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Abstract 

Wet snow is defined as snow with liquid water present in an ice-water mix. It can be an indicator 

for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great 

importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in 

snowmelt duration. Moreover, effective monitoring wet snow cover has implications for 

operational hydrological and ecological applications. Spaceborne microwave remote sensing has 

been used to observe seasonal snow under all-weather conditions. Active microwave observations 

of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow 

surfaces. Synthetic aperture radar (SAR) is now openly available to identify and map the wet snow 

areas globally at relatively fine spatial resolutions (~100m). In this study, a semi-automated 

workflow is developed from the change detection thresholding method of Nagler et al. (2016) 

using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. 

Regions of Interest (ROIs) were created for agricultural lands to analyze the factors influencing 

backscatter responses from wet snow. To compare with the thresholding method, logistic 

regression and Support Vector Machine (SVM) classifications were applied on the datasets. 

Weather station data and visible-infrared satellite observations were used as ground reference to 

evaluate the wet snow area estimates. Even though the study merely focused on agricultural land, 

the results indicated the feasibility of the change detection method with a threshold of -2dB on 

non-mountainous areas and addressed the usefulness of Sentinel-1A data for wet snow mapping. 

However, with the capability of identifying non-linear characteristics of the datasets, classification 

methods tended to be a more accurate method for wet snow mapping. Moreover, this study has 

suggested using Sentinel-1A data with large incidence for wet snow mapping is feasible.  
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Chapter 1 Introduction 

1.1 Introduction 

Snow is an important part of the hydrological cycle and contributes to precipitation in many 

regions above 45° N and S latitudes. As a large storage of frozen freshwater, melting snow can 

also supply watersheds with ground-water recharge and surface runoff (Bishop et al., 2011).  As 

part of the cryosphere, seasonal snow covers an area of around 46 million square kilometers of the 

Earth’s surface in winter time and plays an important role in the climate system (Dingman, 2015). 

As a large amount of the sun’s energy can be reflected by the bright snow, the surface temperature 

of the planet is lowered. However, the increase of temperature will result in shrinking of the snow 

cover and decrease of snow albedo, which will therefore add the absorption of solar radiation and 

reinforce the increase of temperature. This process is called snow-albedo feedback and 

demonstrates the positive feedback of shrinking snow cover with increasing temperatures in the 

climate system (Armstrong & Brun, 2008). By influencing the energy budget between the ground 

and the atmosphere, changes in snow cover extent can be an indicator for short-term weather and 

long-term climate changes at both regional and global scales. Studies have shown that snow cover 

extent has decreased in response to climate change in the Northern Hemisphere (Déry & Brown, 

2007; Brown & Mote, 2009; Derksen & Brown, 2012). Thus, it is important to monitor seasonal 

snow cover changes. Wet snow exists when there is liquid water in the snowpack, and it can be an 

indicator for the onset of the snowmelt period (Wakahama, 1968). Researchers from the Canadian 

Sea Ice and Snow Evolution Network (CanSISE) have observed the trend of decrease of the 

fraction of Canadian land covered by snow from historical datasets with early snowmelt onset, and 

climate models also project that the snow cover will continue to decrease through 2025 (Mudryk 

et al., 2017). Therefore, knowledge of the extent of wet snow area can be of great importance for 

the effective monitoring of climate-induced changes in snowmelt duration and seasonal snowmelt 

runoff, and it can further provide implications for operational hydrological and ecological 

applications.  

Previous studies used ground-based microwave systems and ground measurements to build 

physical models to understand the interactions between radar signals and snow (Stiles &Ulaby, 

1980). Passive microwave is suitable for near-daily dry snow mapping and estimation of snow 

water equivalent (SWE). However, the spatial resolution is coarse, typically at 25 x 25 km2 
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(Rott&Nagler, 1994). Synthetic aperture radar (SAR), which is an active microwave system, can 

provide data at relatively fine spatial resolutions and is able to detect wet snow (Nagler et al., 

2016). With the launch of spaceborne active microwave remote sensing systems, satellite radar 

images have become a useful tool to observe seasonal snow cover under all-weather conditions 

with repeat passes for regional and global scale imaging at fine spatial resolutions (Nagler&Rott, 

2000). C-band has been shown to be sensitive to wet snow as wet snow has an explicit reflection 

characteristic under C-band due to the high dielectric contrast with non-wet snow surfaces. While 

dry snow is generally transparent to C-band, C-band is able to identify wet snow for an area pre-

identified as snow. As C-band SAR datasets become openly available with multi-temporal imaging 

producing frequent revisit intervals, they provide an opportunity to map wet snow within an 

operational context. Studies have demonstrated change detection methods to identify wet snow 

with single-polarized C-band SAR satellites such as ERS-1/2 and RADARSAT (Baghdadi et al., 

1997; Magagi &Bernier, 2003). With the availability of dual-polarized SAR observations, Nagler 

and other researchers (2016) have improved the method to enable a more accurate monitoring of 

wet snow. The method has been tested to be robust in mountainous areas, but very few studies 

have applied the method to detect wet snow in non-mountainous areas, especially areas with 

various land cover.  

1.2 Goal and Objectives 

Given the importance of wet snow mapping and the lack of applications in non-mountainous 

areas, this study aims to assess the applicability of change detection method and a conventional 

threshold (Nagler et al., 2016) for wet snow mapping in Southern Ontario by using Sentinel-1A 

(S1A) C-band SAR dual-polarized observations. To achieve the main goal, the following 

objectives are set: 

1) To understand the factors influencing backscatter behaviors of wet snow; 

2) To evaluate the conventional threshold of -2dB; 

3) To explore new wet snow detection method for Southern Ontario. 

1.3 Thesis Structure 

The remainder of this thesis is organized into the following chapters. Chapter 2 provides 

background information of snow processes and SAR imaging. It also describes the interactions 

between snow and radar. Moreover, it includes a review of the applications of SAR on snow 
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mapping. Chapter 3 implements the change detection method on the study area and demonstrates 

the detailed processes for evaluation of the results. Classification methods are also presented. 

Chapter 4 provides the results of the proposed method. Chapter 5 explains the different cases to 

understand the factors influencing backscatter and discusses the performance of the different 

methods. Uncertainties of the study is also discussed. Finally, Chapter 6 summarizes the study 

with main findings and provides ideas for future work. 
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Chapter 2 Background: Radar Observations of Wet Snow 

2.1 Physical properties of snow 

Snowfall forms from atmospheric water vapor through a complex process. The structure of snow 

undergoes huge microstructure changes from the time when the snow falls through the atmosphere 

through its lifetime during accumulation on the ground (Armstrong & Burn, 2008). A snowpack 

also undergoes a series of microstructural changes during the snowmelt period. To help further 

explain the interactions between snow and radar, it is important to understand the processes of 

formation and results in physical properties of snow. 

2.1.1 Snow Formation 

When the air temperature is below the freezing point and the air is supersaturated (humidity 

exceeds 100 %), water molecules attach and freeze to a tiny dust grain, and form an ice nucleus in 

the atmosphere (Kumai, 1961). With more water molecules condensing through sublimation, snow 

crystals grow from ice crystals, which originate from the ice nuclei through nucleation (Libbrecht, 

2005). As the air temperature and humidity varies, snow crystals will grow into different shapes, 

structures and sizes. When snow crystals aggregate, a snowflake is formed. Then, as snow falls to 

the ground, a new snow layer may be aggregated. When snow layers accumulate, a snowpack can 

be built up over time. As a porous medium, the microstructure of a snowpack consists of a 

continuous ice structure and connected pore spaces with air and liquid content. When the 

temperature of snow is below 0℃, there is only air in the pore spaces; when snow starts to melt or 

it rains, the liquid water begins to fill in the pores. 

2.1.2 Snow Cover 

Snow cover describes the extent of ground covered by snow. Variations in local environmental 

conditions create differences spatially and temporally in snow cover accumulation characteristics. 

Temperature is a driving factor that can greatly influence the basic formation of snow and the rate 

for snow melt, thereby influencing the extent and depth of snow cover (Teubner et al., 2015). Wind 

redistributes snow crystals and changes their properties in the process, thereby altering the density 

and surface roughness of a snowpack (Gray et al., 1971). Geomorphologic features, such as 

elevation and slope can dominate snow cover patterns (Meiman, 1970). In addition to these factors, 

vegetation cover can also influence the snow transportation and accumulation (Hall et al., 1998). 
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For example, researchers simulated a low-Arctic catchment with different shrub coverage, which 

indicated that the snow depth increases with higher shrubs of shrub-covered areas (Essery & 

Pomeroy, 2004). All these factors do not function alone, but can be related to each other and change 

snow cover distribution characteristics through a complex process with energy transfer.  

2.1.3 Snow Metamorphic Processes 

Continuous changes in the snowpack structure occur under a series of metamorphism processes 

when the snow becomes isothermal close to its melting point. Metamorphism refers to the 

processes that snow grains change in size, shape and cohesion, which are driven by thermal 

conditions (Armstrong & Brun, 2008). Throughout the time that the snow deposits on the ground 

until it melts, there will be a vertical temperature gradient from the surface to the inside of the 

snowpack due to the vapor and heat exchange (Sturm et al., 2002). As a result of the temperature 

gradient, there are three main different types of metamorphism cited, called destructive, 

constructive and melt metamorphism. The former two occur in the dry snow pack and the last one 

in the wet snow. 

2.1.3.1 Destructive Metamorphism 

When there is a small temperature difference from the top to the bottom of the snowpack (<10℃ 

m-1), destructive metamorphism dominates the dynamical process (Sommerfeld & LaChapelle, 

1970). Because the vapor pressure over the curved surface increases with the decrease of the radius, 

the point parts of the snow crystals are under high vapor pressure. Therefore, sublimation will 

occur on these convex surfaces, whereas the water vapor will move moisture to the concave areas 

to deposit as ice and gradually fill the hollow (Figure 2.1). Through this process, the snow grains 

become rounded, and the density also increases during this period (Colbeck, 1983). When the 

round snow grains touch each other, they will be sintered with a neck, which raise the strength of 

the snow pack (Figure 2.2). 
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Figure 2.1 Vapor movement in destructive metamorphism (McClung & Schaerer, 2006) 

 

Figure 2.2 Sintering process in destructive metamorphism (McClung & Schaerer, 2006) 

2.1.3.2 Constructive Metamorphism 

When a larger temperature gradient (>=10℃ m-1), the snowpack typically undergoes 

constructive metamorphism (McClung & Schaerer, 2006). As the sub-nivean soil supplies the heat, 

and the snow layer helps to retain the heat, the bottom of the snow pack is warmer than the upper 

parts. Because of the temperature gradient, there is a vapor gradient forming in the snowpack, and 

the pressure of water vapor is higher at the bottom than at the top. Therefore, sublimation occurs 

at the bottom due to supersaturation, and the water vapor moves upward. The water vapors then 

condense and deposit at the cold snow grains, and the rounded grains will become faceted (Colbeck, 

1983). With a large temperature gradient, depth hoar will form, which is a cup-shaped grain that 

loosely bond with each other (Akitaya, 1974). 

2.1.3.3 Melt Metamorphism 

Melt metamorphism occurs at the beginning and the end of the snow season. Liquid water 

usually exists when the snow starts to melt at the surface or it rains. Because of the force of gravity, 

the surface water molecules descend into the snow pack, and refreeze in the middle layers. As the 
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refreezing releases some energy, it warms the snowpack and increase the vapor transfer (Colbeck, 

1973). Moreover, the rounded grains will aggregate into larger grains around 1 to 2 mm, whereas 

the smaller snow grains will disappear. Therefore, the density of snowpack will increase. 

2.1.4 Phases of Snowmelt 

The snow melt processes usually undergo three main phases with continuous net energy inputs 

(Dingman, 2015). The first phase is the warming phase when there is no melt, but the snowpack 

is warmed to a stage when the snowpack is isothermal at 0 ℃. When the temperature no longer 

changes, and the energy input will result in the melting of ice to melt water, the ripening phase 

will start. The meltwater remain in the pore spaces until the snowpack is unable to retain water, 

and the ripening phase will finish. The water can be retained because of the surface-tension, which 

is able to work against the gravity force during the ripening phase (Shelton, 2009). The last phase, 

which is called output phase, will start when the snowpack is ripe and the pores can no longer hold 

the water; meltwater starts to percolate from the snowpack. Thus, the snowpack will continuously 

absorb energy and the process will cause water output (Etchevers et al., 2004). 

2.2 Active Microwave Remote Sensing  

As it is important to monitor the seasonal snow cover changes, microwave remote sensing 

systems is a useful tool to observe ground features without the influence from weather, especially 

clouds.  

There are two main types of microwave remote sensing systems: active and passive microwave. 

While passive microwave systems receive the radiation emitted from the surface at coarse spatial 

resolutions (>100 km2), active microwave systems can transmit specific frequencies of microwave 

energy and receive the returned signal at spatial resolutions of <400 m2 (Royer, 2010). Synthetic 

aperture radar (SAR) is an active microwave sensing system that can observe a wide range of land 

and ocean surfaces and can differentiate features based on the measured backscatter signal. 

2.2.1 SAR Basics  

SAR, usually mounted on an airborne or space borne platforms, is a side-looking microwave 

radar system that generates high resolution two dimensional (2-D) images (Ulaby et al, 2014). The 

commonly used range of microwave for SAR system is between Ka-band to P-band (Table 2.1). 

A SAR system involves a pulsed microwave transmitter, an antenna and a receiver unit. For a 
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monostatic SAR system, the antenna is capable of transmitting the microwave pulses into beam 

towards the ground and also obtaining the echoes of the signal reflected from the ground. The 

backscatter signal strength of a target is often measured as backscattering cross section (σ), which 

is the scattering cross section in the direction toward SAR. The location of the target can be 

calculated from the distance between the target and sensor by obtaining the time delay between 

the signal transmission and reception (Moreira, 2013).  

Table 2.1 Common bands of SAR systems with frequency and wavelength 

Band Ka Ku X C S L P 

Frequency 

(GHz) 

40-25 17.6-12 12-7.5 7.5-3.75 3.75-2 2-1 0.5-0.25 

Wavelength 

(cm) 

0.75-1.2 1.7-2.5 2.5-4 4-8 8-15 15-30 60-120 

 

A typical SAR side looking geometry is illustrated in Figure 2.3. Azimuth refers to the flight 

direction, whereas ground range is perpendicular to the flight direction. The beam from the antenna 

transmit towards the ground with an incidence angle θ.  Slant range is the distance between the 

SAR sensor and the target, while the ground range is the horizontal distance from the target on the 

ground to the nadir track. The ground area covered by the beam is called the antenna footprint. 

When the SAR is moving along the flight direction, the scanned area is the radar swath. The part 

of swath that is closest to the nadir track is the near range, and the farthest part is the far range. 

 

Figure 2.3 SAR imaging geometry (Eineder & Bamler, 2014) 
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Spatial resolution refers to the ability to distinguish two closely spaced objects, and the 

resolution for SAR can be determined in range and azimuth direction. The sensor can differentiate 

targets in slant range direction when the time difference of echoes is larger than the effective pulse 

propagation time. Therefore, slant range resolution is a fixed value that is dependent on the pulse 

length. As the horizontal expression of slant range resolution, ground range resolution is a function 

of slant range resolution and incidence angle. Because incidence angles are different from near to 

far range, ground range resolution changes across the footprint (Richards, 2009). On the other hand, 

azimuth resolution is calculated by the length of antenna and radar wavelength. Since longer 

antenna will result in narrower beam and finer azimuth resolution, SAR achieves this goal by 

synthesizing the effective length of antenna. In general, range resolution and azimuth resolution 

are independent to the height of the sensor above ground level.  

2.2.2 Radar Equation 

The radar equation estimates the power returned to the radar sensor from a target with known 

radar cross section at a specific range (Woodhouse, 2006).  Because energy propagates in a 

spherical pattern, the power density at the target can be calculated with the total transmitted power 

Pt (Watt) divided by the surface area of the sphere with the radius R (meter). Due to the directional 

beam pattern of the antenna, the incident power density Qi (W/m2) will increase with a transmit 

antenna gain factor Gt: 

  𝑄𝑖 =
𝑃𝑡𝐺𝑡

4𝜋𝑅2                                 (2.1) 

The power reflected by the target towards the radar system Preflect (W) is the product of the 

incident power density and the radar cross section σ (m2) of the target: 

𝑃𝑟𝑒𝑓𝑒𝑙𝑐𝑡 = 𝑄𝑖𝜎 =
𝑃𝑡𝐺𝑡𝜎

4𝜋𝑅2            (2.2) 

The radar cross section 𝜎 characterizes the target’s reflected response, and is a measure of the 

ratio between backscatter density in the direction towards the receiver and the power density 

intercepted by the target. Physical features of the target such as the material and size, parameters 

of the radar system such as the frequency and direction can influence the radar cross section. The 

power density at a receive antenna Qr (W/m2) is the reflected power divided by the spherical area: 

𝑄𝑟 =
Preflect

4πR2
 =

PtGtσ

(4π)2R4
                                                   (2.3) 
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The power measured by a radar receive antenna Pr (W) with an effective antenna area of Ae (m2) 

can be expressed as: 

𝑃𝑟 = 𝑄𝑟𝐴𝑒 =
𝑃𝑡𝐺𝑡𝐴𝑒𝜎

(4𝜋)2𝑅4                                                      (2.4)                                                                   

The effective aperture area Ae (m2)  is related to the wavelength of radar 𝜆 and the receive 

antenna gain Gr, which can be represented as: 

𝐴𝑒 =
𝜆2𝐺𝑟

4𝜋
                                                                (2.5) 

In a monostatic radar system, the receiver and transmitter antenna are the same and have the 

same gain factor. Therefore, the power Pr (W) is given by: 

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎

(4𝜋)3𝑅4  =
𝑃𝑡𝐺2𝜆2𝜎

(4𝜋)3𝑅4                                                    (2.6) 

The normalized radar cross-section σo, which comes from normalizing the radar cross section 

by the illuminated area (A), provides the capability to compare and characterize the backscatter of 

a target from different instruments. From Equation 2.6, σo can be solved as: 

𝜎𝑜 =
𝜎

𝐴
=

𝑃𝑟(4𝜋)3𝑅4

𝑃𝑡𝐺2𝜆2𝐴
       (2.7) 

 

2.2.3 Polarization  

For a plane electromagnetic wave, polarization is the orientation of the electric field vector 

against the horizontal direction (Woodhouse, 2005). If the orientation is along the horizontal 

direction, the wave is horizontally polarized (indicated as H); when it is perpendicular to the 

horizontal direction, the wave is vertically polarized (indicated as V) (Figure 2.4). SAR systems 

are capable of detecting the polarization of the backscattered signals, and based on the polarization 

types that the sensor transmits and receives, there are four polarization configurations: HH, HV, 

VV and VH. A single-pol system (HH or VV) transmits H or V waves and receives the same 

polarization. A dual-pol system (HH and HV or VV and VH) usually transmits waves in H or V 

polarization and receives both. A quad-pol or full-pol system (HH, HV, VH and VV) can transmit 

both H and V waves and measures both H and V when receiving. While the majority of SAR 

systems are linearly polarized, it is also possible to create non-linear polarizations such as circular 

polarization.  
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Figure 2.4 Horizontal and vertical polarizations of a plane electromagnetic wave (Natural 

Resources Canada, 2018) 

2.2.4 Current SAR Systems in Operation 

Since the launch of the first civilian SAR satellite Seasat in 1978, SAR has been widely used to 

observe the detailed features of the Earth surface with high resolution images. In the 1990s, SAR 

techniques were greatly developed to improve the retrieval of Earth surface parameters and 

information, such as polarimetry and interferometry. With the development of satellite SAR 

observing systems, more frequent repeated pass products have provided increased potential to 

monitor the Earth surface changes through multi-temporal images. The major SAR satellites in 

operation currently are low frequency, which are suitable for wet snow detection. Recent and future 

SAR sensors are summarized in Table 2.2. 
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Table 2.2 Summary of recent and future SAR systems 

Sensor Year Country Institute Frequency  Polarization 

Seasat 1978 USA NASA/JPL L HH 

ERS-1 

ERS-2 

1991-2000 

1995-2011 

Europe ESA C VV 

SIR-C/X-SAR 1994 USA,  

Germany 

Italy 

NASA 

DARA  

ASI 

L& C 

X 

HH, HV, VV, VH 

VV 

RADARSAT-1 1995-present Canada CSA C HH 

SRTM 2000 USA, 

Germany 

Italy 

NASA 

DARA 

ASI 

C 

X 

HH 

VV 

ENVISAT/ASAR 2002-2012 Europe ESA C HH/VV, HH/HV, 

VV/VH 

ALOS/PalSAR 2006-2011 Japan JAXA L HH, HV, VV, VH 

TerraSAR-X 

TanDEM-X 

2007-present 

2010-present 

Germany DLR 

EADS 

Astrium 

X HH, HV, VV, VH 

RADARSAT-2 2007-presnet Canada CSA C HH, HV, VV, VH 

COSMO-Skymed-1/4 2007-prensent 

2010-presnet 

Italy ASI X HH&VV, 

HH&HV, VV&VH 

RISAT-1 2012-present India ISRO C HH, HV, VV, VH 

HJ-1C 2012-present China CAS S VV 

KOMPSAT-5 2013-present Korea KARI X HH&VV, 

HH&HV, VV&VH 

Sentinel-1A/1B 2013-present 

2015-present 

Europe ESA C HH&VV, 

HH&HV, VV&VH 

ALOS-2 PALSAR-2 2014- Japan JAXA L HH, HV, VV, VH 

Gaofen-3 2016-present China CAS C HH, HV, VV, VH 

RADARSAT 

Constellation 

2018 Canada CSA C HH, HV, VV, VH 
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2.2.5 Sentinel-1A 

The Sentinel missions, as part of the Copernicus program undertaken by the European Space 

Agency (ESA), include a series of radar and optical satellites that undertake observations of the 

Earth surface. Sentinel-1 is a C-band SAR satellite constellation that consists of two satellites. 

Sentinel-1A, which was launched in April 2014, started providing imagery in October 2014, and 

Sentinel-1B, which was launched in April 2016, and started providing imagery more recently. 

Sentinel-1A provides an exact revisit period of 12 days, and a revisit of 6 days can be achieved 

with Sentinel-1B. Sentinel 1 offers four acquisition modes: Stripmap (SM), Interferometric Wide 

swath (IW), Extra-Wide swath (EW) and Wave (WV). SM, IW and EW are available with both 

single polarization (HH/VV) or dual polarization(VV+VH/HH+HV), while WV data is only with 

single polarization. Images acquired from IW and EW modes have large swath of 250km (IW) and 

400km (EW) by virtue of using Terrain Observation with Progressive Scans SAR (TOPSAR) 

technique. TOPSAR is capable of reducing the scalloping effect by steering the beam both in the 

azimuth and range direction, and it can therefore obtain more homogeneous image quality than 

traditional ScanSAR mode (De Zan & Guarnieri, 2006). The data from Sentinel-1 are provided in 

three processing levels: Level-0 data refers to the raw data signal, Level-1 data can be Single Look 

Complex (SLC) or Ground Range Detected (GRD) and Level-2 data is Ocean (OCN). Figure 2.5 

shows the available products from the four modes. With open and free access to Sentinel-1 data, 

the large user community have demonstrated wide applications of Sentinel 1 products.  

 

Figure 2.5 Sentinel 1 Product Levels from Modes (ESA, 2018) 

2.2.6 SAR Image Processing  

The raw data signals received by SAR sensor are in the form of complex number with a real part 

and an imaginary part. Single look complex (SLC) images, which are the first level images 
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transformed from the raw signals, can be obtained through a process called focusing. The focusing 

process aims to gather the energy spread from range and azimuth into a single pixel. There are 

several steps contributing to this process, they are: Doppler centroid estimation, range compression, 

range migration and azimuth compression (ESA, 2017). SLC images can be used for quality 

assessment, calibration and can provide phase information. 

For each pixel in SLC image, it does not only contain the amount of backscatter power received, 

but also stores the microwave phase information, so each pixel value in SLC images is in a complex 

form. A process named detection converts the complex value into a digital number, so that the 

image can be interpreted by human eyes. Intensity, also called power, can be calculated from the 

complex values as: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦/𝑃𝑜𝑤𝑒𝑟𝑗 = (𝐼𝑗 )2 + (𝑄𝑗 )2    (2.8) 

where Ij is the in-phase part (stored as the real part of the complex storage number), and Qj is the 

quadrature (imaginary part of the complex number) of jth pixel from the start of the range line. 

Amplitude, which is the square root of intensity, is often used as the digital number (DN). DN j 

is the digital number for the jth pixel, and it can be calculated as: 

𝐷𝑁𝑗 = √(𝐼𝑗 )2 + (𝑄𝑗 )2     (2.9) 

Due to the interference of electromagnetic waves scattered from the ground and objects, SLC 

data has maximum speckle noise. Multi-looking is a common first-step to reduce speckling by 

averaging the values among the pixels. SLC image data usually look narrow because each pixel is 

rectangular in shape. Multi-looking combines N pixels into an approximately squared pixel, where 

N is called the number of looks. Therefore, the number of looks is related to pixel spacing in 

azimuth, pixel spacing in slant range and the look angle at scene center, and it can be calculated as 

follows: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑘𝑠 ≈   
𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑛𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑝𝑖𝑥𝑒𝑙 𝑠𝑝𝑎𝑖𝑛𝑔 𝑖𝑛 𝑎𝑧𝑖𝑚𝑢𝑡ℎ
    

     =  
𝑝𝑖𝑥𝑒𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑖𝑛 𝑎𝑧𝑖𝑚𝑢𝑡ℎ sin(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑔𝑙𝑒)⁄

𝑝𝑖𝑥𝑒𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑖𝑛 𝑎𝑧𝑖𝑚𝑢𝑡ℎ
   (2.10) 

Ground Range Detected (GRD) images are the next level product based on SLC data which have 

been detected, multi-looked and converted to a ground range projection using an Earth ellipsoid 
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model such as WGS84. The GRD data still needs further processing to reduce speckle and apply 

a geo-referencing and radiometric calibration. 

Speckle filters are applied to reduce the speckle noise remaining after multi-looking. Speckle 

noise is multiplicative and so adaptive filter functions based on the statistics calculated for each 

pixel and the surrounding pixels can retain edge features and image texture in a heterogeneous 

area and preserve radiometric information for a homogeneous area (Lopes et al., 1990). Kuan and 

Lee filters smooth the speckle by minimizing the mean squared error in the fixed window (Ko & 

Lee, 1991). The Frost filter computes the un-speckled value for each pixel from the weighted sum 

of the values through a convolutional process in a fixed window (Frost et al., 1982). The Gamma 

filter is a maximizing à posteriori (MAP) filter that assumes the data are gamma distributed and 

calculate the pixel values based on Bayesian analysis (Baraldi & Parmiggiani, 1995). Filter kernel 

sizes can greatly influence the results; too large a filter can result in loss of details while too small 

a filter might not be effective to reduce speckle (Yu & Acton, 2002). However, speckle noise 

inherently exists in the radar images and cannot be completely removed even after applying multi-

looking and speckle filters, which can add more uncertainties when interpreting the SAR images 

on a pixel basis. 

Radiometric calibration is critical to standardize the backscatter information and make features 

in different images acquired from different sensors comparable. Look Up Tables (LUTs), which 

calculate the backscatter values with a range-dependent gain, are usually contained in the 

downloaded product folder as the calibration annotation dataset. Radar brightness coefficient (β0) 

is the reflectivity in slant range geometry, and can be calculated as: 

𝛽𝑗
0 = (𝐷𝑁𝑗

2)/𝐴2𝑗     (2.11) 

DNj refers to the digital number for the jth pixel from the start of a range line in a detected image, 

A2j is the scaling gain value for the jth pixel. Radar brightness coefficient in dB can be calculated 

as: 

𝛽𝑗
0(𝑑𝐵) = 10 ∗ 𝑙𝑜𝑔10[(𝐷𝑁𝑗

2)/𝐴2𝑗]    (2.12) 

Radar backscatter coefficient (σ0) refers to the strength of radar signals for a pixel, and can be 

calculated as:  

𝜎𝑗
0 = 𝛽𝑗

0 ∗ (𝑠𝑖𝑛𝜃𝑗)     (2.13) 
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ϴj is the incidence angle at jth pixel. The backscatter coefficient in decibel can be calculated as: 

𝜎𝑗
0(𝑑𝐵) = 𝛽𝑗

0(𝑑𝐵) + 10 ∗ 𝑙𝑜𝑔10(𝑠𝑖𝑛𝜃𝑗)   (2.14) 

To identify the coordinate system and reduce the distortion of the image, geocoding converts the 

slant-range or azimuth geometry to a map projection. Using a Digital Elevation Model (DEM), the 

correction process is called Terrain Geocoding, whereas Ellipsoidal Geocoding refers to the 

process without a DEM. Then, the pixels from SAR images should be resampled to the according 

coordinate system (ESA, 2017). 

2.3 Radar Remote Sensing for Snow Monitoring 

SAR can provide images at relative fine spatial resolutions without the influence of weather 

conditions, especially at C-band or lower frequencies. Therefore, it provides an opportunity to 

monitor terrestrial snow cover changes. As the snow structures can change over time, it is 

important to understand the physical interactions between snow and radar signals. Previous 

research using SAR for snow monitoring provides further insight for this thesis. 

2.3.1 Snow Dielectric Properties 

Snow is a dielectric material that cannot easily conduct electric current, and its dielectric 

properties influence its response to microwave. The dielectric constant, also known as relative 

permittivity, is used to quantify a material’s electromagnetic propagation properties (Woodhouse, 

2005). The dielectric constant at 0 °C for air is 1, pure ice is 3.15 and water is 80 (Hallikainen, 

1977). As the dielectric constant of water and ice are extremely different, the dielectric properties 

of snow are generally dominant by the amount of water in a snowpack with the same volume under 

a given microwave frequency (Ulaby et al., 1977). Dry snow is composed by ice and air, whereas 

wet snow is a mix of ice, air and liquid water in ripening and output phases; therefore, dry snow 

and wet snow have different responses to microwave (Evans, 1965; Ulaby & Stiles, 1981). As 

liquid water will cause high dielectric loss so that the snowpack will emit more microwave energy, 

the penetration depth of microwaves will decrease (Rott et al. 1988; Shi & Dozier, 1997). It was 

found that when the snowpack gets wet around 4-5% liquid water content, the penetration depth 

of radar signal will decrease to 3-4 cm (Mätzler and Schanda, 1984). Moreover, the physical 

properties of snowpack, such as snow density, grain size and temperature can also influence the 

snow’s dielectric properties (Chang et al., 1982; Rosenfeld 2000). Ulaby and Stiles (1981) 
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concluded that “the dielectric constant of snow is a function of frequency, snow wetness, 

temperature and density, among other less influential parameters”. 

2.3.2 Snow Backscattering Mechanisms 

Generally, the frequency-dependent backscatter of a snowpack generates from two scattering 

types, which are surface and volume scattering. Surface scattering can occur at the snow-ground 

interface, interfaces between snow layers and the air-snow interface. Volume scattering occurs 

within the snowpack, where the signals interact with ice crystals in an air background 

(Ulaby et al., 1984). Rott et al. (2010) summarized the total backscatter of a snowpack as: 

𝜎𝑡 = 𝜎𝑔′ + 𝜎𝑔𝑣 + 𝜎𝑣 + 𝜎𝑎𝑠    (2.15) 

where σg’ is the surface scattering from the ground interface, σgv is the scattering from 

interactions between ground surface and snow volume, σv is the volume scattering from the 

snowpack, and σas is the surface scattering at the air-snow interface (Figure 2.6). 

 

Figure 2.6 Potential scattering mechanisms of snow-covered ground, Pt: transmitted signal, Pr: 

received signal, σg’: surface scattering from the ground interface, σgv: scattering from 

interactions between ground surface and snow volume, σv: volume scattering from the 

snowpack, σas: surface scattering at the air-snow interface (Rott et al., 2010) 

For a snowpack, because the penetration depth is based on the frequency of microwave, the 

interactions of scattering mechanism are different for different frequencies. As C-band can usually 

penetrate through a seasonal dry snowpack, there is no scattering interaction with the snowpack, 

and the scattering will mainly come from the ground. At shorter wavelengths such as Ku-band, 

different types of scattering will occur in a dry snowpack. Ground surface scattering and volume 
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scattering will dominate because the surface scattering from the air-snow interface and interfaces 

of snow layers can be ignored due to low dielectric contrast between the boundaries. Therefore, 

parameters such as snow density, snow grain size, snow water equivalent and ground properties 

can influence the backscatter characteristics of dry snow. On the other hand, where the snow is 

wet, there is a decrease of the penetration depth of C-band and the backscatter comes from surface 

scattering of air-snow interface and volume scattering. Thus, snow properties such as surface 

roughness and liquid water content can influence the frequency-dependent scattering strength (Shi 

et al., 1995). The surface scattering will increase with rougher wet snow surface, while volume 

scattering will dominate when the wet snow surface is smooth (Guneriussen, 1998). 

2.3.3 Factors influencing Wet Snow Monitoring 

The backscatter of a snowpack will behave differently under different parameters of a SAR 

system, so it is important to find optimal conditions of datasets for wet snow mapping. Frequency, 

polarization and incidence angle of a SAR system are three key factors for identifying wet snow. 

By understanding the factors, researchers will be able to use the suitable datasets.  

2.3.3.1 Frequency 

At specific frequencies, microwaves can penetrate part of a dry snowpack without any absorption 

of energy, but the penetration depth is decreased when the liquid water content increases. The 

penetration depth δp (m) of a wave in snow is dependent on λ and the real and imaginary portions 

of the relative permittivity ε’ and ε” of snow: 

δ𝑝  =  
λ√ε′

2πε"
        (2.16) 

Figure 2.7 presents the relationship between penetration depth and snow liquid water content for 

different frequencies. Therefore, it is possible to discriminate wet snow from dry snow assuming 

snow is present. Different microwave frequencies show different sensitivities to snow wetness, 

and studies have found that C-band is very sensitive to wet snow and can penetrate through a 

seasonal dry snowpack (Matzler & Schanda, 1984). Therefore, dry snow is generally transparent 

under C-band and can hardly show differences from bare ground, while wet snow has an explicit 

reflection characteristic due to the high dielectric contrast with non-wet snow surfaces. C-band is 

an excellent microwave frequency to identify wet snow (Rott & Nagler, 1993). 
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Figure 2.7 Relationship between liquid water content and penetration depth in snow for different 

frequencies (Ulaby et al., 1984) 

2.3.3.2 Incidence angle 

The influence of incidence angle of the SAR observation on the backscatter from wet snow 

covered surface and non-wet snow surface can be significant. Generally, surface scattering 

dominates the backscatter at near-nadir incidence angles, while at large incidence angles, 

backscatter mainly consists of volume scattering (Ulaby et al., 1986). Matzler and Schanda (1984) 

found that backscatter of 10.4 GHz (X-band) at incidence angles greater than 20° can differentiate 

wet snow from dry snow. Baghdadi et al. (1998) explored the relationship between incidence 

angles and C-band HH, VV and VH polarizations when identifying different land surface types 

covered by wet snow, and found that incidence angles over 30° have fewer influences on the 

classification results. Guneriussen et al. (2000) concluded that wet snow and bare ground showed 

more distinct differences at large incidence angle (45°) of RADARSAT S7 mode (C-band) than 

the differences at lower incidence angle (24°) of S2 mode. Magagi and Bernier (2003) suggested 

that RADARSAT S7 mode, which has a range of incidence angle from 45 to 49°, is more suitable 

to map wet snow than S1 mode which is in low incidence angles from 20 to 27°.  
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2.3.3.3 Polarization 

Early studies on wet snow mapping (Bernier et al., 1994; Baghdadi et al., 1998) mainly focused 

on single co-polarization data (HH/VV) due to the availability, and with accessibilities of dual-

polarized and full-polarized images, the results showed higher accuracies (Park et al., 2014; Nagler 

et al., 2016). Ulaby et al. (2004) concluded that the influences from incidence angle on the contrast 

of backscatter between wet snow and non-wet snow surfaces are different under co-polarization 

and cross-polarization. For co-polarized images, low incidence angles will result in a less clear 

difference of backscatter; while for cross-polarized images, the differences remain clear. On the 

other hand, at high incidence angles, cross-polarized backscatter would be noisy. Therefore, a 

combination of cross- and co-polarization images should be used to identify wet snow (Nagler et 

al., 2016). 

2.3.4 Methods on Wet Snow Mapping with SAR 

Early studies of wet snow mapping were based on backscatter models and experimental tests of 

aircraft SAR system with multiple frequencies (Bernier, 1987). As SAR satellite systems start 

providing repeated pass products, multi-temporal images are involved and enable frequent 

monitoring of wet snow. A change detection method by using the image ratio to compare two 

images pixel by pixel has been developed based on the low backscatter of wet snow compared to 

dry snow for wet snow mapping with C-band SAR images by Rott and Nagler (1993). The change 

detection method first calculates the ratio between images with snow and without snow for the 

same study area, and then applied a threshold of -3 dB to map wet snow areas with values less than 

-3 dB. Although only single polarization images were used, by involving multi-temporal images, 

the accuracy of wet snow identification has been greatly improved. Other studies have developed 

based on this basic method but modified this method for better classification results under different 

environmental conditions. Baghdadi et al. (1997) added minimum and maximum range for wet 

snow backscatter coefficients to improve the classification accuracy. Nagler and Rott (2000) 

improved the original method for a mountainous area by using the average value of several 

reference images to reduce the environmental influences on backscattering, combining ascending 

and descending images to reduce layover effects and masking out the layover and shadow areas to 

refine misclassifications. The study also suggested that RADARSAT S7 mode is more suitable 

than S1 mode for wet snow mapping in mountainous terrain because of the great influences of 
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small incidence angles on co-polarization. With the availability of multi-polarized images, 

researchers have improved wet snow detection methods and combined the co- and cross-

polarizations to reduce the influences from incidence angle. Nagler et al. (2016) applied the change 

detection method on Sentinel-1A dual polarization (VV VH) images with a -2dB threshold, and 

combined the ratio images calculated from the two polarization modes with a weighted function 

into a single channel based on the local incidence angle. Because the study area is in a mountainous 

region, layover mask and radar shadows were generated to refine the results. Instead of using a 

fixed threshold, Besic et al. (2015) added a stochastic process to identify the probability for wet 

snow. Rondeau-Genesse et al. (2016) generated a formula based on the Nagler’s change detection 

method to calculate the probability of wet snow in a basin area, and this method was able to identify 

the wet snow areas with low liquid water content and influenced by forest cover. Because of the 

visualization of snow cover, visible-infrared images are often used to refine and validate the 

classification results when available. Additionally, some studies (Haefner & Piesbergen, 1997; 

Solberg et al, 2004) used a data fusion method to combine the optical and SAR images pixel by 

pixel to map the snow-covered areas.  

The various methods described above mainly used single or dual polarized images, while with 

accessibilities of full polarimetric data, researchers developed more robust methods based on the 

variations of the physical parameters among the different snow types from decompositions. 

Supervised classification such as Support Vector Machine (SVM) methods are used to classify the 

wet snow-covered areas with the polarimetric features (Huang et al., 2011; Park et al., 2014). SVM 

is commonly used because of its capability of solving non-linear problems with limited samples. 

He et al. (2015) applied a SVM classifier based on the training samples generated from the 

polarimetric parameters and in situ datasets to identify the snow cover changes and resulted in a 

high accuracy of 90%.  

In summary, wet snow mapping methods have improved as more frequent and accessible data 

have become available. The change detection method of Nagler and Rott (2016) has been proven 

to be robust for mountainous area, while it has not been widely tested in non-mountainous areas. 

Moreover, a common threshold of -2dB was used for several studies, however, the threshold might 

be different based on the local statistics of the study area. Studies have observed the differences 

between wet snow and non-wet snow can vary due to the local incidence angles and surface 
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properties of snow (Guneriussen, 1997). Therefore, it is important to assess the applicability of the 

method to different study areas, especially areas with complicated conditions. 
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Chapter 3 Methodology 

3.1 Study Area 

The study area is located within Southern Ontario, Canada (around 42~44°N, 79~83°W). As the 

most populated area in Ontario, Southern Ontario has well-built infrastructure and developed 

industries. Apart from the urban areas, agricultural and natural lands cover the majority of the 

region. The elevation for the study area is relatively flat, while the highest areas are located near 

Dufferin and western of Simcoe counties. Because of the Niagara Escarpment, there are limestone 

cliffs from the Niagara peninsula running northwest to the Bruce Peninsula from Niagara (Ontario 

Ministry of Natural Resources, 2018). There is abundant freshwater storage from the Great Lakes, 

watercourses and inner lakes within this region. With a continental climate, Southern Ontario’s 

weather is tempered the Great Lakes, which generally promotes warmer temperatures than the 

other parts of Ontario (Teskey, 2012). During the winter, this region typically undergoes a long 

period of 6 months (November-April) with heavy snowfall. The average annual snowfall can vary 

from south to north around 120-200 cm from south to north (Environment Canada, 2010). Sturm 

and Holmgren (1995) classified the seasonal snow cover of Southern Ontario as maritime snow, 

which has frequent snowfall producing relatively deeper snow accumulations. Snowmelt may 

occur during the winter period and early spring. Researchers have monitored the reduction of snow 

cover in Canada and trend of early snowmelt season and have predicted the continuing decrease 

through 2025 using climate models (Mudryk et al., 2017). Moreover, the dominant factor 

controlling inter-annual variability of snow cover in Southern Ontario is changing to surface 

temperature rather than precipitation events (Mudryk et al., 2017). With potential influences from 

climate change, abnormal winters occurred in Southern Ontario recently with extreme events such 

as warm temperatures and snowstorms, which might increase flood events, decrease the 

sustainability of ecosystem and infrastructures (Mortsch et al., 2006). Therefore, monitoring snow 

cover for this region is important, and unusual snowmelt events can be an indicator of changes to 

come.  

The study area covers majority of Southern Ontario as the coverage of available Sentinel-1A 

images from 2014-2017 (Figure 3.1). 
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Figure 3.1 Study Area with Different Image Coverage for Different Time Periods 

3.2 Data 

3.2.1 Sentinel -1A Radar Images 

43 Sentinel -1A C-band radar images were acquired for this study from 2014 to 2017. Due to 

the data availability, dual polarized images from different modes and polarizations were obtained. 

To eliminate the influences of trees and grasses in the summer, the Nagler and Rott method (2000) 

suggested to only use images from the same winter period as inputs for the wet snow detection.  

Therefore, the images used in this study for a winter period were all from the end of October to 

the end of April with revisit time of 12 days. There are 14 images of 2014-2015 and 14 images of 

2015-2016 acquired from GRD EW mode with a swath width of around 400 km from HH&HV 

polarization. Additionally, 15 images of 2016-2017 acquired from GRD IW mode with a swath 

width of around 250km from VV&VH polarization. All the images are in the Level-1 Ground 

Range Detected (GRD) product format, which have been focused, multi-looked and projected into 

the World Geodetic System 1984 (WGS84). HH&HV images are medium resolution GRD 
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products with pixel spacing of 40m * 40m, and VV&VH images are high resolution GRD products 

with pixel spacing of 10m * 10m. 

The incidence angles for EW mode is in a range of 18.9° - 47.0°, and IW mode is around 31° to 

46.0°. Based on the different footprints of the images, one or two images from the same date were 

acquired to maintain the consistency of the study area coverage. The footprints of different image 

coverages are presented in Figure 3.1. The middle areas were generated from the shared areas of 

southern and northern images of different days. Appendix A lists the radar datasets used in this 

study 

3.2.2 Meteorological data 

The weather station datasets were acquired from historical climate datasets at Environment 

Canada (http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). Data were 

automatically accessed and saved by a script and included hourly air temperature and daily snow 

depth on the ground for the days with Sentinel-1A observations. The temperature was acquired for 

the specific time when the Sentinel 1A image was captured based on the metadata and was in 

degrees Celsius (°C). Snow depth was daily snow depth on the ground measured in cm, and the 

snow depth less than 0.2 cm is called a "Trace". When the temperature data is missing on the 

specific time, an average of the previous and later hour temperature is used (if available).  

Due to the availability of the datasets, there were temperature data from 35 weather stations, and 

snow depth measurement from 58 stations for Southern Ontario. However, to keep the consistency 

of time and location, only the stations that have continuous data from 2014 to 2017 within the 

coverages of three year’ images were kept. In total, there were 18 stations selected, with the 

locations presented in Figure 3.2. Overall for 43 days with 18 stations, there were no missing 

values for temperature, but there were 157 records missing for snow depth data.  
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Figure 3.2 Weather Station Location Map 

3.2.3 MODIS Snow Cover Product MOD10L2C 

The MODIS/Terra Near Real Time (NRT) Coarse Snow Cover 5-Min L2 Swath 5km 

(MOD10L2C) provides the coverage of snow for each pixel in a resolution of 500m. MODIS snow 

cover product were generated from a snow mapping algorithm, which applied the Normalized 

Difference Snow Index (NDSI) and other physical criteria (NASA, 2017). The binary snow cover 

map indicated the existence of snow with pixel value of 1, whereas 0 stands for no snow. 

3.3 Methodology 

3.3.1 Preprocessing  

Several preprocessing steps were applied on the Sentinel 1-A GRD images to reduce the speckle 

noises and standardize the images. Sentinel 1-A images were imported into the Sentinel 

Application Platform (SNAP) produced by ESA. An automatic workflow was conducted with the 

graph builder. The first step was to apply precise orbit files loaded from SNAP’s server, which can 

update the orbit state vector for more accurate information. To standardize the backscatter values, 

the images were calibrated to sigma nought (𝜎𝜊). Then, to reduce the speckle noise, a Refined Lee 

Speckle Filter was applied which not only reduces speckle but also preserves edges and point target 
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signatures (Lee et al., 2006). For VV & VH images, an extra step of multi-looking, which used 

four ranges and four azimuth looks, was employed to reduce the large processing size and to make 

the pixel size around the same as the HH & HV images for further comparison. For the images 

within the same footprint, co-registration was performed based on the ground-control points to 

align the images in a pixel basis, and the co-registered images were generated into one stack. A 

multi-temporal speckle filter was applied on the image stack to reduce speckles in a temporal 

manner.  

 

Figure 3.3 Graph Builder Workflow for HH&HV Images 

 

Figure 3.4 Graph Builder Workflow for VV&VH Images 

 

Figure 3.5 Workflow of Co-registration 
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3.3.2 Calculation of Reference Image 

Based on the change detection method of Nagler and Rott (2016), the selection of reference 

image is critical for identifying the wet snow. As suggested by the previous studies, an average of 

images without wet snow in the winter period is suitable to serve as a reference (Nagler et al., 

2016). Due to the definition and physical properties of wet snow, when snow depth is greater than 

0 cm and temperature is above 0 °C, potential existence of wet snow can be assumed. Therefore, 

using the weather station temperature data, potential wet snow days were identified and 

summarized in Table 3.1. The images from the three winter periods were in different coverages, 

therefore, a reference image was calculated for each coverage by averaging the images from the 

days without potential wet snow. 

Table 3.1 Potential Wet Snow Days 

Year Dates 

2014 11.22, 12.16, 12.28 

2016 1.25, 3.25, 4.6, 12.22 

2017 1.3, 1.15, 2.20, 4.9  

 

3.3.3 Calculation of Ratio Image  

Because of the decreased backscatter from wet snow compared with that from non-wet snow, 

the differences between an image with potential wet snow and the reference image are able to 

provide clues of existence of wet snow. Therefore, the ratio between an image with potential wet 

snow and the reference image of the same polarization can be calculated as:  

𝑅𝑎𝑡𝑖𝑜(𝑑𝐵) = 10 ∗ log10(
𝜎𝑜  (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

𝜎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑜  (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

)   (3.1) 

To examine the influences from the terrain, a Range Doppler Terrain Correction was applied on 

all the images, which compensates the distortions from the terrain. As there were no wet snow 

mapping studies for this study area, an experimental threshold of -2dB from Nagler (2016) was 

applied to generate a first estimate binary snow map, where a pixel with a ratio less than -2 dB was 

defined as wet snow: 

𝑅𝑎𝑡𝑖𝑜(𝑑𝐵) <  −2 dB    (3.2) 
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3.3.4 Regions of Interest (ROIs) Analysis 

ROIs were selected to further evaluate the change detection results by analyzing the backscatter 

patterns of different polarizations and time periods and influences from terrain. Because the study 

area has variations in land cover types and geophysical properties, to obtain more homogeneous 

characteristics of the ground, agricultural lands were chosen as the ROIs. Moreover, the ROIs were 

created adjacent to weather stations so that the weather datasets could be seen as the ground 

reference. Each ROI was a 3*3-pixel neighbourhood around the weather station producing a total 

of 18 ROIs, within the study area (for locations see Figure 3.2). To understand the relationships 

between ratio, polarization and incidence angle, the statistics were evaluated for each ROI. The 

summarized values were calculated by averaging the values of the pixels in each ROI. Table 3.2 

lists the ROIs for each image by winter period. Along with the closest weather station to the ROI. 

North, south and middle refer to the different image extents shown in Figure 3.1. 

Table 3.2 ROI Distribution 

2015-2016 

HH&HV 

2014-2015 

HH&HV 

2016-2017 

VV&VH 

Adjacent 

Weather Station 

North ROI 1 ROI 4 South ROI 4 Hamilton RBG CS 

North ROI 2 ROI 5 South ROI 5 Kitchener Waterloo 

North ROI 3 ROI 6 South ROI 6 Elora RCS 

North ROI 4 ROI 7 Middle ROI 1 Goderich 

North ROI 5 ROI 8 North ROI 1 Mount Forest (AUT) 

North ROI 6 ROI 9 North ROI 2 Wiarton A2 

North ROI 7 ROI 10 North ROI 3 Collingwood 

North ROI 8 ROI 11 North ROI 4 Egbert CS 

North ROI 9 ROI 12 North ROI 5 Barrie 

North ROI 10 ROI 13 North ROI 6 Lagoon City 

 ROI 14 South ROI 7 Toronto Buttonville A 

South ROI 1 ROI 2 South ROI 2 Delhi CS 

South ROI 2 ROI 1 South ROI 1 London CS 

South ROI 3   Ridgetown RCS 

South ROI 4   Harrow CDA 

South ROI 5   Windsor A 

South ROI 6   Sarnia 

Middle ROI 1 ROI 3 South ROI 3 Hamilton A 
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3.3.5 Sensitivity Analysis 

To analyze the performance of different thresholds, a sensitivity analysis was conducted. A 

series of thresholds of -0.5, -1, -1.5 and -2.5dB was tested on the ratio images. To analyze the 

influences from temperature near freezing point and shallow snow on determining the wet snow, 

temperature and snow depth for wet snow were plotted for each threshold. Because the reciprocity 

assumption applies in the case of monostatic SAR systems, cross-polarizations can be seen as the 

same. Therefore, ratios from cross-polarizations (HV and VH) were assumed equal.  

3.3.6 Evaluation 

In order to evaluate the effectiveness of the thresholds, accuracy assessment was performed for 

each year and each polarization. As the ROIs were created adjacent to the weather stations, the 

temperature and snow depth information were used as the reference “truth”. While some of the 

snow depth datasets were missing, MODIS snow products were added to confirm the existence of 

snow. Confusion matrices (Congalton, 1991) were generated based on the number of according 

matched ROIs. To evaluate the performance of the threshold, accuracy, precision, recall and the 

F1 score were calculated for each polarization of each winter period. To demonstrate the 

calculation of these metrics, an example confusion matrix is showed in Table 3.3. 

Table 3. 3 An Example Confusion Matrix 

 Predicted Positive Predicted Negative 

Actual Positive True Positives (TP) False Negatives (FN) 

Actual Negative False Positives (FP) True Negatives (TN) 

 

Accuracy refers to the overall correctness of both wet and non-wet snow identification, which is 

the ratio between the correctly predicted wet and non-wet snow and the total pixels, it lies in a 

range of 0 to 1. An accuracy of 1 means all the wet and non-wet snow are correctly predicted, and 

an accuracy of 0 means there are nothing predicted and can be calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
     (3.1) 

Precision is the ratio between correctly predicted wet snow and the total predicted wet snow and 

non-wet snow for the sample and ranges between 0 and 1. A precision of 0 means that there are no 
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existing wet snow pixels correctly classified. A precision of 1 means that all existing wet snow 

pixels are correctly classified and that there are no false positives. Precision is calculated thus: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (3.2) 

Recall is the ratio of the number of correctly predicted wet snow sample pixels to the total 

number of true wet snow population pixels and falls into a range of 0 to 1. A recall of 0 means 

there is nothing classified as wet snow even though there are wet snow pixels present, and a recall 

of 1 indicates that all the wet snow pixels are correctly classified. Recall can be calculated by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
     (3.3) 

The F1 score is a weighted average of precision and recall, where the contribution from precision 

and recall are equal, and is calculated as: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (3.4) 

 

3.3.7 Classification 

Studies have successfully shown that classification approaches can yield robust wet snow 

mapping results (Huang et al., 2011). Therefore, the ratio threshold method was compared with a 

classification approach applied to the ratio images. Because the 2014-2016 winter images were 

greatly influenced by incidence angles, the classification was only applied on 2016-2017 winter 

images. Therefore, there were 10 ratio images involved in total. Labels of images were generated 

by identifying agricultural land with wet snow or not wet snow near the weather stations. A 9*9-

pixel area was searched for agricultural land surrounding each weather station pixel. Most 

meteorological variables such as temperature and humidity can be similar in a local scale of around 

50km, while sometimes there might be transitions in a short distance within 10km (Van der Voet, 

1994). Therefore, to obtain homogeneous weather conditions, it was assumed that the 360m*360m 

area can relatively accurately represent the measured meteorological conditions from a weather 

station in our study area. For the convenience of processing and the limited influences from terrain 

of the ROI areas, the features used in the classification were ratio images from co- and cross-

polarizations without terrain correction. In the weather records of 14 stations for 5 days, there were 

41 out of 70 records with wet snow, so that datasets generally had balanced amount of wet and 



 32 

non-wet snow. Two supervised classifiers were used to compare with each other. First, logistic 

regression (LR) was used. This is a binary classifier which estimates the likelihood of a pixel class 

membership based on a maximum likelihood (Menard, 2018). Support Vector Machine (SVM) is 

a non-parametric approach based on the statistical learning theory by finding a hyperplane that is 

at a maximum distance from the nearest points from the two classes to better separate the datasets 

(Vapnik, 1995). SVM was chosen because of its capability of identifying non-linear boundaries 

using small number of sample datasets (He et al., 2015). A Radial Basis Function (RBF) kernel 

SVM was used in this study. To validate the performance of the classifiers, cross-evaluation was 

employed to separate the obtained datasets for training and testing purposes. A ten-fold cross-

evaluation was used to split the labeled pixels into 10 consecutive folds, where only one of the 

subgroups was used for testing while the others were used for training each time. The accuracy 

assessment was given by averaging the modelling metrics of each fold. Accuracy, precision, recall 

and f1 score were included in the metrics. A parameter C, a penalty parameter that “trades off 

misclassification of training examples against simplicity of the decision surface” (“RBF SVM 

Parameters”, 2017), was tuned for each classification to find the best accuracy, which was then 

compared with the threshold results. Although the classifications were applied to the whole scene, 

there were varying coverages of snow in the whole scenes, with many more non-wet snow pixels 

than wet snow pixels. As the model was built based on balanced datasets, the application on the 

whole scene would likely bring more misclassifications of non-wet snow into wet snow.  

The models output the probability of a sample (a pixel) belonging to wet snow. The probability 

ranges from 0 to 1, where a threshold can be used to determine whether the pixel was classified as 

wet snow or non-wet snow. The simple default thresholds for logistics regression and SVM is 0.5. 

As part of the threshold tuning process, a recall and a false positive ratio can be obtained for each 

threshold. The false positive rate is calculated as: 

𝐹𝑃 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
      (3.5) 

A receiver operating characteristic (ROC) curve can be generated by having false positive rate 

as x-axis and recall as y-axis, which shows the trade-off between these two metrics (Fawcett, 2006). 

Plotting the ROC curve is a common method to deal with the imbalanced datasets and to help tune 

the probability of threshold (Sun et al., 2009). Since the datasets from whole scenes were heavily 

imbalanced, a high false positive ratio will likely result in a large number of misclassifications of 
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non-wet snow. By trading off some portion of the recall, the false positive ratio should be reduced. 

Therefore, ROC curves for classifiers were generated to understand the relationship between recall 

and false positive rate. Moreover, precision and recall curves were also plotted to observe the 

influences of trade-off on recall. Due to the imbalanced data for the whole scene, the default 

threshold of 0.5 needed to be adjusted. Having determined the threshold, binary snow maps were 

generated by applying the classifiers onto the whole study area. The classification process was 

implemented in Python with Scikit-learn library.  

The workflow for methodology is shown in Figure 3.6. Figure 3.6 (a) presents the workflow for 

the change detection, and (b) shows the factors analyzed in ROI analysis and (c) shows the 

classification workflow. 
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(a) Change Detection Workflow 

 

(b) Factors Analyzed in ROI Analysis 

 

(c) Classification Workflow 

Figure 3.6 Methodology Workflow 



 35 

Chapter 4 Results 

4.1 Standard Thresholding Results 

Binary wet snow maps were generated for each polarization by applying the -2dB threshold on 

the ratio images. Figure 4.1 shows an example of the ratio images and binary wet snow maps for 

December 16, 2014. From the ratio images, the distribution of low backscatters could be observed 

from the explicit dark areas in the middle from both polarizations, whereas the southern areas were 

bright. From the binary snow maps, potential wet snow distributed near Barrie and Lake Simcoe, 

while there were little in southern areas. Figure 4.2 shows all binary snow maps from 2014 to 2017, 

and a modeled snowpack temperature map from NOAA SNODAS products each day for the 

nearest time to the time when the S1A image was captured was also presented to demonstrate the 

distribution of snow. Generally, the distribution of identified wet snow roughly aligned with the 

existence of wet snow. It can be observed that on November 22, 2014, the binary map for HV 

shows larger areas of existence of wet snow than HH images, which aligns with the existence of 

snow cover. December 28 identifies wet snow in the middle areas where snow cover map shows 

none. Binary maps of January 3, 2017 show more wet snow in southern areas than in the north. 
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Figure 4.1 An example of change detection result from 23:07 UTC, December 16, 2014 (a) is the 

preprocessed σo HH polarized image; (b) is the reference image averaged from images 

without potential wet snow; (c) is the ratio image calculated from (a) and (b); (d) is the 

terrain corrected ratio image; (e) is the binary wet snow map from thresholding with wet 

snow represented in black against a basemap of land, water and forest cover ; (f)-(j) are the 

results for HV images.  
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Figure 4.2 Binary snow maps of wet snow and NOAA SNODAS Snowpack Temperature maps. 

Each date (a) - (i), shows: wet snow from the co-polarization data (left); cross-polarized 

data (middle) with wet snow represented by the black pixels against a basemap of land, 

water and forest cover; SNODAS maps of snowpack temperature (right).  
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Figure 4.2 (cont.)  
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Figure 4.2 (cont.)  

 

4.2 ROI Analysis to Determine Optimum Threshold 

4.2.1 Ratio 

The ratio values and wet snow conditions for each ROI is summarized in Appendix B. The table 

listed the average ratio values for the ROIs from dates with potential wet snow (listed in Table 3.1) 

and identified if there was wet snow or not based on ground reference datasets.  

 



 40 

4.2.2 Influences from Terrain 

The pixel ratio values from equation 3.1 of ROI pixels were recorded before and after terrain 

correction to compare the influences from terrain of the study area on the ratio values. Since the 

terrain of the ROIs were relatively flat and gently undulating, the terrain should not influence the 

ratio values. By summarizing the statistics, it can be observed that the ratios did not change 

significantly, which indicated that the terrain correction did not influence the ratio values. Figure 

4.3 shows the comparison of ratios before and after terrain correction for each year. The graphs 

show that the relationships between the uncorrected and corrected image ratio data are very strong 

and fall along the 1:1 line of agreement. This was for both co- and cross-polarized image data. The 

average backscatter values are calculated and summarized in Table 4.1, and the values are 

relatively similar. Standard error is also calculated for each pair of comparison and summarized in 

Table 4.1, and the values are relatively small, which indicate the less spread of data points and 

reliability of the mean (McCloskey & Ziliak, 1996). Therefore, these results indicated the small 

influence of terrain on backscatter values for this region. Additionally, terrain correction did not 

make huge changes for both cross and co-polarization. 

 

Figure 4.3 Comparisons of Ratio before and after Terrain Correction for 2014-2017 
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Figure 4.3 (cont.) 
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Table 4.1 Average Backscatter before and after Terrain Correction 

Year Polarization Original Terrain Corrected Standard Error 

2014-2015 HH -0.83 dB -0.80 dB 0.30 

 HV -0.26 dB -0.24 dB 0.46 

2015-2016 HH -0.60 dB -0.62 dB 0.31 

 HV -1.02 dB -0.89 dB 0.36 

2016-2017 VV -1.10 dB -1.08 dB 0.26 

 VH -1.11 dB -1.12 dB 0.43 

 

4.2.3 Relationship between Local Incidence Angle and Ratio 

To understand the influences from local incidence angles, the relationships between ratio of wet 

snow and local incidence angle is plotted in Figure 4.4. The first two plots summarize ratios from 

HH and HV polarized images for 2014 to 2016. Trend lines are generated based on the median 

values for each incidence angle range. There are some tendencies that can be observed. The slope 

of the trend line for HH polarization is steep, where the ratios tend to decrease with the increased 

incidence angle, although it flattens out after around 30°. Rations from HV generally remain 

negative with little influences from the angle as shown by the gentle sloping trend line. The last 

two plots are generated from VV and VH polarized images for 2016 to 2017, and the slopes of the 

trend lines are relatively flat, which do not show great variations from positive to negative values 

with the incidence angles. 

(a)   

Figure 4.4 Local Incidence Angle and Ratio of Wet Snow for (a) HH Polarized Images, (b) HV 

Polarized Images, (c) VV Polarized Images and (d) VH Polarized Images 
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(b)  

(c)  

(d)  

Figure 4.4 (cont.) 
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4.2.4 Variations of Temperature and Snow Depth 

Because the incidence angles had great influences on images from 2014-2016, only the ratios 

from the ROIs with incidence angles over 30° were used in exploring temperature and snow depth 

relationships. Additionally, only the ROIs contained potential wet snow with available snow depth 

and temperature were examined. The trace snow depth was represented as 0.1cm. Moreover, the 

weather datasets for the thresholds from the sensitivity analysis were also plotted. The temperature 

and snow depth are plotted for VV and VH/HV in Figure 4.5. All the points plotted were identified 

as wet snow from the meteorological data, where the blue dots represent the classified wet snow 

from threshold, and red dots represent non-wet snow. It can be observed that the number of 

misclassified wet snow decreases with the increase of threshold, and the misclassified wet snow 

are mainly distributed in the boundary of freezing point of temperature and shallow snow depth. 

The plots indicate the influences of shallow snow depth and near freezing temperature, which 

would result in higher ratio values of wet snow. 
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Figure 4.5 Temperature and snow depth for ratios from VV and VH/HV images. Each pair show 

the effect of a changing threshold from -2.5 dB to -0.5 dB. (see text for further explanation) 
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Figure 4.5 (cont.) 

 

4.3 Evaluation of Thresholds for ROIs 

The results from thresholding were compared with MODIS and weather data to assess the 

accuracy of thresholds. The accuracy assessment was done separately for each polarization and for 

each winter period. Thresholds of -2.5, -2, -1.5, -1 and -0.5 dB were tested individually to analyze 

the sensitivity of the datasets to different thresholds. Table 4.2 summarizes the precision, recall, 

F1 score and accuracies. The confusion matrices for each winter period can be found in Appendix 

C.  

Generally, it can be observed that recall increases with increased threshold, which indicates the 

growing capability of identifying wet snow. However, it is at the expense of the misclassification 
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of non-wet snow into wet snow as the precision tends to decrease.  It can be noticed that even 

though the first two years have higher accuracies than 2016-2017 for -2dB threshold, the precisions 

are relatively low, which indicates the low success of identifying wet snow. For HH/HV images, 

the overall accuracies reach highest at -2dB with relatively high precision and recall, while for 

VV/VH images, the accuracies are higher in -1 and -0.5 dB with higher precision and recall among 

other thresholds. It can also be found that cross-polarized images generally have higher accuracies 

than co-polarized images. 
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Table 4.2 Accuracy Assessment for Different Thresholds 

(a) -2.5 dB Threshold 

Image Year Polarization Precision Recall F1 Score Accuracy 

2014-2015  HH 0.2 0.05 0.08 0.48 

 HV 0.5 0.11 0.18 0.55 

2015-2016 HH 0 0 None 0.73 

 HV 0.5 0.2 0.29 0.86 

2016-2017 VV 0.89 0.2 0.33 0.53 

 VH 0.85 0.28 0.42 0.56 

(b) -2 dB Threshold 

Image Year Polarization Precision Recall F1 Score Accuracy 

2014-2015  HH 0.6 0.32 0.42 0.6 

 HV 0.5 0.16 0.24 0.55 

2015-2016 HH 0 0 None 0.73 

 HV 0.43 0.6 0.50 0.88 

2016-2017 VV 0.75 0.3 0.43 0.54 

 VH 0.8 0.4 0.53 0.6 

(c) -1.5 dB Threshold 

Image 

Year 

Polarization Precision Recall F1 Score Accuracy 

2014-2015  HH 0.57 0.42 0.48 0.6 

 HV 0.5 0.16 0.24 0.55 

2015-2016 HH 0 0 None 0.73 

 HV 0.65 0.22 0.33 0.80 

2016-2017 VV 0.67 0.45 0.54 0.56 

 VH 0.75 0.53 0.62 0.63 

(d) -1 dB Threshold 

Image Year Polarization Precision Recall F1 Score Accuracy 

2014-2015  HH 0.43 0.47 0.45 0.48 

 HV 0.43 0.32 0.37 0.5 

2015-2016 HH 0.04 0.2 0.07 0.49 

 HV 0.15 0.8 0.25 0.53 

2016-2017 VV 0.68 0.65 0.66 0.63 

 VH 0.70 0.65 0.67 0.64 

(e) -0.5 dB Threshold 

Image Year Polarization Precision Recall F1 Score Accuracy 

2014-2015  HH 0.43 0.47 0.45 0.48 

 HV 0.43 0.32 0.37 0.5 

2015-2016 HH 0.13 0.8 0.22 0.47 

 HV 0.12 0.8 0.21 0.39 

2016-2017 VV 0.66 0.73 0.69 0.61 

 VH 0.67 0.78 0.72 0.66 
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4.4 Analysis of ROI Classification Results 

It was found that different parameter C did not influence the performance of the models because 

precision, recall and accuracy were similar under different C. However, to obtain more generalized 

models, a default C of 1 was used for SVM and 0.023 was used for Logistic regression. From 

Figure 4.6 (a), it can be observed that when the recall is in the range of near 0.5 to 0.8, precision 

stays in a relative stable value of around the 0.7. When the false positive rate drops dramatically 

from 0.7 to 0.4, the recall (true positive rate) only decreases from 0.8 to 0.6. To obtain the low 

false positive rate, it is necessary to sacrifice some of the recall. A similar situation can be observed 

in Figure 4.6 (b) for SVM. Recall drops in a smaller range than that of logistic regression when 

the false positive rate decreases from 0.8 to 0.2.  

 

(a) Logistic Regression 

 

(b) SVM 

Figure 4.6 Plots of Precision and Recall (left) and ROC Curves (right) for logistic regression (a) 

and SVM (b) classifications of ROIs. 
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To adjust the threshold of probability, a threshold of 0.6 was tested first. The accuracy 

assessment metrics for the cross-evaluations at different thresholds of probability for logistic 

regression and SVM are compared in Table 4.3. For logistic regression, it can be observed that 

false positive rate decreases with threshold of 0.6, while a relative high precision is remained. In 

the meantime, the recall also drops. Higher thresholds will result in lower recalls and precisions, 

so for logistic regression, the threshold of probability was adjusted to 0.6. While for SVM, from 

threshold of 0.5 to 0.6, the false positive rate does not decrease much. Thus, a threshold of 0.7 was 

tested as well, and it showed reduced false positive rate. Precision remained similar to that of 

threshold of 0.6, and recall was still kept still kept in a relatively high value. Therefore, to achieve 

the better classification result on the whole scene, 0.7 was a suitable threshold of probability for 

SVM. 

Table 4.3 Classification Accuracies 

 Logistic 

Regression 

SVM Threshold 

(-2dB) 

VV 

Threshold 

(-2dB) 

VH Threshold of Probability 0.5 0.6 0.5 0.6 0.7 

Precision 0.73 0.72 0.82 0.84 0.85 0.7 0.81 

Recall 0.84 0.56 0.86 0.83 0.77 0.26 0.3 

F1 Score 0.78 0.63 0.84 0.84 0.81 0.38         0.42 

Accuracy 0.73 0.63 0.81 0.81 0.79 0.53 0.61 

False Positive Rate 0.41 0.27 0.22 0.21 0.17 

 

To further test the sensitivity of the ratio thresholding method, Figure 4.7 shows the changes of 

accuracies of thresholds from -5 to 5 dB with an interval of 0.01dB on the labeled datasets. It can 

be observed that with the increase of threshold, recall increases with the decrease of precision. 

Accuracy reaches the highest at threshold around 0.5dB.  
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(a) VV         (b) VH    

 

(c) Relationship between Recall and Precision 

Figure 4.7 Changes of Accuracies with Ratio Thresholds 

The distribution of ratio values and the identified classes from different classification methods 

are presented in Figure 4.8. Ratio values for wet snow mainly stayed negative while some are 

mixed with non-wet snow near 0dB. Some of the wet snow pixels do not show decreased 

backscatter from non-wet snow, and Logistic Regression and SVM successfully identified these 

pixels. 
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(a) Distribution of Ratio Values  

 

(b) Distribution of Ratio Values from Logistic Regression 
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(c) Distribution of Ratio Values from SVM Classification 

Figure 4.8 Distribution of Ratio Values 
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Figure 4.9 presents the binary snow maps from the classifications and thresholds. It can be 

observed that the results from SVM and logistic regression show similar patterns with the threshold 

approach of Nagler et al. (2016) and SNODAS Snowpack Temperature maps. However, on 

January 15, the classified results identified more wet snow in the southern areas where SNODAS 

indicated no snow existence.  

 

 

Figure 4.9 Binary Snow Maps from SVM and Logistic Regression 
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Figure 4.9 (cont.) 
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Figure 4.9 (cont.) 
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Chapter 5 Discussion 

In this thesis an evaluation of Sentinel-1A SAR estimates of wet snow was conducted to test the 

Nagler et al. (2016) approach and to determine whether advanced classification approaches 

(logistic regression and SVM) provided increased performance over the Nagler et al. (2016) 

approach. Both thresholding and classification approaches used a backscatter ratio as part of the 

approach, so before comparisons were done, several factors were explored to determine their 

influence on the backscatter ratio behavior of wet snow. 

5.1 Backscatter Behavior of Wet Snow 

Generally, backscatter of wet snow under C-band SAR shows a significant decrease from that 

of non-wet snow because of the existence of liquid water. A seasonal dry snowpack is generally 

transparent to C-band SAR observations, so that the backscatter from dry snow merely consists of 

the surface scattering from the subnivean surfaces including soil and buried vegetation. Therefore, 

at C-band, dry snow cannot easily be differentiated from bare ground. The presence of liquid water 

content increases the dielectric contrast between the snow and air boundary, surface scattering 

from the air and wet snow interface and volume scattering contribute to the backscatter of wet 

snow. Furthermore, effects from terrain, incidence angle, polarization and meteorological factors 

can influence the backscatter ratio response. These factors are discussed below. 

5.1.1 Terrain 

Steep mountainous terrain typically cause layover and foreshortening image effects due to the 

side-looking viewing geometry of SAR, which will result in geometrical distortions of backscatter 

values (Nagler &Rott, 2000). Therefore, researchers usually conduct terrain correction and 

generate maps of layover, radar shadow and local incidence angles to refine the wet snow mapping 

results (Nagler &Rott, 2000; Nagler et al., 2016). From the comparisons of ratios before and after 

terrain correction in Figure 4.3 and Table 4.1, it can be observed that the impact of terrain relief in 

geometrical distortion was limited and did not affect backscatter values since the ratios after terrain 

correction remained similar with high correlation and relatively small standard error compared 

with uncorrected ratios. It can be speculated that the change detection method could be applicable 

to other low relief terrain regions. 
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5.1.2 Incidence Angle 

Previous studies concluded that for co-polarized images, when the incidence angle is greater 

than 20°, the backscatter of wet snow would significantly decrease, but surface scattering will still 

be dominant at around 23°, so that the backscatter will be greatly influenced by the surface 

properties (Baghdadi et al., 1996). If the wet snow surface is rough, it might not be able to be 

distinguished from dry snow/bare ground (Magagi & Bernier, 2003). When the incidence angle 

increases, the influences from surface scattering will decrease, which therefore will make the 

differences between wet snow and dry snow clearer. Magagi and Bernier (2003) evaluated the 

optimal conditions for wet snow mapping with RADARSAT HH data using different modes with 

different ranges of incidence angles. The mode with incidence angle of around 45° was deemed 

most suitable for very wet snow detection with a rough surface, whilst the mode with an incidence 

angle around 25° could only identify the wet snow with low liquid water content and smooth 

surface.  

From the boxplots in Figure 4.3, the relationship between local incidence angle and backscatter 

ratio is not strong because of the limited datasets and various factors influencing backscatter 

behaviors. However, from the plot of HH ratios, it can be observed that the ratios in small incidence 

angles were high, and the wet snow did not show explicit decreased backscatter from non-wet 

snow. With the increase of incidence angles, the ratio values tended to stay negative near incidence 

angle of 30°. From the summary of ratios values from 2014-2015 winter, it can be observed that 

some of the values were positive for ROIs with potential wet snow, which might be caused by the 

high backscatter from the wet snow due to low incidence angles. It can further indicate that the 

separability between wet snow and non-wet snow was not clear under low incidence angles. For 

example, on November 22, ROI 1 obtained positive high values of HH ratios with small incidence 

angles of around 26° and did not demonstrate low backscatter from wet snow, but ROI 13 and 14 

successfully identified wet snow of decreased backscatter with a moderate incidence angle of 

around 35°. Similarly, the images of 2015-2016 from HH polarizations were also acquired with 

low incidence angles, and the ratios were not explicitly decreased for areas with wet snow. On the 

other hand, for 2016-2017 winter, the ratios generally stayed negative because of decreased 

backscatter of wet snow with high ranges of incidence angles. In summary, HH polarized images 

were greatly influenced by small incidence angles and cannot easily differentiate wet snow from 

non-wet snow targets.  
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5.1.3 Polarization 

Studies have demonstrated that the influences of incidence angles are important for co-

polarizations, while cross-polarizations are not very sensitive to the angular response (Nagler et 

al., 2016). As the backscatter of the cross polarization merely comes from volume scattering, it 

should not be greatly influenced by low incidence angles, whereas the backscatter of wet snow 

from the co-polarization might be influenced. From Figure 4.3, the boxplot from HH polarized 

images tended to show a decrease of the ratio values from positive to negative towards the increase 

of incidence angles, but the ratio values from HV images generally remained negative. The VV 

and VH images did not show obvious patterns of change related to incidence angles because the 

incidence angles were relatively high. The different influences of incidence angle on polarizations 

can be observed for HV image of ROI 9 on November 22, 2014, which showed a low ratio value 

of -2.49 dB and clearly indicated the existence of wet snow, while HH image only showed a 

difference of -0.11 dB because of the small incidence angle of 26°. On January 25, 2016, ROI 1 

of southern part also showed smaller influences from incidence angle on HV image than that on 

HH image. In summary, the cross-polarized images were less sensitive to small incidence angles, 

and with high range of incidence angles, co- and cross-polarized images showed generally clear 

patterns of wet snow from non-wet snow.  

5.1.4 Meteorological Factors  

The backscatter behavior of the wet snow can be influenced by temperature, snow depth and 

specific weather events. From the plots of the relationship between snow depth and temperature 

with classified wet snow and non-wet snow of different thresholds in Figure 4.5, it can be observed 

that with increasing thresholds, the number of misclassified wet snow pixels decreased, and they 

were mainly located at the boundary of melting snow and shallow snow depth. When the snow 

depth was shallow (smaller than 5cm), the backscatter of wet snow did not show an explicit 

decrease. On the other hand, when the air temperature approaches freezing point, it can be difficult 

to determine the existence of wet snow as the snowpack might not start to melt straight away, 

especially when the snow depth is thick. For example, on December 22, 2016, the thick snowpack 

of 20 cm from ROI 1 in northern area did not show small ratio values even with -0.1°C, which is 

close to the melting point of snow.  
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Moreover, with temperatures above freezing point, the very shallow snow (<5cm) might have 

very rough surface with a similar backscatter with bare ground and make the identification of wet 

snow difficult. For example, on November 22, 2014, ROI 7 with a local incidence angle of around 

21° did not show the decreased backscatter of wet snow. The ratio of HV image was lower than 

that of HH image, but still cannot distinguish wet snow from dry snow with significant differences, 

which might be caused by the rough surface with a shallow snow depth of 2cm. The influence of 

snow depth can also be observed on December 28, 2014, the ROI 14 obtained high ratios from 

both polarizations with existence of trace snow under a moderate local incidence angle of around 

35°, which should be in the optimum range of incidence angle for wet snow mapping. On January 

3, 2017, the snow depths for ROI 1, 2 and 3 in southern part were recorded as “trace” from the 

weather station and the ratios from both VV and VH did not show differences of wet snow from 

the reference, whereas for the ROIs with snow depth around 15cm, the ratios were lower than -

2dB. Additionally, there was freezing rain occurred on March 25, 2016, when the surface of 

snowpack might be rough, and it might be frozen with the near freezing temperature, so that the 

backscatter values were relatively high and did not indicate the existence of wet snow. In summary, 

the high ratio values indicated that the air temperature close to freezing point could add 

uncertainties of identifying the snowpack conditions. Snow depth was also found to influence the 

melt process and the snow surface properties, which therefore can influence the backscatter 

behavior of wet snow and make the identification of wet snow difficult. 

The best approach to monitoring wet snow is likely using cross-polarized backscatter, which is 

shown to be least influenced by incidence angles. Moreover, images from 2016 to 2017 with VV 

and VH polarizations are recommended for wet snow mapping. 

5.2 Threshold Assessment 

5.2.1 -2dB Threshold 

Due to the imbalanced number of ROIs with wet and non-wet snow, especially in 2015 to 2016, 

the accuracy metrics cannot represent the full performance of the threshold. Therefore, even 

though the overall accuracies of images from 2014 to2016 were relatively higher than that from 

2016 to 2017, the precisions and recall data indicated that the success of identifying wet snow from 

2014 to 2015 and 2015 to 2016 winter was relatively lower than that of 2016 to 2017 winter. The 

incidence angles for the first two years were relatively low, and therefore influenced the 
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separability between wet and dry snow. As 2016 to 2017 images were obtained with high incidence 

angles, both the precision and recall for VV and VH were relatively higher. Moreover, in 2014 to 

2015, cross-polarization estimates shared similar accuracies with co-polarization estimates, while 

for the next two years, cross-polarization showed higher accuracy than co-polarization. Overall, 

most of the non-wet snow surfaces were successfully classified, while some of the wet snow areas 

were not identified successfully due to meteorological factors stated in 5.1. Moreover, the 2015 to 

2016 datasets were not representative because there were only one or two ROIs that contained wet 

snow for each day and the temperature was just below freezing point, which contained 

uncertainties for the judgement. From the accuracy assessment on 2014 to 2016 images, it is 

suggested that the 2016 to 2017 datasets with higher incidence angles are more suitable for wet 

snow mapping using the standard Nagler et al. (2016) thresholding approach.   

5.2.2 Necessity of Adjusting Threshold 

For HH/HV images, from the sensitivity analysis of thresholds, with increasing recall but 

decreasing precision, it can be seen that the success for identifying wet snow increased with the 

higher threshold, but it was at the expense of increased misclassifications of non-wet snow. From 

Table 4.2 and Figure 4.7, it was indicated a higher threshold for VV/VH images, as both the 

precision and recall increase with higher accuracy. However, from the scatter plot in Figure 4.8 

(a), it can be seen that there were a large group of mixed wet and non-wet snow in the range of 0 

to -2dB for both polarizations, and for the values less than -2dB can be merely identified as wet 

snow. Therefore, among the test thresholds, -2dB is still considered to be a suitable choice for wet 

snow detection rather than the other thresholds. This adds weight to the approach devised for alpine 

terrain by Nagler et al. (2016). 

5.3 Classification assessment 

The classification development used the 2016-2017 datasets only for which the influences of 

incidence angle on backscatter responses were minimal. From the scatter plot of the distribution 

of ratio values in Figure 4.8(a), when the ratios were less than -2dB for both co- and cross-

polarization, the pixels were all true wet snow pixels. For ratios in the range of around -2 to 0 dB 

for VH polarization and less than -2dB of for VV polarization, there was a clustering of non-wet 

snow pixels. This also corresponded to the sensitivity analysis of threshold (see Table 4.2) where 

VH obtained higher precisions and recalls than VV for different thresholds. Logistic regression 
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had a higher accuracy than the threshold method of Nagler et al. (2016) (Table 4.3) because it 

classified the pixels in the 0 to -2 dB range as wet snow, whereas SVM successfully identified the 

pixels as non-wet snow, resulting in the SVM approach giving the highest accuracies among the 

three methods. Non-wet snow pixels were mainly identified above the 0 dB ratio value, but some 

wet snow pixels were also found in this range, where the ratios might be influenced by the 

temperature and snow depth. These wet snow pixels with high ratio values might be greatly 

influenced by meteorological factors, which matched with misclassified wet snow on the boundary 

of shallow snow depth in Figure 4.5 even with high threshold of -0.5dB. As logistic regression still 

lost some of the wet snow pixels with positive ratios, SVM classified a large group of wet snow, 

which result in a more accurate identification. When applying on the whole scene, the amount of 

non- and wet snow was imbalanced, and to reduce the false positive rate, higher thresholds of 

probability were used. The recall of logistic regression was reduced by a large amount with a 

decrease in the false positive rate, while the recall of SVM generally remained constant indicating 

a superior performance of SVM. The classification results in Figure 4.9 illustrated the possibility 

of using classification methods on the whole scene although it should be noted that there were no 

ground reference observations of the whole scene to evaluate these results. Moreover, as the 

classifiers were devised for an agricultural land class, and other land cover types might control the 

wet snow phase development differently, the classifiers might not be able to provide an accurate 

mapping of wet snow for the whole scene. Nevertheless, classification methods, especially SVM, 

indicated an improved performance relative to the threshold method on account of the non-linear 

estimation characteristics of the classifiers. The threshold approach, however, was only able to 

provide a linear separation of wet snow and non-wet snow and is less able to account for non-

linear cases of wet snow presence. However, the results contained uncertainties, which existed in 

the datasets and processes and will be discussed in 5.4. 

5.4 Uncertainties 

Even though many influencing factors are explained in 5.1, there were residual influences from 

the datasets and methods used in this study.  

5.4.1 Limited Ground Reference 

For this study, there were missing data in the meteorological record, which added uncertainty to 

the interpretation of wet snow pixels. Also, there were several days when air temperatures were 
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close to the freezing point, which made the judgement of wet snow uncertain since they could have 

been slightly above or slightly below freezing. As the weather stations measured the air 

temperature, it was hard to know the conditions inside the snowpack and to determine if the snow 

started to melt. Direct and diffuse solar heating processes are capable of warming the snowpack 

even when measured air temperatures are below freezing (Dingman, 2015). Some of the snow 

depth measurements were missing, and the existence of snow was determined using MODIS snow 

cover data due to the lack of high resolution optical images. As MODIS data was in a low 

resolution of 500m, it might not be able to correctly characterize the existence of snow for places 

around the immediate vicinity of the weather stations. Another uncertainty from the temperature 

is the snow wetness. Guneriussen (1997) found that even a very low snow liquid water content 

will decrease the volume scattering. When the liquid water content is high in the snowpack, the 

surface would be rougher, and rough wet snow would be hard to differentiate from non-wet snow. 

Magagi and Bernier (2003) also observed that the snow liquid water content decreased the 

differences between wet snow and non-wet snow. For our study, due to the lack of in situ ground 

reference snow data, the snow wetness was unknown and so it was difficult to generate quantitative 

relationships between the snow surface properties and the backscatter behaviours. Therefore, since 

snow surface roughness was essentially unknown, its influence on this study remains unknown. 

Moreover, uncertainties of the ground reference data added uncertainties to the classifications 

potentially due to labelling uncertainty. Generally, from Figure 4.9 the classified wet snow maps 

aligned with SNODAS Snowpack Temperature maps with similar patterns. However, the 

SNODAS Snowpack Temperature maps were modeled, where there might be overestimated or 

underestimated temperatures, so that the wet snow maps from the classifiers were unable to be 

accurately compared and remained uncertainties of the performance. 

5.4.2 Limited ROIs  

The ROIs were only selected over agricultural land where the weather station sites were located. 

Snow accumulation on different land cover types may produce different backscatter features on 

account of the fact that different boundary conditions will produce different thermodynamic 

processes that result in more or less complex snowpack physical properties (including melt 

regimes). Whilst the three years of datasets used showed promising results, further years will be 

needed to demonstrate clear patterns of backscatter behavior from wet snow. Meanwhile, the 
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agricultural land consists of different types of agriculture plants, which might influence the wet 

snow conditions. 

5.4.3 Residual Speckle Noise  

Efforts were made to reduce speckle noise through the use of single and multi-temporal speckle 

filters. Ultimately, however, the speckle noise reduction does not completely remove the noise 

(Lee et al.,2006 ). For the wet snow mapping procedures, because the process was pixel-based, 

some of the pixels might have biased values caused by residual speckle noise, for which the 

influences remained unknown. 

5.4.4 Reference Image 

For the reference images used for each winter period from the end of October to the following 

year’s April, images from days without potential wet snow were averaged. However, the reference 

images might contain rainy days, which might make the average low and reduce the differences 

with wet snow. A good strategy for the future, therefore, would be to continually expand the 

reference image by adding suitable images without wet snow to provide more general backscatter 

features.   

5.4.5 Imbalanced Data 

As mentioned previously, the classifiers were built on agricultural land and balanced as a dataset 

containing wet and non-wet snow. However, the whole scene might have many more non-wet 

snow than wet snow pixels. Even though the threshold was tuned based on the statistics from cross-

evaluation, the real condition for the whole scene can be different and the false positive rate could 

vary for different scenes. Therefore, imbalanced data added uncertainty to the application of the 

classification models.  

Despite these various limitations, the analysis indicates that Sentinel-1A datasets can be used to 

map wet snow in Southern Ontario with both change detection method and advanced 

classifications.  

5.5 Future work 

As one of the biggest limitations was the accuracy and accessibility of the ground reference data, 

future work should include field work to obtain in situ datasets, such as snow temperature and 

snow depth to increase more confidence for wet snow judgment. Additionally, more parameters 
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of snow properties, such as snow wetness and surface roughness can be collected from field work 

and can provide more valid support for the analysis of backscatter behaviors. This study only 

involved agricultural land for assessing the wet snow classification method, while different land 

cover should be analyzed separately to test the backscatter responses in the future. By using the 

ground reference identified areas from different land cover types to label datasets, more robust 

classifiers can be built. Future studies should add the following years’ images to further validate 

the usefulness of VV and VH images from IW mode. As discussed above, this study used the same 

threshold applying on images from both polarizations, where the ratios were in different ranges 

for different polarizations, so it is suggested to involve weighted combinations of values from 

different polarizations. Nagler et al. (2016) combined the two polarizations based on the 

relationship with local incidence angle, and future work for Southern Ontario will need further 

analysis on the relationships of ratios and other parameters. Moreover, the features used in the 

classification of this study were the ratio images, and the information might be reduced from the 

original backscatter images. Therefore, involving the original backscatter images and more 

available datasets as input features might also increase the accuracy of classification. With the 

availability of full-polarized SAR data, polarimetric images will also be able to provide more 

information of snow properties, which therefore can help develop new classification methods.  

5.6 Main Findings 

This study has assessed the applicability of the change detection method on agricultural land in 

Southern Ontario and compared with classification methods. It has been noticed that the HH HV 

images used in this study were in low incidence angles, which may influence the separability of 

wet snow and non-wet snow. Therefore, for Sentinel-1A images, IW VV&VH images are more 

recommended for wet snow mapping due to the high range of incidence angles. Images of both 

cross- and co-polarization should be used together to provide more information. The change 

detection method is robust to identifying wet snow with decreased backscatter, however, due to 

the influences of different factors, threshold cannot classify all the wet snow by the simple linear 

boundary. Thus, the logistic regression and SVM classifications applied in this study have shown 

higher accuracies and indicated a new method to identify wet snow for this study area. 
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Chapter 6 Conclusion 

Given that wet snow can be an indicator of climate change and has important hydrological and 

ecological influences, monitoring seasonal snow cover changes has been an important topic for a 

long while. As SAR has the capabilities of working under all weather conditions with whole day 

image acquisition and providing images with high resolution, it has shown great advantages over 

optical systems to monitor the Earth surface. C-band has been found to be sensitive to wet snow, 

which can observe differences in backscatter of wet snow from non-wet snow. Researchers have 

developed a robust change detection method to identify wet snow with C-band SAR images 

(Nagler et al., 2016). With improved data availabilities, multi-temporal and multi-polarized images 

rather than single polarized images were widely used for wet snow mapping to provide more 

accurate results. Sentinel satellite missions have been proven to provide a large range of 

applications with easy accessibility and helpful user community. Sentinel-1A offers dual-polarized 

C-band SAR images and were used in this study for wet snow mapping. Previous studies mainly 

focused on mountainous areas; however, this study chose Southern Ontario as study area, which 

is generally flat and is a combination of developed, agricultural and natural land. This study aimed 

to assess the applicability of the conventional method to identify wet snow in a non-mountainous 

area and to compare with classification methods.  

In this study, three years (2014-2017) of Sentinel-1A images were used. Due to the data 

availability for Southern Ontario, the first two years’ images were obtained in EW model, where 

HH and HV polarized images were available, while VV and VH images from IW mode were used 

for 2016-2017 winter. Since there were no studies on wet snow mapping for this study area, change 

detection with a conventional threshold of -2dB was applied first and followed by a sensitivity 

analysis of different thresholds. ROIs of agricultural land were collected to examine the factors 

influencing the backscatter behaviors of wet snow. A comparison between the thresholding results 

and ground reference data, which were generated from MODIS and meteorological datasets were 

conducted for each winter period with each polarization. Four other thresholds were tested in the 

sensitivity analysis, but no obvious accuracy improvement was observed. Logistic regression and 

SVM classifications were applied to compare with the threshold method in order to improve the 

performance of wet snow mapping. It has been noticed that the HH and HV images from EW mode 

were in low incidence angles, and the backscatter of wet snow was greatly influenced. Therefore, 
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only VV and VH ratio images from 2016 to 2017were used in the logistic regression and SVM 

classifications. This study has proved the applicability of change detection method in a flat area 

with various factors influencing the backscatter, and a threshold of -2dB was reasonable. However, 

classification methods resulted in better performance and accuracies by identifying non-linear 

characteristics of the dataset rather than the thresholding method with simple linear boundary.  

Sources of uncertainties of this study stemmed from the availability and accuracy of data. 

Meteorological and MODIS data involved uncertainties to identify the existence of wet snow. 

Some of the backscatter behavior were difficult to explain due to the lack of ground reference to 

support. As the images only covered three years, the sample sizes for ROIs were limited. Therefore, 

it is suggested to conduct field work to collect in situ data to support classifications. Except for 

using air temperature, snow temperature can be also helpful to identify the existence of wet snow. 

Other snow properties such as surface roughness and wetness can also help better understand the 

backscatter behaviors. As this study only involved agricultural land, the method remained 

unknown for different land cover types and future work should test on different land cover. With 

more availability of data, such as following years’ images and ground reference datasets, the 

classification methods can be more robust with more features and more reliable labelled dataset. 

Full-polarized SAR images and InSAR images will also be able to provide more information of 

snow properties, which therefore can help develop new classification methods. 
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Appendices 

Appendix A List of Available Sentinel-1A Scenes 

Product Date Mode Polarization Pass 

S1A_EW_GRDM_1SDH_20141029T230729_2

0141029T230833_003051_0037C6_4992 2014-10-09 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20141110T230729_2

0141110T230833_003226_003B96_B2BA 2014-11-10 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20141122T230729_2

0141122T230833_003401_003F6E_DA7E 2014-11-22 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20141204T230728_2

0141204T230832_003576_004388_582A 2014-12-04 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20141216T230728_2

0141216T230832_003751_00478B_3819 2014-12-16 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20141228T230728_2

0141228T230832_003926_004B7A_B087 2014-12-28 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150109T230727_2

0150109T230831_004101_004F70_D1CD 2015-01-09 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150121T230727_2

0150121T230831_004276_00533B_1A2F 2015-01-21 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150202T230727_2

0150202T230831_004451_00573C_484B 2015-02-02 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150226T230726_2

0150226T230830_004801_005F7C_97FE 2015-02-26 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150322T230727_2

0150322T230831_005151_0067E5_08B2 2015-03-22 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150401T232341_2

0150401T232445_005297_006B3C_0185 2015-04-01 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150415T230727_2

0150415T230831_005501_007069_E39B 2015-04-15 EW_GRDM HH HV Ascending 

S1A_EW_GRDM_1SDH_20150427T230728_2

0150427T230832_005676_00747F_8660 2015-04-27 EW_GRDM HH HV Ascending 

     

S1A_EW_GRDM_1SDH_20151021T113654_2

0151021T113758_008250_00B9EE_3BC4 2015-10-21 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20151021T113758_2

0151021T113843_008250_00B9EE_9FB1     

S1A_EW_GRDM_1SDH_20151114T113651_2

0151114T113755_008600_00C348_0930 2015-11-14 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20151114T113755_2

0151114T113840_008600_00C348_872E     

S1A_EW_GRDM_1SDH_20151208T113651_2

0151208T113755_008950_00CD2A_8F61 2015-12-08 EW_GRDM HH HV Descending  
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S1A_EW_GRDM_1SDH_20151208T113755_2

0151208T113840_008950_00CD2A_4097     

S1A_EW_GRDM_1SDH_20151220T113650_2

0151220T113754_009125_00D1F3_4849 2015-12-20 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20151220T113754_2

0151220T113839_009125_00D1F3_4EC3     

S1A_EW_GRDM_1SDH_20160101T113650_2

0160101T113754_009300_00D6F6_1A23 2016-01-01 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160101T113754_2

0160101T113839_009300_00D6F6_F9A6     

S1A_EW_GRDM_1SDH_20160113T113649_2

0160113T113753_009475_00DBF4_8925 2016-01-13 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160113T113753_2

0160113T113838_009475_00DBF4_07D9     

S1A_EW_GRDM_1SDH_20160125T113649_2

0160125T113753_009650_00E113_44E0 2016-01-25 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160125T113753_2

0160125T113838_009650_00E113_8750     

S1A_EW_GRDM_1SDH_20160206T113649_2

0160206T113753_009825_00E61D_222D 2016-02-06 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160206T113753_2

0160206T113838_009825_00E61D_3382     

S1A_EW_GRDM_1SDH_20160218T113648_2

0160218T113753_010000_00EB48_5A73 2016-02-18 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160218T113753_2

0160218T113837_010000_00EB48_F483     

S1A_EW_GRDM_1SDH_20160301T113648_2

0160301T113753_010175_00F03B_4816 2016-03-01 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160301T113753_2

0160301T113838_010175_00F03B_8707     

S1A_EW_GRDM_1SDH_20160325T113649_2

0160325T113753_010525_00FA31_225D 2016-03-25 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160325T113753_2

0160325T113838_010525_00FA31_3420     

S1A_EW_GRDM_1SDH_20160406T113649_2

0160406T113754_010700_00FF4F_D5DF 2016-04-06 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160406T113754_2

0160406T113838_010700_00FF4F_CC9F     

S1A_EW_GRDM_1SDH_20160418T113650_2

0160418T113754_010875_010495_2718 2016-04-18 EW_GRDM HH HV Descending 

S1A_EW_GRDM_1SDH_20160418T113754_2

0160418T113839_010875_010495_70E4     

S1A_EW_GRDM_1SDH_20160430T113650_2

0160430T113755_011050_010A16_AC05 2016-04-30 EW_GRDM HH HV Descending 
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S1A_EW_GRDM_1SDH_20160430T113755_2

0160430T113839_011050_010A16_E42E     

     

S1A_IW_GRDH_1SDV_20161023T231604_20

161023T231632_013624_015D49_E820 2016-10-23 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20161023T231631_20

161023T231658_013624_015D49_E855     

S1A_IW_GRDH_1SDV_20161104T231605_20

161104T231630_013799_0162C2_078F 2016-11-04 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20161104T231630_20

161104T231658_013799_0162C2_E2A9     

S1A_IW_GRDH_1SDV_20161116T231604_20

161116T231632_013974_016830_ABAA 2016-11-16 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20161116T231630_20

161116T231658_013974_016830_3BD4     

S1A_IW_GRDH_1SDV_20161128T231605_20

161128T231630_014149_016D93_A43E 2016-11-28 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20161128T231630_20

161128T231657_014149_016D93_5244     

S1A_IW_GRDH_1SDV_20161210T231605_20

161210T231630_014324_01731F_F1F3 2016-12-10 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20161210T231630_20

161210T231657_014324_01731F_B4AF     

S1A_IW_GRDH_1SDV_20161222T231604_20

161222T231629_014499_017895_3AC1 2016-12-22 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20161222T231629_20

161222T231657_014499_017895_320C     

S1A_IW_GRDH_1SDV_20170103T231601_20

170103T231629_014674_017DEF_A981 2017-01-03 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170103T231628_20

170103T231655_014674_017DEF_C5F8     

S1A_IW_GRDH_1SDV_20170115T231602_20

170115T231627_014849_01834F_079C 2017-01-15 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170115T231627_20

170115T231655_014849_01834F_8803     

S1A_IW_GRDH_1SDV_20170127T231602_20

170127T231627_015024_0188B3_24E6 2017-01-27 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170127T231627_20

170127T231654_015024_0188B3_738D     

S1A_IW_GRDH_1SDV_20170220T231604_20

170220T231629_015374_019399_E89C 2017-02-20 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170220T231629_20

170220T231657_015374_019399_84A0     
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S1A_IW_GRDH_1SDV_20170304T231603_20

170304T231630_015549_0198E0_2C10 2017-03-04 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170304T231629_20

170304T231657_015549_0198E0_DBC4     

S1A_IW_GRDH_1SDV_20170316T231604_20

170316T231629_015724_019E19_49E2 2017-03-16 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170316T231629_20

170316T231657_015724_019E19_FF0B     

S1A_IW_GRDH_1SDV_20170328T231605_20

170328T231630_015899_01A357_DF8F 2017-03-28 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170328T231630_20

170328T231657_015899_01A357_0425     

S1A_IW_GRDH_1SDV_20170409T231605_20

170409T231630_016074_01A895_B883 2017-04-09 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170409T231630_20

170409T231658_016074_01A895_752E     

S1A_IW_GRDH_1SDV_20170421T231606_20

170421T231631_016249_01ADF0_C782 2017-04-21 IW_GRDH VV VH Ascending 

S1A_IW_GRDH_1SDV_20170421T231631_20

170421T231658_016249_01ADF0_66B4     
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Appendix B ROI Summary of Ratio Values 

 

Below are tables of average ROI ratio statistics (mean) for images with potential wet snow in all 

three years (a) 2014-2015, (b) 2015-2016 and (c) 2016-2017. 

(a) Winter 2014-2015 

Date ROI Number 
Average HH Ratio 

[dB]  

Average HV Ratio 

[dB]  

Wet or Not 

2014.11.22   ROI 1 2.04 0.32 W 

   ROI 2 0.38 0.47 W 

   ROI 3 -0.75 -0.80 W 

   ROI 4 -0.67 1.24 W 

   ROI 5 0.32 0.11  

   ROI 6 1.14 0.55  

   ROI 7 1.60 1.70 W 

   ROI 8 -1.50 -1.03 W 

   ROI 9 -0.11 -3.68 W 

   ROI 10 -1.45 0.13  

   ROI 11 -0.29 -0.96  

   ROI 12 -1.90 -1.17  

   ROI 13 -2.05 -2.30 W 

   ROI 14 -2.02 -2.05 W 

2014.12.16   ROI 1 0.36 2.06  

   ROI 2 0.80 3.23 W 

   ROI 3 -1.56 0.62 W 

   ROI 4 -0.41 1.12 W 

   ROI 5 -1.14 1.72  

   ROI 6 0.25 2.76 W 

   ROI 7 -0.41 2.41  

   ROI 8 -0.68 0.88 W 

   ROI 9 -1.26 1.54  

   ROI 10 -1.28 -0.29  

   ROI 11 -2.79 0.00  

   ROI 12 -3.09 0.12  

   ROI 13 -4.23 -1.75  

   ROI 14 -2.61 -1.16 W 

2014.12.28   ROI 1 1.45 -0.43  

   ROI 2 -0.48 0.36  

   ROI 3 -2.57 -4.99  
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   ROI 4 -2.59 -2.44  

   ROI 5 -0.22 0.26  

   ROI 6 -0.12 -1.10  

   ROI 7 -0.57 -3.17  

   ROI 8 -1.14 -0.66  

   ROI 9 0.00 -0.90 W 

   ROI 10 -2.32 0.18 W 

   ROI 11 -1.25 -2.08  

   ROI 12 -0.81 -1.96  

   ROI 13 -1.39 -2.74 W 

   ROI 14 -1.65 -0.85 W 

 

(b) Winter 2016 

Date ROI Number 
Average HH Ratio 

[dB]  

Average HV Ratio 

[dB]  

Wet or Not 

2016.1.25 South ROI 1 -1.05 -2.08 W 

 South ROI 2 -1.17 -1.66  

 South ROI 3 -2.51 -2.06  

 South ROI 4 -2.30 -3.06  

 South ROI 5 -1.65 -2.13  

 South ROI 6 -2.46 -3.18  

 Middle ROI 1 -0.56 -2.12 W 

 North ROI 1 -1.32 -3.21  

 North ROI 2 -2.29 -2.31  

 North ROI 3 -1.52 -2.10  

 North ROI 4 -1.95 -2.01  

 North ROI 5 -1.08 -0.47  

 North ROI 6 -0.10 -1.00  

 North ROI 7 -5.76 -0.95  

 North ROI 8 -1.08 -1.61  

 North ROI 9 -1.09 -0.77  

 North ROI 10 0.27 -0.84  

2016.3.25 South ROI 1 1.50 0.92  

 South ROI 2 0.24 -0.42  

 South ROI 3 1.63 0.94  

 South ROI 4 -1.02 -0.07  

 South ROI 5 -2.20 -1.20  

 South ROI 6 0.38 -0.24  

 Middle ROI 1 2.34 1.65  

 North ROI 1 0.18 -3.25  
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 North ROI 2 1.13 0.46  

 North ROI 3 3.75 3.47  

 North ROI 4 -0.07 -0.65  

 North ROI 5 1.44 -0.73  

 North ROI 6 0.00 -0.82  

 North ROI 7 -2.91 0.55  

 North ROI 8 2.86 3.15  

 North ROI 9 -2.81 -1.05  

 North ROI 10 3.32 2.57 W 

2016.4.6 South ROI 1 -0.92 -1.77 W 

 South ROI 2 -0.93 -2.01 W 

 South ROI 3 -1.77 -1.77  

 South ROI 4 -1.77 -1.72  

 South ROI 5 -2.37 -0.29  

 South ROI 6 0.42 -0.30  

 Middle ROI 1 1.06 -0.26  

 North ROI 1 -3.32 -1.42  

 North ROI 2 0.88 -0.12  

 North ROI 3 0.25 -0.92  

 North ROI 4 -0.40 0.05  

 North ROI 5 0.48 -1.55  

 North ROI 6 -1.19 -1.21  

 North ROI 7 -0.93 -1.68  

 North ROI 8 -0.69 -1.28  

 North ROI 9 0.68 -1.34  

 North ROI 10 0.79 -1.73  

 

(c) Winter 2016-2017 

Date ROI Number 
Average HH Ratio 

[dB]  

Average HV Ratio 

[dB]  

Wet or Not 

2016.12.22 South ROI 1 -2.41 -2.60 W 

 South ROI 2 -2.60 -1.52 W 

 South ROI 3 -1.64 -1.46 W 

 South ROI 4 -1.28 -0.58 W 

 South ROI 5 -3.05 -2.70 W 

 South ROI 6 -1.06 -0.65 W 

 South ROI 7 -1.70 -4.43 W 

 Middle ROI 1 -1.16 -2.28 W 

 North ROI 1 -0.59 -0.55 W 

 North ROI 2 -3.50 -1.32 W 
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 North ROI 3 -0.48 -0.72 W 

 North ROI 4 -1.88 -3.42 W 

 North ROI 5 -1.32 -2.02 W 

 North ROI 6 -1.51 -1.05 W 

2017.1.3 South ROI 1 1.36 1.97 W 

 South ROI 2 0.85 1.83 W 

 South ROI 3 1.05 1.76 W 

 South ROI 4 0.20 0.26  

 South ROI 5 -2.11 -1.75 W 

 South ROI 6 -1.16 -1.38 W 

 South ROI 7 -1.22 -1.73 W 

 Middle ROI 1 0.62 1.61 W 

 North ROI 1 -3.20 -4.77 W 

 North ROI 2 -4.02 -4.57 W 

 North ROI 3 -0.69 -0.88 W 

 North ROI 4 -0.70 -1.94 W 

 North ROI 5 -2.71 -4.83 W 

 North ROI 6 -1.41 -2.15 W 

2017.1.15 South ROI 1 -2.56 -3.34  

 South ROI 2 -2.12 -1.78  

 South ROI 3 -1.92 -1.94  

 South ROI 4 -1.51 -0.97  

 South ROI 5 -2.32 -2.67  

 South ROI 6 -1.48 -2.25  

 South ROI 7 -3.11 -2.22 W 

 Middle ROI 1 -2.44 -2.86  

 North ROI 1 -0.99 -2.06  

 North ROI 2 -1.94 -1.72  

 North ROI 3 -0.45 -0.59 W 

 North ROI 4 0.03 0.25  

 North ROI 5 -1.02 -1.10  

 North ROI 6 0.84 -0.47  

2017.2.20 South ROI 1 0.73 1.06  

 South ROI 2 0.83 0.51  

 South ROI 3 0.94 0.33  

 South ROI 4 -0.30 -0.31  

 South ROI 5 -0.96 -0.38  

 South ROI 6 -0.37 0.15 W 

 South ROI 7 -3.57 -3.95 W 

 Middle ROI 1 -0.37 -0.93  
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 North ROI 1 -2.01 -1.88 W 

 North ROI 2 -4.13 -2.72 W 

 North ROI 3 -0.66 -0.49 W 

 North ROI 4 -1.58 -2.75 W 

 North ROI 5 -2.60 -3.96 W 

 North ROI 6 -1.57 -1.30 W 

2017.4.9 South ROI 1 -0.33 -0.07  

 South ROI 2 -1.18 -0.82  

 South ROI 3 1.37 0.86  

 South ROI 4 0.73 0.59  

 South ROI 5 -0.42 -0.47  

 South ROI 6 1.37 1.40  

 South ROI 7 -1.86 -1.48  

 Middle ROI 1 -0.06 -1.18  

 North ROI 1 0.51 0.10  

 North ROI 2 -1.69 0.85  

 North ROI 3 0.80 0.61 W 

 North ROI 4 -0.63 -2.06 W 

 North ROI 5 -0.06 0.50 W 

 North ROI 6 1.50 1.35 W 
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Appendix C Confusion Matrix for Thresholds 

(a) -2.5 dB Threshold 

1) 2014-2015 HH Images 

 Ratio  

Ground Reference 

Ratio<-2.5 dB Ratio>-2.5dB Total 

Wet 1 18 19 

Not Wet 4 19 23 

2) 2014-2015 HV Images 

Ratio 

Ground Reference 

Ratio<-2.5 dB Ratio>-2.5dB Total 

Wet 2 17 19 

Not Wet 2 21 23 

3) 2015-2016 HH Images 

Ratio 

Ground Reference 

Ratio<-2.5 dB Ratio>-2.5dB Total 

Wet 0 5 5 

Not Wet 6 40 46 

4) 2015-2016 HV Images 

Ratio 

Ground Reference 

Ratio<-2.5 dB Ratio>-2.5dB Total 

Wet 1 4 5 

Not Wet 1 43 46 

5) 2016-2017 VV Images 

Ratio 

Ground Reference 

Ratio<-2.5 dB Ratio>-2.5dB Total 

Wet 8 32 40 

Not Wet 1 29 30 

6) 2016-2017 VH Images 

Ratio 

Ground Reference 

Ratio<-2.5 dB Ratio>-2.5dB Total 

Wet 11 29 40 

Not Wet 2 28 30 
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(b) -2 dB Threshold 

1) 2014-2015 HH Images 

Ratio 

Ground Reference 

Ratio<-2 dB Ratio>-2dB Total 

Wet 6 13 19 

Not Wet 4 19 23 

2) 2014-2015 HV Images 

Ratio 

Ground Reference 

Ratio<-2 dB Ratio>-2 dB Total 

Wet 3 16 19 

Not Wet 3 20 23 

3) 2015-2016 HH Images 

Ratio 

Ground Reference 

Ratio<-2 dB Ratio>-2 dB Total 

Wet 0 5 5 

Not Wet 9 37 46 

4) 2015-2016 HV Images 

Ratio 

Ground Reference 

Ratio<-2 dB Ratio>-2 dB Total 

Wet 3 2 5 

Not Wet 4 42 46 

5) 2016-2017 VV Images 

Ratio 

Ground Reference 

Ratio<-2 dB Ratio>-2 dB Total 

Wet 12 28 40 

Not Wet 4 26 30 

6) 2016-2017 VH Images 

Ratio 

Ground Reference 

Ratio<-2 dB Ratio>-2 dB Total 

Wet 16 24 40 

Not Wet 4 26 30 

 

 

 

 

 

 

 

 

 

 



 85 

(c) -1.5 dB Threshold 

1) 2014-2015 HH Images 

Ratio 

Ground Reference 

Ratio<-1.5 dB Ratio>-1.5dB Total 

Wet 8 11 19 

Not Wet 6 17 23 

2) 2014-2015 HV Images 

Ratio 

Ground Reference 

Ratio<-1.5 dB Ratio>-1.5dB Total 

Wet 3 16 19 

Not Wet 3 20 23 

3) 2015-2016 HH Images 

Ratio 

Ground Reference 

Ratio<-1.5 dB Ratio>-1.5dB Total 

Wet 0 5 5 

Not Wet 13 33 46 

4) 2015-2016 HV Images 

Ratio 

Ground Reference 

Ratio<-1.5 dB Ratio>-1.5dB Total 

Wet 4 1 5 

Not Wet 14 32 46 

5) 2016-2017 VV Images 

Ratio 

Ground Reference 

Ratio<-1.5 dB Ratio>-1.5dB Total 

Wet 18 22 40 

Not Wet 9 21 30 

6) 2016-2017 VH Images 

Ratio 

Ground Reference 

Ratio<-1.5 dB Ratio>-1.5dB Total 

Wet 21 19 40 

Not Wet 7 23 30 
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(d) -1 dB Threshold 

1) 2014-2015 HH Images 

Ratio 

Ground Reference 

Ratio<-1 dB Ratio>-1dB Total 

Wet 9 10 19 

Not Wet 12 11 23 

2) 2014-2015 HV Images 

Ratio 

Ground Reference 

Ratio<-1 dB Ratio>-1dB Total 

Wet 6 13 19 

Not Wet 8 15 23 

3) 2015-2016 HH Images 

Ratio 

Ground Reference 

Ratio<-1 dB Ratio>-1dB Total 

Wet 1 4 5 

Not Wet 22 24 46 

4) 2015-2016 HV Images 

Ratio 

Ground Reference 

Ratio<-1 dB Ratio>-1dB Total 

Wet 4 1 5 

Not Wet 23 23 46 

5) 2016-2017 VV Images 

Ratio 

Ground Reference 

Ratio<-1 dB Ratio>-1dB Total 

Wet 26 14 40 

Not Wet 12 18 30 

6) 2016-2017 VH Images 

Ratio 

Ground Reference 

Ratio<-1 dB Ratio>-1dB Total 

Wet 26 14 40 

Not Wet 11 19 30 
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(e) -0.5 dB Threshold 

1) 2014-2015 HH Images 

Ratio 

Ground Reference 

Ratio<-0.5 dB Ratio>-0.5 dB Total 

Wet 9 10 19 

Not Wet 12 11 23 

2) 2014-2015 HV Images 

Ratio 

Ground Reference 

Ratio<-0.5 dB Ratio>-0.5 dB Total 

Wet 6 13 19 

Not Wet 8 15 23 

3) 2015-2016 HH Images 

Ratio 

Ground Reference 

Ratio<-0.5 dB Ratio>-0.5 dB Total 

Wet 4 1 5 

Not Wet 20 26 46 

4) 2015-2016 HV Images 

Ratio 

Ground Reference 

Ratio<-0.5 dB Ratio>-0.5 dB Total 

Wet 4 1 5 

Not Wet 30 36 46 

5) 2016-2017 VV Images 

Ratio 

Ground Reference 

Ratio<-0.5 dB Ratio>-0.5 dB Total 

Wet 29 11 40 

Not Wet 15 14 30 

6) 2016-2017 VH Images 

Ratio 

Ground Reference 

Ratio<-0.5 dB Ratio>-0.5 dB Total 

Wet 31 9 40 

Not Wet 15 15 30 
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