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Abstract: The influence of microstructure and stress state, as defined by the stress triaxiality and Lode 
parameter, on micro-void nucleation was evaluated experimentally for two 800 MPa Advanced High 
Strength Steels (AHSS), one a Complex-Phase CP800 alloy, with a ferritic-bainitic microstructure, and the 
other a Dual-Phase DP780 ferritic-martensitic steel. Four plane stress specimen geometries (simple shear, 
hole tension, v-bend and biaxial Nakazima) were adopted, providing stress triaxiality and Lode parameter 
values ranging from in-plane shear to biaxial tension under approximately constant stress states until failure. 
This approach facilitated determination of the relationship between void nucleation and macroscopic stress 
state. Damage histories were developed from interrupted samples using 3D micro-tomography and 
quantitative stereology measurement of void nucleation paired with in situ digital image correlation (DIC) 
strain measurements during the mechanical testing. The trends in damage evolution are strongly linked to 
the stress state, with very little void nucleation under shear deformation but extensive void damage under 
biaxial tension for both materials. A dependency of the nucleation rate on Lode parameter was also 
demonstrated. A higher rate of damage accumulation was observed for the DP780 steel compared to 
damage in the CP800 steel for all loading conditions highlighting the strong influence of initial 
microstructure. An analytical framework is proposed to obtain the local stress-state and equivalent plastic 
strain history from direction integration of the measured DIC strain histories, using a measured hardening 
law and assumed anisotropic yield function (Yld91) to develop the link between nucleation and the 
macroscopic stress state. A stress-state dependent nucleation model is proposed by introducing a nucleation 
strain surface as a function of stress-triaxiality and Lode parameter using a modified form of the strain-
based Chu and Needleman nucleation criterion. 

 

1. Introduction 

Advanced high strength steels (AHSS), in particular dual-phase (DP) steels, have gained 

widespread popularity in automotive applications to produce lighter, thinner-gauge components 

while retaining high strength and good formability. New variants of DP steels rely upon a multi-

phase microstructure which comprises a high-strength martensitic phase within a soft ferritic 

matrix to provide an excellent combination of strength and ductility [1]. However, one of the major 

concerns associated with DP steels is that they can be susceptible to abrupt cracking during sheared 

edge stretching operations such as stretch flanging [2,3]. As an alternative, ferritic-bainitic 
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complex phase (CP) steels have been reported to offer improved edge stretchability [4-6]. The 

microstructure of DP steel consists of a significant fraction of martensite that has a large strength 

differential with the ferrite matrix, resulting in an accelerated damage evolution in comparison to 

the ferritic-bainitic CP steel that has a lower strength differential between phases [7]. 

Consequently, this difference in microstructural properties leads to lower resistance to sheared 

edge cracking for the DP steel compared to the CP steel. For steel producers seeking to optimize 

the microstructures of AHSS alloys to improve performance in industrial forming operations, there 

is considerable interest in further understanding the influence of microstructure on damage 

evolution and subsequent failure. 

The fracture mechanism of ductile materials generally involves the nucleation, growth and 

coalescence of microscopic voids [8]. During plastic deformation, voids nucleate and grow until 

they coalescence with neighboring voids to create micro-cracks [9]. Extensive work has been done 

to characterize damage in the DP steels [10-13]. Avramovic-Cingara et al. [10] conducted optical 

microscopy and scanning electron microscopy to quantify damage during tensile loading. X-ray 

tomography techniques have been used to observe damage evolution in DP steel by the 3-D 

reconstruction of 2-D images [11-13]. Kahziz et al. [14] assessed damage evolution during 

deformation of a DP600 sheared edge using laminography. Pathak et al. [7] conducted void 

measurements using optical microscopy and DIC strain measurement during the edge stretching 

of the CP800 and DP780 steels. To-date, studies on 3D quantification of damage processes within 

ferritic-bainitic steels have not been reported to the authors’ knowledge. Moreover, the available 

studies on AHSS grades have mostly focused on failure mechanism under tensile stress states.  

The stress-state is often defined in terms of the stress triaxiality and the Lode parameter in 

models of fracture. The influence of stress-triaxiality on damage evolution has been inferred 

experimentally and analytically [11, 15, 16]. Landron et al. [11] quantified the nucleation of voids 

for two different specimens: tensile and higher triaxiality notch specimens and observed the 

influence of stress state on damage evolution. To quantify the influence of stress triaxiality on 

ductility, Hancock and Mackenzie [17] carried out experiments on smooth and notched round bars 

in three different low-alloy steels and observed increasing ductility with decreasing stress 

triaxiality. Barsoum and Faleskog [18] observed experimentally that the rupture mechanism shifts 

from internal necking at high stress triaxiality to internal shear localization at low stress triaxiality. 
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Needleman [19] studied the effect of different loading conditions on nucleation and correlated the 

onset of nucleation to stress triaxiality level. Xu and Needleman [20] reported that the stress 

triaxiality determines whether decohesion or cracking occurs first. Recently, Yu [21] performed 

3D unit cell simulation to investigate the effect of stress triaxiality and Lode angle on nucleation 

at the particle-matrix interface. The results reveal that both the stress triaxiality and Lode angle 

parameter affects the nucleation process.  

There is a wide variety of models available to capture void growth and coalescence as a 

function of stress state and these have been successfully implemented in finite element models to 

simulate the ductile fracture process [9, 22, 23]. In contrast, studies on void nucleation are less 

common due to the complexity of the required experimental measurements and strong dependence 

on microstructure. Void nucleation occurs at the second-phase particles and inclusions due to the 

cracking or debonding from the matrix material [10, 24]. Nucleation occurs earlier for larger 

particles due to cracking because they contain more surface internal defects, have a large interface 

and often are irregularly shaped [25]. An elongated particle is more susceptible to debonding if 

aligned transversely to the principal loading direction and exhibits cracking if aligned in the 

loading direction [19]. Ultimately, whether a particle will crack or debond depends on the size, 

shape, distribution, strength of the particle and interface [19, 26-28]. A strong correlation between 

the void nucleation and the orientation of the particle cluster with respect to the first principal 

strain direction was reported by Thomson et al.  [29]. Overall, void nucleation is a complex process 

which is difficult to predict. Moreover, the void nucleation in AHSS steels was found to be more 

complex than in homogeneous materials, such as aluminum or, conventional and mild steels, due 

to their multiphase microstructure [10, 24]. The potential nucleation sites in a multi-phase 

microstructure are randomly distributed within or around different phases and particles [7], [30-

32]. The modeling of nucleation mechanism would require capturing deformation of each particle 

and phases and their subsequent cracking and debonding. 

Void nucleation can be modeled using an energy criterion [25, 33], and be stress-controlled 

[34, 35] or strain-controlled [36]. The void nucleation based on critical stress conditions have more 

physical relevance, but are difficult to implement due to intricacies of the void nucleation 

mechanism arising from the microstructure of a material. As an alternative approach, continuum 

void nucleation models have been developed. Chu and Needleman [36] proposed a continuum 



4 
 

approach to model void nucleation and postulated that the stress or strain required to nucleate a 

void follows a normal distribution. The strain-controlled Chu and Needleman model has been 

widely used in the literature to predict void nucleation in aluminium and steels [37, 38]. Butcher 

et al. [39, 40] successfully implemented a stress-based nucleation rule to predict void nucleation 

in aluminum and advanced high strength steels. Despite overwhelming evidence that damage 

evolution is sensitive to the stress state [11, 15], the effect of stress state on void nucleation has 

received limited attention to-date. Landron et al. [11] formulated the nucleation of voids as a 

function of stress triaxiality by modifying the Argon [41] criterion. However, the influence of Lode 

parameter has not been considered in the nucleation models. It is interesting that extensive work 

has been done to account for the influence of stress-state on void growth and coalescence, yet the 

effect of stress state on nucleation rate has been largely overlooked. 

The first objective of the current work is to determine the influence of loading condition (stress 

state) on void nucleation and develop a nucleation rule as a function of stress triaxiality and Lode 

parameter for two different AHSS grades: DP780 and CP800 steels. The second objective is to 

consider the effect of microstructure on nucleation rate and for this, two different microstructure-

types, ferritic-martensitic DP780 and ferritic-bainitic CP800 steels, are considered. The stress state 

is varied by considering four key experiments to characterize the strain to fracture for simple shear, 

uniaxial tension, plane strain tension and equi-biaxial tension. An attempt was made to select 

experiments that minimize necking and provide a nearly constant stress state throughout the 

experiments; these are the hemispherical dome test, hole tension test, v-bend test and a shear test. 

An analytical framework is presented to experimentally estimate the local stress and strain history 

at the fracture location using the Swift hardening law, Yld91 [42] anisotropic yield function and 

measured strain components using digital image correlation (DIC). A series of interrupted tests 

using stereoscopic DIC was conducted to determine the local strain field and then used to correlate 

the equivalent strain with void measurements using 3D tomography. A specimen was extracted 

from the maximum deformed region of each interrupted sample and an ex-situ 3D tomography 

was conducted on each specimen to quantify voids at each level of deformation and for the 

different proportional loading conditions. The experimental investigation of the influence of stress 

state on void nucleation was used to develop an experimental stress state dependent nucleation 

rule for each material. A modified strain-controlled Chu and Needleman [36] nucleation criterion 



5 
 

is proposed to account for the stress states by introducing a nucleation strain surface as a function 

of stress triaxiality and Lode parameter. 

2. Experiment 

2.1. Material Characterization 

The mechanical properties of the two materials investigated herein, CP800 and DP780 steels, 

have been characterized by the authors in previous work [6]. The relevant mechanical properties 

of the CP and DP steels such as yield strength (YS), ultimate tensile strength (UTS), percentage 

total elongation (% TE), strain hardening exponent (n) and Lankford coefficients (r) are listed in 

Table 1. The UTS reported for the TD is the highest for both materials; thus, the experiments in 

the current work were oriented to ensure the maximum principal stress directions were aligned 

with the TD.  

Table 1: Mechanical properties of the CP and DP steels in the rolling direction (RD), transverse direction (TD) and 
diagonal direction (DD). The value in the brackets is the standard deviation after three tests [6].  

Material Thickness 
(mm) 

Direction YS 
(MPa) 

UTS 
(MPa) 

TE 
(%) 

n 
(5-UE%) 

r 

CP800 2.90 RD 710 (6) 810 (3) 19.6 (1.7) 0.08 (0.00) 0.70 (0.04) 
TD 788 (5) 850 (5) 18.8 (1.0) 0.06 (0.00) 0.95 (0.04) 
DD 726 (8) 800 (5) 20.5 (2.0) 0.07 (0.00) 1.33 (0.03) 

DP780 1.56 RD 509 (8) 800 (6) 22.8 (2.2) 0.16 (0.00) 0.72 (0.02) 
TD 522 (4) 806 (5) 21.6 (1.8) 0.15 (0.00) 0.92 (0.03) 
DD 533 (6) 815 (8) 25.5 (1.8) 0.15 (0.00) 0.98 (0.01) 

 

2.2. Biaxial Stress State Experiments 

A stress state corresponding to biaxial tension was obtained by conducting a Nakazima 

hemispherical dome test [43]. The experiment set up consists of a die, a blank holder and a punch 

of diameter 101.6 mm, with a die-entry radius of 6.35 mm. The biaxial specimen consisted of a 

200 mm by 200 mm sheet blank that was clamped prior to punch movement using a blank holder 

force of 650 kN. A punch speed of 0.25 mm/s was used to achieve a quasi-static strain rate. The 

test and tooling conforms to ISO12004-2, aside from using the lower punch speed of 0.25 mm/s 

which is less than the lower limit in the standard of 0.5 mm/s. The punch force and displacement 

was recorded during testing while stereo DIC was used to measure the strain field using a camera 
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frame rate of 6 images per second. The DIC software was provided by Correlated Solutions Inc. 

and the incremental correlation option was activated to account for severe local strains. For post-

processing of the captured images, the logarithmic strain was computed using DIC step and filter 

sizes of 3 and 6 pixels, respectively and a resolution of 0.03 mm/pixel.  In order to quantify the 

effects of step size and the strain filter size in the DIC analysis, the Virtual Strain Gauge Length 

(VSGL) was calculated using following equation. 

VSGL=Resolution of the area of interest × Step size × Filter size                       (1) 

The VSGL is not directly used within the DIC software algorithm to calculate the strains, but is 

considered to be a metric to report the DIC analysis settings used in the experiments. A VSGL of 

0.5 mm was obtained using the current DIC setting. 

 

2.3. Hole Tension Experiment 

Ebnoether and Mohr (2013) [44] demonstrated that stress triaxiality in a conventional tensile 

specimen can vary from 0.33 at onset of necking to 0.8 prior to failure. Bao et al. [45] reported 

that a tensile specimen with a central hole located at its center exhibits approximately uniaxial 

tension at the intersection of the hole and the transverse symmetry plane (the normal location of 

failure onset) since deformation of a free edge is one of uniaxial tension. Given this desirable near-

constant triaxiality, this test was used in the present work to acquire failure strains corresponding 

to a uniaxial tension stress state. A tensile specimen with a gauge length of 35 mm was fabricated 

with a central hole of diameter 10 mm, as shown in Figure 1. The width of the ligament on either 

side of the hole was selected to be four times larger than the sheet thickness for the two materials 

investigated. The holes were processed by first drilling a pilot hole of 9.5 mm diameter, followed 

by reaming to a diameter of 10 mm and lightly polishing with 300 grit SiC paper to remove any 

surface roughness or drill-burr at the edge. The specimen was subjected to tension in a 100 kN 

servo-hydraulic Instron testing apparatus at a cross-head displacement of 0.075 mm/s and strain 

rate corresponding to 0.003 s-1. The full-field strain was recorded during the experiment using 

stereo DIC at an acquisition rate of 4 images per second. The DIC images were analyzed using a 

resolution of 0.02 mm/pixel, a step size and filter size of 3 and 9 pixels, respectively, to obtain 

VSGL of 0.5 mm.  
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Figure 1: Specimen geometry used for the DP780 hole tension test. All units are in mm 

 

2.4. V- Bend Experiment 

The fracture strain in plane strain tension was characterized by conducting tight radius 

bending (v-bend) tests, illustrated in Figure 2. The mechanical arrangement was developed by 

Cheong et al. [46] and was designed to be compatible with stereographic DIC imaging by keeping 

the punch stationary and forcing the rollers to move downwards to perform the bending. The rollers 

are chamfered to provide a 65◦ viewing angle thereby enabling full field DIC of the tensile side of 

the bend specimen during the entire test. In addition, the bend region remains stationary on the 

fixed punch and hence enables higher DIC resolution. The 30 mm X 30 mm DP780 specimens and 

58 mm X 58 mm CP800 specimens were electric discharge machined (EDM) instead of shearing 

to avoid edge cracking. A punch with 0.4 mm radius of curvature was used and the 30 mm diameter 

rollers moved downwards at 20 mm/minute. The rollers were spaced such that the gap between 

the cylindrical surfaces of the rollers was 2.5 times the thickness of material, in accordance with 

the VDA 238-100 specification [47]. The post processing of the DIC images was performed at a 

subset size of 37, a step size of 5 pixels, a strain filter size of 10 pixels and a resolution of 0.01 

mm/pixel that corresponds to an approximate virtual strain gauge length of 0.5 mm.  

 
Figure 2: Concept of Cheong et al. [46] for the tight radius v-bend process with DIC strain measurement  
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2.5. Simple Shear Experiment 

Simple shear tests were performed on CP800 and DP780 steels using the shear  geometry of 

Peirs et al. [48] shown in Figure 3. A 100 kN MTS Criterion model 45 servo-electric tensile frame 

was used to perform the tests at a cross-head displacement rate of 0.03 mm/s which corresponds 

to an approximate von Mises equivalent strain-rate of 0.01 s-1 at the center of the shear zone. The 

shear tests were performed with the applied load in the diagonal direction of the sheet that results 

in the principal stresses being aligned with the rolling and transverse directions, as explained by 

Abedini et al. [49]. DIC imaging was used to record deformation at a rate of 6 frames/s. A subset 

size of 31 pixels was used for DIC analysis, with a step size of 3 and strain filter size of 7 pixels 

at a resolution of 0.15 mm/pixels. A VSGL of 0.3 mm was obtained using the current DIC setting 

which is a recommended setting by Rahmaan et al. [50] who found that the local strain 

measurements converged for this specimen for a DP600 steel and AA5182-O aluminum. This 

value is slightly lower that the VSGL used for the other test geometries (0.5 mm), but reflects the 

higher gradients present in the shear geometry. 

 

Figure 3:  Shear specimen geometry of Peirs et al. [48]. Gripped region is shaded.  

   

2.6. X-Ray Tomography

Tomography specimens of cross-section 500 µm X 500 µm and length 700 µm were extracted 

from the region of maximum deformation of each interrupted specimens, as discussed in Section 

3. The samples were fabricated by grinding to approximately 0.7 mm thickness with a continuous 

water supply to avoid heating of the sample, followed by cutting to the desired cross-section, using 

an Accutom precision cutter. Tomographs of the specimens were acquired using the EasyTom 

system at the MATEIS laboratory in INSA Lyon. The tomograph was operated at 100 kV and 75 
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μA with a Cu filter to obtain a voxel size of 1 µm. Reconstructed volumes were first median filtered 

with a radius of two voxels to reduce the noise associated with the scan acquisition. The volumes 

were thresholded to differentiate the void phase from the steel phase. The edge surface was 

detected using an ImageJ plugin [51] based on a Sobel edge detector that highlights sharp changes 

in intensity in 3D binarized volumes. The 3D visualization was done using the ImageJ 3D volume 

viewer. In the 3D views of the reconstructed slices presented herein, voids appear in red and the 

material bulk in white. A similar void measurement technique was used by Landron et al. [52]. A 

set of pixels has to be statistically significant in three dimensions to be registered as a void; 

therefore, a void is included in the analysis only when the diameter of the void exceeds twice the 

voxel size i.e. 2.0 µm. The void quantification was conducted using ImageJ to provide 

measurements of individual voids within a specimen.  

 

3. Locally Proportional Loading Histories 

A key aspect of the ductile fracture experiments was to obtain proportional loading; i.e. a 

constant strain path and stress state during deformation up to the point of fracture initiation. This 

section examines the strain paths achieved during testing and also introduces a technique to extract 

the stress state histories through direct integration of the constitutive laws using only the measured 

DIC strains at the points of interest. 

3.1. Experimental Strain Paths 

The equivalent strain, 𝜀𝜀𝑒𝑒𝑒𝑒 , in the DIC software was calculated based on von Mises plasticity 

theory and plastic volume conservation by integrating Eq. (2), 

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 =  2
√3
��𝑑𝑑𝑑𝑑12 +  𝑑𝑑𝑑𝑑22 +  𝑑𝑑𝑑𝑑12 𝑑𝑑𝑑𝑑22 �                                               (2) 

Jonas et al. [53] and Shrivastava et al. [54] stated that for simple shear, the rotation of principal 

strain with respect to the principal stresses must be accounted for. Butcher and Abedini [55] 

derived the von-Mises work-conjugate equivalent plastic strain for finite shear of a plastically 

deforming material that accounts for misalignment of the principal frames as a function of the 

major strain, as  
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𝜀𝜀𝑒𝑒𝑒𝑒 =   sinh 𝜀𝜀1√3
2                                                         (3) 

 

where 𝜀𝜀1 is a major strain For simple shear conditions, the finite strain calculation shown in Eq. 

(3) is used to determine the equivalent strain and for the rest of stress states, Eq. (2) is used.  

Figure 4 shows the measured contours of equivalent strain for the different test specimens: 

biaxial dome, v-bend, hole tension and shear for the CP800 and DP780 steels just prior to failure. 

The tomography specimens were extracted from the maximum deformation region with the 

location highlighted in Figure 4 for each specimen using a grey colored square. 

 DP780 CP800 
Biaxial Dome 

  
Hole Tension 

  
V-Bend 
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Shear 

  
Figure 4: Measured contours of equivalent strain during the biaxial dome, hole tension, v-bend and shear tests for 
the (a) CP800 and (b) DP780 steels prior to failure. The location of tomography specimen is highlighted using a 
square for each specimen. 
 

Figure 5 shows the strain-path for each test geometry extracted from the region of maximum 

deformation, corresponding to the 0.5 mm regions indicated in Figure 4, for both materials. The 

DIC strains were averaged over the square of size 0.50 mm to match the size of the tomography 

specimens to provide an appropriate macroscopic strain to correlate with void nucleation. The 

dashed lines plotted in Figure 5 indicate the theoretical strain paths for an isotropic material with 

principal strain ratios (slopes) of -1, -0.5, 0 and 1 corresponding to shear, uniaxial tension, plane-

strain and equal-biaxial tension, respectively. During the shear and v-bend testing, the principal 

strain path followed is linear and proportional throughout the deformation. The strain path 

followed during the dome test is biaxial until close to failure at which point the path transitions 

towards plane-strain. Similarly the principal strain ratio during the hole tension test is uniaxial 

throughout the deformation for the DP780 and deviates to plane-strain for the CP800 steel due to 

necking or strain localization. Roth and Mohr [56] reported that altering the hole tension specimen 

geometry (i.e. decreasing hole size) can shift the onset of localization to higher strain,  thus, further 

delay in the onset of necking mayhave been possible in the CP800 experiments by modifying the 

hole tension specimen geometry. Such modifications were not considered in the current research 

since the onset of necking is already considerably delayed relative to that seen in a uniaxial tensile 

specimen.  
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Figure 5: Major and minor strains paths in the region of maximum deformation subjected to different loading 
conditions for the (a) CP800 and (b) DP780 steels  

 

3.2. Stress Integration using DIC-Based Measured Stains 

In this section, an analytical approach is presented to calculate local stress using (a) DIC strain 

measurements, (b) a suitable yield function and (c) an appropriate hardening law. A brief 

description of the material model is presented, followed by the algorithm to integrate the stress 

components from the strain measurements. 

3.2.1. Material Model 

In 1991, Barlat [42] proposed a 3D yield function (called Yld91) which can provide a good 

representation of the variation in the yield stress and r-values for steel and aluminum alloys. More 

advanced yield criteria such as Yld2004 are available, but require more extensive experimental 

characterization to calibrate the yield function. Consequently, the Yld91 criterion was adopted to 

model anisotropy of the CP800 and DP780 steels and can be expressed as 

𝜎𝜎 = �0.5(|𝑆𝑆1 − 𝑆𝑆2|𝑚𝑚 + |𝑆𝑆2 − 𝑆𝑆3|𝑚𝑚 + |𝑆𝑆3 − 𝑆𝑆1|𝑚𝑚)�
1 𝑚𝑚⁄

                                 (4a) 

where m is chosen based on the crystallographic structure. 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 are eigenvalues of the 

symmetric transformed stress tensor S  

𝐒𝐒 = �
𝑆𝑆11 𝑆𝑆12 𝑆𝑆13
𝑆𝑆12 𝑆𝑆22 𝑆𝑆23
𝑆𝑆13 𝑆𝑆23 𝑆𝑆33

�                                                     (4b) 



13 
 

where 

𝑆𝑆11 = 𝑐𝑐�𝜎𝜎𝑥𝑥𝑥𝑥− 𝜎𝜎𝑦𝑦𝑦𝑦�−𝑏𝑏(𝜎𝜎𝑧𝑧𝑧𝑧− 𝜎𝜎𝑥𝑥𝑥𝑥) 
3

                                                (4c) 

𝑆𝑆22 = 𝑎𝑎�𝜎𝜎𝑦𝑦𝑦𝑦− 𝜎𝜎𝑧𝑧𝑧𝑧�−𝑐𝑐�𝜎𝜎𝑥𝑥𝑥𝑥− 𝜎𝜎𝑦𝑦𝑦𝑦� 
3

                                               (4d) 

𝑆𝑆33 = 𝑏𝑏(𝜎𝜎𝑧𝑧𝑧𝑧− 𝜎𝜎𝑥𝑥𝑥𝑥)−𝑎𝑎�𝜎𝜎𝑦𝑦𝑦𝑦− 𝜎𝜎𝑧𝑧𝑧𝑧� 
3

                                               (4e) 

𝑆𝑆12 = ℎ𝜎𝜎𝑥𝑥𝑥𝑥                                                         (4f) 

𝑆𝑆23 = 𝑔𝑔𝜎𝜎𝑥𝑥𝑥𝑥                                                        (4g) 

𝑆𝑆31 = 𝑓𝑓𝜎𝜎𝑦𝑦𝑦𝑦                                                        (4h) 

and a, b, c, h, g, f are calibration parameters. In the current work, an equivalent plastic work 

methodology was adopted to calibrate the Yld91 function for both steels. The plastic work, 𝑤𝑤𝑝𝑝, 

was calculated from the tensile test along the rolling, transverse and diagonal directions and the 

shear test using the following equation. 

𝑑𝑑𝑑𝑑𝑝𝑝 =  𝜎𝜎1𝑑𝑑𝜀𝜀1
𝑝𝑝 +  𝜎𝜎2𝑑𝑑𝜀𝜀2

𝑝𝑝 +  𝜎𝜎3𝑑𝑑𝜀𝜀3
𝑝𝑝 =  𝜎𝜎𝑒𝑒𝑒𝑒𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝                                         (5a) 

𝑤𝑤𝑝𝑝 = ∫𝑑𝑑𝑑𝑑𝑝𝑝                                                              (5b) 

For a given plastic work level, the stress anisotropy is determined as a ratio of the stress in a 

particular material orientation divided by the corresponding tensile stress along the rolling 

direction at the same plastic work. . These “stress ratios” are plotted in Figure 6 and the values 

corresponding to the plastic work at UTS in the rolling direction (55.2 MPa) are listed in Table 2 

for the CP800 and DP780 steels. The r-values used in the calibration of yield function are listed in 

Table 1.  
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(a) 

 
(b) 

Figure 6: Stress ratios with respect to rolling direction for (a) CP800 and (b) DP780 materials. 

 

Table 2: Stress-ratios at a plastic work of 55.2 MPa for the tension test along the diagonal and transverse directions 
and shear test for the CP800 and DP780 steels 

Material 𝜎𝜎𝐷𝐷 𝜎𝜎𝑅𝑅⁄  𝜎𝜎𝑇𝑇 𝜎𝜎𝑅𝑅⁄  𝜏𝜏 𝜎𝜎𝑅𝑅⁄  
CP800 0.98 1.08 0.63 
DP780 1.00 1.00 0.50 

 

The Yld91 parameters (plane stress assumption) were determined using an optimization 

approach in which a least squares error minimization was performed to reduce error between the 

experimental data and the values predicted by the yield function. In the present study, the genetic 

algorithm, which is a global optimization subroutine available in Matlab, was selected to perform 

minimization for the following “Error” function: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑤𝑤𝜎𝜎 ∑ ��𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

�
𝑖𝑖
− 1�

2
𝑡𝑡
𝑖𝑖=1 + 𝑤𝑤𝑟𝑟 ∑ ��𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒
�
𝑖𝑖
− 1�

2
𝑡𝑡
𝑖𝑖=1                          (6) 

The superscripts “exp” and “model” in Eq. (6) represents measured values and predicted values 

from the yield function, respectively. 𝑤𝑤𝜎𝜎 and 𝑤𝑤𝑟𝑟 are weights applied to values of stress and r-

value, respectively, and t is the number of available experimental data points. A shear constraint, 

introduced by Abedini [57], was also implemented to enforce normality in the shear regions of 

anisotropic yield function.   For both materials, an exponent of m = 6 was used for the anisotropic 

model, as recommended for bcc materials [42], and the resulting coefficients for the yield function 

are listed in Table 3.   
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Table 3: The parameters of Yld91 yield function for the CP800 and DP780 steels 

Material a b c h g f 
CP800 -0.81 0.85 0.12 1.00 1.00 -1.04 
DP780 -1.00 0.60 0.47 1.00 1.00 0.99 

 

The hardening behavior of the CP800 and DP780 materials was defined using the Swift law, 

𝜎𝜎 =  𝐾𝐾(𝜀𝜀𝑜𝑜 +  𝜀𝜀𝑝𝑝)𝑛𝑛                                                      (7) 

where 𝜀𝜀𝑜𝑜  is the initial strain, 𝜀𝜀𝑝𝑝 is the plastic strain, and K and n are the material parameters that 

describe the rate of hardening. In conventional practice, Eq. (7) is fit to the true stress versus 

effective plastic strain response determined from uniaxial tensile samples; however the range of 

available hardening data prior to onset of necking is relatively low, as can be seen in Figure 7. 

Instead, the calculated stress-ratios from the shear test, 𝜏𝜏 𝜎𝜎𝑅𝑅⁄  (Table 2), was applied to extend the 

hardening curve using data from the shear experiments following the methodology described by 

Rahmaan et al. [50]. Figure 7 shows the resulting hardening response as well as the Swift law fits 

(Table 4) which capture the measured data rather well.  

 
Figure 7: Comparison between experimental true stress versus true plastic strain obtained from the tensile (RD) and 
shear tests for the CP800 and DP780 steels and the best fit curve based on Swift’s hardening law 

 

Table 4: Swift’s hardening law parameters for the CP800 and DP780 steels 

Material K εo n R2  
CP800 1024 0.0067 0.07 0.99 
DP780 1267 0.0018 0.16 0.98 
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3.2.2. Algorithm for Stress Integration from Measured Strains 

The principal strains (𝜀𝜀1,𝜀𝜀2) under proportional loading can be expressed as,(𝜀𝜀1 ,𝛽𝛽𝜀𝜀1), where 

𝛽𝛽 is a variable in the range [-1,1] that represents ratio of the plastic strain increments in the two 

principal directions. The stress ratio, 𝛼𝛼, is defined as the ratio of minor principal stress, 𝜎𝜎2, to major 

principal stress, 𝜎𝜎1. The strain ratios corresponding to stress ratios in the range 𝛼𝛼 = [−2, 2] are 

determined using the Yld 91 yield function (Eq. 4). For proportional loading, 𝛽𝛽 is a constant that 

is defined by the normal to the yield surface at a particular stress ratio, 𝛼𝛼. To save computational 

time during the stress integration period, values of the stress ratios (𝛼𝛼 and 𝛾𝛾 = 𝜎𝜎1
𝜎𝜎

) in the range 𝛼𝛼 =

[−2, 2] are tabulated along with the corresponding strain ratio determined using derivatives of the 

yield function. This range is selected to cover the stress states ranging from shear to biaxial tension 

to determine the typical stress ratios corresponding to strain paths in forming operations. 

The plastic work increment is defined as, 𝑑𝑑𝑑𝑑𝑝𝑝 = 𝜎𝜎𝑑𝑑𝑑𝑑𝑝𝑝, where 𝑑𝑑𝑑𝑑𝑝𝑝 is the plastic strain 

increment  

 𝑑𝑑𝑑𝑑𝑝𝑝 = 𝜎𝜎𝑑𝑑𝑑𝑑𝑝𝑝 = 𝜎𝜎1𝑑𝑑𝑑𝑑1 + 𝜎𝜎2𝑑𝑑𝑑𝑑2 = (1 + 𝛼𝛼𝛼𝛼)𝜎𝜎1𝑑𝑑𝑑𝑑1                                  (8a) 

 

or        𝑑𝑑𝑑𝑑𝑝𝑝 = (1 + 𝛼𝛼𝛼𝛼) 𝜎𝜎1
𝜎𝜎
𝑑𝑑𝑑𝑑1 =(1 + 𝛼𝛼𝛼𝛼)𝛾𝛾𝑑𝑑𝑑𝑑1, where 𝛾𝛾 =  𝜎𝜎1

𝜎𝜎
                                   (8b) 

The 𝜀𝜀𝑝𝑝 can be calculated by summing plastic strain increments. Using the hardening law, the 

equivalent stress, σ, corresponding to 𝜀𝜀𝑝𝑝can be determined.  

The framework to determine stress-components from the major and minor strains is 

summarized as: 

i. Tabulate the values of 𝛽𝛽 = 𝑓𝑓(𝛼𝛼) and 𝛾𝛾 = 𝑓𝑓(𝛼𝛼) using Yld91.  

ii. The strain ratio 𝛽𝛽𝑖𝑖 is calculated at each experimental data point, i. 

iii. The stress ratios 𝛾𝛾𝑖𝑖 and 𝛼𝛼𝑖𝑖 corresponding to 𝛽𝛽𝑖𝑖 are determined from the database. 

iv. The equivalent plastic strain is calculated at each increment using Eq. (8b). 

v. The hardening law is updated to obtain the anisotropic equivalent stress, 𝜎𝜎. 

vi. Major and minor stresses are calculated using 𝛾𝛾𝑖𝑖, 𝛼𝛼𝑖𝑖 i.e. 𝜎𝜎1 =  𝛾𝛾𝛾𝛾 and 𝜎𝜎2 =  𝛼𝛼𝜎𝜎1. 
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3.3. Calculated Stress Triaxiality and Lode parameter 

In this section, the evolution of equivalent plastic strain as a function of the stress triaxiality 

and the Lode parameter during the experiments is determined for plane stress conditions. To 

determine the stress states during deformation, the stress triaxiality and Lode parameter are 

determined using following equations 

𝑇𝑇 =  𝜎𝜎𝑚𝑚
𝜎𝜎𝑒𝑒𝑒𝑒

                                                                           (9) 

𝐿𝐿 =  − 27
2

(𝜎𝜎1− 𝜎𝜎𝑚𝑚)∗(𝜎𝜎2− 𝜎𝜎𝑚𝑚)∗(𝜎𝜎3− 𝜎𝜎𝑚𝑚)
𝜎𝜎𝑒𝑒𝑒𝑒3

                                                  (10) 

where 𝜎𝜎𝑚𝑚 =  𝜎𝜎1+ 𝜎𝜎2+ 𝜎𝜎3
3

 is the mean stress and 𝜎𝜎𝑒𝑒𝑒𝑒 is the von Mises effective stress. Figures 8 and 

9 show the equivalent strain as a function of stress triaxiality and Lode angle parameter, 

respectively, for the CP800 and DP780 samples during the biaxial dome, hole tension, v-bend and 

simple shear experiments. The average stress triaxiality and Lode parameter reported for both 

materials is indicated in Table 5 for all four loading conditions. It is important to state that for 

plane stress states, as assumed here in the analytical integration, the stress triaxiality and Lode 

parameter are not independent. As shown by Bai and Wierzbicki [58], only the triaxiality or the 

Lode parameter is sufficient to define the plane stress state.  

Table 5: Average stress triaxiality (T) and Lode parameter (L) determined for biaxial tension, plane strain, uniaxial 
tension and simple shear deformation of the CP800 and DP780 steels 

Material Biaxial Tension Plane Strain Uniaxial Tension Shear 
T L T L T L T L 

CP800 0.66 0.97 0.55 -0.01 0.30 -0.92 0.00 0.01 

DP780 0.66 0.98 0.55 0.01 0.30 -0.98 0.00 0.02 

               
Figure 8: Stress triaxiality history for biaxial tension, plane strain, uniaxial tension and shear deformation of the 
CP800 and DP780 steels 
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Figure 9: Lode parameter history for biaxial tension, plane strain, uniaxial tension and shear deformation of the 
CP800 and DP780 steels 

 

4. Damage Evolution under Proportional Loading 

To systematically characterize damage accumulation, interrupted testing was conducted at 

four levels of displacement for the four different stress states: biaxial tension, uniaxial tension, 

plane-strain and simple shear. The four displacement levels were selected such that each specimen 

was deformed to approximately 50%, 70%, 85% and 95% of the failure strain. Figure 10 shows 

the load displacement response for the biaxial samples tested to failure as well as the interrupted 

samples that exhibit good repeatability up to the final strain level considered in each experiment. 

The repeatability was similar for the other geometries (not shown for brevity). 

 
(a) 

 
(b) 

Figure 10: Histories of load versus displacement strain for the (a) CP800 and (b) DP780 biaxial specimens 
interrupted at different strain levels 

DP780 
T=0.66 
L=0.98 

 

CP800 
T=0.66 
L=0.97 
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3D tomography was performed on the interrupted specimens to quantify the number of voids 

nucleated at the different stages of deformation and loading conditions. The effect of stress state 

on void nucleation is discussed for the two materials, CP800 and DP780 steel, by comparing the 

number of voids nucleated (N) as a function of equivalent plastic strain (ε) for each loading 

condition.  

The tomograms of the undeformed CP800 and DP780 steels are shown in Figure 11 and the 

number of cavities per unit volume (N) measured for each specimen is specified.  

 
 (a) 

 

  
(b) 

Figure 11: 3D views of damage within the undeformed (a) CP800 and (b) DP780 specimens 

 

4.1. Tomography 

The tomographs acquired from the biaxial loaded samples interrupted at a Mises effective 

strain of 0.95% of the failure strain are shown in Figure 12. The two biaxial loading directions 

corresponds to the rolling and transverse directions (RD and TD) and the tomographs are projected 

such that the plane of the figure corresponds to the sheet RD and through-thickness (TT) directions. 

The DP800 sample exhibits significant numbers of regions of local void coalescence that 

represents precursors to formation of macro-cracks. The DP780 sample exhibits extensive 

coalescence along the sheet mid-plane which corresponds to martensitic bands in the as-received 

sheet [7]. The number of cavities per unit volume (N) measured for each specimen is also indicated 

in Figure 12.  

 

CP800 
ε = 0.0 
N = 2634/mm3  

DP780 
ε = 0.0 
N = 2337/mm3 
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(a) 

 

  
(b)  

Figure 12: 3D views of damage within the specimen deformed under biaxial tension loading near failure. The 
horizontal axis in the figure corresponds to the sheet RD while the vertical axis is the through-thickness (TT) direction.  

 

Void coalescence is the final stage of ductile failure and occurs through the localization of the 

ligament between neighboring voids. Coalescence is generally favoured along the ligament 

perpendicular to the loading direction and is difficult along ligaments which are not perpendicular 

to the loading direction [59]. Horstemeyer and Gokhale [60] demonstrated experimentally that 

under biaxial deformation the coalescence path is activated in two directions because the specimen 

is subjected to loading in the two directions and consequently the crack propagates along both 

directions. The plan-view projection of the coalescence plane indicated in Figure 12 is shown in 

Figure 13 and illustrates crack formation through coalescence of voids in the DP780 specimen 

deformed close to the failure strain. Since the DP780 specimen is deformed under a biaxial stress 

state, the void growth and subsequent coalescence occur in the two directions and consequently 

crack propagates along the two loading directions. This behavior could not be captured in the 

CP800 specimen because the experiment was terminated before the initiation of coalescence.  



21 
 

  

Figure 13: 3D views of damage within the CP800 and DP780 specimens deformed under biaxial tension loading near 
failure. The horizontal axis in the figure corresponds to the sheet RD while the vertical axis is the transverse direction 
(TD).  

 
  
The hole tension specimens were loaded along the TD. The deformation of the reamed hole 

tension specimens follows uniaxial tension and the tomographs were acquired on the CP800 and 

DP780 reamed edges interrupted prior to fracture. Tomographs from the most deformed CP800 

and DP780 specimens are shown in Figure 14.    

 

 
(a)  

 
(b)  

Figure 14: 3D views of damage within the (a) CP800 and (b) DP780 hole tension specimens deformed near failure. 
The horizontal axis in the figure corresponds to the sheet TD while the vertical axis is the through-thickness (TT) 
direction. 

 

The comparison of the CP800 and DP780 tomograms deformed near failure (Figure 14) 

suggests that the amount of damage developed near the failure strain is significantly higher in the 
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CP800 specimen compared to the DP780 specimen. This difference in the damage evolution is 

attributed to the difference in microstructure of the two steels. The ferritic-bainitic CP800 

microstructure can sustain deformation up to a larger strain due to lower strength-differential 

between the phases and exhibits more damage accumulation near the failure strain compared to 

the DP780 steel.  

In contrast with the biaxial loading which exhibits void growth along the two loading 

directions, void growth is only significant in one direction under uniaxial tension, especially for 

the CP800 hole tension specimen. A similar trend was observed by Landron et al. [12] and Weck 

et al. [61] using 3D tomography As to be expected, in biaxial tension the voids will elongate in 

two directions that was also shown in the unit cell models of by Potirniche et al. [62] 

Figure 15 shows the damage during the deformation under plane-strain in the CP800 and 

DP780 plane strain v-bend specimens deformed to strains near failure. The void growth is not 

significant under plane-strain deformation. Pardoen and Brechet [63] reported two distinct 

coalescence mechanisms (1) internal necking of ligaments between voids that have enlarged their 

sizes significantly and (2) internal shear localization involving limited void growth. Ductility 

typically is less for plane strain specimens because a plane strain specimen is more susceptible to 

plastic shear localization due to the kinematic constraints [64]. A cluster of voids is however 

observed in the vicinity of a crack (shown in Figure 15) presumably due to the enhanced stress 

triaxiality. Subsequent growth of the crack tip occurs by interaction of multiple voids along the 

crack front and leads to propagation of the crack. 

 
(a)  

 
(b)  

Figure 15: 3D views of damage within the (a) CP800 and (b) DP780 specimens deformed under plane-strain loading 
at various steps of deformation. The horizontal axis in the figure corresponds to the sheet TD while the vertical axis 
is the through-thickness (TT) direction. 
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For the shear specimens, the maximum deformation occurs at the center of the specimen due 

to rotation of the shear band as indicated in the contour plots of the CP800 and DP780 steels 

(Figure 4). The tomography specimen of cross-section 0.5 mm X 0.5 mm was therefore extracted 

from the center of the shear band of each interrupted specimen. The shear tests were performed 

with the applied load in the diagonal direction of the sheet which results in principal stresses in the 

rolling and transverse directions (RD and TD). Tomographs of the CP800 and DP780 shear 

specimens deformed to near failure are shown in Figure 16. The extent of void nucleation increases 

with the equivalent strain for both the materials. Void growth however is not significant during the 

shear loading of the CP800 and DP780 steels which is to be expected since due to absence of a 

hydrostatic stress to expand the void volume [22], [59], [65]. 

 
(a) 

 

 
(b)  

Figure 16: 3D views of damage within the CP800 and DP780 specimens deformed under shear loading at various 
steps of deformation.  

 

A second view or orientation of the tomographs for the most deformed shear specimens 

(Figure 16) are shown in Figure 17. For the simple shear loading type, normal stresses are almost 

negligible relative to the shear stress (𝜏𝜏𝑥𝑥𝑥𝑥) so that principal plane is oriented 45◦ to the loading 

directions [49]. In the current shear loading condition, the location of principal stresses (𝜎𝜎1 and 𝜎𝜎2) 

are aligned along the rolling and transverse directions and the shear stresses (𝜏𝜏𝑥𝑥𝑥𝑥) are 45◦ to the 

rolling and transverse directions as indicated in Figure 17. The voids have a tendency to rotate and 

align along the principal normal stresses and therefore are oriented along the rolling direction as 

shown in Figure 17 for both the alloys. 
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(a) 

 
(b) 

Figure 17: 3D views of damage within the (a) CP800 and (b) DP780 specimens deformed under shear loading at near 
failure. 

 

4.2. Effect of Loading Condition on the Damage Evolution 

Figure 18 shows the number of voids nucleated as a function of equivalent strain for the 

different loading conditions. Void nucleation is a continuous process and the maximum nucleation 

rate occured under biaxial tension and the minimum rate was in simple shear for both materials. 

Void nucleation is clearly dependent upon the stress state for both materials. Similar results were 

observed by Landron et al. [11] and Needleman [19] which reported that the stress triaxiality has 

an impact on void nucleation rate.  

 
(a) 

 
(b) 

Figure 18: Average void density versus equivalent strain for (a) CP800 and (b) DP780 steels 

 

DP780 
 

CP800 
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Figure 19 shows the evolution of the porosity with the equivalent strain for the two materials 

subjected to different stress states. As deformation progresses, more voids are nucleated while the 

existing cavities grow and the void volume fraction increases. Since the number of nucleated voids 

and growth of voids under the plane-strain and shear stress states are less than that for biaxial 

tension and uniaxial tension at a given strain, the accumulation of damage is lower within the 

specimens subjected to shear and plane-strain loading.  

 
(a) 

 
(b) 

Figure 19: Evolution of the void volume fraction with respect to equivalent strain for (a) CP800 and (b) DP780 

 

5. Void Nucleation Model 

The results presented in the previous section have demonstrated the influence of loading 

condition on the nucleation mechanism. To predict ductile failure accurately, the modeling of void 

nucleation is critical and therefore it is critical to account for the effect of stress state on the 

nucleation mechanism. In this section, modifications to the Chu and Needleman [36] nucleation 

models are presented to predict the nucleation process for a wide range of loading conditions using 

two criteria: strain-based and stress-based nucleation models. The efficacy of these two approaches 

is assessed. 

DP780 
 

CP800 
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5.1. Strain-Based Nucleation Model 

Chu and Needleman [36] postulated that the strain required to nucleate voids follows a normal 

distribution and can be expressed as: 

𝑁̇𝑁 =
𝑁𝑁𝑛𝑛

𝑠𝑠𝑁𝑁√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �

−1
2
�
𝜀𝜀𝑝𝑝 − 𝜀𝜀𝑁𝑁
𝑠𝑠𝑁𝑁

�
2

� 𝜀𝜀𝑝̇𝑝 
        
(11a) 

                                                                        𝑠𝑠𝑁𝑁 = 𝑐𝑐𝑣𝑣 ∗ 𝜀𝜀𝑁𝑁                                                 (11b) 

where 𝑁̇𝑁 is the void nucleation rate, Nn is the maximum number of voids per unit volume available 

to nucleation voids, εN and sN are the mean and standard deviation of the nucleation strain, 𝑐𝑐𝑣𝑣 is 

the coefficient of variance of the nucleation strain and. Nn represents the number of potential void 

nucleation sites in a material and therefore is a material-dependent parameter. For a homogeneous 

material, Nn can be determined from metallurgical analysis of the volume fraction of second-phase 

particles and inclusions in the material. Chu and Needleman [36] and Søvik [66], assumed εN and 

sN, to be material-specific parameters that were constant for all stress states. To assess the strain-

controlled nucleation assumption, the predicted numbers of nucleated voids within CP800 based 

on a strain-controlled nucleation assumption (Eq. (11a)) was calculated using the following values 

of nucleation strain, εN = 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0, an assumed value of cv equal to 0.24 and 

sN was calculated using Eq. (11b). Nn was taken as 397,942 per mm3 for CP800. These predictions 

are plotted in Figure 20, along with the observed number of voids per unit volume as a function of 

strain for the different stress state experiments on CP800. It is evident from the figure that the 

nucleation rates differ dramatically between stress states; therefore, the adoption of a simple strain-

controlled nucleation model with εN, as a material parameter cannot predict the nucleation 

behaviour for such a wide range of stress states. To capture the nucleation behaviour for different 

stress states, εN could be determined individually for each loading condition, but such an approach 

has not been investigated thus far. 
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Figure 20: Predictions using Chu and Needleman’s strain-based nucleation rule for CP800 using various nucleation 
strain assumptions. Solid curves are predictions using Eq. (11), while symbols are measurements from interrupted 
samples. 

 

5.2. Stress-Based Nucleation Model 

Nucleation rules based on critical stress and stress concentrations are available in the literature 

[41], [35], [67]. For practical applications, the stress-based Chu and Needleman [36] nucleation 

criterion has been used extensively in past work [39], [68], [69] and can be expressed as 

𝑁̇𝑁 = 𝑁𝑁𝑛𝑛
𝑠𝑠𝑛𝑛√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �−1
2
�σ𝑛𝑛−𝜎𝜎𝑁𝑁

𝑠𝑠𝑛𝑛
�
2
�  𝜎𝜎𝑛̇𝑛                                              (12a) 

𝑠𝑠𝑛𝑛 = 𝐶𝐶𝑣𝑣 ∗ 𝜎𝜎𝑁𝑁                                                 (12b) 

where 𝜎𝜎𝑛𝑛 is the nucleation stress, 𝜎𝜎𝑁𝑁 and sn are the average and standard deviation of the nucleation 

stress and 𝐶𝐶𝑣𝑣 is the coefficient of variance of the nucleation stress. Fowler et al. [68] examined 

Argon’s nucleation stress criterion to estimate nucleation stress for Chu and Needleman’s stress-

controlled nucleation model and reported that the stress-controlled nucleation model can captures 

the experimentally observed dependence of nucleation strain on stress triaxiality. Shabrov and 

Needleman [70] extended Argon’s criterion that relates the nucleation stress to the stress in the 

matrix material as given by the following relation: 
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𝜎𝜎𝑛𝑛 =  𝑐𝑐𝜎𝜎𝑒𝑒𝑒𝑒 + 𝜎𝜎ℎ𝑦𝑦𝑦𝑦  , where 𝜎𝜎ℎ𝑦𝑦𝑦𝑦 =  𝜎𝜎1+𝜎𝜎2+𝜎𝜎3  
3

                                  (13 

For periodically distributed particles, c ≈ 0.44 for cubic particles and c ≈ 0.35 for spherical particles 

[70]. To illustrate the use of a stress-controlled nucleation criterion, Similar to the strain-controlled 

nucleation model, 𝑁𝑁𝑛𝑛 and 𝐶𝐶𝑣𝑣 are considered material-specific properties and held constant for all 

the loading conditions. 𝐶𝐶𝑣𝑣 was taken as 0.04 and 0.10 for the CP800 and DP780 steels respectively. 

The stress components, unlike the strain components, cannot be obtained from experiments and 

the stress integrator described in Section 3 is used to determine stress components (𝜎𝜎1 ,𝜎𝜎2) from 

the strain components (𝜀𝜀1 ,𝜀𝜀2) derived from the experimental data. The predicted nucleation 

response is plotted in Figure 21, along with the measured data from the interrupted samples. With 

σN = 1070 and 746 MPa, the predicted nucleation mechanism agrees with the measured values 

only for the biaxial stress state and uniaxial tension loading, respectively. The predicted number 

of nucleated voids for the other stress states is either higher compared to the measured value or 

lower. This observation suggests that despite the stress-based nucleation model being dependent 

on the stress triaxiality, the adoption of single σN to predict nucleation for all the stress states is not 

achievable using the current definition of the nucleation stress of Eq. (13) that is based upon 

particle debonding. It is possible that other forms for the nucleation stress such as that of Beremin 

[35] could provide a better description.   

 
Figure 21: Predictions using Chu and Needleman’s stress-based nucleation rule using various assumed nucleation 
stress levels: (a) 1070 MPa and (b) 746 MPa.   Solid curves are predictions using Eq. (12), while symbols are 
measurements from interrupted samples. 
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5.3 Introduction of Lode-Dependence of Nucleation Strain 

The major limitation of Chu and Needleman’s nucleation model is that it does not fully 

account for the effect of stress state. The experimental results presented in Section 4 and the work 

done by [11] suggests that the nucleation mechanism varies with the loading condition. To account 

for this behavior, a modification to Chu and Needleman’s criteria is proposed in which nucleation 

strain becomes a function of both stress triaxiality and Lode parameter. In the light of the proposed 

dependency of nucleation mechanism on stress state, the nucleation strain, εN, was first determined 

individually for each loading condition as a function of stress triaxiality as well as Lode parameter, 

and the modified nucleation model is expressed in following equation.  

𝑁̇𝑁 = 𝑁𝑁𝑛𝑛
𝑠𝑠𝑁𝑁�2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �−1
2 �𝜀𝜀𝑝𝑝−𝜀𝜀𝑁𝑁(𝑇𝑇,𝐿𝐿)

𝑠𝑠𝑁𝑁
�

2
� 𝜀̇𝜀𝑝𝑝                                              (14) 

As before, Nn and Cv are considered to be constant for all the stress states.  

An optimization code was written in MATLAB to determine the parameters in Eq. (14) for 

both steels, using an assumed normal distribution of the observed void density versus strain data 

for the different stress states. The genetic algorithm global optimization subroutine, available in 

MATLAB, was used to minimize error between the experimental data points and the values 

predicted by the nucleation model. The Error function was defined as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  ∑ 𝑤𝑤𝑖𝑖 ��
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
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2
4
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where the superscripts “exp” and “model” indicate either measured values or predicted nucleated 

void density from the nucleation model. 𝑤𝑤𝑖𝑖 are weighting parameters for the number of 

experimental data points where i =1 corresponds to experimental data point acquired at the lowest 

strain, i =2,  the data point obtained at the next strain level, and so on. In the present work, the 

weighting parameters were assigned in such a manner that a higher weighting is given to the 

experimental data points acquired at a higher strain level i.e. 𝑤𝑤1 = 0.125, 𝑤𝑤2 = 0.25, 𝑤𝑤3 = 0.5, 

𝑤𝑤4 = 1 (recall that four tomography images (data points) were acquired for each stress state). The 

nucleation parameters determined for each loading condition using the optimization approach 

described above are listed in Table 6 for the CP800 and DP780 steels. The resulting nucleation 
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predictions are shown in Figure 22 from which it can be seen that the model predictions capture 

the trends in the measured data rather well. 

Table 6: Nucleation parameters for the different stress states of the CP800 and DP780 steels 

Material Nn 

(per mm3) 
cv 

 
Biaxial Tension Plane Strain Uniaxial Tension Shear 
εN T L εN T L εN T L εN T L 

CP800 397942 0.24 1.10 0.66 0.97 1.34 0.55 -0.01 1.58 0.30 -0.92 2.20 0.00 0.02 

DP780 48000 0.31 0.50 0.66 0.98 0.80 0.55 0.01 0.70 0.30 -0.98 1.40 0.00 0.01 

 

 
(a) 

 
(b) 

Figure 22: The implementation of Lode parameter-dependent strain-based Chu and Needleman nucleation rule using 
Eq. (14) for the various loading conditions of the (a) CP800 and (b) DP780 steels. Solid curves are predictions using 
Eq. (14), while symbols are measurements from interrupted samples. 

 

The nucleation parameters listed in Table 6 predict the nucleation rates for the specific stress 

states corresponding to the measured damage histories. To develop a more comprehensive 

expression to predict nucleation under different loading conditions, a functional dependence of 

average nucleation strain on both stress triaxiality and Lode parameter is introduced. In this case, 

the functional form of the fracture locus proposed by Bai and Wierzbicki [58] is adopted to develop 

a “nucleation strain surface” that can be expressed as: 

 𝜀𝜀𝑁𝑁 =  

⎩
⎨

⎧
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𝐶𝐶2
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where 𝐶𝐶1−5 are material parameters and are listed in Table 7 for the CP800 and DP780 steels. Note 

that cv is independent of loading condition, as is Nn. The constants in Eq. (16) were identified using 

the genetic algorithm in MATLAB. Although the formulation shown in Eq. (16) has five 

coefficients, the number of coefficients can be reduced to four by replacing 𝐶𝐶1 𝐶𝐶2�  with a single 

variable. Subsequently, the four coefficients values can be determined by plugging in the four sets 

of experimental values. The error between the experimental data points and the values predicted 

by the nucleation model was minimized using the Error function defined as  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  ∑ 𝑤𝑤𝑖𝑖 ��
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒

�
𝑖𝑖
− 1�

2
4
𝑖𝑖=1                                   (17) 

where the superscripts “exp” and “model” indicate either measured values or predicted nucleated 

void density from the nucleation model. 𝑤𝑤𝑖𝑖 are weighting parameters for the four loading 

conditions and assumed to be unity for all the cases. 

Figure 23 shows the resulting nucleation surfaces for the CP800 and DP780 steels that cover 

a broad range of stress states. Also shown is the so-called plane stress locus corresponding to the 

stress states accessed in the current experiments (symbols). The nucleation rate for a given stress 

state can then be predicted by substituting the nucleation strain, from Eq. (16), corresponding to 

the loading condition, into Chu and Needleman’s nucleation criterion of Eq. (14) along with the 

respective material parameters, Nn and cv. The predicted void density as a function of equivalent 

strain for the various loading conditions are shown in Figure 24 along with the experimental data. 

 
(a)  

 

 
(b)  

Plane-Stress 

CP800 
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Figure 23: (a) Representation of nucleation strain (𝜀𝜀𝑁𝑁) surface as a function stress triaxiality (T) and Lode angle 
parameter (L) for the CP800 steel. (b) The plane stress curve locus corresponding to the stress states and 
experimental data points are indicated by black line and square symbols, respectively.  

Table 7: Material parameters for the CP800 and DP780 steels listed in Eq. (16) and Error in Eq. (17) 

Material C1 C2 C3 C4 C5 Error 
CP800 0.44 1.7 0.7 2.2 1.8 0.03 
DP780 1.80 901.5 0.7 1409.0 1.7 0.02 

 

 

 
(a) 

 
(b) 

Figure 24: Predicted nucleated voids as a function of equivalent strain for the various loading conditions of the (a) 
CP800 and (b) DP780 steels. Solid curves are predictions using Eq. (14), while symbols are measurements from 
interrupted samples 

. 

6. Conclusions 

1. The rate of damage nucleation is lower for the CP800 steel relative to DP780. This 

difference can be attributed to the lower strength differential between phases of the ferritic-

bainitic CP800 steel [7], resulting in a higher nucleation strain and accelerated void 

nucleation in comparison to the ferritic-martensitic DP780 steel. 

2. The influence of stress state, in terms of triaxiality and Lode parameter, on nucleation 

behaviour was characterized for the DP780 and CP800 steel sheet. At a given strain, the 

number of voids per unit volume observed during the biaxial dome test was highest while 
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the void nucleation was lowest under simple shear deformation for both materials 

considered. 

3. Strain-based or stress-based nucleation criteria alone were unable to capture the measured 

dependency of nucleation rate on stress-state. The introduction of Lode parameter-

dependency of nucleation rate, in addition to stress-triaxiality, accurately captured the 

measured nucleation behaviour. The use of a nucleation surface will enable application to 

three-dimensional stress states and will be evaluated in future work. 
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