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ABSTRACT. Grassland ecosystems and the species that rely on them are one of the most urgent habitat conservation concerns in
North America. Fundamental to any landscape conservation efforts is the identification of priority habitats to help target management
efforts. Many avian species associated with prairie ecosystems have experienced population declines along with continued loss of prairie
habitats. Additionally, given the long history of research in avian systems and the close grassland associations of some species, birds
are excellent candidate taxa for the identification of priority habitats and can provide an informed starting point for multispecies
assessments. We used data from the North American Breeding Bird Survey (1997-2014) to develop species distribution models for 15
grassland bird species across the Prairie Pothole Region of Canada. Model performance varied widely across species. Ten species
demonstrated good model performance (average Boyce Index > 0.64 across 5-fold cross validation). We used these 10 species to assess
the influence of habitat covariates on the relative probability of occurrence, to compare the spatial scales of selection, and to generate
multispecies habitat priority maps. Of the nine habitat covariates considered, most species predictably demonstrated positive associations
with grassland habitats and avoidance of areas of high tree and shrub cover. Two covariates representing wetland abundance were also
frequently included in the top models. The area covered by wetlands (w.area) was present in the top model for 5 of 10 species with a
consistently estimated negative coefficient. However, a covariate, which represented the number of wetland basins (w.basins), was
present in the top model for 8 of 10 species with an estimated positive coefficient for all but 1 species, representing a preference for
more heterogeneous wetland landscapes. The larger spatial scales we considered tended to have greater explanatory power than smaller
spatial scales and were thus more prevalent in the top models. The multispecies priority habitat maps that we produced can be used for
future assessments of potential habitat management actions. Our work provides a critical foundation for the incorporation of grassland
bird conservation goals into on-going landscape-planning initiatives in the Prairie Pothole Region of Canada.

Répartition de milieux prioritaires pour la conservation d'oiseaux de prairie dans la région des cuvettes
des Prairies au Canada

RESUME. Les écosystémes de prairie et les espéces qui en dépendent représentent une des préoccupations de conservation d'habitat
les plus importantes en Amérique du Nord. Au moment d'établir les activités d'aménagement, la détermination des milieux prioritaires
est fondamentale a tout effort de conservation de paysages. De nombreuses especes aviaires associées aux écosystémes de prairie ont
subi des baisses de population et des pertes continuelles d'habitat. De plus, étant donné la longue tradition de recherche en ornithologie
et I'association étroite de certaines especes avec les milieux de prairie, les oiseaux représentent un excellent taxon pour la détermination
de milieux prioritaires et peuvent également offrir un point de départ éclairé pour les évaluations multispécifiques. Nous avons utilisé
les données du Relevé des oiseaux nicheurs (ou BBS) en Amérique du Nord (1997-2014) afin d'élaborer des modeles de répartition pour
15 especes d'oiseaux de prairie habitant la région des cuvettes des Prairies au Canada. La performance des mode¢les a beaucoup varié
d'une espéece a l'autre. La performance du modele était bonne pour dix espéces (moyenne de l'indice de Boyce > 0,64 lors d'une validation
croisée répétée 5 fois). Nous nous sommes servis de ces dix especes pour évaluer l'influence des covariables d'habitat sur la probabilité
de présence relative, comparer les échelles spatiales de sélection et produire des cartes de milieux prioritaires pour plusieurs especes.
Neuf covariables d'habitat ont été considérées. Sans surprise, la plupart des espéces ont montré une association positive avec les milieux
de prairie et un évitement des secteurs ou le couvert en arbres et en arbustes était élevé. Deux covariables liées aux milieux humides se
retrouvaient souvent dans les meilleurs modéles. La superficie de milieux humides (w.area) figurait dans le meilleur modéle pour cinq
des dix especes, avec un coefficient constamment négatif. Toutefois, la covariable représentant le nombre de milieux humides (w. basins)
était présente dans le meilleur modéle pour huit des dix especes, avec un coefficient positif pour toutes les espéces sauf une, ce qui
indique une préférence pour des paysages de milieux humides plus hétérogénes. Les plus grandes échelles spatiales que nous avons
considérées avaient en général une capacité d'explication plus élevée que les plus petites échelles spatiales, et se retrouvaient, par
conséquent, plus souvent dans les meilleurs modéles. Les cartes de milieux prioritaires que nous avons produites pour plusieurs espéces
a la fois peuvent étre utilisées dans le cadre d'une éventuelle évaluation d'activités potentielles d'aménagement d'habitat. Nos travaux
établissent une assise fondamentale pour que soient inclus des objectifs de conservation d'oiseaux de prairie dans les initiatives de
planification a I'échelle du paysage ayant cours dans la région des cuvettes des Prairies du Canada.
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Fig. 1. Map of Prairie Pothole Region (PPR) in Canada. Red dots represent all Breeding Bird Survey routes classified as

active within the PPR for the years 1997-2014.
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INTRODUCTION

Grassland ecosystems are some of the most imperilled in the
world (White et al. 2000, Hoekstra et al. 2005) with less than 1%
of original prairie habitat remaining in many regions of the North
American plains (Samson and Knopf 1994). In Canada, estimates
published in 2003 indicated that 25-30% of native grasslands
remained, primarily concentrated in southern Alberta and
Saskatchewan (Gauthier and Wiken 2003). Loss of remaining
native grassland in the prairies of Canada continues at an annual
rate of approximately 0.7% (Watmough and Schmoll 2007).
Although primary threats are conversion and loss due to crop
production (Coupland 1979, Vitousek et al. 1997, Fargione et al.
2008), additional threats include fire suppression, poor grazing
management, and industrial and urban development (Askins et
al. 2007). Wildlife relying on these systems for their life history
are also experiencing widespread population declines (Brennan
and Kuvlesky 2005, Askins et al. 2007). This decline has led to
multiple efforts in North America to conserve and restore
grasslands and the associated wildlife species. For example, in
prairie Canada, conservation partners in the Prairie Habitat Joint
Venture (PHIJV; http://www.phjv.ca/) and Saskatchewan Prairie

Conservation Action Plan (SK PCAP; http://www.pcap-sk.org/)
have been delivering grassland conservation and restoration, and
conducting conservation research, since the late 1980s.

Negative population trends are of concern for many avian species
within grassland systems (Peterjohn and Sauer 1999, Brennan and
Kuvlesky 2005). Declines in both abundance and diversity (i.e.,
species richness) of grassland birds are greater than for other avian
subgroups based on breeding habitat affinity (e.g., woodland,
wetland, shrubland; Schipper et al. 2016). The general pattern of
declines in grassland birds seems to continue despite much of the
conversion of native grasslands to agriculture having been
completed by the 1940s, particularly in the United States
(Waisanen and Bliss 2002). Continued loss of native grasslands,
however, is well documented on the Canadian prairies (Watmough
and Schmoll 2007) and the compounding effects of habitat loss,
fragmentation, declining patch size, industrial disturbance, and the
potential impacts of climate change still threaten grassland species
through direct and indirect pathways (Davis 2004, Ludlow et al.
2015, Jarzyna et al. 2016). Thus, there remains a need to identify
important habitats for grassland birds in Canada.
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Table 1. List of species included in our analyses. Table includes the species common and Latin names and the proportion of detections
on active Breeding Bird Survey routes (n = 9118) from 1997-2014. The symbol 1 indicates species with limited ranges within the Prairie

Pothole Region in Canada.

Common Name Species Code Latin Name Present Absent Detection
Baird’s Sparrow BASP Ammodramus bairdii 1047 8071 0.11
Bobolink BOBO Dolichonyx oryzivorus 837 8281 0.09
Brown-headed Cowbird BHCO Molothrus ater 6176 2942 0.68
Chestnut-collared Longspurf CCLO Calcarius ornatus 702 8416 0.08
Clay-colored Sparrow CCSp Spizella pallida 7032 2086 0.77
Common Yellowthroat COYE Geothlypis trichas 1635 7483 0.18
Grasshopper Sparrow? GRSP Ammodramus savannarum 428 8690 0.05
Horned Lark HOLA Eremophila alpestris 4269 4849 0.47
Lark Buntingt LABU Calamospiza melanocorys 487 8631 0.05
Le Conte’s Sparrowt LCSP Ammodramus leconteii 1371 7747 0.15
Savannah Sparrow SAVS Passerculus sandwichensis 6956 2162 0.76
Sedge Wrent SEWR Cistothorus platensis 477 8641 0.05
Sprague’s Pipit SPPI Anthus spragueii 1227 7891 0.13
Vesper Sparrow VESP Pooecetes gramineus 6488 2630 0.71
Western Meadowlark WEME Sturnella neglecta 5395 3723 0.59

Identifying important habitats to species of interest is a critical
step in guiding wildlife conservation efforts (Thogmartin et al.
2006, Forcey et al. 2007). Over broad geographic ranges, this goal
is commonly achieved by developing species distribution models
(Guisan et al. 2013). These models can then be used to guide
management within the extent of the models to target
conservation action for optimal outcomes (Thogmartin et al.
2014).

Publicly available data have been used successfully to develop
species distribution models (SDMs) and elucidate relationships
between habitat and the likelihood of species presence (Seoane et
al. 2004, Brotons et al. 2007). In North America, the Breeding
Bird Survey (BBS) has documented species presence and
abundance along set routes during the breeding season since 1966.
These data have been used to develop species distribution models
for many species (Peterson and Robins 2003, Matthewsetal. 2011,
McCarthy et al. 2012, Barbet-Massin and Jetz 2014, Steen et al.
2014). These and other similar studies have made important
contributions to avian ecology, and the SDMs developed have the
potential to make substantial contributions to spatial
conservation decision making (Guisan et al. 2013).

We developed SDMs for a suite of grassland bird species using
BBS data from the Prairie Pothole Region of Canada (PPR; Fig.
1). We had three main objectives. First, we developed SDMs using
resource selection functions (RSFs) for 15 grassland bird species.
Second, we assessed model performance and examined which
factors influenced model performance. Third, we quantified niche
overlap for a suite of species by combining the SDMs for those
species with good model validation to identify multispecies
priority areas across the region. Our work provides a critical
foundation for landscape-planning initiatives that incorporate
grassland bird conservation goals into ongoing conservation
efforts in the PPR.

METHODS
Study area

Our study area comprises the Canadian portion of the Prairie
Potholes Bird Conservation Region 11 (BCR 11; Environment

Canada 2013). We restricted our analysis to within Canada
because of alack of comparable wetland data spanning the border
and to avoid duplication with previous and ongoing U.S. efforts
(Drum et al. 2015). The Canadian region covers approximately
467,000 km? of the northernmost portion of North America’s
Great Plains and encompasses the southern portions of three
Canadian provinces (southwestern Manitoba, southern
Saskatchewan, and southern Alberta; Fig. 1). The region derives
its name from millions of shallow depressional “pothole”
wetlands that formed as subterranean masses of ice, which melted
following the retreat of glaciers at the end of the last ice-age
(Doherty et al. 2017).

The region is characterized by a generally dry climate supporting
temperate grasslands. Remaining native grasslands are primarily
fescue prairie in the western extents and mixed-grass prairie
centrally. Historic tall grass prairie in the eastern extents has been
all but extirpated. The northern extents of the region represent a
transition from grassland to boreal forest and are interspersed
with stands of aspen (Populous tremuloides) and other woody
species (Doherty et al. 2017).

The region is primarily agricultural; land uses included cropland,
predominantly for cereal grain and oil-seed production, and
introduced and native grass forage lands (pasture and haylands)
for cattle production (Ecological Stratification Working Group
1995). Loss of native grassland to cultivation remains a primary
challenge for bird conservation in this region. Less than 43, 20,
and 1% of native grasslands remain in Alberta, Saskatchewan,
and Manitoba, respectively (Samson and Knopf 1994).

Study species

We developed species distribution models for 15 bird species in
the PPR that use grassland habitats (Table 1). We focused on avian
species having an affinity for grassland habitats during the
breeding season. We initially considered a broader array of
potential species; however, the list was rarefied based on data
availability for each species of interest as described below. Six
species of interest have limited range edges within the PPR. For
these six species (Table 1) we limited all analyses to within their
breeding range extent as defined by BirdLife International and
NatureServe (2014).
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Table 2. Descriptions, abbreviations, and value ranges of landscape covariates used in the analysis of 50-stop species occurrence data
from the North American Breeding Bird Survey in prairie Canada, 1997-2014. Land-cover, land-use covariates were extracted from,
and follow definitions provided in Agriculture and Agri-Food Canada’s Annual Crop Mapping data layer (AAFC 2014). Wetland area
and number of wetland basins covariates were extracted from a proprietary Ducks Unlimited Canada spatial database of estimated

wetland metrics (described in text).

Description

Abbreviation

Grassland predominantly comprised of native grasses and other herbaceous vegetation, may contain some low shrubland cover (AAFC n.grass
2014; class 110). Native grassland classification is putative given known uncertainty differentiating native grass from satellite-based

platforms.

Pasture/forage grasslands including tame grasses and other perennial crops such as alfalfa and clover grown alone or as mixes for hay, t.grass
pasture, or seed (AAFC 2014; class 122)

The combination of n.grass and t.grass (AAFC 2014; classes 110, 122) grass
Predominantly woody vegetation of relatively low height (generally +/- 2m). May include grass or wetlands with woody vegetation, shrub
regenerating forest (AAFC 2014; class 50)

All annually seeded crop types (AAFC 2014; classes 130-199) crop
All treed areas comprising coniferous, broadleaf/deciduous, and mixed woodlands (AAFC 2014; classes 200-230) tree
The combination of shrub and tree (AAFC 2014; classes 50, 200-230) tree.shrub
Ducks Unlimited Canada estimated wetland area (m?) within a 3.2 km x 3.2 km neighborhood w.area
Ducks Unlimited Canada estimated wetland basin count within a 3.2 km x 3.2 km neighborhood w.basins

The BBS is an annual North American roadside survey that has
been conducted for over 40 years. Observers follow set routes that
are 39.4 km and conduct 3-minute point counts at each of 50 stops
(i.e., one stop every 0.8 km) following standardized protocols.
These data are used extensively to assess population trends (e.g.,
Amano et al. 2012, Bled et al. 2013, Schipper et al. 2016) and for
the development of species distribution models (e.g., Barbet-
Massin and Jetz 2014, Goetz et al. 2014, Steen et al. 2014). We
obtained Breeding Bird Survey route and stop locations by request
from the Canadian Wildlife Service (CWS). These spatial data
included route beginning and end locations and the locations of
all 50 stops along most routes (Fig. 1). However, some routes
contained locations for only the start and end locations (Fig. 1).
We selected all stops within the PPR boundary (or within the
species range), regardless of whether the entire route was contained
within the boundary. Provincial count data (50-stop) were obtained
from the United States Geological Survey (https://www.pwrc.usgs.
gov/bbs/ downloaded on 15.06.12). Both datasets were filtered to
include only those routes classified as “Active” and “run type 1.”
We retained counts from 1997-2014 and summed the number of
birds counted for all focal species at each stop across those years.
For example, if a single bird were detected in each of five years,
then the count at the stop would sum to five. Count data were
georeferenced with the spatial locations by a unique combination
of province number (i.e., “statenum”), route identifier, and stop
identifier (e.g., 1-50).

We developed datasets for each species by identifying all stops in
which a species was detected on > 1 occasion between 1997 and
2014 in the count data set and assigned these locations a value of
1 (Table 1). We assigned all stops within the PPR in which the target
species was not identified a value of zero for counts. We then
calculated the proportion of stops at which a target species was

detected over the time series and across the PPR. A species needed
to be detected at > 5% of stops to be considered for the
development of species distribution models.

Covariate development

We developed spatial habitat covariates reflecting land-cover and
wetland abundance with demonstrated or hypothesized habitat
associations for each species of interest. To facilitate comparison
across species, we considered the same suite of spatial covariates
(n = 9; Table 2) for each species. Each covariate was summarized
in neighborhoods with radii of 400 m, 800 m, 1600 m, and 3200
m around each stop for a total of 4 scales. These scales were chosen
torepresent multiple levels of habitat selection and for consistency
with previous literature examining habitat selection in grassland
birds (Bakker et al. 2002, Cunningham and Johnson 2006).

We used two geospatial datasets to develop our covariates. The
first was used to generate seven variables to capture land cover at
the BBS survey stop level. These variables were estimated from
the 30-m resolution Annual Crop Inventory digital data layer
produced by Agriculture and Agri-Food Canada (AAFC; AAFC
2014). Variables included all grassland classes combined (grass),
all annual crops (crop), putative native grass (n.grass), seeded
grassland for hay and pasture (t.grass), deciduous, mixed and
coniferous trees (tree), and shrubs (shrub) and trees combined
(tree.shrub; Table 2). These variables were static to 2014 and
assumed that summarization in that year was generally
representative of land-cover composition during the period of
study.

The final two variables described the wetland area (w.area) and
number of wetland basins (w.basins) in surrounding 41 km?
landscapes (Table 2). These variables were extracted from a Ducks
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Unlimited Canada (DUC) data layer derived from publicly
available CanVec hydrography data created from best available
sources ranging in scale from 1:10,000-1:50,000 (Natural
Resources Canada 2011). Because the CanVec wetland layer is
known to vary in wetland capture (e.g., missing small wetland
basins), the DUC database adjusts wetland area and basin count
using a spatial statistical model built from overlapping DUC
wetland inventory data (digitized at imagery resolution 0.5 m-2.5
m), CanVec data, and Soil Landscapes of Canada landscape
covariates (Soil Landscapes of Canada Working Group 2011).
The DUC data layer thus estimates wetland area and wetland
basin count by applying adjustment factors to CanVec data across
the Canadian PPR.

Model development and evaluation

We developed resource selection function (RSF; Manly et al.
2002) models using logistic regression (Hosmer and Lemeshow
2000) to characterize habitat selection and develop species
distribution predictions for each species. We selected best-
approximating models using Akaike's Information Criterion
(AIC; Burnham and Anderson 2002). Each variable was
summarized at each of the four scales (i.e., neighborhood sizes).
We identified the best scale for each variable by comparing single
variable models at each scale and an intercept-only model. Thus,
there were five univariate models compared for each variable by
species comparison. The scale with the lowest AIC was selected
and carried forward into the complete candidate set of models.
If the variable was not more predictive than the intercept-only
model, the variable was excluded from all subsequent analyses.
Our goal was to integrate variables at the scale at which they make
the highest contribution to the explained variance in the
univariate model, which generally results in better model
performance (Graf et al. 2005).

After excluding covariates with low explanatory power, we
assessed correlation (Pearson’s r > |0.65]) among all potential
predictor variables to avoid issues of multicollinearity. When
variables were highly correlated, we chose the most predictive
single variable based on AIC to carry forward into the
multivariable models. We subsequently ran all possible model
combinations of the remaining variables and selected the top
model (i.e., the model with the lowest AIC). This model was
mapped spatially using the model coefficients and covariates to
create a raster of predicted probability of occurrence across the
species range within the PPR. All variables were standardized (z-
score transformation) prior to analysis and models were thus
applied to standardized raster surfaces.

We evaluated model performance using a k-fold cross validation
technique developed by Boyce et al. (2002). We used five folds of
the data and iteratively fit the top model to each set of training
folds (i.e., 80% of the observations) and calculated the area-
adjusted observed number of observations (i.e., remaining test
20% of observations) falling into five binned RSF classes. We
calculated the Spearman rank correlation between the RSF score
and the area-adjusted frequency of validation points for each of
the five folds and the mean area-adjusted frequency across folds.
High correlation values between RSF scores and area-adjusted
frequencies suggest a model that is good at predicting occurrence
of the focal species (Johnson et al. 2006). We assessed model
performance based on the average and range of the Spearman
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correlation values. To examine the possibility of spatial
autocorrelation, we examined residuals of the top model for
spatial patterns.

To identify the most important habitat (or regions) and aid in
conservation planning, we amalgamated predicted surfaces
across species using several approaches. First, we summarized the
average estimated coefficient value across species for each
covariate and all scales. Next, we summed the number of species
in which the top model contained each covariate and scale. This
allowed us to assess patterns in the relative frequency of covariates
and scales across all species. Finally, we produced two maps, one
of which displayed the average RSF value (0-1) for each pixel
across the PPR. The second map was more restrictive because it
summarized the best habitat across all species. To generate this
figure, we used the predicted RSF values (i.e., rather than the
equal-interval bins) and selected the top 25% of pixels on the
landscape for each species thus creating a binary surface
representing whether a pixel was contained in the top 25%. We
then summed the number of species represented in each pixel
using the top 25% surface for each species. All analyses were
conducted using R statistical software ver. 3.3.0 (R Core Team
2016).

RESULTS

We considered 9118 point-count locations in our analyses for all
species that had a range commensurate with the PPR boundaries.
Sample sizes for the six species with limited ranges were smaller
and are presented in Table 1. Observations at point-count
locations varied widely by species from our minimum of 5% to >
70% for the most common species, i.e., Clay-colored Sparrow
(Spizella pallida), Savannah Sparrow ( Passerculus sandwichensis),
and Vesper Sparrow (Pooecetes gramineus; Table 1). As expected,
the structure of the top models varied across species (Table 3).
Model performance based on Spearman rank correlation values
between the area-adjusted frequency of validation points and
RSF bins across the five folds varied widely among species (Table
3). The best models demonstrated excellent predictive capabilities
of the relative probability of occurrence and the worst
demonstrated negative Spearman correlations. We did not
summarize and interpret models with poor validation. Therefore,
we excluded models for species with an average Spearman
correlation of < 0.5 or a range of correlation values > 0.5. This
resulted in the retention of 10 species (Fig. 2). All subsequent
result summaries and synthesis only include those species in which
the model validation met these criteria.

The top scales selected for each spatial covariate varied across
species, with a general trend to the larger spatial scales
outperforming the smaller in most univariate comparisons. For
example, of the 90 univariate model comparisons (10 species X 9
covariates) the intercept-only model outperformed the univariate
covariate models in only 2 instances, leaving a total of 88
comparisons. Of these, the largest scale (3200 m radius) was
selected as the top scale 52 times (59%). The smallest scale (400
m radius) was selected in only 11% of the comparisons and all
but 3 of these were for a single species (Savannah Sparrow) in
which the 400 m? scale was selected for 7 of 9 covariates.
Correlations among predictor variables also varied by species.
Commonly correlated pairs included negative correlations
between grass and crop, and positive correlations between grass
and native grass; shrub and tree.shrub; tree and tree.shrub.
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Table 3. Top model for each species developed using Breeding Bird Survey data from 1997-2014 in the Prairie Pothole Region of Canada.
The Boyce Index uses a Spearman rank correlation to test the area-adjusted frequency of observed to expected validation points falling
within a bin and the associated bin’s rank. The average and range of Spearman rank correlation across five folds are presented. * indicates
species with adequate cross-validation based on the Spearman rank correlation and the Boyce Index. The symbol { indicates species
with limited ranges within the Prairie Pothole Region in Canada. See Table 1 for species codes.

Species Model Average Range

BASP* use ~ grass3200 + tree3200 + w.basins3200 0.98 0.90 - 1.00
BOBOf use ~ crop3200 + shrub3200 + t.grass3200 + w.area3200 + w.basins3200 -0.60 -0.78 - -0.56
BHCO* use ~ grass3200 + tree.shrub3200 + w.basins3200 1.00 1.00 - 1.00
CCLO*t use ~ grass1600 + shrub3200 + t.grass1600 + tree.shrub3200 0.64 0.40-0.70
CCSP* use ~ crop800 + n.grass3200 + shrub3200 + t.grass3200 + w.area3200 + w.basins3200 1.00 1.00 - 1.00
COYE use ~crop800 + n.grass3200 + t.grass3200 + tree3200 + w.basins3200 0.42 0.30 - 0.60
GRSP*T use ~ grass1600 + shrub1600 + tree.shrub1600 + w.basins400 0.78 0.70 - 0.90
HOLA* use ~ crop800 + n.grass3200 + tree.shrub1600 + w.area3200 + w.basins3200 1.00 1.00 - 1.00
LABUY use ~ grass3200 + shrub3200 + t.grass1600 + tree3200 + w.basins3200 0.78 -0.10 - 1.00
LCSPY use ~ crop3200 + n.grass3200 + t.grass3200 + tree.shrub3200 + w.area3200 -0.71 -0.87 - -0.71
SAVS* use ~ crop400 + t.grass400 + tree.shrub400 + w.areal 600 + w.basins400 1.00 1.00 - 1.00
SEWR T use ~ n.grass3200 + shrub3200 + t.grass3200 + w.basins3200 -0.67 -0.80 - -0.50
SPPI* use ~ grass1600 + t.grass1600 + tree3200 + w.basins3200 0.90 0.90 - 0.90
VESP* use ~ crop400 + n.grass3200 + t.grass3200 + tree.shrub800 + w.area3200 + w.basins3200 1.00 1.00 - 1.00
WEME* use ~ n.grass3200 + t.grass3200 + tree.shrub3200 + w.area3200 1.00 1.00 - 1.00

Fig. 2. Plot of the proportion of detections for each species and
the average Spearman correlation. Species with poor model
validation based on Spearman < 0.5 and a range of
correlations > 0.5 are shaded in grey. Lark Bunting (LABU)
was excluded based on variation and not the average Spearmen
correlation value. See Table 1 for species codes.
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The global model for each species included the top covariates at
the scales carried forward from the univariate comparisons. The
total of all possible model combinations for each species was 512.
The top models for species included 3-6 covariates (Table 3).

All variables in the top models were summarized at the selected
scale and used to generate the final predicted surfaces (Appendix
1). There were no obvious spatial patterns in the residuals and we

interpreted this as a qualitative indication of an absence of spatial
autocorrelation in the model-predicted values (Appendix 1).
Patternsin the standardized coefficients for the 10 species with good
model validation suggested generally positive or neutral (i.e., p =
0) coefficients for most variables included across scales (Fig. 3).
Across species, the most common variables included in the top
models were wetland area (w.area; n = 5 species), wetland basin (w.
basins; n = 8 species), tree shrub (n = 7), and the grass variables (t.
grass n = 6, grass n = 5, n.grass n = 4). Generally, model results
suggested that birds strongly avoided areas of high tree and tree-
shrub cover (Fig. 3). Positive selection was estimated for grass,
native grass, and tame grass covariates (Fig. 3). A slight negative
association was found for the wetland area count when it was
included in the top model for a species (n = 5 species; Table 3). Most
covariates included in the top models occurred at the larger spatial
scales (Fig. 3). Unsurprisingly, one of the three grass variables
(grass, n.grass, t.grass) was included in the top model for all species.
The other most common covariates included in the top models were
wetland basin count (rn = 8 species), tree-shrub (n = 7 species), and
the wetland area count (n = 5 species; Table 3; Fig. 3). The mean-
binned value (Fig. 4) and top-habitat predicted surfaces (Fig. 5)
both identified large areas of priority habitat for the suite of
grassland birds in the Prairie Pothole Region. Figure 5 depicts a
more restrictive approach to identifying priority habitats and
implicates less of the region as priority habitat for the 10 species of
grassland birds considered here.

DISCUSSION

We developed SDMs for 15 avian species having an affinity for
grassland habitats during the breeding season using data from the
BBS (1997-2014). As expected, models for these species generally
depicted positive associations with grass habitat, negative
associations with tree habitat, and mixed associations with wetland
habitat, depending on how wetland was depicted. Model
performance, assessed using k-fold cross validation, varied widely
among the 15 species. Models with poor validation were typically
characterized by data sets with a low proportion of detections
across sites. However, a low proportion of detections (i.e., data


http://www.ace-eco.org/vol13/iss1/art4/

availability) did not explain all of the variation in model
performance. Four species with high average Spearman rank
correlations had a proportion of detections < 0.20 (Baird’s
Sparrow, Ammodramus bairdii; Chestnut-collared Longspur,
Calcarius  ornatus, Grasshopper Sparrow, Ammodramus
savannarum;, and Sprague’s Pipit, Anthus spragueii). These species
all shared the common characteristic of limited distributions
concentrated in large areas of grassland habitats in Alberta
(Appendix 1). Because we used both detection and nondetection
data, it was possible for a species to be detected (i.e., 1) and not
detected (i.e., 0) on the same BBS route. Compared to other
species, there were limited occurrences of the routes in which the
species were both present and undetected over the 1997-2014 time
series for these four species. It is interesting to note that for these
species, data are absent (i.e., no BBS routes) throughout much of
the best-predicted habitat in Alberta.

Fig. 3. Average coefficient values from the top models for 10
species of grassland birds in the Prairie Pothole Region of
Canada. If a variable was not included in a top model, it was
assigned a missing value and therefore did not contribute to the
calculation of the average. The number of species summarizes
the number of species (maximum = 10) containing each
covariate at each scale in their top model.
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Significant patterns emerged from the predicted surfaces
associated with the six species having both low detections and
poor model performance (Bobolink, Dolichonyx oryzivorus;
Common Yellowthroat, Geothlypis trichas; Grasshopper
Sparrow; Lark Bunting, Calamospiza melanocorys; LeConte’s
Sparrow, Ammodramus leconteii; and Sedge Wren, Cistothorus
platensis). The three species with the most limited distributions
(Bobolink, Sedge Wren, and LeConte’s Sparrow) did not produce
well-validated models likely because of their limited extent and
data availability. For example, when producing the Spearman’s
rank correlations based on the Boyce index, very few of the use
locations for these species fell in the top two bins. This occurred
because the distribution of RSF values across the study extent
was strongly skewed toward low values and resulted in the negative
Spearman rank correlations estimated for each species. More
focused studies that limit the spatial extent and do not predict
across such large areas of mostly unsuitable habitat for these
species could result in better performing models. For example, of
the six species in which we limited model development to within
their restricted ranges in the PPR, two species (Chestnut-collared
Longspur, Grasshopper Sparrow) had better model performance
when the models were developed across the restricted range (B.
Fedy, unpublished data).

The coefficient estimates for w.area and w.basin were modest, but
consistent in their directionality. When included in the top model,
w.area was consistently negative whereas w.basins was largely
positive. This difference is likely due to the different landscape
patterns captured by the two covariates. Higher values and the
positive association with the w.basins covariate typically represent
landscapes with many smaller wetlands and a more heterogeneous
landscape. This heterogeneity in the context of wetland areas,
could be more beneficial to grassland birds than landscapes
containing large expansive wetlands as represented in the w.area
covariate (Skinner and Clark 2008). Additionally, smaller
wetlands tend to be more ephemeral and may provide ideal
conditions for certain species over the breeding season (e.g.,
Baird’s Sparrow). The strongest coefficients (when included in the
top models) were positive associations with native grass (n.grass)
and grass and avoidance of tree-shrub and trees, particularly at
the larger scales. These relationships are in the expected direction
and suggest that our models are capturing ecologically relevant
variation in habitat preferences across the study extent.

Larger scales (e.g., 1600 m and 3200 m radii) were consistently
selected for all variables with the exception of crop and tame grass
variables. Thus, using these data on species presence and absence,
landscape context (i.e., configuration at larger spatial scales) is
more important to the relative probability of use than smaller,
patch-scale, metrics of habitat composition as estimated from our
spatial layers. The scales used in our study ranged from a 400 m
to 3200 m radius and thus encompassed areas surrounding
locations from 0.5 km? to 32.2 km?. These findings suggest that
larger scales are consistently more predictive than smaller scales
for the 10 grassland bird species modeled here. Shahanetal. (2017)
also documented that landscape variables were more predictive
than local variables for eight grassland songbird species and
suggested the importance of considering the landscape context
of prairie fragments (Shahan et al. 2017).


http://www.ace-eco.org/vol13/iss1/art4/

Avian Conservation and Ecology 13(1): 4
http://www.ace-eco.org/voll3/iss1/art4/

Fig. 4. Mean predicted resource selection function values for 10 species of grassland birds in the
Prairie Pothole Region of Canada.
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Fig. 5. Number of species with “top habitat” in each pixel. This figure was generated by selecting the
top 25% of habitat for each species. These pixels were classified as top habitat (i.e., recoded to 1) and
then overlaid and summed across all 10 grassland bird species in the Prairie Pothole Region of Canada.
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Our findings regarding the importance of landscape scales are
contradictory to the conclusions of some previous studies of
grassland birds. For example, Koper and Schmiegelow (2006) and
Davis et al. (2013) highlighted the importance of and argued that
local-scale (e.g., 400 m radius) summaries of environmental
covariates had greater predictive capabilities than larger scale
summaries of landscape composition. There are several
important differences between our study and previous efforts,
however. First, multiple previous studies did not explicitly address
the predictive capabilities of landscape composition summarized
across more than two window sizes (Brotons et al. 2005, Koper
and Schmiegelow 2006, Davis et al. 2013). Additionally, two
earlier studies highlighting smaller scales included a covariate for
“habitat type” in the models. Though it is not entirely clear from
the manuscripts, the habitat type classification likely summarized
habitat composition at relatively large spatial scales and this
covariate was common in the top-ranked models for many species
(Ribic et al. 2009, Davis et al. 2013). For Sprague’s Pipit, the
selection of grassland variables at 1600 m radius (8.01 km) was
similar to the scale of a grassland aggregate covariate (10.4 km?)
that was the most predictive of Sprague’s Pipit occurrence in a
previous study developing SDMs using different data and
modeling approaches than ours (Lipsey et al. 2015). Habitat
selection is clearly a hierarchical process and there is not one scale
that will capture all relevant information for a species (Johnson
1980). For grassland species in particular, Cunningham and
Johnson (2006) found that combining proximate and landscape-
level predictors resulted in the best-performing models for
multiple grassland bird species.

Johnson and Igl (2001) assessed the area sensitivity of a suite of
grassland birds in the northern Great Plains of the United States.
Their research included 5 of the 10 species we examined (Baird’s
Sparrow; Brown-headed Cowbird, Molothrus ater; Lark Bunting;
Savannah Sparrow; and Western Meadowlark, Sturnella
neglecta). They concluded that Baird’s Sparrows favored larger
grassland patches, with weaker evidence of area sensitivity for
Brown-headed Cowbirds, Savannah Sparrows, and Western
Meadowlarks (Johnson and Igl 2001). These results are similar
to Davis (2004) who found area sensitivity in Baird’s Sparrows,
Chestnut-collared Longspurs, Grasshopper Sparrows, and
Sprague’s Pipits and the inverse relationship (i.e.,, area
insensitivity) for Clay-colored Sparrows and Western
Meadowlarks. Our study did not explicitly address area
sensitivity, but we documented positive association with grass
variables at the two largest scales (1600 m and 3200 m radii) for
Baird’s Sparrow, Brown-headed Cowbird, Chestnut-collared
Longspur, Grasshopper Sparrow, and Western Meadowlark,
whereas Savannah Sparrow and Vesper Sparrow were the only
species for which the smallest scale (400 m) for grass or cropland
was selected. For Baird’s Sparrow the strongest covariate was for
the avoidance of trees at the largest spatial scale. Generally, the
consistently better performance of the larger scales may suggest
some form of area sensitivity. As highlighted by Johnson and Igl
(2001), replication in space is important and results from one area
may not apply to others because of a suite of factors including
study design, analytical methods, location relative to range of the
species, and surrounding landscapes. Our results are consistent,
though, with other studies on Baird’s Sparrow that have found
higher occurrence in grassland habitat (McMaster and Davis
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2001) and avoidance of cultivation (Owens and Myres 1973),
shrubs, and high visual obstruction vegetation (Madden et al.
2000). The questions surrounding area sensitivity and
requirements in grassland birds are complex and likely somewhat
location and species specific. For example, With et al. (2008)
concluded that even relatively large grassland areas may be
insufficient for the persistence of some grassland species in the
Flint Hills region of Kansas and Oklahoma.

Fisher and Davis (2010) reviewed 57 studies of grassland bird
habitat relationships and identified 9 of the most important
variables based on previous research. As noted by the authors
and others, identification of remaining grassland habitat is a
critical first step to population conservation and recovery
(Vickery and Herkert 2001, Fisher and Davis 2010). Our
development of SDMs for multiple grassland bird species
represents a significant step toward that goal. The challenge with
the incorporation of the nine variables identified by Fisher and
Davis (2010) into spatially explicit models is that most of the
covariates are not currently available in GIS (e.g., bare ground,
forbs, litter) and several variables will likely prove too difficult to
ever model efficiently in a GIS environment (e.g., vegetation
height, vegetation volume, litter depth, dead vegetation). We
suspect that other variables that were measured in previous
studies, but not at the landscape scale addressed here (e.g., shrub
and tree cover), will prove important in future efforts (Thompson
et al. 2014).

Aside from our crop variable, we did not directly include other
anthropogenic variables that could affect habitat use such as
energy development (Ludlow et al. 2015) or roads (Sutter et al.
2000). Multiple studies have documented the potential negative
effects of both conventional and renewable energy development
on grassland birds. For example, Shaffer and Buhl (2016)
documented displacement of several species (Grasshopper
Sparrow, Western Meadowlark, Bobolink, Savannah Sparrow,
Vesper Sparrow, Chestnut-collared Longspur, and Clay-colored
Sparrow) in relation to wind turbines. Thompson et al. (2015)
documented avoidance of habitats well beyond the area occupied
by the infrastructure for many grassland species in the Bakken.
However, as in other studies (Ludlow et al. 2015), the presence,
strength, and mechanisms of negative effects were not consistent
across all species. For example, Ludlow et al. (2015) found
negative influences on density and reproductive success for
Sprague’s Pipit and Baird’s Sparrow, but not for Vesper Sparrow,
Western Meadowlark, or Brown-headed Cowbird, with more
Brown-headed Cowbirds occurring in close proximity to energy
infrastructures. In a report prepared for the Petroleum
Technology Alliance Canada, Linnen (2008) examined the
impacts of energy development on most of our 10 species (with
the exception of Clay-colored Sparrow) and concluded that
Chestnut-collared Sparrows, Sprague’s Pipits, and Baird’s
Sparrows were the most sensitive to gas development and edge
avoidance whereas Vesper Sparrows were more abundant near
traditional oil and gas development. Species distribution models
can be combined with information on energy development
potential to help guide the siting of infrastructure (Tack and Fedy
2015), identify potential areas for mitigation (Kreitler et al. 2015),
and explore the impact of various development scenarios
(McGowan et al. 2013, Lipsey et al. 2015). We suggest that our
models could be used in similar applications, particularly for those
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species expected to respond negatively to energy development
(e.g., Baird’s Sparrow).

As with most species distribution models, it is important to
recognize that predictions are static and assume the
relationships between species and environment are at
equilibrium (Araujo and Pearson 2005). In light of recent global
changes in climate and habitats, species-environment
relationships may become more transient (Yackulic et al. 2015).
Our models represent a baseline for the development of more
sophisticated dynamic occupancy models that could include
time varying conditions for both habitat and climate. Future
updates of our models with new data on both bird occurrences
and temporally varying covariates could prove illuminative
regarding temporal variation in the relative probability of
habitat use (Gorzo et al. 2016) and in particular, the potential
impacts of climate change (Steen et al. 2014, Conrey et al. 2016).

One of our goals was to identify important habitat as a first step
toward informing spatial conservation decisions regarding
grassland birds within the PPR in Canada. Our models can be
incorporated on a species by species basis or through the use of
our two summary surfaces that were intended to represent the
best habitat across all 10 species. We recommend future research
combine our results with other sources of information,
particularly those related to bird abundance and stressors
affecting abundance, to help define critical habitat. The
integration of SDMs and spatially explicit estimates of
abundance can be a valuable tool for the identification of
priority habitats for species of conservation concern
(Thogmartin et al. 2014, Doherty et al. 2016). Additionally,
these surfaces could help inform priority areas for reserve design
when combined with other relevant data (Moilanen et al. 2005).
Ultimately, SDMs can be a valuable tool within structured and
transparent decision-making processes (Guisan et al. 2013).

Responses to this article can be read online at:
http://www.ace-eco.org/issues/responses.php/1143
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Appendix 1. Species-specific model results.

Three figures are presented for each species. The T symbol indicates species included in the ten
species with adequate model performance. The first figure panel for each species presents the
standardized Beta-coefficients and associated standard errors for all variables included in the
top resource selection function model for each species. Note the scales vary by species based on
the coefficient estimates for each species. The second figure for each species presents the
relative predicted probability surface in the Prairie Pothole region of Canada. Breeding Bird
Survey data included in the development of the models were collected from 1997 — 2014. Sites
where >1 bird was detected are indicated by the red dots. The third figure for each species
presents a bubble plot of model residuals for the top model across the Prairie Pothole Region of
Canada. Both positive and negative residuals are presented and the size of the point is scaled by
the magnitude of the residual value. The absence of any spatial pattern in the residuals is a
qualitative indication of an absence of spatial autocorrelation in the model-predicted values.
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