty using stochastic optimization techniques and perform sensitivity analyses. 

Another important aspect that will be addressed in future is the possibility of eliminating 

some of the objective functions (e.g. monetized emissions within total cost) to facilitate 

the addition of new objectives (e.g. system reliability). 
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Chapter 6 

Design and operation of a sulfur supply chain for sour gas 

processing and bitumen upgrading operations
4
 

6.1 Introduction 

The rapid development of Canada’s economy is accompanied by a sharp increase in 

energy demand. Sour gas and heavy oil deposits contribute to a significant proportion of 

the new petroleum production in Canada. This effect is related to the tightening of sweet 

crude supply, which has forced producers to resort to more sour petroleum despite the 

added cost of sulfur removal [237]. In Canada, by-product elemental sulfur is produced 

when sour gas is processed, and when bitumen is upgraded to synthetic crude oil. Sulfur 

is removed from gas and refined petroleum products to reduce sulfur dioxide emissions 

that occur when these products are used as fuel. In the last few decades, environmental 

concerns have resulted in increasingly stringent sulfur emission constraints. These 

constraints have stimulated the active management of industrial sulfur and its hazardous 

compounds in petroleum refineries and gas-processing plants. Significant volumes of 

sulfur are being involuntarily produced as a by-product of oil sands upgrading, oil 

refining and natural gas processing, which is utilized then for further industrial use, 

stockpiled beside gas plants and refineries, or sold for export.  The main commercial use 

of the by-product is to produce sulfuric acid for use in fertilizer production and other 

industrial applications [238]. It is mostly shipped outside the province of Alberta, 

primarily to United States, Asia Pacific, and North Africa [239].The export demand for 

                                                           
4
 A variant of this chapter is published: M. Elsholkami and A. Elkamel. Energy & Fuels, 2014, 28, 7252 – 

7267. 
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sulfur is expected to steadily increase [240].  

With increased activity in the heavy oil sector production resulting in more produced 

sulfur, combined with an increase in demand for sulfur exports worldwide, there is a 

shortage of sulfur forming and handling capacity in Alberta. The sulfur is produced 

during oil and gas production and refining in Alberta in a molten form, manufactured into 

a dry product for handling, loaded to rail car for transport to Vancouver, stockpiled and 

eventually loaded on ships for further delivery to export markets. However, it is often 

looked upon as a waste by-product that usually ends up in storage facilities until its 

market price is high enough to justify its handling and distribution costs.  In addition, the 

volatile nature of the sulfur market further complicates the effective usage of sulfur 

management options. It is expected that sulfur supply will considerably exceed its 

demand, which will result in piling it in the limited storage inventories of gas processing 

and petroleum refining plants and could possibly lead to shutdowns [241]. This will 

significantly impede the flow of petroleum and natural gas supply chains. There are 

considerably high cost-savings opportunities along the sulfur supply chain. The projected 

increase in sulfur production, an unpredictable future sulfur market, and the uncertain 

economic viability of transporting the by-product to market, are the driving needs for an 

effective sulfur management framework.  

The government of Alberta is working to create a framework of sulfur management to 

provide improved environmental, social and economic sustainability [242]. Alberta 

Sulfur Research Ltd. is a non-profit research organization supported by petroleum-based 

industries and specialized sulfur production and handling businesses from Canada, USA, 

Europe and The Middle and Far East. Much of the research focus is on developing and 
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improving sulfur recovery processes in order to increase energy and environmental 

sustainability. As well as sulfur handling [243, 244, 245, 246], storage and transportation 

issues [247, 248, 249, 250], improvement of formed product quality and properties [251, 

252, 253], and development of new uses and disposal methods for excess sulfur [254, 

255, 256]. These will help in identifying the negative impacts associated with the 

handling of sulfur to reduce the potential for adverse effects, and developing measures to 

reduce the requirement of long-term handling and storage.  

With the focus on the previously mentioned areas of research a lot of improvements are 

manifesting in the sulfur industry. However, many issues still exist within its supply 

chain causing significant costs to be incurred. For example, shipments costs could 

eliminate most of the potential profit that could be earned from selling sulfur due to 

difficulties of accessing the markets. Suncor and Syncrude plants located in Ft. 

McMurray are remotely accessible causing them to keep the sulfur in inventory or incur 

significant losses by sending it to the market due to the limited storage capacities. On the 

other hand, Shell Canada has several more strategic locations providing it with an 

accessibility advantage to the sulfur markets, which reduces its logistical costs and 

increases its profit gains [237].  

A study has been conducted by Jula and Zschocke [237] that implements discrete event 

simulation to resolve some of the rail transportation issues faced by Sultran Ltd. in 

transporting elemental sulfur to the Pacific Coast Terminals (PCT) for export. Their 

simulation model helps to define operational and tactical decisions that address the 

challenges faced in the complex push-pull distribution system to provide opportunities 

for cost savings.  
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Several research works utilizing mathematical modeling techniques have been done to 

address issues associated with the operations of the Canadian Oil Sands industry in 

Alberta. Ordorica et al. [257] and Betancourt et al. [258] have developed MILP models to 

assist in determining strategic decisions regarding the optimal energy infrastructure used 

in the operation of the Oil Sands industry. In their work they account for changes in the 

energy infrastructure for future scenarios while considering greenhouse gas emission 

constraints and mitigation strategies. Their work is useful in assisting policy makers and 

oil producers in determining optimal strategic decisions for the continuing developments 

in the Oil Sands industry. However, the major concern of the associated unmanaged 

growing supply of sulfur could have a significant impeding impact on these 

developments.  

With the expected increase of sulfur production, it will be required to increase sulfur 

forming, handling and storage capacities.  Also with the increased quantities to be 

transported it will be required to reduce logistical costs. This problem could be 

approached using strategic supply chain network design to optimize investments in 

capital assets and reduce operational costs. Typical strategic supply chain design 

problems include capacity sizing, technology selection and facility allocation [259].  

From the literature strategic network design has been widely implemented to improve the 

operations of various supply chains. AlMansoori and Shah [260] developed a single-

period MILP to design hydrogen supply chains by integrating production, storage and 

distribution components. They determined the optimal allocation of production and 

storage facilities and their capacities, as well as the optimal configuration of 

transportation links among the nodes of the supply chain. Paquet et al. [261] incorporated 
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technology selection decisions in manufacturing network design. Their single-period 

MILP model determines the optimal structure for a manufacturing network, defining the 

required facilities and their technologies and capacities. The trade-off associated with the 

selection among the different technologies incorporated differences in fixed and variable 

costs, which manifested as differences in capacities and the associated economies of 

scale. The comparison was also based on the footprint area required to implement the 

different technologies.  

Tsakis and Papageorgiou [262] developed an optimization model to determine the 

optimal production allocation and distribution network configuration subject to 

operational constraints, including quality, production, and supply and demand 

constraints. The single-period MILP model’s objective function constituted of 

minimizing production, distribution center and transportation infrastructure costs, as well 

as material handling and operating costs. In their model the locations of production sites, 

distribution centers and customers are predefined, and the capacities and the connectivity 

of the nodes in the supply chain comprise the optimization problem.  

You and Grossmann [263] develop an optimization model that determines strategic 

supply chain decisions, such as locations of distribution centers and customers assigned 

to them, shipment capacities among production plants, distribution centers and 

customers, as well as inventory and safety storage in the supply chain nodes. The 

formulated mixed-integer nonlinear program addresses the problem of designing multi-

echelon supply chain networks of specialty chemicals and their associated inventory 

systems while considering demand uncertainty. Rodriguez et al. [264] extend this work to 

include more decisions on the strategic level, such as capacity expansion and elimination 
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of distribution centers allowing the redesigning of operating supply chains. They apply 

the proposed approach to a case study in an industrial context. Melo et al. [265] develop 

an MILP model to simultaneously consider the allocation of new facilities and relocation 

of existing facilities. Their problem also comprises capacity expansion and capacity 

reduction decisions.  

Yan et al. [266] developed an MILP model that aims at selecting the locations of 

production plants and distribution centers, which are subject to capacity restrictions. 

Their model determines the optimal flow configuration of materials among the nodes of 

the supply chain with the objective of minimizing total cost, which is comprised of 

capital and operating costs. Sabri and Beamon [267] develop a multi-objective 

optimization model that simultaneously considers strategic and operational decisions 

while considering production and demand uncertainty. Tsou [268] generated an 

optimization model to minimize the total cost of the Chinese imported liquefied 

petroleum gas distribution system. The only variable was binary deciding the allocation 

of distribution centers. The objective was to minimize the total distance among the nodes 

of the supply chain and hence the transportation costs, as well as the cost of establishing 

and operating the distribution centers.  

Up to now, there have been no studies that implement optimization techniques in 

mathematical modeling to describe the design and operation of sulfur supply chains. It 

could serve as a useful decision support system in the early stages of developing sulfur 

supply chains. The model will be used to estimate the total investments required to 

establish and operate sulfur forming and storage facilities and distribution networks. It 

will provide an indication about the optimal configuration of the sulfur supply chain, 
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which will assist governmental or industrial policy makers in making strategic decisions. 

These decisions include the number, location, type and capacity of sulfur forming plants 

and storage facilities, required transportation links among nodes in the network, and 

production rates of forming technologies and flowrates of sulfur.  These will be presented 

as continuous and integer variables in the mathematical model geared towards 

minimizing capital and operating costs, which is described in the following sections. 

6.2 Problem description 

 

The problem addressed in this paper is based on the superstructure of sulfur supply chain 

shown in Figure 6.1. Sulfur is produced in sulfur recovery units as a by-product of oil 

sands upgrading, oil refining and natural gas processing. To avoid congestions in 

operations of these entities, the sulfur must be properly managed out of inventory. The 

Figure 6.1 Sulfur supply chain superstructure 
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further processing of sulfur often requires it in liquid form, which makes it more 

convenient for transportation and storage. However, to maintain the high temperature 

requirements poses significant issues associated with economics and safety. Therefore, 

handling sulfur in liquid form can be suitable in the existence of certain factors, which are 

short transportation distances and storage cycles, and availability of adequate storage and 

transportation infrastructure [269].  

In many situations it is required for sulfur to be transported in large volumes and for great 

distances, which created the need to convert sulfur into solid products that are easier and 

more economical to handle. Currently, sulfur is mainly formed into three types of 

products, which are granules, prills and pastille [239].  There are several patented 

technologies that produce each form in various capacity levels. Still in some cases 

transportation might be impossible due to the inexistence of sufficient infrastructure, or 

simply uneconomical due to low sulfur prices and long transportation distances. This 

imposes a significant challenge on many sulfur producers and causes them in some cases 

to resort to the third option of blocking sulfur. But these typically require significant 

space availability, which might not be feasible [237]. Sulfur is often retailed to offshore 

markets, which would require additional storage facilities outside the vicinity of sulfur 

producers and forming facilities. These export terminals will be regarded as the 

distribution centers in the supply chain.  

A very simplified assumption that is incorporated is that the sulfur supply chain operates 

at steady state during which supply and demand are deterministic. However, these can 

considerably vary with time. The supply chain design problem is formulated as a single-

period MILP model. For the investigated supply chain certain information will be 
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assumed given. This includes production rates of all sulfur recovery units, demand of all 

customers and the forms of sulfur they accept, and their locations. Also, given are the 

potential locations of forming facilities and distribution centers, and their space 

availability. Finally, available or feasible transportation links between nodes in the supply 

chain and their maximum and minimum capacity. Using the given information, the model 

will determine strategic decision variables including the number, location, type and 

capacity of sulfur forming plants and storage facilities, the production rates of all forming 

technologies and the average inventory of storage facilities, and the type and flowrates of 

transportation links between nodes in the supply chain.  

6.3 Model components 

6.3.1 Forming Facilities 

Currently, three types of technologies have been considered for new installation of sulfur 

solid forming facilities. These are Enersul’s GX
TM

 granulation process, Sandvik 

Rotoform® process, and the wet prilling process. The first two processes are the most 

popular and they produce products that meet the premium requirements set, for example, 

by the Sulfur Development Institute of Canada. During handling premium sulfur 

produces minimal amounts of fugitive dust compared to other forms. There are various 

environmental and safety concerns associated with sulfur fugitive dust [270]. Wet prilled 

sulfur does not meet premium requirements, and most of the older wet prill process 

designs are unavailable. However, several new installations of Devco and Enersul’s wet 

prilling technologies took place recently, particularly in the United States after its entry to 

the sulfur export market. In the case studies to be investigated in this paper the only 

technologies that will be considered are the GX
TM

 granulation and the Sandvik 
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Rotoform® processes. Multiple units of each process can be installed to increase 

production capacity. The Enersul GX process is capable of processing large quantities of 

sulfur while occupying a smaller footprint area. The Rotoform® is most suitable for low 

capacity applications or in situations where space is not limited. In addition to cost, these 

are the factors that are going to be considered while selecting between the two 

technologies [239]. 

6.3.2 Storage Facilities 

Liquid sulfur storage is important because it provides a buffer between the sulfur 

recovery units and any downstream systems, such as forming plants, liquid loading, 

blocking facilities, etc. This will help avoid interruptions in the operations of any of these 

units. Liquid sulfur is typically stored in insulated and heated carbon steel tanks, which 

can be heated using different methods. As long as the temperature of sulfur is maintained 

within the desirable temperature range (125
o
C – 145

o
C) [271], the selection among these 

typically depends on the unique requirements of each location. For example, two of the 

most common types of heating are steam jacketing and heat tracing. The former is more 

effective, but has a higher construction cost, while the later could be preferred in 

situations where steam is not readily available. Typically liquid storage is more expensive 

on a CAPEX per tonne basis and it is kept to a minimal, with sulfur remaining in 

inventory for a matter of days [249].  

The storage of formed sulfur is required to account for inconsistencies in shipping rates 

from forming facilities and export terminals. They are also required to protect the quality 

of the formed products and to protect surrounding environmentally sensitive regions from 

fugitive dust. For large storage capacities indoor (e.g. linear sheds or geodesic domes) or 
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open stockpiles are typically used as they provide economies of scale. The former allows 

for lower fugitive dust emissions. For smaller volume applications, such as at forming 

facilities, hybrid tanks or silos are the preferred choice of storage [239].  

As previously mentioned some sulfur producers might opt for long-term storage of sulfur, 

which is currently done in the form of blocks, instead of retailing it in domestic and 

international markets until more attractive prices prevail in the market. There are three 

main reasons for choosing to block sulfur, which are geographical isolation making 

transportation impossible or uneconomical due to low sulfur prices, emergency situations 

due to failure of forming and handling equipment avoiding congestions in the operation 

of the sulfur recovery unit, and they absorb inventory during uncertain market condition 

[272]. In this study the first reason mentioned for blocking is going to be considered in 

the formulation of the mathematical model. The last reason could be investigated in 

future work considering multiperiod stochastic optimization.  

6.3.3 Transportation Modes  

Transportation of liquid sulfur is achieved by using heated and insulated pipelines, tanker 

trucks, rail cars, or ships. Formed sulfur as well can be transported using trucks, rail, or 

ships. The cost of establishing and operating transportation links among nodes in the 

supply chain will have a significant effect on potential selected locations of forming 

facilities and distribution centers [239]. Whether or not a transportation link is established 

will involve a tradeoff between its cost and the cost of establishing a new forming facility 

or distribution center. All transportation links will involve a specific delivery distance, 

and maximum and minimum allowable carriage capacity. 
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6.4 Model Formulation 

In this section the mathematical model that is proposed to solve the outlined problem is 

presented. The objective function and constraints of the formulated MILP model are 

described in detail. 

6.4.1 Constraints 

Sulfur recovery unit constraints 

A total mass balance on each sulfur recovery unit is written to determine the amount of 

liquid sulfur flowing to each of the remaining nodes in the supply chain, which are the 

forming facilities, distribution centers, and consumers. Liquid sulfur can be transported 

directly to consumers if they are in the vicinity of the recovery units, for example, a 

sulfuric acid plant in a refinery.  Therefore, the total amount of sulfur produced from a 

sulfur recovery unit i (RSri) must be equal to the total amount of sulfur transported to each 

of the remaining nodes e by transportation mode t (Qiert). 

𝑅𝑆𝑟𝑖 = ∑ ∑ 𝑄𝑖𝑒𝑟𝑡

𝑡∈𝑇𝑟𝑒∈𝐸\𝐼

                             ∀ 𝑖, 𝑟 (6.1) 

Forming facility constraints 

The total amount of liquid sulfur transported from all recovery units i to forming facility j 

(Qijrt) using transportation modes t must be equal to the amount of sulfur formed into 

blocks for long-term storage (Bjb), and the amount of sulfur converted to the other solid 

forms that are suitable for further transportation using the forming technologies 

associated with each solid form (Fjfn):   
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∑ ∑ 𝑄𝑖𝑗𝑟𝑡

𝑡∈𝑇𝑟𝑖

= ∑ ∑ 𝑔𝑟𝑓𝑛𝐹𝑗𝑓𝑛

𝑛∈𝑁𝑓𝑓

+ 𝐵𝑗𝑏            ∀ 𝑗, 𝑟, 𝑓, 𝑏 (6.2) 

The total amount of solid sulfur produced from any forming facility (Fjfn) must equal to 

the total amount of sulfur transported to distribution centers and consumers using 

transportation modes t (Qjdft + Qjcft): 

∑ 𝐹𝑗𝑓𝑛

𝑛∈𝑁𝑓

= ∑ ∑ 𝑄𝑗𝑒𝑓𝑡

𝑡∈𝑇𝑓𝑒∈𝐷∪𝐶

                        ∀ 𝑗, 𝑓 (6.3) 

The amount of sulfur of a particular solid form f that can be produced using forming 

technology n (Fgfn) falls within upper and lower capacity limits. For each technology 

there are several capacity levels q, and for each capacity level there are upper and lower 

bounds of production, which are 𝑄𝐹𝑛𝑞
𝑚𝑎𝑥 and 𝑄𝐹𝑛𝑞

𝑚𝑖𝑛, respectively. The total amount of 

sulfur of a particular form that will be produced in a newly established forming facility is 

constrained by the number of units (NFgnq) installed of the associated forming 

technologies and their capacity levels: 

∑ 𝑄𝐹𝑛𝑞
𝑚𝑖𝑛

𝑞∈𝑄𝑛

𝑁𝐹𝑔𝑛𝑞 ≤ 𝐹𝑔𝑓𝑛 ≤ ∑ 𝑄𝐹𝑛𝑞
𝑚𝑎𝑥

𝑞∈𝑄𝑛

𝑁𝐹𝑔𝑛𝑞      ∀ 𝑔, 𝑓, 𝑛 ∈ 𝑁𝑓 (6.4) 

𝐹𝑗𝑓𝑛
𝑚𝑎𝑥 and 𝐹𝑗𝑓𝑛

𝑚𝑖𝑛 also represent the upper and lower production limits in any forming 

facility. In addition to providing higher economies of scale, it is typically preferred that a 

single type of forming technology to be installed in any forming plant, because it will 

provide higher simplicity for operation. Therefore, the selection of technologies, which is 

presented by the variable Xjn, is limited to one for each of the newly established forming 
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facilities by the following constraints. Xjn also represents whether or not an existing 

forming facility is operated. 

𝐹𝑗𝑓𝑛
𝑚𝑖𝑛𝑋𝑗𝑛 ≤ 𝐹𝑗𝑓𝑛 ≤ 𝐹𝑗𝑓𝑛

𝑚𝑎𝑥𝑋𝑗𝑛                     ∀ 𝑗, 𝑓, 𝑛 ∈ 𝑁𝑓 (6.5) 

∑ 𝑋𝑔𝑛

𝑛∈𝑁

≤ 1                                            ∀ 𝑔 (6.6) 

Storage constraints 

As previously mentioned there are three types of storage facilities. The existence of a 

forming facility requires the presence of liquid sulfur storage to create a buffer for the 

forming units and the sulfur blocking facilities. The produced solid forms are required to 

be stored between consecutive shipments from the forming facilities. They are also 

required to hold the sulfur during periods of disruptions in supply or demand, which 

might also require the existence of blocking storage facilities. There are several storage 

technologies available for each of the liquid, formed and blocked sulfur. Therefore, the 

amount of liquid sulfur transported to the forming facilities (Qijrt), the amounts of 

transportable-formed sulfur produced (Fjfn), and the amounts sent for long-term storage in 

blocking facilities (Bjb) will be stored in their associated storage facilities. Storage 

facilities located outside the vicinity of the forming facilities are regarded as distribution 

centers. These typically require higher capacities and longer periods of storage. Similar to 

the storage facilities at the forming facilities, the amount of sulfur of each form 

transported to the distribution center from all sulfur recovery units (Qidrt) and forming 

facilities (Qjdft) must be stored in their associated storage facilities (STes) for a certain 

period of time (es): 
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∑ (1/𝜆𝑒𝑠)𝑆𝑇𝑒𝑠

𝑠𝜖𝑆𝑅

= ∑ ∑ ∑ 𝑄𝑖𝑒𝑟𝑡

𝑡∈𝑇𝑟𝑟𝑖

             ∀ 𝑒 ∈ (𝐽 ∪ 𝐷) (6.7) 

∑ (1/𝜆𝑗𝑠)𝑆𝑇𝑗𝑠

𝑠𝜖𝑆𝐹

= ∑ ∑ 𝐹𝑗𝑓𝑛

𝑛∈𝑁𝑓𝑓

            ∀  𝑗 (6.8) 

∑ (1/𝜆𝑗𝑠)𝑆𝑇𝑗𝑠

𝑠𝜖𝑆𝐵

= 𝐵𝑗𝑏                              ∀  𝑗 (6.9) 

∑ (1/𝜆𝑑𝑠)𝑆𝑇𝑑𝑠

𝑠𝜖𝑆𝐹

= ∑ ∑ ∑ 𝑄𝑗𝑑𝑓𝑡

𝑡∈𝑇𝑓𝑓𝑗

   ∀ 𝑑 (6.10) 

For each type of storage technology there is an upper and lower limit on the amount of 

sulfur that can be stored, which are 𝑄𝑆𝑇𝑠𝑞
𝑚𝑎𝑥 and 𝑄𝑆𝑇𝑠𝑞

𝑚𝑖𝑛, respectively. These will decide 

the number of units to be installed installed from each technology (NSesq) to handle the 

storage requirements (STes) in the newly established facilities g or u:  

∑ 𝑄𝑆𝑇𝑠𝑞
𝑚𝑖𝑛

𝑞∈𝑄𝑠

𝑁𝑆𝑒𝑠𝑞 ≤ 𝑆𝑇𝑒𝑠 ≤ ∑ 𝑄𝑆𝑇𝑠𝑞
𝑚𝑎𝑥

𝑞∈𝑄𝑠

𝑁𝑆𝑒𝑠𝑞      ∀ 𝑒 ∈ (𝐺 ∪ 𝑈), 𝑠 (6.11) 

𝑆𝑇𝑒𝑠
𝑚𝑎𝑥 and 𝑆𝑇𝑒𝑠

𝑚𝑖𝑛 represent the upper and lower storage limits in any storage facility. Zes 

represents whether or not a storage technology is selected to be established in a new 

facility, or whether or not it is operated in an existing one. 

𝑆𝑇𝑒𝑠
𝑚𝑖𝑛𝑍𝑒𝑠 ≤ 𝑆𝑇𝑒𝑠 ≤ 𝑆𝑇𝑒𝑠

𝑚𝑎𝑥𝑍𝑒𝑠                     ∀ 𝑒 ∈ (𝐽 ∪ 𝐷), 𝑠 (6.12) 

Moreover, all forms of product p transported to a particular distribution center d from 

sulfur recovery units i and forming facilities j using transportation modes t (Qidrt + Qjdft) 

must equal to all forms of products p flowing from that distribution center to customers 

(Qdcpt): 
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∑ ∑ 𝑄𝑒𝑑𝑝𝑡

𝑡∈𝑇𝑝𝑒∈𝐼∪𝐽

= ∑ ∑ 𝑄𝑑𝑐𝑝𝑡

𝑡∈𝑇𝑝𝑐

         ∀ 𝑑, 𝑝 (6.13) 

Transportation constraints 

To require the existence of a transportation link between two nodes in the supply chain 

imposes a lower limit (𝑄𝑇𝑡
𝑚𝑖𝑛) for the quantity of sulfur flowing between them (Qee’pt). 

An upper limit (𝑄𝑇𝑡
𝑚𝑎𝑥) represents the maximum capacity that could be handled by a 

particular transportation mode: 

𝑄𝑇𝑡
𝑚𝑖𝑛𝑌𝑒𝑒′𝑡 ≤ ∑ 𝑄𝑒𝑒′𝑝𝑡

𝑝

≤ 𝑄𝑇𝑡
𝑚𝑎𝑥𝑌𝑒𝑒′𝑡       ∀ 𝑒, 𝑒′ ∈ 𝐸\{𝑒}, 𝑡 (6.14) 

Space constraints 

The total area available in newly established forming facilities g and distribution centers 

u must be able to accommodate the required sulfur forming and storage facilities. The 

selection of establishing a potential forming or storage facility in a certain location is 

presented by the binary variables Vg and Vu, respectively. 

∑ ∑ 𝛼𝑛𝑛𝑞

𝑞∈𝑄𝑛

𝑁𝐹𝑔𝑛𝑞

𝑛

+ ∑ ∑ 𝛼𝑠𝑠𝑞

𝑞∈𝑄𝑠

𝑁𝑆𝑔𝑠𝑞

𝑠

≤ 𝐴𝑔
𝑇𝑉𝑔    ∀ 𝑔 (6.15) 

∑ ∑ 𝛼𝑠𝑠𝑞

𝑞∈𝑄𝑠

𝑁𝑆𝑢𝑠𝑞

𝑠

≤ 𝐴𝑢
𝑇𝑉𝑢    ∀ 𝑢 (6.16) 

Demand constraints 

There is a set of consumers that utilize sulfur as a raw material for producing other 

commodities. Consumers can only accept sulfur in certain forms according to their 

preference, which is represented by the parameter (cp). The total flow of all acceptable 
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forms of sulfur by all transportation modes (Qecpt) must be greater than or equal to the 

total demand (𝐷𝑐
𝑇): 

∑ ∑ ∑ 𝜌𝑐𝑝

𝑡∈𝑇𝑝

𝑄𝑒𝑐𝑝𝑡

𝑝𝑒∈𝐸\𝐶

≥  𝐷𝑐
𝑇         ∀ 𝑐 (6.17) 

Non-negativity constraints 

Positive values must be assigned to all continuous and integer variables: 

𝑅𝑆𝑟𝑖  ≥ 0    ∀ 𝑟, 𝑖 (6.18) 

𝐹𝑗𝑓𝑛 ≥ 0    ∀ 𝑗, 𝑓, 𝑛 (6.19) 

𝐵𝑗𝑏 ≥ 0    ∀  𝑗, 𝑏 (6.20) 

𝑄𝑒𝑒′𝑝𝑡 ≥ 0    ∀ 𝑒, 𝑒′, 𝑝, 𝑡 ∈ 𝑇𝑝 (6.21) 

𝑆𝑇𝑒𝑠 ≥ 0    ∀ 𝑒 ∈ (𝐽 ∪ 𝐷), 𝑠 (6.22) 

𝑁𝐹𝑔𝑛𝑞 ≥ 0    ∀ 𝑔, 𝑛, 𝑞 ∈  𝑄𝑛 (6.23) 

𝑁𝑆𝑒𝑠𝑞 ≥ 0    ∀ 𝑒 ∈ (𝐺 ∪ 𝑈), 𝑠, 𝑞 ∈  𝑄𝑠 (6.24) 

𝑋𝑗𝑛 ≥ 0    ∀ 𝑒 ∈ 𝑗, 𝑛 (6.25) 

𝑌𝑒𝑒′𝑡 ≥ 0    ∀ 𝑒, 𝑒′ ∈ 𝐸/{𝑒}, 𝑡 ∈ 𝑇𝑝 (6.26) 

6.4.2 Objective function 

The objective of the proposed model is to minimize the total annual cost of the sulfur 

supply chain. Capital and operating costs of the forming, storage and transportation 

facilities constitute the total annual costs. It is assumed that capital costs are amortized 
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over the lifetime of the project over an assumed period of 20 years with a compounded 

interest rate of 8%.  

Facility capital and operating cost 

The facility investment cost is calculated by multiplying the number of forming and 

storage technologies (𝑁𝐹𝑔𝑛𝑞 and 𝑁𝑆𝑒𝑠𝑞) established by their associated capital costs. The 

capital cost coefficients depend on the type of technologies, capacity levels, and 

candidate locations: 

𝐹𝐼𝐶 = ∑ ∑ ∑ 𝐹𝐹𝐶𝑔𝑛𝑞𝑁𝐹𝑔𝑛𝑞

𝑞∈𝑄𝑛𝑛𝑔

+ ∑ (𝐿𝐶𝑒𝑉𝑒 + ∑ ∑ 𝐹𝑆𝐶𝑒𝑠𝑞𝑁𝑆𝑒𝑠𝑞

𝑞∈𝑄𝑠𝑠

)

𝑒∈(𝐺∪𝑈)

+ ∑ ∑ 𝐹𝐶𝐹𝑗𝑛𝑋𝑗𝑛

𝑛𝑗

+ ∑ ∑ 𝐹𝐶𝑆𝑒𝑠𝑍𝑒𝑠

𝑠𝑒∈𝐽∪𝐷

 

(6.27) 

Facility operating costs include processing and maintenance costs of forming and storage 

facilities. They are obtained by multiplying unit production and storage costs by the 

corresponding amounts handled: 

𝐹𝑂𝐶 = ∑ ∑ ∑ 𝑂𝐹𝐶𝑗𝑛𝐹𝑗𝑓𝑛

𝑛∈𝑁𝑓𝑓𝑗

+ ∑ ∑ ∑ 𝑂𝑆𝐶𝑒𝑠𝑆𝑇𝑒𝑠

𝑞∈𝑄𝑠𝑠𝑒∈𝐽∪𝐷

 (6.28) 

 

Transportation capital and operating cost 

The cost of transportation is calculated as the summation of fixed and variable costs over 

all possible connections in the supply chain by all the feasible transportation modes. The 

components of fixed costs for rail, trucks or ships include land, construction, cargo 

handling equipment, rolling stock, and ships. Operating cost components for these modes 
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include maintenance, labor, and fuel. For heated transportation modes suitable for liquid 

there is an added cost for energy.  

𝑇𝑇𝐶 = ∑ ∑ ∑ (𝐹𝐼𝑇𝑒𝑒′𝑡𝑌𝑒𝑒′𝑡 + ∑(𝐹𝑇𝐶𝑒𝑒′𝑝𝑡 + 𝑉𝑇𝐶𝑒𝑒′𝑝𝑡𝐷𝑒𝑒′)𝑄𝑒𝑒′𝑝𝑡

𝑝

)

𝑡∈𝑇𝑝𝑒′∈𝐸\ {𝑒}𝑒

 (6.29) 

 

The objective function aiming at minimizing the total cost can now be written as follows: 

𝑚𝑖𝑛(𝐹𝐼𝐶 + 𝐹𝑂𝐶 + 𝑇𝑇𝐶) (6.30) 

6.5 Illustrative case study 

Alberta Industrial Heartland (AIH) was chosen to illustrate the capability of the proposed 

model for several reasons. A considerable amount of sulfur is being produced in AIH, for 

which it is forecasted to reach 4 million tonnes per year by 2020, and will continue to 

increase over the following decades [273]. Most of the sulfur produced in AIH is from 

the oil sands upgrading industry, which is expected to significantly increase in activity in 

the following decades. This imposes the requirement of establishing and operating sulfur 

forming, handling and shipping facilities, for which there are several projects proposed 

[274]. Data regarding the detailed design of these projects was easily accessible from 

different authorities [275, 276]. This provides an adequate reference to which the results 

of the model could be compared. Figure 6.2 shows the map of AIH, and the locations of 

sulfur producers, consumers, and potential forming facilities.  

To illustrate the versatility of the proposed model, a number of applicable production and 

storage technologies, and transportation modes were included in its components, which 

are listed in Table 6.1. They were used to outline all the possible structure of the sulfur 
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supply chain, from which the optimal configuration was determined. All the forming and 

storage technologies constituted the established forming facilities. Only formed sulfur 

storage technologies were considered for distribution centers, and the transportation links 

were used to establish the interconnections among the nodes of the supply chain.  

 

Figure 6.2 Map of Alberta's Industrial Heartland 

 

Table 6.1 Forming, storage and distribution technologies included in the examined case study 

Forming technology  Sandvik Rotoform pastillation 

 Enersul GX granulation 

Storage technology  Liquid sulfur tanks 

 Formed sulfur sheds and silos 

 Emergency blocking facilities 

Transportation mode  Liquid sulfur tanker trucks, pipelines, tank cars, 

and tank ships 

 Formed sulfur trucks, rail cars, and ships 

 

6.5.1 Sulfur supply and demand 

Currently the total amount of sulfur produced from AIH is 1.8 million tonnes per year 

[277, 272]. The sulfur suppliers considered for this case study include Petro Canada 
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Sturgeon Upgrader, North West Upgrader, Synenco Upgrader, Petro Gas, Total 

Upgrader, Shell Canada Scotford Upgraders 1 and 2, BA Energy, and North American 

Oil Sands Upgrader, which are shown in Figure 6.2 as suppliers 1 – 9, respectively. The 

only consumer located in the heartland is Agrium Inc. (consumer 1), which is a fertilizer 

plant that sources sulfur for phosphate production. The remaining consumers are overseas 

including Australia, Brazil, China, New Zealand, South Africa, and USA, and their 

demands are listed in Table 6.2 as consumers 2 to 7, respectively. It is assumed in the 

case study that the consumers can accept all the sulfur forms taken into consideration in 

the model (i.e. cp = 1). Table 6.2 also lists all sulfur producers along with their 

production levels [273, 274, 275]. This is assumed to represent the current business as 

usual scenario. Other scenarios are considered to investigate the effect of varying supply 

and demand levels on the model’s results. The assumed increases in supply and demand 

levels were based on the future sulfur market outlook [273, 277-283].  

Table 6.2 Supply and demand of sulfur in thousand tonnes per year for the business as usual scenario 

Supplier Supply, kT yr
1

  Consumer 
Demand, kT 

yr
1

 

1 50 1 250 

2 100 2 200 

3 100 3 100 

4 300 4 500 

5 300 5 150 

6 300 6 100 

7 300 7 500 

8 100   

9 250   
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6.5.2 Forming facilities 

Two types of the previously discussed forming technologies, which are currently the 

most commonly used for new establishments, were considered for this case study. For the 

granulation process, Enersul Inc. offers three capacity ranges, which are GXm1
TM

 (1,100 

T day
1

), GXm2
TM

 (650 T day
1

), and GXm3
TM

 (350 T day
1

). The standard Sandvik 

Rotoform® has a capacity level of 5 T day
1

, and another available capacity level is the 

Rotoform® HS (10 T day
1

). These operating limits are defined as the maximum 

operating capacity levels
3
. The capacity levels of all the considered forming technologies 

are summarized in Table 6.2. The lower and upper limits for sulfur forming (i.e. 𝐹𝑗𝑓𝑛
𝑚𝑖𝑛 and 

𝐹𝑗𝑓𝑛
𝑚𝑎𝑥) were defined as the minimum and maximum flow rates of fully loaded unit of the 

considered transportation modes, respectively. The capital and operating costs of these 

technologies are listed in Table 6.4.  The yield of all the forming technologies was 

assumed to be 1. The capital costs were estimated based on the investment costs of 

commercial sulfur forming plants implementing the technologies considered in this case 

study
 

[273, 277-283]. The operating costs were estimated based on the utility 

requirements of these technologies
 
[285, 286, 287] and the rates of industrial utilities and 

preliminary operating costs estimates given in Turton et al. [288]. 

6.5.3 Storage facilities 

One of the major differences among the storage facilities is the amount of time the sulfur 

is typically held in stock, which was accounted for in the mathematical model by the 

parameter es. The time period of which liquid sulfur is held in storage is minimized due 

to the associated high-energy requirement needed to keep the sulfur in molten state, 

which is typically 1-2 days [249]. During normal operation of the supply chain, formed 
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sulfur is held in storage at the forming facilities for a period of 10-20 days [276, 289]. 

The storage periods for silos and sheds were assumed to be two and three weeks, 

respectively. Holding periods that are longer than normal operation were assumed in the 

model in order to account for disruptions occurring due to operational bottlenecks. 

Blocking facilities typically used in emergency situations or to keep the sulfur off the 

market due to lower market prices are assumed to have a maximum holding period of two 

years.  It is assumed that the storage facilities operate 365 days per year. Some of the 

most important economies of scale that exist within chemical supply chains are 

associated with storage facilities [290]. For example, a tank’s variable cost could 

decrease by more than 50% if the capacity of the tank increases from 500 m
3
 to 2000 m

3
 

[291]. For new establishments, it is preferred to install larger tanks rather than multiple 

smaller ones. Three capacity levels were assumed for each storage facility (i.e. small (S), 

medium (M), and large (L)). The intermediate storage capacities were assumed to be 

equal to that of currently existing or new sulfur forming facilities, and their capital and 

operating costs are listed in Table 4. The other capacity levels were determined by 

increasing and decreasing the intermediate capacity by a factor of two (Table 3). The 

sixth tenth rule [288] was then used to scale the associated capital and operating costs, 

which is a rule of thumb that can be used to provide satisfactory results when an 

approximate cost (±20%) is required. It is represented as the known cost of equipment of 

facility multiplied by a size factor (i.e. ratio of capacities) that is raised to the power of 

1/6. 
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Table 6.3 Capacities of the considered forming and storage technologies 

Technology Minimum capacity  Maximum capacity 

Forming unit (kT yr
-1

)   

   Rotoform  M: 30, L: 60 M: 60, L: 110 

   GX  S: 30, M: 130, L: 240 S: 130, M: 240, L: 500 

Storage unit (kT)   

   Tank S: 0.1, M: 0.4, L: 0.8 S: 0.4, M: 0.75, L: 1.5 

   Shed S: 0.1, M: 2.6, L: 5.2 S: 9, M: 20, L: 40 

   Silo S: 0.1, M: 0.3, L: 2.1 S: 0.3, M: 2.1, L: 4.4 

   Block S: 500, M: 1300, L: 2600 S: 1300, M: 2600, L: 5200 

L = Large, M = Medium, S = Small 

Table 6.4 Capital and unit cost of sulfur forming and storage technologies 

Technology Capital cost (M$)  Units cost (k$ T
1

) 

Forming unit   

   Rotoform  1.6 0.15 

   GX  2.3 0.21 

Storage unit   

   Tank 0.50 1.5 

   Shed 0.76 0.8 

   Silo 0.6 0.7 

   Block 0.20 0.05 

 

6.5.4 Transportation modes 

The maximum allowable limit for a liquid sulfur transportation mode is based on the 

assumption that it cannot transport more than the maximum production rate of sulfur 

suppliers, and the maximum capacity of a formed sulfur transportation mode cannot 

exceed the production rate of a large forming facility, which in this case could be 

estimated as the total consumers’ demand. The minimum amount between nodes in the 

supply chain is assumed to be equal to a fully loaded transportation unit. The capital and 
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unit costs for each transportation mode are listed in Table 5 [281, 289, 292, 293, 294, 

295]. The cost associated with establishing a transportation link between two locations, 

for example, rail line extension cost [296, 297] or tariff cost can be accounted for in the 

model as the parameter multiplied by the binary variable representing its existence in the 

objective function. The distances among the nodes of the supply chain were estimated 

using google maps (Table 6.6). Since most of the consumers considered in the case study 

are overseas, the sulfur will be distributed among them through export terminals, which 

are the only distribution centers considered in this case study. There are two export 

terminals that handle elemental sulfur in Canada and they are Pacific Coast Terminals 

and Vancouver Wharves, which have storage capacities of 220 KT and 175 KT, 

respectively. Their average annual capital and unit costs are $12K and $36.5/T, 

respectively [289].  

Table 6.5 Capital and unit cost for sulfur transportation modes 

Transportation mode Capital cost ($ T
-1

)  Units cost ($ kg
1

 hr
1

 km
1

) 

Liquid sulfur   

   Truck  100 0.83 

   Rail  280 0.1 

   Pipe 180 0.4 

   Ship 800 0.21 

Formed sulfur   

   Truck 20 0.34 

   Rail 80 0.025 

   Ship 680 0.01 
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Table 6.6 Delivery distances among nodes in the supply chain in km 

Node L1 L2 L3 L4 PCT VW C1 C2 C3 C4 C5 C6 C7 

S1 10 20 12 3 255 335 3 16,473 24,428 22,925 22,280 10,550 9520 

S2 11 23 15 4 252 342 4 17,118 24,570 23,570 26,796 10,250 9,520 

S3 12 19 13 5 248 349 5 17,764 24,711 24,215 27,441 12,750 9,520 

S4 10 15 12 15 245 356 18 18,409 24,853 24,860 28,086 20,344 9,500 

S5 8 14 9 14 241 363 17 19,054 24,995 25,505 28,731 20,989 9,500 

S6 6 12 7 14 238 370 15 19,699 25,137 26,151 29,376 21,635 9,500 

S7 7 13 8 15 234 377 14 20,344 25,279 26,796 17,118 22,280 9,500 

S8 3 8 6 16 231 384 9 20,989 25,420 27,441 17,764 26,796 9,500 

S9 5 10 7 14 227 391 10 21,635 25,562 28,086 18,409 27,441 9,500 

L1 - - - - 280 320 24 22,280 25,704 28,731 10,550 28,086 9,466 

L2 - - - - 250 300 28 22,925 25,846 29,376 10,250 28,731 9,461 

L3 - - - - 260 310 5 23,570 22,280 30,022 12,750 29,376 9,456 

L4 - - - - 265 340 6 24,215 22,925 20,344 20,344 26,796 9,451 

PCT 280 250 260 265 - - 415 11,700 9,300 9,000 11,500 20,000 1,040 

VW 320 300 310 340 - - 490 12,950 10,550 10,250 12,750 21,250 1,800 

S = Supplier, L = Forming facility location, C = Consumer 

 

6.5.5 Facility location 

The geographic area of AIH is managed by four municipalities, including Strathcona 

County, Lamont County, Sturgeon County, and the City of Fort Saskatchewan. These are 

responsible for the planning and development of environmentally sustainable industries 

in AIH. The land available is zoned to restrict the activities for which it is implemented 

for ranging from agricultural to heavy industrial use. This is achieved to preserve 

environmentally sensitive areas. All the potential locations for forming and blocking 

facilities identified on the map of AIH in Figure 6.2 are suitable for heavy industrial use. 

Locations one and two identified are those for the sulfur forming facilities projects 
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currently proposed for establishment in AIH [275, 276]. The other two locations 

identified are currently unoccupied and were included to provide more options for the 

investigated case study. Small-to-medium scale forming or blocking facilities can be 

established downstream of a sulfur recovery unit instead of large ones that server 

multiple sulfur producers. These were also included as options in the model, in which it 

was assumed that for each sulfur supplier a facility could be established within its 

proximity. The total area available for each potential location for a forming facility is 

listed in Table 6.7 along with the total area range required for the several forming and 

storage technologies considered for the case study. The cost of land was accounted for in 

the mathematical formulation, which was assumed to be $7K/acre [298].  

Table 6.7 Area range for the considered forming and storage technologies, and potential locations 

Facility / Location Area range (m
2
)  

Forming unit  

   Enersul GX 700 – 2,500 

   Sandvik rotoform 700 – 1,400 

Storage unit  

   Tank 400 - 700 

   Shed 12,000 – 48,000 

   Silo 400 - 700 

   Block 50,000 – 300,000 

Location  

      1 60,000 

      2 75,000 

      3 300,000 

      4 500,000 

   Supplier 10,000 
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6.6 Results and discussion 

The previously outlined model was used to develop the structure of the sulfur supply 

chain of AIH. As previously mentioned, AIH’s sulfur production is expected to 

significantly increase over the next few decades due to the considerable growth and 

development in the oil sands industry. The sulfur supply chain can operate in a steady 

state condition, in which the supply is equal to the demand. In this case an increase in the 

sulfur production levels will require increasing the sulfur forming capacity if it will be 

delivered to consumers in solid form. On the other hand, the supply of sulfur might 

exceed the demand, which will require the surplus to be stored in emergency blocking 

facilities. To account for these effects the case study was analyzed using a deterministic 

approach for different scenarios in supply and demand levels. 

6.6.1 Steady-state operation 

In years 2020 and 2030, the supply of sulfur from Alberta’s Industrial Heartland is 

expected to increase by 100% and 200%, respectively, from the current production 

levels
63

. It is important to investigate the effect of these increases on the design of the 

sulfur supply chain. An assumption that was made is that there is market demand 

available for all the sulfur supply. Accordingly, the demand input to the model was 

increased by an amount equivalent to the supply increase. Three cases were investigated, 

which are the base case (i.e. current demand and supply), and the cases of 100% and 

200% supply and demand increases. Figure 6.3 shows the optimal supply chain 

configurations for the three investigated scenarios.  
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It shows all the interconnections among the nodes of the supply chain, as well as the 

corresponding stream flow rates. Table 6.7 lists the selected technologies and capacities 

Figure 6.3 (a) Optimal supply chain configuration for the base case scenario and stream flowrates in kT yr
1

, 

(b) Optimal supply chain configurations for the 100% and 200% supply and demand increase scenarios and 

their corresponding stream flowrates (Bold – 100%, Italic – 200%) in kT yr
1

. 
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for the forming facilities, distribution centers and transportation modes for the three 

investigated scenarios. The stream results for the three investigated scenarios along with 

the corresponding transportation modes among the nodes of the supply chain are 

summarized in Table 6.8. Figure 6.3(a) shows the optimal configuration for the base case 

scenario. The output of suppliers 1 – 3 is sufficient to fulfill the demand of consumer 1 

that is in their vicinity. The output of the remaining sulfur suppliers is sent to forming 

facilities to be later shipped to markets overseas (Consumers 2 – 7). Transportation of 

sulfur to markets in the United States (Consumer 7) can be achieved via rail. Figure 

6.3(b) shows the optimal configuration for possible future scenarios. The stream results 

for the 100% increase in supply scenario are shown in bold font, and those for the 200% 

increase in supply scenario are shown in italic.  

The establishment of sulfur forming facilities in the vicinity of each sulfur producer was 

not economically attractive as can be observed from the results (Figure 6.3). Having one 

or two forming facilities to serve several sulfur producers facilitates achieving economies 

of scale. These economies of scale manifest in the forming process, the storage of liquid 

and formed sulfur, and the distribution of sulfur to consumers (Table 6.8). Among all the 

potential locations for the sulfur forming facility, location two was always selected in all 

the investigated scenarios. Even though it is the farthest from all sulfur producers, the 

availability of access to both rail links at this location facilitates easier distribution of 

sulfur through both available export terminals, which are PCT and VW. Having access to 

both rail lines eliminates the cost of establishing rail line extensions, which is 

considerably high. 
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Increasing the sulfur forming capacity will be required if the production of sulfur 

increases from the sulfur recovery units and market demand for formed sulfur is 

available. As previously mentioned location two remains the preferred choice to allocate 

the sulfur forming units. However, the limited area required the establishment of forming 

facilities elsewhere as the production capacity increased. Location one is in very close 

proximity to most of the major sulfur producers in the industrial heartland and to the 

major rail lines compared to the remaining two locations, which justified its selection as 

it reduces the transportation cost of both liquid and formed sulfur. Even though location 

one was not justified to be the optimal choice for the base case scenario, the distribution 

of the forming capacity between the two selected forming facilities shows that it is more 

preferred due to its proximity to sulfur producers. 

As the required capacity became large enough the Rotoform technology was no longer 

feasible. Even though they have higher capital and operating costs, the model optimal 

result was to select Enersul GX granulators due to limited space availability, which 

process considerably higher amounts of sulfur per footprint area. This is more 

economical than establishing many Rotoform units at several locations in AIH. The 

storage of formed sulfur in silos is preferable as their lower operating cost and footprint 

area justify their higher capital cost compared to other storage options. PCT is a closer 

distribution point to most of the concerned demand destinations and supply nodes, which 

makes it the preferred export terminal as can be observed from the results. The capacities 

of the available distribution centers are greater than the total demand for all the 

investigated scenarios, which eliminated the requirement of establishing new ones.  
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Table 6.8 Summary of forming facilities optimal results obtained for the base case, and 100% and 200% 

increase in supply and demand scenarios 

  Base case 100% increase 200% increase 

Location 2 2 1 2 1 

Technology   (MT yr
1

) 15RHS: 1.55 15RHS: 1.63 14RHS: 1.47 5GXM1: 2.15 5GXM1: 2.5 

Storage (KT) 
6L tanks: 8.5 

1M shed: 20 

8L silos: 34.5 

6L tanks: 8.9 

1M shed: 15 

9L silos: 39.8 

6L tanks: 8.1 

10L silos: 44.2 

8L tanks: 11.8 

1M shed: 20 

12L silos: 52.5 

10L tanks: 13.8 

1L shed: 40 

12L silos: 51 
Transportation (MT yr

1
) 

LT: 1.80 

SR: 1.55 

SS: 1.55 

LT: 3.6 

SR: 3.1 

SS: 3.1 

LT: 5.40 

SR: 4.65 

SS: 4.65 Distribution center (KT) PCT: 52.5 PCT: 105 PCT: 157.5 

L = Large, M = Medium, S = Small, LT = Liquid tanker truck, SR = Solid rail, SS = Solid ship 

It can be observed from the results (Table 6.9) that tanker trucks are the only distribution 

mode selected for the transportation of liquid sulfur. This implies that tanker trucks are 

the preferred choice of distribution for short travel distances and small-to-moderate 

quantities of liquid sulfur transported from the several locations of recovery units. Liquid 

sulfur was delivered only to customers in the vicinity of the industrial heartland. It was 

economically more attractive to establish forming facilities and transport the sulfur in 

solid form than distributing it in liquid form. The establishment of liquid sulfur handling 

equipment and transportation infrastructure is considerably more expensive. The 

preferred mode of transportation for formed sulfur is by rail cars, the large quantities 

from the one or two locations of forming facilities transported over the long distance to 

export terminals justifies its selection. Transportation of formed sulfur by ship was 

required for overseas customers.  

Table 6.9 Summary of stream results for steady state operation of the supply chain 

   
Flowrate, Qee'pt (KT yr

1
) 

From To Mode Base case 100% 200% 

S1 C1 TL 50 100 150 

S2 C1 TL 100 200 300 
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S3 C1 TL 100 200 300 

S4 F1 TL 0 0 0 

S4 F2 TL 300 600 900 

S5 F1 TL 0 274 682 

S5 F2 TL 300 326 218 

S6 F1 TL 0 600 900 

S6 F2 TL 300 0 0 

S7 F1 TL 0 600 900 

S7 F2 TL 300 0 0 

S8 F2 TL 100 200 300 

S9 F2 TL 250 500 750 

F1 PCT SR 0 1473 2482 

F2 PCT SR 1050 627 668 

F2 C7 SR 500 1000 1500 

PCT C2 SS 200 400 600 

PCT C3 SS 100 200 300 

PCT C4 SS 500 1000 1500 

PCT C5 SS 150 300 450 

PCT C6 SS 100 200 300 

S = Supplier, C = Consumer, F = Forming facility at location j, TL = Tanker truck, SR = Solid rail, SS = 

Solid ship 

The total cost breakdown summarized in Table 6.10 shows that a significant portion of 

the total annual cost is contributed to by transportation. This is expected due to the 

significant distances over which the large quantities of sulfur must be transported. The 

total annual cost increased with increasing capacity. Moreover, a considerable increase in 

operating cost occurred due to the switch to the granulation process when the capacity 

was increased from 100% to 200%. Its selection was more economical than establishing 

several rotoform pastillation facilities over the industrial heartland and also due to the 

limited space availability in the selected locations.  
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Table 6.10 Total cost breakdown for the base case, and 100% and 200% increase in supply and demand 

scenarios 

  Base case 100% increase 200% increase 

Capital cost ($) 
  

 
 

 

   Forming and storage 1.04 x 10
7 

1.53 x 10
8 

7.42 x 10
7 

   Transportation 1.80 x 10
8
 3.60 x 10

8
 5.39 x 10

8
 

   Total capital cost 1.90 x 10
8
 5.08 x 10

8
 6.13 x 10

8
 

Operating cost ($ yr
1

) 
   

   Forming and storage 2.38 x 10
9
 5.17 x 10

8
 1.00 x 10

9
 

   Transportation 9.36 x 10
7
 1.90 x 10

8
 2.77 x 10

8
 

   Total operating cost 3.32 x 10
8
 7.20 x 10

8
 1.28 x 10

9
 

Total annual cost ($ yr
1

) 5.22 x 10
8
 1.23 x 10

9
 1.89 x 10

9
 

 

A sulfur forming and shipping facility project in AIH has been approved for construction. 

It has a capital cost of $30 M, which will be funded and completed by the HAZCO 

division of CCS Income Trust
39

. The proposed project includes forming and storage 

facilities, but it does not include emergency sulfur blocks. The forming technology to be 

implemented is Sandvik Rotoform, and the formed sulfur will be stored on engineered 

pads. The forming and liquid and solid storage capacities are 1.1 MT yr
1

, 3 KT, and 45 

KT, respectively. Molten sulfur will be received by tanker trucks or pipelines and shipped 

by rail to export terminals. This facility will be established in one of the locations 

proposed in the presented case study, which is the optimal location suggested by the 

results obtained for the base case scenario (location 2). The results obtained about the 

forming facility for the base case scenario are comparable to those of this proposed 

project, which shows the adequacy of the proposed model. Another project is the Kinder 

Morgan sulfur forming and handling facility
40

, which is deferred, and its establishment 

depends on the timing of construction of new upgraders in the industrial heartland. The 

facility is proposed to have forming units, liquid storage tanks and solid storage silos. It is 
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proposed to be established at location 1 shown in the presented case study. Assuming that 

it will be established when forming capacity expansions will be required, this information 

is in agreement with the results obtained for the case in which the supply and demand 

were increased by 100 and 200%. 

6.6.2 Sulfur surplus accumulation 

An important element of the sulfur supply chain is the emergency storage facilities, 

which are commonly available in the form of sulfur blocks. The surplus of sulfur supply 

could be due to increased operations or the establishment of gas plants, refineries and 

upgraders. It could also be due to a decrease in the sulfur market’s demand.  In order to 

investigate the effect of this, the supply was increased while keeping the demand 

constant. On the other hand, decreasing the demand for formed sulfur relative to a 

constant production level will eliminate the establishment of required sulfur forming 

facilities, which will contradict with the results obtained for the steady-state operation of 

the supply chain. The optimal configuration of the supply chain is shown in Figure 6.4. 

Summary of the stream results for the three investigated scenarios along with the 

corresponding transportation modes are listed in Table 6.10. The results regarding the 

additional capacity required for blocking the surplus sulfur for three investigated 

scenarios are summarized in Table 6.11. 
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Figure 6.4 (a) Optimal supply chain configuration for the low supply accumulation scenario 

and stream flow rates in kT yr
1

, (b) Optimal supply chain configuration for the medium and 

high supply accumulation scenarios and stream flow rates (Bold – medium, Italic – high) in kT 

yr
1

. 
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The results obtained for the establishment of forming facilities were the same as those 

obtained for the base case scenario. The surplus of sulfur was stored into blocks. Three 

scenarios were investigated, which are associated with low, medium and high surplus of 

sulfur. These cases of supply increase over demand are quantified as ranges between 0 – 

30%, 30% – 60%, 60% – 100%, respectively.  Location 1 is selected when there is up to a 

30% surplus of sulfur supply. However, higher amounts will require larger block storage 

capacities, and location 3 would then represent the optimal selection due to the space 

limitation (Table 6.11). The increase in liquid storage and transportation capacities are 

required for the operation of the new blocking facilities. 

 

Table 6.11 Summary of blocking facilities optimal results obtained for low, medium and high sulfur 

surplus scenarios 

Sulfur surplus Low Medium High 

Location 1 3 3 

Blocks   (MT) 1S: 1.1 1M: 1.8 2M: 3.6 

Liquid Storage (KT) 2L: 3 4L: 5 7L: 9.9 

Transportation (MT yr
1

) LT: 0.54 LT: 0.9 LT: 1.8 

L = Large, M = Medium, S = Small, LT = Liquid tanker truck 

Similar to the results obtained for steady state operation, tanker trucks remain the 

preferred mode of transportation for liquid sulfur (Table 6.12). It can also be observed 

from the stream results that all the sulfur produced by suppliers 1 and 6 are sent to 

blocking facilities, which represents an oversimplified assumption of the preference of 

sulfur suppliers regarding whether or not to send the sulfur to markets. It is a cheaper 

option to block sulfur than to send them to forming facilities; however it will not entail 

any revenues. As the surplus of sulfur produced increases, more of the output of suppliers 
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5 and 7 is also sent to blocking facilities. Therefore, for each supplier it might be required 

to constrain the share of sulfur that is sent to blocking facilities.  

Table 6.12 Summary of stream results for sulfur surplus accumulation scenarios  

   
Flowrate, Qee'pt (KT yr

1
) 

From To Mode 30% 50% 100% 

S1 B1 TL 65 0 0 

S1 B3 TL 0 75 100 

S2 C1 TL 120 100 50 

S2 B1 TL 10 0 0 

S2 B3 TL 0 50 150 

S3 C1 TL 130 150 200 

S4 F2 TL 390 450 600 

S5 B1 TL 75 0 0 

S5 F2 TL 315 125 0 

S5 B3 TL 0 325 600 

S6 B1 TL 390 0 0 

S6 B3 TL 0 450 600 

S7 F2 TL 390 450 250 

S7 B3 TL 0 0 350 

S8 F2 TL 130 150 200 

S9 F2 TL 325 375 500 

F2 PCT RS 1050 1050 1050 

F2 C7 RS 500 500 500 

PCT C2 SS 200 200 200 

PCT C3 SS 100 100 100 

PCT C4 SS 500 500 500 

PCT C5 SS 150 150 150 

PCT C6 SS 100 100 100 

S = Supplier, C = Consumer, F = Forming facility at location j, B = Blocking facility at location j, TL = 

Tanker truck, SR = Solid rail, SS = Solid ship 
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Taking into account future increases in sulfur supply it is plausible to choose location 3 

for the establishment of blocking facilities and location 1 for future forming capacity 

expansion. It is important to emphasize that blocking facilities represent a solution to an 

emergency situation occurring due to the volatility of the sulfur market that still has to be 

managed to reach the final market. 

As can be observed from the cost breakdown in Table 6.13, the annual cost of managing 

the increased sulfur supply through blocking is considerably lower than forming it and 

distributing it to the final market. However, additional costs will eventually be incurred, 

as it will be required for blocked sulfur to be remelted, formed and sold to final 

consumers. Therefore, this temporary solution cannot be relied upon on the long-term as 

they also require a significant amount of space to establish them.  

Table 6.13 Total cost breakdown for low, medium and high sulfur surplus scenarios 

Sulfur surplus Low Medium High 

Capital cost ($)  
 

 
 

 

   Forming and storage 9.79 x 10
7 

1.04 x 10
8 

1.17 x 10
8 

   Transportation 1.90 x 10
8
 1.98 x 10

8
 2.16 x 10

8
 

   Total capital cost 2.88 x 10
8
 3.02 x 10

8
 3.33 x 10

8
 

Operating cost ($ yr
1

)  
  

   Forming and storage 3.37 x 10
8
 4.31 x 10

8
 4.20 x 10

8
 

   Transportation 9.47 x 10
7
 9.57 x 10

7
 9.78 x 10

7
 

   Total operating cost 4.32 x 10
8
 5.26 x 10

8
 5.17 x 10

8
 

Total annual cost ($ yr
1

) 7.20 x 10
8
 8.28 x 10

8
 8.50 x 10

8
 

 

The proposed MILP model was solved by using the CPLEX solver version 11.0 accessed 

in the General Algebraic Modelling System
64

. The model statistics for the six 

investigated scenarios associated with steady state operation (1- base case, 2- 100% 
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increase and 3- 200% increase) and sulfur surplus accumulation (4- low, 5- medium and 

6- high) are summarized in Table 6.14. As can be observed from the results in the table 

the required computational time are short and the relative optimality gaps are acceptable 

for all the investigated scenarios. 

Table 6.14 Model computational results for all the investigated scenarios 

  1 2 3 4 5 6 

Constraints 5,126 5,126 5,126 5,143 5,143 5,143 

Continuous variables 3,646 3,646 3,646 3,648 3,648 3,648 

Integer variables 1,711 1,711 1,711 1,714 1,714 1,714 

Optimality gap 0 0 0 0 0 0 

CPU time (s) 0.049 0.047 0.048 0.053 0.053 0.053 

 

6.7 Conclusions 

The increasing development of the heavy oil industries as well as the reliance on 

increasingly sour crudes and gases accompanied with increasingly stringent 

environmental regulations impose the requirement of developing an effective 

management framework for future sulfur supply chains, which are expected to develop 

and change along with the projected increase in sulfur production in the future. Much of 

the previous research was directed towards developing and improving the efficiency and 

environmental sustainability of individual components of the supply chain, such as 

recovery, forming, storage and distribution. However, it is important to shed light on 

integrating these components within a single framework as it could provide significant 

potential economic benefits.  

Therefore, the aim of this work is to develop a strategic decision support tool based on an 

optimization framework to facilitate the design and operation of sulfur supply chains. The 

formulated single-period MILP model is aimed at minimizing the total annual network 
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cost, and it is subject to material balance, capacity, space, and demand constraints.  The 

decisions incorporated in the model include the allocation of forming and storage 

facilities, the selection of forming, storage and transportation technologies and their 

capacities, and the determination of flow rates among the nodes of the supply chain 

network. The applicability of the model was illustrated through the AIH case study. Due 

to the volatility of the sulfur market and the projected increase in sulfur production, it was 

important to investigate the effect of the supply and demand variability on the design of 

the supply chain. In one scenario steady state operation was assumed, and in another 

scenario temporary sulfur surplus accumulation was accounted for by incorporating long-

term storage facilities (i.e. sulfur blocks).  

The results obtained indicate that the optimal configuration of the sulfur supply chain in 

AIH might include medium-to-large forming facilities serving multiple sulfur producers. 

This achieves economies of scale compared to having individual forming facilities in the 

vicinity of each recovery unit. For small-to-medium scale of operation, it is preferred to 

select the sulfur pastillation technology, whereas for medium-to-large scale sulfur 

granulation is more economical. Silos are the preferred option for the storage of formed 

sulfur due to their lower operating cost and low footprint area requirements. Sulfur 

blocking is an extremely attractive option for managing increased sulfur supply for its 

low capital and operational costs; however, they require significant space, which renders 

their unreliable as a long-term solution.  The locations selected for the establishment of 

the facilities are in very close proximity to both main rail lines in AIH and to most of the 

sulfur producer, which reduces logistical costs.  Tanker trucks is the preferred mode of 
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transportation for delivering liquid sulfur to forming facilities, and rail transportation is 

preferred for formed sulfur transported to export terminals.  

This work represents a starting point in understanding the important trade-offs involved 

in sulfur supply chains. It provides an indication of the important data required to support 

strategic decisions in their design and operation. It also provides an assessment of the 

applicability of implementing quantitative supply chain design models to solve these 

problems. At this stage, promising results were obtained from the proposed model. 

However, there are several aspects that require further improvement to develop a more 

sophisticated one. Several areas that could be investigated include the following: 

 Develop a multiperiod optimization model to represent the supply chain network. 

Since a surplus of sulfur is expected to exist in the future, an idea that is being 

contemplated is to store the sulfur to avoid flooding the market and decreasing its 

value. Using a mutltiperiod model will assist in estimating optimal inventory 

levels, holding time and storage capacities. Moreover, a multiperiod will help 

account for the addition of remelted emergency sulfur blocks to the total supply of 

sulfur in future time periods and its distribution among forming facilities or 

demand nodes, which will affect the optimal configuration of the supply chain. It 

is also beneficial to better account for the unsteady-state operation of the sulfur 

supply chain, in which supply and demand are time variant.  

 Pollutant emissions, such as, hydrogen sulfide, sulfur oxides and particulate 

matter are a major concern associated with the different forms of sulfur and their 

handling facilities and equipment. The inclusion of environmental constraints in 

the optimization model will assist in designing sulfur supply chains that comply 
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with environmental regulations at a minimum cost. Moreover, several mitigation 

technologies could be incorporated in the model, such as, hydrogen sulfide 

degassing systems, sulfur dust suppression systems and active air emission 

control technologies. 

 It would be interesting to develop a comprehensive list of all existing technologies 

and applications which utilize sulfur as a feedstock. Then identify where these 

industries exist geographically to determine market locations. Then determine the 

optimal configuration to distribute the sulfur among these markets. Moreover, it 

could also be considered to extend the supply chain to include these downstream 

technologies. For example, the establishment of a sulfuric acid plant to serve the 

alkylation process typically used in refineries. This could create potential 

synergies and reduce the transportation and storage requirements of sulfur, which 

as observed from the results they constitute a significant portion of the total 

annual network cost. 

 Finally, it is interesting to incorporate stochastic optimization techniques in the 

sulfur supply chain optimization model. This can allow handling the uncertainties 

associated with sulfur selling prices and demands.  
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Chapter 7 

Conclusions 

This thesis explored the effectiveness of various low carbon intensive energy production 

technologies (i.e. renewables, nuclear, and fossil fuel based integrated with carbon 

capture and sequestration) for carbon management of the energy infrastructure of energy 

intensive industries using the oil sands industry in Alberta as a case study. The results of 

this work support the design and implementation of effective carbon mitigation measures 

that result in the achievement of the highest possible emission reductions at the lowest 

possible costs. Similarly, the results obtained emphasize the significance of the effective 

management of the supply chain of excess by-products generated from oil sands 

industries (e.g. sulfur) that would otherwise hinder their operations if stockpiled in 

limited inventory.  

Chapter 3 assessed the various renewable energy production options in Alberta that can 

be integrated in the energy infrastructure of oil sands operators. These included 

geothermal energy for the provision of heat, bioenergy (i.e. power, heat, hydrogen and 

biodiesel), electrolytic hydrogen from wind power. These technologies have been 

incorporated along with fossil fuel based technologies in an MINLP integrated energy 

optimization model. The model is utilized for the integrated planning of the energy 

infrastructure and the oil sands producers (i.e. oil sands production and bitumen 

upgrading routes). Capacity expansion decisions were incorporated along with the rolling 

horizon approach to determine the effect of the existing energy infrastructure of the 

current planning period on the new investment decisions of the following planning 



243 
 

period. The results obtained indicated that renewable energy technologies have 

significant potential in reducing emissions associated with oil sands production 

operations. Moreover, for some of the investigated scenarios the emission reduction 

target constraints were not achievable (i.e. infeasible solution) without the incorporation 

of renewable energy technologies, particularly geothermal energy and bioenergy (steam 

and hydrogen production). Heat production in the form of steam has been shown to 

account for the highest share in the generated emissions. As a result, bitumen upgrading 

routes that utilize hydrogen for cracking has been favored by the optimization model. 

Even though the results obtained have shown that renewable energy can play a significant 

role in achieving adequate emission reductions, these achievable reductions are expected 

to be offset by the forecasted significant increase in the oil sands production levels and 

their associated energy requirements. Therefore, it is required to expand the energy 

production mix incorporating various low carbon intensive technologies, as well as 

energy production technologies that utilize various fuel alternatives (e.g. petcoke) to 

natural gas. Moreover, the planning of the energy infrastructure of oil sands should 

simultaneously take place over a long planning horizon and take into account time 

dependent parameters. This was addressed in chapter 3, in which a multi-period 

generalized energy optimization model for the planning of energy intensive industries 

was proposed. 

In chapter 4 an extensive superstructure of energy production technologies for energy 

intensive industries was proposed. The energy supply technologies considered included 

nuclear (PBMR, ACR-700, ACR-1000, CANDU, and HTGR) for power and heat 

production, natural gas combined cycle and oxyfuel for power production, pulverized 
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coal and coal oxyfuel for power production, SMR for hydrogen production, gasification 

(coal, petroleum coke, biomass, and asphaltenes) for power, hydrogen and thermal 

energy production, industrial natural gas combined heat and power production, natural 

gas boilers, integrated wind power, nuclear power and water electrolysis for power and 

hydrogen production, biodiesel, and geothermal energy. Carbon mitigation options also 

included carbon capture and sequestration, and purchase of carbon credits to satisfy 

emission targets. In addition, the model incorporated the possibility of selling excess 

power production to the Alberta grid, and excess hydrogen to the market. A deterministic 

multi-period MILP model that describes the superstructure was developed for the 

planning of energy production for energy intensive industrial operations. The 

optimization model is developed with the objective of identifying the optimal mix of 

energy supply and CO2 emission mitigation options to satisfy a set of energy demands 

(e.g., power, heat, hydrogen, etc.) and emission targets at minimum cost. To accomplish 

this, an objective function is formulated that is geared toward the minimization of the net 

present value of the total cost of energy production over the entire planning period. 

Moreover, the model formulation incorporated time dependent parameters to account for 

the variability in major factors affecting the operations of the industry. These include 

energy demands, fuel prices, CO2 emission reduction targets, CO2 credit/tax cost, 

construction lead time, and techno-economic parameters of energy production 

technologies. The model was applied to a case study based on the energy-intensive oil 

sands operations in Alberta over the planning period 2015–2050.  

A scenario based approach was used to investigate various carbon mitigation policies and 

to investigate variability in time dependent parameters. The total and unit energy 
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production costs ranged from CAD 446–2586 billion and 8.45–48.9 CAD/bbl SCO, 

respectively. The average annual emissions generated ranged from 1,100–12,000 tonne h
-

1
. The currently applied $15/tonne CO2 carbon tax in Alberta was not sufficient to 

achieve the required emission reduction targets. The model facilitated the investigation of 

the effect of various parameters on the planning of the energy infrastructure. This 

included variability in energy intensities, carbon mitigation policies, fuel prices, and price 

of energy commodities (e.g. power and H2 selling price). Even though the buying and 

selling of surplus energy commodities such as power have been accounted for as 

variables in the optimization model, the effect of the penetration of large production 

capacities of energy production technologies such as wind, nuclear, natural gas combined 

heat and power on the operations (i.e. unit commitment) of the power generation units of 

the local Alberta grid is not accounted for. This has been addressed in chapter 4. 

Chapter 5 investigated the integrated planning and scheduling of the decentralized energy 

infrastructure of oil sands. The superstructure of the energy production mix incorporates 

conventional, nuclear, and renewable energy production technologies. Power-to-gas is 

also considered for the management of the intermittent behavior of the wind-electrolysis 

system. Electrolytic hydrogen generated can be recovered via two pathways, which are 

power-to-gas (i.e. hydrogen sent to bitumen upgraders) and power-to-gas-to-power (i.e. 

hydrogen retrieved for HENG used in NGCC). A multi-period and multi-objective MILP 

model is generated and it takes into account the total system cost, grid cost, and total 

emissions. Unit commitment constraints are incorporated to manage the operations of the 

existing and new grid power generation units. This takes into account grid interactions 

with the penetration of additional power generation capacity to the energy infrastructure 
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of the oil sands industry, from which excess power is sent to the grid. The ranges of total 

system cost, grid cost, and total emissions were determined to be 6.02 – 127 billion CAD, 

0.005 – 2.21 billion CAD, and 7.16 – 276.3 MtCO2, respectively. The cost of wind power 

production had the highest share of the cost of the wind-electrolysis system, which in 

return had the highest share of the cost of electrolytic hydrogen production for bitumen 

upgrading. In order for wind-electrolysis to be competitive with conventional SMR a 

high weight has to be set on the emissions objective function. The cost of electrolytic 

hydrogen production was determined to be in the range of 5.97 – 17.5 CAD/kg H2. 

Utilizing natural gas cogeneration facilities to its full potential in the oil sands industry 

can reduce the emissions of the power sector in Alberta by >40%. However, high 

penetration levels of cogeneration units impacts the planning of the wind-electrolysis 

system, as this impedes the penetration of renewable wind power generation capacity. It 

also affects the scheduling operations of the existing power generation units of the grid. 

The incorporation of nuclear energy facilitated the achievement of significant emission 

reductions at considerably lower system and grid operating costs. The integrated planning 

and scheduling of the energy infrastructure of oil sands and the Alberta grid’s power 

generation units leads to the generation of large scale models, which are computationally 

expensive. A potentially promising approach that can be utilized in future work is the use 

of a data clustering approach. It will allow the reduction of the computational time of the 

model, the simultaneous planning and scheduling of multiple operational years, and the 

investigation of uncertain input data using stochastic optimization techniques. 

In chapter 6 an extensive review was conducted of the individual components of sulfur 

supply chains, including recovery, forming, storage, and distribution. These components 
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were integrated within a single optimization-based framework in order to realize potential 

economic benefits. An MILP optimization model was developed for the planning of 

downstream sulfur supply chains. The model is geared towards the minimization of the 

annual network cost and was applied to a case study in the Alberta Industrial Heartland, 

for which material balance, capacity, space and demand constraints were incorporated. 

The results of the model, which included the allocation of forming and storage facilities, 

the selection of forming, storage and transportation technologies and their capacities, and 

the flow rates among the nodes of the supply chain network, provided an indication of the 

optimal configuration of the supply chain. The work provided a starting point for 

understanding the trade-offs involved in sulfur supply chains, and can be extended in 

future work to incorporate existing technologies and applications that utilize sulfur as a 

feedstock, then identify where these industries exist geographically to determine market 

locations and determine the optimal configuration to distribute the sulfur among these 

markets. 
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Appendix 

Appendix A 

In this appendix, the data that is required to apply the proposed mathematical model to 

the investigated case study is summarized. The economic and operational parameters for 

the considered energy production technologies are presented in Table A1. These data 

were obtained from multiple sources in the literature
 
[176, 189-197, 216-251]. It is 

important to note that bioenergy and nuclear facilities are assumed to be low-carbon 

emitting. Based on several studies in the literature, life cycle analyses show total GHG 

reductions of up to 95% from baseline when agricultural residues or forest biomass are 

used as a feedstock for energy and fuel production. According to a study conducted by 

the Nuclear Energy Agency, on the long run nuclear facilities will remain to be a very 

low-carbon technology even when considering all the energy intensive steps in their life 

cycle. It is important to note that this input data is just used to illustrate the applicability 

of the model proposed. The results and conclusions drawn might vary if another set of 

input data is used. Figure A1 represents the six demand levels investigated, which 

represent different energy intensities for oil sands operations. The variation in energy 

intensity arises based on three factors, which are business as usual scenario, improved 

energy efficiency, and deteriorated reservoir quality. The data presented in Figure A2 is 

used to derive the different carbon mitigation policies investigated. For each emission 

level, the different carbon credit price levels are considered, as well as the unavailability 

of carbon credits, which results in a total of six investigated carbon mitigation policy 

scenarios. Figure A3 shows the different levels of fuel prices considered in the 

investigated case study. 
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Figure A1 Six demand levels for the energy 

commodities consumed by oil sands operations. 

The demand levels reflect variability in energy 

intensities for the different energy 

commodities, which are based on business as 

usual scenario (i.e. derived from historical 

trends), increased energy consumption 

efficiency, and deteriorated reservoir quality.  

 

 

 

 



280 
 

 

 

Figure A2 CO2 emission targets proposed for oil sands operations, and prices of carbon credit purchased to 

offset emissions for energy production 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

0

10

20

30

40

50

60

70

80

0

1000

2000

3000

4000

5000

6000

2015 2020 2025 2030 2035 2040 2045 2050

C
re

d
it

 p
ri

ce
 (

C
A

D
/t

C
O

2
) 

Em
is

si
o

n
 c

ap
 (

tC
O

2
 h

-1
) 

Low emission High emission Low credit High credit

0

0.5

1

1.5

2

2.5

3

3.5

0

2

4

6

8

10

12

14

2015 2020 2025 2030 2035 2040 2045 2050

D
ie

se
l p

ri
ce

 (
C

A
D

/G
G

E)
 

N
at

u
ra

l g
as

 p
ri

ce
 (

C
A

D
/G

J)
 

NG price 2 NG price 4 NG price 3 NG price 1 Diesel price

Figure A3 Different levels of fuel prices considered in the investigated case study 
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Table A9-a Economic and operational parameters for new energy production technologies. The table 

represents the total capacity, and capital and operating costs of single units and units retrofitted with carbon 

capture and sequestration. All the presented costs are estimated in terms of 2014 Canadian dollars  

Technology Capacity Capital F-O&M 

(%) 

V-O&M CO2  Yield CCS 

(%) 

Lead 

time 

NGCC 507 MW 567 CAD/kW 1 0.00102 

CAD/kWh 

0.367 

tCO2/MWh 

7.17 

MJ/kWh 

- 4 

NGCC wCC 432 MW 931 CAD/kW 1 0.0034 

CAD/kWh 

0.043 

tCO2/MWh 

8.4 

MJ/kWh 

88% 4 

PC 524 MW 1234 CAD/kW 1.5 0.0046 

CAD/kWh 

0.811 

tCO2/MWh 

9.16 

MJ/kWh 

- 4 

PC wCC 492 MW 1983 CAD/kW 1.5 0.0097 

CAD/kWh 

0.107 

tCO2/MWh 

12 MJ/kWh 88% 4 

NGOX wCC 539 MW 1246 CAD/kW 1 0.0107 

CAD/kWh 

0.012 

tCO2/MWh 

7.69 

MJ/kWh 

90% 4 

Coal OX wCC 448 MW 1952 CAD/kW 1.5 0.0148 

CAD/kWh 

0.084 

tCO2/MWh 

9.72 

MJ/kWh 

90% 4 

WT - Vestas 1.8 1.8 MW 785 CAD/kW 10 0.023 

CAD/kWh 

0 - - 3 

SMR 6.25 th-1 11.2M CAD/th-1 1 76 CAD/t 8.992 

tCO2/tH2 

174886 

MJ/tH2 

- 4 

SMR wCC 6.25 th-1 17.8M CAD/th-1 1 121 CAD/t 1.05 

tCO2/tH2 

204174 

MJ/tH2 

88% 4 

Electrolyzers 5 th-1 35M CAD/th-1 1 103 CAD/t 0 0.0000187 

tH2/kWh 

- 3 

NGB - SAGD 120 th-1 377K CAD/th-1 0.5 9.8 CAD/t 0.218 

tCO2/t 

- - 1 

NGB - PS and HW 300 th-1 290K CAD/th-1 0.5 7.6 CAD/t 0.129 

tCO2/t 

- - 1 

Geothermal - HW 300 th-1 136K CAD/th-1 1 10.4 CAD/t 0 - - 4 

Geothermal - PS 300 th-1 472K CAD/th-1 1 11.3 CAD/t 0 - - 4 

Geothermal - 

SAGD 

300 th-1 528K CAD/th-1 1 13.1 CAD/t 0 - - 4 

GT CHP - P & SS 200 MWt/Mwe 525 CAD/kWe 1 0.0031 

CAD/kWh 

0.45 

tCO2/MWh 

- - 4 

GT CHP wCC - P 

& SS 

200 MWt/Mwe 630 CAD/kWe 1.5 0.0047 

CAD/kWh 

0.052 

tCO2/MWh 

- 95% 4 

GT CHP - P & PS 200 MWt/Mwe 500 CAD/kWe 1 0.00247 

CAD/kWh 

0.37 

tCO2/MWh 

- - 4 

GT CHP wCC - P 

& PS 

200 MWt/Mwe 595 CAD/kWe 1.5 0.0027 

CAD/kWh 

0.041 

tCO2/MWh 

- 95% 4 

ST CHP - P, PS & 

HW 

50 MWt/Mwe 980 CAD/kWe 1 0.008 

CAD/kWh 

0.37 

tCO2/MWh 

- - 4 

ST CHP wCC - P, 

PS & HW 

50 MWt/Mwe 1300 CAD/kWe 1.5 0.011 

CAD/kWh 

0.041 

tCO2/MWh 

- 95% 4 
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IGCC - P 440 MW 1764 CAD/kW 1.5 0.0046 

CAD/kWh 

0.8 

tCO2/MWh 

8.757 

MJ/kWh 

- 4 

IGCC wCC - P 532 MW 1886 CAD/kW 1.5 0.006 

CAD/kWh 

0.131 

tCO2/MWh 

11.06 

MJ/kWh 

85% 4 

IGCC - H2 32.09 tH2/h 23.8M CAD/th-1 1.5 97 CAD/t 18.7 

tCO2/tH2 

174888 

MJ/tH2 

- 4 

IGCC wCC - H2 32.09 tH2/h 25.1M CAD/th-1 1.5 101.86 

CAD/t 

1.5 

tCO2/tH2 

204174 

MJ/tH2 

90% 4 

Biogas - SS 120 t/h 520K CAD/th-1 1 13.8 CAD/t 0 - - 3 

Biogas - PS & HW 300 th-1 415K CAD/th-1 1 11.3 CAD/t 0 - - 3 

Biogas - P & SS 100 Mwe/MWt 4805 CAD/kWe 4.3 0.0160/kWh 0 - - 4 

Biogas - P & PS 60 Mwe/MWt 5100 CAD/kWe 4 0.012/kWh 0 - - 4 

Biogas - H2 (1) 10.5 tH2/h 30.8 CAD/th-1 1 135 CAD/t 0 0.0834 

tH2/tbio 

- 4 

Biogas - H2 (2) 20.85 tH2/h 45.8 CAD/th-1 1 128 CAD/t 0 0.0834 

tH2/tbio 

- 4 

Biodiesel (1) 0.46 th-1 2330K CAD/th-1 1.5 123 CAD/t 0 500L/tbio - 3 

 

Table A1-b Economic and operational parameters for new energy production technologies. The table 

represents the total capacity, and capital and operating costs of single units and units retrofitted with carbon 

capture and sequestration. All the presented costs are estimated in terms of 2014 Canadian dollars  

Biodiesel (2) 0.91 th-1 3600K CAD/th-1 1.5 103 CAD/t 0 500L/tbio - 3 

Biodiesel (3) 1.68 th-1 4500K CAD/th-1 1.5 91 CAD/t 0 500L/tbio - 3 

PCK/A gas - P 120 th-1 2.96M CAD/th-1 1.5 42 CAD/t 0.837 

tCO2/tPCK 

0.83MWh/t

Syn 

90% 4 

PCK/A gas - H2 88 th-1 3.1M CAD/th-1 2.5 44.8 CAD/t 0.837 

tCO2/tPCK 

0.18 

tH2/tsyn 

90% 4 

PCK/A gas- P & H2  212 th-1 3.4M CAD/th-1 1.5 41.26 CAD/t 0.837 

tCO2/tPCK 

- 90% 4 

PCK/A gas - P, H2 

& Steam  

303 th-1 4.1M CAD/th-1 3.4 49 CAD/t 0.837 

tCO2/tPCK 

0.296tSS/ts

yn 

90% 4 

PCK/A gas - P & 

Steam  

260 th-1 3.2M CAD/th-1 1.5 46 CAD/t 0.837 

tCO2/tPCK 

0.37tPS/tsy

n 

90% 4 

Nuclear PBMR - P  172 MW 4.3 CAD/MW 1.5 0.00897 

CAD/kWh 

0 - - 6 

Nuclear ACR - 700 

- P  

703 MW 3.74 CAD/MW 1.5 0.00997 

CAD/kWh 

0 - - 6 

Nuclear ACR - 

1000 -P  

1150 MW 4.4 CAD/MW 1.5 0.0462 

CAD/kWh 

0 - - 6 

Nuclear CANDU - 

P 

728 MW 4.38 CAD/MW 1.5 0.0523 

CAD/kWh 

0 - - 6 

Nuclear PBMR - SS  550 t/h 900K CAD/th-1 1.5 10.3 CAD/t 0 - - 6 
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Technologies – NGCC: Natural gas combined cycle, PC: Pulverized coal, NGOX: Natural gas oxyfuel, Coal OX: Coal 

oxyuel, WT: Wind turbines, SMR: Steam methane reforming, NGB: Natural gas boilers, CHP: Combined heat and 

power, GT: Gas turbines, ST: Steam turbines, IGCC: Integrated gasification combined cycle, Biogas: Biomass 

gasification, PCK/A gas: Petcoke/asphaltene gasificaition, CC: Carbon capture and sequestration. Energy 

commodities – P: Power, SS: SAGD steam, PS: Process steam, HW: Hot water, H2: Hydrogen, UH: Upgrading heat. 

 

Table A10 Key techno-economic parameters required for the optimization model 

CO2 pipeline length 6 km/100 

Compression power for CO2 trans (kWh/tonne CO2/100 km)      1.34 

Cost of carbon transport (CAD/tCO2/100 km)  1.3 

Cost of carbon storage (CAD/tCO2)  7 

Emission factor for diesel (tCO2/L Diesel)  0.00267 

Emission factor for process fuel natural gas (tCO2/Nm
3
 NG)  0.00179 

Emission factor for process fuel coal (tCO2/t coal)  1.702 

Diesel cost (CAD/L)   1.25 

Heating value of process fuel natural gas (MJ/kg)    43 

Heating value of process fuel coal (MJ/kg) 24 

Heating value of biomass (MJ/kg) 18 

Heating value of syngas (MJ/kg) 48 

Total cost of a nuclear accident (CAD)  1.28E+11 

Probability of occurence of a nuclear accident (reactor yr-1) 0.000001 

Factor associated with individual risk perception  385 

Biomass availability (t/hr) 2512 

Boiler supplementary boiler efficiency 85% 

Gas turbine electricity generation efficiency 30% 

Nuclear PBMR - P 

& SS  

500 MWth 871K CAD/MWt 1.5 54 

CAD/MWh 

0 0.096 

MWe/MWt 

- 6 

Nuclear HTGR - P 

& SS  

2400 MWth 1887K CAD/MWt 1.5 62 

CAD/MWh 

0 0.046 

MWe/MWt 

- 6 

Nuclear HTGR - P, 

SS, PS, UH & H2  

2965 MWth 2750K CAD/MWt 1.5 67 

CAD/MWh 

0 0.11 

MWe/MWt 

- 6 

Nuclear PBMR - 

Power, PS & HW  

500 MWth 770K CAD/MWt 1.5 43 

CAD/MWh 

0 0.096 

MWe/MWt 

- 6 

Nuclear PBMR - 

PS, HW & UH 

600 MWth 700K CAD/MWt 1.5 42 

CAD/MWh 

0 - - 6 

Nuclear ACR - 700 

- P, PS, HW, UH, 

H2  

2100 MWth 4056K CAD/MWt 1.5 68.8 

CAD/MWh 

0 0.096 

MWe/MWt 

- 6 
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HRSG heat recovery efficiency 50% 

HRSG supplemental firing efficiency 95% 

 

 

Appendix B 

This appendix includes operating data for the Alberta grid existing power generation 

units, which is utilized in chapter 5.  

Table B1 Detailed operating data of the units belonging to the Alberta grid. 

Unit  BUS 
Pmin 

(MW) 

Pmax 

(MW) 
Type 

Heat rate 

(GJ/MWh) 

Ramp rate 

(MW/min) 
Start-up fuel (GJ) 

Min. up time 

(hr) 

Min. down 

time (hr) 

i1 3 60 149 PC 12 2 2500 48 24 

i2 3 60 155 PC 12 2 2500 48 24 

i3 3 147 385 PC 11 3 3000 48 24 

i4 4 154 400 PC 10 3 3000 48 24 

i5 4 154 400 PC 10 3 3000 48 24 

i6 4 158 466 SCPC 9 5 3000 48 24 

i7 6 60 144 PC 16 2 3000 48 24 

i8 4 152 395 PC 10 3 3000 48 24 

i9 4 152 395 PC 10 3 3000 48 24 

i10 1 151 463 PC 11 3 3000 48 24 

i11 1 151 400 PC 11 3 3000 48 24 

i12 4 112 390 PC 11 3 3000 48 24 

i13 4 112 280 PC 11 3 3000 48 24 

i14 4 141 280 PC 11 3 3000 48 24 

i15 4 162 368 PC 11 3 3000 48 24 

i16 4 141 406 PC 10 3 3000 48 24 

i17 4 160 406 PC 10 3 3000 48 24 

i18 4 112 401 PC 12 2 3000 48 24 

i19 2 5 120 CCGT 8 12 180 4 2 

i20 2 15 320 CCGT 8 12 480 4 2 

i21 2 3 73 CCGT 10 16 110 4 2 

i22 2 10 210 CCGT 8 12 315 4 2 

i23 2 5 120 CCGT 8 12 180 4 2 

i24 2 35 860 CCGT 7 9 1290 4 2 

i25 6 13 63 SCGT 13 5 164 1 1 

i26 6 1 7 SCGT 13 5 18 1 1 

i27 6 2 10 SCGT 13 6 26 1 1 

i28 6 3 15 SCGT 13 4 39 1 1 
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i29 6 10 48 SCGT 13 3 125 1 1 

i30 6 20 101 SCGT 12 5 263 1 1 

i31 6 20 101 SCGT 17 6 263 1 1 

i32 6 10 48 SCGT 16 6 125 1 1 

i33 6 10 48 SCGT 12 5 125 1 1 

i34 4 10 48 SCGT 17 3 125 1 1 

i35 4 1 6 SCGT 16 4 16 1 1 

i36 4 3 16 SCGT 13 4 42 1 1 

i37 4 1 6 SCGT 13 5 16 1 1 

i38 1 3 15 SCGT 12 6 39 1 1 

i39 1 1 7 SCGT 17 6 18 1 1 

i40 1 1 6 SCGT 16 5 16 1 1 

i41 6 2 8 SCGT 13 5 21 1 1 

i42 6 2 11 SCGT 12 4 29 1 1 

i43 6 2 9 SCGT 14 3 23 1 1 

i44 6 21 105 SCGT 16 4 273 1 1 

i45 6 10 48 SCGT 17 5 125 1 1 

i46 6 10 50 SCGT 17 3 130 1 1 

i47 6 4 20 SCGT 16 6 52 1 1 

i48 6 10 50 SCGT 12 6 130 1 1 

i49 6 10 50 SCGT 13 5 130 1 1 

i50 6 4 20 SCGT 13 5 52 1 1 

i51 5 39 195 COGEN 7.5 7 52 4 3 

i52 5 19 96 COGEN 7.5 4 26 4 3 

i53 6 9 45 COGEN 7.5 2 12 4 3 

i54 6 10 50 COGEN 7.5 2 13 4 3 

i55 3 13 64 COGEN 7.5 2 17 4 3 

i56 3 7 36 COGEN 7.5 1 10 4 3 

i57 5 1 5 COGEN 7.5 1 1 4 3 

i58 5 41 203 COGEN 7.5 8 54 4 3 

i59 2 2 10 COGEN 7.5 1 3 4 3 

i60 6 19 95 COGEN 7.5 4 25 4 3 

i61 5 20 101 COGEN 7.5 4 27 4 3 

i62 3 65 326 COGEN 7.5 12 87 4 3 

i63 5 3 13 COGEN 7.5 1 3 4 3 

i64 5 95 473 COGEN 7.5 18 126 4 3 

i65 1 40 199 COGEN 7.5 8 53 4 3 

i66 5 20 98 COGEN 7.5 4 26 4 3 

i67 2 95 474 COGEN 7.5 18 126 4 3 

i68 5 17 84 COGEN 7.5 3 22 4 3 

i69 5 3 16 COGEN 7.5 1 4 4 3 

i70 5 40 202 COGEN 7.5 8 54 4 3 

i71 5 41 205 COGEN 7.5 8 55 4 3 
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i72 5 36 180 COGEN 7.5 7 48 4 3 

i73 5 40 202 COGEN 7.5 8 54 4 3 

i74 5 39 195 COGEN 7.5 7 52 4 3 

i75 5 44 220 COGEN 7.5 8 59 4 3 

i76 5 75 376 COGEN 7.5 14 100 4 3 

i77 4 20 100 COGEN 7.5 4 27 4 3 

i78 4 9 47 COGEN 7.5 2 13 4 3 

i79 4 9 46 COGEN 7.5 2 12 4 3 

i80 6 4 19 COGEN 7.5 1 5 4 3 

i81 5 102 510 COGEN 7.5 19 136 4 3 

i82 6 2 12 COGEN 7.5 1 3 4 3 

i83 6 8 39 COGEN 7.5 1 10 4 3 

i84 3 0 120 HYDRO - 24 0 0 0 

i85 2 0 320 HYDRO - 64 0 0 0 

i86 3 0 350 HYDRO - 70 0 0 0 

i87 1 0 32 HYDRO - 6 0 0 0 

i88 3 0 15 HYDRO - 3 0 0 0 

i89 2 0 15 HYDRO - 3 0 0 0 

i90 3 0 7 HYDRO - 1 0 0 0 

i91 3 0 21 HYDRO - 4 0 0 0 

i92 1 0 14 HYDRO - 3 0 0 0 

i93 6 20 131 BIO 12 2.2 10 4 3 

i94 6 6 42 BIO 12 0.7 10 4 3 

i95 1 8 52 BIO 12 0.9 10 4 3 

i96 1 2 11 BIO 12 0.2 10 4 3 

i97 3 1 5 BIO 12 0.1 10 4 3 

i98 3 4 27 BIO 12 0.5 10 4 3 

i99 6 2 16 BIO 12 0.3 10 4 3 

i100 6 1 9 BIO 12 0.2 10 4 3 

i101 6 8 50 BIO 12 0.9 10 4 3 

i102 6 3 18 BIO 12 0.3 10 4 3 

i103 6 7 48 BIO 12 0.8 10 4 3 

i104 6 4 25 BIO 12 0.4 10 4 3 

i105 1 457 3,045 WIND - - 0 0 0 
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Figure B1 (a) Total power demand (MW), (b) Total wind potential (MW), (c) Natural gas price (CAD/GJ), (d) 

Electricity price (CAD/MWh) 


