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Continuous approximation of linear impulsive systems and a new form
of robust stability

Kevin E.M. Church1 and Robert Smith?2

Abstract. The time-scale tolerance for linear ordinary impulsive differential equations is introduced. How large

the time-scale tolerance is directly reflects the degree to which the qualitative dynamics of the linear impulsive

system can be affected by replacing the impulse effect with a continuous (as opposed to discontinuous, impulsive)

perturbation, producing what is known as an impulse extension equation. Theoretical properties related to the

existence of the time-scale tolerance are given for periodic systems, as are algorithms to compute them. Some

methods are presented for general, aperiodic systems. Additionally, sufficient conditions for the convergence of

solutions of impulse extension equations to the solutions of their associated impulsive differential equation are

proven. Counterexamples are provided.

Keywords. Impulsive differential equations, impulse extension, stability, robust stability, time-scale tolerance,

exponential regulator.

AMS (MOS) subject classification: 34A36, 34A37.

1 Introduction

Impulsive differential equations provide an elegant way to describe systems that undergo very
fast changes in state [2, 18]. These changes in state occur so quickly that they are idealized
as discontinuities. Impulsive differential equations have a host of applications, including pulse
vaccinations [1, 8], seasonal skipping in recurrent epidemics [19], antiretroviral drug treatment
[10, 13] and birth pulses in animals [17].

Impulse extension equations have been put forward as a framework to study properties of
impulsive differential equations that remain invariant if one replaces the impulse effect by a con-
tinuous perturbation [5]. Results on existence and uniqueness of solutions, as well as specialized
results for linear periodic systems, have been developed [6, 7].

In the present article, two similar but ultimately different problems are solved. First, given a
linear impulsive differential equation, we associate to it a family of impulse extension equations
that is parameterized by its step sequences. We then provide sufficient conditions under which
the solutions of the impulse extension equation converge to those of the impulsive differential
equation, as the step sequence becomes small. These sufficient conditions are then tied to re-
sults relating to stability of the family of impulse extension equations, relative to the impulsive
differential equation that generate it.

Following this, the time-scale tolerance is introduced first for linear, periodic impulsive dif-
ferential equations, and then in general linear systems. The time-scale tolerance behaves as a
robust stability threshold; if the norm of a given step sequence is smaller than the time-scale
tolerance, than all impulse extensions equations from a paticular class will have the same sta-
bility classification as the associated impulsive differential equation. From the point of view of
applications, this indicates that if an impulsive differential equation models some physical pro-
cess, then the approximation by an impulsive differential equation is, in a certain sense, “valid”,
provided the perturbations that are idealized as impulses occur on a time-scale that is smaller
than the time-scale tolerance. Methods to compute the time-scale tolerance are proposed.
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2 Background material on impulse extension equations

Throughout this paper, we will be interested in continuous systems that approximate the linear,
finite-dimensional impulsive differential equation,

dx

dt
= A(t)x+ g(t), t �= τk,

Δx = Bkx+ hk, t = τk,
(1)

as well as its associated homogeneous equation,

dx

dt
= A(t)x, t �= τk,

Δx = Bkx, t = τk.
(2)

It is assumed that the sequence of impulse times, {τk}, is monotone increasing and unbounded.
Also, we assume all functions appearing in the differential equations above are sufficiently regular
to guarantee that for any (t0, x0) ∈ R × R

n, there is a unique solution x(t) defined on [t0,∞)
satisfying x(t0) = x0. For example, it suffices to have all functions be bounded and measurable
on compact sets.

We now comment on some notation related to sequences that will be relevant. If s = {sn} is
a real-valued sequence, we define Δsn = sn+1 − sn to be the forward difference. Also, indexed
families of sequences, such as {sj : j ∈ U} for some index set U , will always have their index
appear in the exponent. As such, the symbol sjn indicates the nth element of the sequence sj ,
for j ∈ U .

The following definition of an impulse extension equation for (2) is a modified version of that
appearing in [7]; the present definition is for linear systems, and allows us to more concretely
study the convergence of their solutions, which is necessary to fulfill the objective of this article.

Definition 2.1. Consider the linear impulsive differential equation (1).

• A step sequence over τk is sequence of positive real numbers a = {ak} such that ak < Δτk
for all k ∈ Z. We denote Sj = Sj(a) ≡ [τj , τj + aj) and S = S(a) ≡ ⋃j∈Z

Sj. The set of
all step sequences will be denoted S∗, and is defined by

S∗ ≡ {a : Z → R+ , 0 < ak < Δτk}.
• A sequence of functions ϕ = {(ϕB

k , ϕ
h
k)},

ϕB
k : R× R

+ → R
n×n, ϕh

k : R× R
+ → R

n,

is a family of impulse extensions for (1) if, for all k ∈ Z and all a ∈ S∗, the functions

ϕξ
k(·, ak) are locally integrable and satisfy the equality∫

Sk(a)

ϕξ
k(t, ak)dt = ξk, (3)

for ξ ∈ {B, h}.
• Given a ∈ S∗ and a family of impulse extensions, ϕ, for the impulsive differential equation

(1), the impulse extension equation associated to (1) induced by (ϕ, a) is the following
differential equation with piecewise-constant arguments:

dx

dt
= A(t)x+ g(t), t /∈ S(a),

dx

dt
= A(t)x+ g(t) + ϕB

k (t, ak)x(τk) + ϕh
k(t, ak), t ∈ Sk(a).

(4)
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• To a homogeneous impulsive differential equation, (2), we can also consider the associated
homogeneous impulse extension induced by (ϕ, a):

dx

dt
= A(t)x, t /∈ S(a),

dx

dt
= A(t)x+ ϕB

k (t, ak)x(τk), t ∈ Sk(a).

(5)

Definition 2.2. Let a family of impulse extensions, ϕ = {(ϕB
k , ϕ

h
k)}, and a step sequence a ∈ S∗

be given. A function y : I → R
n defined on an interval I ⊂ R is a classical solution of the impulse

extension equation (4) induced by (ϕ, a) if y is continuous, the sets I ∩Sk(a) are either empty or
contain τk and y satisfies the differential equation (4) almost everywhere on I. Given an initial
condition

x(t0) = x0, (6)

with (t0, x0) ∈ R× R
n, the function y(t) is a solution of the initial-value problem (4)–(6) if, in

addition, y(t0) = x0. The notation y(t; t0, x0, a) means that y(·) = y(·; t0, x0, a) is a solution of
the initial-value problem (4)–(6) with impulse extension equation induced by (ϕ, a).

Definition 2.3. The predictable set of an impulse extension equation (4) for (1) induced by
(ϕ, a) is the set

P(ϕ, a) = R \
{
t ∈ S(a) : det

(
I +

∫ t

maxτk
{τk≤t}

X−1(s, τk)ϕ
B
k (s, ak)ds

)
= 0

}
, (7)

where X(t, s) is the Cauchy matrix for the linear homogeneous ordinary differential equation
x′ = A(t)x.

The following proposition is a restatement of Lemma 4.2 of [7].

Proposition 2.1. Consider an impulse extension equation for (1) induced by (ϕ, a). For
(t0, x0) ∈ R × R

n, the initial-value problem (4)–(6) with initial condition x(t0) = x0 has a
unique solution defined on the interval I ⊂ R if and only if t0 ∈ P and for all I 	 τk + ak < t0,
the inclusion τk + ak ∈ P holds.

We will also make use of the following representation of matrix solutions of the homogeneous
equation, (5).

Proposition 2.2. Suppose t0 ∈ P. Then there exists a matrix-valued function, U(·; t0) : [l,∞) →
R

n×n, with l = maxτk≤t0 τk satisfying U(t0; t0) = I, such that the unique solution of the inital
value problem x(t0) = x0 of the homogeneous initial-value problem, (5)–(6), for any x0 ∈ R

n,
can be written as x(t) = U(t; t0)x0. In particular, we have the formula

U(t; t0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X(t; t0), t, t0 ∈ (τk + ak, τk+1]

X(t; τj)L
j
a(t; τj)

⎡⎣ k∏
r=j−1

X(τr+1; τr)L
r
a(τr+1; τr)

⎤⎦X(τk; t0)
t0 ∈ (τk−1 + ak−1, τk]
t ∈ [τj , τj+1], k < j

U(t; τk)U
−1(t0; τk), t0 ∈ (τk, τk + ak)

(8)

where X(t; s) is the Cauchy matrix of the homogeneous ordinary differential equation x′ = A(t)x,
and the function Lk : (a, t) 
→ Lk

a(t) is defined by

Lk
a(t) = I +

∫ min{t,τk+ak}

τk

X−1(s; τk)ϕ
B
k (s, ak)ds. (9)

3



3 Convergence properties of impulse extension equations

3.1 Convergence of solutions with respect to the step sequence as a → 0

The main result of this section relates to the mode of convergence of solutions of the initial-value
problem (4)–(6) with respect to the step sequence a ∈ S∗.

Definition 3.1. Let a family ϕ of impulse extensions be given for an impulsive differential
equation (1). Let σ = {σk} be a sequence of positive real numbers, and let w = {(wB

k , wh
k )}

be a sequence of pairs of functions wξ
k : [τk, τk+1] × [0,Δτk) → R with the property that wξ

k

is continuous and vanishing at (τk, 0) and wξ
k(·, a) is integrable on Sk(a). We will say ϕ is

(σ,w)-exponentially regulated in the mean, or simply (σ,w)-regulated, if

ϕξ
k(t, s)−

1

s
ξk = O

(
wξ

k(t, s)
1

eσks − 1

)
(10)

for t ∈ [τk, τk + s) as s → 0.

Lemma 3.1. Let a homogeneous impulsive differential equation (5) be given. Let X(t; s) be the
Cauchy matrix of the homogeneous ordinary differential equation x′ = A(t)x. Suppose for each
k ∈ Z, the inequality ||X(t; τk)|| ≤ eσk(t−τk) holds for some σk > 0, for t ∈ [τk, τk+1]. If ϕ is a
(σ,w)-regulated family of impulse extensions for (5), then Lk

a → I + Bk pointwise as a → 0. If
N ⊂ [τk, τk+1] and no decreasing sequence in N converges to τk, then the convergence is uniform
on N .

Proof. First, notice that we can write Lk
a as

Lk
a(t; τk) = I +

[
1

ak

∫ mk
a(t)

τk

X−1(s; τk)ds

]
Bk +

∫ mk
a(t)

τk

X−1(s; τk)ε
B
k (t, ak)ds,

where εBk (t, ak) = ϕB
k (t, ak) − 1

ak
Bk and mk

a(t) = min{t, τk + ak}. Now let ak < t − τk, so we

have ma
k(t) = τk + ak. We then have

1

ak

∫ ma
k(t)

τk

X−1(s; τk)ds− I =
1

ak

∫ τk+ak

τk

[
X−1(s; τk)−X−1(τk; τk)

]
ds,

which clearly converges to zero as a → 0, due to the continuity of X−1(s; τk). Therefore we
conclude that

1

ak

∫ τk+ak
n

τk

X−1(s, τk)ds → I.

As for the other integral, we have X−1(s, τk) = X(τk, s). We thus have the estimation∣∣∣∣∣∣∣∣∫ τk+ak

τk

X−1(s, τk)ε
B
k (s, ak)ds

∣∣∣∣∣∣∣∣ ≤ ∫ τk+ak

τk

eσk(τk−s)w
B
k (s, ak)

eσkak − 1
Ckds ≤ Ck

σk
||wB

k (·, ak)||,

for some constant Ck > 0, where we used the asymptotic condition (10) and Gronwall’s inequality,
and the norm on wB

k (·, ak) is the uniform norm over the interval [τk, τk + ak]. Since wB
k is

continuous and vanishing at (τk, 0), we have that ||wB
k (·, ak)|| → 0 as ak → 0. Therefore we

conclude that the integral term converges to zero. It now follows that Lk
a → I +Bk pointwise as

a → 0.
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The convergence is generally nonuniform because ma
k does not converge uniformly. However,

the convergence can be made uniform on N ⊂ [τk, τk+1] if τk is not an accumulation point of
N . Take ak < inf N − τk so that we have t > τk + ak for all t ∈ N , from which it follows that
ma

k(t) = τk + ak on N . Then, the previous argument proceeds without modification, but the
result holds uniformly for t ∈ N .

Theorem 3.1. For any linear impulsive differential equation (4), there exists a sequence of
positive real numbers, σ = {σk}, such that, for any (σ,w)-regulated family ϕ of impulse extensions
for (4), the following are true.

• For all t0 ∈ R, there exists δ = δ(t0) > 0, such that, for a ∈ S∗ with ||a||∞ < δ and all
x0 ∈ R

n, the impulse extension equation (4) induced by (ϕ, a) possesses a unique classical
solution, x(t; t0, x0, a), satisfying the initial condition x(t0; t0, x0, a) = x0, and is defined
for t ≥ t0.

• If det(I + Bk) �= 0 for all k ∈ Z, the function t 
→ x(t; t0, x0, a) converges pointwise to
x(t; t0, x0, 0), the solution of the initial-value problem x(t0) = x0 for the impulsive differ-
ential equation, (1), as ||a||∞ → 0.

• If N ⊂ R is bounded and no strictly decreasing sequence in N has an impulse time τk as
its limit, the above convergence is uniform for t ∈ N as a → 0.

In particular, it suffices to choose

σk =

∫ τk+1

τk

||A(s)||ds. (11)

Proof. Throughout this proof, ϕ is a fixed family of impulse extensions for (1). The first part of
the Theorem is trivial. If t0 = τk for some k, then we have τk ∈ P by definition. Conversely, if
t0 �= τk but t0 ∈ (τk, τk+1), then as long as we have ak < t0 − τk = δ(t0), we will have t0 ∈ P .
It now follows by Proposition 2.1 that, for all x0 ∈ R

n, there exists a unique solution of the
initial-value problem x(t0) = x0 defined on [t0,∞) provided ||a||∞ < δ(t0). We will now denote
the solution x(t; t0, x0, a) to indicate the dependence on x0 and a.

Next, we will prove that x(t; t0, x0, a) → x(t; t0, x0, 0) uniformly for t ∈ N as ||a||∞ → 0, as
stated in the third conclusion of the theorem. We will only prove the uniform convergence result,
since this implies pointwise convergence everywhere.

Before we begin, note that it suffices to prove the convergence on a compact, connected
interval. Indeed, if the convergence is uniform on the closure of N , then it is uniform on N
itself, and if N is disconnected, then it must be contained in a finite union of connected intervals
N1, . . . , Nn, each of which has the property of not having any impulse time as a left limit point.
Therefore we will assume that the compact set N is a closed interval contained in (τk, τk+1] for
some k.

Let ||a||∞ < δ(t0). Since t0 ∈ P, it follows by Proposition 4.2 of Church and Smith? [7] that
we can write

x(t; t0, x0, a) = U(t; t0, a)x0 + xp(t, a),

where U(t; t0, a) is the matrix solution for homogeneous equation of (4) with step sequence a
and satisfying U(t0; t0, a) = I, and xp(t, a) is the solution of the inhomogeneous equation (4)
with step sequence a and satisfying xp(t0, a) = 0. By this decomposition, it suffices to prove the
uniform convergence of U(t; t0, a) and xp(t, a).
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We first demonstrate the convergence of U(t; t0, a). For simplicity, we will assume t0 = τ0;
the other cases follow by similar reasoning, due to the representation provided by equation (8).
For t ∈ N ⊂ (τk, τk+1], we have

U(t, a) = X(t; τk)L
k
a(t; τk)

0∏
r=k−1

X(τr+1; τr)L
k
a(τr + ar; τr),

where we have suppressed the dependence on t0. Therefore,

||U(t, a)− U(t, 0)|| ≤ sup
t∈N

||X(t; τk)|| ·
∣∣∣∣∣∣

∣∣∣∣∣∣

⎛
⎝L(t; τk)

0∏
r=k−1

X(τr+1; τr)L(τr + a; τr)

⎞
⎠ (12)

− (I +Bk)

⎛
⎝

0∏
r=k−1

X(τr+1; τr)(I +Br)

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣
. (13)

It suffices to prove that if a → 0, then Lj
a(t; τj) → I +Bk uniformly on N for each j = 0, . . . , k.

By the generalized Gronwall’s inequality, we will have ||X(t; τj)|| ≤ eσk(t−τj) for t ∈ [τj , τj+1],
where the constants σj are given by (11). Define σ = {σk}. If ϕ is (σ,w)-regulated, Lemma 3.1
guarantees the required convergence of Lj

a(t; τj) for j = 0, . . . , k, uniformly on N . We conclude
that U(t, a) → U(t, 0) uniformly on N .

Next we show that xp(t, a) converges to the assocoiated impulsive solution. This will be
established by induction on the structure of the compact set N .

Similarly to before, we will assume that t0 ∈ [τ0, τ1]. Other cases follow by similar reasoning.
Suppose N = [N−, N+] ⊂ (τ0, τ1]. Then we have

xp(t, a) = X(t; τ0)

∫ t

τ0

X−1(s; τ0)(g(s) + ϕh
0 (s, a0) · 1[S0(a)])ds+X(t; τ0)L

0
a(t; τ0)x

p
0(a),

xp
0(a) = −L−1

a0
(t0; τ0)

∫ t0

τ0

X−1(s; τ0)
(
g(s) + ϕh

0 (s, a) · 1[S0(a)]
)
ds,

xp(t, 0) = X(t; τ0)

[
(I +B0)x

p
0(0) + h0 +

∫ t

τ0

X−1(s; τ0)g(s)ds+ h0

]
,

xp
0(0) = −(I +B0)

−1

[
h0 +

∫ t0

τ0

X−1(s; τ0)g(s)ds

]
.

Note that if ||a||∞ is sufficiently small, then xp
0(a) is well-defined, since (L0

a)
−1(t0; τ0) → (I +

B0)
−1 by Lemma 3.1.

We then have the equality

xp(t, a)− xp(t, 0) = X(t; τ0)

[∫ τ0+a0

τ0

X−1(s; τ0)

(
ϕh
0 (s, a0)−X(s; τ0)

1

a0
h0

)
ds

]
+X(t; τ0)

(
L0
a(t; τ0)x

p
0(a)− (I +B0)x

p
0(0)
]
,

(14)

provided a0 < N− − τ0. A routine application of the triangle inequality, the (σ,w)-regularity
condition and an argument similar to the proof of Lemma 3.1 can be used to show the integral
converges to zero as a → 0. We also have L0

a(t; τ0) → I + B0 uniformly, so it suffices to prove
the convergence xp

0(a) → xp
0(0).

6



We perform a similar bracketing, obtaining the formula

xp
0(a)− xp

0(0) = − (L0
a(t0; τ0)− I −B0)

∫ t0

τ0

X−1(s; τ0)g(s)ds

−
∫ τ0+a0

τ0

X−1(s; τ0)

[
L0
a(t0; τ0)ϕ

h
0 (s, a)− (I +B0)

1

a0
h0

]
ds,

which is valid if a0 < t0 − τ0. The first term clearly converges to zero, and the second one
can be shown to converge to zero as well, in the same way as the convergence of the integral
in equation (14). Therefore xp

0(a) → xp
0(0) as a → 0, from which we obtain the convergence

xp
0(t, a) → xp

0(t, 0) as a → 0, uniformly for t ∈ N .
For the induction hypothesis, assume that if N ⊂= [N−, N+] ⊂ (τk−1, τk] for some k ≥ 0,

then xp(t, a) → xp(t, 0) as a → 0, uniformly for t ∈ N. Without loss of generality, we may assume
that N+ = τk. Now if M = [M−,M+] ⊂ (τk, τk+1], we have

xp(t, a) = X(t; τk)L
k
a(t; τk)x

p(τk, a)

+X(t; τk)

∫ t

τk

X−1(s; τk)(g(s) + ϕh
k(s, ak) · 1[Sk(a)])ds,

xp(t, 0) = X(t; τk)

[
(I +Bk)x

p(τk, 0) + hk +

∫ t

τk

X−1(s; τk)g(s)ds+ hk

)
.

Subtracting, we obtain

xp(t, a)− xp(t, 0) = X(t; τk)
[
Lk
a(t; τk)x

p(τk, ak)− [E +Bk]x
p(τk, 0)

]
+X(t; τk)

[∫ τk+ak

τk

X−1(s; τk)ϕ
h
k(s, ak)−

1

ak
hk

]
,

provided ak < M−− τ0. By the induction hypothesis, we have xp(τk, a) → xp(τk, 0). By Lemma
3.1, we know that Lk

a(t; τk) → I + Bk. By the same reasoning as earlier, the integral term
converges to zero. Therefore we conclude that xp(t, a) → xp(t, 0) on M . Hence, for any k, if N
is a closed interval in (τk, τk+1], x

p(t, a) converges uniformly to xp(t, 0) as a → 0. This proves
the theorem.

Corollary 3.1.1. The conclusions of Theorem 3.1 hold if, for all k ∈ Z and ξ ∈ {B, h}, the
relation

ϕξ
k(t, s)−

1

s
ξk = O(1) (15)

holds for t ∈ [τk, τk + s) as s → 0.

Proof. The choice of functions wξ
k(t, s) = eσks − 1 satisfies the conditions of the theorem and

provides the asymptotic relation (15).

Corollary 3.1.2. If ϕ is (σ,w)-regulated family of impulse extensions for (4) and

σ = max
k∈Z

∫ τk+1

τk

||A(s)||ds (16)

is finite, the conclusions of Theorem 3.1 hold.
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3.2 Convergence of Floquet multipliers for periodic systems with re-
spect to the step sequence as a → 0

In this section, we assume that det(I + Bk) �= 0 for all k = 0, . . . , c − 1. One consequence
of Corollary 3.1.2 is that the Floquet multipliers of a periodic, homogeneous impulse extension
equation, (5), induced by an (ϕ, a), will converge to those of the associated periodic, homogeneous
impulsive differential equation, as a → 0. To make this precise, we first state two definitions.

Definition 3.2. The impulsive differential equation (1) is periodic with period T and cycle
number c, or (T, c)-periodic, if A and f are T -periodic and c is the smallest natural number such
that the shift identities τk+c = τk + T , Bk+c = Bk and hk+c = hk for all k ∈ Z.

Definition 3.3. An step sequence a ∈ S∗ is c-periodic if ak+c = ak for all k ∈ Z. Denote by
S∗
c the set of c-periodic step sequences. If equation (4) is (T, c)-periodic, a family of impulse

extensions, ϕ, is (T, c)-periodic if the shift property

ϕα
k+c(t+ T, a) = ϕα

k (t, a)

holds for a ∈ S∗
c , t ∈ Sk(a) and integers k, where α ∈ {B, h}.

The above definitions imply that a finite set of functions ϕ = {(ϕB
k , ϕ

h
k)} suffices to define a

(T, c)-periodic family of impulse extensions. As such, we will say that a (T, c)-peridic family ϕ
is (σ,w)-regulated if the asymptotic condition (10) is satisfied for indices k = 0, . . . , c − 1. As
such, the sequences σ and w can also be taken as c-element indexed sets.

Analogous definitions to the above hold for homogeneous equations, for which the following
corollary is relevant.

Corollary 3.1.3. Let the homogeneous impulsive equation (2) be (T, c)-periodic. Let ϕ be
a (T, c)-periodic family of impulse extensions for (5), and suppose ϕ is exponentially (σ,w)-
regulated in the mean with

σ = σA ≡ max
k=0,...,c−1

∫ τk+1

τk

||A(s)||ds. (17)

If Ma denotes the monodromy matrix of the impulse extension equation induced by (ϕ, a), and
M0 is the monodromy matrix of the impulsive differential equation (2), we have Ma → M0 as
a → 0, where the convergence is for a ∈ S∗

c . The result remains valid if σ = σF ≡ ||Λ||, where
X(t) = Φ(t)eΛ(t−τ0) is the Floquet factorization of the homogeneous equation z′ = A(t)z, and Φ
is T -periodic and satisfies Φ(τ0) = I.

Proof. By theorem from Church and Smith? [7], we have Ma = U(T +τ0; τ0, a), where U(t; τ0, a)
is the matrix solution of (5) with impulse extension family ϕ and step sequence a ∈ S∗

c , satisfying
U(τ0; τ0, a) = I. By Corollary 3.1.2, we have U(T + τ0; τ0, a) → U(T + τ0; τ0, 0) = M0 as a → 0.
If σ = ||Λ||, we note that one has ||X(t)|| ≤ Keσ(t−τ0), where K = supt∈[τ0,τ0+T ], from which
the result follows due to Lemma 3.1.

Since the stability or instability of a homogeneous impulse extension equation can be inferred
from the spectrum of the monodromy matrix [7], the above corollary implies that, unless the
spectrum of M0 intersects the unit circle, the stability of the impulsive differential equation will
match that of the impulse extension equation induced by (ϕ, a) provided ||a|| is small enough.
We have the following corollary whose proof we omit, since it follows from the above results and
Corollary 5.2 of [7].
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Corollary 3.1.4. Let M0 denote the monodromy matrix of the (T, c)-periodic impulsive equation
(2). If σ(M0) does not intersect the unit circle, (2) is asymptotically stable if and only if, for
all (σ,w)-regulated families of impulse extensions, ϕ, with σ as defined in Corollary 3.1.3, there
exists δ > 0 such that, for all ||a|| < δ, the impulse extension equation for (2) induced by (ϕ, a)
is stable for any t0 ∈ P(ϕ, a).

3.3 Asymptotic stability of aperiodic systems as the step sequence
becomes small, a → 0

If the impulsive linear system (2) is stable but not asymptotically stable, then nothing can
in general be said for the stability for associated impulse extension equations, (5). In fact,
asymptotic stability is, in general, required, as the example from Section 3.4.2 illustrates.

The main result of this section rests on the following two lemmas.

Lemma 3.2. Let xn be a bounded real-valued sequence, and suppose the inequality
∏sn+1

i=sn
xi ≤ C

holds for all n ∈ N and some C ∈ (0, 1) and a monotone sequence of natural numbers, sn, with
bounded finite difference, for which sn → ∞. Then there exists ε∗ > 0 such that, for all ε ∈ [0, ε∗),
the inequality

sn+1∏
i=sn

(xi + ε) ≤ C(ε)

holds for some C(ε) ∈ (0, 1), for all n ∈ N.

Proof. Let Δsn ≤ D be the upper bound on the finite difference and |xn| ≤ X be an upper
bound. For each n ∈ N and ε ∈ (0, 1), we have

sn+1∏
i=sn

(xi + ε) ≤
sn+1∏
i=sn

xi +

Δsn∑
i=1

(
Δsn
i

)
εiXΔsn+1−i +

sn+1∏
i=sn

ε

≤ C +

Δsn∑
i=1

εi max{X, 1}D+1 + εD+1

≤ C +
D∑
i=1

iεmax{X, 1}D+1 + (D + 1)ε

= C + ε

(
1

2
D(D + 1)max{X, 1}D+1 +D + 1

)
≡ C(ε).

Define ε∗ by

ε∗1 =
1− C

1
2D(D + 1)max{X, 1}D+1 +D + 1

.

It follows that if 0 ≤ ε < min{ε∗1, 1} ≡ ε∗, then C(ε) < 1.

Lemma 3.3. Let xn be a bounded, nonnegative, real-valued sequence, and suppose the inequality∏sn+1

i=sn
xi ≤ C holds for all n ∈ N and some C ∈ (0, 1) and a monotone sequence of natural

numbers, sn, with bounded finite difference, for which sn → ∞. The infinite product
∏∞

i=0 xi

diverges to zero.

Proof. Without loss of generality, suppose s0 = 0. As before, let Δsn ≤ D be the upper bound on
the finite difference and |xn| ≤ X be an upper bound. By construction, there exists a subsequence
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of sn, denoted snm , and a bounded sequence dm ∈ {0, 1, . . . , D− 1} such that m = snm + dm for
all m ∈ N.

Consider |pm| = ∏m
i=0 |xi|, the modulus of the sequence of partial products. By the above

representation of m ∈ N, we have

|pm| =
(snm∏

i=0

|xi|
) snm+dm∏

i=snm+1

|xi| ≤
⎛⎝ m∏

j=0

sj+1∏
i=sj

|xi|
⎞⎠ snm+dm∏

i=snm+1

|xi| ≤ Cm+1 max{1, X}D.

Since C < 1 and X and D are finite, we have |pm| → 0 as m → ∞.

Theorem 3.2. Let a homogeneous impulsive system (2) be given. Define the sequences Ci and
Di by

Di =

∫ τi+1

τi

||A(s)||2 exp
(
−2

∫ s

τi

||A(r)||dr
)
ds, (18)

Ei = ||I +Bi||(1 +
√
(Δτi)Di). (19)

Consider the following conditions.

A1: The sequences Di and Ei are bounded.

A2: There exists a strictly increasing sequence of natural numbers sn with a bounded forward
difference and a real number C ∈ (0, 1) such that, for all n ∈ N,

sn+1∏
i=sn

Ei ≤ C. (20)

A3: ϕ = {ϕk} is a family of impulse extensions for (2) that satisfies the asymptotic relations∣∣∣∣
∣∣∣∣ϕk(t, a)− 1

a
Bk

∣∣∣∣
∣∣∣∣ ≤ g(t, a),

∫
Sk(a)

h(s; τk) +
1

2
h(s; τk)

2ds ≤ G(a), h(s; τk) =

∫ s

τk

g(r, a)dr

(21)

on Sk(a) as ||a||∞ → 0, for some function G satisfying G(a) → 0 as ||a||∞ → 0.

A4: ϕ is (σ,w)-regulated in the mean with ||X−1(t; τk)|| ≤ eσk(t−τk) for t ∈ [τk, τk+1] for all
k ∈ Z, where X(t; s) is the Cauchy matrix of x′ = A(t)x.

A5: det(I +Bk) �= 0 for all k ∈ Z.

System (2) is asymptotically stable, and, for all t0 ∈ R, there exists δ > 0 such that if ||a||∞ <
δ, the impulse extension equation for (2) induced by (ϕ, a) is asymptotically stable at t0 and
uniformly attracting on R. If N ⊆ P(ϕ, a) is bounded and separated from R \ P(ϕ, a), the
previous result holds with uniform asymptotic stability on N .

Proof. Let t0 ∈ R. If ||a|| is sufficiently small, then, by definition, t0 ∈ P(ϕ, a), so we may assume
t0 ∈ P(ϕ, a). We prove only the case of t0 = τ0; the other cases follow by similar reasoning (with
the only significantly different cases being if t0 is in the interior of Sk(a) for some k; in this
instance, formula (8) is useful.) By the generalized Gronwall’s inequality, any matrix solution,
U(t), of (5), for which U(t0) = I, satisfies the inequality

|U(t)| ≤ |U(τk)|
(
Gk(t) +

∫ t

τk

Gk(s)|A(s)| exp
(
−
∫ s

t

|A(r)|dr
)
ds

)
,
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for t ∈ [τk, τk+1], where | · | denotes the standard Euclidean norm (or induced matrix norm),

Gk(t) =

∣∣∣∣I + ∫ t

τk

ϕk(s, a)ds

∣∣∣∣ ,
and we identifying ϕk with ϕk · 1[Sk(a)]. By a simple inductive argument, we can see that, for
t ∈ [τk, τk+1],

|U(t)| ≤ |U(τ0)|Fk(t)
k−1∏
i=0

(
Gi(τi+1) +

∫ τi+1

τi

Gs(a)|A(s)| exp
(
−
∫ s

τi

|A(r)|dr
)
ds

)
, (22)

Fk(t) = Gk(t) +

∫ t

τk

Gk(s)|A(s)| exp
(
−
∫ s

τk

|A(r)|dr
)
ds. (23)

An overestimate of Fk(t) can be obtained via the Cauchy–Schwarz inequality, together with
maximizing the integral by taking the upper limit as τk+1. We have

Fk(t) ≤ 1 + |Bk|+
(∫ τk+1

τk

Gk(s)
2ds

) 1
2
(∫ τk+1

τk

|A(s)|2 exp
(
−2

∫ s

τk

|A(r)|dr
)
ds

) 1
2

︸ ︷︷ ︸
Dk

.

Since Gk(t) is constant and equal to |I +Bk| on [τk+ak
, τk+1], we can write

Fk(t) ≤ 1 + |Bk|+
(∫

Sk(a)

Gk(s)
2ds+ (Δτk − ak)|I +Bk|2

) 1
2

D
1
2

k . (24)

We now have the task of estimating the integral of G2
k on Sk(a). Using the asymptotic condition

(21), we can write

|ϕk(t)| ≤ 1

ak
|Bk|+ g(t, a)

provided ||a||∞ is sufficiently small, for all t ∈ Sk(a). It follows that

Gk(t) ≤ 1 +

∫ s

τk

(
1

ak
|Bk|+ g(s, a)

)
ds. (25)

Substituting the upper bound from (25) into (24), we obtain

Fk(t) ≤ 1 + |Bk|+
(∫

Sk(a)

1 + 2

∫ s

τk

1

ak
|Bk|+ g(r, a)dr +

[∫ s

τk

1

ak
|Bk|+ g(r, a)dr

]2
ds

) 1
2

D
1
2
k

≤ 1 + |Bk|+
(
ak

(
1 + |Bk|+ 1

2
ak|Bk|2

)
+ 2

∫
Sk(a)

∫ s

τk

g(r, a)drds+

∫
Sk(a)

[∫ s

τk

g(r, a)dr

]2

ds

) 1
2

D
1
2
k

≤ 1 + |Bk|+
(
ak

(
1 + |Bk|+ 1

2
ak|Bk|2

)
+ 2G(a)

) 1
2

D
1
2
k ,

where in the last line we used the integral estimate in (21). By hypothesis, the sequence Dk is
bounded. Boundedness of Dk implies the boundedness of Bk, from which we conclude

Fk(t) ≤ 1 +B +

(
ak

(
1 +B +

1

2
akB

2

)
+ 2G(a)

) 1
2

D
1
2︸ ︷︷ ︸

Rk
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for positive constants B and D with Di ≤ D. It follows that Rk → 0 as ||a||∞ → 0, uniformly
for all k ∈ N.

By similar arguments, one can show that the bound

|U(t)| ≤ |U(τ0)|(1 +B +Rk)

k−1∏
i=0

|I +Bi|+
√

(Δτi − ai)|I +Bi|2 +R2
i ·
√

Di

holds for all t ∈ [τk, τk+1]. Since Rk → 0 uniformly for k ∈ N as ||a||∞ → 0 and the Di are
independent of a, we can, for any ε > 0 small, ensure that

|U(t)| ≤ |U(τ0)|(1 +B + ε)
k−1∏
i=0

|I +Bi|+
√

(Δτi − ε)|I +Bi|2 + ε2 ·
√

Di

≤ |U(τ0)|(1 +B + ε)

k−1∏
i=0

|I +Bi|(1 +
√
(Δτi − ε)Di) + ε

√
D

≤ |U(τ0)|(1 +B + ε)

k−1∏
i=0

[
Ei + ε

√
D
]
,

for t ∈ [τk, τk+1] and all k ∈ N, by choosing ||a||∞ small enough. By Lemma 3.2 and Lemma
3.3, there exists some ε∗ > 0 such that the infinite product

∏∞
i=0[Ei + ε

√
D] diverges to zero,

provided ε < ε∗. It follows that |U(t)| → 0 when ε < ε∗, which is equivalent to ||a||∞ < δ
for some sufficiently small δ. This also proves uniform attractivity on R; if x(t) and y(t) are
two solutions defined for t ≥ t∗, then there exists τk ≥ t∗, and, by Lemma 4.3 of [7], we have
x(t)− y(t) = U(t)U−1(τk)(x(τk)− y(τk)) → 0 as t → ∞.

Next, since any solution of the initial-value problem x(t1) = x1 for (5) with t1 ∈ N can be
written as x(t) = U(t)U−1(t1)x1, we obtain |x(t)| < η for all t ≥ t0 provided

|x1| < η

supt≥t0 |U(t)| · |U−1(t1)| ,

where the supremum exists due to boundedness of U for t ≥ t0, and U−1(t1) exists since t1 ∈
N ⊂ P(ϕ, a); see [7] for more details. Therefore (5) is stable and attracting on N , and so is
asymptotically stable.

If N is bounded and separated from R \ P, it follows that t ≡ inf N ∈ P(ϕ, a) and that
K ≡ supt∈N |U−1(t)| and J ≡ supt∈N |U(t)| are finite (provided ||a|| is chosen sufficiently small
so as to guarantee that τk + ak ∈ P(ϕ, a) for all τk ∈ N ; this can always be done because N is
bounded and assumptions A4–A5 hold; see Lemma 3.1 and Theorem 4.2 of [7]). Then, replacing
the bound above with |x1| < η/(JK), we obtain uniform stability on N .

3.4 Counterexamples

Some of the previously stated results are, in a certain sense, optimal, while others are not. The
counterexamples of this section appear in, or are inspired by counterexamples appearing in [5].

3.4.1 (σ,w)-regularity is sufficient, but not necessary, for pointwise convergence of
solutions.

Consider the simple scalar equation

x′ = x, t �= k

Δx = −0.75x, t = k,
(26)
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with k ∈ Z. This equation is periodic with period one, and its Floquet multiplier is μ1 = 1
4e,

which is less than one. Consequently, the trivial solution is asymptotically stable.

Consider now a periodic impulse extension for (26):

x′ = x, t /∈ [k, k + a)

x′ = x+ ϕ(t− k, a), t ∈ [k, k + a),
(27)

where ϕ(·, a) : [0, 1] → R (note that we are taking advantage of the fact that, since (26) is
periodic with order one, a family of impulse extensions is generated by a single function). For
fixed a ∈ (0, 1), the solution of (27) satisfying the initial condition x(0; a) = 1 is given by

x(t; a) = et
(
1 +

∫ t

0

e−sϕ(s, a) · 1[0, a]ds
)

for t ∈ [0, 1]. In particular, if we set g(s, a) = ϕ(s, a)− 1
a (−0.75), we have the equality

x(1; a) = e

(
1 +

∫ a

0

e−t−0.75

a
dt+

∫ a

0

e−tg(t, a)ds

)
.

In the limit, as a → 0+, we have

x(1; a) → 1

4
e+ e lim

a→0+

∫ a

0

e−tg(t, a)dt︸ ︷︷ ︸
R(g)

.

Therefore pointwise convergence of the solution at time t = 1 is equivalent to having R(g) = 0.

If g(t, a) = 1
ea−1 sin

(
2πt
a

)
, then computing R(g) gives

R(g) = lim
a→0+

∫ a

0

e−t 1

ea − 1
sin

(
2πt

a

)
dt = lim

a→0+

2πae−a

a2 + 4π2
= 0.

For the linear impulsive equation (26), we have σA = 1, but this particular choice of g(t, a)
does not satisfy the (1, w)-regularity requirement, (10), for any w. Consequently, ϕ(t, a) =
1
a (−0.75) + g(t, a) is not (1, w)-regulated, but we do see pointwise convergence of the solutions
at t = 1. One can clearly see that this holds for all t ∈ [0, 1]; by periodicity, we obtain pointwise
convergence everywhere.

On the other hand, if we choose

h(t, a) =
a2 + 4π2

2πa(1− e−a)
sin

(
2πt

a

)
,

we obtain R(h) = 1, and h also fails the (1, w)-regularity requirement. It is also far more singular
at a = 0 than is g, but this is beside the point. The usefulness of the definition of (σ,w)-regularity
stems from the fact that it does require a specific functional form of the solution of any given
differential equation to be applied, as illustrated by Corollary 3.1.1. In this counterexample,
the general solution of the homogeneous equation is expressible analytically, allowing for a more
precise condition on pointwise convergence of solutions to be stated.
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3.4.2 Corollary 3.1.4 does not hold in the presence of unit Floquet multipliers of
the impulsive system.

Consider the “trivially impulsive” impulsive differential equation

dr

dt
= r sin(t), t �= 2kπ,

Δr = 0, t = 2kπ.
(28)

The Floquet multiplier of this system is μ0 = 1, and the fundamental matrix solution at t0 = 0
is X(t) = exp(1− cos(t)). Therefore Corollary 3.1.4 cannot be applied. Let us consider for any
a ∈ (0, 2π), the family of impulse extensions

ϕ(t, a) = a5 sin

(
2πt

a

)
sin

(
1

a

)
with ϕ(t, 0) ≡ 0 for all t. We have ||ϕ(t, a)|| ≤ a5, so that ϕ is (σ,w)-regulated for any σ and
w = (eσa − 1)a5.

Note that

c(a) ≡
∫ a

0

ecos(t) sin

(
2πt

a

)
dt > 0

for a < π. We argue this as follows. For 0 ≤ t < π, the function ecos(t) is positive and decreasing.
Consequently, ecos(t) > ecos(a/2) for t < a/2 and ecos(t) < ecos(a/2) for t > a/2. Then

c(a) =

∫ a/2

0

ecos(t) sin

(
2πt

a

)
dt+

∫ a

a/2

ecos(t) sin

(
2πt

a

)
dt

>

∫ a/2

0

min
[0,a/2]

ecos(t) sin

(
2πt

a

)
dt+

∫ a

a/2

max
[a/2,a]

ecos(t) sin

(
2πt

a

)
dt

=

∫ a/2

0

ecos(a/2) sin

(
2πt

a

)
dt+

∫ a

a/2

ecos(a/2) sin

(
2πt

a

)
dt = 0.

Therefore c(a) > 0 for 0 < a < π. By [7], the Floquet multiplier of the impulse extension
equation induced by (ϕ, a) is

μa = X(2π)

[
1 +

∫ a

0

ecos(t)−1a5 sin

(
2πt

a

)
sin

(
1

a

)
dt

]
= 1 +

1

e
a5 sin

(
1

a

)
c(a).

The function a5 sin
(
1
a

)
has roots at (2πn)−1 for all integers n, with derivative oscillating in sign

from positive to negative. Consequently, a5 sin
(
1
a

)
assumes both positive and negative values on

any interval (0, ε). We conclude that μa oscillates between greater than and less than 1 on any
interval (0, ε) for ε < π; see Figure 1 for a visualization. In terms of stability, this means that
the stability of the impulsive system (28) cannot be used to predict the stability of an associated
impulse extension equation, even if the step sequence is very small.

In conclusion, the conditions of Corollary 3.1.4 on the spectrum of the impulsive monodromy
matrix, M0, cannot in general be weakened without assuming additional hypotheses on the family
of impulse extensions.
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4 The time-scale tolerance for linear, hoogeneous impul-
sive differential equations

In this section, we introduce the notion of uniformly (σ,w)-regulated families of impulse exten-
sions and the time-scale tolerance for linear, homogeneous impulsive differential equations. The
definitions differ between periodic and aperiodic systems. Generally, we must deal with stable
and unstable systems separately. First we have a basic definition. In this section, the word
periodic will be synonymous with (T, c)-periodic.

Definition 4.1. Consider a homogeneous impulsive differential equation, (2). Let σ = {σk} be
a sequence (c-element, if (2) is periodic) of positive real numbers and w = {wk} be a sequence
(c-element, if (2) is periodic) of functions wk : [τk, τk+1] × S∗

c → R+ that are continuous and
vanishing at (τk, 0) and such that wk(·, a) is integrable on Sk(a). A family of periodic impulse ex-
tensions, ϕ = {ϕk}, is uniformly exponentially (σ,w)-regulated in the mean or simply uniformly
(σ,w)-regulated if the inequality∣∣∣∣∣∣∣∣ϕk(s, a)− 1

ak
Bk

∣∣∣∣∣∣∣∣ ≤ wk(s, a)

eσkak − 1
(29)

is satisfied for all s ∈ Sk(a) and k ∈ Z (or k = 0, . . . , c − 1, of (2) is periodic). A pair (σ,w)
that satisfies the above criteria will be referred to as a uniform exponential regulator. If ϕ is
uniformly (σ,w)-regulated, we will write ϕ ∈ (σ,w).

Section 4.1 introduces the time-scale tolerance for asymptotically stable periodic systems,
proving several elementary properties and providing an algorithm for its calculation. Section
4.2 extends the definition to unstable periodic systems. Finally, in Section 4.3, the definition of
time-scale tolerance is extended to general, aperiodic systems via exponential dichotomies. For
a physical interpretation of uniform exponential regulators, see Section 4.4.

4.1 The time-scale tolerance for periodic, asymptotically stable sys-
tems

We treat periodic, asymptotically stable homogeneous systems (2) first.

Definition 4.2. If R = (σ,w) is a uniform exponential regulator and a ∈ S∗
c , the (R, a)-

pseudospectral radius of (2), denoted ρ(R, a), is defined by

ρ(R, a) = sup
ϕ∈R

ρM(ϕ, a), (30)

where M(ϕ, a) is the monodromy matrix of the impulse extension equation for (2) induced by
(ϕ, a).

Definition 4.3. Suppose (2) is asymptotically stable. Let R be a uniform exponential regulator.
If ϕ is a periodic family of impulse extensions for (1), let M(ϕ, a) denote the monodromy matrix
of the impulse extension equation for (1) induced by (ϕ, a). The R-stable set, denoted Es(R), is
defined as follows.

Es(R) = {a ∈ S∗
c : ρ(R, a) < 1} . (31)

The R-time-scale tolerance is the number

Et(R) = sup{ε : ∃a ∈ Es(R), ||a|| = ε, Bε(0) ∩ S∗
c ⊆ Es(R)}. (32)
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The time-scale tolerance is defined precisely so that we have the following elementary property,
whose proof we omit.

Proposition 4.1. Given a uniform exponential regulator R = (σ,w), the time-scale tolerance
behaves as a robust stability threshold for the impulsive system (1); if ||a|| < Et(R), then ρ(R, a) <
1. In other words, systems (1) the impulse extension equation (5) induced by (ϕ, a) are both
stable, for all ϕ ∈ R.

As should be expected, if the regulator is not chosen wisely, the time-scale tolerance for the
given regulator might be zero. This is not the case if one obeys the guidelines of, for example,
Corollary 3.1.3.

Theorem 4.1. Suppose σ ∈ {σA, σF }. If Rσ = (σ,w) is a uniform exponential regulator and
(2) is asymptotically stable (i.e. ρM0 < 1), then Et(Rσ) is nonzero and the map a 
→ ρ(Rσ, a)
satisfies

lim
a→0

ρ(Rσ, a) = ρM0,

where the limit is for a ∈ S∗
c .

Proof. By the proof of Lemma 3.1, the bound∣∣∣∣∣
∫
Sk(a)

X−1(s; τk)εk(s; a)ds

∣∣∣∣∣ ≤ ||wk(s, a)||Sk(a)∞
σ

holds for k = 0, . . . , c− 1, for all ϕk = 1
ak

+ εk ∈ (σ,w). That is, the bound is independent of the
choice of ϕ. Since we can write

M(ϕ, a) =

0∏
k=c−1

X(τk+1; τk)

(∫
Sk(a)

X−1(s; τk)εk(s, a)ds+
1

ak

∫
Sk(a)

I +X−1(s; τk)Bkds

)
,

it follows that M(ϕ, a) converges to M0 as ||a|| → 0, uniformly in ϕ. Consequently, for all ε > 0,
there exists δ > 0 such that, for ||a|| < δ, we have ||M(ϕ, a)−M0|| < ε for all ϕ ∈ (σ,w). From
the continuity of the spectral radius map, X 
→ ρX, we conclude that, for all ε > 0, there exists
δ > 0 such that, for ||a|| < δ, we have |ρM(ϕ, a)− ρM0| < ε for all ϕ ∈ (σ,w). In particular, we
must have ∣∣∣∣∣ sup

ϕ∈(σ,w)

ρM(ϕ, a)−M0

∣∣∣∣∣ = |ρ(Rσ, a)− ρM0| < ε.

We conclude that ρ(Rσ, a) → ρM0 as a → 0 in S∗
c .

If we choose ε = |1− ρM0|, there exists δ > 0 such that

|ρ(Rσ, a)− ρM0| < |1− ρ(M0)|,

provided ||a|| < δ. Consequently, ρ(Rσ, a) < 1 for this range of ||a|| < δ, indicating that the set
Es(Rσ) contains Bδ(0) ∩ S∗

c . It follows that the set

{ε : ∃a ∈ Es(Rσ) : |a| = ε, Bε(0) ∩ S∗
c ⊆ Es(Rσ)}

is nonempty and contains δ > 0 and therefore has nonzero least upper bound. This least upper
bound is precisely the time-scale tolerance, Et(Rσ).
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The function a 
→ ρ(Rσ, a) can be made continuous on the entirety of S∗
c , although the most

natural assumption to impose requires restricting to sets of uniformly (σ,w)-regulated families
of impulse extensions that also satisfy an equicontinuity-like condition. Such an assumption is
too strong to impose for most practical problems; as such, the result is not very helpful and is
omitted.

In practice, the time-scale tolerance is difficult to calculate. It is much easier to provide a
method of finding a lower bound to the time-scale tolerance by taking advantage of its definition,
which allows for approximation by pseudospectral radii. Recall that the ε-pseudospectral radius,
ρεA, of a matrix A is defined by

ρεA = max{ρB : ||A−B|| ≤ ε}. (33)

For additional information about the pseudospectral radius, other pseudospectra and their com-
putation, see [9, 11, 14]. In particular, we have the following proposition.

Proposition 4.2. Let a uniform exponential regulator R for the (T, c)-periodic impulsive differ-
ential equation (2) be given. Suppose the inequality

||M(ϕ, a)−M0|| ≤ n(a) (34)

is satisfied for all ϕ ∈ R and all a ∈ S∗
c , for some function n : S∗

c → R. The following are true.

1. ρ(R, a) ≤ ρn(a)M0 for all a ∈ S∗
c .

2. The following inclusion is valid:

Ês(R) ≡ {a ∈ S∗
c : ρn(a)M0 < 1} ⊆ Es(R).

3. Let h denote the unique solution of the equation ρhM0 = 1. The inequality

Êt(R) ≡ min{||a|| : n(a) = h, a ∈ S∗
c } ≤ Et(R)

is valid. If ||a|| < Êt(R), then ρM(ϕ, a) < 1 for all ϕ ∈ R.

Proof. By definition of the pseudospectral radius, we have

ρn(a)M0 = sup{ρ(Z) : Z ∈ R
n×n, ||Z −M0|| ≤ n(a)}

≥ sup{ρM(ϕ, a) : ϕ ∈ R, ||M(ϕ, a)−M0|| ≤ n(a)}
= sup{ρM(ϕ, a) : ϕ ∈ R} = ρ(R, a),

where the inequality follows by condition (34). The other two conclusions of the theorem follow
directly from the above inequality.

Construction of an appropriate function n : S∗
c → R that satisfies the condition of inequality

(34) is important. Additional desirable properties include having n be continuous and strictly

monotone increasing, for then the set Ês(R) becomes star-convex and Êt(R) can be seen as the
minimum norm of all vectors lying in a compact hypersurface (c− 1)-dimensional hypersurface.

Lemma 4.1. Let a uniform exponential regulator R be given, and suppose there exists a con-
tinuous, monotone nondecreasing function n : S∗

c → R satisfying inequality (34). Then Ês(R) is
star-convex with basepoint 0 ∈ S∗

c . If, in addition, n is strictly monotone increasing and extends
to a continuous function n : S∗

c → R and Et(R) < ∞, then the set

Ê+
s (R) = {a ∈ S∗

c : n(a) = h} (35)

is a compact hypersurface and Êt(R) = min{||a|| : a ∈ Ê+
s (R)}, where h denotes the unique

solution of the equation ρhM0 = 1.
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Proof. For simplicity of notation, we will write U = Ês(R). We first prove U is star-convex with
basepoint 0. If a ∈ U , it follows that, for all t ∈ (0, 1), at least one index of ta must be strictly
less than the corresponding index of a; for example, suppose (ta)k < ak. Since n is monotone
nondecreasing, we obtain n(ta) ≤ n(a), which implies, by the monotonicity of the pseudospectral
radius, that ρn(ta)M0 ≤ ρn(a)M0 < 1. Star-convexity of U follows.

Next we show that V = Ê+
s (R) is a compact hypersurface. Define a map Ψ : V → Ψ(V ) ⊂

R
c−1 by V (x1, x2, . . . , xc) = (x1, x2, . . . , xc−1). Since Ψ is a projection, it is continuous.

Now let y ∈ Ψ(V ). Since y ∈ Ψ(V ), there exists yc ∈ [0,Δτc−1] such that n(y, yc) = h.
However, since n is strictly monotone increasing, we can have n(y, yc) = h = n(y, t) if and only
if yc = t. Consequently, to each y ∈ Ψ(V ), we can associate a unique yc ∈ [0,Δτc−1] such that
(y, yc) ∈ V . It follows that Ψ is invertible and Ψ−1(y) = (y, yc).

Next we show that Ψ−1 is continuous. Suppose Ψ−1 is discontinuous at some y ∈ Ψ(V ), so
there exists some sequence yn → y with Ψ−1(yn) � Ψ−1(y). Since V is compact, it follows that
there exists a subsequence, also denoted yn, such that Ψ−1(yn) → x �= Ψ−1(y). By compactness,
x ∈ V , so there must be some z ∈ Ψ(V ) such that x = Ψ−1(z). Hence Ψ−1(yn) → Ψ−1(z). By
continuity of Ψ, we have

yn = Ψ(Ψ−1(yn)) → Ψ(Ψ−1(z)) = z.

By uniqueness of limits, since yn → y and yn → z, we must have y = z. Therefore Ψ−1(y) =
Ψ−1(z) = x, which is a contradiction to Ψ−1(y) �= x. We conclude that Ψ−1 is continuous and
hence that Ψ is a homeomorphism. Therefore V is a compact hypersurface.

In finding a function n satisfying inequality (34), the following combinatorial representation
of ||M(ϕ, a)−M0|| is helpful. The proof follows by an inductive argument and is omitted.

Lemma 4.2. For natural number z ≤ c−1, let Θz denote the
(
c
z

)
-element sequence of z-element

subsets of the set {0, 1, . . . , c − 1}, let Θz(n) denote the nth element3 of this sequence and let
Θz(n) denote its complement in {0, 1, . . . , c − 1}. For all periodic impulse extensions ϕ = {ϕk}
for the periodic impulsive differential equation (2), we have the inequality

||M(ϕ, a)−M0|| ≤
c−1∑
k=0

(ck)∑
r=1

⎡
⎣ ∏

j∈Θk(r)

||X(τj+1; τj)(E +Bj)||
∏

v∈Θk(r)

||X(τv+1; τv) [Cv + Pv]||
⎤
⎦ , (36)

where Cv = Cv(ϕ, a) =
1

av

[∫
Sv(a)

(X−1(s; τv)− I)ds

]
Bv, (37)

Pv = Pv(ϕ, a) =

∫
Sv(a)

X−1(s; τv)

[
ϕv(s, a)− 1

av
Bv

]
ds. (38)

The bound appearing in (36) generally increases exponentially with c, since there are 2c − 1
terms in the sum. Moreover, the bound is not optimal, since it is obtained by repeated application
of the triangle inequality. It is always possible to express M(ϕ, a)−M0 exactly; that is, without
resorting to upper bounds. The following examples provide exact formulae for small values of c.

Example 4.2.1. If c = 1, we have the equality

M(ϕ, a)−M0 = X(T + τ0; τ0) [C0 + P0] . (39)

3For a consistent ordering, note that it is always possible to uniquely order the sequence Θz in such a way

that the nth element, Θz(n), satisfies
∑

x∈Θz(n) x = n− 1 +
z(z−1)

2
.
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Example 4.2.2. If c = 2, we have the equality

M(ϕ, a)−M0 =X(τ2; τ1)

[
[C1 + P1]

(
X(τ1; τ0)

[
C0 + P0 + I +B0

])
+ (I +B1)X(τ1; τ0)[C0 + P0]

]
(40)

The bound appearing in (36) indicates that, to ensure the existence of an upper bound of the
form (34) that is continuous (and possibly monotone increasing) and defined on the closure of
S∗
c , it is enough to ensure that each of the functions Cv and Pv of (36)–(37) each have continuous

(and possibly monotone increasing) upper bounds with respect to the input a ∈ S∗
c , where the

bound holds uniformly for all ϕ ∈ R, given a regulator R.
In the following, we outline an algorithm that can be used to compute Êt(R). To this end,

we write the symbolic expression appearing on the right-hand side of (36) as a function of the
functions Ck and Pk. The proof follows from the lemmas of this section and the above remark
and is omitted.

n(a, C, P ) =

c−1∑
k=0

(ck)∑
r=1

⎡⎣ ∏
j∈Θk(r)

||X(τj+1; τj)(E +Bj)||
∏

v∈Θk(r)

||X(τv+1; τv) [Cv + Pv]||
⎤⎦ . (41)

Algorithm 4.1. Let R = (σ,w) be a uniform exponential regulator for the asymptotically stable
(T, c)-periodic impulsive differential equation (2). Suppose σ is defined as in (17) and w satisfies
the conditions of Lemma 4.3.

1. Choose continuous (and possibly monotone increasing) functions C+ : S∗
c → R

c
+ and P+ :

S∗
c → R

c
+ that satisfy the inequalities ||Ck(a)|| ≤ C+

k (a) and ||Pk(a)|| ≤ P+
k (a) for k =

0, . . . , c− 1.

2. Calculate the unique solution, h > 0, of the equation ρhM0 = 1.

3. Find the global minimizer, a∗, of the function f(a) = ||a||, subject to the constraints a ∈ S∗
c

and n(a, C+, P+)− h = 0.

Then, ||a∗|| = Êt(R).

4.1.1 Choices of C+ and P+ guaranteeing monotonicity of n(a, C+, P+)

Under certain assumptions on the uniform exponential regulator, we can guarantee the existence
of monotone increasing upper bounds for C and P .

Lemma 4.3. Let R = (σ,w) be an exponential regulator for the (T, c)-periodic equation (2),
with σ as given in (17). Suppose the functions a 
→ sups∈Sk(a)

||wk(s, a)|| are continuous for

each k = 0, . . . , c − 1. There exist functions C+
k and P+

k , with k = 0, . . . , c − 1, mapping
S∗
c → R

+, satisfying the inequalities ||Ck(ϕ, a)|| ≤ C+
k (a) and ||Pk(ϕ, a)|| ≤ P+

k (a) for all a ∈ S∗
c

and all ϕ ∈ R. The functions C+
k and P+

k are monotone nondecreasing on S∗
c , and if a < b with

ak < bk, then C+
k (a) < C+

k (b) and P+
k (a) < P+

k (b).

Proof. We define the functions C+
k and P+

k as follows.

C+
k (a; sup) = sup

s∈Sk(a)

||(X−1(s; τk)− I)Bk||

P+
k (a; sup) = sup

s∈Sk(a)

wk(s, a).
(42)
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C+
k is clearly monotone nondecreasing, as it is defined by the supremum of a continuous function

on the set Sk(a), which satisfies the inclusion Sk(a) ⊆ Sk(b) whenever a ≤ b. The situation is
similar for P+

k (a), due to the hypotheses on the functions wk. It also follows that P+
k (a) < P+

k (b)
whenever a < b and ak < bk. The inequalities ||Ck(a)|| ≤ C+

k (a) and ||Pk(a)|| ≤ P+
k (a) follow

from elemenetary integral inequalities and inequality (29).

Note that the functions C+
k and P+

k described in the proof of Lemma 4.3 may not be optimal,
in that there may be uniform bounds for Ck and Pk that are monotone increasing but smaller
than the bounds provided by the lemma. For example, the following bounds hold uniformly for
ϕ ∈ (σ,w):

Ck ≤ 1

ak

∫
Sk(a)

||(X−1(s; τk)− I)Bk||ds ≡ C+
k (A; Int), (43)

Pk ≤
∫
Sk(a)

eσ(τk−s)wk(s, a)

eσak − 1
ds ≡ P+

k (a; Int), (44)

Pk ≤
√

1

2σ
· e2σak − 1

(eσak − 1)2

∫
Sk(a)

w2
k(s, a)ds ≡ P+

k (a; CS). (45)

Depending on the specific application, we could be more conservative. If the upper bounds are
still monotone increasing in ak and continuous in a, they could be more suitable for the purposes
of approximating the time-scale tolerance.

4.1.2 Discussion of Algorithm 4.1

In practice, implementing steps 1 and 2 Algorithm 4.1 do not pose much difficulty. Step 1 always
has a worst-case choice to fall back on: C+

k (a; sup) and P+
k (a; sup). The bounds P+

k (a; Int)
and P+

k (a; CS) of (44)–(45) could be computed exactly for specific choices of uniform regulators
R = (σ,w). There is also the upper bound for Ck provided by C+

k (a; Int) of (43). Note that
all of these bounds can be ensured to be continuous (even if they are not monotone increasing)
by an appropriate choice of uniform exponential regulator. If one wishes for the bounds to be
monotone increasing, it is worth mentioning that all of the suggested bounds for P can be made
monotone increasing by an appropriate choice of exponential regulator, and the monotonicity of
the bounds for C could be tested statistically, if needed.

We can also choose an optimal bound by simply taking the minimum of any particular set of
bounds. For example, if one chooses

P+
k (a) = min{P+

k (a; sup), P+
k (a; Int), P+

k (a; CS)},
C+

k (a) = min{C+
k (a; sup), C+

k (a; Int)}, (46)

the resulting functions P+ and C+ will be continuous (they are finite minimums of continuous
functions) and increasing, provided each estimate is also increasing (since a minimum of increas-
ing functions is increasing). By construction, they provide tighter estimates than each individual
bound.

The second step of the algorithm involves solving the equation ρhM0 = 1 for h > 0. Since
h ∈ R and h 
→ ρhM0 is monotone nondecreasing (but typically nonsmooth), the bisection
method is applicable.

The third step will typically be the most computationally expensive. While S∗
c is convex and

the objective f(a) = ||a|| is convex, the other constraint, c(a) = 0 with c(a) = n(a, C+, P+)− h,

generally destroys the convexity of the domain; the resulting set, Ês(R), could have no “nice”
structure, or it could be star-convex, by Lemma 4.1. We comment on a few methods now.
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Monotonic optimization by reverse polyblock approximation

Suppose n(a) = n(a, CP , P+) is monotone. The objective, a 
→ ||a||, is also monotone, and the
domain, S∗

c , is convex. This problem can therefore be solved by reverse polyblock approximation
as follows. Following [20], define G ≡ S∗

c ⊂ [0, b], with b = maxΔτk; G is compact and normal

with nonempty interior. If we take H ≡ R
n
+ \ Ês(R)◦, then H is closed, and its complement

in R
n
+ is Ês(R)◦, which is a normal set since Ês(R)◦ is defined by 0 ≤ n(a) < h and n is

increasing. Therefore H is closed and reverse normal. By construction, G∩H contains the level
set {a ∈ S∗

c : n(a) = h} = Ê+
s (R).

Now define the objective function f : [0, b] → R+ by f(a) = ||a||. By Proposition 11 of [20],
any minimizer of the problem

min{f(a) : a ∈ G ∩H} (47)

must be an element of ∂−H = Ê+
s (R). Consequently, a gobal minimizer a∗ of (47) satisfies

n(a∗) − h = 0 and minimizes a 
→ ||a|| over the level set Ê+
s (R). By Proposition 4.2, a global

minimizer a∗ of problem (47) satisfies ||a∗|| = Êt(R). The reverse polyblock approximation
algorithm, described in [20], finds an ε-optimal solution, which, for our problem, means that the
approximate minimizer a∗ satisfies the inequality

Êt(R, ε) ≡ ||a∗|| − ε ≤ Êt(R).

However, since a∗ is a feasible solution, we must have ||a∗|| ≥ Êt(R). Using this fact and
rearranging the above inequality, we obtain

0 ≤ Êt(R)− Êt(R, ε) ≤ ε. (48)

Therefore the reverse polyblock approximation algorithm generates an ε-underestimate of Êt(R),

which we call Êt(R, ε).

Lower approximation by piecewise-constant functions on a grid

When c = 1 and n(a) is continuous and monotone strictly increasing, the problem is trivial to
solve, since all that is needed is to solve the equation n(a) = h for scalar a ∈ [0,Δτ0]. This can
be accomplished by the bisection method, or possibly a quasi-Newton method. Moreover, there
is a unique solution when n is monotone strictly increasing. If n is only monotone nondecreasing,
a quasi-Newton method to find a feasible solution followed by a some sort of bracketing method
should be sufficient to bracket the minimal solution to any desired level of precision.

When c = 2 and n(a) is continuous and strictly monotone increasing, the hypersurface Ê+
s (R)

is one-dimensional. If [0,Δτ0] is discretized into a grid withN cells, [0, a10], [a
1
0, a

2
0], . . . , [a

N−1
0 , aN0 ],

Ê+
s (R) can be parameterized along the vertices of the cells by solving the equation n(am0 , am1 ) = h

for am1 ∈ [0,Δτ1]
4, for each vertex am0 . A piecewise-constant under-approximation of the param-

eterization can then be constructed as follows.

p(a0) =

{
am+1
1 , a0 ∈ [am0 , am+1

0 ),
aN1 , a0 = aN0 .

The function p is indeed an under-approximation, since, for a0 ∈ [am0 , am+1
0 ), we have n(a0, p(a0)) ≤

n(am+1
0 , am+1

1 ) = h, and n(aN0 , p(aN0 )) = h. If one calculates

a(N) = argmin{||a|| : a = (am0 , am+1
1 ) : m = 1, . . . , N − 1},

4If no solution exists, set am1 = Δτ1.
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then, by construction, ||a(N)|| ≤ Êt(R). In particular, one can show that the inequality

0 ≤ Êt(R)− ||a(N)|| ≤
(
Δτ21
N2

+max |Δam1 |2
) 1

2

(49)

holds. Since n is continuous, the maximum term becomes arbitrarily small as N → ∞. There-
fore, to obtain the precision desired, one needs only iterate the procedure on N , successively
subdividing intervals, until the right-hand side is smaller than the desired tolerance. See Figure
2 for a visualization.

The above approach can be similarly applied to problems with cycle number c > 2, with
slight modifications. If C = [x0, y0]× · · · × [xc−1, yc−1] ⊂ R

c is a cell, we denote C− = [x0, y0)×
· · · × [xc−1, yc−1) and

Cl = (x0, . . . , xc−1), Cr = (y0, . . . , yc−1).

The modification is that [0,Δτ0]× [0,Δτc−1] is discretized into cells Cm, m = 1, . . . , N2c−1

, and
the function p is defined in such a way that

p(C−
m) = arg{ac−1 : n(Cr

m, ac−1) = h}.
The rest of the algorithm is essentially unchanged; a(N) is the argument that minimizes ||a||
over the set of a = (Cl

m, p(C−
m)). The resulting bound satisfies the inequality

0 ≤ Ẽt(R)− ||a(N)|| ≤
(
(c− 1)maxΔτ2i

N2
+max |p(C−

m)− p(πC−
m)|2

) 1
2

, (50)

where π is a partial function on half-open cells that maps a given cell to the one that is upper
diagonal to it; the map is defined by the equivalence

π(C−
m) = C−

j ⇐⇒ Cr
m = Cl

j .

Note that the maximum is only taken over those cells where π(C−
m) exists (these are the cells for

which Cr
m is not an element of the boundary of [0,Δτ0]× . . . [Δτc−1]). Again, the above can be

iterated, taking N as large as needed, since the maximum term consists of a difference between
evaluations of a continuous function defined at opposing vertices of a hypercube of side length
1
N , which will become arbitrarily small as N → 0. The iterations require more recursion than in
the case c = 2, however.

4.2 The time-scale tolerance for unstable periodic systems

The time-scale tolerance can be defined for unstable systems as well, provided certain conditions
on the centre subspace of the iterated map x 
→ M0x hold. If there is a centre subspace, it
is possible for the spectral radius to oscillate between greater than or less than one on any
time scale, as Example 3.4.2 demonstrates. This defect makes it generally impossible to study
time-scale tolerances in systems for which there is a centre subspace but no unstable subspace.
However, if there is an unstable subspace, such defects do not cause issues. The analysis of this
section is inspired by a short discussion appearing in [4].

Definition 4.4. If R = (σ,w) is a uniform exponential regulator and a ∈ S∗
c , the (R, a)-lower

pseudospectral radius of (2), denoted ρ−(R, a), is defined by

ρ−(R, a) = inf
ϕ∈R

ρM(ϕ, a). (51)
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The following proposition appears in [4].

Proposition 4.3. Let R be a uniform exponential regulator for (2). Suppose ||M(ϕ, a)−M0|| ≤
n(a) for some continuous function n(a) satisfying n(0) = 0, for all a ∈ S∗

c . The following
inequality holds.

ρ−(R, a) ≥ ρ−n(a)M0 ≡ inf{ρM : ||M −M0|| ≤ n(a)}. (52)

Proof. We follow the string of inequalities

inf
ϕ∈R

ρM(ϕ, a) ≥ inf

{
ρM : ||M −M0|| ≤ sup

ϕ∈R
||M(ϕ, a)−M0||

}
= inf{ρM : ||M −M0|| ≤ inf{x : ||M(ϕ, a)−M0|| ≤ x, ∀ϕ ∈ R}}
≥ inf{ρM : ||M −M0|| ≤ n(a)} = ρ−n(a)M0,

thereby obtaining the result claimed.

Definition 4.5. Suppose the (T, c)-periodic impulsive system (2) has no Floquet multipliers on
the unit circle and is unstable. If R is a uniform exponential regulator, the R-unstable set,
denoted Eu(R), is defined as follows.

Eu(R) =
{
a ∈ S∗

c : ρ−(R, a) > 1
}
. (53)

The R-time-scale tolerance is the number

Et(R) = sup{ε : ∃a ∈ Eu(R), ||a|| = ε, Bε(0) ∩ S∗
c ⊆ Eu(R)}; (54)

the time-scale tolerance is defined as for stable systems.

The proof of the following proposition is essentially the same as the analoguous proof of
Theorem 4.1, and is omitted.

Proposition 4.4. Let M0 denote the monodromy matrix for the (T, c)-periodic equation (2).
Let R = (σ,w) be a uniform exponential regulator with σ ∈ {σA, σF }. Suppose ρM0 > 1.

1. The R-time-scale tolerance exists.

2. lima→0 ρ
−(R, a) = ρM0, where the limit is for a ∈ S∗

c .

Once again, the time-scale tolerance behaves as a robust (in)stability threshold. If ||a|| <
Et(R), then the impulse extension equation induced by (ϕ, a) will be unstable for all ϕ ∈ R. The
following corollary is obvious and is not proven.

Corollary 4.1.1. Suppose the conditions of Proposition 4.3 hold. Let Êt(R) be the solution of
the optimization problem

Êt(R) ≡ sup{||a|| : a ∈ B||a||(0) ⊂ Êu(R)}, (55)

with
Êu(R) = {a ∈ S∗

c : ρ−n(a)M0 > 1}.
Then Et(R) ≥ Êt(R), where Et(R) is the R-time-scale tolerance for the (T, c)-periodic impulsive
system (2) satisfying ρM0 > 1. If n is monotone strictly increasing and extends continuously to
S∗
c , then

Êt(R) = min{||a|| : ρ−n(a)M0 = 1, a ∈ S∗
c }. (56)

23



The above problem is not as well-posed as the associated problem for asymptotically stable
systems because the map

M 
→ ρ−ε M = min{ρN : ||N −M || ≤ ε}
is not as well-behaved from a numerical perspective, and the computation of this map is an
essential step in calculating Êt(R) as in (56). For background on the problem of minimizing
the spectral radius, one should consult the works of, for example, Burke, Lewis and Overton
[3], Overton and Womersley [16] and Nesterov and Protasov [15]. For our purposes, however,
it is not difficult to see that the map ε 
→ ρ−ε M is monotone decreasing (although not strictly
decreasing, since ρ−ε M = 0 for ε ≥ ||M ||, for example) and continuous for each fixed M , so the
composition a 
→ ρ−n(a)M0 will generally be continuous and monotone decreasing, provided n is

continuous and increasing. As such, assuming ρ−n(a)M0 can be computed, Algorithm 4.1 and

subsequent discussions can be adapted to the present case of unstable impulsive systems. We
will not delve further into the problem at this time.

4.3 The time-scale tolerance for general homogeneous linear systems

If (2) is not periodic, one can abstractly define the time-scale tolerance via exponential di-
chotomies. For brevity, in this section, the symbol E(ϕ, a) will refer to the impulse extension
equation for (2) induced by (ϕ, a). In this section, without loss of generality, we take τ0 = 0 .

Definition 4.6. The impulse extension equation E(ϕ, a) posesses an exponential dichotomy if
there exists a projector P such that the fundamental matrix solution of E(ϕ, a), denoted U(t)
and satisfying U(0) = I, satisfies the inequalities

||U(t)PU−1(s)|| ≤ Ke−α(t−s) s ≤ t < ∞ (57)

||U(t)(I − P )U−1(s)|| ≤ Le−β(s−t) s ≥ t > −∞ (58)

for positive constants α, β,K,L, whenever s ∈ P(ϕ, a). In this case, we will write E(ϕ, a) ∼ P .

Definition 4.7. Suppose (2) posesses an exponential dichotomy with projector P0. Let a uniform
exponential regulator R = (σ,w) for (2) be given. The R-stable and R-unstable sets are defined
as follows.

Es(R) = {a ∈ S∗ : ∀ϕ ∈ R, ∃P : E(ϕ, a) ∼ P, rank(P ) = n} (59)

Eu(R) = {a ∈ S∗ : ∀ϕ ∈ R, ∃P : E(ϕ, a) ∼ P, rank(I − P ) ≥ 1} . (60)

By construction, Es(R) and Eu(R) are disjoint.

Definition 4.8. Let R be a uniform exponential regulator for (2). The R-time-scale tolerance
is the number

Et(R) = sup{||a|| : a ∈ B||a||(0) ∩ S∗ ⊆ Es(R) ∨ Eu(R)} (61)

provided it is positive, where the notation X ⊆ Y ∨ Z is understood as X ⊆ Y ∨X ⊆ Z.

With the above definition, we clearly see that the defining property of the R-time-scale
tolerance has been maintained: if ||a||∞ < Et(R), then, for all ϕ ∈ R, the stable subspace of
E(ϕ, a) is n-dimensional (recall the phase space is R

n) if and only if the same is true for the
stable subspace of the impulsive differential equation (2). That is, E(ϕ, a) and (2) have the same
stability classification. Therefore the above definition generalizes the associated definitions for
periodic equations. Study of the existence of the above generalized time-scale tolerance will not
be considered in this article.
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4.3.1 A consequence of Theorem 3.2

Theorem 3.2 suggests a method by which a time-scale tolerance can be defined for certain classes
of asymptotically stable aperiodic systems, independent of whether or not they posess exponential
dichotomies.

Theorem 4.2. Let R denote a set of impulse extensions for (2) such that, for all ϕ ∈ R,
conditions A3 and A4 of Theorem 3.2 hold for all a ∈ S∗, with uniform (σ,w)-regularity in
the mean. Assume also that conditions A1, A2 and A5 of Theorem 3.2 are satisfied. For all
t0 ∈ R, there exists δ(R) > 0 such that, for all ϕ ∈ R, the impulse extension equation E(ϕ, a)
is asymptotically stable at t0 and uniformly attracting on R whenever ||a||∞ < δ(R). If Et(R)
exists, then Et(R) ≤ δ(R).

Proof. If one examines the proof of Theorem 3.2, one will notice that the functional representation
of ϕ is never used; only the upper bounds in (20) are needed. Since we have removed the
restriction that the bounds are only satisfied in the limit as a → 0, the conclusions of the
theorem hold uniformly for all ϕ ∈ R. It follows that there exists δ > 0 such that, if ||a||∞ < δ,
E(ϕ, a) is asymptotically stable on P(ϕ, a), for all ϕ ∈ R. Taking the supremum of all such δ > 0
produces δ(R) > 0.

Suppose Et(R) exists. We must have BEt(R)(0) ∩ S∗ ⊆ Es(R); otherwise, there would exist
ϕ ∈ R and arbitrarily small a ∈ S∗ with E(ϕ, a) ∼ P such that rank(I − P ) ≥ 1, which would
contradict the asymptotic stability of E(ϕ, a) for ||a||∞ < δ(R). But this implies that, for all
a ∈ S∗ with ||a|| < Et(R), we have E(ϕ, a) ∼ P with rank(P ) = n, which implies E(ϕ, a) is
asymptotically stable. By definition of δ(R), we obtain Et(R) ≤ δ(R).

As the above theorem demonstrates, under certain conditions, we can define a time-scale
tolerance that is, to a certain extent, more optimal than the one provided by Definition 4.7,
without resorting to discussions of exponential dichotomies.

4.4 A physical interpretation of uniform exponential regulators

In practice, to compute the time-scale tolerance for a given impulsive differential equation, one
must first select a uniform exponential regulator, R = (σ,w). There is not much choice over
the sequence σ, since the time-scale tolerance may not exist if we do not have σ ∈ {σA, σF }.
However, there is much freedom in the choice of w. Recall that the uniform exponential regulator
is characterized by inequality (29), which we can write more suggestively as∣∣∣∣∣∣ϕk(t, a)− ϕk(t, a)

∣∣∣∣∣∣ ≤ wk(t, a)

eσkak − 1
≡ δ(t, a, wk),

where ϕk(t, a) is the mean of ϕk(t, a) on Sk(a). As such, the quantity on the right of the inequality
represents a functional upper bound for the deviation of ϕk from the mean, on the interval in
which the vector field (2) calls it.

For homogeneous systems, we have a fairly simple characterization. If, on the interval Sk(a),
the system evolves according to the differential equation

x′ = A(t)x+ ϕk(t, a)x(τk),

then the solution satisfies

x(t) = x(t;xk) + err(t, R)xk,
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where x(t;xk) is the solution of the IVP

x′ = A(t)x+
1

ak
Bkx(τk), x(τk) = xk

and err(t, R) satisfies the inequality

||err(t, R)|| ≤
∫ t

τk

||X−1(s)||wk(s, a)

eσkak − 1
ds,

where X ′ = A(t)X and X(τk) = I. Interpreting x(t;xk) as the solution of the “impulsively
averaged” impulse extension equation, the difference between the true solution, x(t;xk), and the
solution of the averaged equation, x(t;xk), is at most ||err(t, R)||xk in norm. When σ = {σk} is
chosen properly (see Theorem 3.1 and associated corollaries), the error tends to zero as a → 0.

From the point of view of applications, this suggests that if ϕk represents some sort of external
forcing to the system being modelled, and the forcing acts as a constant under optimal conditions
on the duration of the forcing, then one would expect to have δ(t, a, wk) ≈ 0 for t ∈ Sk(a)
whenever ak ≥ rk and [rk,Δτk] is the optimal operational range of the forcing function.

If the forcing function is subject to increased error in operation if the duration of the control
is less than the minimum of its optimal operational range, one should further expect to have
ak 
→ δ(t, ak, wk) be strictly decreasing.

If the error associated to the forcing function is ultimately bounded, one would propose

lim sup
ak→0+

||δ(t, ak, wk)||Sk(a)

to be finite. On the other hand, if the error of the forcing function is unbounded or, for physical
reasons, some range ak ∈ [τk, τk + qk] of durations of impulse effect is not physically attainable
(e.g. the forcing function represents the effect of a physical component on the system and is bound
by physical constraints), then it would be expected that the above limit superior be infinity.

As such, for different applications, a different choice of w might be more appropriate. One
family of functions for which the above limit superior is infinity is given by

wk(a) = Ck(t, ak) · a1/γk ,

where Ck(t, ak) is a continuous and positive on [τk, τk+1]× [0,Δτk] and γ > 1. Choosing Ck and
γ carefully, one can ensure the desired monotonicity properties of δ.

5 Discussion

In Section 3, families of (σ,w)-regulated impulse extensions are introduced. It was shown (The-
orem 3.1) that the solutions of the impulse extension equation for (1) induced by (ϕ, a) converge
pointwise to the associated solution of the impulsive differential equation as ||a||∞ → 0, provided
ϕ is (σ,w)-regulated. Uniform convergence is also shown to be possible on particular bounded
sets. In all cases, the sequence σ must be chosen carefully, but, under certain conditions (Corol-
lary 3.1.2), it can be chosen to be a constant.

Following this, we specialized to periodic equations. Corollary 3.1.3 demonstrated that Flo-
quet multipliers converge to those of the associated impulsive system as the step sequence a
becomes small, provided the impulse extension equation is generated by a (σ,w)-regulated fam-
ily of impulse extensions. Finally, we provided a constructive result for general, aperiodic systems
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(Theorem 3.2), where the proof was based on Gronwall’s inequality and estimations of infinite
products.

Section 4 defined the time-scale tolerance, first for asymptotically stable periodic systems
(Section 4.1), where an algorithm was provided to compute a lower bound (Algorithm 4.1). This
algorithm was discussed in Section 4.1.2, where two methods were suggested to solve a particular
optimization problem that is needed to implement the algorithm.

Next, the time-scale tolerance was defined for unstable periodic impulse systems (Section
4.2) for which the monodromy matrix, M0, satisfied ρM0 > 1. This problem is more difficult to
solve than for asymptotically stable systems, although, assuming one can efficiently minimize the
spectral radius map over a compact convex set, Algorithm 4.1 could be adapted to the unstable
case.

Finally, we defined the time-scale tolerance for general homogeneous linear systems (Section
4.3) by means of exponential dichotomies. The resulting time-scale tolerance exhibits the same
“stability threshold” properties as the analogous specific definitions for periodic systems. Using
Theorem 3.2, we proved that, under certain circumstances, one can define a stability threshold
for asymptotically stable impulsive systems independently of exponential dichotomies (Theorem
4.2), and the threshold is, in a particular sense, “better” than the time-scale tolerance defined
by exponential dichotomies.

All time-scale tolerances are defined with respect to a uniform exponential regulator (Defini-
tion 4.1). In Section 4.4, we discussed how uniform exponential regulators should be selected in
applications, and their physical interpretation.
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Figure 1: Plots of μa−1 on four different scales, with 4000 sample points. Notice that oscillation
is more easily seen on the smaller scales. This is to be expected, as the amplitude is essentially
a fifth-order polynomial in a. This figure appears in [5].
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Figure 2: Plot of a (theoretical, for illustrative purposes only) hypersurface, n(a) = h, with n
continuous and monotone strictly increasing, and c = 2 impulses per period. The piecewise-
constant under-approximation, p(a0), generated by a grid with 9 cells, is plotted (thin dotted
black line), and the point that generates the lower estimate for the time-scale tolerance is indi-
cated by a star. All points a = (a0, a1) within the interior of the disc (grey line) with radius

r = ||a(9)|| < Êt(R) (notice that the inequality is strict because the disc does not intersect the
hypersurface) would satisfy the inequality ρ(R, a) < 1. Also, one can see that the upper bound
provided by (49)–(50) is not very conservative in this case; the bound can certainly be improved,
although the notation gets cumbersome.
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