
Space Efficient Data Structures and
Algorithms in the Word-RAM Model

by

Hicham El-Zein

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Hicham El-Zein 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Gerth Stølting Brodal
Professor,
Department of Computer Science, Aarhus University

Supervisor(s): J. Ian Munro
University Professor,
Chertion School of Computer Science, University of Waterloo

Internal Member: Anna Lubiw
Professor,
Chertion School of Computer Science, University of Waterloo
Eric Blais
Associate Professor,
Chertion School of Computer Science, University of Waterloo

Internal-External Member: Gordon B. Agnew
Associate Professor,
School of Engineering, University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In this thesis we study space-efficient data structures for various combinatorial objects.
We focus on succinct and compact data structures. Succinct data structures are data
structures whose size is within the information theoretic lower bound plus a lower order
term, whereas compact data structures are data structures whose size is a constant factor
from the information theoretic lower bound.

We start by discussing the compact representation of unlabeled permutations, where
the goal is to store a permutation π if we are permitted to reassign the labels of the
elements, while supporting the following query: given k and i compute πk(i) quickly.

We study this problem in several scenarios. In the first scenario the queries are answered
by just examining the labels of the queried elements. In the second scenario we assign labels
to the n elements from the label set {1, . . . , cn} where c ≥ 1 is a constant. In the third
scenario we assign labels to the n elements from the label set {1, . . . , cn1+ε} where c is a
constant and 0 < ε < 1. We give tight upper and lower bounds in all the three scenarios and
we are able to answer queries in constant time independent of k. Finally, as an application
we show how to improve the representation of general (labeled) permutations using our
results.

We then deviate from the general scheme of designing space-efficient data structures
to designing space-efficient algorithms. We cover the problem of powering permutations in
place. Given a permutation of n elements, stored as an array, we address the problem of
replacing the permutation by its kth power while using o(n) bits of extra storage. To this
end, we first present an algorithm for inverting permutations that uses O(lg2 n) additional
bits and runs in O(n lg n) worst case time. This result is then generalized to the situation
in which the permutation is to be replaced by its kth power. We present an algorithm whose
worst case running time is O(n lg n) and uses O(lg2 n+min{k lg n, n3/4+ε}) additional bits.

Next, we cover data structures for range reporting. In range reporting problems a set S
of n points in Rd is preprocessed such that the following query can be efficiently computed.
Given an axis-aligned box Q return an aggregate function over S ∩ Q. Range reporting
problems have fundamental importance in computational geometry, and are interesting to
study both for their optimality with respect to space and query time, and as tools employed
to provide efficient solutions to various geometric problems.

We start by presenting a data structure that answers multi-dimensional range mode
queries that improves a result by Chan et al. Then we present succinct data structures
for one dimensional approximate color counting, one dimensional approximate median
reporting, and one dimensional color reporting.

iv

Our data structure for one dimensional approximate color counting answers queries
in constant time, thus improving a result by Saladi, and our data structure for approx-
imate median reporting in the special case when the points are in the rank space uses
only O(n) bits, thus improving a result by Bose et al. Moreover, we show, somewhat
counter-intuitively, that it is not necessary to store colors of the points in order to an-
swer approximate color counting queries, nor the value of the points in order to answer
approximate median reporting queries.

Finally, we present a dynamic data structure with restricted updates for one dimensional
color reporting in the case when the points are in the rank space, and we present a fully
dynamic succinct data structure for one dimensional range reporting.

v

Acknowledgements

I offer my sincere gratitude to my supervisor J. Ian Munro who has supported me through-
out my research with his patience and knowledge while allowing me to work on topics that
I like. I also wish to thank my coauthors Yakov Nekrich, Venkatesh Raman, and Sharma
V. Thankachan for the insightful discussions that we had. I would like to thank my readers
Gerth Stølting Brodal, Anna Lubiw, Eric Blais, and Gordon B. Agnew. I would like to
thank Wendy Rush and Helen Jardine for offering their help whenever I needed it. Finally,
I would like to thank my friends and all the fellow students that helped in creating for me
a supporting environment.

vi

Dedication

To my parents

vii

Table of Contents

List of Figures xi

1 Introduction and Motivation 1

1.1 Motivation . 1

1.2 Thesis Outline and Contribution . 2

2 Preliminaries 5

2.1 Word RAM Model . 5

2.2 Space Efficient Data Structures . 6

2.3 Bit Vectors . 6

2.4 Sequences . 9

2.5 Reduction to Rank Space . 10

3 Compact Unlabeled Permutations 11

3.1 Introduction and Motivation . 11

3.2 Definitions . 13

3.3 Direct Labeling Scheme . 15

3.4 Compact Data Structures with Label Space n 16

3.5 Compact Data Structures with Extended Label Space 18

3.6 Lower Bounds . 21

3.6.1 Lower Bound for Auxiliary Data with Label Space cn 21

viii

3.6.2 Lower Bound for Auxiliary Data with Label Space cn1+ε 22

3.7 Application . 23

4 Powering Permutations 25

4.1 Introduction and Motivation . 25

4.2 Background and Related Work . 26

4.3 Inverting Permutations . 29

4.3.1 Inversion in O(n lg n) Time Using O(
√
n lg n) Bits 30

4.3.2 Reducing Extra Space to O(lg2 n) Bits 32

4.4 Arbitrary Powers . 35

4.4.1 Powering Permutations in O(n lg n) Time using o(n) Extra Bits . . 38

4.5 Conclusion . 40

5 Range Mode 41

5.1 Introduction . 41

5.1.1 Related Work . 42

5.2 Framework . 42

5.3 Data Structure of Chan et al. 43

5.4 Improved Data Structure . 44

6 One Dimensional Range Searching 48

6.1 Introduction . 48

6.2 Approximate Color Range Counting . 51

6.2.1 Approximate Color Range Counting in Rank Space 51

6.3 General Approximate Range Counting . 55

6.4 Approximate Median Range Reporting . 57

6.4.1 Approximate Median Range Reporting in Rank Space 57

6.4.2 General Approximate Range Median 60

6.5 1D Color Range Reporting . 61

6.5.1 Improved Data Structure . 61

6.6 Dynamic Color Reporting in Rank Space 63

ix

7 Succinct Dynamic One Dimensional Point Reporting 66

7.1 Introduction . 66

7.2 Preliminaries . 67

7.2.1 One-Dimensional Point Reporting 67

7.2.2 Tree Representation . 68

7.2.3 Sparse Arrays . 69

7.3 Semi-Dynamic Succinct One-Dimensional Point Reporting 69

7.4 Fully-Dynamic Succinct One-Dimensional Point Reporting 71

7.4.1 Fully-Dynamic Structure with Amortized Updates 71

7.4.2 Fully-Dynamic Structure with Worst Case Updates 72

7.5 Succinct Static One-Dimensional Point Reporting With Fast Construction
Time . 75

8 Conclusion 79

References 81

x

List of Figures

4.1 Procedures to rotate the values in B according to a permutation π. 27

4.2 The cycles generated from π. 28

4.3 Procedures to check if element i is a local min leader. 28

4.4 Procedure to invert a cycle. 29

4.5 [89] An example of a bad cycle. 31

4.6 [89] An example of a broken cycle. 33

4.7 The cycles created by raising c to its second power. 36

4.8 Procedure to raise a cycle to its kth power. 37

4.9 The process to raise a cycle to its kth power when the cycle length and k
are not coprime. 40

6.1 A sample node u ∈ T and the sets associated with u. 52

xi

Chapter 1

Introduction and Motivation

1.1 Motivation

In modern computation the volume of data-sets has increased dramatically. Since the ma-
jority of these data-sets are stored in internal memory, reducing their storage requirement
is an important research topic. One way of reducing storage is using succinct and compact
data structures which maintain the data in compressed form with extra data structures
over it in a way that allows efficient access and query of the data.

Succinct and compact data structures are data structures that emphasize space effi-
ciency. The goal is to occupy as little space as possible while maintaining an efficient
query time. More precisely, succinct data structures are data structures whose size is
within the information theoretic lower bound plus a lower order term, while compact data
structures are data structures whose size is constant factor from the information theoretic
lower bound.

In general, the goal is to dramatically reduce the storage cost for structural informa-
tion. For example, a suffix tree is a data structure that permits us to find all occurrences
of a query string in time linear to the query. This is crucial in many applications in-
cluding queries about the human genome. In that particular case, the suffix tree, naively
implemented, takes about 80 times as much space as the raw data [78]. Succinct methods
reduces this to a factor of about 2. Moreover, this enables data structures to be stored in a
faster(smaller) level of memory and so permits queries to be answered much more quickly.

1

In what follows, we give a high level description of this thesis contributions.

1.2 Thesis Outline and Contribution

The main theme of this thesis is designing succinct and compact data structures for various
combinatorial objects, though we shift slightly from that theme to designing in-place or
space-efficient algorithms in Chapter 4.

In Chapter 3 we discuss the compact representation of unlabeled permutations (i.e.
permutations where the labels of the elements can be reassigned). Given an arbitrary
unlabeled permutation π, we store it compactly such that πk(i) can be computed quickly
for any i and any integer power k. We consider the problem in several scenarios.

In the first scenario we assign labels to elements so that queries are answered by just
examining the labels of the queried elements. We show that a label space of

∑n
i=1b

n
i
c · i is

necessary and sufficient. In other words, 2 lg n bits of space are necessary and sufficient for
representing each of the labels.1 In the second scenario we assign labels to the n elements
from the label set {1, . . . , cn} where c ≥ 1 is a constant. We show that Θ(

√
n) bits are

necessary and sufficient to represent the permutation. Moreover, we support queries in
such a structure in O(1) time. Finally, in the third scenario we assign labels to the n
elements from the label set {1, . . . , cn1+ε} where c is a constant and 0 < ε < 1. We show
that Θ(n(1−ε)/2) bits are necessary and sufficient to represent the permutation. We can also
support queries in such a structure in O(1) time. We note that the results of Chapter 3
are published in [34].

On the topic of permutations, we cover the problem of powering permutations in place
in Chapter 4. Given a permutation of n elements, stored as an array, we address the
problem of replacing the permutation by its kth power. We aim to perform this operation
quickly using o(n) bits of extra storage. To this end, we first present an algorithm for
inverting permutations that uses O(lg2 n) additional bits and runs in O(n lg n) worst case
time. This result is then generalized to the situation in which the permutation is to be
replaced by its kth power. An algorithm whose worst case running time is O(n lg n) and
uses O(lg2 n+ min{k lg n, n3/4+ε}) additional bits is presented. We note that the results of
Chapter 4 are published in [33].

Then, we cover a bunch of data structures for range reporting problems. Range report-
ing problems are problems where a point set is preprocessed so that certain information

1We use lg n to denote log2 n

2

about a query region can be efficiently computed. These problems are of fundamental
importance in computational geometry, both in the study of their optimality with respect
to space and query time, and as tools employed to provide efficient solutions to various
geometric problems.

More formally, in range reporting problems a set S of n points in Rd is preprocessed such
that the following query can be efficiently computed. Given a rangeQ = [l1, r1]×. . .×[ld, rd]
return an aggregate function over S ∩ Q.

In Chapter 5, we present a data structure for multi-dimensional range mode queries.
In this problem we have to preprocess a set of colored points S. Given a query range
Q, the aim is to report the most frequent color (i.e., a mode) of the multiset of colors
corresponding to the points in S ∩ Q. When d = 1, Chan et al. [20] gave a data structure
that requires O(n + (n/∆)2/w) words and supports range mode queries in O(∆) time for
any ∆ ≥ 1, where w = Ω(log n) is the word size. Chan et al. also proposed a data
structure for higher dimensions (i.e., d ≥ 2) with O(sn + (n/∆)2d) words and O(∆ · tn)
query time, where sn and tn denote the space and query time of a data structure that
supports orthogonal range counting queries on the set S. We show that the space can
be improved to O(sn + (n/∆)2d/w) words without any increase to the query time. When
d = 1, the space and query time costs of our data structure match those achieved by the
current best known one-dimensional data structure. We note that the results of Chapter 5
are published in [27, 28].

In Chapter 6 we present succinct data structures for one dimensional approximate
color counting, one dimensional approximate median reporting, and one dimensional color
reporting. We show, somewhat counter-intuitively, that it is not necessary to store colors
of the points in order to answer approximate color counting queries, nor the value of the
points in order to answer approximate median reporting queries.

In one dimensional color counting we are given a set of n points with integer coordinates
in the range [1,m] and every point is assigned a color from the set { 1, . . . , σ }. A color
counting query asks for the number of distinct colors in [a, b]. We describe a succinct
data structure that answers approximate color counting queries in O(1) time and uses
B(n,m) + O(n) + o(B(n,m)) bits, where B(n,m) ≈ n lgm/n is the minimum number of
bits required to represent an arbitrary set of size n from a universe of m elements. In the
special case when points are in the rank space (i.e., when n = m), our data structure needs
only O(n) bits. Also, we show that Ω(n) bits are necessary in that case.

We then extend the techniques presented to describe a data structure for the one
dimensional approximate median reporting problem. We are given a set of n points with
integer coordinates in the range [1,m] and every point is assigned a value from the set

3

{ 1, . . . , U}. An approximate-median reporting query asks for an element whose rank is
between (bk/2c − αk) and (bk/2c+ αk) in the query interval [a, b], where k is the number
of points in [a, b], and α is the approximation factor. We describe a succinct data structure
that answers approximate range median queries in O(1) time and uses B(n,m) + O(n) +
o(B(n,m)) bits. In the special case when points are in the rank space, our data structure
needs only O(n) bits, thus improving a result from [16]. Also, we show that Ω(n) bits are
necessary in that case.

Then, we turn to one dimensional color reporting. We are given a set of n points
with integer coordinates in the range [1,m] and every point is assigned a color from the set
{ 1, . . . , σ }. A color reporting query asks for the list of distinct colors that occur in a query
interval [a, b]. We describe a data structure that uses B(n,m) + nHd(S) + o(B(n,m)) +
o(n lg σ) bits and answers queries in O(k + 1) time, where k is the number of colors in the
answer, and Hd(S) (d = logσ n) is the d-th order empirical entropy of the color sequence.
We also consider succinct color reporting under restricted updates. Our dynamic data
structure uses nHd(S) + o(n lg σ) bits and supports queries in O(k + 1) time.

We note that the results of Chapter 6 are published in [31].

Finally, in Chapter 7 we present a succinct dynamic data structure for the one-
dimensional range reporting problem where the goal is to maintain (under insertion and
deletion) a set of integers S from a universe of size m to answer range reporting queries:
Given an interval [a, b] for some a, b ∈ [m], find a point in S ∩ [a, b]. We describe a succinct
data structure that supports updates in O(lgεm) time and answers queries in optimal O(k)
time where k is the number of points in the answer. This is the first dynamic data structure
for this problem that uses succinct space and achieves optimal query time. We note that
the results of Chapter 7 are to be published in [32].

4

Chapter 2

Preliminaries

In this chapter we discuss terminology and some standard data structures and techniques
that are useful throughout this thesis. We first define the word RAM model which is the
model of computation to be used throughout this thesis (Section 2.1), then we give a
more formal definition of space efficient data structures (Section 2.2), then we discuss bit
vectors and sequences in details (Sections 2.3 and 2.4), finally, we present rank space
reduction which is a useful technique in range reporting problems (Section 2.5).

2.1 Word RAM Model

The computational model used throughout this thesis is the word random access machine
model, or the word RAM model [1, 40]. The word RAM model is a realistic and natural
model for describing modern computers although it does not take into account multilevel
storage. Data is stored in words consisting of w ∈ Ω(lg n) bits, where n is the input
size. Words can be read and written in constant time. Moreover, arithmetic (addition,
subtraction, multiplication, and division) and bitwise boolean operations (AND, OR, NOT,
XOR, SHIFT etc.) can be performed in O(1) time on w-bit integers. We measure the
running time of an algorithm in this model by counting the number of memory accesses
and operations performed on words. The space cost can be measured by counting the
number of words or the number of bits used by the algorithm.

5

2.2 Space Efficient Data Structures

Since we can measure the space cost of a data structure in the word RAM model in terms
of the number of bits used, a natural question to ask is: What is the smallest number of
bits needed to represent an arbitrary combinatorial object of type X ? The answer to this
question is a lower bound for any data structure that represents X .

The information theoretic lower bound for storing an element from a set X is lgN bits,
where N = |X | is the cardinality of X . This is best illustrated with the archetypal example
of representing a binary tree of n nodes. In this example X is the set of all binary trees of
size n, and in this case N =

(
2n+1
n

)
/(2n+1) (the nth Catalan number). Thus, to represent a

binary tree of n nodes lgN = 2n−o(n) bits are required. We note that this is significantly
better than the traditional pointer representation where each node stores a pointer to each
of its left and right children (and potentially subtree size and other information), since
such a representation requires Θ(n lg n) bits.

We say that a data structure is succinct if the space it uses matches the information
theoretic lower bound plus a lower order term (i.e. lgN + o(lgN) bits). On the other
hand, a data structure is compact if the space it uses is asymptotically the same as the
information theoretic lower bound (i.e. Θ(lgN) bits). Moreover, in both cases, operations
should be done efficiently.

This area of research goes back to the late eighties, started by Jacobson [59, 58]. How-
ever, in the context of space-efficient data structures, the first use of the word succinct
was by Turán [95] in 1984, where he showed how to store a planar graph of size n in
12n bits. By our definitions his data structure is compact not succinct. Moreover, in-
terestingly enough, the first use of the word compact in this context was by Van Dam
and Evans [96] in 1967. For readable summaries about the area we refer the reader to
the following summaries [76, 73]. We also note that the book Compact Data Structures:A
Practical Approach [78] by Gonzalo Navarro is an excellent source on the topic.

2.3 Bit Vectors

For the sake of completeness and since bit vectors are used extensively throughout this
thesis, we cover them in detail in this section. A bit vector is a simple way to represent a set
S whose elements come from the universe [m], where [m] denotes the set {0, 1, . . . ,m− 1}.
If i ∈ S, we set the ith bit in the bit vector to 1, otherwise we set it to 0. It is not hard to
see that membership queries (checking whether a given element in [m] belongs to S) can

6

be answered in constant time by probing a single bit. In addition to membership queries,
we would also like to support the following operations:

• rank (i): returns the number of 1s up to and including position i.

• select (i): return the position of the ith 1.

Given a bit vector of length m, Jacobson [59] gave a structure that takes o(m) additional
bits of space and can support rank and select by making O(lgm) bit inspections. However,
the bits inspected were not necessarily contiguous and might depend on previous values
read. Munro [69] (full details in [23]) enhanced this structure to support both operations in
constant time, without increasing the space bound. In this section, we describe the details
of this structure.

Supporting Rank. To answer rank queries in constant time, we store the following:

• We break the vector into blocks of size dlg2me, and we store in a table T1 the number
of 1s up to the last position of each block. We also store in T1 references to all tables
T2i (described below) where 0 ≤ i ≤ dn/dlg2mee. The space used by T1 is O(m/lgm)
bits.

• We break the blocks into sub-blocks of size 1
2
dlgme, and for each block i we store

in a table T2i the number of 1s from the start position of the block up to the last
position of each sub-block. The space used by T2i is O(lgm lg lgm) bits. The total
space required by all such tables is O(m lg lgm/lgm) bits.

• For every possible sub-block, we store a table T3 that gives the number of 1s up-
to every possible position. Since there is O(

√
m) distinct sub-blocks, T3 requires

O(
√
m lgm lg lgm) bits.

To answer rank (x), let i = bx/dlg2mec be the index of the block containing x, we
compute j1 the number of ones up to position (i · dlg2me) using table lookup on T1. Let
k = b(x− i · dlg2me)/(1

2
dlgme)c be the index of the sub-block containing x, using table

lookup on T2i we compute j2 the number of ones up to the last position in the (k − 1)-th
sub-block of the ith block of S. Finally using table lookup on T3, we get j3 the number of
ones up to position (x− i · dlg2me − k · 1

2
dlgme) in the kth sub-block of the ith block of S,

and we return (j1 + j2 + j3).

Supporting Select. Supporting select queries is more complex than supporting rank
queries. We store the following:

7

• In a table T1, we store the position of every dlgm lg lgme)-th 1 bit in the bit vector.
Also, we store in T1 references to all tables T2i (described below) where 0 ≤ i ≤
dn/dlgm lg lgmee. T1 requires O(m/lg lgm) bits.

• Let r be the sub-range between the ith 1 and the (i+1)th 1 in T1. If r ≥ dlgm lg lgme2,
we store all the positions of all ones in this subrange in the table T2i. In this case,
T2i requires O(lg2m lg lgm) bits. However, there can be at most m/dlgm lg lgme2
such sub-ranges. Thus, the total space required by such tables is O(m/lg lgm) bits.
If r < dlgm lg lgme2 we store the position of every dlg r lg lgme-th one bit in the
sub-range. In this case, T2i requires O(r/lg lgm) bits, and the total space of such
tables is O(m/lg lgm) bits.

• After one more level of subdivision, the range size will be at most (lg lgm)4. We use
a precomputed table T3 that requires o(m) bits to store answers of all select queries
on every possible bit vector of that size.

To answer select (x), we check if x is a multiple of dlgm lg lgme. If so we can answer
select(x) using table lookup on T1. Let i = bx/dlgm lg lgmec. Using table lookup on
T1, we get j1 the index of the (i · dlgm lg lgme)-th one in S and j2 the index of the
((i+ 1) · dlgm lg lgme)-th one in S. If r = j2 − j1 ≥ dlgm lg lgme2 we get j3 the index of
the (x − i · dlgm lg lgme)-th one in the subdivision between j1 and j2 using table lookup
on T2i, and we return (j1 + j3). Let k = b(x− i · dlgm lg lgme)/dlg r lg lgmec. Using table
lookup on T2i, we get j4 the index of the (k ·dlg r lg lgme)-th one in the subdivision between
j1 and j2, and j5 the index of the ((k+ 1) · dlg r lg lgme)-th one in the subdivision between
j1 and j2. Finally using table lookup on T3, we get j6 the index of the (x−i·dlgm lg lgme−
k · dlg r lg lgme)-th one in the subdivision between j4 and j5, then we return (j1 + j4 + j6).

An immediate use of rank and select queries, is the ability to support the successor and
predecessor queries.

Supporting Predecessor. The predecessor of an element x, is the largest element
y < x such that y ∈ S. To answer predecessor (x) we return select (rank (x)− 1) if x ∈ S,
otherwise we return select (rank (x)).

Supporting Successor. The successor of an element x, is the smallest element y > x
such that y ∈ S. To answer successor (x) we return select (rank (x) + 1).

Theorem 1 ([69]). A bit vector of length m can be represented in m+ o(m) bits, such that
rank, select, membership, predecessor and successor queries can be answered in constant
time.

8

In special cases when the number of 1s and the number of 0s in the bit vector are not
proportional to each other, the space in the previous theorem can be improved.

Theorem 2 ([87]). A bit vector of length m can be represented in lg
(
m
n

)
+O(m lg lgm/ lgm)

bits where n is the number of 1s in the vector, such that rank, select, membership, prede-
cessor and successor queries can be answered in constant time.

2.4 Sequences

In classical information theory, one assumes that there is an infinite source that emits
elements according to some distribution. A fundamental result of information theory is
that, if the elements are being emitted independently, the minimum possible average code
length for unambiguous codes is the Shannon entropy defined as H = −

∑
i(pi lg pi), where

pi is the probability of symbol i, and 0 lg 0 is assumed to be 0.

A sequence is a string of finite size over an alphabet Σ = {1, . . . , σ}. Given a sequence
S over an alphabet Σ = [1 . . . σ], we obtain the empirical entropy of S by taking its
Shannon entropy and substituting pi with (ni/n), where ni is the number of occurrences of
symbol i in S and n is the length of S. The zero’th order empirical entropy is defined as:
H0 = −

∑
i((ni/n) lg (ni/n)), and nH0(S) would be the size of an ideal compressor that

uses − lg (ni/n) bits to represent symbol i.

This compression ratio can be improved if the code of each symbol was a function of
itself and the k symbols preceding it. For any k symbol string W ∈ Σk let SW denote the
subsequence of S that contains the symbols following W in S. The k-the order empirical
entropy is defined as: Hk = −

∑
i(|SW |/n)H0(SW), and nHk(S) is a lower bound on storing

S for any compression scheme that uses codes depending only on the k most recently seen
symbols.

In the context of succinct data structures we need to store a sequence in a compressed
form and support the following operations:

• access (i): returns the i-th character in S.

• rank (i, a): returns the count of the occurrences of symbol a in the first i positions of
S.

• select (i, a): finds the position where the symbol a occurs for the i-th time.

9

The state of the art results on static sequences is due to the following theorem by
Belazzougui1 and Navarro [11].

Theorem 3 ([11]). A string S over an alphabet of size σ can be represented using nHk(S)+
o(n lg σ) bits for any k = o(n lgσ n) so that operation access can be solved in constant time,
operation rank can be solved in time O(lg (lg σ/ lgw)), and operation select can be solved
in time O(f(n, σ)) for any function f(n, σ) satisfying ω(1) = f(n, σ) = o(lg (lg σ/ lgw)).

2.5 Reduction to Rank Space

Rank space reduction is a useful technique for range reporting problems first presented by
Alstrup [3]. Using this technique, we can reduce a d-dimensional range reporting problem
on a set P to the special case when all points have distinct coordinates that are integers
bounded by n, where n is the number of points in the data structure. In what follows we
briefly describe this reduction technique.

Given some integer x, for each i where 1 ≤ i ≤ d denote by ri(x) the rank of x
among the ith coordinate of all the points in P . Let P ′ be the set of n points formed
by replacing the ith coordinate of each point p ∈ P denoted by pi with ri(pi). Any
range reporting query Q = [a1, b1]× [ad, bd]] on P is equivalent to a range reporting query
Q = [r1(a1), r1(b1)] × [rd(ad), rd(bd)]] on P ′. Suppose that we can answer range reporting
queries Q (e.g., a color reporting or a color counting query) on P ′ in time tq(n) using an
s(n)-space data structure. Suppose that we can answer predecessor queries on some set in
time t′(n) using an s′(n)-space data structure. Then, it follows that we can answer range
reporting queries Q on P in time t(n) + d · t′(n) using an (s(n) + d · s′(n))-space data
structure.

10

Chapter 3

Compact Unlabeled Permutations

3.1 Introduction and Motivation

A permutation π is a bijection from the set {1, . . . , n} to itself. Given a permutation π on
an n element set, our problem is to preprocess the set, assigning a unique label to each
element, to obtain a data structure with minimum space to support the following query:
given a label i, determine πk(i) quickly where k is an arbitrary (not fixed) integer and πk

is the kth power of π. We denote such queries by πk(). Moreover, we assume that k is
bounded by some polynomial function in n.

We are interested in compact, or highly-space efficient data structures. Our aim is to
develop data structures whose size is within a constant factor of the information theoretic
lower bound. Designing compact data structures is an area of interest in theory and
practice motivated by the need of storing large amount of data using the smallest space
possible.

Permutations are fundamental in computer science and are studied extensively. They
are commonly used as a basic building block for space efficient encoding of strings [5, 45,
79, 92], binary relations [7, 9], integer functions [74] and many other combinatorial objects.
Several papers have looked into problems related to permutation generation [93], permuting
in place [38] etc. Others have dealt with the problem of space-efficient representation
of restricted classes of permutations, like the permutations representing the lexicographic
order of the suffixes of a string [50, 55], or the so-called approximately min-wise independent

11

permutations [18], which are used for document similarity estimation. Since there are
exactly n! permutations, the number of bits required to represent a permutation of length
n is dlg(n!)e ∼ n lg n − n lg e + O(lg n) bits. Munro et al. [74] studied the space efficient
representation of general permutations where general powers can be computed quickly.
They gave a representation taking the optimal dlg(n!)e + o(n) bits where π() and π−1()
can be computed in O(lg n/ lg lg n) time, and a representation taking ((1 + ε)n lg n) bits
where πk() can be computed in constant time for any k.

In this chapter we study the space-efficient representation of permutations where labels
can be freely reassigned. This problem is similar to the problem of representing unlabeled
equivalence relations [65, 27, 30]. In that problem one is given a partition of an n element
set into equivalence classes. The goal is to preprocess the partition and assign a unique
label to each element, obtaining a data structure to answer the following query: given two
elements, are they in the same equivalence class. We note that a permutation of n elements
can be decomposed into a set of disjoint cycles whose lengths form an integer partition
of n. Two permutations are considered equivalent by relabelling if there cycles lengths
form the same integer partition. In the case when the label space is n, both problems are
similar since they become equivalent to storing an integer partition of n as we will show in
Section 3.4. We note that the number of integer partitions of n is by the Hardy-Ramanujan

formula [53] asymptotically equivalent to 1
4n
√
3
eπ
√

2n
3 ; thus the information theoretic lower

bound for storing an integer partition is Θ(
√
n) bits.

Our problem differs from representing equivalence relations when the label space ex-
ceeds n. For the case of equivalence relations, once the label space increases to (1 + ε)n for
any constant ε > 0 the data structure size decreases from Θ(

√
n) bits to Θ(lg n) bits. This

result is shown in [27, 30]. The main reason for this drastic decrease in auxiliary storage
size is that as the label space increases, it is not necessary to keep track of the exact sizes
of the equivalence classes; keeping track of an approximation of their sizes is sufficient. On
the other hand, for the case of permutations it is always necessary to know the exact size
of each cycle. Thus, as we increase the label space we will not witness such a decrease in
auxiliary storage size.

We study this problem in several scenarios; thus, showing the tradeoffs between label
space and auxiliary storage size for the stated problem. In Section 3.3, we cover the scenario
where queries are to be answered by just examining the labels of the queried elements. We
show that a label space of

∑n
i=1b

n
i
c · i is necessary and sufficient. Then, we show that with

a label space of n2 queries can be answered in constant time. In Section 3.4, we cover the
scenario where labels can be assigned from the set {1, . . . , n}. We show that Θ(

√
n) bits

are necessary and sufficient to represent the permutation. We use the same data structure

12

as the main structure in [65]. However, we optimize it to achieve constant query time while
using only O(

√
n) bits. Section 3.5 contains the main result of this chapter. We cover the

scenario where labels can be assigned from the set {1, . . . , cn1+ε} where c is a constant
and 0 < ε < 1. We show that Θ(n(1−ε)/2) bits are necessary and sufficient to represent
the permutation, and we support queries in such a structure in O(1) time in the standard
word-RAM model.

Finally as an application to our new data structures, we give a representation of a
labeled permutation that takes s(n) +O(

√
n) bits and can answer πk() in O(tf + ti) time,

where s(n) denotes the number of bits required for a representation R to store a labeled
permutation, and tf and ti are the time needed for R to support π() and π−1(). This result
improves Theorem 3.3 in [74].

We note that the results of this chapter are published in [34].

3.2 Definitions

A permutation π is a bijection from the set {1, . . . , n} to itself, and we denote its inverse
bijection as π−1. We also extend the definition to arbitrary integer power of π as follows:

πk(i) =


πk+1(π−1(i)) k < 0

i k = 0

πk−1(π(i)) k > 0

A permutation can be viewed as a set of disjoint cycles. Since we are working with unlabeled
permutations, we have the freedom to assign the labels in any way. In all our labeling
schemes elements within the same cycle will get a block of consecutive labels. Furthermore,
the blocks for cycles of the same length will be contiguous. For example the elements of
the first cycle of length l will get labels from the interval [s, s + l − 1] for some integer s
such that π(i) = i+ 1 for i ∈ [s, s+ l− 2] and π(s+ l− 1) = s. The elements of the second
cycle of length l will get labels in the range [s + l, s + 2l − 1], and so on. Thus, given a
label i and an integer k, to answer πk(i) it is sufficient to compute l the length of the cycle
that i belongs to, and s the smallest index of an element that belongs to a cycle of length
l. Now, it is not hard to verify that πk(i) = s + rl + ((p + k)%l) where r = b(i − s)/lc,
p = i− (s+ rl), and % denotes the modulo operation.

For example suppose that we have two cycles of length 5 which we assign labels from
[10, 14] and [15, 19]. To compute π2(16) notice that l = 5, s = 10, r = b(16− 10)/5c = 1,
p = 16− (10 + 5) = 1, so π2(16) = 10 + 5 + (1 + 2)%5 = 18.

13

Notice that the multiset formed by the cycle lengths of a given permutation π over an
n-element set will form an integer partition of the integer n. An integer partition p of n is
a multiset of positive integers that sum to n. We call these positive integers the elements
of p, and we denote by |p| this number of elements. We say that an integer partition p of
n dominates an integer partition q of m where n > m if q is a subset of p. For example,
the integer partition {5, 5, 10} of 20 dominates the integer partition {5, 5} of 10, but not
the integer partition {4, 6} of 10. Given an integer partition p of n, we define a part q of
size k to be a collection of elements in p that sum to k. We say that an integer s fills q if
q contains bk/sc integers s and one integer k mod s. Furthermore, we say that two parts
intersect if they share at least one common element; otherwise, they are non-intersecting.
For example the integer partition {1, 4, 5} of 10 contains the following parts: part {1} of
size 1, part {4} of size 4, part {5} of size 5, part {1, 4} of size 5, part {1, 5} of size 6, part
{4, 5} of size 9 and part {1, 4, 5} of size 10. We say that 5 fills the parts {5} and {4, 5}
but not the part {1, 4, 5}. The parts {4, 5} and {4} are intersecting, while the parts {4, 5}
and {1} are non-intersecting.

Finally, we give two observations that we will use repeatedly.

Observation 1. M not necessarily distinct integers m0, . . . ,mM−1 ordered such that mi ≤
mi+1 for i ∈ [0, N − 1] can be represented in O(N + M) bits such that the ith integer mi

can be accessed in O(1) time.

Proof. Store the values m0 and (mi−mi−1) for i = 1, . . . ,M −1 represented in unary with
a 0 separator between each two consecutive values in a bit vector ψ as described in Section
2.3. Also store a select structure on ψ to identify the 0s quickly, and a rank structure to
count the 1s quickly. To get the integer mi, count the number of 1s before the ith 0 in
ψ.

Observation 2. M positive integers m0, . . . ,mM−1 that sum to N can be represented in
O(N + M) bits such that the ith integer mi can be accessed in O(1) time, the partial sum∑i

j=1mj can be computed in O(1) time, and given an integer x we can compute the biggest

index i such that
∑i

j=1mj ≤ x in O(1) time.

Proof. Store the values mi for i = 0, . . . ,M − 1 represented in unary with a 0 separator
between each two consecutive values in a bit vector ψ as described in Section 2.3. Also
store a select structure on ψ to identify the 1s and 0s quickly, and a rank structure to
count the 1s and 0s quickly. To get the integer mi, subtract the number of 1s before the
ith 0 from the number of 1s before the (i− 1)th 0 in ψ. To compute the partial sum value∑i

j=1mj, count the number of 1s before the ith 0 in the bit vector ψ. Given x, to compute

14

the biggest index i such that
∑i

j=1mj ≤ x, get the index i of the xth 1 ψ then return the
number of 0s before i.

Note that if we are allowed to reorder the numbers in Observation 2, we can reduce the
size of the representation to O(

√
N) bits without compromising the constant runtime of

the stated operations since the problem becomes equivalent to storing an integer partition
of N .

3.3 Direct Labeling Scheme

In this section we cover the problem where queries are answered by computing directly
from the labels without using any auxiliary storage except for the value of n. We show
that a label space of

∑n
i=1b

n
i
c · i is necessary and sufficient to represent the permutation.

Moreover, we show that with a label space of n2, we can compute πk() in constant time.

Theorem 4. Given a permutation π, a label space of
∑n

i=1b
n
i
c · i < n2 is necessary and

sufficient to represent the permutation.

Proof. To show that this many labels are necessary, consider a labeling scheme for this
problem. It reserves a set of labels for each cycle to ensure that queries are answered
correctly by looking only at the labels. Consider the labels assigned by such a scheme for
the following collection C of n permutations. The ith permutation Ci of C contains bn/ic
cycles each of length i and one cycle of length n− bn/ic · i.

Note that for each Ci the labels assigned to the elements of the bn/ic cycles of length
i can not be reused for the elements of any cycle of length different than i. This happens
because for any label x, we can obtain the length of the cycle that x belongs to by searching
for the smallest positive integer k such that πk(x) = x. Thus, a label space of

∑n
i=1b

n
i
c · i

is necessary.

For the upper bound observe that there exist at most bn/ic cycles of length i. We assign
labels from the set of integers in the range [0, n−1] for all the elements in cycles of length 1,
and labels from the set of integers in the range [

∑i−1
j=1(b

n
j
c·j)+(r−1)i,

∑i−1
j=1(b

n
j
c·j)+ri−1]

for the elements in the rth cycle of length i, where 1 ≤ r ≤ bn/ic. Given a label x, to
answer a query πk(x) we find the biggest integer l such that s =

∑l−1
j=1b

n
j
c · j ≤ x. Next,

we compute r = b(x− s)/lc and p = x− (s+ rl) then we return s+ rl + ((p+ k)%l).

15

To answer queries in constant time we extend the label space marginally to n2. Then we
assign labels from the set of integers in the range [0, n− 1] for all the elements in cycles of
length 1, and labels from the set of integers in the range [n(i−1)+(r−1)i, n(i−1)+ri−1]
for the elements in the rth cycle of length i, where 1 ≤ r ≤ bn/ic. Given a label x, to
answer a query πk(x) we find l = bx/nc+1. Next, we compute s = (l−1)n, r = b(x−s)/lc
and p = x− (s+ rl) then we return s+ rl + ((p+ k)%l).

Theorem 5. Given a permutation π, we can assign to each of the elements a label in the
range of {1, . . . , n2} such that πk() can be computed in constant time by looking only at the
labels.

3.4 Compact Data Structures with Label Space n

In this section we consider the scenario where the n elements are to be assigned labels in
the range 1 to n. The queries can be answered by looking at an auxiliary data structure.
Moreover, we have the freedom to assign the labels in any way.

Following [65], the information theoretic lower bound for the representation of a per-
mutation is the number of partitions of n, which by the Hardy-Ramanujan formula [53] is

asymptotically equivalent to 1
4n
√
3
eπ
√

2n
3 . Thus, the information theoretic lower bound for

representing a permutation is Θ(
√
n) bits of space.

We will use the same data structure as the main structure in [65], however we will
optimize it to achieve constant query time while using only O(

√
n) bits. Given π let m

be the number of distinct cycle sizes in π and let s1, . . . , sm be the distinct sizes of the
cycles. For i = 1 to m let ni be the number of cycles of size si. We order the cycles in
non-decreasing order by γi = sini so that for i = 1 to m− 1, sini ≤ si+1ni+1. Notice that
since ∑m

i=1 sini = n and sini ≥ i for i = 1, . . . ,m,

m is at most
√

2n. The primary data structure is made up of two sequences:

• the sequence ~δ that consists of δ1 = s1n1 and δi = sini − si−1ni−1, for i = 2, . . . ,m
and

• the sequence ~n that consists of ni, for i = 1, . . . ,m.

16

We represent the elements of the two sequences in binary. Since the lengths of the elements
may vary, we store two other sequences that shadow the primary sequences. The shadow
sequences have a 1 at the starting point of each element in the shadowed sequence and
a 0 elsewhere. Also we store a select structure on the two shadow sequences in order to
identify the 1s quickly. It is proved in [65] these sequences can be stored in O(

√
n) bits.

The sequences ~δ and ~n give an implicit ordering of the elements. We assign the first
s1n1 labels to the elements of the cycles with length s1, and then we assign the next s2n2

labels to the elements of the cycles with length s2, and so on.

Define the predecessor of an element x to be the maximum index j satisfying the
condition that

∑j
i=1 sini < x. We store an array A where A[i] = max{j |

∑j
t=1 stnt ≤

i(i+ 1)/2}, for i = 1 to
√

2n. Next, we prove a modified version of Lemma 2 in [65].

Lemma 6. The predecessor p(x) of an integer x in the sequence
∑i

t=1 stnt, i = 1 to m is
in the range [A[b

√
2xc − 1], A[b

√
2xc − 1] + 5].

Proof. Let i = b
√

2xc − 1. Without loss of generality assume that i ≥ 6, since for x < 25
we can store p(x) explicitly in O(lg n) bits. Notice that:

i(i+ 1)/2 ≤ (
√

2x− 1)
√

2x/2 ≤ x

and

x ≤
√

2x(
√

2x+ 1)/2 ≤ (i+ 2)(i+ 3)/2

For j = A[i] + 1,
∑j−1

t=1 stnt ≤ i(i+ 1)/2, so j − 1 ≤ i and j ≤ i + 1. Since
∑j

t=1 stnt >

i(i+ 1)/2, sjnj ≥ i(i+ 1)/(2j) ≥ i/2. Hence,
∑j+5

t=1 stnt ≥ (i+ 2)(i+ 3)/2 ≥ x.

We can obtain the actual value of p(x) by checking at most six numbers. Moreover, we
can store A using O(

√
n) bits using the method described in Observation 1.

In the standard word-RAM model, computing
√
x is not a constant time operation.

The standard Newton’s iterative method uses O(lg lg n) operations. Following [65], we can
use a look-up to precomputed tables and finds

√
x in constant time. We use two tables,

one when the number of bits up to the most significant bit of x is odd, denoted by O, and
one when the number of bits is even, denoted by E. For i = 1, . . . , d

√
2ne, we store in E[i]

the value of b
√
i2dlg iec, and in O[i] the value of b

√
i2dlg ie−1c. E and O can be stored in

O(
√
n) bits by storing them using the method described in Observation 1. We summarize

with:

17

Lemma 7. For i ≤ n, b
√
ic can be computed in constant time using a precomputed table

of O(
√
n) bits.

For each i where at least one of the bit locations of δi in ~δ is a multiple of (ε lg n), we
store the partial sum value

∑i
j=1 (sjnj) and the value of sini. Moreover, for every possible

sequence of δ values δ1, δ2, . . . , δo of length (ε lg n) and its corresponding shadow sequence,
we store in a table T the values

∑h
j=1 (

∑j
f=1 δf). To compute

∑i
j=1 (sjnj) for an arbitrary

index i, we find the biggest index v ≤ i that has its partial sum value stored. Notice that∑i
j=1 (sjnj) =

∑v
j=1 (sjnj) + (i− v)svnv +

∑i
j=v+1 (

∑j
f=v+1 δf). Since we can obtain these

values using table lookup on T , we can compute the partial sum at an arbitrary index in
constant time. Moreover, we can compute the value of sini for an arbitrary index i by
computing the partial sum at i − 1 and subtracting it from the partial sum at i. Finally,
we can compute si by computing sini and dividing it by ni. By choosing ε < 1/4, the size
of T becomes o(

√
n) bits.

Answering Queries: Given a label x, to compute πk(x) we first find the prede-
cessor p(x) of x by querying A and checking at most 6 different values. Next we compute

the partial sum value s =
∑p(x)−1

i=1 (nisi). Then, we compute r = b(x − s)/sp(x)c and
p = x− (s+ rsp(x)) then we return s+ rsp(x) + ((p+ k)%l).

Theorem 8. Given an unlabeled permutation of n elements, Θ(
√
n) bits are necessary and

sufficient for storing the permutation if each element is to be given a unique label in the
range {1, 2, . . . , n}. Moreover, there is a structure of Θ(

√
n) bits such that πk() can be

computed in O(1) time.

3.5 Compact Data Structures with Extended Label

Space

In this section we consider the scenario where the n elements are to be assigned labels in
the range 1 to cn1+ε where c is a constant and 0 < ε < 1. As in Section 3.4 we assign an
implicit ordering of the elements, and queries can be answered by looking at an auxiliary
data structure.

Given π, we divide the cycles in π into four different groups and handle each group
appropriately. Let k3 be the number of cycles of size ≤ n(1+ε)/2, and let {s1, . . . , sk3} be
the sizes of those cycles. For i = 1 to k3 let ni be the number of cycles of size si. Without
loss of generality we define k1 and k2 such that:

18

• γi = sini ≤ (
√
cn(1+ε)/2)/2 = η, for 1 ≤ i ≤ k1.

• si ≤ n(1−ε)/2 and γi > η, for k1 < i ≤ k2.

• n(1−ε)/2 < si ≤ n(1+ε)/2 and γi > η, for k2 < i ≤ k3.

Let lk3+1, . . . , lk4 be the size of the cycles that are bigger than n(1+ε)/2. Note that the li
(i = k3 + 1 to k4) values are not necessarily unique.

Case 1 (1 ≤ i ≤ k1): We reserve the first (cn1+ε)/4 labels to handle all possible cycle
sizes when γi ≤ η. We assign labels to the elements in the cycles that satisfy this criteria
in a similar method to the labeling scheme described in Theorem 5. To be more specific,
we assign labels from the set of integers in the range [0, η− 1] for all the elements in cycles
of length 1, and assign labels from the set of integers in the range [η(j − 1), ηj − 1] for all
the elements in cycles of length j, where 2 ≤ j ≤ η. This covers all the elements of the
cycles of sizes s1, . . . , sk1 , and increases the label space by at most η2 = (cn1+ε)/4. Let
B1 = (cn1+ε)/4.

Case 2 (k1 + 1 ≤ i ≤ k2): We order the si values in increasing order and make all
cycles of size si fill a part whose length is ciη, a multiple of η. Notice that (k2− k1) < n/η
since γi > η, so the label space will increase by at most n. Since

∑k2
i=k1+1(ci) ≤ (2n)/η =

O(n(1−ε)/2), we can store the ci values in O(n(1−ε)/2) bits using the method described in
Observation 2. Moreover, we store a bit vector ψ of size n(1−ε)/2 to identify the si values,
and we store a select structure on ψ to identify the 1s quickly. We assign labels in the
range [B1, B1 +c(k1+1)η−1] to the elements in cycles of size s(k1+1), then we assign the next

c(k1+2)η labels to elements in cycles of size s(k1+2), and so on. Let B2 = B1 +
∑k2

j=k1+1 cjη.

Case 3 (k2 + 1 ≤ i ≤ k3): We make all cycles of size si fill a part whose length is
ciη, a multiple of η. As in case 2, we store the ci values in O(n(1−ε)/2) bits using the
method described in Observation 2. To identify the si values: we order them in increasing
order of ri = si%(16n(1−ε)/2/c) and store the ri values in O(n(1−ε)/2) bits using the method
described in Observation 1, then we store the value of qi = si/(16n(1−ε)/2/c) ≤ (cnε/16) in
the label of each element that is in a cycle of size si. Now si = qi(16n(1−ε)/2/c) + ri. Let
β1 be equal to

∑k3
i=k2+1 ciη. We assign labels in the range[

B2 + qi2
dlg(β1)e +

i−1∑
j=k2+1

cjη, B2 + qi2
dlg(β1)e +

i∑
j=k2+1

cjη − 1

]
to the elements in the cycles of size si. The label space will increase by at most
(cnε/16)2dlg(β1)e + β1 ≤ (cn1+ε)/4 +O(n). Let B3 = B2 + (cnε/16)2dlg(β1)e + β1.

19

Case 4 (k3+1 ≤ i ≤ k4): For the cycles of length li we make each cycle fill a part whose
length is ciη, a multiple of η. As in the previous cases, store the ci values in O(n(1−ε)/2)
bits using the method described in Observation 2. To identify the li values: we order them
by ri = (li%η)%(8n(1−ε)/2/

√
c) and store the ri values in O(n(1−ε)/2) bits using the method

described in Observation 1, then store the value of qi = (li%η)/(8n(1−ε)/2/
√
c) ≤ (cnε/16) in

the label of each element that is in a cycle of size li. Now li = qi(8n
(1−ε)/2/

√
c)+ri+(ci−1)η.

Let β2 be equal to
∑k4

i=k3+1 ciη. Assign labels in the range[
B3 + qi2

dlg(β2)e +
i−1∑

j=k3+1

cjη, B3 + qi2
dlg(β2)e +

i∑
j=k3+1

cjη − 1

]
to the elements in the cycle of size li.

The total size of the structures used is O(n(1−ε)/2) bits, and the total address space
increased to at most (3cn1+ε)/4 +O(n) ≤ cn1+ε as required.

Answering Queries: Given a label x, to compute πk(x) we distinguish between
four different cases:

Case 1 x < B1: We Compute the value of l = bx/ηc+ 1, s = (l− 1)η, r = b(x− s)/lc,
and p = x− (s+ rl). Then, we return s+ rl + ((p+ k)%l).

Case 2 B1 ≤ x < B2: We compute the value m = (x−B1)/η. Then we get the
biggest index i such that

∑i
j=k1+1 cj ≤ m. This operation can be done in O(1) time using

the structure from Observation 2. Next, we find l the index of the ith one in ψ; l is the
size of the cycle that x belongs to. We compute s = B1 +

∑i−1
j=k1+1 cjη, r = b(x − s)/lc,

and p = x− (s+ rl). Then, we return s+ rl + ((p+ k)%l).

Case 3 B2 ≤ x < B3: We compute the value m = ((x−B2)%β1)/η. Then we get
the biggest index i such that

∑i
j=k2+1 cj ≤ m. Next we calculate qi = b(x−B2)/2

dlg(β1)ec
and l = qi(16n(1−ε)/2/c) + ri; l is the size of the cycle that x belongs to. We compute
s = B2 + qi2

dlg(β1)e +
∑i−1

j=k2+1 cjη, r = b(x− s)/lc, and p = x− (s + rl). Then, we return
s+ rl + ((p+ k)%l).

Case 4 B3 ≤ x: We compute the value m = ((x−B3)%β2)/η. Then we get the
biggest index i such that

∑i
j=k3+1 cj ≤ m. Next we calculate qi = b(x−B3)/2

dlg(β2)ec and

l = qi(8n
(1−ε)/2/

√
c)+ri+(ci−1)η; l is the size of the cycle that x belongs to. We compute

s = B3 + qi2
dlg(β2)e +

∑i−1
j=k3+1 cjη, r = b(x− s)/lc, and p = x− (s + rl). Then, we return

s+ rl + ((p+ k)%l).

All operations used take constant time, so πk(x) can be computed in O(1) time.

20

Theorem 9. Given an unlabeled permutation of n elements, Θ(n(1−ε)/2) bits are suffi-
cient for storing the permutation if each element is to be given a unique label in the
range {1, . . . , cn1+ε} for any constant c > 1 and ε < 1. Moreover, there is a structure
of Θ(n(1−ε)/2) bits such that πk() can be computed in O(1) time.

Note that ε doesn’t need to be a constant. By setting ε = α + β lg lg n/lg n where α
and β are constants, and 0 < α < 1 we get the following theorem:

Theorem 10. Given an unlabeled permutation of n elements, Θ(n(1−α)/2/lgβ/2 n) bits are
sufficient for storing the permutation if each element is to be given a unique label in the
range {1, . . . , cn1+α lgβ n} for any constant c, α, β where 0 < α < 1. Moreover, there is a
structure of Θ(n(1−α)/2/lgβ/2 n) bits such that πk() can be computed in O(1) time.

3.6 Lower Bounds

In this section we provide lower bounds on the auxiliary data size as the label space
increases.

3.6.1 Lower Bound for Auxiliary Data with Label Space cn

In [30] El-Zein showed that for the problem of representing unlabeled equivalence relations,
increasing the label space by a constant factor causes the size of the auxiliary data structure
to decrease from O(

√
n) to O(lg n) bits.

In contrast to the problem of representing unlabeled equivalence relations, in this sec-
tion we show that for the problem of representing unlabeled permutations increasing the
label space by a constant factor will not affect the size of the auxiliary data structure
asymptotically.

For any integer c > 1, let Scn be the set of all partitions of bcnc and Sn the set of all
partitions of n. Without loss of generality assume that

√
n is an integer that is divisible

by c. While one partition of cn can dominate many partitions of n, we argue that at least(
c
√
n√

n/c

)
/
(√

n√
n/c

)
partitions of cn are necessary to dominate all partitions of n. Let S be the

smallest set of partitions of cn that dominates all the partitions of n. We claim that:

Lemma 11. |S| ≥
(
c
√
n√

n/c

)
/
(√

n√
n/c

)
.

21

Proof. Divide n into
√
n/c parts each of size c

√
n. Let Q be the set formed by filling each

part with a distinct size in the range [1, c
√
n], clearly |Q| =

(
c
√
n√

n/c

)
.

A partition of cn can dominate at most
√
n distinct parts, hence at most

(√
n√
n/c

)
par-

titions in Q. Therefore, to dominate Q we need a minimum of
(
c
√
n√

n/c

)
/
(√

n√
n/c

)
partitions of

cn. Since Q is a subset of Sn our claim holds.

The information theoretic lower bound for the space needed to represent a permutation
of size n once labels are assigned from the set {1, . . . , cn} is

lg(|S|) ≥ lg(

(
c
√
n√

n/c

)
/

(√
n√
n/c

)
)

∈ Ω(
√
n).

Theorem 12. Given an unlabeled permutation of n elements, Θ(
√
n) bits are necessary

and sufficient for storing the permutation if each element is to be given a unique label in
the range {1, . . . , cn} for any constant c > 1. Moreover, there is a structure of Θ(

√
n) bits

such that πk() can be computed in O(1) time.

3.6.2 Lower Bound for Auxiliary Data with Label Space cn1+ε

Using techniques that are similar to the techniques presented in the previous subsection,
we show that for the problem of representing unlabeled permutations an auxiliary data
structure of size O(n(1−ε)/2) bits is necessary when the label space is cn1+ε, where c is any
constant and 0 < ε < 1.

Denote by Scn1+ε the set of all partitions of cn1+ε and by Sn the set of all partitions

of n. We argue that at least
((c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)
/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)
are necessary to dominate all

partitions of n. Let S be the smallest set of partitions of cn1+ε that dominates all partitions
of n. We claim that:

Lemma 13. |S| ≥
((c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)
/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)
.

Proof. Divide n into n(1−ε)/2/(c+ 1) parts each of size (c + 1)n(1+ε)/2. Let Q be the set
formed by filling each part with a distinct size in the range [1, (c + 1)n(1+ε)/2], clearly

|Q| =
((c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)
.

22

A partition of cn(1+ε) can dominate at most cn(1+ε)/2/(c+ 1) distinct parts, hence at

most
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)
partitions in Q. Therefore, to dominate Q we need a minimum of((c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)
/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)
partitions of cn(1+ε)/2. Since Q is a subset of Sn our claim

holds.

The information theoretic lower bound for space to represent a permutation of size n
once labels are assigned from the set {1, . . . , cn1+ε} is

lg(|S|) ≥ lg(

(
(c+ 1)n(1+ε)/2

n(1−ε)/2/(c+ 1)

)
/

(
cn(1+ε)/2/(c+ 1)

n(1−ε)/2/(c+ 1)

)
)

∈ Ω(n(1−ε)/2).

Theorem 14. Given an unlabeled permutation of n elements, Θ(n(1−ε)/2) bits are necessary
and sufficient for storing the permutation if each element is to be given a unique label in
the range {1, . . . , cn1+ε} for any constant c > 1 and ε < 1. Moreover, there is a structure
of Θ(n(1−ε)/2) bits such that πk() can be computed in O(1) time.

3.7 Application

As an application to our data structures, we give a representation of a labeled permutation
that takes s(n) + O(

√
n) bits and can answer πk() in O(tf + ti) time, where s(n) denotes

the number of bits required for a representation R to store a labeled permutation, and tf
and ti are the time needed for R to support π() and π−1().

This result improves Theorem 3.3 in [74] which says that suppose there is a represen-
tation R taking s(n) bits to store an arbitrary permutation π on {1, . . . , n}, that supports
π() in time tf , and π−1() in time ti. Then, there is a representation for an arbitrary permu-
tation on {1, . . . , n} taking s(n) +O(n lg n/ lg lg n) bits in which πk() can be supported in
tf + ti +O(1) time, and one taking s(n) +O(

√
n lg n) bits in which πk() can be supported

in tf + ti +O(lg lg n) time.

Theorem 15. Suppose there is a representation R taking s(n) bits to store an arbitrary
permutation π on {1, . . . , n}, that supports π() and π−1() in time tf and ti. Then there is
a representation for an arbitrary permutation on {1, . . . , n} taking s(n) + O(

√
n) bits in

which πk() can be supported in tf + ti +O(1) time.

23

Proof. Given π, treat it as an unlabeled permutation and build the data structure from
Theorem 8 on it. Call this structure P . Notice that the bijection between the labels
generated by P and the real labels of π forms a permutation. Store this permutation using
the given scheme in a structure P ′. Now πk(i) = π−1P ′ (π

k
P (π1

P ′(i))) can be computed in
tf + ti +O(1) time, and the total space used is s(n) +O(

√
n) bits.

24

Chapter 4

Powering Permutations

4.1 Introduction and Motivation

In this chapter, we study the problem of transforming a permutation π to its kth power πk

in place for arbitrary k. By “in place,” we mean that the algorithm runs while using “very
little” extra space. Ideally, we want the algorithm to use only a polylogarithmic number of
bits in addition to the input. The algorithm we present uses several new techniques that
are of interest in their own right and could find broader applications. We note that this
work is an extension to the work done by Robertson [89].

One interesting application of inverting a permutation in place was encountered in the
context of data ware-housing by Aruna, Inc. [24]. The permutation which corresponds to
the rows of a relation sorted by some given key is stored explicitly. The inverse of a segment
of the permutation is required to perform certain joins. The amount of space occupied by
this permutation is substantial, and doubling that space to store the permutation inverse
for the purpose of improving the time to compute certain joins is not practical, and indeed
was not in the work leading to [24].

As mentioned in the previous chapter, since there are n! permutations of length n, the
number of bits required to represent a permutation is dlg(n!)e ∼ n lg n−n lg e+O(lg n) bits.
Munro et al. [74] studied the space efficient representation of general permutations where
general powers of individual elements can be computed quickly. They gave a representation
taking the nearly optimal dlg(n!)e + o(n) bits, that can compute the image of a single

25

element of πk() in O(lg n/lg lg n) time; and a representation taking (1 + ε)n lg n bits where
πk() can be computed in constant time. The preprocessing for these representations as
presented in [74] requires an extra O(n) words of space, so a solution that involves building
them as an intermediate step will not be considered in place and therefore does not apply
to our current problem.

Throughout this chapter, we assume that the permutation is stored in its standard
representation. That is, it is stored in an array A[1, . . . , n] of n words that contains the
value π(i) at index i for i ∈ {1, . . . , n}. At the termination of the algorithm this array
will contain the value πk(i) at index i for i ∈ {1, . . . , n}. Storing A requires ndlg ne =
n lg n+n(dlg ne− lg n) bits. When (dlg ne− lg n) is “big,” we can reduce the space required
by this representation by encoding a constant number c of consecutive elements into a
single object. This object is essentially the c-digit base n number π[i]π[i+1] . . . π[i+c−1].
Encoding these n/c objects of size dc lg ne bits each, totals to n lg n + n/c bits (which is
still more than the optimal representation by (n/c + n lg e − O(lg n)) bits). To decode a
value, we need a constant number of arithmetic operations. This saving of memory at the
cost of c accesses to interpret one element of A carries through all of our work.

This chapter is organized as follows. In Section 4.2, we review previous work on per-
muting data in place [38], on which we base our work. In Section 4.3, we present an
algorithm for inverting permutations with a worst case time complexity of O(n lg n) using
only O(lg2 n) additional bits. Then we face the problem that while π−1() leaves the cycle
structure as it was, higher powers may create more (smaller) cycles. This causes further
difficulty which is addressed in Section 4.4 where we generalize the algorithm from Section
4.3 to the situation in which the permutation is to be replaced by its kth power. An algo-
rithm whose worst case running time is O(n lg n) and uses O(lg2 n + min{k lg n, n3/4+ε})
additional bits is presented. Our solution relies on Rubinstein’s [90] work on finding factor-
izations into small terms modulo a parameter. The final result can be improved if better
factorization is applied. However, we show that obtaining a better factorization is probably
difficult since it would imply Vinogradov’s conjecture [98]. We conclude this chapter in
Section 4.5.

We note that the results of this chapter are published in [33].

4.2 Background and Related Work

Fich et al. studied the problem of permuting external data in place according to a given
permutation [38]. That is, given an array B of length n and a permutation π given by an
oracle or read only memory, rearrange the elements of B in place according to π.

26

It is not sufficient to simply assign B[π(i)] ← B[i] for all i ∈ {1, · · · , n}, because an
element in B may have been modified before it has been accessed. A permutation can be
thought of as a collection of disjoint cycles. The procedure Rotate rotates the values in
B according to π by calling RotateCycle on the leader of each cycle as illustrated in
Figure 4.1. A cycle leader is a uniquely identifiable element in each cycle. The smallest
element in a cycle, or cycle minimum, is a simple example of a cycle leader; though it does
have shortcomings in term of detection.

procedure Rotate(B)
for i← 0 to n− 1 do

if ISLEADER(i) then
ROTATECYCLE(B, i)

procedure RotateCycle(B, leader)
i← π(leader)
while i 6= leader do

SWAP(B[i], B[leader])
i← π(i)

Figure 4.1: Procedures to rotate the values in B according to a permutation π.

Each element will be tested to see whether it is a cycle leader, by traversing its cycle
only in the forward direction until we determine the element is the cycle leader or that it
is not. Clearly, the cycle minimum as leader would take Θ(n2) value inspections in total
in the worst case. A leader that we call the local min leader can be used to permute data
in O(n lg n) worst case time complexity using only O(lg2 n) additional bits [38]. We use
the name local min leader since from that leader in a cycle we are able to identify local
minima, as explained next. As stated in [38], the local min leaders of a permutation π are
characterized as follows. Let E1 = {1, . . . , n} and π1 = π. For positive integers r > 1,
define Er as the set of local minima in Er−1 encountered following the cycle representation
of the permutation πr−1 and define πr as the permutation that maps each element of Er
to the next element of Er that is encountered following πr−1. More formally, Er = {i ∈
Er−1|π−1r−1(i) > i < πr−1(i)} and πr : Er → Er is defined such that πr(i) = πmr−1(i) where
m = min {m > 0|πmr−1(i) ∈ Er}. Since at most half the elements in each cycle are local
minima, |Er| < |Er−1|/2 and r ≤ lg n. The local min leader of a cycle is the unique
element i, such that πr−1(. . . (π1(i))) ∈ Er. For example, if π = (1 7 2 9 4 5 3 10 6 8) as
illustrated in Figure 4.2 (similar to Figure 6 in [38]), then

E1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, π1 = (1 7 2 9 4 5 3 10 6 8)

E2 = {1, 2, 4, 3, 6}, π2 = (1 2 4 3 6)

E3 = {1, 3}, π3 = (1 3)

E4 = {1}, π4 = (1)

27

The local min leader of the only cycle in π is the element 9 since π3π2π1(9) = 1.

1

7

2

9

4

5

3

10

6

8

1

π1
π2
π3

Figure 4.2: The cycles generated from π.

The procedure IsLocalMinLeader (see Figure 4.3) checks if element i in the per-
mutation is the local min leader of its cycle. The procedure executes at most 4n steps on
the permutation for a single element, and a total of O(n lg n) steps on the permutation for
all elements ([38], Theorem 2.3). We treat the local min leader technique as a black box.
There are a few occasions where we need details so we provide the procedure to make this
chapter more self contained.

procedure IsLocalMinLeader(i)
elbow[0]← elbow[1]← i
for r ← 1, 2, . . . do
//loop invariant:
{elbow[r] = πr−1 . . . π1(i)}
NEXT(r)
if elbow[r] > elbow[r − 1] then

elbow[r]← elbow[r − 1]
NEXT(r)
if elbow[r] > elbow[r − 1] then

return false
elbow[r + 1]← elbow[r]

else if elbow[r] = elbow[r − 1] then
return true

procedure Next(r)
if r = 1 then
elbow[0]← π(elbow[1])

else
while elbow[r − 1] < elbow[r − 2]

do
elbow[r − 1] ← elbow[r − 2]

NEXT(r − 1)
while elbow[r − 1] > elbow[r − 2]

do
elbow[r − 1] ← elbow[r − 2]

NEXT(r − 1)

Figure 4.3: Procedures to check if element i is a local min leader.

28

4.3 Inverting Permutations

In this section we present an algorithm for inverting a permutation that uses O(lg2 n)
additional bits and runs in O(n lg n) time. We note that this algorithm is a modified
version of the algorithm presented in [89]. The modifications are needed to make the
analysis of the algorithm correct.

As a warm-up we first review two algorithms presented in [89]. The first explained in
this section uses O(b + lg n) additional bits for any b ≤ n and runs in O(n2/b) worst case
time. The second explained in section 4.3.1 runs in O(n lg n) time, but using O(

√
n lg n)

additional bits.

To invert a permutation we can use the structure of the algorithm described in Fig-
ure 4.1, but invert the cycles instead of rotating the data. Figure 4.4 shows how to invert
a cycle. The algorithm checks each element from 0 to n − 1 to see if it is a cycle leader,
and inverts each cycle only on its leader. For this approach to work, a cycle leader must
be used that will remain unchanged once the cycle is inverted. An example of such a cycle
leader is the cycle minimum.

procedure InvertCycle(A, leader)
current← A[leader]
previous← leader
while current 6= leader do
next← A[current]
A[current]← previous
previous← current
current← next

A[leader]← previous

Figure 4.4: Procedure to invert a cycle.

Inverting a permutation using cycle minimum as a leader will use O(lg n) additional
bits and take Θ(n) time if the permutation consists of one large cycle in increasing order;
or Θ(n2) time if the permutation consists of one large cycle in decreasing order. We note
that for a random cycle of length n this total cost would be about Θ(n lg n). The analysis
is similar to the bidirectional distributed algorithm for finding the smallest of a set of n
uniquely numbered processors arranged in a circle [56]. However, our interest is in finding
algorithms with good worst case performance.

29

We can invert a permutation in linear time using a n-bit vector. We iterate over the
permutation checking each element from 0 to n−1, if its corresponding bit is not marked its
cycle is inverted. As the cycle is inverted, we mark the bits corresponding to the elements
in the cycle. Since each cycle will be traversed once, the total runtime is O(n).

Using a technique presented in [38], we can shrink the bit vector to b bits by conceptually
dividing the permutation into dn/be sections each of size b (except possibly the last section
will be smaller). We reset the b-bit vector at the start of each section and use it to keep
track of which elements are encountered in the section being processed. We iterate over
the permutation checking each element from 0 to n−1. If the element under consideration
for being a cycle leader has a corresponding bit with value 0, we traverse its cycle searching
for a smaller element. As the cycle is traversed, we mark the bits corresponding to the
elements in the cycle of the current section. If no smaller element is found, then the
element is a cycle leader and the cycle is inverted. On the other hand, if the element
under consideration has a corresponding bit with value 1, then the element was previously
encountered as part of a cycle containing a smaller element in the section, and hence it is
not a cycle leader. Each cycle will be traversed at most n/b times, thus the total runtime
is n2/b and the space used is b+O(lg n).

Theorem 16. [89] In the worst case a permutation of length n stored in its standard
representation can be replaced with its inverse in O(n2/b) time using b+O(lg n) extra bits
of space for any integer b.

By setting b =
√
n we get the following corollary.

Corollary 17. [89] In the worst case a permutation of length n stored in its standard
representation can be replaced with its inverse in O(n

√
n) time using O(

√
n) extra bits of

space.

4.3.1 Inversion in O(n lg n) Time Using O(
√
n lg n) Bits

In this section we continue our revision of [89] and present an algorithm for inverting
permutations that runs in O(n lg n) time using O(

√
n lg n) additional bits.

The local min leader of a cycle will, in general, change after the cycle has been inverted.
Figure 4.5 shows a simple example of this: b is the leader of the cycle, but if it were inverted,
c would become the leader. Since c > b, the algorithm in Figure 4.4 will invert the cycle
once on b and then again on c because c will look like a leader when it is reached in the
outer loop. Inverting the cycle the second time will undo the work of inverting it the first
time. We will call a cycle with this problem a bad cycle.

30

Definition 1. [89] A bad cycle is a cycle with the property that if inverted, it has a new
cycle local min leader not yet processed, i.e., larger than the original leader.

a b c

a < b < c

Figure 4.5: [89] An example of a bad cycle.

It is not hard to build a permutation that will have Θ(n) bad cycles. Such a permutation
could just repeat our bad cycle pattern and create exactly bn/3c bad cycles. So, there is
not enough space to use even 1 bit to mark these cycles.

Definition 2. [89] A tail of a cycle is the element that points to its local min leader, i.e.,
if t is the tail of a cycle c with local min leader l, then π(t) = l.

Theorem 18. [89] In the worst case a permutation of length n stored in its standard
representation can be replaced with its inverse in O(n lg n) time using O(

√
n lg n) extra bits

of space.

Proof. Although the permutation π can contain up to n cycles, the number of distinct

cycle lengths in π which we denote by k is less than b
√

2nc (since
∑d√2n e

i=1 i > n). First,
we store these cycle lengths in an array L of size O(

√
n lg n) bits. This can be done in

O(n lg n) time by iterating over the permutation and computing the length of every cycle
as it is detected on its local min leader using the procedure IsLocalMinLeader (see
Figure 4.3). After a length is detected, we query a balanced binary search tree H to check
if the length computed was already encountered; if it was not encountered, we insert the
new length to L and H. The cycles’s lengths are ranked according to their position in L.

We iterate over the permutation checking each element from 0 to n− 1, and we invert
each cycle only on its local min leader. To check if a cycle is bad we can test each element
in the inverted cycle for leadership to find the inverted cycle local min leader. If a bad
cycle c was detected, we modify the tail of the inverted cycle c−1 to point to the rank of
the length of the cycle instead of back to the leader of the inverted cycle. That is, if we
find that element i is the local min leader of cycle c (of length l), we invert c. If j is the
leader of c−1 and j > i, we set A[m] = rank (l) where m is the element in c−1 that points
to j and rank (l) is the index in L such that L[rank (l)] = l.

When pointing to the ranks of the cycles’ lengths we have to use values in the range of
1 to n, otherwise the size of each entry in A may increase to dlg ne + 1 bits and we may

31

end up using n additional bits. The problem now is that A does not distinguish between
pointing to a cycle length rank, or pointing to a different element in the cycle. This can be
solved with a table T of size O(

√
n lg n) bits that stores the elements of the permutation

that point to its first k elements. T will initially store π−1(1), . . . , π−1(k). We set T initially
by traversing the permutation, then we update it as cycles are inverted.

While testing for the leadership of an element i, if an element t is found such that
A[t] ≤ k, then t can be checked against T in O(1) time to determine if A[t] points to a
cycle length rank or an element in the cycle. If it is the first case we abort the procedure
IsLocalMinLeader and we do not invert the cycle. If the length traversed so far matches
the cycle length stored in L at rank A[t], then the element i is the local min leader of an
already inverted cycle. We restore the cycle by setting A[t] = i.

The total time spent is O(n lg n), and the space used is O(
√
n lg n+ lg2 n).

4.3.2 Reducing Extra Space to O(lg2 n) Bits

Next, we extend the approach presented in the previous subsection to achieve an algorithm
for inverting permutations with O(n lg n) worst case time complexity while using only
O(lg2 n) bits. First we start with some definitions.

Given a permutation π, the depth of an element e ∈ π is the maximum index d such
that πd−1(. . . (π2(π(e)))) ∈ Ed.

1 For example, the depth of 10 in Figure 4.2 is 3 since
π2(π(10)) = 1 ∈ E3 and π3(π2(π(10))) = 3 /∈ E4. Let c be a cycle in π of size l with
local min leader s1. We define S1 as the following sequence: s1, s2, . . . , sl where si = π(si−1)
for i > 1; sl is the tail of the cycle c. For i > 1, Si is a subsequence of Si−1 formed by
the local minima in Si−1 excluding Si−1’s first and last elements. The limited depth of an
element e ∈ π is the maximum index d such that πd−1(. . . (π2(π(e)))) ∈ Sd. The values
s1, . . . , si−1 are not needed to evaluate the limited depth of si, but only the values si, . . . , sl
are required. The limited depth of an element is upper bounded by its depth. Notice
that the first element in Si is always πi−1(. . . (π(s1)), since s1 is the local min leader of c.
Moreover, the limited depth d of a cycle’s local min leader is either unique or shared by
at most one other element π−11 (. . . (π−1d−1(πd(. . . (π2(π(s1))))))) in the cycle. That’s because
if there are more than two elements in Sd, the limited depth of s1 will be at least d + 1.
The depth and limited depth of an element can be computed in a manner similar to the
procedure IsLocalMinLeader with the same space and time complexity.

We say that a cycle is broken if its tail points to an element other than its lo-
cal min leader. We call this element the broken cycle’s intersection. We define the spine

1For the definition of πi where i ∈ {1, . . . , d} check Section 4.2.

32

to be the path from the leader to the intersection, and the loop to be the cycle containing
the intersection and the tail. Figure 4.6 demonstrates these terms.

leader

intersection

tail

← spine → ↙
lo

op
↘

Figure 4.6: [89] An example of a broken cycle.

Following the algorithm described previously, when a cycle c is detected it is replaced
by its inverse; if c is detected to be a bad cycle, the tail of c−1 is modified to store the
limited depth of c−1’s local min leader k. In that case, the tail of c−1 will be modified
to point to the unique element whose limited depth is the same as k if that element was
encountered before k, thus making c−1 a broken cycle. Finally, c−1 will be restored once
k is encountered. As in the previous subsection, for A to distinguish between pointing
to a limited depth, or pointing to a different element in the cycle we use a table T of
size O(lg2 n) bits that stores the elements of the permutation that point to its first lg n
elements.

The algorithm iterates over the permutation checking each element from 0 to n − 1.
At each element i, it interleaves four scans F , L , T and H . For every operation run on
F , a constant number of operations are run on L ; and for every operation run on L a
constant number of operations are run on T and H . F is used to determine whether i
is the local min leader of its cycle (c or c−1), L is used to determine the limited depth of
i, and T and H are used to determine if i’s cycle was broken, and to restore it. The T
and H scans have two phases:

• The first phase is the classic tortoise and hare algorithm for cycle detection. It is
used to check if i’s cycle is broken. T (for tortoise) and H (for hare) both start at
element i, T proceeds at one step per iteration and H proceeds at two steps until
they meet at element j. Phase one will consist of no more than l iterations, where
l is the length of i′s cycle. This is because at each iteration, the forward distance
(i.e. the distance from H to T traversing forward in the cycle) between the two
pointers will decrease by one; or if the cycle was broken, the distance decreases once
both pointers enter the broken cycle’s loop. If one of the scans encounters a limited
depth or if i is reachable from j, T and H are aborted while F and L continue.
Otherwise, we know that the cycle is broken and we proceed to the second phase.

33

• The aim of the second phase is to find the tail of the broken cycle c−1. Let λ be
the length of c−1’s loop, µ be the distance from i to c−1’s intersection, and δ be the
distance from the intersection to j. Denote by dt and dh the distance traveled by the
pointers in T and H respectively. dt = µ + δ and dh = µ + kλ + δ where k ∈ Z+.
We know

2dt = dh

2(µ+ δ) = µ+ kλ+ δ

µ = kλ− δ .

Thus, if we reset T ’s pointer to element i, while H remains at j, and as in the first
phase, T proceeds at one step per iteration and H proceeds at two steps: T and
H will meet at c−1’s intersection. Then, c−1’s tail can be found by iterating through
c−1’s loop till an element that points to the intersection is reached. After finding
the tail, the limited depth of the intersection (which will always be the same as the
limited depth of c−1’s leader) is computed.

The L scan aims to compute the limited depth of element i. To do so, L should
identify the tail of c or c−1. L identifies the tail correctly if it encounters an element
storing a limited depth (then that element is the tail), or if the cycle is broken and the
tail is computed by the T and H scans (as is the case when the cycle is broken and i is
on its spine). In the other cases, the L scan assumes that the tail is the element pointing
to i. It returns a correct value if i is a local min leader, and it may not return a correct
value otherwise. However, returning an incorrect value in the other cases does not affect
the correctness of the algorithm.

The F scan tests whether i is the local min leader of c or c−1. If F encounters a
limited depth or if the scans T and H detect that c−1 is broken, F will behave as if the
tail of c−1 points to i. The F scan terminates on one of the following cases:

• The first case is F determines that i is not a local min leader. If so, the entire
process of all four scans is aborted.

• The second case is F determines the element is a local min leader. Then, two cases
can occur:

– If c−1 was broken or a limited depth was encountered, then we know that the
cycle is already inverted. Compare the limited depth of i that is computed by
L to the limited depth stored or computed by T and H . If the two values are
equal make the tail point to i. Alternatively, abort all four scans.

34

– Otherwise, the cycle c is not inverted. Invert c and if it was bad store in its tail
the limited depth of c−1’s local min leader.

Analysis: All four scans use O(lg2 n) extra bits. The time complexity is bounded by the
time complexity of F , since the runtime of L , T and H is at most a constant factor
times the runtime of F . For each cycle c, the time spent by F testing for leadership
before inverting the cycle is O(l lg l) where l is the length of c. Inverting c and properly
setting its tail if it was bad will take O(l) time. After inverting c, if c−1 is bad at most one
intermediate broken cycle can be formed, since the limited depth of the local min leader
is unique or shared by at most one other element. This fact is crucial to our analysis, and
it is the reason why the L scan is introduced. The time spent testing for leadership for
indices in c−1 is divided into the following cases:

• c−1 is broken and the element i being tested is in c−1’s loop.

• Otherwise either c−1 is broken and i is in the spine, or c−1 is not broken and the tail
stores the limited depth of the leader.

– If T does not inspect the tail, then the runtime will be the same as testing
whether i is the local min leader of c−1.

– Otherwise, the procedure will test if i is the local min leader of the cycle formed
by pointing the tail of c−1 to i. It will iterate at most 4 times from i to the
tail [38]. So, the time complexity will be at most 4 times the time complexity
of testing weather i is the local min leader of c−1.

In all cases the runtime is bounded by O(l lg l). Thus, the total runtime per cycle is O(l lg l)
and the total runtime for the whole algorithm is O(n lg n).

Theorem 19. In the worst case a permutation of length n stored in its standard repre-
sentation can be replaced with its inverse in O(n lg n) time using O(lg2 n) extra bits of
space.

4.4 Arbitrary Powers

As in the previous Chapter, the kth power of a permutation π is πk defined as follows:

πk(i) =


πk+1(π−1(i)) k < 0

i k = 0

πk−1(π(i)) k > 0

35

where k is an arbitrary integer. In this section we extend the techniques presented in the
previous section to cover the situation in which the permutation is to be replaced by its
kth power for an arbitrary integer k. We present an algorithm whose worst case running
time is O(n lg n) and uses O(lg2 n+ min{k lg n, n3/4+ε}) additional bits.

Without loss of generality, we assume that k is positive. If k is negative, we invert the
permutation then raise it to the power of −k. Raising a cycle to an arbitrary power can
result in several disjoint cycles as illustrated in Figure 4.7.

Lemma 20. Raising a cycle of length l to its kth power, will produce gcd(k, l) cycles each
of length l/gcd(k, l).

Proof. Suppose µ cycles are produced. Since they are all identical, they will have the same
length λ. λ is the smallest positive integer such that (πk)λ(i) = πkλ(i) = i, so kλ = cl for
an integer c that is relatively prime with λ. Now

l = λµ

k = cl/λ = cµ,

but c is relatively prime with λ, so µ = gcd(k, l) and λ = l/gcd(k, l).

c = 0 1 2 3

c2 = 0 1 2 3

Figure 4.7: The cycles created by raising c to its second power.

Given a cycle, it is not hard to raise the cycle to its kth power while using O(k) words
or O(k lg n) bits. Figure 4.8 shows how to achieve this task. Starting from element i,
we store i, π(i), π2(i), . . . , πk−1(i) in an array B using O(k lg n) bits. We replace A[i] with
A[πk−1(i)], then we replace A[π(i)] with A[πk(i)], and so on until we reach A[π(i)l−k] where
l is the length of the cycle. Then, we replace A[π(i)l−k] till A[π(i)l−1] with the values stored
in B. When the procedure terminates, A[i], A[i + 1], . . . , A[i + gcd(k, l) − 1] will contain
an element from each resulting cycle.

To raise a permutation to its kth power, we use the same algorithm as the one presented
in subsection 4.3.2, however, we modify the T scan so that it raises cycles to their kth power
instead of inverting them once they are detected at their leaders. Furthermore, once the

36

procedure PowerCycle(A, k, leader)
power ← leader
count← 0
while count < k do
temp[count]← power
power ← A[power]
count← count+ 1

while count < cycleLength do
next← A[leader]
A[leader]← power
leader ← next
power ← A[power]
count← count+ 1

count← 0
while count < k do
next← A[leader]
A[leader]← temp[count]
leader ← next
count← count+ 1

Figure 4.8: Procedure to raise a cycle to its kth power.

T scan raises a cycle (of size l) to its kth power, it iterates through every cycle of the
resulting gcd(k, l) cycles computing each cycle’s leader and checking which cycles are bad;
for each bad cycle, the T scan computes the cycle’s limited depth and stores that value in
the cycle’s tail.

Theorem 21. In the worst case a permutation of length n stored in its standard represen-
tation can be replaced with its kth power when k is bounded by some polynomial function
of n in O(n lg n) time using O(lg2 n+ k lg n) extra bits of space.

Theorem 21 is useful if the value of k is small. In the next subsection, we show how to
power permutations using o(n) extra bits of space.

37

4.4.1 Powering Permutations in O(n lg n) Time using o(n) Extra
Bits

To improve the space complexity we only have to modify the way we are raising cycles to
their kth power. To raise a cycle c of length l to its kth power, we split the algorithm into
two cases.

• First Case: k and l are relatively prime
In this case, we use the following theorem given by Rubinstein [90]:

Theorem 22 (Rubinstein [90], Theorem 4.3). Let gcd(N, a) = 1 and R be a rect-
angle. Then, cR(N, a), the number of solutions (x, y) to xy = N mod a with (x, y)
lying in the rectangle R is equal to

area(R)

a2
φ(a) +O(a1/2+ε)

for any ε > 0, where φ is Euler’s totient function.

In particular, there exists a point (x, y) where xy = N mod a in any square R with
side length at least a3/4+ε (R must be larger than a3/2+ε).

In this case gcd(k, l) = 1 so there always exist two integers x, y < l3/4+ε such that
xy = k mod l. To find x and y we do a linear search which takes O(l3/4+ε) time. Then
we raise c to the xth power followed by the yth power using the method described in
the previous subsection. The total runtime is O(l) and the space used is O(l3/4+ε).

• Second Case: k and l have a common factor other than 1
In this case gcd(k, l) = f > 1. We first raise c to its f th power producing f different
cycles using a reduction to the first case. Then, we raise each of the f resulting cycles
to its (d = (k/f))th power.

We modify the permutation π to form the permutation π′ that results from adding
an additional element e to the cycle c in π to form the cycle c′ in π′. More formally,
π′ is defined as follows:

– Let a be an element in the cycle c; for all elements i ∈ π except π−1(a), π′(i) =
π(i).

– π′(π−1(a)) = e (where e is a new element).

– π′(e) = a.

38

This modification can be done by storing a and two extra words where the first word
stores the inverse of a, and the second stores the image of e (π′(e)). Each time the
array A is accessed at an index i, if A[i] is equal to a, i is checked against the first
word stored. If they match, then A[i] points to a otherwise A[i] points to e. Doing
this eliminates the need for increasing the word size.

We rename the elements in c to reflect how they get split to different cycles once c
is raised to its f th power. Let {cij|0 ≤ i < l/f, 0 ≤ j < f} be the elements of c, such
that

– π(cij) = ci(j+1) if j < f − 1

– π(cij) = c(i+1 mod l/f)0 if j = f − 1

Raising c to its f th power will result in f cycles such that the jth cycle cj will contain
the elements {cij|0 ≤ i < l/k}, where πf (cij) = c(i+1 mod l/f)j. This naming can be
observed in Figure 4.9.

Without loss of generality assume that a = c00. Since the length of c′ is l + 1 and
gcd(l + 1, f) = 1 (since f divides l), raising c′ to its f th power will result in only
one cycle. Observe that if we traverse forward in c′f starting from e, the first l/f
elements are c0(f−1), c1(f−1), . . . , c((l/f)−1)(f−1). That is, the elements in cf−1 ordered
correctly. Moreover, the next l/f elements are the elements of cf−2, and so on. . .

After modifying π to π′ we raise c′ to its f th power using the same technique presented
in the first case. Then, we iterate l/f elements starting from e, we set A[c((l/f)−1)(f−1)]
to c0(f−1) and we raise cf−1 to its dth power also using the same technique presented
in the first case. We find the local min leader of cf−1 and store the limited depth of
the leader in the tail of cf−1 if cf−1 is a bad cycle. We then repeat the same process
for the rest of the cycles cf−2, . . . , c0. This process is illustrated in Figure 4.9.

Theorem 23. In the worst case a permutation of length n stored in its standard represen-
tation can be replaced with its kth power when k is bounded by some polynomial function
of n in O(n lg n) time using O(lg2 n+ min{k lg n, n3/4+ε}) extra bits of space.

The space complexity in Theorem 23 can be improved if better factoring is ap-
plied. More precisely, if for any N and a where gcd(N, a) = 1, we can find g(a)
factors x1, . . . , xg(a) ≤ f(a) such that x1x2 . . . xg(a) = N mod a in h(a) time, then
we can achieve an algorithm with running time O((n + h(n)) lg n + g(n)n) that uses
O(lg2 n+ min{k lg n, f(n) lg n}) extra bits of space.

Note that given any factoring algorithm as described above, any quadratic non-residue
(mod p) can be factored to factors smaller than f(p). Since at least one of the factors

39

c = c00 c01 c10 c11⇒ c′ =
c00 c01 c10 c11 e

⇓
c2 = c00 c10 c01 c11⇐ c′2 =

e c01 c11 c00 c10

Figure 4.9: The process to raise a cycle to its kth power when the cycle length and k are
not coprime.

must also be a quadratic non-residue, this implies that the least quadratic non-residue
(mod p) is smaller than f(p). Thus, reducing f(n) to O(nε) is probably difficult since
this improvement would imply Vinogradov’s conjecture [98] (that the least quadratic non-
residue (mod p) lies below pε).

4.5 Conclusion

In this chapter we presented an algorithm for inverting a permutation that runs in O(n lg n)
worst case time and uses O(lg2 n) additional bits. This algorithm is then extended to an
algorithm for raising a permutation to its kth power that runs in O(n lg n) time and uses
O(lg2 n + min{k lg n, n3/4+ε}) extra bits of space. Both algorithms presented rely on the
cycle’s local min leader presented in [38]. Moreover, they can easily be adapted to utilize
any different cycle leader. A different leader may yield a better algorithm without adding
to the worst case time or space complexity for both problems as well as the problem of
permuting in place [38].

40

Chapter 5

Range Mode

5.1 Introduction

In this chapter we investigate data structures for the range mode query problem in a
multi-dimensional setting:

Range Mode: Given a set of n points in d dimensions S such that each point is a
assigned a color, a range mode query Q = [a1, b1]× [a2, b2]× . . .× [ad, bd] asks for the most
frequent color in S ∩ Q.

Although the one-dimensional range query problem has received significant attention
[20, 64, 84, 85, 47], only limited attention has been paid to the multi-dimensional prob-
lem. The first solution for the multi-dimensional case was proposed recently by Chan et
al. [20]. They gave a data structure that requires O(sn + (n/∆)2d) words and supports
d-dimensional range mode queries in O(∆ · tn) time for any ∆ ≥ 1, where sn is the space
of an orthogonal range counting data structure in d dimensions with query time tn. The
model of computation is the standard Word RAM model with word size w = Ω(lg n), also
d is assumed to be a constant. In this chapter we show that the space of the range mode
query data structure can be improved to O(sn + (n/∆)2d/w) words while maintaining the
same query time. That is, our data structure achieves the same asymptotic space and
query time costs as those of the current best known range mode query data structure for
one-dimensional data [20].

We note that the results of this chapter are published in [27, 28].

41

5.1.1 Related Work

The first range mode data structure (on arrays) was proposed by Krizanc et al. [64],
requiring O(n) words for O(

√
n lg lg n) query time. Krizanc et al. also considered data

structures that use more than linear space. They described data structures that provide
constant query time usingO(n2lg lg n/lg n) words, andO(nε lg n) query time usingO(n2−2ε)
words. Later, Petersen and Grabowski [85] improved the first bound to constant time
using O(n2lg lg n/lg2 n) words. Peterson [84] then improved the second bound to O(nε)
query time using O(n2−2ε) words for any ε ∈ (0, 1/2]. Chan et al. [20] further improved the
previous bound to O(nε) query time using O(n2−2ε/lg n) words. Moreover, using reductions
from boolean matrix multiplication, they show that query time significantly lower than

√
n

is unlikely for this problem with linear space [20]. Finally, Greve et al. [47] proved a lower
bound of Ω(lg n/lg(s · w/n)) time for any data structure that supports range mode queries
on arrays using s memory cells of w bits in the cell probe model.

Given a fixed α ∈ (0, 1] and a range Q, the objective of an approximate range mode
query is to return an element whose frequency in S ∩Q is at least α ·m, where m denotes
the frequency of the mode of S ∩ Q. Bose et al. [16] gave a data structure that requires
O(n/(1− α)) words and answers approximate range mode queries in O(log log1/α(n)) time,
as well as a data structure that answers queries in constant time when α ∈ {1/2, 1/3, 1/4},
using O(n lg n), O(n lg lg n), and O(n) words respectively. Greve et al. [47] improved
previous results by giving a data structure that supports range mode queries in O(1) time
using O(n) words when α = 1/3, and O(lg(α/(1− α))) time using O(nα/(1− α)) words
when α ∈ [1/2, 1).

Another related question is the problem of finding a least frequent element (with fre-
quency at least one) in a one dimensional range. Chan et al. [21] gave the first solution with
linear space and O(

√
n) query time. Later, Durocher et al. [29] improved the query time

to O(
√
n/w). Our improved data structure for the range mode query problem is based on

the encoding ideas from [29]. See the recent survey by Skala [94] for further reading.

5.2 Framework

A point p ∈ S is represented by a (d + 1)-tuple (p1, p2, . . . , pd, pc), where for each i, pi is
p’s coordinate in dimension i, and pc is the color associated with p. When d is a constant,
we can map the input set S to the rank space using standard techniques as described in
subsection 2.5, requiring O(n) words of additional space and an O(lg n) additive increase
to query time. Throughout this chapter we assume that points are in the rank space. That

42

is for any point p ∈ S and any i ∈ {1, . . . , d}, pi ∈ {0, . . . , n− 1}. Moreover, if p 6= q, then
pi 6= qi for all i ∈ {1, . . . , d}. This ensures the following lemma:

Lemma 24. The number of points of S in a rectangle Q = [α1, β1] × . . . × [αd, βd] is at
most the minimum element in {βi − αi + 1 | 1 ≤ i ≤ d}.

Definition 3. Let ∆ ≥ 1 be an integer. A ∆-box is a region R = [α1, β1]× . . .× [αd, βd],
where for all i, αi and βi are multiples of ∆.

There are Θ((n/∆)2d) distinct ∆-boxes in our grid, which includes empty boxes, i.e.,
boxes with αi = βi for some i ∈ [1, d]. Each ∆-box R = [α1, β1] × . . . × [αd, βd] can be
identified using a unique index, given by:

rank(R,∆) =
d∑
i=1

(αi/∆) · φ2i−2 + (βi/∆) · φ2i−1

where φ = bn/∆c + 1. Notice that rank(R,∆) can be computed in O(d) time (i.e.
constant time when d is a constant) given any R and ∆.

5.3 Data Structure of Chan et al.

In this section we review the data structure presented by Chan et al. [20]. The data
structure relies on the following observation [64]. A mode of Q1 ∪ Q2 (i.e. the most
frequent color occurring in Q1 ∪ Q2) is either a mode of Q1 or the color of an element in
Q2.

Data Structure The data structure consists of two components:

1. An array A of length (1 + n/∆)2d, such that A[i] stores a mode of the ∆-box R with
rank(R,∆) = i.

2. For each color c, the data structure maintain an orthogonal range counting data
structure over the set of points in S with color c. The total space and query time
can be bounded by sn and tn, where sn is the space of an orthogonal range counting
data structure over n points in d dimensions and tn is its query time.

43

Thus, the total space used is O(sn + (n/∆)2d) words.

Query Algorithm To answer a queryQ = [a1, b1]×. . .×[ad, bd], we first find the largest
rectangle Q′ = [a′1, b

′
1]× . . .× [a′d, b

′
d] inside Q, where a′i = ∆dai/∆e and b′i = ∆bbi/∆c. If

a′i ≥ b′i for some i, then Q′ is empty. Otherwise, a mode of Q′ is given by A[rank(Q′, ∆)].
Recall that rank(Q′, ∆) can be computed in constant time when d is a constant. Notice
that the number of points in the region Q \Q′ (the region within Q, but outside Q′) is at
most 2d∆ (refer to Lemma 24). Moreover, the mode of Q is either the mode of Q′ or the
color of one of the points among the O(∆) points in Q\Q′. We call these O(∆) colors the
candidate colors. Using the range counting structure, for each candidate color c we count
the number of points with color c in Q and report the one with the maximum count. The
query time is O(2d∆ · tn) = O(∆ · tn).

Theorem 25 (Chan et al. [20]). There exists a data structure that supports orthogonal
range mode queries on a set of n points in d dimensions in O(∆ · tn) time while using
O(sn + (n/∆)2d) words.

The current best orthogonal range counting data structure requires:

sn = O(n(lg n/lg lg n)d−2)

words and supports queries in:

tn = O((lg n/lg lg n)d−1)

time [60]. The following result can be obtained by choosing ∆ such that sn = (n/∆)2d.

That is ∆ = n(1− 1
2d

)(lg n/lg lg n)(
1
d
− 1

2
).

Corollary 26 (Chan et al. [20]). There exists data structure that supports orthogonal range

mode queries on a set of n points in d dimensions in O(n(1− 1
2d

)(lg n/lg lg n)(d+
1
d
− 3

2
)) time

while using O(n(lg n/lg lg n)d−2) words.

5.4 Improved Data Structure

Again we assume that the input point set S has been transformed to the rank space, and
we denote by sn and tn the space and query time of an orthogonal range counting data
structure on S. The main idea is to maintain the array A in Θ((n/∆)2d) bits as opposed
to Θ((n/∆)2d) words. Doing so increases the cost of accessing an entry of A from constant
to O(∆ · tn) time. However, the total query cost does not increase.

44

We now describe how to encode A in less space. We use the following common notation:
let lg(h) n = lg(lg(h−1) n) for h > 1, let lg(1) n = lg n, and let lg∗ n be the smallest integer
k such that lg(k) n ≤ 2. Let ∆h = ∆ lg(h) n (rounded to the next highest power of 2) and
let Ah be an array of length (1 + n/∆h)

2d such that Ah[i] stores the most frequent color in
the ∆h box with rank(·, ∆) = i. Notice that ∆i is a multiple of ∆i+1, and ∆lg∗ n = Θ(∆).

Lemma 27. There exists a scheme where Ah can be encoded in S(h) bits and any entry
in Ah can be decoded in T (h) time, where

S(h) =

{
O((n/∆1)

2d lg n) if h = 1

S(h− 1) +O((n/∆h)
2d lg(h) n) if h > 1,

T (h) =

{
O(1) if h = 1

T (h− 1) + tn ·O(∆/ lg(h) n) if h > 1.

Proof. Let A′h be the desired encoding. The base case can be achieved by storing A1

explicitly (i.e., A1 = A′1). For h > 1, given an encoding A′h−1 we obtain A′h by storing an

additional array Bh of size (1 + n/∆h)
2d where each entry has size O(lgh(n)) bits. Let R

be a ∆h box and R′ be the largest (possibly empty) ∆h−1 box within R. We distinguish
between two cases:

1. If the mode of R and R′ are the same, then we simply store a special symbol $ in
Bh[rank(R,∆h)].

2. Else, there must exists a point p in the region R \ R′, where pc is the mode of R.
Moreover the distance (say τ) from p to the boundary of R is at most ∆h−1. We
store Bh[rank(R,∆h)] = dτ/δhe, an approximate value of τ , where δh = ∆/ lg(h) n.
This approximate distance can be encoded in O(lg(∆h−1/δh)) = O(lg(h) n) bits.

Since the space occupied by Bh is O((n/∆h)
2d lg(h) n) bits, the equation S(h) = S(h− 1) +

O((n/∆h)
2d lg(h) n) follows.

We now describe how to decode the original value of an entry in A′h. The array A′1 is
stored explicitly, therefore T (1) = O(1). For h > 1, assume that we can decode entries of
A′h−1 in the desired time. An entry in A′h corresponding to a ∆h-box R can be decoded as
follows:

1. If Bh[rank(R,∆h)] = $, then the mode of R is same as the mode of R′, the largest
∆h−1 box within R. The mode of R′ is equal to Ah[rank(R′, ∆h−1)] so the time for
decoding it is T (h) = T (h− 1) +O(1).

45

2. Otherwise, δh · Bh[rank(R,∆h)] represents the approximate distance (within an ad-
ditive error at most δh = ∆/ lg(h) n) from a point p on the boundary of R, such
that pc is the mode of R. Since the points are in rank space, the number of points
satisfying this approximate distance criteria is at most 2d · δh and the color of a
point among them is the mode of R. So, the mode of R (i.e., Ah[rank(R,∆h)])
can be identified using O(δh) range counting queries. Thus, giving the equation:
T (h) = T (h− 1) + tn ·O(∆/ lg(h) n).

By combining both cases, the equation T (h) = T (h− 1) + tn ·O(∆/ lg(h) n) follows.

Note that

S(lg∗ n) = O

(
lg∗ n∑
h=1

(n/∆h)
2d lg(h) n

)

= O

(
(n/∆)2d

lg∗ n∑
h=1

(
1

lg(h) n

)2d−1
)

= O
(
(n/∆)2d

)
, and

T (lg∗ n) = tn ·O

(
lg∗ n∑
h=1

δh

)

= tn ·O

(
∆

lg∗ n∑
h=1

1

lg(h) n

)
= tn ·O(∆).

Therefore, by maintaining an O((n/∆)2d)-bit or O((n/∆)2d/w)-word data structure
structure (along with the range counting structures), we can compute the mode of the
largest ∆lg∗ n box Q′ in any query Q in tn · O(∆) time. Since the number of points in
Q\Q′ is at most 2d ·∆lg∗ n = O(∆), the mode of Q can be computed within an additional
O(tn ·∆) time. We summarize our results in the following theorem.

Theorem 28. There exists a data structure that supports orthogonal range mode queries
on a set of n points in d dimensions in O(∆ · tn) time while using O(sn + (n/∆)2d/w)
words.

We get the following corollary by using the range counting data structure of Jájá et
al. [60].

46

Corollary 29. There exists a data structure that supports orthogonal range mode queries
on a set of n points in d ≥ 2 dimensions in O((n(1− 1

2d
)/w

1
2d)(lg n/lg lg n)(d+

1
d
− 3

2
)) time while

using O(n(lg n/lg lg n)d−2) words.

47

Chapter 6

One Dimensional Range Searching

6.1 Introduction

In this chapter we present data structures for the following problems.

• One dimensional color range reporting: Given a set of colored points P , preprocess
P into an efficient data structure so that for any range Q = [a, b] the distinct colors
of points contained in P ∩Q can be reported.

• One dimensional approximate color range counting: Given a set of colored points
P , preprocess P into an efficient data structure so that for any range Q = [a, b] a
(1 + ε)-approximation of the number of distinct colors of points contained in P ∩Q
can be reported, where ε < 1 is a constant. That is, if the number of distinct colors in
Q∩P is x, the data structure should return a number y satisfying x ≤ y ≤ (1 + ε)x.

• One dimensional approximate median reporting: Given a set of points P where
every point is assigned a value from the set { 1, . . . , U}, preprocess P into an efficient
data structure so that for any range Q = [a, b] an element whose rank is between
(bk/2c − αk) and (bk/2c+ αk) in the query interval [a, b] is reported, where k is the
number of points in [a, b] and α < 1 is a constant.

We study all three problems in the context of succinctness, where the goal is to achieve
the optimal space requirement plus a lower order term, while maintaining fast query time.

48

We note that the results of this Chapter are published in [31].

Previous Work. If the input points are in the rank space, one-dimensional color re-
porting queries can be answered in O(k + 1) time using nHd(S) + o(n lg σ) + O(n lg lg σ)
bits [6, 13, 17], where σ is the number of distinct colors, d = o(logσ n), and Hd(S) is the
d-th order empirical entropy of the given sequence of colors S. In the general case, one-
dimensional color reporting queries can be answered in O(lg n + k) time in the static and
dynamic scenarios as shown by Janardan and Lopez [61] and Gupta et al. [52]. Muthukr-
ishnan [77] later described a static O(n) space data structure that answers queries in
O(k + 1) time when all point coordinates are bounded by n. His result implies an O(n)-
words data structure that answer queries in O(min (lg lgm,

√
lg n/ lg lg n) + k) time using

the reduction-to-rank-space technique, where O(min (lg lgm,
√

lg n/ lg lg n)) is the time
needed to answer a predecessor query [14, 40]. A dynamic data structure of Mortensen [67]
supports queries and updates in O(lg lg n+k) and O(lg lg n) time respectively if the values
of all elements are bounded by n. Finally, Nekrich and Vitter [82] presented an O(n)-words
static data structure that answers queries in O(k + 1) time; their result is valid even in
the case when point are not in the rank space. They also presented a dynamic version of
their structure that uses the same space and achieves the same query time while handling
updates in O(lgε n) time.

One-dimensional color counting in the rank space was studied by Gagie et al. [41].
They gave a data structure that answers queries in O(lg1+ε n) time for any constant ε > 0
and uses nH0(S) + O(n) + o(nH0(S)) bits. Nekrich [81] described a data structure that
uses O(n lg n) bits and answers color counting queries in O(lg k/ lg lg n) time, where k is
the number of colors. A lower bound that follows from the predecessor problem [97, 10]
holds for exact one-dimensional color counting, and does not permit constant query time
for a data structure with space bounded by a polynomial function of n. We circumvent
this lower bound by focusing on approximate color counting. If we combine a reduction
of one-dimensional color counting to point counting in 2D with the result of Chan and
Wilkinson [22], we obtain a data structure that uses O(n lg n) bits and answer approxi-
mate color counting queries in O(lgε n) time. The data structure of Nekrich [22] also uses
O(n lg n) bits but answers approximate color counting queries in O(1) time. In both [81]
and [22] it is assumed that points are in the rank space. In the general case, Saladi [86]
presented a data structure that uses O(n) words and answers queries in O(lg lgU) time.

Bose et al. [16] studied the problem of one-dimensional approximate median reporting
when the input points are in the rank space. They provided a data structure that uses O(n)
words and answers queries in constant time. Their data structure returns the value of an
approximate-median. In that model O(n) words are required because one can query each
index separately and get its value. We relax that constraint and focus on data structures

49

that report the index of an approximate-median. We show that in this relaxed model O(n)
bits are sufficient and necessary.

Our Results. We focus on studying the three problems presented in the succinct sce-
nario. In Sections 6.2 and 6.3 we solve an open problem from [86] by presenting a data
structure that answers approximate color counting queries in optimal O(1) time. Our data
structure uses B(n,m) + O(n) + o(B(n,m)) bits, where B(n,m) ≈ n lg (m/n) is the mini-
mum number of bits required to store a set of size n from a universe of m elements. Thus,
we demonstrate that is not necessary to store the colors of points in order to answer ap-
proximate color counting queries. If points are in the rank space, our data structure needs
only O(n) bits and does not require access to the original data set. That is, similar to
data structures for answering range minimum queries [39] that can answer queries without
storing the original data set, we can construct a data structure for a colored set of points
S and discard the set S. Using our data structure, we are still able to obtain a constant
factor approximation on the number of colors in S ∩ [a, b] for an arbitrary query interval
[a, b].

In Section 6.4 we use similar techniques to obtain a data structure that answers approx-
imate range median queries in constant time using only B(n,m) +O(n) + o(B(n,m))bits.
When the points are in the rank space, our data structure uses O(n) bits, thus improving
a result from [16].

Then we turn to the problem of reporting colors using succinct space. We describe a
data structure that answers color reporting queries in O(k+ 1) time while using B(n,m) +
nHd(S) + o(B(n,m) + n lg σ) bits in Section 6.5. This result is a succinct counterpart of
the data structure from [82] that also achieves optimal query time but uses O(n lg n) bits.

Finally we consider dynamic succinct color reporting in the rank space. We present a
succinct data structure that answers color reporting queries in optimal O(k + 1) time and
updates in O(lg n) time while using nHd(S) + o(n lg σ) bits. Our data structure supports
an update operation that changes the color of a point in O(lg n) time.

Applications. Color reporting and counting queries are related to problems that arise in
string processing and databases. Color searching queries are helpful when we are interested
in (the number of) distinct object categories in a query range or look for distinct documents
that contain a query substring. One prominent example is the document counting queries
on a collection of documents. We keep documents (strings) d1, . . ., dD in a data structure
so that for any query string P the number of documents that contain P can be calculated.
This problem can be solved by answering color counting queries on the so called document
array. Consider the generalized suffix tree for all the documents, this document array is the
array of documents the leaves correspond to in order; see [77, 42] for a detailed description.

50

The document array, however, needs O(n lgD) bits of space in the worst case where n is
the size of all the documents. If the number of documents is large and the alphabet size
is small, the space usage of the document array can be significantly larger than the space
needed to store the document collection. Using the result of Theorem 39, we can answer
approximate document counting queries using O(n) additional bits.

6.2 Approximate Color Range Counting

In this section we present a data structure that uses B(n,m) + O(n) + o(B(n,m)) bits
of space and answers approximate color counting queries in constant time. A color range
counting query for an interval returns the number of distinct colors of points contained
within the interval. For any constant ε > 0, our color range counting data structure returns
in constant time an approximate answer which is within a factor of at most (1 + ε) of the
correct answer.

6.2.1 Approximate Color Range Counting in Rank Space

We begin by describing a data structure for the problem in the special case when the input
points are in the rank space. The input consists of a sequence S = s1, . . . , sn of n colors.
A query is a range [a, b] where a, b ∈ [n], and the answer is a (1 + ε)-approximation of the
number of distinct colors found in sa, . . . , sb.

6.2.1.1 Space Inefficient Solution

First we describe a space inefficient solution that requires O(n lg3 n) bits of space and
answers one-dimensional approximate color counting queries in constant time.

Consider the complete binary tree T , in which each leaf of T corresponds to an element
of S, and every internal node has two children. Given a node u ∈ T , ul(ur) denotes the
left(right) child of u, S(u) denotes the set of all elements stored in the leaf descendants of
u, and au(bu) denotes the rightmost(leftmost) element in S(ul)(S(ur)). These definitions
are illustrated in Figure 6.1.

Let δ = 1 + ε. For each node u ∈ T we store the values l1, . . . , llogδ n in a fusion
tree 1 [40], where li (1 ≤ i ≤ logδ n) is the maximum value satisfying the condition that

1 Fusion trees have a branching factor of w1/5 = Ω(lg1/5 n). If a fusion tree contains a polylogarithmic

51

Figure 6.1: A sample node u ∈ T and the sets associated with u.

sli , . . . , sau contains δi distinct colors. Also, for each node u ∈ T and each i (1 ≤ i ≤ logδ n)
we store the values ri1, . . . , ri logδ n in a fusion tree [40], where rij (1 ≤ j ≤ logδ n) is the
minimum value satisfying the condition that sbu , . . . , srj contains δj distinct colors that are
not present in sli , . . . , sau .

Query: Given a query [a, b] we find the lowest common ancestor u of a and b in T . We
query the fusion tree stored on l1, . . . , llogδ n to find the predecessor li of a, then we query
the fusion tree stored on ri1, . . . , ri logδ n and find the successor rij of b. Finally we return
δi + δj as an estimate for the number of distinct colors in [a, b].

Lemma 30. The algorithm described above returns a (1 + ε)-approximation of the number
of distinct colors in sa, . . . , sb.

Proof. Denote by x the number of distinct colors in sa, . . . , sau and y the number of distinct
colors in sbu , . . . , sb that are not found in sa, . . . , sau . Let y′ denote the number of colors in
sbu , . . ., sb that do not occur in li, . . . , sau . By the definition of li and rij, x ≤ δi ≤ δ ·x and
y′ ≤ δj ≤ δ · y′. Since y′ ≤ y, δj ≤ δ · y. Hence δi + δj ≤ δ(x+ y). There are at most δi− x

number of elements, as in our case, the height of the tree will be a constant and queries will be answered
in constant time.

52

colors that occur in li, . . . , sau , but do not occur in sa, . . . , sau . Hence y− (δi−x) ≤ y′ and
y−(δi−x) ≤ δj. If we add δi to both parts of the latter inequality, we obtain y+x ≤ δj+δi.
Summing up

x+ y ≤ δi + δj ≤ δ(x+ y)

which completes the proof.

Theorem 31. There exists an O(n lg3 n)-bit data structure that supports one-dimensional
(1 + ε)-approximate color range counting queries in constant time when the input points
are in the rank space.

6.2.1.2 Lower Bound

Next, we show using a simple proof that Ω(n) bits are required for any data structure
that answers one-dimensional (1 + ε)-approximate color range counting queries in the rank
space.

We assume without loss of generality that the number of colors σ > b1 + εc, otherwise
no data structure is needed since returning σ for any query would be a correct (1 + ε)-
approximation of the exact answer. Moreover, denote by c1, c2, . . . , ck the first k = b1+εc+1
colors. Divide a sequence S of size n to n/k blocks each of size k. We say that S satisfies
property (∗) if for each block b in S one of the following two conditions hold:

• either b consists of the color c1 repeated k times,

• or b = c1, c2, . . . , ck.

Clearly, the number of sequences that satisfy (∗) is 2(n/k) since there exist n/k blocks in
a sequence of size n and each block can satisfy one of two different conditions. Moreover
for any two distinct sequences S1 and S2 satisfying (∗) differing at block b, there exist at
least one (1 + ε)-approximate range counting query, namely the query that asks for the
number of different colors in b, that will return different values. Thus, the information
theoretic lower bound for storing a one-dimensional (1 + ε)-approximate range counting
data structure is Ω(lg 2(n/k)) = Ω(n/k) = Ω(n/(1 + ε)) bits.

Theorem 32. Any one-dimensional (1 + ε)-approximate range counting data structure
requires Ω(n/(1 + ε)) bits.

53

6.2.1.3 Compact Data Structure

In this subsection we show how to make the data structure of Theorem 31 compact by
bootstrapping.

Let δ = 1 + ε. We define the functions: f(n) = f (1)(n) = lg4 n and f (h)(n) =
f (h−1)(f(n)). The function f ∗(n) is defined as

f ∗(n) =

{
1 if n ≤ 216

1 + f ∗(f(n)) if n > 1

We note that the functions f (i) and f ∗ are a twist on the iterated logarithm function lg∗,
and lg(i)(n) < f (i)(n) < lg(i/2)(n).

We start by modifying the tree T from section 6.2.1.1 so that each leaf of T corresponds
to a block of f(n) consecutive elements of S (instead of a single element of S). Then, we
define the family of trees Tij where 1 ≤ i ≤ f ∗(n) and 1 ≤ j ≤ n/f (i)(n) as follows. Tree
Tij spans the ith block of S of size f (i)(n) (i.e. s((i−1)f (i)(n)+1), . . . , s(if (i)(n))) and each leaf

of Tij correspond to a block of f (i+1)(n) consecutive elements. For each node u ∈ Tij we
store in separate fusion trees the sets of values: {lp|1 ≤ p ≤ logδ f

(i)(n)}, and for each
1 ≤ p ≤ logδ f

i(n) the set {rpq|, 1 ≤ q ≤ logδ f
(i)(n)} as defined in Section 6.2.1.1. Finally,

for every two indices a and b satisfying 1 ≤ a ≤ b ≤ f(n) we store in a table B the
index i such that a and b are in the same block of size f i(n) but in different blocks of size
f i+1(n). In other words, i must satisfy the following conditions ba/f (i)(n)c = bb/f (i)(n)c
and ba/f (i+1)(n)c 6= bb/f (i+1)(n)c

Space Analysis: The number of nodes in T is reduced to n/f(n) and the space used
by T and fusion trees stored in its nodes is O(n/ lg n) bits. The number of nodes in
Tij is f (i)(n)/f (i+1)(n) and the space used by Tij and fusion trees stored in its nodes is
O(f (i)(n)/ lg (f (i)(n))) bits. Thus, the total space used by all such trees is:

f∗(n)∑
i=1

n/f (i)(n)∑
j=1

O
(
f (i)(n)/ lg(f (i)(n))

) =

f∗(n)∑
i=1

(
n/f (i)(n) ·O

(
f (i)(n)/ lg(f (i)(n))

))

=

f∗(n)∑
i=1

O
(
n/ lg(f (i)(n))

)
= n

f∗(n)∑
i=1

O
(

1/ lg(f (i)(n))
)

= O(n)

54

Finally, the table B uses o(n) bits. Thus, the total space used is O(n) bits.

Query: Given a query [a, b], if a and b are in two different blocks of size f(n), we can
answer queries using T in the same way as described in Subsection 6.2.1.1. Otherwise,
we query B on values (a mod f(n)) and (b mod f(n)) to find the index i satisfying the
condition that a and b are in the same block of size f (i)(n) but in different blocks of size
f (i+1)(n). Finally, we query Tiba/f (i)nc as we query T .

Theorem 33. There exists a compact O(n)-bit data structure that supports one-
dimensional (1 + ε)-approximate color range counting queries in constant time when the
input points are in the rank space.

6.3 General Approximate Range Counting

In this section, we consider the general case of approximate range counting where each
point is assigned a coordinate from 1 to m as well as a color. Given a query [a, b] where
a, b ∈ [m], the goal is to return a (1 + ε)-approximation of the number of colors that occur
within [a, b]. We present a data structure that uses B(n,m) + O(n) + o(B(n,m)) bits of
space and answers (1 + ε)-approximate color counting queries in constant time.

Let δ = 1 + ε and let x1, . . . , xn be the coordinates of the n given colored points P in
sorted order. Denote by Pdlg3 ne the set of points whose x-coordinate rank is a multiple of

dlg3 ne. For each point p ∈ P denote by L (p) the set of points to the left of p, and by R (p)
the set of points to the right of p.

For each point p ∈ Pdlg3 ne we store in a fusion tree [40] the unique values l1, . . . , llogδ n
where li (i ∈ [logδ n]) is the maximum value satisfying the condition that sli , . . . , sp contains
δi unique colors. Also, for each point p ∈ Pdlg3 ne and each i ∈ [logδ n] we store in a
fusion tree [40] the unique values ri1, . . . , ri logδ n where rij (j ∈ [logδ n]) is the minimum
value satisfying the condition that sp+1, . . . , srj contains δj unique colors not present in
sli , . . . , sp. We also store a succinct point reporting structure [46] on Pdlg3 ne.

Next, we divide x1, . . . , xn into n/dlg3 ne blocks each of size dlg3 ne, except for the
last one. Using O(n lg4/5m) bits [83] we store predecessor and successor data structures
for each block independently. Since the size of each block is at most dlg3 ne, answering
predecessor and successor queries within a block takes constant time. Finally, we store in
O(n) bits the compact data structure from Theorem 39 for answering queries in the rank
space.

55

Query: Given a query [a, b] we check if a point p ∈ Pdlg3 ne is in [a, b]. If so, we query
the fusion tree stored on l1, . . . , llog1+ε n to find li the predecessor of a, then we query the
fusion tree stored on ri1, . . . , ri log1+ε n to find rij the successor of b, afterwards we return
(1 + ε)i + (1 + ε)j.

If such a point p does not exist, then both a and b are in one of the blocks whose size
is dlg3 ne. Using the reporting data structure stored on P we get the rank of an arbitrary
point in [a, b] then determine which block does a and b belong to. Afterwards, using the
predecessor and successor structures, we determine the rank of a and b. Since the query is
now reduced to the rank space, we can answer it in constant time.

Theorem 34. There exists an (B(n,m) + O(n) + O(n lg4/5m))-bit data structure that
supports one-dimensional (1 + ε)-approximate color range counting queries in constant
time.

Next, we describe how to reduce the space of the predecessor and successor data struc-
tures. We split the universe [m] into n subranges r1, . . . , rn each of size m/n. We also use
succinct rank and select data structures that store a bit vector of size n using n+ o(n) bits
and answers rank and select queries in constant time [69]. For each non-empty subrange ri
we store a predecessor and successor structure for every block of lg2 n consecutive elements
and a point reporting structure Pi on all the points within ri. These structures are stored
consecutively in an array A. To locate the data structures for any range ri within A, we
count the number of points in the ranges rj for j < i then scale that number. For that
purpose, we construct a bit vector B of size 2n bits, with rank and select queries, that
stores a zero for each range ri followed by ni ones, where ni is the number of points in
the range ri. To count the number of points preceding ri, we use a select query to get the
position k of the ith zero in B, then with a rank query we count the number of ones before
position k.

Given a non-empty query range [a, b] such that there exist at most lg3 n points between
a and b, a belongs to ri where i = ba/(m/n)c and b belongs to rj where j = bb/(m/n)c,
we find the rank of a in the following manner. First, we map a to a′ = a− im/n and b to
b′ = b− jm/n. If the range [a′,m/n] is empty in Pi, we use rank and select queries to get
s the number of ones before the (i+ 1)th zero in B, the rank of a will be s+ 1. Otherwise,
we find a point p in Pi within the range [a′,m/n] if i and j are different or within the range
[a′, b′] if i and j are the same. If p’s rank within ri is k, we query the bk/lg3 nc successor
data structure to find the rank of a′ in ri. Then, we add the number of points occurring
in each range rl where l < i to this rank to get the rank of a. We obtain the rank of b in
a similar manner.

56

The extra space used is o(B(n,m)) bits for the point reporting structures stored on
the ranges r1, . . . , rn, O(n lg4/5(m/n)) = o(B(n,m)) bits for the predecessor and successor
data structures, and O(n) bits for the bit vector B.

Theorem 35. There exists an (B(n,m)+O(n)+o(B(n,m))-bit data structure that supports
one-dimensional (1 + ε)-approximate color range counting queries in constant time.

6.4 Approximate Median Range Reporting

In this section we present a data structure that uses B(n,m) + O(n) + o(B(n,m)) bits of
space and answers approximate median reporting queries in constant time. A median range
query returns the median of a query interval. Given a query interval with k points, an
approximate-median reporting query returns an element whose rank is between (bk/2c−αk)
and (bk/2c+ αk) in the interval, where α is the approximation factor.

6.4.1 Approximate Median Range Reporting in Rank Space

We begin by describing a data structure for the problem in the special case when the input
points are in the rank space. The input consists of a sequence S = s1, . . . , sn of n values.
A query is a range [a, b] where a, b ∈ [n], and the answer is the index of an approximate
median of sa, . . . , sb.

6.4.1.1 Space Inefficient Solution

Like the preceding section, to illustrate the main idea of our final solution, we first describe
a space inefficient solution that requires O(n lg3 n) bits of space and answers approximate
range median queries in constant time.

Let δ = 1+(α/2). We store the unique values {mkij : 1 ≤ k ≤ n and 1 ≤ i, j ≤ logδ n},
where mkij is the median of the interval sa, . . . , sb such that a = k− δi and b = k− δi + δj.

Query: Given a query [a, b] we pick an arbitrary point k in [a, b] then compute the
biggest indices i and j such that k − δi < a and k − δi + δj < b. Then, we return mkij.

Lemma 36. The algorithm described above returns an approximate median of sa, . . . , sb
with an approximation ratio α.

57

Proof. Denote by x = (k − δi) − a and y = b − (k − δi + δj). By the way we compute i
and j:

x ≤ (α/2)(k − a+ 1) ≤ (α/2)(b− a+ 1)

y ≤ (α/2)(b− k + δi + 1) ≤ (α/2)(b− a+ 1)

so the number of elements in sx, . . . , sy is at least (b− a + 1)− α(b− a + 1). Thus, since
we are returning the index of an exact median in sx, . . . , sy, that index would correspond
to an approximate median in sa, . . . , sb.

Theorem 37. There exists an O(n lg3 n)-bit data structure that supports one-dimensional
approximate median queries in constant time when the input points are in the rank space.

6.4.1.2 Lower Bound

Next, we show using a simple proof that Ω(n) bits are required for any data structure that
answers one-dimensional approximate median range queries in the rank space.

Given an approximation factor α, divide the sequence S of size n to n/k blocks each
of size k = 1/α. We say that S satisfies property (?) if for each block b in S one of the
following two conditions hold:

• either b consists of three 1s followed by (k − 3)/2 0s followed by (k − 3)/2 2s,

• or b consists (k − 3)/2 0s followed by (k − 3)/2 2s followed by three 1s.

Clearly, the number of sequences that satisfy (?) is 2(n/k) since there exist n/k blocks in a
sequence of size n and each block can have one of two different values. Moreover for any
two distinct sequences S1 and S2 satisfying (?) differing at block b, there exist at least one
approximate range median query, namely the query that asks for an approximate median
of b, that will return different values. Thus, the information theoretic lower bound for
storing an approximate range median data structure is Ω(lg 2(n/k)) = Ω(n/k) = Ω(αn)
bits.

Theorem 38. Any one-dimensional approximate range median data structure requires
Ω(αn) bits where α is the approximation factor.

58

6.4.1.3 Compact Data Structure

Using a similar approach to the one used in Subsection 6.4.1.1, in this subsection we use
bootstrapping to make the data structure of Theorem 37 compact. Let δ = 1 + (α/2) and
the functions f(n), f (h)(n), and f ∗(n) be defined as in Subsection 6.4.1.1.

The main idea is to store the values mkij for all k values that are a multiple of lg4 n
using O(n/ lg n) bits, then, recursively bootstrap on the individual blocks of size lg4 n.
More precisely we store the tables T0, . . . , Tf∗(n). The table T0 contains the values mkij as
described in Section 6.4.1.1 for all k values that are a multiple of lg4 n. The table Ts where
1 ≤ s ≤ f ∗(n) contains the values mbkij where:

1 ≤ b ≤ n/f s(n)

1 ≤ k ≤ f (s)(n)/f (s+1)(n)

1 ≤ i, j ≤ lgδ f
(s)(n)

and msbkij is the median of the interval sx, . . . , sy such that:

x = b · f (s)(n) + k · f (s+1)(n)− δi

y = b · f (s)(n) + k · f (s+1)(n)− δi + δj

Finally, for every two indices x and y satisfying 1 ≤ x ≤ y ≤ f(n) we store in a table B
the index i such that x and y are in the same block of size f s(n) but in different blocks of size
f s+1(n). In other words, s must satisfy the following conditions bx/f (s)(n)c = by/f (s)(n)c
and bx/f (s+1)(n)c 6= by/f (s+1)(n)c.

Space Analysis: The table T0 uses O(n/ lg n) bits since it contains n/ lg2 n entries each
of size lg n. Each entry in table Ts where 1 ≤ s ≤ f ∗(n) can be stored in lg (f (s)(n)) bits.
Moreover, the number of entries in Ts is:

(n/f s(n)) · (f (s)(n)/f (s+1)(n)) · lg2
δ(f

(s)(n))

= (n/f (s+1)(n)) · lg2
δ(f

(s)(n))

= (n/ lg4
δ(f

(s)(n))) · lg2
δ(f

(s)(n))

= (n/ lg2
δ(f

(s)(n)))

so Ts will use O(n/ lg (f (s)(n))) bits. Thus, the total space used by all tables Ts (1 ≤ s ≤
f ∗(n)) is:

∑f∗(n)
s=1 O(n/ lg (f (s)(n))) = O(n) bits. Finally, the table B uses o(n) bits. Thus,

the total space used is O(n) bits.

59

Query: Given a query [a, b], if a and b are in two different blocks of size f(n), we can
answer queries using the same way as described in Subsection 6.4.1.1. Otherwise, we query
B on values (a mod f(n)) and (b mod f(n)) to find the index s satisfying the condition
that a and b are in the same block of size f (s)(n) but in different blocks of size f (s+1)(n).
Then, we proceed in a query similar to the one described in Subsection 6.4.1.1 using the
entries in table Ts.

Theorem 39. There exists a compact O(n)-bit data structure that supports one-
dimensional approximate range median queries in constant time when the input points
are in the rank space.

6.4.2 General Approximate Range Median

In this section, we consider the general case of approximate median reporting where each
point is assigned a coordinate from 1 to m as well as a value. Given a query [a, b] where
a, b ∈ [m], the goal is to return an approximate median of the values occurring within [a, b].
We present a succinct data structure that uses B(n,m) +O(n) + o(B(n,m)) bits of space
and answers approximate range median queries in constant time.

Let δ = 1+(α/2) and let x1, . . . , xn be the coordinates of the n given points P in sorted
order. Denote by Pdlg3 ne the set of points whose coordinate rank is a multiple of dlg3 ne.
For each point p ∈ P denote by L (p) the set of points to the left of p, and by R (p) the set
of points to the right of p.

For each point p ∈ Pdlg3 ne we store in a fusion tree [40] the unique values l1, . . . , llogδ n
where li (i ∈ [logδ n]) is the coordinate of the δi point before p. Also, for each point p ∈
Pdlg3 ne and each i ∈ [logδ n] we store in a fusion tree [40] the unique values ri1, . . . , ri logδ n
where rij (j ∈ [logδ n]) is the coordinate of the δj point after li. We also store the median
of the interval [li, rij] as satellite data associated with rij. In addition, we store a succinct
point reporting structure [46] on Pdlg3 ne.

Next, we divide x1, . . . , xn into n/dlg3 ne blocks each of size dlg3 ne, except for the last
one. Using o(B(n,m)) bits as described in Section 6.3 we store predecessor and successor
data structures that can answer queries in each block independently. Since the size of each
block is at most dlg3 ne, answering predecessor and successor queries within a block takes
constant time. Finally, we store in O(n) bits the compact data structure from Theorem 39
for answering queries in the rank space.

Query: Given a query [a, b] we check if a point p ∈ Pdlg3 ne is in [a, b]. If so, we query
the fusion tree stored on l1, . . . , llog1+ε n to find li the predecessor of a, then we query the

60

fusion tree stored on ri1, . . . , ri log1+ε n to find rij the successor of b, afterwards we return
the median of [li, rij].

If such a point p does not exist, then both a and b are in one of the blocks whose size
is dlg3 ne. Using the reporting data structure stored on P we get the rank of an arbitrary
point in [a, b] then determine which block does a and b belong to. Afterwards, using the
predecessor and successor structures, we determine the rank of a and b. Since the query is
now reduced to the rank space, we can answer it in constant time.

Theorem 40. There exists an (B(n,m)+O(n)+o(B(n,m))-bit data structure that supports
one-dimensional approximate range median queries in constant time.

6.5 1D Color Range Reporting

Using similar techniques to those used in the previous sections, we present in this section
a succinct data structure that uses B(n,m) + nHd(S) + o(B(n,m) + n lg σ) bits of space
and answers color reporting queries in optimal O(k + 1) time.

If the input points are in the rank space (i.e. the x-coordinates of the input points
are 1,. . . ,n and the input consists of a sequence S = s1, . . . , sn of n colors, a query is a
range [a, b] where a, b ∈ [n], and the answer is the distinct colors found in sa, . . . , sb), one-
dimensional color range reporting can be solved in O(k+1) time using nHd(S)+o(n) lg σ+
O(n lg lg σ) bits [6, 13, 17].

This solution can be extended to general one-dimensional range reporting by storing
the x-coordinates of the points in sorted order in an indexable dictionary that supports
select queries in constant time using B(n,m) + o(B(n,m)) bits [87] in addition to the
data structure described in [6, 13, 17]. We can find the predecessor or successor of any
x-coordinate in O(lg n) time by answering O(lg n) select queries. Hence, we can reduce
any query [a, b] to the rank space in O(lg n) additional time.

Theorem 41. There exists an (B(n,m)+nHd(S)+o(B(n,m)+n lg σ))-space data structure
that supports one-dimensional color range reporting queries in O(lg n+ k)time.

6.5.1 Improved Data Structure

Next, we show how to improve the query time obtained from Theorem 41 to O(k + 1),
while using the same amount of space.

61

Let x1, . . . , xn be the coordinates in sorted order of the n given colored points P . We
denote by Pdlg2 ne the set of points whose x-coordinate rank is a multiple of dlg2 ne. For
each point p ∈ P we denote by L (p) the set of points to the left of p, and by R (p) the set
of points to the right of p. For every color z the set Min (p) contains the minimal element
e ∈ L (p) of color z, and the set Max (p) contains the maximal element e ∈ R (p) of color
z.

Data Structure: For each point p ∈ Pdlg2 ne, we store the smallest dlg ne elements
of Min (p) and the largest dlg ne elements of Max (p). We also store two succinct one-
dimensional point reporting data structures [46], one on every point in P , and the other
on every point in Pdlg2 ne. Next, we store a data structure similar to the one used in
subsection 6.3 that can find in constant time the ranks of a query [a, b] if [a, b] is not
empty, and a and b belong to the same block of size lg2 n, Finally, we store the data
structure from Theorem 41.

Answering Queries: We report all colors in a query range [a, b] as follows. Using the
reporting data structure stored on Pdlg2 ne, we search for some p ∈ Pdlg2 ne ∩ [a, b].

If such a point p exist, we traverse the list L (p) until an element p′ > b is found or the
end of L (p) is reached. We also traverse the list R (p) until an element p′ < a is found or
the end of R (p) is reached. If we reach neither the end of L (p) nor the end of R (p), then
all distinct colors in [a, b] are reported. Otherwise, the range [a, b] contains more than lg n
distinct colors. In that case we use the data structure from Theorem 41.

If a and b belong to a continuous block of lg2 n points, we find their ranks in a similar
manner to subsection 6.3, then solve the problem in the rank space as described in the
previous subsection.

Theorem 42. There exists a (B(n,m) + nHd(S) + O(n) + o(B(n,m) + n lg σ))-bit data
structure that supports one-dimensional color range reporting queries in O(k + 1) time.

Note that n = o(n lg σ) as long as σ is not a constant. If σ is a constant, we solve the
problem using a different approach. We store a separate succinct range emptiness data
structure [46] for every subset of points with a given color. To answer a query [a, b], for
each color c we query the range emptiness data structure associated with c to check if a
point with color c occurs in the range [a, b], if so we report c. The query runtime is a
constant since the number of colors is constant and range emptiness queries take constant
time. Hence, we obtain the following theorem.

Theorem 43. There exists an (B(n,m)+nHd(S)+o(B(n,m)+n lg σ))-space data structure
that supports one-dimensional color range reporting queries in O(k + 1) time.

62

6.6 Dynamic Color Reporting in Rank Space

Finally, we describe a succinct data structure that uses nHd(S) + o(n lg σ) bits of space
and answers color reporting queries in optimal O(k+ 1) time when the input points are in
the rank space, while supporting the following update operation in O(lg n) time: given an
index i and a color c, set the color of the ith element to c.

Theorem 44. There exists an (nHd(S)+o(n lg σ)+O(n))-bit data structure that supports
one-dimensional color range reporting queries in O(k + 1) time and updates of the form:
given an index i and a color c set the color of the ith element to c, in O(lg n) time when
points are in the rank space.

Proof. Let the input sequence be S = s1, . . . , sn, and T be the complete balanced binary
tree where every leaf of T corresponds to an element of S and every internal node has
two children. For any node u ∈ T , S(u) denotes the set of all elements stored in the leaf
descendants of u. For i ∈ {1, . . . , n} denote by li(ri) the height of the highest ancestor u
of the node corresponding to i such that i is the leftmost(rightmost) element in S(u) with
color si.

We store S in a dynamic data structure using nHd(S) + o(n lg σ) bits that supports
access in O(1) time and Update, Rank, and Select in O(lg n/ lg lg n) time [49]. We divide
S into blocks of lg n elements each, then we subdivide each block to subblocks of size lg lg n
elements. For each subblock bij (0 ≤ i < n/ lg n and 0 ≤ j < lg n/ lg lg n) in block bi we
store:

• The maximum value ml
ij of the sequence li lgn+j lg lgn, . . . , li lgn+(j+1) lg lgn and a suc-

cinct range maximum data structure [39] T lij to answer range maximum queries on
it.

• The maximum value mr
ij of the sequence ri lgn+j lg lgn, . . . , ri lgn+(j+1) lg lgn and a suc-

cinct range maximum data structure [39] T rij to answer range maximum queries on
it.

The space used is O(lg lg n) bits per subblock, which sums to O(n) bits. For each block bi
we store:

• The sequence ml
i0, . . . ,m

l
i lg lgn, its maximum value ml

i, and a succinct range maximum

data structure [39] T li to answer range maximum queries on it.

63

• The sequencemr
i0, . . . ,m

r
i lg lgn, its maximum valuemr

i , and a succinct range maximum
data structure [39] T ri to answer range maximum queries on it.

The space used is O(lg n/ lg lg n) bits per block, which sums to O(n/ lg lg n) bits. Finally,
using Lemma 1 from a result by Nekrich et al. [82] we store using O(n) bits two-dimensional
point reporting structures T l and T r containing the set of points (i,ml

i) and (i,mr
i) where

1 ≤ i ≤ n/ lg n. These structures support queries in O(k+ 1) time and updates in O(lgε n)
time.

Answering Queries: Given a query [a, b], we find the lowest common ancestor u of
a and b. Let ul(ur) be the left(right) child of u, c be the rightmost child of ul, and let h
denote the height of ul and ur.

To get all distinct colors in [a, c] = [a, b]∩ S(ul), it is sufficient to report all colors si in
that range with ri ≥ h. We maintain the invariant that each color is reported on its right
most occurrence.

If [a, c] was contained in a single subblock bij, we query T rij for all the distinct colors
as follows. We get the largest element rd in ra, . . . , rc, if sd was previously reported we
return, otherwise we report sd and recurse on the interval [d, c] followed by [a, d]. Note
that it is important to recurse on [d, c] before [a, d] to maintain the invariant mentioned
above, which guarantees that rd = min (ra, . . . , rc) will be smaller than h if the color sd
was previously reported.

Otherwise, if [a, c] spans several subblocks but is contained in a single block bi we
proceed as follows. We first query the rightmost subblock partially spanned by [a, c].
Then, we query T ri to get all the subblocks bij spanned by [a, c] satisfying the condition
that mr

ij ≥ h in order from right to left. We query each one of them in that order, then
we query the leftmost subblock that is partially spanned by [a, c].

Finally, if [a, c] spans several blocks we first query the rightmost block partially spanned
by [a, c]. Then, we query T r to get all the blocks i spanned by [a, c] satisfying the condition
that mr

i ≥ h in order from right to left. We query each one of them in that order, then we
query the leftmost block that is partially spanned by [a, c].

Similarly, to report all the distinct colors in [c + 1, b] = [a, b] ∩ S(ur) it is sufficient to
report all colors si in that range with li ≥ h. We do this in a similar way to the method
used to query [a, c], while maintaining the invariant that each color is reported on its left
most occurrence.

Updating the Sequence: If the color of position i was updated from c to c′ the
following values could get modified: ri, ra where a is the first index before i with color c,

64

rb where b is the first index after i with color c′, li, ld where d is the first index after i with
color c, and le where e is the first index before i with color c′.

We can find the value ri of any index i in O(lg n/ lg lg n) time by using Rank and Select
queries to get the first index j before i with the same color as index i, then computing the
lowest common ancestor of i and j. Similarly, to get the value li, we use Rank and Select
queries to get the first index j after i with the same color as index i, then we compute the
lowest common ancestor of i and j.

Since we don’t store the values r1, . . . , rn and l1, . . . , ln explicitly, once one of them
changes (say ra where a is in subblock bij) we recompute all values rj where j ∈ bij and
reconstruct T rij. Recomputing all values rj where j ∈ bij takes O(lg lg n · lg n/ lg lg n) =
O(lg n) time and reconstructing T rij takes O(lg lg n) time. If mr

ij changed, we rebuild T ri in
O(lg n) time. Finally, if mi changed we update its value in T r in O(lgε n) time. Since only
a constant number of values get updated, the runtime is O(lg n).

If σ is a constant then the O(n) additional bits stored by the data structure are no
longer a lower order term, so we handle this case separately. We divide S into blocks of size
lg n/2 lg σ. We store a lookup table using O(

√
n lg2 n) bits to answer color range queries

over every possible block of this size. Also, we store the data structure from Theorem 44
on the sequence S ′ = s′1, . . . , s

′
2 lg σn/ lgn with alphabet σ′ = 2σ, where s′i denotes the subset

of colors found on the ith block of S. The total space used is nHd(S)+o(n lg σ)+O(n/ lg n)
bits. To answer a query Q, we use the lookup table to get the colors in the (two) blocks
which are not completely spanned by Q, then we use the data structure from Theorem 44
to get the colors in the blocks that are fully spanned by Q. Each color will be reported at
most a constant number of times. The query time is O(k + 1) = O(1) and update time is
O(lg n).

Theorem 45. There exists an (nHd(S) + o(n lg σ))-bit data structure that supports one-
dimensional color range reporting queries in O(k+ 1) time and updates of the form: given
an index i and a color c set the color of the ith element to c, in O(lg n) time when points
are in the rank space.

65

Chapter 7

Succinct Dynamic One Dimensional
Point Reporting

7.1 Introduction

This chapter studies the dynamic one-dimensional range reporting problem where the goal
is to maintain (under insertion and deletion) a set of integers S from a universe of size m
to answer range reporting queries efficiently: Given an interval [a, b] for some a, b ∈ [m],
report all points in S ∩ [a, b]. We note that this operation is equivalent to the operation
FindAny(a, b) which reports an arbitrary point c in S ∩ [a, b]. This follows since if [a, b] is
not empty, we can recurse on [a, c − 1] and [c + 1, b] after obtaining c to get all points in
[a, b].

We study this problem in the context of succinctness. The goal is to occupy as little, or
close to as little, space as possible while maintaining an efficient query time. We describe a
dynamic data structure that answers reporting queries in optimal O(k + 1) time, where k
is the number of points in the answer, and supports updates (insertions and deletions)
in O(lgεm) expected time. Our data structure uses B(n,m) + o(B(n,m)) bits where
B(n,m) ≈ n lg (m/n) is the minimum number of bits required to represent a set of size n
from a universe of m elements

Related Work One-dimensional range reporting is a well studied problem. Miltersen et
al. [66] presented a data structure for the static version of this problem that uses O(n lgm)

66

words and answers queries in constant time per reported element. Alstrup et al. [4] later
presented an improved data structure with the same query time that uses O(n) words,
i.e., O(n lgm) bits. Goswami et al. [46] presented a succinct data structure that further
improved the space usage to B(n,m) + o(B(n,m)) bits while preserving the query time.

For the dynamic version of this problem Mortensen et al. [68] presented a data structure
that uses a linear number of words and answers queries in O(tq) time and updates in
expected O(tu) time where:

tq ≥ lg lg lgm, lg lgm/ lg lg lgm ≤ tu ≤ lg lgm : tu = O(lgtq lgm) + tpred,

or tq ≤ lg lg lgm, tu ≥ lg lgm : 2tq = O(lgtu lgm).

The most appealing point of this trade-off in the context of succinct data structures is
when the query time is constant and the update time is O(lgεm) time for a fixed ε > 0.

Our Results. We focus on studying one-dimensional range reporting in the succinct
scenario. Our results depend on the ability to construct a static succinct one dimensional
point reporting structure in O(n lgε) time using o(n) workspace. We defer the details of
this construction to the end in Section 7.5 due to its technical nature. We present some
preliminaries in Section 7.2. In Section 7.3 we present a semi-dynamic1 succinct range
reporting data structure that supports deletions in expected O(lgεm) time and queries in
constant time. In Section 7.4 we present a fully-dynamic succinct range reporting data
structure that supports updates in expected O(lgεm) time and queries in constant time.

We note that the results of this chapter are to be published in [32].

7.2 Preliminaries

In this section we review some previous results that will be used in the rest of this paper.

7.2.1 One-Dimensional Point Reporting

First we review the data structure of Alstrup et al. [4] for static one-dimensional range
reporting. We start by defining some notations. Let x⊕y denote the binary exclusive-or of
x and y. Given a w-bit integer x let x ↓ i = x/2i denote the rightmost w bits of the result

1A semi-dynamic data structure supports queries and deletions but not insertions.

67

of shifting x i bits to the right. Similarly let x ↑ i = x · 2i mod 2w denote the rightmost
w bits of the result of shifting x i bits to the left. Finally, denote by msb (x) the position
of the most significant bit (or leftmost one bit) of x.

Given a set of integers S the goal is to store S while supporting the query FindAny(a, b)
which returns an element in S ∩ [a, b]. Denote by T the classic binary tree with 2w leaves
where all leaves have depth w. The leaves are numbered 0, . . . , 2w − 1 from left to right
while the internal nodes are labeled in a manner similar to an implicit binary heap. The
root is the first node, and the children of a node v are 2v and 2v + 1. As noted in [4] the
dth ancestor of v is v ↓ d and the lowest common ancestor of two leaves a and b is the
(1 + msb (a⊕ b))th ancestor of a or b. Thus the lowest common ancestor of two leaves can
be computed in constant time.

Given a node v ∈ T let left (v) and right (v) denote the left and right children of v, and
let Sv denote the subset of S that is in the subtree rooted at v. A node v is branching if
both Sleft (v) and Sright (v) are not empty. To answer a query FindAny(a, b) it is sufficient to
compute the lowest common ancestor v of a and b; when v is computed, either maxSleft (v)

or minSright (v) is in [a, b], or [a, b] is empty. Thus by storing the values maxSleft (v) and
minSright (v) for all nodes v with non-empty Sv in O(nw) words, range reporting queries
can be answered in constant time.

To improve the space Alstrup et al. [4] observe the following. Let v be the nearest
branching ancestor of the lowest common ancestor of a and b, and let vl(vr) be the nearest
branching node in v’s left(right) subtree if one exists, otherwise vl = v(vr = v) if there
is no branching node in v’s left(right) subtree. Then either maxSleft (vl), minSright (vl),
maxSleft (vr), or minSright (vr) is in [a, b], or [a, b] is empty. Thus they store a O(n) word
data structure that consists of:

B,D: vectors of size O(n
√
w lgw) bits that return the nearest branching ancestor of the

nodes in T with non empty-subtrees.

V : a vector storing for each branching node v the values maxSv and minSv, in addition
to two pointers to the nearest branching nodes in the left and right subtrees of v.

For the full details we refer the reader to [4].

7.2.2 Tree Representation

In their paper Geary and Raman [44] present a succinct ordinal tree representation that
answers level ancestor queries. In their tree representation the tree is partitioned into

68

mini-trees of size O(lg4 n), and then the mini-trees are partitioned into micro-trees of size
O(lg n). Internally a node x is referred to by τ(x) = (τ1(x), τ2(x), τ3(x)) where τ1(x) is the
id of x’s mini-tree, τ2(x) is the id of x’s micro tree, and τ3(x) is the id of x in its micro
tree. If two nodes x and y are in the same micro tree µ then τ1(x) = τ1(y) = p(µ) where
p(µ) is the id of the micro tree µ. Note that micro trees can intersect only at their roots,
and if a node is in different micro trees (i.e. it is the root of several micro trees) it can
have different τ names. That is, if a node x is a root of two different micro-trees µ1 and µ2,
it will have two different τ names where in the first one τ2(x) = p(µ1) and in the second
τ2(x) = p(µ2). Both names are valid and we can select any one of them.

Geary and Raman show how to compute the preorder number of x given τ(x) in constant
time using an index of size o(n) bits. This index can be constructed in O(n) time using a
workspace of O(n) words. Given a tree T partitioned using the above scheme and a node
x ∈ T we denote by root (x) the root of the mini-tree that x belongs to.

7.2.3 Sparse Arrays

We will use the following Theorem from [57]:

Theorem 46 ([57]). There is an (m,n,O(n))-family of perfect hash functions H such that
any hash function h ∈ H can be represented in Θ(n lg lg n) bits and evaluated in constant
time for m ≤ 2w. The perfect hash function can be constructed in expected O(n) time.

As noted in [4] a corollary of the previous theorem is the following.

Corollary 47. A sparse array of size m ≥ n with n initialized entries that contain b =
Ω(lg lg n) bits each can be stored using O(nb) bits, so that any initialized entry can be
accessed in O(1) time. The expected preprocessing time of this data structure is O(n).

7.3 Semi-Dynamic Succinct One-Dimensional Point

Reporting

Although Goswami et al. [46] presented a succinct data structure for one-dimensional range
reporting, it is not clear what is the construction time of their data structure. In Section 7.5
we utilize succinct data structure techniques to improve the data structure in [4] so that it
uses B(n,m) + o(B(n,m)) bits and can be constructed in O(n lgεm) time using o(n) extra
bits of space. The details are deferred to Section 7.5 due to their technical nature.

69

Theorem 48. There exists a succinct B(n,m)+o(B(n,m))-bit data structure that supports
one-dimensional range reporting queries in O(k + 1) time where k is the number of points
within the query. Additionally given the point set in sorted order, this data structure can
be constructed in expected O(n lgεm) time using o(n)-bits workspace.

The data structure for one-dimensional range reporting can be dynamized so that
queries are supported in deterministic O(k) time and updates in expected O(lgεm) time
while the space usage is O(n) words [68]. Our aim is to reduce the space to the information
theoretic lower bound plus a lower order term. In this section we present a semi-dynamic
succinct one-dimensional range reporting data structure that supports queries and deletions
but does not support insertions.

Data Structure We store the data structure from Theorem 48 and call it P . We
divide the points into blocks of size lg2m and we store predecessor and successor data
structures that can answer queries in each block independently using o(B(n,m)) bits as
described subsection 6.3. We also store a dynamic data structure [68] D on the endpoints
of each block. Furthermore, each block is divided into subblocks of size lg n/2 and stores
a dynamic data structure [68] Di (1 ≤ i ≤ n/ lg2m) on the ranks (within the block) of the
endpoints of each subblock. We also store a compressed bit vector([?], Theorem 2) B of
size n that indicates which points were deleted. Finally, we store a lookup table T that
can report for any range the 0 bits in a bit vector of size lg n/2.

Query To report the points within an interval [a, b] we query D on the interval. Then
for each point reported with rank k we query the (bk/2c)th and (bk/2c+ 1)st blocks.

To query the kth block we first reduce the problem to the rank space by finding the
rank of the successor of a and the predecessor of b within the block. Next, we query Dk for
the non-empty subblocks within the block and use T to report the points in the subblock.

If the query to D does not return any point then either [a, b] is empty or [a, b] is
contained fully within a block. To determine which block contains [a, b] we query P to get
the rank of a random point in [a, b] from that we determine which block contains [a, b].
Afterwards we proceed within the block as described above.

Deletions To delete a point p we first query to check that the interval [p, p] is not
empty. We obtain the rank k of p by querying P , and then we set the kth bit in T to
1. Now we know that the point p is in the s = (2(k mod lg2m)/ lg n)th subblock of the
b = (k/ lg2m)th block. We check if the sth subblock is empty. If that is so we remove its
endpoints from D(k/ lg2m). Then we check if the bth block is empty. In that case we remove
its endpoints from D. The expected running time is O(lgεm).

70

Space Analysis P uses B(n,m) + o(B(n,m)) bits and D contains O(n/ lg2m) points
thus uses O(n/ lgm) bits. Each Di (1 ≤ i ≤ n/ lg2m) contains O(lg2m/ lg n) points
from a universe if size lg2m thus uses O(lg2m lg lgm/ lg n) bits. The Di structures use
O(n lg lgm/ lg n) bits in total. If lg lgm /∈ o(lg n) then n < lgcm for some constant c. In
that case we use a slightly different approach. We reduce the problem to the rank space
from the beginning to make the universe size n, so D uses O(n/ lg n) bits and the Di

structures use O(n lg lg n/ lg n) bits in total. The table T uses O(
√
n lg3 n lg lg n) bits and

finally the compressed bit vector uses o(n) as long as the number of deletions is o(n). In
total the space remains B(n,m) + o(B(n,m)) bits.

Construction Time and Workspace P can be constructed in expected O(n lgεm)
time using o(n) extra bits of space. D can be constructed in expected O(n/ lg2−εm)
time using O(1) extra words of space. Each Di can be constructed in expected
O((lg2m/ lg n) lgε lgm) time using O(1) extra words of space, so all the Di’s can be con-
structed in expected O((n/ lg n) lgε lgm) time using O(1) extra words of space. T can be
constructed in o(n) time using o(n) extra bits of space. In total the construction time
and workspace are dominated by the cost of constructing P and remain the same as in
Theorem 48.

Theorem 49. There exists a semi-dynamic succinct B(n,m) + o(B(n,m))-bit data struc-
ture that supports one-dimensional range reporting queries in O(k+ 1) time where k is the
number of points within the query, and point deletions in expected O(lgεm) time as long
as the number of deletions is o(n). Additionally given the point set in sorted order, this
data structure can be constructed in expected O(n lgεm) time using o(n)-bits workspace.

7.4 Fully-Dynamic Succinct One-Dimensional Point

Reporting

7.4.1 Fully-Dynamic Structure with Amortized Updates

We first present a fully dynamic solution that uses B(n,m) + o(B(n,m)) bits of space and
supports queries in O(k) time and updates in amortized expected O(lgεm) time.

We divide the universe of size m into n/ lg2m chunks of equal size and maintain a fully
dynamic [68] data structure B to keep track of the nonempty chunks. B is maintained
throughout the data structure updates. Whenever a point is inserted we insert both end-
points of its chunk into B. Moreover whenever a chunk becomes empty we remove its

71

endpoints from B. For each chunk bi (1 ≤ i ≤ n/ lg2m) we maintain two data struc-
tures: Si and Di. Si is the compressed semi-dynamic range reporting structure described
in Theorem 49 and Di is the fully dynamic data structure described in [68]. We main-
tain the invariant that size (Di) < size (Si)/ lgε n for all i where n =

∑
i size (Si). Once

size (Di) = size (Si)/ lgε n we rebuild Si and merge Di with it. The time needed to rebuild
Si will be O(size (Si) lgεm which we can charge to the elements inserted into Di at a cost
of O(lg2εm) per element. Moreover if the total number of elements increase by a constant
factor or if n/ lgε n elements were deleted from the collections Si we rebuild the whole
data structure. The time needed to rebuild the whole structure is O(n lgεm) and will be
charged to the new elements inserted if the size doubles at a cost of O(lgεm) per element,
or to the elements deleted at a cost of O(lg2εm) per element.

To report all the points within an interval [a, b] we query B to get the non-empty
chunks. Whenever a non-empty chunk i is reported we query both Si and Di. If [a, b] is
completely within one chunk we get its index i = bb lg2m/nc, and then we query Si and
Di.

The space used by B is at most O(n/ lgm) bits. and the space used by all the Di

structures is:

O(n lg (m lg2m/n)/ lgε n) = O((n lg (m/n)/ lgε n) + (n lg lg n/ lgε n))

= o(B(n,m)).

The space used by all the structures Si is B(n,m) + o(B(n,m)) bits. In total the space
used is B(n,m) + o(B(n,m)) bits.

Theorem 50. There exist a dynamic succinct B(n,m)+o(B(n,m))-bit data structure that
supports one-dimensional range reporting queries in O(k + 1) time where k is the number
of points within the query, and updates in amortized expected O(lgεm) time.

7.4.2 Fully-Dynamic Structure with Worst Case Updates

Next, we present a fully-dynamic succinct one-Dimensional range reporting structure that
supports queries in O(k) time and insertions and deletions in expected O(lgεm) time. Our
data structure uses techniques similar to the ones presented in [51, 71, 70].

Data Structure We define a parameter nf = Θ(n); the value of nf changes as
n becomes too large or too small. We divide m into (nf/ lg2 nf) chunks each of size
((m lg2 nf)/nf) and we store a dynamic range reporting structure B with a universe of
size 2(nf/ lg2 nf) on the endpoints of the non-empty chunks. For each chunk b where
1 ≤ b ≤ (nf/ lg2 nf) we store the following:

72

kbf an estimate of k the number of points in the chunk. kbf = Θ(k), the value of kbf changes
as k becomes too large or too small.

Data Structures Cb1, . . . , Cblgε nf . These structures are the succinct semi-dynamic struc-
tures described in the previous section. They partition the chunk into sub-chunks of
possibly different sizes, each containing Θ(kbf/ lgε nf) points.

Data Structures Db1, . . . ,Dblgε nf . These structures are the fully dynamic structures de-

scribed in [68].

F b a fusion tree on the endpoints of the Cbi data structures.

Queries are answered in a manner similar to the previous subsection. To report all
the points within an interval [a, b] we query B to get the non-empty chunks. Whenever
a non-empty chunk (say the bth chunk) is reported we query F b to get the sub-chunks it
spans. For each sub-chunk (say the sth sub-chunk) we query both Cbs and Dbs.

Insertions To insert the new point p we compute the chunk b = b(p lg2 nf)/nfc that
p belongs to. If the bth chunk is empty we insert its endpoints into B. Next, we check if
any structure in the Cb collection is being rebuilt. In that case we spend Θ(lg3ε nf) time
rebuilding it. Then we determine the sth sub-chunk that p belongs to using F b. Finally,
we insert p into Dbs.

In each chunk we run the following background process. After each series of δ =
kbf/(lg

2ε nf lg lg nf) insertions we identify the sth sub-chunk with the largest number of

inserted points and rebuild Cbs during the next δ updates in that chunk. The re-building

works as follows. We construct a semi-dynamic data structure Cbs = Cbs ∪ Dbs. If a point is

inserted into this sub-chunk, we store it in the additional data structure Db. When Cbs is

completed we set Cbs := Cbs and Dbs := Db. Thus at any time only one sub-chunk of a chunk
is re-built. This method guarantees that the number of inserted elements into Db does not
exceed kbf/ lgε n as follows from a Theorem of Dietz and Sleator:

Lemma 51 ([26], Theorem 5). Suppose that x1, . . . , xg are variables that are initially zero.
Suppose that the following two steps are iterated:

(i) we add a non-negative real value ai to each xi such that
∑
ai = 1

(ii) set the largest xi to 0.

Then at any time xi ≤ 1 + hg−1 for all i, 1 ≤ i ≤ g, where hi denotes the i-th harmonic
number.

73

Let ms be the number of inserted elements into Dbs and xs = ms/δ. Every iteration of
the background process sets the largest xs to 0 and during each iteration

∑
xs increases by

1. Hence the value of xs can be bounded from above by: xs ≤ 1+hlgε nf for all s at all times.

Thus ms = O((kbf/ lg2ε nf lg lg nf) lg lg nf) = O(kbf/ lg2ε nf) for all i because hi = O(lg i),

and the total size of the Db collection is O((kbf/ lg2ε nf) lgε nf) = O(kbf/ lgε nf).

Once the value of kbf becomes too big or too small we rebuild the whole chunk during

the next kbf/ lg3ε nf updates (spending O(lg4ε nf) time per update). The old chunk is locked

such that only deletions are allowed. We rebuild the chunk with an updated value of kbf
and as points are inserted into the new chunk we delete them from the old one to preserve
space. If the size of the sub-chunk becomes too big we split it into two and update F b
accordingly.

Deletions Deletions are similar to insertions. To delete a point p we compute the
chunk b = b(p lg2 nf)/nfc that p belongs to. Then we check if any structure in the Cb
collection is being rebuilt. In that case we spend Θ(lg3ε nf) time rebuilding it. Next, we
determine the sub-chunk s that p belongs to using F b. Finally, we delete p from Cbs and
Dbs.

In each chunk we run a background process similar to the process run for insertions.
After each series of δ deletions, we identify the sth sub-chunk with the largest number of
deletions and rebuild Cbs during the next δ updates in that chunk. This method guarantees
that the number of deleted elements in the Cb collection does not exceed kbf/ lgε n. If the
size of a sub-chunk becomes too small we merge it with the neighboring sub-chunk and
update F b accordingly. Moreover if a chunk becomes empty we delete its endpoints from
B.

Space Analysis The space used by B is O(n/ lg n). The space used by all the Ci
structures in all chunks is B(n,m) + o(B(n,m)) bits. The total size of all the D structures
is O(nf/ lgε nf) so they use at most:

O(n lg (m lg2 n/n)/ lgε n) = O((n lg (m/n)/ lgε n) + (n lg lg n/ lgε n))

= o(B(n,m)).

The space used by the fusion trees in all chunks is:

O(n lgε n lg (m lg2 n/n)/ lg2 n) = O((n lg (m/n)/ lg2−ε n) + (n lg lg n/ lg2−ε n))

= o(B(n,m)).

Thus the total space is B(n,m) + o(B(n,m)) bits.

74

Once the value of nf becomes too big or too small, we rebuild the whole data structure in
the background during the next nf/ lg3ε nf updates (spending O(lg4ε nf) time per update).
We replace the chunks from left to right. The chunk being replaced is locked such that
only deletions are allowed. We rebuild that chunk with an updated value and as points are
inserted into the new chunk we delete them from the old one to preserve space.

Theorem 52. There exist a dynamic succinct B(n,m)+o(B(n,m))-bit data structure that
supports one-dimensional range reporting queries in O(k + 1) time where k is the number
of points within the query, and updates in expected O(lgεm) time.

7.5 Succinct Static One-Dimensional Point Reporting

With Fast Construction Time

In this section we prove Theorem 48. Denote by T the classic binary tree with 2w leaves
where all leaves have depth w as described in subsection 7.2.1. Let P be the set of nodes
in T with non-empty subtrees and V the set of branching nodes in T union the leaves of
T and its root. Let TV be the tree formed from T by deleting all vertices in T − P then
contracting all vertices in P − V . Given a node x ∈ TV denote by T (x) its corresponding
node in T , conversely, given a node x ∈ V denote by TV (x) its corresponding node in TV .
We fix a constant ε = 1/k, and let Hi = lg(k−i)/km where 1 ≤ i < k. Finally, given a node
u in T we define πi(u) to be the nearest ancestor of u whose depth is a multiple of Hi.

Data Structure We store the coordinates of the points in B(n,m) + o(B(n,m))
bits. Also we store TV using 4n + o(n) bits using the tree representation of Navarro
and Sadakane [80] which allows the following operations in constant time:

lmost-leaf(i) / rmost-leaf(i): given the preorder number of a node return the preorder num-
ber of the leftmost(rightmost) leaf of node i.

leaf-rank(i): given the preorder number of a leaf i returns the number of leafs to the left
of i.

In addition we store in o(n) bits the index described in [44] that enables conversion between
τ -names of the nodes in TV and their preorder numbers.

To maintain the mapping between the labels of the branching nodes in T with their
preorder numbers in TV we store the following tables using Corollary 47:

75

M1: for each node x ∈ V with root (TV (x)) = TV (x) we store the value τ1(TV (x)) in a
table M1. Since TV is a binary tree, it is possible that TV (x) belongs to two different
micro trees µ0 and µ1. In that case we store both p(M0) and p(M1).

M2: for each node x ∈ V we store in a table M2 the values τ2(TV (x)), τ3(TV (x)), and a
bit that indicates to which micro tree does TV (x) belongs to if root (TV (x)) belongs
to two different micro trees.

M3: for each node x ∈ V we store the distance from x to T (root (TV (x))) in a table M3.

Finally, given a node in P we need to compute its nearest branching ancestor. To
achieve this we use the same technique as in [4] but with bootstrapping. We store k − 1
tablesD1, . . . , D(k−1) using Corollary 47. D1 contains the distances to the nearest branching
ancestor for all nodes u in P satisfying π1(u) = u. Di (2 ≤ i < k−1) contains the distances
to the nearest branching ancestor for all nodes u in P satisfying the conditions π(i−1)(u) is
closer to u than the nearest branching ancestor of u and πi(u) = u. Finally, D(k−1) contains
the distances to the nearest branching ancestor for all nodes u in P satisfying the conditions:
π(k−2)(u) is closer to u than the nearest branching ancestor of u and π(k−1)(u) = u, or
π(k−1)(u) and π(k−2)(u) are closer to u than the nearest branching ancestor of u. More
formally we define:

B1: B1(z) = 1 if π1(z) = z and ∃u ∈ V such that π1(u) = z, otherwise B1(z) = 0.

Bi(1 < i < k): Bi(z) = 1 if B(i−1)(π(i−1)(z)) = 1, πi(z) = z, and ∃u ∈ V such that
πi(u) = z, otherwise Bi(z) = 0

and store the following tables using Corollary 47:

D1: which contain the distance to the nearest branching ancestor for all nodes u in P
satisfying π1(u) = u.

Di (2 ≤ i < k − 1): which contain the distance to the nearest branching ancestor for all
nodes u in P satisfying: B(i−1)(π(i−1)(u)) = 1 and πi(u) = u.

D(k−1): which contain the distance to the nearest branching ancestor for all nodes u in P
satisfying: B(k−2)(π(k−2)(u)) = 1 and (π(k−1)(u) = u or B(k−1)(π(k−1)(u)) = 1).

76

Query Given a query FindAny(a, b) we first find the nearest common ancestor p of a
and b. Then we get k − 1 candidate nearest branching ancestor v1, . . . , v(k−1) of p using
D1, . . . , D(k−1). Afterwards for each vi we need to compute the preorder number of vi in TV .
To achieve this goal we get τ2(TV (vi)), τ3(TV (vi)), and the bit b indicating which micro tree
vi belongs to from M2. Next, we compute ui = T (root (TV (v))) after obtaining its distance
from vi using M3. Afterwards we query M1 for τ1(TV (ui)) = p(µb). After obtaining the
τ -name of TV (vi) we get its preorder number, and then we check the ranks of the leftmost
and rightmost leaves of vi’s left and right child. If one of them is within [a, b] we return its
value. If for all vi no element was found within [a, b] we return that S ∩ [a, b] is empty.

Space Analysis Storing the points coordinates uses B(n,m) bits. The tree TV uses
4n + o(n) bits. The tables M2,M3 contain O(n) entries each of size O(lg lgm) so they
use O(n lg lgm) bits. The table M1 contains O(n/ lg n) entries each of size O(lg n) so it
uses O(n) bits. The table D1 contains O(n lgm/ lg(k−1)/km) = O(n lgεm) entries of size
O(lg lgm) bits each so it uses O(n lgεm lg lgm) bits. Moreover each table Di (1 < i < k−1)
contains O(n(H(i−1)/Hi)) = O(n lgεm) entries each of size O(lg lgm) bits so they use a
total of O(n lgεm lg lgm) bits. Finally, we need to bound the size of Dk−1. The number of
entries due to πk−1(u) = u is O(n(H(k−1)/Hk)) = O(n lgεm). To bound the entries due to
Bk−1(πk−1(u)) = 1 notice that the subtree Tz of height H(k−1) rooted at z = π(k−1)(u) will
contain s > 1 entries, and will have at most s+ 1 < 2s leaves that are nodes in P . Thus it
will contribute at most (2H(k−1)s) entries. Since there are at most n− 1 branching nodes
the total number of entries due to B(k−1)(π(k−1)(u)) = 1 is 2H(k−1)n = O(n lgεm). Dk−1
uses O(n lgεm lg lgm) bits because each entry in D(k−1) is of size O(lg lgm) bits. In total
the space used is B(n,m) +O(n) +O(n lgεm lg lgm) bits.

Construction Time In a manner similar to [4] we can identify V in O(n) time, and
then construct TV also in O(n) time. The tables M1,M2,and M3 can be constructed in
expected O(n(lg lgm)) time. Finally, the tables Bi where 1 ≤ i < k can be constructed
in expected O(n lgεm) time by identifying the O(n lgεm) entries and building the tables.
The workspace is O(n) words.

Reducing Space To further reduce the space we use a well known trick and split
the universe [m] into n ranges r1, . . . , rn each of size m/n. We construct a bit vector B
of size 2n bits with rank and select queries. B stores a zero for each range ri followed
by ni ones where ni is the number of points in the range ri. To count the number of
points before a range ri we use a select query to get the position of the ith zero in B,
and then use a rank query to count the number of ones before that position. We store
a separate data structure for each range. To locate the data structures for any range
ri within A we count the number of points in the ranges rj for j < i, and then scale
that number. Given a query FindAny(a, b) we check if [a, b] spans a non-empty range as

77

follows. We use a rank query to get the number of ones k before the b(an/m)c zero. Then
we check if the (k + 1)th element is within [a, b] and return it in that case. Otherwise we
query the data structure corresponding to the (d(an/m)e)th range. The total space used
is B(n,m) +O(n) +O(n(lg (m/n))ε lg lg (m/n)) = B(n,m) + o(B(n,m)) +O(n) bits.

If O(n) is not a lower order term then n > m/c for some constant c. In that case we
adopt a different approach and store the points in a compressed bit vector of size m. To
answer a query FindAny(a, b) we use a rank query to get the number of ones k before
position a, and then we use a select query to get the position of the (k + 1)th one. If that
position is within [a, b] we return it otherwise S ∩ [a, b] is empty. The space used is now
B(n,m) + o(B(n,m)) bits.

Reducing Construction Workspace To further improve the construction workspace
we divide n into lg2m ranges each containing n/ lg2m points and build a separate data
structure for each of them. We note that the universe size in each range may vary. Addition-
ally we store a fusion tree F on the endpoints of each range. Given a query FindAny(a, b),
we check if the successor of a in F is within [a, b] and return it in that case. Otherwise we
query the range containing the successor of a.

78

Chapter 8

Conclusion

In conclusion, we studied various combinatorial objects from the perspective of succinct
and compact data structures.

We started this thesis in Chapter 3 by presenting compact representations for unlabeled
permutations. Given an arbitrary unlabeled permutation π, we store it compactly such
that πk(i) can be computed quickly for any i and any integer power k. We considered the
problem in several scenarios.

In the first scenario we assigned labels to elements so that queries are answered by just
examining the labels of the queried elements. We showed that a label space of

∑n
i=1b

n
i
c·i is

necessary and sufficient. In other words, 2 lg n bits of space are necessary and sufficient for
representing each of the labels. In the second scenario we assigned labels to the n elements
from the label set {1, . . . , cn} where c ≥ 1 is a constant. We showed that Θ(

√
n) bits are

necessary and sufficient to represent the permutation. Moreover, we supported queries in
such a structure in O(1) time. Finally, in the third scenario we assigned labels to the n
elements from the label set {1, . . . , cn1+ε} where c is a constant and 0 < ε < 1. We showed
that Θ(n(1−ε)/2) bits are necessary and sufficient to represent the permutation. We also
supported queries in such a structure in O(1) time.

Then in Chapter 4 we covered the problem of powering permutations in place. Given
a permutation of n elements, stored as an array, we addressed the problem of replacing
the permutation by its kth power while using o(n) bits of extra storage. We presented an
algorithm whose worst case running time is O(n lg n) and uses O(lg2 n+min{k lg n, n3/4+ε})
additional bits.

Afterwards, we covered a bunch of data structures for range reporting problems. In
Chapter 5, we present a data structure for multi-dimensional range mode queries that that

79

uses O(sn + (n/∆)2d/w) words and answers queries in O(∆ · tn) time, where sn and tn
are the space and query time of a data structure that supports orthogonal range counting
queries, thus improving a result in [20].

In Chapter 6, we presented a succinct data structure for static one-dimensional ap-
proximate color counting that uses B(n,m) + O(n) + o(B(n,m)) bits, Thus we showed,
somewhat counter-intuitively, that it is not necessary to store colors of the points in order
to answer approximate color counting queries. Moreover, our structure answers queries in
constant time, thus, solving an open problem from [86].

We then extended the techniques presented to describe a data structure for the one
dimensional approximate median reporting problem. We present a data structure that
uses B(n,m) +O(n) + o(B(n,m)) bits and answers queries in constant time. In the special
case where the points are in the rank space our data structure uses only O(n) bits, thus
improving a result from [16].

Then we turned to succinct data structures for color reporting. We described a data
structure that uses B(n,m) + nHd(S) + o(B(n,m)) + o(n lg σ) bits and answers queries in
O(k + 1) time, where k is the number of colors in the answer, and nHd(S) (d = logσ n)
is the d-th order empirical entropy of the color sequence. We also presented a succinct
dynamic data structure with constrained updates that uses nHd(S) + o(n lg σ) bits for
one-dimensional color reporting, restricted to the case when the points are in the rank
space.

Finally, in Chapter 7 we presented a succinct dynamic data structure for the one-
dimensional range reporting problem. Our data structure uses B(n,m) + o(B(n,m)) bits,
supports updates in O(lgεm) time, and answers queries in optimal O(k) time where k is
the number of points in the answer and m is the universe size.

As future work, we aim to focus on the succinct and compact representation of other
combinatorial objects. We are currently investigating the compact representation of other
types of range queries such as approximate range mode and approximate kth selection for
arbitrary k.

80

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms, 1974. Reading: Addison-Wesley, pages 207–209, 1987.

[2] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances
in trees. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 689–698, 2003.

[3] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for
orthogonal range searching. In 41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages
198–207, 2000.

[4] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Optimal static range
reporting in one dimension. In Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 476–482, 2001.

[5] Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Reducing the space
requirement of lz-index. In Combinatorial Pattern Matching, 17th Annual Symposium,
CPM 2006, Barcelona, Spain, July 5-7, 2006, Proceedings, pages 318–329, 2006.

[6] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval, vol-
ume 463. ACM Press, New York, 1999.

[7] Jérémy Barbay, Luca Castelli Aleardi, Meng He, and J. Ian Munro. Succinct rep-
resentation of labeled graphs. In Algorithms and Computation, 18th International
Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, pages
316–328, 2007.

[8] Jérémy Barbay, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Adap-
tive searching in succinctly encoded binary relations and tree-structured documents.
Theor. Comput. Sci., 387(3):284–297, 2007.

81

[9] Jérémy Barbay, Meng He, J. Ian Munro, and S. Srinivasa Rao. Succinct indexes for
strings, binary relations and multilabeled trees. ACM Transactions on Algorithms,
7(4):52, 2011.

[10] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and
related problems. Journal of Computer and System Sciences, 65(1):38–72, 2002.

[11] Djamal Belazzougui and Gonzalo Navarro. New lower and upper bounds for repre-
senting sequences. In Algorithms - ESA 2012 - 20th Annual European Symposium,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings, pages 181–192, 2012.

[12] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292,
2005.

[13] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, S. Srinivasa Rao,
and Oren Weimann. Random access to grammar-compressed strings. In Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 373–389.
Society for Industrial and Applied Mathematics, 2011.

[14] Peter Van Emde Boas. Preserving order in a forest in less than logarithmic time. In
16th Annual Symposium on Foundations of Computer Science, FOCS 1975, Berkeley,
California, USA, October 13-15, 1975, pages 75–84, 1975.

[15] Prosenjit Bose, Eric Y. Chen, Meng He, Anil Maheshwari, and Pat Morin. Succinct
geometric indexes supporting point location queries. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, January 4-6, 2009, pages 635–644, 2009.

[16] Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range
mode and range median queries. In 22nd Annual Symposium on Theoretical Aspects
of Computer Science, STACS 2005, Stuttgart, Germany, February 24-26, 2005, Pro-
ceedings, pages 377–388, 2005.

[17] Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios Tsakalidis.
New upper bounds for generalized intersection searching problems. In Proceedings of
the 22nd International Colloquium on Automata, Languages, and Programming, pages
464–474. Springer, 1995.

82

[18] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-
wise independent permutations. Journal of Computer System Sciences, 60(3):630–659,
2000.

[19] Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-minimum
space. SIAM Journal on Computing, 28(5):1627–1640, 1999.

[20] Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and
Bryan T. Wilkinson. Linear-space data structures for range mode query in arrays.
Theory of Computing Systems, pages 1–23, 2013.

[21] Timothy M. Chan, Stephane Durocher, Matthew Skala, and Bryan T. Wilkinson.
Linear-space data structures for range minority query in arrays. In Algorithm Theory
- SWAT 2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July
4-6, 2012. Proceedings, pages 295–306, 2012.

[22] Timothy M. Chan and Bryan T Wilkinson. Adaptive and approximate orthogonal
range counting. ACM Transactions on Algorithms (TALG), 12(4):45, 2016.

[23] David Clark. Compact Pat trees. PhD thesis, University of Waterloo, 1997.

[24] Mariano Paulo Consens and Timothy Snider. Maintaining very large indexes support-
ing efficient relational querying, August 14 2001. US Patent 6,275,822.

[25] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Noy Rotbart. Dynamic and multi-
functional labeling schemes. arXiv preprint arXiv:1404.4982, 2014.

[26] Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In
Proceedings of the nineteenth Annual ACM symposium on Theory of Computing, pages
365–372. ACM, 1987.

[27] Stephane Durocher, Hicham El-Zein, J. Ian Munro, and Sharma V. Thankachan.
Low space data structures for geometric range mode query. In Proceedings of the
26th Canadian Conference on Computational Geometry, CCCG 2014, Halifax, Nova
Scotia, Canada, 2014, 2014.

[28] Stephane Durocher, Hicham El-Zein, J. Ian Munro, and Sharma V. Thankachan. Low
space data structures for geometric range mode query. Theor. Comput. Sci., 581:97–
101, 2015.

83

[29] Stephane Durocher, Rahul Shah, Matthew Skala, and Sharma V. Thankachan. Linear-
space data structures for range frequency queries on arrays and trees. In Mathematical
Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings, pages 325–336, 2013.

[30] Hicham El-Zein. On the succinct representation of equivalence classes. Master’s thesis,
University of Waterloo, 2014.

[31] Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct color searching in one
dimension. In 28th International Symposium on Algorithms and Computation, ISAAC
2017, December 9-12, 2017, Phuket, Thailand, pages 30:1–30:11, 2017.

[32] Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct dynamic one-dimensional
point reporting. In 16th Scandinavian Symposium and Workshops on Algorithm The-
ory, SWAT 2018, June 18-20, 2018, Malmö, Sweden, 2018.

[33] Hicham El-Zein, J. Ian Munro, and Matthew Robertson. Raising permutations to
powers in place. In 27th International Symposium on Algorithms and Computation,
ISAAC 2016, December 12-14, 2016, Sydney, Australia, pages 29:1–29:12, 2016.

[34] Hicham El-Zein, J. Ian Munro, and Siwei Yang. On the succinct representation of
unlabeled permutations. In Algorithms and Computation - 26th International Sympo-
sium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 49–59,
2015.

[35] Arash Farzan and J. Ian Munro. Succinct representations of arbitrary graphs. In
Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany,
September 15-17, 2008. Proceedings, pages 393–404, 2008.

[36] Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various
families of trees. Algorithmica, 68(1):16–40, 2014.

[37] Arash Farzan, J. Ian Munro, and Rajeev Raman. Succinct indices for range queries
with applications to orthogonal range maxima. In Proceedings of the 39th International
Colloquium on Automata, Languages, and Programming, Part I, pages 327–338, 2012.

[38] Faith E. Fich, J. Ian Munro, and Patricio V. Poblete. Permuting in place. SIAM
Journal on Computing, 24(2):266–278, 1995.

[39] Johannes Fischer. Optimal succinctness for range minimum queries. In Proceedings
of the 9th Latin American Symposium on Theoretical Informatics, pages 158–169.
Springer, 2010.

84

[40] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

[41] Travis Gagie and Juha Kärkkäinen. Counting colours in compressed strings. In Pro-
ceedings of the 22nd Annual Symposium on Combinatorial Pattern Matching, CPM
2011, pages 197–207, 2011.

[42] Travis Gagie, Juha Kärkkäinen, Gonzalo Navarro, and Simon J Puglisi. Colored range
queries and document retrieval. Theoretical Computer Science, 483:36–50, 2013.

[43] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14,
2004, pages 1–10, 2004.

[44] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. ACM Transactions on Algorithms (TALG), 2(4):510–534, 2006.

[45] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on
large alphabets: a tool for text indexing. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA,
January 22-26, 2006, pages 368–373, 2006.

[46] Mayank Goswami, Allan Grønlund Jørgensen, Kasper Green Larsen, and Rasmus
Pagh. Approximate range emptiness in constant time and optimal space. In Proceed-
ings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 769–775, 2015.

[47] Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, and Jakob Truelsen.
Cell probe lower bounds and approximations for range mode. In Automata, Languages
and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France,
July 6-10, 2010, Proceedings, Part I, pages 605–616, 2010.

[48] Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More haste, less
waste: Lowering the redundancy in fully indexable dictionaries. In 26th International
Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-
28, 2009, Freiburg, Germany, Proceedings, pages 517–528, 2009.

[49] Roberto Grossi, Rajeev Raman, S. Srinivasa Rao, and Rossano Venturini. Dynamic
compressed strings with random access. In Automata, Languages, and Programming -

85

40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceed-
ings, Part I, pages 504–515, 2013.

[50] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM Journal on Computing,
35(2):378–407, 2005.

[51] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. A framework
for dynamizing succinct data structures. In International Colloquium on Automata,
Languages, and Programming, pages 521–532. Springer, 2007.

[52] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on gen-
eralized intersection searching problems: Counting, reporting, and dynamization. J.
Algorithms, 19(2):282–317, 1995.

[53] Godfrey H. Hardy and Srinivasa Ramanujan. Asymptotic formulae in combinatory
analysis. Proceedings of the London Mathematical Society, 2(1):75–115, 1918.

[54] Meng He. Succinct and implicit data structures for computational geometry. In Space-
Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro
on the Occasion of His 66th Birthday, pages 216–235, 2013.

[55] Meng He, J. Ian Munro, and S. Srinivasa Rao. A categorization theorem on suffix
arrays with applications to space efficient text indexes. In Proceedings of the Six-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancou-
ver, British Columbia, Canada, January 23-25, 2005, pages 23–32, 2005.

[56] Daniel S. Hirschberg and James Bartlett Sinclair. Decentralized extrema-finding in
circular configurations of processors. Communications of the ACM, 23(11):627–628,
1980.

[57] Christiaan TM. Jacobs and Peter Van Emde Boas. Two results on tables. Information
Processing Letters, 22(1):43–48, 1986.

[58] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium
on Foundations of Computer Science, FOCS ’89, Research Triangle Park, North Car-
olina, USA, 30 October - 1 November 1989, pages 549–554, 1989.

[59] Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon
University, 1988.

86

[60] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In Algorithms
and Computation, 15th International Symposium, ISAAC 2004, Hong Kong, China,
December 20-22, 2004, Proceedings, pages 558–568, 2004.

[61] Ravi Janardan and Mario Lopez. Generalized intersection searching problems. Inter-
national Journal of Computational Geometry & Applications, 3(01):39–69, 1993.

[62] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs.
SIAM Journal on Discrete Mathematics, 5(4):596–603, 1992.

[63] Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. Labeling schemes for flow
and connectivity. SIAM Journal on Computing, 34(1):23–40, 2004.

[64] Danny Krizanc, Pat Morin, and Michiel Smid. Range mode and range median queries
on lists and trees. Nordic Journal of Computing, 12(1):1–17, 2005.

[65] Moshe Lewenstein, J. Ian Munro, and Venkatesh Raman. Succinct data structures for
representing equivalence classes. In Algorithms and Computation - 24th International
Symposium, ISAAC 2013, Hong Kong, China, December 16-18, 2013, Proceedings,
pages 502–512, 2013.

[66] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-
tures and asymmetric communication complexity. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of Computing, pages 103–111. ACM, 1995.

[67] Christian Worm Mortensen. Generalized static orthogonal range searching in less
space. Technical report, IT University of Copenhagen, 2003.

[68] Christian Worm Mortensen, Rasmus Pagh, and Mihai Patrascu. On dynamic range
reporting in one dimension. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 104–111, 2005.

[69] J. Ian Munro. Tables. In Foundations of Software Technology and Theoretical Com-
puter Science, pages 37–42. Springer, 1996.

[70] J. Ian Munro and Yakov Nekrich. Compressed data structures for dynamic se-
quences. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras,
Greece, September 14-16, 2015, Proceedings, pages 891–902, 2015.

87

[71] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Dynamic data structures for
document collections and graphs. In Proceedings of the 34th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 277–289. ACM, 2015.

[72] J. Ian Munro and Patrick K. Nicholson. Succinct posets. In Algorithms - ESA 2012
- 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012.
Proceedings, pages 743–754, 2012.

[73] J. Ian Munro and Patrick K. Nicholson. Compressed representations of graphs. In
Encyclopedia of Algorithms, pages 382–386. 2016.

[74] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
representations of permutations and functions. Theoretical Computer Science, 438:74–
88, 2012.

[75] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses,
static trees and planar graphs. In 38th Annual Symposium on Foundations of Com-
puter Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages
118–126, 1997.

[76] J. Ian Munro and S. Srinivasa Rao. Succinct representation of data structures. In
Handbook of Data Structures and Applications. 2004.

[77] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
657–666. Society for Industrial and Applied Mathematics, 2002.

[78] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge Univer-
sity Press, 2016.

[79] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput.
Surv., 39(1):2, 2007.

[80] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Transactions on Algorithms (TALG), 10(3):16, 2014.

[81] Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Trans.
Database Syst., 39(1):9:1–9:21, 2014.

[82] Yakov Nekrich and Jeffrey Scott Vitter. Optimal color range reporting in one dimen-
sion. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis,
France, September 2-4, 2013. Proceedings, pages 743–754, 2013.

88

[83] Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 232–240, 2006.

[84] Holger Petersen. Improved bounds for range mode and range median queries. In
SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference on Cur-
rent Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
January 19-25, 2008, Proceedings, pages 418–423, 2008.

[85] Holger Petersen and Szymon Grabowski. Range mode and range median queries in
constant time and sub-quadratic space. Information Processing Letters, 109(4):225–
228, 2009.

[86] Saladi Rahul. Approximate range counting revisited. In 33rd International Symposium
on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia, pages
55:1–55:15, 2017.

[87] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictio-
naries with applications to encoding k-ary trees and multisets. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 233–242, 2002.

[88] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictio-
naries with applications to encoding k-ary trees, prefix sums and multisets. ACM
Transactions on Algorithms (TALG), 3(4), 2007.

[89] Matthew Robertson. Inverting permutations in place. Master’s thesis, University of
Waterloo, 2015.

[90] Michael Rubinstein. The distribution of solutions to xy = n mod a with an application
to factoring integers. arXiv preprint math/0610612v5, 2012.

[91] Milan Ruzic. Constructing efficient dictionaries in close to sorting time. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Com-
plexity, and Games, pages 84–95, 2008.

[92] Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays.
J. Algorithms, 48(2):294–313, 2003.

[93] Robert Sedgewick. Permutation generation methods. ACM Computing Surveys,
9(2):137–164, 1977.

89

[94] Matthew Skala. Array range queries. In Proc. Space-Efficient Data Structures,
Streams, and Algorithms, volume 8066 of LNCS, pages 333–350. Springer, 2013.

[95] György Turán. On the succinct representation of graphs. Discrete Applied Mathemat-
ics, 8(3):289–294, 1984.

[96] Andries Van Dam and David Evans. A compact data structure for storing, retrieving
and manipulating line drawings. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, pages 601–610. ACM, 1967.

[97] Peter Van Emde Boas, Robert Kaas, and Erik Zijlstra. Design and implementation of
an efficient priority queue. Mathematical Systems Theory, 10(1):99–127, 1976.

[98] I. Vinogradov. Selected works. With a biography by K. K. Mardzhanishvili.Translated
from the Russian by Naidu Psv. Translation edited by Yu. A. Springer-Verlag, Berlin,
1985.

[99] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N).
Inf. Process. Lett., 17(2):81–84, 1983.

90

	List of Figures
	Introduction and Motivation
	Motivation
	Thesis Outline and Contribution

	Preliminaries
	Word RAM Model
	Space Efficient Data Structures
	Bit Vectors
	Sequences
	Reduction to Rank Space

	Compact Unlabeled Permutations
	Introduction and Motivation
	Definitions
	Direct Labeling Scheme
	Compact Data Structures with Label Space n
	Compact Data Structures with Extended Label Space
	Lower Bounds
	Lower Bound for Auxiliary Data with Label Space cn
	Lower Bound for Auxiliary Data with Label Space cn1+

	Application

	Powering Permutations
	Introduction and Motivation
	Background and Related Work
	Inverting Permutations
	Inversion in O(nlgn) Time Using O(n lgn) Bits
	Reducing Extra Space to O(lg2 n) Bits

	Arbitrary Powers
	Powering Permutations in O(nlgn) Time using o(n) Extra Bits

	Conclusion

	Range Mode
	Introduction
	Related Work

	Framework
	Data Structure of Chan et al.
	Improved Data Structure

	One Dimensional Range Searching
	Introduction
	Approximate Color Range Counting
	Approximate Color Range Counting in Rank Space

	General Approximate Range Counting
	Approximate Median Range Reporting
	Approximate Median Range Reporting in Rank Space
	General Approximate Range Median

	1D Color Range Reporting
	Improved Data Structure

	Dynamic Color Reporting in Rank Space

	Succinct Dynamic One Dimensional Point Reporting
	Introduction
	Preliminaries
	One-Dimensional Point Reporting
	Tree Representation
	Sparse Arrays

	Semi-Dynamic Succinct One-Dimensional Point Reporting
	Fully-Dynamic Succinct One-Dimensional Point Reporting
	Fully-Dynamic Structure with Amortized Updates
	Fully-Dynamic Structure with Worst Case Updates

	Succinct Static One-Dimensional Point Reporting With Fast Construction Time

	Conclusion
	References

