
Robotic Path Planning for
High-Level Tasks in Discrete

Environments

by

Frank Imeson

A thesis
presented to the University Of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Frank Imeson 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Ibrahim Volkan Isler
Professor

Supervisor: Stephen L. Smith
Associate Professor

Internal Examiner: Dana Kulić
Associate Professor

Internal Examiner: Wojciech Golab
Assistant Professor

Internal Examiner: Steven Waslander
Associate Professor

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis proposes two techniques for solving high-level multi-robot motion planning
problems with discrete environments. We focus on an important class of problems that
require an allocation of spatially distributed tasks to robots, along with a set of efficient
paths for the robots to visit their task locations. The first technique, SAT-TSP, mod-
els the problem with a framework that allows a natural coupling between the allocation
problem and the path planning problem. The allocation problem is encoded as a Boolean
Satisfiability problem (SAT) and the path planning problem is encoded as a Travelling
Salesman Problem (TSP). In addition, this framework can handle complex constraints
such as battery life limitations, robot carrying capacities, and robot-task incompatibilities.
We propose an algorithm that leverages recent advances in Satisfiability Modulo Theory
to combine state-of-the-art SAT and TSP solvers. We characterize the correctness of our
algorithm and evaluate it in simulation on a series of patrolling, periodic routing, and
multi-robot sample collection problems. The results show that our algorithm outperforms
a state-of-the-art mathematical programming solver on a majority of the problems in our
benchmark, especially the more difficult problems.

The second technique, Γ-Clustering, is used to reduce the computational effort of finding
good solutions for metric discrete path planning problems. This technique can be used on
the set of allocation path planning problems that do not have ordering constraints (ordering
only affects the cost of the solution, not its feasibility). To obtain the computational
savings, we find Γ-Clusters within the problem’s environment and then restrict how feasible
paths visit these clusters. We prove that solutions found using this approach are within
a constant factor of the optimal. By increasing the parameter Γ we can improve the
quality of the bound but we do so with less computational savings. We provide a simple
polynomial-time algorithm for finding the optimal Γ-Clustering and show that for a given
Γ the clustering is unique. We provide two methods for using Γ-Clusters on path planning
problems, a coupled method and a hierarchical method. We demonstrate the effectiveness
of these methods on travelling salesman instances, sample collection problems, and period
routing problems. The results show that for many instances we obtain significant reductions
in computation time with little to no reduction in solution quality. Comparing these
methods to a standard integer programming approach reveals that as the problems become
more difficult, the solution quality of the two methods degrade at a slower rate than the
standard approach, thus for more difficult instances we can use Γ-Clustering to find higher
quality solutions.

iv

Acknowledgements

I would like to thank my PhD supervisor Stephen L. Smith; my Masters supervisors Sid-
dharth Garg and Mahesh Tripunitara; and my PhD committee Ibrahim Volkan Isler, Dana
Kulić, Vijay Ganesh, Wojciech Golab, and Steven Waslander.

v

Dedication

I dedicate my thesis to my mother. Thank you for your guidance, encouragement, and
support.

vi

Table of Contents

Table of Contents x

List of Tables . xi

List of Figures . xiii

1 Introduction 1

1.1 Literature Survey . 3

1.2 Contributions . 4

2 Preliminaries 7

2.1 Graphs . 7

2.2 The Travelling Salesman Problem . 8

2.3 Complexity Theory . 8

2.3.1 Decision Problems . 9

2.3.2 Complexity Classes . 9

2.4 Using ILP to Find Solution Paths . 10

2.5 Summary . 11

3 An Alternative to ILP 13

3.1 Related Work . 14

3.2 Background . 16

3.2.1 Boolean Satisfiability (SAT) . 16

vii

3.2.2 Boolean Circuits . 16

3.2.3 SMT and DPLL(T) . 17

3.2.4 Induced Subgraphs . 18

3.3 Problem Statement . 18

3.3.1 SAT-TSP Definition . 18

3.3.2 Complexity of SAT-TSP . 20

3.4 CBTSP: An SMT-based approach for SAT-TSP 21

3.4.1 The BRUTE Approach: A Lead-in to CBTSP 22

3.4.2 The CBTSP Solver . 23

3.4.3 Correctness . 27

3.4.4 Relaxing TSP-monotonicity . 29

3.5 An Integer Program Formulation . 31

3.6 Applications . 33

3.6.1 Patrolling . 33

3.6.2 Sample Collection . 36

3.6.3 Periodic Routing . 39

3.7 Experiments . 40

3.7.1 Simulations . 41

3.7.2 Patrolling . 41

3.7.3 Sample Collection . 44

3.7.4 Period Routing . 46

3.8 Summary . 47

4 Pruning Solutions 49

4.1 Related Work . 51

4.2 Background . 53

4.2.1 Clusters . 53

4.2.2 Search Space . 54

viii

4.2.3 Multigraphs . 54

4.3 Path Planning Problem Statement . 55

4.4 Γ-Clustering . 56

4.4.1 Definitions . 56

4.4.2 Finding Γ-Clusters . 57

4.5 Coupled Planning . 60

4.5.1 Search Space Reduction . 61

4.5.2 Solution Quality Bounds . 63

4.6 Decoupled Planning . 72

4.6.1 Search Space Reduction . 74

4.6.2 Solution Quality Bounds . 77

4.7 Hierarchical Planning . 79

4.7.1 A Hierarchical Method for TSP Problems 80

4.7.2 A Hierarchical Method for Non-TSP Problems 84

4.8 Experiments . 86

4.8.1 Problem Library . 86

4.8.2 Setup and Execution . 87

4.8.3 Path planning with Γ-Clusters . 89

4.8.4 Other Clustering Methods . 93

4.9 Summary . 94

5 Conclusions 96

5.1 Future Work . 97

5.1.1 SAT-TSP . 97

5.1.2 Γ-Clustering . 98

References 100

Appendices 110

ix

Appendix A CBTSP Solver Parameters 111

Appendix B Additional SAT-TSP Approaches 115

B.1 The constraint satisfaction problem (CSP) 115

B.2 Search Algorithms . 116

B.3 HCP to SAT . 119

B.4 Solver Approaches . 122

B.4.1 Reduction to SAT . 122

B.4.2 Reduction to TSP . 123

B.4.3 Reduction to GTSP . 125

B.4.4 Reduction to CSP . 128

B.4.5 Reduction to SMT . 128

B.5 Benchmark Problems . 128

B.5.1 SatLib . 129

B.5.2 TspLib . 129

B.5.3 HardLib . 130

B.5.4 SetLib . 130

B.5.5 GTspLib . 130

B.5.6 GTspLib+ . 130

B.5.7 CountLib . 131

B.5.8 OrderedLib . 131

B.5.9 MultiRobotLib . 132

B.6 Benchmark Results . 134

B.6.1 Unsuccessful Approaches . 135

B.6.2 GTSP Approach . 136

B.6.3 CSP Approach . 136

B.6.4 BRUTE Approach . 137

x

List of Tables

3.1 Experimental results for patrolling problem instances (300 second trials).
The left three columns indicate the patrolling instance number, the number
of observation locations (n), and the number of points of interest (m) in the
environment. The best results are shown in bold. 42

3.2 Experimental results for sample collection instances (300 second trials). On
the left we indicate the instance number, the number of samples (n), and
the maximum number of different minerals (m) in the environment. The
best results are shown in bold. Results that are shown with a dash indicate
that the solver was not able to solve the instance. 45

3.3 Experimental results for period routing problem instances (300 second tri-
als). The left two columns indicate the instance number and the number of
locations in the environment. The best results are shown in bold. 47

4.1 Experimental results for the TSP, sample collection, and the periodic routing
problems. We report the average % error and solver time for each instance as
well as the number of clusters |C|. The solver method with the best average
error is shown in bold. Results are sorted from least to most difficult for the
non-clustering method. 92

4.2 Results comparing the quality of the clusterings on TSP instances for the
different clustering methods. The results with the lowest percent error are
shown in bold. 94

A.1 Default LKH Parameters . 111

xi

A.2 Tuning experiments for different values of the CBTSP parameter,
cb interval (CBTSP becomes BRUTE when cb interval > |V |, we chose
a value of 999). Each test was run four times and the average cost is re-
ported. The instance name captures the problem type and the instance
number matches up with Section 3.7. The best results are highlighted. . . 112

A.3 Tuning experiments for different values of the CBTSP parameter bdiv (the
search is linear is when bdiv=999999). Each test was run four times and
the average cost is reported. The instance name captures the problem type
and the instance number matches up with Section 3.7. 114

B.1 Descriptions of the mutually exclusive solution categories used in Figures B.9
to B.13. 135

B.2 Descriptions of the mutually exclusive solution categories used in Fig-
ures B.14 to B.18b. 145

xii

List of Figures

1.1 Robot Operating System (ROS) simulation for a sample collection problem.
The left image shows the environment, the layout of the samples, and the
robot solution paths. The right image shows the robots returning home after
collecting one of each mineral type from a subset of the samples. 2

3.1 An adder circuit summing up Boolean input variables X = {x1, x2, . . . , x5}
and outputting the Boolean variable b1, as well as the carryout bits. . . . 17

3.2 A-TSP-monotonic example. Interconnecting edges from Gi to Gj shown in
the figure represent a collection of edges that connect every vertex in graph
Gi to every vertex in graph Gj. The edge weights of the interconnecting
edges satisfy the triangle inequality. 31

3.3 On the left is a UAV patrolling example and on the right is a UGV sample
collection example. The robot’s path is indicated with a solid line in both
illustrations and the location marked by an “H” represents the robot’s home.
For the patrolling problem, points of interest are buildings represented by
large squares, faint circles represent the radius that the building can be
observed from, and the grey triangles indicate the different observation per-
spectives. In the sample collection problem, the labels above the locations
represent the mineral types that are within the sample (large samples have
three minerals and small samples have one). The grey contours represent
obstacles. 34

3.4 The top plot captures the average normalized solution quality obtained dur-
ing the time budget for patrolling instances solved by CBTSP and Gurobi.
The bottom plot captures the % of unsolved runs (10 runs per instance)
over the time budget. 43

xiii

3.5 The top plot captures the average normalized solution quality obtained dur-
ing the time budget for sample collection instances solved by CBTSP and
Gurobi. The bottom plot captures the % of unsolved runs (10 runs per
instance) over the time budget. 45

3.6 A simple period routing example for material transport within a factory.
There are only two periods of service and a location can either require service
for one or both periods (as indicated on the graph). The home location is
labelled with an “H”. 46

3.7 The top plot captures the average normalized solution quality obtained dur-
ing the time budget for period routing instances solved by CBTSP and
Gurobi. The bottom plot captures the % of unsolved runs (10 runs per
instance) over the time budget. 48

4.1 The results of Γ-Clustering used on an office environment. The red triangles
represent locations of interest and the red boxes surround clusters of size
two or greater. 51

4.2 This illustration shows three examples of how two clusters can overlap or
not overlap with each other. 53

4.3 On the left we show an example of clustering in its graph environment with
the edges omitted and on the right we show the same clustering depicted as
a forest. 54

4.4 Path deformation example. 70

4.5 Metric example instance (α > β). Vertices in the top row (v2, v3, v5, v6, . . .)
are in the cluster Vi. Edge weights connecting vertices within Vi are β. Edge
weights connecting vertices not in Vi are 2α + β. Edge weights connecting
vertices not in Vi to vertices in Vi are α + β, unless shown differently in
diagram. 71

4.6 A plot showing the tightness of the approximation’s upper bound. The gap
between the two curves shows where the tightest upper bound can lie. . . 72

4.7 Illustration of how the hierarchical approach progresses. On the left, the
progression of how the path is built. On the right, the levels of nesting in
the clustering are illustrated as a forest (i.e., clusters V4 and V5, as well as
vertex 5 are nested in cluster V2). 81

xiv

4.8 Box plot of the clustering time ratio with respect to the Γ-Clustering ap-
proach. The data is categorized by instances that did not time out (Time01)
and instances that did time out (Time02). 90

4.9 A plot of the average error for each solver method. Instances are sorted
from least to most difficult. 91

B.1 An adder circuit summing up xc0 , the one-bits of the solution cost. In this
instance the edges {e1, e3, e4, e8, e9} have odd edge weights and all other
edges have even weights. 123

B.2 An example of the widget Ω̂xi . In this instance the only clauses in F that
contain the variable xi are clauses c1 and c2. The clause c1 contains the
literal x1 and c2 contains the literal ¬xi. A TSP solution that traverses the
widget from left to right (1 → 9) indicates that xi = 1 in the SAT-TSP

solution and a solution that traverses the widget from right to left (9→ 1)
indicates that xi = 0. 124

B.3 The connections between widgets in the TSP graph. Dotted edges have
zero weight. An edge going into or out of the left of the widget indicates a
connection to left most vertex in the widget chain. Likewise, an edge going
into or out of the right side indicates a connection to the right most vertex
in the chain. 125

B.4 An illustration of the connections between vertices in a widget and between
widgets. In this example the literal xi appears in clauses c1, c2 and c3,
the vertices v̂α, v̂β and v̂γ are short forms for vertices v̂xi,c1 , v̂xi,c2 and v̂xi,c3
respectively. The vertices connected with dotted edges have zero edge weight
and the solid edges all have the same weight. 126

B.5 The connections and edge weights between root vertices. If a connection is
not shown, then it does not exist in the GTSP graph. The large arrow from
V ′α to V ′β indicates the connections between the two sets (unidirectional and
weighted). The large dotted arrow from V ′β to v̂xvs indicates the connections
between the two sets (unidirectional with zero edge weights). 127

xv

B.6 The connection of widget Ω̂i to Ω̂j for the reduction of the ordering con-
straints. Note that only connections from Ω̂i to Ω̂j exist and not the other
way around. Each widget is a copy of the original graph G, of which the
edges are represented with dotted lines. The edges connecting vertices from
one widget to another shown with solid lines are only present if the connec-
tion exists in G. The edge between vertex v̂i1 and v̂j3 highlights how the cost
mimics the edge weights in G. 133

B.7 The connections between widgets for the reduction of the ordering con-
straints. Widgets are connected with directed edges in sequential order. All
widgets are connected back to the first widget to allow the solution tour to
close. 133

B.8 The connections between widgets for the reduction of the multi-robot prob-
lem. Widgets are connected with directed edges in sequential order. All
widgets are connected back to the first widget to allow the solution tour to
close. 134

B.9 Performance results for the GTSP approach. The results are broken down
into three categories described in Table B.1. (a) Compares the solver per-
formance to the best performance achieved over all approaches. (b) Com-
pares the solver performance to the number of additional constraints in
GTspLib+. 137

B.10 CSP (Gecode) . 138

B.11 Performance results of the CSP approach on the simulation library. The
results are broken down into three categories described in Table B.1. . . . 138

B.12 Performance results of the BRUTE approach on the full library. Results are
divided into categories described in Table B.1. (a) Compares the solver time
to the best performance achieved over all approaches for SAT-TSP instances.
(b) Compares the solver time to the number of SAT-TSP solutions of the
instance. 139

B.13 Performance results of the CBTSP approach on the simulation library. The
results are broken down into three categories described in Table B.1. (a)
Compares the solver time to the best performance achieved over all ap-
proaches. (b) Compares the solver time to the number of SAT-TSP solutions
of the instance. 139

xvi

B.14 The number of instances solved by each solver approach. The results are
broken down into four categories described in Table B.2. The number of
metric and non-metric instances are indicated on the graph with the dotted
line and the |M | and |N | symbols respectively. 140

B.15 The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described
in Table B.2. The number of metric and non-metric instances are indicated
on each graph with the dotted line and the |M | and |N | symbols respectively
(there are no non-metric instances in SatLib). 141

B.16 The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described
in Table B.2. The number of metric and non-metric instances are indicated
on each graph with the dotted line and the |M | and |N | symbols respectively. 142

B.17 The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described
in Table B.2. The number of metric and non-metric instances are indicated
on each graph with the dotted line and the |M | and |N | symbols respectively. 143

B.18 The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described
in Table B.2. The number of metric and non-metric instances are indicated
on each graph with the dotted line and the |M | and |N | symbols respectively. 144

xvii

Chapter 1

Introduction

As robots grow in sophistication, we look to them to perform complex tasks for a variety
of commercial and industrial applications, such as environmental monitoring where robots
are equipped with on-board sensors and tasked with selecting locations/viewpoints in the
environment to monitor a set of targets [101, 93, 35, 73, 98]; or sample collection where
robots seek out a set of locations in the environment to collect samples/data [26, 20, 17] (see
Figure 1.1 for an example of a sample collection problem); or material transport problems
that require robots to regularly deliver materials to a set of locations with different service
demands [11, 6, 100]. For robots to successfully complete their tasks, they need to construct
a sequence of actions (a plan) that will allow them to achieve their goals. Path/motion
planning is the task of finding a set of transitions in the robot’s environment that allows
the robot to achieve its goals. In this thesis, we focus on solving path planning problems
where a robot or group of robots is dispatched in the environment to complete a set of
interdependent and spatially distributed tasks.

A common method for solving these problems is to break the problem into a high-
level and low-level planning problem [50, 23, 84]. The high-level planner is responsible for
finding a sequence of locations in the environment that allows the robot(s) to achieve the
goals and the low-level planner is responsible for planning a collision free path between
the locations. The two planners integrate into a complete motion planning framework
as follows. The user provides the goals and constraints of the problem. The problem’s
environment is then discretized into a finite set of locations. The transition cost between
locations is calculated by a low-level path planner [99, 52, 91] and used to construct a graph
that captures the robot’s discretized environment. The graph, goals, and constraints are
used as input for the high-level path planner. The high-level planner finds a minimum
cost path that visits a subset of the discretized locations that allows the robot to achieve

1

Figure 1.1: Robot Operating System (ROS) simulation for a sample collection problem.
The left image shows the environment, the layout of the samples, and the robot solution
paths. The right image shows the robots returning home after collecting one of each mineral
type from a subset of the samples.

the goals, while obeying the constraints of the problem. The high-level path is then given
to the low-level planner which finds a collision free path in the continuous space between
the high-level locations. The complete solution allows the robot(s) to move in the physical
world, achieve the goals, and obey the constraints while approximating optimal solution
paths (the discretization may eliminate optimal solutions). Note, a more general version
of this framework transitions between robot states, instead of robot locations. Adopting
this strategy allows us to simplify a large path planning problem with a high density of
information into one problem with sparse information (the high-level problem) and a series
of small problems with dense information (the low-level problems). This thesis addresses
the problem of solving high-level path planning problems where obstacle avoidance and
robot to robot collisions are handled by the low-level planner. This thesis also refers to
high-level problems as discrete path planning problems.

Many discrete path planning problems tend to have a strong combinatorial aspect to
them and thus, many of these problems are intractable (NP-hard) [94]. This means the
task of finding an optimal solution path, is the task of searching an exponentially large
space, for which there is no known efficient method. There are a number of good solvers
that we can use to search this space [32, 66, 12]. However, to utilize these solvers, we would
need to express the path planning problem in a form readable by the solver. A common
choice, is to use a mathematical solver which requires us to express the path planning

2

problem as an integer linear program (ILP). Mathematical solvers have received a lot of
academic and commercial attention, as such they tend to be high performers that use a
number of sophisticated techniques, some of which are proprietary and thus hidden from
the public.

1.1 Literature Survey

In this section we give an overview of the literature related to solving high-level path
planning problems. In subsequent chapters we provide a more in depth review of the
literature related to the chapter’s topic.

There is a set of specialized discrete path planning problems that have purpose built
solvers. Two such examples of problems with purpose built solvers are the travelling
salesman problem (TSP) and its generalized version, GTSP. TSP looks to find shortest
tours visiting the locations and GTSP looks to find shortest tours that visit one location in
each set of locations (the sets are provided as input). These problems appear in a variety
of applications. In [10] and [17], the authors use TSP to find coverage paths for their
environments. In [81], the authors use GTSP to find minimum length paths for a robotic
welding arm. In [64], the authors use GTSP to find paths that monitor the environment.
There are some very good solvers for both of these problems such as Concorde [3], LKH [32],
GLKH [33] and GLNS [88]. To take advantage of the years of research that has went
into these solvers, the user would need to translate their path planning problem to the
specialized problem. However, due to the specialized nature of these problems the user
may find this translation task challenging.

As stated, ILP [67] is a general framework used for modelling path planning problems.
There are a number of good solvers, for which CPLEX [1] and Gurobi [66] are two of
the more popular commercial solvers and SCIP [2] is one of the fastest non-commercial
solver. In [68], the authors use MILP to plan optimal trajectories, and in [56, 44] ILP is
used to solve multi-robot charging problems. In [102], the authors give an ILP solution for
collision-free multi-robot problems.

Another common framework for expressing path planning problems is LTL. Here the
user models their problem with a set of state transitions, e.g., if the robot is at location x
then the next location it will visit is y. Solvers developed in the model checking community
can be used to compute runs (expressed as an automaton) that satisfy the LTL formula [36,
12]. In [89], LTL is used to express a class of persistent patrolling problems and the authors
propose a method for computing optimal plans rather than just feasible plans. In [48], LTL
is used to express multi-robot planning problems.

3

The STRIPS problem specification language [24] and its successor, PDDL [25] are like
LTL in that the user models their problem as a set of state transitions (PDDL’s transitions
are more expressive than LTL). An annual competition [95] is held to encourage partici-
pants to develop better solvers. The problems in the competition range from emergency
response scenarios to making a sandwich. There are a number of good solvers for these
expressions such as FF [34] and LAMA [78].

1.2 Contributions

This thesis looks to solve high-level path planning problems. Below we give the contribu-
tions and organization for this thesis.

Chapter 2 Reviews the concepts needed to solve high-level path planning problems and
solves an example problem with the ILP approach.

Chapter 3 This chapter introduces a novel alternative to ILP, called SAT-TSP. We
designed SAT-TSP as a modelling language for expressing path planning problems. The
language is structured in such a way to allow us to leverage recent techniques for Sat-
isfiability Modulo Theory (SMT). We provide the SMT based solver CBTSP, for solving
discrete path planning problems expressed as SAT-TSP problems. We prove its correctness
and benchmark it against a commercial-grade ILP solver on a set of three important mo-
tion planning problems: patrolling, sample collection with multiple robots, and periodic
routing. Our results show that CBTSP outperforms the ILP solver on a majority of the
instances, especially the more difficult to solve problems.

In Appendix B we provide five additional SAT-TSP solvers and benchmark them against
CBTSP. These alternatives were not as successful as CBTSP and are therefore omitted from
the main body of this thesis.

Additionally, we provide a demo video1 depicted in Figure 1.1 demonstrating one of
our application problems in a ROS environment with Husky robots.

The work presented in this chapter is based on the following publications:

• Frank Imeson and Stephen L Smith. A language for robot path planning in discrete
environments: The TSP with Boolean satisfiability constraints. In IEEE Interna-
tional Conference on Robotics and Automation, pages 5772–5777, 2014.

1https://ece.uwaterloo.ca/~sl2smith/SAT-TSP/demo.mp4

4

https://ece.uwaterloo.ca/~sl2smith/SAT-TSP/demo.mp4

• Frank Imeson and Stephen L Smith. Multi-robot task planning and sequencing
using the SAT-TSP language. In IEEE International Conference on Robotics and
Automation, pages 5397–5402, 2015.

• Frank Imeson and Stephen L Smith. An SMT-based approach to motion planning
for multiple robots with complex constraints. IEEE Transactions on Robotics (in
review).

Chapter 4 This chapter introduces a new technique for improving the efficiency of ex-
isting path planning solvers. The chapter introduces the clustering method Γ-Clustering,
that it uses to prune off large portions of the solution search space (to improve solver
efficiency). It provides an efficient algorithm for computing the optimal Γ-Clustering. The
chapter also provides two path planning solver approaches for pruning the solution space.
The first path planning solver approach, coupled planning, reduces the solution search space
by restricting how feasible paths visit the Γ-Clusters. The second approach, hierarchical
planning, further reduces the search space by decomposing the problem into a hierarchy
of independent problems. This additional reduction of search space is at the expense of
solution quality. However, in the chapter we prove that both methods find solutions within
a constant factor of the optimal.

Our benchmark compares the two solver approaches to the standard approach without
clustering. All simulations use an ILP solver to find path planning solutions. The bench-
mark problems consist of TSP, sample collection, and period routing problems. The results
show that the coupled method and the hierarchical method find high quality solutions, typ-
ically within 10% of optimal. The results also show that as the problems become more
difficult to solve, the coupled approach is able to maintain its performance longer than the
standard approach, and the hierarchical approach is able to maintain its performance even
longer.

Additionally, we compare the quality Γ-Clusters to the quality of clusters found by six
different clustering methods. The benchmark shows that overall the quality of Γ-Clusters
is superior to those found by the other methods.

The work presented in this chapter is based on the following publications:

• Frank Imeson and Stephen L Smith. Clustering in discrete path planning for approx-
imating minimum length paths. In American Control Conference, pages 2968–2973,
Seattle, WA, May 2017.

5

• Frank Imeson and Stephen L Smith. A hierarchical decomposition for computing
approximate solutions to vehicle routing problems. Submitted to International Con-
ference on Automated Planning and Scheduling (ICAPS), 2018.

Chapter 5 This chapter summarizes the work presented in this thesis and presents the
future directions this work could take.

Other Publications I have also collaborated on an article that introduces a new solver
for the generalized travelling salesman problem (GTSP). However, this work is not pre-
sented in this thesis.

• Stephen L Smith and Frank Imeson. GLNS: An effective large neighborhood search
heuristic for the generalized traveling salesman problem. Computers & Operations
Research, 2017.

6

Chapter 2

Preliminaries

This chapter reviews the concepts needed for solving high-level path planning problems.
We walk the reader through each step of the process, starting with graphs.

2.1 Graphs

Graphs are used to represent the robot’s discrete environment. The vertices in the graph
represent the locations in the robot’s environment and the set of edges capture the allowable
transitions between the locations the robot is able to make. For example, an edge 〈A,B〉
with weight w(A,B) = 4 tells us that the robot may transition from location A to location
B and if it does so then it will incur a cost of 4 (this cost may represent the time, distance,
etc., that the robot incurs to make the transition).

A graph G is defined by its tuple 〈V,E,w〉, where V is the set of vertices, E is the set
of edges, and w maps an edge 〈va, vb〉 ∈ E to its weight/cost. In this thesis we do not allow
negative weight edge transitions.

A complete graph contains an edge for every possible transition — there is an edge from
every vertex to every other vertex (|E| = |V |2). An undirected graph has edges that are
used to capture transitions between locations, e.g., an edge 〈A,B〉 describes the transition
from A to B and B to A. This is not the case for directed graphs, where an edge is required
to capture the transition from a location A to a location B and a separate edge is required
to capture the transition from B to A. Directed graphs allow for a greater expression of
information and thus complexity (e.g., we can express one-way transitions). In this thesis,
the assumption is that graphs are directed.

7

A metric graph is a complete graph that satisfies the triangle inequality. Formally, the
triangle inequality states that for every set of vertices A,B,C ∈ V the following holds:

w(A,C) ≤ w(A,B) + w(B,C).

Many robotic environments satisfy the triangle inequality and thus their graph’s are metric.

We use graphs to plan a sequence of transitions from one vertex to the next, which
allows us to navigate the robot in its environment. We refer to these sequences as paths.
In this thesis we concentrate on paths and cycles of the following form.

Definition 2.1.1 (Paths and Cycles). Given a graph G = 〈V,E,w〉, we define a path as
a non-repeating sequence of vertices in V , connected by edges in E. A cycle is a path in
which the first and last vertex are equal.

A Hamiltonian path is a path that visits every vertex in V (exactly once) and a Hamil-
tonian cycle is a cycle that visits every vertex in V (exactly once).

A path p can also be represented by the set of edges it traverses. The cost c of the path
p is the sum of its transition costs:

c =
∑

〈va,vb〉∈p

w(va, vb).

2.2 The Travelling Salesman Problem

The travelling salesman problem (TSP) is one of the most studied vehicle routing prob-
lems [4]. This chapter uses the TSP to demonstrate how to solve high-level path planning
problems. Traditionally the TSP problem is posed as a salesman wanting to find a mini-
mum length tour that visits a set of cities, where the length of the tour represents the total
distance travelled.

Problem 2.2.1 (Travelling Salesman Problem). Given a complete and weighted graph
G = 〈V,E,w〉, find a Hamiltonian cycle of G with minimum cost.

2.3 Complexity Theory

Understanding the problem’s complexity, is key to understanding the computational effort
need to solve the problem. This will help us chose which solver approach to use. For

8

example, some problems can be solved in a polynomial amount time and thus one would
likely want to choose a solver approach that guarantees the solution is found in a polynomial
amount time.

2.3.1 Decision Problems

Many high-level path planning problems are optimization problems that look to find the
lowest cost solution(s). Decision problems on the other hand are problems with a yes or a
no answer. The decision version of the optimization problems that we are interested in are
as follows: is there a solution to the problem of cost c or lower. For example, the decision
version of TSP looks to find Hamiltonian cycle of cost c or less. In this way we can better
classify the complexity of finding solutions, not just finding optimal solutions.

2.3.2 Complexity Classes

The study of complexity theory has discovered that there is a set of classes that we can use
to classify a problem’s complexity. These classes allow us to formally detect if problem A
is a variant of problem B, thus allowing us to use techniques/solvers developed for problem
B on problem A. This is done by reducing problem A to problem B and solving it with
problem B’s solver. The algorithm used for the reduction must run in a polynomial amount
of time, otherwise it is arguably a misuse of computational effort that could instead be
used to find solutions for problem A.

Problem A is said to be complete in its complexity class if any other problem B in the
same complexity class can be efficiently reduced to A. A problem is said to be hard for
some complexity class X if it is at least as hard as the hardest problem in X (it can be
harder than all of the problems in X). A problem instance is a specific realization of the
problem. For example, if we were given a graph G with 10 vertices and we wished to find
a shortest tour visiting each vertex exactly once, then the graph G is the instance and the
problem is a TSP problem.

The complexity class NP captures the set of problems that have solutions that are
efficiently verifiable. For example, a problem A is in NP if given a solution to a problem
instance of size n, then we can verify the solution with a polynomial amount of time
(O(nb), where b is some constant). Problem A is NP-hard if it is as hard or harder than
any problem in NP. Thus NP-complete problems are NP-hard.

As an example, the decision version of TSP problem is NP-complete— given a graph
G, a tour p, and a budget c we can efficiently verify that the path p has cost c or less. The

9

optimization version of TSP is NP-hard, as one cannot efficiently verify that a solution
p is the lowest cost solution. Therefore, to solve TSP problems we will look for a solver
approach that can handle problems in this complexity class.

Some additional complexity classes are: the class P, which capture all problems that
are solvable in polynomial time with respect to the input size of the problem; the class
PSpace, which capture problems that are solvable with a polynomial amount of space;
and the class EXPSpace, which are problems solvable with an exponential amount of
space. The class P is a subset of NP and it is believed that it may be a strict subset. We
provide the following relations to understand which classes are contained within each other
and thus work towards understanding which problems are harder to solve than others:

P ⊆ NP ⊆ PSpace ⊆ EXPSpace.

2.4 Using ILP to Find Solution Paths

As stated, integer linear programming is a good general approach for finding solutions for
high-level path planning. This approach is suitable for finding optimal solutions for path
planning problems that have their decision problem in the class NP-complete.

This approach uses a series of linear inequalities coupled with an objective to model the
planning problem. The inequalities capture relationships between the variables, which can
only take on integer values and the objective is a linear equation that is to be minimized
(or maximized). The solver attempts to find an optimal assignment of the variables that
satisfies the set of inequalities (minimize the objective).

Now we walk the user through how to solve TSP problems with an ILP solver. Let us
use the set of variables {ei,j|〈vi, vj〉 ∈ E} to represent the edges and the set of variables
vi ∈ V to represent the set of vertices for the ILP expression.

10

minimize ∑
vi∈V

∑
vj∈V \vi

ei,jw(vi, vj) (2.1)

subject to ∑
vj∈V \vi

ei,j = 1, for each vi ∈ V (2.2)

∑
vi∈V \vj

ei,j = 1, for each vj ∈ V (2.3)

∑
vi,vj∈S

ei,j ≤ |S| − 1, for each S ⊂ V s.t. |S| ≥ 2 (2.4)

0 ≤ vi ≤ 1, for each vi ∈ V (2.5)

0 ≤ ei,j ≤ 1, for each 〈vi, vj〉 ∈ E (2.6)

The above formulation was taken from [70]. The objective (2.1) captures the cost of
the solution by adding all the edge weights that are included in the tour. Constraints (2.2)
and (2.3) ensure that there are exactly one incoming and one outgoing edge for each vertex.
Then subtours (a solution with multiple tours instead of one tour) are eliminated in Con-
straint (2.4) by explicitly eliminating every possible tour. There are an exponential number
of these constraints and so in practice these constraints are added to the formulation as
the solver violates them. This is referred to as a lazy constraint.

Once the ILP solver has found a solution, we translate it back to a TSP solution. This
is trivially done for this example since the set of edges that construct the tour p are the
set of included edge variables in the ILP solution.

Remark 2.4.1. We chose the above ILP expression over a polynomial expression because of
its effectiveness. The decision version of TSP is NP-complete, thus there are polynomial
time reductions to ILP such as the MTZ formulation [57], however in practice, better
performance is achieved with the above expression [70, 69].

2.5 Summary

In this chapter we reviewed the steps for solving high-level path planning problems using
an ILP approach. A summary of the steps are as follows:

11

1. Classify the path planning problem’s complexity.

2. Choose an approach capable of solving problems of said complexity (for our example,
we used ILP).

3. Express the problem in a readable format for the chosen approach.

4. Use an exiting solver to find solution(s).

In the next chapter we explore an alternative approach to ILP, then in Chapter 4 we
explore two methods for improving solver efficiency (the chapter improves the efficiency of
an ILP solver).

12

Chapter 3

An Alternative to ILP

In this chapter we propose an alternative to the ILP approach for solving high-level path
planning problems. We focus on the class of problems that require the allocation of tasks
to robots and a set of efficient paths that allow the robots to visit their task locations.

We start by introducing the new problem language SAT-TSP. We use this language to
express/model high-level path planning problems. The problem is a combination of the
satisfiability problem (SAT) and the travelling salesman problem (TSP). The SAT problem
takes in as input a Boolean formula and asks the question is there an assignment of the
variables that satisfies the formula. The TSP problem takes in as input a graph and searches
for the minimum cost Hamiltonian cycle (see Section 2.2). The SAT-TSP problem takes
in as input: one formula, one or more graphs (multiple robots use multiple graphs), and
one or more cost budgets (multiple robots may use multiple cost budgets). We use the
formula to express the problem’s constraints and the graphs and cost budgets are used
to capture the sequencing/routing problems. The constraints and the environment(s) are
linked together via a set of variables. Here a location in the environment is visited if
and only if its corresponding variable is assigned true. This allows SAT-TSP to express
logical constraints on the robots’ motion, such as task dependencies, incompatibilities, and
capacity constraints. A SAT-TSP solution is a set of paths (one for each robot) that visits
a subset of locations in the environment, satisfies the constraints, and has transitions that
are within the cost budget(s).

The structure of SAT-TSP allows us to leverage recent developments in the Satisfiability
Modulo Theory (SMT) community. Specifically, we developed the solver CBTSP to solve
SAT-TSP problems using the SMT framework. In this way we were able to combine a
state-of-the-art SAT solver with a state-of-the-art TSP solver.

13

The SAT-TSP problem inherits the strengths of its sub-problems, SAT and TSP. As such
it is most suited for path planning problems with constraints that are efficiently expressible
as SAT formulae and optimization objectives resembling shortest paths/tours. Conversely
if a set of problems contain constraints that are not efficiently expressible in SAT or the
problem has an optimization objective that has nothing to do with the robots transitions,
then SAT-TSP would likely be a poor choice.

The contributions of this chapter are as follows. We formally introduce the SAT-TSP

problem language and characterize its complexity. Specifically, we show that even when
SAT-TSP is compromised of easy SAT and TSP problems, the SAT-TSP instance can still
be hard. We provide the SAT-TSP solver, CBTSP, and prove its correctness. Then we
benchmark CBTSP against an ILP approach on a series of high-level path planning prob-
lems: patrolling problems, multi robot sample collection problems, and periodic routing
problems. The results show that CBTSP often outperforms the ILP approach — especially
on more difficult instances.

This chapter is organized as follows. Section 3.1 reviews the related work to the
SAT-TSP approach. Section 3.2 provides the necessary background needed for this chapter.
Section 3.3 formally introduces the SAT-TSP problem and classifies its complexity. Sec-
tion 3.4 introduces the CBTSP solver, proves its correctness for the class of TSP-monotonic
instances (Definition 3.4.2), and provides a relaxation for the TSP-monotonic class to ex-
pand the set of solvable instances. Section 3.5 outlines the ILP approach used for our
comparison and Section 3.6 shows how to express patrolling, collection, and period rout-
ing problems with SAT-TSP and ILP. Section 3.7 details our benchmark and presents the
results. For the interested reader we provide five additional SAT-TSP solver approaches in
Appendix B, which consist of SAT, TSP, GTSP, CSP, and SMT solver approaches.

3.1 Related Work

This section builds upon Section 1.1 to provide a more in depth review of the literature
related to this chapter. As previously stated, TSP, GTSP, ILP, LTL, and STRIPS are all
general frameworks used for solving high-level path planning problems.

The TSP and GTSP problems are more specialized than the SAT-TSP problem. As such,
using TSP or GTSP to model complex path planning problems is more challenging than
using SAT-TSP. TSP and GTSP solvers are geared towards searching for low cost paths —
not solving complex logic. This is in contrast with SAT solvers, which are geared towards
using the logic of the problem to eliminate infeasible solutions. As such there is no reason

14

to believe that TSP and GTSP solvers would be proficient at solving complex path planning
constraints. Regardless, in Appendix B we explore using TSP and GTSP solvers for finding
SAT-TSP solutions.

The non-optimization version (the decision version) of ILP, like SAT-TSP is
NP-complete— both can express the same set of problems. However, in practice both
approaches have their own limitations. For example, unlike ILP, it is arguably awkward
to use SAT-TSP for counting constraints (e.g., visit x red locations). This is due to the
simple structure that SAT uses for expressing logic. However, this structure has led to the
success of the DPLL [19, 18] and DPLL(T) [63] algorithms, which are used in modern SAT
solvers [90, 59] and CBTSP. Furthermore, we demonstrate in this chapter that SAT-TSP can
be successfully used for counting constraints. We provide a direct comparison of CBTSP

to the commercial ILP solver, Gurobi, on a set of robotic path planning problems and the
results show that CBTSP often outperforms the ILP solver.

Many important path planning problems lie in NP and our goal in this chapter is
to produce a solver that is tailored to problems in this class. A drawback of LTL, is
that LTL is in a higher complexity than SAT-TSP. Specifically, the decision version of
LTL is in the class PSpace-complete [87] where the decision version of SAT-TSP is in the
class NP-complete. The LTL language is likely more expressive than SAT-TSP, since it is
believed that PSpace is a strict superset of NP. For example, LTL can be used to express
planning problems that consist of infinite length solution paths (i.e., persistent problems)
where SAT-TSP cannot. There are potential downfalls of using a more complex language,
such as allowing the user to inadvertently increase the complexity of their problem. For
example suppose the user requires a path from location A to location B (any path) and
the user has access to a TSP solver. If they choose to express their problem as a TSP, they
would be able to find a solution to their problem but they would have also increased the
complexity of their problem.

STRIPS and PDDL are capable of expressing problems in EXPSpace [21], which is
believed to be a strict superset of PSpace and thus NP. This work focuses on problems
in NP and uses an integer programming approach as our point of comparison.

Our main solver, CBTSP is based on SMT which is an extension of SAT that allows
for first order logic. SMT solvers have previously been proposed for solving path planning
problems. In [86] and [38], the authors solve the high-level and low-level path planning
problems simultaneously. This is unlike our approach where we leverage the SMT frame-
work to better solve the high-level problem. In [60] and [80], the authors use an off the shelf
SMT solver to find solutions for the high-level path planning problem. Our approach differs
from these by using a custom SMT theory that specializes in handling the combinatorial

15

nature of sequencing locations. Additionally, we have explored solving SAT-TSP instances
with an SMT solver and found that it does not scale well (the results are provided in Ap-
pendix B). To the best of our knowledge, we are the first to solve high-level path planning
problems using a custom SMT theory to handle the combinatorial aspect of sequencing.

3.2 Background

This section reviews the background concepts needed for this chapter.

3.2.1 Boolean Satisfiability (SAT)

In this chapter we use the Boolean satisfiability problem (SAT) [18] to encode path planning
constraints. A SAT formula is a propositional formula that is composed of Boolean literals
and operators. A literal is either a Boolean variable (x) or its negation (¬x). The operators
are conjunction (∧, and), disjunction (∨, or) and negation (¬, not), which may operate
on the literals or other Boolean formulae. An assignment of the variables (true or false)
results in the formula being satisfied (true) or not (false). The conjunctive normal form
(CNF-SAT) is the canonical form of SAT. A formula F is in its canonical form if the formula
is a conjunction of clauses, where each clause is a disjunction of literals. We allow formulas
to be expressed in non-canonical form.

Problem 3.2.1 (SAT). Given a propositional Boolean formula F , determine if it is satis-
fiable.

3.2.2 Boolean Circuits

Developing SAT expressions to capture constraint logic can be difficult. To aid in this
process, one can borrow from Boolean circuits. In this chapter we borrow logic from adder
circuits to construct counting constraints.

Adder circuits are used in electronics to do rudimentary mathematical operations [55].
Given an input set X of Boolean signals, the adder circuit counts the number of signals
that are true (high). The example circuit shown in Figure 3.1 takes as input, a set of
signals X = {x1, x2, . . . , x5} and outputs the bit b1. This circuit is composed of four two
bit adder circuits. The circuit constrains the binary one bit b1 to the equal the number
of true input variables in X. There would be a similar circuit for the twos bit that takes

16

These carry over bits are used as input
in the next level of adder circuit.

XOR gate.

AND gate.

2-Bit Adder circuits

Figure 3.1: An adder circuit summing up Boolean input variables X = {x1, x2, . . . , x5}
and outputting the Boolean variable b1, as well as the carryout bits.

in as input, all of the carry out bits from the example. The complete binary circuit is
constructed using techniques in [55]. The circuit is then translated to a Boolean formula
(SAT) in polynomial time using methods from [41].

3.2.3 SMT and DPLL(T)

Satisfiability Modulo Theory (SMT) is an extension of SAT that allows for first-order logic.
The SMT framework extends SAT by linking non-SAT theories back to the SAT formula.
Specifically, the SMT problem uses a propositional formula F defined over a set of Boolean
variables X that contain a set of predicate variables xt ∈ XT for each theory instance
t ∈ T . Each theory instance belongs to a specialization of decidable first-order logic, such
as arithmetic logic or quantifiable Boolean logic. The power of this approach is that a SAT
solver can be used to solve the propositional formula while a set of specialized solvers can
be used for the theories.

Definition 3.2.2 (SMT). An SMT formulation 〈F, T 〉, is satisfiable if and only if

1. F is a propositional formula defined over X ⊇ XT ,

2. T is a set of decidable first-order logic problems defined over Q such that X ⊆ Q,

3. and there exists an assignment of Q satisfying F such that for every t ∈ T the
corresponding predicate variable xt agrees with the evaluation of xt (true or false).

17

DPLL(T): The DPLL(T) algorithm for solving SMT instances is based on the DPLL
algorithm [18] using solving SAT instances (propositional formulae). The DPLL algorithm
solves F by building a list of assignments for the Boolean variables in F (a partial solution).
This algorithm extends DPLL to incorporate theories by linking the predicates xt ∈ X to
the theories t ∈ T . Informally, the algorithm works as follows: as partial solutions for
F are being constructed by the DPLL algorithm, the theory solvers are called to confirm
that the partial SAT solutions are consistent with the theories. If a theory is consistent,
then the DPLL algorithm continues. If not, the theory solver that detected the conflict
constructs a learnt clause fconflict to capture the conflict over the set Boolean variables X.
The learnt clause is added to F ← F ∧ fconflict and the algorithm backtracks some or all of
its assignments until the partial solution no longer conflicts with the new F .

Note 3.2.3. The above description of DPLL(T) captures only the mechanisms of DPLL(T)
that are utilized by the CBTSP solver. A full description of DPLL(T) can be found in [63].

3.2.4 Induced Subgraphs

An induced subgraph is a subgraph of G that contains a subset of the vertices and all the
edges connected to those vertices.

Definition 3.2.4 (Induced Subgraph). The induced subgraph of a graph G = 〈V,E,w〉 for
V ′ ⊆ V is the graph G′ = 〈V ′, E ′, w〉 with E ′ = {〈vi, vj〉 ∈ E|vi, vj ∈ V ′}. We say that G′

is induced by V ′.

3.3 Problem Statement

In this section we provide a formal definition of the SAT-TSP problem and classify its
complexity.

3.3.1 SAT-TSP Definition

Before we define the decision version of SAT-TSP and its two optimization problems, we
start with some notation. A SAT-TSP instance can take as input multiple graphs with a
cost budget ci for each input graph Gi. To simplify the notation we sometimes absorb the
cost budget ci into the graph’s tuple Gi = 〈Vi, Ei, wi, ci〉 (when there is only one graph, we
do not absorb the cost budget). A formula F has a solution or partial solution M , which

18

is a collection of variable assignments. A variable x is assigned true if xT ∈M and false if
xF ∈M , otherwise x is unassigned.

Problem 3.3.1 (SAT-TSP). The SAT-TSP decision problem takes as input
〈G1, G2, . . . , Gn, F, C〉, where:

• Gi = 〈Vi, Ei, wi, ci〉 is a directed weighted graph with edge weights wi : Ei → R≥0

and cost budget ci,

• F is a Boolean formula defined over X ⊇ V1, V2, . . . Vn,

• C is a budget imposed on the total path cost.

Then the instance is satisfiable if and only if:

• there exists a tour of each graph Gi over a subset V ′i ⊆ Vi with cost c′i ≤ ci,

• such that
∑n

i=1 c
′
i ≤ C,

• and there exists an assignment M of X satisfying F such that a vertex variable v = 1
(vT ∈M) if and only if v ∈ V ′1 ∪ V ′2 ∪ . . . ∪ V ′n.

In this chapter we consider two optimization problems for SAT-TSP: 1) minimize the
total cost budget and 2) minimize the maximum cost budget of any graph Gi. The first
optimization problem minimizes C and the second optimization problem minimizes maxi ci.

We refer to problem instances with metric graphs as metric SAT-TSP instances. Note
that, robotic environments are typically metric as they often represent time, distance,
and/or battery consumption.

Example 3.3.2 (Modelling a problem in SAT-TSP). Consider two robots: robot 1 has a
battery life of 10 minutes and can travel at 2 m/s, while robot 2 has a battery life of 12 min-
utes and can travel at 1 m/s. The environment contains locations L = {1, 2, . . . , |L|}. Each
location must be visited by either robot 1 or 2, but not both. We encode this as a SAT-TSP

instance by first creating two graphs, G1 = 〈V1, E1, w1, c1〉 and G2 = 〈V2, E2, w2, c2〉 to cap-
ture the transitions for each robot. Specifically, each graph Gr contains a vertex vi ∈ Vr
for each location i ∈ L and an edge 〈vi, vj〉 in the graph represents the transition from
location i to j. The weight of the edge 〈vi, vj〉 in each graph is given by the travel time
for the corresponding robot to travel from location i to location j. If the distance from i
to j is di,j, then the weight for robot 1 is w1(vi, vj) = di,j/2 and the weight for robot 2 is

19

w2(vi, vj) = di,j. Now the tuple 〈V1, E1, w1, 10〉 captures the transition system for robot 1
and its battery budget, similarly tuple 〈V2, E2, w2, 12〉 for robot 2.

Next we construct the formula F using the set of variables X = {vi,r|i ∈ L, r ∈ R} that
represents if vertex vi ∈ Gr is in the solution or not (true or false). We start by adding the
set of clauses (vi,1 ∨ vi,2) to F for each i ∈ L, to express that each location i ∈ L must be
visited by at least one robot. Then we add the clauses (¬vi,1 ∨ ¬vi,2) to express that each
location i ∈ L can be visited by at most one robot.

Finally, we choose a value for the total cost budget, to be any value C ≥ 22, since any
solution satisfying the individual robot budgets will also satisfy this C. If we wish to find
the solution with the lowest total cost, we search for feasible solutions that minimize C.�

3.3.2 Complexity of SAT-TSP

The decision version of SAT-TSP is NP-complete. This follows from the fact that SAT
reduces to SAT-TSP (SAT is an NP-complete problem) and a SAT-TSP solution can be
verified in polynomial time.

We also classify the complexity of SAT-TSP when its SAT and TSP problems are easy
to solve. Let SAT

∗ ⊆ SAT and TSP
∗ ⊆ TSP be the set of problem instances that are in

P (solvable in polynomial time). An example of a TSP instance that is easy to solve (in
TSP

∗) is an instance with a graph that has all of its edge weights equal to 1. Finding an
optimal solution of cost |V | is accomplished in polynomial time by choosing any ordering
of the vertices. We are interested in SAT-TSP instances composed of easy SAT and TSP

instances because it is often the case that TSP solvers work very well on TSP problems
encountered in practice, such as those in the TSP library [77]. Similarly, SAT solvers are
quite efficient on practical SAT problems, such as instances in the SAT library [37]. So does
this mean that if our SAT-TSP problem is composed of easy instances in SAT

∗ and TSP
∗,

then it is easy to solve?

Theorem 3.3.3. Consider the subset of SAT-TSP problems composed of instances from
SAT

∗ and TSP
∗, then this subset of SAT-TSP remains NP-complete.

Proof. We prove the above result by reducing a NP-complete problem to a SAT-TSP prob-
lem composed of SAT

∗ and TSP
∗ problems. Specifically, we do this for the SET-COVER

problem. This problem takes in as input 〈U, S, C〉, where U is a universe of finite elements
(a set), S is a collection of sets, for which each set Si ∈ S contains a subset of the elements
from U (Si ⊂ U), and C is a cost budget, then a solution is a subset S ′ ⊂ S that covers all
of the elements in U with S ′ and |S ′| ≤ C. The reduction maps the sets Si ∈ S to vertices

20

vi in the complete graph G = 〈V,E,w〉, where the edges in the graph all have a weight of
1. The inclusion/exclusion of a set Si is indicated by the SAT-TSP tour visiting the vertex
v′i ∈ V . The SAT-TSP formula

F =
∧
uj∈U

 ∨
i|uj∈Si

vi

is used to ensure that each element uj ∈ U is covered by at least one set Si. A solution to
the SAT-TSP problem 〈G,F,C〉 (C is given as input to the set cover problem) is a tour of
length c′ ≤ C, which translates to a set cover solution with c′ sets (|S ′| = c′).

The TSP instance G and sub-instances have the trivial solution of any tour (all tours
have the same cost since all edges have weight 1). The SAT instance F and sub-instances
also have trivial solutions since there are no negative literals in the formula (we simply
assign all the literals to be true). Thus, both the SAT and TSP instances are solved in
linear time (polynomial time) and since SET-COVER is NP-hard, then it must be the case
that SAT-TSP remains NP-complete despite the fact that the SAT and TSP problems are
in SAT

∗ and TSP
∗ respectively.

Theorem 3.3.3 proves that SAT-TSP is NP-hard even when its sub-problems are easy.
Therefore, we expect that an effective SAT-TSP solver will require some additional level of
sophistication on top of being able to solve SAT and TSP problems.

The next Section starts by introducing the BRUTE solver as a näıve combination of a
SAT and TSP solver that explores every SAT solution (there may be exponential number
of solutions to explore). The CBTSP solver improves upon BRUTE by adding the ability
to negate partial solutions while leveraging the sophistication of the SAT solver to choose
candidate solutions. This ability of negating partial solutions allows CBTSP to more effec-
tively prune the search space. Letting the SAT solver choose the candidate solutions allows
us to take advantage the algorithm’s ability to find the variables/locations in the problem
that cause the most conflicts.

3.4 CBTSP: An SMT-based approach for SAT-TSP

In this section we provide a simple BRUTE solver as a lead-in to the CBTSP solver. We
provide a high-level description of the CBTSP solver and provide the conditions under which
CBTSP can be used.

21

3.4.1 The BRUTE Approach: A Lead-in to CBTSP

The BRUTE approach decouples the SAT-TSP instance by first solving the SAT instance
and then the TSP instance. For simplicity, Algorithm 1 implements a SAT-TSP solver
that only takes instances with one input graph. The algorithm is easily extended to take
multiple graphs by replacing Line 5 with multiple calls to the TSP solver and bookkeeping
the additional cost budgets.

The BRUTE solver approach is given in Algorithm 1. First it uses a SAT solver to find a
feasible set of included vertices V ′ (Lines 2 and 3). Next, it uses a TSP solver, TSP-Solve
to find the minimum cost tour p′, with cost c′ ≤ C (Line 5) of the induced subgraph G′

(Line 4). It negates the solution from reoccurring (Line 10) and repeats the process until
it has checked every solution (Line 1). The problem with this approach is that there may
be an exponential number of solutions to find and negate.

Algorithm 1: Brute-SAT Approach(G,F,C)

Input:
G: is a graph with vertices V .
F : is a Boolean formula with variables X.
C: is a Γ-Clustering.

Output:
M ′: is a full assignment of X, that evaluates F to true.
p′: is an optimal solution path.
c′: is the cost of p′.

1 while satisfiable(F) do
2 M ′ ← Solve(F)

3 V ′ ←
{
v ∈ V |vT ∈M ′}

4 G′ ← SubGraph(G, V ′)
5 〈p′, c′〉 ← TSP-Solve(G′, C)
6 if c′ ≤ C then
7 return 〈M ′, p′, c′〉
8 else

9 f ′ ←
(∧

v∈V ′ v
)
∧
(∧

v∈V \V ′ ¬v
)

10 F ← F ∧ ¬f ′

11 return ∅

If we were solving metric instances, a less näıve approach would be to replace Line 9

22

with f ′ ← (
∧
v∈V ′ v). This would allow the algorithm to negate the solution, as well as

all supersets of V ′, thus more effectively pruning the solution space. This approach would
be valid for metric instances since we cannot lower the solution cost by adding vertices to
the solution tour. The CBTSP approach works in this way, but it is also able to negate
partial solutions. In fact the CBTSP solver’s parameters (found in Appendix A) allow it to
be configured as a non-näıve brute approach (negate supersets of full solutions but ignore
partial solutions). In this way, we can start to see how CBTSP is a sophisticated extension
of the BRUTE approach.

3.4.2 The CBTSP Solver

The CBTSP solver builds on the BRUTE approach by using partial solutions to prune the
search space. This allows for significant computation savings. We begin by casting the
SAT-TSP problem in the SMT framework. We use the DPLL(T) algorithm (Algorithm 2) to
couple a SAT and TSP solver. The CBTSP solver only works for TSP-monotonic instances
(Definition 3.4.2), which essentially means that the cost of partial solutions cannot be re-
duced by adding vertices. TSP-monotonicity is a necessary property needed to prune partial
solutions. Additionally, metric SAT-TSP instances are TSP-monotonic (Theorem 3.4.6).

Definition 3.4.1 (Partial Solution). Given a SAT-TSP instance 〈G1, G2, . . . , Gn, F, C〉, a
partial solution M is a True/False assignment for a subset of the variables in X. The sub-
graph G′i induced by M is the subgraph induced by the vertices V ′i ⊂ Vi when corresponding
variables in M are true.

Definition 3.4.2 (TSP-Monotonicity). A graph G = 〈V,E,w〉 is TSP-monotonic, if for
any vertex subsets of the following form V1 ⊂ V2 ⊆ V the induced subgraphs G1 and G2

have TSP costs c1 ≤ c2.

The TSP-monotonic property allows for the negations of partial solutions that exceed
the cost budget(s) (including more vertices cannot lower the solution cost). Specifically, if
the partial solution exceeds the cost budget(s), then we exclude the responsible vertices and
their supersets from reoccurring (the negation details are given in Algorithm 3, Lines 6-11).

To find optimal solutions the CBTSP approach solves a series of SAT-TSP problems
〈G1, G2, . . . , Gn, F, C〉 formulated as SMT problems. The SMT formulation uses a custom
TSP theory (Algorithm 3) to construct the induced subgraph (Lines 2 and 3) and answer
the decision problem of whether or not a TSP solution exceeds the cost budget(s). The
SMT problem is as follows: the propositional formula is F ∧ xtsp, where F is the Boolean
formula in the SAT-TSP instance and the predicate xtsp is decided by the custom TSP

theory (xtsp is true if and only if the theory can find a TSP tour of the included vertices

23

within the cost budgets). The SMT theories have prior knowledge of the ground variables
X, the graphs Gi, and the cost budget(s). The cost budget(s) are set by the user or a
binary search algorithm used to find optimal solutions. The TSP theory is as follows:

Problem 3.4.3. The TSP-Theory takes as input the tuple 〈G1, G2, . . . , Gn,M,C〉, where

• 〈G1, G2, . . . , Gn, C〉 is the input to setup the theory and

• M is the input when called by the SMT solver.

• Each Gi = 〈Vi, Ei, wi, ci〉 is a TSP-monotonic graph and has a cost budget ci,

• C is the total cost budget, and

• M is a partial or full assignment of the ground variables in F .

Then the theory is satisfiable (xtsp = 1) if and only if

• there exists a tour for each graph Gi, of cost ci or less over the set of vertices{
v ∈ Vi|vT ∈M

}
• and the total cost of the solution does not exceed C.

In the SMT formulation, the xtsp predicate is forced to be true, thus all solutions and
partial solutions must not exceed the cost budget(s). If the TSP theory finds that there is
no solution, then a learnt clause is constructed (Lines 6-10 of Algorithm 3) and added back
to the formula F (Line 6 of Algorithm 2). The DPLL(T) solver is subsequently tasked
with solving the new formula (which includes the learnt clause).

At a high-level, CBTSP solves decision instances as follows:

1. set up the TSP-Theory with the graphs and budgets 〈G1, G2, . . . , Gn, C〉,

2. call DPLL(T) on F (Algorithm 2),

3. build partial solutions (Line 6 of Algorithm 2),

4. check the consistency of the TSP-Theory (Line 4),

5. negate partial solutions if there is a conflict (Line 6),

6. return the solution if satisfiable, otherwise return ∅.

24

Algorithm 2: Overview of DPLL(T) on F

Input:
Gi: is a graph 〈Vi, Ei, wi, ci〉, where ci is cost budget for Gi.
F : is a Boolean formula with variables X.
C: is a Γ-Clustering.

Output:
M : is a full assignment of X, that evaluates F to true.

Precondition:
TSP-Theory.setup(G1, . . . , Gn, C)

1 M ← ∅
2 while ∃x ∈ X s.t.

{
xT , xF

}
∩M = ∅ do

3 Add a new variable assignment to M
4 fconflict ← TSP-Theory(M)
5 if fconflict 6= ∅ then
6 F ← F ∧ fconflict

7 Backtrack M to some point that does not conflict with F

8 if M solves F then
9 return M

10 else
11 return ∅

25

Algorithm 3: Overview of TSP-Theory (M)

Input:
Gi: one of n input graphs, where each Gi = 〈Vi, Ei, wi, ci〉.
X: the set of ground variables for F .
C: a budget for the total solution cost.
M : a partial or full assignment of the variables in X.

Output:
fconflict: a clause that captures the conflict.

1 for each graph Gi do
2 V ′i ←

{
vj ∈ Vi|vTj ∈M

}
3 G′i ← InducedGraph(Gi, V

′
i)

4 〈p′i, c′i〉 ← TspSolve(G′i, ci)

// Construct the learnt clause

5 fconflict ← ∅
6 if some c′i > ci then

7 fconflict ← ¬
(∧

vj∈V ′i
vj

)
8 else if

∑
c′i > C then

9 V ′ ← V ′1 ∪ . . . ∪ V ′n
10 fconflict ← ¬

(∧
vj∈V ′ vj

)
11 return fconflict

26

Note 3.4.4. Algorithm 2 is a simplified version of CBTSP. The real algorithm is more
sophisticated than what is depicted — it keeps track of more than M , such as the solution
path(s) and their costs.

Example 3.4.5 (Illustration of the CBTSP approach). This example demonstrates the
interaction between the SAT solver (based on DPLL) and the TSP solver (the TSP theory)
in CBTSP. Suppose we have one input graph G = 〈V,E,w, c〉 and suppose the solver has
constructed a partial solution M =

{
xT99, v

F
2 , v

T
1 , x

T
67, v

T
4 , v

T
5

}
. Then suppose that the SAT

solver extends the partial solution by assigning v6 to be true. Once the assignment vT6 is
added to M , the TSP theory solver is called to make a consistency check. The TSP theory
uses M to construct the TSP problem G′ over the set of included vertices v1, v4, v5 and v6.
Note x99 and x67 are not vertex variables (they are auxiliary variables) and so they do not
appear in this set. The TSP theory then calls the TSP solver with input 〈G′, c〉 and if a tour
is found within the budget the theory returns true (consistent). The DPLL solver (SAT
solver) continues to build upon the partial solution. If no tour is found within the budget
the check is inconsistent and the learnt clause fconflict = ¬(v1 ∧ v4 ∧ v5 ∧ v6) is constructed
to be added to F so that the SAT solver avoids this solution in the future. The SAT solver
then backtracks (revert some of the partial solution) to avoid the inconsistency and looks
for a new solution that satisfies F ∧ fconflict. �

The optimization version of CBTSP uses a modified version of binary search to find a
solution with minimum cost. It solves a series of SAT-TSP decision instances with different
cost budgets (minimize C or minimize the maximum ci). Algorithm 4 shows the version of
binary search that minimizes the cost C. The same basic algorithm is used to find optimal
solutions for problems that aim to minimize the maximum cost ci (subgraph cost). This
is achieved by replacing C with c1 in the algorithm and replace ci with c1 for each TSP

instance Gi = {Vi, Ei, wi, ci} so that c1 now constrains the maximum subgraph cost for
each Gi. The initialization of C+ and C∗ chooses a sufficient value that is less than the
cost of any feasible solution and the parameter bdiv is used to configure the step size of the
search algorithm. SAT solvers typically take longer to deduce that a formula is unsatisfiable
and thus it is desirable to weight the search to explore satisfiable instances first (choose
bdiv > 2).

3.4.3 Correctness

In this section we show that metric instances are TSP-monotonic (Definition 3.4.2) and
prove that CBTSP yields the correct solution for TSP-monotonic instances.

Theorem 3.4.6. Metric graphs are TSP-monotonic.

27

Algorithm 4: Binary Search(G1, G2, . . . , Gn, F)

Input:
Gi: is an input graph.
F : is the input formula.

bdiv: is the config parameter for the divider (nominally 2).
Output:
C∗: is the optimal cost found by the search.

1 C− ← 0
2 C+ ←

∑n
i=1 max {wi(va, vb)|〈va, vb〉 ∈ Ei} |Gi|

3 C∗ ←
∑n

i=1 max {wi(va, vb)|〈va, vb〉 ∈ Ei} |Gi|
4 while C− < C+ do

5 C ← C+ −
⌊
C+−C−
bdiv

⌋
6 C ′ ← CBTSP(G1, G2, . . . , Gn, F, C)
7 if C ′ ≥ 0 then
8 C+ ← C ′ − 1
9 C∗ ← C ′

10 else
11 C− ← C + 1

12 return C∗

28

Proof. We use contradiction to prove the above. Assume that there is some subset V1 ⊂ V
and V2 = V1 ∪ vj such that the induced subgraphs G1 and G2 have TSP costs c1 > c2. This
means that the tour of G1 can be shortened if we include the vertex vj. Suppose the shortest
tour of G2 has the edge 〈vi, vj〉 in the path. We construct the graph G′1 to be a copy of graph
G1 and replace the weights of the outgoing edges for vi with w′1(i, j) = w2(i, j) + w2(j, k).
Now the graph G′1 will have the same optimal tour cost as G2 but since the edge weights
of G′1 compared to G1 are equal or larger (triangle inequality) the optimal tour cost of G′1
cannot be lower than the optimal tour cost of G1.

It follows that we cannot incrementally add vertices to V1 to lower the TSP cost of the
new graph. Consequently, the TSP costs c1 and c2 for V1 and V2 satisfies c1 ≤ c2. Therefore
metric graphs are TSP-monotonic.

Theorem 3.4.7. The CBTSP approach is correct (i.e., sound and complete) on TSP-
monotonic decision instances.

Proof. We first prove that the SMT formulations used by CBTSP are sound and then we
prove that the SMT solver approach (DPLL(T) on F) used by CBTSP is sound and complete.

The soundness of the SMT formulation follows from the definition of SAT-TSP (Prob-
lem 3.3.1) and Definition 3.4.2. Specifically, the SMT formulation allows for the negation
of partial solution vertex sets and supersets for induced subgraphs that exceed the TSP

budget(s). This does not remove any solutions in the search space that could have TSP

costs within the budget, since the graph(s) are TSP-monotonic. Furthermore, a full SMT

solution consists of TSP tour(s) of the included vertices and a satisfying assignment of F ,
which is a solution to the SAT-TSP instance. Therefore, the SMT formulation is sound,
since it has the same solution set as the SAT-TSP formulation.

It follows that the solver approach for SMT instances is sound and complete, since it is
based on the sound and complete algorithm DPLL(T) [63]. Therefore the CBTSP approach
is correct on TSP-monotonic instances.

3.4.4 Relaxing TSP-monotonicity

In this section we expand on the class of instances solvable by CBTSP (TSP-monotonic
instances). Specifically, we describe a relaxation of TSP-monotonicity that can be used in
practice with CBTSP when we have prior knowledge of a vertex set A ⊆ V that must be
included in the solution. The knowledge of this set allows us to relax the TSP-monotonicity
property to apply to sets V1 ⊇ A. The CBTSP solver in turn avoids partial solutions that

29

exclude vertices in the set A and thus the correctness of negating partial solutions is still
valid.

To motivate this direction, let us consider the following example. Let G be a metric
graph with a start vertex vs and a goal vertex vg. Next, remove all the incoming edges
of vs and all the outgoing edges of vg other than the one edge connecting vg to vs. Also,
modify the formula to be F = F ∧ vs ∧ vg. This example is not TSP-monotonic. However,
the addition to the formula is so simple that the CBTSP solver’s preprocessing will assign
vs and vg to be true (include vs and vg in the solution). Thus all partial solutions that
CBTSP checks will satisfy the TSP-monotonicity property, since the graph is otherwise
metric (preprocessing happens before any calls to the TSP theory).

The set of required vertices A, must not conflict with the formula F , i.e., F is satisfiable
if and only if

F ∧

(∧
v∈A

v

)
is satisfiable. However, for this to work in practice, the decision to include the vertices in
A would need to be done in the preprocessing step of CBTSP (before the DPLL solver is
called, which is not discussed in this thesis). This happens for atomic clauses (clauses with
only one literal), e.g., a clause (v) would result in v being assigned true in the preprocessing
phase of CBTSP.

Definition 3.4.8 (A-TSP-Monotonicity). Given a graph G = 〈V,E,w〉 and a subset A ⊂
V , then G is A-TSP-monotonic if for any vertex subsets V1 ⊂ V2 ⊆ V such that A ⊆ V1,
the induced subgraphs G1 and G2 have TSP costs c1 ≤ c2.

Proposition 3.4.9. The CBTSP approach is correct on A-TSP-monotonic decision in-
stances if the decision to include the vertices in A are done so in the preprocessing phase
of the solver (before DPLL is called).

Proof. The proof follows Theorem’s 3.4.7 proof — the instance behaves like a TSP-
monotonic instance once DPLL is called.

Remark 3.4.10 (TSP-monotonic examples). In addition to metric graphs being TSP-
monotonic, disconnected metric subgraphs are also TSP-monotonic (each disconnected
component of the graph is itself a complete metric subgraph).

We can connect metric subgraphs if we use the A-TSP-monotonicity relaxation. An
example of an instance that satisfies the A-TSP-monotonicity is one where we have a set of
metric (TSP-monotonic) subgraphs G1, G2, . . . , Gn that we would like the solution to visit
sequentially as shown in Figure 3.2. Here we can see that if the black locations represent the

30

Figure 3.2: A-TSP-monotonic example. Interconnecting edges from Gi to Gj shown in the
figure represent a collection of edges that connect every vertex in graph Gi to every vertex
in graph Gj. The edge weights of the interconnecting edges satisfy the triangle inequality.

vertices in the set A, then the A-TSP-monotonicity property is satisfied (the grey location
represents a black location that has been duplicated). �

We now present a set of sufficient properties for achieving A-TSP-monotonicity, which
we used to construct the example in Figure 3.2.

Remark 3.4.11 (A Sufficient Construction for Achieving TSP-Monotonicity). Given a graph
G = 〈V,E,w〉 and a vertex set A ⊂ V . Let Nout(vi) = {v|〈vi, v〉 ∈ E}. Then the following
is true for every edge 〈vi, vj〉 in {〈vi, vj〉 ∈ E|vi ∈ V, vj ∈ V \ A}:

1. the vertex neighbour of vj satisfies Nout(vj) \ {vi} ⊆ Nout(vi)

2. and for every vk ∈ Nout(vj) \ {vi} we have w(vi, vk) ≤ w(vi, vj) + w(vj, vk).

�

3.5 An Integer Program Formulation

In this chapter we are interested in path planning problems that require robots to travel be-
tween multiple task locations (patrolling, sample collection, and periodic routing). Specif-
ically, all of the path planning problems seek to find shortest tours over a subset of the
vertices (not necessarily a fixed set of vertices) in each input graph. This section describes
the standard method for expressing such problems as an integer linear program (ILP). The
additional constraints that define the specific problem and guide the solution to choose the
set of visited locations are added to the formulation in subsequent sections. The ILP for-
mulation for the TSP aspect of the problem is drawn from the vehicle routing literature [15]
and is a standard method used in the operations research community [15].

31

To be able to solve multiple TSP instances simultaneously, we require that each instance
has a home location that must be visited. In this way we are able to eliminate sub-tours
that do not visit one of the home locations.

Let the set of binary variables eki,j ∈ {0, 1} represent the inclusion or exclusion of
the edge 〈vi, vj〉 ∈ Ek from the solution (eki,j = 1 indicates inclusion). Similarly let vki
represent the set of Boolean variables representing the inclusion/exclusion of the vertex
vi ∈ V k from the solution. Additionally without loss of generality, let vk1 be the home
location in each graph Gk. The following ILP template encodes TSP problems with mul-
tiple graphs over a non-fixed set of vertices and minimizes the max cost of the individual
tours. The formulation for minimizing the total cost simply replaces the objective with∑n

k=1

∑|V k|
i=1

∑|V k|
j=1 wk(vi, vj) e

k
i,j.

minimize

cmax (3.1)

subject to

n∑
k=1

|V k|∑
i=1

|V k|∑
j=1

wk(vi, vj) e
k
i,j ≤ C (3.2)

subject to, for each k ∈ {1, 2, . . . , n}
vk1 = 1, (3.3)

|V k|∑
i=1

eki,j = vkj , for each vj ∈ Vk (3.4)

|V k|∑
j=1

eki,j = vki , for each vi ∈ Vk (3.5)∑
i∈P

∑
j∈P

eki,j ≤
∑
i∈P

vki − vkl ,

for each P ⊆
{

2, . . . , |V k|
}

, and some l ∈ P (3.6)

|V k|∑
i=1

|V k|∑
j=1

wk(vi, vj) e
k
i,j ≤ min(ck, cmax) (3.7)

Constraint (3.2) ensures the total solution cost is within the budget C. Constraint (3.3)
forces the solution to include the home vertices. Constraints (3.4) and (3.5) restrict the

32

incoming and outgoing degree for each location to be one only if the vertex is included.
Constraint (3.6) is the sub-tour elimination constraint, where a sub-tour that visits the
set P but not location 1 is eliminated by ensuring that the number of edges between
vertices in P cannot equal |P | (if each vertex in P is visited then

∑
i∈P v

k
i − vkl = |P | − 1).

Otherwise if location l is not visited then the inequality is satisfied by the other constraints
(each included vertex has at most one incoming and one outgoing edge). In practice the
sub-tour elimination constraint is lazily implemented (if a constraint in (3.6) is violated
during the construction of the solution, then the constraint is added to the formulation) to
avoid expressing an exponential number of constraints. Finally, Constraint (3.7) ensures
the individual tours are within the budgets ck and it ensures that the individual tour costs
are equal or lower than the optimal value cmax.

3.6 Robotic Applications and Expressions

In this section we describe three robotic path planning problems (patrolling, sample col-
lection, and periodic routing) and show how they are expressed in both SAT-TSP and ILP.
The SAT-TSP expressions for these problems utilize at-most-one-in-a-set constraints. We
define this type of constraint here and use it throughout the rest of the section.

Definition 3.6.1 (At-most-one-in-a-set constraint). Given a set X ′ ⊂ X of variables,
the at-most-one-in-a-set constraint states that at most one variable in the set X ′ can be
assigned true. The following Boolean formula expresses the constraint:∨

x,y∈X′|x 6=y

¬(x ∧ y).

Remark 3.6.2 (Expressions). The expressions presented in this section are the expressions
that we have found perform the best. As with the MTZ ILP expression for TSP [57], one
can learn later that better expressions exist.

3.6.1 The Patrolling Problem

We consider patrolling problems that require each point of interest to be observed from
multiple viewpoints. These problems were inspired by patrolling problems that allow the
points of interest to be observed from multiple viewpoints [65, 7]. Our patrolling problem
is defined on a metric environment that contains m points of interest, n− 1 “observation

33

4,5,6

1
8,3

7

1,9
1,7

H

Patrolling Sample Collection

H

Figure 3.3: On the left is a UAV patrolling example and on the right is a UGV sample
collection example. The robot’s path is indicated with a solid line in both illustrations and
the location marked by an “H” represents the robot’s home. For the patrolling problem,
points of interest are buildings represented by large squares, faint circles represent the
radius that the building can be observed from, and the grey triangles indicate the different
observation perspectives. In the sample collection problem, the labels above the locations
represent the mineral types that are within the sample (large samples have three minerals
and small samples have one). The grey contours represent obstacles.

34

locations” and one home location. The robot must visit a subset of the observation lo-
cations to observe all of the points of interest and return home. A point of interest p is
observable from a location v if the distance between p and v is less than or equal to a
threshold (provided by the user). Each point of interest p must be observed by at least two
complementary locations, referred to as a “complementary pair”. An observation location
vj is complementary to vi if both points observe p from perspectives that are separated by
a minimum threshold angle (provided by the user).

A solution is a tour that visits a set of observation locations with minimum length such
that each point of interest is observed by at least one complementary pair. An illustrative
example of this problem is given in Figure 3.3 (left illustration).

To aid in the expression of the problem, we let the set Vp represent the set of observation
locations that can observe the point of interest p. The set Vp,i represents the set of locations
that are complementary observation locations of vi for p and the set P = {1, 2, . . . ,m}
represents the points of interest.

SAT-TSP expression This problem is encoded into SAT-TSP by constructing a formula
F that captures the logic of visiting the home location and at least one complementary
pair for each point of interest. The clause

(vh)

captures the home location requirement (vh is the robot’s home) and the set of clauses

∨
vi∈Vp

vi ∧

 ∨
vj∈Vp,i

vj

 , for each p ∈ P

captures the logic of visiting at least one complementary pair for each point of interest
(p is observed from vi only if it is observed by at least one of its complements vj). Now
the tuple 〈G,F,C〉 encodes the patrolling problem as a SAT-TSP instance, where G is the
discrete graph representing the distances between observation locations and C represents
the maximum cost of the solution tour (finding the minimum C solves the optimization
problem).

ILP expression To express this problem as an ILP, we build upon the formulation given
in Section 3.5. Let the set of Binary variables vp,i ∈ {0, 1} represent whether or not vi

35

is part of a complementary pair observing the point of interest p. The following are the
additional constraints in the ILP formulation.

for each p ∈ {1, 2, . . . ,m}
vp,i ≤ vi, for each vi ∈ Vp (3.8)

vp,i ≤
∑
vj∈Vp,i

vj, for each vi ∈ Vp (3.9)

∑
vi∈Vp

vp,i ≥ 1 (3.10)

Constraint (3.8) restricts the indicator vp,i from being true if the location vi itself is
not visited, Constraint (3.9) restricts the indicator from being true if none of the com-
plementary locations of vi are visited, and Constraint (3.10) ensures that at least one
complementary pair is visited.

3.6.2 The Sample Collection Problem

The following problem is inspired by sample collection problems that arise for science
rovers [26]. In this problem, we have a set of R robots, n− 1 samples, one home location,
and a set of m different minerals that can appear in the n−1 samples. Each sample in the
environment is either small, medium, or large. Small samples have within them one type
of mineral, medium samples have up to two different minerals, and large samples have up
to three different minerals. There are two types of robots used to collect samples, small
and large. A small robot can collect an unlimited number of small samples and up to one
medium sample but no large samples. A large robot cannot collect small samples, but it
can collect an unlimited number of medium samples and up to one large sample. The small
and large robots may have different speeds. Each robot is given the same time budget to
collect samples and return home. Since each location only contains one sample, multiple
robots are restricted from visiting the same location.

A solution to this problem is a tour for each robot that satisfies the time budget, starts
at the home location, and visits a set of locations in the environment that allows the
robots to collect a set of samples that contain one of each type of mineral found in the
environment. An optimal solution minimizes the total time taken by the set of robots. An
illustrative example of this problem is given in Figure 3.3 (on the right). In this example

36

there are no samples with mineral 2 and so feasible solutions do not collect mineral 2.
Additionally, we demonstrate a sample collection solution in a demo video1. This solution
utilizes one small and one large robot to collect seven different mineral types.

To express this problem we introduce the following. Let Vt be the set of locations that
contains a mineral of type t; let VS, VM and VL be the set of locations that respectively
have small, medium and large samples; let RS, RL and R = {1, 2, . . . , |R|} respectively be
the set of small, large, and all robots; and let T = {1, 2, . . . ,m} be the set of minerals.

SAT-TSP expression The problem is encoded as a SAT-TSP instance by constructing a
graph Gr for each robot r and a formula F that captures the goals and capacity restrictions
of the robots. Each graph Gr contains all of the locations in the environment and its edge
weights are given by transitions for robot r to move within its environment. The set of
variables vi,r is used to indicate if robot r visits location i. When the location/robot pair is
incompatible, such as location i contains a large sample and robot r is small, the variable
is negated. We chose this approach instead of constructing graphs without incompatible
location/robot pairs to simplify the SAT-TSP expression in this chapter.

We start our expression by forcing each robot to visit the home location using the
clauses ∧

r∈R

vh,r,

where vh ∈ V is the home location for the robots. Next, we negate all incompatible
location/robot pairs (e.g., small robot large sample)∧

vi,r∈XI

¬vi,r,

where
XI = {vi,r|vi ∈ VL, r ∈ RS} ∪ {vi,r|vi ∈ VS, r ∈ RL} .

We encode the goal of collecting at least one of each mineral (if the mineral exists), with
a disjunctive clause for each mineral

∧
t∈T

(∨
vi∈Vt,r∈R

vi,r

)
.

1https://ece.uwaterloo.ca/~sl2smith/SAT-TSP/demo.mp4

37

https://ece.uwaterloo.ca/~sl2smith/SAT-TSP/demo.mp4

To restrict multiple robots from visiting the same location vi, we use at-most-one-in-a-set
constraints (Definition 3.6.1) for the sets {vi,r|r ∈ R} for each vi ∈ V,∧

x,y∈R|x 6=y

¬(vi,x ∧ vi,y), for each vi ∈ V.

Finally, we restrict the robots’ carrying capacity with at-most-one-in-a-set constraints on
the sets {vi,r|vi ∈ VM} for each small robot r ∈ RS and {vi,r|vi ∈ VL} for each large robot
r ∈ RL: ∧

vi,vj∈VM |i 6=j

¬(vi,r ∧ vj,r), for each r ∈ RS

and ∧
vi,vj∈VL|i 6=j

¬(vi,r ∧ vj,r), for each r ∈ RL.

The tuple 〈G1, G2, . . . , G|R|, F, C〉 now encodes the problem as a SAT-TSP instance,
where Gr = 〈Vr, Er, wr, cr〉 is the discrete graph for robot r that captures the time transi-
tions, cr is the robot’s time budget, F captures the goals and constraints of the problem,
and C encodes the maximum total time incurred by all of the robots. The total time
budget C can be minimized to find the optimal solution.

ILP expression To express this problem as an ILP, we build upon the formulation given
in Section 3.5. Similar to the SAT-TSP expression we negate incompatible location/robot
pairs instead of altering the previously established ILP formulation. For example, a loca-
tion i would be incompatible with the small robot r if it contained a large sample. The
incompatibility is negated with the assignment vri = 0 (notation defined in Section 3.5).
The following is the extension of the ILP formulation:∑

vi∈Vt

∑
r∈R

vri ≥ 1, for each t ∈ {1, 2, . . . ,m} (3.8)∑
r∈R

vri ≤ 1, for each vi ∈ V (3.9)∑
vi∈VM

vri ≤ 1, for each r ∈ RS (3.10)∑
vi∈VL

vri ≤ 1, for each r ∈ RL (3.11)

vri = 0, for each vri ∈ I (3.12)

38

where I = {vri |vi ∈ VL, r ∈ Rs}∪{vri |vi ∈ VS, r ∈ RL} is used to represent the set of incom-
patible location/robot pairs. Constraint (3.8) encodes the goal of retrieving at least one of
each mineral type (if it exists), Constraint (3.9) restricts multiple robots from retrieving
the same sample, Constraint (3.10) restricts small robots from collecting more than one
medium sample, Constraint (3.11) restricts small robots from collecting more than one
large sample, and Constraint (3.12) negates the incompatible location/robot pairs.

3.6.3 The Period Routing Problem

The period routing problem [11, 100] requires a robot (vehicle) to service a set of n − 1
locations over a set of m periods. In each period the robot starts from a designated home
location and travels to a subset of the service locations. Each location v requires f(v) ≤ m
out of m periods of service and has restrictions on which periods or period combinations are
allowed. For this chapter, locations restrict back to back service (the first and last period
are also considered back to back). This problem arises in collection [100] and delivery [11]
tasks. Also period routing problems often contain a capacity that limits the number of
tasks that can be performed.

A solution to this problem is a set of tours, one for each period that meets the service
demands of the locations, respects the capacity limits, and respects the service restrictions.
The optimal solution minimizes the maximum length tour over the m periods.

SAT-TSP expression The problem is encoded as a SAT-TSP instance by constructing a
graph for each period and a formula that captures the goals and restrictions of the problem.
Each graph Gp represents the transition costs for the robot to move within its environment
during period p (all graphs are the same).

The problem goals of providing a specific number of service periods to the locations
is captured with the standard technique of using adder circuits [55], which are efficiently
translated to a Boolean formula [41] and added to F . These adder circuits take as input the
set of location/period variables for each location {vi,p|p ∈ P} and output a set of Boolean
variables {bi,1, bi,2, bi,4, . . .} that capture the binary encoding of how many of the inputs
are true. Following that, the outputs of the adder circuit are forced to the desired service
demands, f(vi). As an example, if vi requires two visits, then we force the twos bit, bi,2, to
be true and the remaining bits to be false. This is accomplished by adding the following
to F ← F ∧ ¬bi,1 ∧ bi,2 ∧ ¬bi,4 ∧

39

We force the robot to visit the home locations with the clause∧
p∈P

vh,p,

where vh ∈ V is the home location of the robot. The back to back period restriction is
exhaustively handled by negating every possible illegal combination.

¬(vi,p ∧ vi,p+) for all vi ∈ V, p ∈ P,

where p+ = (p mod m) + 1.

The tuple 〈G1, G2, . . . , Gm, F, C〉 now encodes the problem as a SAT-TSP instance,
where: Gp = 〈Vp, Ep, wp, cp〉 is the discrete graph for period p; the cost budget C is set
to ∞ to indicate that there is no budget; F captures the goals and constraints of the
problem; and cp encodes the maximum cost of graph Gp’s path which is minimized to find
the optimal solution.

ILP expression To express this problem as an ILP, we build upon the formulation given
in Section 3.5. The following are the additional constraints in the ILP formulation,∑

p∈P

vpi = f(vi), for each vi ∈ V (3.8)

vpi + vp
+

i ≤ 1, for each v ∈ V and p ∈ P (3.9)

where p+ = (p mod m) + 1. Constraint (3.8) encodes the goal of servicing each location
the proper number of times and Constraint (3.9) restricts back to back visits.

3.7 Experiments

In this section we present simulation results that compare CBTSP 2 to an ILP solver on the
instances presented in Section 3.4. The problem instances in this section all have metric
travel costs and thus CBTSP are solvable by CBTSP (metric instances are TSP-monotonic).

2CBTSP is available at https://github.com/fcimeson/cbTSP

40

https://github.com/fcimeson/cbTSP

3.7.1 Simulations

We ran all simulations on an Intel Core i7-4600U, 2.10GHz with 16GB of RAM. The CBTSP

solver used a custom DPLL(T) solver (based on MINISAT [90]) to test partial solutions by
making external callbacks to a TSP solver (a version of LKH [32] we modified to solve
decision TSP problems). The CBTSP solver takes as input the SAT-TSP instance, a time
budget, and a set of parameters used to configure the solver. The solver parameters are used
to configure the behaviour of CBTSP’s SAT and TSP solvers as well as a few CBTSP specific
behaviours. The details of these parameters and their values are given in Appendix A.
The ILP solver, Gurobi [66] was accessed through Python, which also takes as input a
time budget. To make a fair comparison we restricted Gurobi to a single process (thread).
Additionally, we seeded the solver with a random seed each time it was called to ensure
each run is different from the last (set using Gurobi’s parameters).

All of our simulations use a 300 second time budget and the best solution found within
the budget is reported in our results. As well, we track the solvers’ progress within its time
budget to compare the solvers’ results as the results are found. The use of a fixed time
budget allows us to simulate real world conditions where the robot must make decisions
while it operates as opposed to letting the solvers run to completion overnight (or longer).
In the latter case of running the solvers to completion, comparing solution quality would
be meaningless since both approaches would likely find the optimal solution. Thus, using
a fixed time budget allows us to compare the solver’s ability to find solutions quickly. For
the simulations presented in this section both solvers typically consume their entire time
budget, thus we do not explicitly report solver times as they would all be 300 seconds.
Instead we compare the solution quality in a table that averages ten runs for each instance
and track the solution quality found over time using a series of plots.

The time budget does not include the time taken to create the SAT-TSP or ILP instances
(the reduction times) as we do not wish to benchmark this process. However, the reduction
times are polynomial with respect to the input size.

3.7.2 Patrolling

The patrolling problem instances were generated as follows. All of the locations (the n− 1
observation locations, the robot’s home, and the m points of interest) were uniformly
randomly distributed in a 1000× 1000 meter two dimensional square. A point of interest
p = (xp, yp) is observable from location v = (xv, yv) if

|p− v| ≤ 4000

5m
√
m
,

41

Gurobi cbTSP

No. n m Best Avg. Cost Best Avg. Cost

1 40 5 2,268 2,292 2,260 2,260
2 40 10 1,812 1,812 1,812 1,812
3 40 20 3,171 3,171 3,111 3,111
4 60 7 1,825 1,925 1,801 1,801
5 60 15 2,615 2,845 2,430 2,430
6 60 30 3,252 3,346 3,176 3,176
7 80 10 2,020 2,227 1,903 1,903
8 80 20 2,948 4,681 2,533 2,602
9 80 40 4,640 6,920 3,244 3,585
10 100 12 2,398 3,265 1,937 1,939
11 100 25 2,825 4,324 2,431 2,473
12 100 50 7,385 8,273 3,803 4,104

Table 3.1: Experimental results for patrolling problem instances (300 second trials). The
left three columns indicate the patrolling instance number, the number of observation
locations (n), and the number of points of interest (m) in the environment. The best
results are shown in bold.

for which the equation was designed to help ensure that most randomly generated in-
stances will have a feasible solution (one where each point of interest can be observed by
a complementary pair). A location u is complementary to v for p if

(θv − θu) mod 360 ≥ 60,

where

θv = tan−1

(
yp − yv
xp − xv

)
and θu = tan−1

(
yp − yu
xp − xu

)
.

An illustrative example of this problem is given in Figure 3.3 (on the left).

We compared CBTSP to the ILP solver, Gurobi, on a set of 12 instances as shown
in Table 3.1 and Figure 3.4. As we can see from the table, CBTSP outperforms Gurobi
on almost every instance and as the instances get more difficult (larger instances) the
performance gap widens. This is seen by comparing the first and last instances in the table
— Gurobi has an average cost of 0.99 times more than CBTSP on the first instance and an
average cost of 1.69 on the last. In the figure we see that CBTSP is able to almost instantly
find high quality solutions, where Gurobi requires around 10 seconds to solve the majority
of the runs and it uses its remaining time to improve its average solution quality from a
factor of 2 to a factor of 1.5.

42

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

N
or

m
al

iz
ed

 C
os

t

Patrolling Problems

cbTSP
Gurobi

-10

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

U
ns

ol
ve

d
(%

)

Time (s)

cbTSP
Gurobi

Figure 3.4: The top plot captures the average normalized solution quality obtained during
the time budget for patrolling instances solved by CBTSP and Gurobi. The bottom plot
captures the % of unsolved runs (10 runs per instance) over the time budget.

43

3.7.3 Sample Collection

The sample collection problem instances we tested were generated as follows. There is
one home location and n − 1 sample locations in the environment and the set of samples
contain up to m different mineral types. All locations (sample locations and the home
location) were uniformly randomly distributed in a 1000 × 1000 meter two dimensional
square. The distribution of sample sizes are as follows: 3:1 for small to large and 2:1 for
small to medium. The types of minerals in each sample are uniformly randomly distributed
(the same mineral type may reoccur in a sample). There are two types of robots used to
collect samples, small and large, three of each, six in total. Each robot has a time budget
of 25 minutes to collect samples and return home and the small robots travel at a speed
of 2m/s, while the large robots travel at half that speed (1m/s).

Note 3.7.1. Although the large robots can complete the task by collecting about half the
samples, it costs double to travel the same distance. Furthermore, it is equally likely for a
mineral type to be found in a small, medium, or large sample.

We compared CBTSP to the ILP solver, Gurobi, on 12 sample collection instances and
reported the data in Table 3.2 and Figure 3.5. The results show that CBTSP is compet-
itive with Gurobi. Specifically, both solvers find the same quality solutions for the easy
instances (instances 1-3 in the table — the smaller instances); then as the instances move
into the medium difficult range (instances 4-7), CBTSP starts to outperform Gurobi; and
once the instances become difficult (instances 8-12 — the largest instances) CBTSP often
outperforms Gurobi by quite a bit. Here, Gurobi only outperforms CBTSP on one instance
and fails to find feasible solutions for two out of five difficult instances. From Figure 3.5,
we see that CBTSP is able to solve each run within the first 20 seconds, while Gurobi is
not able to find feasible solutions for more than 20% of the runs. Additionally, we see that
at first CBTSP finds some pretty low quality solutions (2-4.5 times the best known) and it
takes CBTSP about 100 seconds to improve this quality to within 1.5 of the best known.
Although, not shown here, the runs that take longer to improve are the larger/more diffi-
cult instances, some of which do not show up in Gurobi’s average because Gurobi was not
able to find feasible solutions. Thus, CBTSP is able to solve more instances and find higher
quality solutions than Gurobi.

Physical simulations We have also performed simulation experiments for sample col-
lection in more complex environments where travel costs are shortest collision free paths.
These simulations utilize the Clearpath Husky robot model within Gazebo. The robots
use the ROS navigation stack [75] to move within the physical simulator. An example

44

Gurobi cbTSP

No. n m Best Avg. Cost Best Avg. Cost

1 10 10 3,500 3,500 3,500 3,500
2 20 10 3,355 3,356 3,355 3,355
3 20 20 8,563 8,563 8,563 8,563
4 40 10 1,876 1,893 1,876 1,880
5 40 20 5,251 5,429 5,117 5,397
6 40 40 9,117 9,682 8,812 9,235
7 60 10 1,613 1,730 1,591 1,603
8 60 30 - - 11,809 13,077
9 80 10 1,382 1,580 1,299 1,332
10 80 40 10,941 11,009 10,453 12,073
11 100 10 1,883 2,863 1,363 1,419
12 100 50 - - 14,668 14,949

Table 3.2: Experimental results for sample collection instances (300 second trials). On the
left we indicate the instance number, the number of samples (n), and the maximum number
of different minerals (m) in the environment. The best results are shown in bold. Results
that are shown with a dash indicate that the solver was not able to solve the instance.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

N
or

m
al

iz
ed

 C
os

t

Sample Collection Problems

cbTSP
Gurobi

-10

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

U
ns

ol
ve

d
(%

)

Time (s)

cbTSP
Gurobi

Figure 3.5: The top plot captures the average normalized solution quality obtained during
the time budget for sample collection instances solved by CBTSP and Gurobi. The bottom
plot captures the % of unsolved runs (10 runs per instance) over the time budget.

45

H
2 2

1

1 1

1 1 1

1 1 1

H
2 2

1

1 1

1 1 1

1 1 1

Period 1 Period 2

1 1

Figure 3.6: A simple period routing example for material transport within a factory. There
are only two periods of service and a location can either require service for one or both
periods (as indicated on the graph). The home location is labelled with an “H”.

simulation, visualized with RViz is shown in Figure 1.1 and demoed in our video3. In the
video there are two robots, each with different speed. The slower Husky emulates the large
sample collecting robot and the faster Husky emulates the small robot. The collection task
requires collecting seven different mineral types from the environment.

3.7.4 Period Routing

The period routing problem instances were generated as follows. All of the locations (the
n − 1 service locations and the robot’s home) were uniformly randomly distributed in a
1000 × 1000 meter two dimensional square. There are six service periods; each service
location may require either one, two, or three periods of service (uniformly randomly
assigned) out of the six periods. An illustrative example is shown in Figure 3.6.

We have compared CBTSP to the ILP solver Gurobi, on 12 period routing instances, for
which the results can be found in Table 3.3 and Figure 3.7. The table shows that CBTSP

outperforms Gurobi on all of the instances and like the other two applications, as the
instances become more difficult the performance gap between CBTSP and Gurobi grows.
This can be seen as a trend between the first and last instance in the table. Gurobi is on

3https://ece.uwaterloo.ca/~sl2smith/SAT-TSP/demo.mp4

46

https://ece.uwaterloo.ca/~sl2smith/SAT-TSP/demo.mp4

Gurobi cbTSP

No. n Best Avg. Cost Best Avg. Cost

1 15 2,278 2,392 2,212 2,212
2 15 1,968 2,055 1,904 1,904
3 20 2,200 2,382 2,022 2,022
4 20 1,807 2,016 1,670 1,670
5 25 2,706 3,718 2,310 2,347
6 25 2,638 2,869 2,057 2,057
7 30 2,877 3,133 2,342 2,358
8 30 3,040 3,811 2,433 2,439
9 35 3,738 3,944 2,502 2,610
10 35 3,667 3,902 2,404 2,506
11 40 4,369 4,680 2,727 2,954
12 40 3,934 4,529 2,594 2,678

Table 3.3: Experimental results for period routing problem instances (300 second trials).
The left two columns indicate the instance number and the number of locations in the
environment. The best results are shown in bold.

par with CBTSP for the first instance and then for the last instance Gurobi has a solution
quality that is 3.66 times worse than CBTSP’s. From the figure, we see that CBTSP is
able to find feasible solutions for all of the runs within the first 10 seconds, while in the
same time frame Gurobi was only able to find feasible solutions for approximately 70% of
the runs. Additionally, Gurobi struggled finding high quality solutions for these problems,
while CBTSP was able to find reasonably good quality solutions within the first 60 seconds.

3.8 Summary

In summary, this chapter provided an alternative approach for solving high-level path plan-
ning problems, called SAT-TSP. We used the SAT-TSP problem as the modelling language
for expressing high-level path planning problems. We provided the SAT-TSP solver CBTSP

for finding path planning solutions and proved its correctness for TSP-monotonic instances.
Additionally, we provided a relaxation of TSP-monotonicity that expanded the set of solv-
able problems by CBTSP. Through a series of experiments we demonstrated that CBTSP

often outperforms a commercial grade ILP solver — especially on difficult instances. Thus
showing that CBTSP is a strong candidate for solving discrete path planning problems.
The CBTSP solver can be downloaded from https://github.com/fcimeson/cbTSP.

47

https://github.com/fcimeson/cbTSP

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250 300

N
or

m
al

iz
ed

 C
os

t

Period Routing Problems

cbTSP
Gurobi

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

U
ns

ol
ve

d
(%

)

Time (s)

cbTSP
Gurobi

Figure 3.7: The top plot captures the average normalized solution quality obtained during
the time budget for period routing instances solved by CBTSP and Gurobi. The bottom
plot captures the % of unsolved runs (10 runs per instance) over the time budget.

48

Chapter 4

Pruning Solutions

This chapter introduces two approaches for pruning path planning solutions from the search
space. These approaches are used in conjunction with existing path planning solvers to
improve the solver’s efficiency. The boost in efficiency comes at the expense of solution
quality. However, we show in this chapter that solutions found using these approaches are
within a constant factor of the optimal. We focus on the class of discrete path planning
problems that do not contain ordering constraints.

The first approach, coupled planning, starts by partitioning the environment into a set
of clusters/regions. Then it creates a new version of the problem, the clustered version,
to restrict how feasible paths visit the set of clusters. This restriction prunes a significant
portion of the solution search space.

The second approach, hierarchical planning, is an extension of the first approach that
further prunes the solution search. This approach uses the clusters to decompose the
problem into a hierarchy of small independent problems, where each problem represents
a coarse approximation of the environment or sub-region. The solver starts by building a
path on the coarsest level and then extends its solution to the next level by visiting the
nested components of its coarsened path. This process repeats until a solution is found for
the full problem.

These approaches achieve their solution quality guarantees (bounds) from how they
partition the environment. Specifically, these approaches use a new clustering/partition-
ing method called Γ-Clustering that we developed specifically for path planning. A Γ-
Clustering is a collection of clusters that have their locations close to each other and far
from all other locations. See Figure 4.1 for a sample Γ-Clustering of an office environment
(the 5th floor of the E5 building at the University of Waterloo). The parameter Γ is used

49

to specify the degree of separation that each Γ-Cluster must achieve (distance from other
locations). Unlike other clustering methods, the Γ-Clustering method does not take in as
input, an integer k for finding the best k set of clusters. Instead it takes in as input the
parameter Γ and finds the Γ-Clusters within the environment that achieve the standards
imposed by the Γ parameter. Thus some problems contain many Γ-Clusters while others
contain little to none.

The contributions of this chapter are as follows. We introduce a new clustering method,
Γ-Clustering, that is specifically designed for discrete path planning. We provide an efficient
algorithm based on minimum spanning trees (MST) for computing the optimal clustering
and prove that this clustering is unique. We introduce the coupled planning approach as
a method for pruning the search space and prove that solutions found using this approach
are within a constant factor of min(2, 1 + 3

2Γ
) of the optimal. We then introduce hierarchi-

cal planning with Γ-Clusterings and prove that solutions found by this method are within
a constant factor of min(2 + 4

Γ
, 1 + 13

2Γ
) of the optimal. Our benchmark compares these

two approaches to a standard non-clustered approach, where we use an ILP solver with
a time budget of 900 seconds to find path planning solutions. The results show that the
path quality obtained by these two methods are much closer to the optimal cost than the
constant factor bounds. Most solutions obtained from our approaches were within 10% of
the optimal, where the coupled approach was able to outperform the hierarchical approach
on the easy instances. For the instances that finished within the allotted time budget, the
coupled and hierarchical approaches showed a substantial time savings compared to the
non-clustered approach. For the instances that consumed the time budget, the clustered
approaches were able to maintain their performance longer than the non-clustered ap-
proach, where the hierarchical approach was able to maintain its performance longer than
the coupled approach. Additionally, our benchmark compares the quality of Γ-Clusterings
to clusterings found with five different methods. The results for these comparisons show
that when planning with clusters, Γ-Clusterings produce higher quality solutions than other
types of clusterings methods.

The rest of this chapter is organized as follows. Section 4.1 reviews the related work for
these approaches. Section 4.2 provides the background needed for this chapter. Section 4.3
defines the set of path planning problems considered by this chapter. Section 4.4 formally
defines what Γ-Clusters are and how to find them. Section 4.5 defines the coupled planning
approach, then Section 4.6 introduces decoupled planning as a lead-in to hierarchical plan-
ning presented in Section 4.7. The benchmark is presented and discussed in Section 4.8.
The chapter summary is given in Section 4.9.

50

Figure 4.1: The results of Γ-Clustering used on an office environment. The red triangles
represent locations of interest and the red boxes surround clusters of size two or greater.

4.1 Related Work

This section builds upon Section 1.1 to provide a more in depth review of the literature
related to this chapter.

There are a number of pruning techniques for reducing the search space, such as branch
and bound [51, 13]. Like our approach, these approaches can sometimes be used in tandem
with each other to prune larger regions of the search space. In fact, the hierarchical planning
approach presented in this chapter is a combination of the coupled planning approach with
a hierarchical approach.

The general form of hierarchical planning decomposes the environment into regions and
plans those regions as approximations instead of planning on the full resolution problem.
This practice has been done under the guise of hierarchical highways [82], cell decomposi-
tion [104, 9], hierarchical planning with maps [105], and multi-resolution planning [43, 53].
Most of these approaches are used for point-to-point planning. However, there is a body
of work that addresses solving vehicle routing problems, such as TSP for Euclidean envi-
ronments [22, 31, 58, 5]. Our approach goes beyond Euclidean environments and the TSP,
as it handles metric environments and works for a class of vehicle routing problems that

51

encompasses TSP.

Multilevel refinement is a framework similar to hierarchical planning and has been
used to solve vehicle routing problems. At its most basic level, the framework recursively
coarsens a problem into a hierarchy of approximations, where each coarsening creates a
smaller problem than the last. Typically, a solution is found for the coarsest level of the
problem and projected back onto its predecessor. Here, the solution can be refined to
improve its quality before projecting it back onto its predecessor. The authors of [71] used
multilevel refinement to more effectively guide a variable neighbourhood search for period
routing problems. In [79], the authors used multilevel refinement to solve the capacitative
vehicle routing problem by fixing cheap edges in the path to concentrate on minimizing
large edges. In [97], they developed a travelling salesman problem (TSP) solver using
multilevel and the Lin-Kernighan heuristic [54] to improve upon a state-of-the-art TSP

solver, LKH [32]. A key difference in our approach is that we identify a hierarchy of
sub-problems that can be solved independently and provide solution quality guarantees.

The typical motivation for using clustering is to find structure within data and/or
compress the data [42]. One of clustering’s most popular uses is data mining. Applications
range from hand writing analysis [42], to understanding retail customer behaviour [29], and
for mining data to guide unsupervised machine learning [83]. These applications often have
a large amount of high denominational data. Using clusters to compress the data makes
the data more manageable, as such it is often desirable to control the size and number of
the clusters that are imposed onto the data [42, 45, 46]. These methods force structure
onto the problem which is unlike how Γ-Clustering structures are found within the data.

In these applications, data is clustered into disjoint sets based on similarity which
is measured with a distance metric, typically the l2 norm. Using the l2 norm as the
distance metric has the advantage of being able to leverage geometry to find relationships
in the data. A number of clustering algorithms take advantage of distance metrics such
as k-means [42], CURE [28], and BIRCH [103]. Γ-Clustering on the other hand, works
for graphs. Graphs are able to explicitly capture distances between points instead of
representing the data in Rn space where geometric relationships can be used. This allows
Γ-Clusters to be used on environments that are and are not explicitly represented in Rn.

The task of finding an optimal partitioning (a clustering) is often in the complexity
class NP-hard [42, 83]. This is unlike the task of finding an optimal Γ-Clustering which is
in the complexity class P. In this chapter, we provide an algorithm for finding the unique
and optimal Γ-Clustering.

Community structures are a type of clustering that work with graphs or multigraphs
(typically referred to as a network) [83]. Here, the goodness of a clustering is often measured

52

Disjoint Overlapping Nested

Clusters

Figure 4.2: This illustration shows three examples of how two clusters can overlap or not
overlap with each other.

with a common metric called modularity [62]. Thus many clustering algorithms work
towards the same goal. However, since the clustering problem is an NP-hard task [83],
the algorithms often produce a range of different solutions in their attempt to find good
quality solutions. In this chapter we use these algorithms to find desirable clusters for path
planning and compare the quality of these clusters to Γ-Clusters for path planning.

4.2 Background

This section reviews the concepts needed for the chapter.

4.2.1 Clusters

A cluster Vi, is a subset of the graph’s vertices. Given two clusters, Vi and Vj we say that
Vi and Vj are disjoint if Vi ∩ Vj = ∅; Vi and Vj overlap if Vi ∩ Vj 6= ∅, Vi * Vj, and Vj * Vi;
and Vj is nested in Vi if Vj ⊆ Vi. See Figure 4.2 for a visual of these classifications. A
clustering is a set of clusters, denoted by C = {V1, . . . , Vm}. A clustering C is said to be
nested if there exists some Vi ⊂ Vj, where Vi, Vj ∈ C.

A nested clustering C can be visualized as a forest, where the roots of the forest are
clusters that are not nested within any other cluster. The children of a cluster Vi, represent
the clusters nested within Vi that are not nested within any other cluster Vj ⊂ Vi. See
Figure 4.3 for a clustering visualized as a forest. In this example the clustering

C = {{2, 3, 4, 5} , {3, 4} , {6, 7} , {1} , {2} , {3} , {4} , {5} , {6} , {7}}

has roots V1, {1}, and V2. The children of V1 is {2} , V3 and {5}. The children of V2 is {6}
and {7}.

53

Forest/ClusteringGraph/Clustering

Figure 4.3: On the left we show an example of clustering in its graph environment with
the edges omitted and on the right we show the same clustering depicted as a forest.

4.2.2 Search Space

The solution search space of a path planning problem is the set of all feasible paths. For
example, a TSP problem with a directed graph of size n has (n−1)! different feasible tours.
Thus the search space size of the problem is (n − 1)!. Adding constraints to the problem
can only serve to reduce the size of the search space. Suppose, we were to constrain the
tour to visit location 2 directly after location 1. Then the search space size of the problem
would be (n− 2)!, since we have essentially shrunken the problem by removing the choice
of what follows location 1.

Computational Complexity The difficulty of finding solutions, let alone optimal solu-
tions, is dependent on the problem and solver. For some problems finding feasible solutions
is an NP-hard task. In this chapter, we analyze the reduction in computational complexity
from the view point of reducing the size of the search space. In this way we are attempt-
ing to capture the difficulty of finding an optimal ordering of a path while ignoring the
difficulty of finding feasible solutions.

4.2.3 Multigraphs

This chapter requires a definition of multigraphs for the clustering methods that we com-
pare against (we do not use multigraphs for our clustering problem or the path planning

54

problem).

Multigraphs/networks are graphs that allow for multiple edges between its vertices.
For example, the multigraph G may have five edges that connect vertex vi to vertex vj. In
this chapter we only consider unweighted multigraphs.

4.3 Path Planning Problem Statement

In this section, we present the class of vehicle routing problems considered by this chapter
(Problem 4.3.2) and defined the clustered version of this problem as a means to reduce the
problem’s search space (Problem 4.3.3).

First we introduce some terminology. Let P represent the set of all possible paths in
G. Then abstractly, a path planning constraint defines a subset P1 ⊆ P of feasible paths.
Given a path planning problem P = 〈G,P1,P2, . . . ,Pm, C〉 where P1,P2, . . . ,Pm are the
set of problem constraints, then the set of feasible paths is P1 ∩ P2 ∩ · · · ∩ Pm.

Definition 4.3.1 (Order-Free Constraints). A constraint P1 is order-free if, given any
p ∈ P1, then all paths obtained by permuting the vertices of p are also in P1.

Problem 4.3.2 (The Non-Clustered Path Planning Problem). Given a complete weighted
graph G = 〈V,E,w〉 and a set of order-free constraints P1,P2, . . . ,Pm, find the minimum
length feasible path or tour.

Many discrete vehicle routing problems can be expressed in the above framework so long
as they do not restrict the ordering of vertex visits (i.e., no constraints of the form “visit A
before B”). Some examples include single and multi-robot travelling salesman problems,
point-to-point planning, and patrolling problems. As a specific example the generalized
travelling salesman problem (GTSP) is a problem where the robot is required to visit exactly
one location in each non-overlapping set of locations (the location sets are given as input).
This is naturally expressed in the above framework by having one constraint for each set
(i.e., for each set Vi we would construct the set of all paths that visit the set of Vi exactly
once). This could be expressed as PVi = {p|V [p] \ Vi = V \ Vi and |V [p] ∩ Vi| = 1}, where
p is a non-repeating path of vertices in V and V [p] is the set of vertices visited by p).

We use clusters to constrain the feasible paths. This in turn reduces the search space
size of the problem.

Problem 4.3.3 (The Clustered Path Planning Problem). Given a discrete path planning
problem P = 〈G,P〉 and a clustering C, the clustered version of P is P̄ = 〈G,P , C〉, which
has the additional constraint that the path cannot visit any cluster Vi ∈ C more than once.

55

We say a path p visits a cluster Vi consecutively only if the path visits Vi once. Oth-
erwise, there exists a continuous path segment pVi ⊆ p that visits vertices in Vi such that
|Vi ∩ V [p]| = |pVi | and V [pVi] ⊂ Vi.

4.4 Γ-Clustering

In this section, we define what Γ-Clusterings and Γ-Clusters are and provide an efficient
algorithm to find a Γ-Clustering that maximizes the search space reduction.

4.4.1 Definitions

We use Γ-Clusters to reduce the search space of path planning problems by restricting
feasible paths to visit the Γ-Clusters, at most once. This restriction allows us to handle
non-TSP problems since this restriction in no way imposes which vertices must be visited.
Below we define what a Γ-Cluster is and what a Γ-Clustering is, then we formally define
the restrictions that we impose on the path planning problem to reduce its search space
size.

Definition 4.4.1 (Γ-Cluster). Given a graph G = 〈V,E,w〉, an input parameter Γ > 1,
and a cluster Vi ⊂ V , we say Vi is a Γ-Cluster if and only if the minimum inter-set edge
weight, αi is at least a factor of Γ larger than the maximum intra-set edge weight, βi.

Formally, αi and βi satisfy the following.

αi = min {w(va, vb)|va ∈ Vi, vb ∈ V \ Vi}
βi = max {w(va, vb)|va, vb ∈ Vi, va 6= vb}
αi ≥ Γβi.

Definition 4.4.2 (Γ-Clustering). Given a graph G = 〈V,E,w〉 and an input parameter
Γ > 1. Then a clustering C = {V1, V2, . . . , Vm} is said to be a Γ-Clustering if and only if
V is covered by V1 ∪ V2 ∪ . . .∪ Vm, non-overlapping (nested is permitted) and each cluster
Vi ∈ C is a Γ-Cluster.

Remark 4.4.3 (Overlap). Note that in Definition 4.4.2 overlapping clusters are not permit-
ted. This is necessary for the problem in Definition 4.3.3 to be well defined. In addition,
we will see in the following section that Γ-Clusters cannot overlap.

Given the above definitions, we are interested in finding the Γ-Clustering C∗ that
minimizes the search space size for our path planning problem.

56

Problem 4.4.4 (The Clustering Problem). Given a path planning problem P = 〈G,P〉
and a parameter Γ > 1, find a Γ-Clustering C∗ of G such that the search space size of the
clustered problem P̄ is minimized.

Note 4.4.5. Γ-Clusters are found within the environment, not imposed onto the environ-
ment. As such some problems have many Γ-Clusters while others, little to none. Addi-
tionally, a larger choice of Γ will tend to result in a Γ-Clustering with fewer Γ-Clusters
and for some sufficiently large choice of Γ there will be no non-trivial (of size two or more)
Γ-Clusters to be found within the environment.

The methods presented in this chapter rely on finding Γ-Clusters, as such problems
that contain Γ-Clusters will benefit from these approaches. Furthermore, it has been our
experience that most path planning environments contain Γ-Clusters (see Section 4.8).

4.4.2 Finding Γ-Clusters

Based on Problem 4.3.3 and Problem 4.4.4, the task of finding a maximal clustering comes
down to finding a clustering C∗ that contains as many clusters as possible. Each cluster
adds more constraints to the problem and can only serve to reduce the problem’s search
space size — at worst, it stays the same size. In this section we show that there exists a
unique maximal set C∗ and that all other Γ-Clusterings are a subset of C∗. We provide an
efficient algorithm based on MSTs to calculate C∗. Below is a series of properties that we
leverage in the algorithm.

Overlap

A special property of Γ-Clustering is that there are no overlapping clusters. Specifically,
there are no two clusters Vi and Vj that have a non-zero intersection unless one cluster is
nested within the other.

Lemma 4.4.6. Given a graph G and Γ-Clusters Vi and Vj with Γ > 1, then Vi and Vj do
not overlap.

Proof. We prove the above result by contradiction. Before we begin, recall that edges cut
by the cluster Vi have edge weights ≥ αi and edges within the cluster have edge weights
≤ βi. Let us assume that Vi and Vj overlap but are not nested. Without loss of generality
let βj ≤ βi. Then there exists an edge 〈va, vb〉 with weight w(va, vb) ≤ βj for va ∈ Vi ∩ Vj
and vb ∈ Vj \ (Vi ∩ Vj). Since this edge does not exist in the cluster Vi and it is cut by
Vi, then it must be the case that w(va, vb) ≥ αi. However, this edge does exist in the

57

cluster Vj and so αi ≤ βj, since w(va, vb) ≤ βj. This result highlights the contradiction:
αi
βi
≤ βj

βi
≤ βi

βi
= 1.

Uniqueness

The non-overlapping property for Γ-Clusterings implies that there exists a unique maximal
Γ-Clustering C∗ (more clusters equates to more reductions in the search space size). This
result follows from the simple property that if a Γ-Cluster Vi exists and is not in our
clustering C∗, then we can add it to C∗ to obtain additional search space reductions.

Proposition 4.4.7. Given graph G and a parameter Γ > 1, the problem of finding a
Γ-Clustering C∗ that maximizes the search space reduction has a unique solution C∗.
Furthermore C∗ contains all clusters Vi with separation αi ≥ Γβi.

Proof. We use contradiction to prove that C∗ is unique. Suppose there exists two different
Γ-Clusterings C1 and C2 that maximize the search space reductions for a Γ > 1. Therefore,
there is a cluster V1 that is in C1 but not in C2 (or vice versa). This implies that either V1

is somehow incompatible with C2, which we know is not the case due to Lemma 4.4.6 (i.e.,
clusters do not overlap unless one is a subset of the other) or this cluster can be added to
C2. This is a contradiction that proves the first result. The second result directly follows
since adding a cluster can only further reduce the search space size of the problem.

Corollary 4.4.8. Given a graph G = 〈V,E,w〉 and two optimal Γ-Clusterings C∗i and C∗j
such that Γj > Γi > 1, then C∗j ⊆ C∗i .

Proof. We prove this result by contradiction. Suppose we have a cluster V1 ∈ C∗j that is
not in C∗i . By the definition α1 ≥ Γjβ1, where α1 is the minimum inter-set edge weight
for V1 and β1 is the maximum intra-set edge weight of V1. Since Γj > Γi then α1 ≥ Γiβ1,
which implies that V1 could be in C∗i . This contradicts Proposition 4.4.7, which states that
all clusters that could be in the optimal clustering are in the optimal clustering. Therefore,
if Γj > Γi > 1, then C∗j ⊆ C∗i .

Corollary 4.4.9. There exists a minimum Γ∗ > 1 and its optimal Γ-Clustering C∗ that
acts as a superset for all other Γ-Clusterings.

Proof. We prove this result by contradiction. Suppose, we have Γ∗ and C∗. Then assume,
there exists a Γ > Γ∗ with a Γ-Clustering C that is a superset of C∗. Corollary 4.4.8 states
that C ⊆ C∗, which highlights the contradiction. Additionally, every graph has a finite
number of clusters. Therefore, there must exist a minimum value of Γ∗ > 1 that finds the
Γ-Clustering C∗ that is a superset of all other Γ-Clusters.

58

An MST Approach For Finding Γ-Clusters

Given a graph G and an input Γ > 1, Algorithm 5 computes the optimal Γ-Clustering
for G (i.e., the Γ-Clustering with maximum number of clusters). Informally, the algorithm
deletes edges in the graph from largest to smallest (Lines 6-7) to look for Γ-Clusters. It uses
a minimum spanning tree (MST) to keep track of when the graph becomes disconnected and
tests the disconnected components to see if they are Γ-Clusters (Lines 9-11). Regardless,
disconnected components of size two or more are added back to the queue (Lines 13-14) to
find Γ-Clusters within those components. If the disconnected component was a Γ-Cluster
then the algorithm is searching for nested Γ-Clusters.

Algorithm 5: Γ-Clustering(G,Γ)

Input:
G: a graph with vertices V , edges E, and weights w.
Γ: a real valued constant greater than 1.

Output:
C: a maximal Γ-Clustering.

1 C ← ∅
2 M ← {MST(G)}
3 while |M | > 0 do
4 m←M.pop()
5 α← largest edge cost in m
6 M ′ ← disconnected trees after removing edge(s) of cost α from m
7 for m′ ∈M ′ do
8 G′ ← graph induced by V [m′]
9 β ← max edge cost of G′

10 if α ≥ Γβ then
11 C ← C ∪ {V [m′]}
12 if |m′| > 1 then
13 M ←M ∪m′

14 return C

Theorem 4.4.10. Given a G = 〈V,E,w〉 and a Γ > 1, Algorithm 5 finds the optimal
Γ-Clustering C∗ for G in O(|V |3) time.

Proof. First we show that Algorithm 5 runs in polynomial time. Let n = |V |. Minimum
spanning trees can be found in O(n2) time [74] (Line 3). The rest of the algorithm modifies

59

the MST found in Line 3, which originally has n edges. Thus the while loop for the rest
of the algorithm runs at most n times (we can’t remove more than n edges). Finding the
largest edge(s) and removing them in Line 6 and 7 takes O(n) time. Creating the induced
subgraph and finding the maximum edge cost in Lines 9 and 10 takes O(n2) time. Testing
if the subgraph is a clique (Line 11) takes O(n2) time. Thus Lines 1-3 run in O(n2) time
and Lines 4-14 run in O(n·n2), meaning the entire algorithm runs in O(n3) time or O(|V |3).

Next, we show that Algorithm 5 finds the optimal Γ-Clustering. To do so, we show
that each V [m′] found in Line 11 is a Γ-Cluster as defined by Definition 4.4.1. Then we
show that the algorithm does not omit any candidate clusters.

Let us start by understanding how MSTs are used to find Γ-Clusters. A Γ-Cluster with
separation Γ > 1 is a subgraph of G that is connected with intra-edge weights less than
the inter-edge weights. Let α be the minimum edge weight connected to the subgraph
(minimum inter-edge weight) and β be the maximum edge weight within the subgraph
(maximum intra-edge weight). Thus one method of searching for Γ-Clusters is to delete
all edges of weight ≥ α in the graph and test the disconnected components (subgraphs).
We can use MSTs to efficiently keep track of these deleted edges. By definition, an MST

is a tree that connects vertices within the graph with minimum edge weight. When we
remove edges of size ≥ α to search for disconnected subgraphs, the graph is disconnected
if and only if the MST is disconnected (the cut that disconnects the graph also disconnects
the MST). Furthermore, the algorithm incrementally removes the edge(s) in the MST from
largest to smallest so that we can emulate removing edges in the graph of cost ≥ α. Thus
if the induced subgraph G′ created in Line 9 has a maximum intra-edge weight of β, then
it is a Γ-Cluster if α ≥ Γβ. For these reasons it is added to the clustering C in Line 12.

Now, we show that the Algorithm does not omit any candidate clusters. We have
already argued that only disconnected MST trees need to be considered for Γ-Clusters.
What is left to show is that the algorithm tests every possible value of α for disconnecting
the MST tree. This is true since it considers every edge in the MST. Thus every candidate
cluster of size two or more is considered.

Therefore, this algorithm finds all of the candidate Γ-Clusters and Proposition 4.4.7
implies that this clustering is the unique optimal Γ-Clustering for the given Γ > 1.

4.5 Coupled Planning

In this section we solve the clustered problem P̄ instead of the non-clustered problem P
(Problem 4.3.3 and Problem 4.3.2 respectively). We show that the clustered problem can

60

have a search space size that is exponentially smaller than the non-clustered problem. We
also show that the cost c̄∗ of optimal solutions of P̄ are within a constant factor of c∗,
where c∗ is the cost of optimal solutions for P .

4.5.1 Search Space Reduction

The task of measuring the reduction in search space size from Problem P to P̄ for a
clustering C, depends on the set of feasible paths for P and C. For our analysis, we study
the reduction of search space size for the path planning problem TSP. This problem’s set
of feasible paths are all tours that visit each vertex exactly once. Thus the size of the
search space for this problem is

N0 = (|V | − 1)!.

The size of the clustered problem’s search space (Problem 4.3.3) is

N1 = (|Roots(C)| − 1)!
∏
Vi∈C

|Children(Vi)|!,

where the function Roots(C) returns the root clusters of C and the function Children(Vi)
returns the children of Vi (see Section 4.2.1 for the definition of roots and children).

Note 4.5.1. The functions Roots and Children, return a set of sets instead of a hybrid
of sets and vertices. We do this to simplify the algorithms within this chapter.

To simplify the analysis, we study clusterings that contain m equally sized clusters of
size x = |V |/m, where x ∈ Z. Now we have

N1 = (m− 1)!
m∏
i=1

x!.

Lemma 4.5.2. Given |V | = mx, for m,x ∈ Z+ the following holds |V |! ≥ m!xx!m.

61

Proof.

|V |! =
m∏
i=1

x−1∏
j=0

(ix− j)

=
m∏
i=1

x−1∏
j=0

(i)

(
x− j

i

)

≥
m∏
i=1

x−1∏
j=0

(i) (x− j)

=

(
m∏
i=1

ix

)(
x−1∏
j=0

(x− j)

)m

= (m!)x(x!)m.

We show through a series of manipulations the ratio r = N0/N1 is exponential in size,
which in turn shows that N0 is exponentially larger than N1.

r =
N0

N1

=
(|V | − 1)!

(m− 1)!
∏m

i=1 x!

≥ (m!)x(x!)m

|V |(m− 1)!(x!)m
Lemma 4.5.2

≥ (m!)x−1

|V |

=
(m!)x−1

mx

=
(m− 1)!(m!)x−2

x
= (m− 1)!(m!)x−3 for x ≥ 3 and m ≥ 2

≥ (m− 1)!x−2.

To gauge the magnitude of r, consider a TSP instance of size 100 and a clustering that
divides the vertices into four equal parts. Here r ≈ 2.69× 1054, which means the clustered

62

problem has search space that is more than 1054 smaller than the non-clustered problem’s
search space. However N1 is still extremely large, N1 ≈ 3.47× 10101.

4.5.2 Solution Quality Bounds

In this section, we show that when P = 〈G,P〉 is metric (the graph G is metric) the
solutions to the clustered problem P̄ = 〈G,P , C〉 have cost c bound by

c̄∗ ≤ min

(
2,

(
1 +

3

2Γ

))
c∗,

where c∗ is the optimal cost of P . We start by proving the first half of the result (c̄∗ ≤ 2c∗).
We do this with a series of theoretical results that use minimum spanning trees (MST) to
construct feasible solutions.

Lemma 4.5.3. Given a metric graph G and a Γ-Clustering C with Γ > 1, then every MST

will have exactly one inter-set edge for each cluster Vi ∈ C.

Proof. We prove the above result by contradiction. Suppose the MST has at least two
inter-set edges connected to Vi. Thus, there are at least two sets of vertices in Vi that are
not connected to each other using intra-set edges. We can lower the cost of the MST by
removing one of these inter-set edges of weight ≥ αi and replace it with an intra-set edge
of weight ≤ βi < αi. This highlights the contradiction. Therefore, every MST will have
exactly one inter-set edge for each Γ-Cluster Vi ∈ C.

Lemma 4.5.4 (Two-Factor Approximation). Consider a metric discrete path planning
problem P with an optimal solution path p∗ and cost c∗. Then given a Γ-Clustering
C = {V1, V2, . . . , Vm} with Γ > 1, the optimal solution p̄∗ for the clustered problem P̄ over
the same set of vertices V [p∗] is a solution to P with cost c̄∗ ≤ 2c∗.

Proof. To prove the above result, we use the MST approach described below and in [49] to
construct a path p̄ over the set of vertices in V [p∗]. This approach yields a solution p̄ for
P̄ that has the desired cost bound, c̄ ≤ 2c∗ [49]. The MST procedure is described below.

1. Find a minimum spanning tree for the vertices V [p∗].

2. Duplicate each edge in the tree to create a Eulerian graph.

3. Find an Eulerian tour of the Eulerian graph.

63

4. Convert the tour to a TSP: if a vertex vi is visited more than once after the first
visit, create a shortcut: from the vertex before vi to the vertex after vi (i.e., create a
tour that visits the vertices in the order they first appeared in the tour).

What remains to prove is that the above tour is a feasible solution for P̄ . First we note
that the above approach yields a single tour of all the vertices in V [p∗] (i.e., there are no
disconnected tours). Note that Lemma 4.5.3 states that every MST uses exactly one inter-
set edge for each cluster Vi ∈ C. Thus when the edges are duplicated and a Eulerian tour
is found, there are only two inter-set edges used for each Vi ∈ C. Furthermore shortcutting
the path does not change the number of inter-set edges used by the tour, thus the final
solution p̄ only has one incoming and one outgoing edge for each cluster Vi ∈ C. As a
result it is a clustered solution for P̄ that satisfies the bound since the MST approach also
yields a solution with cost c̄ ≤ 2c∗.

Next, we prove the second half of the bound c̄∗ ≤
(
1 + 3

2Γ

)
c∗ by using Algorithm 6

to construct p̄ (a feasible solution for P̄). Additionally, we use a modified graph (Defini-
tion 4.5.8) to show that the cost of the solution satisfies our desired bound.

Lemma 4.5.5 (Correctness of Algorithm 6). Given a feasible path p for P and a cluster
Vi ∈ C that is not visited consecutively, then p′ ← Deform(p, Vi) visits Vi consecutively
and any subsequent deformed paths also visits Vi consecutively.

Proof. By construction, Vi is visited consecutively in p′ ← Deform(p, Vi). The remaining
claim that Vi continues to be visited consecutively is proven by showing that the set of
intra-set edges for Vi remains unchanged.

We prove this result by contradiction. Suppose, there exists some deformed path p′′′

that came some time after p′, such that the edge 〈va, vb〉 ∈ p′ for some va, vb ∈ Vi but not
in p′′ (〈va, vb〉 6∈ p′′). Furthermore, let p′′′ be the first deformed path that does not have
this edge and let p′′′ ← Deform(p′′, Vj) be the path before the deformation.

This means that Algorithm 6 inserts one or more vertices in between va and vb. This
cannot happen in Lines 5-7 since the path for the 1st vertex to the kth is unchanged. Also
this cannot happen in Lines 8-9 since this part of the algorithm is only connecting vertices
within the cluster Vj together. Finally, this cannot happen in Lines 11-13, since the path
is not changing the order of the appearance of va and vb (no insertions, just deletions).

Thus 〈va, vb〉 must be in p′′′, which highlights the contradiction. Therefore, all subse-
quent paths must also visit Vi consecutively, since all intra-set edges remain intact.

64

Algorithm 6: Deform(p, Vi)

Input:
p: a path represented as an array.
Vi: a cluster.

Output:
p̄: a deformed path that visits Vi at most once.

1 if p has two or less inter-set edges for Vi then
2 return p

3 k ← 1
4 p̄← [] /* empty array */

5 while p[k] 6∈ Vi do
6 p̄.append(p[k])
7 k ← k + 1

8 for l ∈ [k, k + 1, . . . , |p|] do
9 if p[l] ∈ Vi then

10 p̄.append(p[l])

11 for l ∈ [k, k + 1, . . . , |p|] do
12 if p[l] 6∈ Vi then
13 p̄.append(p[l])

14 return p̄

65

Remark 4.5.6 (Uniqueness). When Algorithm 6 is applied to p∗ iteratively for each Vi ∈ C
to generate the solution p̄, the solution is unique despite the order that Deform(p, Vi) was
called. Furthermore the order of the clusters is determined by their first appearance in p.

This is how Algorithm 6 reorders the vertices within the tour. Specifically, the order
of vertices within each cluster Vi is preserved as deform(p, Vi) is called, as well as the
ordering of the remaining vertices.

Lemma 4.5.7 (Deformation cost). Consider a feasible path p for P that has 2(n+ 1) ≥ 4
inter-set edges for Γ-Cluster Vi such that Γ > 1 and n ∈ Z≥0. Then the cost to deform p
into p̄← Deform(p, Vi) is c̄− c ≤ (2n+ 1)βi.

Proof. We analyze the cost to deform p into p̄ for each type of deformation the algorithm
uses.: There are three types of deformations: 1) shortcuts are created within the cluster;
2) shortcuts are created outside of the cluster; and 3) the cluster adopts a new outgoing
edge. These deformations are illustrated in Figure 4.4. A classification of the edges in the
figure are as follows: 1) edges 〈v3, v4〉 and 〈v6, v7〉 are shortcuts within the cluster; 2) edges
〈v10, v11〉 and 〈v12, v13〉 are shortcuts outside of the cluster; and 3) edge 〈v8, v9〉 is the new
outgoing edge for the cluster.

We start by examining the incurred cost to shortcut paths within the cluster. Consider
a path segment 〈va, vb, vc, . . . , vx, vy, vz〉 of p such that va is directly connected to vz in p̄
with the edge 〈va, vz〉 and va, vz ∈ Vi. The incurred cost of each of these edges is ≤ βi due
to the fact that the cost of any intra-set edge has weight ≤ βi. There are n such shortcuts
of this nature incurred from Deform(p, Vi) (n captures the number of extra visits to the
cluster) and so the total incurred cost for this type of shortcut is ≤ nβi.

Next, we examine the incurred cost to shortcut paths outside of the cluster. Consider
a path segment 〈va, vb, vc, . . . , vx, vy, vz〉 of p such that va is directly connected to vz in
p̄ with the edge 〈va, vz〉, va, vz 6∈ Vi and vb, vc, . . . , vy ∈ Vi. The incurred cost for each
of these shortcuts is again ≤ βi. This is due to the metric property of G. The cost of
the direct path from va to vz is less than or equal to any path from va to vz, specifically
c(va, vz) ≤ c(va, vb) + c(vb, vy) + c(vy, vz) ≤ c(va, vb) +βi+ c(vy, vz). Thus the incurred cost,
∆, of this shortcut is bound by the difference between the cost of the new edges in p̄ and
the removed edges in p∗, namely:

∆ = c(va, vz)− c(va, vb)− c(vy, vz)
≤ c(va, vb) + βi + c(vy, vz)− c(va, vb)− c(vy, vz)
≤ βi.

66

There are n such shortcuts of this nature incurred by Deform(p, Vi). Thus, the total
incurred cost for this type of shortcut is also ≤ nβi.

Lastly we examine the incurred cost of the new outgoing edge. Consider the path
〈va, vb, vc, . . . , vx, vy, vz〉 of p such that 〈vb, vc〉 is the first outgoing edge of Vi and 〈vx, vy〉
is the last outgoing edge of Vi, thus 〈vx, vc〉 is the new outgoing edge. Then due to the
metric property we know that c(vx, vc) ≤ c(vx, vb) + c(vb, vc) ≤ βi + c(vb, vc). The incurred
cost, ∆, of this deformation is the difference between the cost of the new edge 〈vx, vc〉 and
the removed edge 〈vb, vc〉 (this edge has not been considered in any previous incurred cost
calculation):

∆ = c(vx, vc)− c(vb, vc)
≤ βi + c(vb, vc)− c(vb, vc)
≤ βi.

This accounts for all the incurred costs, and so the total cost to deform p into p̄ via
Deform(p, Vi) is c̄− c ≤ (2n+ 1)βi.

We introduce the modified graph Ĝ in the following definition to aid with our ongoing
proof of the bound.

Definition 4.5.8 (The modified graph Ĝ). Given a graph G and a Γ-Clustering C, the
modified graph Ĝ is a copy of G with the following modifications: if 〈va, vb〉 is an inter-
set edge with va ∈ Vi and vb ∈ Vj, then ŵ(va, vb) = w(va, vb) + 3

2
max(βi, βj); otherwise

ŵ(va, vb) = w(va, vb), where βi and βj are defined as in Definition 4.4.1.

Lemma 4.5.9 (Deformation cost in Ĝ). Consider a feasible path p for P , a Γ-Cluster Vi
with Γ > 1, and p̄ ← Deform(p, Vi), then the cost of p and p̄ in Ĝ satisfies ĉ(p̄) ≤ ĉ(p),
where ĉ(p̄) and ĉ(p) are the cost of p̄ and p in Ĝ respectively. In other words the cost to
deform p into p̄ is ≤ 0 for Ĝ.

Proof. In this proof we analyze the cost to deform p into p̄ in Ĝ, which is a result of single
call p̄← Deform(p, Vi) (Algorithm 6).

From Lemma 4.5.7, we see that the cost to deform p into p̄ with respect to G is
c̄− c ≤ (2n + 1)βi, where there are 2(n + 1) ≥ 4 inter-set edges for Vi in p. The cost of p
in Ĝ is

ĉ(p) ≥ c+ 2(n+ 1)

(
3

2

)
βi = c+ 3(n+ 1)βi

67

and the cost of p̄ in Ĝ is

ĉ(p̄) ≤ c̄+ 2

(
3

2
βi

)
≤ c+ (2n+ 1)βi + 3βi.

Thus

ĉ(p̄)− ĉ(p) ≤ (2n+ 1)βi + 3βi − 3(n+ 1)βi

= 2nβi + βi + 3βi − 3nβi − 3βi

= βi − nβi
and since n ≥ 1 (otherwise we did not need to deform the path), then we have ĉ(p̄) ≤
ĉ(p).

Lemma 4.5.10 (Approximation Factor). Given a metric discrete path planning problem
P with optimal solution cost c∗, Γ > 1, and a Γ-Clustering C = {V1, V2, . . . , Vm}, then the
optimal solution p̄∗ to the clustered problem P̄ over the same set of vertices is a solution
to P with cost c̄∗ ≤ (1 + 3

2Γ
)c∗.

Proof. To prove the above result we work with the modified graph Ĝ (Definition 4.5.8) and
use Lemma 4.5.9 to imply there exists a clustered solution in Ĝ that has the same cost or
lower than ĉ(p∗), where ĉ(p∗) is the cost of p∗ in Ĝ. Then we relate c̄∗ to c∗.

First, we show that there exists a clustered solution p̄ that satisfies the following:

ĉ(p̄) ≤ ĉ(p∗),

where ĉ(p̄) and ĉ(p∗) are the cost of p̄ and p∗ in Ĝ respectively. To find a solution p̄ that
satisfies the above we use Algorithm 6 to deform p∗ into p̄. The deform algorithm is called
for each Vi ∈ C, in any order, to form a solution for P̄ (see Lemma 4.5.5). For each
call p′ ← Deform(pi, Vi) the incurred cost in Ĝ is ĉ(pi) − ĉ(p′) ≤ 0 (see Lemma 4.5.9).
Therefore, after the series of calls, we have a clustered solution p̄ satisfying

ĉ(p̄) ≤ ĉ(p∗).

Next, we relate c∗ to ĉ(p∗) by observing the following for an inter-set edge 〈va, vb〉 ∈ p∗:

ŵ(va, vb) = w(va, vb) +
3

2
max(βi, βj)

≤ w(va, vb) +
3

2Γ
max(αi, αj)

≤
(

1 +
3

2Γ

)
w(va, vb).

68

The above inequality is true for each edge 〈va, vb〉 ∈ p∗, inter-set edge or not. Therefore
the path cost satisfies

ĉ(p∗) ≤
(

1 +
3

2Γ

)
c∗.

Due to the construction of Ĝ and how ĉ(p̄) ≤ ĉ(p∗) we deduce that

c̄∗ ≤ ĉ(p∗),

since
c̄∗ ≤ c(p̄) ≤ ĉ(p̄) ≤ ĉ(p∗),

where c(p̄) is the cost of p̄ in G. Therefore

c̄∗ ≤
(

1 +
3

2Γ

)
c∗.

Theorem 4.5.11 (Approximation Factor). Given a metric discrete path planning problem
P , an optimal solution p∗ with cost c∗, and a Γ-Clustering C = {V1, V2, . . . , Vm} with Γ > 1,
then the optimal solution p̄∗ to the clustered problem P̄ over the same set of vertices is a
solution to P with cost c̄∗ ≤ min

(
2, 1 + 3

2Γ

)
c∗.

Proof. The proof directly follows from Lemma 4.5.4 and Lemma 4.5.10.

Remark 4.5.12 (Tightness of Bound). To better characterize the tightness of the bound
provided by Theorem 4.5.11, we provide a lower bound for the solution quality of solving
P̄ instead of P (Problem 4.3.3 and Problem 4.3.2 respectively). Additionally, Figure 4.6
visualizes the gap between the lower and upper bound for increasing values of Γ.

The lower bound problem is illustrated in Figure 4.5. In this example, the graph is
scalable (add three vertices at a time). The clustered and non-clustered solutions for this
example have a cost relation of

lim
|V |→∞

c̄∗ =

(
1 +

2

2Γ + 1

)
c∗.

69

Figure 4.4: Path deformation example.

The bound for this graph is obtained as follows. Let n = |V |
3
− 1 for |V |

3
∈ Z>0. Then

the optimal non-clustered solution cost is:

p∗ = 〈v1, v2, v3, v4, v6, v5, . . .〉
c∗ = α + β + α + n (2α + β)

= (n+ 1) (2α + β)

= (n+ 1)

(
2 +

1

Γ

)
α

(verified with a solver for P). The optimal clustered solution is:

p̄∗ = 〈v1, v2, v3, v5, v6, . . . , v4, v7, . . .〉
c̄∗ = α + β + 2nβ + α + n(2α + β)

= 2α + 3β − 2β + n(2α + 3β)

= (n+ 1)(2α + 3β)− 2β

=

(
(n+ 1)(2 +

3

Γ
)− 2

Γ

)
α

(verified with a solver for P̄).

70

Optimal Clustered Solution:

Optimal Solution:

Figure 4.5: Metric example instance (α > β). Vertices in the top row (v2, v3, v5, v6, . . .)
are in the cluster Vi. Edge weights connecting vertices within Vi are β. Edge weights
connecting vertices not in Vi are 2α + β. Edge weights connecting vertices not in Vi to
vertices in Vi are α + β, unless shown differently in diagram.

As the instance grows (|V | → ∞ and n→∞), we have the following:

lim
n→∞

c̄∗ =
(n+ 1)

(
2 + 3

Γ

)
− 2

Γ

(n+ 1)
(
2 + 1

Γ

) c∗

=

(
2 + 3

Γ

2 + 1
Γ

)
c∗

=

(
1 +

2

2Γ + 1

)
c∗,

which confirms the stated bound.

71

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5 6 7 8 9 10

 N
or

m
al

iz
ed

 C
os

t B
ou

nd

Gamma

Upper Bound
Lower Bound

Figure 4.6: A plot showing the tightness of the approximation’s upper bound. The gap
between the two curves shows where the tightest upper bound can lie.

4.6 Decoupled Planning

We introduce decoupled planning as an intermediate step towards hierarchical planning.
Decoupled planning, is a technique that significantly reduces the space of feasible solutions
that are searched. This approach achieves its reduction in computational complexity, by
how it finds solutions in the space (i.e., the search space of the problem is unchanged
but a large portion is ignored by the approach). Decoupled planning solves the clustered
path planning problem P̄ = 〈G,P , C〉 by decomposing the problem into a series of smaller
independent problems, one problem for each cluster Vi ∈ C. A path segment pVi for cluster
Vi is found by planning the sequence of its children without consideration for the rest of
the graph (independently planned). Its children are compressed into super vertices, where
the incoming and outgoing edges take on the worst case edge weights. Algorithm 7 solves
this problem for a given set of included vertices V ′.

To construct a full solution, we also require a tour of the root clusters. The clusters
visited in this tour again depend on the included set of vertices V ′. However, if we were
to näıvely plan a tour of the included root clusters we may end up with a solution path,
instead of a tour. This would occur in the event that only one root cluster Vi is visited. To
compensate for this corner case, the planner would need to find a tour of Vi’s offspring at
a level where there is more than one cluster to visit. Algorithm 9 solves this problem by
constructing a clustering C ′ of the visited clusters. Once all of the segments are planned,

72

Algorithm 7: Decoupled Path(G,C, V ′, Vi)

Input:
G: a graph with vertices V , edges E, and weights w.
C: a clustering.
V ′: a set of included vertices.
Vi: a cluster such that Vi ∈ C.

Output:
pVi : a locally optimal path of the non-nested components of Vi

that contain vertices in V ′.

1 C ′ ← {Vj ∈ Children(Vi)|Vj ∩ V ′ 6= ∅}
2 G̃′ ← Coarsen(G,C ′)

3 pVi ← ShortestPath(G̃′)
4 Return pVi

Algorithm 8: Coarsen(G,C)

Input:
G: a graph with vertices V , edges E, and weights w.
C: a clustering such that Vi ∩ Vj = ∅ ∀ Vi, Vj ∈ C.

Output:
G̃: a coarsened graph with vertices C.

1 Create a graph G̃ of size |C| with vertices Vi ∈ C
2 Let w̃(Vi, Vj) = max{w(va, vb)|va ∈ Vi, vb ∈ Vj}
3 Return G̃

73

then a full solution is constructed by recursively replacing the super vertices Vi in the tour
with their corresponding path segments pVi .

Decoupled planning can also be used to find solutions for P̄ without the knowledge of
V ′. This is accomplished by re-coupling the smaller problems back together with some
additional logic to ensure that a solution tour is found instead of a path. Then the re-
coupled problem will find V ′, a tour of the root clusters, and a set of path segments pVi for
each visited cluster Vi. The re-coupled problem still has a much smaller search space than
P̄ since for every feasible set V ′ the problem is finding a tour in a decoupled manner.

Algorithm 9: Decoupled Tour(G,C, V ′)

Input:
G: a graph with vertices V , edges E, and weights w.
C: a clustering.
V ′: a set of vertices to be visited such that V ′ ⊆ V .

Output:
pC : an optimal tour of the non-nested components of C

that contain vertices in V ′.

1 C ′ ← {Vi ∈ C|Vi ∩ V ′ 6= ∅}
2 while |Roots(C ′)| = 1 do
3 Replace C ′ with the root cluster Vi of C ′

4 G̃′ ← Coarsen(G,Roots(C ′))

5 pC ← ShortestTour(G̃′)
6 Return pC

4.6.1 Search Space Reduction

In this section we show how decoupled planning can exponentially reduce the space of
searched solutions. We measure this space by counting the number of feasible paths search-
able by the algorithm. As with coupled planning, measuring the reduction in search space
size depends on the set of feasible paths P for Problem 4.3.2 and the clustering C. For our
analysis we again study the TSP problem P = 〈G,P〉, where P is the set of all tours that
visit ever vertex in G exactly once. As before the size of the non-clustered problem is

N0 = (|V | − 1)!

74

and the size of the clustered problem’s search space (Problem 4.3.3) is

N1 = (|Roots(C)| − 1)!
∏
Vi∈C

|Children(Vi)|!.

The size of the space searched by the decoupled approach is

N2 = (|Roots(C)| − 1)! +
∑
Vi∈C

|Children(Vi)|!.

To simplify the analysis, we study clusterings C with m clusters at the top level of the
hierarchy and each one of those clusters contains m clusters. This continues for total of m
levels (each cluster has m children) until each cluster in the last level contains m vertices.
The search space size of this clustered problem P̄ is

N1 = (m− 1)!
m−1∏
i=1

mi∏
j=1

(m!) = (m− 1)!
m−1∏
i=1

(m!)m
i

and when solved with the decoupled approach it is

N2 = (m− 1)! +
m−1∑
i=1

mi∑
j=1

m! = (m− 1)! +m!
m−1∑
i=1

mi.

To show that the search space size N1 for the coupled approach is exponentially larger
than the space searched by the decoupled approach N2, we manipulate the ratio r = N1/N2

to show that it is exponential in size.

75

r =
N1

N2

=
(m− 1)!

∏m−1
i=1 (m!)m

i

(m− 1)! +m!
∑m−1

i=1 mi

≥ (m− 1)!
∏m−1

i=1 (m!)m
i

m!
∑m−1

i=0 mi

=

∏m−1
i=1 (m!)m

i

m
∑m−1

i=0 mi

=

∏m−1
i=1 mmi

∏m−1
i=1 (m− 1)!m

i

m
(
mm−1
m−1

)
=
m

∑m−1
i=1 mi

∏m−1
i=1 (m− 1)!m

i

m
(
mm−1
m−1

)
=
mm(m

m−1
m−1)∏m−1

i=1 (m− 1)!m
i

m
(
mm−1
m−1

)
≥ mm(m

m−1
m−1)∏m−1

i=1 (m− 1)!m
i

mm+1

= mm(m
m−1
m−1)−(m+1)

m−1∏
i=1

(m− 1)!m
i

≥
m−1∏
i=1

(m− 1)!m
i

for m ≥ 2.

To get a better understanding of this size, we now consider the concrete example of
when m = 3. In this case there would be 27 vertices and 12 clusters (9 clusters with
3 vertices and 3 clusters with 3 nested clusters). The ratio r would be approximately
5.9×107, meaning the decoupled method’s search space is approximately 5.9×107 smaller.
If we were to instead compare N2 to N0 then r′ = N0/N1 ≈ 5.45× 1024.

Thus the size of the space searched by the decoupled approach is exponentially smaller
than the search space of the coupled problem P̄ and P .

76

4.6.2 Solution Quality Bounds

In this section we provide a solution quality bound for decoupled planning. We start by
introducing a modified version of the problem environment that will yield the same set of
solutions found by the decoupled approach. Then we step through a series of theoretical
results that are used to prove the main result, which is that solutions found with decoupled
planning have a cost c bound by c ≤ 2

(
1 + 2

Γ

)
c∗, where c∗ is the cost of the optimal solution

for the non-clustered path planning problem.

Definition 4.6.1 (The modified graph G̃). Given a graphG = 〈V,E,w〉 and a Γ-Clustering
C, we define the modified graph G̃ = 〈V,E, w̃〉 as a copy of G with the following edge weight
assignments. For each 〈va, vb〉 ∈ E, let Vi be the largest cluster containing va but not vb
and Vj be the largest cluster containing vb but not va, then w̃(va, vb) = max{w(vx, vy)|vx ∈
Vi, vy ∈ Vj}.
Proposition 4.6.2. Given a metric clustered path planning problem P̄ = 〈G,P , C〉 and
its modified clustered problem P̃ = 〈G̃,P , C〉, where C is a Γ-Clustering with Γ > 1 and
G̃ is the modified graph as defined in Definition 4.6.1, then the solution p obtained by the
decoupled approach is an optimal solution for P̃ and likewise, an optimal solution p̃∗ for
P̃ could be obtained by the decoupled approach.

Proof. We prove the above result by showing that for every feasible set of included vertices
V ′, the optimal solution p̃∗ could be found using the decoupled approach (with the same
set of included vertices). Let

C ′ = {Vi ∩ V ′|Vi ∈ C and Vi ∩ V ′ 6= ∅}

be the set of visited clusters. Let C ′0 = Roots(C ′). Let the notation p̃∗C′′ represent the
subset of inter-set edges between the clusters in C ′′,{

〈va, vb〉 ∈ p̃|va ∈ V ′′i , vb ∈ V ′′j , V ′′i , V ′′j ∈ C ′′
}
,

where C ′′ has no nested clusters.

The first property we show is that p̃∗C′0
is a shortest tour of the root clusters of C ′ and

that p̃∗C′0
could be equally obtained from calling Algorithm 9 with input (G,C, V ′). This

result follows from the construction of G̃. The costs of the edges in the tour, depend on
the sequence of the clusters in C ′0, not the choice of vertices that p̃∗ transitions to and from
the root clusters. For example, if we are transitioning from V ′i to V ′j such that V ′i , V

′
j ∈ C ′0

then each edge 〈va, vb〉 with va ∈ V ′i and vb ∈ V ′j has the same cost. Thus p̃∗C′0
is a shortest

tour of the root clusters C ′0 since the cost of the tour is independent of the choice of vertices

77

transitioned within the clusters. The cost of the edges transitioning from V ′i to V ′j in G̃

also have equivalent cost to the coarsened graph G̃′ created by Algorithm 9. Thus pC from
Algorithm 9 is a solution for p̃∗C′0

and vice versa since both paths are solutions for the same

problem (find a minimum cost tour of the root clusters of C ′).

For the second property, we show that for each V ′i ∈ C ′, p̃∗V ′i
is a shortest path of

V ′i ’s children with free choice of start and goal. Alternatively, p̃∗V ′i
could be obtained from

calling Algorithm 7 with input (G,C, V ′, Vi), where Vi ∈ C is used to construct V ′i = Vi∩V ′.
This result again follows from the construction of G̃ using the same argument as before.
The choice of first and last vertices visited in V ′i is independent from the rest of the tour
and the ordering of V ′i ’s children depend only on the sequence of the children (not the
vertices within). Thus p̃∗V ′i

must also be a shortest path. Additionally in Algorithm 7, the

transition costs between the children of V ′i are equivalent to G̃′. Thus pVi from Algorithm 7
is a solution for p̃∗V ′i

and vice versa since both paths are solutions for the same problem.

Therefore, to obtain p̃∗ one can either solve P̃ optimally or solve P̄ with the decoupled
approach.

Proposition 4.6.3 (Inter-set Edge Weight Bound). Given a metric graph G, its Γ-
Clustering C, and any Vi, Vj ∈ C such that Vi ∩ Vj = ∅, then for any va, vx ∈ Vi, and
any vb, vy ∈ Vj, the following holds: w(va, vb) ≤ (1 + 2

Γ
)w(vx, vy).

Proof. The above is proven using the triangle inequality and the relations from Defini-
tion 4.4.2. Specifically, we use the fact that the direct path from va to vb is no longer than
the path from va to vx to vy to vb. Then we make a series of inequality replacements using
the relations from Definition 4.4.2.

w(va, vb) ≤ w(va, vx) + w(vx, vy) + w(vy, vb)

≤ βi + w(vx, vy) + βj

=
αi
Γ

+ w(vx, vy) +
αj
Γ

≤ w(vx, vy)

Γ
+ w(vx, vy) +

w(vx, vy)

Γ

=

(
1 +

2

Γ

)
w(vx, vy).

78

Lemma 4.6.4. Consider a clustered TSP problem P̄ = 〈G,P , C〉 with optimal solution p̄∗

of cost c̄∗ and its modified clustered problem P̃ = 〈G̃,P , C〉 with optimal solution p̃∗ of
cost c̃∗, then c̃∗ ≤

(
1 + 2

Γ

)
c̄∗.

Proof. To prove the above result we analyze the cost of p̄∗ in G̃. Let 〈va, vb〉 be an edge
in p̄∗ and let Vi be the largest Γ-Cluster containing va but not vb and let Vj be the largest
Γ-Cluster containing vb but not va (as defined in Definition 4.6.1). We use the result from
Proposition 4.6.3 to bound the weight of 〈va, vb〉 in G̃ with w̃(va, vb) ≤ (1 + 2

Γ
)w(va, va)

and since every edge weight of p̄∗ is bound by a factor of (1 + 2
Γ
) in G̃, then the cost of

the entire tour p̄∗ must also be bound by the same factor, c̃(p̄∗) ≤ (1 + 2
Γ
)c̄∗. Therefore,

c̃∗ ≤ (1 + 2
Γ
)c̄∗, since c̃∗ represents the cost of the optimal solution of P̃ .

Theorem 4.6.5. Given a metric planning problem P = 〈G,P〉 and a Γ-Clustering C
with Γ > 1, then the decoupled approach will find a path p with cost c that is bound by
c ≤ min(2 + 4

Γ
, 1 + 13

2Γ
)c∗, where c∗ is the cost of the optimal solution.

Proof. The proof follows from Proposition 4.6.2 (the decoupled approach solves the modi-
fied problem P̃), Lemma 4.6.4 (bounds the modified problem P̃ with the clustered problem
P̄), and Lemma 4.5.11 (bounds the clustered problem P̄ with the non-clustered problem
P).

c = c̃

≤
(

1 +
2

Γ

)
c̄∗

≤
(

1 +
2

Γ

)
min

(
2, 1 +

3

2Γ

)
c∗

= min

(
2 +

4

Γ
, 1 +

7

2Γ
+

3

Γ2

)
c∗

≤ min

(
2 +

4

Γ
, 1 +

13

2Γ

)
c∗.

Therefore, c ≤ min(2 + 4
Γ
, 1 + 13

2Γ
)c∗.

4.7 Hierarchical Planning

In this section we present our hierarchical method for solving high-level path planning
problems as an improvement to decoupled planning. This approach achieves similar search

79

space reductions and solution quality bound.

The organization of this section is as follows: first we present a hierarchical planning
algorithm for solving TSP problems; then we show that it obtains the same reduction in
search space; followed by a proof of the solution quality bound; and finally we present an
extension for solving non-TSP problems that achieve similar computational savings and
solution quality.

4.7.1 A Hierarchical Method for TSP Problems

The solver approach for TSP problems (Algorithm 10) uses the clustering C to decompose
the problem into a set of semi-independent sub-problems. There are two external solvers
that are used in conjunction with this method: ShortestTour and ShortestPath. The
ShortestTour method is a TSP solver. The ShortestPath(Vi, Vj, Vk) is a Hamiltonian
path solver that finds paths for Vj’s children that start with Vi and end with Vk. The
solution path is returned without Vi or Vj.

The first step in the process is to find a Γ-Clustering C of G (Section 4.4.2). The next
step is to approximate the environment by compressing clusters on the level being solved
into super vertices. The goal is to plan on the coarse levels and then extend the solution by
expanding the visited super vertices. The visualization in Figure 4.7 shows how a cluster
in level n is represented as a super vertex in the coarsened problem. The details of the
coarsening process is given in Algorithm 8.

The first tour p0, is a sequence of super vertices that connect the roots clusters. The
algorithm plans this path in Lines 2-4 on the graph G̃0, which approximates the transition
costs between the root clusters.

The next step is to expand each super vertex Vj visited by p0 to create p1. This is done
cluster by cluster. The algorithm creates the approximation G̃Vj of the environment for
each Vj. The approximation includes the nested clusters within Vj, as well as the path’s
start and goal. This is visualized in level 1 of the figure and Lines 5-20 of the algorithm.

In this way, the algorithm refines the accuracy of its edges at each level. For example,
suppose the tour p0 transitioned from Vi to Vj with an edge weight of

max {w(va, vb)|va ∈ Vi, vb ∈ Vj} ,

then in level 1, p1 replaces that edge with a more accurate one. The new edge still tran-
sitions from Vi to Vj, however, the edge weight now represents edges between Vx and Vy,

80

L0

L1

L2

Figure 4.7: Illustration of how the hierarchical approach progresses. On the left, the
progression of how the path is built. On the right, the levels of nesting in the clustering
are illustrated as a forest (i.e., clusters V4 and V5, as well as vertex 5 are nested in cluster
V2).

where Vx ⊂ Vi and Vy ⊂ Vj. As such, the new weight is

max {w(va, vb)|va ∈ Vx ⊂ Vi, vb ∈ Vy ⊂ Vj} .

Thus each time the path is refined, the edge weight between Vi and Vj of the path, mono-
tonically deceases until it reaches its final value obtained by pn.

The extension process is repeated (Line 19) until a tour is found with the same resolution
as G.

Search Space Reduction

The search space reduction obtained by the hierarchical method is identical to the reduction
obtained by the decoupled method. The only difference is when the hierarchical method
finds a path visiting cluster Vi (Line 18 of Algorithm 10). Here it has two additional
vertices, the start and the goal. However, since these are fixed, the search space size is the
same. For example, when planning a path for cluster Vi of size n = |Vi|, the decoupled
approach has a search space size of n! (n choices for the starting vertex, n− 1 choices for
the next vertex and so on). The search space size for the hierarchical approach is also
n! because we do not have a choice of start or goal vertices but we do have n! for the
remaining vertices.

81

Algorithm 10: Hierarchical-TSP(G,Γ)

Input:
G: a graph with vertices V , edges E, and weights w.
Γ: a real valued constant greater than 1.

Output:
pn: a Hamiltonian tour G.

/* Find initial coarse solution */

1 C ← Find Γ-Clusters(G,Γ)
2 C0 ← Roots(C)

3 G̃0 ← Coarsen(G,C0)

4 p0 ← ShortestTour(G̃0)
/* Extend p0 to create p1 */

5 Vi ← p0[−1]
6 p1 ← [] /* empty array */

7 for x ∈ {0, 1, . . . , |p0| − 1} do
8 Vj ← p0[x]
9 if Vj = p0[−1] then

10 Vk ← p1[0]

11 else
12 Vk ← p0[x+ 1]

13 if |Vj| = 1 then
14 Append Vj to p1

15 else
16 CVj ← Vi ∪Children(Vj) ∪ Vk
17 G̃Vj ← Coarsen(G,CVj)

18 pVj ← ShortestPath(Vi, G̃Vj , Vk)
19 Append pVj to p1

20 Vi ← p1[−1]

21 Continue to extend p1, p2, . . . , pn until we have an array of unit clusters (vertices)
22 return pn

82

Solution Quality

Now we show that the hierarchical method for TSP problems, obtain solutions of cost

c ≤ min(2 +
4

Γ
, 1 +

13

2Γ
)c∗,

where c∗ is the cost of a solution obtained from the decoupled approach.

Lemma 4.7.1. Given a metric TSP problem P = 〈G,P〉, with an optimal solution of cost
c∗, and a Γ-Clustering C then the solution p found by Algorithm 10 has a cost bound by
c ≤ c̃, where c̃ is the cost of a solution obtained by the decoupled approach.

Proof. We prove the above by comparing p to the optimal solution p̃∗ for the clustered
problem P̃ = 〈G̃,P , C〉, where G̃ is the modified graph defined in Definition 4.6.1 (Propo-
sition 4.6.2 states that the decoupled approach and the modified problem P̃ = 〈G̃,P , C〉
have an equivalent set of optimal solutions).

To compare p to p̃∗ we analyze the cost of p as it is being constructed in Algorithm 10
(proof by induction). Let the function Clusters operate on a partial solution path px to
return the set of super vertices/clusters being visited. Let the notation p̃∗C′′ represent the
subset of inter-set edges between the clusters in C ′′,{

〈va, vb〉 ∈ p̃|va ∈ V ′′i , vb ∈ V ′′j , V ′′i , V ′′j ∈ C ′′
}
,

where C ′′ has no nested clusters.

We start with our initial solution for level 0 of the cluster hierarchy (the root clusters).
Here, p0 of the algorithm is an optimal path that visits the vertices in G0 (the clusters in
C0). The cost of an edge 〈Vi, Vj〉 in G0 has equal cost of any edge in G̃ that transitions
from Vi to Vj. Thus, the path p̃∗C0

built from edges in p̃∗ that connect the clusters in C0

has the same total cost as p0, since p̃∗ is an optimal tour of C0 (Proposition 4.6.2).

In level 1 of the algorithm, the path p1 is constructed to visit all the expanded super
vertices of the clusters visited in p0 (assign p1 = p0 to start). We incrementally expand the
super vertices inherited by p0. This view point is equivalent to how Algorithm 10 builds
p1.

The induction step is as follows. We start with a path p1 that has equal or lower cost
than the path p̃∗Clusters(p1). Then we expand the next super vertex in p1 to show that this
new path p′1 has equal or lower cost than its counterpart, p̃∗Clusters(p′1).

Given a super vertex Vj in p1, which is preceded by Vi and followed by Vk. The algorithm
constructs G̃Vj and finds the path pVj that visits the Vj’s children (Line 18). The first thing

83

to note is that the incoming edges and outgoing edges for Vj in G̃Vj are more accurate than
they were before the expansion. They were w(Vi, Vj) = max {w(va, vb)|va ∈ Vi, vb ∈ Vj}
and w(Vj, Vk) = max {w(va, vb)|va ∈ Vj, vb ∈ Vk} and now in G̃Vj they have lesser or equal
cost. For example, w(Vi, Vx) = max {w(va, vb)|va ∈ Vi, vb ∈ Vx ⊂ Vj}. If we were to use
p̃∗CVj

as a candidate path for pVj then p1 after the expansion would have lesser or equal cost

to its counterpart. This is due to the cost of the path visiting Vj being equal in both cases.
However, the incoming edges and outgoing edges have lesser or equal cost and the rest of
the path has lesser or equal cost. Thus, Line 18 in the algorithm would choose pVj in such
a way to create p1 with equal or lower cost than the candidate path. Therefore, if we start
with a path p1 of equal or lower cost than its counter part p̃∗Clusters(p1) and expand it as in
Algorithm 10, the expanded path p′1 will have equal or lower cost than its counterpart.

This is the case when we start with p1 = p0. We repeat this step until all of the
original super vertices of p0 are expanded and then apply the same induction logic for each
subsequent level until we get a path pn that can no longer be expanded with a solution
cost less than or equal to p̃∗. Therefore, c ≤ c̃.

Theorem 4.7.2 (Solution quality). Given a metric TSP problem P = 〈G,P〉, an optimal
solution of cost c∗, and a Γ-Clustering C, then the solution p found by Algorithm 10 has
a cost bound by

c ≤ min(2 +
4

Γ
, 1 +

13

2Γ
)c∗.

Proof. The proof follows from Lemma 4.7.1 (the hierarchical approach finds solutions of
equal or lower cost than the decoupled approach) and Theorem 4.6.5 (the decoupled ap-
proach finds solutions of cost c ≤ min(2 + 4

Γ
, 1 + 13

2Γ
)c∗).

4.7.2 A Hierarchical Method for Non-TSP Problems

The hierarchical approach builds a path by planning cluster Vi ∈ C semi-independently
of the rest of the graph (it is semi-independent since it also considers the start and goal
external to the cluster). This poses a challenge for solving non-TSP problems since the
set of vertices included in the solution path is not known ahead of time. We provide
Algorithm 11 to solve this problem by extending Algorithm 10.

The extension (Algorithm 11) combines the decoupled approach with the hierarchical
approach. The algorithm first determines the set of included vertices by solving the problem
using a decoupled approach (Line 2), then it finds a near optimal solution path using the
hierarchical approach for TSP problems (Line 4).

84

Algorithm 11: Hierarchical(G,C,P)

Input:
G: a graph with vertices V , edges E, and weights w.
C: a clustering.
P : a set of constraints.

Output:
p: a tour of some or all of V that satisfies P .

1 Construct the modified graph G̃

2 Find the shortest path p̃∗ on G̃ that satisfies P
3 Let G′ be induced by G with vertices V [p̃∗]
4 p← Hierarchical-TSP(G′)
5 Return p

Search space size

Algorithm 11 searches the same space as the decoupled approach, at most twice. The first
time is in Line 2 when it finds the set of included vertices V [p̃∗] and then searches it again
in Line 4 when it uses the hierarchical method for TSP problems (this search space may
be smaller, since the set of included vertices may be less than V). Thus the hierarchical
method for non-TSP problems achieves similar search space reductions.

Solution Quality

Now we show that the hierarchical extension for non-TSP problems achieves the same
solution quality bounds.

Theorem 4.7.3 (Solution quality). Given a metric non-TSP problem P = 〈G,P〉, an
optimal solution of cost c∗, and a Γ-Clustering C, then the solution p found by Algorithm 10
has a cost bound by

c ≤ min(2 +
4

Γ
, 1 +

13

2Γ
)c∗.

Proof. The hierarchical method for non-TSP problems also achieves the same solution
quality bounds as the decoupled approach. This is easily proven using Theorem 4.6.5 and
Lemma 4.7.1. In Line 2 of the algorithm we use the decoupled approach to find a solution
of cost c bound by c ≤ min(2+ 4

Γ
, 1+ 13

2Γ
)c∗, where c∗ is the optimal solution cost. In Line 4

85

we improve the solution quality, thus preserves the cost bound. Therefore, Algorithm 11
produces solutions with cost c bound by

c ≤ min(2 +
4

Γ
, 1 +

13

2Γ
)c∗.

4.8 Experiments

This section presents the results of our experiments that demonstrate the effectiveness of
Γ-Clustering for solving discrete path planning problems. We benchmark the coupled plan-
ning approach and the hierarchical planning approach against a non-clustered approach.
All three methods use an ILP solver to find minimum length paths/tours. The benchmark
consists of three different vehicle routing problems, TSP, sample collection, and period
routing problems. The TSP instances are taken from TspLib [77], which provide a vari-
ety of symmetric and non-symmetric environments. The sample collection and the period
routing problems are taken from Section 3.6. They demonstrate the effectiveness of the
proposed approaches on non-TSP problems. Additionally, we compare the quality of Γ-
Clusters to clusters obtained by five other clustering approaches. In the rest of this section,
we detail the generation of the sample collection and period routing problems followed by
an analysis of the results.

4.8.1 Problem Library

Multi-Agent Sample Collection The setup of the sample collection problem is found
in Section 3.6.2 and the specifics are as follows. The robot’s environment is an obstacle free
Euclidean environment of size 1000×1000 meters. The instances contain 20 to 100 locations
which are uniformly randomly distributed in the environment (easier instances have less
locations). One location is randomly chosen to be the home location and the remaining
locations randomly contain either a small, medium, or large sample. The distribution of
the samples are 3:1 for small to large and 2:1 for small to medium. The collection of
samples in the environment contain 10-40 different minerals (easier problems have less
minerals). Each small sample has a mineral that is chosen uniformly randomly, similarly
medium samples have two minerals and large samples have three minerals chosen uniformly
randomly (medium and large samples may choose the same mineral more than once). The
small robots have batteries that allow them to travel 3000 meters and the large robots

86

have batteries that allow them to travel 1500 meters. In Table 4.1 the naming convention
#loc #mnr captures the number of locations and minerals of the problem.

Period Routing The setup of the period routing problem is found in Section 3.6.3,
with the exception that back to back visits are allowed for the first and last periods.
The specifics of the problem instances are as follows. The environment is an obstacle free
Euclidean environment of size 1000×1000 meters. The instances contain 25 to 35 locations
which are uniformly randomly distributed in the environment (easier instances have less
locations). One location is randomly chosen to be the home and the remaining locations
are customer locations. There are five service periods for which each customer may require
either one, two, or three periods of service (uniformly and randomly assigned). In Table 4.1
the naming convention #loc a captures the number of locations of the problem.

4.8.2 Setup and Execution

The Γ-Clustering algorithm was implemented in Python and run on an Intel Core i7-
6700, 3.40GHz with 16GB of RAM. All Γ-Clustering experiments were conducted with
a Γ = 1.000001, for which Theorem 4.5.11 implies that the coupled planning approach
finds solutions within min

(
2, 1 + 3

2Γ

)
-factor of the optimal. The hierarchical approach

finds solutions within min(2 + 4
Γ
, 1 + 13

2Γ
)-factor of the optimal. However, the experiments

will show that the observed gap in performance is considerably closer to optimal than the
bound. The ILP expression of the problem and clustered problem were solved on the same
computer using Gurobi, also accessed through python.

The following is an ILP expression for TSP problems. We use this as a starting point

87

for the expressions used in the coupled, hierarchical, and non-clustered methods.

minimize

|V |∑
a=1

|V |∑
b=1

ea,b w(va, vb) (4.1)

subject to

|V |∑
b=1

ea,b = 1, for each a ∈ {1, 2, . . . , |V |} (4.2)

|V |∑
a=1

ea,b = 1, for each b ∈ {1, 2, . . . , |V |} (4.3)∑
∀va∈Vi,vb 6∈Vi

ea,b = 1, for each i ∈ {1, 2, . . . ,m} (4.4)∑
∀va 6∈Vi,vb∈Vi

ea,b = 1, for each i ∈ {1, 2, . . . ,m} (4.5)∑
ea,b∈E′

ea,b ≤ |E ′| − 1, for each subtour E ′ (4.6)

The formulation was adapted from a TSP formulation found in [27], where the Boolean
variables ea,b represent the inclusion/exclusion of the edge 〈va, vb〉 from the solution. Con-
straints (4.2) and (4.3) restrict the incoming and outgoing degree of each vertex to be
exactly one (the vertex is visited exactly once). Similarly Constraints (4.4) and (4.5) re-
strict the incoming and outgoing degree of each cluster to be exactly one (these constraints
are present only in the clustered version of the problem). Constraint (4.6) is the subtour
elimination constraint, which is lazily added to the formulation as conflicts occur to avoid
expressing an exponential number of constraints.

We use the above expression to find one tour or replicate it to find a series of inde-
pendent tours. We can also use the above to find shortest paths. This allows us to solve
TSP problems and the sub-problems ShortestPath and ShortestTour used by the
hierarchical approach.

To adapt the above for non-TSP problems we change the equality of (4.2)-(4.5) to
inequalities (≤ 1) and add the following for each vertex va ∈ V

Nva −
|V |∑
b=1

(ea,b + eb,a) ≥ 0,

88

where N is some number bigger than |E|.
We solve the shortest tour problem in Algorithm 11, Line 2 with the decoupled approach

by constructing a set of decoupled non-TSP problems and solving them as one instance.
Recall from Section 4.6 that some additional logic is required to ensure that the decoupled
approach generates a solution tour instead of a path. This logic is required for the sample
collection and period routing problems. The construction of both of these problems contain
a home location that must be visited. We use the home location to create a hybrid cou-
pled/decoupled problem, where the clusters that are not within the root cluster containing
the home vertex are solved with the decoupled approach and the clusters within the root
cluster that contain the home vertex are solved with the coupled approach. Clusters that
are solved with the decoupled approach that appear in the coupled problem, appear as a
super vertices.

The problem’s constraints P , also need to be encoded into the formulation. For exam-
ple, the sample collection problem requires additional constraints to ensure each mineral
in the environment is collected. Concretely, if location va and vb were the only locations
to contain mineral x then we would add the following to the formulation

|R|∑
r=1

va,r + vb,r ≥ 1,

where va,r is the variable for robot r’s vertex location va and R is the set of robots. Similarly,
to restrict back to back service for the period routing problem at location va, we add the
following constraint

va,p + vb,p+1 ≤ 1, for each p ∈ {1, 2, . . . , |P | − 1} ,

where va,p is the variable for the robot to visit location va on day p and P is the set of
days.

4.8.3 Path planning with Γ-Clusters

In this section we benchmark the coupled approach and the hierarchical approach against
a non-clustered approach. The benchmark includes TSP, sample collection, and period
routing problems. Each problem is solved three times and the average error and run times
are reported (run time includes time to find clusters as well as planing time). In the case
of the multi-agent sample collection problem and the periodic monitoring problem, the
error is measured from the best known solution (optimals are not known). Each problem

89

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

Time01 Time02

C
lu

st
er

in
g

T
im

e
/ T

ot
al

 T
im

e

Figure 4.8: Box plot of the clustering time ratio with respect to the Γ-Clustering approach.
The data is categorized by instances that did not time out (Time01) and instances that
did time out (Time02).

is given a maximum time budget of 900 seconds to find the lowest cost solution tour. If the
time budget is reached before termination, the best solution up to that point is returned.
The TSP instances shown in Table 4.2 are instances that have Γ-Clusters and are difficult
enough so that the non-clustered approach took more than 30 seconds to solve but was
also able to find solutions within 50% of optimal.

The first fact to note is that all three libraries have Γ-Clusters. Specifically, 63 out
of 70 instances in the TspLib have Γ-Clusters and every sample collection and period
routing problem contained Γ-Clusters. This shows that Γ-Clusters naturally occur in path
planning problems since instances from the TspLib, along with the other two sets of
problems represent a diverse collection of path planning environments. Overall there were
more than 3700 non-trivial Γ-Clusters (clusters of size two or more) in TspLib and 242
non-trivial Γ-Clusters in the remaining instances. Additionally, the time spent finding Γ-
Clusters was insignificant compared to the total time spent finding path planning solutions.
Specifically, most instances spent less than 1% of their time finding clusters (all spent less
than 6%). Although, the data is not explicitly presented in this chapter we noticed a trend,
that as the instances became more difficult, the ratio of time spent finding Γ-Clusters to
the time spent finding solutions, shrank.

The results in Table 4.2 show how the two approaches improved the solver efficiency.
Specifically, the non-clustered approach used 90% of their time budget compared to 73%
and 41% for the coupled and hierarchical approaches, respectively. A few noteworthy ex-
amples are gr96, bier127, and ch130. In all three examples the non-clustered approach took
more than 20 times longer than the other two approaches. We see a similar improvement in
efficiency for the coupled and hierarchical approaches. For example, the coupled approach
took more than 20 times longer for the instances kroB150, kroA200, and gr202.

90

0

10

20

30

40

50

60

Er
ro

r (
%

)

No Clustering
Gamma Clustering

Hierarchical

Instances (Easy Hard)

Figure 4.9: A plot of the average error for each solver method. Instances are sorted from
least to most difficult.

The results show these approaches also achieve good solution quality. Specifically,
all solutions obtained by these approaches were within 50% of optimal and most were
within 5%. As a comparison, the non-clustered approach was able to solve 24 out of 44
instances to within 5% of optimal while the coupled and hierarchical approaches were able
to respectively solve 32/44 and 42/44 instances to within 5% of optimal. Additionally, there
is a trend in the data, that as instances become more difficult to solve, the performance of
the solvers degrade. However, we see from the data that the coupled approach degrades
slower than the non-clustered approach and the hierarchical approach degrades at an even
slower rate than the other two approaches. This trend is shown more clearly in Figure 4.9,
which plots the percent error verses the difficulty of the instance. As we can see from
the figure, the hierarchical approach on average incurs a random error centred around 5%
and that error does not degrade as the instances become more difficult. Thus, as instances
become more difficult to solve, we employ the coupled approach or the hierarchical approach
to find better cost solutions.

Remark 4.8.1 (Using ILP solvers). It is worth emphasizing that although we use an ILP
solver to solve path planning problems, we are not recommending using ILP solvers in
general. For example, there are some very good TSP solvers that would greatly outperform
a ILP solver for TSP instances. We are simply using ILP solvers to demonstrate how Γ-
Clustering can be used to improve solver efficiency for path planning problems. Many
discrete path planning problems are solved with ILP solvers and as such, we hope our
results provide insight for how effective the proposed approaches are for path planning
problems.

91

% Error / Time (s)
TspLib |C| No Clustering Γ-Clustering Hierarchical

pr76 27 0.00 / 40 1.40 / 11 1.88 / 1
st70 23 0.00 / 45 0.44 / 13 1.04 / 1
lin105 42 0.00 / 225 0.00 / 8 4.25 / 15
kroE100 43 0.00 / 414 0.39 / 20 1.63 / 1
kroC100 46 0.00 / 445 0.00 / 12 1.35 / 1
kroA100 44 0.00 / 602 1.11 / 23 5.86 / 3
gr96 32 0.00 / 845 0.05 / 38 1.37 / 3
gr137 44 0.00 / 900 0.00 / 154 2.68 / 36
bier127 37 0.00 / 900 0.23 / 24 1.74 / 3
kroD100 42 0.00 / 900 0.57 / 471 1.98 / 2
kroB100 42 0.01 / 900 0.96 / 900 3.02 / 12
ch130 59 0.20 / 900 0.90 / 29 3.63 / 2
ch150 53 0.22 / 900 0.31 / 900 2.70 / 198
kroB150 65 0.35 / 900 0.35 / 395 2.08 / 1
kroA150 58 1.37 / 900 0.15 / 492 2.52 / 31
rat195 57 1.75 / 900 0.89 / 900 4.36 / 46
kroA200 82 5.59 / 900 1.38 / 900 1.59 / 15
pr124 18 5.78 / 900 4.24 / 900 1.26 / 900
gr202 74 8.56 / 900 0.64 / 703 1.90 / 18
pr136 48 9.78 / 900 4.88 / 900 6.48 / 900
kroB200 80 10.16 / 900 0.67 / 900 2.86 / 900
pr107 6 13.01 / 900 0.40 / 900 6.71 / 900
a280 11 20.11 / 900 20.46 / 900 0.58 / 900
pr144 40 24.40 / 900 20.03 / 900 0.57 / 900
tsp225 66 28.50 / 900 5.76 / 900 3.14 / 450
gr229 73 28.63 / 900 2.24 / 900 3.88 / 900
pr152 44 40.64 / 900 41.15 / 900 2.24 / 900
gil262 98 44.81 / 900 21.00 / 900 1.75 / 65

Multi-Agent Sample Collection

20loc 20mnr 9 0.00 / 785 0.00 / 596 0.01 / 15
20loc 10mnr 10 0.00 / 900 0.00 / 900 0.51 / 7
40loc 10mnr 16 0.27 / 900 0.00 / 900 4.90 / 193
60loc 10mnr 22 0.57 / 900 0.00 / 900 0.00 / 100
40loc 20mnr 17 3.04 / 900 0.87 / 900 0.00 / 810
40loc 40mnr 13 5.38 / 900 2.04 / 900 6.67 / 810
80loc 10mnr 31 9.79 / 900 4.12 / 900 1.05 / 810
100loc 10mnr 38 27.93 / 900 43.86 / 900 3.66 / 810

Period Routing

20loc a 6 0.00 / 900 0.00 / 900 5.18 / 810
20loc b 9 1.24 / 900 1.28 / 900 7.73 / 1
40loc a 15 4.23 / 900 3.75 / 900 3.79 / 343
30loc a 13 5.55 / 900 6.46 / 900 0.00 / 420
40loc b 14 15.94 / 900 12.12 / 900 0.13 / 810
30loc b 9 20.60 / 900 22.01 / 900 3.43 / 810
50loc a 21 38.20 / 900 43.75 / 900 2.05 / 810
50loc b 23 49.32 / 900 43.71 / 900 3.80 / 810

Table 4.1: Experimental results for the TSP, sample collection, and the periodic routing
problems. We report the average % error and solver time for each instance as well as the
number of clusters |C|. The solver method with the best average error is shown in bold.
Results are sorted from least to most difficult for the non-clustering method.

92

4.8.4 Other Clustering Methods

In this section we compare the quality of Γ-Clusters to the quality of clusters obtained by
other methods.

The ideal test of a clustering’s quality for path planning is a measure of how much the
optimal path(s) degrade in quality when the clustered problem is solved (Problem 4.3.3
solved with the coupled approach) instead of the non-clustered problem (Problem 4.3.2).
Solving these problems (finding an optimal) may require large amounts of time and so we
opted to make this comparison on TSP problem instances since they are easier to solve
than non-TSP problems. Additionally, the TSP problem instances we solve cover a diverse
set of environments, thus giving us a good basis for comparison.

We compare the Γ-Clustering method to a set of community structure methods from the
iGraph library [16]. Specifically, we tested against a fast greedy approach [14], Newman’s
leading eigenvector method [61], a multilevel algorithm [8], spinglass [76], and walktrap [72].

The objective of community structures is to find clusters that are intimately connected
in a sparse network (a multigraph). The connections (edges) usually represent a relation-
ship or common trait between the nodes, such as a friendship in a social network. Each
connection is represented with an edge; more edges mean more shared traits.

To utilize community structures for path planning (find clusters of locations that are
in close proximity) we transform the problem graph into a network by “inverting” the
weighted graph into a unweighted multigraph (network). Specifically, we translate an edge
vi,j with weight w(i, j) in the problem graph to maxj,k w(j, k)−w(i, j) edges in the network.
The nodes in the new network, are highly connected, if they were in close proximity in the
original graph. Thus the obtained community structures in the network resemble the type
of clusters we study in this chapter.

The goodness of a community structure is often measured with a metric called modular-
ity [62] (not necessarily the same metric for each algorithm), meaning that many commu-
nity methods work towards the same goal. However, since the task of finding the optimal
clustering is NP-hard, the different algorithms often produce different results.

Some of the methods in the iGraph library provide metadata that gives insight into the
optimal number of clusters and how the clusters were built. We used this information and
the threshold modularity parameter to produce clusterings of a similar size to those found
by the Γ-Clustering approach.

The results of the experiments are given in Table 4.2. They show that the quality of
the Γ-Clusterings often outperform the quality of the clusterings found by other methods.

93

Fastgreedy Newman’s Multilevel Spinglass Walktrap Γ-Clustering
|C| % Error |C| % Error |C| % Error |C| % Error |C| % Error |C| % Error

pr76 32 7.86 27 11.69 29 7.41 38 8.18 43 6.16 27 1.40
st70 32 8.44 27 5.48 23 4.00 30 3.70 32 6.07 23 0.44
lin105 52 9.31 43 19.15 52 16.13 60 16.67 39 12.46 42 0.00
kroE100 35 8.68 38 10.15 45 9.30 47 8.46 52 13.44 43 0.39
kroC100 40 3.68 42 13.93 56 2.82 51 3.87 51 13.15 46 0.00
kroA100 48 15.38 44 7.81 39 8.35 37 4.92 41 8.81 44 1.11
gr96 25 6.06 27 6.85 25 6.06 27 6.47 14 2.96 32 0.05
bier127 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 37 0.23
kroD100 48 12.56 47 17.79 45 8.14 53 10.90 41 7.29 42 0.57
gr137 30 9.71 63 19.10 51 17.15 52 13.51 47 15.63 44 0.00
kroB100 43 10.03 38 11.07 40 9.25 43 8.64 46 9.66 42 0.92
ch130 58 4.44 56 12.14 59 4.12 64 8.25 63 9.44 59 0.90
ch150 75 10.55 68 17.57 58 11.03 72 12.62 51 9.24 53 0.31
kroB150 67 6.89 72 9.57 60 3.57 67 3.11 75 15.76 65 0.35
kroA150 62 11.17 70 11.10 57 8.74 63 9.95 78 10.36 58 0.15
rat195 93 18.55 105 19.54 91 16.23 95 19.50 116 16.01 57 0.65
kroA200 99 10.81 97 12.29 86 6.66 90 9.37 87 8.48 82 0.73
pr124 70 10.36 52 11.64 68 9.44 55 8.28 63 11.99 18 0.08
gr202 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 74 0.57
pr136 62 1.41 62 1.41 62 1.41 57 2.78 58 1.41 48 4.88
kroB200 95 12.62 103 17.45 81 11.04 84 13.08 95 11.96 80 0.52
pr107 60 0.62 68 0.84 60 0.62 66 3.00 34 0.00 6 0.00
a280 94 13.42 133 14.35 112 11.63 104 15.86 113 19.00 11 0.12
pr144 58 2.89 66 5.25 58 6.85 82 6.79 72 8.91 40 3.34
tsp225 99 9.24 108 11.41 90 9.35 94 11.26 85 15.02 66 1.05
gr229 37 2.71 78 12.21 36 3.53 67 5.70 51 15.03 73 0.88
pr152 54 1.02 74 7.39 53 1.02 66 3.08 47 7.06 44 3.76
gil262 126 12.24 109 13.75 101 11.23 111 11.02 130 10.98 98 0.46

Table 4.2: Results comparing the quality of the clusterings on TSP instances for the different
clustering methods. The results with the lowest percent error are shown in bold.

Specifically, the Γ-Clustering method produced better quality clustered problems for 22
out of 28 TSP instances and the average error is less than 1% compared to an average error
of more than 7% for each non-Γ-Clustering approach.

4.9 Summary

This chapter presented two methods for pruning high-level path planning solutions. Both
methods lead to an improvement of solver efficiency and performance. The two approaches,
coupled planning and hierarchical planning relied on the the new clustering method Γ-
Clustering (also presented in this chapter). The chapter provided an efficient algorithm for
finding the optimal Γ-Clustering and proved that both planning approaches find solutions
within a constant factor of the optimal.

We validated the two planning approaches on a benchmark of three different path plan-
ning problems. The benchmark compares these approaches to a non-clustered approach.
The comparisons were done with an ILP solver and a fixed time budget (the proposed
approaches are used in tandem with the ILP solver to improve its efficiency). The re-
sults show that both approaches improve solver efficiency, where the hierarchical approach

94

achieves more time savings than the coupled approach but poorer solution quality for in-
stances solved within the time budget. Both approaches found solutions much closer to
optimal than their quality bounds — most solutions were within 10% of optimal. For the
more difficult instances the results showed that these approaches maintained their perfor-
mance longer than the non-clustered approach (the hierarchical approach maintained its
performance longer than the coupled approach). Thus these approaches can be used to
find higher quality solutions than the non-clustered approach for more difficult instances.
Additionally, this chapter compared the quality of Γ-Clusterings to clusterings found by
five other methods. The results showed that Γ-Clusterings provided the highest quality
solutions for use in path planning.

95

Chapter 5

Conclusions

This thesis concentrated on solving high-level path planning problems. We started out
learning how to solve high-level path planning problems with an ILP approach and then
learned about an alternative approach called SAT-TSP in Chapter 3. This approach used
the problem language SAT-TSP to model high-level path planning problems. The problem
itself is a combination of two well known problems, SAT and TSP. The structure of this
problem allowed us to leverage the SMT framework to combine state-of-the-art SAT and
TSP solvers together to create the CBTSP solver. We used this solver to find solutions for
a variety of path planning problems and the results showed that the CBTSP solver often
outperformed a commercial ILP solver. Thus making CBTSP a good candidate for solving
high-level path planning problems. The CBTSP solver is available at https://github.

com/fcimeson/cbTSP.

In Chapter 4, we explored two approaches for pruning high-level path planning solutions
and thus improving solver efficiency. The first approach, coupled planning, achieves its
performance gains by trading off solution quality. The trade however, is not a drastic. We
proved in this chapter that solutions found by this approach are within a constant factor
of min

(
2, 1 + 3

2Γ

)
of the optimal. The second approach, hierarchical planning, provides a

more aggressive method to achieve even more performance gains while still finding solutions
within a constant factor of min(2 + 4

Γ
, 1 + 13

2Γ
) of the optimal. We tested these approaches

with an ILP solver on a series of path planning problems. The results showed that, not
only are these approaches more efficient than a non-clustered approach, they can also be
used to find higher quality solutions when solver time is limited.

Both of these approaches rely on a new clustering method introduced in this chapter
called Γ-Clustering. We provided an efficient method for find the optimal Γ-Clustering.

96

https://github.com/fcimeson/cbTSP
https://github.com/fcimeson/cbTSP

We compared the quality of Γ-Clusterings to clusterings found by other methods, to show
that Γ-Clusterings are more useful for path planning problems.

5.1 Future Work

5.1.1 SAT-TSP

Below we provide a list of the areas of future work for related to SAT-TSP.

A Modelling Language We do not expect that every user will be willing to model
their problem as a SAT-TSP expression. As such we are in the process of developing a
modelling language for SAT-TSP. This language will allow the user to express/model their
problem in a more user-friendly format. The format will preserve the important structures
our software needs so that it can translate the model to SAT-TSP. Additionally, the use
of a modelling language will allow the user to separate the problem definition from the
problem instance. For example, one would be able to express the TSP problem as a model
and then separately express the problem instance as a transition environment (a graph).
This benefits the user in two ways: readability and repeatability. The problem model is
more readable because the large environmental data is not cluttering the problem definition
and the problem model can be reused to prevent user error in re-specifying the problem,
making it more repeatable.

Search Heuristics We are working on improving the CBTSP solver, specifically, CBTSP’s
search heuristics. Currently CBTSP uses the DPLL search heuristic for choosing the order
of variable assignments. We believe incorporating knowledge of the TSP problem into the
heuristics would improve the solvers performance.

Other SMT Theories Another area of development, is to expand upon the CBTSP

solver by incorporating more SMT theories (currently CBTSP only uses one theory, the
TSP theory). In this way we could natively handle more path planning constraints such as
ordering constraints.

SMT Propagation We can further improve the CBTSP solver by incorporating SMT

propagation. Currently the only SMT technique CBTSP uses clause negations. If we were

97

to incorporate into the SMT theories some knowledge of the problem structure, such as
set cardinality constraints and/or ordering constraints. We could use those theories to
propagate variable assignments to the SAT solver instead of encoding those constraints as
SAT formulae. Briefly consider the “exactly one-in-a-set” cardinality constraint for the set
S as an example. In this case, if the SAT solver chose one of the literals in S to be true,
then the theory would propagate the knowledge that all other literals in the set must be
false. This example reduces the size of the SAT formula by |S|2 which we expect would
improve the solver’s efficiency.

Collisions We plan to investigate the effectiveness of using SAT-TSP for collision avoid-
ance problems. Our approach would extend the environment graph to incorporate dis-
cretized time steps. In this way, we can use the location/time vertices to prohibit multiple
robots from occupying the same location during the same discrete time step as in [102].

Parallelization We are looking into upgrading CBTSP to utilize multiple threads. To
accomplish this we would implement a multi-threaded SAT solver, which in turn would
make threaded calls to a TSP solver.

5.1.2 Γ-Clustering

The areas of future work for using Γ-Clusterings to improve solver efficiency are as follows.

Improve Solution Quality Bounds We are currently working towards improving the
tightness of the solution quality bounds presented in Theorems 4.5.11, 4.7.2, and 4.7.3.
Additionally, we are trying to find problem instances that better characterize the tightness
of these bounds.

Parallelization We plan on developing new algorithms that use parallel processes to
find high quality solution paths for discrete path planning problems. The decoupled and
hierarchical planning approach is setup to work with parallelization (decoupled more than
hierarchical). To parallelize the hierarchical approach we can change how the algorithm
expands the super vertices in the coarsened tour. Specifically, we could use parallel pro-
cesses to expand every other super vertex in the tour. Then, after those processes are done
we would again use parallel processes to expand the remaining super vertices.

98

Dynamic Planning We are currently working on techniques based on Γ-Clusterings for
dynamic planning. Here Γ-Clusters are used to decompose an existing solution path into
regions that may be preserved and regions that need to be replanned. Then the hierarchical
approach is used to fill in the missing regions of the path and find solutions that are within
a constant factor of the optimal.

Applications Finally, we plan to search for more applications that may benefit from
the Γ-Clustering approaches presented in this thesis. Specifically, we are looking to find
common solver approaches that can be improved by the proposed approaches.

99

References

[1] IBM ILOG CPLEX Optimizer, 2010.

[2] Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Pro-
gramming Computation, 1(1):1–41, 2009.

[3] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Concorde TSP
solver. Accessed: 2015-03-05.

[4] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The
Traveling Salesman Problem: A Computational Study. Princeton University Press,
2006.

[5] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling sales-
man and other geometric problems. Journal of the ACM (JACM), 45(5):753–782,
1998.

[6] Luca Bertazzi and M Grazia Speranza. Inventory routing problems with multiple
customers. EURO Journal on Transportation and Logistics, 2(3):255–275, 2013.

[7] Graeme Best, Jan Faigl, and Robert Fitch. Multi-robot path planning for budgeted
active perception with self-organising maps. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3164–3171, 2016.

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[9] Stanislav Bochkarev and Stephen L Smith. On minimizing turns in robot cover-
age path planning. In IEEE International Conference on Automation Science and
Engineering (CASE), pages 1237–1242, 2016.

100

[10] Howie Choset. Coverage for robotics–a survey of recent results. Annals of Mathe-
matics and Artificial Intelligence, 31(1-4):113–126, 2001.

[11] Nicos Christofides and John E Beasley. The period routing problem. Networks,
14(2):237–256, 1984.

[12] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An
opensource tool for symbolic model checking. In Computer Aided Verification, pages
359–364. Springer, 2002.

[13] Jens Clausen. Branch and bound algorithms-principles and examples. Department
of Computer Science, University of Copenhagen, pages 1–30, 1999.

[14] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Physical Review E, 70(6):066111, 2004.

[15] Leandro C Coelho and Gilbert Laporte. The exact solution of several classes of
inventory-routing problems. Computers & Operations Research, 40(2):558–565, 2013.

[16] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network
research. InterJournal: Complex Systems, page 1695, 2006.

[17] Arun Das, Michael Diu, Neil Mathew, Christian Scharfenberger, James Servos, Andy
Wong, John S Zelek, David A Clausi, and Steven L Waslander. Mapping, plan-
ning, and sample detection strategies for autonomous exploration. Journal of Field
Robotics, 31(1):75–106, 2014.

[18] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[19] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[20] Markus Eich, Ronny Hartanto, Sebastian Kasperski, Sankaranarayanan Natarajan,
and Johannes Wollenberg. Towards coordinated multirobot missions for lunar sample
collection in an unknown environment. Journal of Field Robotics, 31(1):35–74, 2014.

[21] Kutluhan Erol, Dana S Nau, and Venkatramana S Subrahmanian. Complexity, de-
cidability and undecidability results for domain-independent planning. Artificial in-
telligence, 76(1):75–88, 1995.

101

[22] Abdulah Fajar, Nur Azman Abu, and Nanna Suryana Herman. Clustering strategy
to Euclidean TSP Hamilton path role in tour construction. In IEEE International
Conference on Computer Modeling and Simulation, volume 3, pages 508–512, 2010.

[23] Dave Ferguson and Anthony Stentz. Using interpolation to improve path planning:
The field D* algorithm. Journal of Field Robotics, 23(2):79–101, 2006.

[24] Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[25] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing tem-
poral planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

[26] Marc J Gallant, Alex Ellery, and Joshua A Marshall. Rover-based autonomous
science by probabilistic identification and evaluation. Journal of Intelligent & Robotic
Systems, 72(3-4):591–613, 2013.

[27] Luis Gouveia and Jose Manuel Pires. The asymmetric travelling salesman problem
and a reformulation of the miller–tucker–zemlin constraints. European Journal of
Operational Research, 112(1):134–146, 1999.

[28] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient clustering
algorithm for large databases. In ACM SIGMOD Record, volume 27, pages 73–84,
1998.

[29] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clustering al-
gorithm for categorical attributes. In International Conference on Data Engineering,
pages 512–521, 1999.

[30] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the generalized
traveling salesman problem. Natural Computing, 9(1):47–60, 2010.

[31] Yll Haxhimusa, Walter G Kropatsch, Zygmunt Pizlo, and Adrian Ion. Approximative
graph pyramid solution of the E-TSP. Image and Vision Computing, 27(7):887–896,
2009.

[32] Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

[33] Keld Helsgaun. Solving the equality generalized traveling salesman problem using
the Lin–Kernighan–Helsgaun Algorithm. Mathematical Programming Computation,
7:1–19, 2014.

102

[34] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, pages 253–302,
2001.

[35] Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based robotic information
gathering algorithms. The International Journal of Robotics Research, 33(9):1271–
1287, 2014.

[36] Gerard J Holzmann. The SPIN model checker: Primer and reference manual, volume
1003. Addison-Wesley, 2004.

[37] Holger H Hoos and Thomas Stützle. SATLIB–the satisfiability library, 1998.

[38] William NN Hung, Xiaoyu Song, Jindong Tan, Xiaojuan Li, Jie Zhang, Rui Wang,
and Peng Gao. Motion planning with satisfiability modulo theories. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 113–118, 2014.

[39] Frank Imeson and Stephen L Smith. A language for robot path planning in discrete
environments: The TSP with Boolean satisfiability constraints. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 5772–5777, 2014.

[40] Frank Imeson and Stephen L Smith. Multi-robot task planning and sequencing
using the SAT-TSP language. In IEEE International Conference on Robotics and
Automation (ICRA), pages 5397–5402, 2015.

[41] Paul Jackson and Davisniel Sheridan. Clause form conversions for Boolean circuits.
In Theory and Applications of Satisfiability Testing, pages 183–198. Springer, 2005.

[42] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651–666, 2010.

[43] Subbarao Kambhampati and Larry Davis. Multiresolution path planning for mobile
robots. IEEE Journal on Robotics and Automation, 2(3):135–145, 1986.

[44] Nitin Kamra and Nora Ayanian. A mixed integer programming model for timed
deliveries in multirobot systems. In IEEE International Conference on Automation
Science and Engineering (CASE), pages 612–617, 2015.

[45] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

103

[46] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49(2):291–307, 1970.

[47] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006.

[48] Marius Kloetzer and Calin Belta. Automatic deployment of distributed teams of
robots from temporal logic motion specifications. IEEE Transactions on Robotics,
26(1):48–61, 2010.

[49] Bernhard Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial Optimization,
volume 2. Springer, 2012.

[50] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika
Inoue. Motion planning for humanoid robots. Robotics Research, pages 365–374,
2005.

[51] Ailsa H Land and Alison G Doig. An automatic method of solving discrete program-
ming problems. Econometrica: Journal of the Econometric Society, pages 497–520,
1960.

[52] Steven Michael LaValle. Planning Algorithms. Cambridge University Press, 2006.

[53] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers
for autonomous vehicles. The International Journal of Robotics Research, 28(8):933–
945, 2009.

[54] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21:498–516, 1973.

[55] M. Morris Mano and Michael D. Ciletti. Digital Design. Prentice-Hall, Inc., 4 edition,
2006.

[56] Neil Mathew, Stephen L Smith, and Steven Lake Waslander. Multirobot ren-
dezvous planning for recharging in persistent tasks. IEEE Transactions on Robotics,
31(1):128–142, 2015.

[57] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming
formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4):326–
329, 1960.

104

[58] Joseph SB Mitchell. Guillotine subdivisions approximate polygonal subdivisions:
A simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

[59] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535. ACM, 2001.

[60] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and Lydia E
Kavraki. SMT-based synthesis of integrated task and motion plans from plan out-
lines. In IEEE International Conference on Robotics and Automation (ICRA), pages
655–662, 2014.

[61] Mark EJ Newman. Finding community structure in networks using the eigenvectors
of matrices. Physical Review E, 74(3):036104, 2006.

[62] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69(2):026113, 2004.

[63] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[64] Karl J Obermeyer, Paul Oberlin, and Swaroop Darbha. Sampling-based roadmap
methods for a visual reconnaissance UAV. In AIAA Conference on Guidance, Navi-
gation and Control, 2010.

[65] Karl J Obermeyer, Paul Oberlin, and Swaroop Darbha. Sampling-based path plan-
ning for a visual reconnaissance unmanned air vehicle. Journal of Guidance, Control,
and Dynamics, 35(2):619–631, 2012.

[66] Gurobi Optimization et al. Gurobi optimizer reference manual, 2012.

[67] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Dover Publications, 1998.

[68] Junghee Park, Sisir Karumanchi, and Karl Iagnemma. Homotopy-based divide-and-
conquer strategy for optimal trajectory planning via mixed-integer programming.
IEEE Transactions on Robotics, 31(5):1101–1115, 2015.

[69] Gábor Pataki. The bad and the good-and-ugly: formulations for the traveling sales-
man problem, 2000.

105

[70] Gábor Pataki. Teaching integer programming formulations using the traveling sales-
man problem. SIAM review, 45(1):116–123, 2003.

[71] Sandro Pirkwieser and Günther R Raidl. Multilevel variable neighborhood search
for periodic routing problems. In EvoCOP, pages 226–238. Springer, 2010.

[72] Pascal Pons and Matthieu Latapy. Computing communities in large networks using
random walks. In ISCIS, volume 3733, pages 284–293, 2005.

[73] David Portugal and Rui P Rocha. Cooperative multi-robot patrol with bayesian
learning. Autonomous Robots, 40(5):929–953, 2016.

[74] Robert Clay Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389–1401, 1957.

[75] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. ROS: an open-source robot operating system. In
ICRA Workshop on Open Source Software, volume 3.2, page 5, 2009.

[76] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection.
Physical Review E, 74(1):016110, 2006.

[77] Gerhard Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on
Computing, 3(4):376–384, 1991.

[78] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intelligence Research, 39(1):127–
177, 2010.

[79] Demane Rodney, Alan Soper, and Chris Walshaw. The application of multilevel
refinement to the vehicle routing problem. In IEEE Symposium on Computational
Intelligence in Scheduling (SCIS), pages 212–219, 2007.

[80] Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J Pappas, and San-
jit A Seshia. Automated composition of motion primitives for multi-robot systems
from safe LTL specifications. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1525–1532, 2014.

[81] Mitul Saha, Tim Roughgarden, Jean-Claude Latombe, and Gildardo Sánchez-Ante.
Planning tours of robotic arms among partitioned goals. The International Journal
of Robotics Research, 25(3):207–223, 2006.

106

[82] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path
queries. In European Symposium on Algorithms, pages 568–579. Springer, 2005.

[83] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[84] Peter Schüller, Volkan Patoglu, and Esra Erdem. A systematic analysis of levels of
integration between low-level reasoning and task planning. In Workshop on Com-
bining Task and Motion Planning (IEEE International Conference on Robotics and
Automation), 2013.

[85] Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. Modeling and programming
with Gecode, 2010.

[86] Yasser Shoukry, Pierluigi Nuzzo, Indranil Saha, Alberto L Sangiovanni-Vincentelli,
Sanjit A Seshia, George J Pappas, and Paulo Tabuada. Scalable lazy SMT-based
motion planning. In 55th Conference on Decision and Control (CDC), pages 6683–
6688. IEEE, 2016.

[87] A Prasad Sistla and Edmund M Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733–749, 1985.

[88] Stephen L Smith and Frank Imeson. GLNS: An effective large neighborhood search
heuristic for the generalized traveling salesman problem. Computers & Operations
Research, 2017.

[89] Stephen L Smith, Jana Tůmová, Calin Belta, and Daniela Rus. Optimal path plan-
ning for surveillance with temporal-logic constraints. The International Journal of
Robotics Research, 30(14):1695–1708, 2011.

[90] Niklas Sorensson and Niklas Een. MiniSat v1.13 – a SAT solver with conflict-clause
minimization. SAT, 2005:53, 2005.

[91] Ioan Alexandru Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning
library. IEEE Robotics & Automation Magazine, 19(4):72–82, 2012.

[92] Yuichi Tazaki and Takumi Suzuki. Constraint-based prioritized trajectory planning
for multibody systems. IEEE Transactions on Robotics, 30(5):1227–1234, 2014.

[93] Pratap Tokekar, Joshua Vander Hook, David Mulla, and Volkan Isler. Sensor plan-
ning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans-
actions on Robotics, 32(6):1498–1511, 2016.

107

[94] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications.
SIAM, 2014.

[95] Mauro Vallati, Lukáš Chrpa, Marek Grzes, Thomas L McCluskey, Mark Roberts, and
Scott Sanner. The 2014 international planning competition: Progress and trends. AI
Magazine, 36(3):90–98, 2015.

[96] Toby Walsh. SAT vs CSP. In Principles and Practice of Constraint Programming,
pages 441–456. Springer, 2000.

[97] Chris Walshaw. A multilevel approach to the travelling salesman problem. Operations
Research, 50(5):862–877, 2002.

[98] Richard Wang, Manuela Veloso, and Srinivasan Seshan. Active sensing data collection
with autonomous mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2583–2588, 2016.

[99] Christopher Xie, Jur van den Berg, Sachin Patil, and Pieter Abbeel. Toward asymp-
totically optimal motion planning for kinodynamic systems using a two-point bound-
ary value problem solver. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4187–4194, 2015.

[100] Baozhen Yao, Ping Hu, Mingheng Zhang, and Shuang Wang. Artificial bee colony al-
gorithm with scanning strategy for the periodic vehicle routing problem. Simulation,
89(6):762–770, 2013.

[101] Jingjin Yu, Sertac Karaman, and Daniela Rus. Persistent monitoring of events with
stochastic arrivals at multiple stations. IEEE Transactions on Robotics, 31(3):521–
535, 2015.

[102] Jingjin Yu and Steven M LaValle. Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics. IEEE Transactions on Robotics,
32(5):1163–1177, 2016.

[103] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient data
clustering method for very large databases. In ACM Sigmod Record, volume 25,
pages 103–114, 1996.

[104] DJ Zhu and J-C Latombe. New heuristic algorithms for efficient hierarchical path
planning. IEEE Transactions on Robotics and Automation, 7(1):9–20, 1991.

108

[105] Zoran Zivkovic, Bram Bakker, and Ben Krose. Hierarchical map building and plan-
ning based on graph partitioning. In IEEE International Conference on Robotics and
Automation (ICRA), pages 803–809, 2006.

109

Appendices

110

Appendix A

CBTSP Solver Parameters

The CBTSP solver uses a set of input parameters to configure the solver (configure the SAT
solver, the TSP solver, and CBTSP’s search). This section details the parameters as well
as, their default settings.

MINISAT The configurable parameters of MINISAT are the conflict budget and the prop-
agation budget. Both parameters by default are unlimited. All other MINISAT parameters
are used as default and are non-configurable through the CBTSP interface.

LKH The LKH parameters configured by CBTSP are: PROBLEM FILE, TOUR FILE,

TIME LIMIT, STOP AT MAX COST, and MAX COST. The last two parameters are customiza-
tions we added to allow for LKH to solve decision problems. All other LKH parameters
are configurable. The default settings used by CBTSP that differ from the LKH’s default
settings are given in Table A.1.

Parameter Value Parameter Value

PRECISION 10 PATCHING A 2
MOVE TYPE 5 PATCHING C 3
RUNS 1

Table A.1: Default LKH Parameters

111

Avg. Solver Cost
instance/cb interval 1 2 10 BRUTE

patrolling06 3176 3182 3631 3631
patrolling10 3442 3908 4018 4120
sample04 1883 2089 4207 5324
sample08 12395 13380 16157 -
period11 2804 2896 1387 4071
period12 2669 2697 3247 4078

Table A.2: Tuning experiments for different values of the CBTSP parameter, cb interval

(CBTSP becomes BRUTE when cb interval > |V |, we chose a value of 999). Each test
was run four times and the average cost is reported. The instance name captures the
problem type and the instance number matches up with Section 3.7. The best results are
highlighted.

CBTSP The following parameters pertain to how CBTSP searches for solutions. Default
values are given in parenthesis.

The callback interval (cb interval=1) This parameter configures the TSP callback
interval. A setting of x indicates that the TSP theory consistency checked is performed
when the following is satisfied: |V | mod x = 0. A value of x > |V |, behaves, as a non-
näıve BRUTE solver (described in Section 3.4.1). The default settings for the parameter
cb interval was chosen after comparing different values of cb interval on a set of small
experiments documented in Table A.2. Here we take two instances from each problem
application (patrolling, sample collection, and period routing), six in total and compare
the quality of the solver’s results with the same setup as in Section 3.7. As we can see from
the Table, a value of cb interval=1 has the best performance. One thing to note from
the results, is how the non-näıve BRUTE approach (cb interval=999) fails to performs
on instance sample08. We believe this is due to the battery constraint of the sample
collection problem. Here the solver finds a solution and then negates it if it exceeds the
battery budget. This is unlike the other two problems, which find feasible solutions and
then negate them from reoccurring. Thus, without the guide of the TSP theory, the solver
seems to struggle finding feasible solutions for the sample collection problem.

Conflicts (nConflicts=-1) The CBTSP solver adds conflict clauses back to the SAT
formula to narrow down the search space. The number of conflict clauses CBTSP adds

112

back to the formula can be exponential in size, thus the parameter nConflicts=x limits
the number of additional clauses to a maximum of x (-1 for unlimited). Once the maximum
is reached the best known solution is returned. One can monitor the output text of the
solver to confirm whether or not the time budget has been reached.

Query budget (max query time=-1) The CBTSP solver searches for solutions with a
series of SAT-TSP decision queries (different cost budgets set by the binary or linear search
algorithm). By default (-1) the queries are given an unlimited amount of time but if this
parameter has the non-zero value x, then each query is terminated after x seconds and is
assumed to be unsatisfiable.

Search method (search method=binary) This parameter is used to choose between
binary and linear search.

The binary search parameter (bdiv=10) This parameter configures the division size
of the binary search as shown in Algorithm 4. Most unsatisfiable instances are harder to
prove than satisfiable instances. Thus it is desirable to have this parameter larger than
two. The default settings for the binary search parameter bdiv was chosen after comparing
different values of bdiv (and comparing it to a linear search) on a set of small experiments
documented in Table A.3. Here we take two instances from each problem application
(patrolling, sample collection, and period routing), six in total and compare the quality
of the solver’s results using the same solver setup as in Section 3.7. We can see from the
Table a value of bdiv=10 yields a good result.

113

Avg. Solver Cost
name/bdiv 2 10 20 Linear

patrolling06 3177 3176 3177 3177
patrolling10 3653 3442 3496 3972
sample04 1899 1883 1882 2291
sample08 12993 12395 12051 14731
period11 2925 2804 2937 3578
period12 2973 2669 2708 3148

Table A.3: Tuning experiments for different values of the CBTSP parameter bdiv (the
search is linear is when bdiv=999999). Each test was run four times and the average
cost is reported. The instance name captures the problem type and the instance number
matches up with Section 3.7.

114

Appendix B

Additional SAT-TSP Approaches

In this appendix, we provide five additional SAT-TSP solvers, all of which reduce SAT-TSP

to other problems. These approaches were designed to solve SAT-TSP problems with one
input graph. Multiple robot problems that are solved in this appendix are done so using
one large graph to represent the robot’s environments. We benchmark these approaches
against each other as well as, the CBTSP solver.

The rest of this appendix is organized as follows: Section B.1, provides some needed
background for the constraint satisfaction problem; Section B.2 introduces a set of al-
gorithms needed by the solvers to search for optimal solutions; Section B.3 provides a
reduction from the Hamiltonian cycle problem to SAT that is used by two of the solvers;
Section B.4 provides the five additional SAT-TSP solvers based on reductions to: SAT,
TSP, GTSP, CSP, and SMT; Section B.5 details the benchmark; and Section B.6 reviews
the results of the benchmark.

B.1 The constraint satisfaction problem (CSP)

The constraint satisfaction problem (CSP) allows for the expression of non-Boolean con-
straints. It can be used to express high-level path planning problems and there are a
number of good solvers such as Gecode [85]. In [92], the authors use CSP for multi-robot
path planning. It is our experience that CSP solvers can be useful for finding feasible
solutions.

The CSP problem takes as input a set of variables, a domain of values, and a set of
constraints. Each constraint must be satisfied by finding an assignment of the variables

115

it constrains within the allowable domain of values. Some examples of CSP constraints
are LessThan(x1, x2), Equal(x1, x2) and AllDifferent(x1, x2). The language is as
follows:

CSP = {〈X,D,C〉 : X is a set of variables, D is a domain of values, and C is a set of
constraints, and there exists a mapping v : X → D such that all constraints in C are
satisfied}.

B.2 Search Algorithms

The reduction techniques presented in this appendix consist of reducing one SAT-TSP

instance to multiple (non-SAT-TSP) instances. The problem instances for these approaches
are either a decision problem that tests if a solution exists within a cost budget or an
optimization problem that encodes a temporary objective. Algorithm 12, 14, and 16 are
used to find optimal solutions and Algorithm 13, 15, and 17 are used to solve decision
problems.

These algorithms call functions SOLVE, REDUCE, and TRANSLATE pertain to
algorithms that are specific to each solver approach. For example, if we are solving a
SAT-TSP instance with a SAT solver, then SOLVE is the SAT solver, REDUCE reduces
the SAT-TSP instance to a SAT formula, and TRANSLATE translates the SAT solution
back to a SAT-TSP solution. The REDUCE and TRANSLATE algorithms must run in
polynomial time to qualify as reductions.

Algorithms 12, 13, 14 and 15 run in O(|V |) time and Algorithm 16 runs in O(log cmax)
time, where cmax = MaxCost(G) is used to calculate an upper bound in polynomial
time. The details of the REDUCE algorithms are given in Section B.4 for each reduction
approach.

In the following algorithms we use the symbol Φ for the solution and Σ for the reduction.
Additionally, Algorithms 12 and 13 use vs to indicate the start vertex (a vertex that is
included in the solution) and Algorithms 14 and 15 use l to indicate the length of the
solution.

116

Algorithm 12: Optimize(G,F) for TSP and GTSP Approaches

1 Φ∗ ← ∅
2 for vs ∈ V do
3 Σ← Reduce(G,F, vs)
4 Φ← Solve(Σ)
5 if Φ is better than Φ∗ then
6 Φ∗ ← Φ

7 return TranslateSoln(Φ∗)

Algorithm 13: Decide(G,F,C) for TSP and GTSP Approaches

1 for vs ∈ V do
2 Σ← Reduce(G,F, vs)
3 Φ← Solve(Σ, C)
4 if Φ 6= ∅ then
5 return TranslateSoln(Φ)

6 return ∅

Algorithm 14: Optimize(G,F) for CSP Approach

1 Φ∗ ← ∅
2 for l ∈ {1, 2, . . . , |V |} do
3 Σ← Reduce(G,F, l)
4 Φ← Solve(Σ)
5 if Φ is better than Φ∗ then
6 Φ∗ ← Φ

7 return TranslateSoln(Φ∗)

117

Algorithm 15: Decide(G,F,C) for CSP Approach

1 for l ∈ {1, 2, . . . , |V |} do
2 Σ← Reduce(G,F, l)
3 Φ← Solve(Σ, C)
4 if Φ 6= ∅ then
5 return TranslateSoln(Φ)

6 return ∅

Algorithm 16: Optimize(G,F) for SAT and SMT Approaches

/* Binary Search */

1 Φ∗ ← ∅
2 〈cmin, cmax〉 ← 〈0,MaxCost(G)〉
3 while cmax − cmin > 0 do
4 ct ←

⌊
cmin + cmax−cmin

2

⌋
5 Σ← Reduce(G,F, ct)
6 Φ← Solve(Σ)
7 if Φ 6= ∅ then
8 Φ∗ ← Φ
9 〈cmin, cmax〉 ← 〈cmin, ct − 1〉

10 else
11 〈cmin, cmax〉 ← 〈ct + 1, cmax〉

12 return TranslateSoln(Φ∗)

Algorithm 17: Decide(G,F,C) for SAT and SMT Approaches

1 Σ← Reduce(G,F)
2 Φ← Solve(Σ, C)
3 return TranslateSoln(Φ)

118

B.3 Reduction of the Hamiltonian Cycle Problem to

SAT

In this section we reduce the Hamiltonian cycle problem (HCP) aspect of SAT-TSP to
SAT (used in Sections B.4.1 and B.4.5 for the SAT and SMT reductions). Specifically, we
translate the SAT-TSP instance 〈G,F, c =∞〉 to SAT. There are existing translations from
HCP to SAT, however, this translation requires a Hamiltonian cycle of the included vertices
V ′ (not necessarily the entire graph).

Our translation is inspired by the IP formulation of the Hamiltonian Cycle Problem
(HCP) [47]. The first part of the translation creates a formula F̂ that encodes the Hamilto-
nian cycle aspect of the SAT-TSP problem. We start with a set of constraints that capture
the Hamiltonian cycle problem for the included vertices V ′:

L1.1 If 〈vi, vj〉 ∈ E is in the solution, then vi and vj are in the solution.

L1.2 For each vi ∈ V there is at most one outgoing edge in the solution.

L1.3 For vj there is at most one incoming edge in the solution.

L1.4 If vi and vj are in the solution, then vj is reachable from vi. To accomplish this we
use the additional set of indicator variables {x̂v1,0, x̂v2,0, . . . , x̂v|V |,0, x̂v1,1, . . . , x̂v|V |,|V |}.

(a) Exactly one vertex in the set {x̂v1,0, x̂v2,0, . . . , x̂v|V |,0} is true.

(b) Vertex vi is in the solution (x̂vi = 1) if and only if at least one variable in the
set {x̂vi,1, x̂vi,2, . . . , x̂vi,|V |} is true.

(c) Variable x̂vj ,k+1 = 1 if and only if there exists x̂vi,k = 1 and 〈vi, vj〉 is in the
solution.

Now we encode these constraints into the SAT formula F̂ using the set of vertices
and edges as Boolean variables. As well, we use the set of variables introduced in con-
straint L2.4c. The following translates the above constraints into the SAT F̂ .

L2.1 This is encoded with an implies constraint:∧
〈vi,vj〉∈E

〈vi, vj〉 =⇒ (vi ∧ vj).

119

L2.2 This is encoded with an at most one in a set constraint:

∧
vi∈V

 ∧
〈vi,vx〉,〈vi,vy〉∈E|x 6=y

¬(〈vi, vx〉 ∧ 〈vi, vy〉)

 .

L2.3 This is also encoded with an at most one in a set constraint:

∧
vj∈V

 ∧
〈vx,vj〉,〈vy ,vj〉∈E|x 6=y

¬(〈vx, vj〉 ∧ 〈vy, vj〉)

 .

L2.4 (a) This is encoded with an exactly one in a set constraint:

∨
vi∈V

x̂vi,0
 ∧
vj∈V \vi

¬x̂vj ,0

 .

(b) This is encoded with an if and only if constraint, nested with an at least one in
a set constraint: ∧

vi∈V

x̂vi ⇐⇒
 |V |∨
j=0

x̂vi,j

 .

(c) This is also encoded with an if and only if constraint nested with an at least
one in a set constraint:

|V |∧
vj∈V,k=1

x̂vj ,k ⇐⇒
 ∨
vi∈V \vj |ea=〈vi,vj〉∈E

(x̂vi,k−1 ∧ x̂ea)

 .

Now the above formula F̂ can be combined with F ← F ∧ F̂ to finish the translation
of 〈G,F, c =∞〉 to SAT.

Lemma B.3.1 (Reduction Results). For the translation from the HCP to SAT the following
holds:

(i) The formula F̂ has O(|L|+|V |3) literals and is constructed in polynomial time, where
|L| is the number of literals in F .

(ii) A HCP tour of the vertices V ′ translates to a solution for F̂ .

120

(iii) A satisfying assignment of F̂ translates to a HCP solution over the vertices V ′.

Proof. We will establish each of the three results in turn.

Proof of (i): The original formula F contributes |L| literals to F̂ , clauses L2.1, L2.4a,
L2.4b, and L2.4c contribute O(|V |2) literals to F̂ and clauses L2.2 and L2.3 contribute
O(|V |3) literals to F̂ . Therefore, the formula F̂ has O(|L| + |V |3) literals and since the
formula F̂ is directly constructed, it can be done in polynomial time.

Proof of (ii): Given a SAT-TSP solution 〈M, p′〉, where p′ is a tour of the included
vertices V ′ and M is a satisfying assignment for F . We construct a solution to F̂ by
assigning the variables x̂vi,k true for each vi ∈ V ′. We also assign x̂ea for each edge ea ∈ p′.
The remaining variables either take their corresponding assignment from M or they receive
a false assignment if they have no corresponding variable (x̂vi,k and x̂ea). This construction
satisfies each of the constraints L1.1-L1.4c, since it is based off a tour. Since the original
formula F is also satisfied (the variables common to both F and F̂ are given the same
assignment), F̂ is satisfied (F̂ is a combination of F and the constraints L1.1-L1.4c).

Proof of (iii): Given a satisfying assignment M̂ for F̂ , we construct the SAT-TSP solution
〈M, p′〉 as follows: for each variable assignment of X in M̂ , we duplicate the assignment
in M (i.e., M = {xi ∈ M̂ |xi ∈ X} ∪ {¬xi ∈ M̂ |xi ∈ X}). We construct the graph cycle
p′ = vi, vj, . . . , vk on the included vertices by including vi in p′ as the kth vertex in p′ if
and only if xvi,k = 1 for k ∈ [1, |V |] (there will be at most one true assignment in the set
{xvi,k|vi ∈ V }). To prove this is a solution, we need to prove that M satisfies F and that
p′ is indeed a tour of the included vertices.

First, M is clearly a satisfying assignment for F since F̂ includes F in its formulation
(F̂ = F ∧ . . .). Second we show that the constraints L1.1-L1.4c do in fact encode the
Hamiltonian tour constraints of the induced subgraph (i.e., every included vertex is visited
exactly once and every edge 〈vi, vj〉 ∈ p′ exists in E. To prove this result, we first provide
insight of the construction and then we provide the proof.

As we can see from the translation of the F̂ solution, variables xvi,k, pertain to the kth

sequence that vertex vi is visited in the tour (k = 0 represents the start/finish vertex),
for which constraint L1.4a states that there must be exactly one choice for this start.
Constraint L1.4c pertains to which vertex can be visited next in the tour (only if the
appropriate edge is included in the solution). Due to constraint L1.2, only one such vertex
can be visited next in the sequence. Since each included vertex must be reachable even
from itself (constraint L1.4b), it follows that each vertex must have an incoming edge,
due to constraint L1.4c. The trick is that the starting vertex is in the tour since it has

121

an outgoing edge (constraint L1.1). However, it is not yet reachable, thus it needs to
be visited at some level k which is possible since it does not yet have an incoming edge
associated with it. Since it appears in level k = 0 then it has an outgoing edge, thus it
must be visited last, otherwise constraint L1.2 would be violated. Therefore, p′ is a tour
that visits all included vertices without repetition and thus a satisfying assignment for F̂
that translates to a solution for the SAT-HCP instance 〈G,F 〉.

Corollary B.3.2. The translation presented in this section is a reduction from 〈G,F, c =
∞〉 to SAT. Specifically, the translation is done in polynomial time and the translated
problem has a solution if and only if the original problem has a solution.

B.4 Solver Approaches

This section presents solver approaches for SAT-TSP that are based on reducing to SAT-TSP

to: SAT, TSP, GTSP, CSP, and SMT.

B.4.1 Reduction to SAT

The reduction of SAT-TSP to SAT consist of translating the SAT-TSP instance 〈G,F,C〉
into a SAT instance 〈F̂ 〉, where the cost budget C. Algorithm 16 is used with this reduction
to find optimal solutions and Algorithm 17 is used to solve the decision version. Now we
present the details of Reduce (we omit the details of TranslateProb).

The first part of the reduction reduces the Hamiltonian cycle problem to SAT (see
Section B.3 for details). Then the cost budget is encoded into the SAT formula using adder
circuits (see Section 3.2.2). The circuit contains a level for each significant digit (ones,
twos, fours, . . .). The adder circuit adds a binary representation of each edge weight if and
only if the edge is included in the solution. For example, suppose the edge e1 has an edge
weight of 5 (101 in binary — a one bit, a four bit but no two bit), then the adder circuit
responsible for adding up the first and third significant digits would have e1 in their input.
An example of an adder circuit for all the bits for the first significant level (ones) is shown
in Figure B.1. The complete binary circuit can be constructed using techniques in [55].

The maximum solution cost of the SAT-TSP instance is bounded by |V |wmax, where
wmax = maxiw(ei). Thus the maximum solution requires log |V |wmax bits to encode. Each
output bit in the solution cost is generated by a circuit that adds the input edge bits
and thus there are at most |E| bits in each level of the circuit. A circuit adding up |E|

122

These carry over bits are used as input
in the next level of adder circuit.

XOR gate.

AND gate.

2-Bit Adder circuits

Figure B.1: An adder circuit summing up xc0 , the one-bits of the solution cost. In this
instance the edges {e1, e3, e4, e8, e9} have odd edge weights and all other edges have even
weights.

bits would require at most |E| 2-bit adder circuits (an XOR and an AND gate shown in
Figure B.1). Therefore, the complete adder circuit is of size O(|E| log |V |wmax) and using
methods from [41] this circuit is efficiently translated to a Boolean formula.

The cost budget constraints are constructed by forcing an assignment on a subset
of the solution cost bits (variables) {x̂ĉ0 , x̂ĉ1 , . . . , x̂ĉn}, where the total solution cost is
c =

∑n
i=0 2ix̂ĉi . For example, if we wish to find a solution of cost seven or less, then all

variables representing powers of three and higher are forced to be false. All cost constraints
that use this approach are of size O(log(|V |wmax)).

B.4.2 Reduction to TSP

The reduction of SAT-TSP to TSP consist of translating the SAT-TSP instance 〈G,F,C〉 to
a series of TSP instances Gvs , where the vertex vs is assumed to be in the solution. Algo-
rithm 12 is used to find optimal solutions and Algorithm 13 is used to solve decision prob-
lems. Now we present the details of Reduce (we omit the details of TranslateProb).

This reduction is inspired by the translation of SAT to the Hamiltonian Cycle Prob-
lem [47]. The first step in expressing F as a graph Ĝ with the assumption that vs is in
the solution, is to create a chain of vertices for each variable xi ∈ X, for which we refer to
as widget Ω̂xi . The direction that the TSP solution traverses the widget (chain) indicates
the assignment of the SAT variable — traverse the widget Ω̂xi from left to right then the

123

variable xi = 1 (true), traverse the widget from right to left then xi = 0 (false). Once the
solution tour starts traversing the widget it cannot change directions and it must finish
visiting the widget before moving onto the next widget. Figure B.2 shows an example of
a widget and its connections.

The TSP graph Ĝvs construction also includes a vertex v̂ci for each clause ci ∈ C in
the formula F . The widget construction allows us to connect the clause vertices so the
tour can only visit the clause vertex only if the clause would be satisfied by the variable
assignment for the widget. For example, suppose clause c1 = (x1 ∨ x2 ∨ ¬x3), then the
clause vertex v̂c1 is only connected to widgets Ω̂x1 , Ω̂x2 and Ω̂x3 and it can only be visited
if the tour traverses Ω̂x1 or Ω̂x2 from left to right, or if the tour traverses Ω̂x3 from right to
left.

The the widgets are connected to each other to ensure feasible tours visit all the included
vertices first (any widget Ω̂xvi

that is traversed left to right that corresponds with xvi for
vi ∈ V), then the non-included vertices, and then the auxiliary variable widgets. In this
way, as the solution visits widgets that represent included vertices in Ĝvs , it does so with
the same costs as if it were visiting vertices in G. This is accomplished by restricting the
set of incoming and outgoing edges to the widgets. Figure B.3 shows how the widgets are
connected to each other. With this construction a TSP solution of cost c translates to a
SAT-TSP solution of cost c.

The details of this approach and the proof of its correctness are given in our preliminary
work [39]. For the sake of conciseness and since this approach is not among the most
successful, we refer the reader to our earlier work for more details [39].

2 3 4 5 6 7 81 9

Figure B.2: An example of the widget Ω̂xi . In this instance the only clauses in F that
contain the variable xi are clauses c1 and c2. The clause c1 contains the literal x1 and
c2 contains the literal ¬xi. A TSP solution that traverses the widget from left to right
(1 → 9) indicates that xi = 1 in the SAT-TSP solution and a solution that traverses the
widget from right to left (9→ 1) indicates that xi = 0.

124

Figure B.3: The connections between widgets in the TSP graph. Dotted edges have zero
weight. An edge going into or out of the left of the widget indicates a connection to left
most vertex in the widget chain. Likewise, an edge going into or out of the right side
indicates a connection to the right most vertex in the chain.

B.4.3 Reduction to GTSP

The reduction of SAT-TSP to GTSP consist of translating the SAT-TSP instance 〈G,F,C〉
to a series of GTSP instances that assume a specific vertex vs, is included in the solu-
tion. Algorithm 12 is used to find optimal solutions and Algorithm 13 is used to solve
decision problems. Now we present the details of Reduce (we omit the details of Trans-
lateProb).

The reduction consist of creating a graph that contains vertices to represent the literals
in F , sets to represent assignment of variables (true or false), and sets to represent clause
satisfaction (at least one literal in each clause must be true). In this construction visiting
a vertex literal translates to an assignment of the variable (true or false) and visiting a set
that is associated with a clause, translates to a satisfying the clause.

The sets in the GTSP instance are used to restrict the assignments of the variable xi ∈ F
— each variable can only be assigned true or false — not both. This is accomplished by
creating a vertex v̂xi to represent the true assignment of xi and a vertex v̂¬xi to represent
the false assignment of xi. We classify these vertices as root vertices. Creating the set
{v̂xi , v̂¬xi} for each variable in the formula ensures that the GTSP solution can only visit
either the true vertex v̂xi or the false vertex v̂¬xi . The sets are also used to ensure that
each clause ci ∈ F is satisfied. This is accomplished by creating a set for each clause.
However, a clause ci may be satisfied by multiple literals where a GTSP solution can only

125

Figure B.4: An illustration of the connections between vertices in a widget and between
widgets. In this example the literal xi appears in clauses c1, c2 and c3, the vertices v̂α, v̂β
and v̂γ are short forms for vertices v̂xi,c1 , v̂xi,c2 and v̂xi,c3 respectively. The vertices connected
with dotted edges have zero edge weight and the solid edges all have the same weight.

visit one element in each set. Therefore, instead of using the root vertices v̂li in the clause
sets, we create a vertex v̂li,cj for each literal li ∈ cj in the clause. Then these vertices are
used for the sets. For example, suppose c1 = x1 ∨ ¬x2 ∨ x3, then the clause set for c1 is
{v̂x1,c1 , v̂¬x2,c1 , v̂x3,c1}. With this construction, a GTSP solution ensures that at least one
literal in each clause will be visited.

In the GTSP graph we connect the vertex literals v̂li to the clause literals v̂li,cj in such
a way that the clause literals can only be visited if and only if v̂li is visited. This is
accomplished by constructing a widget Ω̂li for each set of vertices that pertain to a literal
li. See Figure B.4 for an example. The following list enumerates the edge connections for
the widgets.

1. 〈v̂li , v̂li,a〉 ∈ Ê with weight 0 for v̂li , v̂li,a ∈ V̂ .

2. 〈v̂li,a, v̂li,b〉 ∈ Ê with weight 0 for v̂li,a ∈ V̂ , ˆvli,b ∈ V̂ \ v̂li,a.

3. 〈v̂li,a, v̂lj〉 ∈ Ê with weight ŵ(v̂li , v̂lj) for v̂li,a ∈ V̂ , v̂lj ∈ V̂ \ v̂li if and only if

〈v̂li , v̂lj〉 ∈ Ê, where ŵ(v̂li , v̂lj) is to be defined.

The widgets are connected to each other so that the GTSP solution transition costs of
included vertices have the same costs as the SAT-TSP instance. This is accomplished by
constructing the graph to ensure that all included vertices are visited first. Let us create
two sets of vertices V̂α = {v̂xvi ∈ V̂ |vi ∈ V } and V̂β = {v̂xi , v̂¬xi ∈ V̂ |v̂xi 6∈ V̂α}, to help

126

Figure B.5: The connections and edge weights between root vertices. If a connection is
not shown, then it does not exist in the GTSP graph. The large arrow from V ′α to V ′β
indicates the connections between the two sets (unidirectional and weighted). The large
dotted arrow from V ′β to v̂xvs indicates the connections between the two sets (unidirectional
with zero edge weights).

us describe how the root vertices are connected. The vertices in V̂α are connected as V is
in G and the vertices V̂β are fully connected to each other with zero weight edges. Each

vertex v̂xvi ∈ V̂α is connected to each vertex v̂xj ∈ V̂β with zero edge weight and each vertex

v̂xj ∈ V̂β is connected to v̂xvs ∈ V̂α to close the cycle. See Figure B.5 for an example. The
following list enumerates the remaining edges in the graph.

1. 〈v̂xvi , v̂xvj 〉 ∈ Ê with weight w(vi, vj) for v̂xvi , v̂xvj ∈ V̂α if and only if 〈vi, vj〉 ∈ E

2. 〈v̂li , v̂lj〉 ∈ Ê with weight 0 for v̂li ∈ V̂β, v̂lj ∈ V̂β \ v̂li

3. 〈v̂xvi , v̂lj〉 ∈ Ê with weight w(vi, vs) for v̂xvi ∈ V̂α, v̂lj ∈ V̂β

4. 〈v̂li , v̂xvs 〉 ∈ Ê with weight zero for v̂li ∈ V̂β, v̂xvs ∈ V̂α

The construction ensures that a vertex literal v̂li,a can only be visited if the vertex v̂li
is first visited and the costs are equivalent to the SAT-TSP instance. The proof of this
approach’s correctness is found in [40].

Remark B.4.1 (Special case of sets of cardinality one). In the special case that the set
of literal vertices {v̂li,a ∈ V̂ } for some li has cardinally one, then the root vertex can be
replaced with the vertex literal. Proper bookkeeping will be needed to reflect this change.
�

127

B.4.4 Reduction to CSP

The reduction of SAT-TSP to CSP consist of translating the SAT-TSP instance 〈G,F,C〉
to a series of CSP instances that assume that the set of included vertices V ′ is of a spe-
cific size. Algorithm 14 is used to find optimal solutions and Algorithm 15 is used to
solve decision problems. Now we present the details of Reduce (we omit the details of
TranslateProb).

The reduction consist of expressing the graph as a weight matrix in the CSP format,
translating the formula F into a CSP formula [96], and reducing a fixed length Hamiltonian
cycle problem to CSP. The expression of the fixed length Hamiltonian cycle problem is as
follows: first create a fixed length vector to represent the tour, next each variable in the
tour vector is constrained to take on values {i|vi ∈ V [G]}, and finally each element in the
tour vector is constrained to be all different to ensure that no duplicate entries show up in
the cycle. Additionally, there is a set of simple constraints used to link the tour vector with
the weight matrix such that the solution cost can be calculated and constrained (vertex vi
is included in the tour if and only if variable xi = 1).

B.4.5 Reduction to SMT

The reduction of SAT-TSP to SMT consist of translating the SAT-TSP instance 〈G,F,C〉
into an SMT instance with a cost budget C. Algorithm 16 is used with this reduction to
find optimal solutions and Algorithm 17 is used to solve the decision version. Now we
present the details of Reduce (we omit the details of TranslateProb).

Like the SAT reduction, this reduction reduces the HCP to SAT (Section B.3). The cost
is encoded and constrained using an SMT arithmetic theory. This saves O(log cmax) work
compared to the SAT approach. The formulas used in calculating and constraining the
costs are as follows: an edge ei contributes w(ei) to the solution cost c′ if and only if x̂êi
is assigned true in the formula. The binary search algorithm chooses a budget cost c and
the constraint c′ ≤ c is encoded into the SMT instance. If the SMT solver finds a solution
then the edge variables are translated into a SAT-TSP tour and the remaining variable
assignments are used to construct a satisfying assignment for F .

B.5 Benchmark Problems

In this section we detail the construction of the problem instances in the benchmark (these
problems are different than the problems found in the main body of thesis).

128

The problems in libraries SetLib, CountLib, OrderedLib, and MultiRobotLib
use the following environments.

The Metric Library Environment The robot is able to move within the two dimen-
sional space x ∈ [0, 1] and y ∈ [0, 1] and a set of locations are uniformly randomly placed
within the square. There is one location chosen at random to represent the robot’s home.
The rest of the locations contain items for the robot to retrieve. Each location has one
item with a random shape and colour. The items can take one of eight colours and one
of thee shapes. The graph is constructed to capture the euclidean distance between the
locations.

The Non-Metric Library Environment The robot’s environment graph is con-
structed with uniform random edge weights in the domain [0, 1]. One vertex is randomly
chosen for the robot’s home. The rest are item locations. Each location has one item
with a random shape and colour. The items can take one of eight colours and one of thee
shapes.

Remark B.5.1 (Vertex labels). In the rest of this section it will be convenient for us to talk
about the set of vertices that have a specific shape or colour. We let the set Vlabel represent
the set of vertices with that label (shape, colour, or other). �

B.5.1 SatLib

To test how well each approach performs on solving highly constrained SAT instances,
we translated SAT instances from the SatLib library [37] into SAT-TSP instances. The
construction of the SAT-TSP instances is as follows: create a fully connected undirected
graph G with |V | vertices of zero edge weight and force each vertex to be included in the
solution, F ← F ∧(xv1∧xv2∧. . .). Then the SAT-TSP instance 〈G,F, c = 0〉 is equivalent to
the SAT instance F . The optimization version of the SAT-TSP translation is also equivalent
to the SAT instance since every solution for the SAT-TSP instance has a cost of zero (every
solution is optimal). There are 41 instances in this library ranging in size from 20 to 600
variables in the formula F .

B.5.2 TspLib

To test how well each approach performs on simple patrolling problems, we translated TSP

instances from the TspLib [77] into SAT-TSP instances. The construction of the SAT-TSP

129

instances is as follows: create a formula F = (xv1 ∧ xv2 ∧ . . . ∧ xv|V |). Notice that there is
only one solution to the formula F (include every vertex in the solution), thus the SAT-TSP

instance 〈G,F 〉 is equivalent to the TSP instance 〈G〉. There are 66 instances in this library
ranging in size from 16 to 1379 vertices.

B.5.3 HardLib

We also created highly-constrained planning problems with complex environments by com-
bining instances from the SatLib and TspLib libraries. The SAT-TSP instances 〈G,F 〉
uses the formula F from the SAT instance and the graph G from the TSP instance for
combinations that satisfy |X| ≥ |V |. There are 348 instances in this library.

B.5.4 SetLib

We created the SetLib library to test how well each solver performs on nested set problems.
The problem instances are randomly generated as described in the metric and non-metric
library environments. The problem is constrained to have one item of each shape, all the
same colour in the solution. There are 200 problem instances in this library ranging in size
from 10 to 100 vertices.

B.5.5 GTspLib

To test how well each approach performs on one-in-a-set routing problems or similar prob-
lems, we translated GTSP instances from the GTspLib library [30] to SAT-TSP instances
〈G,F 〉 where,

F =

|S|∧
j=1

 ∨
vi∈Sj

xvi

 .

There are 83 instances in this library ranging in size from 17 to 1084 vertices in the graph.

B.5.6 GTspLib+

We created the GTspLib+ library to test how well each approach performs on GTSP

instances with additional SAT constraints. The problem instances are randomly generated
as described in the metric and non-metric library environments. The GTSP sets are of

130

random size with random non-overlapping membership. There are 0 to 200 additional
constraints of the form: negation, ¬(vi ∧ vj) or implication, (vi =⇒ vj). There are 262
instances in this library ranging in size from 10 to 500 vertices.

B.5.7 CountLib

The robot is required to retrieve exactly one cube, at most three spheres, and at least five
cylinders from its environment. The problem instances are randomly generated as described
in the metric and non-metric library environments. These problems are constrained to
retrieve an exact but random number of items for each shape (uniformly chosen from the
set of possibilities). There are 200 instances in this library ranging in size from 10 to 100
vertices.

The problems are translated to SAT-TSP using adder circuits.

B.5.8 OrderedLib

These problem instances are pickup and delivery problems. The environments are gener-
ated as in the metric and non-metric library environments, however, the item assignments
are different. Specifically, the environment locations are a collection of pickup vi and drop
off locations vj (chosen at random) — vi is paired with vj. The robot must visit all the
locations. For every pickup and delivery pair vi, vj the tour must visit vi before vj. There
are 200 instances in this library ranging in size from 10 to 100 vertices.

These problems are translated to SAT-TSP instances by using the structure in Re-
mark 3.4.10. Specifically, the graph is constructed with a series of widgets. When sepa-
rated from the rest of the graph, each widget is simply an induced subgraph of the robot’s
environment G. The first widget Ω̂0, contains only the vertex vs (the home) and the re-
maining widgets Ω̂1, Ω̂2, . . ., contain the vertices V \ vs. The widgets are connected with
directed edges so that the path may visit them only in increasing order according of their
index. Figure B.6, Figure B.7, and the following list details how the widgets are connected.
First we require some notation: let the vertex label v̂ji represent the vertex vi in widget Ω̂j.

1. 〈v̂λi , v̂
γ
j 〉 ∈ Ê with weight w(vi, vj) for v̂λi , v̂

γ
j ∈ V̂ , γ ≥ λ if and only if 〈vi, vj〉 ∈ E

2. 〈v̂λi , v̂0
s〉 ∈ Ê with weight w(v̂λi , v̂

0
s) = 0 for all v̂λi ∈ V̂ \ v̂0

s

131

The entire graph has O(|V |2) vertices and O(|V |2|E|) edges.

If the SAT-TSP solution visits one of the copies of vertex vi in one of the widgets, then
the solution visits vi. To ensure that this happens at most once, we use an at-most-one-in-
a-set constraint. To ensure the vertex ordering constraints are satisfied, we negate every
pair of vertices that violate the ordering. For example, suppose vertex vi must precede
vertex vj in the solution. That means for every pair v̂λi and v̂σj such that λ ≥ σ we add the
negation clause ¬(x̂v̂λi ∧ x̂v̂σj) to the formula. There are O(|V |2) such negation clauses for
each ordering constraint.

In the case that we have precedence constraints for a set of vertices A =
{va1 , va2 , . . . , va|A|} and a set B = {vb1 , vb2 , . . . , vb|B|}, such that every vertex va ∈ A must
precede every vertex vb ∈ B, then we use indicator variables to reduce the number of nega-
tion clauses from O(|A||B||V |2) to O(|V |2). For example, the set of indicator variables

x̂λA ∈ {x̂0
A, x̂

1
A, . . . , x̂

|V |
A } and x̂λB ∈ {x̂0

B, x̂
1
B, . . . , x̂

|V |
B } are used to represent a vertex in set A

or B while being visited in widget λ respectively (logic below).

(x̂v̂1
a1
∨ x̂v̂1

a2
∨ . . . ∨ x̂v̂1

a|A|
) =⇒ x̂1

A

Then we negate the indicators instead of the vertex pairs to produce O(|V |2) negation
clauses instead of O(|V |2) for each unique pair vi, vj such that vi ∈ A and vj ∈ B.

A solution to the above expression is a solution to the ordered problem since all sub-
graphs derived from solutions cannot violate the ordering constraints. The solution also has
the equivalent cost since the corresponding transitions in Ĝ are equivalent to transitions
in G.

B.5.9 MultiRobotLib

A team of robots is tasked with working together to collect at least one item of each colour
and at least one item of each shape from the environment. The problem instances are
randomly generated as described in the metric and non-metric library environments. Each
problem instance has a robot team of random size ranging from two to ten robots. There
are 200 instances in this library ranging in size from 10 to 100 vertices.

These problems are translated to SAT-TSP instances by using the structure in Re-
mark 3.4.10. Specifically, we construct a graph to contain a widget for each robot. The
widgets Ĝr are the induced subgraph of the robot’s environment with vertices V \vs, where
vs is the robot’s home location. The graph additionally contains the vertices v̂r for each
robot to represent its home. The edges are constructed to force the tour to visit each

132

Figure B.6: The connection of widget Ω̂i to Ω̂j for the reduction of the ordering constraints.
Note that only connections from Ω̂i to Ω̂j exist and not the other way around. Each widget
is a copy of the original graph G, of which the edges are represented with dotted lines.
The edges connecting vertices from one widget to another shown with solid lines are only
present if the connection exists in G. The edge between vertex v̂i1 and v̂j3 highlights how
the cost mimics the edge weights in G.

Figure B.7: The connections between widgets for the reduction of the ordering constraints.
Widgets are connected with directed edges in sequential order. All widgets are connected
back to the first widget to allow the solution tour to close.

133

Figure B.8: The connections between widgets for the reduction of the multi-robot problem.
Widgets are connected with directed edges in sequential order. All widgets are connected
back to the first widget to allow the solution tour to close.

robot’s home. The path is only able to visit vertex v̂ri for robot r only after vertex v̂r

has been visited and before vertex v̂r+1 is visited. The connections are detailed in the list
below and Figure B.8.

1. 〈v̂λi , v̂λj 〉 ∈ Ê with weight w(vi, vj) if and only if 〈vi, vj〉 ∈ Eλ.

2. 〈v̂λ, v̂λi 〉 ∈ Ê with weight w(vs, vj) if and only if 〈vs, vj〉 ∈ Eλ.

3. 〈v̂λi , v̂λ+1〉 ∈ Ê with weight zero.

4. 〈v̂λ, v̂λ+1〉 ∈ Ê with weight zero.

Since we cannot have multiple robots collect the same item, we use an at-most-one-a-set
constraint to restrict multiple visits to the same location.

A solution to the above expression is a solution to the multi-robot problem. The solution
also has the equivalent cost because the corresponding transitions in Ĝr are equivalent to
transitions of robot r in its environment graph.

B.6 Benchmark Results

The results presented in this section we document the solver’s run times and solution
qualities. We omit the reduction times (time to translate SAT-TSP instances into other
problems). The solver time reflects the time to find the optimal solution. In some instances
the solver’s search is terminated prematurely to comply with the time budget. The solvers

134

are given time budgets in 60 second intervals (60, 120, 180, . . . , 900). We report only the
solver’s best solution with the best time. The simulations were executed on the cluster
computing resource SHARCNET1, which we used more than five years of computing time.

To evaluate each solver approach we use point plots and bar graphs. Both of these plot-
s/graphs use a categorization scheme of the solution qualities which is found in Tables B.1
and B.2 respectively. We also compare the performance and/or quality to metadata for
some of the approaches. We present this data only when the comparison reveals a corre-
lation between performance and/or quality with respect to the metadata. Such metadata
may be the total number of feasible solutions for the SAT-TSP instance or the number of
additional constraints that have been added to the GTspLib+ instance (Section B.5.6).

Solution Category: Description
A : Solutions that achieve the best known cost.
B : Solutions that achieve a solution cost within two times the best known

cost, but not the best cost.
C : Solutions that have cost worse than two times the best known cost.

Table B.1: Descriptions of the mutually exclusive solution categories used in Figures B.9
to B.13.

B.6.1 The Unsuccessful Approaches (SAT, TSP and SMT)

Three of the proposed approaches: SAT, TSP and SMT were unsuccessful compared to the
other approaches (see Figure B.14). We developed the SAT and TSP approaches to explore
how well SAT solvers and TSP solvers could respectively handle the addition of TSP and
SAT problems. It turns out that both approaches performed poorly. Furthermore, the TSP

approach performed poorly on TSP problems encoded as SAT-TSP problems. This forces
us to conclude that our TSP reductions introduce additional complexity into the problem,
which was needed to handle the SAT formula. Thus, it is unlikely that a pure TSP approach
would be a good candidate for SAT-TSP problems.

We developed the SMT approach to allow for partial tour negations as in the CBTSP

approach. However, it suffers a O(|V |3) increase in size due the translation of the Hamil-
tonian cycle problem (the SAT approach also suffers from this size increase). We suspect
that this size increase is a contributing factor to its inefficiency.

1https://www.sharcnet.ca

135

https://www.sharcnet.ca

B.6.2 GTSP Approach

The GTSP approach reduces a SAT-TSP instance to |V | TSP instances, where each instance
has a different assumption of which vs ∈ V is in the solution. It uses the GTSP solver,
GLNS [88], to find optimal tours. The best result out of the |V | solutions is used. The
solver divides the time budget evenly among each GTSP instance and it takes the time
budget as input to terminate itself.

Strengths We developed the GTSP approach to help solve GTSP like problems as several
of the proposed approaches perform poorly on these types of problems. As we had hoped,
this approach does perform well on GTSP and GTSP-like instances (TspLib, GTspLib
and GTspLib+). Figures B.15b, B.16a and B.16b compile the results for this approach.

Figure B.14 shows that this approach is able to find a number of the best known
solutions and Figure B.9a shows that if it does find the optimal solution then it is often
the best performer.

Weaknesses The GTSP approach was not designed to handle highly constrained prob-
lems such as SAT or counting problems. Thus this approach struggles with such problems,
which is shown in Figures B.15a, B.15c, B.17a, B.17b, and B.18b.

Figure B.9b) shows that this approach degrades as the GTSP-like instances become less
GTSP like.

B.6.3 CSP Approach

The CSP approach reduces a SAT-TSP instance to |V | CSP instances each with a different
assumption of the solution tour size. It uses the CSP solver Gecode [85] to find the optimal
solution of each translation and the best result is used. The CSP approach divides the time
budget evenly among each CSP instance and the CSP solver takes the time budget as input
to terminate itself.

Strengths We developed the CSP approach because it is relatively easy to express logic
and optimization problems. Additionally, CSP solvers are relatively good at finding solu-
tions, which we can see from Figure B.14.

136

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
ol

ve
r

T
im

e
(s

ec
)

Best Time (sec)

C
B
A

(a) Time vs. Best

 1

 10

 100

 1000

 10 100

S
ol

ve
r

T
im

e
(s

ec
)

Additional Constraints

C
B
A

(b) GTspLib+: Time vs. Constraints

Figure B.9: Performance results for the GTSP approach. The results are broken down
into three categories described in Table B.1. (a) Compares the solver performance to the
best performance achieved over all approaches. (b) Compares the solver performance to
the number of additional constraints in GTspLib+.

Weaknesses Despite the fact that this approach is able to find solutions, it often finds
non-optimal solutions. A number of the non-optimal solutions are more than two times
optimal as shown in Figure B.14. This makes the CSP approach difficult to trust (if we get
a solution, we cannot trust that the solution is near optimal).

Unfortunately, this approach also has quite poor performance — up to 1000 times
slower than the best approach — as shown in Figure B.11. Overall, this approach is not
able to find optimal solutions within a reasonable time budget.

B.6.4 BRUTE Approach

The BRUTE approach excels at finding feasible solutions but not necessarily optimal solu-
tions. This approach uses the SAT solver, minisat, to find a feasible set of included vertices
and then it uses the TSP solver, LKH, to find the optimal tour of these vertices. It then
adds the negation of the solution to the formula preventing the solution from reoccurring,
and then it starts the process over again. The solver is given multiple time budgets and
the best result is used. The timeout behaviour is responsible for the grouping of solution
times around the 60 second intervals as shown in Figure B.12. Even though this approach
is inefficient, it is often able to exhaustively search the space and find the best solution in
the best time or the approach randomly found the best solution before it terminated.

137

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
ol

ve
r

T
im

e
(s

ec
)

Best Time (sec)

C
B
A

Figure B.10: CSP (Gecode)

Figure B.11: Performance results of the CSP approach on the simulation library. The
results are broken down into three categories described in Table B.1.

Strengths The BRUTE approach provides a straightforward method to leverage the best
performing SAT and TSP solvers. As shown in Figure B.14 the approach is frequently able
to find the best known solution and it often outperforms the other approaches. A good
property of this solver is that if the solver quits before the time budget is exceeded and the
TSP solver is an exact solver such as Concorde [3], then it has found the optimal solution.
Our implementation uses LKH which sometimes returns sub-optimal solutions (LKH is
more efficient than Concorde and has very good performance). We see this behaviour
in Figures B.12a by observing that all the results below 60 seconds are the best known
solutions (category A).

Figure B.15b verifies that this approach is the best choice for solving instances in the
TspLib. This is not surprising, since the SAT formula in the SAT-TSP instance only has
one solution to search. For such instances, the brute approach quickly solves the SAT
formula and then uses the TSP solver, LKH, to solve the TSP problem.

Weaknesses This approach searches all of the SAT solutions and only after it has ex-
plored each solution does it provide the optimal result. If the search is prematurely termi-
nated (timed out), the solution quality can vary wildly. As such the solver’s run time is
heavily dependent on how many solutions it searches. Figure B.12b verifies this correlation.

This approach struggles GTspLib, SetLib and CountLib instances since they have
a large number of feasible solutions to search (see Figures B.16a-B.17b).

138

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
ol

ve
r

T
im

e
(s

ec
)

Best Time (sec)

C
B
A

(a) Time vs. Best

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

S
ol

ve
r

T
im

e
(s

ec
)

Number of Solutions

C
B
A

(b) Time vs. Solutions

Figure B.12: Performance results of the BRUTE approach on the full library. Results are
divided into categories described in Table B.1. (a) Compares the solver time to the best
performance achieved over all approaches for SAT-TSP instances. (b) Compares the solver
time to the number of SAT-TSP solutions of the instance.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
ol

ve
r

T
im

e
(s

ec
)

Best Time (sec)

C
B
A

(a) Time vs. Best

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

S
ol

ve
r

T
im

e
(s

ec
)

Number of Solutions

C
B
A

(b) Time vs. Solutions

Figure B.13: Performance results of the CBTSP approach on the simulation library. The
results are broken down into three categories described in Table B.1. (a) Compares the
solver time to the best performance achieved over all approaches. (b) Compares the solver
time to the number of SAT-TSP solutions of the instance.

139

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|

|N|

cbTSPBRUTESMTCSPGTSPTSPSAT

Figure B.14: The number of instances solved by each solver approach. The results are
broken down into four categories described in Table B.2. The number of metric and non-
metric instances are indicated on the graph with the dotted line and the |M | and |N |
symbols respectively.

140

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45
M

et
ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C |M|

cbTSPBRUTECSPGTSP

(a) SatLib

 0

 10

 20

 30

 40

 50

 60

 70

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|

|N|

cbTSPBRUTECSPGTSP

(b) TspLib

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|

|N|

cbTSPBRUTECSPGTSP

(c) HardLib

Figure B.15: The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described in Table B.2.
The number of metric and non-metric instances are indicated on each graph with the
dotted line and the |M | and |N | symbols respectively (there are no non-metric instances
in SatLib).

141

 0

 10

 20

 30

 40

 50

 60

 70

 80

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C |M|

|N|

cbTSPBRUTECSPGTSP

(a) GTspLib

 0

 20

 40

 60

 80

 100

 120

 140

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C |M|,|N|

cbTSPBRUTECSPGTSP

(b) GTspLib+

Figure B.16: The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described in Table B.2.
The number of metric and non-metric instances are indicated on each graph with the
dotted line and the |M | and |N | symbols respectively.

142

 0

 20

 40

 60

 80

 100

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|,|N|

cbTSPBRUTECSPGTSP

(a) SetLib

 0

 20

 40

 60

 80

 100

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|,|N|

cbTSPBRUTECSPGTSP

(b) CountLib

Figure B.17: The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described in Table B.2.
The number of metric and non-metric instances are indicated on each graph with the
dotted line and the |M | and |N | symbols respectively.

143

 0

 20

 40

 60

 80

 100

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|,|N|

cbTSPBRUTECSPGTSP

(a) OrderedLib

 0

 20

 40

 60

 80

 100

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

M
et

ric

N
on

M

In
st

an
ce

s
S

ol
ve

d

A*
A
B
C

|M|,|N|

cbTSPBRUTECSPGTSP

(b) MultiRobotLib

Figure B.18: The number of instances solved in their respective library by each successful
solver approach. The results are broken down into four categories described in Table B.2.
The number of metric and non-metric instances are indicated on each graph with the
dotted line and the |M | and |N | symbols respectively.

144

Solution Category: Description
A∗ : Solutions that achieve the best known cost and time.
A : Solutions that achieve the best known cost but not time.
B : Solutions that achieve a solution cost within two times the best known

cost but not the best cost.
C : Solutions that have cost worse than two times the best known cost.

Table B.2: Descriptions of the mutually exclusive solution categories used in Figures B.14
to B.18b.

145

	Table of Contents
	List of Tables
	List of Figures

	Introduction
	Literature Survey
	Contributions

	Preliminaries
	Graphs
	The Travelling Salesman Problem
	Complexity Theory
	Decision Problems
	Complexity Classes

	Using ILP to Find Solution Paths
	Summary

	An Alternative to ILP
	Related Work
	Background
	Boolean Satisfiability (SAT)
	Boolean Circuits
	SMT and DPLL(T)
	Induced Subgraphs

	Problem Statement
	SAT-TSP Definition
	Complexity

	CBTSP
	A Lead-in
	The Solver
	Correctness
	A Relaxation

	An Integer Program Formulation
	Applications
	Patrolling
	Sample Collection
	Periodic Routing

	Experiments
	Simulations
	Patrolling
	Sample Collection
	Period Routing

	Summary

	Pruning Solutions
	Related Work
	Background
	Clusters
	Search Space
	Multigraphs

	Path Planning Problem Statement
	Gamma-Clustering
	Definitions
	Finding Clusters

	Coupled Planning
	Search Space Reduction
	Solution Quality Bounds

	Decoupled Planning
	Search Space Reduction
	Solution Quality Bounds

	Hierarchical Planning
	TSP Problems
	Non-TSP Problems

	Experiments
	Problem Library
	Setup and Execution
	Path planning
	Other Methods

	Summary

	Conclusions
	Future Work
	SAT-TSP
	Gamma-Clustering

	References
	Appendices
	Appendix CBTSP Solver Parameters
	Appendix Additional SAT-TSP Approaches
	CSP
	Search Algorithms
	HCP to SAT
	Solver Approaches
	Reduction to SAT
	Reduction to TSP
	Reduction to GTSP
	Reduction to CSP
	Reduction to SMT

	Benchmark Problems
	SatLib
	TspLib
	HardLib
	SetLib
	GTspLib
	GTspLib+
	CountLib
	OrderedLib
	MultiRobotLib

	Benchmark Results
	Unsuccessful Approaches
	GTSP Approach
	CSP Approach
	BRUTE Approach

