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Abstract

Clinical analysis and medical diagnosis of diverse diseases adopt medical imaging tech-
niques to empower specialists to perform their tasks by visualizing internal body organs
and tissues for classifying and treating diseases at an early stage. Content-Based Image Re-
trieval (CBIR) systems are a set of computer vision techniques to retrieve similar images
from a large database based on proper image representations. Particularly in radiology
and histopathology, CBIR is a promising approach to effectively screen, understand, and
retrieve images with similar level of semantic descriptions from a database of previously
diagnosed cases to provide physicians with reliable assistance for diagnosis, treatment plan-
ning and research.

Over the past decade, the development of CBIR systems in medical imaging has expe-
dited due to the increase in digitized modalities, an increase in computational efficiency
(e.g., availability of GPUs), and progress in algorithm development in computer vision and
artificial intelligence. Hence, medical specialists may use CBIR prototypes to query similar
cases from a large image database based solely on the image content (and no text). Under-
standing the semantics of an image requires an expressive descriptor that has the ability to
capture and to represent unique and invariant features of an image. Radon transform, one
of the oldest techniques widely used in medical imaging, can capture the shape of organs in
form of a one-dimensional histogram by projecting parallel rays through a two-dimensional
object of concern at a specific angle. In this work, the Radon transform is re-designed to
(i) extract features and (ii) generate a descriptor for content-based retrieval of medical
images. Radon transform is applied to feed a deep neural network instead of raw images in
order to improve the generalization of the network. Specifically, the framework is composed
of providing Radon projections of an image to a deep autoencoder, from which the deepest
layer is isolated and fed into a multi-layer perceptron for classification. This approach
enables the network to (a) train much faster as the Radon projections are computationally
inexpensive compared to raw input images, and (b) perform more accurately as Radon
projections can make more pronounced and salient features to the network compared to
raw images. This framework is validated on a publicly available radiography data set
called “Image Retrieval in Medical Applications” (IRMA), consisting of 12,677 train and
1,733 test images, for which an classification accuracy of ≈82% is achieved, outperforming
all autoencoder strategies reported on the IRMA dataset. The classification accuracy is
calculated by dividing the total IRMA error, a calculation outlined by the authors of the
data set, with the total number of test images.

Finally, a compact handcrafted image descriptor based on Radon transform was de-
signed in this work that is called “Forming Local Intersections of Projections” (FLIP).
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The FLIP descriptor has been designed, through numerous experiments, for representing
histopathology images. The FLIP descriptor is based on Radon transform wherein parallel
projections are applied in a local 3×3 neighborhoods with 2 pixel overlap of gray-level
images (staining of histopathology images is ignored). Using four equidistant projection
directions in each window, the characteristics of the neighborhood is quantified by taking
an element-wise minimum between each adjacent projection in each window. Thereafter,
the FLIP histogram (descriptor) for each image is constructed. A multi-resolution FLIP
(mFLIP) scheme is also proposed which is observed to outperform many state-of-the-art
methods, among others deep features, when applied on the histopathology data set KIMIA
Path24. Experiments show a total classification accuracy of ≈72% using SVM classifica-
tion, which surpasses the current benchmark of ≈66% on the KIMIA Path24 data set.
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Chapter 1

Introduction

The production of digital images has increased significantly over the years, both in terms
of resolution and volume. Particularly in the medical imaging domain, a large number of
digitized images are stored but are not computationally utilized to assist clinicians. To
address this problem, Content-Based Image Retrieval (CBIR) is a computational tool to
extract low-level features representative of the image for accurate and efficient retrieval
purposes. These CBIR systems are capable of operating at a large scale; however, the
accuracy of its retrieval depends heavily on the extracted features from images. The moti-
vation of research in this field is to learn a medical data set such that CBIR systems can be
adopted to automatically index images by extracting salient features using a sophisticated
computer vision or artificial intelligence (AI) algorithm. These salient features should hold
dominant characteristics of an image that are informant and non-redundant, such as: cor-
ners, edges, blobs, color, etc. Hence, CBIR systems use these generated features and aim
is to retrieve an image closer to that of the query image using intelligence algorithms for
both feature extraction and search.

An accurate CBIR system depends on the feature representation as well as on the
similarity measure to find similar images. Although machine learning techniques have
existed for decades, the recent deep learning algorithms have topped metric standards in a
variety of applications. Recently, deep learning has become a popular approach for various
applications. In reality, deep learning algorithm is a re-branding of neural networks from
the 1950s, with multiple processing layers (called hidden layers) interconnecting neurons
as several layers are employed. The claim of deep learning algorithms is to rely on raw data
such that each hidden layer learns an “abstraction” of data (that is learning a feature set).
The concatenation of the hidden layers enables the network to generalize the image based
on all extracted features within every hidden layer. Although this approach is well suited for
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certain applications, deep learning algorithms struggle when tackling high-dimensional data
[81]. For instance, digital pathology is a major contributor in the medical imaging domain;
the images of which can range from 50, 000×50, 000 to 100, 000×100, 000 pixels and higher.
A common approach is to use many small sub-images after down-sampling; however, this
causes loss of information making it all the more difficult to generalize properly. Hence,
there is a need to develop compact feature extraction algorithm that can globally represent
an image. This descriptor can be used to not only provide more manageable inputs for a
network to analysis, but also significantly reducing resources and computational time.

Radon transform, introduced in 1917 [85], is a mathematically derived method that uses
parallel projections for reconstructing scenes and objects. In the medical domain, Radon is
used for tomography for creating images from projections taken at a cross-sectional plane
of the patient. In terms of image processing, Radon transform converts a 2-dimensional
image along a direction to a 1-dimensional signal, capturing the cumulation of pixel inten-
sities along the direction, depicted in Fig. 1.1. Since the inverse Radon can reconstruct an
image from a 1D Radon signal, the intuition is that Radon transform preserves features
in the form of a 1D signal which are compact embeddings of an image. An advantage
of Radon transform over deep learning is its familiarity within medical specialists, as it
is used in various medical systems; hence, Radon is well accepted and understood in the
medical domain. This work attempts to use Radon projections as image descriptors for
two purposes: i) to study the effects of Radon when used in-place of raw images as an
input parameter to a deep learning algorithm, and ii) to design a global descriptor using
Radon projections and compare its performance and accuracy metrics to deep learning al-
gorithms and other established global descriptors. Both these approaches will be evaluated
on publicly available data sets. This thesis is hopeful to convey that Radon projections
can contribute to construction of powerful image descriptors for medical imaging. To sup-
port this claim, Radon projections are used as a preliminary feature, an input parameter,
for a proposed deep learning framework - validated on an publicly available radiography
data set, called Image Retrieval in Medical Applications (IRMA) [1]. Also, a handcrafted
global descriptor called Forming Local Intersection of Projections (FLIP) is designed and
validated on the KIMIA Path24 [9] data set consisting of large histopathology images.

The first contribution of this thesis is a supervised framework which is composed of an
Autoencoder (AE) for dimensionality reduction [41], and a Multi-Layer Perceptron (MLP)
for classifying the AE features. This framework is developed to study if Radon transform
can be used in place of raw images as input parameters. The purpose of using Radon
transform is to study its effects as a feature extractor and to examine if there is a better
alternative to raw images as inputs to a learning algorithm. This study aims to show,
against popular belief, that deep networks are in-fact dependent on the quality of the in-
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Figure 1.1: Computing Radon transform of an image [86].

put parameter and cannot just rely on raw data. There have been various studies that
outlines the benefit of learning Radon features as compared to raw images when using
deep learning algorithms, such as: [51], [66], and [103]. In addition, there have also been
reported studies that confirm the rationale of using Radon features over Histogram of Ori-
ented Gradient (HOG) features, such as: [11] and [59]. To validate this study, equi-distant
Radon projections are applied to a raw image - these features are vectorized and provided
as an input parameter to the proposed framework, evaluated on the IRMA (radiography)
data set. For the proposed framework, the initial experimentation suggests that Radon
transform outperforms both raw images as well as HOG features as input features. Simi-
larly, in this study, Radon features are observed to be faster at computation and better in
generalization, achieving a classification accuracy of 82% [100], outperforming the previous
Autoencoder benchmark of 80% [103]. The accuracy measure is computed by dividing the
IRMA error by the total number of test images.

Recently, handcrafted descriptors have been merely in the shadow due to the dominance
of deep learning algorithms. In terms of literature contribution, it is evident that there
is limited attention to classical computer vision techniques as most research emphasizes
on applying deep learning for image classification and recognition in computer vision.
Contrary to deep learning hype, descriptors have historical credentials when incorporating
it into a CBIR system. Among many advantages, descriptors do not necessarily need to
be “trained’; they can be computed on raw images to extract a representation of an image
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and stored for quick retrieval. To that, the second novelty of this thesis is a handcrafted
global descriptor called FLIP based on Radon transform. At a high-level, the FLIP is uses
local 3× 3 neighborhoods within which four equi-distant Radon projections are obtained.
Thereafter, the intersections between the adjacent projections are calculated to obtain
compound projections. Once calculated for all local neighborhoods, the projections are re-
scaled and counted to form a histogram. In addition, an advanced version of FLIP, called
Multi-resolution Forming Local Intersection of Projections (mFLIP) is also proposed.

Since deep learning architectures have become dominant in computer vision, the intent
for the FLIP and mFLIP is to compete with established deep architectures in contextu-
ally understanding histopathology scans. The purpose is to illustrate that hand-crafted
descriptors can be a contender against deep learning architectures, offering minimum run-
ning cost and resources. At a high-level, FLIP and mFLIP is based on Radon transform
captured within a small 3×3 neighborhood. Within each neighborhood, a relationship
between the adjacent projections are computed based on logical “AND”, and finally by
rescaling all the projections, a histogram is obtained which is a compact representation of
the entire image. The rationale to develop FLIP and mFLIP is to capture the textures that
is translation-invariant, which is representative of the image yet light to store. In order to
evaluate the descriptiveness of FLIP, the KIMIA Path24 [9] data set is adopted which con-
tains anonymized histopathological patches extracted from 24 Whole Slide Imaging (WSI).
In total, there are 27,000 training and 1,325 test labelled patches of size 1000×1000 pix-
els. The proposed descriptor surpasses deep learning approaches reported on the KIMIA
Path24 data set. In fact, the mFLIP algorithm achieves a high overall accuracy (ηtotal) of
≈ 72% when classifying using Support Vector Machine (SVM), and ≈ 60% when retrieving
using χ2 distance. In comparison, the current benchmark is the hand-crafted ELP [106]
approach which obtains an accuracy of ≈66% with SVM classification. On the other hand,
the best deep learning approach is TL-Inception-v3, which achieves a classification accuracy
of ≈57%.
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Chapter 2

Background on Image Descriptors

CBIR enables automatic indexing of extracted low-level image features; these salient fea-
tures include edges, corners, color, and texture [67] [42]. In the medical domain, CBIR
may be used for navigating, browsing, and querying-by-example such that similar images
are obtained through similarity calculations between these extracted low-level image de-
scriptors [29] [72]. One of the rationals for extracting features from images is, of course,
dimensionality reduction, e.g., projecting high-dimensional points from images onto low-
dimensional feature points, such that processing and retrieving images are computationally
quicker, reducing overhead [49]. Conventionally, there are two types of features (also known
as descriptors), namely local and global features.

“Local features” are used for recognizing and identifying an object, e.g., the ability
to recognize a person in the scene/frame of concern [71]. Compact vector representations
extracted from local neighborhoods within an image are used to form descriptors which
contain distinctive patterns and structures such as edges, corners, and points. These
features are identified due to immediate change in color, texture, or intensity across its
surrounding image patches. A few well-known local descriptors include Scale-Invariant
Feature Transform (SIFT) [70], Speeded Up Robust Features (SURF) [16], and Harris-
Stephen corner detector [40]. For local features, distinction from its surrounding weighs
more than the representation of feature itself [114]. Particularly, some medical images
are highly textured and hold salient features for analyzing more than color and intensity
values [36]. In general, local features are not widely used in medical domain as these images
possess homogeneity properties which are ambiguous because of the imprecise nature of
the images being captured [94]. To that, this literature review puts emphasis on global
descriptors instead.
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“Global descriptors”, on the other hand, are features that are extracted to represent the
entirety of the image, hence used for detecting and classifying an object in the scene/frame
of concern [69]. Widely used in the medical domain, global descriptors are composed
of locally extracted features that are generally concatenated together to form an image
representation. Global descriptors generally excel for contour representations, and as shape
descriptors and texture features. Fig. 2.1 provides a pictorial representation of global
and local descriptors. Some notable examples of global hand-crafted features include:
HOG [30], Local Binary Patterns (LBP) [77], Gabor filters [47], and Dual Tree Complex
Wavelet Transform (DT-CWT) [89].

Figure 2.1: Difference between global and local descriptors [87].

Extracted features represent the image as a point in the high-dimensional feature space,
upon which a similarity metric can be applied to compare images. Hence, the similarity
between the descriptors quantifies the image content enabling the image search and re-
trieval.

In this work, the background literature will mainly focus on global descriptors as the
proposed FLIP and mFLIP descriptors are both global descriptors and will be validated
against other global descriptors. This section will provide a comprehensive literature review
on global descriptors, automated feature extractors using deep learning algorithms, and
more importantly Radon projections as the base for both FLIP and mFLIP.

6



2.1 Global Features

Images are a set pixel values representing color or gray-level intensity. In general, de-
scriptor algorithms use these pixel values to calculate and to form feature vectors for
classification and retrieval purposes. Renowned global descriptors, such as HOG and LBP,
are algorithms that extract salient features and formulate them into a concise vector that
represent the entirety of the image. Simply put, for global features, the entire object is
represented by a single feature vector, as opposed to local features which are comprised of
many feature vectors representing smaller parts of the object. In medical imaging, global
features are extensively used because these algorithms are expected to capture the texture
and spatial relationships of an image more adequately. This subsection will cover global
feature extractors that are widely used in the computer vision and/or medical imaging
domain, namely HOG and LBP.

2.1.1 Histogram of Oriented Gradients

HOG is one of the popular and successful global descriptors in image processing that
debuted as a powerful algorithm for “person detection” and later for person tracking [122].
Developed by Dalal and Triggs [30] at the CVPR conference in 2005, HOG is a robust global
descriptor which produces distinct features based on occurrences of edge orientations in
local windows which are then formed into a histogram that represents the image at its
entirety. Although HOG is not rotational invariant, the descriptor captures high frequency
of gradient orientation making it invariant to geometric and photometric transformations.
At a high-level, to compute the HOG descriptor, let’s say an 8×8 cell is obtained within
the image for which these cells are organized into overlapping blocks. Within the 8×8 cell,
a total of 64 gradient vectors are computed and placed into a 9-bin histogram. Since the
histogram ranges from 0 to 180 degrees, a 9-bin histogram means 20 degrees per bin. All
histograms are then concatenated for the entire image to form the HOG descriptor, which
is depicted in Fig. 2.2.

There have been further developments in applying HOG to applications other than
pedestrains, cars, buses, animals, and bicycles. One such approach was to apply HOG
descriptors for detecting humans in videos [31]. Later on in 2006, Zhu et al. in [124]
presented a formulation of HOG in combination with cascading classifiers using AdaBoost
algorithm which was reported to be 70% faster than the original algorithm.

A common strategy with global descriptors is to bind them with a powerful classification
algorithm such as SVM. Although SVM was officially introduced by Boser et al. in 1992
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Figure 2.2: Computing HOG for an image [21].

[19], the classification algorithm was originally developed by Vapnik and Chervonenkis as
a linear classifier, using the maximum-margin hyperplane algorithm, which dates back to
1963. In 1992, SVM was reformulated to analyze and categorize data that are both linear
and non-linear in nature, achieved by what is called the “kernel trick”. At a high-level,
the kernel trick is to implicitly map data points into high-dimensional feature spaces to
explore new patterns of data that is not achievable at the current input dimension [44].
The coupling of HOG and SVM is among the most popular approaches for classifying dense
descriptors.

In [27], Christobel used HOG and SVM to detect and classify mammogram images.
Particularly, the mammogram images were pre-processed using CLAHE (Contrast Limited
Adaptive Histogram Equalization) method and the images were dilated to enhance the
image quality. The HOG descriptor is computed on the enhanced images which achieved
very good results for cancer detection by reducing false positive rates. The aforementioned
approach yields an accuracy, sensitivity, and specificity of 90%, 86.36%, and 5.55%, respec-
tively. Barbu in [15] adopted HOG and a non-linear SVM with quadratic kernel function,
for cell localization. Specifically, the authors use 3×3 cell blocks of 6×6 pixel cells with
9 bins to obtain a HOG descriptor with 81 coefficients. To validate this approach, the
authors have constructed an in-house dataset which contains various types of cells being
composed of 29 positive and 29 negative cases. The approach achieves a 90% detection
rate with recall and precision values of 0.9 each. Agarwal et al. in [5] apply HOG to au-
tomatically recognize and classify standard views of an echocardiogram, captured through
a 2D ultrasound probe. Using the HOG along with SVM, the authors were able to clas-
sify standard views namely the Parasternal Long Axis (PLAX) and the Short Axis (SAX)
B-mode echocardiograms. It is observed that HOG can effectively discriminate feature
encodes by computing edges/gradients in the images, which yields a 98% accuracy when
tested on a fairly large database of 703 echocardiogram images. In 2014, Pomponiu et
al. [82] employed the HOG descriptor along with SVM for classifying and filtering the
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mass and normal tissue regions. After testing on 1881 regions of interest (ROIs), the au-
thors conclude that extensive simulations are to be conducted to illustrate the capacity of
HOG descriptor to improve the performances of mass detection systems. More recently in
2015, Adetiba and Olugbara in [4] proposed an artificial neural network (ANN) ensemble
utilizing HOG features and SVM for predicting lung cancer. The authors validated their
method on the openly available dataset “Integrated Genomic Database of Non-Small Cell
Lung Carcinoma” (IGDB.NSCLC), for which the ANN ensemble and HOG achieved an ac-
curacy of 95.90% and mean square error of 0.0159. Song et al. in [95] proposed a descriptor
based on Multi-coordinate HOG (MCHOG), validated on the publicly available Interstital
Lung Disease (ILD) multi-class dataset, representing more than 150 disorders of the lung
parenchyma. For all of the five tissue categories, the proposed algorithm achieved over an
80% true positive rate. Xu et al. in [121] exploited a multi-scale HOG for angle closure
classification. The authors demonstrate that HOG features with higher dimensions out-
perform low dimensional clinical features in terms of angle closure classification accuracy.
When validated on a clinical dataset of 2048 images, the proposed method achieves a AUC
value (area under the curve) of 0.835±0.068, accuracy of 75.8%±6.4%, and a specificity
of 85%, outperforming other classification approaches based on clinical features. Pons et
al. in [83] adopted HOG configured with 10×10 cell to detect lesions in breast ultrasound
images. Validated on 326 images from different patients (54 malignant lesions, 109 benign
lesions, and 163 healthy breasts), HOG obtained a sensitivity of 86% with 0.28 false-
positive detection per image when classifying breast lesions. When detecting malignant
lesions, the HOG descriptor obtains an Az value (the area under the ROC curve) of 0.93
and a sensitivity of 78% at a 1.15 false-positive detections per image. Recently in 2017,
Abdel-Nasser et al. [3] evaluated the performance of five texture methods with the pro-
posed CAD system: gray level co-occurrence matrix features, local binary patterns, phase
congruency-based local binary pattern, HOG and pattern lacunarity spectrum. In partic-
ular, the authors use a 3×3 cell size, 4×4 cells for the block size, and a 9-bit histogram
yielding a feature vector that is 144 in length. Validated on a clinical database of 31 malig-
nant and 28 benign breast ultrasound image sequences, from Cambridge University, HOG
is observed outperform all other descriptors experimented by the authors. In particular,
HOG achieved the highest AUC of 0.989 when classifying benign versus malignant tumors.
In comparison, LBP yields the second-best AUC of 0.950. Finally, Shastria et al. in [105]
introduced a descriptor called Discrimination Potentiality Histogram of Oriented Texture
(DP-HOT) which is based on HOG and Gabor filter to classify mammogram patches as
malignant/benign. When evaluated on the openly available IRMA dataset, the authors
claim to have achieved more than 92% accuracy.
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2.1.2 Local Binary Patterns

LBP were introduced by Ojala et al. [77] as an efficient multi-resolution descriptor for
texture classification that is scale and translational invariant. However, there have been
developments on rotational-invariant LBP [61], which is particularly useful for when the
medical images captured at different orientations. However, since there are regulations
for capturing images, in reality, rotational-invariant extractors are obscure. Designed as
a particular case of texture spectrum model [75] [76], LBP is a powerful image descriptor
that is used, among others, for facial recognition and expression classification [6]. Fig. 2.3
provides a pictorial illustration on computing LBP for a small neighborhood.

Figure 2.3: Computing LBP on an image neighborhood [20].

Image descriptors quantify image characteristics such as shape, color, texture, edges, or
corners [56,93,102]. A good example are LBP [77] as a descriptor for texture classification
which is, among others, rotation invariant [80]. Designed as a particular case of texture
spectrum model [75, 76], LBP is a powerful image descriptor that has certainly set high
accuracy standards in the medical domain, including for CT images [96,97], x-ray [55], and
digital pathology [9].

Liu et al. [68] utilized LBP histogram based on PCA as the local descriptor to encode
both the retinal image and its edge map. The authors use a 2-class SVM classifier to
identify the presence of normal macula and each of three types of macular pathologies,
namely, macular edema, macular hole, and age-related macular degeneration, in the OCT
slice centered at the fovea. The authors conducted experiments on a dataset of 326 OCT
scans from 136 subjects. The results show that the proposed method was very effective
(all AUC > 0.93).

Qureshi et al. [84] proposed a combined approach for meningioma subtype classification
using subband texture (macro) features and micro-texture features. These are captured
using the Adaptive Wavelet Packet Transform (ADWPT) and LBP, respectively. SVM
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is adopted to classify the extracted features. Although LBP features did not provide
higher overall classification accuracies than ADWPT, however it provided higher accuracy
for a meningioma subtype that is difficult to classify otherwise. It has been shown that
the ADWPT performs better than LBP in most of the feature selection and classifier
combinations. The LBP features provide 59% to 73% classification accuracy on their own.
Although the combined feature set does not improve the overall classification accuracy, it
improves the classification accuracy of meningiotheliamatous, which is a difficult subtype
to classify correctly, by 7%.

In [116], authors extract the center-symmetric LBP from image and compute co-
occurrence of pixel pairs in local pattern map using gray-level co-occurrence matrix, which
is assumed to be more robust than frequency of patterns (histogram). Dubey et al. [35]
propose a new feature descriptor named local diagonal extrema pattern (LDEP) for CT
image retrieval. By using the first order local diagonal derivatives, the values and indexes
of the local diagonal extremes are obtained, and the descriptor is generated on the basis
of the indexes and the relationship between the center pixel and local diagonal extremes.
Greenspan et al. present a localized statistical framework based on Gaussian mixture
modelling and Kullback-Leibler (KL) matching for medical image retrieval. It combines
a continuous, probabilistic and region-based image representation scheme, along with an
information-theoretic image matching measure to categorize and retrieve x-ray images [38].
Camlica et al. used two methods to retrieve x-ray images: an AE to reduce the size of the
image for feature extraction [22], and a SVM classifier trained with LBP features derived
from saliency based image regions [23].

It is worth noting that most current medical CBIR systems are limited to the images
with specific modality, organ, or diagnostic studies, and usually cannot be applied directly
to other medical applications [60]. Moreover, although CBIR can be applied to several
medical cases, the semantic gap between the extracted image features and the doctors’
interpretation of the images limits its application. This is because generic features of
images may not be suitable for similarity matching for medical images [8]. Liao et al. [63]
used dominant local binary patterns (DLBP) and a symmetric Gabor filter responses which
is observed to achieve the highest accuracy in some of the texture databases, which include:
Brodatz, Outex, Meastex, and many others. In particular, the DLBP captures the most
frequent patterns to provide a texture description; whereas, the Gabor filter captures
texture at a global level which complements the DLBP during retrieval.

There have been numerous approaches that validate the use of LBP in the medical
domain. Nanni et al. [74] presents a descriptor called Elongated Quinary Pattern (EQP)
which is inspired from LBP, which basis its analysis on an elliptic neighborhood and adopts
quinary encoding for evaluating the local gray-scale difference. The authors evaluate this
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approach on three bio-imaging data sets: the Infant COPE database of neonatal facial
images, the 2D-HeLa dataset of fluorescence microscope images, the pap smear data sets of
smear cells images. The EQP along with SVM classification is observed to outperform the
traditional LBP approach. The authors claim that concatenating features to obtain a longer
descriptor yields a better result as it exploits information from different neighborhood for
when classifying. Sorensen et al. [97] set the benchmark in emphysema dataset using
LBP along with K-Nearest Neighbor (KNN) for classification. Emphysema is a CT data
set composed of specific regions of interest (ROI) images of lung, that is categorized into
3 classes. Specifically, a 95.2% classification accuracy was achieved with a pulmonary
function test (PFT) achieving correlation coefficients of up to |r| = 0.79 in 39 subjects. Ko
et al. [55] used local wavelet-centre symmetric LBP (WCS-LBP) along with random forest
to classify x-ray images (2007 IRMA data set). The authors then use maximum posterior
probability to retrieve the best result for every test image. Experimental results on the 2007
IRMA data set yield an average precision and recall performance of 93.10% and 89.43%,
respectively. Liu et al. [68] use LBP to capture texture and shape of retinal OCT images
along with their edge maps. The authors use 2-class Support Vector Machine classifiers to
form a multi-scale spatial pyramid. The validation this approach is to identify the presence
of normal macula and each of three types of macular pathologies, namely, macular edema,
macular hole, and age-related macular degeneration, in the OCT slice centered at the fovea.
The data set is composed of 326 OCT scans from 136 subjects, yielding a result of all AUC
> 0.93. Sorensen et al. [96] used LBP along with KNN to classify different texture patterns
in lung computed tomography. The proposed method is evaluated on a set of 168 regions of
interest comprising normal tissue and different emphysema patterns, for which it achieves
a classification accuracy of 95.2%. Unay et al. [111] designed an LBP as a texture operator
for MRI brain image analysis. Since the LBP is rotational invariant, the LBP effectively
applied to MR bias field yielding a robust result for even 40% intensity variations. In
addition, the data set adopted contains images rotated up to 60deg in both clockwise
and counterclockwise directions using three different interpolation methods. The author
concluded that the results were reasonable, making LBP a promising texture descriptor for
various MR brain image analysis applications. Unay et al. then built upon the previous
idea by presenting a quicker search and retrieval approach for brain MR images [112]
and [113]. This time, the authors used two complementary intensity invariant features,
local binary patterns and Kanade-Lucas-Tomasi feature points, and compared them against
a baseline method. Experiments results show that LBP with spatial context yields the
highest accuracy and performs quicker than Kanade-Lucas-Tomasi feature points – which
is observed to considerably degrade the performance. Kim et al. [53] designed an LBP
for allow for a simple and efficient feature extraction based classification of x-ray images.
For a fast and accurate classification task, Random Forests is adopted which is a decision
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tree based ensemble classifier. The concatenation of LBP and Radon forest if observed to
improve accuracy when compared to other approaches in the data set; in particular, the
training and testing speed is noticeably better for the aforementioned approach.

2.2 Deep Features

Generally, features that are extracted by deep learning algorithms can be composed of
both local and global features, for this reason we believe deep features deserves a section
of their own. Deep features are mainly extracted by Convolution Neural Network (CNN)
and AE, wherein features are extracted through a learning process [123], [118], and [18].
In essence, deep learning algorithms are designed to generalize a data set by learning
relationships between the input parameters and automatically extracting salient features,
such as corners, edges, and blobs. These features are observed to be globally expressive
local features and symmetries; hence these features are locally extracted to compose an
overall global representation of an image. Fig. 2.4 provides a pictorial representation of
deep features.

Figure 2.4: Extracting deep features from face images.

Popular deep learning algorithms such as CNN [12] and AE [41] have been adopted
to generalize the data set to provide state-of-the-art performance for feature extraction

13



and retrieval problems. In particular, these networks posses activation functions for each
layer which are local features describing a particular image region. These local features
are aggregated to provide a global descriptor that represents the image at its entirety.
An advantage of use deep learning strategies is their ability for transfer-learning, i.e., to
fine-tune CNN models (supervised) pre-trained by natural image data set and to apply
on medical images [92]; this means that the network should be trained only once for a
particular image category or recognition task. Specifically in the medical imaging domain,
deep learning algorithms are widely used for feature extraction and retrieval; there have
been various surveys on this topic [39, 62, 64]. Similar to LBP, deep descriptors have set
many competitive accuracy standards, specifically in the histopathology domain [9,98,120].

Recent developments in machine learning have opened up new opportunities for image
retrieval. Among others, AE, introduced in 2006 by Hinton and Salakhutdinov [41], are
designed to compress high-dimensional data by removing redundancies and preserving
salient features. Deng [34] presented a notable survey on AE, covering the mathematical
aspects and a general overview of the types of learning and applications for which AE can
excel. Goyal and Benjamin [37], on the other hand, describe the history of deep learning
and describe various image data sets for which the deep learning architectures can be
exploited.

Initially, AE were trained on the MNIST dataset [41] for extracting features and re-
trieval [57]. In 2015, Camlica et al. [22] presented an AE to eliminate image regions that
possess low encoding errors by validating its retrieval accuracy against both LBP and SVM.
Tested against the IRMA dataset, roughly 50% of the image area was removed which in-
creased the retrieval speed by 27% with less than 1% decrease in the accuracy. Sze-To
et al. [103] developed a Radon Autoencoder Barcode (RABC) to hash images into binary
codes using the IRMA dataset. Their method obtained the lowest total error of ≈ 344 using
512-bit codes for retrieval. In 2016, Tizhoosh et al. [108], introduced Autoencoded Radon
Barcode (ARBC) to autoencode Radon projections using mini-batch stochastic gradient
descent by binarizing the outputs from each hidden layer during training, and to produce
a barcode per layer. A comparison with other methods (e.g., RBC, SURF, and BRISK)
suggested that ARBC can achieve the lowest IRMA error of ≈ 392.

Motivated to exploit the potentials of AE for medical image retrieval, in this work a
novel approach will be proposed which classifies autoencoded Radon projections using MLP
to calculate the class probability for each query image. Radon transform is widely used in
medical applications as means for reconstructing images using equidistant parallel rays pen-
etrating an object from many directions [88] [33]. Specifically, an AE is adopted for dimen-
sionality reduction. The autoencoded features (compressed image/histogram/projections)
are then classified by an MLP to assign the image to a class. Radon projections are ex-

14



amined as features based on some recent success; Shujin and Tizhoosh [125] combined
Radon projections and SVM for CBIR tasks. As well, Tizhoosh et al. [109] presented
MinMax Radon barcodes which are observed to retrieve images 15% faster compared to
“local thresholding” [78].

Specifically in the medical imaging domain, deep learning algorithms are used for feature
extraction and retrieval; there have been various surveys on this topic, which include: [39],
[64], and [62].

Recently, complex deep learning algorithms have been proven as imperative tools for
big data images, yielding high accuracy and efficiency for diagnosing histopathological im-
ages [65]. Xu et al. [120] adopted deep learning for automatic extraction of histopathology
images and multiple instance learning (MIL) for classifying the features. The authors ob-
served that the automatic feature learning outperforms the manually extracted features.
The best trained network using MIL on course labels achieves an accuracy of 96.30% using
deep learning features. The histopathology images were extracted from 132 patients, each
image of which is of dimension 10000×10000 pixels. The authors sampled 200×200 pixels
with an overlap step size of 100 pixels, yielding a total of 9801 patches for each image.
In 2015, Kumar et al. [58] adopted an AE, as a deep feature extractor, to classify lung
nodules as either malignant or benign. The validation of the was evaluated using the Na-
tional Cancer Institute (NCI) Lung Image Database Consortium (LIDC) data set which
is comprised of 4303 instances containing 4323 nodules. After a 10-fold cross-validation,
the network achieved an overall accuracy of 75.01% with a sensitivity of 83.35% and false
positive of 0.39/patient. Bar et al. [13] developed a deep CNN to identify different types
of pathologies in chest x-ray images. The algorithm was validated on a data set which
consisted of 93 images, achieving an area under curve (AUC) of 0.93 for Right Pleural
Effusion pathology detection, 0.89 for Enlarged heart detection and 0.79 for when classi-
fying between malignant and benign chest radiographs. Shin et al. [92] adopted a transfer
learning approach by obtaining a pre-trained ImageNet (via fine-tuning), with five-fold
cross-validation, to detect thoraco-abdominal lymph node (LN) detection and interstitial
lung disease (ILD) classification of the ImageNet data set. The authors achieved their best
result on the mediastinal LN detection by obtaining a 85% sensitivity at 3 false positive per
patient. The authors conclude that deep pre-trained CNN can be used for CAD systems
for medical imaging tasks. Bar et al. [14] adopted a pre-trained deep CNN architecture,
trained on ImageNet which is a non-medical data set, to detect and classify chest radio-
graph pathologies. The CNN with GIST features was fine-tuned and validated on on a 433
image data set, obtaining an area under curve (AUC) of 0.87-0.94 for different pathologies.
Ciresan et al. [28] designed a use deep max-pooling CNN to detect and classify mitosis in
breast histology images. The network utilizes raw RGB squared images, each images of
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which contain mitosis which are detected by applying the classifier on a sliding window.
The network is evaluated on the MITOS data set, comprised of 50 images which correspond
to 50 high-power fields of 5 different biopsy slides stained; in total, this data set contains
300 mitosis. The proposed architecture won the ICPR 2012 mitosis detection competition,
achieving a precision, recall, F1-score of 0.88, 0.70, 0.782, respectively. More recently, in
2016, Janowczyk and Madabhushi [48] developed a single architecture, which is used to
detect and classify digital pathology images. In particular, the structured network achieves
an F-score of 0.83 from 12,000 nuclei segmentations, F-score of 0.84 across 1735 regions for
epithelium segmentation, F-score of 0.83 from 795 tubule segmentations, F-score of 0.90
for detecting 3064 lymphocytes, F-score of 0.53 for detecting 550 mitotic events, F-score of
0.7648 on 50,000 images of invasive ductal carcinoma, and a classification accuracy of 0.97
across 374 images containing lymphoma. Recently in 2016, Wang et al. [119] developed a
deep learning algorithm to detect and classify metastatic breast cancers from whole slide
images containing sentinel lymph node biopsies - the network of which won the Interna-
tional Symposium on Biomedical Imaging (ISBI) grand challenge. The proposed network
achieved an AUC of 0.925 for WSI classification and a score of 0.7051 for the tumor local-
ization task. When combining the deep learning knowledge with a pathologist, the AUC
increases to 0.995, reducing human error by approximately 85%. In 2016, Spanhol et al.
in [99] utilized a CNN architecture, namely AlexNet, to classify between malignant and
benign tissue by adopting the BreaKHis dataset. The authors tried various techniques to
train the CNN, including: extracting random patches from originally dimensioned images
and sliding window technique with 0.5 overlap to obtain patches from each train image.
The authors of [99] achieved a score of 87% when using a CNN with different fusion rules
(see [54] for details). For each CNN, which are trained with different inputs (i.e., size and
number of patches), the fusion rules are applied to the fully-connected layer which contains
the softmax activation. In particular, three rules are applied: sum, product, and max - of
which the “max” rule is observed to provide the best result when retrieving at patient level.
This patient score is, however, outlined for a specific fold, and is not reflective of the entire
data set. Bayramoglu et al. in [17] proposed a method to classify histopathology images
using BreaKHis data set; however, the proposed CNN is independent from magnification
level. The authors created magnification independent models, which are supposedly scal-
able, and the model is fine-tuned using new samples. In particular, the authors designed a
multi-task CNN that is capable of predicting both the magnification level and if the query
image is benign or malignant. The patient score for the proposed framework is 83.25%
which is very close to PFTAS approach, which obtained a patient score of 83.33%.
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2.3 Radon Transform as Feature Extractor

Radon transform provides a graphical representation of an object, also referred to as sino-
gram, through a number of sine-waves that have different amplitudes and phases. These
waves are observed to hold features that represent the texture and shape of the objec-
tion. Radon projections have been widely adopted in the medical imaging including x-ray
imaging, computed tomography (CT) scans, and a variety of other radiological imaging
techniques.

There have been many attempts to use Radon transform as means for generating rich
descriptors without prior knowledge of the object [88]. Hoang and Tabbone [43] proposed
a descriptor that employs both Radon with Fourier and a modification of the Mellin trans-
form (RFM) to extract features, without normalization, that are invariant to rotation,
scaling, and translation. The authors validate the effectiveness of this algorithm on noisy,
occlusive, and deformed data sets - the result and performance of which is reported to
be reasonable compared to commonly used pattern descriptors. Nacereddine et al. [73]
adopted Radon transform to develop a new descriptor called “Phi-signature” which is ob-
served to be invariant to geometric transformations. In particular, the authors validate the
effectiveness of the multi-level representation of the descriptor using Phi-signature and R-
signature, and compare it to a generic Fourier descriptor (GFD). The proposed RT-based
descriptor is observed to increase the discrimination capability, thereby performing faster
and more reliably than GFD when tested against graphical symbols. Chen and Chen [26]
presented a feature-based invariant descriptor called Radon Composite Features (RCFs)
designed particularly for planar shapes. The essence of the algorithm is to transform binary
shapes into a 1-dimensional feature vector. In particular, the feature shapes are extracted
from the Radon transform using statistical and spectral analysis which is observed to
overcome the invariance encountered by conventional geometric transformations. Experi-
mental results indicate that the RCF provides better discrimination between shapes when
compared to several state-of-the-art techniques in literature. Jadhav and Holambe [45]
presented a pattern recognition technique for face recognition based on the combination of
Radon and discrete cosine transforms (DCT). The Radon transform is observed to enhance
the low frequency components, imperative for extracting salient information from facial
structures; whereas, the DCT compresses the feature yielding a low-dimensional feature
vector. Thereafter, the same authors [46] proposed a pattern recognition algorithm using
Radon and wavelet transform, validated on facial features. The combination of Radon and
wavelet transform provides a descriptor that is invariant to the changes in facial expression
and illumination - this is accomplished by computing the Radon projection in different
angles enabling the algorithm to capture features of the face at various directions. The
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wavelet transform, on the other hand, complements the features from the Radon space
by providing multi-resolution features of the facial images. The proposed algorithm is
validated on FERET, ORL, Yale, and YaleB databases outlining the superiority of the
proposed method with some of the existing algorithms.

The first attempt to quantify features onto a histogram is presented by Tabbone et
al. [104]. Wherein, the authors propose a histogram composed of Radon transformations
called HRT, designed to be invariant to geometrical transformations. The authors validate
on an openly available shapes, trademarks and structural database for which the black and
white images, when computed using HRT descriptor, provides a shape that is a re-partition
on the angular length. The authors mention that retrieval using Euclidean distances, to
compare the histogram shape, is debatable. To facilitate a better retrieval using Radon
transform, Dara et al. [32] presented a novel method of content-based image retrieval
based on 3-D generalized Radon transform. The authors obtain descriptors using Radial
Integration Transform (RIT) and Spherical Integration Transform (SIT) which provides
the shape characteristics of the data. These descriptors were used for retrieval purposes,
for which the author claims a satisfactory result in terms of both precision versus recall
and time taken for retrieval.

Particularly in the medical imaging domain, substantial work has been put-forward by
researches to develop a Radon descriptor that has the ability to generalize any medical
modality. Inspired by the barcodes embedded in many products we encounter on a daily
basis, a novel Radon barcode for medical image retrieval system was proposed in 2015 [107].
The Radon barcode is a binary vector generated based on Radon Transform with selected
projection angles and projection binarization operation that can tag/annotate a medical
image or its regions of interest. Hence, large image archives can be efficiently searched
to find matches via Hamming distance, e.g., KNN search, or hashing-based methods, e.g.,
locality sensitive hashing.

In 2016, Shujin and Tizhoosh [125] combined Radon projections and SVM for CBIR.
Using the 2009 IRMA data set, a total error of 294.83 was obtained for 1,634 images. Babaie
et al. [10] propose a CBIR approach for large data sets using a single projection based
on Radon barcodes (SP-RBC). This approach supposedly captures the required global
features of an image with a purpose to expedite weak learning approaches. The proposed
method is tested on IRMA 2009 data set and it is observed to substantial decrease in the
error rate when comparing against other non-learning methods. Although these methods
are effective, they do not compare well against leading methods such as LBP or deep
features. In early 2018, Tizhoosh et al. [106] introduced a descriptor called “Encoded
Local Projections” (ELP), which generates a Radon-based histogram for classification.
In particular, the authors extract local neighborhoods of an image from which an “anchor
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projection” is obtained by calculating the angle at which the amplitude is maximized. Using
the anchor projection, three equi-distant projection is calculated from which the projections
are re-scaled using minmax approach, and counted to form a histogram. This approach
is validated on three public datasets (IRMA, KIMIA Path24, and CT Emphysema), all of
which provides competitive results. For the KIMIA Path24, the SVM and ELP combination
achieved a patch-to-scan accuracy of ≈83%, and a whole-scan accuracy of ≈80%.

Radon transform is also used to generate descriptive features when used as an input
parameter for deep learning algorithms, which is often proved to yield higher accuracy
when retrieving like-images. Sze-To et al. [103] designed an AE with Radon barcodes as
inputs to hash images and convert them into binary codes for retrieval. When validating
this approach on the IRMA data set, the Autoencoded Radon Barcode (ARBC) is observed
to retrieve 9.27 times faster. Later, Tizhoosh et al. [108] improved the ARBC by using
mini-batch stochastic gradient descent along with binarizing the weights from each hidden
layer during training - this approach is observed to produce a barcode per-layer. The
revised ARBC achieves a 392.09 IRMA error.

Although there have been many works on Radon features for image processing, this
thesis explores the possibilities of utilizing Radon projections as image descriptors. In
particular, there are two novelties that manifests the properties of Radon. For the first
novelty, Radon features extracted from raw images and trained using an Autoencoder and
MLP for classification. Thereafter a comparative test is performed against learning raw
image and learning HOG features extracted from raw image. The idea for using Radon
features for learning is influenced by [103] and [108]. Although there have been works on
using Autoencoder for learning Radon projections, the novelty presented in Chapter 3 is
to use the compressed Radon features from Autoencoder, and pass it onto MLP for classi-
fying the features. For the second novelty, a global hand-crafted descriptor called FLIP is
designed which uses equi-distant Radon projections extracted from small neighborhoods,
of size 3times3, to form a compact histogram - which is scale and translation invariant.
Influenced by [106] to use local Radon projections as descriptors, the purpose is to design
a descriptor that “counts” the projections into a histogram, which is inspired by [75]. A
multi-resolution version of FLIP called mFLIP is designed which, motivated by [77]. As
expected, the experimentation results suggests that mFLIP performs better than FLIP,
which is further discussed in Section 5. This suggests that Radon projections are viable
features that provides a feasible approach for CBIR.
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Chapter 3

Learning Autoencoded Radon
Projections

This chapter is based on the paper “Learning Autoencoded Radon Projections” authored
by Sriram et al. [100], which was published in IEEE Symposium Series on Computational
Intelligence, 2017.

3.1 Motivation

An AE is an unsupervised bottle-neck network designed to learn encodings of a dataset by
reducing the dimensionality, thereby preserving compact features in its most compressive
layer [41]. Depicted in Fig. 3.1, AE only expect a flattened vector as an input which is
then compressed to a user-defined ratio - this compressed layer holds latent embeddings
that is features of the input image. Thereafter, the AE decompresses the latent embedding
layer back to its original dimension, which provides an approximate representation of the
input image, also known as learned representation. Hence, to confirm the validity of the
compressed layer, one would have to look at the output layer to visually confirm if the
image displayed is similar to that of the input image.

It is the claim for machine learning algorithms to “understand” an image only using its
raw pixel intensity values [41]. However, since AE are dimensionality reduction algorithm,
the most compressive layer is only useful and representative if the input is descriptive for
learning. AE being an unsupervised network negates the associated labels, this network is
designed to build structure in the data without supervision. However, in the medical field,
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Figure 3.1: Example of an AE which illustrates that the input and the output is similar
confirming that the deepest layer holds salient features of the input image.

labels are of utmost importance, as they are annotated by medical specialists. In order for
AE to bridge the relationship between the latent embeddings and the associated labels,
a MLP is adopted. Illustrated in Fig. 3.2, MLP accepts data along with coressponding
labels as input parameters and learns to build a relationship in order to generalize the data
set. In particular, the MLP learns to classify the data providing a class probability output
between 0 and 1 for a pre-defined number of classes (the last layer being softmax) for each
image that passes through the network. The motive of this chapter is to propose a multi-
phase framework that utilizes the compression behavior of an AE which is then sequentially
trained with a MLP for classification. To that, the proposed framework incorporates the
AE for compressing the images, the latent embedding of which is then passed onto the
MLP along with its class labels as input parameters. The output of the MLP is a class
probability based on the latent embeddings.

Over the years, AE have been widely adopted for encoding medical images, from which
the most compressive layer is preserved as a feature vector representing the input image.
In this thesis, a new framework is proposed for retrieving medical images by classifying
Radon projections. In particular, this framework is a supervised learning approach which
is composed of two networks concatenated together, namely: AE for dimensionality re-
duction followed by an MLP for classification. For each image provided to the framework,
equi-distant Radon projection is extracted from the raw image forming a vector that is
representative of the image - illustrated in Fig. 3.3. Thereafter, these Radon projections
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Figure 3.2: Example of an Multi-layer perceptron wherein the input is the raw data along
with the class labels, for which the output is a class probability for a pre-defined number

of classes ranging between 0 and 1 (1 being the best match).

are provided as an input to an AE from which the deepest layer containing the feature
vector is preserved. The feature vector from the AE is passed onto an MLP which classifies
the feature vector thereby building a relationship between the compressed layer and the
associated class. The integration of MLP is observed to promote a rather shallow learning
architecture which makes the training faster.

This chapter also compares the learning behavior of an AE and multi-layer perceptron
for when the provided input is the raw image, Radon projections of an image, and HOG
extracted from an image. The proposed framework is benchmarked on the openly-available
IRMA dataset containing 14, 410 radiograph images distributed across 57 different classes.
Through experiments, it is apparent that Radon features are better inputs for this proposed
framework, as they yield a higher accuracy and quicker computation. Experiments showed
an IRMA error of 313 (equivalent to ≈ 82% accuracy) when providing the Radon projec-
tions as an input parameter. This outperforms other works, such as [103], [91], and [108],
on retrieval from IRMA dataset using AE. The proposed method is implemented using
Keras and Theano, and the networks were trained on Nvidia’s Tesla K-80 GPU provided
by SHARCNET [2].
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(a) Radon projection at 0◦ (b) Radon projection at 45◦

(c) Radon projection at 90◦ (d) Radon projection at 135◦

Figure 3.3: Computing equi-distant Radon projection of an image at 0◦, 45◦, 90◦, and
135◦. In this case, an image of size 3×3 is adopted, each cell of which represents a pixel

intensity value.

3.2 Training an Autoencoder

As for training the networks, the proposed sequential framework is comprised of three
components: (i) AE for dimensionality reduction, (ii) multi-layer perceptron classification,
and (iii) probabilistic retrieval. To begin, Radon projections are extracted from each
image and vectorized to form an input to the AE. It is observed that obtaining Radon
projections from images not only decreases the computational time, but it is also observed
to remove redundancies when compressing the Radon features, preserving only salient
features for classification. As equi-distant Radon projections are capturing the intensity
of pixel value across four angles (0◦, 45◦, 90◦, and 135◦), the obtained Radon signal is
observed to be unique to the image, thereby removing unnecessary inter-pixel redundancies.
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For the classification component, an MLP is adopted to establish a feature-to-category
relationship, wherein features are obtained from the compressed Radon projections in the
deepest autoencoded layer. Fig. 3.4 provides a schematic representation of the proposed
framework. In order to validate the framework, the networks were trained using 1) raw
pixels, 2) HOG features, and 3) Radon projections. The experimental results of which
suggest Radon projections to be the most descriptive inputs for the proposed framework.

Figure 3.4: Classification of radiography images into 57 classes by MLP using the deepest
layer of AE. The input parameter is a choise of (i) raw pixels, (ii) Radon projections, or

(iii) histogram of oriented gradients [100].

As depicted in Fig. 3.4, the proposed framework is divided into three phases: (i)
extracting features from raw image, (ii) training the AE, and (iii) training MLP classifier
using AE’s deepest layer as input along with the class labels. For sake of comparison,
the framework is trained for three types of features: Radon projection, HOG, and raw
images (pixel intensity values) which are extracted and pre-processed prior to training the
AE. Illustrated in Table 3.1, the pre-processing steps depend on the type of input feature
provided to the network. For raw images, the pixel intensities are normalized between
0 and 1, and padded to maintain a square size - as AE are restricted to have the same
input dimension for all images when training. Radon projections, on the other hand, are
normalized by dividing each projection by the maximum value, and then standardized,
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Input Feature Pre-processing Step

Input x-ray Image Normalize [0, 1], Pad to square,
Re-size to N ×N

Radon projections Standardization µ = 0, σ = 1
HOG features As is
Raw features Flattened pre-processed image

Table 3.1: Pre-processing applied to the inputs prior to training the AE [100].

with µ = 0, σ = 1. Finally, HOG features are provided to the network unprocessed.

Regardless of the feature extraction method, all features are vectorized and provided
to the AE for compression. To obtain an optimally trained network, early stopping with
an epoch patience of 3 along with 10-fold cross validation is configured for both AE and
MLP networks. The final performance measure is the average of the values computed in
the loop of the 10-folds – which ensures the creation of an optimal model when the number
of samples is very small. The final classification probabilities are produced by the best
configuration.

There are several motivations behind the multi-phase training architecture for the pro-
posed method. The latent embeddings from the compressed autoencoded layer is observed
to preserve salient attributes that are free from redundancies; this holds true for when the
input is descriptive for generalization. The concise and dense latent embeddings from the
AE enhances the convergence and classification accuracy of MLP. A faster convergence
also contributes to a rather shallow AE that is easier to train. In essence, a sequential
training can be thought of as pre-training steps, enabling further fine-tuning for a better
classification. As for testing the proposed framework, each query is passed through both
trained AE and the MLP to obtain a final class assignment which is used later for similarity
matching during the retrieval process.

3.3 Retrieval Strategy

To increase the retrieval accuracy, the images within the top-five probable classes are
selected from the trained database. Along with the top-five class probabilities, an equi-
distant normalized Radon projections are obtained from the query image. For retrieval,
the Radon projection for the query image is compared with the top-five class probability
from the MLP using the KNN method. In this case, KNN yields the index of the most
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procedure GetFeatures(I, Fs):
Ip ← double(I) (Normalize to [0, 1]);
Dmax ← max(Ip.shape) (Find max dimension of the image);
Ip ← Pad(Ip,Dmax) (Convert Ip to Dmax ×Dmax size, aligning to center of larger dimen-
sion);
Ip ← Resize(Ip, (N,N)) (resizes Ip to N ×N);

if FS is HOG then
If ← ReShape2V ector(HOG(Iq, nhog)) (reshapes 2D to 1D) ;

else if Fs is Radon then
If ← Normalize(R(Iq, θ), axis = 1);
If ← ReShape2V ector(If );

else
If ← ReShape2V ector(Iq) ;

end
Return If ;

end procedure

Algorithm 1: Pre-processing the image I and its features If [100].

similar image, as illustrated in Fig. 3.5.

The Radon projection for each query image along with the top-five class probability
for when the query image is passed to the framework is weighted together for retrieval.
In particular, the Euclidean distance between the projections is computed to retrieve the
best matched image. Generally, the retrieval phase is structured such that the MLP is
employed for global search (class assignment), and the input feature (i.e., Radon projection)
is computed for local search (to retrieve the most similar image). Analogously, the same
procedure is applied to HOG and raw images, when they are provided as input features to
the designed framework (see Algorithm 1). The overall architecture is illustrated in Fig.
3.5 and Algorithm 2. In essence, a total of 57 probabilistic outputs are ranked from which
the top 5 are used in a KNN search to find the best match for the query image. After
various empirical experimentation, it is important to note that KNN with L2 distance
provided the best accuracy.

The aforementioned framework is only compared against other AE approaches reported
on the glsirma data set. The IRMA accuracy measures for the proposed framework is
outlined in Table 5.2, and discussed further in Chapter 5.1.1.

It is the claim that deep learning algorithms are a flexible function that can learn to
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Figure 3.5: For each image, the features (such as Radon, HOG, or raw pixels) are
extracted, compressed by the Autoencoder, and passed to MLP for classification. The
classification is sorted to determine the best class. Thereafter, the image is retrieved
using KNN search within the top 5 predicted classes, wherein the summation of the

probabilities is 1 [100].

fit raw data. However, this chapter provides evidence that deep learning algorithms can
perform better when provided with features as input parameters. This strategy promotes
the deep structures to get a better understanding of the data which further helps in feature
extraction and classification. In the coming chapter, a hand-crafted radon descriptor is
proposed to advance the importance of radon as a feature extractor.
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Iq: the query Image, AE: the trained autoencoder, MLP : the trained MLP, FS : defined
input features (i.e., Radon, HOG, raw images)

procedure Retrieve(Iq, AE,MLP,Fs):
Iqf ← GetFeatures(Iq, Fs);

Ienc ← Autoencoder(If );
Pc ← MLP(Ienc) (get class probabilities);
Topidx ← argsort(Pc,

′decreasing′)[: 5] (get indexes of top five classes);
D = [] (Initialize empty array);
Idx = [];
m = 0 (number of candidate images);
for i in Topidx do

for j in |Ci| (for all images in class Ci) do

Ii,jf ← GetFeatures(Iji , Fs) (get features for the candidate image)

d, idx← KNN(Ii,jf , Iqf ) (perform knn search)

m = m+ 1

D[m]← d
1+Pc[i]

(normalize w.r.t. to prediction probability)

Idx[m]← idx
end

end
Best Match = Idx[argmin(D)] ;
return Best Match

Algorithm 2: Retrieving the best match for the query Iq [100].
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Chapter 4

Forming Local Intersections of
Projections

The materials of this chapter is currently under review at the European Conference on
Computer Vision, titled “Forming Local Intersections of Projections (FLIP) for Retrieval
of Histopathology Images” authored by Sriram et al. [101].

4.1 Motivation

WSI in the field of pathology is a digital imaging solution which refers to scanning a
specimen smeared on a glass-slide thereby digitizing the slide. Recently, content-based
image retrieval has gained traction in pathology for diagnosing, analyzing and retrieving
similar images contextually. However, since digital pathology scans are large in size, it
becomes difficult for established deep learning algorithms to process. A commonly used
strategy for deep learning algorithms is to down-sample the images in order to process such
large images; this technique, however, causes loss in quality of data. Hence, the motivation
is to develop a global feature extractor that can concisely representing a large pathology
scan into a compact yet dense vector for quick retrieval.

In this section, a novel global image descriptor called FLIP is proposed for representing
large histopathology images. The proposed descriptor is based on Radon transform which
computes parallel projections in small local neighborhoods of gray-level images to form a
histogram for retrieval. In particular, four equi-distant projections are computed for each
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local neighborhood of 3×3 at angles 0◦, 45◦, 90◦, and 135◦. After which for each neighbor-
hood, the intersection (a numerical equivalence of logical AND) is calculated between all
adjacent projections - an entropy strategy inspired from information theory. Thereafter,
each neighborhood is re-scaled between 0 to 128 from which a histogram is constructed
by counting the intensity instance of each neighborhood to form a representation for the
entire image. Finally, from the obtained histogram, the first bin is neglected (to remove
redundancy) to form the FLIP histogram with a 127 bins.

In addition, this section also introduces an extended version of FLIP called mFLIP.
In essence, the FLIP descriptor for 1000×1000, 750×750, 500×500, and 250×250 images
are concatenated to form the mFLIP descriptor. It is observed that the mFLIP descriptor
outperforms all feature sets on the KIMIA Path24 data set, which consists of approximately
27,000 histopathology patches of size 1000×1000 belonging to 24 classes. Experimental
results show that the mFLIP descriptor achieves an overall accuracy (ηtotal) of ≈ 72%
when combined with SVM classification, and ≈ 60% when retrieving using χ2 distance.
Not only does mFLIP set the current benchmark on the KIMIA Path24 data set, it also
surpasses all deep learning algorithms reported in the aforementioned data set.

4.2 Localizing projection features

Examining Radon projections to form a global descriptor is an active area of research
which is observed to work well for pathology images [106]. In this section, the proposed
handcrafted image descriptor, FLIP, is discussed in greater detail on its influence when
representing histopathology images. It is important to note that the FLIP descriptor is
observed to outperform various established deep feature algorithms, including pre-trained
networks as well as other powerful global descriptors like LBP and HOG. The performance
of the FLIP algorithm is verified on the KIMIA Path24 data set. For illustrating the
variety of textures in this data set, Fig. 4.1 depicts nine randomly selected samples from
the KIMIA Path24 data set.

4.2.1 Projection Features

Introduced by J. Radon in 1917 [85], Radon transform is widely used in the medical domain
as a way of reconstructing a function from the values of its projections in IRn space [115].
Although the intent here is not reconstruction, for the purposes of the FLIP descriptor,
the Radon transform is adopted to compute a profile that is a projection of the image
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Figure 4.1: Sample thumbnails of scans depicting variety of cellular textures present in
the KIMIA Path24 dataset. The images represent approximately 20× magnification,

which is a portion of the WSI.

structures. When examining a function f(x, y), one can project f(x, y) along a number of
projection angles; these projections are the sum (or integral) of f(x, y) values along lines
constituted by each angle θ. Hence, the projection creates a new image R(ρ, θ) which is
a sinogram with ρ = xcosθ + ysinθ. Therefore, when using the Dirac delta function δ(·),
the Radon transform of a two-dimensional image f(x, y) can be defined as its line integral
along a line inclined at an angle θ and at a distance ρ from the origin [90]:

R(ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(xcosθ + ysinθ − ρ)dxdy (4.1)

where δ(·) is the Dirac Delta function which is non-zero only, wherein −∞ < ρ < ∞, 0 ≤
θ < π.

When designing the FLIP descriptor, a total of four equi-distant Radon projections
were computed for each 3×3 neighborhood for each image. The Radon projections for each
neighborhood is hard-coded instead of using a Radon transformation library, as depicted
in Fig. 4.2. Since we are only interested in computing four equidistant projections per-
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neighborhood, we add the pixel intensity across the projection angles of 0◦, 45◦, 90◦, and
135◦.

Figure 4.2: Computing hand-crafted Radon projection for a local 3× 3 neighborhood.

4.2.2 Forming Local Intersections of Projections Histogram

FLIP is a compact histogram based on some general knowledge and intuitive expectations.
Given the scan S, we are interested in describing the grayscale image I(⊂ S) via a short
descriptor, or in this case a histogram, h using Radon projections R(ρ, θ) to transform
the intensities f(x, y) of I. We can process all local neighbourhoods Wij ⊂ I. For each
neighbourhood Wij, we capture nP projections with 0 < nP � 180: p1

ij,p
2
ij, . . . ,p

nP
ij . It

is observed that some individual projections from different (and dissimilar) images to be
quite similar. Hence, the intersection of adjacent projections is calculated to quantify the
spatial correlations of a given neighborhood pattern. The intersection of projections can
be thought of as the logical “AND” operator, capturing a unique characteristic between
the projections. In literature, “AND” logical operators compute the relation between
two observations, wherein only if both the relations are true will the outcome be true.
Intuitively, if the relations between two or more observation is true, then the combination
of observations brings about a unique relationship which must hold true. To explain this
predicament, if we are to identify a person in public who is tall or with brown hair, or
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wearing a gray sweater or carrying a brown bag - this will be quite difficult to identify,
because several people may hold these features. However, if a person is to be described as
“a tall man AND brown hair AND wearing a gray sweater AND carrying a brown bag”,
then this does in fact narrow down the search for quickly identifying the person because
we have formed compound features of this individual using the logical “AND” . Hence a
combination of the features when combined together provides a unique characteristic which
is expected to be discriminant. Therefore, when computing the intersection of adjacent
Radon projections, we receive nP intersection vectors vkmin as:

Vk,m = min
(
pkij,p

(k+1)%nP
ij

)
, (4.2)

with k = 1, 2, . . . , nP and m = 1, 2, . . . , nW where nW is the total number of local neigh-
borhoods of the image I. Hence, we will have nP × nW intersections of local Radon
projections. These projections have different values which are also subject to intensity
fluctuations. Thereafter, the four intersection of projections are re-scaled between 0 to 128
for all projection values across all neighborhoods of the image.

V̄k,m =

⌈
L× Vk,m − pmin

pmax − pmin

⌉
. (4.3)

Now, the re-scaled Radon projections values are counted V̄ ∈ 1, 2, . . . , L, ∀m = 1, 2, . . . ,
nP × nW to form the FLIP histogram h.

Fig. 4.3 shows the main steps for creating the FLIP histogram. Capturing nP = 4
equi-distance projections at 0◦, 45◦, 90◦, and 135◦. Algorithm 3 provides the pseudo-code
for calculating the FLIP descriptor.

For comparison, Fig. 4.4 compares the FLIP histogram with the pixel intensity his-
togram (ranging from 0 to 255) for the given sample images. The image histogram is a
count of all the pixel intensities which forms a vector of length 255. On the contrary, the
FLIP histogram is only 127 in length, and captures the radon projections computed for
every neighborhood within the image.

4.3 Multi-resolutional FLIP

A multi-resolutional approach is motivated by physics and biological vision which is now
widely adopted in computer vision, image analysis, and signal processing algorithms. The
intuition behind multi-resolution representation is to accommodate for structural changes
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Figure 4.3: A simplified overview of the FLIP histogram extraction. A certain number of
projections, here n = 4, is computed for each neighbourhood, from which the intersection

of all adjacent projections is computed. After re-scaling all projections of all
neighbourhoods in the image based on global min/max projection values, the FLIP

histogram can be assembled.

that one observes in real-world objects [24]. The mFLIP approach is built upon the tradi-
tional FLIP descriptor. In the case of KIMIA Path24 dataset, we compute the FLIP for
four image dimensions (inclusive of original and resized resolutions) - 1000×1000, 750×750,
500×500, and 250×250. After obtaining a 127 length FLIP histogram for each of the res-
olution, we concatenate the histograms in descending order of resolution to form a mFLIP
histogram length of 508. It is the mFLIP histogram that sets the benchmark in the KIMIA
Path24 data set, beating deep learning features as well as traditional computer vision tech-
niques. Specifically, a mFLIP histogram of 508 in length achieves a total accuracy of 72%
when using generalized histogram intersection SVM kernel classifier. Fig. 4.5 provides a
pictorial representation to compute the mFLIP for a given image.

4.3.1 Indexing and Testing

The KIMIA Path 24 is a multi-class openly available histopathology data set consisting
of approximately 27,000 train images and 1,325 test images of size 1000 × 1000, along
with their associated classes. As described in [9], homogeneity and other techniques are
implemented to on all 24 scans to only focus on the specimen instead of the background
(noised portion). Once the specimen is obtained, the scans are divided into a regular grid
delivering approximately 27,000 patches of size 1000 × 1000. For each patch the FLIP
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Figure 4.4: FLIP vs. Pixel intensity histogram for three randomly sampled patches.

histogram is obtained and saved in a database for retrieval. Once saved, the 27,000 train
images are used for training using SVM classifier. Subsequently, for every FLIP histogram
from the test set, the closest indexed FLIP histogram is obtained with its associated class
for validity. Hence, the main task of the retrieval is to find the best match for a FLIP-
computed patch. Fig. 4.6 presents a graphical overview of the overall approach to extract
and test the FLIP histograms.

Although SVM obtained the best result for classification, the motive for retrieval is to
also observe the performance of the FLIP when a learning algorithm is not applicable. To
that, two matching strategies were incorporated: i) using a distance measure to quantify
the (dis)similarity between the mFLIP histogram of the query patch and the mFLIP his-
togram of every image in the database, or ii) to apply SVM learning to assign a class to
the query patch. For the distance-based retrieval, several strategies were used including:
χ2, histogram intersection, Pearson coefficient, cosine similarity, and L1 and L2 metrics.
In terms of distance-based retrieval, χ2 obtains the best result which reduces the accu-
racy approximately 10% when compared to SVM, these results are reported as well. The
best result and the current benchmark for the KIMIA Path24 data set is achieved when
combining the mFLIP global descriptor along with the generalized histogram intersection
kernel SVM for classification.
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Figure 4.5: Multi-resolution Forming Local Intersections of Projections.

Figure 4.6: Provides a thorough overview of the extracting and testing phase for
computing and evaluating the FLIP global descriptors.
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Input : An image I as part of a whole scan S: I ⊂ S
Output: The FLIP histogram h
Set neighbourhood size and overlap;
L← 128 (histogram default length);
h← ∅;
F← ∅;
Ig ← Convert image I to gray-scale;

foreach window Wi in image Ig do
R(0,45,90,135) ← RadonTransform(Wi);

Rmin1 ← min(R0, R45);
Rmin2 ← min(R45, R90);
Rmin3 ← min(R90, R135);
Rmin4 ← min(R135, R0);
Rmin ← concatenate (Rmin1 , Rmin2 , Rmin3 , Rmin4);
F← AppendRow(Rmin);

end
fmin, fmax ← FindMinMax(F);
F← reScale(F, fmin, fmax, L);
F← F[1 : 128] (127 length histogram);
for i = 1 to Frows do

for j = 1 to Fcols do
h(F(i, j))← h(F(i, j)) + 1;

end

end
Return h;

Algorithm 3: FLIP – Forming Local Intersections of Projections.
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Chapter 5

Experiments and Analysis

This chapter provides a detailed analysis and experimental results for the aforementioned
Autoencoded Radon projection framework as well as the novel FLIP and mFLIP global
image descriptors applied on their respective benchmark data sets.

5.1 Evaluation of Autoencoded Radon Projections

The following subsection emphasizes on the performance of the proposed autoencoded
Radon projections framework on the IRMA data set. In addition to the experimental
results, this section provides a overview of the IRMA data set as well as retrieval strategies.

5.1.1 IRMA Radiography Data-set

IRMA is a publicly available radiograph data set collected at the Department of Diagnostic
Radiology at the RWTH Aachen University, in Germany [1]. This data set is composed
of 12, 677 training and 1, 733 testing images of anonymized patients of different ages and
genders. The radiographs are of various resolutions captured at different angular positions
and represent multiple body parts (such as: lung, leg, arms, skull, etc.) [110]. The IRMA
data set is quite challenging for machine learning algorithms to generalize due to noise,
variational backgrounds, rotations, artifacts and nonuniform category distribution, as in
the data set is dominated by chest x-rays. In terms or evaluation, each image in this data
set has a unique “IRMA code” which belongs to one of the 57 categories (2005 version). The
IRMA code computation is provided along with the data set which is intended to provide
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confirmation on the validity of the proposed framework, and to compare against literature
for benchmarking. In essence, when comparing the query image against the retrieved
image, the IRMA code is computed which provides an error between 0 and 1 (0 being the
better match). In reality, the IRMA code is not available; in this case, it is designed and
numerically computed by medical professionals solely for benchmarking purposes. Hence,
the total IRMA error is calculated for all 1,733 test images for which the best match and
its associated class is obtained from the training set. The summation of the IRMA code
for all 1,733 query images quantifies the performance of the proposed framework, which
is then compared to literature. The presented framework, that is autoencoded Radon
projections and classifying it using an MLP, sets the benchmark on the IRMA data set
when comparing against other AE techniques reported on this data set.

IRMA Challenges

Each medical imaging data set has its challenges which requires exploring different strate-
gies to overcome. The IRMA data set is a particularly difficult data set for machine
intelligent algorithms, especially for deep learning approaches. The obvious challenges of
the data set include: (i) limited samples, (ii) nonuniform categorical distribution between
the 57 categories, and (iii) diverse sources of variable or irrelevant information in the
images.

Limited Samples: The IRMA is a rather small data set, with 12,677 and 1,733
training and testing images, respectively. The limited sample of images poses as a threat
to deep Learning algorithm, disabling the network from generalizing. This is because, for
a network to generalize, a large set of data is to be provided such that feature extraction is
improved. However, since the provided data set is not large, an AE is constrained to have a
relatively shallow network to avoid overfitting the data. In order to reflect on this problem,
data augmentation is implemented – which creates synthetic data of an existing data by
flipping the image along its axes and rotating them to obtain multiple combinations of
the same image. For completeness, the AE and MLP were also validated on augmented
data set, however, the testing accuracy is observed to have decreased. For this reason, the
proposed method did not include augmented data results.

Categorical Imbalance: IRMA is a non-uniform data set that is biased towards the
first class; the majority of the images in the training set are lung radiographs, as depicted
in Fig. 5.1. An imbalance data set causes the network to “memorize” certain images
which disallows for generalizing the data set. In this case, it is often observed that deep
learning algorithms tend to “over-learn” lung x-rays which causes mis-classification during
the retrieval stage.
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Figure 5.1: Non-uniform categorical distribution of training vs testing data in IRMA
data set across 57 classes.

Diverse sources of variable or irrelevant information: To add further complexity
for training, the IRMA data set contains numerous challenges which confuses the network
during training: variable background color or lack of, artefacts, burnt-in annotations, land-
marks and rotations, to mention some. Although these noises impact the performance of
the network, they were included in the training and testing phase in order to be comparable
against literature. As depicted in Fig. 5.2, there exists various types of problems within
the images in the IRMA data set.

Experimental Results

For validating the proposed supervised sequential framework, three series of experiments
were performed. These experiments include evaluating the framework using three feature
inputs to the AE, i.e., (i) Radon projections, (ii) HOG features, and (iii) raw images.
Regardless of the input parameter to the framework, the image size and the feature depen-
dent parameter(s) are altered. The feature dependent parameters includes the number of
equi-distant projections for Radon transform, the number of orientations and the bin size
for HOG features, and the compression (down-sampling) ratio for raw images. Evidently,
the retrieving and the training strategy needs to be of the same type of input feature.

The performance of the proposed framework is validated by calculating the accumulated
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Figure 5.2: Challenging aspects of the IRMA data set: some images have burnt-in
annotations, artifacts and landmarks. Different orientations and background intensities

also pose challenges [100].

IRMA code for every proper and improper classification. Hence, to obtain the lowest IRMA
error, namely when using Radon projections, 57 indexed KD-trees are generated whereas
the ith KD-Tree is indexed using 16 equidistant 1D vectorized and normalized Radon
projections from pre-processed 256 × 256 down-sampled training images which belong to
the i-the category. The closest match for the provided query image is retrieved based on
the minimum distance when comparing its vector representation against all vectors in the
training set. Particularly, 16 equidistant projections are chosen based on results presented
in [108]. As well, a 256× 256 size was chosen empirically to unify the image dimensions to
simplify the retrieval task.

For the first experiment, the Radon projections are calculated from pre-processed train-
ing images and normalized on a per-projection basis. The normalized Radon projections
are then concatenated to form a one-dimensional vector which is provided to the frame-
work. The combination of Radon features and the framework yielded an IRMA error of
313, which is the best result on the IRMA dataset using an AE. For the second series of
experiments, HOG descriptors were provided as input to the framework, which obtained
an IRMA error of ≈ 326 for 8 orientations. For the final experiment, the raw images
were down-sampled and provided as input to the framework, resulting in an IRMA error
of ≈ 349 for 50% compression that is 64 × 64 sized input images. Table5.4 shows the
experimental results - wherein the dark gray cells are the best results and the light gray
cells: are the best value for a given input dimension.
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Table 5.1: Comparative results: For different image sizes (first column), we measured the
IRMA error and network accuracies (second column). For Radon projections (third

column) four scenarios were tested with 8, 10, 16 and 20 equidistant projections. For
HOG features (fourth column), four different gradient histograms were calcutes with 4, 8,
10 and 16 directions. Raw images (last column) were compressed at 25% and 50% [100].

Input size Error/Accuracy
Radon HOG Raw Image

8 10 16 20 4 8 10 16 25% 50%
32× 32 IRMA Error 345 341 335 340 410 408 408 405 351 354
64× 64 IRMA Error 332 332 330 328 329 326 328 331 349 353

128× 128 IRMA Error 325 323 323 320 332 329 335 335 349 350
256× 256 IRMA Error 317 316 313 314 336 333 341 350 351 356

In conclusion, the proposed supervised sequential framework, which incorporated data
compression as well as classification is observed to be competent for medical imaging ap-
plications. The lowest IRMA error of 313 was achieved by training a classifier using 16
equidistant normalized Radon projections from pre-processed training images with a 10-
fold cross validation, early stopping, and dropout regularizations included. It is evident
that Radon projections are descriptive input parameters to the framework outperforming
both the HOG feature and raw pixel values. In addition, Radon projections were observed
to consume less memory and to be faster (≈ 25GB of RAM for 2.5 hours) when compared
to HOG (≈ 30GB of RAM for 3 hours) and raw images (≈ 35GB of RAM for 4.5 hours).
Additionally, weighting the retrieval distances using the MLP classification probability is
observed to consistently yield better results compared to simply using L-2 distances. Fig.
5.3 shows the effect of weighting of similarity using classification probabilities. The images
from left to right are sorted in increasing order of Radon projection similarity, wherein the
highlighted image shows the best match after probability weighting.

It is evident that the test accuracy is not necessarily a good estimation of the IRMA
error. This is perhaps due to the very high categorical imbalance among training/test data.
However, there persists a relationship between the IRMA error and the test accuracy – an
IRMA error of 313 is achieved for the highest test accuracy of 57%.

For the sake of completeness, the IRMA training images were also augmented to obtain
70, 000 images. This strategy is implemented to confirm if increasing the number of images
can assist the learning algorithms to perform better. However, despite the increase in
number of training images, the IRMA error was similar to the best achieved.

After several experiments on various other learning parameters, the best activation
function was observed to be ReLU (rectified linear unit) when compared to Sigmoid, tanh,
and rmsprop functions. Also, a dropout rate of 0.2 was established across all models
after empirically experimenting on the data set. Table 5.2 shows the relative ranking of
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Figure 5.3: Depiction of the “best match” (highlighted) strategy when using Radon
projections. Certainly every retrieved image has an associated IRMA code which can be

compared with the query’s IRMA code to calculate the retrieval error [100].

the proposed approach against existing methods in the literature. Beside the IRMA error
(Etot ∈ [0, 1733]), an accuracy estimate is provided as well: A = 1−Etot/1733. Even though
the proposed method does not yield the least overall error when compared to literature, it
is, however, the lowest IRMA error when using an AE for dimensionality reduction. Table
5.2 provides the benchmark IRMA error for completeness, however, the purpose of our
framework is to compare only against AE approaches.

Method Error Accuracy(%)

Camlica et al. [23] 146.55 91.54%
Avni et al. [7] 169.50 90.22%

Proposed Framework 313.17 81.93%
Autoencoder – Sze-To et. al [103] 344.08 80.14%
Autoencoder – Sharma et. al [91] 376.00 78.30%
Autoencoder – Tizhoosh et. al [108] 392.09 77.37%

Table 5.2: IRMA results: The lower section compares methods using autoencoders. The
upper section reports the best results by non-neural approaches [100].
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5.2 Evaluation of FLIP Descriptor

This section examines the performance of the FLIP and the mFLIP algorithms, and their
evaluation on the openly available KIMIA Path24 histopathology data set. In addition to
the discussing the metrics for retrieval and accuracy calculations, this section also discusses
the structure and some challenges when training and testing on the KIMIA Path24 data
set.

5.2.1 KIMIA Path24 Data-set

KIMIA Path24, introduced by Babaie et al. [9], is a publicly available histopathology data
set comprised of 24 WSI depicting various tissue patterns and body parts. Through homo-
geneity and other statistical metrics, all scans are broken down into 1,325 and 27,055 test
and training patches, respectively. These patches were captured from each of the 24 scans
to ensure that only specimens are obtained, ignoring the background and other irrelevant
parts. Each of the captured patches are of size 1000×1000 are extracted (0.5mm×0.5mm).
Specifically, the scans are captured using TissueScope LE 1.01 in the bright field using a
0.75 NA lens. Fig. 4.1 provides a pictorial representation of randomly selected thumbnails
from the KIMIA Path24 data set.

Since FLIP and mFLIP are relatively compact global descriptors, the entire dimension,
that is 1000×1000 image, could be utilized and processed (no downsampling necessary).
In particular, using NVIDIA Cuda for parallel processing, it takes roughly 20 seconds to
obtain the mFLIP for the originally sized image. For deep learning algorithms it becomes
time consuming and resource heavy for when the input image is high dimensional. In fact,
for each of the deep learning algorithms, the images were down-sampled to 250 × 250 in
order to train the data set. For completeness, the mFLIP and the FLIP were also computed
on the down-sampled 250×250 images which resulted in 2∼3% loss in accuracy. Hence,
the reported results are for gray-scaled 1000×1000 images as they yield better results.

Accuracy Measurement

A total of ntot = 1, 325 test patches P j
s are obtained which belong to one of the 24 classes

available Γs = {P i
s |s ∈ S, i = 1, 2, . . . , nγs} with s = 0, 1, 2, . . . , 23 [9]. In order to compare

our retrieval against literature, the retrieval calculation outlined in [9] is adopted. Hence,
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for a retrieved image R for any experiment, the patch-to-scan accuracy ηp can be given as:

ηp =

∑
s∈S |R ∩ Γs|
ntot

(5.1)

In addition, the whole-scan accuracy ηW is calculated to be:

ηW =
1

24

∑
s∈S

|R ∩ Γs|
nγs

(5.2)

Conclusively, the total accuracy ηtotal is obtained which is comprised of both patch-to-
scan and whole-scan accuracies: ηtotal = ηp × ηW .

Experimentation on Deep Learning

Since deep learning algorithms have caught much attention in any facet of data prediction
and analysis, a performance comparison of mFLIP and FLIP against current established
deep networks on the KIMIA Path24 data set is inevitable. The claim behind deep learning
is to learn data representations automatically by “training” a network to generalize a data
set. Some claim that deep learning network is a very flexible function that we recently
learned to fit; others claim that these networks are a smooth lookup table. Regardless,
the main idea behind deep learning algorithms is to extract one-level of abstraction per
layer, learn these abstractions and fit it to data to generalize. In this subsection, four dif-
ferent deep learning structures were evaluated and compared against the proposed mFLIP
descriptor. These deep learning algorithms include: (i) Pre-trained VGG16 classified on
linear-SVM, (ii) Fine-tuned VGG16, (iii) Pre-trained Inception V3 classified using linear-
SVM, and (iv) Fine-tuned Inception V3. Both the VGG16 and the Inception V3 are con-
volutional neural networks that are established networks with optimized weights trained
thoroughly on a particular data set. The idea here is to leverage a well-established network
and optimize its weights to fit the KIMIA Path24 data set.

Pre-Trained CNN as a Feature Extractor: For the first series of experiment, the
pre-trained VGG16 and Inception V3 networks are adopted for feature extraction; these
networks along with its optimized weights are built into the Keras library in Python.
In particular, the fully-connected layers from both the networks are extracted to obtain
the feature vector. This feature vector is provided to a linear SVM for classification.
As for the linear-SVM classifier, built-in Python packages scikit-learn and LIBSVM were
utilized [79] [25]. In addition, Python libraries NumPy [117] and SciPy [50] were leveraged
to manipulate and store the data.
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Fine-tuned CNN as a Classifier: For the second series of experiment, the estab-
lished VGG16 and Inception V3 networks are fine-tuned as classifiers; these networks along
with their optimized weights are built into the Keras library in Python. For the VGG16
network, the fully-connected layer is removed from the convolutional layers and provided
to a bottleneck to extract features through the convolutional layers. These features are
initially used to pre-train the new fully-connected MLP layers, hence forcing the network
to initialize and optimize its weights. Thereafter, the new fully connected MLP is of a
single 256-vector length with ReLU activation function, followed by a softmax layer for
obtaining class probabilities. Finally, the new fully-connected model is attached back onto
the VGG16 convolutional layers and trained on each convolutional block, except the last
block, in order to receive the adjusted classification weights.

Similarly for Inception V3 network, the original fully-connected layer is replaced with
a single 1024 dense ReLU layer followed by a softmax layer for classification. Furthermore,
the new fully-connected layer is trained on a bottleneck structure to extract features which
is then attached back onto the original convolutional layers for fine-tuning the final two
inception blocks. Table 5.4 provides the accuracy measures for aforementioned four pre-
trained deep learning experiments. It is thereby evident that even the state-of-the-art deep
learning algorithm is not a match for the mFLIP global descriptor.

Experimentation with mFLIP descriptor

Multiple experiments were performed with different configurations in form of mFLIP(L,w,∆),D

where L = |h| is the histogram length, w is the window size, ∆ is the pixel stride (overlap),
and D is the distance measure or classification scheme. Specifically, we experimented with
L being 127 and 508 (after removing the first bin), w of 3×3 and 10×10, and ∆ of no over-
lap and full-overlap. The best configuration is empirically chosen to be of FLIP(127,3,3),svm,
and mFLIP(508,3,3),svm.

Table 5.3 provides the accuracy measures for various FLIP and mFLIP combinations.
When the FLIP is configured with utilizing the original dimensions, with a neighborhood
size of 3×3 and ∆ = 3 pixel stride and a histogram length of L = 127, the best retrieval
accuracy (ηtotal) of 55.24% is achieved using SVM classifier (generalized histogram inter-
section kernel). On the other hand, we obtain a 46.98% accuracy when using histogram
intersection distance metric for retrieving - the lowest distance is the best match when
comparing histograms. On the other hand, the benchmark score for the KIMIA Path24
is achieved by mFLIP - utilizing four concatenated image dimensions of 1000 × 1000,
750× 750, 500× 500, 250× 250, with a neighborhood size of 3×3 and ∆ = 3 pixel stride
and a histogram length of L = 508 (each dimension of which gets a FLIP descriptor of 127
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concatenated together). The best retrieval accuracy (ηtotal) of 72.42% is achieved using
the generalized histogram intersection kernel SVM classifier and a 59.93% accuracy when
using χ2 distance metric.

F1-Score Precision Recall ηp ηW ηtotal
mFLIP(508,3,3), χ2 76.78 77.55 77.28 77.28 77.55 59.93

mFLIP(508,3,3), histInt 74.24 75.38 74.87 74.87 75.38 56.44
mFLIP(508,3,3), svm 84.54 85.52 84.68 84.68 85.52 72.42

FLIP(127,3,3), χ2 67.28 68.27 67.62 67.62 68.27 46.16

FLIP(127,3,3), histInt 67.80 69.03 68.07 68.07 69.03 46.98
FLIP(127,3,3), svm 73.88 74.54 74.11 74.11 74.54 55.24

Table 5.3: mFLIP and FLIP results for different retrieval strategies (χ2, histogram
intersection, and svm) for a histogram length of L = 127, generated using neighborhood

size of with no-overlap (∆ = 3). Best results are highlighted in bold.

Table 5.4 provides a comparison of mFLIP against deep learning methods reported
in literature. The fine-tuned Inception V3 delivers ηtotal = 56.98 which is slightly higher
than the FLIP accuracy. However, all deep learning approaches are considerably lower
when compared to the current benchmark, mFLIP(508,3,3) which achieves a ηp = 85.53,
ηp = 84.68, and ηtotal = 72.42. These results are quite encouraging that a handcrafted
global descriptor can surpass deep features that are the result of numerous hours/days of
training.

Method ηW ηp ηtotal
mFLIP(508,3,3),svm 85.53 84.68 72.42
ELP [106] 82.70 79.90 66.07
LBPu

(24,2),svm 77.80 73.30 57.02

TL-Inception-v3 [52] 76.10 74.87 56.98
FLIP(127,3,3),svm 74.54 74.11 55.24
FE-Inception-v3 [52] 71.24 70.94 50.54
FE-VGG16 [52] 64.96 65.21 42.36
TL-VGG16 [52] 66.23 63.85 42.29
CNN [9] 64.75 64.98 41.80

Table 5.4: FLIP and mFLIP results for the KIMIA Path24 dataset. FLIP uses different
retrieval strategies (χ2, comb, and svm) for a 127 histogram length. Best results for
ηp, ηW and ηtotal are highlighted in bold. The results for methods marked are bolded.
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Chapter 6

Conclusion

This thesis investigated the uses of Radon transform for deep learning and computer vi-
sion techniques to complement CBIR systems. In particular, two contributions were put
forward in this thesis. The first contribution is a comparative study of Radon transform
used in place of raw images and HOG descriptor as an input for the proposed sequential
framework; that is, AE for dimensionality reduction and a multi-layer perceptron for clas-
sifying the compressed Radon embedding. This approach is validated on the IRMA data
set, which consists of approximately 14,000 radiography images of various body-parts; and
the retrieval accuracy of which is computed on the provided IRMA code published by the
authors of the data set [1]. The second novelty is a handcrafted global descriptor based
on Radon projections called FLIP, as well as an multi-resolution version of the FLIP is
discussed. Both the FLIP and mFLIP descriptors compete directly with deep learning
algorithms and other established global descriptors. These descriptors are validated on the
KIMIA Path24 data set [9], which is a histopathology data set comprised of approximately
29,000 digital scans of size 1000×1000 obtained from 24 classes.

At first, Radon transform is explored as an input feature for the proposed supervised
framework, that is AE and MLP trained sequentially for retrieval of medical images. Three
features are employed for comparison, namely: Radon projections, HOG features, and raw
pixels. In essence, each of these features are provided to an AE which compresses the data
to form a latent embedding representative of the image. Thereafter, these embeddings
along with its labels are provided to the MLP for classification. When evaluating the
proposed framework on the IRMA dataset, it is evident that the dimensionality reduction
capabilities of AE tends to remove the redundancies of the input vector; which helps to
expedite the training process and avoid over-fitting of data. The lowest IRMA error of
313 is obtained when providing Radon projections as input to the framework. Not only
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do Radon projections provide the best accuracy, but they also accelerate the training
process as Radon features are compact yet descriptive. The aforementioned IRMA error is
the lowest IRMA error achieved when using AE for dimensionality reduction and feature
extraction.

In this thesis, a new global feature descriptor called FLIP was also introduced along
with its extended multi-resolution version, mFLIP - which currently sets the benchmark
for KIMIA Path24 data set. The mFLIP descriptor outperforms any deep learning and
handcrafted computer vision algorithms reported on the aforementioned data set. It ap-
pears that mFLIP is particularly good for histopathology images as the proposed algorithm
is observed to capture the texture of each image through the means of Radon projections,
and quantify these projections onto a condensed and concise histogram. In addition, the
process of localizing and capturing the Radon projections for each neighborhood allows for
quick computation and does not require learning or expensive GPUs/CPUs for extracting
features from images. Moreover, since both mFLIP and FLIP histograms are descrip-
tive yet compact representation of the image, saving these histograms in place of images
immensely expedites the retrieval and classification process. In particular, the mFLIP de-
scriptor of length 508 achieves an ηtotal of ≈ 60% accuracy using χ2 distance for retrieval,
and ≈ 72% when using SVM classification using generalized histogram intersection kernel.
This is quite encouraging as mFLIP does not require training and down-sampling, and it
generates much more compact descriptors with less storage demand.

Future Work: While this thesis demonstrated the potential of radon projections
as image descriptors for CBIR, there are many opportunities to extend the scope of this
thesis. The following presents future direction.

Learning Autoencoded Radon Projections

• Train Autoencoder and MLP sequentially, and fine-tune the compressed layers.

• Use SVM in-place of MLP, perhaps it may yield a better accuracy

• Perhaps a greedy layer-wise approach for training an autoencoder

Forming Local Intersections of Projections

• Use filters for calculating local Radon projections

• Create a multi-magnification FLIP that depends on the magnification of the pathol-
ogy image

• Use curvelet transform for a more descriptive and faster generalization instead of
local Radon transform.
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descriptors into a compact image representation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3304–3311. IEEE, 2010.

[50] Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: open source scientific
tools for {Python}. https://www.scipy.org/, 2014.

[51] Amin Khatami, Morteza Babaie, Abbas Khosravi, HR Tizhoosh, Syed Moshfeq
Salaken, and Saeid Nahavandi. A deep-structural medical image classification for
a radon-based image retrieval. In IEEE 30th Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 1–4, 2017.

[52] Brady Kieffer, Morteza Babaie, Shivam Kalra, and HR Tizhoosh. Convolutional neu-
ral networks for histopathology image classification: Training vs. using pre-trained
networks. arXiv preprint arXiv:1710.05726, 2017.

54

https://www.scipy.org/


[53] Seong-Hoon Kim, Ji-Hyun Lee, Byoungchul Ko, and Jae-Yeal Nam. X-ray image
classification using random forests with local binary patterns. In 2010 International
Conference on Machine Learning and Cybernetics (ICMLC), volume 6, pages 3190–
3194. IEEE, 2010.

[54] Josef Kittler, Mohamad Hatef, Robert PW Duin, and Jiri Matas. On combining clas-
sifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–
239, 1998.

[55] Byoung Chul Ko, Seong Hoon Kim, and Jae-Yeal Nam. X-ray image classification
using random forests with local wavelet-based cs-local binary patterns. Journal of
Digital Imaging, 24(6):1141–1151, 2011.

[56] ByoungChul Ko, Soo Yeong Kwak, and Hyeran Byun. Svm-based salient region
(s) extraction method for image retrieval. In Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International Conference on, volume 2, pages 977–980. IEEE,
2004.

[57] Alex Krizhevsky and Geoffrey E Hinton. Using very deep autoencoders for content-
based image retrieval. In European Symposium on Artificial Neural Network, 2011.

[58] Devinder Kumar, Alexander Wong, and David A Clausi. Lung nodule classification
using deep features in ct images. In 12th Conference on Computer and Robot Vision
(CRV), pages 133–138. IEEE, 2015.

[59] Soorya S Kumar and Jiji CV. Histogram of radon projections: A new descriptor
for object detection. National Conference on Computer Vision, Pattern Recognition,
Image Processing and Graphics, 2015.

[60] Thomas M Lehmann, MO Gold, Christian Thies, Benedikt Fischer, Klaus Spitzer,
Daniel Keysers, Hermann Ney, Michael Kohnen, Henning Schubert, and Berthold B
Wein. Content-based image retrieval in medical applications. Methods of Information
in Medicine, 43(4):354–361, 2004.

[61] Zhi Li, Guizhong Liu, Yang Yang, and Junyong You. Scale-and rotation-invariant
local binary pattern using scale-adaptive texton and subuniform-based circular shift.
IEEE Transactions on Image Processing, 21(4):2130–2140, 2012.

[62] Znaonui Liang, Gang Zhang, Jimmy Xiangji Huang, and Qmming Vivian Hu. Deep
learning for healthcare decision making with emrs. In IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 556–559. IEEE, 2014.

55



[63] Shu Liao, Max WK Law, and Albert CS Chung. Dominant local binary patterns
for texture classification. IEEE Transactions on Image Processing, 18(5):1107–1118,
2009.

[64] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Se-
tio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen AWM van der Laak, Bram van
Ginneken, and Clara I Sánchez. A survey on deep learning in medical image analysis.
arXiv preprint arXiv:1702.05747, 2017.

[65] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal,
Iringo Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram Van Ginneken,
and Jeroen Van Der Laak. Deep learning as a tool for increased accuracy and effi-
ciency of histopathological diagnosis. Scientific Reports, 6:26286, 2016.

[66] Xinran Liu, Hamid R Tizhoosh, and Jonathan Kofman. Generating binary tags
for fast medical image retrieval based on convolutional nets and radon transform.
In International Joint Conference on Neural Networks (IJCNN), pages 2872–2878,
2016.

[67] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A survey of content-
based image retrieval with high-level semantics. Pattern Recognition, 40(1):262–282,
2007.

[68] Yu-Ying Liu, Mei Chen, Hiroshi Ishikawa, Gadi Wollstein, Joel S Schuman, and
James M Rehg. Automated macular pathology diagnosis in retinal oct images using
multi-scale spatial pyramid and local binary patterns in texture and shape encoding.
Medical Image Analysis, 15(5):748–759, 2011.
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[80] Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, and Timo Ahonen. Local binary
patterns for still images. In Computer vision using local binary patterns, pages 13–47.
Springer, 2011.

[81] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli
Liao. Why and when can deep-but not shallow-networks avoid the curse of dimension-
ality: A review. International Journal of Automation and Computing, 14(5):503–519,
2017.

57



[82] Victor Pomponiu, Harishwaran Hariharan, Bin Zheng, and David Gur. Improving
breast mass detection using histogram of oriented gradients. In Medical Imaging
2014: Computer-Aided Diagnosis, volume 9035, page 90351R. International Society
for Optics and Photonics, 2014.

[83] Gerard Pons, Robert Mart́ı, Sergi Ganau, Melcior Sent́ıs, and Joan Mart́ı. Comput-
erized detection of breast lesions using deformable part models in ultrasound images.
Ultrasound in Medicine & Biology, 40(9):2252–2264, 2014.

[84] Hammad Qureshi, Olcay Sertel, Nasir Rajpoot, Roland Wilson, and Metin Gurcan.
Adaptive discriminant wavelet packet transform and local binary patterns for menin-
gioma subtype classification. Medical Image Computing and Computer-Assisted In-
tervention (MICCAI), pages 196–204, 2008.

[85] Johann Radon. On the determination of functions from their integral values along
certain manifolds. IEEE Transactions on Medical Imaging, 5(4):170–176, 1986.

[86] Hitesh Rajput, Tanmoy Som, and Soumitra Kar. Using radon transform to recognize
skewed images of vehicular license plates. IEEE Computer Society, 49(1):59–65, 2016.

[87] Peter M Roth, Martin Hirzer, Martin Koestinger, Csaba Beleznai, and Horst
Bischof. Mahalanobis distance learning for person re-identification. In Person Re-
Identification, pages 247–267. Springer, 2014.

[88] Jorge LC Sanz, Eric B Hinkle, and Anil Jain. Radon and projection transform-based
computer vision: algorithms, a pipeline architecture, and industrial applications, vol-
ume 16. Springer Science & Business Media, 2013.

[89] Ivan W Selesnick, Richard G Baraniuk, and Nick C Kingsbury. The dual-tree complex
wavelet transform. IEEE Signal Processing Magazine, 22(6):123–151, 2005.

[90] Jin S Seo, Jaap Haitsma, Ton Kalker, and Chang D Yoo. A robust image fingerprint-
ing system using the radon transform. Signal Processing: Image Communication,
19(4):325–339, 2004.

[91] S Sharma, I Umar, L Ospina, D Wong, and HR Tizhoosh. Stacked autoencoders
for medical image search. In International Symposium on Visual Computing, pages
45–54. Springer, 2016.

[92] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,
Jianhua Yao, Daniel Mollura, and Ronald M Summers. Deep convolutional neural

58



networks for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning. IEEE Transactions on Medical Imaging, 35(5):1285–1298,
2016.

[93] Mei-Ling Shyu, Shu-Ching Chen, Min Chen, Chengcui Zhang, and Kanoksri Sarin-
napakorn. Image database retrieval utilizing affinity relationships. In Proceedings of
the 1st ACM International Workshop on Multimedia databases, pages 78–85. ACM,
2003.

[94] John R Smith and Shih-Fu Chang. Automated binary texture feature sets for im-
age retrieval. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 4, pages 2239–2242. IEEE, 1996.

[95] Yang Song, Weidong Cai, Yun Zhou, and David Dagan Feng. Feature-based image
patch approximation for lung tissue classification. IEEE Transactions on Medical
Imaging, 32(4):797–808, 2013.

[96] Lauge Sørensen, Saher Shaker, and Marleen De Bruijne. Texture classification in lung
ct using local binary patterns. Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pages 934–941, 2008.

[97] Lauge Sorensen, Saher B Shaker, and Marleen De Bruijne. Quantitative analysis of
pulmonary emphysema using local binary patterns. IEEE Transactions on Medical
Imaging, 29(2):559–569, 2010.

[98] Fabio Alexandre Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte.
Breast cancer histopathological image classification using convolutional neural net-
works. In International Joint Conference on Neural Networks (IJCNN), pages 2560–
2567. IEEE, 2016.

[99] Fabio Alexandre Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte.
Breast cancer histopathological image classification using convolutional neural net-
works. In 2016 International Joint Conference on Neural Networks (IJCNN), pages
2560–2567. IEEE, 2016.

[100] Aditya Sriram, Shivam Kalra, HR Tizhoosh, and Shahryar Rahnamayan. Learning
autoencoded radon projections. arXiv preprint arXiv:1710.01247, 2017.

[101] Aditya Sriram, Hamid R Tizhoosh, Shivam Kalra, Brady Kieffery, and Shahryar
Rahnamayan. Forming local intersections of projections for retrieval of histopathol-
ogy images. Submitted to 15th European Conference on Computer Vision (ECCV),
2018.

59



[102] Yongqing Sun and Shinji Ozawa. A hierarchical approach for region-based image
retrieval. In IEEE International Conference on Systems, Man and Cybernetics, vol-
ume 1, pages 1117–1124. IEEE, 2004.

[103] Antonio Sze-To, Hamid R Tizhoosh, and Andrew KC Wong. Binary codes for tagging
x-ray images via deep de-noising autoencoders. arXiv preprint arXiv:1604.07060,
2016.

[104] Salvatore Tabbone, Oriol Ramos Terrades, and Sabine Barrat. Histogram of radon
transform. a useful descriptor for shape retrieval. In 19th International Conference
on Pattern Recognition (ICPR), 2008.

[105] Deepti Tamrakar and Kapil Ahuja. Density-wise two stage mammogram classification
using texture exploiting descriptors. arXiv preprint arXiv:1701.04010, 2017.

[106] Hamid Tizhoosh and Morteza Babaie. Representing medical images with encoded
local projections. IEEE Transactions on Biomedical Engineering, 2018.

[107] Hamid R Tizhoosh. Barcode annotations for medical image retrieval: A preliminary
investigation. In IEEE International Conference on Image Processing (ICIP), pages
818–822. IEEE, 2015.

[108] Hamid R Tizhoosh, Christopher Mitcheltree, Shujin Zhu, and Shamak Dutta. Bar-
codes for medical image retrieval using autoencoded radon transform. arXiv preprint
arXiv:1609.05112, 2016.

[109] HR Tizhoosh, Shujin Zhu, Hanson Lo, Varun Chaudhari, and Tahmid Mehdi. Min-
max radon barcodes for medical image retrieval. In International Symposium on
Visual Computing, pages 617–627. Springer, 2016.

[110] Tatiana Tommasi, Barbara Caputo, Petra Welter, Mark Oliver Güld, and Thomas M
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