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Abstract 
 

The conversion of carbon dioxide (CO2) to synthetic fuels and chemicals is seen as a 

promising approach for reducing greenhouse gas emissions. Syngas (a mixture of CO and 

H2) that can be obtained from CO2 via the reverse water gas shift (RWGS) reaction can be 

further processed through the Fischer Tropsch process to produce higher hydrocarbons. 

Synthetic natural gas (CH4) produced from the Sabatier reaction can help reducing 

consumption of fossil fuel and also can serve as an energy reservoir for renewable 

electricity via power-to-gas. However, utilization of the abovementioned reaction 

pathways is still limited due to various challenges including catalyst activity, selectivity, 

and stability. This thesis focuses on the development of catalytic materials for the RWGS 

and Sabatier reactions. 

The first part of this thesis first focuses on a literature overview of recent developments 

in CO2 conversion through the RWGS and Sabatier reaction. Then, the experimental setup, 

catalyst synthesis procedures, catalytic performance evaluation, and characterization 

techniques are outlined. 

The second part discusses the results of the two transition metal carbides tested, namely 

molybdenum carbide (Mo2C) and cobalt carbide (Co2C). The catalytic performance of 

these catalysts was evaluated as a function of operation parameters for different synthesis 

procedures. The mechanisms of catalytic reactions are postulated and catalyst 

characterization results are provided. 

To briefly outline the most important findings, the Mo2C catalyst showed nearly 

complete selectivity towards CO formation at all temperatures tested, whereas the Co2C 
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catalyst appeared to be highly selective towards CH4 formation. The performance of the 

corresponding metal oxides are also evaluated to evaluate the effect of carburization on the 

performance of the catalyst. The transitions metal oxides of molybdenum and cobalt both 

showed a substantial improvement in both conversion and selectivity after the carburization 

process. The performance of the catalysts supported on Al2O3 at a 1:4 metal-to-support 

basis was also analyzed. During the stability tests of supported catalysts, CO2 conversions 

of 84% and 74% were recorded over the Mo2C and Co2C catalysts, respectively, with a 

negligible drop in catalytic performance after 42 and 64 h time on stream.  
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Chapter 1  

Introduction 
 

1.1 Background 
 

Climate change due to anthropogenic activities has been a topic of research interest due 

to its potential adverse impacts on everyday life. Reduction of greenhouse gases such as 

carbon dioxide, which forms a significant share of the overall greenhouse gas emissions, 

is seen as a vital step to mitigate the effects of climate change [1]. The current avenues 

explored to reduce atmospheric CO2 levels include CO2 sequestration, increasing 

contribution of renewable energy sources to the power grid and CO2 utilization for 

processing new synthetic chemicals. Carbon sequestration, which involves the capture and 

storage of CO2, is often limited by the overall financial cost of the project and high energy 

requirements [2]. Conversion of CO2 into synthetic fuels and chemicals is an attractive 

alternative to CO2 sequestration. Electrochemical and photocatalytic reduction, biological 

conversion and thermocatalytic reduction are the current pathways to produce synthetic 

chemical and fuels from CO2.  

Research in the electrochemical conversion of CO2 is more focused on the production 

of fine chemicals such as urea and formate [3, 4]. This approach is promising but the 

potential impact on the atmospheric CO2 levels is relatively small because of the limited 

market for fine chemicals. Photocatalytic and biological methods still require significant 

research to improve product yield and process efficiency. Thermocatalytic reduction is 

currently the most viable option as it is more advantageous in terms of kinetics and has 

higher product throughput [5]. The chemical products from thermocatalytic CO2 
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hydrogenation can be categorized into three classes based on products, namely methanol, 

hydrocarbons, and carbon monoxide (CO) [6]. 

The reverse water gas shift reaction, Eq. (1), involving the reduction of CO2 into CO, 

is an attractive option for CO2 conversion as the syngas produced can be then used as a 

feedstock for either the Fischer Tropsch process, Eq. (2), or methanol synthesis, Eq. (3): 

2 2 2CO H CO H                                       298 41 kJ/molH                                    (1) 

2 2 2 2(2 1) n nn H nCO C H nH O               298 162.50 kJ/molH                           (2) 

2 32CO H CH OH                                       298 90.84 kJ/molH                              (3) 

The Sabatier reaction represented by Eq. (4), which is often accompanied by CO 

methanation Eq. (5), is seen as another possible avenue for CO2 utilization for the 

production of synthetic natural gas, which can then be distributed through the existing 

natural gas infrastructure. 

2 2 4 24 2CO H CH H O                   298 164.9 kJ/molH                                      (4) 

2 4 23CO H CH H O                   298 206.1 kJ/molH                                      (5) 

Catalysts  which have shown to have high activity for CO2 hydrogenation are precious 

metals and group VIII transition metals (Co, Ni and Cu) [7, 8]. Although precious metals 

have excellent activity and stability, they are often not commercially viable due to high 

costs [7]. Group VIII transition metals find more application in commercial catalytic 

processes due to their low cost and reasonably high activity and as such, these catalysts are 

seen as an attractive option for CO2 utilization [8]. 
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Recently transition metal carbides have been explored as potential catalysts for CO2 

hydrogenation due to similarities in their electronic structures to those of precious metals, 

providing high catalytic activity in reforming [9], CO2 hydrogenation [10,11], water gas 

shift reaction [12,13], and  CO hydrogenation [14,15]. In particular, Mo2C has been of 

particular interest due to its low cost and dual functionality for H2 dissociation and CO2 

scission [16]. 

Research into other transition metal carbides were often limited due to the assumption 

that metal carbide species were either catalytically inactive or contributed to the 

deactivation of the catalyst [17]. Formation of metal carbide was often associated with the 

deactivation of catalyst in the Fischer Tropsch process with chain length assumed to reduce 

with formation of carbide species on the surface [18]. However, recent investigation into 

Co2C for alcohol synthesis via the Fischer Tropsch process showed remarkable activity 

and selectivity. The activity of the catalyst was attributed to the non-dissociative CO 

adsorption similar to noble group metals, whereas Co is more active for dissociative CO 

adsorption and subsequent chain growth [19].  

Research into these groups of catalytic materials is still lacking with only preliminary 

understanding of the mechanism involved. The catalytic hydrogenation of CO2 for 

transition metal carbides is currently limited to research on Mo2C with activity of other 

metal carbides yet to be explored. The effect of the preparation conditions on the activity 

is also not well understood often resulting in varied results for transition metal carbides 

prepared using different preparation procedures. Activation and deactivation mechanism 

of these catalysts also needs to be further explored. 
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1.2 Aims and objectives 
 

The overall objective of this thesis is to develop suitable transition metal carbide 

catalysts for the RWGS and Sabatier reactions. The first goal is to achieve CO2 conversions 

close to equilibrium values, selectivity above 90% (to either CO or CH4), and good stability 

at elevated space velocities (high throughput). The second goal is to deduce reaction 

mechanisms and pathways. 

The above mentioned objectives were achieved using the following methodology: 

1. Conducting catalytic performance evaluation of Mo2C and Co2C catalysts in the 

RWGS and Sabatier reactions using a range of operating conditions (pressure, 

temperature, and feed rate). 

2. Conducting catalytic performance evaluation of the corresponding metal oxides to 

investigate the effect of carburization (converting oxide to carbide) on the catalyst 

activity, selectivity, and stability. 

3. Modifying the catalyst synthesis procedure to investigate the effects of preparation 

conditions on the catalyst performance under varying operating conditions. 

4. Conducting catalyst characterization using analytical techniques (XRD, TEM etc.) 

and temperature programmed reactions to deduce possible reaction mechanisms. 
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Chapter 2  

Literature review 
 

2.1 The reverse water-gas shift reactions 
 

The water gas shift reaction (WGS) was first discovered in 1888 [20]. This reaction 

produces hydrogen (H2) and is currently used in large-scale industrial processes for the 

synthesis of ammonia. The reverse water gas shift (RWGS) reaction was initially 

considered as an undesirable reaction due to the formation of CO, which can affect some 

systems. As a result, catalyst for the WGS reaction were designed to work at low 

temperatures to avoid CO formation.  

Recently, the RWGS reaction was considered as a key step in the utilization of CO2 

and estimated to be a more efficient way to produce liquid fuels as the process can be 

integrated with current technologies for thermocatalytic conversions [21]. In order to 

achieve high conversion for the RWGS reaction it should optimally be run at high 

temperatures due to the endothermic nature of the reaction and the high stability of CO2. 

At higher temperatures, however, the reaction is limited by deactivation due to coking and 

sintering. The equilibrium can be shifted towards CO formation by changing feed 

composition. At high H2:CO2 feed ratio more CO2 is consumed although this approach 

increases the operational cost associated with separation of H2 from the product stream 

[22]. Other alternatives to shift the equilibrium include selective removal of the water being 

formed by using a desiccant bed or a membrane permselective to water [23]. 

 



6 
 

2.1.1 Catalysts for the reverse water-gas shift reaction 
 

Noble metal catalysts: 

Noble metals such as Pt, Pd, and Rh supported on various supports such as Al2O3, ZrO2, 

TiO2, and CeO2 have been found to be active for the RWGS reaction. 1% Pt/Al2O3 achieved 

42% CO2 at 875C at a H2:CO2 of 3:2.1 and at a GHSV of 25,000 ml/(g h). The activity of 

the 1% Pt/Al2O3 was also tested against a 1% Pt/TiO2 to understand the effect of the support 

on catalytic performance. The higher activity of the Pt/TiO2 catalyst was explained as result 

of the formation Pt-Ov-Ti3+ site formed on the Pt/TiO2 catalyst due to the reducible 

characteristics of the TiO2 support [24]. Pettigrew et al. conducted studies on Pd on various 

supports (CeO2, Al2O3, La2O3 and PrO2) for the RWGS reaction. They have found that Pd 

supported on ceria showed higher reaction rates than the other supports due to strong metal-

support interactions [25]. Goguet et al. suggested high CO concentration caused increasing 

carbon deposition on the catalyst surface by conducting temperature programmed 

oxidation (TPO) experiments on 2% Pt/CeO2 catalyst [26]. CO2 conversion over Pd-based 

membrane was found to achieve 10% at 723 K and H2:CO2=3, and operating pressure was 

found to have a strong impact on CO2 conversion [27]. 

Transition metal catalysts: 

Commercial WGS reaction catalysts are often studied for the RWGS reaction due to 

the reversibility of the reaction. Commercial WGS catalysts such as Cu/ZnO have good 

activity for the RWGS reaction. Due to its high selectivity to CO production, 

CuO/ZnO/Al2O3 was investigated as a catalyst for the RWGS reaction. Despite the 
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advantage of low cost of this catalyst, its activity and stability are poor, especially at high 

temperatures required for the endothermic RWGS reaction.  

In order to extend the lifetime of the Cu-ZnO based catalysts, a substantial amount of 

work has been done on studying the effects of different supports on the catalytic 

performance. Al2O3, Ga2O3, ZrO2 and Cr2O3 were all found to improve catalytic 

performance of Cu-ZnO. Al2O3 and ZrO2 increased the catalytic activity by improving Cu 

nanoparticles dispersion, while Ga2O3 and Cr2O3 have been found to increase the specific 

activity per unit of Cu surface area. Stability of the Cu-ZnO catalyst can also been improved 

by adsorbing small amounts of colloidal silica on Cu-ZnO precipitate during preparation. 

An interesting fact is that this catalyst showed stability for 500 h for methanol synthesis 

[28]. 

Ni and Co have also been explored as active phases for the RWGS reaction but they 

are more selective towards CH4 formation via the methanation reactions, Eqs (4, 5). Also, 

these catalysts are prone to deactivation by coking at high temperatures that can occur via 

the following reactions: 

22CO C CO                            298 173.3 /H kJ mol                                                          (6) 

2 2CO H C H O                   298 131.3 /H kJ mol                                                          (7) 

Catalysts based on transition metal carbides: 

Transition metal carbides are an attractive, low cost alternative, as their surfaces have 

electronic configurations similar to those of some precious metals, providing high catalytic 

activity in reforming [29], CO2 methanation [30], water gas shift reaction [31-32], and CO 
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hydrogenation [33-34]. Molybdenum carbide (Mo2C) is of particular interest due to its dual 

functionality for H2 dissociation and CO2 scission [35]. Mo2C has been recently studied as 

a catalyst for the RWGS reaction [35-37]. The performance of the Mo2C catalyst prepared 

by carburizing in C2H4 at 700 K in the RWGS reaction was found to be superior to Pt and 

Pd in terms of both conversion and selectivity [35]. In another work, Mo2C nanowires 

synthesized via calcining the ammonium heptamolydate/aniline co-precipitate provided 

CO2 conversion greater than 60% at 873 K and GHSV of 36,000 ml/(g h). The catalyst had 

100% selectivity to CO at H2:CO2 molar ratio of 4. The selectivity to CO production was 

maintained for 20 h at 873 K at a space velocity of 240,000 ml/(g h) and H2:CO2 molar 

ratio of 1, although the conversion dropped to 28% [36].  

While these recent findings are promising, further investigation is necessary to evaluate 

the applicability of Mo2C as a catalyst for the RWGS reaction. In particular, it is required 

to study in more detail the Mo2C-catalyzed RWGS reaction at high CO2 conversions, which 

is more relevant to industrial applications. Recent studies mainly focus on the low 

temperature range when CO2 conversion is less than 30% [37]. Also, it is necessary to 

investigate the catalytic performance in a wide range of space velocities and to analyze the 

extent of catalyst deactivation at high temperatures and over extended time on stream. 

More insight into the RWGS reaction mechanisms over Mo2C is also required.  

2.1.2 Mechanisms of the reverse water-gas shift reactions 

The exact mechanism of the RWGS reaction is still being debated. The two commonly 

accepted mechanisms are the surface redox and the associative/formate decomposition 

mechanism. The surface redox mechanism occurs by the dissociative adsorption of CO2 

giving a surface bound CO and O atom. The H2 present in the reaction mixture also 
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undergoes dissociative adsorption to form surface H species which then react with the O 

species present on the surface to form H2O and CO2 that desorbs from the surface. The 

reactions involved in the process can be summarized as follows [38]: 

                                                             

2( )

( )

2( )

2

2 2 ( )

2

g a a

a g

g a

a a a

a a a

a g

CO CO O

CO CO

H H

H O OH

H OH H O

H O H O



















                                             (8) 

Despite much research it still remains unclear as to the precise mechanism of OHa 

formation. It is either the elementary step shown above in Eq. 8 or the H2O catalyzed 

process shown in Eq. 9 [38]. 

                                                            

2

2

2

Net:   

a a a

a a

a a a

H O O OH

H OH H O

H O OH













                                         (9) 

Various mechanistic studies have been done on the Cu/ZnO catalyst for understanding 

steps involved in the formation of products. For the redox mechanism, the concept of the 

oxidation and reduction cycle was suggested. In this mechanism CO2 was oxidized by 

Cu(0) to form CO and surface bound O. Gas phase H2 dissociatively adsorbs on the catalyst 
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to form surface H that reacts with the bound O to form H2O. The two species then desorb 

from the surface. H2 from the feed acts as a reducing agent for the Cu2O formed. Oxidation 

of the surface with CO2 was determined to be the rate-determining step [39]. Redox 

mechanism is supported by the findings of Hadden et al. who showed that CO can be 

formed from CO2 on the surface of Cu without the addition of any H2 to the reactant gas 

mixture, whereas the formate mechanism cannot account for the CO formation in the 

absence of H2 [40]. Kinetic studies conducted by Ernst et al. match well the experimental 

work further supporting the redox mechanism [38]. 

In the formate decomposition mechanism model, the CO is assumed to be formed as a 

result of the decomposition of formate intermediates formed as a result of association of 

CO2 with H2. Some researcher favor the formate decomposition mechanism. It has been 

reported that CO production rate increases with the concentration of formate species on 

Cu/SiO2 catalyst, indicating the formation of formate species play an important role in CO 

formation [41]. The mechanism is summarized as follows [42]: 

                                                           

2( )

2( )

2

2 2 ( )

2g a

g a a

a a a

a a a a

a a a

a g

H H

CO H HCOO

HCOO CO OH

OH H CO OH

OH H H O

H O H O





 















                                   (10) 
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Rate expressions based on the formate mechanism tend to fit well experimental results 

in a majority of cases [42], whereas the redox-based kinetics typically cannot be used to 

explain the observed behavior [41]. In order to explain the limitations of both mechanisms, 

it has been suggested that both can occur simultaneously [40]. Another suggested 

mechanism involves the formation of carbonate species which then reacts with surface H 

to from CO and surface hydroxide species [43-44]. The mechanism is summarized as 

follows [44]: 

                                                           

2
2 ( ) ( )

2 2
2( ) 3

2
3 2( )

2( )

2

2

2

2

2

2

a g a

g a a

a g a a

g a

a a a

a a a

OH H O O

CO O CO

CO H CO OH

H H

O H H O

OH H H O

 

 

 





 

















                         (11) 

This hypothesis is still unproven as there is no enough evidence supporting it. Some 

studies, e.g., a study of Pt/CeO2 by Goguet et al. support this mechanism. The rate 

determining step in their work was found to be the formation of a reaction intermediate not 

involving the presence of H, most likely a carbonate [45]. 

2.2 Sabatier reaction (CO2 methanation) 
 

The Sabatier reaction represented by Eq. (4) is seen as a possible avenue for CO2 

utilization for the production of synthetic natural gas (SNG), sometimes called renewable 
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natural gas (RNG), which can then be distributed through the existing natural gas 

infrastructure [46]. The reaction is highly exothermic and is typically accompanied by the 

RWGS reaction and CO methanation, Eqs (1, 5). 

The Sabatier reaction has also been proposed as a method to upgrade landfill gas 

although the economic feasibility of this approach is still being investigated [47]. This 

reaction was also considered as a method to store excess energy from renewable energy 

sources by the power to gas process [48]. In addition, The National Aeronautics and Space 

Administration (NASA) has identified the Sabatier reaction as an important process for 

future manned space colonization of mars [49-50]. 

 

Figure 1: Sabatier reactor design with molten salt cooling [5]. 
 

CO2 methanation is a thermodynamically favorable process (ΔG°298 = –164.9kJ/mol). 

However, the reaction requires a suitable catalyst to overcome the kinetic limitation 

associated with reducing CO2 to CH4. The Sabatier reaction favors low temperatures and 

high pressures, although it is challenging to attain equilibrium conversions at lower 

temperatures. On the other hand, higher temperature operation leads to the deactivation of 
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catalyst through coking and sintering. To maintain the reactor at relatively low temperature, 

proper cooling is required for the Sabatier reactor. A new reactor design for Sabatier 

reaction was proposed, Fig. 1. The simulation results indicated that the heat removal was 

efficient thus CH4 production could be maximized and catalyst deactivation could be 

further suppressed [51]. 

2.2.1 Catalysts for the Sabatier reaction 

Ni based catalysts: 

Ni based catalysts are the most commonly studied catalysts for the Sabatier reaction, 

due to low cost and good activity [52]. CO2 conversion and CH4 selectivity of 20 wt% 

Ni/Al2O3 catalyst are around 81% and 96% respectively under 400C and 55,000 h-1 [53]. 

Al2O3 based supports are most commonly used for Ni catalyst due to the strong interaction 

between Ni and Al2O3 leading to the formation of mixed oxides such as NiAl2O4 which 

can prevents the reduction of Ni and hence improves catalytic performance [54]. 

The effect of metal loading was studied by Kester et al. who showed that Ni and Al2O3 

interact to form two different active sites for methanation, one consisting of Ni crystallites 

and the other of mixed Ni and Al2O3. The mixed Ni and Al2O3 sites reduces with increased 

metal loading [54]. Mengdie et al. studied the addition of ZrO2 to Ni supported on Al2O3. 

The ZrO2 was found to improve the activity and stability of the catalyst by improving the 

dispersion of Ni and preventing the formation of mixed Ni-Al2O3 [55]. 

Supports such as SiO2 and MgO were also studied showing generally good 

performance when operated for short durations [56-57]. Despite the abovementioned 

advantages, the implementation of Ni-based catalysts for CO2 methanation is limited 
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because of high tendency to deactivation by poisoning, coking and sintering [58]. 

Poisoning of Ni catalysts typically occurs due to the presence of sulphur compounds in the 

feed gas stream [58, 59]. Sintering also plays an important role in the deactivation of Ni-

based catalysts. Studies have indicated that Ni sintering proceeds by chemical sintering, 

via the formation of Ni(CO)4 [60]. 

While operating at relatively low temperatures typically employed in CO2 methanation 

(700-800 K) and in the absence of sulphur (can be removed from feed gas by adsorbents), 

catalytic activity of Ni is mainly reduced by coking. Carbon deposition deactivates the 

catalyst by fouling the catalyst surface, blocking  catalyst pores and disintegrating the 

catalyst support [58]. The three major forms of carbon deposited on Ni catalysts are 

encapsulating hydrocarbons films formed by polymerization at temperatures below 750 K, 

whiskerlike carbon formed at temperatures higher than 725 K, and pyrolytic carbon formed 

by cracking of hydrocarbons above 875 K [58]. The most thermodynamically probable 

reactions involved in carbon deposition in the methanation process are CH4 cracking, Eq. 

(12), Boudouard reaction, Eq. (6), and CO reduction (reverse gasification), Eq. (7)  [61]: 

4 2 298CH   C + 2H                         H 74.8 kJ/mol             (12) 

Noble metal based catalysts: 

Ru has the highest catalytic activity for the Sabatier reaction. CO2 conversion of 100% 

with almost complete selectivity towards the Sabatier reaction were achieved for 0.8wt% 

Ru/TiO2 at a H2/CO2=4, P =0.1MPa at 160°C at a GHSV of 0.24 ml/(g s) [62]. 5wt% 

Ru/Al2O3 showed CO2 conversion of 55% and CH4 selectivity of 95% at 350C and 

H2:CO2 = 3 [63]. When the effect of Ru loading ranging from 0.1-5wt% on Al2O3 were 
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tested. The high dispersion found at lower metal loadings improved selectivity towards CO 

[64]. 

 Apart from Ru, other noble metals such as Pt and Pd have also shown good activity 

towards the Sabatier reaction [65-66]. Solymosi et al. tested the performance of various 

noble metals and arranged the activity of the metals in the following order: Ru > Rh ~Ir ~ 

Pd [67]. Lizuka et al. tested the performance of Rh on various catalyst supports. Rh 

supported on ZrO2 had the highest CO2 conversions at 85% at 240C at a CO2:H2=1/10 and 

GHSV=36,000 h-1. Rh supported on Al2O3 and SiO2 showed only 40.6% and 19% CO2 

conversion at the same operating conditions. The higher activity of the Rh/ZrO2 was 

associated with the faster dissociation of CO intermediates on the surface as compared to 

other supports [68]. 

Transition metal carbides: 

Molybdenum carbide (Mo2C) is currently the most intensively researched metal 

carbide for the hydrogenation of CO2 due to its low cost and dual functionality for H2 

dissociation and CO2 scission [35]. However, Mo2C is more active for the RWGS reaction 

with methane being formed more as a side product. Research into other transition metal 

carbides was often limited due to the assumption that metal carbide species were either 

catalytically inactive or contributed to the deactivation of the catalyst [69]. Formation of 

metal carbide was often associated with the deactivation of catalyst in the Fischer Tropsch 

process with chain length assumed to reduce with formation of carbide species on the 

surface. However, reduction of Co2C in H2 after carburization was found to significantly 

increase activity of cobalt catalysts in the Fischer Tropsch process due to changes in the 
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crystalline structure of the material facilitated by the carburization of Co metal [70]. Recent 

investigation into Co2C for alcohol synthesis via the Fischer Tropsch process showed 

remarkable activity and selectivity. The activity of the catalyst was attributed to the non-

dissociative CO adsorption similar to noble group metals, whereas Co is more active for 

dissociative CO adsorption and subsequent chain growth [71].  

2.2.2 Mechanisms of the Sabatier reaction 

The mechanism for CO2 methanation is considered to generally follow two pathways. 

The first pathway involves the reduction of CO2 to CO (RWGS), followed by the 

methanation of CO [72,73]:  

                                                           

2( )

2,

2, 4,

2

2

g a a

a a a

a a a

a a a

a a a

a a g

CO CO O

CO C O

CO C O

C H CH

CH H CH

CH H CH



 

 

 

 

 



                                          (13) 

For the first pathway the CO intermediate may either undergo hydrogenation to CHx 

species as seen on Ru/TiO2 or proceed to form surface carbon which is consequently 

hydrogenated to form CH4 as in the case Ni Catalysts [76,77]. The second pathway 

involves the direct reaction of CO2 and H2 at the catalyst surface without the formation of 

the CO intermediate [74,75]:  



17 
 

 

Figure 2:CO2 hydrogenation over Pd-MgO [78]. 
 

Catalysts such as Pd-MgO2 seem to follow the second pathway were the CO2 reacts to form 

a surface carbonate and residual carbon species. The Pd then hydrogenates the surface 

carbonate species by supplying dissociated hydrogen at the surface [78]. 
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Chapter 3 

Experimental setup 
 

3.1 Catalyst synthesis 
 

Molybdenum carbide catalyst: 

21.25wt% Mo2C/-Al2O3 was synthesized using ammonium heptamolybdate 

tetrahydtrate (99% (NH)4Mo7O244 H2O, Alfa Aesar) and commercial -Al2O3 support 

(250 m2/g -Al2O3, Alfa Aesar) as precursors. The  -Al2O3 support was crushed and sieved 

into particles (250-425 m) and added to the (NH)4Mo7O244H2O solution in deionized 

water adjusting for a 1:4 weight ratio of Mo:-Al2O3. The resulted slurry was stirred for 2 

h and dried at 80C overnight. The precipitate was calcined at 500°C for 4 h to produce 

MoO3/-Al2O3.  

To synthesize Mo2C/-Al2O3, the supported MoO3 was carburized in a quartz tube 

under the flow of H2:CH4 with a molar ratio of 4:1 (500 ml/min total flow rate). The heating 

rate was 10/min for 20-150C and 1/min for 150-800C. The sample was then held at 

800C for 2 h under the same H2:CH4 flow followed by reduction in H2 (100 ml/min) for 

1 h and cooling down to room temperature under N2 (500 ml/min). Low temperature 

carburization was carried out using a H2:C2H6 mixture (9:1, 500 ml/min) with a heating 

rate of 10/min for 20-250C and 1/min for 250-650C. The sample was then held at 

650C for 2 h, reduced in H2 (100 ml/min) for 1 h and cooled down to room temperature 

under N2 (500 ml/min). Bulk Mo2C was prepared using the identical procedure excluding 
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the addition of -Al2O3, using either H2:CH4 or H2:CH4 for carburization (as described 

above). 

Cobalt carbide catalyst: 

22wt% Co2C/-Al2O3 was prepared by dissolving cobalt (II) nitrate hexahydrate 

(Co(NO3)2.6 H2O) in deionized water. Crushed and sieved -Al2O3 was then added to this 

solution in a 1:4 weight ratio of Co:-Al2O3. The solution was stirred using a magnetic 

stirrer for 2 h. After stirring, the solution was dried at 80C overnight. The residue was 

then collected and calcined in a furnace at 550C for 4 h to produce 25.42% CoOx/-Al2O3. 

25.42% CoOx/-Al2O3 is then carburized in a quartz tube in either a high temperature 

carburization mixture of hydrogen/methane in a molar ratio of 4:1 or in a low temperature 

carburization mixture of hydrogen/ethane in a molar ratio of 9:1.  

High temperature carburization is carried at a flow rate of 0.5 L /min at a heating rate 

of 10C/min from 20C to 250C followed by a heating rate of 1C/min from 250C to 

800C. The sample was then held at this temperature for 2 h. The catalyst was then cooled 

to room temperature under nitrogen. Low temperature carburization was carried out at a 

total flow rate of 0.5 L/min in a hydrogen/ethane mixture of 9:1 at a heating rate of 10C 

min from 20C to 250C followed by a heating rate of 1C/min from 250C-650C. The 
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sample was then held at this temperature for 2 h followed by reduction in hydrogen for 1 

h. The catalyst was then cooled to room temperature in nitrogen flow.  

3.2 Flow system setup  

The experimental setup for catalytic performance evaluation is shown in Fig. 2. The CO2 

and H2 fed to the reactor was controlled by two mass flow controllers. A 1/4″ stainless steel 

union tee (Swagelok) was used as a reactor, which was connected to a 1/4″ stainless steel 

tubing on both sides (Swagelok). The temperature inside the reactor was measured with a 

type K type thermocouple (1/8″, Omega Engineering, Inc.) which was placed in a direct 

contact with the catalytic bed. The catalyst was loaded into the reactor through the 

remaining tee opening, with quartz wool placed above the catalyst that was consequently 

sealed with a plug (Swagelok).  

 

Figure 3: Flow system setup for catalytic performance evaluation. 
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The reactor was placed in a furnace (Lindberg/Blue M™ Mini-Mite™, Thermo Fisher 

Scientific) with the tee containing the catalyst being in the middle of the furnace. The 

temperature was controlled with a furnace built-in temperature controller (UP150, 

Yokogawa) using the thermocouple installed within the reactor (in contact with the 

catalytic bed). A back pressure regulator (S01094789B, Swagelok) was used to adjust 

pressure, Fig. 1b. Water was removed from the outlet stream using a mist trap (AFM40-

N02-Z-A, SMC Corporation) before the back pressure regulator and a moisture trap 

column (5182-9411, Agilent Technologies, the original adsorbent was replaced with an 

orange silica gel, Fisher Scientific) downstream. Concentrations of CO, CO2 and CH4 in 

the outlet stream were measured on a dry basis with an IR analyzer (IR-208, Infrared 

Industries, Inc., USA) and continuously recorded using an analog-to-digital converter 

(USB 6008, National Instruments) and LabVIEW (National Instruments). 

3.3. Catalyst characterization 

Catalyst composition was verified using inductively coupled plasma mass spectrometry 

(ICP-MS, Prodigy SPEC). An ICP-MS consists of a high-temperature ICP (Inductively 

Coupled Plasma) source with a mass spectrometer. The ICP source is used to convert the 

atoms of the elements in the sample to ions. These ions are then separated and detected by 

the mass spectrometer. The sample is typically introduced into the ICP plasma as an 

aerosol, either by aspirating a liquid or dissolved solid sample into a nebulizer or by using 

a laser to directly convert solid samples into an aerosol. The sample aerosol once 

introduced into the ICP torch is completely desolvated and the elements in the aerosol are 

converted first into gaseous atoms and then ionized towards the end of the plasma.  
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For coupling to mass spectrometry, the ions from the plasma are extracted through a 

series of cones into a mass spectrometer, usually a quadrupole. The ions are separated on 

the basis of their mass-to-charge ratio and a detector receives an ion signal proportional to 

the concentration. The concentration of a sample can be determined through calibration 

with certified reference material such as single or multi-element reference standards.  

Specific surface area (SSA) was measured with a Gemini VII 2390 surface area 

analyzer (Micromeritics Instrument Corporation) using N2 as adsorption gas. The surface 

area analyzer uses nitrogen as a probing gas as it does it does not chemically react with the 

adsorbent. The analysis is generally conducted at the boiling point of nitrogen at 77K. The 

surface area analyzer calculates the specific surface area using the BET equation. 

0 0

1 1 1

( / ) 1 m m

c p

v p p v c p v c

 
    

                                                                                  (14) 

Where p and p0 are equilibrium pressures and saturation pressures of the adsorbates at 

the temperature of adsorption. v is the adsorbed gas quantity and vm is the monolayer 

adsorbed gas quantity. c is the BET constant. 

X-ray diffraction (XRD) patterns were acquired with a D8 Discover diffractometer 

(Bruker). X-ray diffraction works on the constructive interference of monochromatic X-

rays and a crystalline sample. A cathode ray tube is used to generate X-rays which are, 

filtered to produce monochromatic radiation, collimated to concentrate, and directed 

toward the sample. The incident rays interacts with the sample producing constructive 

interference (and a diffracted ray) when conditions satisfy Bragg's Law (nλ=2dsinθ). This 

law relates the wavelength of electromagnetic radiation to the diffraction angle and the 
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lattice spacing in a crystalline sample. These diffracted X-rays are then detected, processed 

and counted. By scanning the sample through a range of 2θangles, all possible diffraction 

directions of the lattice should be attained due to the random orientation of the powdered 

material. Conversion of the diffraction peaks to d-spacings allows identification of the 

mineral because each mineral has a set of unique d-spacings. Typically, this is achieved by 

comparison of d-spacings with standard reference patterns. 

To determine the extent of coking, thermal gravimetric analysis (TGA) was performed 

with a Q500 analyzer (TA Instruments) using a 5/min heating rate under a flow of air (40 

ml/min). Thermogravimetric analysis is a type of thermal analysis where the mass of the 

substance is measured over time as a function of temperature change. To analyze 

corresponding consumption/release of gases (O2, CO2, CO), temperature-programmed 

oxidation (TPO) was carried out using the flow system shown in Fig. 1 (2/min heating 

rate, 200 ml/min air). Temperature-programmed reduction (TPR) was performed using the 

same flow system (10/min heating rate, 200 ml/min H2) with the outlet analyzed by 

Fourier-transform infrared spectroscopy (FTIR) with a MultiGas 2030 continuous gas 

analyzer (MKS Instruments). Prior to H2 TPR, all samples were exposed to CO2 (20-800C, 

10/min, 200 ml/min CO2).2 

3.4. Catalytic performance evaluation 

The performance of the catalyst was evaluated at different temperatures and GHSV. 

Fresh catalyst was loaded into the reactor and reduced at 450C before every test was 

performed. The reaction conditions for the performance test are listed as follows: (a) 

T=250-500C, P=30 psi, H2:CO2=4, total flow rate=0.5 L/min; (b) T=450C, P=30 psi, 
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H2:CO2=4, total flow rate=0.1-1.8 L/min. The reaction conditions of varying temperatures 

and GHSV are (a) and (b) respectively. The stability test were performed at 800C for each 

catalyst at a GHSV of 100,000 ml/(g h), P=30psi, H2:CO2=4 and total flow rate of 

0.5L/min. 

CO2 conversion and CO selectivity were calculated using Eq. (15) and Eq. (16): 
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Where yCO₂, yCO and yCH₄ are the fraction of each gas in the outlet measured by IR 

analyzer. Water was excluded from calculation since the humidity in gas was removed 

before analysis. GHSV is calculated by Eq. (17): 

1000 60f

c

Q
GHSV

w
                           (17) 

Qf is the feed flow rate and wc is the catalyst weight loaded in the reactor. Carbon 

balance is defined as the total amount of carbon flown in the reactor divided by the amount 

of carbon dioxide flown out of the reactor, and were calculated using Eq. (18): 

2 4 1 2( )(1 4 )CO CO CHCB y y y f f                                                             (18) 

In Eq. (18), α, f1, and f2 stand for H2:CO2 ratio in the feed, conversion to CO, and 

conversion to CH4, as defined in Eqs (19a-c) below (FC ,out is the total outlet carbon-based 

molar flow rate):      
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Eq. (19) above is obtained from the carbon balance definition, Eq. (19d), using Eq. 

(19e) to define the total outlet molar flow rate (FCO,out and FCH4,out in Eq. (19e) correspond 

to the H2 consumption in the RWGS and Sabatier reactions, Eqs (1, 4)): 
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Chapter 4  

Results and discussion 
 

4.1 RWGS reaction 
 

4.1.1 Reverse water gas shift equilibrium 
 

Because the reverse water gas shift reaction, Eq. (1), is reversible, the maximum 

conversion will be limited by equilibrium and will be a function of temperature. The 

equilibrium conversion can be evaluated analytically [79]. By first defining the total 

conversion and H2/CO2 feed ratio as in Eq. (20), expressions for the extent of each species 

at equilibrium can be derived (assuming no CH4 formation), Eq. (21).  
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Equilibrium partial pressures can then be defined using the equilibrium extents derived 

above (yi and P are mole fraction and total pressure, respectively): 
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These equilibrium partial pressures can then be substituted into the reverse water gas shift 

equilibrium constant: 
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The final equation to be solved is given as follows: 
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Note that the equilibrium conversion will be dependent on temperature as well as 

H2/CO2 feed ratio, but will not be dependent on pressure, since there is no change in number 

of moles, Eq. (1). The solution of Eq. (24) using known parameters is shown in Fig. 3 [80]. 

It is clear that temperature has the most significant effect on equilibrium conversion, 

though at higher temperatures ratio starts to have a more substantial impact. This 

substantiates the need for catalysts stable at high temperatures as below 700°C, it would be 

challenging to even reach 70% conversion. 
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Figure 4: Equilibrium CO2 conversion as a function of temperature and feed 
H2:CO2 ratio. 

 

4.1.2 Catalytic performance of bulk and supported Mo2C and MoO3 

The performance of both bulk and supported MoO3 and Mo2C were first tested at 

GHSV of 36,000 ml/(g h), P=3 bar and H2:CO2=4. The conversion profiles for the catalysts 

were similar at low GHSV velocities with variations occurring in the selectivity towards 

CH4. The supported and unsupported MoO3 showed a sharp increase in CH4 selectivity at 

temperatures ranging from 450-600C. The carbide remained relatively stable in terms of 

selective towards the RWGS reaction with bulk Mo2C showing complete selectivity 

towards the RWGS at all temperatures tested. The catalyst all reached close to equilibrium 

conversion with oxides having approximately 10% lower conversion at 700C. 
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Figure 5: Catalytic performance of supported and bulk MoO3 and Mo2C at varying 
temperatures, GHSV=36,000 ml/(g h), P=30 psi, H2:CO2=4 

 

4.1.3 Effect of carburization temperature on bulk Mo2C 

The performance of Mo2C carburized at different temperatures and reaction mixtures 

are shown Figs 4, 5. High T-Mo2C (high temperature carburization) showed complete 

selectivity towards the RWGS reaction at all temperatures tested. The conversion increased 

exponentially beyond 300C for high T-Mo2C and low T-Mo2C (low temperature 

carburization). The maximum conversions recorded were 38% and 56% for the high T- 

and low T-Mo2C respectively at 500C and 30 psi. Although the low T-Mo2C had higher 

overall conversion, it showed high selectivity towards the methanation reaction at T > 

300C.  
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Figure 6: Performance of low T-Mo2C and high T- Mo2C at varying temperatures, 
GHSV=100,000 ml/(g h), P =30 psi, H2:CO2=4 
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Figure 7: Performance of low T-Mo2C and high T-Mo2C at varying GHSV 
T=450°C, P=30 psi, H2:CO2=4 
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The performance of the two catalysts were also tested as a function of GHSV. As 

expected, the conversion decreased for both catalysts with increasing GHSV with the 

conversion dropping more significantly for the high T-Mo2C. The highest conversion 

achieved is 62% and 40% for high T- Mo2C and low T- Mo2C respectively. The low T-

Mo2C performance remained stable between 120,000-280,000 ml/(g h) GHSV at a 

conversion of around 55%. The selectivity of both catalysts showed an increasing trend 

towards the RWGS reaction with increasing GHSV. The low T-Mo2C showed a significant 

change in selectivity from 60% towards the Sabatier reaction at GHSV of 10,000 ml/(g h) 

to 82% selectivity towards the RWGS reaction at a GHSV of 280,000 ml/(g h). 

4.1.4 Comparison between supported and bulk Mo2C 

The performance of the supported Mo2C prepared by using low temperature 

carburization and high temperature carburization are shown in Figs 7, 8 and Fig. 9, 

respectively. The performance showed a similar trend in terms of overall conversion with 

low temperature carburized samples having higher overall conversion with decreased 

selectivity towards the RWGS reaction. The drop in performance of supported catalyst was 

within 5% at 500C at a GHSV of 100,000 ml/(g h) and pressure of 30 psi. The performance 

of low T-Mo2C/-Al2O3 versus varying GHSV was very similar to the performance of bulk 

low T-Mo2C. A similar trend was also observed for the high T-Mo2C/-Al2O3 and bulk 

high T-Mo2C. The high T-Mo2C/-Al2O3 showed complete selectivity to RWGS at all 

GHSV tested whereas the bulk high T-Mo2C produced small quantities of CH4 at low 

GHSV. The results indicate the carburization temperature and mixture has a significant 

influence on the performance of the catalyst. 
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Figure 8: Comparison between supported and bulk low T-Mo2C for different 
GHSV, T=450C, P=30 psi, H2:CO2=4 
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Figure 9: Comparison between high T-Mo2C and supported high T-Mo2C,                  
(a): T=450C, P=30 psi, H2:CO2=4, (b): GHSV=100,000 ml/(g h), P =30 psi, H2:CO2 
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Figure 10: Comparison between high T-Mo2C and supported high T-Mo2C,             
(a): T=450C, P=30 psi, H2:CO2=4, (b): GHSV=100,000 ml/(g h), P =30 psi, 

H2:CO2=4 
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4.1.5 Stability test of the catalyst  
 

Reports on the stability of Mo2C and MoO3 for the RWGS reaction are lacking in the 

literature. Catalysts are often deactivated due to coking and sintering when operated at 

elevated temperatures and at industrially relevant operating conditions, i.e., high GHSV. 

In order to better understand the stability of molybdenum catalysts, tests were performed 

on supported Mo2C and MoO3. The stability test was run at 800C for supported  high T-

Mo2C and supported MoO3 at GHSV of 100,000 ml/ (g h), 30 psi and H2:CO2=4. The initial 

conversion of the supported Mo2C catalyst was around 73% with catalyst performance 

dropping close 71% after 42 h on stream.  

 

Figure 11: Stability test on high T-Mo2C/-Al2O3, GSHV=100,000 ml/(g h), P=30 psi, 
H2:CO2=4 and T=800C 

 
The selectivity of the supported catalyst remained at 100% to the RWGS reaction 

through the entire time period of testing. The supported MoO3 showed decent stability for 



37 
 

the RWGS reaction with initial CO2 conversions of 75% with performance dropping to 

74% after 36 h on stream. Beyond 36 h the reactor begins to plug due to coke formation on 

the catalyst. To better understand the changes occurring on the catalyst, TGA-MS were 

conducted on the spent catalysts to see if there is significant coke formation. 

 

Figure 12: Stability test on MoO3/-Al2O3, GSHV=100,000 ml/(g h), P=30 psi, 
H2:CO2=4 and T=800°C 

 

 

Figure 13: TGA-MS of spent Mo2C/-Al2O3 catalyst ran at 800C, temperature 
ramping rate was 10C/min for T ≤ 150C and 2C/min for T = 150-800C. Air flow 

rate was 40 ml/min. 
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The Mo2C/-Al2O3 catalyst showed an initial weight loss in the 20-200C range. This 

initial weight loss of around 5% is caused due to the evaporation of absorbed water from 

the sample below 200C. In the 200-380C range, the sample showed mild weight gain of 

around 2%. We hypothesize the mild gain may be surface oxidation of sample from Mo2C 

to MoO3, with the bulk of the catalyst still remaining a carbide. This could possibly explain 

the release of CO2 gas along with the increase in weight of the sample that occurs in the 

200-380C range. 

 

 

Figure 14: FTIR data of TGA-MS of spent Mo2C/-Al2O3 catalyst ran at 800C, 
temperature ramping rate was 10C/min for T ≤ 150C and 2C/min for T = 150-

800C. Air flow rate was 40 ml/min. 
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At temperatures above 380C the sample undergoes a sharp drop in weight, coinciding 

with a CO2 peak at 400C. The CO2 peak at 400C is attributed to the oxidation of the 

deposited carbon on the surface. The results are reconfirmed using the FTIR measurements 

which showed presence of both CO2 and CO peaks at 400C. However, the deposited 

carbon on the surface of the catalyst did not seem to affect the performance of the catalyst 

during the stability test. This observation indicates that the extent of coking on the catalyst 

surface was relatively small, not enough to deactivate the catalyst.  

TGA-MS was also conducted on spent MoO3/-Al2O3 catalyst. The catalyst showed a 

similar weight loss trend initially below 300C due to evaporation of adsorbed water on 

the surface. Beyond 300C the catalyst had a weight increase due to the Oxidation of 

MoO2/-Al2O3 formed on the surface during the reaction back to MoO3/-Al2O3. There is a 

sharp CO2 peak at 650C and a corresponding weight drop at this temperature due to 

oxidation of surface carbon to CO2. 

 

Figure 15: TGA-MS of spent MoO3/-Al2O3 catalyst ran at 800C, temperature 
ramping rate was 10C/min for T ≤ 150C and 2C/min for T = 150-800C. Air flow 

rate was 40 ml/min. 
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Figure 16: FTIR data of TGA-MS of spent MoO3/-Al2O3 catalyst ran at 800C, 
temperature ramping rate was 10C/min for T ≤ 150C and 2C/min for T = 150-

800C. Air flow rate was 40 ml/min. 
 

The results are reconfirmed using the FTIR measurement, which showed peak of CO2 

and CO at 650C. The deposited carbon the surface of the MoO3/-Al2O3 seem to be more 

stable and are oxidized at higher temperatures which might explain the faster coking and 

deactivation process of this catalyst. A possible explanation for the better activity of 

Mo2C/-Al2O3 is the carbon being formed on the surface is consumed partially consumed 

during the reaction process as it reacts with hydrogen or oxygen present on the surface at 

lower temperatures. 
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4.2 Sabatier reaction 
 

4.2.1 Effect of carburization conditions on Co2C/-Al2O3 as compared to CoOx/-
Al2O3 

 

The performance of 22% Co2C/-Al2O3 carburized using a CH4/H2 mixture at 800C 

and in an ethane/hydrogen mixture at 650C are shown in Figs 17, 18 22% Co2C/-Al2O3 

carburized in an ethane/hydrogen mixture showed higher selectivity towards the Sabatier 

reaction at all temperatures tested. The conversion increased exponentially beyond 300°C 

for high T-Co2C/-Al2O3 and above 250C for low T-Co2C/-Al2O3. The maximum 

conversion recorded were 67% and 80% for the high T Co2C/-Al2O3 and low T-Co2C/-

Al2O3 respectively at 500C, GHSV= 40,000 ml/(g h) and 30 psi. 

The performance of the CoOx/-Al2O3, Fig. 17, showed a similar trend to the high T-

Co2C/-Al2O3 with conversion increasing exponentially above 300C. The maximum 

conversion achieved by the CoOx/-Al2O3 was 57% with selectivity increasing with 

temperature similar to the high T-Co2C/-Al2O3. The 25.4 % CoOx/-Al2O3 had superior 

performance to the high T-Co2C at lower temperatures although conversion seems to 

plateau around 500C. The low T-Co2C/-Al2O3 outperforms both catalyst with higher 

conversion and selectivity towards the Sabatier reaction at all temperatures tested. 
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Figure 17: CO2 conversion and CH4 selectivity as a function of temperature. 
Reaction condition: T=250-500C, GHSV=40,000 ml/(g h), H2:CO2=4, P=30 psi 
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Figure 18: CO2 conversion and CH4 selectivity as a function of temperature. 
Reaction condition: T=450C, GHSV=10,000-300,000 ml/(g h), H2:CO2=4, P=30 psi. 
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CO2 conversion and CH4 selectivity as a function of GHSV are shown in Fig. 18. The 

effect of carburization temperature and mixture used is more clearly visible when 

performance was tested as function of GHSV with low T-Co2C/-Al2O3 having 

significantly better conversion and selectivity than the other two catalysts. At the lowest 

GHSV tested low T-Co2C/-Al2O3 catalyst showed complete selectivity towards the 

Sabatier reaction with CoOx/-Al2O3 showing around 93% selectivity towards the Sabatier 

reaction. The high T-Co2C/-Al2O3 had a lower performance than the CoOx/-Al2O3 with 

selectivity towards the Sabatier reaction decreasing more sharply than the other two 

catalysts tested. 

At a GHSV of 180,000 ml/(g h) the high T-Co2C/-Al2O3 showed no selectivity 

towards the methanation reaction although the catalyst still showed 20% CO2 conversion 

through the RWGS reaction. The conversion on low T-Co2C/-Al2O3 begins to level out 

around a GHSV of 120,000 ml/(g h) with no significant drop seen until a GHSV of 280,000 

ml/(g h) although selectivity continues to drop for the Sabatier reaction. A similar trend is 

seen for the CoOx/-Al2O3 catalyst around 200,000 ml/(g h) to 280,000 ml/(g h) and high 

T-Co2C/-Al2O3 from 180,000 ml/(g h) to 300,000 ml/(g h). 

The carburization of CoOx/-Al2O3 using CH4 at a temperature of 800°C seems to 

deactivate the catalyst towards the Sabatier reaction at temperatures below 450°C, whereas 

the low temperature carburization process has a promoting effect on the overall 

performance of the catalyst. Further analyzes needs to be done to understand the structural 

changes occurring during the carburization process to understand the variation in 

performance. 
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4.3 Stability tests 

The stability tests on low T-Co2C/-Al2O3 were performed at a temperature of 450C, 

H2:CO2=4, P=30 psi, and GHSV of 40,000 ml/(g h). The results of the stability test 

performed on low T-Co2C/-Al2O3 are shown in Fig. 19. The catalyst did not show any 

significant deactivation after 65 h on stream. The selectivity towards the Sabatier reaction 

also remained stable during the deactivation test. The CO2 conversion at the beginning of 

the beginning of the test was around 85% with conversion dropping to 84% after 64 h on 

stream. 

 

Figure 19: Stability test on low T-Co2C/-Al2O3. Reaction conditions: P=30 psi, 
T=450C, GHSV=40,000 ml/(g h), H2:CO2=4. 

 

The spent catalyst was then analyzed using TGA-MS, to investigate the extent of coke 

formation. The catalyst showed an initial weigh loss below 200C due to evaporation of 

water from the surface. Similarly to Mo2C, there is sharp CO2 peak at 400C. There is also 
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an additional peak at 500C. The oxidation of carbon deposited at 400C does not have a 

significant change on the overall weight of the catalyst with less than 3% overall drop in 

weight between 200-400C. This could be as result of the two competing processes 

occurring at the same. Weight loss due to oxidation of carbon on the surface and weight 

gain due to the oxidation of low T-Co2C/-Al2O3 to form CoOx/-Al2O3 at 400C. The peak 

at 500C coincides with a sharp drop in overall weight of the sample with a 17% drop in 

overall weight from 400-800C. Despite the extent of carbon deposition found on the 

catalytic material, catalytic activity of the material had less than a 1% drop in CO2 

conversion. 

 

Figure 20 TGA-MS of spent Co2C, temperature ramping rate was 10C/min for T ≤ 
150C and 2C/min for T= 150-800C. Air flow rate was 40 ml/min. 
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Chapter 5  

Characterization results 
 

5.1 Molybdenum carbide catalysts 
 

The catalyst composition was verified using ICP-MS. The composition did not vary 

significantly from the target compositions of 21.25 wt% Mo2C with composition ranging 

from 19.8%-20.5%. Mo2C and MoO3 were characterized by XRD, SEM-EDS and TPR, to 

understand the structure, morphology and mechanism involved in the reactions. 

 

Figure 21: XRD patterns of supported molybdenum catalysts and -Al2O3 
 

 
XRD patterns of fresh and spent catalysts supported on -Al2O3 are shown in Fig. 17. 

The characteristic peaks corresponding to Mo2C where identified at 2θ=39.3, 61.6, and 

74.8 as expected. The spent Mo2C/-Al2O3 catalyst also showed an additional peaks of 
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Mo3C2 at 2θ=36.5. -Al2O3 peaks were also identified at 2θ= 36.9, 45.7, and 66.7 in the 

Mo2C/-Al2O3. 

 

Figure 22 XRD patterns of bulk molybdenum catalysts 
 

The characteristic peaks corresponding to MoO3 were identified for the fresh supported 

catalyst at 2θ=23.3, 25.7, and 27.3. The supported MoO3 after reaction seems to undergo 

reduction to form MoO2 whose peaks were identified at 2θ=26.0, 37.0, 53.5, 61.1, and 

79.0. Similar results were seen for the bulk catalyst with Mo2C showing peaks at 2θ=34.4, 

38.0, 39.4, 61.5, 69.6, 74.6, 34.4, 37.8, 39.3, 61.6, 69.5, and 74.8. The spent Mo2C did not 

however show peaks corresponding to Mo3C2 which was seen in the supported Mo2C after 

reaction. 
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Bulk MoO3 shows peaks associated with it at 2θ=23.3, 25.7, 27.3, and 39.0. Similar 

to the supported MoO3, the spent MoO3 undergoes reduction during the reaction to form 

MoO2 with characteristic peaks being identified at 2θ=26.0, 37.0, 53.5, 61.1, and 79.0. 

Table 1: BET surface area of tested catalysts. 

Catalyst BET surface area  m2/g 

MoO3 4.65 

Mo2C 15.34 

Commercial  Al2O3 206 

20% MoO3 /Al2O3 126.51 

Mo2C/ Al2O3 99.45 
 

BET surface area was calculated and measured for all catalyst. The bulk MoO3 

undergoes an increase in surface after the carburization process. The catalyst surface area 

drops after the impregnation and calcination step to from MoO3/-Al2O3. The BET surface 

area of decreases after impregnation for the supported catalyst with the surface area further 

dropping after the carburization process. No increase in surface area was seen for the 

supported catalyst after carburization this could possibly be caused by the blocking of 

Al2O3 pores during the carburization step. 
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Figure 23: TEM images of Mo2C/-Al2O3. 
 

       

Figure 24: TEM images of spent Mo2C/-Al2O3. 
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TEM images were used to calculate particle size distribution, dispersion and turnover 

frequencies on the catalyst. Mo2C/-Al2O3 particles sizes ranged from 3-27 nm with 

average particle sizes in the range of 7 nm. The spent Mo2C/-Al2O3 particles sizes ranged 

from 3-20 nm with average particle size of 8 nm.  

Table 2: BET surface area, particle diameter, dispersion and TOF of Mo2C/-Al2O3  
 

Catalyst BET surface 
area (m2/g) 

Diameter (nm) 
±STD 

Dispersion TOF, s-1 

fresh 99.45 6.8 ± 3.3 0.363 
 

1.2821 

spent  8.4 ± 3.0 0.357 
 

1.306 

 

 

Figure 25: PSD for Mo2C/-Al2O3 calculated using TEM images. 
 

Turn over frequency (TOF) is defined as the specific activity of an active site per unit 

time and can be used to evaluate the overall catalytic activity of a catalyst. To calculate 

TOF, active phase dispersion D and CO2 conversion rate per unit weight of active phase at 

high GHSV Rmax were needed. Active phase dispersion was using Eq. (25) and Eq. (11). Vt 
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is total volume of the active phase in Eq. (11), was calculated considering polydispersity 

(non-uniform dispersion). 
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Active site diameter dp,i and its fraction fi were obtained from particle size distribution 

using TEM pictures. AMe is the surface area occupied by a single active site which was 

calculated to be 0.05nm2 using the assumption that 20 molecules occupy one nm2, NA is 

the Avogadro number, Me is the gravimetric density of the active phase, MW,Me is the active 

phase molecular weight.. Eq. (12) and Eq. (13) was used to calculate CO2 conversion rate 

per unit weight of catalyst and CO2 conversion rate per unit weight of active phase 

respectively. FCO₂,f is the flow rate of carbon dioxide flowing into the reactor, XCO₂ is the 

carbon dioxide conversion, wc is the weight of catalyst. LMe is active metal loading in 

percentage. 
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By Eq. (29) turnover frequency (TOF) was calculated: 
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Chapter 6  

Conclusion and future work 
 

6.1 Reverse water gas shift reaction 
 

The reverse water gas shift (RWGS) reaction was conducted over unsupported and 

supported molybdenum oxide (MoO3) and carbide (Mo2C). The catalysts were active in 

RWGS and selective towards CO formation. The Mo2C catalyst was more selective at all 

temperatures tested, attaining complete selectivity to CO production.  

The supported Mo2C catalyst (20wt%Mo2C/-Al2O3) was more stable than the 

corresponding molybdenum oxide catalyst (20wt%MoO3/-Al2O3). When operated at 

800C and a gas hourly space velocity (GHSV) of 100,000 ml/(g h), conditions which are 

relevant to industrial operation, the 20wt%MoO3/-Al2O3 deactivated because of coking 

that caused complete clogging after 40 h time-on-stream. For the 20wt%Mo2C/-Al2O3 

catalyst, although some coke formation was observed, no detectable drop in performance 

was detected over 50 h time-on-stream.  

Changing carburization conditions to a higher hydrocarbon (ethane) and lower 

temperatures improved the catalytic performance of Mo2C in terms of activity, although 

selectivity towards CO formation reduced, particularly at lower space velocities. Further 

research is required in order to understand the effects of carburization conditions on the 

Mo2C catalyst performance. 
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6.2 Sabatier reaction 

The Sabatier reaction was conducted over supported cobalt oxide and carbide catalysts 

(20wt% CoO/-Al2O3 and 20wt% Co2C/-Al2O3). Catalytic performance evaluation 

showed CO2 conversions up to 85% at 450C and a GHSV of 40,000 ml/(g h) for the Co2C 

catalyst with no detectable deactivation over 60 h time-on-stream. Carburization of cobalt 

oxide to cobalt carbide significantly improves the catalytic performance of the material 

with increased selectivity towards CH4 formation.  

The exact reaction mechanism over CoO and Co2C catalysts is still to be verified and 

requires more investigation. The carburization mixture composition plays an important role 

in determining the catalytic performance. High temperature carburization using methane 

resulted in lower activity as compared to low temperature carburization using ethane. The 

carburization procedure should be further fine-tuned to optimize catalytic performance. 
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