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Abstract 

Forested catchments are critical for water supply globally and provide ~60% of the water 

supplies for the world’s 100 largest cities and 2/3 of all water supplies, including drinking 

water for ~180 million people in the U.S. In Alberta, Canada, approximately 2/3 of the 

population’s drinking water comes from the eastern slopes of the Rocky Mountains. Ironically, 

the high quality and quantity water from these forested regions makes these supplies 

particularly vulnerable to the deleterious impacts of climate change and associated landscape 

disturbances. Wildfire has the potential to be the most catastrophic of these disturbances. It can 

produce significant changes in the quantity, timing, and quality of water originating in these 

settings. Notably, it also may necessitate significant increases in costly drinking water 

treatment infrastructure, operations and maintenance. 

Aquatic natural organic matter (NOM) is typically evaluated by measurement of 

dissolved organic carbon (DOC) and is one key water quality parameter that drives the design 

of drinking water treatment infrastructure. Changes in the amount and quality of DOC can 

increase the need for and cost of water treatment infrastructure because of increased chemical 

coagulant dosing requirements and the potential for formation of several currently regulated 

disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids 

(HAAs). They can also result in increased membrane fouling and microbial regrowth in the 

distribution system. While many proxy indicators (DOC, UV254, specific UV absorbance 

[SUVA], fluorescence index [FI], fluorescence excitation-emission matrices [FEEMs], other 

NOM fractions, etc.) have been suggested for inferring drinking water treatability implications 

of changes in NOM, clear guidance regarding the most informative proxy indicators and the 

reliability of their connectivity to drinking water treatability assessment is still lacking. 

The overall goal of this research was to compare and improve upon available strategies 

for characterizing challenges and threats to drinking water treatability arising from wildfire 

and forest harvesting disturbance-associated changes in DOC. Potential increases in regulated 

DBP formation potential (i.e., DBP-FP) were focused upon because infrastructure and 

operations implications; relative potential implications of these disturbances to membrane 

fouling and microbial regrowth in distributions systems were also evaluated. Of course, other 
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impacts such as those on coagulant demand are equally important, though more site- or 

treatment configuration-specific. While it is generally believed that coagulant demand during 

drinking water treatment may increase after severe disturbance as a result of elevated and 

increasingly variable turbidity and/or changes in source water DOC, the implications of 

wildfire to membrane fouling and microbial regrowth potential in distributions systems have 

not been reported to date. Similarly, forest harvesting impacts on DBP-FPs have not been 

reported and elevated DBP-FPs resulting from wildfire have been suggested, but only recently 

demonstrated at the watershed-scale with consideration of hydro-climatic variability. Despite 

these critically foundational, but nascent linkages, clear guidance regarding optimal 

approaches for informing drinking water treatability in response to landscape disturbance-

associated changes in source water quality is currently unavailable. Thus, to advance the broad 

goal of informing strategies for characterizing challenges and threats to drinking water 

treatability arising from potential wildfire- and forest harvesting-associated changes in NOM, 

five phases of research were conducted. 

In Phase 1, the most common methods of NOM characterization and their relationship 

to drinking water treatability (including limitations) were reviewed, particularly as related to 

the formation of regulated carbonaceous DBPs. These methods include DOC, UV254, and 

SUVA metrics, as well as resin fractionation, liquid chromatography-organic carbon detection 

(LC-OCD), fluorescence excitation-emission matrices, and other techniques. The review 

demonstrated that no universal proxy indicators for NOM reactivity with oxidants such as 

chlorine have been identified to date, thereby underscoring the need to advance approaches for 

evaluating NOM reactivity in a manner that links different source watershed settings and 

disturbance impacts to treatability challenges. 

In Phase 2, a comprehensive DOC characterization investigation was conducted 

throughout the treatment process at a conventional water treatment plant (WTP) with aerobic 

biofiltration. This work is among the first studies in which NOM removal during conventional 

treatment and biofiltration has been evaluated concurrently using several metrics of NOM 

concentration and character—this enabled direct confirmation of which of these parameters 

might be the most useful as proxy indicators for drinking water treatability when characterizing 
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changes in source water quality. Samples were collected from the WTP intake and at different 

treatment stages (post-sedimentation, post-ozonation, and GAC biofilter effluents) at the 

Mannheim WTP, in Kitchener, Ontario. As would be expected, the 

coagulation/flocculation/sedimentation process (after which post-clarification samples were 

obtained) efficiently removed aromatic compounds (UV254, hydrophobic organic carbon as 

measured by resin fractionation [HPO %], and the humic substances [HS] fraction as measured 

by liquid chromatography with organic carbon detection [LC-OCD]) and THM- and HAA-

FPs. Further removal of these compounds was observed during biofiltration, highlighting that 

aromatic compounds (removed by chemical pre-treatment) were the main contributors to the 

THMs, though some smaller DOC fractions (removed by biofiltration with GAC) also played 

a role in the formation of THMs. Changes in post-treatment THM- and HAA-FP were 

generally comparable—this was expected given that they share common precursors. Higher 

molecular weight fractions contributed more to the formation of HAAs than THMs. Overall, 

metrics indicative of aromatic compounds were shown to be good proxy indicators of DOC 

reactivity and formation of regulated DBPs. These quantitative results were consistent with the 

qualitative results obtained using fluorescence excitation-emission matrices [FEEMs]. 

Utilization of LC-OCD had the additional advantage of detecting changes in medium to low 

molecular weight (LMW) fractions of DOC (e.g. building blocks and LMW neutrals) 

throughout treatment. 

In Phase 3, changes in DOC concentration and character, and their relationships to 

regulated DBP-FPs (THM-FPs and HAA-FPs), were comprehensively characterized using 

multiple NOM characterization techniques during a two-year period following severe wildfire 

in the eastern slopes of the Rocky Mountains in south-western Alberta. Several NOM fractions 

also were characterized by LC-OCD during the latter of those years. This work was conducted 

as part of an ongoing (>9 years, at the time) watershed-scale study of wildfire and post-fire 

salvage logging impacts on hydrology, water quality, and aquatic ecology (i.e., the Southern 

Rockies Watershed Project). In that work, samples collected from multiple unburned 

(reference), burned, and post-fire salvage logged watersheds during dominant regional 

streamflow regimes (baseflow, snowmelt freshet, and stormflow) demonstrated that DOC 
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concentration and hydrophobicity increased after wildfire and even more so after post-fire 

salvage-logging, especially during high discharge events in headwater streams. These changes 

in aquatic DOC in streams draining disturbed watersheds were concurrent with increases in 

THM- and HAA-FPs. Contributing to, and building on that investigation, the work presented 

herein is the first to report that the mass of HS, biopolymers, and building blocks fractions of 

DOC also increased significantly in streams draining wildfire and post-fire salvage logged 

watersheds, thereby suggesting that these disturbances may have significant implications for 

carbonaceous DBP-FP, coagulant demand, and membrane fouling. In contrast, the mass of the 

LMW neutrals fraction of DOC, which contributes to microbial regrowth in the distribution 

system, was not significantly different in streams impacted by either wildfire or post-fire 

salvage logging. This work was also the first to comprehensively demonstrate wildfire-

associated changes in DOC character (by measuring HPO %, UV254, SUVA, FI, and FEEMs) 

and related DBP-FPs, at the watershed-scale and over multiple flow regimes. The disturbance 

impacts indicated by all of these quantitative, DOC-associated metrics were all statistically 

significant, except for FI. Qualitative FEEM results were consistent with these significant 

shifts. Notably, despite the continued development and promotion of various proxy indicators, 

UV254 offered the most precise linear correlation with THM-FP, with a coefficient of 

determination (R2) of 0.6 (in contrast to values of 0.47, 0.42, and 0.39 for DOC, SUVA, and 

HPO %). Thus, changes in the proxy indicators were related to changes in THM-FP; however, 

they could not adequately explain response variability, thereby demonstrating the need to 

1) better understand relationships between disturbance-associated changes in DOC and their 

implications to DOC reactivity and 2) advance modeling approaches for describing these 

relationships. While the mass of various DOC fractions obtained using LC-OCD and HAA-

FPs was not analyzed in this manner because of the limited size of the data sets, similar 

relationships were suggested. Overall, these data suggest that severe wildfire may lead to 

significant DOC-associated drinking water treatability challenges and that post-fire salvage 

logging may further exacerbate them—notably, UV254 is unequivocally the best available tool 

for monitoring these potential impacts at present. 
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 THM-FP is generally understood to be linearly correlated with aromatic NOM as 

measured by UV254 and/or SUVA. In Phase 4, simple strategies for enhancing the prediction 

of THM-FPs using NOM-associated proxy indicators were investigated. Specifically, the 

relationship between NOM aromaticity (HPO %, HS, UV254, and SUVA) and THM-FP was 

examined. Then, HPO and HS were re-analyzed after weighting by mass (DOC 

concentration)—this appreciably enhanced their prediction performance. This improvement 

was especially evident for HS, for which the coefficients of determination (R2) increased from 

0.10 and 0.26, to 0.85 and 0.88 (Phase 2 and 3 data, respectively). Thus, data processing and 

reporting are critical to anticipating NOM reactivity; absolute quantities have superior 

prediction performance. Notably, regardless of these improvements, the relationships between 

DBP-FP and NOM proxy indicators can be quite variable spatially and temporally, and 

frequently site specific. More work is required to link source water quality to DBP-FP and 

drinking water treatability more broadly. 

In Phase 5, changes in DOC concentration and character and their relationships to 

regulated DBP-FPs were comprehensively characterized using multiple NOM characterization 

techniques in the two years during and immediately after forest harvesting in the eastern slopes 

of the Rocky Mountains in south-western Alberta. Several NOM fractions also were 

characterized by LC-OCD to inform the relative potential for membrane fouling and microbial 

regrowth in distribution systems. Like Phase 3, this work was conducted as part of the ongoing 

SRWP in which two watersheds that served as unburned-reference watersheds in Phase 3 were 

studied. They were fully calibrated for climate, streamflow, and water quality for 11 years 

[2004-2014]). Three sub-watersheds within one watershed were harvested using clear-cut with 

patch retention, strip-shelterwood cut, and partial cut. All possible best management practices 

(BMPs) were followed to minimize disturbance impacts on water quality. Samples were 

collected during the dominant regional streamflow regimes. Notably, no substantial impacts of 

forest harvesting on water quality and treatability were observed during the harvest and first 

post-harvest years. Thus, this work suggests that forest harvesting with careful implementation 

of BMPs for erosion control may mitigate the potentially catastrophic impacts of wildfire on 

drinking water treatability without significantly compromising it. 
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Chapter 1 

Introduction 

1.1 Research Motivation 

Forested catchments are critical sources of drinking water globally. In U.S, they provide 

approximately 2/3 of all freshwater supplies and are the drinking water source for 180 million 

people (Stein and Butler, 2004). Similarly, ~2/3 of Canadians get their drinking water from 

surface water that predominately originates in forested areas (Natural Resources Canada, 2015). 

Ironically, the high quality and quantity of snowmelt-associated water from forested regions 

makes these supplies particularly vulnerable to impacts of climate change, which creates 

favorable conditions for catastrophic natural disturbances such wildfire and insect outbreaks 

(Dale et al., 2001; Emelko et al., 2011; Kaufmann et al., 2008; Logan and Powell, 2009). 

Anthropogenic disturbances such as agriculture, sewage pollution, recreational use, grazing, and 

logging can further compromise high quality water supplies. While natural and anthropogenic 

land disturbances have the potential to produce significant changes in the quantity, timing, and 

quality of water originating in these settings, they also may necessitate significant increases in 

costly drinking water treatment infrastructure, operations and maintenance (Emelko et al., 2011).  

Dissolved organic carbon (DOC) is a particularly critical water quality parameter that is 

typically present at low concentrations in forested watersheds and increases (and/or changes in 

character) as a result of land disturbance (O’Donnell et al., 2010; Emelko et al., 2011). Increased 

levels of DOC can negatively impact drinking water treatability and may necessitate the use of 

more complicated and costly water treatment processes (Emelko et al., 2011); they can also often 

result in increased chemical coagulant dosing requirements (White et al., 1997; Edzwald and 

Tobiason, 1999; Melia et al., 1999; Hohner et al., 2016). Hydrophobic natural organic matter 

(NOM) is a reactive precursor of currently regulated disinfection by-products (DBPs) (Singer, 

1999; Kitis et al., 2002). Hydrophilic NOM is more difficult to remove by conventional water 

treatment (Jacangelo et al., 1995; Kitis et al., 2002; Chow et al., 2004) and may be responsible 

for forming non-regulated DBPs of emerging health concern (Liang and Singer, 2003; Ates et 

al., 2007; Chen and Westerhoff, 2010). Other treatability challenges associated with increased 

DOC levels and changes in its characteristics (e.g., relative proportion of hydrophilic and 

hydrophobic fractions) include increased potential of bacterial regrowth in the distribution system 
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(van der Kooij, 1992; Escobar et al., 2001; van der Kooij and van der Wielen, 2014); increased 

chemical disinfectant dosing requirements (Amy et al., 1987; Babcock and Singer, 1979); adverse 

impacts on taste, odor, and color (Amy et al., 1987; Jacangelo et al., 1995); membrane fouling 

(Lee et al., 2004; Kwon et al., 2005; Lee et al., 2006; Amy, 2008; Brinkman and Hozalski, 2015; 

Rahman et al., 2014; Yamamura et al., 2014); and increased potential for heavy metal 

complexation (Frimmel, 1998; Wu et al., 2004; Waples et al., 2005).  

Reactions of different groups of aquatic organic matter with chlorine and other drinking water 

disinfectants (chloramines, chlorine dioxide, and ozone) result in the formation of various classes 

of DBPs. To date, 600 to 700 DBPs have been identified (Richardson et al., 2002; Krasner et al., 

2006); many of which—but not all—are considered to be cytotoxic, genotoxic or carcinogenic in 

laboratory animals (Singer, 1999; Plewa et al., 2002). Formation of DBPs depends on the amount 

and composition of NOM, as well as the disinfectant type and disinfection conditions (Krasner 

et al., 2006; Krasner, 2009). To limit the public health risks of DBPs, the United States 

Environmental Protection Agency (USEPA) has regulated trihalomethanes (THMs) and five 

haloacetic acids (HAA5). Maximum Contaminant Levels (MCL) of these compounds are 80 μg/L 

and 60 μg/L, respectively (USEPA, 2012). The corresponding levels in Canada are 100 μg/L and 

80 μg/L, respectively (Health Canada, 2017). Studies suggest that some non-regulated DBPs are 

of greater health concern than the regulated ones (Krasner, 2009). Accordingly, proper 

characterization of NOM before and throughout the treatment process is critical to identifying 

promising measurements/proxies for regulated and emerging DBP formation, as well as other 

treatability challenges. NOM characterization also may be a useful tool for communities to better 

1) weigh the impacts of land use/management on drinking water supplies and treatability and 2) 

respond to land use/management-associated changes in source water quality and mitigate their 

impacts.  

Various techniques and metrics have been developed to characterize bulk and fractionated 

forms of NOM (Leenheer and Croué, 2003; Croué, 2004), which is a vast collection of ill-known 

organic compounds with diverse characteristics (Larsen et al., 2010; Deb and Shukla, 2011). 

Significant experimental efforts have focused on establishing relationships between NOM and 

DBP formation potential (DBPFP) and identifying DBP precursors; however, many findings are 

site specific and inconsistent due to the spatial and temporal variability of NOM (Edzwald et al., 

1985; Collins et al., 1986; Reckhow and Singer, 1990; Reckhow et al., 1990; Singer, 1999; Bolto 
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et al., 2002; Kitis et al., 2002; Goslan et al., 2004; Ates et al., 2007; Bougeard et al., 2010). 

Moreover, many, if not most of these efforts have focused on raw (untreated) water. Thus, in 

depth investigations of the reactivity of NOM fractions that cannot be easily removed during 

drinking water treatment (recalcitrant/refractory hydrophilic fractions) are still required.  

1.2 Research Objectives 

The overall goal of this research was to compare and improve upon available strategies for 

characterizing challenges and threats to drinking water treatability (formation of regulated DBPs) 

arising from changes in DOC from wildfire and forest harvesting landscape disturbances. 

Specific research objectives developed to address this goal were to: 

1) Review and evaluate the most common methods of NOM characterization and their 

relationship to drinking water treatability, particularly as related to the formation of 

regulated DBPs.;  

2) Comprehensively evaluate NOM concentration and character through the drinking water 

treatment process; 

3)  Identify the NOM concentration and/or characterization metrics that show the greatest 

promise as proxy indicators for assessing THM-FP through drinking treatment plants;  

4) Identify the NOM concentration and/or characterization metrics that show the greatest 

promise as proxy indicators for drinking water treatability (THM-FP) in source watersheds 

after three key types of landscape disturbances relevant to forested watersheds; 

specifically: 

a. severe wildfire, 

b. post-fire salvage logging, and 

c. contemporary forest harvesting. 

5) Evaluate data processing strategies to enhance THM-FP predictions using NOM metrics. 

1.3 General Research Approach 

To achieve the broad goal of informing strategies for characterizing challenges and threats to 

drinking water treatability arising from potential wildfire- and forest harvesting-associated 

changes in NOM, five phases of research were conducted. Figure 1-1 and the descriptions below 

elaborate on these research phases.  
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In the first phase (Phase 1), the most common methods of NOM characterization and their 

relationship to drinking water treatability (including limitations) were critically reviewed, 

particularly as related to the formation of regulated carbonaceous DBPs. The goal of this phase 

was to compare different NOM associated metrics with regard to their efficiency in describing 

threats to drinking water treatability, particularly formation of regulated DBPs. 

In Phase 2, DOC character throughout the treatment process was comprehensively evaluated 

at a drinking water treatment plant (WTP). This work is among the first studies in which NOM 

removal during conventional treatment and biofiltration has been evaluated concurrently using 

several metrics of NOM concentration and character. The unique contribution of this work is that 

1) several NOM characterization metrics were evaluated concurrently and 2) several key steps 

comprising conventional treatment as well as biofiltration were evaluated. This enabled direct 

confirmation of which metrics are the most useful proxy indicators for 1) drinking water 

treatability (THM-FP) in response to changes in source water quality and 2) treatment process 

performance in removing these precursors. Samples were collected from the WTP intake, post-

sedimentation, post-ozonation, and GAC biofilter effluent points at the Mannheim WTP, in the 

Kitchener, Ontario, Canada. NOM was evaluated using conventional approaches such as DOC 

concentration, ultraviolet absorbance at 254 nm (UV254) and specific ultraviolet absorbance 

(SUVA), and characterization methods such as resin- (XAD) based fractionation, liquid 

chromatography-organic carbon detection (LC-OCD), and fluorescence spectroscopy excitation 

emission matrix (FEEM). Regulated DBP-FPs (THM- and HAA-FPs) were investigated because 

THM and HAA formation can lead to penalties and/or service disruptions. While DBP yield (i.e., 

DBP concentration normalized by DOC concentration) has been used to describe relative DOC 

reactivity in forming DBPs across different water sources (Summers et al., 1996), it was not 

utilized herein because those types of spatial comparisons were not a focus of this investigation.  

In Phase 3, changes in DOC character and its relationship to regulated DBP-FPs (THM- and 

HAA-FPs) following severe wildfire and post-fire salvage logging in the eastern slopes of the 

Rocky Mountains in south-western Alberta were comprehensively evaluated. This work 

contributed to an ongoing (>9 years at the time) larger watershed-scale study of wildfire and post-

fire salvage logging impacts on hydrology, water quality, aquatic ecology, and drinking water 

treatability that was conducted over multiple flow regimes, and in a manner that accounts for 
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hydro-climatic variability. The NOM characterization techniques utilized here were the same as 

those in Phase 2, thereby linking the results obtained from the two experimental phases.  

In Phase 4, data processing strategies for enhancing THM-FP predictions based on relatively 

simple source water DOC characterization (i.e., NOM proxy indicators from Phases 2 and 3) 

were evaluated. Linear regression was used and the relationships between THM-FP and the 

hydrophobicity measured by resin fractionation, humic fraction measured by LC-OCD, UV254, 

and SUVA were examined. Linear regression is commonly used to describe the relationships 

between DOC, its fractions, and the formation of regulated DBPs— these approaches are widely 

utilized because these precursor materials are generally understood to be directly proportional to 

the by-products they form (Edzwald et al., 1985; Reckhow and Singer, 1990; Singer, 1999; 

Goslan et al., 2004; Ates et al., 2007; Wassink et al., 2011); thus, its application is not new. The 

novel contribution of this work was the comparative examination of two common approaches for 

reporting fractionation data for THM-FP prediction. The reporting of relative fractions of DOC 

(as percentages) and absolute quantities (mass-based concentration) was compared and 

recommendations for future reporting were provided. 

In Phase 5, changes in DOC character and its relationship to regulated DBP-FPs (THM-FPs 

and HAA-FPs) were characterized following forest harvesting. Like Phase 3, this work was 

conducted as part of the ongoing SRWP in which two SRWP watersheds that served as unburned-

reference watersheds in Phase 3 were studied. They were fully calibrated for climate, streamflow, 

and water quality for 11 years [2004-2014]). Three sub-watersheds (within one watershed) were 

harvested in 2015, using: clear-cutting with patch retention, strip-shelterwood cutting, and partial 

cutting. The harvesting work was conducted to ensure that all best management practices (BMPs) 

were followed to minimize disturbance impacts on water quality. This nested, paired watershed 

design (BACI; before/after, control/impact) enabled explicit separation of harvesting impacts on 

hydrology and water quality from background variability produced by seasonal or climatic 

variation (Loftis et al., 2001); however, that analysis is part of a longer term study that is outside 

of the scope of the present investigation. Here, only a preliminary assessment of the immediate 

aspects of forest harvesting on DOC and associated drinking water treatability implications was 

conducted. The NOM characterization/fractionation techniques utilized in this phase were the 

same as those in Phases 2 and 3 to enable linkages between the results obtained from the three 

experimental phases. The strategies developed as part of phase 4 were implemented here as well.   
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Figure 1-1. Research approach and associated objectives. 

 

 

  

Phase 3 

Wildfire and Salvage Logging study: 

Comprehensive evaluation of 

wildfire-associated changes in NOM 

character and their implications to 

drinking water treatability (DBP-

FPs) at the watershed-scale after 

wildfire and post-fire salvage 

logging (Objectives #4a and 4b) 

Phase 2 

Water treatment plant study: 

Evaluation of NOM metrics (character and 

concentration) and their significance to key drinking 

water treatment processes (Objective #2 and #3) 

Phase 4 

Data Processing: 

Assessment of NOM metrics as proxy indicators for 

THM-FP and investigation of simple strategies to 

enhance prediction (Objective #5) 

Phase 1 

Review: 

Comprehensive study of NOM characterization as related to 

drinking water treatability (Objective #1) 

 

Phase 5 

Forest Harvesting study: 

Comprehensive evaluation of 

harvesting-associated changes in 

NOM character and their 

implications to drinking water 

treatability (DBP-FPs) at the 

watershed-scale after forest 

harvesting (Objective #4c) 
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1.4 Thesis Organization 

This Thesis consists of seven chapters. The review (Chapter 2) and results chapters (3-6) have 

been prepared in a paper format; however, they have not been submitted to co-authors for 

commentary.  

In Chapter 2, the background science, relevant to the research objectives, was summarized 

(Phase 1). The existing literature regarding NOM source, variability, reactivity, and associated 

drinking water treatability challenges is discussed. The most common NOM fractionation and 

characterization techniques, and their relationships to the formation of regulated carbonaceous 

DBPs, are comprehensively and critically reviewed. Known DBPs and their potential health 

effects are also discussed.  

In Chapter 3, the results from experiments conducted at the Mannheim drinking water 

treatment plant (Phase 2) are summarized (Phase 2). The quantity and character of NOM fractions 

are analyzed and evaluated before and after each treatment process. The removal and 

transformation of the characterized fractions are discussed in connection with the roles and 

function of different treatment processes. Several metrics of NOM character and concentration 

are then compared as proxy indicators for drinking water treatability. 

In Chapter 4, wildfire-associated changes in NOM character and their associated implications 

to drinking water treatability (DBP-FPs) are comprehensively evaluated at the watershed-scale 

after wildfire and post-fire salvage logging (Phase 3). 

In Chapter 5, the results from Phases 2 and 3 of the research are used to assessment several 

NOM metrics as proxy indicators for THM-FP and simple strategies to enhance prediction of 

THM-FP (based solely on the quantitative data) are investigated. Specifically, common reporting 

practices that specify either relative fractions of DOC (as percentages) or absolute quantities 

(mass-based concentration) are compared (Phase 4). 

In Chapter 6, contemporary forest harvesting-associated changes in NOM character their 

associated implications to drinking water treatability (DBP-FPs) are evaluated at the watershed-

scale during the harvest and first post-harvest years (Phase 5). 

Finally, the conclusions of this research and recommendations for future research are 

presented in Chapter 7. 
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Chapter 2 

Analysis and Characterization of Aquatic Natural Organic Matter 

and Its Implications for Drinking Water Treatment 

2.1 Overview 

Natural Organic Matter (NOM) is ubiquitous and plays an important role in all aquatic 

environments. It is also a key driver of drinking water treatment that significantly contributes 

to infrastructure needs, design, and operations (Emelko et al., 2011; MWH, 2012). The amount, 

chemical characteristics, and reactivity of NOM from different sources can vary widely 

depending on their origin. Temperature, pH, hydrology, and biogeochemical processes of 

carbon cycling are amongst the factors that impact NOM characteristics and levels. This 

dependency makes NOM vulnerable to changes in the environment. Given increases in the rate 

of natural and anthropogenic disturbances in the environment, the investigation of NOM and 

its structure and reactivity in water is of paramount importance. Dissolved Organic Carbon 

(DOC) is the main (operationally-defined) metric used in the water industry to describe aquatic 

NOM concentration; however, it does not provide information regarding the chemical 

characteristics and reactivity of NOM. Thus, different methods have been developed to 

quantitatively and qualitatively characterize NOM structure and fractions; of course, these 

methods have limitations. Here, the most common methods of aqueous NOM characterization 

and reactivity assessment are reviewed in the context of their known and/or believed 

connectivity to drinking water treatability. Their limitations are also discussed and key 

knowledge gaps and operational needs are highlighted. This review underscores the lack of a 

“one size fits all” approach to evaluating aquatic natural organic matter and the need to 

continue to develop specific methods that inform its implications to and reactivity during 

drinking water treatment.  

2.2 Introduction: Natural Organic Matter 

Natural organic matter (NOM) is a complex blend of organic compounds that vary in molecular 

size, mass, polarity, aromaticity, and chemical composition (Leenheer and Croué, 2003; Deb 
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and Shukla, 2011). It is described as a mixture of organic compounds that arise in natural 

waters from allochthonous or autochthonous sources. While allochthonous NOM originates 

from the decomposition of soil organic matter and plants, autochthonous NOM results from 

photosynthetic and biological activities of bacteria, macrophytes, and algae (Thurman, 1985; 

Aiken and Cotsaris, 1995). Total organic carbon (TOC) and NOM are synonymous when 

measured TOC does not include any synthetic sources of carbon (e.g., pesticides, chlorinated 

organic compounds, etc.). TOC concentrations in natural waters can vary considerably; 

ranging from 0.1 mg/L (in some groundwaters) to 200 mg/L (in some swamps) (MWH, 2012). 

TOC in drinking water sources is frequently >70%, and often >90% dissolved organic carbon 

(DOC), with concentrations in the range of 0.5 mg/L to 60 mg/L (Thurman, 1985). NOM levels 

and characteristics vary spatially and temporally and can be altered by landscape disturbances 

(urbanization, agriculture, natural resource extraction, wildfires, etc.), which can impact 

carbon availability, transport, and fate (Schiff et al., 1990; Wu et al., 2004), thereby potentially 

affecting ecosystem productivity and health (Williams et al., 2010; Beggs and Summers, 2011; 

Emelko et al., 2011; Smith et al., 2011; Yamashita et al., 2011). The concentration and 

character of aquatic NOM is also critical to drinking water treatment because it affects 1) taste, 

odor, and color (Leenheer and Croué, 2003); 2) potentially toxic disinfection by-product 

formation (Babcock and Singer, 1979; Singer, 1999; Kitis et al., 2002; Liang and Singer, 2003; 

Ates et al., 2007; Chen and Westerhoff, 2010); 3) chemical coagulation (White et al., 1997; 

Edzwald and Tobiason, 1999; O’Melia et al., 1999; Sharp et al., 2006; Yan et al., 2008); 

4) membrane fouling (Lee et al., 2006; Amy, 2007; Brinkman and Hozalski, 2011; Rahman et 

al., 2014; Yamamura et al., 2014); 5) oxidant demand during disinfection (Owen et al., 1993; 

Fabris et al., 2008); 6) bacterial regrowth in distribution systems (Rittmann and Snoeyink, 

1984; van der Kooij, 1992; LeChevallier et al., 1996; Kaplan et al., 2005; van der Kooij and 

van der Wielen, 2014); and 7) heavy metal complexation (Frimmel, 1998; Wu et al., 2004; 

Waples et al., 2005; Deonarine and Hsu-Kim, 2009). Notably, climate change is intensifying 

biogeochemical cycling of carbon, resulting in increased exports of terrestrial carbon to aquatic 

systems (Tranvik and Jansson, 2002)—it is also intensifying the occurrence of natural 
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landscape disturbances such as wildfires (Westerling et al., 2006), which may increase aquatic 

NOM concentrations (Mast and Clow, 2008; Emelko et al., 2011).  

A wide range of techniques have been utilized to characterize aquatic NOM; however, no one 

approach is universally and singularly useful for all applications because 1) NOM is diverse 

and largely undefined in composition and 2) the analytical techniques used to characterize 

NOM often describe different attributes of carbon. Moreover, the need to characterize specific 

types of NOM reactivity and contributions to chemical coagulant demand, DBP-FP, oxidant 

demand, membrane fouling, etc. is unique to the drinking water industry and may not be most 

efficiently informed by attributes such as structural composition. Nonetheless, NOM can be 

characterized using a variety of techniques that ultimately focus on certain aspects of structure.  

The past several decades of drinking water treatment research have underscored the critical 

importance of NOM and its relationship to water treatability. This has been accompanied by 

extremely rapid expansion in the use and development of NOM characterization techniques, 

leading to a wide range of approaches used, reported results, and conclusions; sometimes, with 

contradictory outcomes. Here, emerging NOM characterization techniques and those that are 

more widely used in the water industry are organized according to the specific aspects of NOM 

structure to which they correspond. These categories of NOM characterization include size, 

polarity, and other structural attributes (i.e., aspects of structure not represented in the other 

categories, such as aromaticity, fluorescence, and other spectral characteristics that may 

capture multiple aspects of structure). The purpose of this review is to 1) summarize currently 

available NOM characterization techniques, 2) organize these techniques according to the 

fundamental information they provide, and 3) discuss the limitations of these for informing 

drinking water treatability and treatment performance. 

2.3 NOM Characterization 

NOM characterization has been studied extensively in water science and engineering because 

of its utility in carbon source identification (Schiff et al., 1990; McKnight et al., 1994; 2001; 

Aiken and Cotsaris, 1995; Coble, 1996; McKnight et al., 2001a; Liang et al., 2008) and 

prediction of NOM reactivity, which is context dependent. For example, NOM reactivity can 
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be described to better understand aquatic ecosystem health and trophic status (Dunalska, 2011) 

or to inform drinking water treatability challenges such as disinfection by-product (DBP) 

formation potential (Singer et al., 1981; Collins et al., 1986; Amy et al., 1987; Reckhow and 

Singer, 1990; Newcombe et al., 1997; Liang and Singer, 2003; Goslan et al., 2004; Kitis et al., 

2002; Soh et al., 2008; Wassink et al., 2011; Awad et al., 2016), chemical coagulant demand 

(Chow et al., 2004; Sharp et al., 2006; Yan et al., 2008; Hohner et al., 2016), distribution system 

regrowth potential (Kaplan et al., 2005; van der Kooij and van der Wielen, 2014) and 

membrane fouling (Amy, 2008; Rahman et al., 2014; Yamamura et al., 2014). Thus, while the 

general goal of NOM characterization is to gain comprehensive insight into its composition 

and reactivity, the most informative combination of metrics and analytical procedures can vary 

substantially depending on the intended inference space. 

Various techniques and metrics have been developed to characterize NOM based on 

different features of its structure such as size, polarity, other structural aspects, and 

biodegradability. NOM has been characterized in bulk and fractionated forms. Low dissolved 

organic carbon (DOC) concentrations in bulk water samples are the main barrier to effectively 

characterizing NOM. Thus, a number of techniques have been developed to fractionate and 

concentrate NOM, isolate its constituent compounds, and simplify their identification 

(Leenheer and Croué, 2003; Abbt-Braun, 2004). The analysis of “bulk water samples” 

typically describes NOM characterization procedures in which NOM structural constituents 

are not modified during the analyses—these can be especially informative during drinking 

water treatability assessments because they are representative of actual treatment conditions. 

Also, several of these analyses are relatively rapid, inexpensive, and still informative. The 

choice of appropriate NOM characterization method(s) depends on the application and 

objectives of the analysis. Equipment availability and time are other determining factors. 

Common and emerging NOM characterization methods can be categorized by the 

characteristics of NOM on which they are based (structural or reactivity) and analytical 

approaches utilized for evaluating them, as presented in Figure 1, summarized in Table 1, and 

discussed in detail below. 
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Figure 2-1. Dissolved NOM characterization methods organized by the characteristics of NOM upon which they are based (structural or reactivity) and analytical 

approaches utilized. 
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Table 2-1. Summary of NOM characterization methods.  
C

h
a

ra
ct

er
 

Characterization 

Method 
Description Advantages Disadvantages Reference 

S
iz

e 

F
il

tr
a

ti
o
n

 

T
O

C
/D

O
C

 Total organic carbon/dissolved organic carbon (filtered 

through 0.45 μm filter) 

Simple; online-application of 

TOC; integral to water 

treatment 

Only bulk information; 

sensitive to pH, operational 

definition 

Singer et al., 1981; Thurman, 1985; Reckhow and 

Singer, 1990; Edzwald, 1993; Wassink et al., 2011; 

Shams et al., 2014 and 2015 

M
em

b
ra

n
e 

U
F

 

Fractionates NOM based on molecular size (weight) by 

filtration under pressure 

Fractionate large volumes of 

water; do not alter SUVA; 

determine the composition 

and reactivity of a broad 

range of NOM 

Sensitive to pH, membrane, 

ionic strength; broad 

nominal cutoffs; 

membrane-solute 

interactions 

Gjessing, 1970; Gjessing, 1973; Aiken et al., 1984; Amy 

et al., 1987; Laine et al., 1989; Newcombe et al., 1997; 

Assemi et al., 2004; Goslan et al., 2004; Lamsal et al., 

2012; Revchuk and Suffet, 2014 

R
O

 

Fractionate large volumes of 

water; do not alter SUVA; 

determine the composition 

and reactivity of a broad 

range of NOM 

Concentrates all solutes, 

rather than only NOM 

Maurice et al., 2002; Song et al., 2009 

S
iz

e 
E

x
cl

u
si

o
n

 C
h

ro
m

a
to

g
ra

p
h

y
 

G
P

C
 

Fractionates NOM based on molecular size. Separation 

is performed in columns by elution of the sample 

through porous beads of a soft gel (Sephadex) 

No preparation; no chemical 

alterations 

Long, poor separation; 

sensitive to pH; interaction 

of humic acid with gel 

Gjessing, 1973; Becher et al., 1985; Amy et al., 1987; 

Hongve et al., 1996 

H
P

L
C

)/
H

P
S

E
C

 

/L
C

-O
C

D
 

The modified form of SEC with rigid silica or polymer 

based stationary phase replacing the soft gel beads of 

GPC. The solvent is pumped through the column and the 

column effluent passes through a detector. An organic 

carbon and/or UV detector can follow the column to 

detect eluted species 

Fast; no preparation; provides 

a good diagram of NOM 

fractions and characterization 

that can replace the 

operational distinction 

between humic and fulvic 

acids; informative for water 

treatment over a wide range 

of molecular weight fractions 

Interaction of analyte with 

stationary phase; limitation 

in full separation of all 

individual peaks 

challenging calibration; no 

precise determination of 

molecular weight  

Fukano et al., 1978; Becher et al., 1985; Huber and 

Frimmel, 1992a,b; Huber et al., 1994; Hongve et al., 

1996; Bolto et al., 1999; Croué, 2004; Ates et al., 2007; 

Wu et al., 2007a; Huber et al., 2011; Wagner et al., 

2016;; Wu et al., 2007a; Soh et al., 2008; Baghoth et al., 

2009; Wassink et al., 2011; Rahman et al., 2014 and 

2016; Azzeh et al., 2015; Pharand et al., 2015; Shams et 

al., 2014 
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Table 2-1: Summary of NOM characterization methods (con’t). 
C

h
a

ra
c
te

r 

Characterization 

Method 
Description Advantages Disadvantages Reference 

S
iz

e 

F
F

F
 

Fractionates NOM based on the difference in the 

mobility of molecules of different sizes 

Does not need a stationary 

phase 

Molecular weight cut off of 

the membranes (not low 

enough); adsorptive 

interaction between sample 

and membrane; need of 

appropriate calibration 

standards 

Giddings et al., 1976; Beckett et al., 1987; Giddings et 

al., 1987; Newcombe et al., 1997; Pelekani et l., 1999  

P
o

la
ri

ty
 

A
d

so
rp

ti
o

n
 C

h
ro

m
a

to
g

ra
p

h
y

 

R
es

in
 F

ra
ct

io
n

a
ti

o
n

 Separates hydrophobic and hydrophilic fractions 

(operationally-defined)of NOM by having them 

adsorbed to Amberlite® XAD resins 

Accepted by IHSS as standard 

method of separating humic 

and fulvic acids; very helpful 

for coagulation application; 

provides information on 

reactivity 

Operational definition of 

parameters; time 

consuming; complex; 

sensitive to pH; 

contamination potential 

from resin 

Leenheer, 1981; Thurman and Malcolm 1981; Leenheer 

and Noyes, 1984; Collins et al., 1986; Aiken et al., 1992; 

Malcolm and MacCarthy, 1992; Town and Powell, 1993; 

Bolto et al., 1999; Krasner et al., 1996; Kitis et al., 2002; 

Marhaba et al., 2003; Liang and Singer, 2003; Chow et 

al., 2004; Croué, 2004; Goslan et al., 2004; Soh et al., 

2008; Shams et al., 2014 and 2015 

P
R

A
M

 

Separates NOM fractions based on polarity by having 

them adsorbed to solid phase extraction cartridges with 

different polarities 

Fast; simple; needs small 

volumes of samples; does not 

chemically alter samples 

Unable to produce mass 

balance 

Rosario-Ortiz et al., 2004; Rosario-Ortiz et al., 2007a,b; 

Philibert et al., 2012 

O
th

er
 S

tr
u

ct
u

ra
l 

A
tt

ri
b

u
te

s 

S
p

ec
tr

o
sc

o
p

y
 

L
ig

h
t 

U
V

/V
is

 

U
V

 2
5
4
 

Measurement of compounds that absorb UV light at 254 

nm; provides an indication of aromaticity 

Fast; simple; on-line 

application; integral to 

coagulation; very helpful for 

reactivity application  

Only information on 

aromatic compounds; 

sensitive to pH and ionic 

strength 

Singer et al., 1981; Edzwald et al., 1985; Ates et al., 

2007Wassink et al., 2011; Awad et al., 2016; Shams et 

al., 2014 and 2015 

S
U

V
A

 

SUVA = UV254/DOC 

SUVA >4: hydrophobic, humic with high MW.  

SUVA <2: non humic, low MW, hydrophilic 

2<SUVA<4: mixture of hydrophobic and hydrophilic  

Fast; simple; very helpful in 

coagulation application; 

useful (but not consistently) 

for reactivity application 

Sensitive to pH and ionic 

strength; less reliably 

informative NOM 

reactivity 

Edzwald and Van Benschoten, 1990; Reckhow et al. 

1990; Edzwald and Tobiason 1999; Kitis et al. 2001; 

Weishaar et al., 2003; Goslan et al., 2004; Ates et al., 

2007; Bougeard et al., 2010; Li et al., 2014; Hua et al., 

2015 
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Table 2-1: Summary of NOM characterization methods (con’t). 
C

h
a

ra
ct

er
 

Characterization 

Method 
Description Advantages Disadvantages Reference 

O
th

er
 S

tr
u

ct
u

ra
l 

A
tt

ri
b

u
te

s 

S
p

ec
tr

o
sc

o
p

y
  

L
ig

h
t 

F
lu

o
re

sc
en

ce
 

F
E

E
M

 

Identifies groups of NOM, by irradiating fluorescence to 

the sample at different wavelengths and analyzing the 

spectrum of the emitted radiation at different 

wavelengths. Three major groups: humic and fulvic like, 

microbial by-product, and protein like 

Fast; simple; sensitive; on-

line application; potential for 

quantitative interpretation 

Quantitatively not 

universally established yet; 

sensitive to pH; challenging 

calibration 

Senesi et al., 1989; Coble et al., 1993; Hofstraat and 

Latuhihin, 1994; Coble, 1996; Baker, 2001; McKnight et 

al., 2001b; Chen et al., 2003a,b; Holbrook et al., 2006; 

Spencer et al., 2007; Wu et al., 2007b; Peiris et al., 2010; 

Pifer andFairey 2014; Pifer et al., 2014; Peleato and 

Andrews, 2015; Korak et al., 2015; Peleato et al., 2017  

(F
I)

 

Reveals information about the source by exciting the 

molecules at 370 nm and analyzing the ration of 

emission intensity at 450 nm to emission intensity at 500 

nm 

Fast; simple; no preparation; 

useful information on 

aromaticity 

Sensitive to hydrology 

regime; limited to existence 

of certain wavelengths 

McKnight et al., 2001b; Brooks and Lemon, 2007; Cory 

et al., 2010; Johnson et al., 2011; Rodríguez et al., 2014; 

Shams et al., 2014 and 2015; Korak et al., 2015; Hohner 

et al., 2016 

(H
IX

) 

Measures proportion of humified to non-humified 

fractions of NOM by dividing the emission intensity at 

large wavelengths (ex. 390) by emission intensity at 

short wavelengths (ex. 355) (at excitation of 254 nm) 

Fast; simple; no preparation; 

useful information on the 

aromatic nature of NOM  

Sensitive to DOC 

concentrations; not 

recommended for DOC < 3 

Zsolnay et al., 1999; Kalbitz et al., 2000; Ohno, 2002 

In
fr

a
re

d
 

F
T

IR
 

Identifies functional groups of NOM, by irradiating IR 

to the sample and analyzing the absorbance spectrum of 

the sample  

Capable of analyzing both 

liquid and solid phase 

samples 

Mainly qualitative analysis; 

difficult data interpretation; 

spectral overlapping; 

intensive sample 

preparation 

Leenheer et al., 1987; Bloom and Leenheer, 1989; Ricca 

and Severini, 1993; Chen et al., 2002  

N
M

R
 

1
3
C

N
M

R
 a

n
d

 1
H

N
M

R
 Identifies structural elements (carbon atoms) and 

functional groups of NOM based on carbon bonded to 

H, C, N and P 

Valuable information 

especially when 1H NMR and 

13C NMR are used together 

Difficult data 

interpretation; spectral 

overlapping; quantitative 

limitations; overestimation 

of aliphatic fractions; 

intensive sample 

preparation  

Leenheer et al., 1987; Ricca and Severini, 1993; 

Westerhoff et al., 1999;Poirier et al., 2000;González-Vila 

et al., 2001; Templier et al., 2005 



16 

Table 2-1: Summary of NOM characterization methods (con't). 
C

h
a

ra
ct

er
 

Characterization 

Method 
Description Advantages Disadvantages Reference 

O
th

er
 S

tr
u

ct
u

ra
l 

A
tt

ri
b

u
te

s 

S
p

ec
tr

o
m

et
ry

 

M
a

ss
 S

p
ec

tr
o

m
et

ry
 (

M
S

) 

E
S

I 

Use of electrospray ionization in MS Introduces liquid samples into 

MS; enables coupling MS 

with HPLC (LC-MS) 

Difficult data 

interpretation; need of 

appropriate calibration 

standards 

Brown and Rice, 2000; Klaus et al., 2000; Leenheer et 

al., 2001 
F

T
IC

R
 

Use of ion cyclotron resonance in MS for separating 

ions from each other in addition to use of fourier 

transform analysis for quantification 

Ultra-high resolutions; 

promising results at a 

molecular level 

Reemtsma et al., 2008; Reemtsma, 2009; Kunenkov et 

al., 2009; Herzsprung et al., 2014; Cao et al., 2015; Lu et 

al., 2015; Herzsprung et al., 2015; Li et al., 2016; 

Hertkorn et al., 2016; Li et al., 2016 

O
rb

it
ra

p
 

F
T

 

Use of OrbitrapTM technology (trapping in an electric 

field) in MS in addition to use of fourier transform 

analysis for quantification 

Smaller; less expensive; 

higher trapping capacity 

compared to other MS 

techniques 

Makarov, 2000; Urai et al., 2014 

P
y

-G
C

-M
S

 

Uses heat and degrades complex molecules into smaller 

ones that are volatile and can be introduced into gas 

chromatography  

Enables identification of 

natural biopolymers; less 

expensive comparing to other 

MS techniques 

Difficult data 

interpretation; need of 

appropriate calibration 

standards; overestimation 

of aliphatic fractions; 

limitations on transferring 

all higher-molecular weight 

fractions from the pyrolysis 

unit to the GC 

 

Saiz-Jimenez, 1994; Poirier et al., 2000; González-Vila 

et al., 2001; Croué, 2004; Templier et al., 2005; Parsi et 

al., 2007 

Is
o

to
p

e 
R

a
ti

o
 


1
3
C

 a
n

d
 1

4
C

  

13 = ratio of stable carbon isotopes, reveals information 

on the origin of carbon compounds based on their 

relative weight 

14C = radioactive carbon isotope, reveals information on 

age of carbon compounds 

Very useful information; 

high sensitivity at low levels 

Complicated; time 

consuming; undesirable 

interactions with inorganic 

carbon species; 14C is 

sensitive to residence time 

Williams et al., 1969; Hedges et al., 1986; Williams and 

Druffel, 1987; Murphy et al., 1989a,b; Schiff et al., 

1990; Bauer et al., 1991; Kendall and Caldwell, 1998; 

Raymond and Bauer, 2001; Gandhi et al., 2004; 

Mayorga et al., 2005; De Troyer et al., 2010; Jian et al., 

2010; Bridgeman et al., 2014 
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Table 2-1: Summary of NOM characterization methods (Cont’d). 
C

h
a

ra
ct

er
 

Characterization Method Description Advantages Disadvantages Reference 

B
io

d
eg

ra
d

a
b

il
it

y
 B

D
O

C
 

The fraction of DOC that can be metabolized by 

heterotrophic microorganisms 

Useful information for 

drinking water treatment and 

distribution 

Operational definition; can 

be time consuming; can 

over/under estimate if not 

used in complimentary with 

AOC 

Servais et al., 1987; Lucena et al., 1991; Frias et al., 

1995; Volk and LeChevallier, 2000; Escobar and 

Randall, 2001; Zappia et al., 2008; Yapsakli and Çeçen, 

2009 

A
O

C
 

The fraction of DOC that can be used by specific 

bacteria and converted to cell mass 

Able to detect very low 

concentrations; useful 

information for drinking 

water treatment and 

distribution 

Very sensitive to the 

environment 

contamination; time 

consuming; laborious; can 

over/under estimate if not 

used in complimentary with 

BDOC 

Van der Kooij et al., 1982; Huck, 19990; Frias et al., 

1995; Escobar and Randall, 2001; Kang et al., 2006 
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2.3.1 Size-based Characterization 

2.3.1.1 Filtration 

2.3.1.1.1 Dissolved Organic Carbon 

DOC is the soluble fraction of TOC and the most common parameter used for describing 

aquatic NOM. It is operationally-defined as the organic carbon that can be filtered through a 

0.45μm nominal porosity membrane filter (Thurman, 1985). Though sensitive to pH, 

measurement of TOC/DOC is simple and fast, and TOC analysis is possible in real time. 

Although it is not a common practice in the drinking water industry; online TOC analysis has 

been proposed for monitoring direct potable reuse process performance. DOC analysis is 

integral to water treatment because DOC concentration often correlates directly with the 

formation of regulated DBPs whose presence signals potential health concerns (Singer et al., 

1981; Reckhow and Singer, 1990; Wassink et al., 2011; Shams et al., 2014 and 2015) and 

chemical coagulant demand (Edzwald, 1993). However, these relationships tend to be site 

specific and breakdown when samples are collected from different sources (Reckhow and 

Singer, 1990), possibly as a result of different hydro-climatic conditions and sources 

contributing to DOC. An important limitation of TOC/DOC analysis is that it is limited to 

NOM quantity and does not inform NOM quality or structure. Although most studies have 

focused on the dissolved fraction of organic matter, the importance of monitoring suspended 

sediment associated particulate organic carbon (POC) in addition to DOC, as a potential source 

of increased reactivity (i.e., THM-FP) resulting from high discharge during storm events has 

been recently demonstrated (Jung et al., 2014); however, methods for assessing particulate 

NOM and their potential application to treatability are beyond the scope of this review. 

2.3.1.1.2 Membrane Fractionation 

Membrane fractionation methods enable characterization of molecules on the basis of 

molecular size/weight, by filtration under pressure and have demonstrated that NOM consists 

of a complex mixture of organic matter molecules of variable size and weight (Gjessing, 1970; 

Aiken, 1984; Collins et al., 1986; Liu et al., 2007; Lamsal et al., 2012; Green et al., 2015). 

Reverse osmosis membrane technology has been used to isolate and concentrate NOM from 
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large volumes of water, but it also concentrates several other solutes as well (Maurice et al. 

2002; Song et al, 2009); accordingly, ultrafiltration (UF) is more commonly used because 

although it excludes a smaller size range of molecules. 

Ultrafiltration (UF) 

Ultrafiltration has been widely used to isolate NOM based on molecular size cutoffs (Collins 

et al., 1986; Amy et al., 1987; Laine et al., 1989; Lamsal et al., 2012). An important advantage 

of these approaches is that large volumes of water can be fractionated without requiring 

alteration of the chemical properties of NOM (e.g., by acidification) during processing (Goslan 

et al., 2004). High molecular weight fractions obtained by UF have been reported as highly 

colored with high carbohydrate content and high specific ultraviolet absorbance (SUVA-

discussed below), while low molecular weight fractions have typically been lower in color, 

with long aliphatic carbon chains (Newcombe et al., 1997; Wei et al., 2008).  

Laine et al. (1989) reported that membrane composition can affect NOM fractionation by 

UF and concluded that membrane hydrophilicity results in better NOM fractionation. 

Membrane-solute interactions and operational conditions also affect NOM fractionation by 

membranes. Adherence of macromolecules to the walls of membrane pores affects membrane 

permeability and thus separation efficiency. Concentration polarization caused by deposition 

of macromolecules, can restrict flow and adversely impact isolation (Amy et al., 1987). Other 

factors including pH, pressure, ionic strength, membrane uniformity, pore size, and calibration 

standards can also affect the molecular weight distributions of NOM fractions obtained by UF 

(Aiken, 1984; Amy et al., 1987; Leenheer and Croué, 2003). A particular concern associated 

with this method is that NOM charge and structure may affect fraction isolation and rejection 

(Assemi et al., 2004; Revchuk and Suffet, 2014); therefore, UF fractionation and subsequent 

molecular weight estimation should be conducted carefully (Aiken, 1984; Assemi et al., 2004).  

UF fractionation of NOM has been compared to other methods such as chromatographic 

separation. In one comparison, UF fractionation and gel permeation chromatography (GPC) 

yielded similar outcomes for NOM size and molecular weight (Gjessing, 1973). By contrast, 

other comparisons of NOM characterization by UF and GPC did not yield consistent outcomes. 
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Specifically, molecular weights obtained using GPC were higher than those obtained with UF 

for the same source water. It was further shown that these differences were attributable to 

sensitivity to changes in pH; thus, it was concluded that UF is more reliable for NOM 

fractionation than GPC (Amy et al., 1987). Although neither of these methods was particularly 

precise in determining absolute molecular size, they were adequate for monitoring organic 

carbon in source waters and removal its fractions during water treatment (Amy et al., 1987). 

Higher molecular weight fractions obtained using UF fractionation have been found to be 

more reactive in forming THMs (Amy et al., 1987) and also more prone to removal by 

conventional treatment as well as direct filtration (Collins et al., 1986), relative to lower 

molecular weight fractions. In contrast, a study by Goslan et al. (2004) showed that fractions 

with low molecular weight were reactive and contributed to formation of regulated DBPs 

(Goslan et al., 2004), while Kitis et al (2002) did not find any significant relationships between 

fractions obtained from UF separation and formation of regulated DBPs (Kitis et al., 2002). 

These contradictory results suggest that molecular size may not be the best metric for the 

prediction of DBP formation.  

2.3.1.2 Size Exclusion Chromatography 

Size Exclusion Chromatography (SEC) involves NOM fractionation based on molecular size. 

It also can be used as to measure the molecular size of NOM fractions collected by other 

fractionation techniques (Croué, 2004; Baghoth et al., 2009). NOM fractionation by SEC 

involves passing the mobile phase (eluent and sample) through a column packed with porous 

beads (stationary phase). The fractions with smaller molecular size penetrate the stationary 

phase, while larger molecules move rapidly and have a shorter retention time in the column 

(Gjessing and Lee, 1967; Leenheer and Croué, 2003; Croué, 2004).  

2.3.1.2.1 Gel Permeation Chromatography (GPC) 

SEC was first performed with soft gel forming polymers (such as Sephadex) as the stationary 

phase, resulting in gel permeation chromatography (GPC) (Gjessing, 1973; Amy et al, 1987). 

This process is very time consuming because soft gels perform poorly at high pressure and 

flow rates (Hongve et al., 1996). The main disadvantage of this method is poor separation 
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(Becher et al., 1985) caused by factors such as electrostatic and adsorption interactions between 

the gel and the humic acids, which interfere with size exclusion separation (Amy et al., 1987). 

Electrostatic interactions tend to occur in solutions with low ionic strength, while adsorption 

interactions occur at lower pH; thus, using a basic buffer eluent with a high ionic strength is 

recommended to diminish these unwanted interactions (Amy et al., 1987). 

2.3.1.2.2 High Performance Size Exclusion Chromatography (HPSEC)/High Pressure Liquid 

Chromatography (HPLC) 

To improve the performance of SEC and overcome the disadvantages of using GPC, SEC was 

modified for use with rigid gels (silica- or polymer-based) instead of soft ones (Wu et al., 

2007a; Soh et al., 2008). Rigid beads can work at higher pressure and achieve better 

performance. Thus, the modified technique is called high pressure liquid chromatography 

(HPLC) or high performance size exclusion chromatography (HPSEC) (Fukano et al., 1978; 

Hongve et al., 1996). HPLC requires less analytical time than GPC and the resulting 

chromatograms have higher resolution (Becher et al., 1985). HPLC makes it possible to 

fractionate NOM into humic substances, biopolymers, building blocks, low molecular weight 

organic acids and neutrals and hydrophobic organic carbon fractions (Huber et al., 2011). 

Combining HPLC with multiple detectors (UV, FEEM, DOC, and DON) and advanced 

characterization tools (e.g. electrospray-MS, pyrolysis GC-MS) has been critical in the 

advancement of NOM characterization (Leenheer and Croué, 2003; Wagner et al., 2016). The 

main advantage of liquid chromatography is its capacity for revealing information on a large 

range of compounds from low to high molecular weights. Therefore, its application is 

beneficial in understanding the removal and reactivity of medium to low molecular weight 

compounds that cannot be described by other methods that only identify aromaticity (such as 

resin fractionation and UV254) (Shams et al., 2015). HPLC has been used in conjunction with 

on-line detectors such as UV, DOC and fluorescence excitation emission matrix (FEEM) 

analyzers (Huber and Frimmel, 1992 a,b; Huber et al, 1994; Bolto et al., 1999, Croué, 2004; 

Wu et al., 2007a; Soh et al., 2008; Baghoth et al., 2009; Wassink et al., 2011; Rahman et al., 

2014 and 2016; Azzeh et al., 2015; Pharand et al., 2015; Shams et al., 2014 and 2015). 

Although UV analyzers are more commonly used in this context, the addition of an organic 



 

22 

carbon detector (OCD) to HPLC (called LC-OCD) can provide more information regarding 

the amount and composition of NOM (Huber and Frimmel, 1992a,b; Wu et al., 2007a). The 

technique has been refined by adding an organic nitrogen detector (OND) and output of a 

humic substances (HS) diagram where aromaticity (defined as UV254/DOC) of the HS fraction 

is plotted against its nominal average molecular weight (Huber et al., 2011). The separation of 

various types of humic substances on the HS diagram suggests qualitative information about 

NOM origin (Huber et al., 2011); however, this capacity may be limited because LC-OCD 

cannot achieve full separation of all individual peaks associated with NOM fractions (Huber 

et al., 2011), thereby precluding proper calibration and adequate 

characterization/quantification of some types of NOM. Positive correlations between HS 

fraction (obtained by LC-OCD) and other aromaticity metrics (UV254, SUVA, and HPO) have 

been reported which confirms that although these metrics have different operational 

definitions, there is an overlap between the compounds that they describe (Shams et al., 2017). 

HPLC cannot precisely determine absolute molecular weight and works best for finding the 

relative proportions of organic fractions with different molecular sizes (Ates et al., 2007) 

whose peaks do not overlap.  

2.3.1.3 Flow Field-Flow Fractionation (FFFF) 

Flow field-flow fractionation (FFFF) separates NOM based on differences in the mobility of 

molecules of different sizes. It has been used to measure the molecular size of NOM in different 

water sources (Rosario-Ortiz et al., 2007b; Moon et al., 2006; Pifer and Fairey, 2012) and 

NOM fractions collected using other fractionation techniques (Newcombe et al., 1997; Assemi 

et al., 2004). NOM fractionation is achieved by injecting a sample into a thin channel while an 

external flow field perpendicular to the channel is introduced, applying a physical force to the 

sample and bending and shifting its flow to separate molecules based on their size/mobility. 

The fractions move toward an accumulation wall (semi-permeable or cellulose acetate 

membrane) for ultimate separation. Smaller sized molecules move faster than larger ones, 

which therefore have shorter retention times in the channel (Giddings et al., 1976; Beckett et 

al., 1987). NOM fractionation and molecular size determination by FFFF and SEC yield 
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similar outcomes (Pelekani et al., 1999; Rosario-Ortiz, 2007b); in contrast, FFFF and UF 

fractionation have yielded different outcomes (Newcombe et al., 1997; Assemi et al., 2004). 

2.3.2 Polarity-based Characterization 

2.3.2.1 Adsorption Chromatography 

2.3.2.1.1 Resin Fractionation 

Resin fractionation has been widely used for carbon fractionation. Ion exchange resins separate 

hydrophobic and hydrophilic fractions of NOM by adsorption at specific pH conditions 

(Leenheer, 1981; Thurman and Malcolm, 1981). Resin composition and surface area govern 

adsorption capacity (Cheng, 1977). The fractions separated by XAD resins are operationally-

defined such that the hydrophobic acid fraction is the portion of DOC that adsorbs on a column 

of XAD-8 resin at pH 2 and is eluted at pH 13 (Leenheer, 1981; Aiken et al. 1992). This fraction 

is also defined as fulvic acid (Thurman and Malcolm, 1981) and can contain aliphatic 

carboxylic acids of 5-9 carbons, one- and two-ring aromatic carboxylic acids, one- and two-

ring phenols, and aquatic humic substances. The hydrophilic acid fraction is the portion of the 

DOC contained in the XAD-8 resin effluent at pH 2 that sorbs on a column of XAD-4 resin 

that is eluted at pH 13. This fraction can contain poly-functional organic and aliphatic acids 

with five or fewer carbon atoms (Aiken et al. 1992; Malcolm and MacCarthy 1992). Resin 

fractionation typically uses Amberlite® XAD-8 and XAD-4 resins in series to adsorb aromatic 

hydrophobic and non-humic hydrophilic fractions, respectively. The terms and definitions 

assigned to the fractions have varied somewhat between studies. The method developed by 

Thurman and Malcolm (1981) has been used by the International Humic Substances Society 

(IHSS) as a standard method to distinguish between fulvic and humic acids (Senesi et al., 1989) 

relies upon operational definitions that involve adsorption on XAD-8 at pH 2, desorption at 

pH 13, and precipitation at pH 1 (Thurman and Malcolm, 1981). More recently, the addition 

of a third resin has been proposed to further separate the hydrophilic fraction of NOM (Bolto 

et al., 1999; Marhaba et al., 2003). Although resin fractionation has been broadly applied, its 

major drawbacks are that it is time consuming and complicated. A “rapid” resin fractionation 

method that involves mini-columns has been proposed (Chow et al., 2004) in which NOM is 
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isolated into four fractions: 1) very hydrophobic acids (VHA); 2) slightly hydrophobic acids 

(SHA); 3) hydrophilic charged acids (CHA) that were separated on Supelite DAX-8, Amberlite 

XAD-4, and Amberlite IRA-958, respectively; and 4) hydrophilic neutrals (NEU) which did 

not adsorb to the aforementioned resins (Bolto et al., 1999).  

Operational conditions used during resin fractionation can affect the results, making 

comparisons between studies difficult. For example, the extreme pH conditions used during 

resin fractionation can alter the chemical properties of the NOM fractions; accordingly, further 

characterization of the fractions is not necessarily representative of the original sample. 

Irreversible adsorption to the resins, contamination from resin bleeding, size-exclusion effects, 

and poor recovery are further challenges associated with the operational specifics of resin 

fractionation techniques (Town and Powell, 1993). Despite these challenges, resin 

fractionation has been quite informative in some applications such as drinking water 

coagulation, where it has been consistently demonstrated that hydrophobic fractions drive 

coagulant demand and are easier to remove than hydrophilic fractions (Collins et al., 1986; 

Kitis et al., 2002; Liang and Singer, 2003; Chow et al., 2004; Sharp et al., 2006; Soh et al., 

2008). It has been less consistently informative elsewhere, such as assessment of NOM 

reactivity with oxidants (e.g. chlorine). While many studies have suggested that 

humic/hydrophobic fractions of NOM are more reactive with chlorine and major contributors 

to the formation of regulated DBPs in natural waters (Collins et al., 1986; Kitis et al., 2002; 

Liang and Singer, 2003; Soh et al., 2008; Shams et al., 2014 and 2015), hydrophilic compounds 

are also reactive (Krasner et al.,1996) and have been show to act as major precursors of 

regulated DBPs (Collins et al., 1986; Bolto et al., 2002; Kwon et al., 2005) and DBPs of 

emerging health concern (Chen and Westerhoff, 2010). This inconsistency underscores that 

although resin fractionation is an informative method, it is likely inadequate (when used alone) 

for drawing general conclusions on the reactivity of hydrophobic/hydrophilic fractions of 

different source waters during drinking water treatment.  
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2.3.2.1.2 Polarity Rapid Assessment Method 

The polarity rapid assessment method (PRAM) involves analyzing the quantity of NOM that 

can be adsorbed onto a parallel series of solid phase extraction (SPE) cartridges with different 

polarities that include: non-polar (C18, C8, and C2), polar (CN, diol and silica) and anionic 

exchangers (NH2, SAX). NOM breakthrough is expressed as DOC and/or UV254 (Rosorio-

Ortiz et al., 2004; 2007a). A retention coefficient (RC = 1- 
Cmax

C0
, where Co is the initial DOC 

or UV254 and Cmax is the maximum DOC or UV254 after passage through each cartridge) 

describes the fraction of NOM that is adsorbed onto each of the cartridge (Rosorio-Ortiz et al., 

2007a). The analysis is rapid relative to techniques such as resin fractionation because no 

sample pretreatment is required and passage of the small sample volume through an SPE 

cartridge takes approximately 10 minutes. 

PRAM does not involve matrix adjustment; therefore, NOM is not modified during analysis 

(Rosorio-Ortiz et al., 2004). As would be expected, when matrix pH or ionic strength is 

modified, NOM configuration is modified, resulting in considerably different results compared 

to those obtained at ambient conditions (Rosario-Ortiz et al., 2007a). Polarity adsorption is 

relatively stable at DOC concentrations up to 10 mg/L when other matrix conditions are 

constant. Retention increases at higher DOC concentrations (e.g., ~27 mg/L); therefore, sample 

dilution is recommended prior to analysis when high levels (>10 mg/L) of DOC are present 

(Rosario-Ortiz et al., 2007a). A significant limitation of this method is that the adsorbed 

fractions overlap somewhat between the SPE cartridges, so that it is not quantitative and mass 

balance cannot be assessed. Moreover, adsorbed NOM fractions cannot be collected for further 

structural characterization (Rosario-Ortiz et al., 2007a). Not surprisingly, the hydrophobic 

fraction of PRAM (operationally-defined as the fraction adsorbed to C18 sorbent at natural 

pH) has not correlated well with hydrophobic fractions obtained with XAD resin fractionation 

at acidic conditions; even when PRAM analysis was conducted at similar conditions (pH<3), 

only weak correlations between the methods were found (Philibert et al., 2012). Also, 

characterizing NDMA precursors by resin fractionation and PRAM did not produce similar 

results and showed higher selectivity of PRAM (Laio et al., 2015). These contrasts underscore 

that most operationally-defined protocols are typically defined either by correlation with 
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parameters of interest (e.g., coagulant dose, DBP formation potential, etc.) or by availability 

of analytical tools, sometimes both. Accordingly, care must be taken when interpreting their 

significance and relationship to carbon character, origin, and reactivity. 

2.3.3 Other Structural Attributes 

2.3.3.1 Spectroscopy/Spectrometry 

Different compounds have unique absorption or emission spectra when exposed to radiative 

energy (e.g., light, magnetic radiation, UV etc.), thereby enabling spectroscopy-based 

characterization. Fluorescence- and UV-based spectroscopic methods are the most common of 

these types of NOM characterization methods (Abbt-Braun et al., 2004; Croué, 2004). In 

contrast, mass spectrometry (MS) involves the use of unique mass-to-charge ratio spectra and 

the abundance of gas-phase ions upon ionization to identify the amount and type of compounds 

present in NOM. MS has been used in combination with other characterization techniques such 

as liquid/gas chromatography (González-Vila et al., 2001; Templier et al., 2005) to provide 

detailed information on NOM structure and reactivity. 

2.3.3.1.1 Ultraviolet Visible (UV/Vis) and Specific Ultraviolet Absorbance (SUVA) 

Organic compounds absorb light over a wide range of wavelengths in the UV region. For 

instance, aromatic compounds absorb UV at 254 nm (UV254) (Edzwald et al., 1985). UV254 is 

considered an excellent predictor of the formation potential of regulated DBPs (i.e., THMs and 

haloacetic acids [HAAs]) (Singer et al., 1981; Edzwald et al., 1985; Wassink et al., 2011; Awad 

et al., 2016; Shams et al., 2017). In general, it has been a better predictor of DBP formation 

potential than TOC (Reckhow et al., 1990), though this correlation does not necessarily hold 

for all water matrices, such as those with low SUVA (defined below), suggesting that fractions 

of NOM that do not absorb UV254 (non-aromatic/hydrophilic) also play a role in DBP 

formation (Ates et al., 2007). UV254 has found widespread use in the drinking water industry 

because it can be measured online and in real time. 

Specific ultraviolet absorbance (SUVA) is defined as the measured UV254 divided by the DOC 

(with units of L/mg.m); it was first used to describe chemical coagulation performance in 
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removing relatively hydrophobic fractions of NOM during drinking water treatment (Edzwald 

and Van Benschoten, 1990; Edzwald and Tobiason, 1999). It also has been strongly correlated 

with aromaticity as determined by 13C NMR for isolates from a variety of aquatic environments 

(Weishaar et al., 2003). Accordingly, it is useful for estimating dissolved aromatic carbon 

content in aquatic systems. The utility of SUVA as a THM-FP predictor has been widely 

investigated and has resulted in good, precise correlations in some cases (Reckhow et al. 1990; 

Kitis et al. 2001), but not in others (Goslan et al., 2004; Bougeard et al., 2010; Hua et al., 2015). 

The lack of consistently precise correlation has been especially observed in low aromaticity 

waters (SUVA < 2) (Ates et al., 2007; Li et al., 2014), as would be expected given that high 

aromaticity water contains more precursor material. A wide range of reactivity of water 

samples with similar SUVA values also has been reported, underscoring that not all reactive 

materials significantly absorb UV at 254 nm and not all aromatic materials are reactive 

(Weishaar et al., 2003; Ates et al., 2007). So, while SUVA is useful for generally characterizing 

NOM, it is less reliable in predicting NOM reactivity. 

2.3.3.1.2 Fluorescence Spectroscopy 

While only a small fraction of aromatic species actually emit light making them detectable by 

fluorescence spectroscopy (Lapen and Seitz, 1982), the potential for relatively inexpensive, 

real time analysis has led to extensive investigation of its use for characterizing aqueous NOM. 

Several environmental factors such as solution temperature, composition, concentration, pH, 

and salinity affect fluorescence signal characteristics (Green et al., 1992; Mobed et al., 1996; 

Carstea, 2012). As scattering (i.e. Rayleigh, Raman) of incident light can affect fluorescence 

signals (particularly in turbid waters), it is critical that fluorescence responses are appropriately 

corrected (Mobed et al., 1996; Ohno, 2002; Carstea, 2012). 

Strong and consistent relationships have been reported between the fluorescence properties, 

molecular weight, and composition of NOM (Croué et al. 2000). Thus, fluorescence 

spectroscopy has been widely applied for NOM characterization. Fluorescence-based methods 

are particularly sensitive to proteins (tryptophan, tyrosine, and phenylalanine) and humic 

substances (humic and fulvic acids) (Coble, 1996; McKnight et al., 2001b; Chen et al., 2003b). 

Fluorescence signals are typically recorded as a 1) fluorescence emission spectrum, 2) 
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fluorescence excitation spectrum (representing the dependence of emission intensity, measured 

at a single emission wavelength, upon the excitation wavelengths), 3) synchronous 

fluorescence spectrum, 4) total synchronous fluorescence spectrum, or 5) excitation–emission 

spectrum (Carstea, 2012). In most cases, complex multi-component mixtures like those found 

in environmental systems cannot be described well using conventional fluorescence methods. 

As a result, synchronous fluorescence spectroscopy, total synchronous fluorescence 

spectroscopy, and excitation-emission matrices (Coble, 1996, Hudson et al., 2007; Barker et 

al., 2009) have emerged for rapid DOM characterization by fluorescence analysis (Carstea, 

2012); of these, excitation-emission matrices are the most commonly utilized. These 

techniques are discussed in greater detail below. 

Fluorescence Excitation Emission Matrix (FEEM) 

Fluorescence Excitation Emission Matrix (FEEM) approaches involve the collection of 

repeated emission scans collected at numerous excitation wavelengths to yield fluorescence 

contour maps (Coble, 1996). Fluorescence intensity maxima are identified excitation/emission 

wavelength pairs. As EEMs utilize fluorescence, humic- and protein-like peaks are the two 

main components studied (Wu et al., 2007b; Zhang et al., 2008; Baghoth et al., 2009). Specific 

focus on tryptophan-like, fulvic-like, coumarin-like, and particulate matter has also been 

reported (Senesi et al., 1989; Chen et al., 2003a,b; Liu et al., 2007; Spencer et al., 2007 Peiris 

et al., 2010; Wassink et al., 2011).  

Strong correlations between humic/fulvic-like fluorescence intensity, DOC, and molecular 

size of NOM have been reported (Liu et al., 2007; Wu et al., 2007b; Wassink et al., 2011). 

FEEM also has been used online in a 3-D form to provide qualitative information about NOM 

structure (Wu et al., 2007b). It is important to note that fluorescence spectra include 

instrumental bias (Hofstraat and Latuhihin, 1994) that can result in systematic errors that 

preclude inter-laboratory comparisons if the biases are not removed through proper calibration 

and application of correction factors to both excitation and emission spectra (Coble et al., 

1993)—this is particularly important with EEMs relative to conventional fluorescence 

spectroscopy because a large number of data are often reduced to the wavelength coordinates 

and fluoresce intensity of observable peaks (Coble et al., 1996; Holbrook et al., 2006). 
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Fluorescence regional integration and peak picking have been applied to qualitatively interpret 

the data (Chen et al., 2003b). However, methods for quantitative interpretation of these data 

have not yet been fully established and do not yield consistent or validated results. It is believed 

that application and continued refinement of multivariate data decomposition/analysis methods 

such as principal component analysis (PCA) and parallel factor analysis (PARAFAC) will 

ultimately overcome this inadequacy (Hiriart-Baer et al.; 2008; Peiris et al., 2010; Pifer and 

Fairey, 2014; Pifer et al., 2014; Korak et al., 2015; Peleato and Andrews, 2015; Peleato et al., 

2017). It is believed that because these apprroaches make use of the entire EEM they will 

provide better description of complex fluorophore moieties (Holbrook et al., 2006). 

Nonetheless, all EEM analyses are reliant upon spatial variations of fluorescence intensity; 

inaccurate quantification of fluorescence intensity or location within the matrix may result in 

significant error. Accordingly, proper instrument calibration and removal of instrument bias is 

critical for inter-laboratory comparison (Holbrook et al., 2006). Moreover, strategies for 

method validation and mass-based interpretation are currently lacking. 

Fluorescence Index (FI) and Humification Index (HIX) 

While EEMs capture large amounts of fluorescence data, fluorescence (FI) and humification 

(HIX) indices summarize key aspects of such data and are predominantly associated with NOM 

aromaticity (McKnight et al., 2001b; Kalbitz et al., 2000; Zsolnay et al., 1999; Ohno, 2002). 

FI is computed in the fulvic acid-influenced region of EEMs as the ratio of emission intensity 

at 450 nm to that at 500 nm obtained at an excitation of 370 nm (McKnight et al., 2001b, 

Larsen et al., 2010). Instrument bias associated with this technique can be successfully 

corrected (Cory et al., 2010). The FI has been suggested for characterizing the bioavailability 

and sources of aqueous NOM and correlates well with aromaticity (McKnight et al., 2001b; 

Rodríguez et al., 2014). FI values in the range of 1.3-1.8 have been reported for river water 

(Brooks and Lemon, 2007). Microbially-derived NOM is associated with higher FI (e.g., ~1.9), 

while terrestrially-derived NOM has lower FI (~1.4) (McKnight et al., 2001b). If FI is to be 

used in hydrologic investigations, care should be taken in characterizing source water seasonal 

patterns because fluorescence characteristics can vary both spatially and temporally (Johnson 

et al., 2011; Hohner et al., 2016). Moreover, the application of this metric may not be relevant 
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for all source waters such as those in which florescence at the associated wavelengths is very 

low or non-existent (Shams et al., 2014). Notably, high quality source waters such as those 

originating in healthy forested watersheds are frequently among those that are at highest risk 

for disturbance-associated water quality and treatability deterioration, and therefore for which 

such metrics would be desirable, but are unfortunately less informative. 

HIX is a measure of NOM aromaticity defined as the ratio of the emission intensity at 

large wavelengths to emission intensity at short wavelengths (Ohno, 2002); its use is more 

commonly associated with soil rather than aqueous NOM characterization. When first 

proposed, it involved fixing the excitation wavelength at 254 nm and defining the large and 

short emission wavelengths as 435-480 nm and 300-345 nm, respectively (Zsolnay et al., 

1999). Different emission wavelengths have also been used (Kalbitz et al., 2000; Ohno, 2002). 

HIX results generally correlate with UV254, but their accuracy can be limited for samples with 

DOC concentrations lower than 3 mg/L (Kalbitz et al., 2000); thus, like FI, it would have 

limited utility for high quality source waters.  

2.3.3.1.3 Fourier Transform Infra-Red (FTIR) 

Fourier transform infra-red (FTIR) spectroscopy detects molecular vibrations associated with 

atomic bonds after exposure to infra-red light; the absorption spectrum provides information 

regarding inorganic and organic functional groups within NOM (Leenheer et al., 1987; Ricca 

and Severini, 1993; Chen et al., 2002; Chen et al., 2003b; Croué, 2004; Kim and Yu, 2007; 

Her et al., 2008; Zhang et al., 2009; Yang et al., 2013; Zhou et al., 2014). FTIR is capable of 

analyzing both liquid and solid phase samples but the preparation is intensive (Leenheer et al., 

1987; Chen et al., 2002). The other main drawback of this technique is the difficulty in 

quantitatively interpreting spectra with overlapping bands from different NOM fractions 

(Bloom and Leenheer, 1989; Chen et al., 2002). 

2.3.3.1.4 Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) provides information about the number and distribution 

of carbon atoms based on unique responses in re-emitted electromagnetic radiation when 

samples are placed in a magnetic field (Leenheer et al., 1987). 13C-NMR and 1H-NMR are the 
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most common NMR types used in NOM characterization, providing information about 

functional groups present in its structure (Leenheer et al., 1987; Ricca and Severini, 1993; 

Westerhoff et al., 1999; Chen et al., 2002; Chen et al., 2003b; Croué, 2004; Templier et al., 

2005; Kim and Yu, 2007; Li et al., 2014; Nwosu and Cook, 2015; Li et al., 2016; Ikeya and 

Watanbe, 2016; Hertkornet al., 2016). In one investigation, changes in humic substances at 

various points in a water treatment plant were similar when characterized by 1H-NMR and 

FTIR (Kim and Yu, 2007). Similar results for relative abundance of aromatic fractions in water 

samples from a wetland also were reported when assessed by 13C-NMR, FTIR, and UV 

spectroscopic methods (Chen et al., 2002), though it also has been suggested that SUVA may 

be better than 13C-NMR in indicating the reactivity of aromatic NOM (Westerhoff et al., 1999). 

NMR techniques are not commonly applied to characterize aqueous NOM because of intensive 

sample preparation requirements (Chen et al., 2003b) and limited practical utility. Quantitative 

interpretation of NMR data is limited by the complex nature of NOM that causes overlaps in 

the spectra of different fractions (Westerhoff et al., 1999; Chen et al., 2002). It has been 

reported that 13C-NMR overestimates aliphatic NOM fractions, while underestimating 

aromatic fractions (Poirier et al., 2000; González-Vila et al., 2001; Templier et al., 2005).  

2.3.3.1.5 Mass Spectrometry (MS) 

Mass spectrometry (MS) involves ionizing chemical compounds and measuring the abundance 

of gas-phase ions as a function of the mass-to-charge ratio. It is used to determine the elemental 

or isotopic signatures and other aspects of chemical structure. MS has been combined with 

other characterization techniques such as gas/liquid chromatography (González-Vila et al., 

2001; Templier et al., 2005), FTCIR (Brown and Rice 2000; Reemtsma et al., 2008; Reemtsma, 

2009; Kunenkov et al., 2009; Herzsprung et al., 2014; Cao et al., 2015; Lu et al., 2015; 

Herzsprung et al., 2015; Hertkorn et al., 2016; Li et al., 2016), and pyrolysis (Poirier et al., 

2000; Croué, 2004; Templier et al., 2005; Parsi et al., 2007) to provide more detailed 

information regarding NOM structure and reactivity. Electrospray ionization (ESI-MS) is an 

advancement that enables the introduction of liquid samples in MS (thereby precluding the 

need for derivatization of NOM) and enables coupling mass spectrometers with high 

performance liquid chromatography (Leenheer et al., 2001; Leenheer and Croué, 2003). 
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Fourier Transform Ion Cyclotron Resonance (FTICR) MS provides an ultra-high resolution 

signal. In combination with ESI it should have sufficient accuracy to allow molecular formula 

calculation, though further development in NOM enrichment and chromatographic separation 

is required and tools for data analysis and comparison must be improved (Reemtsma et al., 

2008; Reemtsma, 2009; Lu et al., 2015). Orbitrap Fourier transform-mass spectrometry 

(Orbitrap FT-MS) involves trapping ions in an electric field, thereby resulting in a mass 

spectrometer that is smaller, less expensive, and with greater ion trapping capacity than FTCIR, 

which only uses a magnetic field (Makarov, 2000; Urai et al., 2014). It should be underscored 

that a key drawback to all of these methods is the lack of well-defined reference compounds 

that are needed to calibrate these techniques (Leenheer and Croué, 2003; Reemtsma, 2009). 

Overall, and likely due to some of these limitations, potential linkages between these methods 

and drinking water treatability or treatment performance assessment have not been widely 

investigated relative to many of the other analyses described above. 

Pyrolysis (PY) 

Most NOM is too large for analysis by standard GC/MS. Pyrolysis gas chromatography and 

mass spectroscopy (Py-GC-MS) overcomes this limitation by using anoxic heat to break NOM 

into smaller, lower-molecular weight fragments that are volatile and can be introduced into gas 

chromatography (Croué, 2004; Templier et al., 2005). Non-discriminating pyrolysis minimizes 

transfer losses of large-molecular fragments (Parsi et al., 2007). Pyrolysis-GC-MS enables 

identification of NOM building blocks such as polysaccharides, proteins, lignin, and aromatic 

and polyhydroxyaromatic compounds, as well as biopolymers (Leenheer and Croué, 2003; 

Croué, 2004). Characterization of humic fractions and biopolymers by Py-GC-MS has 

correlated with 13C-NMR (González-Vila et al., 2001; Leenheer and Croué, 2003); however, 

both methods overestimate aliphatic fractions (Poirier et al., 2000; González-Vila et al., 2001). 

Pyrolysis also is sensitive to matrix effects (thereby relying on the use of reference compounds) 

and can result in side reactions that form new compounds (Saiz-Jimenez, 1994). 

Isotope Ratio Mass Spectrometry 

Changes in isotope abundance at natural levels are relatively minute, so measured isotope 

ratios are expressed relative to a contemporaneously measured isotope ratio of a standard of 
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known isotopic composition (e.g., Vienna Pee Dee Belemnite in the case of 13C). To facilitate 

manageability of results, “delta notation” was adopted such that 13C = 1000 * [(13C/12C 

sample) / (13C/12C standard) -1]; the results are referred to as per mil values (‰ ). If the isotopic 

ratio of the sample is higher than that of the standard then  will be positive (enriched); for an 

isotopic ratio lower than that of the standard  will be negative (depleted) (Kendall and 

Caldwell, 1998). The difference in stable isotope ratios (13C) can provide useful information 

regarding NOM sources. 

While the stable isotopic ratio is a good tracer of carbon sources, the radioactive carbon 

isotope (14C) can be used to assess carbon age and turnover times. For example, it has been 

successfully used to estimate the age of groundwater where inorganic carbon interactions do 

not interfere with the method (Murphy et al., 1989b; Schiff et al., 1990; Kendall and Caldwell, 

1998). It has been observed that the age of groundwater is typically older than that of surface 

water, which confirms extensive cycling of groundwater DOC (Schiff et al., 1990). In contrast, 

the age of the radiocarbon in rivers is often reported as relatively young because of microbial 

activity and associated utilization of older, terrestrial carbon (Raymond and Bauer, 2001; 

Mayorga et al., 2005). As would be expected, the utility of this approach for water age dating 

can be limited when waters of very different ages blend (Kendall and Caldwell, 1998).  

Stable (12C and 13C) and radio- (14C) isotopes of carbon have been used to investigate the 

origin, transport, and fate of DOC in marine environments (Williams et al., 1969; Williams 

and Druffel, 1987; Bauer et al., 1991), streams and rivers (Hedges et al., 1986; Murphy et al., 

1989a; Schiff et al., 1990; Raymond and Bauer, 2001; Gandhi et al., 2004; Mayorga et al., 

2005), groundwater (Murphy et al., 1989b; Schiff et al., 1990), wetlands (Schiff et al., 1990), 

and lakes (Schiff et al., 1990; Jiang et al., 2010). This method has also been recently applied 

to investigate the effects of different processes on DOC character during drinking water 

treatment to demonstrate that new sources of organic carbon are added during treatment and 

that treated water is isotopically lighter and younger in 14C-DOC age than untreated water 

(Bridgeman et al., 2014). Isotopic carbon analysis is facilitated by using organic carbon 

analyzers coupled to mass spectrometers (De Troyer et al., 2010). These techniques are faster 

and less complicated compared to traditional methods that utilize off-line DOC oxidation 
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followed by isotope ratio mass spectrometry (IRMS) (Raymond and Bauer, 2001; Gandhi et 

al., 2004). 

2.3.4 Biodegradability-based Characterization 

2.3.4.1 Biodegradable Organic Carbon (BDOC) 

Biodegradable organic matter (BOM) is the fraction of NOM that can be mineralized by 

heterotrophic bacteria. Neutral hydrophilic fractions of NOM are the main components of 

BOM (Soh et al., 2008). BDOC is the biodegradable fraction of DOC that is used to evaluate 

the biological stability of drinking water distribution systems, the potential to form disinfection 

by-products, and reduction in chlorine demand (Volk and LeChevallier, 2000; Escobar and 

Randall, 2001). It is operationally-defined by several methods and is measured as the 

difference in DOC concentration before and after an incubation period in batch- or bioreactor-

based methods (Joret and Levy 1986; Servais et al., 1987; Huck, 1990; Lucena et al., 1991; 

Frias et al., 1995). These methods should be contrasted with others focused on the analysis of 

biodegradable fractions of particulate organic carbon alone or in combination with DOC (Jung 

et al., 2014). A comparison of conventional (developed by Servais et al., 1987) and rapid 

BDOC (developed by Lucena et al. 1991) analysis in different water sources showed that 

conventional methods could achieve more reliable and robust results, closer to the spiked 

values in ground and surface waters (Zappia et al., 2008). The limiting factors of the rapid 

method were identified to be: biofilm conditioning, oxygen limitation, and soluble microbial 

product (Zappia et al., 2008). 

2.3.4.2 Assimilable Organic Carbon (AOC) 

AOC is the fraction of DOC that is assimilated into microbial cell mass (Van der Kooij et al., 

1982). The growth of Pseudomonas fluorescens strain P17 (AOC-P17) and Spirillum sp. strain 

NOX in water is assessed in batch reactors. A conversion factor is typically used to convert 

the microbial biomass to a carbon concentration. AOC is a parameter that is used in the 

assessment of heterotrophic bacterial growth in drinking water disribution systems, though it 

typically comprises a small portion of DOC (Van der Kooij et al., 1982; Huck, 1990; Kang et 

al., 2006) that can hardly be removed during conventional treatment (Kang et al., 2006). It is 
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advised to use AOC and BDOC as complementary metrics as measuring only one may lead to 

over/under-estimation of bio stability or bacterial regrowth (Escobar and Randall, 2001). 

2.4 Research Gaps and Needs 

To identify different NOM/DOC fractions and evaluate their reactivity, various types of DOC 

characterization and fractionation techniques have been introduced and developed over the 

past 50 years. These methods have enabled the development of site specific correlations 

between DOC fractions and their reactivity with oxidants (e.g. chlorine) and coagulant 

demand. LMW fractions have been associated with microbial regrowth in the distribution 

system (Escobar et al., 2000; van der Kooij and van der Wielen, 2014) and more recently, 

biopolymer fractions have been linked with membrane fouling (Rahman et al., 2014; 

Yamamura et al., 2014). Nonetheless, comprehensive isolation and identification of DOC 

fractions has not been achievable and the complex mixture of NOM and its spatial and temporal 

variability has precluded the identification of universal proxy indicators for predicting NOM 

reactivity in forming compounds such as THMs. This is in part because the results and 

inferences associated with fractionation techniques are affected by operational conditions (e.g., 

acidification, pH) and thus, are often inconsistent with or difficult to interpret in combination 

with those obtained at different operational conditions or using different techniques. 

Compositional characterization methods also are generally complicated and expensive; 

moreover, many have limitations related to calibration. As a result, no universal precursors for 

NOM reactivity with oxidants (e.g., chlorine) have been identified, making it difficult to 

compare NOM reactivity between watersheds, or even seasonally within a given watershed. 

Logically, it is unlikely that a single, directly-measured universal precursor for DBP-FP will 

ever be identified based on structural characteristics of NOM. As a result, data obtained from 

multiple NOM characterization methods must be combined and concurrently analyzed; this 

requires the use of appropriate multivariate analysis tools during exploratory data analysis to 

ensure that optimal predictive models that best extract information from available data are 

developed. While approaches such as principal components (Peiris et al., 2010; Peleato and 

Andrews, 2015) and parallel factor analysis (Korak et al., 2015; Peleato and Andrews, 2015; 

Peleato et al., 2017) have been applied to understanding FEEMs, there is a stark absence of 
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multivariate analysis of broader NOM data. Given that several variables will likely be required 

to inform and develop universally predictive models for treatability metrics such as DBP-FP, 

the associated dispersion matrices will likely be too large to study and interpret, with too many 

pairwise correlations between variables that must be considered. Thus, more meaningful 

interpretation of the data requires them to be reduced—thoughtful selection of the best 

approaches (e.g., principal components analysis, factor analysis, etc.) is important, but beyond 

the scope of the present discussion. Regardless of the current absence of such models, the need 

to develop them is resoundingly clear; thus, there is also a corresponding need to further 

develop NOM characterization/fractionation techniques and include concurrent analyses using 

several different characterization/fractionation methods during field investigations of NOM 

character and reactivity. 
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Chapter 3 

Comparative Assessment of NOM Surrogates for Evaluating the 

Potential for Disinfection By-product Formation, Distribution 

System Regrowth, and Membrane Fouling during Drinking Water 

Treatment 

3.1 Overview 

Control of the potential for 1) formation of regulated, disinfection by-products (DBPs), 

2) membrane fouling, and 3) distribution system regrowth during drinking water treatment are 

all challenges and that are associated with source water natural organic matter (NOM), which 

is typically described by dissolved organic carbon (DOC) concentration and character. A 

comprehensive understanding of DOC character before and after each treatment step is 

important in developing resilient treatment strategies that can minimize treatment challenges—

it is also important for assessing treatability needs in anticipation of or after landscape 

disturbances. Thus, this capacity is important for climate change adaptation, particularly in 

high quality, low DOC source watersheds. Here, several NOM characterization techniques 

were compared as proxy indicators for the removal of NOM attributes that contribute to the 

formation of regulated DBPs. NOM indicators of drinking water distribution system stability 

and membrane fouling also were evaluated. The relative potential for membrane fouling and 

distribution system regrowth was also examined. The unique contribution of this work is that 

1) several NOM characterization metrics were evaluated concurrently and 2) several key steps 

comprising conventional treatment as well as biofiltration were evaluated. These included the 

plant intake and post-sedimentation, post-ozonation, and post-GAC biofiltration steps at a full-

scale drinking water treatment plant. DOC, UV254, SUVA, hydrophobic fraction, and humic 

substances (HS) concentration (identified by liquid chromatography-organic carbon detection 

[LC-OCD]) correlated reasonably well with trihalomethane (THM) and haloacetic acid (HAA) 

formation potentials (FPs), whereas fluorescence index (FI) did not. The qualitative 

information about the humic/fulvic fractions indicated by fluorescence excitation emission 

matrices (FEEMs) was consistent with the aromaticity and hydrophobicity data. Thus, as 
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would be expected, metrics indicating NOM aromaticity and hydrophobicity were all 

reasonably precise predictors of DOC reactivity and formation of regulated DBPs—UV254 

demonstrated the best predictive capacity. Chemical pre-treatment (coagulation, flocculation, 

sedimentation) was critical for reducing both THM- and HAA-FPs as well as biopolymer, 

which can contribute to membrane fouling. Biofiltration also demonstrated the capacity to 

remove DBP precursors, biopolymers, and building blocks, as well as low molecular weight 

(LMW) neutrals in particular, whose presence favors bacterial regrowth and biofilm formation 

in drinking water distribution systems (Escobar et al., 2000; van der Kooij and van der Wielen, 

2014). This work underscores the continued need to further 1) develop relatively rapid and 

inexpensive approaches for assessing NOM contributions to various types of drinking water 

treatment challenges and 2) make recommendations regarding the most practical and 

informative metrics for use in evaluating drinking water treatability implications of 

increasingly variable or deteriorated source water quality resulting from climate change-

associated landscape disturbances. 

3.2 Introduction 

Dissolved organic carbon (DOC) is a key surrogate for natural organic matter (NOM) and is 

recognized as a critical water quality parameter that drives water treatment process design 

(MWH, 2012; Thurman, 1985). DOC concentrations and characteristics in water depend on 

watershed hydrological and biogeochemical processes, (Aiken and Cotsaris, 1995; Fabris et 

al., 2008; Krasner et al., 1996; Leenheer and Croué, 2003; Owen et al., 1995), and temperature 

(Leenheer and Croué, 2003). Accordingly, DOC levels and characteristics are subject to spatial 

and temporal changes (Pellerin et al., 2012; Spencer et al., 2008). Changes in DOC levels and 

characteristics may lead to challenges to water treatability such as 1) adverse impacts on taste, 

odor, and color (Leenheer and Croué, 2003); 2) membrane fouling (Amy, 2008; Brinkman and 

Hozalski, 2015; Lee et al., 2006); 3) increased potential for bacterial regrowth in distribution 

systems (Kaplan et al., 2005; van der Kooij and van der Wielen, 2014); 4) coagulation 

challenges (White et al., 1997; Edzwald and Tobiason, 1999; O’Melia et al., 1999; Yan et al., 

2008; Hohner et al., 2016); 5) increased disinfectant dosing requirements (Owen et al., 1993; 

Fabris et al., 2008); 6) increased potential of heavy metals complexation (Frimmel, 1998; Wu 
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et al., 2004; Waples et al., 2005; Deonarine and Hsu-Kim, 2009); and 6) increased DBP 

formation potential (DBP-FP) (Babcock and Singer, 1979; Singer, 1999; Kitis et al., 2002; 

Liang and Singer, 2003; Ates et al., 2007; Chen and Westerhoff, 2010). Each of these 

challenges is associated with certain fractions or characteristics of DOC. Thus, proper 

characterization of DOC before and throughout the treatment process is critical to better 

evaluation and development of appropriate, resilient treatment strategies. Enhanced 

coagulation and flocculation, followed by clarification (typically sedimentation) is the best 

available technology for DOC removal during drinking water treatment. Coagulation 

preferentially removes hydrophobic, aromatic DOC fractions with high molecular weight 

compared to aliphatic, hydrophilic fractions of low molecular weight (Collins et al., 1986; Kitis 

et al., 2002; Liang and Singer, 2003; Chow et al., 2004; Sharp et al., 2006; Soh et al., 2008). 

Post-coagulation adsorption with activated carbon has been suggested in situations where 

further removal of humic substances or lower molecular weight fractions of DOC that cannot 

be removed during chemical pre-treatment is required (Bond et al., 2011; Velten et al., 2011). 

Ozone can oxidize reactive organics to biodegradable compounds and therefore, application of 

ozonation prior to physico-chemical filtration is frequently suggested, with the additional 

recommendation of enabling biological filtration to enhance NOM removal—this is typically 

achieved by eliminating chlorination prior to filtration (Miltner et al., 1992; Chaiket et al., 

2002; Bond et al., 2011). Biofiltration is thought to remove biodegradable fractions of DOC 

that are primarily of lower molecular weight (Liao et al., 2017; So et al., 2017); however, 

substantial removal of large molecular weight DOC fractions such as biopolymers by 

biofiltration also has been reported (Rahman et al., 2014; Azzeh et al., 2015; Pharand et al., 

2015; So et al., 2017).  

The fractions of DOC that are not removed during water treatment can potentially react with 

chlorine and other disinfectants (chloramines, chlorine dioxide, and ozone) to form different 

classes of DBPs. Many of identified DBPs are considered to be cytotoxic, genotoxic or 

carcinogenic in laboratory animals (Plewa et al., 2002; Woo et al., 2002; Plewa et al., 2004) 

and are potential public health risks if ingested, inhaled, or dermally absorbed during 

swimming and showering/bathing (Richardson et al, 2002; WHO, 2006). THMs and HAAs 
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are the most prevalent DBPs and can represent a series of other chlorinated DBPs (WHO, 

2006). Therefore, these two groups are regulated worldwide to control the risks of exposure to 

chlorinated DBPs in general (WHO, 2006; Health Canada, 2008; USEPA, 2012).  

Accordingly, it is of critical importance to fully understand the changes of DOC levels and 

composition throughout treatment processes. This information will enable the identification of 

promising measurements/surrogates for DBP formation. NOM is a vast collection of ill-known 

organic compounds with diverse characteristics (Deb and Shukla, 2011) and various 

techniques and metrics have been developed to characterize its bulk and fractionated forms. 

Several investigations have focused on establishing relationships between DOC and DBP-FP 

and identifying DBP precursors. Most of these efforts have focused on raw (untreated) water; 

however, and the impacts of sequential individual treatment processes on the relationship have 

not been widely considered. Moreover, little effort has gone into comparing the information 

provided by different characterization techniques when describing the impacts of treatment on 

DOC composition at full-scale.  

The primary focus of this study was to evaluate methods for characterizing DOC and its 

fractions through the treatment process that contribute to regulated, chlorinated DBP 

formations, membrane fouling, and bacterial regrowth in the distribution system. Several 

characterization methods were evaluated and compared based on their potential to predict the 

formation of regulated chlorinated DBPs (THMs and HAAs). Biopolymers were used as an 

indicator of membrane fouling (Rahman et al., 2014; Yamamura et al., 2014) and LMW 

neutrals were used to evaluate the relative potential for microbial regrowth in the distribution 

system (Escobar et al., 2000; van der Kooij and van der Wielen, 2014). The utility of several 

DOC metrics for predicting THM-FP was evaluated using linear regression, consistent with 

previous investigations (Edzwald et al., 1985; Reckhow and Singer, 1990; Singer, 1999; 

Goslan et al., 2004; Ates et al., 2007; Wassink et al., 2011). These approaches are widely 

utilized because these DBP precursor materials are generally understood to be directly 

proportional to the by-products they form.  
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3.3 Materials and Methods 

3.3.1 Study Site and Sampling 

Samples were collected from Mannheim WTP, which is supplied by the Grand River in 

Kitchener, Ontario, Canada. The historical measured DOC concentrations in the intake water 

of the treatment plant typically range from 5 to 7 mg/L. The average raw water characteristics 

of DOC-associated parameters during this study are listed in Table 3-1. The average turbidity 

and pH of the raw water were approximately 7.3 and 3 NTU, respectively. No bromide was 

detected in the raw water during the study.  

The Mannheim WTP is a conventional drinking water treatment plant with a design 

capacity of 16 MGD and flow of 600 L/s. There, raw water is typically coagulated with 18 to 

24 mg/L polyaluminum chloride, flocculated, and then settled for approximately 50 minutes 

in two settling tanks of 1850 m3. Ozone is applied at 2 to 4.5 mg/L prior to biologically active 

granular activated carbon (GAC) filtration at hydraulic loading rates ranging from 7 to 10 m/h 

(corresponding to empty bed contact times [EBCTs] of 10 to14 min). The water is then 

disinfected with 40 mJ/cm2 ultraviolet (UV) light and chlorine with a dose of 6-7 and 12-13 

mg/L in summer and winter, respectively (to achieve a residual of approximately 1.0 mg/L). 

The treatment plant is divided into two parallel treatment trains (Train 1 and Train 2) (Figure 

3-1). The samples for this study were collected at the WTP intake, Train 2 post sedimentation, 

Train 2 post-ozonation, and the filter 3 and 4 (F3 and F4) effluent sampling locations. Both 

filters were operated in a biologically active mode and contained 1.3 m of GAC over 0.3 m of 

0.45-0.55 mm sand. The GAC was Filtrasorb 816 (coal based) with an effective size of 1.3–

1.5 mm and uniformity coefficient of 1.4. The GAC in F4 was replaced with virgin GAC 

immediately prior to this study, while the media in F3 were essentially exhausted, as they had 

been in use for seven months prior to the study. Therefore, F4 was understood to have more 

adsorptive capacity than F3. Eight sampling events occurred over eight months starting in 

November 2014. The Mannheim WTP product water is a mixture of treated water from both 

trains; as such, it was not evaluated herein because performance in the two treatment trains can 

vary. 
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Figure 3-1. Mannheim Water Treatment Plant Schematic. 

3.3.2 Analytical Methods 

Several characterization techniques were employed to analyze and characterize DOC in its 

whole and fractionated forms. In brief, DOC concentrations were measured as per Standard 

Methods (Method 5310B; APHA et al., 2012) using a Shimadzu TOC-VCPH TOC analyzer. 

UV254 was analyzed using a Hewlett-Packard 8453 spectrophotometer with a 1 cm quartz cell 

(Method 5910 B; APHA et al., 2012). Specific ultraviolet absorbance (SUVA [L/mg.m]) was 

calculated as the measured UV254 (m
-1) divided by the DOC (mg/L) (Edzwald and Tobiason, 

1999). Resin fractionation using Amberlite XAD-8® was utilized to isolate hydrophobic and 

hydrophilic fractions as described by Kitis et al. (2002). Liquid chromatography–organic 

carbon detection (LC-OCD) was used to characterize NOM fractions as defined by Huber et 

al. (2011). This technique employs a weak cation exchange column (250 mm × 20 mm, TSK 

HW 50S, 3000 theoretical plates) followed by a UV254 detector (UVD), an organic carbon 

detector (OCD), and an organic nitrogen detector (OND). ChromCALC, DOC-LABOR data 

processing software was used to quantify different NOM fractions (Huber et al., 2011). 

Fluorescence analyses were conducted using a Varian Cary Eclipse Spectrofluorometer. 

Fluorescence excitation-emission matrices (FEEM) were analyzed based on the method 

described by Peiris et al. (2010) and the data were interpreted based on a study by Chen et al. 

(2003). The excitation and emission ranges used were 200–400 and 300–600 nm, respectively. 

Fluorescence index (FI), defined as the ratio of emission intensity at the wavelength of 450 nm 

to that at 500 nm, both at the excitation of 370 nm (McKnight et al., 2001), was also calculated 

as a metric to characterize NOM. THM-FP was analyzed based on Standard Methods (Methods 
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5030B and 8260C; APHA et al., 2012) using GC/MS (Purge and Trap) on an Agilent 

Technologies 7890B -MS/5977A. HAA-FP and NDMA-FP were analyzed on a 

GC/MS/MS/CI Varian CP3800-MS/MS2000 (Saturn MS Ion Trap) analyzer. The method 

applied for HAA-FP analysis was USEPA Method 552.3 (USEPA, 2003). The analysis of 

NDMA-FP was conducted based on Standard Methods (Method 6410B; APHA et al., 2012) 

and an in-house method developed based on Blaise et al. (1994). 

3.3.3 Statistical Analysis 

Analysis of variance (ANOVA) was used to make inferences about the data. Predictions of 

THM-FP using NOM character were investigated using simple least squares linear regression. 

The significance and precision of the regression models were evaluated using customary 

approaches (i.e., p values obtained from ANOVA [Appendix A] and coefficients of 

determination [R2], respectively). Diagnostic residual plots (Appendix B) were utilized to 

ensure that the assumptions of ANOVA were not violated. 

3.4 Results and Discussion 

3.4.1 Disinfection By-product Formation Potential 

Trihalomethanes (THMs/THM4) are the most abundant DBPs found in chlorinated drinking 

water. They were first detected and regulated in the United States (Bellar et al., 1974; NCI, 

1976). Nine chloro- and bromo-HAAs are the second most prevalent category of DBPs in 

drinking water (Singer et al., 2002); five of these (HAA5) are currently regulated (WHO, 2006; 

Health Canada, 2008; USEPA, 2012). To investigate the impacts of different treatment 

processes on formation of regulated DBPS, THM-FP and HAA-FP were analyzed at the intake 

and different stages of treatment as shown in Figure 3-2a and 3-2b, respectively. 

3.4.1.1 THM-FP 

THM-FP at the Mannheim WTP primarily consisted of chloroform. Bromoform was below 

detection limits during the study due to the lack of the precursors (bromide) in the water. The 

mean percentage of formation potentials of chloroform, bromodichloromethane (BDCM), and 

dibromochloromethane (DBCM) that compromised total THM-FP in the raw water throughout 
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the eight-month study were 87±3%, 12±3%, and 1±1% (mean ± standard deviation), 

respectively. Despite variable THM-FP conditions in the source water, chemical pre-treatment 

(coagulation/flocculation/sedimentation) consistently demonstrated that it is the best available 

technology for removing THM-FP, even at less than optimal conditions (i.e., the pH was not 

low enough to achieve enhanced coagulation). The mean total THM-FP concentrations in the 

raw, settled, ozonated, and F3 and F4 effluent waters were 278±59, 139±34, 135±38, 110±26, 

and 97±26 µg/L, respectively (Figure 3-2a). The pH following coagulation was 7.1 on average 

and as such, less DOC removal would be expected than at lower pH conditions consistent with 

enhanced coagulation. It should be noted that enhanced coagulation is not practiced at the 

Mannheim WTP because it is not needed. Chemical pre-treatment (coagulation, flocculation, 

sedimentation) removed ~51±8% (mean ± standard deviation) of the THM-FP in the source 

water, making it the most important step for reducing THM-FP, as would be expected. This 

result was consistent with reports of effect removal of large molecular weight, aromatic 

compounds by these processes (Sharp et al., 2006; Soh et al., 2008). Biofiltration (F3 and F4) 

also removed THM-FP (~9±6 and ~14±12%, respectively (mean ± standard deviation). F4 

showed slightly better THM-FP removal than F3, likely due to GAC replacement in the filter 

at the beginning of the study and its additional adsorptive capacity, which includes the ability 

to remove a wide range of DOC fractions, from medium size humics to lower molecular weight 

compounds (Bond et al., 2011; Velten et al., 2011). In contrast, ozonation did not contribute 

substantially to THM-FP removal (Table 3-1). Notably, biofiltration may have been able to 

remove more THM-FP if chemical pre-treatment had not been so effective at Mannheim—this 

is a possibility that merits broader consideration in the future. 

3.4.1.2 HAA-FP 

The potential formations of HAA6 (monochloroacetic acid (MCAA), dichloroacetic acid 

(DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic 

acid (DBAA) and bromochloroacetic acid (BCAA)) were measured over the second half of the 

sampling period. As both THMs and HAAs are carbonaceous DBPs, their formation potentials 

were significantly and closely correlated (p = 10-8 and R2 = 0.84) as would be expected for 

compounds with mutual precursors; similar correlations have been reported elsewhere 
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(Villanueva et al., 2003; Bougeard et al., 2010; Rocarro et al., 2014). Consistent with THM-

FP and in all cases, the highest removal of HAA-FP was achieved after chemical pre-treatment. 

The mean total HAA-FP concentrations in the raw, settled, ozonated, and F3 and F4 effluent 

waters were 397±28, 153±36, 142±47, 101±26, and 95±17 µg/L, respectively (mean ± standard 

deviation) (Figure 3-2b). Chemical pre-treatment removed 61% of the HAA-FP and 

biofiltration by F4 and F3 removed approximately 12±11% and 10±7% of it (mean ± standard 

deviation), respectively. Ozonation did not effectively remove HAA-FP (mean removal of 

3±7%). These results demonstrated that THM- and HAA-FP were comparably removed by the 

various treatment processes, as would be expected for compounds that share common 

precursors. However, higher removal of HAA-FP compared to THM-FP was observed during 

chemical pre-treatment (61±11% vs 51±8%), thereby indicating that higher molecular weight 

fractions had a more substantial contribution to formation of HAAs than THMs. Also, similar 

to the THM-FP findings, chlorinated HAA constituents were the dominant forms of HAA6 and 

total HAA-FP, which consisted of 59% TCAA, 35% DCAA, 2% MCAA, and 3% BCAA. This 

was not surprising, considering the lack of bromide in the water (i.e., the formation of 

brominated HAAs was not observed). Notably, HAA-FP removals by F3 and F4 were more 

similar than THM-FP removals. This was likely attributable to GAC exhaustion in F4 during 

the second half of the experimental period during which HAA-FP was evaluated. 

3.4.2 Dissolved Organic Carbon (DOC) Concentration 

DOC is generally understood to positively correlate with the formation of regulated DBPs for 

a given source water (Singer et al., 1981; Reckhow and Singer, 1990). This prospect, along 

with the relative simplicity and speed of DOC analysis make it a favorable candidate for use 

as a proxy indicator for THM- and HAA-FPs. However, DOC only informs NOM quantity and 

does not describe the role of its structure in reactivity. 

DOC levels at the intake of the Mannheim WTP generally varied between approximately 5 

and 7 mg/L. Here, raw water DOC fluctuated between a minimum of 5.2 mg/L and a maximum 

of 6.1 mg/L. The mean DOC concentrations fin the raw, settled, ozonated, and F3 and F4 

effluent waters were 5.7±0.4, 4.2±0.5, 4.1±0.5, 3.6±0.4, and 3.2±0.4 mg/L, respectively (mean 
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± standard deviation) (Figure 3-2c). Chemical pre-treatment consistently removed the most 

DOC, 27±5% on average—this was not surprising given that 

coagulation/flocculation/sedimentation is considered a best available technology for DOC 

removal during drinking water treatment, especially when operated in an enhanced coagulation 

mode (USEPA, 1998). Biofiltration in F3 and F4 also removed DOC and achieved average 

removals of 10±3 and 17±5% (mean ± standard deviation), respectively—these DOC 

reductions are consistent with those that have been previously reported by pilot- (Snider, 2011; 

Wong, 2015) and full-scale (Emelko et al., 2006) filtration at the Mannheim WTP. 

Insignificant (1±5% mean) removal of DOC was achieved by ozonation (Table 3-1). Ozone is 

not applied to directly remove NOM; however, its oxidation enhances biological DOC removal 

during subsequent biofiltration. 

THM-FP and HAA-FP correlated reasonably well with DOC concentration—the observed 

coefficients of determination (R2) were 0.85 and 0.81, respectively and the regressions were 

significant as per Table 3-2 (supported by Table A-1, Appendix A and Figure B-1, Appendix 

B). These results were consistent with those that have been reported previously (Singer et al., 

1981; Reckhow and Singer, 1990; Wassink et al., 2011) for various source water matrices. The 

challenge in regular application of these relationships is that the models describing these 

correlations are extremely site specific (Reckhow and Singer, 1990). 

3.4.3 DOC Character  

DOC character through the treatment process was investigated using several metrics and 

characterization techniques. It has been reported that aromatic compounds, also recognized as 

hydrophobics, or humics, are the main precursors of THMs and HAAs (Collins et al. 1986; 

Singer, 1999; Liang and Singer, 2003). To investigate these specifically, several metrics were 

used because they inform DOC aromaticity (UV254 and SUVA), DOC hydrophobicity (resin 

fractionation), and the presence of humic substances (LC-OCD and fluorescence).  

3.4.3.1 UV254 and SUVA 

Aromatic organic compounds absorb UV at wavelength of 254 nm. Thus, UV254 has been 

recognized as a surrogate of aromaticity and is widely used due to its simplicity and capacity 
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for real time analysis. Its application as a good surrogate for the formation of regulated DBPs 

has been widely demonstrated (Singer et al., 1981; Edzwald et al., 1985; Wassink et al., 2011; 

Awad et al., 2016). Its major drawback is that it cannot be reliably, quantitatively correlated to 

DBP-FP when major shifts in water quality occur. 

Here, the mean UV254 levels in the raw, settled, ozonated, and filtered by F3 and F4 were 

15, 4±1, 5±1, 4±1, and 3±1 m-1 (mean ± standard deviation), respectively (Figure 3-2d). Similar 

to DOC, the majority of UV254 absorbance reduction was achieved through chemical pre-

treatment. However, while chemical pre-treatment removed 25±7% of DOC, 71±6% (mean ± 

standard deviation) of UV254 was removed. Thus, this result was consistent with the removal 

of THM- and HAA-FPs (Table 3-1) and confirmed that chemical pre-treatment selectively 

removes aromatic compounds as opposed to other DOC fractions. Biofiltration in F4 and F3 

respectively removed an average of 7±5% and 3±4% of UV254 (mean ± standard deviation; 

Table 3-1; Figure 3-2d). This difference between the filters was consistent with the 

understanding that some adsorptive capacity remained in F4 when the study was initiated. 

The fate of UV254 and DOC throughout the treatment train displayed a generally similar 

trend. This was confirmed by good precision in the regression (R2 = 0.81) between these two 

parameters (Table 3-2). UV254 had excellent precision in the prediction of regulated DBPs 

(THM-FP and HAA-FP), with R2 of 0.89 and 0.92, respectively (Table 3-2). These 

relationships confirmed that the majority of the regulated DBP precursors consisted of 

aromatic compounds, particularly for HAAs.  

Changes in SUVA and its relationship to THM-FP and HAA-FP were also investigated. 

SUVA values in the raw water varied between 2.3 and 2.9 L/mg.m. The mean SUVAs for raw, 

settled, ozonated, and F3 and F4 filter effluent waters were 2.6±0.2, 1.0±0.2, 1.1±0.2, 1.1±0.2, 

and 1.0±0.2 L/mg.m, respectively (mean ± standard deviation) (Figure 3-2e). Accordingly, the 

raw water could always be described as a mixture of aquatic humics and other NOM, or a 

mixture of hydrophobic and hydrophilic NOM (2 < SUVA < 4), as defined by Edzwald and 

Tobiason (1999). Based on the same definition, the treated water in all cases of this study was 

composed of mostly non-humics or hydrophilic NOM (SUVA < 2). Thus, the majority of 
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aromatic compounds were removed through treatment, primarily chemical pre-treatment. 

Good precision in predictions of THM-FP and HAA-FP using SUVA were observed (R2 of 

0.83 and 0.90, respectively; Table 3-2), showing that SUVA could be a somewhat reasonable 

predictor for DOC reactivity of DOC in forming regulated DBPs in the Mannheim matrix 

(Table 3-2). The utility of SUVA as a THM-FP predictor has been widely investigated and has 

resulted in good, precise correlations in some cases (Reckhow et al. 1990; Kitis et al. 2001), 

but not in others (Goslan et al., 2004; Bougeard et al., 2010; Hua et al., 2015). The lack of 

consistently precise correlation has been especially observed in low aromaticity waters (SUVA 

< 2) (Ates et al., 2007; Li et al., 2014). 

3.4.3.2 Resin Fractionation 

DOC fractionation by adsorption on ion exchange resins (resin fractionation) has been widely 

used to describe the humic nature and composition of NOM (Leenheer, 1981; Thurman and 

Malcolm, 1981). Although many fractionation methods exist, the International Humic 

Substances Society (IHSS) has recognized the method of Thurman and Malcolm (1981) as the 

standard method for separation of fulvic and humic acids. Here, hydrophobic and hydrophilic 

DOC fractions were isolated and analyzed. The raw water DOC was composed of a 

combination of hydrophobic and hydrophilic compounds; the minimum, maximum, and mean 

hydrophobic fractions (HPO) observed across the sampling events were 54, 59, and 57±1.5%, 

respectively. The percentage of HPO after chemical pre-treatment, ozonation, and biofiltration 

in F3 and F4 was 42±4.4, 41±4.8, 39±4.6, and 37±4.7% (mean ± standard deviation), 

respectively (Figure 3-2f; Table 3-1). The majority of HPO removal (~45%, considering that 

DOC concentration decreases with each treatment step) was achieved through chemical pre-

treatment. Biofiltration in F3 and F4 also removed HPO and achieved mean HPO removals of 

10±3 and 17±5% (mean ± standard deviation), respectively. Notably, it is difficult to conclude 

whether or not the full capacity of biofiltration in removing HPO was achieved herein because 

the chemical pre-treatment process was so effective at removing HPO. As with the previously 

discussed parameters, ozonation did not play a role in HPO removal (Table 3-1). These 

findings generally parallel the UV254 and SUVA findings, although the operational definitions 

of hydrophobicity and aromaticity in the resin fractionation and UV254 methods are not the 
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same. Therefore, regardless of the chosen metric and definition, all of them validated the 

efficacy of chemical pre-treatment in removing aromatic compounds from the Grand River 

water matrix. The correlations between HPO, UV254 and SUVA were examined to better 

understand their interconnectivity (Table 3-2); as expected, they were all reasonably correlated 

with one another and the regressions were significant (Table 3-2), thereby underscoring that 

none of the more complicated metrics used to describe carbon character offered any 

meaningful advantages over UV254. Thus, it would seem that the most important knowledge 

gaps related to NOM characterization and drinking water treatability are the current lack of 

universal models for predicting changes in DBP-FP and the inability to anticipate when and 

why source water quality changes to the point that new relationships between DBP-FP and 

NOM aromaticity (as indicated by UV254) must be established. 

3.4.3.3 LC-OCD 

Unlike the metrics discussed above, liquid chromatography (LC) is a separation technique that 

can provide information on a wide range of NOM components, from aromatic (high molecular 

weight) to aliphatic (low molecular weight) compounds. Recent LC instrumentation 

developments have included the incorporation of organic carbon detection. Here, different 

NOM fractions as defined by Huber et al. (2011) were isolated and assessed at all sampling 

locations—this enabled assessment the potential for membrane fouling (if membranes were in 

place in the study system) by evaluation of the biopolymers fraction and bacterial regrowth in 

the distribution system by evaluation of the LMW neutrals fraction; in addition to DBP-FP, 

which correlates with the humic substances (HS) fraction.  

The mean removal (of all sampling events) of humic substances (HS) by chemical pre-

treatment, ozonation, and biofiltration in F3 and F4, was found to be 36±4, 1±5, 9±4, and 

18±12% (mean ± standard deviation), respectively (Table 3-1 and Figure 3-3). This finding is 

similar to the results of mean removals of other aromaticity metrics, particularly HPO (Table 

3-1). The removal of other DOC fractions, separated by LC-OCD, was also investigated 

(Figure 3-3). High molecular weight biopolymers were removed primarily by chemical pre-

treatment (55±11%) and then to a lesser extent by F3 (8±7%) and F4 (6±5%) (mean ± standard 
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deviation). Although the mean removal of biopolymers by biofiltration was low during the 

course of this study, it varied considerably over time. For instance, the mean removal of this 

fraction by F3 was 15±6% and 2±1% (mean ± standard deviation) during warmer months (May 

to July) and colder months (November to April), respectively. The maximum observed 

removal of biopolymers by F3 was 22% in June 2015, while the mean removal of this fraction 

by F3 was 11±3% and 2±2% (mean ± standard deviation) during warmer months (May to July) 

and colder months (November to April), respectively. This result was not surprising as it has 

been shown that seasonality is an important factor in performance of biofilters (Pharand et al., 

2015; So et al., 2017). Removals of biopolymers during biofiltration with efficiencies of up to 

31% have been previously reported (Rahman et al., 2014; Azzeh et al., 2015), and include one 

investigation conducted on the same source water for which biofiltration with a slightly 

different configuration (eight dual-media 1.6 m anthracite / 0.4 m sand biofilters) achieved 

maximum 35% removal of biopolymers (Pharand et al., 2015). Building blocks are defined as 

HS-like materials of lower molecular weight (Huber et al., 2011). A percentage of this fraction 

(8±19%) was oxidized and converted into low molecular weight neutrals (LMW neutrals) 

during ozonation (Figure 3-3). Biofiltration in F3 and F4 played a role in removing the building 

blocks fraction with 9±10 and 30±19% removals (mean ± standard deviation), respectively. 

LMW neutrals, which are composed of non-aromatic biodegradable molecules that contribute 

to microbial regrowth in the distribution system, were only removed during biofiltration. The 

mean removals achieved by F3 and F4 were 29±4 and 16±7% (mean ± standard deviation), 

respectively (Figure 3-3). The likely reason that F3 had a higher average removal was that this 

filter was biologically active from the beginning of this study, while the media in F4 were 

freshly replaced in November 2014. The observed increase in NOM removal in F4 through the 

study confirmed this argument; the average removal of LMW neutrals by F4 increased from 

12±5% in the first few months of filter operation (November to March) to 20±6% in the 

remaining months of the study (April to July). Thus, the efficiency of adsorptive filters in the 

removal of humic substances, building blocks, and low molecular weight fractions was in 

agreement with findings of previous research (Velten et al., 2011). Furthermore, this work 

demonstrated that LC-OCD analysis was useful because it allowed concurrent investigation of 
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aspects of NOM character other than aromaticity that can challenge drinking water treatability. 

The major drawback of LC-OCD, however was that it does not always achieve full separation 

of all individual peaks associated with NOM fractions (especially HS) (Huber et al., 2011); 

thus, conventional LC remains preferable in these cases.  

Correlations between the HS and BP fraction and regulated DBP formation potentials were 

examined. HS correlated with THM-FP and HAA-FP with R2 of 0.84 and 0.78, respectively 

(Table 3-2), while the R2 for correlations between BP and THM-FP and HAA-FP were 0.56 

and 0.64, respectively. This showed that HS fraction of DOC was a reasonable surrogate for 

regulated DBP-FPs. However, based on the findings of this study, application of other 

aromaticity metrics, particularly UV254, is more promising (Table 3-2) and more cost-effective. 

Positive correlations were also found between biopolymers (mg/L) and THM-FP and HAA-

FP (R2 of 0.51 and 0.62, respectively). Building blocks and LMW neutrals did not correlate 

well with regulated DBPs, as would be expected because regulated DBPS are associated with 

the humic and larger MW fractions of DOC (Collins et al. 1986; Singer, 1999; Liang and 

Singer, 2003). 

Table 3-1. Mean DOC-associated parameters in raw water and percentage removal through each 

treatment process (n = 8). 

Parameter 
Raw Water 

Mean 

Average Removal (%) 

Chemical  

pre-treatment 
Ozonation F3 F4 

DOC (mg/L) 5.7±0.4 25±7 1±1 10±3 17±5 

UV254 (m-1) 15±2 71±6 0±2 3±4 7±5 

SUVA 

(L/mg.m) 
2.6±0.2 61±6 -1±3 -2±5 0±7 

HPO (%) 57±2 45±8 2±1 9±3 17±5 

HS (mg/L) 3.7±0.4 36±4 1±5 9±4 18±12 

THMFP (µg/L) 278±59 51±8 1±4 9±6 14±12 

HAAFP (µg/L) 397±28 61±11 3±7 10±7 12±11 
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Table 3-2. Prediction precision (R2) between different analyzed parameters (p value < 0.01) in all 

cases; n = 38 except for prediction of HAAFP where n = 19). 

 
 THMFP 

(µg/L) 

HAAFP 

(µg/L) 

DOC 

(mg/L) 

UV254 

(m-1) 

SUVA 

(L/mg.m) 

HPO 

(%) 

HAAFP (µg/L) 
R2 0.84      

P-value 1×10-8      

DOC (mg/L) 
R2 0.85 0.81     

P -value 8×10-17 6×10-8     

UV254 (m-1) 
R2 0.89 0.92 0.81    

P -value 5×10-19 2×10-11 4×10-15    

SUVA (L/mg.m) 
R2 0.83 0.90 0.72 0.98   

P -value 6×10-16 3×10-10 6×10-12 7×10-33   

HPO (%) 
R2 0.80 0.79 0.76 0.85 0.86  

P -value 1×10-14 1×10-7 2×10-13 3×10-17 9×10-18  

HS (mg/L) 
R2 0.84 0.78 0.81 0.81 0.76 0.81 

P -value 5×10-17 2×10-7 3×10-15 2×10-15 3×10-13 5×10-15 
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(g)  

Figure 3-2. Amounts of (a) THM-FP, (b) HAA-FP, (c) DOC, (d) UV, (e) SUVA, (f) HPO, and 

(g) HS in raw water and after each treatment process during different sampling events. 

 

 

Figure 3-3. Mean (± standard deviation) removal of NOM fractions, separated by LC-OCD, after 

each treatment process for all sampling events. 
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3.4.3.4 Fluorescence 

Application of fluorescence as a tool for NOM characterization has been commonly practiced 

in the past few decades and can reveal information on humic substances (humic and fulvic 

acids) and proteins (Coble, 1996; McKnight et al., 2001; Chen et al., 2003). The main benefits 

of this method are that it is fast, simple, and has the potential for use in real time. However, 

quantitative interpretations of the observations obtained using fluorescence are neither fully 

established nor reliable. Numerous statistical approaches are being investigated to overcome 

these limitations (Peiris et al., 2010; Peleato and Andrews, 2015; Peleato et al., 2017).  

FEEM was employed here to investigate changes in humic DOC fractions. Intensity plots 

for representative raw, settled, ozonated, and F3 and F4 effluents are shown in Figure 3-4. Two 

main intensity peaks (A and B) representative of fulvic acid-like (Ex < 250 nm and Em > 350 

nm) and humic acid-like (Ex > 280 nm and Em > 380 nm) compounds were identified (Chen 

et al., 2003). As shown for a representative sampling event (Figure 3-4), the intensity of the 

fulvic and humic acid-like compounds decreased after treatment, particularly following 

chemical pre-treatment. This finding, while non-quantitative, was in agreement with the trends 

observed for other humic-descriptive metrics (UV254, SUVA, HPO, HS), and regulated DBP-

FPs. 

In an attempt to decode the large FEEM data sets with a simple quantitative metric, a 

fluorescence index (FI) has been defined (McKnight et al., 2001). It has been suggested that 

FI informs aromaticity and water origin (McKnight et al., 2001; Rodríguez et al., 2014). The 

mean FI of raw, settled, ozonated, and F3 and F4 filtered waters were 1.4, 1.7, 1.7, 1.8, and 

1.7, respectively. Accordingly, the raw water was primarily composed of terrestrially derived 

fulvic acids (FI ≈ 1.4). Based on the same definition, the treated water observed herein had a 

similar composition to microbially derived fulvic acids (FI ≈ 1.9). This finding analysis 

suggests that the majority of terrestrial (aromatic) compounds were removed through the 

treatment (mainly by chemical pre-treatment) and was thus consistent with the conclusions 

drawn using the other metrics of NOM aromaticity discussed above. Notably, a key limitation 

associated with the use of the FI index is that it depends on the existence of florescence at the 

associated wavelengths and may not be relevant for all source waters (Shams et al., 2014).  
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Figure 3-4. FEEM intensity plots for representative (a) raw, (b) settled, (c) ozonated, and (d) F3 and 

(e) F4 effluents. 

3.5 Implications 

Aromatic compounds are the primary precursors to THMs and HAAs, and therefore 

investigation of these DBPs would not be possible without their consideration. A number of 

methods/metrics have been developed to describe aromatic compounds, the most common of 

which are UV254 and SUVA, HPO (resin fractionation), and HS (liquid chromatography). 

These metrics correlate with each other and the formation of regulated DBPs; however, UV254 

demonstrate the best prediction performance in predicting DBP-FPs. Application of UV254 to 

detect changes within large molecular weight aromatic compounds is recommended, especially 

considering its relative ease, speed, and low cost of the analysis as well as the potential to 

acquire on-line data in real time. While aromatics are the main reactive compounds that 

contribute to formation of regulated DBPs, some medium to small DOC fractions also play 

roles in the formation of THMs. In addition, DOC quantity and character changes throughout 
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the treatment based on the mass and fractions that are removed by each treatment process. 

Liquid chromatography method enables the acquisition of this type of information. 

Additionally, this method enables investigation of the potential for other treatability challenges 

such as membrane fouling and bacterial regrowth in the distribution system by evaluation of 

the biopolymers and LMW neutrals fractions, respectively.  
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Chapter 4 

An Assessment of Methods for Characterizing DOC Risks to 

Drinking Water Treatability after Wildfire and Post-fire Salvage 

Logging 

4.1 Overview 

Changes in dissolved organic carbon (DOC) concentration and character and their relationships 

to regulated DBP-FPs (THM-FPs and HAA-FPs) were comprehensively characterized using 

multiple natural organic matter (NOM) characterization techniques during two years following 

severe wildfire in the eastern slopes of the Rocky Mountains in south-western Alberta. Several 

NOM fractions were also characterized by liquid chromatography with organic carbon 

detection (LC-OCD) also were evaluated during the latter of those years. A lager study 

conducted at the same field site (and to which this work contributed) demonstrated that DOC 

concentration and hydrophobicity, and DBP-FPs increase after wildfire and even more so after 

post-fire salvage-logging, especially during high discharge events in headwater streams. Those 

increases were concurrent with increases in THM- and HAA-FPs. In contrast to and building 

on that investigation, the work presented herein is the first to report that the mass of humic 

substances (HS), biopolymers, and building blocks fractions of DOC also increased 

significantly in impacted streams as a result of wildfire (p = 0.18 and 0.14, respectively) and 

post-fire salvage logging (p = 10-4 and 5×10-3, respectively), thereby suggesting that these 

disturbances may have significant implications for carbonaceous DBP-FP, coagulant demand, 

and membrane fouling. In contrast, the mass of the low molecular weight (LMW) neutrals 

fraction of DOC, which contributes to microbial regrowth in the distribution system, was not 

significantly different in streams impacted by either wildfire or post-fire salvage logging (p = 

0.99 and 0.29, respectively), though it should be noted that this work does not speak to 

subsequent transformations of DOC that may occur during drinking water treatment. This work 

is also the first to comprehensively demonstrate wildfire-associated changes in DOC character 

(hydrophobic fraction as determined by resin fractionation [HPO %], UV254, specific UV 

absorbance [SUVA], fluorescence index [FI], and fluorescence excitation-emission matrices 



 

63 

[FEEMs]) and their associated implications to DBP-FPs at the watershed-scale and over 

multiple flow regimes. Disturbance-associated impacts indicated by all of these quantitative 

DOC-associated metrics were statistically significant (p < 0.01), except for FI (p = 0.16 and 

0.12 after wildfire and post-fire salvage logging, respectively). Qualitative FEEM results were 

consistent with these significant shifts. Notably, despite the continued development and 

promotion of various proxy indicators, UV254 offered the most precise prediction of THM-FP, 

with a coefficient of determination (R2) of 0.6 (in contrast to values of 0.47, 0.42, and 0.39 for 

DOC, SUVA, and HPO %). Thus, changes in the proxy indicators were related to changes in 

THM-FP; however, they could not adequately explain the response variability, thereby 

demonstrating the need to 1) better understand relationships between disturbance-associated 

changes in DOC and their implications to DOC reactivity and 2) advance modeling approaches 

for describing these relationships. While the mass of various DOC fractions obtained using 

LC-OCD and HAA-FPs were not analyzed in this manner because of the limited sizes of the 

data sets, similar relationships were suggested. Overall, these data suggest that severe wildfire 

may lead to significant DOC-associated drinking water treatability challenges and that post-

fire salvage logging may further exacerbate them—at present, UV254 is unequivocally the best 

available tool for monitoring these potential impacts. 

4.2 Introduction 

Forested catchments are major sources of drinking water. In the United States and Canada, 

approximately 2/3 of drinking water supplies originate in forested watersheds (Stein and 

Butler, 2004; Natural Resources Canada, 2015). Ironically, the high quality of water from 

healthy forested regions makes these supplies particularly vulnerable to the impacts of climate 

change. These attributes create favorable conditions for potentially catastrophic natural 

disturbances such as wildfire, insect outbreaks, and blowdown from hurricanes (Mast and 

Clow, 2008; Beggs and Summers, 2011; Emelko et al., 2011). Anthropogenic disturbances and 

land use such as agriculture and grazing, resource extraction, recreational activities, and 

sewage discharges can further compromise these high quality water supplies.  
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Dissolved organic carbon (DOC) is typically present at low concentrations in forested 

watersheds and may increase (and/or change in character) as a result of land disturbance 

(O’Donnell et al., 2010; Emelko et al., 2011; Hohner et al., 2016; Writer et al., 2017). Increased 

levels of DOC can negatively impact drinking water treatability and may necessitate the use of 

more complicated and costly water treatment processes (Emelko et al., 2011; Emelko et al., 

2015; Hohner et al., 2016). The formation of disinfection by-products (DBPs) is one of the 

major treatability risks associated with changes in DOC. Reactions of different aspects of 

aquatic natural organic matter (NOM), for which DOC is a surrogate, with chlorine and other 

drinking water disinfectants result in the formation of various classes of DBPs. Thus, the 

formation of DBPs is directly influenced by the amount and composition of DOC, as well as 

the disinfectant type and dose, and treatment conditions such as temperature and contact time 

(Krasner et al., 2006; Krasner, 2009). To reduce consumer exposure to DBPs of health concern, 

THMs have been regulated universally where guidelines exist, and five haloacetic acids 

(HAA5) have been regulated in U.S. and Canada (WHO, 2008; USEPA, 2012; Health Canada, 

2017). Accordingly, an understanding of land disturbance impacts on source water quality and 

drinking water treatability (DBP-FP) is of critical importance to protecting public health 

through the provision of safe drinking water. This requires DOC characterization and 

identification of promising measurements/proxy indicators for DBP-FP, as well as other 

treatability challenges including coagulant demand, membrane fouling, and microbial 

regrowth potential in the distribution system.  

A variety of approaches and metrics have been developed to characterize DOC based on 

different features of its structure. However, the complex mixture of compounds comprising 

DOC often makes each of the characterization techniques insufficient if used in isolation; 

applying multiple, independent methods is suggested to collect more comprehensive 

information (Abbt-Braun et al., 2004; Croué, 2004). Relationships between various metrics 

describing DOC concentration and/or character and DBP-FP have typically been highly site 

specific (Edzwald et al. 1985; Collins et al. 1986; Reckhow and Singer, 1990; Reckhow et al. 

1990; Singer, 1999; Bolto et al., 2002; Kitis et al. 2002; Goslan et al., 2004; Ates et al., 2007; 

Bougeard et al., 2010). Although DOC concentration, DOC hydrophobicity, and DBP-FPs can 
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significantly increase after severe wildfire (Emelko et al., 2015; Writer et al., 2017)—and even 

more so after post-fire salvage-logging—especially during high discharge events in headwater 

streams (Emelko et al., 2015), changes in NOM after severe wildfire have not been 

comprehensively characterized, particularly with respect to changes in DBP-FP. Moreover, 

relative wildfire- and post-fire salvage logging-associated implications to membrane fouling 

and microbial regrowth potential in the distributions system have never been reported.  

This study focused on evaluating methods for characterizing changes of importance to water 

quality (DOC and its fractions) and the treatability risks understood to be associated with them 

(formation of regulated DBPs, membrane fouling potential, and potential for microbial 

regrowth in the distribution) after wildfire and post-fire salvage logging. A unique sampling 

program (temporal and spatial) from seven extensively instrumented watersheds (two 

unburned, three burned, and two post-fire salvage logged), designed and implemented by the 

Southern Rockies Watershed Project (SRWP) (Bladon et al., 2008; Silins et al., 2009), enabled 

this investigation over two years from multiple unburned (reference), burned, and post-fire 

salvage logged watersheds. Samples were collected during dominant regional streamflow 

regimes (baseflow, snowmelt freshet, and stormflow). The utility of several DOC metrics for 

predicting THM-FP was evaluated using linear regression, consistent with previous 

investigations (Edzwald et al., 1985; Reckhow and Singer, 1990; Singer, 1999; Goslan et al., 

2004; Ates et al., 2007; Wassink et al., 2011). These approaches are widely utilized because 

these DBP precursor materials are generally understood to be directly proportional to the by-

products they form. Here, THM- and HAA-FP prediction using five NOM characterization 

methods (DOC, UV254, specific UV absorbance [SUVA], percent hydrophobicity as 

determined by XAD resin fractionation, and fluorescence index [FI]) was evaluated using data 

from streams draining burned and post-fire salvage logged watersheds. This type of 

comparative assessment is currently lacking and critical for identifying the most useful 

techniques for evaluating disturbance impacts on water quality in drinking water source 

watersheds. The biopolymer and LMW neutral fractions obtained using LC-OCD were used 

to infer relative wildfire- and post-fire salvage logging-associated implications to membrane 

fouling and microbial regrowth potential in the distributions system. The HS fraction further 
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informed relative changes in THM-FP and coagulant demand. Such information will contribute 

to developing source water protection strategies and weighing the impacts of land 

use/management on drinking water supplies to mitigate risks to treatability and public health. 

It should be noted that because of the relatively size of these data sets (20 sampling events), 

the relationships between these parameters and THM-FP were not modeled. 

4.3 Materials and Methods 

4.3.1 Study Site and Sampling  

The 2003 Lost Creek Wildfire was one of the most severe forest fires experienced in the upper 

eastern slopes of Canadian Rocky Mountains (since 1930). It burned more than 21000 ha in 

Crowsnest Pass, south-western Alberta and disturbed the Oldman River basin, which is one of 

Alberta’s major water supplies, by consuming the organic matter in nearly all the forest cover 

and floor of the burned area. Shortly after the fire (2004), three burned (South York, Lynx, and 

Drum Creeks) and two unburned (Star and North York Creeks) were established and 

instrumented by the Southern Rockies Watershed Project (SRWP). Later in 2005, two 

additional salvage logged sites (Lyons East and West Creeks) were added to the study (Figure 

4-1). More information about the sites and details of the sampling program can be found in 

Bladon et al. (2008) and Silins et al. (2009). Comprehensive hydrometric and water quality 

data (since April 2004) from these watersheds demonstrated that DOC concentration and 

hydrophobicity, and THM- and HAA-FPs increase after wildfire and even more so after post-

fire salvage-logging, especially during high discharge events in headwater streams (Emelko et 

al., 2015). To characterize the impacts of wildfire and salvage logging on DOC fractions and 

their relationship DBP-FPs, changes in dissolved organic carbon (DOC) concentration and 

character and their relationships to regulated DBP-FPs (THM-FPs and HAA-FPs) were 

comprehensively characterized using multiple natural organic matter (NOM) characterization 

techniques during two years (2013 and 2014) following severe wildfire in the eastern slopes of 

the Rocky Mountains in south-western Alberta. Several NOM fractions also were 

characterized by LC-OCD during the latter of those years. Samples collected from multiple 

unburned (reference), burned, and post-fire salvage logged watersheds during dominant 
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regional streamflow regimes (baseflow, snowmelt freshet, and stormflow) as described 

elsewhere (Bladon et al., 2008; Silins et al., 2009). 

 

Figure 4-1. Map of the Southern Rockies Watershed Project research watersheds (from west to east: 

Star, North York, South York, Lynx, Lyons West, Lyons East, and Drum Creeks). 

4.3.2 Analytical Methods 

Several characterization techniques were employed to analyze and characterize DOC in its 

whole and fractionated forms. In brief, DOC concentrations were measured based on Standard 

Methods (Method 5310B; APHA et al., 2012) using a Shimadzu TOC-VCPH TOC analyzer. 

UV254 was analyzed using a Hewlett-Packard 8453 spectrophotometer with a 1 cm quartz cell 

(Method 5910 B; APHA et al., 2012). Specific ultraviolet absorbance (SUVA) was calculated 

as the measured UV254 divided by the DOC (L/mg.m) (Edzwald et al., 1985). Resin 
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fractionation using Amberlite XAD-8® was utilized to isolate hydrophobic and hydrophilic 

fractions as described by Kitis et al. (2002). LC-OCD was used to characterize NOM as per 

the fractions defined by Huber et al. (2011); notably, this particular analysis was only 

conducted during one of the sampling years (2014). This technique employs a weak cation 

exchange column (250 mm × 20 mm, TSK HW 50S, 3000 theoretical plates) followed by a 

UV254 detector (UVD), an organic carbon detector (OCD), and an organic nitrogen detector 

(OND). ChromCALC, DOC-LABOR data processing software was used to quantify different 

NOM fractions (Huber et al., 2011). Fluorescence analyses were conducted using a Varian 

Cary Eclipse Spectrofluorometer. FEEMs were analyzed based on the method described by 

Peiris et al. (2010) and the data were interpreted based on a study by Chen et al. (2003). The 

excitation and emission ranges used were 200–400 and 300–600 nm, respectively. The FI, 

defined as the ratio of emission intensity at the wavelength of 450 to that at 500 nm, both at 

the excitation of 370 nm (McKnight et al., 2001b), was also calculated. THM-FP was assessed 

based on Standard Methods (Methods 5030B and 8260C; APHA et al., 2012) using GC/MS 

(purge and trap) on an Agilent Technologies 7890B -MS/5977A. HAA-FP and NDMA-FP 

were analyzed on a GC/MS/MS/CI Varian CP3800-MS/MS2000 (Saturn MS Ion Trap) 

analyzer. The method utilized for HAA-FP analysis was U.S. EPA Method 552.3 (USEPA, 

2003). The analysis of NDMA-FP was conducted based on Standard Methods (Method 6410B; 

APHA et al., 2012) and as per Blaise et al. (1994). 

4.3.3 Statistical Analysis 

To evaluate the impacts of disturbance on water quality and treatability, a generalization of the 

standard linear model used in the general linear model (GLM) procedure in SAS/STAT® 9.2 

was utilized to apply the method of least squares to fit general linear models to the data (SAS, 

2008). Specifically, the MIXED procedure with REML was utilized. In brief, it fits a variety 

of mixed linear models to data and enables the use of these fitted models to make statistical 

inferences about the data—the method of restricted maximum likelihood (REML), also known 

as residual maximum likelihood was implemented to eliminate the effect of nuisance 

parameters. The generalization of the GLM procedure is that the data are permitted to exhibit 

correlation and non-constant variability. As described in detail in (SAS, 2008), the parameters 
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of the mean model are referred to as fixed-effects parameters, and the parameters of the 

variance-covariance model are referred to as covariance parameters. The fixed-effects 

parameters are associated with known explanatory variables and can be either qualitative (as 

in the traditional analysis of variance) or quantitative (as in standard linear regression). 

However, the covariance parameters distinguish the mixed linear model from the standard 

linear model because they are needed in scenarios such as the one herein in which 1) the 

experimental units (sub-watersheds) on which the data (NOM and treatability metrics) are 

measured, can be grouped into clusters (groups of sub-watersheds impacted by a common type 

of disturbance), and the data from a common cluster are correlated (e.g., because of common 

hydrologic regimes) and 2) repeated measurements (NOM and treatability metrics) are 

collected on the same experimental unit (sub-watersheds), and these repeated measurements 

are correlated or exhibit variability that changes. Here, the repeated measures vary both 

spatially and temporally.  

Analysis of variance (ANOVA) was used to make inferences about the data. 

Predictions of THM-FP using NOM character were investigated using simple least squares 

linear regression. The significance and precision of the regression models were evaluated using 

customary approaches (i.e., p values obtained from ANOVA [Appendix A] and coefficients of 

determination [R2], respectively). Diagnostic residual plots (Appendix B) were utilized to 

ensure that the assumptions of ANOVA were not violated. 

4.4 Results and Discussion 

4.4.1 Disinfection By-product Formation Potential 

A larger, previously reported study to which this work contributed demonstrated that THM- 

(Figure 4-2a) and HAA-FPs as well as DOC concentration (Figure 4-2b) and hydrophobicity 

increase after wildfire and even more so after post-fire salvage-logging, especially during high 

discharge events in headwater streams (Emelko et al., 2015). The detailed data, which also are 

presented herein, indicated that the elevated THM-FPs in streams draining the disturbed 

watersheds (regardless of flow regime) were significantly different from those in the unburned 

(reference) watersheds. Salvage logging was shown to significantly exacerbate the impacts of 
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disturbance. The mean total THM-FP concentrations in steams draining unburned, burned, and 

post-fire salvage logged watersheds were 11, 22, and 70 µg/L in 2013 and 33, 81, and 218 

µg/L in 2014, respectively. A significant increase of THM-FP in the disturbed watersheds was 

observed during the high streamflow conditions in 2014 (p < 0.01). This increase was likely 

associated with the catastrophic flooding that occurred in Alberta during June 2013—it caused 

extensive river bank erosion and discharge of sediments into the impacted streams and rivers 

including the Oldman River and resulted in increases in total suspended solids, total dissolved 

solids, and turbidity (Alberta Government, 2014; Noad, 2014). Regardless, the THM-FP 

primarily consisted of chloroform—no bromoform was detected during the study due to the 

lack of the precursors (bromide) in the study watersheds. The mean chloroform, 

bromodichloromethane (BDCM), and dibromochloromethane (DBCM) formation potentials 

comprising the total THM-FP throughout the two-year study were 93%, 6%, and 1%, 

respectively.  

HAA-FPs were measured in October 2014. The mean total HAA-FP concentrations in 

streams draining unburned, burned, and post-fire salvage logged watersheds were 41, 174, and 

218 µg/L, respectively. Similar to the THM-FP findings, brominated HAA constituents were 

not formed and total HAA-FP consisted of 70% trichloroacetic acid and 30% dichloroacetic 

acid. As would be expected for DBPs with mutual precursors, total HAA- and THM-FPs were 

significantly correlated (p = 6x10-7, R2 = 0.99). Similar correlations between THMs and HAAs 

have been previously reported (Villanueva et al., 2003; Rocarro et al., 2014). No NDMA-FP 

was expected or detected due to non-detectable levels of dissolved organic nitrogen and 

ammonia, and very low levels of nitrite in the watersheds. Nitrite at low concentrations (< 100 

µg/L) has not been shown to be a contributor NDMA formation (Shah and Mitch, 2012). In 

contrast, organic nitrogen compounds that have been identified as NDMA precursors include: 

effluent organic matter (Mitch and Sedlak, 2004), pharmaceuticals and personal care products 

(Shen and Andrews, 2011), and certain pesticides and herbicides (Chen and Young, 2008). 

These compounds are often present in watersheds that are impacted by wastewater effluents 

(Shah and Mitch, 2012) —thus, these compounds would not be expected in the headwaters of 

the Rocky Mountain watersheds studied herein.  
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4.4.2 Dissolved Organic Carbon (DOC) Concentration 

DOC is a critical water quality parameter that governs the choice and design of treatment 

processes and often correlates with the formation of regulated DBPs (Singer et al., 1981). The 

mean DOC concentrations during this study period were 1.0, 1.5, and 3.9 mg/L, in streams 

draining the unburned, burned, and post-fire salvage logged watersheds, respectively (Figure 

4-2b). As indicated in Table 4-1 (supported by Table A-2, Appendix A and Figure B-2, 

Appendix B), the correlation between DOC and THM-FP over the study period was significant 

(p = 2x10-10); however, changes in DOC only somewhat explained the variability in THM-FP 

(R2 = 0.47). While investigation of the mechanisms that might explain why the relationships 

between DBP-FPs and proxy indicators such as DOC concentration are site specific and often 

change temporally is beyond the scope of this work, it is reasonable to expect that the 

catastrophic flood event of 2013 (Alberta Government, 2014; Noad, 2014) contributed to some 

of this variability. Good correlations between TOC and THM-FP for individual source waters 

have been reported previously (Singer et al., 1981; Reckhow and Singer, 1990); however, the 

correlations were not found to be precise when comparing water from different sources 

(Reckhow and Singer, 1990)—such differences likely also extend to flood events which may 

have introduced and/or removed different types or sources of NOM to/from the study 

watersheds.  

4.4.3 DOC Character 

To investigate the changes in DOC character resulting from wildfire and post-fire salvage 

logging, several metrics and characterization techniques were employed. Aromatic 

compounds, also known as humics or hydrophobics, are reported to be the main precursors of 

regulated carbonaceous DBPs (THMs and HAAs) (Collins et al. 1986; Reckhow and Singer 

1990; Singer, 1999; Kitis et al., 2002). Accordingly, this study focused on the metrics that 

identify these fractions of DOC.  

4.4.3.1 UV254 and SUVA 

UV254 has been used as a surrogate for NOM aromaticity because aromatic organic compounds 

absorb UV light at 254 nm. UV254 has been widely utilized within the drinking water industry 
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and elsewhere because it is simple and can be analyzed quickly or in real time. Consistent with 

the impacts of severe wildfire-associated disturbances on DOC concentrations that were 

discussed above, significantly elevated UV254 was observed especially during high discharge 

events in the wildfire-impacted headwater streams relative to those draining unburned 

(reference) watersheds (p < 0.001; Figure 4-2c)—post-fire salvage logging exacerbated those 

impacts (p < 0.001; Figure 4-2c). UV254 was an excellent predictor of THM-FP with reasonable 

precision in prediction (Table 4-1; p = 2×10-14, R2 = 0.60). Notably, UV254 unequivocally 

offered the most precise prediction of THM-FP of all of the metrics of NOM character that 

were investigated. This observation is consistent with the widely reported literature in which 

the utility of UV254 in predicting regulated DBP-FPs has been historically demonstrated 

(Singer et al., 1981; Edzwald et al., 1985; Reckhow et al., 1990; Wassink et al., 2011; Awad 

et al., 2016).  

Changes in SUVA resulting from wildfire-associated disturbances and their correlation with 

THM-FP also were investigated. The mean SUVA observed during this study increased with 

increasing watershed disturbance; from 1.8 L/mg.m in streams draining unburned watersheds 

to 2.6 and 3.0 L/mg.m in streams draining burned and post-fire salvage logged watersheds, 

respectively (Figure 4-2d). Accordingly, while the source water streams draining the unburned 

watersheds could be described as non-humic in nature (SUVA < 2), wildfire and salvage 

logging affected aquatic NOM structure and lead to a more humic blend (mixture of humics 

and other NOM) as defined by Edzwald and Tobiason (1999) in the disturbance-impacted 

streams. While SUVA correlated significantly with THM-FP, its prediction precision was low 

(Table 4-1; p = 4x10-9, R2 = 0.42), indicating that changes in SUVA were related to changes 

THM-FP; however, they could not adequately explain the response variability, thereby 

demonstrating the need to better understand relationships between disturbance-associated 

changes in SUVA and their implications to THM-FP. This result was also consistent with the 

reported literature in which contradictory conclusions have been reported regarding the utility 

of SUVA in explaining NOM reactivity and predicting THM formation. The utility of SUVA 

as a THM-FP predictor has been widely investigated and has resulted in good, precise 

correlations in some cases (Reckhow et al. 1990; Kitis et al. 2001), but not in others (Goslan 
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et al., 2004; Bougeard et al., 2010; Hua et al., 2015). The lack of consistently precise 

correlation has been especially observed in low aromaticity waters (SUVA < 2) (Ates et al., 

2007; Li et al., 2014).  

4.4.3.2 Resin Fractionation 

Ion exchange resin fractionation is one of the NOM characterization techniques that inform the 

humic nature and composition of NOM by isolating different fractions and adsorbing them 

onto the resins under specific pH conditions (Leenheer, 1981; Thurman and Malcolm, 1981). 

It should be noted that the fractions separated by resins are operationally-defined and vary 

between methods. The approach of Thurman and Malcolm (1981) is recognized by the 

International Humic Substances Society (IHSS) as the standard method for separating fulvic 

and humic acids. Here, the hydrophobic and hydrophilic fractions of DOC were isolated and 

analyzed. The mean hydrophobic (HPO%) fractions were 46%, 49%, and 60% of the DOC in 

the streams draining the unburned, burned, and post-fire salvage logged watersheds, 

respectively (Figure 4-2e). Significantly elevated HPO% was observed especially during high 

discharge events in the wildfire-impacted headwater streams relative to those draining 

unburned (reference) watersheds (p < 0.001; Figure 4-2e)—post-fire salvage logging 

exacerbated those impacts (p < 0.001; Figure 4-2e). Like SUVA, while HPO% correlated 

significantly with THM-FP, its prediction precision was low (Table 4-1; p = 10-8, R2 = 0.39), 

indicating that changes in HPO% were related to changes THM-FP; however, they could not 

adequately explain the response variability, thereby demonstrating the need to better 

understand relationships between disturbance-associated changes in NOM hydrophobicity 

(HPO%) and their implications to THM-FP. 

Although the operational definitions of hydrophobicity in the applied method and 

aromaticity as defined by UV254 and SUVA are different, the implications to changes in THM-

FP were generally consistent, regardless of the metrics used to describe NOM/DOC character. 

As would be expected, significant positive correlations between all of these metrics were 

observed; HPO was strongly correlated with UV254, but much less so with SUVA (Table 4-1). 

Regardless, the data clearly demonstrated that UV254 was the most reliable predictor of changes 
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in headwater THM-FPs that resulted from wildfire and salvage logging in the source 

watersheds. 

4.4.3.3 LC-OCD 

LC-OCD (Huber et al., 2011) was employed in second half of this study (2014) to further 

evaluate the implications of wildfire and post-fire salvage logging to drinking water 

treatability; specifically, the relative potential for membrane fouling and microbial regrowth 

in the distribution system were evaluated. While specific treatability metrics that quantify those 

potentials are not currently available, the literature generally indicates that the biopolymer and 

LMW fractions of DOC are respectively associated with membrane fouling (Rahman et al., 

2014; Yamamura et al., 2014) and microbial regrowth in the distribution system (Escobar et 

al., 2000; van der Kooij and van der Wielen, 2014). Thus, statistically significant increases in 

these parameters in streams draining disturbed watersheds relative to those draining unburned 

(reference) watersheds were interpreted as significant increases in the associated risks to 

drinking water treatability.  

The work presented herein is the first to report that the amount of biopolymer fractions of 

DOC increased significantly as a result of wildfire (p = 0.52; Figure 4-3) and post-fire salvage 

logging ( p =2×10-3; Figure 4-3), suggesting that these disturbances may have significant 

implications for carbonaceous DBP-FP, coagulant demand, and membrane fouling. In contrast, 

the mass of the low molecular weight (LMW) neutrals fraction of DOC, which contributes to 

microbial regrowth in the distribution system, was not significantly different in streams 

impacted by either wildfire or post-fire salvage logging (p = 0.99 and 0.29, respectively). 

Notably, this work does not speak to subsequent transformations of DOC that may occur during 

drinking water treatment. The lack of disturbance-associated impacts on the LMW neutrals 

fraction of NOM that was observed herein must be considered in conjunction with the 

possibility of possible subsequent transformations of DOC that may occur during drinking 

water treatment, particularly if advanced oxidation processes (AOPs) such as ozonation are 

utilized. Such processes are known to increase concentrations of LMW fractions of DOC as a 

result of the oxidation of higher MW fractions (Chaiket et al., 2002; Bond et al., 2011). Thus, 
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if such AOPs are utilized in absence of other processes that can remove LMW neutrals such as 

biological filtration (Liao et al., 2017; So et al., 2017), it is possible that significant challenges 

associated with increased oxidant demand and the potential for microbial regrowth in the 

distribution systems may ensue. 

Table 4-1. Regression significance (p value) and prediction precision (R2) between DOC, UV254, 

SUVA, and hydrophobicity (HPO) (p < 0.01 in all cases; n = 64) 

 

 
 THM-FP 

(µg/L) 

DOC 

(mg/L) 

UV254 

(m-1) 

SUVA 

(L/mg.m) 

DOC (mg/L) 
R2 0.47    

p value 2 x 10-10    

UV254 (m-1) 
R2 0.60 0.94   

p value 2 x 10-14 9 x 10-41   

SUVA (L/mg.m) 
R2 0.42 0.28 0.51  

p value 4 x 10-9 4 x 10-6 3 x 10-12  

HPO (%) 
R2 0.39 0.81 0.79 0.38 

p value 1 x 10-8 2 x 10-24 2 x 10-23 3 x 10-8 
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Figure 4-2. NOM character described by (a) THM-FP, (b) DOC, (c) UV, (d) SUVA, (e) HPO, (f) HS, 

and (g) FI in streams draining unburned, burned, and post-fire salvage logged watersheds. 
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Figure 4-3. NOM character described by (a) biopolymers, (b) building blocks, and (c) LMW neutrals, 

fractions in streams draining unburned, burned, and post-fire salvage logged watersheds. 
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4.4.3.4 Fluorescence 

Fluorescence has been widely used for NOM characterization due to its relative ease, low cost, 

and the potential for real time analysis. However, only a small fraction of the aromatic species 

actually emit light making them detectable by fluorescence spectroscopy (Lapen and Seitz, 

1982). Different experimental and mathematical approaches have been introduced and 

continue being developed to overcome this method’s shortcomings, which include a lack of 

standardized, reliable methods for generating quantitative results (Peiris et al., 2010; Korak et 

al., 2015; Peleato and Andrews, 2015; Peleato et al., 2017). Fluorescence-based methods are 

particularly sensitive to proteins and humic substances (humic and fulvic acids) (Coble, 1996; 

McKnight et al., 2001b; Chen et al., 2003b) and therefore may be meaningful for informing 

drinking water treatability risks associated with changes in source water quality.  

FEEM intensity plots for representative unburned, burned, and post-fire salvage logged 

watersheds are shown in Figures 4-4a, 4b, and 4c, respectively. These figures indicate two 

main intensity peaks (A and B) representative of fulvic acid-like (Ex < 250 nm and Em > 350 

nm) and humic acid-like (Ex > 280 nm and Em > 380 nm) compounds (Chen et al., 2003b). 

As shown for this sampling event (Figure 4-4), the intensity of the fulvic and humic acid-like 

compounds increased streams draining wildfire-impacted watersheds, and were further 

intensified in association with post-fire salvage logging. This finding, while non-quantitative, 

is in general agreement with the results discussed above for other humic-descriptive metrics 

(UV254, SUVA, HPO), DOC concentration, and THM-FP. 

The fluorescence index (FI) has been introduced to summarize key aspects of large data sets 

of FEEMs and is predominantly associated with NOM aromaticity. The FI is reported to 

correlate well with aromaticity with FI around 1.4 and 1.9 being representative of terrestrially 

derived fulvic acids and microbially derived fulvic acids, respectively (McKnight et al., 2001b; 

Rodríguez et al., 2014). This metric was investigated herein as a potential descriptor of source 

water treatability risks (THM-FP) after wildfire and salvage logging. Unfortunately, it did not 

meaningfully or reliably indicate impacts of land disturbance by wildfire and post-fire salvage 

logging on water quality and drinking water treatability. Its lack of relevance here is directly 

attributable to the lack of florescence at the associated wavelengths of importance (McKnight 
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et al., 2001b), across a relatively large range of DOC concentrations (Table 4-2). Moreover, 

no significant trends in FI following wildfire or post-fire salvage logging were detected (Figure 

4-2g; Table 4-2). 

 

4.5 Implications for Drinking Water Treatability 

Wildfire and salvage logging play important roles in changing the character of DOC and 

forming more reactive compounds (humics) that contribute to drinking water treatability risks 

(formation of regulated DBPs). Spatial and temporal variability in the watersheds can 

substantially affect DOC, its fractions, and reactivity. Therefore, the analysis of collective data 

sets from different locations or times should be conducted cautiously as they do not necessarily 

result in consistent and informative correlations. The analysis of DOC and UV254 were found 

to be useful in describing the changes in water quality and potential formation of regulated 

DBPs after wildfire and salvage logging. These analyses are relatively rapid, inexpensive, and 

informative. The operationally-defined hydrophobic fraction, as isolated by resin fractionation, 

can be a good indicator of the formation of regulated DBPs. However, the complexity and 

labour intensiveness of this method may limit its application and preclude it from being 

developed as a real-time technique in its present format. LC-OCD was particularly useful for 

informing treatability challenges that are not DBP-FP or coagulant demand-associated, 

including the potentials for membrane fouling and microbial regrowth in the distribution 

system; however, these relationships must still be further developed. DOC characterization by 

FEEM (especially changes in humic and fulvic acid-like substances) was qualitatively 

indicative of risks to drinking water treatability after land disturbances. Research to improve 

quantitative interpretation of this method is ongoing, but reliable quantitative analysis is as of 

yet unavailable; thus, its utility to the drinking water industry is presently limited. Ultimately, 

the choice of appropriate NOM characterization method(s) depends on the application and 

objectives of the analysis, equipment availability, and time. 
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Table 4-2. FI in streams draining unburned, burned, and post-fire salvage logged watersheds. 

Date Condition Stream 

Adjusted Wavelength 

FI Ext. 370 

Emm. 450 Emm. 500 

Apr-13 

Unburned Star 21.12736893 10.10163116 2.09 

Unburned North York 51.2986412 39.57427979 1.30 

Burned South York 82.71910858 53.2678833 1.55 

Burned Lynx  96.74668884 74.03311539 1.31 

Burned and Salvage logged Drum -50.35267639 -84.0299683 n.q*. 

Burned and Salvage logged Lyons East -196.4923706 -253.629303 n.q. 

Burned and Salvage logged Lyons West -37.15408325 -93.0406189 n.q. 

May-13 

Unburned Star -37.15408325 -93.0406189 n.q. 

Unburned North York 21.74746704 5.10023499 4.26 

Burned South York 44.35157013 24.6999054 1.80 

Burned Lynx  -28.31297302 -40.80988312 n.q. 

Burned and Salvage logged Drum 36.36485291 18.25868225 1.99 

Burned and Salvage logged Lyons East 24.67346191 -12.19561768 n.q. 

Burned and Salvage logged Lyons West -29.02978516 -59.80400085 n.q. 

Jul-13 

Unburned Star 7.81465149 -2.1060276 n.q. 

Unburned North York - - - 

Burned South York 2.17144394 -6.50406265 n.q. 

Burned Lynx  5.1031456 -3.93083572 n.q. 

Burned and Salvage logged Drum 17.77527618 4.57972336 3.88 

Burned and Salvage logged Lyons East 185.5371704 143.9020538 1.29 

Burned and Salvage logged Lyons West 56.75753784 29.73249054 1.91 

Sep-13 

Unburned Star 56.75753784 29.73249054 1.91 

Unburned North York -11.32582474 -19.26108551 n.q. 

Burned South York 52.02320099 33.71346283 1.54 

Burned Lynx  41.6676178 26.08548737 1.60 

Burned and Salvage logged Drum 57.56787872 37.21660614 1.55 

Burned and Salvage logged Lyons East 173.6407471 128.4358978 1.35 

Burned and Salvage logged Lyons West 173.6407471 128.4358978 1.35 

Apr-14 

Unburned Star 16.40093231 7.97731781 2.06 

Unburned North York -15.16821289 -20.98073959 n.q. 

Burned South York 68.80652618 48.03305054 1.43 

Burned Lynx  53.30444717 36.24378586 1.47 

Burned and Salvage logged Drum 76.57413578 51.8984251 1.48 

Burned and Salvage logged Lyons East 179.3233957 139.5700941 1.28 

Burned and Salvage logged Lyons West 190.1952372 138.4262495 1.37 
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Date Condition Stream 

Adjusted Wavelength 

FI Ext. 370 

Emm. 450 Emm. 500 

May-14 

Unburned Star -399.7931185 -417.4728546 n.q. 

Unburned North York 0.864886285 -14.87950898 n.q. 

Burned South York 76.03270245 57.34004974 1.33 

Burned Lynx  81.03791714 60.63693619 1.34 

Burned and Salvage logged Drum -76.2499056 -95.40599824 n.q. 

Burned and Salvage logged Lyons East 93.21375561 59.25078583 1.57 

Burned and Salvage logged Lyons West 51.08024884 20.68382263 2.47 

Jul-14 

Unburned Star 19.92752361 11.56298828 1.72 

Unburned North York 4.09066486 -1.47730065 n.q. 

Burned South York -68.00599384 -73.23635483 n.q. 

Burned Lynx  -6.49948597 -14.56195069 n.q. 

Burned and Salvage logged Drum 30.61425305 17.71652603 1.73 

Burned and Salvage logged Lyons East 67.33809185 40.77895736 1.65 

Burned and Salvage logged Lyons West 49.87035656 31.37241745 1.59 

Aug-14 

Unburned Star -17.04513455 -25.18676377 n.q. 

Unburned North York -41.65909481 -46.29571152 n.q. 

Burned South York -25.18397045 -34.16797257 n.q. 

Burned Lynx  -10.53387737 -18.83232117 n.q. 

Burned and Salvage logged Drum -26.93468762 -38.34539032 n.q. 

Burned and Salvage logged Lyons East 91.38648319 63.89580917 1.43 

Burned and Salvage logged Lyons West 41.64270115 20.00578689 2.08 

Sep-14 

Unburned Star -104.7947045 -114.2555485 n.q. 

Unburned North York -41.12949753 -49.08831215 n.q. 

Burned South York 11.6810112 -2.885347365 n.q. 

Burned Lynx  45.8753624 34.45617867 1.33 

Burned and Salvage logged Drum 58.66978074 35.72951317 1.64 

Burned and Salvage logged Lyons East 110.6998863 85.37017632 1.30 

Burned and Salvage logged Lyons West 151.0780067 115.5058651 1.31 

Oct-14 

Unburned Star 82.67550278 73.8305092 1.12 

Unburned North York 69.96163178 60.42644884 1.16 

Burned South York 189.7893524 167.0474091 1.14 

Burned Lynx  160.0444565 136.1360245 1.18 

Burned and Salvage logged Drum 98.4134903 86.23725511 1.14 

Burned and Salvage logged Lyons East 206.1051559 166.2135391 1.24 

Burned and Salvage logged Lyons West 211.7272034 175.0636749 1.21 

* n.q. = not quantifiable 



 86 

 

 

Figure 4-4. FEEM intensity plots for representative (a) unburned, (b) burned, and (c) post-fire 

salvage logged watersheds. 
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Chapter 5 

Mass-Based Weighting of Surrogates for Organic Matter Enhances 

Prediction of Trihalomethane Formation Potential 

5.1 Overview 

A comprehensive understanding of dissolved organic carbon (DOC) character and 

identification of metrics that effectively and efficiently predict disinfection by-product (DBP) 

formation potential (DBP-FP) can help in developing strategies to control DBP precursors in 

source waters and minimize the formation of DBPs during drinking water treatment. Here, raw 

and treated waters from two diverse systems were comprehensively analyzed to investigate 

simple strategies for enhancing predictions of trihalomethane formation potential (THM-FP) 

as a function of DOC character. Raw water samples were collected from disturbed (wildfire-

impacted) watersheds in the eastern slopes of the Rocky Mountains of south-western Alberta. 

Treated water was collected from different treatment stages at the Mannheim water treatment 

plant, in Kitchener, Ontario—the source water for this plant is the agriculturally-, municipally-

impacted Grand River. Several DOC characterization metrics were compared and their direct 

relationship to THM-FP was examined. THM formation potential- (THM-FP), DOC-, and 

aromaticity-associated parameters including UV254, SUVA, and hydrophobic (HPO) and 

humic substances (HS) fractions were evaluated. As expected, metrics indicative of aromatic 

compounds were good predictors of THM-FP in general; however, the prediction precision of 

HS and HPO fractions was enhanced (especially HS) when expressed as mass-based 

parameters (absolute quantities) as opposed to fractions or ratios of DOC (relative quantities). 

Thus, the use of a mass-based weighting approach for reporting NOM fractionation data is 

recommended for further exploration and use in discussing and evaluating NOM-related 

implications to drinking water treatability. 

5.2 Introduction 

Reactions of different types of aquatic organic matter with chlorine and other disinfectants 

(chloramines, chlorine dioxide, and ozone) result in the formation of various classes of DBPs 

(Richardson, 1998; Krasner et al., 2006), many of which are considered to be 1) cytotoxic, 
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genotoxic or carcinogenic in laboratory animals (Plewa et al., 2002; Woo et al., 2002; Plewa 

et al., 2004) and 2) potential public health risks (Richardson et al, 2002; WHO, 2006). THMs 

and HAAs are regulated worldwide (WHO, 2006; Health Canada, 2008; USEPA, 2012) as the 

most prevalent DBPs whose removal is considered to be representative of the removal of other 

chlorinated DBPs (WHO, 2006), which may be of greater health significance, but typically are 

present at lower concentrations in treated drinking water (Richardson, 2011). Formation of 

DBPs depends on the amount and composition of NOM, as well as the disinfectant type and 

conditions (Krasner et al., 2006; Krasner, 2009). Increased levels of DBPs of regulatory 

concern are one of the most significant drinking water treatability challenges associated with 

source water changes in DOC associated with (natural and/or anthropogenic) landscape 

disturbance. Therefore, an understanding of the relationship between DOC character and DBP 

formation potential (DBP-FP) is critical to identifying and controlling DBP precursor 

concentrations in source waters and optimizing water treatment processes to minimize DBP 

formation.  

Numerous studies have focused on establishing relationships between DOC character and 

the formation of regulated DBPs. The spatial and temporal variability of NOM often result in 

site-specific outcomes; however. Even when significant correlations are found they are not 

maintained at broader spatial or temporal scales (Edzwald et al. 1985; Collins et al. 1986; 

Reckhow and Singer, 1990; Reckhow et al. 1990; Singer, 1999; Bolto et al., 2002; Kitis et al. 

2002; Goslan et al., 2004; Ates et al., 2007; Bougeard et al., 2010). Not surprisingly, no 

universal predictors for DBP-FP have been identified. Notably, most such investigations have 

focused on untreated or source water characterization of relationships between DBP-FP and 

NOM. In contrast, very few investigations have reported the effects of various treatment 

processes on concurrent changes in DOC character and concentration; of these, most have not 

comprehensively characterized changes in NOM by using multiple metrics concurrently. To 

make decisions regarding investments in either source water protection strategies or in-plant 

treatment infrastructure upgrades, drinking water utilities must understand both the source 

water DBP-FP implications of landscape disturbances and plant capacities to remove those 

DBP-FPs through the specific treatment processes—reliable and relatively inexpensive proxy 
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indicators for anticipating/predicting regulated DBP-FPs are critical to enabling these 

decisions.  

Aromatic compounds are known to be the main reactive fractions of DOC that contribute 

to the formation of regulated carbonaceous DBPs, including THMs (Singer, 1999; Kitis et al., 

2002). The most common metrics that describe DOC aromaticity are UV254, SUVA, 

hydrophobic (HPO) compounds, and humic substances (HS). All of these metrics are 

operationally-defined and differ from one another. The most common techniques for isolation 

and description of HPO and HS are resin fractionation (Leenheer, 1981; Thurman and Malcolm 

1981; Leenheer and Noyes, 1984; Collins et al., 1986; Aiken et al., 1992; Malcolm and 

MacCarthy, 1992; Kitis et al., 2002; Chow et al., 2004) and liquid chromatography (Bolto et 

al., 1999; Croué, 2004; Baghoth et al., 2009; Huber et al., 2011), respectively. Notably, the 

units that have been used to report these fractions (as well as other operationally-defined 

fractions) are also varied; these fractions have been reported as both relative values (ratios 

and/or fractions of DOC) (Aiken et al., 1992; Malcolm and McCarthy, 1992; Carrol et al., 

2000; Fan et al., 2001; Kitis et al., 2002; Croué, 2004; Goslan et al., 2004; Kim and Yu, 2005; 

Gray et al., 2007; Baghoth et al., 2009; González et al., 2013; Penru et al., 2013; Al Juboori et 

al., 2016; Urbanowska and Kabsch-Korbutowicz, 2016) and mass-based absolute values 

(Malcolm and McCarthy, 1992; Carrol et al., 2000; Lin et al., 2000; Marhaba et al., 2003; 

Chow et al., 2004; Kennedy et al., 2005; Liu et al., 2008; Harhoff et al., 2010; Jiang et al., 

2011; Wassink et al., 2011; Lamsal et al., 2012; Jeong et al., 2013; González et al., 2013; Penru 

et al., 2013; Tian et al., 2013; Rahman et al., 2014; Han et al., 2015). While HPO typically is 

reported as a relative fraction of DOC, HS has been reported as both a relative and mass-based 

absolute quantity. The rationale for these reporting decisions has not been clearly explained, 

discussed, or compared. 

The purpose of this study was to investigate the linear relationship between THM-FP and 

the aromatic fractions of DOC (which is generally understood to be a directly proportionality) 

to identify opportunities to improve their performance as THM-FP predictors (proxy indictors). 

THMs are formed because of chemical reactions between disinfectants and different 

constituents/fractions of DOC and THM concentrations are directly proportional to precursor 
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concentrations. Accordingly, least squares linear regression analysis has been widely used to 

describe relationships between DBPs and potential proxy indicators such as DOC 

concentration (Edzwald et al., 1985; Reckhow and Singer, 1990; Singer, 1999; Goslan et al., 

2004; Ates et al., 2007; Wassink et al., 2011). This method assumes that source data are 

normally distributed and independent, with linearity of the residuals and variables (Walpole et 

al., 2013). Here, HPO and HS were evaluated as relative (fractions) and absolute (mass-based 

concentration) quantities because both approaches to data reporting are commonly found in 

the literature, but specific guidance regarding optimal approaches for reporting these data is 

lacking. These data were then compared based on their potential to predict regulated THM-

FPs. These relationships were also compared to those obtained using other metrics (UV254 and 

SUVA) of NOM aromaticity. Recognizing that it is unlikely that a single, directly-measured 

universal precursor for DBP-FP will ever be identified based exclusively on one descriptor of 

the structural characteristics of NOM, it is critical that the metrics that are utilized and reported 

as proxy indicators for DBP-FP describe as much of the response variability as possible (i.e., 

highest possible coefficient of determination [R2]) because these will correspond to most 

precise predictions. Accordingly, the concurrent evaluation of multiple metrics of NOM 

character will 1) provide the most precise simple predictors of NOM reactivity and 2) enable 

the most efficient development of multivariate models for better predicting NOM reactivity. 

This type of comparative analysis is critical for identifying the most useful metrics for 

prediction of THMs and optimization of strategies to limit the drinking water treatment 

challenges associated with their formation.  

5.3 Materials and Methods 

5.3.1 Data 

Two very different types of source water datasets were utilized in this investigation: high 

quality reference and wildfire-impacted raw/source water data from the Rocky Mountains 

(discussed in Chapter 3) and treated water originating in an agriculturally municipally 

impacted source watershed (Chapter 2). These datasets were selected to explore broadly 

relevant opportunities for improving THM prediction based solely on the quantitative data 
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utilized. Specifically, common reporting practices of relative fractions of DOC (as 

percentages) and absolute quantities (mass-based concentration) were compared. 

 As previously reported (Shams et al., 2014), raw water was collected from disturbed (wildfire-

impacted) watersheds in the eastern slopes of the Rocky Mountains of south-western Alberta. 

The samples were collected from streams draining burned, unburned, and post-fire salvage 

logged watersheds (Shams et al., 2014; Bladon et al., 2008; Silins et al., 2009) and reflected a 

full range of discharge conditions (baseflow, stormflow, and freshet) (Bladon et al., 2008; 

Silins et al., 2009). As it is commonly recognized  that aquatic DOC concentrations and 

characteristics depend on watershed hydrological and biogeochemical processes, (Aiken and 

Cotsaris, 1995; Fabris et al., 2008; Krasner et al., 1996; Leenheer and Croué, 2003; Owen et 

al., 1995), and temperature (Leenheer and Croué, 2003), only a subset of the data collected 

during this thesis research were utilized. Specifically, the data collected from the reference, 

burned, and post-fire salvage logged catchments in 2014 were grouped and utilized in the 

present investigation. This was done to 1) ensure an adequate number and range of observed 

values, 2) focus the investigation on identifying opportunities for improving THM prediction 

based solely on the quantitative data utilized, and 3) exclude the need for analysis of other 

factors that contribute to spatial and temporal variability in DOC-associated proxies for THM-

FP (Edzwald et al., 1985; Collins et al., 1986; Reckhow and Singer, 1990; Reckhow et al., 

1990; Singer, 1999; Bolto et al., 2002; Kitis et al., 2002; Goslan et al., 2004; Ates et al., 2007; 

Bougeard et al., 2010; Pellerin et al., 2012; Spencer et al., 2008)—while this later topic is 

certainly important, it is well outside of the scope of the present investigation.  

The treated water was collected from different treatment stages at the Mannheim Water 

Treatment Plant (WTP), in Kitchener, Ontario—the source water for this plant is the 

agriculturally-, municipally-impacted Grand River. Mannheim WTP is a conventional WTP 

that includes chemical pre-treatment (coagulation, flocculation, and sedimentation), ozonation, 

biological filtration, UV irradiation, and chloramination. More information on the intake water 

characteristic and the treatment processes at the Mannheim WTP can be found in Shams et al., 

(2015). The samples used herein were collected at the WTP intake, post-clarification, post-
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ozonation, and the effluents of two parallel filters. Eight sampling events were conducted over 

an eight-month period starting in November 2014. 

5.3.2 Analytical Methods 

The methods used to characterize NOM concentrations and reactivity and DBP-FP were 

previously reported (Shams et al., 2014 and 2015). In brief, THM-FP was analyzed based on 

Standard Methods (Methods 5030B and 8260C; APHA et al., 2012) using GC/MS (Purge and 

Trap) on an Agilent Technologies 7890B -MS/5977A. DOC concentrations were measured as 

per Standard Methods (Method 5310B; APHA et al., 2012) using a Shimadzu TOC-VCPH 

TOC analyzer. UV254 was analyzed using a Hewlett-Packard 8453 spectrophotometer with a 1 

cm quartz cell (Method 5910 B; APHA et al., 2012). SUVA was calculated as the measured 

UV254 divided by the DOC (L/mg.m) (Edzwald and Van Benschoten, 1990). Resin 

fractionation using Amberlite XAD-8® was utilized to isolate hydrophobic and hydrophilic 

fractions as described by Kitis et al. (2002). Liquid chromatography–organic carbon detection 

(LC-OCD) was used to characterize humic substances (HS) fraction as defined by Huber et al. 

(2011). This technique employs a weak cation exchange column (250 mm × 20 mm, TSK HW 

50S, 3000 theoretical plates) followed by a UV254 detector (UVD), an organic carbon detector 

(OCD), and an organic nitrogen detector (OND). ChromCALC, DOC-LABOR data processing 

software was used to quantify the fractions (Huber et al., 2011).  

5.3.3 Statistical Analysis 

Predictions of THM-FP using NOM character were investigated using simple least squares 

linear regression. The significance and precision of the regression models were evaluated using 

customary approaches (i.e., p values obtained from ANOVA [Appendix A] and coefficients of 

determination [R2], respectively). Diagnostic residual plots (Appendix B) were utilized to 

ensure that the assumptions of ANOVA were not violated. 

5.4 Results and Discussion 

Correlations between THM-FP, DOC, and aromaticity metrics were investigated previously 

for the raw and treated water datasets used in herein (Shams et al., 2014 and 2015). In those 
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previous studies, HS was reported and analyzed in a mass-based absolute quantity 

(concentration in mg/L) because it is the most commonly used unit reported for this metric. On 

the other hand, HPO is most commonly reported and analyzed as a fraction of DOC (%); thus, 

HPO was reported as a relative quantity (%). Here, the utility of these metrics as potential 

THM-FP proxy indicators was evaluated—both absolute and relative quantities (i.e. mass-

based concentration vs fractions) were directly compared to identify opportunities for better 

prediction of THM-FP.  

5.4.1 HPO Concentration vs HPO Fraction 

Hydrophobic compounds are usually measured as relative quantities (fractions of DOC) and 

reported as a percentage (%). Reasonably good correlations between HPO and regulated DBPs 

have been reported (Collins et al., 1986; Kitis et al., 2002; Liang and Singer, 2003; Soh et al., 

2008; Shams et al, 2014 and 2015). Here, HPO was calculated in both mass-based 

concentration (mg/L) and fraction (%) units and the associated prediction of THMFP was 

evaluated (Table 5-1; Figures 5-1 and 5-2) for the Mannheim WTP and Rocky Mountain 

datasets. Table 1 summarizes the coefficient of determination (R2) for prediction of THM-FP 

using aromaticity metrics. The regression results for the Rocky Mountain watershed are 

presented in Figure 5-1 and the corresponding regression results for the Mannheim WTP are 

presented in Figure 5-2. As shown in the table and figures, THM-FP correlated well with HPO 

in general and regression was statistically significant (p = 10-19 and p = 10-2), thereby 

highlighting the utility of this metric as a potential proxy indicator for THM-FP in both source 

and treated waters, respectively. Notably, the model precision described by the R2 improved 

substantially when HPO was analyzed as a mass-based parameter (mg/L); specifically it 

increased from 0.8 to 0.9 and from 0.83 to 0.89 for the Mannheim WTP and Rocky Mountain 

data sets respectively (Table 1; Figures 5-1 and 5-2). This improvement is likely because scaled 

data can increase measurement errors, thereby decreasing the statistical power of regression 

analyses. Scaling methods, also known as data normalization, are approaches in which data 

points are divided by a scaling factor to so that they can be compared to one another (van den 

Berg et al., 2006). Here, the DOC concentration in the hydrophobic fraction is the measured 

quantity—the relative fraction (%) that is hydrophobic (HPO %) is normalized by the measured 
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DOC concentration prior to fractionation. Thus, the relative fraction (%) of DOC that is 

hydrophobic (HPO %) is subject to additional measurement errors associated with DOC 

measurement. These can vary substantially and are especially relevant at low DOC 

concentrations, such as those that were regularly observed in the Rocky Mountain watersheds 

(Shams et al., 2017). 

 

Table 5-1. Regression significance (p value) and prediction precision (R2) between THM-FP and 

various metrics of NOM aromaticity.  

 

 
 

HPO 

(mg/L) 

HPO 

(%) 

HS 

(mg/L) 

HS 

(%) 

UV254 

(m-1) 

SUVA 

(L/mg.m) 

Mannheim WTP 

(n = 38, p-value < 0.05) 

THM-FP 

(µg/L) 
0.90 0.80 0.85 0.10 0.89 0.83 

Rocky Mountain 2014 

(n = 38, p-value < 0.01) 

THM-FP 

(µg/L) 
0.89 0.83 0.88 0.26 0.90 0.39 
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Figure 5-1. Linear regression between THM-FP and a) HPO (mg/L) , b) HPO (%), c) HS (mg/L), 

d) HS (%), UV (m-1), and SUVA (L/mg.m) for the Mannheim WTP data set. 

 

 

R2 = 0.26 
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Figure 5-2. Linear regression between THM-FP and a) HPO (mg/L) , b) HPO (%), c) HS (mg/L), d) 

HS (%), UV (m-1), and SUVA (L/mg.m) Rocky Mountain data set. 

5.4.2 HS Concentration vs HS Fraction 

Humic substances are known as reactive compounds that are precursors for regulated DBPs 

(Collins et al. 1986; Reckhow et al., 1990; Singer, 1999; Liang and Singer, 2003). Correlations 

between HS and regulated DBPs have been reported (Wassink et al., 2011; Shams et al., 2014 

and 2015). Here, the HS fractions obtained in samples from the Mannheim WTP and Rocky 
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Mountain watersheds also were analyzed in both mass-based concentration (mg/L) and fraction 

(%) units and the associated prediction of THM-FP were evaluated (Table 5-1; Figures 5-1 and 

5-2). As shown in Table 5-1 and Figures 5-1 and 5-2 (supported by Table A-3, Appendix A 

and Figure B-3 and B-4, Appendix B), although regression was significant (p = 5×10-2 and p = 

7×10-4), the correlations between THM-FP and HS when HS was measured as a fraction of 

DOC were very poor (R2 = 0.1 and 0.26 for data obtained at the Mannheim WTP and Rocky 

Mountain watersheds, respectively). In contrast, when the absolute quantity of HS was not 

divided by DOC concentration and was used in the regression analysis as a mass-based 

concentration (mg/L), very precise, substantially improved correlations between it and THM-

FP were identified; specifically, R2 = 0.85 and 0.88 for the Mannheim WTP and Rocky 

Mountain watersheds, respectively. This result is consistent with the results observed for HPO 

and confirms the importance of data preprocessing and the advantage of using mass-based 

values for regression analysis. 

5.4.3 UV254 vs SUVA 

Although this work demonstrated mass-based weighting enhanced the utility of HPO and HS 

fractions of NOM as proxy indicators for THM-FP (Table 5-1, Figures 5-1 and 5-2), it is 

important to put those improvements in context relative to other common NOM aromaticity-

based proxy indicators. UV254 is the most commonly used metric for describing NOM 

aromaticity. This analysis is relatively simple, fast, and inexpensive; it can also be done online. 

In addition, it has been shown to be a particularly good proxy indicator for the formation of 

regulated DBPs (Singer et al., 1981; Edzwald et al., 1985; Reckhow et al., 1990; Wassink et 

al., 2011; Awad et al., 2016; Shams et al., 2014 and 2015). However, UV254 has some important 

limitations, including inconsistencies at low and high concentrations due to low signal and 

saturation problems, respectively (Soovali et al., 2006).  

The concept of specific UV absorbance (SUVA) was introduced by Edzwald and co-

workers (Edzwald et al., 1985; Edzwald and Van Benschoten, 1990) as a way of scaling UV254 

values (by dividing them by DOC) to analyze and compare the water aromaticity in different 

sources. The guidelines for use of SUVA in describing aromaticity/hydrophobicity were 
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further modified and simplified comparison of NOM aromaticity between samples (Edzwald 

and Tobiason, 1999). The utility of SUVA as a THM-FP predictor has been widely investigated 

and has resulted in good, precise correlations in some cases (Reckhow et al. 1990; Kitis et al. 

2001), but not in others (Goslan et al., 2004; Bougeard et al., 2010; Hua et al., 2015). The lack 

of consistently precise correlation has been especially observed in low aromaticity waters 

(SUVA < 2) (Ates et al., 2007; Li et al., 2014). 

As shown in Table 5-1 and Figures 5-1 and 5-2, the relationship between UV254 and THM-

FP was significant (p = 5 × 10 -19 and 2 × 10 -20) and precise (R2 = 0.89 and 0.9) for both the 

Mannheim WTP and Rocky Mountain watershed datasets, respectively. In contrast, while the 

relationship between SUVA and THM-FP was significant (p = 6 × 10 -16 and 2 × 10-5) for both 

the Mannheim WTP and Rocky Mountain watershed datasets, respectively, it was only precise 

for the Mannheim WTP dataset, but not for the Rocky Mountain watersheds (R2 = 0.39). This 

difference is consistent with the reported literature discussed above (Goslan et al., 2004; 

Bougeard et al., 2010; Ates et al., 2007; Li et al., 2014; Hua et al., 2015) and is likely 

attributable at least in part to the relatively low DOC concentrations and SUVA values 

observed in the Rocky Mountain watersheds.  

5.5 Summary 

Overall and as expected, NOM metrics indicative of aromatic compounds were significant and 

reasonably precise predictors of THM-FP in general; however, the prediction precision of HPO 

and HS fractions (especially HS) was substantially enhanced when expressed as mass-based 

parameters (absolute quantities) as opposed to fractions or ratios of DOC (relative quantities). 

Thus, the use of a mass-based weighting approach for reporting NOM fractionation data is 

recommended for further exploration and use in discussing and evaluating NOM-related 

implications to drinking water treatability. Although it may not be the case for the specific data 

used herein, it should be be noted that despite these improvements, the relationships between 

DBP-FP and various NOM-associated proxy indicators can be quite variable spatially and 

temporally, and frequently site specific, thereby suggesting that other hydrological and/or 

biogeochemical factors may contribute to observed differences in these relationships. 
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Moreover, it is worth noting that despite the continued development and promotion of various 

proxy indicators for describing NOM reactivity, UV254 offered the best combination ease of 

use, and precision in prediction of THM-FP. 
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Chapter 6 

Comprehensive Characterization of NOM Concentration and 

Character after Contemporary Forest Harvesting: Implications to 

Drinking Water Treatability  

6.1 Overview 

The value of natural storage and filtration of water by global forests has been estimated at $4.1 

trillion (US)—this is in part because of the critical role that healthy forests play in the provision 

of high quality source waters for potable water production. Over the past 15 years, 7-fold 

increases in the size and severity of the largest wildfires have occurred in western Canada and 

globally, in part because of climate change. As a result, many utilities and governments are 

looking to forest harvesting as a source water protection tool for pre-emptive risk reduction. 

While forests are managed for many purposes, they are not widely managed for protection of 

drinking water supplies. Here, three sub-watersheds (within one watershed) were harvested in 

2015, using: clear-cutting with patch retention, strip-shelterwood cutting, and partial cutting. 

All possible best management practices (BMPs) were followed to minimize disturbance 

impacts on water quality. Changes in DOC concentration and character and their relationships 

to regulated DBP-FPs (THM-FPs and HAA-FPs) were comprehensively characterized using 

multiple natural organic matter (NOM) characterization techniques during the two years during 

and immediately after forest harvesting in the eastern slopes of the Rocky Mountains in south-

western Alberta. Several NOM fractions also were characterized by LC-OCD during the first 

year to inform the relative potential for membrane fouling and microbial regrowth in 

distribution systems. Samples were collected during the dominant regional streamflow 

regimes. Notably, no impacts of forest harvesting on water quality and treatability were 

observed during the harvest and first post-harvest years. Thus, this work suggests that forest 

harvesting with careful implementation of BMPs for erosion control may mitigate the 

potentially catastrophic impacts of wildfire on drinking water treatability without significantly 

compromising it. 
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6.2 Introduction 

The value of natural storage and filtration of water by global forests has been estimated at $4.1 

trillion (US) (Costanza et al, 1997). The drinking water for at least 58% of the largest urban 

communities in Canada (Stone et al, 2011) and 66% of American water supplies (Stein and 

Butler, 2004) originates in forested watersheds. Ironically, the high quality of water from 

healthy forested regions makes these supplies particularly vulnerable to deterioration, which is 

often associated with either natural or anthropogenic landscape disturbances. For example, 

wildfires release significant amounts of sediment (Kunze and Stednick, 2006; Silins et al, 

2009), nutrients (Ranalli, 2004; Bladon et al, 2008; Aiken et al., 2011; Emelko and Sham, 

2014), heavy metals (Kelly et al, 2006), and other contaminants (Kalabokidis, 2000; Crouch et 

al, 2006) to receiving waters. Forest harvesting can similarly deteriorate water quality 

(Stottlemyer and Troendle, 1992; Duncan, 1999; Ice and Stednick, 2004; Stednick, 2008). 

Variability in impact severity has been attributed to the range of harvesting practices and 

management intensity, as well as hydro-climatic and geological setting (Corner et al, 1996; 

Kreutzweiser and Capell, 2001; Ice and Stednick, 2004). While previous research provides 

some insights, it largely reflects impacts of historic forest management practices no longer 

used (Anderson and Lockaby, 2011). Recent work (Emelko et al, 2015a) and drinking water 

utility experience (Sham et al, 2013; Emelko and Sham, 2014) have demonstrated that global 

increases in wildfire threaten drinking water security by challenging water treatment processes 

beyond their capacity, necessitating potentially cost-prohibitive treatment changes to ensure 

provision of safe drinking water (Emelko et al, 2011; Sham et al, 2013; Bladon et al, 2014; 

Emelko et al, 2015a). These threats are particularly relevant for small systems (Emelko et al, 

2011; Emelko et al, 2015a) and sediment-rich regions with gravel bed rivers—like western 

Canada—in which the storage and release of fine sediment and associated contaminants can 

lead to significant long-term drinking water treatment challenges (Emelko et al, 2015b). 

Notably, severe disturbance impacts on water may extend far downstream at larger basin scales 

(Stone et al, 2011; Allin et al, 2012; Stone et al, 2014; Emelko et al, 2015b). 

Over the past 15 years, 7-fold increases in the size and severity of the largest wildfires have 

occurred in western Canada (Flannigan et al, 2009) and globally, in part because of climate 
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change (Bladon et al, 2014; IPCC. 2014). As a result, forest harvesting is often utilized for pre-

emptive risk reduction (Stephens et al, 2012; Rocca et al, 2014). While forests are managed 

for many purposes, they are not widely managed for protection of drinking water supplies. 

Water suppliers are increasingly interested in using fuel management for this purpose, however 

(Emelko and Sham, 2014). For example, recent catastrophic wildfire led to the Denver Water-

U.S. Forest Service co-investment of >$49M to re-establish forest management strategies 

(thinning/fuel management) to mitigate future risks to water supplies; notably, these activities 

are partially funded by increased water rates (Sham et al., 2013). Forest harvesting is also the 

primary tool used to manage wildfire risks in Canada, but it also can impact water supplies 

(Gadgil, 1998). 

Although the impacts of wildfire (Bladon et al, 2014) and forest harvesting (Binkley and 

Brown, 1993; Feller, 2005) on water (including water quality) have been well studied, little if 

any of that research has focused on impacts to drinking water treatability. At a minimum, these 

assessments involve evaluation of source water turbidity and dissolved organic carbon (DOC) 

concentrations because they are the main water quality drivers of treatment infrastructure and 

operational requirements/costs (MWH, 2005; Emelko et al., 2011). While increased 

solids/turbidity loads to treatment plants result in obvious removal needs, DOC has several less 

obvious implications. It is typically present at low concentrations in forested watersheds and 

increases and/or changes in character (e.g. aromaticity, hydrophilicity/hydrophobicity) as a 

result of landscape disturbance (O’Donnell et al, 2010; Aiken et al, 2011; Emelko and Sham, 

2014; Emelko et al., 2015). Increases in DOC may necessitate the use of complicated and costly 

chemical pretreatment or increase chemical coagulant demand (MWH, 2005; Emelko et al., 

2011; Hohner et al., 2016). Hydrophobic natural organic matter (NOM) is a reactive precursor 

of regulated disinfection by-products (DBPs) (Singer, 1999; Kitis et al. 2002). Hydrophilic 

NOM is more difficult to remove by conventional treatment (Kitis et al. 2002; Chow et al, 

2004) and forms unregulated DBPs of emerging health concern (Liang and Singer, 2003; Ates 

et al, 2007; Chen and Westerhoff, 2010). Other treatability challenges associated with 

increased/changing DOC include increased risk of distribution system regrowth of bacteria 

(Kaplan et al, 1993); increased disinfectant demand (Amy et al, 1987; Jacangelo et al, 1995); 
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adverse taste, odor, and color (Amy et al, 1987; Jacangelo et al, 1995); membrane fouling (Lee 

et al., 2004; Kwon et al., 2005); and increased heavy metal complexation potential (Wu et al., 

2004; Waples et al., 2005). Although DOC concentration, DOC hydrophobicity, and DBP-FPs 

can significantly increase after severe wildfire (Emelko et al., 2011; Writer et al., 2017)—and 

even more so after post-fire salvage-logging—especially during high discharge events in 

headwater streams (Emelko et al., 2015), changes in NOM after forest harvesting have not 

been characterized. Moreover, other harvesting-associated implications to drinking water 

treatability like relative implications to membrane fouling and microbial regrowth potential in 

distribution systems also have never been reported.  

Here, changes in DOC concentration and character and their relationships to regulated DBP-

FPs (THM-FPs and HAA-FPs) were comprehensively characterized using multiple natural 

organic matter (NOM) characterization techniques during two years (during and immediately 

after) forest harvesting in the eastern slopes of the Rocky Mountains in south-western Alberta. 

Several NOM fractions also were characterized by LC-OCD during the former of those years 

to inform the relative potential for membrane fouling and microbial regrowth in distribution 

systems. The utility of several DOC metrics for predicting THM-FP was evaluated using linear 

regression, consistent with previous investigations (Edzwald et al., 1985; Reckhow and Singer, 

1990; Singer, 1999; Goslan et al., 2004; Ates et al., 2007; Wassink et al., 2011). These 

approaches are widely utilized because these DBP precursor materials are generally understood 

to be directly proportional to the by-products they form. 

6.3 Materials and Methods 

6.3.1 Study Site and Sampling  

This work was conducted as part of the ongoing SRWP in which two watersheds that served 

as unburned-reference watersheds in Phase 3 were studied. They were fully calibrated for 

climate, streamflow, and water quality for 11 years [2004-2014]. Three sub-watersheds (within 

one watershed) were harvested in 2015, using: clear-cutting with patch retention, strip-

shelterwood cutting, and partial cutting (Figure 6-1). All possible best management practices 

(BMPs) were followed to minimize disturbance impacts on water quality. This nested, paired 
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watershed design (BACI; before/after, control/impact) enabled explicit separation of 

harvesting impacts on hydrology and water quality from background variability produced by 

seasonal or climatic variation. Here, samples were collected at 8 locations and included an 

undisturbed (reference) headwaters stream (North York Upper), three headwaters streams 

draining harvested watersheds (Star McLaren, Star East, and Star West), the confluence of 

headwaters streams draining harvested watersheds (Star Main), further downstream of this 

confluence just before it enters the Crowsnest River (Willow), and a downstream river 

upstream and downstream of harvesting (Crowsnest above and below Star)—these are detailed 

in Table 6-1. Like in Phase 3, all samples were collected during the dominant regional 

streamflow regimes (baseflow, snowmelt freshet, and stormflow). Notably, harvesting in these 

catchments was conducted with careful implementation of best management practices (BMPs) 

for erosion control to mitigate the potentially catastrophic impacts of wildfire on drinking water 

treatability without significantly compromising it. 

 

Table 6-1. List and description of the Southern Rockies Watershed Project harvesting research 

watersheds. 

Site Name Description Treatment 

North York Upper Headwaters reference Reference 

Star McLaren Headwaters harvested Partial Cut 

Star East Headwaters harvested Strip Cut 

Star West Headwaters harvested Clear Cut 

Star Main Headwaters confluence of harvested Logged (multiple cut types) 

Crowsnest Above Star 
Downstream reference, upstream of 

harvesting 
Reference 

Crowsnest Below Star Downstream of harvesting 
Multiple Cut Types & 

Prescribed Burn 

Willow Downstream of harvesting 
Multiple Cut Types & 

Prescribed Burn 
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Figure 6-1. Map of the Southern Rockies Watershed Project harvesting research watersheds. 
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6.3.2 Analytical Methods 

Several characterization techniques were employed to analyze and characterize DOC in its 

whole and fractionated forms. In brief, DOC concentrations were measured based on Standard 

Methods (Method 5310B; APHA et al., 2012) using a Shimadzu TOC-VCPH TOC analyzer. 

UV254 was analyzed using a Hewlett-Packard 8453 spectrophotometer with a 1 cm quartz cell 

(Method 5910 B; APHA et al., 2012). Specific ultraviolet absorbance (SUVA) was calculated 

as the measured UV254 divided by the DOC (mg/L·m) (Edzwald et al., 1985). Resin 

fractionation using Amberlite XAD-8® was utilized to isolate hydrophobic and hydrophilic 

fractions as described by Kitis et al. (2002). LC-OCD was used to characterize NOM as per 

the fractions defined by Huber et al. (2011); notably, this particular analysis was only 

conducted during one of the sampling years (2015). This technique employs a weak cation 

exchange column (250 mm × 20 mm, TSK HW 50S, 3000 theoretical plates) followed by a 

UV254 detector (UVD), an organic carbon detector (OCD), and an organic nitrogen detector 

(OND). ChromCALC, DOC-LABOR data processing software was used to quantify different 

NOM fractions (Huber et al., 2011). Fluorescence analyses were conducted using a Varian 

Cary Eclipse Spectrofluorometer. FEEMs were analyzed based on the method described by 

Peiris et al. (2010) and the data were interpreted based on a study by Chen et al. (2003). The 

excitation and emission ranges used were 200–400 and 300–600 nm, respectively. The FI, 

defined as the ratio of emission intensity at the wavelength of 450 to that at 500 nm, both at 

the excitation of 370 nm (McKnight et al., 2001), was also calculated. THM-FPs were assessed 

based on Standard Methods (Methods 5030B and 8260C; APHA et al., 2012) using GC/MS 

(purge and trap) on an Agilent Technologies 7890B -MS/5977A. HAA-FPs and NDMA-FP 

were analyzed on a GC/MS/MS/CI Varian CP3800-MS/MS2000 (Saturn MS Ion Trap) 

analyzer. The method utilized for HAA-FP analysis was U.S. EPA Method 552.3 (USEPA, 

2003). The analysis of NDMA-FP was conducted based on Standard Methods (Method 6410B; 

APHA et al., 2012) and as per Blaise et al. (1994). 

6.3.3 Statistical Analysis 

To evaluate the impacts of harvesting on water quality and treatability, a generalization of the 

standard linear model used in the general linear model (GLM) procedure in SAS/STAT® 9.2 
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was utilized to apply the method of least squares to fit general linear models to the data (SAS, 

2008). Specifically, the MIXED procedure with REML was utilized. In brief, it fits a variety 

of mixed linear models to data and enables the use of these fitted models to make statistical 

inferences about the data—the method of restricted maximum likelihood (REML), also known 

as residual maximum likelihood was implemented to eliminate the effect of nuisance 

parameters. The generalization of the GLM procedure is that the data are permitted to exhibit 

correlation and non-constant variability. As described in detail in (SAS, 2008), the parameters 

of the mean model are referred to as fixed-effects parameters, and the parameters of the 

variance-covariance model are referred to as covariance parameters. The fixed-effects 

parameters are associated with known explanatory variables and can be either qualitative (as 

in the traditional analysis of variance) or quantitative (as in standard linear regression). 

However, the covariance parameters distinguish the mixed linear model from the standard 

linear model because they are needed in scenarios such as the one herein in which 1) the 

experimental units (sub-watersheds) on which the data (NOM and treatability metrics) were 

measured, could be grouped into clusters (groups of sub-watersheds impacted by a harvesting, 

regardless of the approach), and the data from a common cluster were correlated (e.g., because 

of common hydrologic regimes), and 2) repeated measurements (NOM and treatability 

metrics) were collected on the same experimental unit (sub-watersheds), and these repeated 

measurements were correlated or exhibited variability that changed. Here, the spatial and 

temporal variations of repeated measures were not significant. It should be noted that 

differences in NOM-associated water quality parameters (THM- and HAA-FP, DOC, etc.) were 

only compared between grouped reference and grouped harvested (i.e., regardless of the 

specific harvesting approach) datasets because of the limited amount of data available after 

only one year post-harvest. Future investigations should include comparisons between the 

harvesting strategies implemented, as well as grouped and ungrouped comparisons to reference 

streams. 

Predictions of THM-FP using NOM character were investigated using simple least squares 

linear regression. The significance and precision of the regression models were evaluated using 

customary approaches (i.e., p values obtained from ANOVA [Appendix A] and coefficients of 
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determination [R2], respectively). Diagnostic residual plots (Appendix B) were utilized to 

ensure that the assumptions of ANOVA were not violated. 

6.4 Results and Discussion 

No significant changes in THM- (Figure 6-2a) or HAA-FPs (Figure 6-2b) as a result of 

harvesting were detected (Table 6-2). As would be expected given that bromide has not been 

detected in the study watersheds, the THM-FP primarily consisted of chloroform (no 

bromoform was detected). The total THM-FP concentrations observed during this study did 

not vary much over the two-year investigation, regardless of hydrologic regime. Specifically, 

the mean concentrations at the North York Upper, Star McLaren, Star East, Star West, Star 

Main, Crowsnest above Star, Crowsnest below Star, and Willow sampling locations were 

35±37, 46±6, 31±5, 30±8, 27±6, 42±10, 48±20, and 38±6 µg/L (mean ± standard deviation), 

respectively. Similar results were obtained with HAA-FPs, with mean (± standard deviation) 

concentrations of 59±76, 63±7, 39±12, 42±21, 44±24, 62±36, 87±73, and 54±19 µg/L, 

respectively. Also similar to the THM-FP findings, brominated HAA constituents were not 

formed and total HAA-FP consisted 67% trichloroacetic acid and 33% dichloroacetic acid. As 

would be expected for DBPs with mutual precursors, total HAA- and THM-FPs were 

significantly correlated (Table 6-3; p = 10-22, R2 = 0.85). Similar correlations between THMs 

and HAAs have been previously reported (Villanueva et al., 2003; Rocarro et al., 2014).  

Similar to the DBP-FP observations, DOC concentrations observed during this study did 

not vary much over the two-year investigation (Table 6-2), regardless of hydrologic regime 

(Figure 6-2c). Specifically, the mean concentrations at the North York Upper, Star McLaren, 

Star East, Star West, Star Main, Crowsnest above Star, Crowsnest below Star, and Willow 

sampling locations were 1.1±0.6, 1.6±0.1, 1.2±0.3, 1.1±0.2, 1.0±0.1, 1.3±0.4, 1.3±0.3, 1.5±0.2 

mg/L (mean ± standard deviation), respectively (Figure 6-2c). As indicated in Table 6-3 

(supported by Table A-4, Appendix A and Figure B-5, Appendix B), the relationship between 

DOC and THM-FP over the study period was significant (p = 5x10-15); however, changes in 

DOC only explained some of the variability in THM-FP (R2 = 0.70)—the relationship between 

DOC and HAA-FP was similarly significant (Table 6-3; p = 2x10-12, R2 = 0.62). Significant 
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correlations such as these between TOC and THM-FP for individual source waters have been 

reported previously (Singer et al., 1981; Reckhow and Singer, 1990); however, the precision 

in prediction typically declines when comparing water from different sources (Reckhow and 

Singer, 1990). 

Aromatic compounds, also known as humics or hydrophobics, are the main precursors of 

regulated carbonaceous DBPs (THMs and HAAs) (Collins et al. 1986; Reckhow and Singer 

1990; Singer, 1999; Kitis et al., 2002). Accordingly, these fractions of DOC were investigated. 

Notably, no changes in DOC character as a result of forest harvesting were observed (Table 6-

2) at sampling locations, during either the period include the harvest and first post-harvest 

year—this observation applied to all of the metrics of DOC character that were investigated, 

including UV254 (Figure 6-2d), SUVA (Figure 6-2e), and hydrophobic organic carbon as 

measured by resin fractionation (HPO %) (Figure 6-2f). Given the low DOC concentrations 

that were observed throughout the investigation, it is not surprising that all of these parameters 

except for SUVA had significant, directly proportional relationships with THM-FP and HAA-

FP; however, with only moderate or poor prediction precision, as detailed in Table 6-3. The 

best prediction performance (R2 = 0.80 and 0.67 for THM- and HAA-FP, respectively; Table 

6-3) was observed for HPO when it was expressed on a mass-weighted (mg/L) basis, as 

recommended in Chapter 5 of this thesis. The poorest predictor of both these DBP-FPs was 

SUVA (R2 = 0.03 and 0.00 for THM- and HAA-FP, respectively; Table 6-3). This result was 

also consistent with the reported literature in which contradictory conclusions have been 

reported regarding the utility of SUVA in explaining NOM reactivity and predicting THM 

formation. The utility of SUVA as a THM-FP predictor has been widely investigated and has 

resulted in good, precise correlations in some cases (Reckhow et al. 1990; Kitis et al. 2001), 

but not in others (Goslan et al., 2004; Bougeard et al., 2010; Hua et al., 2015). The lack of 

consistently precise correlation has been especially observed in low aromaticity waters (SUVA 

< 2) (Ates et al., 2007; Li et al., 2014). As would be expected, significant positive correlations 

between all of these metrics except SUVA also were observed (Table 6-3). 

LC-OCD (Huber et al., 2011) was employed during half of this study (2015) to better 

understand the implications forest harvesting to the relative potentials for membrane fouling 
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and microbial regrowth in the distribution system. While specific treatability metrics that 

quantify those potentials are not currently available, the literature generally indicates that the 

biopolymer and LMW fractions of DOC are respectively associated with membrane fouling 

(Rahman et al., 2014; Yamamura et al., 2014) and microbial regrowth (Escobar et al., 2000; 

van der Kooij and van der Wielen, 2014) in the distribution system. Thus, statistically 

significant increases in these parameters in streams draining disturbed watersheds relative to 

those draining reference watersheds would have been interpreted as significant increases in the 

associated risks to drinking water treatability. Notably, no changes in these DOC fractions 

were observed (Table 6-2) at sampling locations, during either the harvest or first post-harvest 

years, regardless of harvesting approach—this observation applied to all of the DOC fractions 

that were investigated, including HS (Figure 6-2g), biopolymers (BP) (Figure 6-3a), building 

blocks (BB) (Figure 6-3b), and the low molecular weight (LMW) neutrals (Figure 6-3c). The 

relationships between the mass of various DOC fractions obtained using LC-OCD and the 

regulated DBP-FPs (THM-FP and HAA-FP) were not analyzed because of the limited sizes of 

the data sets. 

FEEM intensity plots for representative reference, partial cut, strip cut, clear cut, and 

multiple cut type watersheds are shown in Figures 6-4a, 4b, 4c, 4d, and 4e, respectively. As 

shown for this sampling event, no intensity peaks representative of fulvic acid-like (Ex < 250 

nm and Em > 350 nm) and humic acid-like (Ex > 280 nm and Em > 380 nm), or other organic 

compounds (Chen et al., 2003b) were observed at either the upstream headwaters or 

downstream sampling locations. This lack of florescence intensity detection was consistent 

during either the harvest or first post-harvest years, regardless of harvesting approach. 

However, it was not surprising, considering the low concentrations and aromaticity of DOC 

throughout the investigation. Similarly, the fluorescence index (FI) at the associated 

wavelengths of importance (McKnight et al., 2001; Rodríguez et al., 2014) was non-detectable 

and did not describe impacts of forest harvesting on water quality.  
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Table 6-2. Significance of harvesting impacts (p value) on different NOM-associated parameters 

(comparison between reference and grouped harvested sites over the investigation period)  
P

a
ra

m
et

er
 

THM-FP 

(µg/L) 

HAA-FP 

(µg/L) 

DOC 

(mg/L) 

UV254 

(m -1) 

SUVA 

(L/mg.m) 

HPO 

(%) 

HS 

(mg/L) 

BP 

(mg/L) 

BB 

(mg/L) 

LMWN 

(mg/L) 

p value 0.87 0.73 0.36 0.49 0.62 0.77 0.67 0.29 0.83 0.41 

 

 

Table 6-3. Regression significance (p value) and prediction precision (R2) between DOC, UV254, 

SUVA, and hydrophobicity (HPO) (n = 52) 

 
 HAA-FP 

(µg/L) 

THM-FP 

(µg/L) 

DOC 

(mg/L) 

UV254 

(m -1) 

SUVA 

(L/mg.m) 

THM-FP 
R2 0.85     

p value 1 × 10-22     

DOC (mg/L) 
R2 0.62 0.70    

p value 2 × 10-12 5 × 10-15    

UV254 (m -1) 
R2 0.30 0.54 0.6   

p value 2 × 10-5 2 × 10-10 8 × 10-12   

SUVA 

(L/mg.m) 

R2 0.00 0.03 0.01 0.44  

p value 0.92 1 × 10-1 6 × 10-1 4 × 10-8  

HPO (%) 
R2 0.27 0.42 0.3 0.53 0.24 

p value 4 × 10-5 8 × 10-8 1 × 10-5 4 × 10-10 1 × 10-4 

HPO (mg/L) 
R2 0.67 0.80 0.94 0.69 0.02 

p value 4 × 10-14 1 × 10-19 9 × 10-33 9 × 10-15 2 × 10-1 
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g) 

 

Figure 6-2. NOM character described by (a) THM-FP, (b) HAA-FP, (c) DOC, (d) UV, (e) SUVA, (f) 

HPO, and (g) HS in streams draining reference and harvested watersheds. 
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c) 

Figure 6-3. NOM character described by (a) biopolymers, (b) building blocks, and (c) LMW neutrals, 

fractions in streams draining unburned, burned, and post-fire salvage logged watersheds.
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e) 

 

Figure 6-4. FEEM intensity plots for representative (a) reference, (b) partial cut, (c) strip cut, 

(d) clear cut, and (e) multiple cut type watersheds. 

 

6.5 Implications for Drinking Water Treatability 

Here, no impacts of forest harvesting on water quality and treatability were observed during 

the harvest and first post-harvest years in the eastern slopes of the Rocky Mountains in 

southwestern Alberta, Canada. Thus, this work suggests that forest harvesting with careful 

implementation of BMPs for erosion control may mitigate the potentially catastrophic impacts 

of wildfire on drinking water treatability without significantly compromising it. Having said 

that, water quality deterioration has been reported in some areas after forest harvesting—

variability in impact severity has been attributed to the range of harvesting practices and 

management intensity, as well as hydro-climatic and geological setting. As discussed above, 

while previous research provides some insights, it largely reflects impacts of historic forest 

management practices no longer used. Current policy strategies for forest watershed 

management have ranged from the creation and expansion of protected areas where any type 
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of anthropogenic disturbance including forest harvesting with the goal of mitigating potential 

wildfire or other disturbance risk is prohibited to integrated forest management employing 

BMPs to mitigate impacts on water. While forest management with BMPs may still produce 

some impacts to water, the degree to which effective source water protection (SWP) strategies 

need to employ both protective and risk mitigation strategies (i.e. avoided impacts to drinking 

water treatability) is unclear. Thus, the present investigation offers hope that forest 

management strategies that include harvesting with careful implementation of BMPs for 

erosion control may mitigate the potentially catastrophic impacts of wildfire and other 

disturbances on drinking water treatability without significantly compromising source water 

quality and treatability.  
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Chapter 7 

Conclusions and Recommendations 

The focus of this research was to identify, compare, and improve of strategies for 

characterizing challenges and threats to drinking water treatability (i.e., changes in DOC and 

increases in regulated DBP formation) caused by wildfire, post-fire salvage logging, and 

contemporary forest harvesting landscape disturbances.  

The most common methods of NOM characterization and their relationship to drinking 

water treatability and limitations were reviewed. The efficacy of metrics of NOM character 

and concentration as potential proxy indicators for drinking water treatability was assessed and 

confirmed by comprehensive DOC characterization throughout different treatment processes 

at a conventional water treatment plant with aerobic biofiltration. Changes in DOC character 

and its relationships to regulated DBP-FPs (THM-FPs and HAA-FPs) in disturbed source 

water were characterized in streams draining burned, post-fire salvage logged, and harvested 

watersheds in the Rocky Mountains of south-western Alberta. Finally, simple strategies for 

enhancing prediction of THM-FP using several of the proxy indicators (particularly, of 

aromaticity) were investigated.  

7.1 Conclusions  

The following conclusions were made from the results of this research: 

1) THM-and HAA-FPs as well as aromatic compounds (UV254, HPO as measured by resin 

fractionation, and HPS as measured by LC-OCD) were efficiently removed through 

chemical pre-treatment (coagulation/flocculation/sedimentation). These observations 

highlighted that the aromatic compounds were the main reactive compounds that 

contributed to THM and HAA formation potentials.  

2) Metrics indicative of aromatic compounds (UV254) were shown to be good proxy 

indicators of DOC reactivity, demonstrating the best prediction of the formation of 

regulated carbonaceous DBPs, albeit in a site-specific manner.  
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3) The intensity of the fulvic and humic acid-like compounds as detected by fluorescence 

excitation emission matrices (FEEM) decreased following the chemical pre-treatment 

(coagulation, flocculation, and sedimentation) during conventional treatment. This 

finding, while non-quantitative, was consistent with the trends observed for other 

humic-descriptive metrics (UV254, HPO, HS) and the formation potentials of the 

regulated, carbonaceous DBPs. The florescence index (FI) also demonstrated that the 

majority of terrestrial (aromatic) compounds were removed through chemical 

pretreatment. 

4) Biofiltration (with GAC) demonstrated the capacity to remove aromatic compounds 

and regulated, carbonaceous DBP-FPs. As well, some smaller DOC fractions (low 

molecular weight neutrals) that are understood to contribute to microbial regrowth in 

the distribution systems were also removed by biofiltration. 

5) THM- and HAA-FPs removal trends were generally comparable through the treatment 

process—this would be expected given that they share common precursors. Higher 

molecular weight fractions had a more substantial contribution to the formation of 

HAAs than THMs, however.  

6) Increases in DOC concentration, aromaticity (UV254) and hydrophobicity (HPO) were 

detected after wildfire and even more so after post-fire salvage-logging in disturbed 

Rocky Mountain watersheds. These findings were similar and parallel to the findings 

of a larger, earlier and a concurrent study conducted at the same watersheds (to which 

this work contributed). These observations confirmed that wildfire and salvage logging 

play important roles in changing the character of DOC and forming more reactive 

compounds that contribute to drinking water treatability threats such as the increased 

potential for forming DBPs. 

7) The mass of humic substances (HS), biopolymers, and building blocks fractions of 

DOC also increased significantly in impacted streams as a result of wildfire and post-

fire salvage logging, thereby suggesting that these disturbances may have significant 
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implications for carbonaceous DBP-FP, coagulant demand, and membrane fouling. In 

contrast, the mass of the low molecular weight (LMW) neutrals fraction of DOC, which 

contributes to microbial regrowth in the distribution system, was not significantly 

different in streams impacted by either wildfire or post-fire salvage logging relative to 

streams in reference watersheds.  

8) Contemporary forest harvesting by clear-cutting with patch retention, strip-

shelterwood cutting, and partial cutting with careful implementation of BMPs for 

erosion control did not yield any appreciable impacts on DOC concentration, 

aromaticity (UV254) or hydrophobicity (HPO) in the harvest and first post-harvest years 

after harvesting in the Rocky Mountain watersheds. This suggests that forest harvesting 

should be further explored as a source water protection tool because it may be able to 

mitigate the risk of severe wildfire without having detrimental effects on drinking water 

treatability. 

9) Wildfire and post-fire salvage logged disturbance-associated increases in DOC 

concentrations, aromaticity, and hydrophobicity generally correlated with increases in 

THM- and HAA-FPs at the watershed-scale and over multiple flow regimes in the 

Rocky Mountain watersheds. These results demonstrated that proxy indicators of DOC 

reactivity can be useful in describing threats (or lack thereof) to drinking water 

treatability in increasingly disturbed watersheds. 

10) The intensity of the fulvic and humic acid-like compounds (as detected by FEEM) was 

qualitatively indicative of risks to drinking water treatability after landscape 

disturbance in the Rocky Mountain watersheds. In contrast, the florescence index (FI) 

did not meaningfully or reliably indicate impacts of wildfire-associated land 

disturbance on water quality and drinking water treatability—this was attributed to the 

lack of florescence at the associated wavelengths. 
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11) The aromatic metrics (UV254, HPO, and HS) correlated well with each other and were 

good predictors of formation potential of regulated DBPs. Nonetheless, UV254 

unequivocally offered the most precise prediction of THM-FP. 

12) The prediction performance of hydrophobicity measured by resin fractionation (HPO) 

and the humic fraction measured by LC-OCD (HS) were noticeably enhanced when re-

analyzed as mass (DOC concentration). This improvement in prediction of THM-FP, 

using the proxy indicators, was consistent for diverse source and treated waters and 

especially evident for the humic fraction obtained using LC-OCD (HS). 
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7.2 Recommendations 

Recommendations for further investigation regarding this research are provided below.  

1) Results of this study highlighted the significance of post-fire salvage logging in 

increasing the degree of disturbance and water treatability challenges. On the other 

hand, well-controlled, contemporary forest harvesting that includes extensive 

implementation of best management practices for erosion management and minimal 

density and/or duration of linear disturbances has the potential to minimize the impacts. 

Thus, further investigation of harvesting approaches and associated BMPs is warranted 

because severe land disturbance can potentially threaten source water quality and 

treatability, while the implementation of BMPs during forest harvesting may 

significantly mitigate some of the associated potential impacts.  

2) Despite the annual relationships between the proxy indicators and DBP-FP by the 

simple regression models, these relationships are frequently spatially and temporally 

variable, and site specific, suggesting that other hydrological and/or biogeochemical 

factors (not considered herein) may have contributed to the observed differences in 

these relationships.  

3) It is unlikely that a single, directly measured universal precursor for DBP-FP will ever 

be identified based on structural characteristics of NOM. As a result, data obtained 

from multiple NOM characterization methods must be combined and concurrently 

analyzed; this requires the use of appropriate multivariate analysis tools during 

exploratory data analysis to ensure that optimal predictive models that best extract 

information from available data are developed. While approaches such as principal 

components and parallel factor analysis have been applied to understanding FEEMs, 

there is a stark absence of multivariate analysis of broader NOM data. Given that 

several variables will likely be required to inform and develop universally predictive 

models for treatability metrics such as DBP-FP, the associated dispersion matrices will 

likely be too large to study and interpret, with too many pairwise correlations between 

variables that must be considered. Thus, more meaningful interpretation of the data 



 

127 

requires them to be reduced—thoughtful selection of the best approaches (e.g., 

principal components analysis, factor analysis, etc.) is required.  

4) Regardless of the current absence of multivariate models for assessing the drinking 

water treatability implications of changes in aquatic NOM, the need to develop them is 

resoundingly clear. Thus, there is also a corresponding need to further develop NOM 

characterization/fractionation techniques and include concurrent analyses using several 

different characterization/fractionation methods during field investigations of NOM 

character and reactivity. 

5) The observed lack of disturbance-associated impacts on the LMW neutrals fraction of 

NOM must be considered in conjunction with possible subsequent transformations of 

DOC that may occur during drinking water treatment, particularly if advanced 

oxidation processes such as ozonation are utilized in absence of biological filtration or 

other processes that can remove LMW neutrals, thereby reducing the potential for 

microbial regrowth in the distribution system. 

6) Here, the work focused on comparison and improvement of strategies for 

characterizing changes in DOC concentration and character (proxy indicators) and 

formation of regulated carbonaceous DBPs formation—emerging DBPs were outside 

the scope of this research. Investigation of DOC characterization in identifying 

promising proxies for formation of emerging DBPs of health concern as well as other 

treatability challenges is strongly recommended.  

7) The peak splitting (rather than peak separation) implicit to the commonly reported 

methodology of LC-OCD restricts the efficacy of this method as a suitable proxy 

indicator of DBP-FP. Modification of this method by increasing the elution time of the 

fractions and thus separating their peaks can overcome this limitations and enhance the 

efficiency of this method. 

8) Although FEEM (especially changes in humic and fulvic acid-like substances) is 

qualitatively indicative of risks to drinking water treatability, research to improve 

reliable quantitative interpretation of FEEM is indispensable.  
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9) The resin fractionation method is recognized by the IHSS as a standard method. The 

hydrophobic fraction, as isolated by this method, was a good indicator of the formation 

of regulated DBPs. However, the complexity and length of this method may limit the 

application of it for some time-constrained studies. Modification of this method to 

overcome its drawbacks and development of it as a real time technique can be a 

significant step towards improvement of carbon characterization. 

10) Data obtained from multiple NOM characterization methods must be combined and 

concurrently analyzed; this requires the use of appropriate multivariate analysis tools 

during exploratory data analysis to ensure that optimal predictive models that best 

extract information from available data are developed.  

11) This work highlights the pressing need for 1) new knowledge regarding the longer-term 

impacts of forest harvesting on water and 2) BMP development to ensure that 

watershed regions critical for sustaining water supplies are optimally managed to 

minimize potential legacy effects of disturbance, including that by forest harvesting. 
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Appendices  

Appendix A - ANOVA Tables 

 

Table A-1. ANOVA table for regression analysis of parameters reported in Table 3-2. 

 

 ANOVA df SS MS F P-value 

THMFP vs HAAFP 

Regression 1 224371 224371 97 1E-08 

Residual 18 41554 2309    

Total 19 265925       

THMFP vs DOC 

Regression 1 188969 188969 210 8E-17 

Residual 37 33340 901    

Total 38 222309       

THMFP vs UV 

Regression 1 196827 196827 286 5E-19 

Residual 37 25482 689    

Total 38 222309       

THMFP vs SUVA 

Regression 1 185143 185143 184 6E-16 

Residual 37 37165 1004    

Total 38 222309       

THMFP vs HPO (%) 

Regression 1 178232 178232 150 1E-14 

Residual 37 44077 1191    

Total 38 222309       

THMFP vs HS (mg/L) 

Regression 1 22 22 216 5E-17 

Residual 37 4 0.1    

Total 38 25       

HAAFP vs DOC 

Regression 1 215960 215960 78 6E-08 

Residual 18 49965 2776    

Total 19 265925       

HAAFP vs UV 

Regression 1 245300 245300 214 2E-11 

Residual 18 20625 1146    

Total 19 265925       

HAAFP vs SUVA 

Regression 1 238272 238272 155 3E-10 

Residual 18 27652 1536    

Total 19 265925       

HAAFP vs HPO (%) 

Regression 1 211464 211464 70 1E-07 

Residual 18 54461 3026    

Total 19 265925       

HAAFP vs HS (mg/L) 
Regression 1 10 10 65 2E-07 

Residual 18 3 0.2    
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 ANOVA df SS MS F P-value 

Total 19 13       

DOC vs UV 

Regression 1 677 677 157.3 4E-15 

Residual 38 164 4    

Total 39 841       

DOC vs SUVA 

Regression 1 13 13 96.29 6E-12 

Residual 38 5 0.1    

Total 39 18       

DOC vs HPO(%) 

Regression 1 2006 2006 122 2E-13 

Residual 38 623 16    

Total 39 2628       

DOC vs HS (mg/L) 

Regression 1 21 21 160 3E-15 

Residual 38 5 0.1    

Total 39 25       

UV vs SUVA 

Regression 1 17 17 1639 7E-33 

Residual 38 0.4 0.01    

Total 39 18       

UV vs HPO (%) 

Regression 1 2237 2237 217 3E-17 

Residual 38 392 10    

Total 39 2628       

UV vs HS (mg/L) 

Regression 1 21 21 165 2E-15 

Residual 38 5 0.1    

Total 39 25       

SUVA vs HPO (%) 

Regression 1 2259 2259 232 9E-18 

Residual 38 370 10    

Total 39 2628       

SUVA vs HS (mg/L) 

Regression 1 19 19 119 3E-13 

Residual 38 6 0.2    

Total 39 25       

HPO (%) vs HS (mg/L) 

Regression 1 20 20 157 5E-15 

Residual 38 5 0.1    

Total 39 25       
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Table 0-2. ANOVA table for regression analysis of parameters reported in Table 4-1. 

 

 ANOVA df SS MS F P-value 

THMFP vs DOC 

Regression 1 205402 205402 57 2E-10 

Residual 63 228030 3620    

Total 64 433432       

THMFP vs UV 

Regression 1 262512 262512 97 2E-14 

Residual 63 170921 2713    

Total 64 433432       

THMFP vs SUVA 

Regression 1 183875 183875 46 4E-09 

Residual 63 249557 3961    

Total 64 433432       

THMFP vs HPO (%) 

Regression 1 174199 174199 42 1E-08 

Residual 63 259233 4115    

Total 64 433432       

DOC vs UV 

Regression 1 1278 1278 1034 9E-41 

Residual 63 78 1    

Total 64 1356       

DOC vs SUVA 

Regression 1 9 9 26 4E-06 

Residual 63 21 0.3    

Total 64 30       

DOC vs HPO (%) 

Regression 1 1855 1855 271 2E-24 

Residual 63 431 6.8    

Total 64 2286       

UV vs SUVA 

Regression 1 19 19 72 3E-12 

Residual 67 17 0.3    

Total 68 36       

UV vs HPO (%) 

Regression 1 1820 1820 246 2E-23 

Residual 63 467 7.4    

Total 64 2286       

SUVA vs HPO (%) 

Regression 1 883 883 40 3E-08 

Residual 63 1403 22.3    

Total 64 2286       
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Table 0-3. ANOVA table for regression analysis of parameters reported in Table 5-1.                                     

 

  ANOVA df SS MS F P-value 

Mannheim WTP 

THMFP vs HPO (mg/L) 

Regression 1 21 21 342 3E-20 

Residual 37 2 0    

Total 38 24       

THMFP vs HPO (%) 

Regression 1 178232 178232 150 1E-14 

Residual 37 44077 1191    

Total 38 222309       

THMFP vs HS (mg/L) 

Regression 1 22 22 216 5E-17 

Residual 37 4 0    

Total 38 25       

THMFP vs HS (%) 

Regression 1 22925 22925 4 5E-02 

Residual 37 199384 5389    

Total 38 222309       

THMFP vs UV 

Regression 1 196827 196827 286 5E-19 

Residual 37 25482 689    

Total 38 222309       

THMFP vs SUVA 

Regression 1 185143 185143 184 6E-16 

Residual 37 37165 1004    

Total 38 222309       

Rocky Mountain 

2014 

THMFP vs HPO (mg/L) 

Regression 1 284874 284874 314 1E-19 

Residual 37 33525 906    

Total 38 318399       

THMFP vs HPO (%) 

Regression 1 265089 265089 184 6E-16 

Residual 37 53310 1441    

Total 38 318399       

THMFP vs HS (mg/L) 

Regression 1 292590 292590 902 4E-27 

Residual 36 11673 324    

Total 37 304263       

THMFP vs HS (%) 

Regression 1 84896 84896 14 7E-04 

Residual 36 219368 6094    

Total 37 304263       

THMFP vs UV 

Regression 1 287996 287996 350 2E-20 

Residual 37 30403 822    

Total 38 318399       

THMFP vs SUVA 

Regression 1 125227 125227 24 2E-05 

Residual 37 193172 5221    

Total 38 318399       
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Table A-4. ANOVA table for regression analysis of parameters reported in Table 6-3. 

 ANOVA df SS MS F P-value 

HAAFP vs THMFP 

Regression 1 84951 84951 289 1E-22 

Residual 51 14999 294     

Total 52 99951       

HAAFP vs DOC 

Regression 1 62218 62218 84 2E-12 

Residual 51 37733 740     

Total 52 99951       

HAAFP vs UV 

Regression 1 30931 30931 23 2E-05 

Residual 51 69020 1353     

Total 52 99951       

HAAFP vs SUVA 

Regression 1 18 18 0.01 9E-01 

Residual 51 99933 1959     

Total 52 99951       

HAAFP vs HPO (%) 

Regression 1 28115 28115 20 4E-05 

Residual 51 71836 1409     

Total 52 99951       

HAAFP vs HPO (mg/L) 

Regression 1 1 1 107 4E-14 

Residual 51 1 0.01     

Total 52 2       

THMFP vs DOC 

Regression 1 11371 11371 121 5E-15 

Residual 51 4793 94     

Total 52 16163       

THMFP vs UV 

Regression 1 8928 8928 63 2E-10 

Residual 51 7235 142     

Total 52 16163       

THMFP vs SUVA 

Regression 1 794 794 3 1E-01 

Residual 51 15369 301     

Total 52 16163       

THMFP vs HPO (%) 

Regression 1 7009 7009 39 8E-08 

Residual 51 9154 179     

Total 52 16163       

THMFP vs HPO (mg/L) 

Regression 1 12984 12984 208 1E-19 

Residual 51 3179 62     

Total 52 16163       

Doc vs UV 

Regression 1 19 19 78 8E-12 

Residual 51 13 0.25     

Total 52 32       

DOC vs SUVA 

Regression 1 0.04 0.04 0.27 6E-01 

Residual 51 8 0.16     

Total 52 8       
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 ANOVA df SS MS F P-value 

DOC vs HPO (%) 

Regression 1 268 268 24 1E-05 

Residual 51 577 11     

Total 52 845       

DOC vs HPO (mg/L) 

Regression 1 2 2 795 9E-33 

Residual 51 0.10 0.002     

Total 52 2       

UV vs SUVA 

Regression 1 14 14 41 4E-08 

Residual 51 18 0.35     

Total 52 32       

UV vs HPO (%) 

Regression 1 17 17 60 4E-10 

Residual 51 15 0.29     

Total 52 32       

UV vs HPO (mg/L) 

Regression 1 22 22 116 9E-15 

Residual 51 10 0.19     

Total 52 32       

SUVA vs HPO (%) 

Regression 1 2 2 17 1E-04 

Residual 51 6 0.12     

Total 52 8       

SUVA vs HPO (mg/L) 

Regression 1 0.30 0.30 2 2E-01 

Residual 51 8 0.16     

Total 52 8       
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Appendix B - Residual Plots 
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d)  
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g)  
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j)  
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m) 
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p) 

 

q) 
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s) 

 

t) 

 

u) 

 

Figure B-1. Residual plots for regression analysis of Mannheim Water Treatment Plant parameters 

reported in Table 3-2. 
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d) 
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g) 
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j) 

 

Figure B-2. Residual plots for regression analysis of Rocky Mountain (2013 and 2014) parameters 

after wildfire and post-fire salvage logging reported in Table 4-1. 
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d) 

 

e) 

 

f) 

 

Figure B-3. Residual plots for regression analysis of Mannheim Water Treatment Plant parameters 

reported in Table 5-1. 
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d) 

 

e) 

 

f) 

 

Figure B-4. Residual plots for regression analysis of Rocky Mountain (2014) parameters reported in 

Table 5-1. 
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j) 
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s) 

 

t) 

 

Figure B-5. Residual plots for regression analysis of harvesting catchments parameters reported in 

Table 6-3. 

-5

-3

-1

1

3

5

0 0.5 1 1.5R
e

si
d

u
al

s

SUVA vs HPO (mg/L) 

-5

-3

-1

1

3

5

0 0.5 1 1.5 2 2.5 3R
e

si
d

u
al

s

DOC  vs HPO (mg/L)



 178 

Glossary 

ANOVA  Analysis of Variance 

AOC   Assimilable Organic Carbon 

BACI   Before/After, Control/Impact 

BB   Building Blocks 

BCAA   Bromochloroacetic Acid 

BDCM   Bromodichloromethane 

BDOC   Biodegradable Organic Carbon 

BMP   Best Management Practice 

BOM   Biodegradable Organic Matter 

BP   Biopolymers 

CHA   Hydrophilic Charged Acids  

DBAA   Dibromoacetic Acid 

DBCM   Dibromochloromethane 

DBPs   Disinfection By-products 

DBP-FP  Disinfection By-product Formation Potential 

DCAA   Dichloroacetic Acid 

DOC   Dissolved Organic Carbon 

DON   Dissolved Organic Nitrogen 

ESI   Electrospray Ionization 

FEEM   Fluorescence Excitation Emission Matrix 

FFFF   Flow Field-Flow Fractionation 

FI   Florescence Index 

FTICR   Fourier Transform Ion Cyclotron Resonance 

FTIR   Fourier Transform Infra-Red 

GAC   Granular Activated Carbon 

GPC   Gel Permeation Chromatography 

HAAs   Haloacetic Acids 

HAA-FP  Haloacetic Acid Formation Potential 

HIX   Humification Index 

HPI   Hydrophilic 

HPLC   High Pressure Liquid Chromatography 
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HPSEC   High Performance Size Exclusion Chromatography 

HPO   Hydrophobic 

HS   Humic Substances 

LC   Liquid Chromatography 

LC-OCD  Liquid Chromatography – Organic Carbon Detector 

LMW   Low Molecular Weight 

MBAA   Monobromoacetic Acid 

MCAA   Monochloroacetic Acid 

MS   Mass Spectrometry 

NDMA   N-Nitrosodimethylamine 

NOM   Natural Organic Matter 

NMR   Nuclear magnetic Resonance 

PCA   Principal Component Analysis 

PRAM   Polarity Rapid Assessment Method 

Py-GC-MS  Pyrolysis-Gas Chromatography-Mass Spectrometry 

RO   Reverse Osmosis 

SEC   Size Exclusion Chromatography 

SHA   Slightly Hydrophobic Acids  

SPE   Solid Phase Extraction 

SUVA   Specific Ultraviolet Absorbance 

SWP   Source Water Protection 

TCAA   Ttrichloroacetic Acid  

THMs   Trihalomethanes 

THM-FP  Trihalomethane Formation Potential 

TOC   Total Organic Carbon 

UF   Ultrafiltration 

VHA   Very Hydrophobic Acids  

WTP   Water Treatment Plant  

 

 


