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Abstract 

Plasmonic waveguides (PWs) have integrated the strength of the miniscule size of electrical-wire 

interconnects and the large operational bandwidth of photonic waveguides. Beyond the diffraction 

limit, PWs have the ability to manipulate light at nanoscale structures through surface plasmon 

polaritons (SPPs) at metal-dielectric interface. Much interest has been paid to PWs because they are 

promising candidates for developing the next generation highly-dense integrated photonic circuits. 

However, the tradeoff between mode confinement and propagation loss is an issue encountering PWs. 

Fortunately, hybrid plasmonic waveguides (HPWs) are recent novel type of PWs, which have shown a 

favorable balance between mode confinement and propagation loss. Despite the excessive schemes of 

HPWs that have been proposed and studied theoretically for further enhancement such as symmetrical 

hybrid plasmonic waveguides, most of these studies are based on using simulation softwares. There is 

a lack of theoretical study for HPWs based on analytical derived equations, which are important to 

understand the hybrid guided mode deeply, and study all the key factors that might enhance the optical 

performance, and help the waveguide designers for the fabrication of plasmonic waveguides.   

In this dissertation, comprehensive theoretical studies are presented based on analytical derived 

expressions for different types of multilayer hybrid plasmonic waveguides. They are hybrid-dielectic-

metal-dielectric (DMD) and hybrid-metal-dielectric-metal (MDM) plasmonic waveguides. The guided 

modes equations have been derived, and their modal properties have been investigated numerically 

based on the derived analytical equations for different materials, including the modal index and the 

propagation length. The profile of the fields of the guided modes such as the electric field and energy 

flux density have been visualized. The hybrid guided modes characteristics has been analyzed 

thoroughly by proposing two effective criteria. The optical performance of the multilayer hybrid 

plasmonic waveguides has been also examined by measuring the normalized mode size, figures of 

merit, and confinement factor of the hybrid guided modes. Moreover, different factors have been taken 

into accounts in the study, such as the geometrical parameters and the optical properties of the materials. 

Consequently, these multilayer hybrid plasmonic waveguides have shown a better compromise 

between mode and propagation loss compared to the PWs. Such waveguides structures can be utilized 

for ultra-compact active/passive nanophotonic devices.      
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Chapter 1 

Introduction 

“There is Plenty of Room at the bottom” is the title of the famous lecture given by the physicist 

Feynman in 1959 [1]. He predicted the potentials of the sub-atomic nanotechnology world in advance 

before the emergence of this field. One of the lecture outline is minimizing computers. He pointed out 

that computers are very big; they fill rooms. They can be very small by making the wires in the circuits 

10 or 100 atoms in a diameter; thus, the cross of circuits can be a few hundred nanometers. However, 

on that time, this has not been realized yet because of the conventional micro-scale technology. In the 

present, Feynman’s vision comes true after the revolutionary advancements in the nano-fabrication 

techniques. Computers became very small by minimizing the elements of the electronic integrated 

circuits such as transistors, resistors, capacitors as well as the metal-wire interconnects, which play an 

important role to transmit electrical signals between the electronic circuit parts.  

However, miniaturization of the metal interconnects comes at the cost of the operating speed of 

electronic devices, which has been limited to a few tens of gigahertz range due to the physical 

constraints of nanoscale nanowires such as time delay [2]. On the other hand, photonic waveguides 

(optical interconnects), which transmit electromagnetic waves (optical signals) through dielectric 

guiding structures, have shown superior high operating speed in the terahertz range. Even though 

photonic devices have overcome electronics one on the data bandwidth, electronic devices can be scaled 

down to nano-sizes whereas the photonic devices has failed. This is simply due to the fundamental limit 

of light known as the diffraction limit [3]; that means, light waves can not be localized down in a 

aperture with a dimension smaller than their half wavelength in that material. This limit has been an 

obstacle encountering photonic devices and limit their dimension to micro-scale.  

Nano-plasmonic is a novel promising field of science and technology that permits to combine the 

great features of electronic and photonic technologies [3-6]. Light waves can be confined down to a 

nano-scale size beyond the diffraction limit through surface plasmon polaritons (SPPs) at 

metal/dielectric interface [5]. Therefore, extensive research has been conducted in order to exploit the 

unique properties of SPPs. Many plasmonic waveguide architectures have been proposed such as 

metal/dielectric/metal (MDM) [7-8] and dielecric/metal/dielectric (DMD) waveguides [9-10]. The 

former have shown strong confinement whereas the later high propagation length. However, there is 
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one essential issue facing plasmonic waveguides, which is the trade-off between mode confinement 

and the propagation loss. The loss is due to the nature feature, Ohmic loss of metals at optical 

frequencies. This major problem has driven researchers to propose different schemes and geometries 

to enhance the propagation length. One novel type of plasmonic waveguides proposed recently is called 

hybrid plasmonic waveguide (HPW) [11-12]; it has shown a good balance between confinement and 

loss. An HPW consists of a subwavelength low-index dielectric layer sandwiched between metal and 

high-index dielectric layers, where the mode extremely confined in the sub-wavelength layer and 

decayed exponentially away into metal layer. There is an immense theoretical research studies done on 

HPWs to achieve higher propagation length based on commercial simulation tools softwares, for 

example, symmetrical hybrid-MDM and symmetrical hybrid-DMD waveguides based on planar and 

cylindrical geometries.  

However, there is a lack of the theoretical studies based on derived analytical equations, which help 

to understand deeply the underlying physics of the mode characteristics and study how the geometrical 

parameters influences on waveguide performance. In this dissertation, comprehensive theoretical 

studies based on derived analytical expressions are presented based on different models of HPWS such 

as symmetrical multilayers hybrid-DMD and hybrid-MDM waveguides. For each waveguide, the mode 

characteristics has been thoroughly investigated based on proposed criteria. Commercial software 

(Finite element method) also has been used and the results based on it match accurately with the results 

based on the derived analytical equations.  

In this thesis, chapter 2 reviews the fundamentals of nanoplasmonics technology whereas chapter 3 

presents the theoretical principles and applications of different types of plasmonic waveguides starting 

such as simple single metal/dielectric interface, DMD, MDM, and hybrid plasmonic waveguides. In 

chapter 4, a thorough theoretical analytical study of multilayer symmetrical hybrid-DMD has been 

investigated by studying the guided mode optical properties, plotting the optical field profiles, 

analyzing the mode characteristics, and finding figure of merits and mode size. Chapter 5 presents a 

comprehensive theoretical study for a five layers symmetrical hybrid-MDM waveguide based on 

analytical results as well as the propagation characteristics of the guided mode.    
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Chapter 2 

Nano-plasmonics            

The first revolution in optical-science technology began with the invention of the laser in 1960, 

followed by the revolution of optical fiber communications in 1980s. The tremendous progress of 

nanotechnology techniques in the early of 1990s has driven to the third revolution in photonics history: 

“Nano-photonics”. There has been a considerable interest attracting researchers in nanophotonics field, 

which can be defined as studying the light-matter interaction at nanoscale size. Nanophotonics has the 

potential applications in different scientific and engineering fields such as sensors, lasers, energy, and 

photonics chips. As mentioned, confining and guiding light waves within subwavelength nanoscale 

conventional photonic devices could not be achieved because of the light diffraction-limit. Extensive 

research on nanoscale metallic materials has gained a lot of interest to exploit their distinguished optical 

properties which strongly depend on their size and shape. Localization of light waves at sub-wavelength 

scale metallic nanostructures becomes feasible by breaking the restriction-limit of light. The field of 

metallic nanostructures known as nanoplasmonics has received much attention in nanophotonics 

community.  On the other hand, the topic of metallic nanostructures is not a recent scientific research; 

they have been used to stain glass centuries ago without realizing the physics behind that. The ancient 

famous example is Lycurgus cup in the British museum from the fourth century AD [6], shown in Fig. 

1, where the glass color appears red when light is transmitted through it, and it shines green in a 

reflective light. This phenomena is due to the resonance of plasmonic metallic nanoparticles such as 

gold or silver embedded within the glass. However, there is current excitement about nanoplasmonics 

will be elaborated in this chapter as well as fundamental basic concepts. 

2.1 The significance of nanoplasmonics    

Nanoplasmonics, a branch of nanophotonics, is a new frontier field that integrates the strengths of 

both technologies electronics and photonics. It studies the interaction between light and metallic 

nanostructures. The recent excitement about this field is driven by different factors. Firstly, the high-

progress of modern developments in nanofabrication techniques and the ever-increasing need to high-

speed data technology have allowed numerous research devoted to metallic nanostructures such as 

nanoparticles or nano-thin films.  When light is confined into minuscule metallic regions smaller than  
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Fig. 1 The ancient example of nanoplasmonics: the Lycurgus cup from the 4th century (British Museum, 

London) 

the light wavelength, a high-enhancement in the electromagnetic field has been manifested because of 

the unique optical properties of metallic structures at nanoscale. This field enhancement induces new 

nano-optical phenomena different from the optical phenomena of the bulk-metal, which can be 

measured with the current advanced nano-tools, yielding to produce novel nano-photonic devices with 

superior-functionality beyond the diffraction limit. Secondly, the developments of modeling, 

simulation, computational techniques have stimulated scientists and engineers to perform theoretical-

experiments, design nano-optical devices, and study new-optical phenomena, which can save time and 

open the possibility to conduct actual experiments. Finally, nanoplasmonics devices are compatible 

with the present planar fabrication techniques such as silicon-on-insulator (SOI) and complementary 

metal-oxide-semiconductor (CMOS) technologies. Hence, nanoplasmonics has the potential to provide 

a vast array of sub-wavelength optical components and integrated them on the same chip to produce 

the future era of computers “all-optical computers”.  

2.2 The Principle of Plasmonics 

Plasmonics is the field that concerned with the interactions between electromagnetic waves and metallic 

structures. Metals consist of collective oscillation of free electrons, called plasmons, moving freely with 

respect to the fixed positive ions. These plasmons play a crucial role in identifying the optical properties 

of metals. For instance, electromagnetic waves can not be transmitted through a metal when their 

frequencies smaller than the plasmons frequencies. The plasmons that confine to a metal-dielectric 

interface are called surface plasmons (SPs). When light is coupled to these SPs under certain conditions, 
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it generates enhanced evanescent electromagnetic fields, called surface plasmon polaritons SPPs, 

propagating at the metal-dielectric interface and exponentially decaying away from the boundary into 

the surrounding materials. The electromagnetics of metals and characteristics of SPPs can be 

understood by utilizing Maxwell’s equations to obtain the wave equation and all the optical properties 

of SPPs. 

2.2.1 Maxwell’s Equations  

The electromagnetic fields can be represented in vacuum by the electric field 𝐸⃗  and magnetic induction 

𝐵⃗  vectors. The interaction of these fields with matter can be prescribed by using the following well-

known four equations of Maxwell [13]: 

 ∇⃗⃗ ∙ 𝐷⃗⃗ = 𝜌, (1) 

 ∇⃗⃗ ∙ 𝐵⃗ = 0, (2) 

 ∇⃗⃗ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
, (3) 

And 

 ∇⃗⃗ × 𝐻⃗⃗ =
𝜕𝐷⃗⃗ 

𝜕𝑡
+ 𝐽 ,                                                      (4) 

which relate the electric charge density 𝜌 and the current density J to the four macroscopic fields: the 

electric field 𝐸⃗ , magnetic field 𝐻⃗⃗ , dielectric displacement 𝐷⃗⃗ , and magnetic induction 𝐵⃗ . In addition, for 

linear, isotropic media, there are three constitutive material equations, which describe the response of 

the material to the electromagnetic fields. They can be written as: 

 𝐷⃗⃗ = 𝜖0𝜖𝑟𝐸⃗ ,   (5) 

 𝐵⃗ = 𝜇0𝜇𝑟𝐻⃗⃗ ,  (6) 

And 

 𝐽 = 𝜎𝐸.⃗⃗  ⃗  (7) 

𝜖0 and 𝜇0 are the electric permittivity and magnetic permeability in free space; 𝜖𝑟, 𝜇𝑟, and 𝜎 are the 

relative electric permittivity, relative magnetic permeability, and specific conductivity, respectively, 

where for non-magnetic media, 𝜇𝑟 = 1.  Moreover, the permittivities and permeabilities can be written 
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as 𝜖 = 𝜖0𝜖𝑟 and 𝜇 = 𝜇0𝜇𝑟, where 𝜖 is called the dielectric constant or dielectric function; it describes 

the optical response of the materials.  

2.2.2 Wave Equation 

The propagation of the electromagnetic wave in terms of its electric and magnetic field can be described 

by obtaining the wave equation [14]. Using Maxwell’s equations and some vector calculus will lead to 

the wave equation. Taking the curl of both sides of Faraday’s law Eq. 3 results in: 

 ∇⃗⃗ × (∇⃗⃗ × 𝐸⃗ ) = −
𝜕(∇⃗⃗ ×𝐵⃗ )

𝜕𝑡
.   (8) 

The left side and the right side of this relation can be rewritten by applying a vector identity and 

Ampere-Maxwell law Eq. 4, respectively, as: 

 ∇⃗⃗ (∇⃗⃗ ∙ 𝐸⃗ ) − ∇2𝐸⃗ = − 
𝜕[𝜇0𝜇𝑟(𝜖0𝜖𝑟(𝜕𝐸⃗ 𝜕𝑡)+𝐽 ⁄ )]

𝜕𝑡
.     (9) 

For non-magnetic, free-charge, free-current, and homogenous medium, the wave equation for electric 

field in a medium with dielectric constant 𝜖 can be written as: 

 ∇2𝐸⃗ = 𝜇0𝜖
𝜕2𝐸⃗ 

𝜕𝑡2
.  (10) 

This equation represents the electric field of the propagating wave travelling in the medium; the same 

wave equation for the magnetic field can, also, be obtained by using Ampere-Maxwell’s law Eq. 4. In 

addition, for time harmonic fields, the wave equation Eq. 10 can be simply re-written as:  

 ∇2𝐸⃗ + 𝑘0
2𝜖𝐸⃗ = 0, (11) 

where k0 is the wave number in vacuum (𝑘0 = 𝜔 𝑐⁄ = 2𝜋 𝜆)⁄ . The optical characteristics of any 

electromagnetic wave within any medium can be fully described by solving the wave mode equation. 

Thus, the optical properties and the dispersion of SPPs mode relation will be discussed after the next 

section.  

2.2.3 Drude Model 

The Drude model or plasma model is used to explain the electromagnetics of metals and their optical 

properties at different frequencies by assuming sea of free electrons with density n moving against fixed 
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positive ions [15]. In this model, the electron-electron interactions and the lattice potential are not 

considered whereas the effective mass of electron m includes information about the band structure. In 

the presence of applied an external electromagnetic field 𝐸⃗ , the electrons oscillations are damping due 

to the collisions which can be explained by the characteristics collision frequency 𝛾 = 1/𝜏, where 𝜏 is 

the relaxation time of the free electron. Hence, the motion equation of a free electron in the plasma sea 

of electrons can be written as: 

 𝑚𝑥̈ + 𝑚𝛾𝑥̇ = −𝑒𝐸⃗ , (12) 

where 𝑥(𝑡) = 𝑥0𝑒
−𝑖𝜔𝑡is the time-harmonic dependent solution of this equation, which represents the 

electron oscillations with a complex amplitude 𝑥0 relating to the applied electric field by  

 𝑥0⃗⃗⃗⃗ (𝑡) =
𝑒

𝑚(𝜔2+𝑖𝛾𝜔)
𝐸⃗ (𝑡).  (13) 

The macroscopic polarization relates to the electron displacement  𝑃⃗ = −𝑛𝑒𝑥 , so it can be re-written 

as: 

 𝑃⃗ = −
𝑛𝑒2

𝑚(𝜔2+𝑖𝛾𝜔)
𝐸⃗ . (14) 

By using this relation 𝐷⃗⃗ = 𝜖0𝐸⃗ + 𝑃⃗ , the electric displacement field will be 

 𝐷⃗⃗ = 𝜖0 (1 −
𝜔𝑝
2

𝜔2+𝑖𝛾𝜔
) 𝐸⃗ ,  (15) 

here, 𝜔𝑝 = 𝑒√
𝑛

𝑚𝜖0
 is the plasma frequency of the free electron gas, so the dielectric function of the free 

electron plasma is 

 𝜖(𝜔) = 1 −
𝜔𝑝
2

𝜔2+𝑖𝛾𝜔
. (16) 

It is a complex function depends on the frequencies of the plasma and the applied electromagnetic field; 

it is known as the Drude model which helps to explain the optical behavior of metals. 

2.2.4 The Dispersion of Surface Plasmon Polaritons at a Metal-Dielectric Interface  

As aforementioned, surface plasmon polaritons SPPs are evanescent electromagnetic waves 

propagating along a metal/dielectric interface and decaying exponentially in a perpendicular direction 

to the interface as shown in Fig. 2. The dielectric material is assumed lossless, isotropic, and non-
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magnetic with dielectric permittivity 𝜖𝑑, and the metal permittivity, 𝜖𝑚 = 𝜖𝑚
′ + 𝜖𝑚

′′ 𝑖, is a complex 

function due to the Ohmic loss of metals. The dispersion in the dielectric constants is neglected. The 

structure geometry in Fig. 2 is proposed to be infinite in y-direction; so there is no field dependence in 

that direction.  

 

Fig. 2 A schematic diagram of SPPs at the interface of metal-dielectric geometry 

To derive the dispersion relation of the SPPs propagating modes [15-16], the wave equation Eq. 11 will 

be solved in each region with applying the boundary conditions for different mode polarizations: 

transverse- electric TE and transverse-magnetic TM modes. The general solution of SPPs modes should 

be in the form 𝐸⃗ (𝑥, 𝑦, 𝑧) = 𝐸⃗ (𝑥)𝑒𝑖𝛽𝑧, where β is the propagation constant of the SPPs propagating 

modes in z-direction. Thus, the wave equation can be recast as: 

 
𝜕2𝐸⃗ 

𝜕𝑥2
− (𝛽2 − 𝑘0

2𝜖𝑖)𝐸⃗ = 0,     (17) 

For TE polarization, the non-vanishing field components are ( Ey, Hz, Hx), and the general solution of 

the wave equation in the dielectric and metal regions can be expressed as:  

 𝐸⃗ (𝑥, 𝑦, 𝑧) = 𝐸𝑦(𝑥)𝑒
𝑖𝛽𝑧𝑦̂, (18) 

where 

 𝐸𝑦(𝑥) = {
𝐴𝑒−𝑘𝑑𝑥 ,   𝑥 > 0

𝐵𝑒𝑘𝑚𝑥 , 𝑥 < 0
, (19) 

and 𝑘𝑑 and 𝑘𝑚 are the wave numbers of the decaying field in the dielectric and metal regions and can 

be expressed as:  

 𝑘𝑖 = √(𝛽
2 − 𝑘0

2𝜖𝑖), 𝑖 = (𝑑,𝑚).   (20) 

The magnetic field can be written as: 
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 𝐻⃗⃗ (𝑥, 𝑦, 𝑧) = [𝐻𝑥(𝑥)𝑥̂ + 𝐻𝑧(𝑥)𝑧̂]𝑒
𝑖𝛽𝑧, (21) 

and by using Faraday-Maxwell equation for time-harmonic:  

 ∇⃗⃗ × 𝐸⃗ = −𝑖𝜔𝜇𝐻⃗⃗ , (22) 

the magnetic field components can be obtained: 

 𝐻(𝑥, 𝑦, 𝑧)𝑥̂ = 𝐻𝑥(𝑥)𝑒
𝑖𝛽𝑧𝑥̂ = {

𝐴𝛽

𝜔𝜇
𝑒−𝑘𝑑𝑥𝑒𝑖𝛽𝑧 (𝑥̂), 𝑥 > 0

𝐵𝛽

𝜔𝜇
𝑒𝑘𝑚𝑥𝑒𝑖𝛽𝑧 (𝑥̂), 𝑥 < 0

 (23) 

And 

 

 𝐻(𝑥, 𝑦, 𝑧)𝑧̂ = 𝐻𝑧(𝑥)𝑒
𝑖𝛽𝑧𝑧̂ = {

−𝑖
𝐴𝑘𝑑

𝜔𝜇
𝑒−𝑘𝑑𝑥𝑒𝑖𝛽𝑧 (𝑧̂), 𝑥 > 0

𝑖
𝐵𝑘𝑚

𝜔𝜇
𝑒𝑘𝑚𝑥𝑒𝑖𝛽𝑧 (𝑧̂), 𝑥 < 0

. (24) 

To obtain the dispersion relation of SPPs modes, the boundary conditions should be satisfied. Hence, 

the tangential components of the magnetic fields must be continuous at the interface between the 

dielectric and metal regions. Applying the boundary conditions at the interface plane x=0 shows that: 

 𝐴 = 𝐵  (25) 

and 

 𝐴(𝑘𝑚 + 𝑘𝑑) = 0. (26) 

SPPs propagating modes are confined to the interface of the metal-dielectric layers; so that, kd and km 

should have positive values in order to maintain their confinement. That means, A should have  a zero 

value, which leads to vanishing B value. Therefore, SPPs modes have no TE polarization.  

Similarly, the TM polarization case can be discussed; the wave equation for the magnetic field can be 

expressed as: 

 
𝜕2𝐻⃗⃗ 

𝜕𝑥2
− (𝛽2 − 𝑘0

2𝜖𝑖)𝐻⃗⃗ = 0,     (27) 

so the non-zero field components are Hy, Ez, and Ex, whereas the general solution for magnetic field is: 

 𝐻⃗⃗ (𝑥, 𝑦, 𝑧) = 𝐻𝑦(𝑥)𝑒
𝑖𝛽𝑧𝑦̂,  (28) 
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Where  

 𝐻𝑦(𝑥) = {
𝐴𝑒−𝑘𝑑𝑥  , 𝑥 > 0

𝐵𝑒𝑘𝑚𝑥 , 𝑥 < 0
, (29) 

and the electric field is  

 𝐸⃗ (𝑥, 𝑦, 𝑧) = [𝐸𝑥(𝑥)𝑥̂ + 𝐸𝑧(𝑥)𝑧̂]𝑒
𝑖𝛽𝑧. (30) 

The electric field components can be obtained by using the following Ampere-Maxwell’s equation for 

time-harmonic fields: 

 ∇⃗⃗ × 𝐻⃗⃗ = −𝑖𝜔𝜖𝐸,⃗⃗  ⃗ (31) 

so they can be written as: 

 𝐸(𝑥, 𝑦, 𝑧)𝑥̂ = 𝐸𝑥(𝑥)𝑒
𝑖𝛽𝑧𝑥̂ = {

−
𝐴𝛽

𝜔𝜖𝑑
𝑒−𝑘𝑑𝑥𝑒𝑖𝛽𝑧 (𝑥̂),   𝑥 > 0

−
𝐵𝛽

𝜔𝜖𝑚
𝑒𝑘𝑚𝑥𝑒𝑖𝛽𝑧 (𝑥̂),   𝑥 < 0

 (32) 

and 

  

 𝐸(𝑥, 𝑦, 𝑧)𝑧̂ = 𝐸𝑧(𝑥)𝑒
𝑖𝛽𝑧𝑧̂ = {

𝑖
𝐴𝑘𝑑

𝜔𝜖𝑑
𝑒−𝑘𝑑𝑥𝑒𝑖𝛽𝑧 (𝑧̂), 𝑥 > 0 

−𝑖
𝐵𝑘𝑚

𝜔𝜖𝑚
𝑒𝑘𝑚𝑥𝑒𝑖𝛽𝑧 (𝑧̂), 𝑥 < 0

. (33) 

                 

The continuity of the tangential components of the electric and magnetic fields at the interface x=0 

requires that: 

 𝐴 = 𝐵 (34) 

and 

 𝐴
𝑘𝑑

𝜖𝑑
= −𝐵

𝑘𝑚

𝜖𝑚
. (35) 

Since A=B, this relation can be written as: 

 
𝑘𝑚

𝑘𝑑
+
𝜖𝑚

𝜖𝑑
= 0. (36) 
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The wave numbers of the decaying fields into the metal and dielectric materials km and kd should have 

positive values, as mentioned before, to keep the confinement of the SPPs modes to the interface; as a 

result, the permittivity of metal and dielectric materials should have opposite sign of their real part 

values. Dielectric materials have positive dielectric constants because of their approximate lossless 

nature, whereas some noble metals at optical frequencies have negative real permittivities  (𝜖𝑚
′ ) < 0, 

which can be evaluated by using Drude model [17]. Therefore, SPPs modes support only TM 

polarization.  

Now, the dispersion equation can be easily derived by dividing the square of the wavevectors of the 

decaying field in each material Eq. 20: 

 
𝑘𝑚
2

𝑘𝑑
2 =

𝛽2−𝑘0
2𝜖𝑚

𝛽2−𝑘0
2𝜖𝑑
,  (37) 

And by using Eq. 36, the dispersion formula of SPPs can be determined: 

 𝛽 = 𝑘𝑠𝑝𝑝 = 𝑘0√
𝜖𝑚𝜖𝑑

𝜖𝑚+𝜖𝑑
.  (38) 

Here, kspp the propagation constant of the propagating SPPs modes is a complex function (𝑘𝑠𝑝𝑝 =

𝑘𝑠𝑝𝑝
′ + 𝑖𝑘𝑠𝑝𝑝

′′ ) since the dielectric constant of metal has a complex value. Substituting the metal 

permittivity complex function (𝜖𝑚 = 𝜖𝑚
′ + 𝑖𝜖𝑚

′′ ) back into Eq. 38 and assuming that |𝜖𝑚
′′ | < |𝜖𝑚

′ |, the 

real and the imaginary part of the SPPs mode wavenumber can be obtained: 

 𝑘𝑠𝑝𝑝
′ = 𝑘0√

𝜖𝑚
′ 𝜖𝑑

𝜖𝑚
′ +𝜖𝑑

= 𝑘0[𝑅𝑒(𝑛𝑒𝑓𝑓)] (39) 

and 

 𝑘𝑠𝑝𝑝
′′ = 𝑘0

𝜖𝑚
′′

2√𝜖𝑚
′
(

𝜖𝑑

𝜖𝑑+𝜖𝑚
′ )

3

2
= 𝑘0[𝐼𝑚(𝑛𝑒𝑓𝑓)]. (40) 

The real part of the SPPs mode dispersion relation provides information about the optical properties of 

the SPPs modes such as the effective mode index 𝑛𝑒𝑓𝑓 and the SPPs mode’s wavelength 𝜆𝑠𝑝𝑝, which 

defined as: 

  𝜆𝑠𝑝𝑝 =
2𝜋

𝑘𝑠𝑝𝑝
′ =

2𝜋

𝑘0
√
𝜖𝑑+𝜖𝑚

′

𝜖𝑑𝜖𝑚
′ = 𝜆√

𝜖𝑑+𝜖𝑚
′

𝜖𝑑𝜖𝑚
′ . (41) 
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As noticed, the wavelength of the SPPs modes 𝜆𝑠𝑝𝑝 is always smaller than the free space wavelength 

𝜆 at the same frequency by a factor √(𝜖𝑑 + 𝜖𝑚
′ ) (𝜖𝑑𝜖𝑚

′ )⁄ , which depends on the optical properties of 

the metal and dielectric materials, so controlling the materials permittivities can reduce the SPPs 

mode’s wavelength to sub-wavelength scale. Thus, this feature of SPPs waves’ wavelength as well as 

their confinement to the metal-dielectric interface makes them overcoming the diffraction limit of light 

in conventional dielectric waveguides.  

On the other hand, the imaginary part of the dispersion relation Eq. 40 measures the propagation 

length of the SPPs mode which defined as the distance where the SPPs propagating modes power 

decayed by 1 𝑒⁄   of its initial value and can be expressed mathematically as: 

 𝐿𝑝 =
1

2𝑘𝑠𝑝𝑝
′′ =

𝜆

4𝜋𝐼𝑚(𝑛𝑒𝑓𝑓)
, (42) 

the imaginary part of the effective mode index reflects the loss of the SPPs modes, as the 𝐼𝑚(𝑛𝑒𝑓𝑓) 

decreases, the propagation length would increase. 

The momentum of the SPPs modes is greater than the momentum of a free space waves at the same 

frequency as shown in Eq. 38 and illustrated in Fig. 3 This momentum mismatch disables the direct 

excitation of the SPPs waves when the free space radiation is incident on the metal-dielectric interface; 

hence, there are some proposed techniques in order to solve the momentum-mismatch issue such as 

using prisms or gratings [18-19].  

 

Fig. 3 The momentum mismatch between the SPP wave and the free-space wave at the same 

frequency 
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Figure 4 illustrates the electric field profile of the SPPs mode at the metal (Ag)/Dielectric (Si) interface 

at the telecom wavelength 1550 nm by using the Finite Element Method (FEM) mode solver in 

COMSOL software (see the Appendix for detailed information about the mode solver) [20]. The 

refractive index of silicon is nSi=3.455 whereas the permittivity of silver is 𝜀𝐴𝑔 = −129 + 3.3𝑗  [25-

26].In this thesis, the dimensional coordinate axes have been chosen according to our assumption of 

Fig. 2, where the SPP mode’s electric field is decaying exponentially at the materials interface in (x-

direction), and the SPPs mode propagation direction is (z-direction) whereas the y-direction assumed 

to be infinite. The 1D plot for the absolute value of the electric field x-component 𝐸𝑥(𝑥, 0) of the SPPs 

mode at the Ag/Si interface is shown in Fig. 4(b), where the field is maximized at the interface and 

decayed into the two regions. The electric field decays exponentially in the metal layer more than 

dielectric layer due to the Ohmic loss of metals. Figure 4(a) demonstrates the 2D cross sectional surface 

plot for the electric field distribution of the SPPs single (Ag/Si) interface. As seen, the field is highly 

concentrated at the interface, where the dark-red corresponds to the maximum field, and the dark-blue 

indicates to the minimum field. In our study, we assume that the structure is 1D and it is infinite in the 

y-axis, so the field has to be stretched in the y-axis. However, due to the limitation of the COMSOL to 

perform study in 1D, the boundary conditions (Perfectly Matched Layer) are used in the simulation 

around the whole 2D geometry domain. As a result, one can see that the lateral mode confinement at 

the y-axis boundary (i.e., left and right direction). Note that this approach has been used in this thesis 

for all 2D plots.  
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Fig. 4 a) The surface plot for the electric field distribution of the SPPs mode at Ag/Si interface, at 1550 

nm wavelength, b) the 1D plot for the 𝑬𝒙(𝒙, 𝟎). 
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Chapter 3 

Plasmonic Waveguides  

Optical fiber communications have revolutionized information transportation due their superior 

functionality to transmit enormous data over long distances with low cost. However, the capacity of 

data transmission on the short-distance level, on the chip-scale electronic integrated circuits, has been 

limited in terms of their speed because of the  time-delay of metallic interconnects at nano-scale. Using 

light waves as information carriers on chips nanoscale circuits can tackle this issue of limiting data 

transmission rate of electronic circuits. Conventional dielectric waveguides (DWs) which guide light 

within a region with high- refractive index surrounding with low-index cladding is governed by the 

total internal reflection principle through Snell’s law. However, the diffraction limit of light in optical 

photonic waveguides has been a barrier in front of miniaturization photonic waveguides; that means, 

light waves can not be compressed within a domain with a dimension smaller than half their wavelength 

in that medium. Fortunately, nano-plasmincs has enabled to overcome the diffraction restrict of light 

by using surface plasmon polaritons SPPs waves, which discussed previously. One of the SPPs based-

applications which received significant research attention over the past decade is plasmonic waveguides 

(PWs) that enable the conversion of light into surface plasmon polaritons (SPPs) on the sub-wavelength 

scale at the metal-dielectric interface beyond the diffraction limit. They are promising candidates for 

developing the next generation of ultra-compact integrated devices that have the advantages of both the 

large operational bandwidth of photonics and true nanometer-scale modal confinement, which paves 

the way to a future integration of high-capacity photonic and electronic devices at a scale comparable 

to electronics. Various SPPs waveguides structures and geometries have been proposed in order to 

harness the unique features of SPPs waveguides at nanoscale such as V-grooves [21-22], dielectric-

metal-dielectric (DMD) waveguide, metal-dielectric-metal (MDM) waveguides, and metallic 

nanowires [23]. In spite of the interest features of PWs, there is one major problem facing them, which 

is the tradeoff between loss and confinement. A recent novel type of PWs has been investigated to 

provide a balance between mode confinements and propagation loss, called a hybrid plasmonic 

waveguide (HPW). In this chapter, three types of plasmnic waveguides: DMD, MDM, and hybrid 

plasmonic waveguides will be analyzed by deriving their modes’ equations analytically, studying their 

optical performance, plotting their optical field profiles, discussing their advantages and disadvantages, 

and exploring their potential applications.  
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3.1 Dielectric-Metal-Dielectric Plasmonic Waveguide     

3.1.1 Basic principle 

A DMD waveguide consists of a thin metal film with width d and permittivity 𝜖𝑚 surrounding with 

two dielectric layers with dielectric constants 𝜖𝑑1and 𝜖𝑑2 as illustrated in Fig. 5. Assuming the two 

dielectric layers are semi-infinite, and the geometry is infinite in the y-direction, so there is no field y-

component. Such a structure supports two coupled SPPs modes propagating along z-direction, resulting 

from each SPPs mode at the two interfaces of the metal-dielectric layer. In order to study the DMD 

guided mode characteristics, the wave equation should be solved in each region, where the origin point 

O assumed to be in the mid of the thin metal film.  

 

Fig. 5 The geometry of the DMD plasmonic waveguide 

 

Since the SPPs mode has only a TM polarization, the nonzero-components Hy, Ex, and Ez  and the wave 

equation for magnetic field will be used in each region  

 ∇2𝐻⃗⃗ − (𝛽2 − 𝑘0
2𝜖𝑖)𝐻⃗⃗ = 0, (43) 

where 𝑖 = (𝑑1, 𝑚, 𝑑2) refers to the three regions; The general solution of the wave equation has the 

form 𝐻⃗⃗ (𝑥, 𝑦, 𝑧) = 𝐻𝑦(𝑥)𝑒
𝑖𝛽𝑧𝑦̂. Hence, the solution of Eq. 43 which gives the amplitude part of the 

DMD guide mode in each layer can be written as: 

 𝐻𝑦(𝑥) =

{
 
 

 
 𝐴𝑒−𝑘𝑑1𝑥 , 𝑥 >

𝑑

2

𝐵𝑒−𝑘𝑚𝑥 + 𝐶𝑒𝑘𝑚𝑥 , −
𝑑

2
< 𝑥 <

𝑑

2

𝐷𝑒𝑘𝑑2𝑥 , 𝑥 < −
𝑑

2

, (44) 
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Here, the wave number of the decaying fields in each medium can be expressed as: 

 𝑘𝑖 = √𝛽
2 − 𝑘0

2𝜖𝑖 , where 𝑖 = 𝑑1,𝑚, 𝑎𝑛𝑑 𝑑2.  (45) 

Utilizing Ampere-Maxwell Eq. 31, the electric field components can be obtained: 

 𝐸(𝑥, 𝑦, 𝑧)𝑥̂ = 𝐸𝑥(𝑥)𝑒
𝑖𝛽𝑧𝑥̂ =

{
 
 

 
 −

𝛽𝐴

𝜔𝜖𝑑1
𝑒(𝑖𝛽𝑧−𝑘𝑑1𝑥) (𝑥̂), 𝑥 >

𝑑

2

−
𝛽

𝜔𝜖𝑚
𝑒𝑖𝛽𝑧(𝐵𝑒−𝑘𝑚𝑥 + 𝐶𝑒𝑘𝑚𝑥) (𝑥̂), −

𝑑

2
< 𝑥 <

𝑑

2

−
𝛽𝐷

𝜔𝜖𝑑2
𝑒(𝑖𝛽𝑧+𝑘𝑑2𝑥) (𝑥̂), 𝑥 < −

𝑑

2

 (46) 

And 

 𝐸(𝑥, 𝑦, 𝑧)𝑧̂ = 𝐸𝑧(𝑥)𝑒
𝑖𝛽𝑧𝑧̂ =

{
 
 

 
 

𝑖𝐴𝑘𝑑1

𝜔𝜖0𝜖𝑑1
𝑒(𝑖𝛽𝑧−𝑘𝑑1𝑥) (𝑧̂), 𝑥 >

𝑑

2

𝑖𝑘𝑚

𝜔𝜖0𝜖𝑚
𝑒𝑖𝛽𝑧(𝐵𝑒−𝑘𝑚𝑥 − 𝐶𝑒𝑘𝑚𝑥) (𝑧̂), −

𝑑

2
< 𝑥 <

𝑑

2
.

−
𝑖𝐷𝑘𝑑2

𝜔𝜖0𝜖𝑑2
𝑒(𝑖𝛽𝑧+𝑘𝑑2𝑥) (𝑧̂), 𝑥 < −

𝑑

2

 (47) 

To derive the characteristics DMD mode equation, the tangential components of the electric and 

magnetic fields must be continuous at the boundaries at 𝑥 = ±𝑑 2⁄ . Thus, the dispersion relation for 

DMD plasmonic waveguide can be written as: 

 𝑒2𝑘𝑚𝑑 =
(
𝑘𝑚
𝜖𝑚
−
𝑘𝑑1
𝜖𝑑1

)(
𝑘𝑚
𝜖𝑚
−
𝑘𝑑2
𝜖𝑑2

)

(
𝑘𝑚
𝜖𝑚
+
𝑘𝑑2
𝜖𝑑2

)(
𝑘𝑚
𝜖𝑚
+
𝑘𝑑1
𝜖𝑑1

)
. (48) 

When the structure is symmetrical 𝜖𝑑1 = 𝜖𝑑2 = 𝜖𝑑, the dispersion relation will be: 

 𝑒𝑘𝑚𝑑 = ±
(
𝑘𝑚
𝜖𝑚
−
𝑘𝑑
𝜖𝑑
)

(
𝑘𝑚
𝜖𝑚
+
𝑘𝑑
𝜖𝑑
)
. (49) 

Since the plasmonic mode has only TM polarization, the DMD plasmonic waveguide supports TM 

modes. The positive sign in the dispersion relation corresponds to the Long Range Symmetrical DMD 

(LRS-DMD) fundamental TM mode supported by the waveguide structure whereas the negative sign 

refers to the Short Range Anti-symmetrical DMD (SRA-DMD) TM mode [9, 24]. The transverse 

electric field of the SR SPP mode is anti-symmetric with respect to the center metal film layer and that 

of LRSPP is symmetric. For a thick metal film, the two modes are degenerated. For a thin metal film, 

with decrease of the metal thickness, the propagation loss of the SRSPP increases, rapidly leading to 

the cutoff of the mode while that of the LRSPP decreases, giving rise to a long-range propagation 
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distance.  The characteristics mode equation Eq. 49 can be also expressed in a transcendental form; 

hence, for the positive sign: 

 tanh (
𝑘𝑚𝑑

2
) = −

𝑘𝑑𝜖𝑚

𝜖𝑑𝑘𝑚
,   (50) 

and for the negative sign: 

 tanh (
𝑘𝑚𝑑

2
) = −

𝑘𝑚𝜖𝑑

𝜖𝑚𝑘𝑑
, (51) 

3.1.2 Numerical Analysis 

We solved numerically Eq. 50 and Eq. 51 to study the mode optical characteristics of the fundamental 

TM DMD guided mode. The performance of any waveguide can be simply studied by finding the mode 

effective index neff and the propagation length Lp, where the former corresponds to the confinement and 

the later to the loss. Fig. 6 shows the modal index and the propagation length of the two types of DMD 

mode (i.e., SR-DMD and LR-DMD mode) supported by  the  DMD waveguide structure at the optical 

communication wavelength 1550 nm over a range of metal thickness 𝑑 (0 − 150)𝑛𝑚, where the 

dielectric chosen to be silica with a refractive index 𝑛𝑆𝑖𝑂2 = 1.445, and the metal film chosen to be 

silver with a permittivity 𝜀𝐴𝑔 = −129 + 3.3𝑗  [25-26]. For the LR-DMD mode, as the metal film 

thickness increases the DMD modal index increases until it reaches a maximum thickness 𝑑𝑚𝑎𝑥 ≈

125 𝑛𝑚, there is no DMD mode supported any more, at this maximum thickness, the DMD modal 

index approaching to the modal index of a single metal/dielectric interface. Thus, the condition to have 

a strong DMD mode is the metal film thickness should be less than the maximum cutoff thickness 

where the DMD modal index reaches to √𝜖𝑚
′ 𝜖𝑑 (𝜖𝑑 + 𝜖𝑚

′ )⁄ . Here, the cutoff thickness is about 125 

nm, so the formation of the SPP DMD mode needs a minimized subwavelength metal thickness much 

less than 125 nm. The physical interpretation of having small metal gap thickness to form a DMD 

plasmonic mode is simply because the propagating SPP plasmonic modes are confined to the metal-

dielectric interface and decaying exponentially in a perpendicular direction to the interfaces, and due 

to the lossy nature of metals, the part of the SPP modes decaying in the metal film requires  only a very 

small distance until vanishes, whereas the decaying field in the dielectric parts are longer due to the 

lossless nature of dielectric. For the SR-DMD mode, the behavior of the modal index is different from 

the LR-DMD mode; at large metal thicknesses the two types of mode converge to the same modal index 

which mean the single metal-dielectric interface mode is evolved as shown in Fig. 6 (Left). However, 
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at small metal thickness, the SR-DMD reaches to the cutoff metal thickness where there is no SR-DMD 

mode. We can see clearly from the propagation length in Fig. 6 how the propagation length behavior 

of the two types of DMD-mode is different, where the LRS-DMD waveguide mode has higher 

propagation length compared to the SRA-DMD mode. For this reason in our study, we will focus on 

the long-range symmetrical mode. At almost a few nanometer metal thicknesses, the propagation length 

of the LRS-DMD mode reaches a couple of thousands microns. When the metal thickness starts 

increasing, the propagation length reduces to a couple of hundreds microns as shown in the figure; this 

can be attributed to the Ohmic loss of metals.  

 

Fig. 6 The modal index and the propagation length of the DMD waveguide mode  

The effect of the metal film thickness on the DMD mode’s formation and confinement can be realized 

by plotting numerically the transverse magnetic field component (in Eq. 44) of the DMD mode at 

different metal thicknesses. One way to measure the mode confinement is by finding the confinement 

factor 𝛤, the ratio of the propagating power within the metal film to the whole mode’s energy in all 

three layers, which can be expressed as [27]: 

 𝛤 =
1

2
∫ 𝑅𝑒(𝐸⃗ ×𝐻⃗⃗ ∗)∙𝑧̂ 
𝑚

𝑑𝑥

1

2
∫ 𝑅𝑒(𝐸⃗ ×𝐻⃗⃗ ∗)∙𝑧̂ 𝑑𝑥
𝑤ℎ𝑜𝑙𝑒

. (52) 

   Figure 7 illustrates the Hy(x) field profile of the DMD mode at different metal thicknesses d=20, 50, 

and 100 nm, for the same materials used in Fig. 6.  As seen in Fig. 7, DMD mode is weakly confined 

within the metal layer which simply due to the Ohmic loss of metals. At very small metal thickness 
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d=20 nm, the propagation length according to Fig. 6 is a few thousands of microns, whereas the mode 

confinement is very weak about 0.02%.  As the metal thickness increases to 50 nm, the confinement   

gradually increased to 0.035%, which is still very low. When the metal thickness approaches to the 

cutoff condition where the DMD mode starts to be single metal-dielectric interface mode, the coupling 

strength decreases as well as the mode confinement, where the field strongly confined to the interfaces; 

this yields to a reduction in the mode confinement to 0.034%. Even though DMD mode has lower 

attenuation loss; however, the mode confinement is very weak.  

 

 

Fig. 7 The magnetic field profile of the DMD waveguide mode at different metal thicknesses d=20, 50, and 

100 nm 

In addition, the electric field of the DMD (SiO2/Ag/SiO2) plasmonic waveguide mode at dielectric 

thickness d=30 nm and at wavelength 1550 nm is shown in Fig. 8 by using COMSOL software. The 

surface plot, Fig. 8(a) shows the electric field of the DMD mode where the field is highly concentrated 

at the Ag/SiO2 interface and decaying into the two materials. The highest field distributes in the 

dielectric layer whereas the lowest field is confined within the metal region which can be seen clearly 

in the 1D plot of the 𝐸𝑥(𝑥, 0) for the DMD mode (in Fig. 8(a). This non-enhancement field within metal 

layer attributes to the loss associated with metals.  

SPP DMD modes supported by DMD waveguides have higher propagation lengths in the order of 

couple thousands microns better than metal/dielectric single interface modes, which have a few hundred 

microns as noticed in the example in Fig. 6. This essential feature makes DMD waveguides have the 

potential for nano-optical devices that require higher propagation length. Different structures of DMD 
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plasmonic waveguides have been studied in order to investigate the possibility to guide light waves at 

nano-scale level. These research studies have agreed to call the DMD SPP modes “Long-Range SPP 

waves” due to their lower attenuation loss [28-33]. Even though DMD waveguides have shown higher 

propagation lengths, the confinement of their modes are weak compared to MDM plasmonic 

waveguides, will be discussed in the following section, which might restrict their use in the integrated 

photonics applications that require very strong field confinement such as all-optical switching and 

signal processing data. 

 

 

Fig. 8 a) The surface plot for the electric field of the DMD (SiO2/Ag/SiO2) plasmonic mode at d=30 nm, 

and b) 1D plot for the 𝑬𝒙(𝒙, 𝟎) 

3.2 Metal-Dielectric-Metal Plasmonic Waveguide 

3.2.1 Basic Principle 

As opposite to the DMD waveguide, an MDM plasmonic waveguide consists of a dielectric film with 

thickness d and dielectric constant 𝜖𝑑 surrounding by a cladding and a substrate of metal with complex-

valued permittivity 𝜖𝑐 and 𝜖𝑠, respectively, where the MDM waveguide geometry is depicted in Fig. 9. 
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In order to comprehend the plasmonic mode guided by the MDM waveguide structure, the 

characteristic mode equation should be solved. Similar to the derivation of the DMD waveguide mode, 

the MDM waveguide mode equation can be obtained: 

  

 𝑒2𝑘𝑑𝑑 =
(
𝑘𝑑
𝜖𝑑
−
𝑘𝑐
𝜖𝑐
)(
𝑘𝑑
𝜖𝑑
−
𝑘𝑠
𝜖𝑠
)

(
𝑘𝑑
𝜖𝑑
+
𝑘𝑠
𝜖𝑠
)(
𝑘𝑑
𝜖𝑑
+
𝑘𝑐
𝜖𝑐
)
. (53) 

For simplicity, the cladding and substrate metals are assumed to be symmetrical 𝜖𝑐 = 𝜖𝑠 = 𝜖𝑚.  

 

       Fig. 9 The MDM plasmonic waveguide structure 

Hence, the dispersion relation can be expressed as: 

  

 𝑒𝑘𝑑𝑑 = ±
(
𝑘𝑑
𝜖𝑑
−
𝑘𝑚
𝜖𝑚
)

(
𝑘𝑑
𝜖𝑑
+
𝑘𝑚
𝜖𝑚
)
. (54) 

In transcendental forms, the positive sign can be written as: 

  

 tanh (
𝑘𝑑𝑑

2
) = −

𝑘𝑚𝜖𝑑

𝜖𝑚𝑘𝑑
, (55) 

and the negative sign one 

  

 tanh (
𝑘𝑑𝑑

2
) = −

𝑘𝑑𝜖𝑚

𝜖𝑑𝑘𝑚
. (56) 

As discussed in the previous section, the positive sign characteristic mode equation represents the 

fundamental transverse magnetic TM Long Range Symmetrical MDM (LRS-MDM) mode, whereas 
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the negative sign one corresponds to the transverse magnetic TM Short Range Anti-symmetrical MDM 

(SRA-MDM) mode. The discussion will be limited to the LRS-MDM modes due to their lower 

propagation loss.  

3.2.2 Numerical Analysis 

By solving the mode equation Eq. 55 numerically, the optical properties of the MDM plasmonic guided 

mode can be investigated such as the modal index, propagation length, optical fields, and the mode 

confinement. Figure 10 illustrates the modal index and the propagation length of the MDM guided 

mode over a range of dielectric film thickness d=0-200 nm at the optical communication wavelength 

1550 nm, where the dielectric and metal layers chosen to silica and silver;   the same materials are used 

in the example of the previous section for DMD waveguide mode, for a comparison purpose. At a few 

nanometers of dielectric thickness d, the modal index of the MDM guided mode has a large value, and 

it decreases as the dielectric thickness increases until it reaches the cutoff dielectric thickness, where 

the modal index of the MDM mode approaches to the single interface SPP modal index 𝑛𝑒𝑓𝑓,∞ =

√𝜖𝑚𝜖𝑑 (𝜖𝑚 + 𝜖𝑑)⁄ . The cutoff dielectric thickness dcutoff of MDM waveguide can be obtained from the 

mode equation Eq. 55 by assuming  |
𝑘𝑑𝑑

2
| ≪ 1 and using the estimation tanh(𝑥) ≈ 𝑥: 

  

 𝑑𝑐𝑢𝑡𝑜𝑓𝑓 ≈ 𝑅𝑒 (−2
𝜖𝑑

𝜖𝑚

√𝑛𝑒𝑓𝑓,∞
2 −𝜖𝑚

𝑘0(𝑛𝑒𝑓𝑓,∞
2 −𝜖𝑑)

). (57) 
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Fig. 10 The modal index and the propagation length of the MDM waveguide mode versus the dielectric 

thickness d 

   

Here, the cutoff dielectric thickness will be about 2600 nm, so it is a large value compared to the cutoff 

metal thickness of the DMD waveguide  dcutoff =100 nm in the previous section. This intuitively refers 

to that the MDM guided mode which results from the coupling between the two the single interface 

surface plasmons modes in the dielectric layer, so the majority of the decayed field is localized in the 

dielectric gap and minority of the fields decayed into the metal claddings. Hence, this enhancement of 

the MDM fields within the dielectric gap increases the cutoff dielectric thickness of the MDM 

waveguide mode. Contrary to the modal index of MDM guided mode, the propagation length increases 

tens microns as the dielectric thickness increases. However, this propagation lengths is very small 

compared to the propagation lengths of the DMD guided mode, which in the range of a couple of 

hundreds microns. This high propagation loss attributes to the resistive heating loss of two metal 

claddings.  

 The transvers magnetic field of the MDM guided mode can be plotted numerically by solving the 

derived mode equation Eq. 55 at different dielectric thicknesses d=20, 50, and 100 nm as shown in Fig. 

11, at the same metal thicknesses of the DMD guided mode in Fig. 7. It can be seen that how the MDM 

strongly confined within the dielectric film with almost a 99% confinement factor, which totally 

different from the confinement of the DMD guided mode that shows weaker confinement as the metal 

thickness increases. In the small limit of the dielectric thickness d=20 nm, the decaying length of the 
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fields in the dielectric layers is larger than the dielectric film thickness d, so this reduces the exponential 

decayed fields into the metals leading to increase the spatial extent of the mode. As the dielectric 

thickness increases, the exponential decaying of the fields increases in the metal clads, limiting the 

spatial extent of the MDM mode.   

 

 

Fig. 11 The transvers magnetic field of the MDM guided mode at dielectric thicknesses d=20, 50, and 100 

nm 

Figure 12 shows the 2D plot for electric field magnitude of the MDM (Ag/SiO2/Ag) plasmonic 

waveguide mode at 1550 nm and the 1D plot for electric field x-component 𝐸𝑥(𝑥, 0), at dielectric 

thickness d=30 nm, by using the FEM mode solver. The surface plot as well as the 1D plot demonstrate 

how the field is highly localized within the dielectric region and rapidly decayed in the metal regions. 

Comparing this example with Fig. 8 for the DMD plasmonic waveguide, where the materials and the 

core thickness are the same, we can see how the MDM plasmonic waveguide provides strong 

confinement within the core region better than DMD plasmonic mode.   
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Fig. 12 a) The 2D plot for the electric field, and the b) 1D plot for the electric field x-component of the 

MDM (Ag/SiO2/Ag) plasmonic mode at dielectric thickness  d=30 nm 

Due to the strong confinement provided by the MDM waveguides, much research have been 

conducted to exploit their features for sub-wavelength on-chip optical devices, such as sensing [34-35], 

all optical switching [36-37] and filtering [38-40]. DMD waveguides have shown higher propagation 

length with lower mode confinement while the MDM waveguides have shown strong mode 

confinement with lower propagation length. Thus, there is a remarkable tradeoff between propagation 

loss and mode confinement.  

3.3 Hybrid Plasmonic Waveguide      

3.3.1 Background 

Even though plasmonic waveguides (PWs) have received much interests due to their unique features to 

confine light in deep sub-wavelength structures, the propagation loss accompanied to the PWs has 

limited their applications. Intensive research have been done to enhance the optical performance of 

PWs. A hybrid plasmonic waveguide (HPW) is a recently proposed novel type of plasmonic 

waveguides that could obtain high confinement and low propagation loss simultaneously. A basic HPW 

consists of a sub-wavelength low-index dielectric layer sandwiched between a metal layer and a high-
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index dielectric layer. The first pioneer work was proposed in 2007 by Alam et al. based on a 

rectangular geometry shown in Fig. 13(a) [11, 41]. Their proposed structure consists of a low-index 

dielectric spacer (silica) embedded between a high-index dielectric (silicon) and a metal substrate 

(silver) at the wavelength 800 nm. They found that the absence of the metal layer yields to have a 

conventional dielectric mode localized in the silicon nano-wire and the absence of the silicon layer 

leads to have a single interface metal/dielectric surface mode. However, the presence of the silicon 

layer close to the metal separated by a thin-spacer silica results in forming a Super-mode, which highly 

concentrated in the sub-wavelength low-index layer as displayed in the Fig. 13(b).   

 

Fig. 13 a) The first proposed HPW based on a planar geometry, b) the power profile of the hybrid mode 

[41] 

A year after, this Super-mode was called a hybrid plasmonic (HP) mode in the second pioneer work 

conducted by Oulton et al. [12]. This HP mode results from the strong coupling between the 

conventional dielectric mode and the SP mode. The hybrid mode has shown a favorable balance 

between mode confinement and propagation loss. Their work is based on a non-planar geometry. It 

consists of a cylindrical high-index dielectric nanowire (GaAs) adjacent to a metallic surface (silver) 

through a low index gap (silica) at the telecommunications wavelength 1550 nm as shown in Fig. 14(a). 

In their work, Oulton et al. explained the hybrid mode formation by using the coupled-mode theory, 

and divided the hybrid mode into two types: a SPP-like mode and a dielectric waveguide (DW)-like 

mode by controlling the geometrical dimensional parameters. Figure 14(b) shows the propagation 

length of the hybrid mode versus the diameter d of the high-index nanowire for different low-index gap 

width h. Their proposed HPW geometry has shown large propagation lengths (40-150 µm) with a strong 

mode confinement from 𝞴2/400 to 𝞴2/40 compared to the PWs.  
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Fig. 14 a) The second proposed HPW based on a non-planar geometry, b) the propagation length of the 

hybrid mode versus the diameter d of the nanowire for different gap thicknesses h [12] 

Even though both of the proposed structures have shown strong mode confinement and substantial 

improvements in the propagation length, the rectangular-based HPW is compatible with current nano-

fabrication techniques and easier to integrate on-chips more than the cylindrical-based HPW. 

The excellent features of the HP modes have driven researchers to propose different geometries 

and schemes of HPWs, based on theoretical [42-48] and experimental studies [49-50]. For example, a 

metal cap on a silicon on isolator SOI ridge HPW has been proposed by Dai et al. in 2009 shown in 

Fig. 15(a) [42]. They found that having a nano-scale 5 nm low-index spacer thickness with 50 nm ridge 

width can provide a better confinement with longer propagation length on the order of 100𝞴, as well as 

their ease fabrication techniques which is compatible with SOI wafers. Another guiding scheme of the 

proposed HPWs is metallic V-grooves filled with a low-index gap dielectric and a high-index dielectric 

mediums shown in Fig. 15(b) [48]. Such a structure reveals a strong localized HP mode within the gap 

with long propagation length ranging from tens microns to hundred microns, and its compatibility with 

planar fabrication techniques. 
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Fig. 15 Different proposed guiding schemes of HPWs, a) a metal cap on a SOI ridge [42], and b) metallic 

V-groove [48] 

3.3.2 Dispersion equation of the Hybrid Plasmonic Mode 

As previously mentioned, different geometries and structures have been considered in order to 

investigate hybrid plasmonic waveguides; however, all these theoretical studies were based on 

commercial mode solver software’s based-results. The first theoretical study of a HPW based on a 

derived analytical equation was performed by Avrutsky et al. in 2010 [51].  They theoretically analyzed 

the guided modes in a conductor-gap-dielectric (CGD) system that consists of a low-index gap 

sandwiched by a conductor and a high-index dielectric layer. The authors explained why the low-index 

gap has to be nanoscale and that the role of the exact geometry of the high-index part in [12] is for 

lateral confinement, rather than hybridization and coupling of a SPP to a mode of cylinder. 

The mode equation of the hybrid plasmonic waveguide can be derived by using the wave equation 

and applying the suitable boundary conditions, as done in the previous sections. A simple schematic of 

a simple 1D HPW is shown in Fig. 16; it consists of a low-index gap dielectric layer with a permittivity 

𝜖𝑔  and gap thickness t inserted between a metal and high-index dielectric semi-infinite claddings with 

permittivities 𝜖𝑚 and 𝜖𝑑, respectively, where the origin O point in the mid of the gap thickness. 

Assuming the hybrid mode is propagating in z-direction and the geometry is infinite in y-direction, so 

there is no y-field dependent for the hybrid guided mode. Since the hybrid mode is a plasmonic mode, 

so it has a TM polarization. Hence, there are three non-zero fields Hy, Ex, and Ez.  By solving the wave 

equation Eq. 43 in each layer and using Maxwell’s equations, the hybrid mode solutions can be 

expressed as:  



 

 30 

  

 𝐻𝑦(𝑥) =

{
 
 

 
 𝐴𝑒−𝑘𝑑𝑥 , 𝑥 >

𝑡

2

𝐵𝑒−𝑘𝑔𝑥 + 𝐶𝑒𝑘𝑔𝑥 , −
𝑡

2
< 𝑥 <

𝑡

2

𝐷𝑒𝑘𝑚𝑥 , 𝑥 < −
𝑡

2

, (58) 

  

 𝐸(𝑥, 𝑦, 𝑧)𝑥̂ = 𝐸𝑥(𝑥)𝑒
𝑖𝛽𝑧𝑥̂ =

{
 
 

 
 −

𝛽𝐴

𝜔𝜖𝑑
𝑒(𝑖𝛽𝑧−𝑘𝑑𝑥) (𝑥̂), 𝑥 >

𝑡

2

−
𝛽

𝜔𝜖𝑔
𝑒𝑖𝛽𝑧(𝐵𝑒−𝑘𝑔𝑥 + 𝐶𝑒𝑘𝑔𝑥) (𝑥̂), −

𝑡

2
< 𝑥 <

𝑡

2

−
𝛽𝐷

𝜔𝜖𝑚
𝑒(𝑖𝛽𝑧+𝑘𝑚𝑥) (𝑥̂), 𝑥 < −

𝑡

2

, (59) 

and  

 𝐸(𝑥, 𝑦, 𝑧)𝑧̂ = 𝐸𝑧(𝑥)𝑒
𝑖𝛽𝑧𝑧̂ =

{
 
 

 
 

𝑖𝐴𝑘𝑑

𝜔𝜖0𝜖𝑑
𝑒(𝑖𝛽𝑧−𝑘𝑑𝑥) (𝑧̂), 𝑥 >

𝑡

2

𝑖𝑘𝑔

𝜔𝜖0𝜖𝑔
𝑒𝑖𝛽𝑧(𝐵𝑒−𝑘𝑔𝑥 − 𝐶𝑒𝑘𝑔𝑥) (𝑧̂), −

𝑡

2
< 𝑥 <

𝑡

2
,

−
𝑖𝐷𝑘𝑚

𝜔𝜖0𝜖𝑚
𝑒(𝑖𝛽𝑧+𝑘𝑚𝑥) (𝑧̂), 𝑥 < −

𝑡

2

 (60) 

 

Fig. 16 A schematic diagram of the hybrid plasmonic waveguide structure 

where wave number of the hybrid mode decaying fields into each region can written as: 

  

 𝑘𝑖 = √𝛽
2 − 𝑘0

2𝜖𝑖 ,  (61) 

where 𝑖 = 𝑑, 𝑔, and 𝑚, stands for dielectric, gap, and metal region. It can be noticed that the hybrid 

plasmonic waveguide has the same solutions as the DMD waveguide or MDM waveguide with different 

refractive indices. Hence, the dispersion relation of the hybrid plasmonic waveguide would have the 

same general formula of the DMD waveguide Eq. 44 or MDM waveguide Eq 52, with utilizing the 
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suitable material optical properties. Therefore, the dispersion relation of the hybrid plasmonic mode 

can take the form  

  

 𝑒2𝑘𝑔𝑡 =
(
𝑘𝑔

𝜖𝑔
−
𝑘𝑚
𝜖𝑚
)(
𝑘𝑔

𝜖𝑔
−
𝑘𝑑
𝜖𝑑
)

(
𝑘𝑔

𝜖𝑔
+
𝑘𝑚
𝜖𝑚
)(
𝑘𝑔

𝜖𝑔
+
𝑘𝑑
𝜖𝑑
)
. (62) 

It can be also simplified to  

  

 𝑒𝑘𝑔𝑡 = ±√
(
𝑘𝑔

𝜖𝑔
−
𝑘𝑚
𝜖𝑚
)(
𝑘𝑔

𝜖𝑔
−
𝑘𝑑
𝜖𝑑
)

(
𝑘𝑔

𝜖𝑔
+
𝑘𝑚
𝜖𝑚
)(
𝑘𝑔

𝜖𝑔
+
𝑘𝑑
𝜖𝑑
)
. (63) 

The dispersion equation of the hybrid mode, as seen, depends on the optical properties of each layer as 

well as the low-index gap thickness t. When the gap thickness shrinks to zero, the dispersion relation 

will approach to the single interface metal/high-index dielectric dispersion relation  

  𝑛𝑒𝑓𝑓,∞ = √
𝜖𝑚𝜖𝑑

(𝜖𝑚+𝜖𝑑)
. (64) 

3.3.3 Numerical Analysis and Discussion 

3.3.3.1 The Modal Properties  

The optical performance of the hybrid plasmonic waveguide can be studied by solving the dispersion 

equation of the LR hybrid plasmonic mode Eq. 63 numerically, and obtaining the basic optical 

descriptors of the hybrid mode: the modal index and the propagation length. Figure 17 illustrates the 

optical properties of the hybrid mode for two examples. The modal index and the propagation length 

of the hybrid mode for Silicon/Silica/Silver HPW at the telecommunications wavelength 1550 nm are 

shown in Fig. 17(a), where the refractive indices of the materials are 𝑛Si = 3.455, 𝑛SiO2 =

1.445, and 𝑛Ag = 0.1453 + 11.3587𝑖.  At zero gap thickness t of the silica layer, the modal index 

approaches to the modal index of a single interface Silver/Silicon surface plasmon mode 𝑛eff,∞. As the 

gap thickness increases, the modal index reduces dramatically until the curve converge to the refractive 

index of the high-index cladding (silicon) 𝑛Si, where the cutoff gap thickness 𝑡cutoff  approached. 

Hence, the propagation length will be a maximum at the cutoff thickness and the loss minimum because 
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the mode starts being a conventional dielectric mode localized in the high-index layer (silicon). The 

cutoff thickness of the hybrid mode can be obtained from LR-HP mode dispersion formula of Eq. 63 

by assuming that the modal index of the hybrid mode 𝑛eff approaching the refractive index of the high-

index dielectric (silicon) layer 𝑛𝑑 = 𝑛Si, so it can be expressed as: 

 𝑡𝑐𝑢𝑡𝑜𝑓𝑓 = 𝑅𝑒(
𝜆

4𝜋√𝑛𝑑
2−𝑛𝑔

2
𝑙𝑛 (

𝑛𝑚
2 √𝑛𝑑

2−𝑛𝑔
2−𝑛𝑔

2√𝑛𝑑
2−𝑛𝑚

2

𝑛𝑚
2 √𝑛𝑑

2−𝑛𝑔
2+𝑛𝑔

2√𝑛𝑑
2−𝑛𝑚

2
)). (65) 

Hence, the modal index range of the hybrid plasmonic mode is between the modal index of the single 

interface Si/Ag surface plasmon mode 𝑛𝑒𝑓𝑓,∞(Si Ag) ⁄ and the refractive index of the high-index 

dielectric mode 𝑛Si where the cutoff gap thickness reached, as shown in Fig. 17(a). Thus, the hybrid 

mode needs only a few nanometers gap thicknesses in order to reduce the modal index of 

𝑛𝑒𝑓𝑓,∞(Si Ag) ⁄ to the refractive index of nSi, so the cutoff gap thickness here is very small a few 

nanometers 4.7 nm, where the index contrast is large between the high-index dielectric (silicon) and 

the-index gap dielectric (silica) layer (nSi/nSiO2)=2.39. This explains how the hybrid mode is compressed 

in a sub-wavelength size in the low-index gap region. As the index contrast decreases, the cutoff 

thickness increases to a few tens nanometers around 46 nm as illustrated in Fig. 17(b) where the hybrid 

plasmonic waveguide materials are Germanium (high-index, nGe=4.275), silicon (low-index gap), and 

silver (metal) at the wavelength 1550 nm. In addition, the propagation length of the hybrid mode 

increases as the gap thickness increases until it maximizes infinitely at the cutoff thickness as shown in 

Fig. 17 (Right), so the hybrid mode has lower loss compared to the single interface metal/dielectric 

loss. For example, the propagation length of the SPPs mode at Si/Ag interface is 26 µm, and the 

propagation length for Ge/Ag interface’s SPPs mode is ~13 µm. These short propagation lengths of the 

SPPs mode at the metal/dielectric interface reflects the high loss that PWs suffering from, whereas the 

propagation length range of the hybrid mode is between tens microns to a hundred microns which is 

much better than pure SPPs modes. These propagation lengths of the hybrid mode are reasonably 

acceptable for on chips nano-plasmonic devices, which is considered to be a few hundred nanometers 

a cross.  
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Fig. 17 The modal index and the propagation length versus the gap thickness t of the a)  

Silicon/Silica/Silver, and b) Germanium/Silicon/Silver hybrid plasmonic waveguides at 1550 nm 

 

 

 

3.3.3.2 The Energy Flux Density Profile of the Hybrid Mode 

The power density of the hybrid mode flowing in the z-direction can be plotted by using the transverse 

field components Eq. 57 and Eq. 58, and the energy flux density (the time average of the z-component 

of the pointing vector): 
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 𝑆𝑧 =
1

2
𝑅𝑒(𝐸⃗ × 𝐻⃗⃗ ∗) ∙ 𝑧̂. (66) 

Figure 18(a) shows the propagating power of the hybrid mode at different gap thicknesses t for the 

(Ge/Si/Ag) hybrid plasmonic waveguide. At very small gap thickness t=5 nm, the power density is 

highly maximized within the gap region (Silicon) layer and decays into the cladding regions. This 

noticeable field enhancement within the gap can be explained simply from the continuity of the normal 

electric displacement fields at the interfaces of the gap (Si) and the high-index dielectric (Ge) materials; 

𝜖𝑔𝐸𝑥,𝑔 = 𝜖𝑑𝐸𝑥,𝑑 . Thus, the electric field localized in the gap is 1.54 times the electric field confined 

within the high-index layer.  

Therefore, having large index contrast between the gap and the dielectric layers will improve the 

field enhancement greatly within the gap. Figure 18(b) shows the power profile of the hybrid mode at 

large index contrast Si/SiO2 at different gap thicknesses t=1, 3, and 4 nm, so it can be seen how the 

field is highly localized within the gap (SiO2); it is almost 6 times the field residing within the high-

index dielectric layer (Si) . At the metal/gap interfaces, the continuity of the normal component of the 

electric fields requires that 𝜖𝑚𝐸𝑥,𝑚 = 𝜖𝑔𝐸𝑔.  Since the metal permittivity has a negative real part, the 

power field direction is flipping at the metal/low-index gap interface as shown clearly in Fig. 18 (a), 

and rapidly decaying in the metal clad because the high propagation loss of metals at optical 

frequencies. As the gap thickness increases in the two cases of Fig. 18, the power field confined within 

the gap region decreases. As a result, subwavelength nano-gap thicknesses can provide strong field 

confinement with a moderate propagation length.  
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Fig. 18 The energy flux density of the hybrid mode in a) the (Ge/Si/Ag) HPW at different gap thicknesses 

t=5, 20, and 40 nm, b) at high index contrast Si/SiO2/Ag HPW at gap thicknesses t=1, 3, and 4 nm 

Moreover, the FEM mode solver has been used to examine the hybrid plasmonic mode’s electric 

field in one and two dimensions, and to realize how the gap cutoff thickness t influences the hybrid 

mode’s formation. Figure 19 and Fig. 20 show one and two dimensional plot for electric field of the 

(Ge/Si/Ag) hybrid plasmonic mode at different gap thicknesses t=10, 30, 50, and 70 nm. At small gap 

thicknesses such as t=10 and 30 nm, we can see the hybrid mode’s field is highly compressed within 

the low-index gap layer and decaying away into the cladding regions (Ge and Ag layers), and the field 

confinement within the gap decreases as the gap thickness increases. Referring back to Fig. 17(b) where 

the optical performance of the (Ge/Si/Ag) hybrid plasmonic waveguide has been investigated, we found 

that the hybrid mode supported by such a structure has a gap thickness 𝑡𝑐𝑢𝑡𝑜𝑓𝑓 ≈ 46 nm. Thus, when 

the gap thickness is smaller than the cutoff thickness, the field highly concentrated within the gap as in 

the cases t=10 and 30 nm. However, as the gap thickness increases to 50 and 70 nm exceeding the 

cutoff gap thickness as illustrated in Fig. 19 and Fig. 20, we observe how the E-field of the hybrid mode 

noticeably leaks to the high-index region, and the leakage increases as the gap thickness increases.     
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Fig. 19 The 2D electric field for the hybrid plasmonic mode at different gap thicknesses t=10, 30, 50, and 

70 nm   
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Fig. 20 The electric field of the hybrid guided mode as a function of x at different gap thicknesses a) t=10, 

b) t=30, c) t=50, and d) t=70 nm 

3.3.4 Applications of Hybrid Plasmonic Waveguides 

There is a great attention has been paid to the hybrid plasmonic waveguides HPWs in recent years 

because of their crucial features to confine light strongly within sub-wavelength nano-scale structures 

beyond the diffraction limit with lower propagation loss compared to other purely plasmonic 

waveguides, and their compatibility with the SOI and CMOS fabrication techniques. Many research 

studies have been conducted to exploit the strengths of HPWs in different applications. One of the 

HPWs promising applications is constructing highly-dense plasmonic integrated circuits, which can 

have superior data transmission rate, low power consumption, and minuscule size [52]. Different 

components of plasmonic integrated circuits based on HPWs have been proposed and investigated such 

as power splitters [53], ring resonators [54], and directional couplers [55]. Since data processing within 
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electronic integrated circuits is performed nonlinearly in order to route, modulate, and switch data, there 

has been much interest to perform nonlinear all optical data-processing devices. The great field 

enhancement achieved within the low-index gap of hybrid plasmonic waveguides makes them excellent 

candidates to perform nonlinear optical devices which require high field intensity, low power, and very 

small switching time. For this purpose, various hybrid plasmonic waveguides have been proposed and 

studied for nonlinear devices [56-63]. Another important application of HPWs which has been 

investigated experimentally and theoretically is building active nanoscale devices such as nanolasers 

[64-68]. Utilizing HPWs for biosensing applications has gained much interest recently [69-71].  
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Chapter 4 

Hybrid Multilayered Dielectric-Metal-Dielectric Waveguides 

Although the SPPs modes supported by the fundamental metal-dielectric interface structure have shown 

superior merits to confine light beyond diffraction limit, it suffers from high propagation loss due to 

the intrinsic Ohmic loss in metal [72]. To reduce the propagation loss, symmetrical structures such as 

Dielectric-Metal-Dielectric (DMD) [73-74] and Metal-Dielectric-Metal (MDM) waveguide structures 

have been proposed; unfortunately, the improvement in propagation loss in the DMD structure comes 

at the price of the modal field confinement and vice versa in the MDM structure, as discussed 

previously.  

Hybrid plasmonic waveguides (HPWs) have been proposed as a solution to the propagation loss 

issue of plasmonic waveguides. They have gained consideration as one of the most promising 

plasmonic structures as they can support hybrid plasmonic modes that have extremely strong field 

confinement within a nanometer scale gap while maintaining a relatively long propagation distance 

compared to purely plasmonic waveguides. Symmetrical hybrid SPP waveguide structures have been 

proposed to further improve the propagation distance and the field confinement of the guided SPP 

modes. For example, symmetrical hybrid plasmonic waveguides with two high-index nanowires [75] 

and rectangular slabs [76] have been proposed. Both of them have shown simultaneous improvement 

in propagation loss and modal confinement. 

 Most of the theoretical studies are based on using simulation software in order to study the hybrid 

guided mode and its optical properties. Understanding the hybrid mode deeply requires analytical 

theoretical studies in order to study all the factors that may enhance the waveguide performance 

accurately, which can help the waveguide designers for the fabrication of the plasmonic devices. For 

example, the mode equation for a planar 3-layer conductor-gap-dielectric waveguide (CGD), which 

consists of a low-index dielectric gap inserted between an infinite conductor layer and an infinite high-

index dielectric layer, has been derived by Avrutsky et al. [51]. They analyzed the hybrid mode and 

explained the physical reason for the requirement of nanoscale gap for the existence of the hybrid 

plasmonic mode. Although the mode equation for the hybrid mode of a three-layer planar PW has been 

derived and studied, there is a lack of theoretical studies based on analytical equations for the 

characterization of the hybrid mode of multilayer HPWs. In this dissertation, we present comprehensive 
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theoretical studies for the hybrid modes guided by multilayered hybrid plasmonic waveguides based 

on derived-analytical equations. In this chapter, we present two thorough analytical-theoretical studies 

for five and seven layers hybrid-DMD plasmonic waveguides by deriving their dispersion equations,  

studying their optical performance, plotting their optical fields’ profile, analyzing the mode 

characteristics, including the confinement factor, utilizing figures of merit, as well as using a 

commercial software for more investigations [77-78]. 

4.1 Theoretical Study of Plasmonic Modes in a Symmetric Conductor-Gap-

Dielectric waveguide  

We present a theoretical analysis of the guided SPP modes of a symmetric conductor-gap-dielectric 

system (SCGD) that is constructed with a conductor metal strip sandwiched symmetrically with a low-

index gap and high-index cladding layer on both sides. The dispersion relation of the guided mode by 

such a structure is derived to investigate the optical performance in the SCGD system. As well as, we 

explain the existence of the cutoff gap thickness and present an approximate analytical expression for 

its estimation. Contrary to the CGD system, where the cutoff gap thickness is fixed [51], we investigate 

the effect of the metal thickness and the index contrast ratio of the cladding high-index layer to the low-

index gap layer on the cutoff thickness of the low-index gap region. The optical fields guided by such 

a structure are plotted based on our analytical equations. Moreover, we present the simulation results 

for the characterization of the guided mode, including the modal index, propagation distance, gap cutoff 

thickness, optical fields’ power, and electrical field confinement within the gap. The lateral confinement 

of the SCGD mode is also discussed. The guided modes supported by the SCGD waveguide structure 

have been characterized for relatively low index contrast ratio by another approach based on the 

reflection pole method [79]. However, our study is based on analytical derived equations, focused on 

the high-index-contrast ratio structure, which enables an extremely strong field confinement within a 

nano-scale low-index gap, making the SCGD structure an excellent plasmonic waveguide for 

fabricating active and passive plasmonic devices, such as surface-plasmon nano-lasers [80], and all-

optical switchers using nonlinear effects [81].  
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4.1.1 Theoretical Model 

4.1.1.1 Dispersion equation 

A schematic diagram of the SCGD plasmonic waveguide structure is shown in Fig. 21, which consists 

of a center conductor layer sandwiched between two low-index dielectric gaps that cladded with semi-

infinite high-index dielectric layers on both sides. The conductor thin film has a thickness of d and 

permittivity of m. Each low-index gap has a thickness of t and refractive index of ng, and the refractive 

index of the high-index cladding is denoted as nd. Both the low-index and high-index dielectric layers 

are assumed to be lossless, and all the materials are considered homogeneous, nonmagnetic and 

isotropic. The SCGD waveguide architecture is simply a modified DMD structure with the insertion of 

two low-index dielectric gap layers inside. Without the gap layers, i.e., t = 0, it becomes a traditional 

DMD waveguide, which supports two SPPs modes: the LRS-DMD mode and SRA-DMD mode.  

With the insertion of the gap layers, due to the large index contrast ratio of the cladding layer to gap 

layer, the guided mode in the SCGD system, referred to as the SCGD mode, is strongly confined in the 

gap layers with reduced propagation loss if the gap thickness is sufficiently narrow. The largest gap 

thickness for which SCGD mode can propagate is called cutoff gap thickness, i.e. the SCGD mode 

occurs only if the gap thickness is smaller than the cutoff gap thickness, which will be discussed in 

details theoretically. 

   

 

Fig. 21. Schematic diagram of the 1D symmetric conduct-gap-dielectric (SCGD) structure 

We assume the 1D model is infinite in y-direction, so there is no dependence on the lateral 

dimension y, and the guided mode propagates in the z-direction. The SCGD waveguide only supports 

transverse magnetic (TM) modes, where the non-zero field components are Hy, Ex, and Ez.  All the 
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fields assumed to have time-harmonic form, for the SPP propagation in the z direction, the wave 

equations for magnetic field can be simplified to Helmholtz’s equation, given by 

 
𝜕2𝐻𝑦

𝜕𝑥2
− (𝛽2 − 𝑘0

2𝜀𝑟)𝐻𝑦 = 0, (67) 

where   is the propagation constant of the guided mode, r stands for the relative permittivity of the 

media (i.e, the gap, cladding, or metal film), ko = is the wave vector of the propagating wave, and 

is the wavelength in vacuum. Equation (67) is a partial differential equation, from which a 

corresponding function of the solution Hy is constructed for different media. By using Maxwell’s 

equations, the tangential and normal electric fields components can be obtained from Hy by using the 

following relations:  

 𝐸𝑥 =
𝛽

𝜔𝜀0𝜀𝑟
𝐻𝑦 (68) 

and 

 𝐸𝑧 = −
𝑗

𝜔𝜀0𝜀𝑟

𝜕𝐻𝑦

𝜕𝑥
. (69) 

The boundary conditions must be satisfied at the materials interfaces. That means, the tangential 

components of the electric and magnetic fields Ez and Hy, and the normal component of the electric 

displacement field Dx are continuous. By applying the appropriate the boundary conditions, the 

dispersion relation of the SCGD waveguide can be obtained 

 𝑒𝑘𝑚𝑑 = ±

𝑘𝑚𝜀𝑔

𝑘𝑔𝜀𝑚
∙
1+𝑟

1−𝑟
+1

𝑘𝑚𝜀𝑔

𝑘𝑔𝜀𝑚
.
1+𝑟

1−𝑟
−1
, (70) 

with  

 𝑟 = 𝑒2𝑘𝑔𝑡
𝑘𝑔

𝜀𝑔
+
𝑘𝑑
𝜀𝑑

𝑘𝑔

𝜀𝑔
−
𝑘𝑑
𝜀𝑑

  (71) 

and 



 

 43 

 𝑘𝑖
2 = 𝛽2 − 𝑘0

2𝜀𝑖 , (72) 

where 𝑖 = 𝑚, 𝑔, and 𝑑, standing for metal, gap, and dielectric layers, respectively. The relative 

permittivites are related to refractive indices by 𝜀𝑖 = 𝑛𝑖
2. The positive sign of the dispersion relation 

Eq. 70 corresponds to the fundamental transverse magnetic TM symmetrical LRSPP hybrid-DMD 

mode, whereas the negative sign one refers to anti-symmetrical SRSPP hybrid-DMD mode. Here, we 

study only the LRSPP hybrid-DMD mode due to its low propagation loss. The dispersion equations of 

the hybrid-DMD modes can be re-expressed in transcendental forms as: 

 tanh (
𝑘𝑚𝑑

2
) =

𝑘𝑔𝜀𝑚(1−𝑟)

𝑘𝑚𝜀𝑔(1+𝑟)
,     (73) 

for the positive sign, and   

 tanh (
𝑘𝑚𝑑

2
) =

𝑘𝑚𝜀𝑔(1+𝑟)

𝑘𝑔𝜀𝑚(1−𝑟)
, (74) 

for the negative sign. 

When there is no low-index gap layers, the dispersion equations 70, 73, and 74 can be simplified as: 

 𝑒𝑘𝑚𝑑 = ±

𝑘𝑚
𝜀𝑚
−
𝑘𝑑
𝜀𝑑

𝑘𝑚
𝜀𝑚
+
𝑘𝑑
𝜀𝑑

, (75) 

 tanh (
𝑘𝑚𝑑

2
) = −

𝑘𝑑𝜖𝑚

𝜖𝑑𝑘𝑚
, (76) 

 tanh (
𝑘𝑚𝑑

2
) = −

𝑘𝑚𝜖𝑑

𝜖𝑚𝑘𝑑
. (77) 

As noticed, these equations are equivalent perfectly to the characteristic mode equations Eq. 40 - Eq. 

51 of the DMD plasmonic waveguides discussed in the previous chapter. The positive sign of the mode 

equation represents the LRSPP DMD mode, and the negative sign corresponds to the SRSPP DMD 

mode. 
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4.1.1.2 Cutoff condition for the guided SCGD mode  

In order to understand how to form the guided mode in the SCGD structure – Dhigh/Dlow/Metal/ 

Dlow/Dhigh, the special case when the gap thickness t = 0 will be considered.  Thus, this waveguide 

structure becomes the traditional DMD structure that is formed by a thin metal film surrounding with 

high-index cladding layers – Dhigh/Metal/Dhigh. The modal index of the Dhigh/Metal/Dhigh system 

determined by Eq. 76 is larger than the index of the cladding layer. As the metal film thickness 

increases, the modal index will be greater and propagation length smaller. By introducing symmetric 

thin dielectric low-index gap layers, the modal index and the propagation loss of the SCGD system start 

to decrease. When increasing the thickness of the gap, the modal index and propagation loss continue 

to decrease until the gap reaches a maximum thickness where the real part of the modal index is equal 

to the index of the cladding layer and the propagation loss reaches its minimum. Beyond the maximum 

gap thickness, the mode shows substantial leakage into the high-index cladding layer. This represents 

the cutoff condition for the guided SCGD mode, and this maximum gap thickness is referred as the 

cutoff gap thickness.  

The cutoff gap thickness tmax can be numerically solved from the transcendental dispersion equation 

Eq. 73. On the other hand, it would be convenient and meaningful for waveguide designers to be able 

to find a reliable estimate of tmax without resort to complicated numerical calculations. By setting the 

modal index equal to the index of the cladding layer and assuming zero propagation loss for the guided 

mode (which is very reasonable due to the minimum propagation loss at cutoff condition), an 

approximate analytical expression for the cutoff gap thickness can be written as: 

 𝑡𝑚𝑎𝑥 =
1

𝑘𝑔
𝑡𝑎𝑛ℎ−1 (−

𝑘𝑚𝜀𝑔

𝑘𝑔𝜀𝑚
𝑡𝑎𝑛ℎ (

𝑘𝑚𝑑

2
)) (78) 

with 𝑘𝑔 = 𝑘0√𝜀𝑑 − 𝜀𝑔 and 𝑘𝑚 = √𝜀𝑑 − 𝜀𝑚. 
m o d mk k    .  

It can be seen from Eq. 78, the cutoff gap thickness of the SCGD mode depends on the metal film 

thickness d, and the materials optical properties of the gap and cladding layer, the permittivity of the 

metal film, as well as the wavelength of the propagation wave. When the metal film thickness is thin, 

the cutoff gap thickness will be smaller. In addition, having large index contrast (the ratio of nd to ng) 
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will decrease the cutoff thickness. When the thickness of the metal film d is considered to be very small, 

the cutoff gap thickness equation Eq. 78 can be simplified to: 

 𝑡𝑚𝑎𝑥 ≈
𝑑

2(𝑛𝑑
2 𝑛𝑔

2⁄ −1)
. (79) 

For instance, if the metal thickness is 30 nm, and the index contrast ratio nd /ng, is 1.5, then from 

the estimate of the cutoff gap thickness tmax will be 12 nm. As the contrast index ratio increased to 2.39 

(by using nSi/nSiO2 at the wavelength 1550 nm), then the allowable cutoff gap thickness tmax is reduced 

to 3.2 nm. From Eq. 79, we can clearly see that tmax is proportional to the metal thickness. Therefore, 

the cutoff gap thickness can be controlled by the index contrast ratio and the metal thickness. 

The case we considered, thus far, is for high index contrast ratio, where the cutoff gap thickness 

tmax to have guided SCGD mode is in the nanoscale range. However, when the index contrast ratio 

reduced by fixing ng while decreasing nd, then the cutoff thickness will increase. For the extreme case 

where tmax  , the dispersion equation of the SCGD guided mode Eq. 73 can be written as: 

 tanh (
𝑘𝑚𝑑

2
) = −

𝑘𝑔𝜖𝑚

𝜖𝑔𝑘𝑚
, (80) 

As seen, Eq. 80 is simply the dispersion equation for a low-index-metal-low-index (LML) plasmonic 

waveguide structure. Thus, at tmax  , the modal index of the SCGD structure is actually the modal 

index for a gap/conductor/gap structure, determined by Eq. 80. Recall that to derive the approximate 

analytical expression for the cut off condition of the SCGD mode, the modal index is set equal to the 

cladding index nd. Therefore, to have guided SCGD mode, the cladding index nd has to be larger than 

the modal index of the gap/conductor/gap structure based on Eq. 80, which depends on the metal 

thickness. This conclusion is in agreement with Eq. (1) in ref. [79]. As well as, by fixing the high-index 

nd, the metal film has to be (very thin) smaller than the thickness determined by Eq. 80 to ensure the 

existence of the SCGD mode within the low index gap. 
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4.1.2 Numerical Analysis and Discussion 

4.1.2.1 The Modal Properties 

In order to study the optical behavior of the SCGD guided mode, we need to solve the mode equation 

numerically to obtain the optical properties of the guided mode such as the modal index and the 

propagation length. The effect of the index contrast ratio nd/ng on the cutoff gap thickness will be 

investigated by using three different combinations of the cladding/gap materials – Ge/Si, CdS/MgF2 

and Si/SiO2. The refractive indices of Ge, Si, CdS, MgF2 and SiO2 at the telecom wavelength 1550 nm 

are 4.275, 3.455, 2.3, 1.37, and 1.445, respectively. Hence, the index contrast ratios are 1.237, 1.678 

and 2.391 for the combinations Ge/Si, CdS/MgF2 and Si/SiO2, respectively. In the SCGD structure, the 

conductor has been chosen to be silver (Ag) and gold (Au) for the sake of comparison, where their 

permittivities are 129 3.3Ag j     and 115.11 11.103Au j     [26].   By solving Eq. 73, we can obtain 

the modal properties of the SCGD guided mode: the modal index and the propagation length. 

The modal index and propagation distance versus the thickness of the low-index gap layer, at 

different metal film thicknesses and various cladding/gap materials, are shown in Fig. 22, where the 

solid and dotted lines correspond to the silver and gold, respectively. Three different index contrast 

cladding/gap materials are analyzed: Ge/Si, CdS/MgF2, and Si/SiO2, respectively, at various metal 

thicknesses d=10, 20, 30, 40, and 50 nm.  

It is worth noting that utilizing silver film results in lowering the propagation loss because the Ohmic 

loss of the silver is smaller than that of gold. As the gap thickness increases, we can see the modal index 

decreasing and the propagation length increasing. Increasing the gap thickness further leads to all 

curves for the modal index approaching to the index of the cladding layer, where the cutoff gap 

thickness is reached. At the cutoff gap thickness, the propagation length is maximized leading to a 

remarkable reduction in the propagation loss.  

Moreover, the cutoff gap thickness changes with the metal film thickness. Reducing the metal 

thickness results in having a smaller cutoff thickness and a longer propagation length. The physical 

reason behind that is with a thinner metal film, at zero gap the modal index is only slightly above the 

cladding index, which suggests that only a thin low-index gap is required to bring the modal index 

down to the cladding index. Because of the intrinsic Ohmic loss of the conductor material, a thinner 

metal film will have a smaller overlap with the SCGD mode, yielding to longer propagation distance.  
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Fig. 22  (a1) – (a3) SCGD modal index and (b1) – (b3) propagation distance as a function of gap 

thickness for different metal thickness. Solid and dotted lines represent silver and gold 

respectively. Cladding/gap materials are Ge/Si for [(a1), (b1)], CdS/MgF2 for [(a2), (b2)], and 

Si/SiO2 for [(a3), (b3)], respectively. 
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Our simulation results based on our analytical expression are in agreement with those in ref. [79] 

which is based on a different approach, as well as verified by using the commercial finite element-

based software COMSOL Multiphysics 4.3b.  By using COMSOL’s mode solver, the modal index and 

the propagation length at different metal thicknesses d=20, 30, and 40 nm for SCGD guided mode by 

the Ge/Si/Ag/Si/Ge waveguide structure at 1550 nm are shown in Fig. 23. They are similar results to 

that (in Fig.22) based on analytical equations.  For the same waveguide structure,  at metal thickness 

d=30 nm, the electric field for the SCGD guided mode has been investigated in 1D and 2D, for different 

gap thicknesses t=15, 20, 25, and 35 nm, as illustrated in Fig. 24 and Fig. 25. It can be seen that how 

the field highly concentrating within the low-index gap (Si) at t=15 nm as shown in the surface plot 

(Fig. 24(a)) and clearly the correspondence 1D plot Fig. 25(a), respectively. Then, the electric field 

starts decreasing as the gap thickness increasing t=20 and 25 nm (Fig. 24 and Fig. 25 (b and c)). We 

can see how the SCGD guided mode shows leakage into the cladding layers when the gap-thickness 

t=35 nm is larger than the cutoff gap thickness, which is 𝑡𝑚𝑎𝑥~30 𝑛𝑚, as illustrated in Fig. 24(d) and 

Fig. 25 (d). 

 

 

Fig. 23 The modal index (left) and the propagation length (left) for the guided mode by Ge/Si/Ag/Si/Ge 

structure at 1550 nm, by using commercial mode solver  
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Fig. 24 The surface plot of the Electric field of the SCGD guided mode for Ge/Si/Ag/Si/Ge structure at d 

=30 nm for different gap thicknesses t=15, 20, 25, and 35 nm 
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Fig. 25 The 1D plot of the Electric field of the SCGD guided mode |𝑬⃗⃗ (𝒙, 𝟎)| for Ge/Si/Ag/Si/Ge structure 

at d =30 nm for different gap thicknesses t=15, 20, 25, and 35 nm 
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4.1.2.2 The effect of the index contrast on the cutoff gap thickness 

Figure 26 shows the cutoff gap thickness versus metal thickness for three different cladding/gap 

materials in order to see how the cutoff gap thickness is controlled by the index contrast ratio of the 

cladding/gap layers. The solid line illustrates the numerical solution of the dispersion equation Eq. 73, 

and the dash line corresponds to the results based on the approximate analytical expression Eq. 78 of 

the cutoff gap thickness The study are performed for two metal films, silver and gold in Fig. 26(a) and 

Fig. 26(b) respectively. We can clearly see that the results Fig. 26(a) and 26(b) are very similar because 

the mode overlap with the metal is very small at the cutoff condition. In addition, it can be noticed 

having large index contrast ratio results in decreasing the cutoff gap thickness. However, as the metal 

thickness increases, the cutoff gap thickness increases. Furthermore, almost there is no difference 

between the exact and the approximate results for silver film compared with that for gold film. This 

attributes to the analytical expression of the cutoff gap thickness is based on the assumption of zero 

propagation loss for the guided mode. Without doubt, the analytical expression of the cutoff gap 

thickness is more accurate for the silver film than that for gold film because the Ohmic loss of silver is 

less than that of gold.  

Typically, the approximate analytical expression’s results agree reasonably well with the one from 

the numerical calculation of the dispersion equation. When the index contrast ratio is high, such as 1.68 

and 2.39 for CdS/MgF2 and Si/SiO2, respectively, the curves based on two different approaches are 

almost overlap. However, for a relatively low index contrast ratio such as 1.22 for Ge/Si, the 

approximate expression works well only when the metal thickness is less than 30 nm for silver and 15 

nm for gold. As a result, the analytical expression for cutoff gap thickness in Eq. 78 can be used as a 

practical estimate for the design of the SCGD waveguide for utilizing cladding/gap materials with a 

large index contrast ratio. 
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Fig. 26 Cutoff thickness versus metal thickness for different index contrast ratio. Solid and dashed lines 

represent the numerical result obtained from dispersion equation Eq. 78 and cutoff gap thickness Eq. 79. 

(a) and (b) are respectively for Ag and Au. 

Moreover, the simplified expression for the cutoff gap thickness in Eq. 79 is investigated. Figure 

27 shows the cutoff gap thickness by using the dispersion equation Eq. 73 in solid black, the analytical 

expression Eq. 78 in dotted blue and the simplified expression Eq. 79 in solid red color, respectively. 

The results from the very simple formula Eq. 79 match reasonably well for small metal film thickness 

with relatively large index contrast ratio. Thus, Eq. 79 could serve as a rough estimate at the beginning 

of the SCGD waveguide design. 

It is worth noting that Fig. 22(b) that at a special case with zero gap thickness (i.e., typical 

Dhigh/Metal/Dhigh structure) the modal index is largest while the propagation distance is shortest. The 

propagation distance can be significantly enhanced in a SCGD structure by symmetrically inserting the 

low-index gap layers. Thus, an ultra-long range SPP mode can be supported in the SCGD structure. 

However, the rate of exponential decay within the cladding layer decreases.  
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Fig. 27 Cutoff gap thickness versus metal thickness using three different approaches – dispersion equation 

Eq. 73 in solid black, analytical expression Eq. 78 in dotted blue and simplified expression Eq. 79 in solid 

red   

 

4.1.2.3 The Energy Flux Density of SCGD Guided Mode 

The propagating power of the SCGD guided mode can be plotted numerically by using the energy flux 

density  

 𝑆𝑧 =
1

2
𝑅𝑒(𝐸⃗ × 𝐻⃗⃗ ∗) ∙ 𝑧̂, (81) 

where the fields are the transvers components Ex from Eq. 68 and Hy. Figure 28 shows the power flow 

of the propagating mode in the SCGD structure at different index contrast materials (Ge/Si) Fig. 28(a), 

(CdS/MgF2) Fig. 28(b), and (Si/SiO2) Fig. 28 (c)at fixed metal thickness d=20 nm, and different gap 

thicknesses. We can see how the energy flux density highly concentrated within the low index gap and 

decaying into cladding layers. It is worthy of note that strong modal confinement can be achieved within 

the nanometer- scale gap layers. This is because at the interfaces of the cladding/gap layer and the 

gap/metal layer, the normal component of displacement field Dx is continuous. As a result, a high index 

contrast ratio of the cladding layer to the gap layer leads to a great enhancement in the normal electric 

field Ex in the gap layer by a factor of (nd/ng)
2 times. For example, using Si/SiO2 for cladding/gap 

materials as shown in Fig. 28(c), the normal component of the electric field Ex has its largest amplitude 
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within a few nanometres’ SiO2 gap while the electric field Ex in the cladding Si layer at the Si/SiO2 

boundary dramatically drops to (ng/nd)
2 = 17.5% of that in the SiO2 gap. As the index contrast decreases, 

the concentrated field within the low-index gap decreases comparing to the rise in the field within the 

high-index claddings as seen in Fig. 28(a) and (b). 

 

 

Fig. 28 The energy flux density of the SCGD guided mode for different index contrast materials at 

different gap thicknesses t at fixed metal thickness d=20 nm, a) Ge/Si (t=5, 10, 18 nm), b) CdS/MgF2 (t=1, 

3, 5 nm), and c) Si/SiO2 (t=0.5, 1, 2 nm) 
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At low index contrast Ge/Si in Fig.28 (a), when the gap thickness increases from t=5 to 18 nm, it is 

noticeable how the fields in the claddings enhance. However, when index contrast increases, as well as 

the gap thicknesses, the field power decayed in the cladding layers is almost constant as shown in Fig. 

28(b) & 28(c). This is because the cutoff gap thickness is very small as index contrast increases as show 

in Fig. 22; it is almost a few nanometers 𝑡𝑚𝑎𝑥~2.2 and 5.2 𝑛𝑚 for Si/SiO2 and CdS/MgF2, 

respectively. Thus, the change in the field within the cladding can not be observed while the field highly 

confined within the low index gap.  

4.1.3 Lateral Confinement 

Confining the SCGD mode laterally is an important factor that needs to be considered when designing 

SCGD waveguides. Although a one-dimensional SCGD waveguide structure is primarily investigated 

here, the characteristics of the SCGD mode can be implemented in a two-dimensional SPP waveguide 

with proper geometrical design. This could be achieved by using the strategies in integrated optics for 

reducing a mode size in the lateral cross section by having a core index significantly larger than its 

surrounding index. 

Figure 28(a) illustrates the proposed two-dimensional plasmonic waveguide structure for lateral 

confinement and the electric field distribution for the structure, and Fig. 28(b) shows the absolute value 

of the electric field E(x,0) of the guided SCGD mode, which is obtained by using the commercial 

software package COMSOL Multiphysics. The core structure of the proposed scheme is exactly the 

same as the SCGD structure, with the width of the high-index Ge cladding layers limited to 500 nm, 

while the surrounding area is a typical DMD structure formed by a metal strip sandwiched by low-

index SiO2 layers. The metal film is 40 nm thick, and the thickness of the low-index SiO2 layer is 10 

nm, which is less than the cutoff gap thickness. From Fig. 28, we can clearly see that lateral confinement 

is achieved. This is attributed to the fact that the effective index for the SCGD mode at the core is larger 

than that for the SPP mode at the surrounding region with Dlow/M/Dlow structure. One can also see that 

the maximum electric field intensity is well concentrated within the sub-wavelength low index gap, 

with thickness about 0.0065, and decays exponentially away into the cladding regions. It is worthy of 

note that the lateral confinement can also be achieved by continuously varying the low-index gap 

thickness, for example, by changing the geometry of the high index layer to cylindrical shape [12, 51], 

in which the guided SCGD mode is only supported in the region where the thickness of the gap is 

smaller than the cutoff gap thickness. Nevertheless, planar geometry is always preferable in order to be 

compatible with planar fabrication techniques such as silicon-on-insulator (SOI) and CMOS. 
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Fig. 29  Electric field distribution in the proposed two-dimensional SCGD waveguide for lateral 

confinement. (b) The electric field strength |E(x,0)| as a function of x. 

4.1.4 Conclusion 

We have theoretically analyzed the guided mode in a symmetric conductor gap dielectric (SCGD) 

plasmonic waveguide. The condition for the existence of the SCGD mode is that the low-index gap 

thickness must be smaller than a cutoff gap thickness. The dispersion equation and analytical 

expressions of the cutoff gap thickness are derived, from which the SCGD mode can be characterized 

numerically. The presence of the low-index gap layers between the metal strip and high-index cladding 

layers has fundamentally changed the modal behavior. The energy flux density of the SCGD guided 

modes are plotted numerically based on our analytical equation at various gap thicknesses for different 

index contrast materials. The propagation distance of the guided SCGD mode is considerably increased 

in comparison with that of the typical DMD mode. In the case of a large index-contrast ratio of the 

cladding/gap layers, the transverse electric field of the SCGD mode is tightly confined within the 

nanoscale gap layer while dropping sharply at the interface of the gap and high-index cladding layer. 

The lateral confinement of the SCGD mode is also discussed. The commercial mode solver is also used 

and gives similar results to the analytical one. The SCGD plasmonic waveguide has potential 

applications in surface-plasmon nano-lasers and plasmonic sensors. The theoretical analysis presented 

shall be useful for designing ultra-long range SCGD waveguides or symmetric hybrid plasmonic 

waveguides with superior field confinement. 
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4.2 Theoretical Study of Hybrid modes in a 7-layer Symmetrical Plasmonic 

Waveguide 

In the previous section, we presented a theoretical analysis [77] for a planar 5-layer symmetrical 

conductor-gap-dielectric waveguide (SCGD), which consists of a thin metal layer centered between 

two low-index gaps of finite thicknesses t, symmetrically clad with infinite high-index cladding layers. 

To support hybrid plasmonic modes the low-index gap thickness has to be smaller than the cutoff gap 

thickness, which is only a few nanometers for a high contrast ratio of high to low index. Although the 

propagation length can be substantially increased near the cutoff gap thickness, it may not be practical 

to fabricate them. Fortunately, this problem associated with the 5-layer structure can be alleviated by a 

7-layer plasmonic structure by replacing the infinite high-index cladding layers with a finite thickness 

and introducing infinite low-index layers to the bottom substrate and the top cover. 

In this section, we presented an analytical model and an extensive analysis of the hybrid plasmonic 

modes in the 7-layer planar plasmonic structure. Such a waveguide structure has been discussed by 

Chen et al. [82], who employed the commercial software COMSOL to analyze the hybrid guided 

modes. Here we derived the dispersion relation of the hybrid guided modes. The results based on our 

analytical formulae agree well with those obtained by COMSOL in [82]. We show that the thicknesses 

of the low-index gap and the high-index layer play important roles in determining the types of the 

hybrid guided modes: strong SPP-like mode, SPP-Dielectric Waveguide (SPP-DW)-like mode and 

strong DW-like mode according to our defined criteria on the ratio of the peak energy flux density. To 

further characterize the performance of the plasmonic waveguide, the normalized mode size, the figure 

of merit and the confinement factor are investigated in detail. Our results reveal that with a small low-

index gap, the strong-SPP-like mode is always present no matter how thick the high-index dielectric 

layer is. With a large low-index gap, the SPP-like mode occurs when the thickness of the high-index 

layer is smaller than a critical thickness hc, and to achieve the best light confinement there is an optimum 

thickness of the high-index dielectric layer. To the best of our knowledge, this is the first comprehensive 

theoretical analysis for a planar 7-layer symmetrical plasmonic waveguide based on analytical 

expressions. 
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4.2.1 Theoretical Model 

Figure 30 illustrates a one-dimensional 7-layer hybrid plasmonic waveguide schematically. It consists 

of a thin metal layer with thickness d and permittivity εm sandwiched between two low-index sub-

wavelength gap with thickness t and permittivity εg,  which  are  clad on both sides with high-index 

dielectric layer with permittivity εd and thickness h. The structure is clad with an infinite cover layer 

and an infinite substrate layer with dielectric permittivities εc and εs respectively. We assume that the 

dielectric materials are lossless. In addition, the geometry is assumed to be infinite in the y-direction so 

that the fields of the hybrid mode have no y dependence. The propagation direction of the hybrid mode 

is in the z-direction. The only polarization supported by such a structure is a transverse-magnetic (TM) 

mode so that the wave equation for the magnetic field intensity in each layer is  

 
𝜕2𝐻⃗⃗ 

𝜕𝑥2
+ (𝑘0

2𝜀𝑟 − 𝛽
2)𝐻⃗⃗ = 0, (82) 

where k0 is the wave vector in the vacuum is, β is the propagation constant of the guided hybrid mode, 

and εr is the relative permittivity of each medium in the structure. The general solution of the wave 

equation is  

 𝐻⃗⃗ = 𝐻𝑦(𝑥)𝑒
𝑖𝛽𝑧𝑦̂ (83) 

where the non-vanishing components of the fields are Hy, Ex, and Ez. The electric field components can 

be obtained using Maxwell’s equations for time-harmonic fields: 

 𝐸⃗ = −
1

𝜔𝜀𝑟
(𝛽𝐻𝑦𝑥̂ + 𝑖

𝜕𝐻𝑦

𝜕𝑥
𝑧̂). (84) 

At the interior interfaces, the boundary conditions must be satisfied, i.e., the tangential components 

of the magnetic and electric fields as well as the normal component of the electric displacement field 

must be continuous. Applying the boundary conditions at the interior six interfaces, we derive the mode 

characteristic equation. The dispersion relation of the hybrid guided mode can be written as 

  

 𝑒2𝑘𝑚𝑑 =
[
𝑘𝑚
𝜀𝑚
+
(1−𝑄)𝑘𝑔
(1+𝑄)𝜀𝑔

][
𝑘𝑚
𝜀𝑚
+
(1−𝑅)𝑘𝑔
(1+𝑅)𝜀𝑔

]

[
𝑘𝑚
𝜀𝑚
−
(1−𝑄)𝑘𝑔
(1+𝑄)𝜀𝑔

][
𝑘𝑚
𝜀𝑚
−
(1−𝑅)𝑘𝑔
(1+𝑅)𝜀𝑔

]
 (85) 



 

 59 

 

Fig. 30 Schematic configuration of the one-dimensional 7-layer hybrid plasmonic waveguide 

where 

  

 𝑄 = 𝑒2𝑘𝑔𝑡
[
𝑘𝑔

𝜀𝑔
−
(1−𝑟)𝑘𝑑
(1+𝑟)𝜀𝑑

]

[
𝑘𝑔

𝜀𝑔
+
(1−𝑟)𝑘𝑑
(1+𝑟)𝜀𝑑

]
,   (86) 

with 

  

 𝑟 = 𝑒2𝑘𝑑ℎ
(
𝑘𝑑
𝜀𝑑
+
𝑘𝑠
𝜀𝑠
)

(
𝑘𝑑
𝜀𝑑
−
𝑘𝑠
𝜀𝑠
)
 (87) 

and 

  

 𝑅 = 𝑒2𝑘𝑔𝑡
[
𝑘𝑔

𝜀𝑔
−
(1−𝑞)𝑘𝑑
(1+𝑞)𝜀𝑑

]

[
𝑘𝑔

𝜀𝑔
+
(1−𝑞)𝑘𝑑
(1+𝑞)𝜀𝑑

]
,   (88) 

with 
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 𝑞 = 𝑒2𝑘𝑑ℎ
(
𝑘𝑑
𝜀𝑑
+
𝑘𝑐
𝜀𝑐
)

(
𝑘𝑑
𝜀𝑑
−
𝑘𝑐
𝜀𝑐
)
. (89) 

kc, kd, kg, km, and ks are the wave vectors in the cover, high-index dielectric cladding, low-index gap, 

metal, and substrate materials, respectively, and can be written as: 

 𝑘𝑖 = √𝛽
2 − 𝑘0

2𝜀𝑖 , where i=c, d, g, m, s. (90) 

For the sake of symmetry, we assume that both the cover and the substrate are made up of the same 

low-index dielectric material with permittivity εc=εs. Hence, the dispersion relation Eq. 85 can be 

simplified: 

  

 𝑒𝑘𝑚𝑑 = ±
[
𝑘𝑚
𝜀𝑚
+
(1−𝑄)𝑘𝑔
(1+𝑄)𝜀𝑔

]

[
𝑘𝑚
𝜀𝑚
−
(1−𝑄)𝑘𝑔
(1+𝑄)𝜀𝑔

]
. (91) 

This symmetric waveguide structure can support two kinds of hybrid guided modes – symmetrical 

and anti-symmetrical SPP modes, which are respectively represented by Eq. 91 with the positive and 

negative signs. The symmetrical and anti-symmetrical modes are often referred as the long-range SPP 

(LRSPP) and short-range SPP (SRLPP) modes. The dispersion relation can be expressed in a 

transcendental form. For the positive sign of the dispersion relation, the symmetrical LRSPP hybrid 

mode equation can be written as:  

  

 tanh (
𝑘𝑚𝑑

2
) =

(1−𝑄)𝑘𝑔𝜀𝑚

(1+𝑄)𝑘𝑚𝜀𝑔
 (92) 

and for the negative sign, we obtain the anti-symmetrical SRSPP hybrid mode equation: 

  

 tanh (
𝑘𝑚𝑑

2
) =

(1+𝑄)𝑘𝑚𝜀𝑔

(1−𝑄)𝑘𝑔𝜀𝑚
. (93) 

Here we only discuss the symmetrical LRSPP hybrid mode because of its low propagation loss. By 

solving the characteristic guided mode equation Eq.92, we can obtain the optical properties of the 
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LRSPP hybrid mode such as the mode effective index (neff = Re(β/k0)) and the propagation length. The 

propagation length Lprop is defined as the distance where the power of the propagating hybrid mode 

decays to 1/e of its initial value, which can be expressed in terms of the imaginary part of the modal 

index: 

 𝐿𝑝𝑟𝑜𝑝 =
𝜆

4𝜋𝐼𝑚(𝑛𝑒𝑓𝑓)
. (94) 

Specifically, as the high-index layer’s thickness h approaches infinity, we obtain from Eq. 92 the same 

mode characteristic equation we recently proposed for the 5-layer SCGD plasmonic waveguide 

structure [77]: 

  

 tanh (
𝑘𝑚𝑑

2
) =

𝑘𝑔𝜀𝑚(1−𝑟)

𝑘𝑚𝜀𝑔(1+𝑟)
. (95) 

As studied in [77], there exists a cutoff gap thickness condition to support plasmonic modes in the 

SCGD system. The modal index of the SCGD plasmoinc mode which is localized in the low-index 

nanoscale gap layer is larger than the index of the outmost dielectric cladding layers. As the gap 

thickness increases the modal index will decrease until it is equal to the index of the dielectric cladding 

at the gap cutoff thickness, resulting in a leakage mode into the high-index layer. 

On the other hand, in the 7-layer plasmonic waveguide the presence of the low-index cover and 

substrate layers will substantially change the modal index behavior of the LRSPP hybrid guided mode. 

The 7-layer plasmonic structure can be regarded as a modified DMD structure where the dielectric layer 

is replaced with three conventional low/high/low (LHL) dielectric waveguide layers, i.e., low-index-

gap/high-index-cladding/low-index-cover (or substrate). The hybrid mode originates from the mode 

coupling between the SPP mode and the conventional DW mode due to the dielectric LHL layers. When 

the thickness of the inner low-index gap is very small compared with that of the high-index cladding 

layer, the cover and substrate have little impact on the guided mode; thus the 7-layer waveguide 

behaviors like a 5-layer waveguide structure [77] supporting the plasmonic guided modes. With 

increasing the inner low-index gap layer thickness, the supporting guided mode gradually transits from 

a plasmonic-like to a hybrid plasmonic-dielectric-like mode attributable to the mode coupling of the 

dielectric mode from the LHL layers. When the gap layer thickness is further increased, the 
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conventional dielectric mode becomes predominant. Therefore, as the gap thickness increases, the 

modal index will decrease without any cutoff. Consequently, we will always have the hybrid guided 

mode as the gap thickness increases; however, this will affect the mode confinement. In the next section, 

we will first investigate the characteristic parameters (i.e., modal index and propagation length) of the 

guided hybrid mode. Then we will characterize the hybrid guided mode and elaborate its evolution 

from the plasmonic-like mode to the dielectric-like mode along with the performance of the waveguide 

structure. 

4.2.2 Numerical Analysis and Discussion 

4.2.2.1 The Modal Properties 

In this study, the high-index cladding material is chosen to be silicon with refractive index nSi=3.455 

whereas the low-index gap is silica with refractive index nSiO2=1.445. The high index contrast ratio 

(defined as the ratio of high-index nSi to low-index nSiO2) enables significant enhancement of the field 

in the nano-scale low-index gap. Both the low-index cover and the substrate materials are also chosen 

to be silica because it is compatible with current fabrication techniques, such as the silicon-on-insulator 

fabrication method. The waveguide model is assumed to be operated at the telecom wavelength λ =1550 

nm. Silver and gold are employed to be the conductor materials with a permittivity of εAg=-129+3.3j 

and εAu=-115.11+11.103j, respectively. To analyze the optical properties of the LRSPP hybrid guided 

mode and how the geometrical dimensions affect the hybrid guided modal index and the propagation 

length Lprop, the characteristic mode equation Eq. 92 has been solved numerically. 

Figure 31, 32, and 33 show the behavior of the modal index and the propagation length versus the 

gap thickness t from 0 to 100 nm at fixed dielectric cladding thicknesses h = 100, 200, 300, 400, and 

500 nm, and fixed metal (silver) film thicknesses d = 20, 40, and 60 nm, respectively, for the 7-layer 

waveguide structure, which is compared with the 5-layer SCGD waveguide [77]. As expected, with 

increasing the gap thickness t, the modal index decreases while the propagation length increases; 

moreover, there is no cutoff gap thickness for the 7-layer waveguide structure. Although the presence 

of the low-index top and bottom layers has brought the modal index down slightly, the modal index of 

the guided mode is always larger than that of the outmost layers, which consequently eliminates the 

gap cutoff thickness condition of the hybrid mode. Thus, the hybrid mode will always present, which 

can greatly enhance the fabrication tolerance of the gap region thickness t. In contrast, for SCGD 
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waveguide structure, the cutoff gap thickness t is only a few nanometers. As shown in Fig. 31, Fig. 32, 

and Fig. 33, the cutoff gap thicknesses are respectively about 2.2, 3.8, and 4.2 nm for the metal thickness 

of 20, 40, and 60 nm, respectively. 

 

 

Fig. 31 Modal index and propagation length of the 7-layers HPW structure at different dielectric 

thicknesses h = 100, 200, 300, 400, and 500 nm and our recent SCGD waveguide (dashed black) versus 

the gap thickness t, at metal thickness d = 20 nm 
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Fig. 32 Modal index and propagation length of the 7-layers HPW structure at different dielectric 

thicknesses h = 100, 200, 300, 400, and 500 nm and our recent SCGD waveguide (dashed black) versus 

the gap thickness t, at metal thickness d=40 nm 
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Fig. 33 Modal index and propagation length of the 7-layers HPW structure at different dielectric 

thicknesses h = 100, 200, 300, 400, and 500 nm and our recent SCGD waveguide (dashed black) versus 

the gap thickness t, both at the metal thickness d=60 nm 

 

Note that from Fig. 31, at small gap thickness t of a few nanometers with a large high-index 

dielectric layer (such as h = 500 nm), the modal index of the hybrid guided mode for the 7-layer 

waveguide is very similar to that for the 5-layer SCGD waveguide. For example, at the metal thickness 

d = 20 nm, the modal index at zero gap thickness is about 3.49 for both the SCGD waveguide and the 
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7-layer waveguide with h=500 nm. This is because for very small t and large h, the effect of the cover 

and substrate is negligible, reducing to the case of the SCDG waveguide. Moreover, the propagation 

length increases as the dielectric thickness h as well as the gap thickness; this will certainly affect the 

degree of the mode confinement of the hybrid mode, as will be discussed later. Figure 32 and Fig. 33 

also show that increasing the metal film thickness will results in a slight increase of modal index of the 

hybrid mode and a decrease of the propagation length due to the Ohmic loss in the metal. 

In Fig. 34 we investigate the dependence of the modal index and the propagation length on the 

dielectric cladding thickness h at different values of the gap thickness t in order to compare our results 

based on the analytical dispersion equation Eq. 92 with those obtained by Chen et al. [82] using the 

commercial software COMSOL. Their results based on the COMSOL perfetctly agree well with our 

results based on the anayltical results  of Fig. 34. Gold was used as the metal thin film in [82] while 

both gold (dashed line) and silver (solid line) are used in our work, with the metal thickness d fixed at 

20 nm. Figure 34(a) shows that the modal indices for both metals are almost identical while the distinct 

improvement on the propagatuion length with silver is clearly demostrated in Fig. 34(b) due to its 

smaller ohmic loss. The modal index and propgation length of the conventional DMD plasmonic 

waveguide are calculated and shown as the horizontal dashed lines, where the dielectrics are assumed 

to be silicon and silica. For a fixed gap thickness, the modal index increases with the thickness of the 

high-index layer. The modal indices of the hybrid guided mode fall between those of the plasmonic 

modes for the conventional DMD (SiO2/Ag/SiO2) and that of the hybrid guided mode (Si/Ag/Si) 

waveguides. It is quite apparent how the propagation is greatly improved compared with the 

conventional Si/Ag/Si plasmonic waveguide. Although the propagation length of the SiO2/Ag/SiO2 

plasmonic waveguide is large, the mode confinement of the structure is very weak, compared with that 

of the proposed 7-layer symmetrical waveguide. 
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Fig. 34 Modal index and propagation length of the LRSPP hybrid mode versus the dielectric thickness h 

for silver (solid line) and gold (dashed line) at fixed gap thickness t = 2, 10, 30, 50, and 100 nm 

4.2.2.2 The Energy Flux Density 

The variation of the modal index and the propagation length with geometric dimensions in Fig. 34 

suggests the evolution of the hybrid guided mode. Figure 35 illustrates the energy flux density of the 

hybrid mode along the x-direction at different gap and dielcrtic cladding thicknesses, using the time-

averaged value of the z-component of the poynting vector: 

  

 𝑆𝑧 =
1

2
𝑅𝑒(𝐸⃗ × 𝐻⃗⃗ ∗) ∙ 𝑧̂, (96) 

where Ex and Hy are the transverse components of the field solutions obtained from Eq. 83 and Eq. 84. 

Note that the metal (silver) thickness is set to be 20 nm for the rest of this study. Figure 35(a) shows 

the power of the hybrid mode is strongly confined within the 10 nm gap when the dielectric cladding 

thickness h is 100 nm based on the derived analytical equations.  With the gap and dielectric cladding 

thickness increase, the power is gradually shifted from the low-index gap toward the high-index 
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dielectric cladding, as shown as shown in Fig. 35(b). Further increases of the gap and cladding thickness 

lead to complete power transfer to the high-index dielectric regime (see Fig. 35(c)) to form a hybrid 

DW-like mode. Apparently, the geometrical parameters of the plasmonic waveguide have great 

influence on the formation of the hybrid guided mode. 

 

 

Fig. 35 Energy flux density of the hybrid mode along x-direction at different dielectric and gap thicknesses    

a) [h, t] = [100nm, 10nm], b) [200nm, 50nm], c) [400nm, 100 nm]. 
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4.2.3 Hybrid Guided Mode Evolution 

The hybrid mode characteristic has been investigated by Chen et al. [82] using the mode character 

|𝑎+(ℎ, 𝑡)|
2 originally employed by Oulton et al. [12] to study the degree of the hybrid mode and 

determine whether it is SPP-like or cylindrical-like using a criterion |𝑎+(ℎ, 𝑡)|
2 = 0.5. The mode 

character depends on the index difference ratio [12]: 

  

 |𝑎+(ℎ, 𝑡)|
2 =

𝑛ℎ𝑦𝑏(ℎ,𝑡)−𝑛𝑔

[𝑛ℎ𝑦𝑏(ℎ,𝑡)−𝑛𝑑(ℎ)]+[𝑛ℎ𝑦𝑏(ℎ,𝑡)−𝑛𝑔]
, (97) 

where nhyb is the effective mode index of the hybrid mode, nd is that of the conventional dielectric 

cylindrical waveguide and ng is the refractive index of the gap material. Although Chen et al. obtained 

the mode character as a function of the dielectric cladding thickness for different gap thickness and 

pointed out at smaller/larger dielectric thickness the hybrid mode tends to be SPP/dielectric-like, there 

was a lack of quantitative information on the dielectric cladding thickness at which the hybrid mode is 

SPP-like or dielectric-like. This is because the criterion in Oulton’s work [12] for non-symmetrical 

cylinder shape is not applicable for the symmetrical planar shape. 

To analyze in detail whether the hybrid mode is a hybrid plasmonic mode or a hybrid dielectric 

mode, we calculate the maximum energy flux density (i.e., Poynting vector) in two regimes – Pmax,g in 

the low-index gap and Pmax,d in the high-index dielectric cladding, where the mode is mainly localized. 

The ratio of peak energy flux density Pmax,g/Pmax,d is employed to characterize the hybrid mode. Two 

criteria are used. The first criterion is Pmax,g/Pmax,d =1, i.e., equal maximum energy flux density at the 

two regimes and the second is when the maximum energy density in the high-index region decreases 

to 1/e of that in the low-index gap region, i.e., Pmax,d/Pmax,g =1 /e. Fig. 36(a) shows the ratio of the peak 

energy flux density as a function of the high-index cladding thickness h for different low-index gap 

thickness t. The horizontal blue and black lines represent the two criteria used to characterize the guided 

hybrid mode. 

At the larger gap thickness t = 30, 50,100 nm, the peak ratio of the energy flux density in the gap 

region decreases with the increase of the dielectric thickness h. At the largest gap thickness t = 100nm, 

for example, the first criterion is satisfied at h ≈ 170nm while the second is at h ≈230nm. That means 

when the dielectric cladding thickness h is greater than 230 nm, the hybrid mode will behave as 
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conventional DW-like mode since the peak energy flux density in the cladding area is higher than that 

in the gap; the energy flux density distribution at t = 100 and h = 400 nm shown in the lowest plot of 

Fig. 36(b) is an example of a strong DW-like mode. The hybrid mode shows strong SPP-like behavior 

at h < 170 nm as the peak energy flux density in the high-index cladding area is decreased by 1/e of 

that in the gap; the energy flux density distribution for a strong plasmonic mode is displayed in the top 

plot of Fig. 36(b) with t = 100 and h =100 nm. In the middle range of h = 170∼230 nm, due to the 

strong coupling between the SPP and DW mode, the hybrid mode can be referred to as a SPP-DW-like 

mode. The energy flux density of this type of the hybrid mode is shown in the middle plot of Fig. 36(b) 

with fixed t = 100 and h = 200nm. 

On the other hand, at small low-index gap thickness t =2 and 10 nm, Fig. 36(a) reveals that the peak 

energy flux density in the gap is always much larger than that in the high-index cladding region. For 

example, at t =2nm, the peak energy flux density in the gap is about 5.7 times of that in the high-index 

region over the whole range of h, indicating a strong SPP-like mode. This intuitively explains how the 

SPP plasmonic mode can be always formed with a nanoscale low-index gap(∼10 nm) no matter how 

large the thickness of the high-index region is. 

With gradually increasing the gap thickness, the thickness of the high-index layer h has to be 

controlled in order to have a strong plasmonic mode; the larger the low-index gap thickness, the smaller 

the allowed maximum thickness of the high-index layer. From Fig. 36 we can clearly see the significant 

impact of the thickness of the gap t and the cladding h on the degree of the hybrid guided mode. 

In addition, the FEM mode solver is used to examine the hybrid guided modes types supported by 

the 7-layers hybrid plasmonic waveguide. Figure 37 shows the propagating power of the hybrid guided 

mode in z-direction for the waveguide in one and two dimensions at 1550 nm. The material for the low-

index gap and the cover claddings is chosen to be silica, whereas for the high-index dielectric layer is 

silicon, at metal film thickness d=20 nm. Based on our mode characteristics criteria, such a waveguide 

structure supports three different types of hybrid mode. The first hybrid mode type is the strong SPP-

like mode where the field is highly confined within the low-index subwavelength layer. This type of 

hybrid mode is shown in Fig. 37(a) at a miniscule low-index gap thickness t=10 nm and dielectric 

thickness h=100 nm. It can be clearly seen how the power confined and propagating in the low-index 

gap region is almost three times the power distributed within the cladding layers; this type of hybrid 
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guided mode retains the character of plasmonic waveguides for subwavelength strong mode 

confinement. Figure 37(b) illustrates the propagating power profile for the second type of the guided 

modes in the 7-layer hybrid plasmonic waveguide: the SPP-DW-like mode. This kind of hybrid mode 

integrates the strength of the optical behavior of the SPP-like mode and DW-like mode. At t=50 nm ad 

h=200 nm, the SPP-DW-like mode is confined mostly within the low-index gap and the high-index 

dielectric layers as seen in Fig. 37(b). The third type of the hybrid guided mode is the DW-like mode, 

which gains the low loss character of the conventional DWs. Figure 37(c) shows this DW-like hybrid 

mode at the gap and dielectric thicknesses: t=100 nm and h=400 nm, respectively. We can observe how 

the power mostly localized within the high-index cladding layers. The propagating power in the 

dielectric layers is almost five times the power distributed within the other regions of the waveguide 

structure.  

 

 

Fig.36(a) Dependence of the ratio of the peak energy flux density in the low-index gap to the high-index 

dielectric region on the dielectric thickness h at different gap thicknesses, (b) an example of the power 

profile at fixed t = 100 nm and different h = 100,200, and 400 nm 
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Fig. 37 The 1D and 2D plot of the power flow in z-direction for the three types of the hybrid guided mode 

at different dielectric and gap thicknesses, a) t=10 and h=100 nm, b) t=50 and h=200 nm, and c) t=100 and 

h=400 nm 
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4.2.4 Figures of Merit 

For PWs, it is always desirable to have both tight mode confinement and long propagation length; 

however, in general, tight mode confinement comes at the price of the propagation length. FOM 

proposed by Berini [83] is a commonly adopted parameter to characterize the performance of PWs in 

terms of these two factors and defined as: 

 𝐹𝑂𝑀 =
𝐿𝑝𝑟𝑜𝑝

𝐿𝑚𝑠
 (98) 

where Lprop is the propagation length and Lms is the effective mode size. In a three-layer waveguide 

structure, the effective mode size Lms is the 1/e field penetration depth, while for hybrid waveguide 

structure, it is defined as the ratio of the averaged value of the total mode energy flux to the peak energy 

flux density along the x-direction, which can be written as [82], [84]: 

 𝐿𝑚𝑠 =
∫ 𝑆𝑧
+∞

−∞
𝑑𝑥

max (𝑆𝑧)
. (99) 

Fig. 38(a) and (b) show the normalized mode size Lnorm (defined as Lms/L0 with L0 = λ/2) and the FOM 

as a function of dielectric thickness h at different gap thickness, which are calculated from Eq. 98 &99 

based on our analytical expressions. 

It is interesting to observe in Fig. 38(a) that when the high index dielectric thickness h is around 

130 nm there is a minimum normalized mode size for each gap thickness, which suggests that strong 

mode confinement can be achieved with suitably choosing h. When further increasing h, for a small 

gap thickness (such as t=2 and 10 nm), the normalized mode size increases monotonously as h 

increases. However, for a large gap thickness the normalized mode size increases until a critical 

dielectric thickness hc, which are respectively about 230, 290, 340 nm for t = 100,50 and 30nm.Further 

increasing h, the mode size slowly increases with nearly the same value for different gap thickness. The 

physical reason can be explained easily based on the criteria we defined earlier for the characterization 

of the hybrid mode. Referring back to Fig. 36(a), we can see the critical dielectric thickness hc is just 

the value where the maximum energy flux density in the gap and the dielectric regions is the same, i.e., 

Pmax,g = Pmax,d. That means when increasing the dielectric thickness from hc, most of the energy of the 

hybrid mode starts to shift to the dielectric region forming DW-like hybrid mode. As a result, the PW 

supports dielectric-like mode when the dielectric thickness h> hc, and SPP-like hybrid mode when h<hc. 
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On the other hand, at small gap thickness t =2 and10 nm, the mode size smoothly increases as h 

increases in the absence of hc indicating the existence of the SPP mode only for these cases. Therefore, 

the outcomes based on the normalized mode size are in good agreement with the results we obtained 

from Fig. 36(a) on the evolution of the guided hybrid mode. 

Fig. 38(b) shows the FOM of the 7-layer waveguide structure. At large gap thicknesses t = 30 , 50, 

and100 nm, the FOM gradually increases with the increase of the dielectric thickness h at the beginning 

and then suddenly starts increasing rapidly beyond the critical dielectric thickness hc. This is attributed 

to the fact that when h> hc the guided hybrid mode starts to behave like a DW-like hybrid mode (as 

explained in Figs.36(a) and 38(a), which has much larger propagation lengths compared with a SPP 

mode, resulting in a noticeable enhancement in the FOM’s value. At small gap thicknesses t =2and 10 

nm, the FOM is almost the same over a wide range of the dielectric thickness without the presence of 

the critical dielectric thickness hc, which suggests that the hybrid guided mode will be strong SPP-like 

mode at small gap thickness as discussed in Figs. 36(a) and 38(a), and there is a tradeoff between the 

mode confinement and the propagation length. 

 

Fig. 38 (a) Dependence of the normalized mode size Lnorm, and (b) the FOM on the high-index cladding 

thickness h at different gap thicknesses t = 2, 10, 30, 50, and 100nm. 
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4.2.5 Confinement Factor 

Although the normalized mode size can be used to evaluate the performance of the mode confinement, 

it lacks information on how much energy is sustained within the nanoscale low-index gap. For practical 

applications in active plasmonic devices, strong interaction between the SPP and the active nano-gap 

layer is highly desirable. So, it is very important to know the portion of the mode power resided within 

the low- index gap to the total power of the whole waveguide, which is known as the confinement factor 

Γ [85].It is widely used to evaluate the light confinement in a specific regime of a waveguide, which is 

given by: 

  

 𝛤 =
1

2
∫ 𝑅𝑒(𝐸⃗ ×𝐻⃗⃗ ∗)∙𝑧̂ 
𝑔𝑎𝑝

𝑑𝑥

1

2
∫ 𝑅𝑒(𝐸⃗ ×𝐻⃗⃗ ∗)∙𝑧̂ 𝑑𝑥
𝑡𝑜𝑡𝑎𝑙

. (100) 

Figure 39 shows the influence of the gap thickness t and the dielectric thickness h on the confinement 

factor, which is calculated with our analytical expressions. It is very interesting to see that there is a 

maximum value of the confinement factor for each gap thickness t when the dielectric cladding 

thickness h is set to be about 130 nm, which coincides with the thickness for having a smallest 

normalized mode size, as seen in Fig. 38(a), and where strong localized SPP-like mode is assured to be 

supported according to the results in Fig. 36. At the optimum value of h, the portion of the mode energy 

sustained inside the low-index gap can be enhanced by increasing the gap thickness. For example, at h 

= 130 nm, about 35% of the mode energy will be confined within the sub-wavelength gap region at t = 

10 nm while it can reach 50% when t is increased to 30 nm. Nevertheless, referring back to Fig. 38(a), 

there is a compromise between the confinement factor and the normalized mode size. On the other 

hand, when the high-index cladding thickness h is greater than 200 nm, the confinement factor is largely 

reduced and the larger the gap thickness t, the faster the rate of decline. This is because for a larger gap 

thickness, with increasing the high-index cladding thickness h, the hybrid mode is gradually evolved 

from strong a SPP-DW-like mode to a strong DW-like mode, while for a smaller gap thickness (such 

as t =2nm), strong SPP like mode is always present, resulting in a slight change in the confinement 

factor with the increases of the cladding thickness. Apparently, we can see that the confinement factor 

and the normalized mode size are complementary to each other to elaborate the mode confinement of 

the hybrid guided mode. 
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Fig. 39 Dependence of the confinement factor on the dielectric thickness h for different gap thickness t. 

Hence, the7-layer PW structure can be optimized with strong mode confinement in the low-index 

gap by suitably choosing the thickness of the high-index cladding layer, which shall be very helpful to 

PW designers. Based on our results, we can conclude that the 7-layer symmetrical HPW can support 

strong SPP-like hybrid modes when the dielectric thickness h is less than approximately 200 nm at the 

large gap thicknesses t = 30, 50, and100 nm, whereas it can always support strong SPP mode at small 

gap thicknesses such as t=2 and 10 nm. In addition to the advantage of tight nanoscale mode 

confinement, when the dielectric thickness h is less than about 200 nm, the symmetrical 7-layer PW 

can provide a large propagation length (200–3000 μm), which is much larger than that (40–150 μm)in 

the hybrid cylindrical plasmonic structure [12]. Moreover, the planar waveguide geometry allows for 

easy fabrications. 
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4.2.6 Conclusion 

A theoretical study of a 7-layer planar PW has been presented. The 7-layer waveguide consists of a thin 

metal layer symmetrically sandwiched with 3 low/high/low layers. We derived the dispersion equation 

for the hybrid mode which allows us to numerically calculate the mode index and the propagation 

length of the guided mode. Unlike the 5-layer symmetrical HPW we studied earlier [77] there is no 

cutoff condition for the low index gap thickness due to the two additional low-index outmost layers. 

Our results from the analytical expressions agree with those [82] obtained from the commercial 

software package. Based on our two proposed criteria, the evolution of the hybrid guided mode is 

investigated in detail, which can be strong SPP-like, SPP-DW-like, or strong DW-like, depending on 

the thickness of the inner gap and high-index cladding layers. The performance of the 7-layer PW is 

also examined, including the normalized mode size, the FOM and the confinement factor. The specific 

variations in the curves of the normalized mode size and the FOM with geometric dimensions of the 

waveguide indicate the transition of the hybrid mode. Our results from both the normalized mode size 

and the confinement factor show that strong mode confinement within the low-index gap can be 

obtained by properly choosing the high-index cladding thickness. The large propagation length along 

with tight mode confinement in nanoscale gap makes the 7-layer symmetrical planar PW suitable for 

applications in active and passive nanoplamonic devices. 
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Chapter 5 

Hybrid Multilayerd Metal-Dielectric-Metal Plasmonic Waveguides 

Gaining a comprehensive understanding of optical behavior of the guided mode in hybrid plasmonic 

waveguides (HPWs) requires theoretical-analytical equations to study and analyze all the contributors 

that may improve the optical performance of the waveguide, which can really help the waveguide 

designers to fabricate PWs. We thoroughly investigated the guided hybrid mode in planar five- and 

seven-layer hybrid DMD waveguide structures with thin metal layer at the center cladded 

symmetrically with low/high and low/high/low layer, respectively [77-78]; based on the derived mode 

questions, our numerical results explained the formation of the hybrid guided mode, the existence of 

the cutoff thickness [77], and the importance of the presence of the cover layers on the hybrid mode 

formation and characteristics [78]. 

 In contrast to the hybrid DMD waveguides mentioned above with dielectrics as the outer layers, 

PW structures with metal layers as the outer layers, such as metal-dielectric-metal (MDM) structure 

have attracted considerable interest due to their extremely strong mode confinement, which is an 

important feature for all-optical data-processing devices. However, the three-layer MDM waveguide 

suffers from high loss. To overcome the drawbacks of the three-layer PWs, a modified MDM structure 

– five-layer symmetrical metal/low-index/high-index/low-index/metal has been proposed. Such a 

plasmonic waveguide structure has been presented by several groups. Kim [86] proposed 

complementary metal-oxide-semiconductor (CMOS) hybrid MDM plasmonic waveguide for 

subwavelength light confinement with enhanced propagation distance and studied by utilizing the 

commercial software (FIMMWAVE). Bian et al. [87] investigated the optical performance of a five-

layer hybrid MDM waveguide which shows a significant improvement in crosstalk between adjacent 

waveguides by using commercial software (COMSOL). 

In this thesis, we theoretically investigate the hybrid guided modes in a five-layer symmetrical 

hybrid-metal-dielectric-metal (MDM) plasmonic waveguide [88]. The hybrid guided mode is 

characterized and analyzed based on the results obtained from our derived analytical mode 

characteristics equations. Such a waveguiding structure can support different types of hybrid-MDM 

modes at different dielectric thicknesses. Consequently, the optical performance of the hybrid MDM 

plasmonic waveguide can be controlled by the geometrical parameters and the refractive indices of the 
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dielectric layers. The proposed waveguide structures could be very useful in building on-chip all-optical 

devices and the analytical models could be potentially help the waveguide designer in designing and 

optimizing the plasmonic devices for ultra-compact nanophotonics [89]. 

5.1 Theoretical Study of the Hybrid Modes in a 5-layer MDM Waveguide 

A comprehensive theoretical study of the guided hybrid mode in a five-layer 

(metal/low/high/low/metal) MDM plasmonic waveguide structure based on our derived hybrid mode 

dispersion equations will be presented. Our numerical results are in perfect agreement with those 

obtained from commercial software [87]. Our results reveal that the total thickness of the dielectric 

(low/high/low) layers as well as the thickness of each dielectric layer have significant impact on the 

formation of the hybrid modes and their optical performances.  When the thickness of 3-layer dielectric 

is small, the guided hybrid mode tends to be the SPP-like mode; consequently the optical performance 

of the hybrid MDM structure falls in the regime of traditional MDM waveguide. For a large total 

dielectric thickness, the propagation length can be significantly improved by suitably choosing the 

thickness of the center high-index layer, which indicates the hybrid guided mode has becomes to 

dielectric waveguide-like mode as more power has been transferred to the high-index layer from the 

low-index dielectric layers. We also characterize the mode confinement in terms of the mode 

confinement factor and the normalized mode size. We found that the evolution of the hybrid mode with 

the change of the dielectric thickness is correlated with the changes of the mode size, the propagation 

length as well as the modal index. The effect of the refractive indices of the dielectric layers on optical 

performance is also discussed. 

5.1.1 Basic Equations 

Figure 40 illustrates a schematic diagram of the 1D hybrid-MDM multilayer plasmonic waveguide 

structure. A high-index dielectric layer with thickness d and permittivity εd is sandwiched between two 

low-index dielectric gap layers with thickness t and permittivity εg. The top and bottom cladding layers 

for the whole structure are infinite conductor layers with complex permittivity εm, where the dielectric 

mediums assumed to be lossless, non-magnetic, homogenous, and isotropic. 
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Fig. 40 The schematic geometry of the studied 1D hybrid MDM structure  

We assume the geometry infinite in the y-direction so that there is no y-dependency for the fields of the 

guided mode which propagate along the z-direction and evanescently decay in the x-direction. Such a 

waveguide structure can only support transverse-magnetic (TM) mode. Thus, the wave equation for the 

magnetic field in each layer can be written as: 

 ∇2𝐻⃗⃗ − (𝛽2 − 𝑘0
2𝜀𝑟)𝐻⃗⃗ = 0, (101) 

where β is the propagation constant of the guided mode, k0 is the free-space wave vector, and εr is the 

relative permittivity of each region in the geometry. By utilizing Maxwell’s equations for time-

harmonic fields, and solving the wave equation Eq. 101, the three non-vanishing fields (Ex, Hy, Ez) of 

the guided mode can be obtained as: 

 𝐻⃗⃗ = 𝐻𝑦(𝑥)𝑒
𝑖𝛽𝑧 (102) 

And 

 𝐸⃗ =
𝑖

𝜔𝜀𝑟
(𝑖𝛽𝐻𝑦𝑥̂ −

𝜕𝐻𝑦

𝜕𝑥
𝑧̂). (103) 

By imposing the boundary conditions that the tangential components of electric and magnetic fields as 

well as the normal components of the electric displacement fields must be continuous at the interfaces 
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between the different regions, the dispersion equation of the hybrid-MDM waveguide mode can be 

expressed as: 

 𝑒𝑘𝑑𝑑 = ±
[
𝑘𝑑
𝜀𝑑
+
(1−𝑟)𝑘𝑔
(1+𝑟)𝜀𝑔

]

[
𝑘𝑑
𝜀𝑑
−
(1−𝑟)𝑘𝑔
(1+𝑟)𝜀𝑔

]
, (104) 

where 

 𝑟 = 𝑒−2𝑘𝑔𝑡
[
𝑘𝑔

𝜀𝑔
−
𝑘𝑚
𝜀𝑚
]

[
𝑘𝑔

𝜀𝑔
+
𝑘𝑚
𝜀𝑚
]
. (105) 

The wave vectors kg, kd, and km of the hybrid-MDM guided mode in each region (i.e., high-index layer, 

low-index gap, and metallic cladding layer), can be expressed as: 

 𝑘𝑖 = √𝛽
2 − 𝑘0

2𝜀𝑖 ,  where    𝑖 = 𝑔, 𝑑,𝑚. (106) 

The positive and negative signs in the dispersion relation Eq. (104) correspond to two kinds of 

hybrid-MDM guided modes supported by the structure. The equation with positive sign refers to the 

long range symmetrical hybrid-MDM (LRSH-MDM) mode, while the one with negative sign 

represents the short range anti-symmetrical hybrid-MDM (SRAH-MDM) mode. The characteristic 

mode equation Eq. (104) can also be written in a transcendental form, for the positive sign: 

  

 tanh (
𝑘𝑑𝑑

2
) =

(1−𝑟)𝑘𝑔𝜀𝑑

(1+𝑟)𝑘𝑑𝜀𝑔
, (107) 

And for the negative sign: 

  

 tanh (
𝑘𝑑𝑑

2
) =

(1+𝑟)𝑘𝑑𝜀𝑔

(1−𝑟)𝑘𝑔𝜀𝑑
. (108) 
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We consider only studying the fundamental LRSH-MDM mode because it has lower prpgation loss. 

To provide an analysis for the optical performance of the hybrid-MDM plasmonic waveguide, we solve 

the characteristic mode equation Eq. (107) numerically to obtain the propagation constant of the guided 

mode. The key parameters of the guided mode, the effective modal index neff and the propagation length 

Lp (the distance where the optical field power decays by 1/e of its initial value), can be written as: 

  

 𝑛𝑒𝑓𝑓 = 𝑅𝑒 (
𝛽

𝑘0
), (109) 

 𝐿𝑝 =
𝜆

4𝜋𝐼𝑚[𝑛𝑒𝑓𝑓]
. (110) 

At zero low-index gap thickness t, the hybrid MDM mode equation Eq. 107 can recast to the 

conventional MDM plasmonic mode equation: 

  

 tanh (
𝑘𝑑𝑑

2
) = −

𝑘𝑚𝜀𝑑

𝑘𝑑𝜀𝑚
. (111) 

The optical behavior of the hybrid MDM waveguide structure will be studied and compared with the 

conventional MDM plasmonic waveguide structure at different wavelengths. 

5.1.2 Numerical Results and Discussion 

5.1.2.1 The Modal Properties 

To study the optical properties of the guide mode in the hybrid-MDM waveguide model, we chose the 

materials for the low and high-index dielectric regions to be silica and silicon due their compatibility 

with current fabrication techniques, and for the metallic clads to be silver. The influence of the 

wavelength on the hybrid guide mode will be investigated. The refractive indices of the silicon and 

silica are nSi=3.477 and nSiO2=1.445 at λ=1550 nm, and nSi=3.461 and nSiO2=1.441 at λ=1800 nm, 

respectively [25] whereas the permittivities of the silver at these wavelengths 1550 and 1800 nm are 

εAg=-129+3.3j and εAg=-172.78+5.32j, respectively [26]. The hybrid MDM guided mode of such a 
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structure results from the coupling between the MDM plasmonic waveguide mode and the conventional 

dielectric waveguide DW mode which formed at the center 3-layer dielectrics. The evolution of the 

hybrid guided mode has been governed by the thickness of the center three layers (low-index gap/high-

index dielectric/low-index gap), which influences the optical performance of the waveguide. 

    For this analytical study, the total thickness of the three dielectric layers D=2t+d is fixed while 

the thickness of the high-index layer is varied d from 0 to D. The five-layer hybrid waveguide structure 

reduces to the conventional three-layer MDM structure, i.e., metal/low-index-dielectric/metal (MLM) 

at d=0 and metal/high-index-dielectric/metal (MHM) format, at the case d=D. Firstly, we find the cutoff 

thickness dcutoff of the dielectric layer in the MDM plasmonic waveguide by using Eq. (57) in order to 

ensure the MDM plasmonic waveguide supports strong coupled plasmonic mode. The cutoff thickness 

dcutoff is defined as the separation distance between the metallic layers where the mode effective index 

neff of the MDM plasmonic waveguide approaches that of the metal/dielectric single interface plasmonic 

waveguide (neff,∞= √𝜀𝑑𝜀𝑚 (𝜀𝑚 + 𝜀𝑑)⁄  ). Figure 41 illustrates how the cutoff thickness of the 3-layer 

MDM plasmonic waveguide mode depends on the wavelength, where the metallic layer is chosen to be 

silver and the dielectric layer is silicon. As the wavelength increases, the cutoff thickness increases. For 

instance, at the wavelengths 1550 and 1800 nm the cutoff thicknesses are around 900 and 1200 nm 

respectively. We need to choose the total dielectric thickness D smaller than the cutoff thickness in 

order to study the 5-layer waveguide at any wavelength. 
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Fig. 41 The dependence of the cutoff dielectric thickness of MDM waveguide on wavelength 

 

The optical properties of the hybrid-MDM guided mode, the modal index and the propagation 

length, can be investigated by solving the mode characteristics equation Eq. 107 numerically. Figure 

42 shows the modal index and the propagation length of the hybrid guided mode at different fixed total 

dielectric thickness D (100, 200, 300, 400, 500nm) for the wavelengths 1550 and 1800 nm. Our results 

based on the derived-analytical formula agree perfectly with those based on the commercial software 

COMSOL [87], where they only discussed the optical properties at the total dielectric thickness D=300 

nm. The two limiting cases d=0 and d=D are illustrated in Fig. 42, which corresponds to the 3-layer 

Metal/Low-index/Metal (MLM) and the 3-layer Metal/High-index/Metal (MHM) waveguide mode, 

and the remaining part refers to 5-layer hybrid MDM waveguide mode’s optical behavior. We can 

observe that increasing the high-index layer thickness d will increase the modal index monotonously in 

Fig. 42(a); that means, the modal index of the hybrid MDM mode is always between that of MLM and 

MHM mode.  

It can be noticed that there is a difference between the shape of the curves for the small total thickness 

D (such as: D =100, 200 nm) and large D (such as: D =400, 500 nm). There is a small raised bump 

presented at the mid-range of d for large D.  Figure 42(b) shows clearly the difference in the shape of 

the curves of the propagation length. At small total thickness D, the propagation length decreases 

monotonously with increases of the high-index layer thickness d as it happens in traditional MDM 
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plasmonic waveguides. On the other hand, at large total dielectric thickness D, there is an interesting 

optimized dielectric thickness with a maximum propagation length, and the enhancement in the Lprop 

increases as the total dielectric thickness D increases. For D=300 nm, at small d, the propagation length 

Lprop decreases slightly with increases of d and then starts to increase up to a maximum at about d=210 

nm, followed by a decreasing trend until it reaches the minimum value for the traditional MHM mode. 

However, for D=400 and 500 nm, the propagation length increases slightly at small d, then rapidly 

ramps up until it reaches the maximum Lprop. This attributes to that electromagnetic energy penetrated 

into the metal layers is low as the Ohmic loss of the metal is responsible for the propagation loss.  In 

other words, more energy is distributed in the inner high-index dielectric layer as evidenced by the 

apparent increase in the modal index. Moreover, with the thickness of high-index layer properly 

chosen, the inner low/high/low-index dielectric layers may form DW-mode, interacting with SPP-

mode. In addition, the enhancement in propagation length for wavelength at 1800 nm is also noticeable 

but not as much as that at 1550nm; this is intuitively because the Ohmic loss of silver increases as the 

wavelength increases. The changes in the propagation lengths and the modal index suggest the great 

influence of the thickness of the dielectric layers on the formation and evolution of the hybrid guided 

MDM mode. We will continue the discussion about the hybrid-MDM mode at the telecom wavelength 

1550 nm. 
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Fig. 42 The modal index (a) and propagation length (b) of the hybrid–MDM guided mode at wavelengths 

1550 and 1800 nm, at different dielectric thicknesses D=100,200,300,400, and 500 nm 



 

 87 

5.1.2.2 Energy Flux Density 

The propagating power of the guided mode within the hybrid-MDM waveguide structure can be 

visualized by plotting the energy flux density of the hybrid guided MDM mode along the x-direction. 

The energy flux density can be expressed by time averaging the z-component of the poynting vector 

value: 

  

 𝑆𝑧 =
1

2
𝑅𝑒(𝐸⃗ × 𝐻⃗⃗ ∗) ∙ 𝑧̂, (112) 

where and the propagation constant of the hybrid-MDM mode can be obtained by solving the mode 

equation Eq. 107,  and the transverse fields components Ex and Hy  from Eq.102 and Eq. 103. Figure 43 

shows the energy flux density of the hybrid-MDM mode for different dielectric thicknesses d and at 

fixed total dielectric thickness D=400 nm.  The special cases at d=0 and d=D for the traditional 3-layer 

MLM and MHM mode are shown in Fig. 43(a) and 43(d).  In Fig. 43(b) and 43(c), the power is 

gradually shifted from the low-index to high-index layer with insertion of high-index layer at center, 

resulting in the evolution of the hybrid MDM mode. Thus, we can notice how the geometrical 

parameters of the dielectric low- and high-index layers t and d influences the formation of the hybrid 

MDM mode. 

In addition, Also note that the field of hybrid guided mode is distributed mainly within the dielectric 

layers and it decays rapidly to zero in the metal layers, as can be seen from Fig. 43. Even though infinite 

thickness of the conductor layer is assumed in our theoretical modeling, in practical applications, a 

metal cladding layer of a few m thickness is sufficient to have no effect on the hybrid modes.  
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Fig. 43 The energy flux density of the hybrid-MDM guide mode at fixed D=400, where the dielectric 

thicknesses are a) t=200 nm & d=0, b) t=125 nm & d=150 nm, c) t=50 nm & d=300 nm, and d) t=0, & 

d=400 nm 

 

Moreover, the propagating power in z-direction has been plotted by using COMSOL’s mode solver 

in one and two dimensions. Figure 44 illustrates the surface plot for the guided modes’ propagating 

power supported by the Ag/SiO2/Si/SiO2/Ag hybrid waveguide at different gap and dielectric 

thicknesses and a fixed total thickness D=400, while their corespondence1D plot of the propagating 

power as a function of x is shown in Fig. 45. At D=2t=400 nm, the propagating power field is strongly 

confined within the low-index gap region leading to form Metal-Low-index-gap-Metal (MLM) 

waveguide mode in the absence of the high-index layer as shown in Fig. 44(a) & Fig. 45(a). In the 

presence of the high-index layer, we can see the evolution of the MDM hybrid plasmonic waveguide 

mode as shown in Fig. 44(b) and Fig. 44(c) and Fig. 45(b) and Fig. 45(c). It is noticeable how the 

geometrical parameters have an impact on the MDM hybrid mode’s formation. As the low index gap 
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decreasing from 125 to 50 nm, we can see how the power fields penetrates from the low-index gap 

region to high-index region. The physical interpretation about the MDM hybrid mode characteristics 

will be discussed in detail in the next section. As the low-index gap thickness vanishes, the power field 

of the guide mode will be the conventional Metal-High-index-Metal (MHM) plasmonic waveguide 

mode as shown in Fig. 44(d) and Fig. 45(d).  

 

 

Fig. 44 The surface plot for the energy flux density of the hybrid MDM mode at fixed D=400 nm and 

different gap and high-index dielectric thicknesses, a) t=200 nm and d=0, b) t=125 and d=150 nm, c) t=50 

and d=300 nm, and d) t=0 and d=400 nm. 
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Fig. 45 The power flow of the hybrid MDM guided mode  as a function of x at fixed total dielectric 

thickness D=400 nm and different gap and dielectric thicknesses, a) [t, d]=[200, 0]nm, b) [t, d]=[125, 

150]nm, c) [t, d]=[50, 300]nm, c)[t, d]=[0, 400] nm 

 

 

5.1.3 The Hybrid-MDM Mode Evolution 

The evolution of the hybrid-MDM mode can be understood clearly by using the two criteria for mode 

characterization that we have introduced in the previous chapter, which mainly based on the maximum 

energy flux density in the low-index gap and the high-index dielectric regions (Pmax,g & Pmax,d).  The 

first criterion is that the peak energy density in the high index dielectric region is at 1/e of that in the 
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low-index gap, (Pmax,d/Pmax,g=1/e), and the second criterion is that the energy peak densities are equal 

in both regions, ( Pmax,g/Pmax,d=1). 

The ratio of the energy flux density Pmax,g/Pmax,d as a function of the high-index layer thickness d 

for different total dielectric thicknesses D=100, 200, 300, 400 and 500 nm is illustrated in Fig. 45. At 

the limit case d=0, the guided mode is the traditional MLM mode. As d increases the ratio of energy 

flux density decreases, which means the power in the low-index layers starts to transfer into the high-

index layer, leading to the formation of the hybrid-MDM mode. The power ratio continues to reduce 

until it reaches a minimum value, and then starts to increase until d=D, yielding the traditional MHM 

mode. We notice that the larger the total dielectric thickness D, the smaller is the minimum ratio of the 

energy flux density.  

We can discuss in detail the evolution of the hybrid-MDM mode by applying the criteria for mode 

characteristics. The hybrid-MDM mode can be classified into five hybrid-MDM mode types at large 

dielectric thicknesses D=400 and 500 nm, as shown in Fig. 46. For instance, at the largest total dielectric 

thickness D=500 nm, the first criteria is satisfied at d=140 nm. When d is smaller than 140 nm, the 

hybrid mode behaves as a strong SPP-like MLM mode as the power is mainly distributed in the low-

index layer. The energy flux density distribution of this type of mode at d=50 nm is displayed in Fig. 

47(a). As d further increases, the second criteria is satisfied (see the two dotted circles at d1≈207 and 

d2≈460 nm). When the peak power ratio Pmax,d/Pmax,g falls between 1/e (d≈140 nm) and unity (d1≈207 

nm), the hybrid mode is referred to as a medium SPP-DW-like MLM mode because of the strong 

coupling between the SPP and DW modes, as can be seen from the energy flux density profile in Fig. 

47(b). In the region between the two dotted circles (or two squares) where the power peaks are equal, 

the power is mainly confined in the high-index layer at the center. Therefore, such a waveguide 

structure supports the 3rd-type of mode: strong DW-like mode; the energy flux density distribution of 

this type of mode is shown in Fig. 47(c). The hybrid-MDM mode types will be symmetrically 

depending on weather the mode closes to the MLM or MHM mode nature since the studied plasmonic 

waveguide structure is symmetrical.  Consequently, with further increasing d, the 4th and the 5th type of 

the hybrid-MDM modes are the medium SPP-DW-like MHM mode and strong SPP-like MHM mode, 

respectively, as shown in Fig. 47 (d) and Fig. 47(e). It is worth pointing out that in the middle region 

in Fig. 46, associated with the strong DW-like mode, there are the minimum energy flux densities 

located respectively at dopt≈290 and 340 nm for D=400 and 500 nm. Referring back to Fig. 42(b), we 

can see that at the same dielectric thickness dopt, the propagation lengths are maximized, which are 
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increases of about 160% and 460% compared to those at d=0 for the traditional MLM mode for D=400 

and 500 nm, respectively. 

However, at D=300 nm, the first criterion can only be applied as shown in Fig. 46. That means 

although power begins to couple to the high-index layer, the power in the low-index layers still 

dominates over that in the high-index layer, leading to form only three types of modes (strong SPP-like 

MLM mode, medium SPP-DW-like MLM mode, and strong SPP-like MHM mode). The minimum 

ratio of the energy flux density occurs at dopt≈210 nm, where again slight enhancement in the 

propagation length takes place, referring back to Fig. 42. At small dielectric thicknesses D=100 and 

200 nm, the two criteria are not applicable. Hence, the hybrid-MDM mode types are the strong SPP-

like MLM mode and the strong SPP-like MHM mode. The lack of the presence of DW-like mode 

explains why there is no improvement in the propagation length for small dielectric thicknesses D=100 

and 200 nm in Fig. 42. In other words, the excitation of the DW-like mode plays an essential role in 

improving the propagation length of the hybrid guided mode, as the more the power retains in the center 

regime, the less the power in the metal. Therefore, the Ohmic loss can be decreased. When the energy 

flux density in the center reaches its peak value, the optimized propagation length can be achieved. 



 

 93 

 

Fig. 46 The power peaks ratio versus the dielectric thickness d at different D=100, 200, 300, 400, and 500 

nm, with two criteria shown. 
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Fig. 47 The energy flux density of the five types of the hybrid MDM mode at D=500 nm 
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5.1.4 Hybrid-MDM Mode Confinement 

The mode confinement of the different types of the hybrid-MDM modes can be investigated in terms 

of the confinement factor and the effective mode size. The confinement factor Γ, defined as the ratio of 

the power distribution within the dielectric layers to the overall power distributed in the waveguide, 

can be expressed as:  

 𝛤 =
1

2
∫ 𝑅𝑒(𝐸⃗ ×𝐻⃗⃗ ∗)∙𝑧̂𝑑𝑥
𝑔,𝑑

1

2
∫ 𝑅𝑒(
𝑤ℎ𝑜𝑙𝑒

𝐸⃗ ×𝐻⃗⃗ ∗)∙𝑧̂𝑑𝑥
. (113) 

The confinement factor of the hybrid-MDM waveguide structure is shown in Fig. 48. It can be seen 

that such a structure can support large amount of power residing within the dielectric layers; this arises 

from the well-known fact that MDM waveguides have very strong mode confinement. For small total 

dielectric thicknesses (D=100, 200 nm), the confinement factor of the hybrid MDM mode falls between 

that of the MLM and the MHM mode. As the total dielectric thickness D increases, the confinement 

factor of the hybrid-MDM mode is slightly improved with increasing the dielectric thickness d, which 

relates to the excitation of the DW-like mode.   

 

Fig. 48 The confinement factor of the guided mode versus dielectric thickness d, at different dielectric 

thickness D=100, 200, 300, 400, and 500 nm 
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The mode confinement can be also interpreted in terms of the effective mode size Lms, which is 

defined as the ratio of the total modal energy flux along the x-direction to its maximum energy flux 

density; it can be written as [82, 84]: 

 𝐿𝑚𝑠 =
∫ 𝑆𝑧𝑑𝑥
∞
−∞

max (𝑆𝑧)
. (114) 

     The normalized mode size Lnorm of the hybrid-MDM mode, (Lnorm=Lrm/L0, where L0=λ/2), calculated 

from our derived analytical formula, at different total dielectric thickness is shown in Fig. 49. As the 

total dielectric thickness decreases, the mode size reduces. For example, at small dielectric thicknesses 

D=100, 200 and 300 nm, the mode size decreases monotonously as the dielectric thickness d increases, 

which means the hybrid MDM mode size is larger than that of the MHM mode and smaller than that 

of the MLM mode. On the other hand, the mode size behaves differently at large total dielectric 

thickness. For D=400 nm, there are two localized peaks at d1=220, d2=340 nm, and d1=207, d2=460 nm 

for D=500 nm, respectively. Referring back to Fig. 46, d1 and d2 are just the thicknesses where the 2nd 

criteria are satisfied.  The thickness d with the minimum mode size for D=400 and 500 nm in Fig. 49, 

within this region (d1<d<d2) associated with the DW-like mode, is nearly the thickness d with the 

minimum power ratio of the energy flux density and the maximum propagation length referring to Fig. 

46 and Fig. 42(b). It is worth noting that choosing the optimal high-index dielectric thickness d, the 

hybrid MDM waveguide with maximum propagation length and relatively small mode size along with 

large confinement factor can be achieved for large total dielectric thickness D, where the hybrid-MDM 

mode behaves as DW-like mode. Another minimum mode size is localized at d ≈170 nm in the regime 

having medium-SPP-DW-like MLM mode, where the mode size is decreased by 29% for both D=400 

and 500 nm as shown in Fig. 49, and the propagation length is increased by 18% and 40% for D=400 

and 500 nm, respectively, compared with the MLM mode in Fig. 42. Furthermore, for D=300 nm, at 

the thickness dopt≈210 nm with optimum propagation length, as seen in Fig. 42, the mode size is reduced 

by 38% where the hybrid mode exhibits medium-SPP-DW-like MLM mode behavior. 
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Fig. 49 the dependence of the normalized mode size of the hybrid-MDM mode on the dielectric thickness 

d at different total dielectric thicknesses D=100, 200, 300, 400, and 500 nm. 

 

In our analytical study of the hybrid-MDM waveguide structure, we can notice that the hybrid 

guided mode behaves basically as the traditional MDM-like mode with little improvement on its optical 

performance at small total dielectric thickness D. On the other hand, although the mode size naturally 

increases at large total dielectric thickness D, the enhancement in the propagation length in the region 

supporting medium SPP-DW-like MLM mode can be achieved. The largest propagation length and 

mode confinement along with relatively small mode size can be specifically obtained by choosing the 

optimized high-index thickness d in the region which supports the DW-like mode. 

The interesting behavior of the modal index of the hybrid-MDM mode, at large total dielectric 

thickness D=400 and 500 nm, in Fig. 42(a) can be correlated with the evolution of the hybrid mode as 

confirmed by the results obtained above. The modal index, for large D, increases smoothly until 

reaching the middle region (with small bump) where the modal index slope changes, first increases and 

then decreases. After that, the modal index returns to the behavior at small d, and increases rapidly until 

the modal index reaches to the one of the MHM mode. The change of the modal index in the middle 

region, associated with medium SPP-DW-like MLM mode and DW-like mode, shown in Fig. 42(a) 
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truly reflects the evolution of the hybrid guided MDM mode as shown in Fig. 46. This can be attributed 

to the strength of the mode coupling from SPP mode to DW mode, and can also be observed from the 

variation in the mode size, shown in Fig. 49. 

5.1.5 The Effect of the Dielectric Layers on the Modal Properties of the Hybrid-MDM 

Waveguide Loss 

The importance of the low/high/low-index inner dielectric layers on the enhancement of the 

propagation length in hybrid MDM waveguides will be discussed. The arrangement of low/high/low-

index layers permits to the excitation of the DW-like mode as in traditional DWs.  Thus, the field is 

significantly improved in the high-index region and decreased in the low-index regions, leading to the 

field reduction in the metal layers. Therefore, the propagation length of the hybrid-MDM mode can be 

significantly increased. However, if we instead utilize another arrangement (high/low/high-index) 

structure, such a structure can not form DW-like mode, resulting in no enhancement in the propagation 

length. Figure 50(a) and (b) shows the modal index and the propagation length for the high/low/high-

index structure with fixed D = 400 nm. By switching the low and high-index layers, the core is now the 

low-index layer. Hence, d = 0 and d = 400 becomes the traditional MHM and MLM structure, 

respectively. Accordingly, the modal index decreases with increasing the low-index layer. It can be 

noticed that at the middle range of d, there is a small index bump rises. That means, strong field is 

distributed in high-index layers, which are adjacent to the outer metal layers, yielding to more power 

penetration into the metal layers. As result, the propagation length is even reduced at middle range of 

d, as shown in Fig. 50(b). Consequently, the only arrangement of the dielectric layers that makes the 5-

layer hybrid MDM an excellent plasmonic waveguide is the (low/high/low-index) structure. 

In addition, we can study how the refractive index contrast between the high and low index layer 

in the low/high/low structure influences the waveguide optical performance.  Figure 51(a) and (b) 

illustrate our calculated results on the modal index and the propagation length at D = 400 nm for fixed 

low-index material SiO2 with different high-index materials Ge, Si and CdS whose refractive indices 

are 4.275, 3.477 and 2.3, respectively. The index difference between the high-index layer (Ge, Si, CdS) 

and low-index layer (SiO2) are 2.83, 2.03, and 0.855, respectively. Figure 51(b) shows that the large 

index difference is beneficial to further improve optical performance. For example, the propagation 

length for Ge surges about 373% comparing with that for Si. On the other hand, the improvement of 
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the propagation length is very minimal if CdS is used as a high-index layer, due to the relatively small 

index contrast.  As the index difference varied, the line shapes of the modal index in Fig. 51(a) change 

accordingly. The larger the index contrast, the higher the rising bump in the middle region becomes 

and the stronger the field distributes in the core, leading to the enhancement of the propagation lengths. 

Finally, both the dielectric index contrast and the geometrical dimensions of the hybrid-MDM 

waveguide have a great impact on its optical performance. 

 

 

 

Fig. 50 The optical properties of the hybrid mode generated by metal/high/low/high/metal (MHLHM) 

structure a) modal index and b) propagation length, versus the dielectric thickness d, when D = 400 nm. 
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Fig. 51 The modal index (a) and the propagation length (b) of the hybrid-MDM mode versus the 

dielectric thickness d at different dielectric refractive indices, when D=400 nm. 

5.1.6 The propagation Characteristics of the Hybrid-MDM Modes 

As seen, the optical properties of the dielectric layers have played a crucial role on the optical 

performance of the hybrid-MDM guided modes. The effect of the refractive index of the high index 

dielectric core layer on the propagation length enhancement will be investigated [90]. We kept the total 

dielectric layers thickness D fixed at 400 nm, and the refractive index of the low-index gap chosen to 

be silica (SiO2) with a refractive index 1.445 at the telecom wavelength 1550 mm. We studied the effect 

of variation the refractive index of the core layer (high-index layer) nd on the waveguide performance. 

Figure 52 shows the maximum propagation length Lmax and the optimized thickness d at Lmax versus the 

dielectric refractive index nd. Our results show that large index contrast leads to great enhancement in 

Lmax. When there is no high-index layer (i.e. nd=0, d=0), the guided mode will be the traditional MLM 

waveguide mode. As the refractive index nd increases from 0 to 1.445 (same as the low-index gap), 

there is no evolution of the hybrid MDM mode, just exhibit MLM mode and MHLHM mode. Therefore, 

there is no enhancement in the propagation length in this region. With increasing the refractive index 

nd from 1.445 to 2.2, there is also no improvement in the maximum value of propagation length. This 

attributes to the low index contrast between the low and high-index dielectric materials, as discussed 

above in Fig. 51; referring back to Fig. 51(b) we can see the low index contrast of (CdS/SiO2) exhibits 

minimal improvement in the propagation length. However, as the index increasing from ~2.3 to 3, the 
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propagation length starts to enhance a little and the thickness of the optimized high-index layer 

increases sharply as shown in Fig. 52(b). This indicates the evolution of strong SPP-like in this region, 

which exhibits low propagation length compared to the next regions, where the index contrast increases.  

With the further increasing the index contrast, the propagation length noticeably improves, and the 

thickness of the optimized high-index layer becomes flat (when nd increases from 3 to 4), and further 

starts to decreases (from nd > 4), which associated with the evolution of the hybrid guided modes from 

strong dielectric waveguide (DW)-like, to extremely strong DW-like modes.  

 

 

Fig. 52 The effect of the dielectric refractive index on (a) the maximum propagation length, and (b) the 

optimized thickness d at Lmax 

 

5.2 Conclusion 

The guided mode in a multilayer symmetrical hybrid-MDM plasmonic waveguide have been studied 

theoretically based on using our analytically derived expressions. We found that there are different 

types of hybrid-MDM modes supported by the hybrid waveguide structure based on our proposed mode 

characteristic criteria. At small total dielectric thickness, the hybrid guided mode always exhibits strong 

SPP-like behavior no matter how the thickness of the high-index layer varies.  On the contrary, for large 

total dielectric thickness, the thickness of the high-index layer plays an essential role in determining if 

the hybrid guided mode is SPP-like, SPP-DW-like, or DW-like, which can significantly affect the 

modal index, the propagation length, the mode size as well as the mode confinement factor. As result, 
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the waveguide optical performance could be tailored by suitably choosing the proper geometrical 

parameters. Moreover, we revealed the necessity of the structure of inner low/high/low-index layer and 

the effect of the index difference between high- and low-index layers on the optical performance of the 

hybrid MDM waveguides. Such a waveguide structure has potential applications in sub-wavelength all-

optical data processing plasmonics devices.  
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Chapter 6 

Conclusion and Future Work 

6.1 Summary of the Contributions 

Plasmonic waveguides (PWs) have been a subject of considerable interest over the past decade due to 

their ability to manipulate light on deep subwavelength scales beyond the diffraction limit at a metal-

dielectric interface, leading to the development of ultra-compact active/passive nanophotonic devices. 

One major drawback of PWs which can not be ignored is the high propagation loss due to Ohmic loss 

of metals at optical frequencies. The hybrid plasmonic waveguide (HPW) is a recent novel type of PWs, 

which consists of a subwavelength low-index dielectric region embedded between metal and high-

index dielectric cladding layers.  It has been proposed to tackle the issue of the high propagation of 

PWs. The capability of the HPW to support a strong confined guided mode within subwavelength 

nanoscale structure with a lower propagation loss has motivated nanophotonics community to exploit 

its outstanding merits. Various waveguide structures have been proposed based on the HPW in order 

to improve its performance, such as symmetrical cylindrical and planar geometries. Most of the 

theoretical studies are conducted by using commercial available mode solver’s software in order to 

analyze the hybrid guided mode and examine its modal properties. Comprehending the hybrid mode 

deeply requires theoretical studies in order to investigate all the key factors that may intensify the 

waveguide optical performance with a higher degree of accuracy, which can effectively help the 

waveguide designers to obtain a deep analysis before fabricating plasmonic waveguide devices. Thus, 

the main objective of this dissertation was to provide thorough theoretical studies for the hybrid guided 

modes for different types of multilayer hybrid plasmonic waveguides structures based on derived 

equations due to the lack of such theoretical studies. 

In Chapter 2, the recent excitement about nanoplasmonic technology was discussed. The essential 

principle and concepts, such as such Drude model, Maxwell’s equation, and the mode equation are 

included in order to understand the electromagnetics of the surface plasmon polaritons (SPPs) guided 

modes of PWs. The dispersion equation of the SPPs mode at single metal-dielectric interface has been 

derived and its optical properties were investigated. In the third Chapter, plasmonic waveguides were 

introduced; in particular, Dielectric-Metal-Dielectric (DMD), Metal-Dielectric-Metal (MDM), and 
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Hybrid Plasmonic waveguides were investigated theoretically based on deriving their guided mode 

equations, studying their optical performance, plotting their field’s profile, and discussing their 

advantages and disadvantages, as well as their potential applications. The mode solver of COMSOL 

software was utilized throughout the whole theoretical studies in this thesis for the purpose of 

comparison between our analytical-based results and software-based results. The guided modes of PWs 

are also investigated in different dimensions.   

In Chapter 4, the optical behavior of the guided mode in a five-layer Symmetrical Conductor-Gap-

Dielectric (SCGD) plasmonic waveguide structure was theoretically analyzed.  We found the condition 

for the existence of the hybrid guided mode in the proposed waveguide structure, which is the low-

index gap thickness should be smaller than the cutoff gap thickness. The dispersion equation of the 

SCGD guided mode as well as the cutoff gap thickness condition were analytically derived.  The SCGD 

guided mode was numerically characterized based on the analytical equations for different index 

contrast ratios of the cladding to the gap layers. At large index contrast ratio, the SCGD mode can be 

guided within a few nanometers gap thickness. Such a waveguide structure can support ultra-long range 

SPPs mode with relatively lower propagation loss compared to that of the typical DMD waveguide 

mode. Even though the propagation length can be substantially increased near the cutoff gap thickness, 

it may not be practical to fabricate such a waveguide.  

Fortunately, this issue associated with the 5-layer structure was solved by a 7-layer hybrid-DMD 

plasmonic structure by replacing the infinite high-index dielectric cladding layers with a finite thickness 

and introducing infinite low-index cover layers: the bottom substrate and the top cover. As a result, we 

presented a comprehensive analytical theoretical investigation for the hybrid guided mode supported 

by the 7-layer hybrid-DMD plasmonic waveguide. The presence of the cover cladding layers eliminated 

the cutoff condition of the gap thickness of the 5-layer hybrid-DMD plamonic waveguide. We classified 

the guided mode into three types according to our two criteria which proposed for studying the mode 

characteristics of the 7-layer HPW. In addition, we examined the optical performance of the waveguide 

structure with analyzing the normalized mode size, confinement factor, and the FOM. Our results 

agreed perfectly with the results based on the commercial software. By properly choosing the 

geometrical parameters as well as the dielectric materials, this waveguide structure can support 
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subwavelength strong mode confinement with higher propagation length compared to the three-layer 

HPW.  

A thorough theoretical analysis for the 5-layer hybrid-MDM plasmonic waveguide was presented 

in Chapter 5. Such a waveguide geometry has been proposed to reduce the high propagation loss 

accompanied with the typical MDM plasmonic waveguide. The guided mode’s equation for the hybrid-

MDM plasmonic waveguide was derived. Based on our analytical equations, the overall optical 

performance of the guided mode such as  modal index, propagation length, normalized mode size, and 

the confinement factor was studied comprehensively. We found that different types of modes, SPP-

like, SPP-DW-like, and DW-like mode, can be supported by the hybrid-MDM waveguide structure. 

For example, at small total dielectric thickness, the hybrid-MDM guided mode exhibits always SPP-

like mode; however, at large total dielectric thickness, the guided mode can take different forms of the 

hybrid mode relying on the high-index dielectric thickness which plays a crucial role on the guided 

mode’s formation. In addition, the waveguide optical performance was dominated by the index 

difference between the high- and low-index regions and the total dielectric layers. Therefore, the 

waveguide structure can be highly optimized for building on-chip all optical processing devices, by 

controlling the waveguide geometrical parameters as well as the optical properties of the materials.  

6.2 Future Work  

The optical performance of the multilayer hybrid-DMD and hybrid-MDM plasmonic waveguides was 

successfully investigated based on analytical derived equations. The proposed multilayer hybrid 

plasmonic waveguide structures have shown a better compromise between mode confinement and 

propagation loss compared to the typical three-layer HPW, DMD, and MDM plasmonic waveguide, by 

utilizing optimized geometrical parameters and choosing suitable materials optical properties. The great 

field enhancement and the essential merits of the proposed studied multilayer hybrid plasmonic 

waveguides make them excellent candidates for applications in active and passive nanoplasmonic 

devices. Constructing ultra-compact high-density plasmonic integrated circuits demands all-optical 

data processing devices in order to switch, route, and modulate data within the circuit. In electronic 

devices, processing data is performed nonlinearly. Thus, in order to implement high speed all-optical 

switching devices, nonlinear domains are required to be incorporated into devices. Since nonlinear 

interactions can be typically observed at very high field intensity, the strong field enhancement within 
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the low index gap of the multilayer hybrid plasmonic waveguides makes them ideal elements to build 

nonlinear all-optical switching devices, which demands extremely high field intensity, low power 

consumption, and miniscule switching time. To extend our research, a nonlinear medium can be 

incorporated into the low-index dielectric layer, and the nonlinear mode equation of the guided modes 

can be derived for our studied different types of hybrid plasmonic waveguides. The nonlinear optical 

behavior of the hybrid modes can be fully investigated based on the analytical derived equations. 

The analytical model of the nonlinear multilayer hybrid plasmonic waveguides can help optimizing 

the waveguide geometries to achieve higher nonlinear performance, and designing all-optical switching 

devices. Different schemes of nonlinear switching devices can be utilized in order to see which one can 

provide a better nonlinear switching performance. Various nonlinear materials can be also used for 

further enhancement. Designing such a nonlinear all-optical switching device can really open the 

possibility to process, modulate, and route data in all-optical domain, and can help to design 

nanoplasmonic integrated circuits for the future of “all-optical computers”.   
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Appendix A 

COMSOL’s MODE SOLVER 

In this appendix, a full report has been generated by using COMSOL software mode solver based on 

the finite element method (FEM) numerical method in order to solve the guided mode within the 

plasmonic waveguide structure and provide a computational analysis [91]. The concept of the FEM 

depends on four basic steps. Firstly, the solution domain is divided into thousands of small shapes, 

which called mesh elements. Then, Maxwell’s equations and the governed partial differential equations 

are found in each element of the mesh; thirdly, all the mesh elements are assembled. Finally, the general 

solution for the electromagnetic problem can be evaluated by solving all the equation with the suitable 

boundary conditions. Hence, the guided modes can be solved by obtaining the effective mod index, 

propagation length, and plotting their fields’ profile.  
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1 Global Definitions 

1.1 Parameters 1 

Parameters 

Name Expression Description 

d .5 Dielectric thickness 

WD .8 Domain Width 

HD .3 Domain height 

nAgR .1453 Real refractive index of metal 

nAgI -11.3587 Imaginary part index of metal 

ng 3.455 Dielectric refractive index 

wl 1.55e-6[m] wavelength 

f0 c_const/wl frequency 

nSeed 3.501589 + 0.004673i Initial guess 
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2 Model 1 (mod1) 

2.1 Definitions 

2.1.1 Coordinate Systems 

6.2.1.1 Boundary System 1 

Coordinate system type Boundary system 

Identifier sys1 

 

Settings 

Name Value 

Coordinate names {t1, n, to} 

Create first tangent direction from Global Cartesian 

 

2.2 Geometry 1 

 

Geometry 1 

Units 

Length unit µm 

Angular unit deg 
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Geometry statistics 

Property Value 

Space dimension 2 

Number of domains 2 

Number of boundaries 7 

 

2.2.1 Metal (r1) 

Position 

Name Value 

Position {0, 0} 

Base Center 

Width WD 

Height HD 

Size {WD, HD} 

 

2.2.2 Dielectric (r3) 

Position 

Name Value 

Position {0, (HD/2) + (d/2)} 

Base Center 

Width WD 

Height d 

Size {WD, d} 
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2.3 Materials 

2.3.1 Silver 

 

Silver 

Selection 

Geometric entity level Domain 

Selection Domain 1 

 

Material parameters 

Name Value Unit 

Refractive index nAgR 1 

Refractive index, imaginary part nAgI 1 

 

Refractive index Settings 

Description Value 

Refractive index {{nAgR, 0, 0}, {0, nAgR, 0}, {0, 0, nAgR}} 

Refractive index, imaginary part {{nAgI, 0, 0}, {0, nAgI, 0}, {0, 0, nAgI}} 
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2.3.2 Si 

 

Si 

Selection 

Geometric entity level Domain 

Selection Domain 2 

 

Material parameters 

Name Value Unit 

Refractive index ng 1 

Refractive index, imaginary part 0 1 

 

Refractive index Settings 

Description Value 

Refractive index {{ng, 0, 0}, {0, ng, 0}, {0, 0, ng}} 

Refractive index, imaginary part {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 
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2.4 Electromagnetic Waves (emw) 

 

Electromagnetic Waves 

Selection 

Geometric entity level Domain 

Selection Domains 1–2 

 

Equations 

 

 

Settings 

Description Value 

Electric field Quadratic 

Value type when using splitting of complex variables Complex 

Equation form Study controlled 

Frequency 1e9[Hz] 

Mode analysis frequency 1e9[Hz] 
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Description Value 

Electric field components solved for Three-component vector 

Solve for Full field 

Activate port sweep 0 

Sweep on Ports 

Show equation assuming std1/mode 

Out-of-plane wave number 0 

 

2.4.1 Wave Equation, Electric 1 

 

Wave Equation, Electric 1 

Selection 

Geometric entity level Domain 

Selection Domains 1–2 

 

Equations 
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6.2.1.2 Settings 

Settings 

Description Value 

Electrical conductivity {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

Reference temperature 293.15[K] 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Relative permittivity (imaginary part) {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

Relative permittivity (real part) {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Refractive index From material 

Refractive index {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Refractive index, imaginary part From material 

Refractive index, imaginary part {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

Electric displacement field model Refractive index 

Relative permeability {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Relative permittivity, high-frequency {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

 

Properties from material 

Property Material Property group 

Refractive index Silver Refractive index 

Refractive index, imaginary part Silver Refractive index 

Refractive index Si Refractive index 

Refractive index, imaginary part Si Refractive index 
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6.2.1.3 Variables 

Name Expression Unit Description Selection 

emw.Qsh 0 W/m^2 Surface losses Boundaries 

1–7 

emw.Qe emw.Qml+emw.Qrh W/m^3 Electromagnetic 

power loss density 

Domains 1–2 

emw.Qh emw.Qml+emw.Qrh W/m^3 Total power 

dissipation density 

Domains 1–2 

emw.Jx emw.sigmaxx*emw.Ex+e

mw.sigmaxy*emw.Ey+e

mw.sigmaxz*emw.Ez+e

mw.Jdx 

A/m^2 Current density, x 

component 

Domains 1–2 

emw.Jy emw.sigmayx*emw.Ex+

emw.sigmayy*emw.Ey+

emw.sigmayz*emw.Ez+e

mw.Jdy 

A/m^2 Current density, y 

component 

Domains 1–2 

emw.Jz emw.sigmazx*emw.Ex+e

mw.sigmazy*emw.Ey+e

mw.sigmazz*emw.Ez+e

mw.Jdz 

A/m^2 Current density, z 

component 

Domains 1–2 

emw.tJx 0 A/m^2 Tangential current 

density, x 

component 

Boundaries 

1–7 

emw.tJy 0 A/m^2 Tangential current 

density, y 

component 

Boundaries 

1–7 
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Name Expression Unit Description Selection 

emw.tJz 0 A/m^2 Tangential current 

density, z 

component 

Boundaries 

1–7 

emw.Wav emw.Weav+emw.Wmav J/m^3 Energy density time 

average 

Domains 1–2 

emw.W 0 J/m^3 Energy density Domains 1–2 

emw.nxx model.input.n11 1 Refractive index, xx 

component 

Domain 1 

emw.nyx model.input.n21 1 Refractive index, yx 

component 

Domain 1 

emw.nzx model.input.n31 1 Refractive index, zx 

component 

Domain 1 

emw.nxy model.input.n12 1 Refractive index, xy 

component 

Domain 1 

emw.nyy model.input.n22 1 Refractive index, yy 

component 

Domain 1 

emw.nzy model.input.n32 1 Refractive index, zy 

component 

Domain 1 

emw.nxz model.input.n13 1 Refractive index, xz 

component 

Domain 1 

emw.nyz model.input.n23 1 Refractive index, yz 

component 

Domain 1 

emw.nzz model.input.n33 1 Refractive index, zz 

component 

Domain 1 
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Name Expression Unit Description Selection 

emw.nxx model.input.n11 1 Refractive index, xx 

component 

Domain 2 

emw.nyx model.input.n21 1 Refractive index, yx 

component 

Domain 2 

emw.nzx model.input.n31 1 Refractive index, zx 

component 

Domain 2 

emw.nxy model.input.n12 1 Refractive index, xy 

component 

Domain 2 

emw.nyy model.input.n22 1 Refractive index, yy 

component 

Domain 2 

emw.nzy model.input.n32 1 Refractive index, zy 

component 

Domain 2 

emw.nxz model.input.n13 1 Refractive index, xz 

component 

Domain 2 

emw.nyz model.input.n23 1 Refractive index, yz 

component 

Domain 2 

emw.nzz model.input.n33 1 Refractive index, zz 

component 

Domain 2 

emw.kixx model.input.ki11 1 Refractive index, 

imaginary part, xx 

component 

Domain 1 

emw.kiyx model.input.ki21 1 Refractive index, 

imaginary part, yx 

component 

Domain 1 



 

 128 

Name Expression Unit Description Selection 

emw.kizx model.input.ki31 1 Refractive index, 

imaginary part, zx 

component 

Domain 1 

emw.kixy model.input.ki12 1 Refractive index, 

imaginary part, xy 

component 

Domain 1 

emw.kiyy model.input.ki22 1 Refractive index, 

imaginary part, yy 

component 

Domain 1 

emw.kizy model.input.ki32 1 Refractive index, 

imaginary part, zy 

component 

Domain 1 

emw.kixz model.input.ki13 1 Refractive index, 

imaginary part, xz 

component 

Domain 1 

emw.kiyz model.input.ki23 1 Refractive index, 

imaginary part, yz 

component 

Domain 1 

emw.kizz model.input.ki33 1 Refractive index, 

imaginary part, zz 

component 

Domain 1 

emw.kixx model.input.ki11 1 Refractive index, 

imaginary part, xx 

component 

Domain 2 
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Name Expression Unit Description Selection 

emw.kiyx model.input.ki21 1 Refractive index, 

imaginary part, yx 

component 

Domain 2 

emw.kizx model.input.ki31 1 Refractive index, 

imaginary part, zx 

component 

Domain 2 

emw.kixy model.input.ki12 1 Refractive index, 

imaginary part, xy 

component 

Domain 2 

emw.kiyy model.input.ki22 1 Refractive index, 

imaginary part, yy 

component 

Domain 2 

emw.kizy model.input.ki32 1 Refractive index, 

imaginary part, zy 

component 

Domain 2 

emw.kixz model.input.ki13 1 Refractive index, 

imaginary part, xz 

component 

Domain 2 

emw.kiyz model.input.ki23 1 Refractive index, 

imaginary part, yz 

component 

Domain 2 

emw.kizz model.input.ki33 1 Refractive index, 

imaginary part, zz 

component 

Domain 2 
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Name Expression Unit Description Selection 

emw.epsilonrxx (model.input.n11-

i*model.input.ki11)^2 

1 Relative 

permittivity, xx 

component 

Domain 1 

emw.epsilonryx (model.input.n21-

i*model.input.ki21)^2 

1 Relative 

permittivity, yx 

component 

Domain 1 

emw.epsilonrzx (model.input.n31-

i*model.input.ki31)^2 

1 Relative 

permittivity, zx 

component 

Domain 1 

emw.epsilonrxy (model.input.n12-

i*model.input.ki12)^2 

1 Relative 

permittivity, xy 

component 

Domain 1 

emw.epsilonryy (model.input.n22-

i*model.input.ki22)^2 

1 Relative 

permittivity, yy 

component 

Domain 1 

emw.epsilonrzy (model.input.n32-

i*model.input.ki32)^2 

1 Relative 

permittivity, zy 

component 

Domain 1 

emw.epsilonrxz (model.input.n13-

i*model.input.ki13)^2 

1 Relative 

permittivity, xz 

component 

Domain 1 

emw.epsilonryz (model.input.n23-

i*model.input.ki23)^2 

1 Relative 

permittivity, yz 

component 

Domain 1 
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Name Expression Unit Description Selection 

emw.epsilonrzz (model.input.n33-

i*model.input.ki33)^2 

1 Relative 

permittivity, zz 

component 

Domain 1 

emw.epsilonrxx (model.input.n11-

i*model.input.ki11)^2 

1 Relative 

permittivity, xx 

component 

Domain 2 

emw.epsilonryx (model.input.n21-

i*model.input.ki21)^2 

1 Relative 

permittivity, yx 

component 

Domain 2 

emw.epsilonrzx (model.input.n31-

i*model.input.ki31)^2 

1 Relative 

permittivity, zx 

component 

Domain 2 

emw.epsilonrxy (model.input.n12-

i*model.input.ki12)^2 

1 Relative 

permittivity, xy 

component 

Domain 2 

emw.epsilonryy (model.input.n22-

i*model.input.ki22)^2 

1 Relative 

permittivity, yy 

component 

Domain 2 

emw.epsilonrzy (model.input.n32-

i*model.input.ki32)^2 

1 Relative 

permittivity, zy 

component 

Domain 2 

emw.epsilonrxz (model.input.n13-

i*model.input.ki13)^2 

1 Relative 

permittivity, xz 

component 

Domain 2 
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Name Expression Unit Description Selection 

emw.epsilonryz (model.input.n23-

i*model.input.ki23)^2 

1 Relative 

permittivity, yz 

component 

Domain 2 

emw.epsilonrzz (model.input.n33-

i*model.input.ki33)^2 

1 Relative 

permittivity, zz 

component 

Domain 2 

emw.Px epsilon0_const*(emw.e

psilonrxx*emw.Ex+emw.

epsilonrxy*emw.Ey+em

w.epsilonrxz*emw.Ez-

emw.Ex) 

C/m^2 Polarization, x 

component 

Domains 1–2 

emw.Py epsilon0_const*(emw.e

psilonryx*emw.Ex+emw.

epsilonryy*emw.Ey+em

w.epsilonryz*emw.Ez-

emw.Ey) 

C/m^2 Polarization, y 

component 

Domains 1–2 

emw.Pz epsilon0_const*(emw.e

psilonrzx*emw.Ex+emw.

epsilonrzy*emw.Ey+em

w.epsilonrzz*emw.Ez-

emw.Ez) 

C/m^2 Polarization, z 

component 

Domains 1–2 

emw.normP sqrt(realdot(emw.Px,em

w.Px)+realdot(emw.Py,e

mw.Py)+realdot(emw.Pz

,emw.Pz)) 

C/m^2 Polarization norm Domains 1–2 
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Name Expression Unit Description Selection 

emw.Dx epsilon0_const*emw.Ex

+emw.Px 

C/m^2 Electric 

displacement field, 

x component 

Domains 1–2 

emw.Dy epsilon0_const*emw.Ey

+emw.Py 

C/m^2 Electric 

displacement field, 

y component 

Domains 1–2 

emw.Dz epsilon0_const*emw.Ez

+emw.Pz 

C/m^2 Electric 

displacement field, 

z component 

Domains 1–2 

emw.normD sqrt(realdot(emw.Dx,em

w.Dx)+realdot(emw.Dy,e

mw.Dy)+realdot(emw.Dz

,emw.Dz)) 

C/m^2 Electric 

displacement field 

norm 

Domains 1–2 

emw.epsrAv (emw.epsilonrxx+emw.e

psilonryy+emw.epsilonrz

z)/3 

1 Relative 

permittivity, 

average 

Domains 1–2 

emw.murxx 1 1 Relative 

permeability, xx 

component 

Domains 1–2 

emw.muryx 0 1 Relative 

permeability, yx 

component 

Domains 1–2 

emw.murzx 0 1 Relative 

permeability, zx 

component 

Domains 1–2 



 

 134 

Name Expression Unit Description Selection 

emw.murxy 0 1 Relative 

permeability, xy 

component 

Domains 1–2 

emw.muryy 1 1 Relative 

permeability, yy 

component 

Domains 1–2 

emw.murzy 0 1 Relative 

permeability, zy 

component 

Domains 1–2 

emw.murxz 0 1 Relative 

permeability, xz 

component 

Domains 1–2 

emw.muryz 0 1 Relative 

permeability, yz 

component 

Domains 1–2 

emw.murzz 1 1 Relative 

permeability, zz 

component 

Domains 1–2 

emw.murAv (emw.murxx+emw.mury

y+emw.murzz)/3 

1 Relative 

permeability, 

average 

Domains 1–2 

emw.sigmaxx 0 S/m Electrical 

conductivity, xx 

component 

Domains 1–2 
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Name Expression Unit Description Selection 

emw.sigmayx 0 S/m Electrical 

conductivity, yx 

component 

Domains 1–2 

emw.sigmazx 0 S/m Electrical 

conductivity, zx 

component 

Domains 1–2 

emw.sigmaxy 0 S/m Electrical 

conductivity, xy 

component 

Domains 1–2 

emw.sigmayy 0 S/m Electrical 

conductivity, yy 

component 

Domains 1–2 

emw.sigmazy 0 S/m Electrical 

conductivity, zy 

component 

Domains 1–2 

emw.sigmaxz 0 S/m Electrical 

conductivity, xz 

component 

Domains 1–2 

emw.sigmayz 0 S/m Electrical 

conductivity, yz 

component 

Domains 1–2 

emw.sigmazz 0 S/m Electrical 

conductivity, zz 

component 

Domains 1–2 

emw.Ex Ex V/m Electric field, x 

component 

Domains 1–2 
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Name Expression Unit Description Selection 

emw.Ey Ey V/m Electric field, y 

component 

Domains 1–2 

emw.Ez Ez V/m Electric field, z 

component 

Domains 1–2 

emw.curlEx emw.alphaOOP*Ey+Ezy V/m^2 Curl of electric 

field, x component 

Domains 1–2 

emw.curlEy -emw.alphaOOP*Ex-Ezx V/m^2 Curl of electric 

field, y component 

Domains 1–2 

emw.curlEz curlEz V/m^2 Curl of electric 

field, z component 

Domains 1–2 

emw.testdepEx test(Ex) V/m Electric field, x 

component 

Domains 1–2 

emw.testdepEy test(Ey) V/m Electric field, y 

component 

Domains 1–2 

emw.testdepEz test(Ez) V/m Electric field, z 

component 

Domains 1–2 

emw.curltestdepEx -

emw.alphaOOP*test(Ey)

+test(Ezy) 

V/m^2 Curl of electric 

field, x component 

Domains 1–2 

emw.curltestdepEy emw.alphaOOP*test(Ex)

-test(Ezx) 

V/m^2 Curl of electric 

field, y component 

Domains 1–2 

emw.curltestdepEz test(curlEz) V/m^2 Curl of electric 

field, z component 

Domains 1–2 

emw.dBdtx -emw.curlEx V/m^2 Magnetic flux 

density, time 

Domains 1–2 
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Name Expression Unit Description Selection 

derivative, x 

component 

emw.dBdty -emw.curlEy V/m^2 Magnetic flux 

density, time 

derivative, y 

component 

Domains 1–2 

emw.dBdtz -emw.curlEz V/m^2 Magnetic flux 

density, time 

derivative, z 

component 

Domains 1–2 

emw.Bx -

emw.curlEx/emw.iomeg

a 

T Magnetic flux 

density, x 

component 

Domains 1–2 

emw.By -

emw.curlEy/emw.iomeg

a 

T Magnetic flux 

density, y 

component 

Domains 1–2 

emw.Bz -

emw.curlEz/emw.iomeg

a 

T Magnetic flux 

density, z 

component 

Domains 1–2 

emw.murinvxx (emw.muryy*emw.murz

z-

emw.muryz*emw.murzy

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

1 Inverse of relative 

permeability, xx 

component 

Domains 1–2 
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Name Expression Unit Description Selection 

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

emw.murinvyx (emw.muryz*emw.murz

x-

emw.muryx*emw.murzz

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

1 Inverse of relative 

permeability, yx 

component 

Domains 1–2 

emw.murinvzx (emw.muryx*emw.murz

y-

emw.muryy*emw.murzx

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

1 Inverse of relative 

permeability, zx 

component 

Domains 1–2 
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Name Expression Unit Description Selection 

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

emw.murinvxy (emw.murxz*emw.murz

y-

emw.murxy*emw.murzz

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

1 Inverse of relative 

permeability, xy 

component 

Domains 1–2 

emw.murinvyy (emw.murxx*emw.murz

z-

emw.murxz*emw.murzx

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

1 Inverse of relative 

permeability, yy 

component 

Domains 1–2 
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Name Expression Unit Description Selection 

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

emw.murinvzy (emw.murxy*emw.murz

x-

emw.murxx*emw.murzy

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

1 Inverse of relative 

permeability, zy 

component 

Domains 1–2 

emw.murinvxz (emw.murxy*emw.mury

z-

emw.murxz*emw.muryy

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

1 Inverse of relative 

permeability, xz 

component 

Domains 1–2 
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w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

emw.murinvyz (emw.murxz*emw.mury

x-

emw.murxx*emw.muryz

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

1 Inverse of relative 

permeability, yz 

component 

Domains 1–2 

emw.murinvzz (emw.murxx*emw.mury

y-

emw.murxy*emw.muryx

)/(emw.murxx*emw.mu

ryy*emw.murzz+emw.m

urxy*emw.muryz*emw.

murzx+emw.murxz*em

1 Inverse of relative 

permeability, zz 

component 

Domains 1–2 
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w.muryx*emw.murzy-

emw.murxx*emw.muryz

*emw.murzy-

emw.murxy*emw.muryx

*emw.murzz-

emw.murxz*emw.muryy

*emw.murzx) 

emw.Hx (emw.murinvxx*emw.Bx

+emw.murinvxy*emw.B

y+emw.murinvxz*emw.

Bz)/mu0_const 

A/m Magnetic field, x 

component 

Domains 1–2 

emw.Hy (emw.murinvyx*emw.Bx

+emw.murinvyy*emw.B

y+emw.murinvyz*emw.

Bz)/mu0_const 

A/m Magnetic field, y 

component 

Domains 1–2 

emw.Hz (emw.murinvzx*emw.Bx

+emw.murinvzy*emw.B

y+emw.murinvzz*emw.

Bz)/mu0_const 

A/m Magnetic field, z 

component 

Domains 1–2 

emw.dHdtx (emw.murinvxx*emw.dB

dtx+emw.murinvxy*em

w.dBdty+emw.murinvxz

*emw.dBdtz)/mu0_cons

t 

A/(m*s) Magnetic field, 

time derivative, x 

component 

Domains 1–2 

emw.dHdty (emw.murinvyx*emw.dB

dtx+emw.murinvyy*em

w.dBdty+emw.murinvyz

A/(m*s) Magnetic field, 

time derivative, y 

component 

Domains 1–2 
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*emw.dBdtz)/mu0_cons

t 

emw.dHdtz (emw.murinvzx*emw.dB

dtx+emw.murinvzy*em

w.dBdty+emw.murinvzz

*emw.dBdtz)/mu0_cons

t 

A/(m*s) Magnetic field, 

time derivative, z 

component 

Domains 1–2 

emw.normE sqrt(realdot(emw.Ex,em

w.Ex)+realdot(emw.Ey,e

mw.Ey)+realdot(emw.Ez,

emw.Ez)) 

V/m Electric field norm Domains 1–2 

emw.tEsdimx tEx V/m Tangential electric 

field, x component 

Boundaries 

1–7 

emw.tEsdimy tEy V/m Tangential electric 

field, y component 

Boundaries 

1–7 

emw.tEsdimz Ez V/m Tangential electric 

field, z component 

Boundaries 

1–7 

emw.tEx emw.tEsdimx V/m Tangential electric 

field, x component 

Boundaries 

1–7 

emw.tEy emw.tEsdimy V/m Tangential electric 

field, y component 

Boundaries 

1–7 

emw.tEz emw.tEsdimz V/m Tangential electric 

field, z component 

Boundaries 

1–7 

emw.testPhystEx test(emw.tEx) V/m Tangential electric 

field, x component 

Boundaries 

1–7 
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emw.testPhystEy test(emw.tEy) V/m Tangential electric 

field, y component 

Boundaries 

1–7 

emw.testPhystEz test(emw.tEz) V/m Tangential electric 

field, z component 

Boundaries 

1–7 

emw.Mx emw.Bx/mu0_const-

emw.Hx 

A/m Magnetization, x 

component 

Domains 1–2 

emw.My emw.By/mu0_const-

emw.Hy 

A/m Magnetization, y 

component 

Domains 1–2 

emw.Mz emw.Bz/mu0_const-

emw.Hz 

A/m Magnetization, z 

component 

Domains 1–2 

emw.normM sqrt(realdot(emw.Mx,e

mw.Mx)+realdot(emw.

My,emw.My)+realdot(e

mw.Mz,emw.Mz)) 

A/m Magnetization 

norm 

Domains 1–2 

emw.Brx 0 T Remanent flux 

density, x 

component 

Domains 1–2 

emw.Bry 0 T Remanent flux 

density, y 

component 

Domains 1–2 

emw.Brz 0 T Remanent flux 

density, z 

component 

Domains 1–2 

emw.normBr sqrt(realdot(emw.Brx,e

mw.Brx)+realdot(emw.B

T Remanent flux 

density norm 

Domains 1–2 
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ry,emw.Bry)+realdot(em

w.Brz,emw.Brz)) 

emw.Qml real(0.5*emw.iomega*(

emw.Bx*conj(emw.Hx)+

emw.By*conj(emw.Hy)+

emw.Bz*conj(emw.Hz))) 

W/m^3 Magnetic losses Domains 1–2 

emw.tBx emw.Bx-

(emw.nx*emw.Bx+emw.

ny*emw.By+emw.nz*e

mw.Bz)*emw.nx 

T Tangential 

magnetic flux 

density, x 

component 

Boundaries 

1–7 

emw.tBy emw.By-

(emw.nx*emw.Bx+emw.

ny*emw.By+emw.nz*e

mw.Bz)*emw.ny 

T Tangential 

magnetic flux 

density, y 

component 

Boundaries 

1–7 

emw.tBz emw.Bz-

(emw.nx*emw.Bx+emw.

ny*emw.By+emw.nz*e

mw.Bz)*emw.nz 

T Tangential 

magnetic flux 

density, z 

component 

Boundaries 

1–7 

emw.normB sqrt(realdot(emw.Bx,em

w.Bx)+realdot(emw.By,e

mw.By)+realdot(emw.Bz

,emw.Bz)) 

T Magnetic flux 

density norm 

Domains 1–2 

emw.normH sqrt(realdot(emw.Hx,em

w.Hx)+realdot(emw.Hy,e

mw.Hy)+realdot(emw.Hz

,emw.Hz)) 

A/m Magnetic field 

norm 

Domains 1–2 
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emw.Jix emw.sigmaxx*emw.Ex+e

mw.sigmaxy*emw.Ey+e

mw.sigmaxz*emw.Ez 

A/m^2 Induced current 

density, x 

component 

Domains 1–2 

emw.Jiy emw.sigmayx*emw.Ex+

emw.sigmayy*emw.Ey+

emw.sigmayz*emw.Ez 

A/m^2 Induced current 

density, y 

component 

Domains 1–2 

emw.Jiz emw.sigmazx*emw.Ex+e

mw.sigmazy*emw.Ey+e

mw.sigmazz*emw.Ez 

A/m^2 Induced current 

density, z 

component 

Domains 1–2 

emw.Jdx emw.iomega*emw.Dx A/m^2 Displacement 

current density, x 

component 

Domains 1–2 

emw.Jdy emw.iomega*emw.Dy A/m^2 Displacement 

current density, y 

component 

Domains 1–2 

emw.Jdz emw.iomega*emw.Dz A/m^2 Displacement 

current density, z 

component 

Domains 1–2 

emw.normJ sqrt(realdot(emw.Jx,em

w.Jx)+realdot(emw.Jy,e

mw.Jy)+realdot(emw.Jz,

emw.Jz)) 

A/m^2 Current density 

norm 

Domains 1–2 

emw.dWe emw.Weav J/m^3 Integrand for total 

electric energy 

Domains 1–2 
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emw.Weav 0.25*(realdot(d(emw.fre

q*emw.Dx,emw.freq),e

mw.Ex)+realdot(d(emw.f

req*emw.Dy,emw.freq),

emw.Ey)+realdot(d(emw

.freq*emw.Dz,emw.freq

),emw.Ez)) 

J/m^3 Electric energy 

density time 

average 

Domains 1–2 

emw.Qrh 0.5*(realdot(emw.Jx,em

w.Ex)+realdot(emw.Jy,e

mw.Ey)+realdot(emw.Jz,

emw.Ez)) 

W/m^3 Resistive losses Domains 1–2 

emw.dWm emw.Wmav J/m^3 Integrand for total 

magnetic energy 

Domains 1–2 

emw.Wmav 0.25*(realdot(mu0_cons

t*(d(emw.freq*emw.mu

rxx,emw.freq)*emw.Hx+

d(emw.freq*emw.murxy

,emw.freq)*emw.Hy+d(e

mw.freq*emw.murxz,e

mw.freq)*emw.Hz),emw

.Hx)+realdot(mu0_const

*(d(emw.freq*emw.mur

yx,emw.freq)*emw.Hx+

d(emw.freq*emw.muryy

,emw.freq)*emw.Hy+d(e

mw.freq*emw.muryz,e

mw.freq)*emw.Hz),emw

J/m^3 Magnetic energy 

density time 

average 

Domains 1–2 
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.Hy)+realdot(mu0_const

*(d(emw.freq*emw.mur

zx,emw.freq)*emw.Hx+d

(emw.freq*emw.murzy,

emw.freq)*emw.Hy+d(e

mw.freq*emw.murzz,e

mw.freq)*emw.Hz),emw

.Hz)) 

emw.Poavx 0.5*real(conj(emw.Hz)*

emw.Ey-

conj(emw.Hy)*emw.Ez) 

W/m^2 Power flow, time 

average, x 

component 

Domains 1–2 

emw.Poavy 0.5*real(-

conj(emw.Hz)*emw.Ex+

conj(emw.Hx)*emw.Ez) 

W/m^2 Power flow, time 

average, y 

component 

Domains 1–2 

emw.Poavz 0.5*real(conj(emw.Hy)*

emw.Ex-

conj(emw.Hx)*emw.Ey) 

W/m^2 Power flow, time 

average, z 

component 

Domains 1–2 

emw.nPoav real(0.5*((conj(emw.Hz)

*emw.Ey-

conj(emw.Hy)*emw.Ez)*

emw.nx+(-

conj(emw.Hz)*emw.Ex+

conj(emw.Hx)*emw.Ez)*

emw.ny+(conj(emw.Hy)

*emw.Ex-

conj(emw.Hx)*emw.Ey)*

emw.nz)) 

W/m^2 Power outflow, 

time average 

Boundaries 

1–7 
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emw.deltaS 1/real(sqrt(emw.iomega

*mu0_const*(emw.mur

xx+emw.muryy+emw.m

urzz)*(emw.sigmaxx+em

w.sigmayy+emw.sigmazz

+emw.iomega*epsilon0

_const*(emw.epsilonrxx

+emw.epsilonryy+emw.

epsilonrzz))/9)) 

m Skin depth Domains 1–2 

emw.unTx emw.unTmx+emw.unTe

x 

Pa Maxwell upward 

surface stress 

tensor, x 

component 

Boundaries 

1–7 

emw.unTy emw.unTmy+emw.unTe

y 

Pa Maxwell upward 

surface stress 

tensor, y 

component 

Boundaries 

1–7 

emw.unTz emw.unTmz+emw.unTe

z 

Pa Maxwell upward 

surface stress 

tensor, z 

component 

Boundaries 

1–7 

emw.dnTx emw.dnTmx+emw.dnTe

x 

Pa Maxwell downward 

surface stress 

tensor, x 

component 

Boundaries 

1–7 

emw.dnTy emw.dnTmy+emw.dnTe

y 

Pa Maxwell downward 

surface stress 

Boundaries 

1–7 
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tensor, y 

component 

emw.dnTz emw.dnTmz+emw.dnTe

z 

Pa Maxwell downward 

surface stress 

tensor, z 

component 

Boundaries 

1–7 

emw.unx unx  Normal vector up 

direction, x 

component 

Boundaries 

1–7 

emw.uny uny  Normal vector up 

direction, y 

component 

Boundaries 

1–7 

emw.unz 0  Normal vector up 

direction, z 

component 

Boundaries 

1–7 

emw.dnx dnx  Normal vector 

down direction, x 

component 

Boundaries 

1–7 

emw.dny dny  Normal vector 

down direction, y 

component 

Boundaries 

1–7 

emw.dnz 0  Normal vector 

down direction, z 

component 

Boundaries 

1–7 

emw.unTmx 0.5*real(-

0.5*emw.dnx*(up(emw.

Pa Maxwell upward 

magnetic surface 

Boundary 4 
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Bx)*up(conj(emw.Hx))+u

p(emw.By)*up(conj(em

w.Hy))+up(emw.Bz)*up(

conj(emw.Hz)))+up(emw

.Bx)*(up(conj(emw.Hx))*

emw.dnx+up(conj(emw.

Hy))*emw.dny+up(conj(

emw.Hz))*emw.dnz)) 

stress tensor, x 

component 

emw.unTmy 0.5*real(-

0.5*emw.dny*(up(emw.

Bx)*up(conj(emw.Hx))+u

p(emw.By)*up(conj(em

w.Hy))+up(emw.Bz)*up(

conj(emw.Hz)))+up(emw

.By)*(up(conj(emw.Hx))*

emw.dnx+up(conj(emw.

Hy))*emw.dny+up(conj(

emw.Hz))*emw.dnz)) 

Pa Maxwell upward 

magnetic surface 

stress tensor, y 

component 

Boundary 4 

emw.unTmz 0.5*real(-

0.5*emw.dnz*(up(emw.

Bx)*up(conj(emw.Hx))+u

p(emw.By)*up(conj(em

w.Hy))+up(emw.Bz)*up(

conj(emw.Hz)))+up(emw

.Bz)*(up(conj(emw.Hx))*

emw.dnx+up(conj(emw.

Pa Maxwell upward 

magnetic surface 

stress tensor, z 

component 

Boundary 4 
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Hy))*emw.dny+up(conj(

emw.Hz))*emw.dnz)) 

emw.unTmx 0 Pa Maxwell upward 

magnetic surface 

stress tensor, x 

component 

Boundaries 

1–3, 5–7 

emw.unTmy 0 Pa Maxwell upward 

magnetic surface 

stress tensor, y 

component 

Boundaries 

1–3, 5–7 

emw.unTmz 0 Pa Maxwell upward 

magnetic surface 

stress tensor, z 

component 

Boundaries 

1–3, 5–7 

emw.dnTmx 0.5*real(-

0.5*emw.unx*(down(e

mw.Bx)*down(conj(emw

.Hx))+down(emw.By)*do

wn(conj(emw.Hy))+dow

n(emw.Bz)*down(conj(e

mw.Hz)))+down(emw.Bx

)*(down(conj(emw.Hx))*

emw.unx+down(conj(em

w.Hy))*emw.uny+down(

conj(emw.Hz))*emw.unz

)) 

Pa Maxwell downward 

magnetic surface 

stress tensor, x 

component 

Boundary 4 
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emw.dnTmy 0.5*real(-

0.5*emw.uny*(down(e

mw.Bx)*down(conj(emw

.Hx))+down(emw.By)*do

wn(conj(emw.Hy))+dow

n(emw.Bz)*down(conj(e

mw.Hz)))+down(emw.By

)*(down(conj(emw.Hx))*

emw.unx+down(conj(em

w.Hy))*emw.uny+down(

conj(emw.Hz))*emw.unz

)) 

Pa Maxwell downward 

magnetic surface 

stress tensor, y 

component 

Boundary 4 

emw.dnTmz 0.5*real(-

0.5*emw.unz*(down(em

w.Bx)*down(conj(emw.

Hx))+down(emw.By)*do

wn(conj(emw.Hy))+dow

n(emw.Bz)*down(conj(e

mw.Hz)))+down(emw.Bz

)*(down(conj(emw.Hx))*

emw.unx+down(conj(em

w.Hy))*emw.uny+down(

conj(emw.Hz))*emw.unz

)) 

Pa Maxwell downward 

magnetic surface 

stress tensor, z 

component 

Boundary 4 

emw.dnTmx 0.5*real(-

0.5*emw.unx*(down(e

mw.Bx)*down(conj(emw

.Hx))+down(emw.By)*do

Pa Maxwell downward 

magnetic surface 

Boundaries 

1–3, 5–7 
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wn(conj(emw.Hy))+dow

n(emw.Bz)*down(conj(e

mw.Hz)))+down(emw.Bx

)*(down(conj(emw.Hx))*

emw.unx+down(conj(em

w.Hy))*emw.uny+down(

conj(emw.Hz))*emw.unz

)) 

stress tensor, x 

component 

emw.dnTmy 0.5*real(-

0.5*emw.uny*(down(e

mw.Bx)*down(conj(emw

.Hx))+down(emw.By)*do

wn(conj(emw.Hy))+dow

n(emw.Bz)*down(conj(e

mw.Hz)))+down(emw.By

)*(down(conj(emw.Hx))*

emw.unx+down(conj(em

w.Hy))*emw.uny+down(

conj(emw.Hz))*emw.unz

)) 

Pa Maxwell downward 

magnetic surface 

stress tensor, y 

component 

Boundaries 

1–3, 5–7 

emw.dnTmz 0.5*real(-

0.5*emw.unz*(down(em

w.Bx)*down(conj(emw.

Hx))+down(emw.By)*do

wn(conj(emw.Hy))+dow

n(emw.Bz)*down(conj(e

mw.Hz)))+down(emw.Bz

)*(down(conj(emw.Hx))*

Pa Maxwell downward 

magnetic surface 

stress tensor, z 

component 

Boundaries 

1–3, 5–7 
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emw.unx+down(conj(em

w.Hy))*emw.uny+down(

conj(emw.Hz))*emw.unz

)) 

emw.unTex 0.5*real(-

0.5*emw.dnx*(up(emw.

Dx)*up(conj(emw.Ex))+u

p(emw.Dy)*up(conj(em

w.Ey))+up(emw.Dz)*up(

conj(emw.Ez)))+up(emw

.Dx)*(up(conj(emw.Ex))*

emw.dnx+up(conj(emw.

Ey))*emw.dny+up(conj(e

mw.Ez))*emw.dnz)) 

Pa Maxwell upward 

electric surface 

stress tensor, x 

component 

Boundary 4 

emw.unTey 0.5*real(-

0.5*emw.dny*(up(emw.

Dx)*up(conj(emw.Ex))+u

p(emw.Dy)*up(conj(em

w.Ey))+up(emw.Dz)*up(

conj(emw.Ez)))+up(emw

.Dy)*(up(conj(emw.Ex))*

emw.dnx+up(conj(emw.

Ey))*emw.dny+up(conj(e

mw.Ez))*emw.dnz)) 

Pa Maxwell upward 

electric surface 

stress tensor, y 

component 

Boundary 4 

emw.unTez 0.5*real(-

0.5*emw.dnz*(up(emw.

Dx)*up(conj(emw.Ex))+u

Pa Maxwell upward 

electric surface 

Boundary 4 
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p(emw.Dy)*up(conj(em

w.Ey))+up(emw.Dz)*up(

conj(emw.Ez)))+up(emw

.Dz)*(up(conj(emw.Ex))*

emw.dnx+up(conj(emw.

Ey))*emw.dny+up(conj(e

mw.Ez))*emw.dnz)) 

stress tensor, z 

component 

emw.unTex 0 Pa Maxwell upward 

electric surface 

stress tensor, x 

component 

Boundaries 

1–3, 5–7 

emw.unTey 0 Pa Maxwell upward 

electric surface 

stress tensor, y 

component 

Boundaries 

1–3, 5–7 

emw.unTez 0 Pa Maxwell upward 

electric surface 

stress tensor, z 

component 

Boundaries 

1–3, 5–7 

emw.dnTex 0.5*real(-

0.5*emw.unx*(down(e

mw.Dx)*down(conj(em

w.Ex))+down(emw.Dy)*

down(conj(emw.Ey))+do

wn(emw.Dz)*down(conj

(emw.Ez)))+down(emw.

Dx)*(down(conj(emw.Ex

Pa Maxwell downward 

electric surface 

stress tensor, x 

component 

Boundary 4 
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))*emw.unx+down(conj(

emw.Ey))*emw.uny+do

wn(conj(emw.Ez))*emw.

unz)) 

emw.dnTey 0.5*real(-

0.5*emw.uny*(down(e

mw.Dx)*down(conj(em

w.Ex))+down(emw.Dy)*

down(conj(emw.Ey))+do

wn(emw.Dz)*down(conj

(emw.Ez)))+down(emw.

Dy)*(down(conj(emw.Ex

))*emw.unx+down(conj(

emw.Ey))*emw.uny+do

wn(conj(emw.Ez))*emw.

unz)) 

Pa Maxwell downward 

electric surface 

stress tensor, y 

component 

Boundary 4 

emw.dnTez 0.5*real(-

0.5*emw.unz*(down(em

w.Dx)*down(conj(emw.

Ex))+down(emw.Dy)*do

wn(conj(emw.Ey))+down

(emw.Dz)*down(conj(e

mw.Ez)))+down(emw.Dz

)*(down(conj(emw.Ex))*

emw.unx+down(conj(em

w.Ey))*emw.uny+down(

Pa Maxwell downward 

electric surface 

stress tensor, z 

component 

Boundary 4 
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conj(emw.Ez))*emw.unz

)) 

emw.dnTex 0.5*real(-

0.5*emw.unx*(down(e

mw.Dx)*down(conj(em

w.Ex))+down(emw.Dy)*

down(conj(emw.Ey))+do

wn(emw.Dz)*down(conj

(emw.Ez)))+down(emw.

Dx)*(down(conj(emw.Ex

))*emw.unx+down(conj(

emw.Ey))*emw.uny+do

wn(conj(emw.Ez))*emw.

unz)) 

Pa Maxwell downward 

electric surface 

stress tensor, x 

component 

Boundaries 

1–3, 5–7 

emw.dnTey 0.5*real(-

0.5*emw.uny*(down(e

mw.Dx)*down(conj(em

w.Ex))+down(emw.Dy)*

down(conj(emw.Ey))+do

wn(emw.Dz)*down(conj

(emw.Ez)))+down(emw.

Dy)*(down(conj(emw.Ex

))*emw.unx+down(conj(

emw.Ey))*emw.uny+do

wn(conj(emw.Ez))*emw.

unz)) 

Pa Maxwell downward 

electric surface 

stress tensor, y 

component 

Boundaries 

1–3, 5–7 
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Name Expression Unit Description Selection 

emw.dnTez 0.5*real(-

0.5*emw.unz*(down(em

w.Dx)*down(conj(emw.

Ex))+down(emw.Dy)*do

wn(conj(emw.Ey))+down

(emw.Dz)*down(conj(e

mw.Ez)))+down(emw.Dz

)*(down(conj(emw.Ex))*

emw.unx+down(conj(em

w.Ey))*emw.uny+down(

conj(emw.Ez))*emw.unz

)) 

Pa Maxwell downward 

electric surface 

stress tensor, z 

component 

Boundaries 

1–3, 5–7 

 

2.4.2 Perfect Electric Conductor 1 

 

Perfect Electric Conductor 1 

Selection 

Geometric entity level Boundary 



 

 160 

Selection Boundaries 1–3, 5–7 

 

Equations 

 

6.2.1.4 Settings 

Settings 

Description Value 

Apply reaction terms on All physics (symmetric) 

Use weak constraints 0 

 

6.2.1.5 Variables 

Name Expression Unit Description Selection 

emw.Jsx (up(emw.Hz)-down(emw.Hz))*emw.ny+(-

up(emw.Hy)+down(emw.Hy))*emw.nz 

A/m Surface 

current 

density, x 

component 

Boundaries 

1–3, 5–7 

emw.Jsy (-

up(emw.Hz)+down(emw.Hz))*emw.nx+(u

p(emw.Hx)-down(emw.Hx))*emw.nz 

A/m Surface 

current 

density, y 

component 

Boundaries 

1–3, 5–7 

emw.Jsz (up(emw.Hy)-down(emw.Hy))*emw.nx+(-

up(emw.Hx)+down(emw.Hx))*emw.ny 

A/m Surface 

current 

density, z 

component 

Boundaries 

1–3, 5–7 

emw.E0x 0 V/m Electric field, 

x component 

Boundaries 

1–3, 5–7 
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Name Expression Unit Description Selection 

emw.E0y 0 V/m Electric field, 

y component 

Boundaries 

1–3, 5–7 

emw.E0z 0 V/m Electric field, 

z component 

Boundaries 

1–3, 5–7 

 

2.4.3 Initial Values 1 

 

Initial Values 1 

Selection 

Geometric entity level Domain 

Selection Domains 1–2 

 

6.2.1.6 Settings 

Settings 

Description Value 

Electric field {0, 0, 0} 
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2.5 Mesh 1 

 

Mesh 1 

2.5.1 Size (size) 

Settings 

Name Value 

Maximum element size 0.0376 

Minimum element size 2.13E-4 

Resolution of curvature 0.3 

Resolution of narrow regions 7 

Maximum element growth rate 1.5 

Predefined size Fine 

Custom element size Custom 

 

2.5.2 Free Triangular 1 (ftri1) 

Selection 

Geometric entity level Remaining 
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3 Study 1 

3.1 Mode Analysis 

Study settings 

Property Value 

Include geometric nonlinearity Off 

 

Mesh selection 

Geometry Mesh 

Geometry 1 (geom1) mesh1 

 

Physics selection 

Physics Discretization 

Electromagnetic Waves (emw) physics 

 

3.2 Solver Configurations 

3.2.1 Solver 1 

6.2.1.7 Compile Equations: Mode Analysis (st1) 

Study and step 

Name Value 

Use study Study 1 

Use study step Mode Analysis 

 

6.2.1.8 Dependent Variables 1 (v1) 

General 

Name Value 

Defined by study step Mode Analysis 

 

Initial values of variables solved for 
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Name Value 

Solution Zero 

 

Values of variables not solved for 

Name Value 

Solution Zero 

 

6.2.1.8.1 mod1.E (mod1_E) 

General 

Name Value 

Field components {mod1.Ex, mod1.Ey, mod1.Ez} 

 

6.2.1.9 Eigenvalue Solver 1 (e1) 

General 

Name Value 

Defined by study step Mode Analysis 

Desired number of eigenvalues 1 

Eigenvalue transformation Effective mode index 

Value nSeed 

 

Values of linearization point 

Name Value 

Solution Zero 

 

6.2.1.9.1 Advanced (aDef) 

General 

Name Value 

Allow complex-valued output from functions with real input On 
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4 Results 

4.1 Data Sets 

4.1.1 Solution 1 

Selection 

Geometric entity level Domain 

Selection Geometry geom1 

 

Solution 

Name Value 

Solution Solver 1 

Model Save Point Geometry 1 

 

4.1.2 horizontal line slice 

Data 

Name Value 

Data set Solution 1 

 

Advanced 

Name Value 

Space variable cln2x 

 

4.1.3 Cut Line 2D 3 

Data 

Name Value 

Data set Solution 1 

 

Advanced 

Name Value 

Space variable cln3x 

 



 

 166 

4.2 Tables 

4.2.1 Eigenvalue solver 

Eigenvalue solver 

Iteration number Error 

0 1 

1 1 

 

4.3 Plot Groups 

4.3.1 Electric Field (emw) 

 

Effective mode index=3.501589+0.004673i Surface: Electric field norm (V/m) 



 

 167 

4.3.2 1D Plot Group 2 
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