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Abstract

This thesis is about geometric drawings of graphs and their topological generalizations.

First, we study pseudolinear drawings of graphs in the plane. A pseudolinear drawing
is one in which every edge can be extended into an in�nite simple arc in the plane, homeo-
morphic to R, and such that every two extending arcs cross exactly once. This is a natural
generalization of the well-studied class of rectilinear drawings, where edges are straight-
line segments. Although, the problem of deciding whether a drawing is homeomorphic
to a rectilinear drawing is NP-hard, in this work we characterize the minimal forbidden
subdrawings for pseudolinear drawings and we also provide a polynomial-time algorithm
for recognizing this family of drawings.

Second, we consider the problem of transforming a topological drawing into a similar
rectilinear drawing preserving the set of crossing pairs of edges. We show that, under some
circumstances, pseudolinearity is a necessary and su�cient condition for the existence of
such transformation. For this, we prove a generalization of Tutte's Spring Theorem for
drawings with crossings placed in a particular way.

Lastly, we study drawings of Kn in the sphere whose edges can be extended to an
arrangement of pseudocircles. An arrangement of pseudocircles is a set of simple closed
curves in the sphere such that every two intersect at most twice. We show that (i) there
is drawing of K10 that cannot be extended into an arrangement of pseudocircles; and (ii)
there is a drawing of K9 that can be extended to an arrangement of pseudocircles, but no
extension satis�es that every two pseudocircles intersects exactly twice. We also introduce
the notion pseudospherical drawings of Kn, a generalization of spherical drawings in which
each edge is a minor arc of a great circle. We show that these drawings are characterized by
a simple local property. We also show that every pseudospherical drawing has an extension
into an arrangement of pseudocircles where the �at most twice� condition is replaced by
�exactly twice�.
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Chapter 1

Introduction

In 2014, Dan McQuillan and Gelasio Salazar visited the University of Waterloo when I
was starting my PhD studies. The purpose of their visit was to begin an investigation
with Bruce Richter and me, about one the topics treated in the Exact Crossing Numbers
Workshop, held at the American Mathematical Institute (AIM) in the same year.

The topic was the recent progress on the Harary-Hill conjecture, stating that the cross-
ing number of Kn is given by the following formula:

H(n) =
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

At the AIM meeting we learned about new methods found by Ábrego et al. [1] showing
that the Harary-Hill Conjecture holds for some interesting classes of drawings, such as
rectilinear, 2-page, cylindrical and monotone drawings.

These methods emphasize the importance of understanding the special features of these
classes of drawings. Perhaps, with this in mind, Gelasio Salazar asked us, in our �rst
meeting in Waterloo, the following question: Is there a simple way, in terms of local
properties of the drawing, to characterize rectilinear drawings of Kn?

As an initial observation, we found that pseudolinear drawings (a class of drawings
de�ned below that generalizes rectilinear drawings) have the property that, if one �xes
a 3-cycle T and looks at the vertices drawn in the bounded side of T , then the edges
connecting these interior vertices to the three vertices in T are contained in the bounded
side of T . Not every topological drawing of Kn has this property; it was reasonable to
think that drawings of Kn having this property are pseudolinear.
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A pseudolinear drawing is one in which every edge can be extended into an in�nite
simple arc in the plane, homeomorphic to R, and such that every two extending arcs cross
exactly once. These extending arcs are called pseudolines, and they are the topological
analog of the straight lines extending the edges of a rectilinear drawing.

Many of the properties satis�ed by rectilinear drawings also hold for pseudolinear draw-
ings. In fact, knowing that a property holds for pseudolinear drawings has its practical
advantages: proofs and algorithms for pseudolinear drawings do not rely on geometric pa-
rameters such as angles or distances; they rely only on the combinatorial structure of how
the extending pseudolines intersect and how they separate the vertices in the drawing.

Our group continued studying drawings of Kn satisfying the local property satis�ed by
the 3-cycles. We found that every drawing of Kn satisfying this local property is pseudo-
linear [8]. In fact, an equivalent result was independently discovered by Aichholzer et al.
[5]. They showed that a drawing of Kn is pseudolinear if and only if it does not include
one of the three drawings of K4 in the plane.

Hernández-Vélez presented a talk in the Crossing-Number Workshop held in Rio de
Janeiro (2015) about investigating the di�erence between the crossing number cr(G), the
rectilinear crossing number cr(G) and the pseudolinear crossing number c̃r(G) [18]. He
explained how to �nd graphs where the di�erence between cr and c̃r is large. The key
idea was to use some basic non-pseudolinear drawings, that he called obstructions. At that
time, it was unclear how to construct new obstructions, or how many of them where there.

A few months later, I visited Carsten Thomassen and his group at DTU as part of an
internship. I gave a talk about pseudolinear drawings of Kn, where I posed the problem
of classifying the minimal forbidden obstructions of pseudolinear drawings of all graphs.
Thomassen observed that one of di�culties of this problem is the existence of in�nitely
many minimal obstructions (In fact, in [29], it was already observed that there are in�nitely
many obstructions for rectilinear drawings; these are also examples of obstructions for
pseudolinear drawings).

This thesis work is about the research following the previous events. In Chapter 2 we
show as one of our main results in this thesis, a characterization of the minimal forbidden
subdrawings of pseudolinear drawings. In this joint work with Bensmail and Richter, we
found a simple description for all the obstructions, leading to a polynomial-time algorithm
to recognize pseudolinear drawings.

Understanding pseudolinear drawings can be helpful to know more about geometric
drawings of graphs. In [13], Bienstock and Dean showed that a graph G with cr(G) ≤
3, has cr(G) = cr(G). With this result as our motivation, in Chapter 3 we study the
problem of turning a topological drawing into a rectilinear drawing with the same number

2



of crossings. Our main result in Chapter 3 �nds conditions where this can be done and,
surprisingly, where pseudolinearity plays an essential part of these conditions. For this
purpose, we obtained a generalization of Tutte's Spring Theorem that allow some edges to
be crossed. The content of Chapter 3 is based on the author's original ideas, but has been
somewhat in�uenced by what will be a more general work in collaboration with Richter
and Thomassen.

Chapter 4 is motivated from studying spherical drawings of Kn, where vertices are
represented as distinct points in the unit sphere and the edges are shortest-arcs connecting
these points. Spherical and rectilinear drawings have some properties in common, however,
it is still unknown if spherical drawings of Kn satisfy the Harary-Hill conjecture.

A problem in the spotlight of the graph drawing community was to �nd a class of
drawings generalizing spherical drawings of Kn in the same way pseudolinear drawings
generalize rectilinear drawings. In Chapter 4, we investigate this by answering two open
problems about extending drawings of Kn into arrangements of pseudocircles. Moreover,
we propose a de�nition for pseudospherical drawings that achieves many of the desired
properties.

In connection to our previous work in pseudolinear drawings of Kn, we show that a
drawing is pseudospherical if and only if for every 3-cycle T there is a disk ∆T in the
sphere bounded by T , where all the edges connecting a vertex inside ∆T to a vertex in
T are drawn inside ∆T and all the ∆T s are structured in a hereditary-way (for more
technical details see De�nition 4.4.1). Using this local property we show that every edge in
a pseudospherical drawing induces a decomposition of the drawing into two pseudolinear
pieces (this generalizes the observation that every edge in a spherical drawing ofKn induces
a partition into two rectilinear drawings).

Part of the discussion of how to de�ne pseudospherical drawings was focused on whether
to include the condition of any two pseudocircles intersecting exactly twice or to simply
let them intersect zero or two times. The main result of Chapter 4 ends this discussion
by showing that a pseudospherical drawing of Kn admitting an extension where the pseu-
docircles cross zero or two times, also has one where they cross exactly twice. This last
chapter is a joint work with Richter and Sunohara.

3



Chapter 2

Pseudolinear drawings of graphs

2.1 Introduction

When is a drawing of a graph in the plane homeomorphic to a drawing whose edges
are straight line segments? A rectilinear drawing of a graph is one in which edges are
drawn using straight line segments, and more generally, a stretchable drawing is one that
is homeomorphic to a rectilinear drawing. Fáry's Theorem [14, 31, 27], a classic result in
graph theory, asserts that drawings of simple graphs with no crossings between edges are
stretchable.

A good drawing is one in which every two incident edges are not crossed, every pair
of edges cross at most once, and no crossing point is in three edges. In [29], Thomassen
extended Fáry's Theorem by characterizing stretchable good drawings of graphs in which
every edge is crossed at most once. This characterization is in terms of forbidding two
con�gurations, known as the B and W con�gurations, shown in Figure 2.1.

Figure 2.1: B and W con�gurations.
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Thomassen's characterization is a partial answer to the general problem of determining
which drawings are stretchable. There is not likely to be a complete characterization,
because the closely related problem of stretchability of arrangements of pseudolines is NP-
hard.

A pseudoline is an unbounded open arc in the plane whose complement is disconnected.
In particular, lines are pseudolines, and any pseudoline is the image of a line under a home-
omorphism of the plane into itself. An arrangement of pseudolines is a set of pseudolines
in which every two intersect in exactly one point, and their intersection point is a crossing.
We allow multiple pseudolines crossing at one point.

Mnëv showed [21, 22] that it is NP-hard to determine whether an arrangement of pseu-
dolines is stretchable (in fact, he showed that the stretchability problem is ∃R-hard). The
problem of stretching arrangements of pseudolines can be reduced to the problem of decid-
ing whether the drawing of a graph is stretchable: given an arrangement of pseudolines,
consider a big circle containing all the intersection points between the pseudolines. Cut o�
the two ends of each pseudoline outside this circle to obtain a drawing of multiple copies
of K2. This drawing is stretchable if and only if the arrangement is stretchable.

Our interest in stretchable drawings comes from studying crossing numbers. The cross-
ing number of a graph G is the minimum number cr(G) of crossings in a drawing of G in the
plane. If we restrict our drawings to be stretchable, then this minimum is the rectilinear
crossing number cr(G).

One of the main open problems in the study of crossing numbers is the Harary-Hill
Conjecture [16], which states that the crossing number of Kn is equal to

H(n) =
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
. (2.1)

There are drawings of Kn with H(n) crossings. In 2004 it was shown in [2] and in [19]
that cr(Kn) ≥ H(n), and in fact, the tools used to show this lower bound come from the
study of arrangements of pseudolines, so naturally the proof generalizes to pseudolinear
drawings. A pseudolinear drawing of a graph is one in which each edge-arc can be extended
to a pseudoline, resulting in an arrangement of pseudolines. Clearly stretchable drawings
are pseudolinear.

In the recent study of crossing numbers, pseudolinear drawings have played a predom-
inant role, as they are treated as a combinatorial generalization of rectilinear drawings.
For instance, in parallel results from [6] and [9], it was shown that in rectilinear and pseu-
dolinear drawings of Kn with as few crossings as possible, the outer face is bounded by a
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3-cycle. This connection led Balogh et al. [9] to conjecture that c̃r(Kn) = cr(Kn) (where
c̃r(Kn) denotes the pseudolinear crossing number of Kn).

Figure 2.2: Non-isomorphic drawings of K4 in the plane.

Pseudolinear drawings of Kn can be characterized in terms of a forbidden minimal
subdrawing. There are exactly three non-homeomorphic drawings of K4 (shown in Figure
2.2), and exactly one of them (the one on the right) is not pseudolinear. It was shown
in [5] and [8] that a drawing of Kn is pseudolinear if and only if it does not include the
non-pseudolinear drawing of K4.

The aim of this chapter to generalize the previous result by characterizing pseudolinear
drawings of all graphs by describing a set of minimal forbidden subdrawings. One of
the di�culties to �nding such a set of drawings is the fact that there are in�nitely many
of them, such as the ones in Figure 2.3. Thomassen already made this observation for
rectilinear drawings [29].

The description of minimal forbidden drawings requires a re�ned understanding of
drawings and also of what we meant by saying �minimal�, leading us to study sets of
strings. A string σ is the image f([0, 1]) of a continuous function f : [0, 1] → R2 that
restricted to (0, 1) is injective; in other words, strings are arcs that are allowed to self-
intersect only at their ends f(0) and f(1). If no such self-intersection exists, then σ is
simple. Most of the time we will consider simple strings, although considering non-simple
strings will come in handy for technical reasons.

A set of strings Σ is in general position if, for every two strings σ, σ′ ∈ Σ (i) σ ∩ σ′ is a
�nite set of points in R2; and (ii) each point in σ∩σ′ is either a crossing between σ and σ′,
or an end of either σ or σ′. For instance, the set of edge-arcs of a good drawing of a graph
is a set of strings in general position, but not all the sets of strings in general position come
in this fashion: a string might include end points of other strings in its interior.

For a set Σ of strings in general position, its underlying plane graph G(Σ) is the plane
graph obtained from Σ by replacing the crossings between strings and the end points of
every string in Σ by vertices. Our main result below characterizes when a set of strings in
general position can be extended to an arrangement of pseudolines.

6



Figure 2.3: Obstructions to pseudolinear drawings.

Theorem 2.1.1. A set of strings Σ in general position can be extended to an arrangement
of pseudolines if and only if, for each cycle C in the underlying plane graph G(Σ) of Σ,
there are at least three vertices with the property that the edges incident to the vertex that
are included in the closed disk bounded by C belong to distinct strings in Σ.

For instance, let C be the unique cycle in the underlying plane graph in any of the
drawings in Figure 2.3. There are at most two vertices of G in C, represented as black
dots. The strings incident with such a vertex are distinct and contained in the closed disk
bounded by C. The vertices represented as crossings do not satisfy this property: they
are incident with four edges in the disk bounded by C, and these four edges consist of
two strings that cross at this vertex. Theorem 2.1.1 implies that none of the drawings in
Figure 2.3 is pseudolinear. Surprisingly, we will show, as a consequence of Theorem 2.1.1,
that every non-pseudolinear drawing contains one of the con�gurations in Figure 2.3 as a
subdrawing.

Theorem 2.1.2. Let D be a non-pseudolinear good drawing of a graph H. Then there is a

7



subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ
for which

⋃
σ∈S σ

′ is one of the drawings in Figure 2.3.

Cycles that have fewer than three vertices as in Theorem 1 are the obstructions of G(Σ)
(this de�nition will be made more precise at the beginning of Section 2.2). Showing that
when G(Σ) has obstructions, then Σ cannot be extended to an arrangement of pseudolines,
is the �rst part of Section 2.2. The rest of Section 2.2 is devoted to show that if G(Σ) has
no obstructions, then Σ can be extended to an arrangement of pseudolines. The proof of
two technical lemmas used in the proof of Theorem 2.1.1 are deferred to Section 2.3. In
Section 2.4, we describe a simple algorithm that �nds an obstruction in polynomial time.
In Section 2.5, by applying Theorem 2.1.1, we prove that a drawing of a complete graph
Kn is pseudolinear if and only if it does not contain the B con�guration in Figure 2.1.
This result is equivalent to the characterizations of pseudolinear drawings of Kn given in
[5] and [8], but its proof is simpler. At the end, in Section 2.6, we show how Theorem 2.1.2
easily follows from Theorem 2.1.1, together with some concluding remarks.

The present chapter is a collaborative work with Julien Bensmail and Bruce Richter.

2.2 Proof of Theorem 2.1.1

In this section, we use Lemmas 2.2.4 and 2.2.5 (proved in the next section) to prove
Theorem 2.1.1. As we enter into the subject, we need some notation that is useful in
identifying an obstruction. Let C be a cycle of a plane graph G and let v be a vertex
of C. The rotation at v inside C is the counterclockwise ordered list e0, e1..., ek of edges
incident with v that are included in the closed disk bounded by C, with e0 and ek both in
C. Likewise, the rotation at v outside C is de�ned as the counterclockwise ordered list ek,
ek+1, . . . , e0 of edges incident with v included in the closure of the exterior of C.

In the case G = G(Σ) for some set Σ of strings in general position, a vertex v in a
cycle C of G(Σ) is re�ecting in C if at least two edges in the rotation at v inside C belong
to the same string (Figure 2.4a). The alternative is that v is a rainbow, in which case all
the edges of its rotation inside C are in di�erent strings (Figure 2.4b). In these terms, an
obstruction is a cycle with at most two rainbows.

2.2.1 Sets of strings with obstructions are not extendible

The following observation will be used in this subsection and also in Theorem 2.5.1. If C
is a cycle in G(Σ), where Σ is a set of strings in general position, then δ(C) is the set of
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(a) A re�ecting vertex (b) A rainbow

Figure 2.4: A representation of re�ecting and rainbow vertices, where each string in G(Σ)
has assigned a unique colour.

vertices in C for which their two incident edges in C belong to two distinct strings in Σ.
Note that if |δ(C)| < 3 for some cycle C, then either |δ(C)| = 2 and two strings intersect
more than once, or |δ(C)| ≤ 1 and some string is self-crossed. Both these possibilities are
forbidden in good drawings.

Observation 2.2.1. Let Σ be a set of simple strings in general position in which every
two strings intersect at most once. Let:

(a) C be an obstruction of G(Σ) for which |δ(C)| is as small as possible;

(b) x ∈ δ(C);

(c) e be an edge in C incident to x;

(d) σ ∈ Σ be the string containing e; and

(e) σ′ be the component of σ \ e containing x.

Then σ′ ∩ C = {x}.

Proof. By way of contradiction, suppose that σ′∩C includes a point distinct from x. This
in particular implies that σ′ 6= {x}, and, because x ∈ δ(C), the points of σ′ \ {x} near
x are not in C. Let P be the path in G(Σ) obtained by traversing σ′, starting at x, and
stopping the �rst time we encounter a point y ∈ C ∩ (σ′ \ {x}). Note that y ∈ V (C) and
that P is drawn in either the interior or the exterior of C.

First, suppose that P is drawn in the interior of C. Let C1 and C2 be the cycles obtained
from the union of P and one of the two xy-subpaths in C. We may assume C1 includes
e. Each of C1 − P and C2 − P has a vertex in δ(C); otherwise one of C1 or C2 would
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be included in at most two strings, implying that a string is self-crossing or two strings
intersect twice. Therefore |δ(C1)| and |δ(C2)| are strictly smaller than |δ(C)|. Then, by
assumption, C1 and C2 are not obstructions.

None of the vertices in P − y is a rainbow for C1 (P ⊆ σ′ and x is re�ecting in C1, so
the interior rotations of the vertices in P − y include two edges in σ). Since all the vertices
in C1 − V (P ) that are rainbow in C1 are also rainbow in C, C1 has at most two rainbows
in V (C1) \ V (P ). These last two observations and the fact that C1 is not an obstruction,
together imply that C1 has three rainbows: two of them are in V (C1)\V (P ) and the other
is y.

Now we look at the rainbows in C2. Because C has two rainbows in C1 − V (P ) and
any rainbow in V (C2) \V (P ) for C2 is rainbow for C, C2 has no rainbow in V (C2) \V (P ).
All the interior vertices of P are re�ecting in C2, so C2 has at most two rainbows. This
contradicts that C2 is not an obstruction.

Secondly, suppose that P is drawn in the exterior of C. Let Cout be the cycle bounding
the outer face of C ∪ P . The cycle Cout is the union of P and one of the two xy-paths in
C, and, in both cases, as x ∈ δ(C) \ δ(Cout) and P − y ⊂ σ, |δ(Cout)| < |δ(C)| . Every
vertex in P − y is re�ecting in Cout (this statement follows from the fact that the rotation
of a vertex inside a cycle also includes the edges of the cycle incident with the vertex).
Moreover, every vertex in V (Cout) \ (V (P − y)) that is a rainbow in Cout is also a rainbow
in C. These two facts imply that Cout has at most as many rainbows as C; hence Cout is
an obstruction. This contradicts the fact that C minimizes |δ|.

Next we show that, if a set of strings contains an obstruction, then it is not pseudolinear.

Observation 2.2.2. If Σ is a set of strings in general position and G(Σ) has an obstruc-
tion, then Σ cannot be extended to an arrangement of pseudolines.

Proof. By way of contradiction, suppose that there is a set of strings Σ that can be extended
to an arrangement of pseudolines and G(Σ) has an obstruction C. Consider an extension
of Σ to an arrangement of pseudolines, and then cut o� the two in�nite ends of each
pseudoline to obtain a set of strings Σ′ extending Σ, and in which every two strings in
Σ′ cross. In G(Σ′), there is a cycle C ′ that represents the same simple closed curve as C.
Because C ′ is obtained from subdiving some edges of C, C ′ has fewer than three rainbows.
Therefore, we may assume that Σ = Σ′ and C = C ′. Now, the ends of every string in Σ
are degree-one vertices in the outer face of G(Σ).

As every string in Σ is simple, and no two strings intersect more than once, |δ(C)| ≥ 3.
We will assume that C is chosen to minimize |δ(C)|.
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Since C is an obstruction, there is at least one vertex x ∈ δ(C) re�ecting inside C. Let
e ∈ E(C) be an edge incident to x, and suppose that σ is the string including e. Traversing
σ along e through x, we encounter another edge e′ ⊆ σ incident to x. Because x ∈ δ(C),
e′ is not in C. Suppose that e′ is drawn in the outer face of C. As x is re�ecting inside C,
there exists a string σ̄ that includes two edges in the rotation at x inside C. However, σ
and σ̄ tangentially intersect at x, contradicting that the strings in Σ are in general position.
Therefore e′ is drawn inside C.

Let y be the end of σ contained in the component of σ \ e containing x. Since |δ(C)| is
minimum, Observation 2.2.1 implies that the component of σ \ e having x and y as ends
have all its points, with the exception of x, in the inner face of C. However, y is drawn
in the inner face of C, contradicting that the ends of all the strings in Σ are incident with
the outer face of G(Σ).

2.2.2 Extending sets of strings with no obstructions

In this subsection we prove that a set of strings with no obstructions can be extended to
an arrangement of pseudolines. We restate Theorem 2.1.1 using our new terminology.

Theorem 2.2.3. A set of strings Σ in general position can be extended to an arrangement
of pseudolines if and only if G(Σ) has no obstructions.

Proof. We showed in Observation 2.2.2 that if G(Σ) has an obstruction, then Σ cannot be
extended to an arrangement of pseudolines. For the converse, suppose that G(Σ) has no
obstructions.

We start by reducing the proof to the case in which the point set
⋃

Σ is connected. If⋃
Σ is not connected, then we add a simple string to Σ, connecting two points in distinct

components of G(Σ), and so that it is included inside a face of G(Σ). This operation:
reduces the number of components; does not create obstructions; and ensures that any
pseudolinear extension of the new set of strings shows the existence of one for Σ. We
continue adding strings in this way until we obtain a connected set of strings and we
rede�ne Σ to be this set. Thus, we may assume

⋃
Σ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the three steps
described below.

• Disentangling Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ),
then we slightly extend the a-end of σ into one of the faces incident with a.
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• Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and
is incident with an inner face, then we extend the a-end of σ until we intersect some
point in the boundary of this face.

• Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends
in the outer face and these ends have degree 1 in G(Σ), we extend the ends of two
disjoint strings so that they meet in the outer face.

We can always perform at least one of these steps, unless the strings are pairwise
intersecting and all of them have their ends in the outer face (in this case we extend their
ends to in�nity to obtain the desired arrangement of pseudolines). Each step increases the
number of pairwise intersecting strings. Henceforth, our aim is to show that, as long as
there is a pair of non-intersecting strings, then one of these three steps may be performed
without adding an obstruction. The proof is now divided into three parts that can be read
independently.

Disentangling Step. Suppose that σ ∈ Σ has an end a with degree at least 2 in G(Σ).
Then we can extend the a-end of σ into one of the faces incident to a without creating an
obstruction.

Proof. An edge f of G(Σ) incident with a is a twin if there exists another edge f ′ 6= f
incident with a such that both f and f ′ are part of the same string in Σ. Observe that the
edge e0 ⊆ σ incident with a is not a twin.

The fact no pair of strings tangentially intersect at a tells us that if (f1, f
′
1) and (f2, f

′
2)

are pairs of corresponding twins, then f1, f2, f ′1, f
′
2 occur in this cyclic order for either

the clockwise or counterclockwise rotation at a. Thus, we may assume that the twins at
a are labeled as f1, . . . , ft, f

′
1, . . . , f

′
t , and that this is their counterclockwise order occur-

rence when we follow the rotation at a starting at e0. In such a case, (fi, f
′
i) is a pair of

corresponding twins for i = 1, . . . , t.

In order to avoid tangential intersections when twins are present, every valid extension
of σ at a must cross into the angle between ft and f ′1 not containing e0.

Let (e1, . . . , ek) be the list of non-twin edges between ft and f ′1 in the counterclockwise
rotation at a; this list might be empty. In the case there are no twins, we set ft and f ′1
both equal to e0, so (e1, . . . , ek) is all the edges incident with a other than e0.

We consider all the feasible extensions for σ: for each i ∈ {1, ..., k − 1}, we let Σi be
the set of strings obtained from extending σ by adding a small bit of arc αi starting at a,
and continuing into the face between ei and ei+1. Let Σ0 be the set of strings obtained by
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e0

f1

ft

α0

e1

e2ek−1

ek

f ′1

f ′t

Figure 2.5: Substrings included in the disk bounded by C0.

adding an arc α0 in the face between ft and e1, and let Σk be obtained by adding an arc
αk in the face between ek and f ′1.

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) contains an ob-
struction Ci. The cycle Ci does not include the bit of arc αi as an edge, so Ci is a cycle in
G(Σ). This cycle is not an obstruction in G(Σ), although it becomes one when we add αi.
The reason explaining this conversion is simple: in G(Σ), Ci has exactly three vertices not
re�ecting, and one of them is a. After αi is added, a is now re�ecting in Ci (witnessed by
σ).

Understanding how cycles with exactly three rainbows may behave in an obstruction-
less set of strings is a crucial piece of the proof. In general, if v is a vertex in the underlying
plane graph of a set of strings in general position, then a near-obstruction at v is a cycle
with exactly three rainbows, and one of them is v. Each of the cycles C0, C1,...,Ck above
is a near-obstruction at a in G(Σ).

Both e0 and α0 are on the disk bounded by C0, and since α0 is not part of C0, either
e0, f1, f2, . . . , ft, e1 are on the same side of C0 (blue bidirectional arrow in Figure 2.5) or
all of ft, e1, . . . , ek, f

′
1, f

′
2, . . . , f

′
1, e0 are in the same side of C0 (green bidirectional arrow in

Figure 2.5). Because α0 is the only edge between ft and e1, we see that e1 belongs to the
�rst sublist (the blue one) and ft belongs to the second list (the green one). In the second
case both ft and f ′t are in the disk bounded by C0, showing that a is not a rainbow for C0

in Σ. Therefore, all of e0, f1, f2, . . . , ft, e1 are in the disk bounded by C0.

Regardless of the presence or absence of twins, we know that (e0, e1) occurs as a sublist
of the rotation of a inside C0. A symmetric argument shows that (ek, e0) occurs as a sublist
of the rotation of a inside Ck.

Since (e0, e1) is a substring of the rotation at a inside C0 and (e0, e1, . . . , ek, f
′
1) is not

inside Ck, there is a largest i ∈ {0, 1, . . . , k − 1} such that (e0, . . . , ei+1) is inside Ci. The
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choice of i implies (ei+1, . . . , ek, e0) is inside Ci+1.

The next lemma states that the existencce of such a pair of cycles Ci and Ci+1 is
impossible, completing the proof.

Lemma 2.2.4. Let Σ be a set of strings in general position. Suppose that C1 and C2 are
cycles in G(Σ) that are near-obstructions at v, so that the rotation at v inside C1 includes
(as a sublist) the rotation at v outside C2, and that the rotation at v inside C2 includes the
rotation at v outside C1. Then G(Σ) has an obstruction.

We defer the proof of Lemma 2.2.4 to Section 2.3 as it is technical and it deviates our
attention from the proof of Theorem 2.1.1.

Face-Escaping Step. Suppose that there is a string σ that has an end a with degree 1 in
G(Σ), and a is incident to an inner face F . Then there is an extension σ′ of σ from its
a-end to a point in the boundary of F such that the set (Σ\{σ})∪{σ′} has no obstruction.

F

a

Figure 2.6: Face-Escaping Step.

Proof. Let W be the closed boundary walk (x0, e1, . . . , en, xn) of F such that x0 = xn = a
and F is to the left as we traverse W .

Sometimes it is only possible to extend σ by using an arc connecting a to a vertex in
the middle of an edge. Figure 2.6 shows an example of this situation. Joining a to any xi
produces a second crossing between two strings; the simple closed curves enclosed by the
union of these two strings is an obstruction. So for each edge ei, let mi be a point in ei,
between xi−1 and xi.

Let P denote the list of points (m1, x1,m2, x2, . . . , xn−1,mn). For each point p in P , let
αp denote an arc in F connecting a to p. (A given element of the point set of G(Σ) might
occur more than once in P . In particular, it is always the case that x1 = xn−1; see Figure
2.7.)
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a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 2.7: All possible extensions in the Face-Escaping Step.

For each point p in P , we consider the set of strings Σp obtained from Σ by extending
σ using αp. Let fp be the edge e1∪αp in G(Σp); it has ends x1 and p. Also, let σp = σ∪αp.
The existence of obstructions in G(Σp) is independent of how we draw αp inside F . We
will take advantage of this fact later on in the proof.

Seeking a contradiction, suppose that each G(Σp) has an obstruction. Our next claim
gives two su�cient conditions on p that imply that all the obstructions in G(Σp) contain
fp.

Claim 1. Let p ∈ P be either one of m1, . . . ,mn or not in σ. Then every obstruction in
G(Σp) includes fp.

Proof. Let p ∈ P be such that there is an obstruction C in G(Σp) not including fp.

First, we show that p is not a vertex in the middle of an edge in W . By contradiction,
suppose that p = mi for some i ∈ {1, ..., n}. Since mi is the only vertex whose rotation
in G(Σ) di�ers from its rotation in G(Σmi

), mi ∈ V (C). Consider the cycle C ′ of G(Σ)
obtained by replacing the subpath xi−1,mi, xi of C by the edge xi−1xi. The inside rotation
of each vertex in C ′ is the same as their rotation inside C. This shows that C ′ is an
obstruction in G(Σ), a contradiction.

Now suppose that p is not in the middle of an edge in W . Then C is a cycle in G(Σ)
and is not an obstruction in G(Σ). The only vertex in G(Σp) that has a rotation that is
di�erent from its rotation in G(Σ) is p. Therefore p is a point in C that is re�ecting inside
C (witnessed by two edges included in σp), and is not re�ecting in C with respect to G(Σ).
Exactly one of the two witnessing edges is in G(Σ). So p ∈ σ.

More can be said about the obstructions in G(Σp) for each point in P , but for this we
need some terminology. If we orient an edge e in a plane graph, then the sides of e are
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either the points near e that are to the right of e, or the points near e to the left of e. Our
next lemma shows that if p ∈ P , then all the obstructions in G(Σp) include the same side
of fp in its interior face. We defer its proof to Section 2.3 to keep the �ow of the current
proof. For the convenience of the reader, we provide all the hypotheses in the statement.

Lemma 2.2.5. Let Σ be a set of strings in general position. Let C1 and C2 be obstructions
in G(Σ) with e ∈ E(C1) ∩E(C2). If C1 and C2 include distinct sides of e in their interior
faces, then G(Σ) has an obstruction not including e.

The condition on the two cycles C1 and C2 containing distinct sides of e implies that
e is incident with only interior faces of C1 ∪ C2. The perspective of the cycles being on
distinct sides of e is useful in the application, but what we really use in the proof of Lemma
2.2.5 is that e is not incident with the outer face of C1 ∪ C2.

For each point p ∈ P , we will consider an obstruction Cp containing fp; the choice of Cp
will be more speci�c when p ∈ σ (see below). It is important to know what side of fp our
obstruction Cp includes in its interior, so from now on we will assume fp is oriented from
x1 to p. If p 6∈ σ, then we let Cp be any obstruction in G(Σp) (Claim 1 guarantees that
fp ∈ E(Cp)). In case p ∈ σ, we choose Cp to be the unique cycle included in the drawing
of σp. Note that for p = x1, the interior of Cp includes the right of fp, while for p = xn−1,
the interior of Cp includes the left of fp (here we use the fact that the face F is bounded).

Our last observation implies that there are two consecutive vertices xi−1, xi in W − a
such that the interior of Cxi−1

includes the right of fxi−1
and the interior of Cxi includes

the left of fxi .

Without loss of generality, suppose that the interior of Cmi
includes the left of fmi

(otherwise we re�ect our drawing in a mirror). To make the notation simpler, we let
x = xi−1 and m = mi. We may assume that fm is drawn near the left of fx.

The next claim is the last ingredient to obtain a �nal contradiction.

Claim 2. Exactly one of the following holds:

(a) x ∈ σ and G(Σm) has an obstruction containing fm whose interior includes a side
that is distinct from the side included by Cm; or

(b) x /∈ σ and G(Σx) has an obstruction containing fx whose interior includes a side of
fx that is distinct from the side included by Cx.

Proof. First, suppose that x ∈ σ. For (2.a) we have two cases depending on whether xi−1xi
is an edge in Cx.
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Case a.1 xi−1xi is not in Cx.

In this case we consider the cycle C ′m obtained by replacing in Cx the edge fx by the
path P = (x1, fm, m, mx, x). Since x ∈ σ, by the choice of Cx, all the edges in Cx are in
σx. Therefore all the edges in C ′m, with the possible exception of mx, are in σm. Thus C ′m
is an obstruction in G(Σm).

It remains to show that the interior of C ′m includes the right side of fm. Note that
Cx ∪ P consists of three internally disjoint x1x-paths, and because some points in P are
near the left side of fx, P is in the outer face of Cx. The face of fx ∪P that is to the right
of fm is included in the inner face F , so it is bounded. This implies the interior face of C ′m
includes the right of fm. Since the interior of Cm includes the left of fm, C ′m and Cm are
obstructions including distinct sides of fm.

Case a.2. xi−1xi is in Cx.

In this case, (x1, fx, x, xxi, xi) is a subpath of Cx. We let C ′m be the cycle obtained
by replacing this path by P = (x1, fm,m,mxi, xi). Since x ∈ σ, the way we choose Cx
implies that all the edges in Cx are in σx. So all the edges in C ′m are in σm, and C ′m is
an obstruction. An argument similar to the one given in the previous case shows that
the interior of C ′m includes the right side of fm. Thus the interior of Cm and C ′m include
distinct sides of fm.

Turning to (2.b), let us suppose that p 6∈ σ. We split the proof into two cases depending
on whether x is in Cm.

Case b.1. x is in Cm.

First, we redraw fx and fm inside F so that fx ∩ fm = {x1}. Let T be the triangle
bounded by fx, fm and xm. The interior face of T is to the left of fx and to the right of fm.
Consider the mx-path P of Cm that does not include the edge fm. Since the interior face of
T is a subset of F , P is drawn in the closure of the exterior of T (possibly P = (m,mx, x)).

Let C be the simple closed curve bounded by P ∪ fx ∪ fm. We claim that the interior
of C is on the left of fx. In the alternative, suppose that the interior of C is on the right
of fx. Then C ′ = P + xm is a cycle of G(Σm) including fx and fm in its interior. The
xx1-path P ′ of Cm that does not include m, is an arc connecting x1 to x inside C ′. Thus,
V (C ′) ⊆ V (Cm) and the closed disk bounded by C ′ includes Cm. These two observations
together imply that C ′ has at most as many rainbows as Cm, and hence, C ′ is an obstruction
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of G(Σm) not including fm. Claim 1 asserts that all the obstructions in G(Σm) include fm,
a contradiction. Thus the interior of C is on the left of fm.

From our last observation, it follows that P ′ is an arc connecting x1 and x in the exterior
of C. Because the interior of Cm = P ′∪fm∪P is on the left of fm, the interior of the cycle
C ′x = P ′ + fx is on the left of fx.

Now we show that C ′x is an obstruction. Note that V (C ′x) ⊆ V (Cm) and that the closed
disk bounded by C ′x includes Cm. Then, every rainbow in C ′x is a rainbow in Cm, and hence
C ′x is an obstruction. The cycles Cx and C ′x are obstructions including distinct sides of fx
in their interiors, as claimed.

Case b.2. x is not in Cm.

In this case we let C ′x be the cycle obtained by replacing the path (x1, fm, m,mxi, xi)
in Cm by the path P = (x1, fx, x, xxi, xi) in G(Σx). Let α be the subarc of P joining x1

to m. As the points of α near x1 are drawn on the left of fm, and α is internally disjoint
to Cm, α connects x1 and m in the exterior of Cm. Since the interior face of α ∪ fm is on
the left of fx, the interior face of C ′x is on the left of fx.

To show that C ′x is an obstruction, note that the disk bounded by C ′x includes Cm and
that V (C ′x) \ {x} ⊆ V (Cm). Thus all the rainbows of C ′x in V (C ′x) \ {x} are also rainbows
in Cm. The rotation of x inside C ′x is the list (xxi, fx), and, because x /∈ σ, x is a rainbow
in C ′x, and is not a vertex of Cm. To compensate, we note that m is a rainbow in Cm
that is not in V (Cx): if m is not rainbow, both fm and xxi are included in σ, implying
that x ∈ σ. This shows that C ′x has at most as many rainbows as Cm. Thus C ′x is an
obstruction. Again, the interiors of Cx and C ′x include distinct sides of fx.

By Claim 2, for some p ∈ {x,m}, G(Σp) has obstructions including both sides of fp
(and when p = x, we can guarantee that p /∈ σ). Lemma 2.2.5 implies that G(Σp) has an
obstruction not including fp. Since either p /∈ σ or p = m, this last statement contradicts
Claim 1.

Exterior-Meeting Step. Suppose that all the strings in Σ have their ends on the outer
face of G(Σ) and that all the ends have degree 1 in G(Σ). Then either all the strings
are pairwise intersecting, and then Σ can be extended to an arrangement of pseudolines,
or we can extend two disjoint strings so that these strings intersect without creating an
obstruction.
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Proof. We start by considering a simple closed curveO containing all the ends of the strings
in Σ, and that is otherwise disjoint from

⋃
Σ. We construct this curve by connecting each

pair of vertices with degree 1 that are consecutive in the boundary walk of the outer face.
To connect these pairs we use an arc whose interior is included in the outer face, near the
portion of the boundary walk between the two vertices.

Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be the ends of σi.
Since σ1 and σ2 do not intersect inside O, their ends do not alternate as we traverse O in
counterclockwise order. We may assume, by relabeling if necessary, that the ends occur in
the order a1, b1, b2, a2.

We extend the ai-ends of σ1 and σ2 so that they meet in a point p in the outer face.
We do this extension so that the two added segments are in the outer face, and, more
importantly, so that the interior face of the simple closed curve bounded by the added
segments and the a2a1-arc in O not containing {b1, b2}, does not include the inner face of
O. In Figure 2.8 we show the right and wrong way to extend, respectively.

a1

b1

a2

b2

p

a1

b1

a2

b2

p

Figure 2.8: The right and wrong way to extend in the Exterior-Meeting Step.

We denote the new set of strings obtained as above by Σ′. To show that Σ′ has no
obstruction, we consider a cycle C in G(Σ′). If C does not contain p, then C is a cycle in
G(Σ), and so is not an obstruction in G(Σ′). Now suppose that p is in C.

The idea is to �nd three rainbows in C. To get the �rst one, we consider the path
P1 obtained by traversing C, starting at p, continuing along the path induced by σ1, and
stopping just before we reach a �rst vertex not in σ1. Let c1 be the last vertex in P1, and
let d1 be the neighbour of c1 in C that is not in P1.

Claim 1. The cycle C has a rainbow included in the disk ∆1 bounded by σ1 and the a1b1-arc
of O not containing a2.
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Proof. The vertex d1 is in one of the two bounded faces of O ∪ σ1. Suppose that d1 is in
the face F that is bounded by σ1 and the a1b1-arc of O containing a2 and b2. The rotation
at c1 inside C does not include two edges in the same string σ, as otherwise σ and σ1

tangentially intersect at c1. Therefore, when d1 ∈ F , c1 is a rainbow of C in ∆1.

Now suppose that d1 is in ∆1. Let P ′1 be the path of C starting at c1 and the edge
c1d1, and ending at the �rst vertex we encounter that is in σ1. The cycle C ′ enclosed by P ′1
and σ1 is not an obstruction, so it has at least three rainbows. The vertices in C ′ − V (P ′1)
are re�ecting inside C ′ because their rotations inside C ′ contain two edges in σ. Hence at
least one internal vertex of P ′1 is a rainbow in C ′. This vertex is also a rainbow in C, and
is included in ∆1.

Considering σ2 instead of σ1, Claim 1 yields a second rainbow in C inside an analogous
disk ∆2. The third rainbow is p, showing that C is not an obstruction.

Since the Disentangling Step, Face-Escaping Step and Exterior-Meeting Step can be
performed without creating new obstructions, either: one of these steps can be performed
to increase the number of pairwise intersecting strings in Σ; or the strings in Σ are pairwise
intersecting and all of them have their ends in the outer face, which implies that Σ can be
extended to an arrangement of pseudolines.

2.3 Proof of Lemmas 2.2.4 and 2.2.5

We deferred the proofs of Lemmas 2.2.4 and 2.2.5, both essential in the proof of Theorem
2.1.1, to this section.

Our next observation follows immediately from the de�nition of rainbow, and it will be
repeatedly used in the next proofs.

Useful Fact. Let Σ be set of strings in general position. Let v be a vertex that is in both
the cycles C and C ′ of G(Σ) such that the rotation at v inside C includes the rotation at
v inside C ′. If v is a rainbow in C, then v is a rainbow in C ′.

Recall that a near-obstruction at v is a cycle C (in the underlying graph of a set of
strings) that has precisely three rainbows, one of which is v. In Figure 2.9, we depict (up to
symmetries) how two near-obstructions may intersect at v. In each of the nine diagrams,
v is represented as a black dot, while the interiors of the near-obstructions are represented
as dotted and dashed lines. In our next lemma, we will consider two near-obstructions at
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v that intersect only as in the last three diagrams, where every small open disk centered
at v is included in the union of the disks bounded by the two near-obstructions. In the
statement, an equivalent description is given in terms of the local rotation at v.

Figure 2.9: Two near obstuctions at v.

Lemma 2.2.4. Let Σ be a set of strings in general position. Suppose that C1 and C2 are
cycles in G(Σ) that are near-obstructions at v, so that the rotation at v inside C1 includes
(as a sublist) the rotation at v outside C2, and that the rotation at v inside C2 includes the
rotation at v outside C1. Then G(Σ) has an obstruction.

Proof. In order to obtain a contradiction, suppose that G(Σ) has no obstructions and that
it contains such cycles C1, C2. The conditions on the rotation at v imply that every edge
incident with v is in the interior of either C1 or C2. Thus, v is not incident with the outer
face of C1 ∪ C2.

Our next goal is to show that C1 ∩ C2 has at least two vertices. If e is an edge of
C1 incident with v, then either e is an edge of C2 or e is inside C2. In the former case
|V (C1)∩V (C2)| ≥ 2, thus we may assume that both edges of C1 incident with v are inside
C2. If v is the only vertex in V (C1)∩V (C2), then C1− v is in the interior of C2, and hence
the edges of C2 incident with v are not in the rotation at v inside C1, a contradiction. Thus
|V (C1)∩ V (C2)| ≥ 2. It follows that C1 ∪C2 is 2-connected; in particular, its outer face is
bounded by a cycle Cout.

The Useful Fact applied to C = Cout and to each C ′ ∈ {C1, C2}, shows that every vertex
that is a rainbow in Cout is also a rainbow in each of the cycles in {C1, C2} containing it.
By assumption, Cout is not an obstruction, so it has at least three rainbows. The preceding
two sentences imply that we may choose the labelling such that two of them, say p and q,
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are also rainbows in C1. Neither p nor q is v and C1 is a near-obstruction. Thus, p and q
are the only rainbows of Cout that are in C1.

Since v /∈ V (Cout), C1 has a subpath Pv containing v in which only the ends of Pv are
in Cout. Since v is not in the outer face of Cout, Pv is included in the inner face of Cout.
We let u and w be the ends of Pv, and let Q1

out, Q
2
out be the uw-paths of Cout. The cycle

C1 is inside one of the two disks bounded by Pv and one of Q1
out and Q

2
out. By symmetry,

we may assume that C1 is included in the disk bounded by Q1
out ∪ Pv. In this case Q2

out is
a subpath of C2.

Our desired contradiction will be obtained by �nding three rainbows in C2 distinct from
v. The �rst is relatively easy to �nd: if C1− (Pv) is the uw path in C1 distinct from Pv, we
consider the cycle (C1− (Pv))∪Q2

out. The disk bounded by (C1− (Pv))∪Q2
out contains the

one bounded by C1. Then the Useful Fact applied to C = (C1− (Pv))∪Q2
out and C

′ = C1,
implies that each vertex in C1 − (Pv) that is rainbow in (C1 − (Pv)) ∪Q2

out is also rainbow
in C1. Since C1 has at most two rainbows in C1− (Pv), namely p and q, (C1− (Pv))∪Q2

out

must have a third rainbow r1 in the interior of Q2
out. The interiors of the disks bounded by

C2 and (C1 − (Pv)) ∪Q2
out are on the same side of Q2

out; thus r1 is a rainbow for C2.

To �nd another rainbow in C2, consider the edge eu of C2 incident to u and not in Q2
out.

We claim that either u is a rainbow in C2 or that eu is not included in the closed disk
bounded by Pv ∪Q2

out. Looking for a contradiction, suppose that u is re�ecting in C2 and
that eu is included in the disk. Then we can �nd two edges in the rotation at u, included
in the disk bounded by Pv ∪ Q2

out, that belong to the same string σ. The vertex u is not
re�ecting in C1, as else, we would �nd another pair of edges in the rotation at u inside
Q1
out ∪Pv, and included in a di�erent string σ′; in this case, σ and σ′ tangentially intersect

at u, a contradiction. Therefore u is a rainbow in C1, so u is one of p and q. This implies
that u is a rainbow in Cout, and hence, a rainbow in C2, a contradiction.

If u is a rainbow in C2, then this is the desired second one. Otherwise, the preceding
paragraph shows that eu is not in the closed disk bounded by Pv ∪Q2

out. In this latter case,
eu is in a path Pu that starts at u, ends at u′ in Pv and is otherwise disjoint from Pv.

Note that u′ 6= w, as otherwise C2 = Pu ∪Q2
out and we have the contradiction that v is

not in C2. Let Cu be the cycle consisting of Pu and the uu′-subpath uPvu′ of Pv.

Claim 1. If Pu does not have a rainbow of Cu in its interior, then:

(a) Cu and C2 are near-obstructions at v satisfying the conditions in Lemma 2.2.4; and

(b) the closed disk bounded by the outer cycle of Cu ∪C2 contains fewer vertices than the
disk bounded by Cout.
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Proof. Suppose that all the rainbows of Cu are located in uPvu
′. Since Cu is not an

obstruction, at least one of them is an interior vertex of uPvu′. Each vertex in the interior
of uPvu′ that is a rainbow in Cu, is also a rainbow in C1. As v is the only vertex in the
interior of Pv that is a rainbow in C1, v is the only rainbow of Cu that is in the interior of
uPvu

′. Since Cu is not an obstruction, u, u′ and v are the only rainbows of Cu, and Cu is
a near-obstruction at v. The rotation at v inside Cu is the same as inside C1, so Cu and
C2 satisfy the conditions in Lemma 2.2.4.

Let C ′out be the outer cycle of Cu ∪ C2. Since Cu ∪ C2 ⊆ C1 ∪ C2, the exterior of Cout
is included in the exterior of C ′out. This shows that the disk bounded by Cout includes the
disk bounded by C ′out.

If both p and q are in C2, then p, q and r1 are rainbows in C2, and also distinct from v,
contradicting that C2 is a near-obstruction for v. Thus, we may assume p /∈ C2. Then p is
not in Pu ⊆ C2 and, since p is not an interior vertex of Pv, p /∈ V (Cu). Since p is in Cout,
and p is not in Cu ∪ C2, p is in the outer face of Cu ∪ C2. Then p is in the disk bounded
by Cout but not by C ′out, as required.

The proof of the existence of the additional two rainbows in C2 is by induction on the
number of vertices in the closed disk bounded by Cout. If u is not a rainbow in C2 and
Pu does not have a rainbow of C2 in its interior, then Claim 1 implies Cu and C2 make
a smaller instance and we are done. Thus, we may assume one of them yields the next
additional rainbow.

In the same way, either the induction applies or the last rainbow comes by considering
the edge of C2 − Q2

out incident with w. It follows that v, r1, and these two other vertices
are four di�erent rainbows in C2, contradicting the fact that C2 is a near-obstruction.

Although the statements and proofs of Lemmas 2.2.4 and 2.2.5 are similar, some sub-
tle di�erences make it hard to �nd a statement encapsulating both results. For instance,
Lemma 2.2.5 assumes that G(Σ) has obstructions, while �nding an obstruction is the con-
clusion of Lemma 2.2.4. We sketch the proof of Lemma 2.2.5, emphasizing such di�erences.
It would be interesting to �nd a common theory behind these two lemmas.

Lemma 2.2.5. Let Σ be a set of strings in general position. Let C1 and C2 be obstructions
in G(Σ) with e ∈ E(C1) ∩E(C2). If C1 and C2 include distinct sides of e in their interior
faces, then G(Σ) has an obstruction not including e.

Sketch of the proof. We start assuming that such cycles exist and that every obstruction
includes e.
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By assumption, C1∩C2 has at least two vertices and, therefore, C1∪C2 is 2-connected.
Thus, its outer face is bounded by a cycle Cout.

The Useful Fact shows that every rainbow in Cout is a rainbow in each of the cycles C1

and C2 containing it.

Since C1 and C2 include di�erent sides of e, it follows that e is not in Cout. Therefore
Cout is not an obstruction. Thus, Cout has at least three rainbows, and by our previous
observation, we may choose the labelling such that two of them, say p and q, are also
rainbows in C1. Because C1 is an obstruction, p and q are the only rainbows in C1.

Then C1 has a subpath Pe of containing e and in which only the ends u and w of Pe
are in Cout. Let Q1

out and Q
2
out be the uw-paths of Cout. We may assume that C1 is drawn

in the disk bounded by Q1
out ∪ Pe.

Let C1 − (Pe) be uw-path in C1 that is not Pe. Note that p and q are the only vertices
in C1 − (Pe) that are rainbows in (C1 − (Pe)) ∪ Q2

out. Since (C1 − (Pe)) ∪ Q2
out is not an

obstruction, the interior Q2
out has a vertex r1 that is a rainbow of (C1 − (Pe)) ∪Q2

out. This
vertex r1 is also a rainbow of C2.

Let eu be the edge incident to u in C2 that is not in Q2
out. As we did in Lemma 2.2.4,

we can show that either u is a rainbow in C2 or that eu is not included in the disk bounded
by Pe∪Q2

out. We assume the latter situation, as in the former we found our desired second
rainbow in C2.

Let Pu be the subpath of C2 starting at u, continuing on eu, and ending on the �rst
vertex u′ ∈ V (Pe)∩ V (C2) distinct from u. Note that u′ 6= w, as otherwise C2 = Pu ∪Q2

out

and we have the contradiction that e is not in C2. Let Cu be the cycle consisting of Pu and
the uu′-subpath uPeu′ of Pe.

We claim that either Pu has an interior vertex that is a rainbow in C2 or that there is a
pair of cycles C ′1 and C ′2 satisfying the conditions in Lemma 2.2.5, but with fewer vertices
in the closed disk bounded by the outer cycle of C ′1∪C ′2 than in the disk bounded by Cout.

Suppose that none of the interior vertices in Pu is a rainbow in C2. Because the
interior of Pe has no vertices that are rainbows in C1 (as p and q are the only rainbows
of C1), the interior of uPeu′ has no vertices that are rainbows in Cu. Therefore Cu is an
obstruction, and C ′1 = Cu and C ′2 = C2 is a pair of obstructions including both sides of
e. As Cu ∪ C2 ⊆ C1 ∪ C2, the closed disk bounded by the Cout contains the closed disk
bounded by the outer cycle of Cu ∪ C2. Not both of p and q are in the outer cycle of
Cu ∪ C2, as both p and q would be part of C2, concluding that C2 has three rainbows p, q
and r1, and contradicting that C2 is an obstruction.
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From the previous paragraph, either Cu and C2 is a smaller instance, and we are done
by induction on the number of vertices in the closed disk bounded by Cout, or we found
our second rainbow of C2 in the interior of Pu.

In the same way, either the induction applies or the last rainbow comes by considering
an edge of C2 − Q2

out incident with w. It follows that r1, and these other two vertices are
three di�erent rainbows in C2, contradicting that C2 is an obstruction.

2.4 Finding obstructions in polynomial time

In this section we describe a polynomial-time algorithm that determines whether a set of
strings has an obstruction. We will assume that our input is the underlying plane graph
G(Σ) of a set Σ of simple strings in general position, and that every string in Σ is identi�ed
as a path in G(Σ) (see notation below).

The key idea behind the algorithm is simple: either �nd an obstruction in the outer
boundary of G(Σ) or �nd a vertex in the outer boundary whose removal reduces our
problem into a smaller instance.

We start by describing the vertex removal operation. Suppose that x is a vertex of
G(Σ) incident to the outer face of G(Σ). For each σ ∈ Σ, we consider the path Pσ of
G(Σ) representing σ. Let Pσ − x be the plane graph obtained from Pσ by removing x and
the edges of Pσ incident to x (if x /∈ Pσ, then Pσ − x = Pσ). Each component of Pσ − x
is either a vertex that represents an end of σ, or a string. Let Sσ,x be the set of string
components of Pσ − x and let Σ − x =

⋃
σ∈Σ Sσ,x. Note that G(Σ − x) can be obtained

from G(Σ) by removing x and the edges incident to x, and then suppressing the degree-2
vertices whose incident edges belong to the same string in Σ, as well as removing remaining
degree-0 vertices (Figure 2.10 illustrates this process).

x

Figure 2.10: From Σ to Σ− x.

The next lemma is the key property used in the algorithm.
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Lemma 2.4.1. Let Σ be a set of simple strings in general position and let x be a vertex
incident with the outer face. Then there is a 1−1 correspondence between the obstructions
in G(Σ) not containing x and the obstructions of G(Σ − x). Moreover, corresponding
obstructions are the same simple closed curve.

Proof. In general, there is a natural correspondence between cycles in G(Σ) not containing
x and cycles in G(Σ − x): if C is a cycle in G(Σ) not containing x, then every edge of C
is not incident with x, and hence every edge is part of a string in Σ− x. Thus, there is a
cycle C ′ in G(Σ− x) that represents the same simple closed curve as C. Conversely, each
cycle C ′ in G(Σ − x) is a simple closed curve in

⋃
(Σ − x) ⊆

⋃
Σ, and hence, there is a

cycle C in G(Σ) representing the same simple closed curve as C ′.

To complete the proof it is enough to show that any two cycles C, C ′ that correspond as
above have the same rainbows. Since G(Σ−x) is obtained from suppressing and removing
vertices in a subgraph of G(Σ), V (C ′) ⊆ V (C). Thus, V (C) \V (C ′) consists of suppressed
and removed vertices in the process of converting G(Σ) into G(Σ− x). Since x /∈ V (C), if
v ∈ V (C) is suppressed, then the two edges of C incident to v belong to the same string
in Σ. Therefore, none of the vertices in V (C) \ V (C ′) is a rainbow in C.

Every rainbow in C is also a rainbow in C ′ because every two edges of G(Σ− x) that
are included in distinct strings of Σ are also included in distinct strings in Σ− x.

Conversely, suppose that v ∈ V (C) ∩ V (C ′) is re�ecting in C. Let σ ∈ Σ be a string
including two edges of G(Σ) in the rotation at v inside C. Since x is drawn in the exterior
of C, these two edges are part of the same string in Σ− x, and hence v is re�ecting inside
C ′.

Therefore every rainbow of C ′ is a rainbow of C, and thus, C and C ′ have the same
rainbows.

A vertex in G(Σ) is an outer-rainbow if it is in the outer boundary and all the edges
in its rotation belong to di�erent strings. Note that every outer-rainbow is a rainbow for
all the cycles in G(Σ) that contain it.

An outer cycle is a cycle of G(Σ) that has all its edges incident to the outer face of
G(Σ). For any graph G(Σ), a block of G(Σ) is a maximal connected subgraph of G(Σ) with
no cut-vertex. If G(Σ) is connected with at least two vertices, then each block is either an
edge or is 2-connected. In the latter case, the outer face of the block is bounded by a cycle
of the block.
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We �nd obstructions by solving an auxiliary problem: �nding obstructions including
one or two �xed outer-rainbows. The next subroutine (Algorithm 1) describes how to �nd
an obstruction containing two �xed outer-rainbows. Below we discuss its correctness.

Algorithm 1: Finding obstructions through two �xed outer-rainbows.
Data: G(Σ) and two outer-rainbows x and y.
Result: Either an obstruction containing x and y or that no such obstruction exists.

1 repeat
2 if there is no cycle containing x and y then
3 return G(Σ) has no obstruction containing x and y;
4 end
5 Find the outer cycle C containing x and y;
6 while C is not the outer boundary of G(Σ) do
7 Pick w ∈ V (G(Σ)) \ V (C) incident with the outer face;
8 Σ←− Σ− w
9 end

10 if C has a rainbow z /∈ {x, y} in G(Σ) then
11 Σ←− Σ− z;
12 else
13 return C;
14 end

15 until V (G(Σ)) = {x, y};
16 return G(Σ) has no obstruction containing x and y.

To see that Algorithm 1 is correct, observe that when Step 2 does not apply, then Step
5 can be performed: if there is a cycle containing x and y, then, as x and y are incident to
the outer face of G(Σ), the outer boundary of the block containing x and y is an outer cycle
C containing x and y. Every obstruction C through x and y is drawn in the closed disk
bounded by C. Lemma 2.4.1 guarantees that if we remove a vertex in the outer boundary
that is not in C (Step 7) and we update Σ (Step 8), then C (or more precisely, the cycle in
the new G(Σ) that is the same simple closed curve as C) is an obstruction through x and
y.

In Step 10, if x and y are the only rainbows of C, then C is an obstruction returned in
Step 13. Else, C has a rainbow z /∈ {x, y}. Any obstruction C through x and y does not
contain z, and hence removing z and updating Σ (Step 11) does not change the fact that
C is an obstruction in the new G(Σ). This algorithm terminates as the number of vertices
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in G(Σ) is always decreasing.

We now turn to Algorithm 2, used as subroutine in the main algorithm. Its correctness
again easily follows from Lemma 2.4.1.

Algorithm 2: Finding obstructions through a �xed outer-rainbow.
Data: G(Σ) and an outer-rainbow vertex x.
Result: Either an obstruction containing x or that no such obstruction exists.

1 repeat
2 if there is no cycle containing x then
3 return G(Σ) has no obstruction containing x;
4 end
5 Find an outer cycle C containing x;
6 if C has an outer-rainbow y 6= x then
7 Run Algorithm 1 on (G(Σ), x, y);
8 if G(Σ) has an obstruction D including x and y, then
9 return D;

10 end
11 Σ←− Σ− y;
12 else
13 return C;
14 end

15 until V (G(Σ)) = {x};
16 return G(Σ) has no obstruction containing x.

Finally we present the algorithm to �nd obstructions, whose correctness also relies on
Lemma 2.4.1.
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Algorithm 3: Finding obstructions.
Data: G(Σ).
Result: Either �nds an obstruction or that no such obstruction exists.

1 repeat
2 if G(Σ) has no cycles then
3 return G(Σ) has no obstructions;
4 end
5 Find an outer cycle C;
6 if C has no rainbows then
7 return C;
8 end
9 Pick a rainbow x in C (x is outer-rainbow in G(Σ));

10 Run Algorithm 2 on (G(Σ), x);
11 if G(Σ) has an obstruction D including x then
12 return D;
13 end
14 Σ←− Σ− x;
15 until G(Σ) = ∅;
16 return G(Σ) has no obstructions.

2.5 Pseudolinear drawings of Kn

In this section we present a simple proof of a characterization of pseudolinear drawings
of complete graphs (Theorem 2.5.1), equivalent to the ones given in [5] and [8]. One of
the equivalences, Corollary 2.5.2, is shown at the end of this of this section. The other
equivalence (Lemma 4.4.8) is deferred to Subsection 4.4.2 of Chapter 4, where it plays an
important role in the study of pseudospherical drawings of Kn.

Theorem 2.5.1. A good drawing of a complete graph is pseudolinear if and only if it does
not include the B con�guration (see Figure 2.1).

Proof. The unique cycle in a B con�guration is an obstruction, so, by Theorem 2.1.1, no
pseudolinear drawing of Kn can include it. Conversely, suppose that D is a good drawing
of Kn that is not pseudolinear. Let Σ = {D[e] : e ∈ E(Kn)} be the set of edge-arcs, and
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let G(Σ) be its underlying plane graph. In order to avoid confusion between vertices and
edges of Kn and G(Σ), vertices in G(Σ) are called points, and edges of G(Σ) are segments.
Because D is good, each point is either in V (Kn) or a crossing.

For every cycle C in G(Σ), we let δ(C) be the set of points in C for which their two
incident segments in D belong to distinct edges in Σ. Theorem 2.1.1 implies that G(Σ)
has an obstruction C. We choose our obstruction C so that |δ(C)| is as small as possible.

Since D is good, |δ(C)| ≥ 3 and, because C is an obstruction, at most two vertices in
δ(C) are rainbows in C. Consider a point x ∈ δ(C) that is re�ecting inside C. Note that
x is a crossing. Let σ1 and σ2 be the two edge-arcs in Σ crossed at x. We traverse σ1,
starting at x, continuing on the segment of σ1 included in the interior of C, until an end
a1 ∈ V (Kn) of σ1 is reached. Likewise we de�ne a2 for σ2. Henceforth, we refer to a1 and
a2 as the internal vertices corresponding to the crossing x. The following claim explains
why we call them �internal�.

Claim 1. Let x ∈ δ(C) be a point re�ecting inside C. Then the two internal vertices
corresponding to x are in the interior of C.

Proof. Let a1 be an internal vertex corresponding to x, and suppose σ1 is the edge-arc
including both x and a1. Let σ′1 be the substring of σ, having x and a1 as endpoints.
Applying Observation 2.2.1 to our obstruction C, with σ = σ1 and σ′ = σ′1, we obtain that
σ′1 ∩ C = {x}. Since points of σ′1 near x are in the interior face of C, σ′1 \ {x} is included
in the interior of C. In particular, a1 is in such a face.

Now we look at the points in δ(C) that are not re�ecting inside C. If x is one of them,
then x is a vertex or a crossing. Suppose that x is a crossing. Let σ1, σ2 be the edge-arcs
crossing at x. Because x is not re�ecting inside C, one of the two segments at x included
in σ1 is in the outer face of C. We traverse σ1, starting in x, and continuing in the outer
face until we reach an end b1 of σ1. Likewise we de�ne b2 for σ2. These vertices b1, b2 are
the external vertices corresponding to the crossing x.

Claim 2. Let x be a crossing in δ(C) that is not re�ecting inside C, and let σ be an
edge-arc including x and an external vertex b of x. If σ′ is the substring of σ connecting x
to b, then σ′ \ {x} is included in the outer face of C.

Proof. Applying Observation 2.2.1 to C, σ1, and σ′, we see that σ′ ∩ C = {x}. Since the
points of σ′1 near x are in the outer face of C, σ′1 \ {x} is included in the outer face of
C.

30



It is convenient, in the case when x is a vertex of Kn, to let x be its own external vertex.

Henceforth we refer to the vertices of Kn that are internal to some crossing in C as the
internal vertices of C, and likewise, the external vertices of C are the vertices of Kn that
are external to some crossing or to a vertex in C.

Claim 3. Every segment in C is included in an edge-arc whose ends are either internal or
external vertices of C.

Proof. Any segment s of C is contained in a subpath P of C whose ends are in δ(C) but is
otherwise disjoint from δ(C). This path P is part of an edge-arc σ ∈ Σ. Let a ∈ V (Kn) be
one of the ends of σ, and suppose that x is the �rst end of P that we encounter when we
traverse σ from a to the other end of σ. If σ is re�ecting at x, then a is internal. If σ is not
re�ecting at x, then a is external. Likewise, the other end of σ is internal or external.

Suppose that Kn has a vertex y that is neither external nor internal to C. Then, by our
previous claim, the underlying plane graph of D[Kn− y] contains a cycle whose drawing is
D[C] and is an obstruction. Thus, D[Kn − y] is not pseudolinear, and applying induction
on n, we obtain that D[Kn − y] has a B con�guration. Henceforth we assume that all the
vertices of Kn are either internal or external to C.

Claim 4. Either the outer face of D is bounded by a cycle of Kn or D has a B con�guration.

Proof. Suppose that the outer face of D is not bounded by a cycle of Kn. Then the outer
face is incident to a crossing × between two edge-arcs σ1 and σ2. Let K be the crossing K4

induced by the ends of σ1 and σ2. The drawing D[K] has exactly �ve faces, four of them
incident to ×. Exactly one of the faces incident to × includes the outer face of D. Such a
face of D[K] is bounded by portions of σ1, σ2, and an edge e of Kn connecting an end of
σ1 to an end of σ2. The drawing induced by σ1, σ2 and D[e] is a B con�guration.

Claims 1 and 4 imply that the outer cycle of D consists of only external vertices of C.
Every external vertex either is associated with a crossing that is not re�ecting inside C,
or is itself a vertex of Kn in C. Because C has at most two points not re�ecting inside C,
and each of them has at most two external vertices, there are at most four points in the
outer cycle of D. Thus the outercycle is a 3- or 4-cycle of Kn.

As C has at least three external vertices (in the outer cycle), δ(C) has precisely two
points p and q not re�ecting inside C. The outer cycle of D has an edge uv, where u is
external to p and v is external to q (possibly u = p or q = v).
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Consider the pq-path P in G(Σ), starting at p, continuing on the edge-arc connecting
p to u, then following the edge uv until we reach v, and ending by following the edge-arc
connecting v to q. We �nish our proof by considering two cases, depending on whether uv
is a segment of C.

Case. uv is not a segment of C.

In this case, there exists a point w ∈ D[uv] \D[C]. As D[uv] is part of the outer cycle,
it contains neither crossings nor vertices in its interior, so the arcs in D[uv] connecting w
to the ends u and v are internally disjoint from C. From Claim 2, it follows that the pu-
and the qv-subpaths of P are internally disjoint from C. Thus P is an arc connecting p
and q in the outer face of C.

Consider the cycle C ′ obtained from the union of P and the pq-path of C that lies in
the outer face of D[C ∪ P ].

We will show that C ′ is an obstruction by showing that u and v are the only rainbows of
C ′. If p 6= u, then the edge-arc σ connecting p and u shows that every point in (P −u)∩σ
is re�ecting inside C ′. Analogously, if q 6= v, the points distinct from v in the edge-arc
connecting q and v, are re�ecting inside C ′. Thus the internal points in P , with the
exception of u and v, are not re�ecting. The same holds for the points in C ′ − P , as these
points are not re�ecting inside C (recall that p and q are the only rainbows of C). Thus u
and v are the only rainbows of C ′.

Note that all the segments of C ′ are included in edges whose ends are u, v or interior
points of C. So if y is a vertex in the outercycle of D distinct from u and v, D[Kn− y] also
includes D[C ′] as an obstruction, implying that D[Kn − y] is not pseudolinear. Again, by
induction on n, we obtain that Kn − y has a B con�guration.

Case. uv is a segment of C.

In this case, as u, v are vertices of Kn in C, they are rainbows of C. Since p and q are
the only rainbows, p = u, q = v, and D[uv] is a segment of C. Then, all the segments of
C are included in edge-arcs whose ends are u, v or interior points of C. Again, remove a
vertex in the outer cycle of D distinct from u and v to obtain a non-pseudolinear drawing
of Kn−1 in which, by induction, we �nd a B con�guration.

We conclude this section by showing a slightly di�erent way to characterize pseudolinear
drawings in terms of a four points property. This local property plays a central role in
Chapter 4.
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Corollary 2.5.2. A good drawing D of Kn in the plane is pseudolinear if and only if, for
every 3-cycle T and for every vertex v drawn in the bounded face of D[T ], the three edges
connecting v to the vertices of T are contained in the disk bounded by D[T ].

Proof. Suppose �rst that D is not a pseudolinear drawing of Kn. From Theorem 2.5.1 we
know that there exists a path P = (x, y, z, w) that is drawn in D as a B con�guration
(Figure 2.1). Since D[{x, y, z, w}] is a crossing K4 in which xy crosses zw, the edge xz is
not crossed in D[{x, y, z, w}], and hence it connects x to z through the bounded face of
D[P ]. In this case (x, y, z, x) is a 3-cycle, containing w in its interior face, and such that
D[wz] is not contained in the disk bounded by this 3-cycle.

Conversely, suppose that there exist a 3-cycle T = (x, y, z, x) and a vertex w for which
at least one of the edges joining w to a vertex of T , say D[wz], is not contained in the disk
bounded by D[T ]. The edge wz crosses at least one edge of T , and because D is good, it
only crosses xy. Exactly one of x and y is not incident with the outer face F of D[T +wz].
Remove from D[T + wz] the edge connecting z to the one of x and y not incident with F
to obtain a B con�guration. This shows that D is not pseudolinear.

2.6 Concluding remarks

In our initial attempts to formulate Theorem 2.1.1, we intended to characterize non-
pseudolinear good drawings of graphs by means of having at least one of the con�gurations
in Figure 2.3 as a subdrawing. We obtain this as an easy consequence of Theorem 2.1.1.
We sketch its proof.

Theorem 2.1.2. Let D be a non-pseudolinear good drawing of a graph H. Then there is a
subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ
for which

⋃
σ∈S σ

′ is one of the drawings in Figure 2.3.

Proof. Take C an obstruction of the underlying plane graph associated to D. We choose
C so that |δ(C)| is as small as possible. Decompose C into a cyclic sequence of paths
P0, . . . , Pm, where Pi connects two points in δ(C) and it is otherwise disjoint from δ(C).
By using Observation 2.2.1, one can show that P0, . . . , Pm belong to distinct edge-arcs
σ0, . . . , σm, respectively. For each Pi, we consider the string σ′i, obtained by slightly ex-
tending the ends of Pi that are re�ecting in C; we extend them along σi.

Let x ∈ δ(C) be an end shared by Pi−1 and Pi. If x is re�ecting in C, then x is a
crossing between σi−1 and σi. Moreover, the arcs added to Pi−1 and Pi at x to obtain σ′i−1
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and σ′i are in the interior of C. If x is a rainbow in C, then Pi and Pi−1 are not extended
at x, and x acts as one of the black dots in Figure 2.3. The rest of the points in δ(C) are
crossings in

⋃m
i=0 σ

′
i facing the interior of C. Since C has at most two rainbows,

⋃m
i=0 σ

′
i is

one in Figure 2.3.

There are pseudolinear drawings that are not stretchable. For instance, consider the
Non-Pappus con�guration in Figure 2.11. Nevertheless, as an immediate consequence of
Thomassen's main result in [29], pseudolinear and stretchable drawings are equivalent,
under the assumption that every edge is crossed at most once.

Figure 2.11: Non-Pappus con�guration.

Corollary 2.6.1. A drawing of a graph in which every edge is crossed at most once is
stretchable if and only it is pseudolinear.

Proof. Let D be a drawing of a graph in which every edge is crossed at most once. If
D is stretchable then clearly it is pseudolinear. To show the converse, suppose that D is
pseudolinear. Then D does not contain any obstruction, and in particular, neither of the
B andW con�gurations in Figure 2.1 occur in D. In [29], it was shown that not containing
the B and W con�gurations is equivalent to being rectilinear.

One can construct more general examples of pseudolinear drawings that are not stretch-
able by considering non-strechable arrangements of pseudolines. However, such examples
seem to inevitably have edges crossing several times. This leads to two natural questions.

Question 1. Is it true that if D is a pseudolinear drawing in which every edge is crossed
at most twice, then D is stretchable?

Question 2. Is it true that if D is a pseudolinear drawing in which all the crossings involve
a �xed edge, then D is stretchable?
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Chapter 3

Straight Line Drawings of Graphs with

Crossings

3.1 Introduction

In 1993, Bienstock and Dean showed that every graph G with cr(G) ≤ 3, has cr(G) = cr(G)
[13]. A key idea used in their proof was that, under certain circumstances, one can modify
an optimal drawing of a graph G (a drawing with fewest crossing pairs of edges as possible)
to obtain a rectilinear drawing ofG with the same number of crossings. This raises a natural
question.

Question 3. Given a drawing D of a graph G, can we �nd a rectilinear drawing D of G
with the same crossing pairs of edges as D?

For example, consider an n-cycle C drawn as a simple closed curve, with some of its
chords drawn in the bounded side of C. Although, there are non-stretchable drawings
of this type produced by considering a non-stretchable arrangement of pseudolines, as in
Figure 3.1a, drawing C as a convex polygon in the plane induces a rectilinear drawing with
the same pairs of crossing edges (Figure 3.1b).

This problem becomes more interesting when we let some chords of the n-cycle C be
drawn in the outer face of C. We add the constraint that chords in the outer face are not
crossing. In this case, it is less clear whether there exists a rectilinear drawing of the same
graph with the chords drawn on the same sides of C. For instance, the 5-cycle with chords
of Figure 3.2a is not pseudolinear. To obtain a rectilinear version of such a drawing, one
would need to choose a di�erent face to be the unbounded face, as in Figure 3.2b.
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(a) (b)

Figure 3.1: A non-stretchable and a rectilinear drawing with the same pair of crossing
edges.

(a) (b)

Figure 3.2

Our interest in this class of drawings (cycles with chords drawn in distinct sides of the
cycle) came from realizing that many of the cases considered in the proof of Bienstock and
Dean's Theorem can be argued by applying Tutte's Spring Theorem (Theorem 3.3.1) and
by solving a more restricted version of Question 3 (explained below) for small instances of
the drawings of cycles and chords. The main result in this chapter answers this restricted
version of Question 3 for an extension of this class of drawings. To state this result, we
need some terminology used throughout this chapter.

Let D be a drawing of a graph G. The subgraph induced by the edges of G not crossed
in D is denoted as plD(G), or more simply as pl(G), if the drawing D is clear from the
context. For a cycle C of pl(G), let:
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• IntD(C) be the subgraph induced by the vertices and edges of G drawn in the closed
disk bounded by D[C];

• intD(C) be the subgraph induced by the vertices and edges of G drawn in the open
disk bounded by D[C];

• ExtD(C) be the subgraph induced by the vertices and edges of G drawn in the closure
of the outer face of D[C]; and

• extD(C) be the subgraph induced by the vertices and edges of G drawn in the outer
face of D[C].

The chords of C are the edges in E(G) \E(C) between two vertices in V (C). A chord
of C is external if it belongs to ExtD(C), and internal if it belongs to IntD(C). A cycle of
G is facial if it bounds a face of D.

A drawing D of a graph G is bundled if it is good, and every crossing in D is the
crossing between two internal chords of a facial cycle of plD(G). Every bundled drawing
can be obtained from a planar embedding by selecting a set of facial cycles, and then
adding, for each selected cycle, internal chords such that each of them cross at least once
(they must cross in order not to be part of pl(G)).

In a bundled drawing D of G, a special cycle S is a facial cycle of pl(G) bounding an
inner-face and containing crossings in its interior. Every cycle bounding a face of D[pl(G)]
is either facial or special. In Section 3.3, Figure 3.4a depicts a bundled drawing with the
special cycles bounding coloured regions.

With the necessary terminology in hand, now we phrase the restricted version of Ques-
tion 3: Given a bundled drawing D of a graph G, is there a rectilinear drawing D of G
satisfying the following conditions?

(i) plD(G) = plD(G);

(ii) D[plD(G)] and D[plD(G)] are homeomorphic; and

(iii) for every special cycle S of D, IntD(S) and IntD(S) are the same graph.

These three conditions strengthen the requirement of D and D having the same pairs
of crossing edges. For the drawing in Figure 3.2a, the answer to this question is negative,
while for the one in Figure 3.2b, the answer is positive.
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One would expect that, as D and D satisfying (i)-(iii) are not very di�erent from each
other, a necessary condition to guarantee the existence of D is that D is pseudolinear.
Our main result in this chapter shows that pseudolinearity is a necessary and su�cient
condition when the special cycles are well-behaved.

Theorem 3.1.1. Let D be a bundled drawing of a graph G. Suppose that for every two
distinct special cycles S1 and S2, the intersection between S1 and S2 is either empty; a
vertex; or an edge. Then D is pseudolinear if and only if there exists a rectilinear drawing
D of G such that:

(i) plD(G) = plD(G);

(ii) D[plD(G)] and D[plD(G)] are homeomorphic; and

(iii) for every special cycle S of D, IntD(S) and IntD(S) are the same graph.

The results used in the proof Theorem 3.1.1 are presented in di�erent sections of this
chapter. In Section 3.2 we show that non-pseudolinear bundled drawings have a speci�c
type of obstructions. In Section 3.3 we study a family of bundled drawings satisfying
additional connectivity conditions; we refer to them as crossing-webs. We also introduce
the notion of elastic crossing-web, that can be informally described as a drawing satisfying
a generalized version of Tutte's Spring Theorem. We conclude Section 3.3 by showing a
family of elastic crossing-webs. This family is part of the basis of the induction in the proof
of Theorem 3.4.4, the main result of Section 3.4.

In Section 3.4 we show that a full crossing-web is elastic if and only if is pseudolinear.
In Section 3.5 we conclude the proof of Theorem 3.1.1 by showing that every pseudolinear
bundled drawing can be extended into a pseudolinear full crossing-web.

This section is based on author's original ideas, but it has been somewhat in�uenced
by what will a more general work in collaboration with Richter and Thomassen.

3.2 Obstructions in bundled drawings

In this section we characterize non-pseudolinear bundled drawings of graphs. This char-
acterization has the bene�t of depending only on how special cycles and their chords are
drawn. This will be used in the proofs of Observation 3.3.3 and Theorem 3.3.5.

Given a good drawing D of a graph G, let H(D) be its underlying plane graph obtained
from D, by replacing crossings with degree 4 vertices. In Chapter 2, we showed that D is
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pseudolinear if and only if H(D) has no obstructions (obstructions are de�ned in Section
2.2). A generalized B is an obstruction C that contains an entire edge D[xy] of G as a
subpath of C. The obstructions in the �gures in the �rst row of the third box in Figure
2.3 on page 7 are generalized Bs.

In Lemma 3.2.2 we will show that a bundled drawing, satisfying the conditions in
Theorem 3.1.1, is not pseudolinear if and only if contains a generalized B. In fact, with the
purpose of using this characterization in the next sections, we show that a more speci�c
condition holds; this condition is phrased in De�nition 3.2.1 and depicted in Figure 3.3.

x

y

P

S

Figure 3.3: An external chord xy inducing a generalized B in S.

De�nition 3.2.1. Let D be a bundled drawing of a graph G and let S be a special cycle.
Suppose that xy is an external chord of S and let P be the xy-path of S such that P is
incident with the two inner faces of D[S + xy]. Then xy induces a generalized B, if, in
the subdrawing D′ of D obtained from D[P + xy] by adding the internal chords of S with
both ends in P , x and y are the only vertices of P in the outer boundary of D′.

Observe that, if xy induces a generalized B, then the outer cycle of D′ is a generalized
B including the edge D[xy].

Lemma 3.2.2. Let D be a bundled drawing of a graph G, such that for every two distinct
special cycles S1 and S2, their intersection is either empty, a vertex or an edge. Then D is
not pseudolinear if and only there exists a special cycle S and an outer chord of S inducing
a generalized B.

Proof. From the remark preceding Lemma 3.2.2, it is clear that if an outer chord of some
special cycle induces a generalized B, then D is not pseudolinear.
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Conversely, suppose that D is not pseudolinear. Let H(D) be the underlying plane
graph of D (to avoid confusion, we call V (H(D)) and E(H(D)) the points and segments
of H(D)). Let C be an obstruction of H(D) minimizing |δ(C)| (recall from Subsection
2.2.1 that δ(C) is the set of points in V (C) for which their two incident segments in C are
included in distinct edge-arcs of E(G)).

Every point in C is either a vertex of G or a crossing in D. As every element in
V (C) ∩ V (G) is a rainbow for C, |V (C) ∩ V (G)| ≤ 2.

Claim 1. |V (C) ∩ V (G)| = 2.

Proof. By way of contradiction, suppose that |V (C) ∩ V (G)| ≤ 1. Then, for every pair of
crossings that are points in V (C), there is a path in C avoiding V (G). Thus, every edge
of E(G) involved in a crossing in V (C) is an inner chord of the same special cycle S. This
in particular implies that the inner face F of C is part of the inner face of D[S].

Let × be a point in δ(C) re�ecting inside C (× is a crossing in D because elements in
V (G) are rainbows). The minimality of |δ(C)| and Observation 2.2.1 imply that at least
two ends of the edges crossed at × are drawn in F . However, these two vertices cannot be
drawn in the inner face of the special cycle D[S], a contradiction.

Thus, we may assume that there are two vertices x, y ∈ V (C) ∩ V (G). Since C is an
obstruction and x and y are rainbows for C, all the points in V (C) \ {x, y} are re�ecting
inside C. Let P1 and P2 be the xy-paths of C. Since G is simple, at least one of these
paths, say P1, contains a point in δ(C) distinct from x and y. The edges of E(G) involved
in a crossing in V (P1) are inner chords of the same special cycle S1. Since x and y are ends
of two of these edges, {x, y} ⊆ V (S1).

Claim 2. P2 is the edge D[xy].

Proof. In the alternative, there exist points of V (P2) \ {x, y} that are in δ(C). The edges
of E(G) involved in crossings of V (P2) are inner chords of the same special cycle S2, and
consequently {x, y} ⊆ V (S2).

Suppose that S1 = S2. Then, if we consider an element × ∈ δ(C), distinct from x and
y, Observation 2.2.1 implies that at least two of the four ends of the pair of edges crossing
at × are drawn in the inner face F bounded by C. However, because S1 = S2, F is part
of the inner face of D[S1], and consequently, there are vertices of G drawn in the interior
of D[S1], a contradiction. Thus, we may assume that S1 6= S2.

Since S1 and S2 have x and y in common, the assumption of how the special cycles
intersect implies that xy ∈ E(S1) ∩E(S2). In this case, xy is not crossed in D, and hence
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it is drawn as an xy-arc in one of the two faces of C. Regardless of how xy is drawn in D,
either P1∪D[xy] or P2∪D[xy] is an obstruction C ′. Moreover, since D[xy] neither contains
crossings nor vertices of G in its interior, |δ(C ′)| < |δ(C)|, contradicting the minimality of
|δ(C)|. This last contradiction implies that P2 is the edge D[xy].

Claim 3. The edge xy is an outer chord of S1.

Proof. Suppose not. Since x and y are vertices of S1, xy is either an inner chord of S1

or xy ∈ E(S1). Either of these possibilities, and the fact that P2 = D[xy], imply that
the inner face F bounded by C is included in the inner face of D[S1]. Now, the existence
of crossings in δ(C) as interior points of P1 and Observation 2.2.1 imply the existence of
vertices of G drawn in F . Then there are vertices of G drawn in the inner face of D[S1], a
contradiction.

Finally, to see that xy induces a generalized B, consider the xy-path P of S1 that is
incident with the two inner faces of D[S1 + xy]. Since P1 is an xy-arc drawn in the inner
face of D[S1], D[P ] is in the inner face of D[xy] ∪ P1.

From Observation 2.2.1 it follows that every edge e ∈ E(G) that has a subsegment in
P1 has its ends in V (P ). Thus, every such e is an inner chord of S1 with both ends in P .
The simple closed curve C shows that x and y are the only vertices of V (P ) incident with
the outer face of the subdrawing induced by P + xy and the inner chords of S1 with both
ends in P . Thus xy induces a generalized B, as desired.

3.3 Crossing-webs

In this section we introduce crossing-webs, which are bundled drawings satisfying additional
connectivity conditions. In Lemma 3.5.1 of Section 3.5 we will show that every bundled
drawing can be included as part of a crossing-web (with the further condition of preserving
pseudolinearity). We also introduce the notion of elastic crossing-webs, and characterize
in Theorem 3.3.5, when a basic crossing-web is elastic.

A crossing-web is a tripleW = (G,D,O), where D is a drawing of a graph G such that
pl(G) is spanning and 2-connected; and the outer face of D is bounded by the cycle O of
pl(G). We remark that in a crossing-web, D is a bundled drawing of G. We will refer to
the special cycles of D also as the special cycles of W (Figure 3.4a exhibits a crossing-web
with its special cycles bounding distinct coloured regions).

41



(a) D[G] (b) plD(G) (c) hole(W)

Figure 3.4: A crossing-web W = (G,D,O)

Let φ be a rectilinear embedding of a cycle C. A corner is a vertex of C with angle in
φ[C] distinct from 180◦. A facet is a path P of C joining two consecutive corners. We also
refer to φ[P ] as a facet of φ[C]. In case all the angles in φ[C] are at most 180◦, then φ is a
weakly convex embedding of C, and if all the angles are less than 180◦, then φ is a strictly
convex embedding of C.

There are extensions to Fary's Theorem that improve the conditions imposed on the
planar embeddings. Perhaps the most celebrated one is the following result by Tutte [30]:

Theorem 3.3.1 (Tutte's Spring Theorem). Let D be an embedding of a 3-connected planar
graph with outer face O. Then, for every strictly convex embedding φ of O, there exists a
rectilinear embedding D of G such that:

• φ[O] = D[O];

• D is homeomorphic to D; and

• the boundary of every inner face is strictly convex in D.

This theorem serves as our inspiration for the following de�nition:

De�nition 3.3.2. A crossing-web W = (G,D,O) is elastic if, for every strictly convex
embedding φ of O, there exists a rectilinear embedding D of G such that:

(i) φ[O] = D[O];

(ii) plD(G) = plD(G) and D[pl(G)] is homeomorphic to D[pl(G)];
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(iii) for every special cycle S in W, IntD(S) and IntD(S) are the same graph; and

(iv) every face of D bounded by a cycle of G is strictly convex in D.

The natural example of an elastic crossing web (G,D,O) arises from letting D be an
embedding of a 3-connected planar graph G. The next observation shows that pseudolin-
earity is a necessary condition for a crossing-web to be elastic.

Observation 3.3.3. If (G,D,O) is an elastic crossing-web, then D is pseudolinear.

Proof. Suppose thatW is elastic. Then, for an arbitrary strictly convex embedding φ of O,
there exists a rectilinear drawing D of G satisfying conditions (i)-(iv) in De�nition 3.3.2.
Conditions (ii) and (iii) imply that D and D have the same special cycles, and each of
them has the same external and internal chords. Moreover, these conditions also imply
that an outer chord of a special cycle S induces a generalized B in D if and only if it
induces a generalized B in D. Because D is pseudolinear, Lemma 3.2.2 implies that D is
pseudolinear.

If S is a special cycle of a crossing-web (G,D,O), then ec(S) is the graph obtained
from S by adding the external chords of S in D[G]. The outer cycle of D[ec(S)] is denoted
as OS.

De�nition 3.3.4. A crossing-web W = (G,D,O) is basic if

• W has exactly one special cycle S;

• O = OS; and

• for every facial cycle C of D[ec(S)] distinct from S and O, IntD(C) is a 3-connected
planar graph embedded in the disk bounded by D[C].

Next we show that pseudolinearity is also a su�cient condition for a basic crossing-web
to be elastic.

Theorem 3.3.5. A basic crossing-web (G,D,O) is elastic if and only if D is pseudolinear.

For proving Theorem 3.3.5 we need two results. The �rst is an extension of Theorem
3.3.1.

43



Theorem 3.3.6. [28] Let D be an embedding of 2-connected graph G in the plane with
outer cycle O. Suppose that φ is a weakly convex embedding of O. If, for every 2-cut
{x, y}, {x, y} ⊆ V (O) and x and y are not in the same facet, then there exists a rectilinear
embedding D of G such that:

• φ[O] = D[O];

• D is homeomorphic to D; and

• every inner face of D is bounded by a strictly convex cycle.

In particular, if φ is a strictly convex embedding of O, such D exists if and only if for
every 2-cut {x, y}, {x, y} ⊆ V (O) and xy /∈ E(O).

The second result that we need is an observation about slightly modifying a rectilinear
drawing of a graph. We sketch its proof.

Observation 3.3.7. Let G be a graph and let ρ : V (G) → R2 be a map inducing a
rectilinear good drawing of G. Then, there exists ε > 0 such that, if ρ′ : V (G) → R2 is a
map with ||ρ(v) − ρ′(v)|| < ε for all v ∈ V (G), then ρ′ induces a rectilinear drawing of G
such that:

(i) ρ[G] and ρ′[G] are homeomorphic;

(ii) every cycle bounding a face of ρ[G] that is strictly convex in ρ is strictly convex in ρ′.

Proof's sketch. Suppose that, for some ε > 0 to be chosen later, ρ′ : V (G) → R2 is such
that ||ρ(v)− ρ′(v)|| < ε for all v ∈ V (G).

For v ∈ V (G), let (v1, v2, . . . , vr) be the cyclic counterclock-wise order in which v is
joined to its neighbours v1, . . . , vr in ρ[G]. This sequence (v1, v2, . . . , vr) is the rotation at
v in ρ[G].

• For each v ∈ V (G), there is a su�cently small ε > 0 for which the rotation at v in
ρ[G] is the same as in ρ′[G].

• For each pair (e, f) ∈ E(G) × E(G) with e 6= f , there is a su�ciently small ε > 0
such that ρ[e] and ρ[f ] are either crossing, incident or disjoint if and only if the same
holds for ρ′[e] and ρ′[f ]. Moreover, if e and f are crossing at ×, and He,f , H ′e,f are
the underlying plane graphs of ρ[e ∪ f ] and ρ′[e ∪ f ], respectively, then there is a
su�ciently small ε such that the rotations at × in He,f and H ′e,f are the same.
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• For every edge xy ∈ E(G), and every pair ×1 and ×2 of crossings occurring in this
linear order in D[xy] (when xy is oriented from x to y), there is a su�ciently small ε,
such that the corresponding crossings ×′1 and ×′2 occur in the same order in ρ′[xy].

• For every cycle C such that ρ[C] is strictly convex, there is a su�ciently small ε
guaranteeing that ρ′[C] is also strictly convex.

There are �nitely many elements considered in each of the previous items. Thus, for
a su�ciently small choice of ε > 0, ρ′ satisfy all of the previous items. This, in particular
implies the conclusion in Observation 3.3.7.

In the proof of Theorem 3.3.5, Observation 3.3.7 is used every time we slightly move
some points in a given rectilinear drawing, so we will not make an explicit reference to this
observation.

Proof of Theorem 3.3.5. Let W = (G,D,O) be a basic crossing-web with a unique special
cycle S. Observation 3.3.3 shows that if W is elastic, then D is pseudolinear.

Conversely suppose that D is pseudolinear. Let φ be a strictly convex embedding of O.

An intermediate cycle is a cycle C of ec(S) such that D[S] is drawn in the disk bounded
by D[C]. A partial drawing with respect to C, is a function ρ that assigns to each vertex
in V (ExtD(C)) ∪ V (S) a point in the plane with the following properties:

(i) For every v ∈ V (O), ρ(v) = φ(v);

(ii) the map ρ restricted to V (ExtD(C)) induces a rectilinear embedding homeomorphic
to D[ExtD(C)], in which the boundary cycle of every inner face, with the exception
of C, is strictly convex;

(iii) no two edges of ρ[C] are collinear;

(iv) if xy ∈ E(C) \ E(S) and P is the xy-path of S incident with the two inner faces of
D[S + xy], then ρ[P ] is embedded as a line segment connecting ρ(x) and ρ(y); and

(v) if uv is an internal chord of S in D such that ρ(u) and ρ(v) are not drawn in the
same facet of ρ[S], then the open line segment joining ρ(u) to ρ(v) is included in the
inner face of ρ[S].
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For example, there is a partial embedding ρ0 : V (S)→ R2 with respect to the interme-
diate cycle O, obtained from letting φ0(v) = φ(v) for every v ∈ V (O); and, for every edge
xy ∈ E(O)\E(S), the path P as in Item (iv) is embedded in ρ0 as a line segment connect-
ing φ(x) to φ(y). Note that ρ0 is not necessarily a drawing: for every xy ∈ E(O) \ E(S),
the internal vertices of P are drawn over the edge φ[xy].

It is useful to think a partial drawing as a rectilinear embedding ρ of ExtD(C), in which
ρ[C] induces a rectilinear drawing of ρ[S] (where the edges of C determine the facets of
S), and ρ[S] satis�es the visibility constraints for the inner chords of S given in (v).

Let C be an intermediate cycle for which there exists a partial drawing ρ with respect
to C. We choose C such that |V (ExtD(C))| is maximum. If C = S, then ρ is our desired
rectilinear embedding

By way of contradiction suppose that C 6= S. Then C has an edge xy ∈ E(C) \ E(S).
For this edge xy, let P be the xy-path as in Item (iv).

Claim 1. There exists an interior vertex z of P such that every internal chord uv of S
with u, v ∈ V (P ), either both u and v are in the xz-path of P , or they are in the zy-path
of P .

Proof. Suppose not. Consider the subdrawing D′ of D obtained from D[P +xy] by adding
all the internal chords of S that have both ends in P . By assumption, x and y are the only
vertices in the outer face of D′. Thus xy induces a generalized B, contradicting that D is
pseudolinear (Lemma 3.2.2).

Seeking a contradiction, our goal is to �nd an intermediate cycle C ′ and a partial
drawing ρ′ with respect to C ′, for which ExtD(C) is a proper subgraph of ExtD(C ′).

To �nd C ′, consider the subgraph HP of ec(S), obtained from P by adding all the
external chords of S with both ends in P . Let Exy be the edges in HP whose ends are not
both in P [x, z] and not both in P [z, y]. Note that z and xy are incident with the same
inner face Fxy of D[HP − (Exy \ {xy})]. Let P ′ be the xy-path in the boundary of Fxy
distinct from the edge xy, and let C ′ be the cycle obtained from replacing xy in C by P ′.

We start describing our �rst approximation to ρ′: For each vertex v in ExtD(C), let
ρ1(v) = ρ(v). Note that vertices in P are located in ρ as points in the line segment joining
ρ(x) to ρ(y). Let ρ1(z) be a point near ρ(z), drawn in the inner face bounded by ρ[C].
Locate in ρ1 the vertices of P in such a way that the xz-path of P is embedded as a line
segment joining ρ1(x) to ρ1(z), and the zy-path of P is embedded as a line segment joining
ρ1(z) to ρ1(y). It is important to keep the images of vertices in P − {x, y} under ρ1 near
their images under ρ.
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As consequence of Claim 1, we can pick ρ1(z) close enough ρ(z), so that ρ1 satis�es the
visibility requirements for the inner chords in Item (v). The map ρ1 is not necessarily a
partial embedding: for instance, ρ1 may not satisfy Item (iii) with respect to C ′, as some
edges of P ′ might be drawn as part of xz-facet or as part of zy-facet of ρ1[C ′]. Moreover,
we have not de�ned where the vertices of intD(P ′ + xy) are located. To �x this last issue,
we need the following observation.

Claim 2. The map ρ1 induces a rectilinear embedding of P ′+Exy in which the inner faces
are bounded by weakly convex polygons.

Proof. Let Cxy = P ′+xy. By de�nition, ρ1[Cxy] is embedded as a (weakly convex) triangle.

To show that ρ1 induces an embedding of P ′+Exy, �rst observe that every edge Exy is
drawn in ρ1 as a line segment connecting a point in the xz-facet of ρ1[Cxy] to a point in the
zy-facet of ρ1[Cxy]. Thus, two edges x1y1, x2y2 ∈ Exy cross in ρ1, if and only if, the vertices
x1, x2, y1, y2 occur in this cyclic order as we follow some orientation of Cxy. However, this
same condition would imply that x1y1, x2y2 cross in D[P ′ + Exy], and D[P ′ + Exy] is an
embedding. Thus ρ1 induces a rectilinear embedding of P ′ + Exy.

The way edges in Exy are drawn in ρ1 induces a linear order on Exy: an edge x1y1

precedes x2y2 if and only if the the triangle with corners ρ1(x1), ρ1(z) and ρ1(y1) contains
ρ1[x2y2] as inner chord. In this case, each face of ρ1[P ′+Exy] is either bounded by a weakly
convex 4-gon (with two consecutive edges of Exy its boundary), or bounded by a weakly
convex triangle (with the last edge of Exy and z in its boundary).

Thus, ρ1 induces a rectilinear drawing of the graph obtained from the union of ExtD(C)
and P ′ + Exy. To �nd a rectilinear drawing of ExtD(C ′), it remains to determine where
the vertices of G drawn in the inner faces of D[P ′ + Exy] are located under ρ1.

For every inner face F of D[P ′ +Exy], let CF be its boundary cycle. Since W is basic,
D[IntD(CF )] is a 3-connected planar graph embedded in the interior for D[CF ]. Apply
Theorem 3.3.6 to extend ρ1[CF ] to a rectilinear embedding of IntD(CF ) in which every
inner face is strictly convex. Such an embedding is how ρ1 is de�ned in its restriction to
IntD[CF ].

At this stage, ρ1 satis�es the conditions for being a partial embedding with the exception
of (iii), as either

• the edges in the xz-facet P ′xz of ρ1[C ′] are in the same line; or

• the edges in the zy-facet of P ′zy of ρ1[C ′] are in the same line.
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To resolve this issue, we slightly push the interior vertices of each P ′xz and P
′
zy towards

the outer face of ρ1(C ′). To retain visibility of the inner chords imposed by (v), we push
them so that the cycles P ′xz + xz and P ′zy + zy form strictly convex polygons. Let ρ′ be
the new function obtained from ρ1 after pushing these vertices; extend ρ′ to all vertices in
S in a way that, if uv ∈ E(P ′) \ E(S) and Q is the uv-path of S incident with the inner
faces of D[S + uv], then ρ′[Q] is drawn as line segment connecting ρ′(u) to ρ′(v).

Now ρ′ is a partial drawing of G with respect to C ′, and |V (ExtD(C ′))| > |V (ExtD(C))|.
This contradicts our choice of C. Thus, there exists a partial embedding in which S is the
intermediate cycle, showing that W is elastic.

3.4 Full crossing-webs

In this section we characterize when a full crossing-web is elastic. This is the main ingre-
dient used in the proof of Theorem 3.1.1.

De�nition 3.4.1. A crossing-web W = (G,D,O) is full if

• every cycle of G bounding an inner face of D is a 3-cycle; and

• for every two distinct special cycles S1 and S2 in W, the intersection between S1 and
S2 is either empty, a vertex, or an edge.

Let W = (G,D,O) be a crossing-web. A special cycle S is maximal if no other special
cycle S ′ contains S in IntD(OS′) (recall that OS is the outer cycle of the subgraph of G
induced by S and its external chords). The special cycle bounding the yellow region in
Figure 3.4a is maximal, while the one bounding the blue region is not. We denote hole(W)
as the plane graph obtained from pl(G) by removing, for each maximal special cycle S in
W , the vertices in int(OS) (see Figure 3.4c).

Lemma 3.4.2. Let W be a full crossing-web. Then

(i) hole(W) is 2-connected; and

(ii) if {x, y} is a 2-cut of G, then {x, y} ⊆ V (O) and xy /∈ E(O).

Proof. We start by showing the following general result.

48



Claim 1. In a 2-connected plane graph, if we remove all vertices drawn the interior of a
cycle, then the resulting graph is 2-connected.

Proof. Let C be a cycle of a 2-connected plane graph H. As G is connected, for every
vertex in Ext(C), there is a path in Ext(C) connecting such a vertex to some vertex in C.
Thus Ext(C) is connected. Every face of Ext(C) is bounded by a cycle because it is either
a face of H, or is bounded by C. Therefore Ext(C) is 2-connected.

Item (i) follows from repeatedly applying Claim 1.

Let {x, y} be a 2-cut of hole(W). Since D[hole(W)] is a planar embedding, there exists
a simple closed curve γ in the plane intersecting D[hole(W)] at {D[x], D[y]}, and such that
there is a vertex of hole(W) drawn on each side of γ.

Since hole(W) is 2-connected, there exists a cycle Cγ containing vertices drawn on
distinct sides of γ. Such Cγ necessarily contains x and y, but xy /∈ E(Cγ). The existence
of Cγ shows that (a) the two xy-arcs of γ are drawn in distinct faces F1 and F2 ofD[hole(W)]
incident with x and y; and (b) if xy ∈ E(G), then D[xy] is drawn in exactly one side of
D[Cγ].

Claim 2. At least one of F1 and F2 is the outer face of D[hole(W)].

Proof. Suppose that both F1 and F2 are inner faces. Each of F1 and F2 is either a face of
D bounded by a 3-cycle of G or, for some maximal special cycle S, is a face bounded by
OS.

Suppose that xy ∈ E(G). From (b) and the fact that F1 and F2 are symmetric, we
may assume that D[xy] is drawn in the side of D[Cγ] containing F2. In this case, F1 is
not bounded by a 3-cycle of G, and hence there is a special cycle S1, for which OS1 is the
boundary of F1. However, xy is an external chord of S1 drawn in the exterior of OS1 . This
contradicts that OS1 is the outer cycle of ec(S1).

Therefore xy /∈ E(G). This implies that, for i = 1, 2, there exists a special cycle Si
such that Fi is bounded by OSi

. However, {x, y} ⊆ V (S1) ∩ V (S2) and xy /∈ E(G), a
contradiction.

We may assume that F1 is the outer face of D[hole(W)]. This guarantees that {x, y} ⊆
V (O), so we only need to show that xy /∈ E(O).

Suppose that xy ∈ E(O). In this case, xy is incident with the outer face F1, and from
(a) and (b) it follows that xy is not in the boundary of F2. Then F2 is not a face of D
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bounded by a 3-cycle of G. In this case, there is a maximal special cycle S2 with OS2

bounding F2. However, xy is an external chord of S2 drawn in the outer face of OS2 , our
�nal contradiction. Thus, xy /∈ E(O).

Let W = (G,D,O) be a crossing-web and let C be a cycle in plD(G). Then (IntD(C),
D[IntD(C)], C) is also a crossing-web that we denote as W|C .

Lemma 3.4.3. Let W = (G,D,O) be a full crossing-web that has a special cycle S0 for
which O = OS0. Let W ′ be a crossing-web obtained from W by replacing, for each facial
cycle C of ec(S0) distinct from S0 and O, W|C by hole(WC). Then W ′ is basic.

Proof. Let C be a facial cycle of ec(S0) distinct from S0 and O. It su�ces to show that
hole(W|C) is 3-connected.

Let W|C = (G′, D′, C). Since W|C is full, Lemma 3.4.2(i) implies that hole(W|C) is
2-connected.

Suppose that {x, y} is a 2-cut of G′. From Item (ii) of Lemma 3.4.2 we know that
{x, y} ⊆ V (C) and xy /∈ E(C). Since C is a cycle of ec(S0), {x, y} ⊆ V (S0). Because x
and y are in incident with the facial cycle C of ec(S0) and because xy /∈ E(C), we see that
xy /∈ E(ec(S0)).

Since {x, y} is a 2-cut in G′, there exists a face F in D′ distinct from the outer face of D′

that is incident with x and y. As xy is not in the boundary of F (because xy /∈ E(ec(S0))),
F is not bounded by a 3-cycle of G. Therefore, there exists a special cycle S ′ such that
OS′ is the boundary of F . However, this implies that S0 and S ′ have x and y in common,
but xy /∈ E(S0) ∩ E(S ′), a contradiction.

Now we are ready to characterize elastic full crossing-webs.

Theorem 3.4.4. A full crossing-web W = (G,D,O) is elastic if and only if D is pseudo-
linear.

Proof. From Observation 3.3.3 it follows that (G,D,O) is elastic when D is pseudolinear.
Conversely we assume that D is pseudolinear.

We will show that W is elastic by induction on |V (G)|, where the statement clearly
holds for |V (G)| ≤ 3.

Let φ be a strictly convex embedding of O. From Lemma 3.4.2, we know that hole(W)
is 2-connected and, for every 2-cut {x, y}, {x, y} ⊆ V (O) and xy /∈ E(O). Thus, the �in
particular� part of Theorem 3.3.6 shows that there exists an rectilinear embedding θ of
hole(W) such that
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• θ[O] = φ[O];

• θ[hole(W)] is homemorphic to D[hole(W)]

• every facial cycle C of θ is strictly convex.

Let Smax be the set of maximal special cycles in W .

Case. hole(W) 6= O.

In this case, for each special cycle S ∈ Smax, OS 6= O. Thus, for each S ∈ Smax, W|OS

is a full crossing-web with fewer vertices than W . The induction hypothesis implies that
W|OS

is elastic; thus, for each S ∈ Smax, there is a rectilinear drawing DS of IntD(OS)
satisfying Conditions (i)-(iv) in De�nition 3.3.2 with respect to W|OS

and θ[OS]. Let D
be the extension of θ, obtained from letting, for each S ∈ Smax and for each vertex v in
IntD(OS), D[v] = DS[v]. Then D satis�es Conditions (i)-(iv) in Def. 3.3.2 with respect to
W and φ.

Case. hole(W) = O.

In this case, there exists a special cycle S0 for which OS0 = O. Every other special cycle
S is drawn in the closure of a face of ec(S0). Consider the crossing-web W ′ = (G′, D′,O)
obtained from W by replacing, for each facial cycle C of ec(S0) distinct from S0 and O,
W|C by hole(W|C). Lemma 3.4.3 shows that W ′ is basic and Theorem 3.3.5 implies that
W ′ is elastic. Let D′ be a rectilinear drawing satisfying Conditions (i)-(iv) in De�nition
3.3.2 with respect to W ′ and φ.

Now, for each special cycle S of W for which OS bounds a face of D′, W|OS
is a full

crossing-web, and, since it has fewer vertices than W , is elastic. Since D′[OS] is a convex
drawing of OS, we can extend this to a rectilinear drawing of IntD(OS) satisfying conditions
(i)-(iv) in De�nition 3.3.2. If we do this for every S in which OS bounds a face of D′, then
we obtain a rectilinear drawing D of G satisfying conditions (i)-(iv) in Def. 3.3.2.

3.5 Proof of Theorem 3.1.1

In this section we conclude the proof of Theorem 3.1.1 by showing that every pseudolinear
bundled drawing with well-behaved special cycles is part of a pseudolinear full crossing-web.
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Lemma 3.5.1. Let D be a bundled drawing of a graph G. Suppose that, for every two
distinct special cycles S1 and S2, the intersection between S1 and S2 is either empty, a
vertex or an edge. Then there exists a full crossing-web (G′, D′,O) such that G ⊆ G′,
D ⊆ D′, and for which D is pseudolinear if and only D′ is pseudolinear.

Proof. Let D′ be a drawing obtained by adding a cycle O in the outer face of D, such that
D is in the inner face of D′[O]. As long as (G′, D′,O) is not a full crossing-web, apply one
of the following steps:

1. If plD′(G
′) is not connected, then there exist two vertices u and v of G′ in di�erent

components of plD′(G
′), and incident with the same face F in D′[plD′(G

′)]. Add an
arc connecting D[u] to D[v] through F , and extend G′ and D′ to include this new
edge.

2. Suppose that plD′(G
′) is connected and that there is a face F of plD′(G

′) whose
boundary is neither a special cycle nor a 3-cycle. Suppose that (w0, w1, . . . , wm−1, w0)
is the boundary walk of F . Then add a cycle (v0, v1, . . . , vm−1, v0) drawn as a simple
closed curve in F , and for i = 0, 1, . . . ,m−1, connect vi to wi and to wi+1 (where the
indices are read mod m). Extend G′ and D′ to include the new vertices and edges.

Step 1 reduces the number of components of plD′(G
′), while Step 2 reduces the number

of inner faces of plD′(G
′) whose boundary is neither a special cycle nor a 3-cycle. When

Steps 1 and 2 do not apply, plD′(G) is connected and the boundary of every inner face of
plD′(G

′) is either a special cycle or a 3-cycle. Moreover, as every face of plD′(G
′) is bounded

by a cycle, plD′(G
′) is 2-connected. Thus (G′, D′,O) is a crossing-web with G ⊆ G′ and

D ⊆ D′.

Steps 1 and 2 do not change the set of special cycles nor the way external and internal
chords are drawn for a �xed special cycle. Thus, D has an external chord xy of some
special cycle S inducing a generalized B if and only xy induces a generalized B in D′.
From Lemma 3.2.2, this is equivalent to the statement: D is pseudolinear if and only if D′

is pseudolinear.

Proof of Theorem 3.1.1. Let D be a nice drawing of a graph satisfying the conditions in
Theorem 3.1.1.

Suppose that there is a rectilinear drawing D satisfying Conditions (i)-(iii) of Theorem
3.1.1. Then D and D has the same special cycles, and each of them have the same external
and internal chords. Moreover, (i)-(iii) imply that an outer chord of a special cycle S
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induces a generalized B in D if and only if induces a generalized B in D. Because D is
pseudolinear, Lemma 3.2.2 shows that D is pseudolinear.

Suppose now that D is pseudolinear. Let W = (G′, D′,O) be a full crossing-web as
in Lemma 3.5.1. Then, since D′ is pseudolinear, W is elastic. Thus, for some arbitrary
strictly convex embedding φ of O, there exists a rectilinear drawing D of G′ satisfying
(i)-(iv) in Def. 3.3.2. The restriction D[G] satis�es (i)-(iii) of Theorem 3.1.1.

3.6 Concluding remarks

The results in this chapter aimed to investigate Question 3 for bundled drawings. The
motivation was to develop new tools for proving results such as Bienstock and Dean's
Theorem [13].

In Theorem 3.1.1 we found su�cient conditions for a drawing D implying the existence
of a rectilinear drawing D having the same pairs of crossing edges. For this result, we
assumed that D is bundled and that every pair of special cycles is either disjoint or that
they intersect in a vertex or an edge. After some investigation, we believe that these
conditions can be weakened. For instance:

Question 4. Does the conclusion of Theorem 3.1.1 holds for every bundled drawing?

(a) (b)

Figure 3.5: Steps to construct a graph with cr(G) = 4 and with cr(G) > 4.

In [13], Bienstock and Dean showed the existence of graphs with crossing number 4 and
arbitrarily large rectilinear crossing number. Hernández-Vélez, Leaños and Salazar [18]
observed that these examples are obtained from a speci�c non-pseudolinear drawing, such
as the one in Figure 3.5a, by adding a planar subdrawing, and replacing uncrossed edges
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by edge-disjoint paths (in Figure 3.5b, the thin edges are replaced by edge disjoint paths).
This standard technique has the purpose of making some edges undesirable to cross in an
optimal drawing of the graph. The authors of [18] are inclined to believe that this is only
way to build these examples, and they conjectured the following.

Conjecture 3.6.1. There is a function f such that for every 3-connected graph G, cr(G) ≤
f(cr(G)).

The next question can be taken as a initial approach to this conjecture.

Question 5. Is it true that every 3-connected graph with cr(G) = 4, has cr(G) = cr(G)?
More speci�cally: can we �nd a set of minimal subdrawings F such that every optimal
drawing of graph with cr(G) = 4 and cr(G) > 4 has an element of F as a subdrawing?

Let c̃r(G) denote the pseudolinear crossing number of G. In Schaefer's survey, The
graph crossing number and its variants [26], he asks the question of whether there is a
function f such that cr(G) ≤ f(c̃r(G)). Hernández-Vélez, Leaños and Salazar showed that
a separation between cr and c̃r exists, as there are arbitrarily large 3-connected graphs G
with cr(G) ≥ (145/144)c̃r(G). This contrasts with Theorem 3.1.1, where the existence of
a pseudolinear drawing implies the existence of a similar rectilinear drawing with the same
set of crossing pair of edges. There are instances of this problem where there is no clear
separation between rectilinear and pseudolinear crossing numbers; for example, Balogh et
al. conjectured in [9] that cr(Kn) = c̃r(Kn).

Question 6. Can we identify features of a pseudolinear drawing D implying the existence
of a rectilinear drawing D of the same graph with cr(D) ≤ cr(D) (or with cr(D) ≤ f(cr(D))
for some �xed function f)?

The concept of elasticity plays a crucial role in the proof of Theorem 3.1.1. Elasticity is
the ability of transforming a given drawing into a similar rectilinear drawing by extending
any given strictly convex outer boundary and preserving pairs of crossing edges. Theorem
3.3.5 can be considered as an extension Tutte's Spring Theorem allowing some crossings.
It is desirable to �nd extensions of Theorem 3.3.5.
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Chapter 4

Pseudospherical Drawings of Kn

4.1 Introduction

Apart from rectilinear drawings, is there any other interesting class of geometric drawings
that deserve being studied? To answer this, we recall the Harary-Hill Conjecture, stating
that the crossing number of the complete graph Kn is equal to:

H(n) =
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
. (4.1)

The British artist, Anthony Hill, is acknowledged for discovering a family of drawings
of Kn having exactly H(n) crossings. These drawings are beautifully described in the
historical survey by Beineke and Wilson, The Early History of the Brick Factory Problem
[12]:

Label the vertices 1, 2, . . . , n, and arrange the odd numbered ones equally
around the inner of two concentric circles and the even ones around the outer
circle. Then join all pairs of odd vertices inside the inner circle, join all pairs
of even vertices outside the outer circle, and join even vertices to odd ones in
the region between the circles.

The drawings described above, cannot be achived by using shortest-arcs in the plane
(i.e. straight line segments), but can be achieved by using shortests arcs in the sphere.
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In general, if S is the unit sphere in R3, then a spherical drawing of a graph G is one
in which the vertices of G are represented as distinct points in S, and every edge is a
shortest-arc connecting its corresponding ends.

A shortest arc connecting two points p and q in S is obtained as follows. Consider a
plane through p, q and the centre of S. The intersection of this plane with S is a great
circle through p and q. The shortest pq-arc in the great circle is the shortest arc between p
and q in the sphere. If p and q are not antipodal, that is, when they are not in the same line
through the origin, then the great circle through p and q is unique, and so is the shortest
pq-arc.

Although the Harary-Hill Conjecture is known to be true for certain classes of drawings
ofKn, it is yet unknown that spherical drawings have at leastH(n) crossings. In [23], Moon
added more mystery to this problem by showing that the crossing number of a random
spherical drawing of Kn is 1

4

(
n
2

) (
n−1

2

) (
n−2

2

) (
n−3

2

)
.

In the proofs of [2] and [19] showing that rectilinear drawings of Kn have at least
H(n) crossings, a crucial point was to relate the number of crossings in a given drawing
to the separation properties of the

(
n
2

)
lines extending the edges. Understanding these

separation properties, but for the curves extending the edges in spherical drawings, serve
as our motivation for studying arrangement of pseudocircles.

An arrangement of pseudocircles is a set of simple closed curves in the sphere in which
every two curves intersect at most twice, and every intersection is a crossing. If γ is a
simple closed curve, then a side of γ is one of the two disks in S bounded by γ. In spherical
drawings, the great circles extending the edge-arcs form an arrangement of pseudocircles.

With the aim of �nding a combinatorial extension of spherical drawings analogous to
how pseudolinear drawings extend rectilinear drawings, there have been two signi�cant
questions under active consideration by the graph drawing community in recent years:

(Q1) Do the edges of every good drawing of Kn in the sphere extend to an arrangement
of pseudocircles?

(Q2) If the edges of a drawing of Kn extend to an arrangement of pseudocircles, is there
an extending arrangement in which any two pseudocircles intersect exactly twice?

In Subsection 4.2, we provide a negative answer to these questions by showing that:

1. the drawing of K10 in Figure 4.1 does not have any extension to an arrangement of
pseudocircles;
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2. the drawing of K9 in Figure 4.2 has an extension to an arrangement of pseudocircles,
but there is no extension in which every two pseudocircles cross twice.

Figure 4.1: A drawing of K10 whose edges cannot be extended to an arrangement of
pseudocircles.

Figure 4.2: A drawing of K9 whose edges can be extended to an arrangement of pseudo-
circles, but there is no extension in which the pseudocircles are pairwise intersecting.

In an attempt to describe a combinatorial generalization of spherical drawings, we
introduce the following as the de�nition of pseudospherical drawings.

De�nition 4.1.1. A drawing D of Kn in the sphere S is pseudospherical if there exists a
family {γe : e ∈ E(Kn)} of simple closed curves in S such that

(PS1) D[e] ⊆ γe and no vertex other than the ends of e is contained in γe;

(PS2) for every extending curve γe, if two vertices x and y are drawn on the same side of
γe, then D[xy] is completely drawn on that side of γe; and
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(PS3) if γe and γf are curves extending the edges e and f , respectively, then |γe ∩ γf | ≤ 2,
and every intersection point in γe ∩ γf is a crossing.

e

γe

(a) PS1

e

x

y

(b) PS2

e

x

y

e

x

y

(c) PS3

Figure 4.3: Pseudospherical drawings.

Throughout this chapter, we will see how this de�nition captures many of the essential
features of spherical drawings.

Drawings for which there exists an extending set of curves only satisfying (PS1) and
(PS3) are the ones considered in questions (Q1) and (Q3). Property (PS2) is an analog
to the geometric fact that, if two points are drawn in the same hemisphere of S, then the
shortest-arc connecting them is also contained in that hemisphere. Adding (PS2) to our
list of properties has a big impact on the structure of pseudospherical drawings that brings
them closer to spherical.

As our major result for this chapter, we will show that the extending arrangement of
pseudospheres can be chosen to resemble a set of great circles; this result answers (Q2) in
a positive manner when (PS2) is part of our assumptions.

Theorem 4.1.2. Let D be a pseudspherical drawing of Kn. Then there exists a set of
simple closed curves satisfying (PS1), (PS2), and

(PS3') if γe and γf are curves extending the edges e and f , respectively, then |γe∩ γf | = 2,
and every intersection point in γe ∩ γf is a crossing.

The di�erence between PS3 and PS3' is that in that in PS3' every two pseudocircles
intersect exactly twice.

Questions (Q1) and (Q2) are answered in Section 4.2. In Section 4.3 we prove a technical
theorem about arrangements of pseudocircles that will be used in the proof of Theorem
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4.1.2. This technical theorem was the inspiration for the gadgets used to answer (Q1) and
(Q2).

In Section 4.4 we introduce a class of drawings equivalent to pseudospherical drawings:
hereditarily-convex drawings of Kn. The advantage of this de�nition is that it focuses only
on properties of the drawing rather than in the pseudocircular extensions. Moreover, in [7]
it was shown the existence of a O(n6) algorithm to recognize whether a drawing of Kn is
hereditarily-convex [7].

Section 4.4 is divided into four subsections. In Subsection 4.4.1 we show that pseudo-
spherical drawings are hereditarily-convex. In Subsections 4.4.2, 4.4.3 and 4.4.4 we show
that hereditarily-convex drawings are pseudospherical, and simultaneously give a struc-
tural description of hereditarily-convex drawings. This description is crucial in Section
4.5, where we present the proof of Theorem 4.1.2. Finally, in Section 4.6 we give some
concluding remarks an open questions related to this chapter.

The present chapter is a collaborative work with Bruce Richter and Matthew Sunohara.

4.2 Solutions to Q1 and Q2

In this section we show that: (1) the drawing in Figure 4.1 cannot be extended to an
arrangement of pseudocircles; and (2) the drawing in Figure 4.2 can be extended to an
arrangement of pseudocircles, but there is no extension in which the pseudocircles are
pairwise intersecting.

Figure 4.4: The drawing D1.

The crucial point is to use the drawing in Figure 4.4, denoted as D1, as a gadget forcing
some pseudocircles be drawn in a speci�c region. We label the face of D1 incident with
all of the �ve vertices as the interior face, while the face incident only with the degree 2
vertex is the exterior face. Denote the edge incident with two degree 1 vertices as e1, while
the other two edges are e0 and e2.
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Consider an arrangement {γ0, γ1, γ2} of pseudocircles extending the edges of D1, where
γi extends ei, for i = 0, 1, 2.

Claim 1. Either γ1 is included in the closure of the interior face, or γ0 and γ2 are contained
in the closure of the interior face.

Proof. Suppose that γ1 is not included in the closure of the interior face. Because γ1

has points in the exterior face of D1 and because γ1 intersects each of γ0 and γ2 at the
crossings between the pairs (e1, e0), (e1, e0), γ1 \ e1 crosses each of e0 and e2 exactly once.
This determines, up to homeomorphism, how γ1 is drawn in the sphere (see Figure 4.5).
In particular, this determines all crossings between γ1 and each of γ0 and γ2.

Figure 4.5: The only way γ1 can be drawn if it has points in the exterior face.

If γ0 has points in the exterior face, then, as we follow γ0 \ e0 from the degree 1 end
of e0, γ0 \ e0 crosses into the exterior face. This crossing occurs in the interior of e2, and
together with the degree 2 vertex of D1, they account for the intersection points between
γ0 and γ2. However, the ends of e2 are on distinct sides of a simple closed curve included
in γ0 ∪ γ2 ∪ e2, so the arc γ2 \ e2 connects these ends without intersecting this closed curve,
a contradiction.

We overlap two copies of D1 to obtain the drawing D2 shown in Figure 4.6.

Figure 4.6: The drawing D2.

Claim 2. There is no arrangement of pseudocircles extending the edges of D2.
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Proof. Claim 1 yields four possibilities of how the pseudocircles are drawn in the closure of
the interior faces of their corresponding copies of D1. It is routine to verify that in each of
these four cases, there is a pair of pseudocircles that intersect four times (Figure 4.7).

Figure 4.7: The four cases in Claim 2.

The drawing of K10 in Figure 4.1, contains D2, and hence no arrangement of pseudo-
circles extends its edges.

The drawing of K9 in Figure 4.2 contains two copies of D1 where their interior faces
are disjoint. This observation and Claim 1 imply that in any extension of this drawing to
an arrangement of pseudocircles, there is a pair of disjoint pseudocircles.

Finally, to show that the drawing in Figure 4.2 has an extension to an arrangement
of pseudocircles, note that the edges of this drawing, with the exception of two that are
drawn as circular arcs, are straight line segments. Extend each straight line segment into a
line, and each of the circular arcs into a circle. Map the extending curves from the plane to
the sphere by using a stereographic projection; lines are mapped into pairwise intersecting
great circles. If a line in the plane crosses one of the two circular extensions, then it crosses
each circle exactly twice. Thus, all the extensions intersect at most twice.

4.3 Arcs in Arrangements of Pseudocircles

In this section we prove a technical result (Theorem 4.3.3) that restrics how crossings occur
along an arc contained in the point set of an arrangement of pseudocircles. This result is
an important piece in the proof of Theorem 4.5.1.

Let Γ be an arrangment of pseudocircles. We use P (Γ) to denote the point set
⋃
γ∈Γ γ.

We are interested in describing properties of the arcs of P (Γ), that is, of homeomorphs
of [0, 1] in P (Γ). In Figure 4.8 we depict an arc of an arrangement of pseudocircles. We
introduce some standard notation helpful for referring to the features of any such arc.
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×1

×2

×3

s

t

α0

α1

α2

α3

Figure 4.8: An arc in P (Γ)

De�nition 4.3.1. Let Γ be an arrangement of arcs, let A be an arc of P (Γ), and suppose s
and t are the ends of A. The decomposition of A in Γ is the unique sequence α0, α1, . . . , αm
of subarcs of A such that

(i) s is an end of α0, t is an end of αm;

(ii) for each i = 0, 1 . . . ,m, there is γi ∈ Γ for which αi ⊆ γi;

(iii) for i = 1, . . . ,m, the curves γi−1 and γi are distinct, and αi−1 ∩ αi is a crossing
between γi−1 and γi;

(iv) for i = 1, 2, . . .m, the crossing αi−1 ∩ αi is denoted as ×i;

(v) for convenience, we let ×0 = s and ×m+1 = t; and

(v) the weight of A is m.

Consider an arc A with a decomposition as in De�nition 4.3.1, and suppose A is oriented
from s to t. This orientation de�nes the sides of A, that is, the points near A that are
either on the left side or the right side. For i = 1, 2, . . . ,m, since γi−1 and γi intersect at
×i, the ends of γi−1 \ αi−1 and γi \ αi near ×i are drawn on the same side of A; we denote
this as the side ×i is facing. In Figure 4.8, ×1 is facing the left, while ×2 and ×3 are facing
the right of A.

De�nition 4.3.2. Let Γ be an arrangement of pseudocircles, and let A be an arc with
decomposition α0α1 · · ·αm. For i = 0, 1, . . . ,m:
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(i) the extensions α−i and α+
i of αi are the components of γi \ A incident to ×i−1 and

×i, respectively (the extensions of α1 and α3 are presented in Figure 4.9);

(ii) for ε ∈ {−,+}, αεi is coherent if the segments of αεi near its ends are on the same
side of A (in Figure 4.9, α−1 is the only non-coherent extension; the other three are
coherent);

(iii) the extensions α−0 and α+
m are not coherent;

(iv) for ε ∈ {−,+}, yεi is the end of αεi distinct from ×i when ε = −, and distinct from
×i+1 when ε = +; and

(v) αi is coherent if α
−
i 6= α+

i , and at least one of its extensions is coherent (in Figure
4.8, α−2 and α+

2 are coherent, but α2 is not as α−2 = α+
2 );

If for every i ∈ {0 . . . ,m}, αi is coherent, then A is coherent.

α0 α1 α2 α3 α4 α5×0 ×1 ×2 ×3 ×4 ×5 ×6

α−1
α+1

α−3

α+3

Figure 4.9: An arc in P (Γ) and some extensions

The next is a surpizingly technical result about arrangements of pseudocircles. Al-
though, its proof is not particularly di�cult, it plays a central role on the proof of Theorem
4.5.1. This result was also the inspiration for the gadgets in Figures 4.4, 4.6 used to answer
(Q1) and (Q2).

Theorem 4.3.3. Let Γ be an arrangement of pseudocircles in the sphere. Suppose that A
is a coherent arc of P (Γ) with decomposition α0α1 · · ·αm. Then not all of ×1, ×2, . . . ,×m
face the same side of A.

Proof. We proceed by induction on the weightm of A. Whenm = 0, none of the extensions
of α0 is coherent (De�nition 4.3.2(iii)); thus the base case vacuously holds. Let us assume
that m ≥ 1.
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It is convenient to consider the linear order ≺ over the point set A, where p ≺ q if p
occurs �rst when we traverse A from s to t. We write p 4 q if either p ≺ q or p = q. Recall
that, for j = 0, 1, . . . ,m, y−j is the end of α−j distinct from ×j, and y+

j is the end of α+
j

distinct from ×j+1. The extension α+
j is forwards if ×j+1 ≺ y+

j and otherwise is reversed.
Likewise, and extension α−j is forwards if y−j ≺ ×j and otherwise is reversed. Note that
`forwards' and `reversed' does not depend on whether we orient A from s to t or t to s.

In Claim 2 we rule out the existence of reversed coherent extensions; but �rst we need
to understand more about forward extensions.

Claim 1. Let α+
j be a forward coherent extension of αj with ×j+2 ≺ y+

j . Suppose that for
every k > j, α−k is not a reversed coherent extension. Then

(i) for every ×i with ×j+1 ≺ ×i ≺ y+
j , α

−
i ∩ α+

j = ∅; and

(ii) α+
j+1 ∩ α+

j 6= ∅.

Likewise, let α−j be a forward coherent extension of αj with y
−
j ≺ ×j−1. Suppose that,

for every k < j, α+
k is not a reversed coherent extension. Then

(iii) for every ×i with y−i ≺ ×i ≺ ×j, α+
i ∩ α−j = ∅; and

(iv) α−j−1 ∩ α−j 6= ∅.

Proof. We show (i) and (ii), as (iii) and (iv) are the same, but for the traversal of A in
reverse direction.

αj

R1

R2

C

×j+1 y+is t

(a)

αj ×j+1 y+is t

×i,j

×i αi

(b)

Figure 4.10: Extensions in Claim 1.

To show (i), suppose that for some ×i with ×j+1 ≺ ×i ≺ y+
i , α

−
i ∩ α+

j 6= ∅. Let C be
the simple closed curve obtained from the union of the two ×j+1y

+
j -arcs in A ∪ α+

j . This
curve C de�nes two closed regions R1 and R2; one of these regions, say R1, contains s and
t (see Figure 4.10a).
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Let ×j,i be the �rst point we encounter in α+
j , when we traverse α−i from ×i to y−i .

Since ×i faces the same side of A as the ends of α+
j , the ×i×j,i-arc of α−i is included in R2

(Figure 4.10b). Moreover, since α−i is not reversed, ×j,i 6= y+
j .

Let α∗j be the arc obtained by following αj from ×j to ×j+1, and then continuing on
α+
j until we reach ×j,i. Similarly, we let α∗i be the arc obtained by following αi from ×i+1

to ×i and continuing on α−i until we reach ×j,i.

Let A′ be the arc obtained from A by replacing its ×j×i+1-subarc by α∗j ∪ α∗i . Note
that A′ decomposes into α0α1 · · ·αj−1α

∗
jα
∗
iαi+1 · · ·αm, and it has smaller weight than A.

The crossings of A′ as in De�nition 4.3.1(iii) are given by the sequence ×0, ×1, . . . ,×j,
×j,i, ×i+1, . . . ,×m+1. Note that ×i,j faces the same side as the rest of the crossings in A′,
since the points of the extension (α∗j )

+ near ×i,j, are precisely the points in α+
j \ α∗j near

×i,j.

Let α′ be any segment of A′. To show α′ is coherent, note that α′ contains a segment
αk of A. Let αεk be a coherent extension of αk. The extension (α′)ε is obtained by following
αεk from its end in αk (or from ×j,i if αεk ∈ {α+

j , α
−
i }) and stopping at the �rst point in A′

that we encounter. An encounter with A′ is guaranteed: either yεk ∈ A∩A′, or yεk ∈ A \A′,
and since the ends of A′ \ A are on the same side of A as the ends of αεk, α

ε
k intersects

A′ \ A when yεk ∈ A \ A′. Moreover, in any of the two cases, the ends of (α′)ε are on the
same side of A′, and hence (α′)ε is coherent.

To complete the proof that α′ is coherent we need to show that (α′)− 6= (α′)+. First,
observe that if both (α′)− and (α′)+ are coherent, then (α′)− ⊆ α−k and (α′)+ ⊆ α+

k . Since
α−k 6= α+

k , (α′)− 6= (α′)+. Thus A′ is a coherent arc of smaller weight than A, and with all
its crossings facing the same side, contradicting the induction hypothesis. Then (i) holds.

For (ii), consider the ×j+1y
+
j -arc A

′′ of A. Let ×j+2,×j+3 . . . ,×` be the sequence of
crossings of A in the interior of A′′. Then A′′ decomposes into αj+1αj+2 . . . α`−1(α` ∩ A′′).
From (i) we know that, for i = j+2, . . . , `, α−i is coherent in A′′, and hence all of αj+2, . . . , α`
are coherent in A′′. Since A′′ has smaller weight than A, A′′ is not coherent. Then αj+1 is
not coherent in A′′, and since α+

j+1 intersects α+
j ∪ A′ at least twice, α+

j+1 ∩ α+
j 6= ∅.

Claim 2. A has no reversed coherent extensions.

Proof. By way of contradiction, suppose that A has a reversed coherent extension. By
possibly reorienting A, we may assume that α+

j is a reversed coherent extension for some
j ∈ {1, . . . ,m}, and that j is the smallest index with that property (note that α+

0 is
coherent but not reversed).
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Let C be the simple closed curve bounded in A ∪ α+
j . The ends of α+

j face the same
side of A than ×j, thus, if we follow the extension α+

j−1 from ×j to y+
j−1, then we either

encounter a point in α+
j or in C∩A. As α+

j−1 intersects C at least twice and is not reversed,
α+
j−1 intersects αj ∪ α+

j in a point × distinct from ×j and y+
j . Thus γj−1 ∩ γj = {×j,×},

and hence y+
j /∈ αj−1 (note that y+

j 6= ×j because α−j 6= α+
j ).

The ends of α+
j face the same side of A than ×j−1, thus α

−
j intersects C twice. Since α−j

does not intersect the interior of αj ∪α+
j , α

−
j ∩C = {y−j ,×j}. Because γj−1∩γj = {×j,×},

y−j /∈ αj−1, and hence y+
j 4 y−j ≺ ×j−1. Thus α

−
j is a forward coherent extension of αj with

y−j ≺ ×j−1. The minimality of j implies that for every k < j, α+
k is not a reversed coherent

extension. From Claim 1 (iv), we know that α−j−1 and α−j have non-empty intersection,
and since α−j−1 6= α+

j−1, they intersect in point distinct from ×j and ×. This contradicts
that |γj−1 ∩ γj| = 2.

Our next goal is to show in Claim 4 that forward coherent extensions are �small jumps�.
But �rst we need to show the following.

Claim 3. Let k ∈ {1, 2 . . . ,m}. Suppose α−k−1 is not a coherent extension and that γk \α−k
has an intersection with γk−1. Then α−k is not coherent. Likewise, if α+

k is not coherent
and γk−1 \ α+

k−1 has an intesection with γk, then α
+
k−1 is not coherent.

Proof. We prove the �rst statement; the second is the same, but for the traversal of A in
the reverse direction.

Let × be an intersection between γk\α−k and γk−1. Since ×k ∈ α−k is also an intersection
between γk−1 and γk, γk−1 ∩ γk = {×,×k}.

Consider a simple closed curve C obtained from the union of α−k−1 and the subarc of A
connecting the ends of α−k−1. Let p be a point of α

−
k near ×k, and let A′ be the ×0×k−1-arc

of A. Consider an arc δ, starting on p, following A alongside αk−1, crossing α
−
k−1, and

continuing beside A′ until we reach a point near ×0. Since α
−
k−1 is not coherent, δ crosses

C exactly once, and hence p is on a side of C, di�erent from the one containing the points
near A′ on the side of A faced by the crossings in its decomposition.

By way of contradiction, suppose that α−k is coherent. Claim 2 implies that y−k ≺ ×k.
Since α−k does not intersect γk−1\{×k}, α−k is disjoint from C. This and the last observation
in the previous paragraph together imply that y−k ∈ αk−1 \ {×k}. Then y−k , ×k and × are
three di�erent points in γk−1 ∩ γk, a contradiction.

In the �nal step we get an accurate description of all the coherent extensions.
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Claim 4. For j ∈ {0, 1, . . . ,m − 1}, if α+
j is a coherent extension, then y+

j ∈ αj+1.
Likewise, for j ∈ {1, . . . ,m}, if α−j is a coherent extension, then y−j ∈ αj−1.

Proof. We prove the �rst statement; the second is the same, but for the traversal of A in
the reverse direction.

Suppose by the way of contradiction that the �rst statement is false. Let j be the
smallest index for which α+

j is coherent and y+
j /∈ αj+1.

We claim that, for k = 0, 1, . . . , j, α−k is not coherent. The proof is by induction on
k, where the case k = 0 holds as α−0 is not coherent (see De�nition 4.3.2 (iii)). Now,
inductively suppose that α−k−1 is not coherent for k ∈ {0, . . . , j}. Since α+

k−1 is coherent,
the choice of j implies that y+

k−1 ∈ αk. From this we know that γk \ α−k and γk−1 intersect
at y+

k−1. Claim 3 implies that α−k is not coherent, as desired. Now we know that α−j is not
coherent.

Claim 2 and the fact that α+
j is coherent imply that y+

j ∈ α` \ {×`}, for some ` ≥
j + 2. By applying Claims 1 and 2, we obtain that (i) α−j+2 is disjoint from α+

j ; and (ii)
α+
j+1 ∩ α+

j 6= ∅.

From (i) and the fact that α−j+2 is not reversed, we know that y−j+2 ∈ αj+2, and hence
γj+1 ∩ γj+2 = {y−j+2,×j+2}.

Observation (ii) and Claim 3 imply that α−j+1 is not coherent, and hence α
+
j+1 is coherent.

From Claim 2 and the fact that γj+1∩γj+2 = {y−j+2,×j+2} it follows that, for some r ≥ j+3,
y+
j+1 ∈ αr\{×r}. Since×j+2 ≺ ×j+3 ≺ y+

j+1, Claim 1 implies that α+
j+2∩α−j+1 6= ∅. However,

this contradicts that γj+1 ∩ γj+2 = {y−j+2,×j+2}; therefore Claim 4 holds.

De�nition 4.3.2 (iii) tells us that α−0 is not coherent, and hence α+
0 is coherent. Likewise,

α−m is coherent. Then there exists j ∈ {0, . . . ,m− 1} for which α+
j and α−j+1 are coherent.

Claim 4 implies that y+
j ∈ αj+1 and y−j+1 ∈ αj. But this means that γj and γj+1 intersect

in at least three points, the �nal contradiction.

4.4 Hereditarily-convex drawings

The aim of the next four subsections is to show that pseudospherical drawings of Kn are
characterized by a simple local property of the drawing known as convexity.
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4.4.1 Pseudospherical drawings are hereditarily-convex.

In this subsection we introduce the notion of convexity and show that pseudospherical
drawings of Kn are hereditarily-convex.

De�nition 4.4.1. Let D be a drawing of Kn in the sphere.

• Let T be a 3-cycle of Kn. A convex side of T is a disk ∆ bounded by D[T ] such that,
for every vertex v drawn inside ∆, the three edges connecting v to the vertices of T
are drawn in ∆.

• A choice of convex sides is a set {∆T : T is a 3-cycle of Kn} such that each ∆T is
a convex side of T .

• The drawing D is convex if it has a choice of convex sides.

• The drawing D is hereditarily-convex or simply h-convex, if there is a choice of convex
sides {∆T : T is a 3-cycle} such that, if T , T ′ are 3-cycles for which D[T ′] ⊆ ∆T ,
then ∆T ′ ⊆ ∆T .

• The drawing D is face-convex or simply f-convex, if there is a face F such that, if for
every 3-cycle T we let ∆T be its side for which ∆T∩F = ∅, then {∆T : T is a 3-cycle}
is a choice of convex sides.

It is immediate that face-convex drawings are hereditarily-convex. In connection with
Chapter 2, we will see in Subsection 4.4.2 that face-convex drawings are equivalent to
pseudolinear drawings of Kn in the plane. Convex drawings of Kn have received recent
attention from the community: during the Crossing Numbers Workshop 2017 in Osnabrück,
Aichholzer found, using computer assistance, that, for n ≤ 12, every optimal drawing of
Kn is convex. We refer to [7] for a more detailed treatment on convex drawings of Kn.
The aim of this section is to show the following:

Theorem 4.4.2. A drawing of Kn is pseudospherical if and only if it is hereditarily-convex.

Is it worth noting that in [7] it was shown that h-convex drawings are those from
obtained from excluding two drawings of K5 and one drawing of K6. This observation and
Theorem 4.4.2 imply the existence of an O(n6) algorithm for testing whether a drawing is
pseudospherical.
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In this subsection we prove the easy direction of Theorem 4.4.2: pseudospherical draw-
ings are hereditarily-convex (Lemma 4.4.4). In Subsection 4.4.4 we complete the proof by
showing that hereditarily-convex drawings are pseudospherical.

We start with a basic observation.

Lemma 4.4.3. In a pseudospherical drawing of Kn, if e and f are distinct edges and γe
is the pseudocircle extending e, then γe intersects f at most once.

Proof. Suppose that e, f are edges for which γe intersects f at least twice. Since γf
intersects γe in at most two points, γe intersects f exactly twice. Then the ends of f are
in the same side of γe, but f is not contained in that side, contradicting (PS2).

Lemma 4.4.4. Let D be a pseudospherical drawing of Kn. Then every 3-cycle T has a
side ∆T whose interior is disjoint from the three pseudocircles extending the edges of T .
Moreover, {∆T : T is a 3-cycle} is a choice of convex sides witnessing that D is h-convex.

Proof. Let e be an edge of T . The pseudocircle γe extending e intersects the other two
edges of T at the ends of e. Lemma 4.4.3 implies that γe \D[e] is drawn in the interior of
a side ∆′T of D[T ].

For any edge f of T distinct from e, γf intersects γe at the end that e and f have in
common. Since this intersection is a crossing, the points of γf \D[f ] near this crossing are
in the interior of ∆′T , and so is γf \D[f ]. Then the other side ∆T of D[T ] has its interior
disjoint from the three pseudocircles extending the edges of T .

To show that ∆T is convex, consider a vertex x drawn in the interior of ∆T . Note that
∆T is the intersection of three disks bounded by pseudocircles, each of them going through
one of the edges of T . This and (PS2) imply that any edge having both ends in ∆T is
drawn in ∆T . In particular, this holds for the edges connecting x to the three vertices in
T , and hence ∆T is convex.

Finally, in order to show that {∆T : T is a 3-cycle} witness that D is h-convex, we
consider a pair of 3-cycles T1, T2 such that D[T2] ⊆ ∆T1 .

Claim 1. If T1 and T2 have at least one vertex in common, then ∆T2 ⊆ ∆T1.

Proof. Let u ∈ V (T1) ∩ V (T2) and let e be an edge of T1 incident with u. If T1 = T2, then
the claim trivially holds, so we may assume that T2 has a vertex v not in T1. The choice of
∆T1 and the hypothesis on T2 imply that γe and D[T2] are drawn in distinct sides of D[T1].
Since D[u] is a crossing between γe and γuv (PS3), there are points of γuv on both sides of
γe. Consequently, γuv is drawn on the side of D[T2] not contained in ∆T1 ; the same holds
for any pseudocircle that extends an edge of T2. Thus ∆T2 ⊆ ∆T1 .
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From Claim 1, we may assume that T1 and T2 have no vertices in common. Let
u ∈ V (T2) \ V (T1) and let V (T1) = {x, y, z}. Since ∆T1 is convex and u is drawn in the
interior of ∆T1 , the three edges connecting u to x, y and z are drawn in ∆T1 . If one of
these three edges, say ux, intersects the edge in T2 − u, then the side of T2 containing x is
not convex. Because ∆T2 is convex, ∆T2 is the side of T2 included in ∆T1 . Thus, we may
assume that none of ux, uy and uz cross the edge in T2 − u. This implies that the two
vertices of T2 − u are drawn in one of the three faces of D[T1 + u] included in ∆T1 . By
symmetry, we may assume that the side ∆ of T ′1 = (x, y, u) included in ∆T1 is the one in
which T2 is drawn. Claim 1 applied to T1 and T ′1 implies that ∆T ′1

= ∆, and applied to T ′1
and T2 implies that ∆T2 ⊆ ∆T ′1

. Then ∆T2 ⊆ ∆T1 , and D is h-convex.

4.4.2 Face-convex drawings

A drawing D of Kn is face-convex if there is a face F such that, for every 3-cycle T , the
side of T disjoint from F is convex. In this subsection we explain why face-convex drawings
are equivalent to pseudolinear drawings of Kn in the plane. We will see in the next section
that face-convex drawings are the basic pieces in the description of the structure of an
h-convex drawing. In Lemma 4.4.8 and Corollary 4.4.9 we investigate some properties of
face-convex drawings that we need in the next section.

A drawing D in the sphere S is equivalent to a drawing D′ in the plane R2 if there exists
a point p in a face of D and an homeomorphism f : S \ {p} → R2 such that the image
f(D) is homeomorphic to D′. In Section 2.5 of Chapter 2, we characterized pseudolinear
drawings of Kn in the plane in terms of forbidding the drawing of a path of length 3 known
as the B con�guration. From this characterization we obtained the following.

Corollary 2.5.2. A good drawing D of Kn in the plane is pseudolinear if and only if, for
every 3-cycle T and for every vertex v drawn in the bounded face of D[T ], the three edges
connecting v to the vertices of T are contained in the disk bounded by D[T ].

From this corollary it immediately follows the main result of [8].

Theorem 4.4.5. [8] A drawing of Kn is face-convex if and only if it is equivalent to a
pseudolinear drawing of Kn in the plane.

In the remainder of this section we prove Lemma 4.4.8, an alternative characterization
of pseudolinear drawings of Kn due to Aichholzer et al. [5].
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Notation 4.4.6. Let D be a drawing of Kn and let J be a crossing K4 of D. If CJ denotes
the 4-cycle consisting of the uncrossed edges in D[J ], then the crossing side of J is the disk
bounded by D[CJ ] that contains the crossing of D[J ].

Our next observation immediately follows from the de�nition of convex drawing.

Observation 4.4.7. Let D is a convex drawing of Kn and let J be a crossing K4 in D.
Then each 3-cycle in J has a unique convex side: the one included in the crossing side of
J .

Lemma 4.4.8. Let D be a drawing of Kn in the sphere, and let F be a face of D. Then
the following are equivalent:

(i) F witnesses face-convexity; and

(ii) the crossing side of every crossing K4 is disjoint from F .

Proof. Suppose that (i) holds. By way of contradiction, suppose that J is a crossing K4

for which its crossing side is not disjoint from F . Then F is included in a face F ′ of D[J ]
incident with the crossing of J . The face F ′ is bounded by two segments of the edges
crossing in J and by an uncrossed edge e. Let T be any 3-cycle of J having e as an edge.
From Observation 4.4.7 it follows that the unique convex side of T is the one containing
F . However, this contradicts that F witnesses face-convexity.

Conversely, suppose that (ii) holds. Let T be a 3-cycle and let ∆T be the side of T
disjoint from F . If ∆T is not convex, then there exists a vertex u drawn in the interior of
∆T , and a vertex v ∈ V (T ) for which D[uv] 6⊆ ∆T . Thus, uv crosses at least one edge in
T , and since D is a good drawing, it crosses only the edge in T − v. Then T + u induces a
crossing K4. Moreover, since uv and the edge in T −v are the only crossing edges in T +u,
the edges connecting u to the vertices in T − v are included in ∆T . This shows that the
face of D[T + u] bounded by a 4-cycle is included in ∆T , and hence the crossing side of
T + u is not disjoint from F , contradicting (ii). Thus ∆T is convex for every T , and hence
F witnesses face-convexity.

Corollary 4.4.9. Let n be an integer with n ≥ 3. If F is a face of a drawing D of Kn

witnessing that D is f-convex, then F is bounded by a cycle of Kn.

Proof. Consider the underlying plane graph G of D obtained by replacing each crossing of
D by a degree 4 vertex. From [24, Lemma 5] it follows that G is 2-connected (in fact, the
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authors showed that, for n ≥ 5, G is 3-connected). Consequently F is bounded by a cycle
of G.

If the boundary cycle of F is not a cycle of Kn, then there is at least one crossing ×
of D incident with F . Let J be the crossing K4 induced by the ends of the pair of edges
crossing at ×. Since × is incident with F , one of the four faces of D[J ] incident with ×
contains F . Then the crossing side of J is not disjoint from F , and this contradicts Lemma
4.4.8.

4.4.3 The face-convex sides of an hereditarily-convex drawing

In this section we describe the structure of hereditarily-convex drawings needed to com-
plete the proof of Theorem 4.4.2. We will see that, in any hereditarily-convex drawing
of Kn, every edge induces a natural decomposition into two face-convex (or pseudolinear)
drawings. This decomposition generalizes the fact that, in a spherical drawing, if we con-
sider a great circle γ extending an edge, then each of the two drawings induced by the
vertices on one side of γ is equivalent to a rectilinear drawing in the plane.

Notation 4.4.10. Let D be a drawing of Kn with a choice of convex sides {∆T : T is
a 3-cycle} witnessing h-convexity. For each e ∈ E(Kn), let −→e be an arbitrary orientation
of e.

• The set Σ1
e consists on the vertices v in Kn not incident with e, for which the 3-cycle

T containing v and e has its chosen convex side ∆T to the left of −→e . The set Σ2
e

consists on the vertices v not incident with e, for which the 3-cycle T containing v
and e has ∆T to the right of −→e .

• For i = 1, 2, we let Di
e be the subdrawing of D induced by the vertices in Σi

e and e.

We should make few points about this notation. First, the orientation that we choose
for each edge is irrelevant to us; it only helps us distinguish the sides of e. Second, we
will assume that every choice of convex sides witnessing h-convexity also comes with an
arbitrary orientation of the edges of Kn, so that the 1- and 2-sides of e are predetermined,
as well as Σ1

e and Σ2
e.

The next result will be used in the proofs of 4.4.14 and 4.4.16.

Lemma 4.4.11. Let D be an h-convex drawing of Kn with respect to a given choice of
convex sides. Suppose that J is a crossing K4 in D, and let v ∈ V (Kn) \ V (J) be a vertex
drawn in the crossing side of J . Then
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(i) the four edges connecting v to the vertices of J are drawn in the crossing side of J ;
and

(ii) these four edges partition the crossing side of J into four regions; each of them is the
chosen convex side of their boundary.

Proof. Suppose that x, y, z, w are the vertices of J , and we may choose these labels so
that xz crosses yw. Without loss of generality, suppose that v is in the face bounded by
D[xy] and by some subsegments of D[xz] and D[yw].

Suppose that {∆T : T is a 3-cycle} is the given choice of convex sides. Observation
4.4.7 implies that ∆xyz and ∆xyw are included in the crossing side of J , and consequently,
so are the edges connecting v to the vertices of J . Then (i) holds.

To show (ii), consider any of the four closed regions of the crossing side of J , bounded
by an edge e ∈ E(J) and by the edges connecting v to the ends of e. If e 6= zw then this
region is contained in either ∆xyz or ∆xyw, and hence is convex. Otherwise, this region is
bounded by the 3-cycle (v, z, w), and is contained in the crossing side of the K4 induced
by v, x, z and w. Now the result follows from Observation 4.4.7.

Lemma 4.4.12. Let D be a an h-convex drawing of Kn with respect to a given choice of
convex sides. Let e, f ∈ E(Kn). If f crosses e, then the ends of f are in distinct ones of
Σ1
e and Σ2

e. Consequently, for i = 1, 2, e is not crossed in Di
e.

Proof. Let J be the crossing K4 containing the four ends of e and f . If T1 and T2 are the
3-cycles of J containing e, then the disks bounded by T1 and T2 included in the crossing
side of J contain distinct sides of e. These disks are the chosen convex sides by Observation
4.4.7, and hence Lemma 4.4.12 holds.

Our previous lemma shows that, in any h-convex drawing D of Kn, every edge e is
incident to two faces of Di

e; each of them includes one side of e.

Notation 4.4.13. Let D be an h-convex drawing of Kn with respect to a given choice of
convex sides. For e ∈ E(Kn) and for i ∈ {1, 2}, we let F i

e be the face of Di
e incident with

e that includes the (3− i)-side of e.

Lemma 4.4.14. Let D be an h-convex drawing of Kn with respect to a choice {∆T :
T is a 3-cycle} of convex sides, and let e ∈ E(Kn). If, for i ∈ {1, 2}, |Σi

e| ≥ 1, then every
3-cycle T in Di

e has ∆T ∩ F i
e = ∅. In particular Di

e is f-convex.
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Proof. Let J be any crossing K4 in Di
e and suppose FJ is the face of D[J ] bounded by a

4-cycle. By Lemma 4.4.8, it is enough to show that F i
e ⊆ FJ .

Lemma 4.4.12 implies that e does not cross any edge in J . In particular, if e ∈ E(J),
then e is part of the 4-cycle bounding FJ . Moreover, Observation 4.4.7 tells us that, if
e ∈ E(J), then the 3-cycles of J through e have their chosen convex sides disjoint from
FJ ; in this case F i

e ⊆ FJ , as desired.

Now suppose that e /∈ E(J). In this case, e has an end u /∈ V (J), drawn in a face of
D[J ]. If D[u] ∈ FJ , then, since e does not cross any edge in J , e is drawn in the closure of
FJ . Because F is incident with e in Di

e, F
i
e ⊆ FJ .

By way of contradiction suppose that u is drawn in a face F ′ of D[J ] distinct from FJ .

Lemma 4.4.11 implies that the four edges from u to the vertices in J are drawn inside
the crossing side of J . These four edges partition the crossing side of J into four closed
regions. Each of these four regions is the convex side of the 3-cycle bounding the region. If
e is one of the four edges connecting u to a vertex in J , then two of the 3-cycles bounding
these four regions have their convex sides containing distinct sides of e. This contradicts
that all the vertices of J are in Di

e. Thus, we may assume that e is none of the four edges
connecting u to a vertex in J .

Let v be the end of e distinct from u. Since e does not cross any edge of J , v is
located in one of the four previously described regions; call it ∆. Let T be the 3-cycle
of J + u bounding ∆. By Lemma 4.4.11, ∆ is convex, and hence e and the other two
edges connecting v to the vertices in T − u are drawn in ∆. Now, as D is h-convex, the
3-cycles in T + v containing e have their chosen convex sides including distinct sides of e,
a contradiction.

Recall that, in every f-convex drawing of Kn, a face witnessing f-convexity in D is
bounded by a cycle of Kn (Corollary 4.4.9). With this and Lemma 4.4.14 in hand, we
introduce the following.

Notation 4.4.15. Let D be an h-convex drawing with respect to a given choice of convex
sides. Let e ∈ E(Kn). For i = 1, 2, Ci

e denotes the cycle bounding F i
e . We let ∆i

e be the
disk bounded by D[Ci

e] disjoint from F i
e .

The remainder of this subsection is devoted to re�ning our structural description of
h-convex drawings, by showing that for every edge e, ∆1

e∩∆2
e = D[e] (Lemma 4.4.18). The

proof of this lemma is achieved in a sequence of three small steps.

Our �rst step is to show that each disk ∆i
e does not contain vertices from Σ

(3−i)
e .
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Lemma 4.4.16. Let D be an h-convex drawing of Kn with respect to a given choice of
convex sides. Let e ∈ E(Kn). For i = 1, 2, if x ∈ Σ3−i

e , then D[x] /∈ ∆i
e.

Proof. By way of contradiction, suppose that, for some i = 1, 2, there exists x ∈ Σ3−i
e with

D[x] ∈ ∆i
e.

First, suppose that Ci
e is a 3-cycle. Then x is drawn in the convex side ∆i

e. Thus, the
two edges connecting x to the ends of e are also drawn in ∆i

e. Since D is h-convex, the
convex side of the 3-cycle containing e and x is the one included in ∆i

e. This implies that
x ∈ Σi

e, a contradiction.

In the alternative, suppose that Ci
e has length at least 4. For any edge f of Ci

e not
incident with e, the K4 induced by the ends of e and f is drawn in ∆i

e, and hence is
crossing. From Lemmas 4.4.14 and 4.4.8 it follows that every crossing K4 obtained in this
way has its crossing side included in ∆i

e. Moreover, ∆i
e is the union of the crossing sides of

the K4s obtained in this way, thus at least one of them, say J , contains D[x] in its crossing
side.

Since D[e] is part of the boundary of the crossing side of J , Lemma 4.4.11 implies
that the 3-cycle containing x and e, as well as its chosen convex side, is included in ∆i

e.
Therefore x ∈ Σi

e, a contradiction.

In our second step, we show that edges belonging to distinct ones of D1
e and D

2
e do not

cross.

Lemma 4.4.17. Let D be an h-convex drawing of Kn with a given choice of convex sides.
Let e ∈ E(Kn). Then no edge of D1

e crosses any edge of D2
e .

Proof. We start with the following observation.

Claim 1. If an edge f1 of D1
e crosses an edge f2 of D2

e , then at least one of f1 and f2 has
no ends in common with e.

Proof. Suppose that each of f1 and f2 has an end in common with e. The ends of this pair
of edges induce a crossing K4 for which e is part the 4-cycle bounding a face. Observation
4.4.7 shows that the ends of f1 and f2 that are not in e are in the same one of Σ1

e and Σ2
e.

Thus f1 and f2 are in the same of D1
e and D

2
e , a contradiction.

By way of contradiction, suppose that x1y1 is an edge of D1
e crossing an edge x2y2 of

D2
e . Claim 1 implies that at least one of these edges, say x1y1, is not incident with e. Let

J1 be the K4 induced by the ends of x1y1 and e.
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First, suppose that one of the ends of x2y2, say y2, is an end of e. As x1y1 crosses x2y2,
Lemma 4.4.12 shows that x2y2 6= e, and hence x2 ∈ Σ2

e. Claim 1 implies that x1y1 is the
only edge of J1 that crosses x2y2. Lemma 4.4.16 implies that D[x2] /∈ ∆1

e. Thus, when we
traverse D[x2y2] from x2 to y2, the �rst point of D[J1] that we encounter is the crossing ×
between x2y2 and x1y1. This implies that x1y1 is incident with the face of D[J1] containing
x2. Hence J1 is a crossing K4 where x1y1 and e are in the 4-cycle of D[J1] bounding a face
containing D[x2].

If we continue traversing x2y2 across ×, then we enter into a face F of D[J1] included
in the crossing side of J1. When we follow x2y2 until we reach y2, x2y2 must cross another
edge that has a segment in the boundary of F . However, the existence of a second crossing
contradicts Claim 1.

Now we assume that e and x2y2 have no ends in common. Let J2 be the K4 induced by
the ends of e and x2y2. From what we just showed, we may assume that the only crossing
between an edge in J1 and an edge in J2 is between x1y1 and x2y2. Since D[x2] /∈ ∆1

e, when
we traverse D[x2y2] from x2 to y2, the �rst point we encounter is the crossing × between
x2y2 and x1y1. Again, this implies that D[J1] is a crossing K4, having x1y1 and e in the
4-cycle bounding a face FJ containing D[x1].

Since the crossing side of J1 is included in ∆1
e, and D[y2] /∈ ∆1

e, D[y2] is also drawn in
FJ . As we continue traversing x1y2 across ×, we enter into a face F of D[J1] included in
the crossing side of J1. Since D[x2y2] crosses an even number of times the boundary of F ,
x2y2 crosses some other edge of J1, a contradiction.

We reached our third and �nal step towards understanding the structure of h-convex
drawings.

Lemma 4.4.18. Let D be an h-convex drawing with a given choice of convex sides, and let
e ∈ E(Kn). If ∆1

e and ∆2
e are the disks de�ned as in Notation 4.4.15, then ∆1

e∩∆2
e = D[e].

Proof. Let u and v be the ends of e. Since Σ1
e ∩Σ2

e = ∅, u and v are the only vertices that
C1
e and C2

e have in common. Then D[C1
e ∪ C2

e ] is the drawing of three internally-disjoint
uv-paths. Moreover, Lemmas 4.4.12 and 4.4.17 imply that D[C1

e ∪ C2
e ] is drawn as three

internally disjoint uv-arcs in the sphere.

As the open uv-arc D[C1
e ] \ D[e] contains at least one vertex of Σ1

e, Lemma 4.4.16
guarantees that such an arc is not drawn in ∆2

e. Likewise, D[C2
e ]\D[e] is not drawn in ∆1

e.
So each of ∆1

e and ∆2
e is the closure of a face in D[C1

e ∪C2
e ], and these disks only intersect

at D[e].
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4.4.4 Hereditarily-convex drawings are pseudospherical

In this subsection we conclude the proof of Theorem 4.4.2 (pseudospherical and h-convex
drawings are equivalent), and simultaneously pave our way towards the proof of Theorem
4.1.2 (pseudospherical drawings have an extension satisfying (PS3')). We assume that the
reader is familiar with Notation 4.4.10-4.4.15 given in the previous subsection.

Our aim in this subsection is to extend the edges of an hereditarily-convex drawing D
of Kn to an arrangement of pseudocircles. Lemmas 4.4.14 and 4.4.18 describe how every
edge e induces a partition into two f-convex drawings that intersect in D[e]. This partition
suggests that, if γe is a pseudocircle extending e, then ∆1

e and ∆2
e are on distinct sides of

γe. This condition is the same as assuming that γe \D[e] is an arc connecting the ends of
e in S \ (∆1

e ∪ ∆2
e). This last condition is what we de�ne as the basic property that any

�feasible� pseudocircle extending e must satisfy. We generalize this notion of �feasibility�
to allow multiple pseudocircles extending a given subset of edges in Kn.

Notation 4.4.19. Let D be an h-convex drawing of Kn with a given choice of convex sides
and let e ∈ E(Kn). We denote as Fe the face of D1

e ∪D2
e bounded by (C1

e − e) ∪ (C1
e − e).

Notice that Fe = F 1
e ∩ F 2

e = S \ (∆1
e ∪∆2

e).

De�nition 4.4.20. Let D be an h-convex drawing of Kn in the sphere, and let J ⊆ E(Kn).
A set of pseudocircles extending J is a set {γf : f ∈ J} of simple closed curves satisfying
(PS1)-(PS3) and such that, for each f ∈ J :

(i) γf \D[f ] is an open arc connecting the ends of f in Ff ; and

(ii) for each e ∈ E(Kn), the intersection of γf with D[e] is either empty; a crossing with
the interior of D[e]; a single vertex that is a common end of e and f ; or D[e] and
f = e.

The next remark follows from the fact that, for each edge f ∈ J , ∆1
f and ∆2

f are
contained in distinct sides of γf .

Remark 4.4.21. If γf is an element of a set of pseudocircles extending J , and γf crosses
an edge, then the ends of such an edge are in distinct ones of Σ1

f and Σ2
f . Moreover, if e1

and e2 are edges crossed by γf , and x1, x2 are ends of e1 and e2, respectively, then x1 and
x2 belong to the same one of Σ1

f and Σ2
f if and only if they are on the same side of γf .
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We aim to show that, if J ⊆ E(Kn) and e ∈ E(Kn)\J , then every set ΓJ of pseudocircles
extending J can be enlarged to one extending J ∪{e}. For this, we consider a pseudocircle
γe extending e, obtained as the union of D[e] and an arc joining the ends of e in Fe, very
near to D[C1

e − e]. In Lemmas 4.4.23 and 4.4.24 we will show that such γe can be chosen
such that ΓJ ∪ {γe} extends J ∪ {e}.

Our next observation will be constantly used in the proofs of Lemmas 4.4.23 and 4.4.24.

Lemma 4.4.22. Let D be an h-convex drawing with a given choice of convex sides. Suppose
that e and f are distinct edges of E(Kn). Then there are no four vertices x1, x2, y1, y2

occuring in this cyclic order around C1
e , and such that xi and yi are drawn in Di

f , for
i = 1, 2.

Proof. If such four vertices exists occur in this cyclic order, then the edges x1y1 and x2y2

are drawn in ∆1
e, and hence they cross. However, the edge x1y1 is in D1

f , while x2y2 is in
D2
f , contradicting Lemma 4.4.12.

Lemma 4.4.23. Let D be an h-convex drawing of Kn with a given choice of convex sides
and let J ⊆ E(Kn). Suppose that {γf : f ∈ J} is a set of pseudocircles extending J .
Let e, f be distinct edges of Kn with e /∈ J and f ∈ J . Then there exists a simple closed
curve γe with D[e] ⊆ γe and γe \D[e] drawn in Fe, su�ciently near D[C1

e − e], such that
|γf ∩ γe| ≤ 2.

Proof. As γe is constructed by considering a curve in Fe near D[C1
e − e], we note that any

forced crossing between γe \D[e] and γf arises from any short segment σ of γf , with one
end z ∈ D[C1

e ], and the rest of σ \ z drawn in Fe.

Having the previous paragraph under consideration, let Z = γf ∩ (D[C1
e ] \ D[e]), and

for each z ∈ Z, consider a small open arc α of γf centered at z. For z ∈ Z, de�ne the
contribution c(z) of z to be the number of components of α \ z drawn in Fe. In such case,
c(z) is either 0, 1 or 2, and it counts the forced crossings near D[z].

Thus, by letting c(γf ) =
∑

z∈Z c(z), we can choose γe su�ciently near C1
e such that

|γe ∩ γf | = c(γf ) + |γf ∩D[e]|.

Since |γe ∩ γf | is even and |γf ∩D[e]| ≤ 1, it su�ces to show that c(γf ) ≤ 2.

Claim 1. If for some z ∈ Z, c(z) = 2, then c(γf ) ≤ 2.
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Proof. By assumption, if γf intersects the interior of an edge, then it crosses that edge.
Because γf does not cross from Fe into ∆1

e at z, z must be a vertex of C1
e . Moreover, since

γf satis�es Item (ii) in De�nition 4.4.20, z is an end of f .

Because c(z) = 2, the points of D[f ] near z are drawn in Fe. As every edge that has
both ends in D1

e is drawn in ∆1
e, the end of f distinct from z is in Σ2

e.

Suppose that there exists z′ ∈ Z \{z} with c(z′) > 0. From what we just observed, z′ is
not an end of f , and hence is a crossing between γf and an edge e′ of C1

e − e. Traverse γf ,
starting at z′, continuing in the interior of ∆1

e, until we reach a point z′′ in D[C1
e ]. Since

c(z) = 2, z′′ /∈ {z, z′}. Thus z′′ is also a crossing between γf and an edge e′′ in C1
e − e′.

Let x1 and y1 be ends of e′ and e′′, respectively, and we choose them such that they are
in the same component of D[C1

e ] \ {z′, z′′} containing z. Let x2 be the end of e′ distinct
from x1. As γf crosses each of e′ and e′′ exactly once, Remark 4.4.21 shows that x1 and
y1 are on the same one of Σ1

f and Σ2
f . By reorienting f , if necessary, we may assume x1,

y1 ∈ Σ1
f . In this case x2 ∈ Σ2

f . By letting y2 = z, we obtain vertices x1, x2, y1, y2 occurring
in this cyclic order in C1

e , and such that xi, yi belong to Di
e, for i = 1, 2. This contradicts

Lemma 4.4.22.

Claim 2. If f ∈ E(C1
e ), then c(γf ) ≤ 2.

Proof. As D[f ] ⊆ γf , each end of f has a contribution to c of at most 1. Suppose that
there exists z ∈ Z, that is not an end of f , with c(z) > 0. Then, from Claim 1, we may
assume that c(z) = 1. Note that z is a crossing between γf and an edge e′ of C1

e − e not
incident with f . As the ends of e′ belong to distinct ones of Σ1

e and Σ2
e, and the ends of

f belong to both D1
f and D2

f , we can label the ends of e′ and f using labels x1, x2, y1, y2

such that they occur in this cyclic order in C1
e , and such that xi, yi are drawn in Di

e, for
i = 1, 2. This contradicts Lemma 4.4.22.

From the previous two claims, we may assume that f 6∈ E(C1
e ) and that each element

in Z with positive contribution has contribution 1.

Let z ∈ Z with c(z) = 1. Follow γf from Fe into ∆1
e across z, and continue along γz

inside ∆1
e, until we reach a point z′ just before we cross into Fe. Since c(z′) = 1, this

shows that the elements in Z with positive contribution are paired in such a way that a
pair corresponds to the ends of an arc-component of γf ∩∆1

e.

By way of contradiction, suppose that c(γf ) > 2. It follows that there are four vertices
z1, z′1, z2, z′2 with contribution 1, and such that, for i = 1, 2, zi and z′i are ends of the same
arc-component αi of γf ∩∆1

e.
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Claim 3. At least one of α1 and α2 is disjoint from the ends of f .

Proof. If both ends of f are in ∆1
e, then D[f ] ⊆ ∆1

e, and hence they belong to the same
arc-component of γf ∩∆1

e. In this case the claim holds.

In the alternative, at most one end of f is part of ∆1
e. Since α1 and α2 are disjoint

subsets of ∆1
e, at least one of them is disjoint from the ends of f .

By symmetry, we may assume that the ends of f are not in α1, and hence z1 and z′1
are crossings between γf and distinct edges e1, e′1 ∈ E(C1

e ).

Let x1 and y1 be ends of e1, e′1, respectively, and chosen such that they are in the same
component of D[C1

e ] \ {z1, z
′
1} containing {z2, z

′
2}. Let x2 be the end of e1 distinct from x1.

In this case, x1 and y1 belong to the same one Σ1
f and Σ2

f . By reorienting f , if necessary,
we may assume that x1, y1 ∈ Σ1

f . Because γf crosses e1, x2 ∈ Σ2
f .

If one of z2 and z′2 is an end of f , then we label such an end of f as y2. In the alternative,
both z2, z′2 are crossings. If e2 is the edge of C1

e that crosses γf at z2, then one of the two
ends of e2 is in Σ2

f ; in this case, we label such an end as y2.

In any case, we obtained four vertices x1, x2, y1, y2 occurring in this cyclic order in C1
e ,

and such that xi, yi are drawn in Di
e, for i = 1, 2, contradicting Lemma 4.4.22. This shows

that c(γ2) ≤ 2, as desired.

The next Lemma guarantees that, in the process of enlarging a set of pseudocircles
extending some edges of Kn, the added pseudocircle satis�es (ii) in De�nition 4.4.20.

Lemma 4.4.24. Let D be an h-convex drawing of Kn with a given choice of convex sides,
and let e and e′ be distinct edges of Kn. Then there exists a simple closed curve γe with
D[e] ⊆ γe and γe \D[e] drawn in Fe, su�ciently near D[C1

e − e], such that the intersection
between γe and D[e′] is either empty; a crossing with the interior of D[e′]; or a single vertex
that is a common end of e and e′.

Proof. If e and e′ have an end in common, then D[e′] ⊆ ∆1
e∪∆2

e, and hence the intersection
of any curve γe, with γe \D[e] ⊆ Fe, is D[e] ∩D[e′]. In this case, Lemma 4.4.24 holds.

Henceforth we assume that e and e′ have no ends in common. For this case, the proof
is similar to the proof of Lemma 4.4.23: let Z = D[e′]∩D[C1

e ]. For each z ∈ Z, we consider
a short arc α of D[e′] centered at z; in case z is an end of D[e′], we instead let α be a
short segment of D[e′] starting at z. In any case, the contribution c(z) of z is the number
of components α \ z drawn in Fe.
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Observe that c(z) is the number of forced crossings near z, between D[e′] and a pseu-
docircle extending D[e] drawn near D[C1

e ]. Since every two edges are either crossing, have
an edge in common or are disjoint, c(z) ∈ {0, 1} for all z ∈ Z.

Thus, if we let c(e′) =
∑

z∈Z c(z), and we choose γe near enough D[C1
e ], then

|γe ∩D[e′]| = c(e′).

It is enough to show that c(e′) ≤ 2.

If e′ has both ends in the same one of Σ1
e and Σ2

e, thenD[e′] ⊆ ∆1
e∪∆1

e, and consequently,
c(e′) = 0. Thus, we may assume that e′ has ends on each of Σ1

e and Σ2
e.

By way of contradiction, suppose that c(e′) > 2. Let z, z′, z′′ ∈ Z such that c(z) =
c(z′) = c(z′′) = 1. At least two of these points in Z, say z and z′, are not ends of e′. In this
case, each of z, z′ is a crossing between D[e′] and distinct edges f , f ′ ∈ E(C1

e ). Let x1 and
y1 be ends of f and f ′, respectively. We choose x1 and y1 to be in the same component of
C1
e − f − f ′ containing z′′. In this case, x1 and y1 belong to the same one of Σ1

e′ and Σ2
e′ .

Let x2 be the end of f distinct from x1. By reorienting e′, if necessary, we may assume
that x1 and y1 are in Σ1

e′ , while x2 ∈ Σ2
e′ .

Either z′′ is an end of e′, and then we let y2 = z′′, or z′′ is a crossing between e′ and an
edge f ′′ of C1

e , and then we choose y2 to be the end of f ′′ in Σ2
e′ . In any case, the vertices

x1, x2, y1, y2 occur in this cyclic order in C1
e , and such that xi, yi belong to Di

e, for i = 1, 2.
This contradiction to Lemma 4.4.22 shows that c(e′) ≤ 2, as desired.

The next result follows immediately from Lemma 4.4.23 and 4.4.24.

Lemma 4.4.25. Let D be an h-convex drawing with a given choice of convex sides, and
let J ⊆ E(Kn). Suppose that {γf : f ∈ J} is a set of pseudocircles extending J . Then, for
every e ∈ E(Kn) \ J , there exists a simple closed curve γe, su�ciently near D[C1

e ], such
that {γf : f ∈ J ∪ {e}} is a set of pseudocircles extending J ∪ {e}.

The following Corollary completes the proof Theorem 4.4.2, stating that h-convex draw-
ings are pseudospherical, and it is a straightforward application of Lemma 4.4.25.

Corollary 4.4.26. Every h-convex drawing of Kn is pseudospherical.

4.5 Finding curves that also satisfy (PS3')

In this section we conclude the proof of Theorem 4.1.2. For this, we will use the fact that
pseudospherical drawings are h-convex and we will prove the following.
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Theorem 4.5.1. Every h-convex drawing of Kn has a set of pseudocircles extending E(Kn)
and satisfying (PS3').

In Subsection 4.4.2 we saw that every f-convex drawing D of Kn is equivalent, via a
stereographic projection φ, to a pseudolinear drawingD′ in the plane. Then, by considering
the inverse image φ−1 of each pseudoline in an arrangement extending the edges in D′, and
adding to each of these images the point of the sphere from which we are projecting in
φ, we get an arrangement of pseudocircles extending E(Kn) and satisfying (PS3'). Thus,
in the proof of Theorem 4.5.1, we will assume that the drawing we are considering is not
f-convex.

The next lemma, the �rst ingredient we need to show Theorem 4.5.1, tells us more
about a set of extending pseudocircles in an h-convex drawing that is not f-convex.

Lemma 4.5.2. Let D be an h-convex drawing and let J ( E(Kn). Suppose that {γf :
f ∈ J} is a set of pseudocircles extending J and that e ∈ E(Kn) \ J . Then either D is
f-convex, or for every f ∈ J , γf ∩ Fe 6= ∅.

Proof. Suppose that for some f ∈ J , γf ∩ Fe = ∅. This implies that γf ⊆ ∆1
e ∪∆2

e. From
Lemma 4.4.18 we know that ∆1

e ∩ ∆2
e = D[e], and since γf crosses D[e] at most once,

γf ⊆ ∆`
e for some ` ∈ {1, 2}. In particular, (i) f has both ends in ∆`

e; and (ii) every vertex
of C`

e is in the same one of ∆1
f and ∆2

f .

Claim 1. f is an edge of C`
e.

Proof. If an edge xy crosses f , then x, y, are in di�erent ones of Σ1
f and Σ2

f . Thus, (ii)
implies that no edge joining two vertices in C`

e crosses f . In particular, if we let z be an
end of e, and let xy run through the edges of C`

e − z, then, as the chosen convex sides of
the 3-cycles xyz cover ∆`

e, it follows that one of these contains D[f ]. Let xyz be such a
cycle whose chosen convex side includes D[f ].

By way of contradiction suppose that f has an end u distinct from x, y and z. Since
u is drawn in the chosen convex side ∆xyz of xyz, so also are the edges ux, uy, uz. By
h-convexity, the chosen convex sides of the triangles uxy, uxz, uyz are included in ∆xyz.

Let v be the end of f distinct from u. If v ∈ {x, y, z}, then the two vertices of
{x, y, z}\{v} are on distinct ones of Σ1

f and Σ2
f , contradicting (ii). Thus, v is in the chosen

convex side bounded by one of uxy, uxz, uyz, and the two of {x, y, z} in such boundary
are on distinct ones of Σ1

f and Σ2
f , a contradiction. Thus, both ends of f are in C`

e.
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If f /∈ E(C`
e), then f is a chord of C`

e drawn in ∆`
e. Then there is an edge xy with

ends in C`
e that crosses f . In such case, x and y are on distinct ones of Σ1

f and Σ2
f , a

contradiction.

Lemma 4.4.14 shows that D`
e is f-convex. Since f is an edge in C`

e, and C`
e is the

boundary of the face F `
e witnessing f-convexity in D`

e, all the vertices of D`
f not incident

with f are in Σk
f , for some k ∈ {1, 2}. As γf ⊆ ∆`

e, every vertex of ∆3−`
e is in the same

Σk
f as the ends of e not incident with f . Then all the vertices of Kn are in Dk

f , and hence
D = Dk

f . It follows from Lemma 4.4.14 that D is f-convex.

We are ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. Let D be an h-convex drawing of Kn. From the discussion pre-
ceeding Lemma 4.5.2, we may assume that D is not f-convex.

Let J be a set of E(Kn) for which there exists a set {γf : f ∈ J} of pairwise intersecting
pseudocircles extending J . From Lemma 4.4.24, we may choose J to have at least one edge.

If J = E(Kn), then J is our desired set of pseudocircles. Otherwise, let e ∈ E(Kn) \ J .
Our aim is to �nd a pseudocircle γe extending e, and such that {γf : f ∈ J} ∪ {γe} is a
set of pairwise intersecting pseudocircles extending J ∪ {e}.

Let M be the set of edges g ∈ E(Kn) \ (J ∪ {e}) such that D[g] ∩ Fe 6= ∅. We
repeatedly apply Lemma 4.4.25 to the edges g inM to obtain pseudocircles δg. This yields
a set Γ = {γf : f ∈ J} ∪ {δg : g ∈M} of pseudocircles extending J ∪M .

For our initial approximation to γe, we consider the simple closed curve γ0
e extending e,

obtained from applying Lemma 4.4.25 to Γ and e. We let I0 be the set of edges in J ∪M ,
for which their corresponding curves in Γ intersect γ0

e . We remark that M ⊆ I0: every
edge g ∈M cannot have both ends in the same one of ∆1

e and ∆2
e. Thus, if we follow D[g]

from a point in Fe towards the end of D[g] in ∆1
e, D[g] crosses D[C1

e ]. As γ0
e is chosen to

be near D[C1
e ], δg crosses γ0

e .

A feasible extension for e is a simple closed curve γ including D[e], such that Γ ∪ {γ}
is a set of pseudocircles extending J ∪ M ∪ {e} in D. For every feasible extension γ,
the arc γ \ D[e] partitions Fe into two open regions; we refer to the region bounded by
(γ \D[e]) ∪D[C2

e − e] as Θγ (see Figure 4.11a). We use cr(Θγ) to denote the number of
crossings of Γ inside Θγ.

Informally speaking, cr(Θγ) measures how close is γ is to C2
e . The idea of the proof is

to start with the feasible extension γ = γ0
e (that indeed is far from C2

e ); then we slide γ
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towards C2
e . At each step, either γ intersects more curves in Γ or cr(Θγ) decreases. The

key is to show that if there is a moment where γ cannot be pushed closer to C2
e it is because

our current curve intersects all the curves in Γ.

Θγe
e

γe

∆1
e ∆2

e

(a)

∆A,γe

A

(b)

Figure 4.11: De�nitions in the proof of Theorem 4.5.1.

We formalize this by considering a critical curve: among all the feasible extensions of
e, we pick γe such that:

(i) the set I ⊆ J ∪M of edges whose corresponding curves in Γ intersect γe is such that
I0 ⊆ I;

(ii) subject to (i), I is as large as possible; and

(iii) subject to (i) and (ii), cr(Θγe) is as small as possible.

We aim to show that J ⊆ I. By way of contradiction suppose that J \ I is not empty.

Claim 1. Let f ∈ J \ I. Then γf ∩Θγe 6= ∅.

Proof. Since D is not f-convex, Lemma 4.5.2 implies that γf∩Fe 6= ∅. Thus, if γf is disjoint
from Θγe , then γf has points in the open subregion of Fe bounded by D[C1

e−e]∪(γe\D[e]).
Since the ends of f are in ∆1

e∪∆2
e, γf intersects the boundary of this open subregion. Then

γf either intersectsD[C1
e−e] or γe. Any curve in Γ that crosses from Fe intoD[C1

e ] intersects
δ0
e , and hence is in I0. Thus, in either case of γf intersectingD[C1

e−e]∪(γe\D[e]), condition
(i) implies that γf intersects γe, contradicting that f ∈ J \ I.
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We claim that, for every f ∈ J \ I, there is no face F of
⋃

Γ for which both γe \D[e]
and γf have arcs incident with F . In the alternative, we can apply a Reidemeister Type
II move to shift a portion of γe \D[e] across γf , contradicting our choice of γe (see (ii)).

Therefore, if we let ΓI = Γ \ {γf : f ∈ J \ I}, then there exists an arc A in
⋃

ΓI
with ends in the closed arc D[C2

e − e] and otherwise contained in Θγe , separating γe from
(
⋃

(Γ \ ΓI)) ∩Θγe .

Let ∆A,γe be the closure of the component of Θγe \A incident with γe \D[e] (see Figure
4.11b). We choose A so that ∆A,γe is minimal.

Our goal now is to show that we can slide γe towards C2
e without having a curve in

Γi disjoint from the new γe. For this, we start by describing how the arcs in ΓI intersect
∆A,γe .

Claim 2. Let γ ∈ ΓI . Then every arc-component of γ ∩∆A,γe has an end in the interior
of γe \D[e] and an end not in the interior of γe \D[e].

Proof. Let β be an arc of γ ∩ ∆A,γe . If β has both ends not in the interior of γe \ D[e],
then there is an arc A′ in

⋃
ΓI , with ∆A′,γe properly contained in ∆A,γe , contradicting the

choice of A.

Suppose now that β has both ends in the interior of γe \ D[e]. Clearly γ ∩ γe is not
empty, so, for some f ∈ I, γ = γf . Since |γ ∩ γe| = 2, γ \ β is contained in the side of γe
that contains ∆1

e. Therefore f /∈M .

Let f ′ ∈ J \ I. Since γe ∩ γf ′ = ∅, Claim 1 implies that γf ′ is entirely drawn in the side
of γe containing ∆2

e. Moreover, γf ′ does not intersect β, as the arc A separates γe \ D[e]
from γf ′ ∩Θγe . This implies that γf ∩ γf ′ = ∅, contradicting that the arcs in {γf : f ∈ J}
are pairwise intersecting.

We return to the context of Subsection 4.3, and consider a decomposition of A with
respect to the arrangement Γ.

Claim 3. At least one crossing in the decomposition of A faces the side of A included in
∆A,γe.

Proof. By way of contradiction suppose that all the crossings in A face the side of A disjoint
from ∆A,γe . We will arrive to a contradiction by showing that A is coherent.

Let α be an arc in the decomposition of A. Since A is an arc in
⋃

ΓI , α is included in
some curve γ ∈ Γ such that γ ∩ γe 6= ∅.
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α
β1

β2x1

x2

s

t

Figure 4.12: Illustrating some points in Claim 3.

Let β1 and β2 be the two disjoint arcs of γ \α, connecting an end of α to a point in γe,
and having no internal points in γe (Figure 4.12).

Let s and t be the ends of A, and let B be the st-arc of D[C2
e − e]. For i = 1, 2, let ai

be the end of βi in α. In case ai /∈ {s, t}, when we traverse βi from ai to its end in γe, we
have a �rst encounter with A ∪ B at a point that we denote as xi (for this part, we are
using the fact that the crossings in the decomposition of A are facing towards the side of
A disjoint from ∆A,γe) . If ai ∈ {s, t}, we simply let xi = ai.

If, for some i = 1, 2, xi is in the interior of A, then the aixi-arc of βi is a coherent
extension of α. Thus, as our goal is to show that α is coherent, we may assume that x1

and x2 are in B.

Let Z = γ ∩D[C2
e ]. For each z ∈ Z, consider a short arc σ of γ centered at z. Let c(z)

be the number of components of σ \ z drawn in Fe. By reversing the roles of Σ1
e and Σ2

e in
Lemma 4.4.24, we know that there is a simple closed curve δe extending e, with δe \D[e]
drawn in Fe near D[C2

e − e], and such that |δe ∩ γ| ≤ 2. This implies that
∑

z∈Z c(z) ≤ 2.

Since γ intersects D[e] at most once, at least one of β1 and β2, say β1, has one end
in γe \ D[e]. Each of x1 and x2 is in Z; furthermore, for i = 1, 2, there are points of
γ ∩ Fe near xi, and thus c(xi) > 0. If we traverse β1 from x1 towards its end in γe \D[e],
there is �rst point x′1 from which β1 crosses from C1

e into Fe. Such a point has c(x′1) > 0.
Either x′1 6= x1, and there are three points in Z having positive contribution c, or x′1 = x1,
and c(x1) = 2. In any case,

∑
z∈Z c(z) > 2, contradicting the conclusion of the previous

paragraph.

Thus, each arc α has a coherent extension, and hence A is coherent. However, Theorem
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4.3.3 implies that not all crossings in the decomposition of A face the same side of A. This
�nal contradiction shows that at least one of the crossings faces the side of A included in
∆A,γe .

Recall that ΓI is the set of curves in Γ that intersect γe. From what we just showed,
we may assume that there exists distinct curves γ1, γ2 in ΓI , crossing at ×1,2, where ×1,2

is a crossing in the interior of A facing the side of A included in ∆A,γe . For i = 1, 2, let βi
be the arc of γi ∩∆A,γe having ×1,2 as an end.

From Claim 2 we know that, for i = 1, 2, the end ai of βi distinct from ×1,2 is in the
interior of γe \D[e].

Since β1 ⊆ γ1 and β2 ⊆ γ2, |β1 ∩ β2| ≤ 2. If β1 and β2 cross twice, we denote their
crossing distinct from ×1,2 as ×∗1,2; otherwise, let ×∗1,2 = ×1,2.

Consider the simple closed curve θ obtained by traversing β1 from ×∗1,2 to a1, then
following γe until we reach a2, and returning back to ×∗1,2 by following β2. We claim that
none of the curves in Γ cross the interior of each of θ ∩ β1 and θ ∩ β2.

Suppose that some curve γ3 ∈ Γ crosses the interior of θ ∩ β1 at ×1,3. Let β3 be the
arc-component of γ3 ∩ ∆A,γe containing ×1,3. Claim 2 implies that β3 has a subarc β′3
connecting ×1,3 to an end of β3 not in the interior of γe \ D[e]. We may assume that β′3
has no further intersection with β1.

The set A ∪ β′3 ∪ β1 contains an arc A′ such that ∆A′,γe is properly contained in ∆A,γe ,
contradicting the choice of A. Thus no arc in Γ intersects the interior of θ ∩ β1, and
likewise no arc in Γ intersects the interior of θ ∩ β2. Moreover, no arc in Γ intersects θ ∩ γe
as consequence of Claim 2.

From the previous discussion we conclude that no arc in Γ has a point in the side of θ
contained in ∆A,γe . Therefore we can perform a Redeimeister III move, shifting the portion
of γe in θ across ×∗1,2. The obtained pseudocircle γ′e extending D[e] intersects the same
curves in Γ as γe, and it has cr(Θγ′e) < cr(Θγe), contradicting the choice of γe.

This last contradiction shows that a feasible extension γe of e satisfying (i), (ii) and
(iii), intersects all the curves in {γf : f ∈ J}. Thus, there is a set of pairwise intersecting
pseudocircles extending J ∪ {e}. The result now follows from applying an easy induction.
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4.6 Concluding remarks

In this section we present some observations and questions related to pseudospherical
drawings that can be interesting topics for future research.

A classic result of Barány and Füredi [10], states that given n points in general position
in the plane, there are at least n2 + o(n2) triangles formed by taking three of these n
points, that contain none of the other n − 3 points in their interior. This is the problem
of counting the number of empty triangles in a con�guration of points in the plane. There
are con�gurations with as few as approximately 1.6n2 + o(n2) empty triangles [11], and it
is an open problem to �nd the right coe�cient for n2.

In a more general setting, given a good drawing of Kn, an empty triangle is a 3-cycle
that contains no vertices in the interior of one of its sides. Harborth found a family of good
drawings of Kn with at most 2n − 4 empty triangles [17], and Aichholzer et al. showed
that every good drawing of Kn has at least n empty triangles [3]. In contrast, the Barány
and Füredi's result can be extended to pseudolinear drawings of Kn [8], so pseudolinear
drawings of Kn also have least n2 + o(n2) empty triangles. The next is a lower bound for
the number of empty trianges in a pseudospherical drawing of Kn. Its proof uses the fact
that in every pseudospherical drawing of Kn, each edge partitions the drawing into two
pseudolinear drawings (Lemma 4.4.14).

Theorem 4.6.1. If D is a pseudospherical drawing of Kn then D has at least 3
4
n2 + o(n2)

empty triangles.

Proof. If D is f-convex, then it has n2 + o(n2) empty triangles. Thus, we may assume D is
not f-convex. Since D is h-convex, we consider an h-convex choice {∆T : T is a 3-cycle}
of convex sides.

Claim 1. Every edge of Kn is in at least two empty triangles.

Proof. Let f ∈ E(Kn). For i = 1, 2, consider Di
f the drawing induced by the vertices

drawn in ∆i
f (see Notation 4.4.10-4.4.15). For i = 1, 2, let vi ∈ Σi

f and let Tvi be the
3-cycle containing vi and f . Since ∆Tvi

is convex, every vertex v′i drawn in the interior
of ∆Tvi

, has its ∆Tv′
i

properly included in ∆Tvi
, but ∆Tv′

i

has fewer vertices than ∆Tvi
in

its interior. Thus, by choosing vertices v1 ∈ Σ1
f and v2 ∈ Σ2

f minimizing the numbers of
vertices in the interior of ∆Tv1

and ∆Tv2
, we �nd our two desired empty triangles Tv1 and

Tv2 .
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Let e be an edge of Kn. Suppose that there are k of the vertices of Kn in ∆1
e and

n − k + 2 vertices in ∆2
e. Then, because the drawings D1

e and D2
e are f-convex (Lemma

4.4.14), each of these drawings exhibit at least k2 + o(n2) and (n− k + 2)2 + o(n2) empty
triangles.

Consider the pairs (f, T ), where f is an edge with ends on distinct ones of Σ1
e and

Σ2
e, and T is an empty triangle containing f . Claim 1 implies that each edge with one

end in Σ1
e and the other in Σ2

e is in at least two of these pairs. Thus, there are at least
2(k − 2)(n − k − 2) of such pairs. Moreover, at most two of such pairs contain a �xed
triangle T . This counting gives (k − 2)(n− k − 2) additional empty triangles.

In total, there are at least k2 + (n−k+ 2)2 + (k−2)(n−k−2) + o(n2) empty triangles.
By optimizing k, it follows that this number is at least 3

4
n2 + o(n2).

So naturally we have the following question:

Question 7. Can we improve the coe�cient 3
4
in Theorem 4.6.1?

In [25], Ra�a stated the following beautiful conjecture:

Conjecture 4.6.2. Every good drawing of Kn in the sphere has a Hamilton cycle drawn
without self-crossings.

There is a folklore proof for Ra�a's Conjecture for rectilinear drawings (that can be
easily easily adapted for pseudolinear drawings). We extend this result by showing that
Ra�a's conjecture holds for pseudospherical drawings.

Theorem 4.6.3. Every pseudospherical drawing of Kn has a Hamilton cycle drawn without
self-crossings.

Proof. Suppose that D is a pseudospherical drawing of Kn, and let Γ be an arrangement
of pseudocircles extending the edges of Kn. For an edge e ∈ E(Kn), de�ne its weight w(e)
to be the number of pseudocircles in Γ crossing e.

Let H be a Hamilton cycle minimizing
∑

e∈E(H) w(e). Suppose by way of contradiction
that H is self-crossed. Let xz and yw be edges of H crossing at ×, and denote the crossing
K4 containing these edges as J . The graph H − xz − yw consists of two vertex-disjoint
paths connecting two vertices of J , that by symmetry, we may assume that one of the
paths connects x to y, while the other path connects z to w.

Consider the Hamilton cycle H ′ = (H − xz − yw) + xw + yz. Let α be the arc
obtained by following D[xz] from x to ×, and continuing along D[yw] from × to w. Since
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every pseudocircle in Γ intersects the simple closed curve D[xw] ∪ α an even number of
times, and none of them can intersect xw more than once, every curve in Γ crossing
xw, crosses at least one of xz and yw. Likewise, every curve in Γ crossing yz crosses
at least one of xz and yw. Moreover, because xz crosses yw, but xw does not cross yz,∑

e∈E(H′) w(e) ≤
∑

e∈E(H)w(e)− 2, a contradiction.

It interesting to note that the fact that Γ satis�es (PS3) is not used in the previous
proof.

Our last question is about extending the notion of pseudospherical to graphs that are
not necessarily Kn. In particular:

Question 8. Can we characterize drawings of graphs whose edges can be extended to a
set of simple closed curves satisfying (PS1), (PS2) and (PS3)? Can we �nd their minimal
obstructions?
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