
Improving the Correctness of
Automated Program Repair

by

Jinqiu Yang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

© Jinqiu Yang 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner
Name:

Dr. Shing-Chi Cheung
Title:

Professor, Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Supervisor(s)
Name:

Dr. Lin Tan
Title:

Associate Professor, Department of Electrical and Computer Engineering
University of Waterloo

Internal Member
Name:

Dr. Ladan Tahvildari
Title:

Associate Professor, Department of Electrical and Computer Engineering
University of Waterloo

Internal Member
Name:

Dr. Derek Rayside
Title:

Associate Professor, Department of Electrical and Computer Engineering
University of Waterloo

Internal-external Member
Name:

Dr. Peter Buhr
Title:

Associate Professor, Department of Computer Science
University of Waterloo

ii

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

While I am the leading author of all the work presented in this thesis, the work is indeed
the result of a group effort. In all the work of this thesis, my contributions are: drafting the
initial research idea; researching background knowledge and related work; implementing
the tools; conducting experiments; and writing and polishing the writing. In general, my
co-authors supported me in refining the initial ideas, pointing me to missing related work,
providing feedback on earlier drafts, and polishing the writing. Particularly, in Chapter 3,
my co-authors also supported me in distributing the testing and running environment in
multiple machines, and reproducing previous work for comparison (i.e., reproducing SPR
patches). In Chapter 4, my co-authors also support me in crafting the evaluation data set of
bugs, running previous work for comparison (i.e., RSRepair). In Chapter 5, my co-authors
also supported me in providing valuable annotation data for evaluation.

The co-authors of all the work in this thesis are listed below:

1. Better Test Cases for Better Automated Program Repair (Chapter 3)
Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, Lin Tan. In the Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, 2017.

2. APARE: Automatically Learning Fix Patterns from Past Fixes to Generate Recurring
Fixes (Chapter 4)
Jinqiu Yang, Quinn Hanam, Mike Chong, Nasir Ali, Taiyue Liu, and Lin Tan.

3. Priv: Prioritizing, Visualizing and Fixing Vulnerability Findings of Static Application
Security Testing (Chapter 5)
Jinqiu Yang, Lin Tan, John Peyton, and Kristofer A Duer.

iv

Abstract

Developers spend much of their time fixing bugs in software programs. Automated program
repair (APR) techniques aim to alleviate the burden of bug fixing from developers by
generating patches at the source-code level. Recently, Generate-and-Validate (G&V) APR
techniques show great potential to repair general bugs in real-world applications. Recent
evaluations show that G&V techniques repair 8–17.7% of the collected bugs from mature
Java or C open-source projects. Despite the promising results, G&V techniques may
generate many incorrect patches and are not able to repair every single bug.

This thesis makes contributions to improve the correctness of APR by improving the
quality assurance of the automatically-generated patches and generating more correct
patches by leveraging human knowledge. First, this thesis investigates whether improving
the test-suite-based validation can precisely identify incorrect patches that are generated
by G&V, and whether it can help G&V generate more correct patches. The result of this
investigation, Opad , which combines new fuzz-generated test cases and additional oracles
(i.e., memory oracles), is proposed to identify incorrect patches and help G&V repair more
bugs correctly. The evaluation of Opad shows that the improved test-suite-based validation
identifies 75.2% incorrect patches from G&V techniques. With the integration of Opad ,
SPR, one of the most promising G&V techniques, repairs one additional bug.

Second, this thesis proposes novel APR techniques to repair more bugs correctly, by
leveraging human knowledge. Thus, APR techniques can repair new types of bugs that are
not currently targeted by G&V APR techniques. Human knowledge in bug-fixing activities
is noted in the forms such as commits of bug fixes, developers’ expertise, and documentation
pages. Two techniques (APARE and Priv) are proposed to target two types of defects
respectively: project-specific recurring bugs and vulnerability warnings by static analysis.

APARE automatically learns fix patterns from historical bug fixes (i.e., originally crafted
by developers), utilizes spectrum-based fault-localization technique to identify highly-likely
faulty methods, and applies the learned fix patterns to generate patches for developers to
review. The key innovation of APARE is to utilize a percentage semantic-aware matching
algorithm between fix patterns and faulty locations. For the 20 recurring bugs, APARE
generates 34 method fixes, 24 of which (70.6%) are correct; 83.3% (20 out of 24) are
identical to the fixes generated by developers. In addition, APARE complements current
repair systems by generating 20 high-quality method fixes that RSRepair and PAR cannot
generate.

Priv is a multi-stage remediation system specifically designed for static-analysis security-
testing (SAST) techniques. The prototype is built and evaluated on a commercial SAST

v

product. The first stage of Priv is to prioritize workloads of fixing vulnerability warnings
based on shared fix locations. The likely fix locations are suggested based on a set of
rules. The rules are concluded and developed through the collaboration with two security
experts. The second stage of Priv provides additional essential information for improving the
efficiency of diagnosis and fixing. Priv offers two types of additional information: identifying
true database/attribute-related warnings, and providing customized fix suggestions per
warning. The evaluation shows that Priv suggests identical fix locations to the ones
suggested by developers for 50–100% of the evaluated vulnerability findings. Priv identifies
up to 2170 actionable vulnerability findings for the evaluated six projects. The manual
examination confirms that Priv can generate patches of high-quality for many of the
evaluated vulnerability warnings.

vi

Acknowledgements

I would like to take this opportunity to express my thanks to my supervisor Prof. Lin
Tan. From her, I received numerous support and encouragement. I would like to thank
her for insightful guidance and unwavering support. She is always available when I ask
for help or advice. I learned a lot from Lin, including how to conducting research, how
to shape research ideas, how to utilize time management for multi-tasking, presentations
skills, and how to communicate and collaborate with other people. What I learnt from Lin
will benefit my future career. I am also thankful to all of my committee members: Prof.
Ladan Tahvildari, Prof. Derek Rayside, Prof. Peter Buhr, and Prof. Shing-Chi Cheung
for spending their valuable time in reviewing my thesis and providing valuable comments.
Also, I would like to thank Prof. Reid Holmes for providing valuable feedback on the early
stage of my PhD work.

I would like to thank all of my co-authors and collaborators: Alex Zhikhartsev, Yuefei
Liu, Quinn Hanam, Mike Chong, Nasir Ali, and Taiyue Liu from our research group, also
John Peyton, and Kristofer A Duer from IBM AppScan Source. I would like to thank them
for their support and help along my Ph.D. journey. We have shared many memories about
working non-stop days and nights before conference deadlines. I would not have made these
deadlines without their hard working and generous help.

My thanks also go to all the members in our research group. Many thanks for the
happy time in team building activities and dinners, in our reading group seminars, and
tremendous inspirations and knowledge I got from our discussions.

Last but not the least, I deeply thank my parents for their unconditional love and
support for me to pursue my dream. Thanks also go to my best friend and partner, Dr.
Tsehsun Chen, who has shared my happiness and frustration along the way. From them, I
perceive the power of love which have been and will be with me.

vii

Dedication

This is dedicated to my family.

viii

Table of Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Background on Automated Program Repair 2

1.3 Thesis Statement . 3

1.4 Thesis Contributions . 3

2 Related work 7

2.1 Automated Program Repair . 7

2.2 Studies of Fix Patterns, Recurring Fixes and Code Changes 9

2.3 Automated Test Generation . 10

2.4 Generating Systematic Edits, Refactoring, and Detecting Clones 10

2.5 Detecting Vulnerability Warnings Using Static Analysis 11

3 Opad : Better Test Cases for Better Automated Program Repair 13

3.1 Introduction . 13

3.2 The Main Contributions of this Chapter 15

3.3 Approach . 15

ix

3.3.1 Generating New Test Cases Using Fuzz Testing 17

3.3.2 Generating Memory-Safety Oracles 18

3.3.3 Measuring the Overfitness of a Patch Using an Overfitness Metric
(O-measure) . 18

3.3.4 An Optimized Setting of Opad . 24

3.4 Evaluation . 25

3.5 Threats to Validity . 30

3.6 Chapter Summary . 31

4 APARE: Automatically Learning Fix Patterns from Past Fixes to Gen-
erate Recurring Fixes 32

4.1 Introduction . 32

4.1.1 Automatically learning and applying project-specific fix patterns:
state of the art and challenges . 35

4.2 The Main Contributions of this Chapter 36

4.3 A Study of Project-Specific Recurring Fixes 37

4.3.1 Identifying Bug Fixing Commits . 38

4.3.2 Identifying Candidate Recurring Fixes 38

4.3.3 Manual Examination of Recurring Fixes 40

4.3.4 Study Results . 40

4.4 Design of APARE . 41

4.4.1 Extracting and Filtering Fix Patterns 42

4.4.2 Identifying Possible Faulty Locations 44

4.4.3 Semantics-Aware Percentage Context
Matching to Find Applicable Fix Patterns 44

4.4.4 Generating Fixes for Fix Locations 51

4.5 Evaluation . 51

4.5.1 Collecting Recurring and Non-Recurring Bugs for Evaluation 52

4.6 Discussions and Threats to Validity . 60

x

4.6.1 Execution Time . 60

4.6.2 Threats to Validity . 61

4.7 Chapter Summary . 61

5 Priv: Prioritizing, Visualizing and Fixing Vulnerability Warnings of Static
Application Security Testing 63

5.1 Introduction . 63

5.2 Background on SAST and AppScan Source 65

5.3 The Design and Implementation of Priv 69

5.3.1 Phase I: Prioritizing Fixing Efforts on Investigating the Detected
Vulnerabilities . 69

5.3.2 Phase II: Supplement Essential Information for Improving Diagnosis
and Fixing . 75

5.3.3 Implementation of Priv . 81

5.4 Evaluation . 82

5.5 A Case Study on the Performance of Prioritizing Quality-Assurance Effort
by Priv . 90

5.6 Threats to Validity . 91

5.7 Conclusions . 92

6 Conclusions and Future Work 93

6.1 Thesis Conclusions . 93

6.2 Future Research Directions . 93

References 96

xi

List of Tables

3.1 The table shows the statistics of the seven regions based on 429 patches that
are generated by four G&V techniques. 21

3.2 The results of using Opad to filter out overfitted patches from GenProg/AE,
Kali, and SPR. ‘Total’ is the number of overfitted patches evaluated by Opad ;
for Kali, this number is always one (unless a Kali’s patch is correct). Check
symbol () means that GenProg/AE, Kali, or SPR find the correct patch,
and these correct patches are not incorrectly pruned by our approaches.
Double check symbol () means that Opad guides SPR to generate a
correct patch (original SPR does not generate this correct patch). 26

3.3 Results of using Opad to improve SPR (SPR+Opad) on the 19 bugs from
the GenProg 2012 benchmark. Each cell contains two symbols. The first
symbol shows whether SPR+Opad generates a correct patch (Y or N); and
the second symbol shows how Opad contributes in the patch generation
process— : filtering out overfitted patches, −: not filtering out patches
(neither overfitted nor correct), B: filtering out both overfitted and correct
patches, and ×: filtering out correct patches only. 29

4.1 Studied Software . 37

4.2 Summary of Recurring Fixes . 41

4.3 Characteristics of the 20 Recurring Bugs . 53

4.4 Results on the 20 Recurring Bugs. Column ‘Repair?’ shows whether a bug is
repaired by APARE or RSRepair. 44 indicates that a bug is fixed correctly and
completely by an approach. 4 means APARE generates correct method fixes. 8

denotes that an approach failed to fix a bug. Column ‘Patterns’ shows the number
of fix patterns used by APARE. Column ‘Comp.’ shows the completeness. The
completeness and recall of RSRepair is 0. ‘AVG’ in the last row is short for ‘Average’. 57

xii

4.5 Results on the 20 Recurring Bugs with Correct and Complete Faulty Locations . 59

4.6 Results on the 5 Non-Recurring Bugs . 60

5.1 APIs that are used to identify actionable attribute-related warnings. 76

5.2 The summary of the six projects that are used in the evaluation. 82

5.3 The results of comparing fix locations suggested by Priv with the ones
annotated by developers. Note that the developer did not annotate the fix
locations for PATHtrv and COMMi, thus these two types of vulnerability
warnings are not shown in this table. 85

5.4 The table shows the statistics on the preferred fix locations that are identified
by Priv. Reduction shows that Priv suggests a few pFixLocs from all possible
fix locations (i.e., all trace anodes). AVG cost shows the average number of
fix locations suggested by Priv for each vulnerability warning. 85

5.5 The results of applying Priv to identify relevant warnings on the six projects.
One set of warnings refers to the warnings that are either related to the same
database table or the same attribute. Each row of ‘# of sets’ is the union of
both entry and exit sets of warnings. Each row of ‘# of relevant sets’ means
the intersection of entry and exit sets and neither entry set nor exit set is
empty. 87

5.6 The Results of Manual Examination on the Qualify of the Fixes by Priv. . 90

5.7 The table shows that for AltoroJ, how effective Priv is at prioritizing quality-
assurance efforts. 91

xiii

List of Figures

3.1 Overview of the Proposed Overfitted Patch Detection Framework (Opad)
and How Opad is Integrated with G&V Techniques. 16

3.2 Sets of failing test cases on the buggy version (B), the versions with overfitted
patches (OvfP), and the version with correct patch (CorrP). 20

3.3 A bug hidden in the buggy version of libtiff-5b021-3dfb3. 28

3.4 Patches for libtiff-d13be-ccadf (a loose condition bug). 30

4.1 APARE generates this fix automatically, identical to developers’ fix, for Eclipse
SWT bug 94003. 33

4.2 APARE leverages this fix to generate the fix in Figure 4.1. 33

4.3 A Bug Fix in Diff Format. 39

4.4 Two Edit Operations from ChangeDistiller for the Fix in Figure 4.3 39

4.5 The overview of APARE . 41

4.6 The complete fix pattern extracted by APARE from the motivation example
(Figure 4.2). The grayed statements are the context of the fix – data and
control dependencies. All identifiers are abstracted and ready for matching
against new locations. 43

4.7 An Example of Equivalence 6 (E6) . 46

5.1 A screenshot of the Report View of AppScan Source. 66

5.2 For each vulnerability warning, AppScan Source shows the trace (i.e., to
visualize the data-flow from source to sink), a code window to show the code
snippet of the highlighted node (i.e., clicked by the user) in the trace, and
the current remediation page (e.g., text description, examples of buggy code
and the corresponding fix). 67

xiv

5.3 The Overview of Priv. The output ‘force-directed graph’ and ‘collapsible
tree’ visualizations can be displayed in a browser. 68

5.4 A Cross-Site Scripting Example to Illustrate the Possible Fix Locations. . . 70

5.5 An Interactive Single Group Example grouped Force Directed Graph . . . 73

5.6 An Example of Warnings in a Single Cluster in Force Directed Graph . . . 73

5.7 Priv provides the global-view visualization for WebGoat 5.3. Rectangles with
various colors represent different types of vulnerability warnings. Circles
present nodes in the trace: light blue circles are the preferred fix locations;
dark blue circles are the pFixLocs that are from Java objects; orange circles
represent the trace nodes other than pFixLocs. 74

5.8 This visualization shows entry and exit points of database table “employee"
in WebGoat 5.3. 77

5.9 AppScan Source provides a general remediation page for all SQL injections.
We simplified the test description, buggy code, and fix code for easier
understanding. 78

5.10 Priv replaces the general code examples in Figure 5.9 with the customized
code snippets (as shown in the areas of buggy code and fix code). 79

5.11 We concluded one fix template for fixing the vulnerabilities based on the
current remediation page of AppScan Source. 80

5.12 A fix suggestion that is automatically generated by Priv for a SQL injection
vulnerability. The fix suggestion is classified as ‘partially compilable/correct’
upon manual examination. +/- represents Priv’s suggested code changes
(i.e., add or remove the corresponding line of code). 89

5.13 An example of cross-site scripting from AltoroJ that Priv generates partially
compilable/correct fix for. 89

xv

Chapter 1

Introduction

1.1 Motivation

Software bugs affect software reliability and security. Developers spend much of their
time fixing bugs in software programs [66]. Unfortunately, the number of bugs that
need to be fixed is significantly larger than time and resources allow [13]. Over the last
decade, automated program repair (APR) has been an emerging research area. Many
APR techniques have been proposed [70, 83, 115, 51, 61, 58, 75]. The promising results
of the state-of-the-art test-suite-based APR techniques (also known as Generate-and-
Validate G&V) shed light on alleviating the burden of bug fixing from developers. Recent
evaluations [145, 94] show that G&V techniques repair 8–17.7% of the bugs from C or Java
projects. Given a set of passing test cases and at least one failing one, G&V techniques
locate likely correct patches in a constructed search space of possible patches and identify
the patch that passes the validation of the given test cases (i.e., makes all the test cases
pass including, the failing test cases).

However, two primary limitations prohibit the advances of G&V APR techniques.
First, the patch validation does not fully guarantee the correctness of the patches. Many
of the patches (e.g., up to 98% as shown in [117]) that pass the patch validation are
actually incorrect. Such incorrect patches are referred to as overfitted patches. Second, the
hypothesized space of patches does not contain correct fixes for all bugs. Hence, for such
cases, G&V APR techniques cannot generate a correct fix.

The above-mentioned two limitations affect the correctness of G&V APR techniques.
On one hand, the patch validation (i.e., test cases) for verifying the correctness of patches

1

should be enhanced so the improved validation can identify the overfitted patches. On the
other hand, the hypothesized space of patches should be enriched to contain more correct
patches.

1.2 Background on Automated Program Repair

Automated Program Repair (APR) techniques perform “the transformation of an unexpected
behavior of a program execution into an acceptable one according to an specification” [101].
APR relies on specifications to generate and/or validate repairs. Specifications can be
obtained and expressed in different ways, such as test suites, behavior models, etc. Monper-
rus [101] presents a comprehensive bibliography on APR, which classifies APR based on
the types of specifications. This section describes two types of APR in details since they
are closely related to this thesis: (1) test-suite-based APR (i.e., G&V) techniques which
rely on test cases for patch generation and validation; and (2) static-analysis-based APR.

G&V techniques (e.g., GenProg [70], Kali [117], AE [139], SPR [83], Angelix [94])
automatically generate patches when provided with a buggy version, both failing and passing
test cases. Then, G&V techniques utilize spectrum-based fault localization techniques to
narrow down the scope of the faulty source code. After that, G&V techniques use specific
approaches to construct a search space of patch candidates: (1) applying modification
operators (add, delete, and mutate) on the code (GenProg [70], RSRepair [116] and
Kali [117]), (2) using pre-defined or automatically-learnt common fix patterns to create a
repair (PAR [61], SPR [83], and Genesis [82]), and/or (3) using constraint solving to fix
defective conditions (SPR [83], Angelix [94], SemFix [107], Qlose [31]). After constructing
the search space, G&V techniques iterate the patches in the search space until they find a
patch that can pass the patch validation (i.e., whether the patch can make the same set
of test cases pass). Recent advances in automated program repair leverage past fixes to
rank the patch candidates in the search space. For example, Prophet [85] ranks the patch
candidates in SPR’s search space based on a probability model that is trained from past
fixes. Le et al. [68] propose (referred as HistoryDriven) to rank and select the top patch
candidates based on the code similarity between the patch candidates and mined frequent
cross-project fix patterns.

Despite their differences, G&V techniques share the same techniques of fault localization
and patch validation. Imperfect patch validation (e.g., using the same test cases for both
patch generation and validation) may lead to overfitted patches [127]. The generated patch
is either a correct patch (i.e., it indeed fixes the target bug) or it is an overfitted patch (the
test cases pass however the target bug is not fixed).

2

Static-analysis-based APR techniques generate repairs to fix the warnings by static-
analysis bug detection techniques. Many techniques of this type use fix templates that are
defined for each bug type detected by static analysis [80, 81, 38, 102]. For example, Gao et
al. [38] automatically fix memory leaks by inserting deallocation statements. Muntean et
al. [102] use parameterized fix templates to generate fixes for detected buffer overflows.

1.3 Thesis Statement

Patch generation and patch validation are two primary components in automated program
repair. This thesis shows that:

The correctness of automated program repair can be improved by enhancing the
patch validation process, and also by enriching the hypothesized space of patches.

The goal of this thesis is to improve the correctness of automated program repair. First,
insufficient patch validation makes G&V techniques generate incorrect patches. Hence,
how to improve patch validation (i.e., obtaining better test cases) towards generating more
correct patches should be explored to improve APR. The explored approach to improve the
patch validation should be scalable and applicable to a wide spectrum of software. The
proposed approach should be fully automated to be integrated with APR techniques.

Second, to generate more correct patches, new APR techniques should be explored to
mitigate the limitation of space of patches. Current APR can only fix limited number of
bugs due to the limited space of patches. Enriching the space of patches with more fix
patterns allows APR generating more correct patches. Also, fix patterns of high-quality can
reduce the possibility of generating incorrect patches [134]. The proposed APR techniques
should complement the state-of-the-art APR by fixing previously-unhandled bugs. I believe
that knowledge of how developers fix past bugs should be utilized to achieve this objective.

1.4 Thesis Contributions

This thesis improves the correctness of automated program repair from two aspects. First,
it takes a first step to explore the direction of improving the test-suite-based validation of
G&V techniques. Given a G&V technique, the improved test-suite-based validation can

3

identify overfitted fixes, and thus allow the G&V technique to generate a correct patch.
Opad is proposed to improve the test-suite-based validation, which combines automated
test generation, two oracles (crash and memory-safety), and a novel overfitness metric
to detect overfitted patches. Particularly, Opad improves existing test suites to better
define bugs and preserve the desired functionalities from two angles: (i) generating new
test cases automatically, and (ii) leveraging additional oracles (i.e., memory-safety oracles)
to improve validity checking of automatically-generated patches. The evaluation of Opad
shows that a significant portion (75.2%) of overfitted patches are filtered out by Priv. Also,
the evaluation shows that with the help of Opad , SPR, one of the state-of-the-art G&V
techniques, generates the correct patch for one additional bug (vanilla SPR fixes 11 bugs
correctly).

The second contribution this thesis makes is to propose novel repair techniques which
enrich the hypothesized space of patches. In particular, the two proposed techniques utilize
the knowledge of how developers fix past bugs to obtain correct patches to complement
current APR techniques. The knowledge of how developers fix bugs is noted in the forms
such as bug fixing commits, document/tutorials that shows how to fix bugs, and Q&A
websites such as StackOverflow. Automated-extracted or manually-defined fix patterns
from such materials can be used to generate patches for new bugs. Obtaining a space of
high-quality patches based on developers’ past bug-fixing activities reduces the possibility
of producing overfitted patches. As shown by Tan et al. [134], a few patch anti-patterns
(i.e., patterns that are unlikely constructed by developers) can remove a significant portion
of overfitted patches.

APARE and Priv target bugs that are not handled well by current APR techniques.
Also APARE and Priv enrich the hypothesized space of patches by adding high-quality fix
patterns. APARE, a history-based technique that targets project-specific recurring bugs,
extracts fix patterns from the history of a project (i.e., past fix commits), and applies the
learnt fix patterns on buggy methods to generate recurring fixes. APARE utilizes past fixes
which are considered as high-quality patches crafted by programmers. An evaluation on
five real-world applications shows that APARE complements current G&V techniques by
generating 20 correct method fixes that are project-specific recurring. APARE achieves a
precision of 70.6% on the evaluated 20 recurring bugs.

Priv, a multi-phase remediation system, is designed to help developers improve work
efficiency in fixing vulnerability warnings by static-analysis security testing (SAST). SAST,
such as AppScan Source, employs static analysis to build information flows from malicious
input (source) to an exploit point (sink). In the first phase, Priv produces a global-view
visualization based on clusters of shared fix locations. Priv suggests fix locations based on
rules that are defined for each vulnerability type. I created the sets of rules via discussions

4

with security experts (i.e., our collaborators from AppScan Source). Based on the suggested
fix locations, Priv groups the vulnerability warnings into clusters. Priv produces an
interactive visualization of the clusters of vulnerability warnings. In the second phase, Priv
supplements essential information to help developers diagnose and fix vulnerabilities. First,
Priv identifies true database/attribute-related warnings to reduce the false positives of
SAST. Second, Priv provides a customized remediation page that includes a customized fix
suggestion for each vulnerability warning. To generate the fix suggestion, I first created
the fix templates from the fix examples in current remediation pages. Each fix template is
defined for each vulnerability type. Then Priv utilizes such manually-defined fix templates
to generate customized fix suggestions. The evaluation of Priv on six web applications
shows that Priv suggests identical fix locations to the ones by developers for up to 100% of
the vulnerability warnings. Moreover, Priv identifies true database- or attribute-related
warnings, which constitute to 11.4–86.2% of all the database- or attribute-related warnings.
Finally, Priv provides complete fix suggestions for many vulnerability warnings.

In summary, this thesis makes contributions to advance the state-of-the-art automated
program repair. First, it explores the direction of improving test-suite-based validation for
improving automated program repair. Second, it introduces two novel techniques to improve
the space of patches (i.e., more correct patches) by adding fix patterns: automated-extracted
fix patterns (APARE), and manually-defined fix patterns (Priv). Two proposed two novel
techniques improve address the two defect classes that are not handled well by current
repair techniques, such as project-specific recurring bugs and vulnerability warnings by
static analysis.

The three major contributions are:

• explores the direction of improving test suites for improving APR (Chapter 3). Opad ,
a scalable and practical approach, is proposed to enhance existing test suites by
generating new test cases and leveraging two oracles (crash and memory-safety). Opad
is shown to improve four G&V techniques to repair real-world applications.

• two novel APR techniques–APARE (Chapter 4) and Priv (Chapter 5), that leverage
developers’ knowledge of bug fixing, are proposed to provide high-quality fix sugges-
tions to developers. APARE targets project-specific recurring fixes and is capable of
automatically extracting fix patterns from past fixes. Priv is designed for vulnerability
warnings by static application security testing.

• an evaluation of APARE and Priv shows that leveraging the knowledge of bug-fixing
in the past to enrich the space of candidate patches indeed produces high-quality fixes

5

and can significantly broaden the scope of fixes that can be generated by automated
repair techniques.

6

Chapter 2

Related work

This chapter summarizes the related work. Section 2.1 describes the related work on
automated program repair. Section 2.2 discusses previous work on studying fix patterns.
Section 2.1 and Section 2.2 are related to all the work in this thesis. Section 2.3 summarizes
research work on automated test generation, which is related to Opad . Section 2.4 lists
related work on systematic editing and clone detection, which is related to APARE. Last,
Section 2.5 presents related work on using static-analysis to detect bugs and vulnerabilities,
which is closely related to Priv.

2.1 Automated Program Repair

Many automated program repair and debugging techniques have been proposed [58, 126,
135, 70, 61, 83, 85, 115, 109, 32, 116, 77, 10, 73, 72, 108, 149, 155, 107, 133, 124, 41].
Among the above-mentioned work, researchers propose various G&V techniques to generate
patches at the source-code level. GenProg [70] is the pioneer work in this area, followed
by Par [61], RSRepair [116], Kali [117], SPR [83], relifix [133], and Nopol [147]. The
above-mentioned techniques differ from GenProg in terms of either search space and/or
search algorithm. Par [61] uses hard-coded patch templates to construct search space.
RSRepair [116] employs a random search algorithm instead of genetic programming (which
is used by GenProg). Kali [117] uses a restricted search space—emphasizing on deleting
operations and an exhaustive search strategy. SPR [83], which outperforms the previous
work, constructs search space based on predefined transformation schemas and leverages a
targeted search algorithm. The constructed search space contains more useful patches and
provides a larger set of fix templates than that of Par [61].

7

As an alternative to G&V techniques, semantic-based automatic repair tools are proposed.
Semantic-based automatic repair uses symbolic execution and constraint solvers to synthesize
a patch that by design passes all the developer test cases. SemFix [107], SPR [83],
Angelix [94], SearchRepair [60], S3 [69], Enumerative [11], CVC4 [118], and Qlose [31]
leverage constraint solving to repair defective conditions. Chen et al. [25] use pre- and
post-conditions to repair Java programs.

Domain-specific APR techniques are proposed to target particular types of bugs. Tortoise
is proposed to repair configuration errors [140]. Tian et al. [136] repair buggy error-handling
code in C. Albarghouthi et al. [9] repair unfair decision-making programs based on input
data distribution. D’Antoni et al. [30] synthesize repairs for commands by learning from
examples. Majahan et al. [87] target layout cross browser issues and use search-based
approaches to generate repairs. Liu et al. [76] aim to generate high-quality patches to
fix concurrency bugs. Static-analysis-based APR techniques generate repairs to fix the
warnings by static-analysis bug detection techniques. Many techniques of this type use
fix templates that are defined for each bug type detected by static analysis. Logozzo et
al. [80] propose to repair .Net code based on a static analysis tool. Logozzo et al. [81]
propose a repair technique that targets one type of integer arithmetic bugs. Gao et al. [38]
automatically fix memory leaks by inserting deallocation statements. Muntean et al. [102]
use parameterized fix templates to fix buffer overflows that are detected statically. Different
from the prior work, Priv targets vulnerability warnings by static-analyis tools, which
complement current static-analysis-based APR.

This thesis complements previous work by generating more correct patches. Opad
filters out many incorrect patches of previous G&V techniques (e.g., GenProg and SPR.
APARE and Priv use fix patterns from past fixes and documentation to fix more bugs
correctly. In particular, APARE targets project-specific recurring fixes, which are not
properly addressed by previous work given the complexity of the recurring fixes (large in
size, and rich project-specific semantics). Priv targets vulnerabilities that are detected by
static analysis, which are not handled by previous APR techniques.

Using Testing to Improve G&V Techniques. Xin et al. [143] propose techniques to
guide test generation techniques to cover patches by G&V techniques with an assumption
that perfect oracles are already available. Opad of this thesis shows that basic oracles
can improve G&V techniques. Yu et al. [150] propose to generate new test input to guide
G&V techniques generating correct patches, however the corresponding test oracles require
manual effort. Differently, Opad of this thesis uses automated test generation to improve
G&V techniques by filtering out overfitted patches, and then continuing G&V techniques
to generate correct patches. Opad is fully automatic and requires no manual effort in
generating test oracles. Liu et al. [78] propose a novel technique which leverages the

8

similarity of execution traces to heuristically determine the correctness of the generated
patches by G&V techniques. Opad uses new test inputs and oracles directly to detect
overfitted patches.

Utilizing Fix History to Improve G&V Techniques. Prophet [85], which is built
upon SPR, builds a probability model from past fixes and uses the probability model to
rank the patch candidates in the search space of SPR. Le et al. [68] propose to rank and
select top patch candidates based on the code similarity between the patch candidate
and past fixes. Le et al. [69] also propose combining constraint solving, customizing a
constrained search space, and ranking based on code similarity to repair defective conditions
efficiently. Qi et al. [144] improve G&V techniques by prioritizing syntax-related code.
Rolim et al. [119] utilize a novel domain-specific language to extract syntactic structures
from examples. Gao et al. [39] propose to automatically fix recurring crash bugs by mining
crash traces from Q&A websites. The targeted recurring crash bugs are common across
projects and are caused by incorrect usage of common APIs (e.g., popular frameworks and
libraries). Xiong et al. [145] propose ACS that combines document analysis and a set of
frequent predicates to repair defective conditions. Genesis [82] automatically infers common
fix patterns for certain types of bugs. All the techniques above target recurring fixes that
are common across projects, and thus they utilize mining from past fixes of a large collection
of repositories (e.g., GitHub). APARE of this thesis targets project-specific recurring fixes,
which are not covered by common fix patterns across projects. Thus, APARE complements
existing APR techniques by specializing different types of bugs.

2.2 Studies of Fix Patterns, Recurring Fixes and Code
Changes

Many studies are performed to understand the nature of bug fixes, code changes and
fix patterns [105, 104, 92, 113, 89, 99, 23]. Nguyen et al. [105] study repetitiveness of
code changes. Negara et al. [104] mine frequent code change patterns using data mining
techniques. A recent study finds that 31–52% of tokens and 3–17% of lines in commits
repeat cross commits [92]. Martinez, Duchien and Monperrus abstracted a subset of bug
fix patterns from that study [113] at the AST level manually, and used the these AST-level
patterns to search for matching code changes automatically [89]. Barr et al. [18] investigate
whether fixes can be constructed using fix ingredients (i.e., fixes are decomposed at statement
level) from past fixes, which is the assumption held behind GenProg, AE and RSRepair.
This thesis, when presenting APARE, includes a manual study on project-specific recurring

9

fixes at method level. Specifically, the manual study explores the potential and challenges
of adapting systematic editing techniques (e.g., SYDIT) for automated program repair.

2.3 Automated Test Generation

There exist different types of automated test generation. Random test generation tech-
niques [112, 29] and fuzz testing tools scale to large systems, but lack of direction (i.e.,
targeting a specific code region). Dynamic symbolic execution [24] and concolic testing [123]
tools aim to generate test cases that achieve high coverage. Search-based test generation
techniques [36, 37] integrate search algorithms to guide unit test generation to achieve high
coverage. All the above techniques use crashes as oracles. Alternatively, regression oracles
are automatically generated [142] by recording variable values during running black-box
test cases written by developers. This work uses crashes, which is a widely-accepted oracle,
and memory-safety oracles to improve validity checking of patches.

2.4 Generating Systematic Edits, Refactoring, and De-
tecting Clones

Sydit [95] applies systematic edits learnt from one code transformation or fix to other
similar locations based on context. LASE [96] extends Sydit, which learns from one
transformation/fix, to learn from multiple ones and transform the shared part. Directly
applying Sydit and LASE for automated bug fixing does not work. First, as discussed in
Section 4.1.1, APARE advances Sydit and Lase by applying learned patterns to locations
whose contexts are different from the given fix/transformation. The evaluation shows that
APARE can generates 12 and 13 more method fixes than Sydit and LASE respectively for
the 20 recurring bugs. Second, given a bug to fix, Sydit and LASE require developers to
pinpoint past similar fixes for fix pattern learning, which is often difficult for developers to
know (§4.4). Third, LASE requires at least two past fixes and learns the common patterns
to address some limitations of Sydit. Multiple similar past fixes are not always available.
Besides, using the common patterns from multiple fixes can lose fix information unique to
a pattern.

Refactoring from modern IDEs support pre-defined transformation (e.g., bad code smells,
and API migration) on source code [110, 97, 46, 106]. Automated software transplanta-
tion [19] is proposed to automate the process of migrating features from one software to

10

another. Differently, APARE generates method-level fixes automatically without prior
knowledge of what code to be applied. Researchers have spent much effort on detecting
clone code, e.g., token based [71, 59] , AST based [50], semantic based [20] and deep-learning
based [141]. Clone detection [71, 59, 50, 20] tools suggest other similar locations for bug
fixes. However, code clone detection techniques focus on detection of clones and do not
generate fixes.

2.5 Detecting Vulnerability Warnings Using Static Anal-
ysis

Static analysis is shown to be effective in detecting vulnerabilities, especially information-
flow-related vulnerabilities [121, 79, 54], such as cross-site scriptings and SQL injections.
Also, static analysis is widely used to improve mobile security by detecting data leaks to
protect sensitive and confidential information [16]. However, a previous study by Johnson
et al. [53] shows that developers do not fully utilize static analysis techniques because of
two reasons: high false positive rates and the presentation of the detected results. Chen et
al. [26] discuss the experience of promoting static performance anti-pattern detection tool
among developers.

To improve the usability of static analysis techniques, researchers have been working on
the direction of reducing the false positive rate. Junker et al. [56] convert static analysis to
a model checking problem and then utilize SMT solver to check path feasibility. Fehnker et
al. [34] propose a technique to reduce false positives by leveraging refined security rules.
Muske et al. [103] propose a partitioning approach to reduce false positives. The results of
the static analysis techniques are divided into equivalence classes. If the leader of a class is
determined as false positive, then the entire equivalence class is false positives.

In addition, many statistic-based approaches are proposed to identify false positives.
Shen et al. [125] improve the FindBugs [?] tool by using an error-ranking strategy to increase
true positive rate. Jung et al. [55] combine statistical analysis with domain knowledge
to reduce false alarms by static analysis. Krememnek et al. [65] rank warnings by static
analysis combining correlation between warnings and feedbacks from developers. Hallem [43]
propose a flexible, easy-to-use extension language allowing users to specify system-specific
rules for detecting bugs statically. Tripp et al. [?] extract features and interactively reduce
false positives by using classification. Similarly, Hanam et al. [45] use classification based
on features from code patterns and leverage past unactionable alerts (i.e., false positives)
as a training set. Ruthruff et al. [120] use code metrics and false warning patterns to

11

predict actionable warnings. In addition, techniques are proposed to group related warnings
together to reduce inspection effort in redundant warnings. Le et al. [67] compute path
dependencies of warnings to group relevant warnings together to reduce redundancy.

Priv is different from the previous studies on reducing static analysis false positives and
manual inspection efforts on the detected problems. Priv focuses on prioritizing detected
vulnerability warnings using both fix location suggestion and visualization, and providing
automatically generated fix suggestions for each detected vulnerability. In addition, Priv
significantly reduces false positive rate (i.e., reduces up to 88.6%) of database-related and
attribute-related vulnerability warnings, which are a different type of false positives that
are not addressed in previous studies.

12

Chapter 3

Opad : Better Test Cases for Better
Automated Program Repair

3.1 Introduction

Automated generate-and-validate program repair techniques [70, 116, 61, 133, 117, 83]
(G&V techniques) show promising results to reduce manual quality assurance efforts and
to improve software reliability. G&V techniques automatically generate patches to repair
buggy programs with the guidance of test cases and validate the correctness of the generated
patches using the same set of test cases.

Despite the great potential, G&V techniques suffer from generating incorrect patches
due to in-capabilities of test suites [117, 83, 127]. Qi et al. [117] pointed out that 98% of the
patches that are generated by GenProg [70] are incorrect. A large portion of such incorrect
patches are equivalent to deletion of buggy functionalities. These incorrect patches make
test cases pass after the entire buggy code is removed, simply because the test cases do
not cover the expected correct behaviors of the buggy code. For example, for the bug
libtiff-08603-1ba75 (an arithmetic bug), GenProg generates incorrect patches that remove
an integer overflow check to make these given test cases pass because they do not expose
the integer overflows. Following previous work [127], such incorrect patches are referred to
as overfitted patches, since they are overfitted to pass only the given tests, but fail to fix
the bugs.

Overfitted patches prevent G&V techniques from generating correct patches. The
terminating condition of G&V techniques is to make all given test cases pass; thus, once an

13

overfitted patch is generated, G&V techniques often stop exploring other patch candidates.
This happens when the failing test case cannot well define the bug and/or if the original
passing test cases fail to define all correct behaviors of the software. Thus, improve test
cases should be improved to be able to precisely decide whether the generated patches
overfit and make G&V techniques continue to generate correct patches.

There are limited prior efforts to enhance test cases for large and complex systems
to further improve G&V techniques. Previous studies [133, 127] focus on illustrating the
impacts of low-quality test suites on the quality of automatically-generated patches. Recent
work [150, 143] on this direction demonstrates the challenges of using automated test
generation to improve G&V techniques in a real-world setting. Xin et al. [143] design a new
test generation technique to cover the generated patches by G&V techniques. However, it
requires correctly-patched programs to get oracles (e.g., expected outputs), which is difficult
to obtain in practice.

In this work, an Overfitted PAtch Detection framework, Opad , is proposed. Opad
combines automated test generation, two oracles (crash and memory-safety), and a novel
overfitness metric to detect overfitted patches. First, Opad improves existing test suites to
better define bugs and preserve the desired functionalities from two angles: (1) generating
new test cases automatically, and (2) leveraging additional oracles (i.e., memory-safety
oracles)

The approach of Opad is analogous to the treatment of sickness: to determine if a
patient has recovered (analogous to whether a bug has been fixed by a patch), in addition
to checking if symptoms have been improved, doctors often (1) order laboratory tests such
as blood tests (analogous to generating new tests), and (2) check if medical metrics such
as white blood cell counts have been improved compared to those when a patient is sick
(analogous to the improved validity checking).

Second, Opad leverages a novel metric, the overfitness measure, O-measure in short, to
assist the improved test suite in detecting overfitted patches. The proposed O-measure
is shown to be an effective approximation of the ideal metric that can best distinguish a
correct patch from an overfitted patch. A prior study [127] shows that deciding whether a
patch is overfitted using whether the patched version fails on any of the additional tests is
imprecise in distinguishing overfitted from correct patches. Different from this prior study,
the O-measure is built based on the assumption that a correctly patched program should
not behave worse than the corresponding buggy program (e.g., fail on more test cases).

Opad is applied to improve four G&V techniques, GenProg [70], AE [139], Kali [117],
and SPR [83], in generating patches for 45 bugs. Opad automatically generates between
452 to 31,904 new test cases per bug, which include both passing and failing test cases.

14

The evaluation shows that:

• Opad filters out a significant portion (75.2%, 321/427) of overfitted patches generated
by the four G&V techniques. With Opad , GenProg/AE, Kali, and SPR generate
correct patches for 2, 3, and 12 bugs respectively.

• By filtering out overfitted patches, Opad helps SPR [83] generate a correct patch for
one additional bug (libtiff-d13be-ccadf) compared to the original SPR (vanilla SPR
generates correct patches for 11 bugs). In other words, without our approach, SPR
fails to generate this correct patch. Although many overfitted patches are filtered
out, Opad does not always lead to the generation of more correct patches, since, (1)
to generate the correct patch, all overfitted patches that precede the correct one in
the search space must be filtered, and (2) the search space must contain the correct
patch.

3.2 The Main Contributions of this Chapter

In summary, this chapter makes the following contributions:

• enhance test suites for improving G&V techniques.

• formulate the ideal and theoretical metric for determining if a generated patch is
overfitted, and propose a novel practical metric for it.

• explore and identify a scalable and practical approach to enhance existing test suites
by generating new test cases and leveraging two oracles (crash and memory-safety).

• evaluate the proposed approach by applying it to improve four G&V techniques to
repair large and complex systems.

3.3 Approach

Overview. Figure 3.1 shows an overview of the proposed Overfitted PAtch Detection
framework (Opad) for validating the correctness of automatically-generated patches. It also
shows how Opad can be used to improve G&V techniques. Opad employs automatic test
generation, two test oracles (crash and memory safety), and a metric (Overfitness-measure:

15

Figure 3.1: Overview of the Proposed Overfitted Patch Detection Framework (Opad) and
How Opad is Integrated with G&V Techniques.

O-measure) to assess the correctness of automatically-generated patches. First, to generate
new test cases, Opad leverages fuzz testing and uses existing test suites as fuzzing seeds.
Second, for all test cases (including automatically-generated test cases and developers’
original test cases), Opad employs two additional oracles, a crash and a memory-safety
oracle (e.g., buffer overflows, uninitialized variables, and memory leaks), to improve validity
checking of automatically-generated patches. Third, based on the validity results, for each
automatically-generated patch, Opad uses O-measure to decide whether a patch is overfitted.
Figure 3.1 shows how Opad complements G&V techniques by deciding whether a generated
patch is overfitted. Opad guides G&V techniques to continue choosing the next patch
candidate in the search space if a patch is identified as overfitted.

Challenges. There are two main challenges in designing an overfitted patch detection
framework based on automatically-generated new test cases for large and complex systems.
The first challenge is how to leverage the generated tests and bug detection tools to determine
if a patch is overfitted. A naive approach is that if a patch causes any automatically-generated
test to fail the improved validity checking (e.g., the patched version contains a memory
bug as reported by a bug detection tool), then we consider the patch overfitted. However,
this approach is likely to filter out correct patches, because there are other irrelevant bugs
(i.e., bugs are not related to the target bug) in the program. A correct patch may correctly
fix the target bug, but fail to fix other irrelevant bugs in the program, i.e., bugs that

16

are not targeted by the G&V tool (current G&V approaches are designed to fix only the
target bug as defined by developer failing test cases). To address such irrelevant bugs,
Opad uses O-measure (Section 3.3.3) that only considers a patch to be overfitted if the
patched program performs worse than the buggy program under the same set of tests. The
assumption behind the proposed O-measure is that a correctly patched version should not
behave worse than the buggy version, e.g., the patched version should not fail on the test
cases on which the buggy version passes. Section 3.3.3 presents how and why we define
O-measure.

The second challenge is the lack of test oracles: developer-written tests usually contain
manually defined test oracles (e.g., assert statements that compare the expected output
of a program with the actual output); however, it is an open challenge to automatically
generate such test oracles [12]. To address this challenge, Opad leverages two oracles (crash
and memory-safety) to help ensure the correctness of the patches. These two oracles are
correct because programs should not crash under any circumstances (i.e., a crash is a
definite indication of a bug in the program) and should not violate memory safety (e.g.,
memory leaks). By adding new test cases, the memory-safety oracles can guarantee memory
safety of more code execution paths in the program by patched G&V techniques.

3.3.1 Generating New Test Cases Using Fuzz Testing

In order to generate new test cases, Opad uses fuzz testing [98]—a well-established bug-
finding technique that feeds the program under test with randomly-generated input. Fuzz
testing is chosen due to the following constraints when improving G&V techniques on
large and complex systems. First, fuzz testing is scalable to large and complex systems
(i.e., programs of millions of lines of code). Currently, many other advanced automatic
test generation techniques do not work for programs of such scale. Second, fuzz testing
can be applied to a wide spectrum of software (from image manipulation programs to
interpreters). Finally, our benchmark consists of C programs, for which there are limited
tools available; unlike other languages, there are well-established tools (e.g., Randoop [111]
and EvoSuite [36] for Java). Primitive fuzzing techniques rarely find errors deep within a
program’s control flow because the randomly-generated input is usually rejected at early
stages of error checking. To mitigate this issue, mutation-based fuzzing was proposed [7, 130].
Mutation-based fuzzers perform random mutations on well-formed input, which allows
mutated input to pass initial sanity checks and trigger the bugs that lie deeper in the
program. In this work, we use American Fuzz Lop (AFL) [1], a coverage-guided fuzz-testing
tool, to generate new test cases for the bugs in the evaluated benchmark. AFL is a
mature mutation-based fuzz-testing tool that detects significant vulnerabilities in mature C

17

projects [1]. AFL works by applying mutation rules on input, by selecting the new input
that explores new paths (to achieve higher coverage), and by continually mutating the
newly created input until all inputs are explored or AFL is terminated manually.

3.3.2 Generating Memory-Safety Oracles

Opad employs memory-safety oracles on both newly automatically-generated test cases
and developer test cases to improve validity checking of automatically-generated patches.
Weak oracles (e.g., checking only whether a program crashes) are not sufficient to guarantee
program correctness, which is true for both developer test cases and automatically-generated
test cases. To mitigate this, Opad enhances validity checking of patches by inspecting the
quality of memory management and ensuring memory safety.

To validate large and complex systems, we need a practical and scalable memory-safety
checker. This work chose dynamic analysis over static analysis, since static analysis tools
may generate too many false positives. hence, static analysis is unsuitable for our purpose
since false positives might erroneously prune overfitted patches (not due to the defect in
the patch); in addition, false positives are likely to prune correct patches as well.

Opad leverages Valgrind [6] (i.e., Memcheck) for memory-safety oracles. Specifically,
Opad applies Valgrind with each test case (i.e., either from a developer or automatically-
generated) and records the detection results from Valgrind (i.e., memory errors and leaked
memory bytes). Valgrind inspects memory safety by instrumenting the program under test,
keeping track of validity of all unallocated/allocated memory, and reporting errors once
memory safety is violated. Valgrind can detect various memory-related problems, such as
using undefined values, accessing already-freed memory, and memory leaks.

3.3.3 Measuring the Overfitness of a Patch Using an Overfitness
Metric (O-measure)

This section presents the definition of O-measure in Opad . Opad uses O-measure to
determine whether automatically-generated patches overfit. Then, this section gives a
justification about why the proposed definition of O-measure works best under both
theoretical and practical constraints for G&V techniques.

18

Defining O-measure

O-measure is proposed to identify overfitted patches. The proposed O-measure is calculated
based on the results of executing test cases (both developer and automatically-generated)
against two oracles (crash and memory-safety).

The following presents the definition of O-measure and how to use O-measure to decide
overfitness of patches below.

Definition 1. Given a test suite T ,
B: the set of test cases that make the buggy version fail (B ⊂ T),
B: the set of test cases that make the buggy version pass (B ⊂ T),
P: the set of test cases that make the patched version fail (P ⊂ T).
O-measure is defined as the cardinality of B ∩ P .

Definition 2. A patch is overfitted if it has a non-zero O-measure, and not overfitted
otherwise.

Calculating O-measure

Opad executes each test case on both versions (the buggy and the patched versions) and
records the oracle-related execution results (i.e., whether the program crashes or there are
memory-safety issues). Based on the results, Opad calculates O-measure to determine the
overfitness of patches. If O-measure is non-zero for a patch, Opad determines the patch to
be overfitted, and not overfitted otherwise.

It is straightforward to calculate O-measure for test cases with crash oracles. For
memory-safety oracles, Opad decides whether a test case contributes to O-measure (B ∩ P)
by checking whether the patched version exposes more memory issues than the buggy version.
Different from crash oracles, for which the result is a binary value (whether the program
crashes), memory-safety oracles produce comprehensive memory detection results. Thus,
simply using whether memory safety is violated for deciding failure is not sufficient. Instead,
we calculate O-measure by checking whether the patched version exposes more memory
issues than the buggy version. For example, Valgrind reports memory errors (e.g., “use of
uninitialized values") and the number of bytes leaked (definitely/indirectly/possibly lost).
If for a test case, the patched version contains extra memory errors or extra leaked bytes of
the three types above-mentioned, the value of O-measure of this patch is incremented by
one.

19

Figure 3.2: Sets of failing test cases on the buggy version (B), the versions with overfitted
patches (OvfP), and the version with correct patch (CorrP).

Reasons Behind the Proposed O-measure

The proposed definition of O-measure (Definition 1) is merely one possible way to define
overfitness of patches. This section illustrates why this O-measure definition is chosen from
both theoretical and practical aspects.

The Ideal Overfitness Measure (O-measure). The ideal O-measure is defined as the
O-measure that can perfectly distinguish overfitted patches from correct patches. Figure 3.2
demonstrates the relationship among the sets of failing test cases on the buggy version
(annotated as B), on the correctly-patched version (CorrP), and on the overfittedly-patched
version (OvfP). B, CorrP , and OvfP are used to annotate the sets of passing test cases
on the buggy version, the correctly-patched version, and the overfittedly-patched version.
In Figure 3.2, the five regions are highlighted: R1 is B ∩ OvfP ∩ CorrP ; R2 is
B ∩ OvfP ∩ CorrP ; R3 is B ∩ OvfP ∩ CorrP ; R4 is B ∩ OvfP ∩ CorrP ; and R5
is OvfP ∩ CorrP . In addition, two regions are defined to fully understand the cardinality
of all regions in Figure 3.2: R6 is B ∩ OvfP ∩ CorrP , and R7 is B ∩ OvfP ∩ CorrP .
Table 3.1 shows the statistics of the seven above-mentioned regions (i.e., cardinality of each
region) from the data set of 45 bugs, and 429 patches from G&V techniques.

The ideal O-measure should be able to differentiate between correct and overfitted
patches. This requirement means that there exists at least one test case that shows different

20

Table 3.1: The table shows the statistics of the seven regions based on 429 patches that
are generated by four G&V techniques.

R1 R2 R3 R4 R5 R6 R7
Minimum 0 0 0 9 0 0 0
Maximum 47 611 23 597 16 16 11,378
Median 0 275 3 1 1 0 0
Average 0.47 166.95 2.52 2.48 0.97 0.68 319.06
Sum 202 71,620 1,082 1,062 417 291 136,878
Zero 417 97 173 207 202 233 408
Non Zero 13 333 257 223 228 197 22

behaviors (i.e., fail or pass on the oracle) on the two versions (i.e., the one with the correct
patch, and the one with an overfitted patch). So, the ideal O-measure for deciding overfitness
is the size of the set (OvfP ∩ CorrP) ∪ (OvfP ∩ CorrP) (R1∪R4∪R5 in Figure 3.2).
If the ideal O-measure of a patch is non-zero, this patch is overfitted as it has different
behaviors from the correct patch on at least one test case.

From the Ideal O-measure to the Chosen Definition of O-measure (Definition 1).
The ideal O-measure is annotated as R1∪R4∪R5 (Figure 3.2). In the context of automated
program repair, the correct patch is not available, which means that R5 (which is a subset
of CorrP) is hard to approximate in practice. Thus, the first-step approximation of the
ideal O-measure is taken: using R1 ∪R4 (a subset of OvfP). However, R1 ∪R4 (a subset
of OvfP) still cannot be directly computed due to the unavailability of CorrP : R2 and R3
cannot be excluded precisely. The second-step approximation is taken: using R3 ∪R4 in
Figure 3.2 (our O-measure definition, Definition 1) to approximate R1 ∪R4 by excluding
R1 and including R3. R1 is B ∩ OvfP ∩ CorrP , and R3 is B ∩ OvfP ∩ CorrP .
The inclusion of R3 in inevitable to approximate R4 due to the unavailability of correct
patch. The next paragraph illustrates why the exclusion of R1 is a reasonable choice in the
context of using Opad to improve G&V techniques.

First, I prove that for a particular type of bugs and their corresponding overfitted
patches, R1 is empty in theory. If R1 is empty, R1 ∪ R4 (the first-step approximation
described above) equals to R4. Thus, for these cases, using R3 ∪ R4 (the defined O-
measure, a superset of R4) identifies all overfitted patches that can be identified by the
first-step approximation of the ideal O-measure. The proof in “Proving the emptiness of
B ∩OvfP ∩CorrP for specific cases" is described below. I manually investigate how many
bugs and their corresponding overfitted patches (GenProg 2012 benchmark that is used

21

for evaluation) fall into this particular pattern in this proof. My manual analysis shows
that in theory, R1 is empty for 19% of the bugs (7/36, 36 bugs for which there is at least
one overfitted patch from the four G&V techniques), and their corresponding 34 overfitted
patches. Empirically, we find that for 97% of the patches by G&V techniques, R1 is empty
(i.e., the cardinality is zero). Table 3.1 concludes the statistics of the cardinality of R1, and
the average is 0.47, which is close to 0.

Second, R1 has to be approximated using R1 ∪ R2 (B ∩ OvfP). Such approximation
introduces the inclusion of R2. Since R2 is part of CorrP and is not part of the ideal
O-measure, the inclusion of R2 causes two risks: 1) ineffectiveness in filtering out overfitted
patches, especially if R2 == B ∩ OvfP ; and 2) incorrectly filtering out correct patches.
Empirically, we find that both of the two risks are true in the evaluation: the bugs in the
GenProg 2012 benchmark, the patches from the four G&V techniques (GenProg/AE, Kali,
and SPR), and automatically-generated test cases by Opad . Particularly, for 92% of the
overfitted patches in the evaluation, R2 == B ∩ OvfP . This shows that using B ∩ OvfP
to approximate R1 is ineffective to filter out overfitted patches since for most cases, R1 is
empty. In addition, B ∩ CorrP (i.e., R1 ∪R2 when an automatically-generated patch is
correct instead of overfitted) is not empty for correct patches of 53% of the bugs. These
examples show that using R1 ∪R2 as O-measure or part of O-measure incorrectly filters
out correct patches for 53% of the evaluated bugs. This is also confirmed by a previous
work [127], which shows that using OvfP as O-measure is ineffective.

In summary, Opad uses the proposed definition of O-measure (Definition 1) due to both
theoretical and practical concerns. The intuition behind the proposed O-measure is that
the patched program should not behave worse than the buggy program.

Proving the emptiness of B ∩OvfP ∩ CorrP for specific cases

This proof shows that for particular types of bug and their corresponding overfitted patches,
the proposed O-measure is the most reasonable metric to distinguish between correct and
overfitted patches. Note that the proposed O-measure is not tied to this particular type of
bug, and it also applies to other bugs (as shown in the evaluation).

We first describe the particular type of bugs and its corresponding overfitted patches,
and then show that for these bugs and patches, there do not exist test cases in R1
(B ∩ OvfP ∩ CorrP) in Figure 3.2. First, the code structure of this particular type of
bugs is:

if (cond) S1; else S2;
where S1 and S2 are code statements. Second, this particular type of bugs and their

22

corresponding overfitted patches satisfy the following conditions (which constitute 19% of
the studied benchmark):

(A1) I represents the entire input space; I = I1 ∪ I2 and I1 ∩ I2 = ∅.

(A2) For a buggy program (B), for every input i in I, S1 is always executed.

We use “B(I S1)" to represent that on a buggy program, S1 is executed for every
input in I. In the context of G&V techniques, there must exist at least one test case
(i.e., a pair of an input i and an oracle) so that B(i S1) leads to a failure as the
oracle is not satisfied. This proof should cover all possible test cases in theory. It is
unnecessary and unrealistic to obtain the result of executing every possible test case
because the proof is generalizable for both cases: B(I S1) leads to either a failure
or a pass.

(A3) Overfitted patches modify conditions to redirect every input in I to execute S2.

(A4) Correct patches make the failing test case pass by redirecting every input in I1 to
execute S2, while keeping every input in I2 to execute S1.

(A5) Both overfitted and correct patches change program executions by only modifying
cond. Thus, such patches have no side effects on other parts of the program other
than that the execution flow is changed, e.g., from executing S1 to S2. This means,
for example, for the same input i, the results of executing B(i S1), CorrP(i S1),
and OvfP(i S1) are the same as long as they all execute S1.

Proof of emptiness of B ∩ OvfP ∩ CorrP . We start by inferring the following facts
from the conditions:

(F1) CorrP(I1 S2).
From A4.

(F2) OvfP(I1 S2).
From A1 and A3.

(F3) CorrP(I1 S2) == OvfP(I1 S2).
From F1, F2 and A5. This means that CorrP(I1 S2) and OvfP(I1 S2) have
the same result, i.e., either both failure or both pass.

(F4) CorrP(I2 S1).
From A4.

23

(F5) B(I2 S1).
From A1 and A2.

(F6) CorrP(I2 S1) == B(I2 S1).
From F4, F5, and A5. Similar to F3.

We prove by contradiction. If B ∩ OvfP ∩ CorrP is not empty, there exists at least
one test case that satisfies all three conditions: fails on B (denoted as Condition1), fails on
OvfP (Condition2), and passes on CorrP (Condition3).

From A1, the input of such test case must be either I1 or I2 : 1) if the input is I1,
based on F3, CorrP(I1 S2) and OvfP(I1 S2) should have the same result, either both
failures or both passes. This means that Condition2 and Condition3 cannot be satisfied at
the same time; and 2) if the input is I2, based on F6, CorrP(I2 S1) and B(I2 S1)
should have the same result, thus Condition1 and Condition3 cannot be satisfied at the
same time.

Thus, such test case that satisfies all the three conditions does not exist, which means
B ∩ OvfP ∩ CorrP is empty.

The proof above shows that the proposed O-measure is the most reasonable one for this
particular type of bug. In addition, the O-measure also works well for other bugs (as shown
in the evaluation).

3.3.4 An Optimized Setting of Opad

Opad calculates O-measure based on running test cases against test oracles. Since Opad
uses O-measure by only asserting whether it is zero or not, Opad can be optimized by
deciding a patch is overfitted as soon as O-measure becomes non-zero. For example, for
a patch from G&V techniques, once a test case (new or developer test case) against test
oracles (i.e., crash or memory-safety) fails on the patched version but not on the buggy
version, Opad decides this patch is overfitted. Furthermore, when examining the next patch
from the search space of G&V techniques, Opad can prioritize running the test cases with
oracles that have contributed to filtering out overfitted patches before. In our evaluation,
we evaluated Opad without this optimization to get a full understanding of the effectiveness
of O-measure unless specified. However, we find that, by using this optimization, we can
significantly speed up Opad (e.g., from over 100 to less than 10 minutes for Opad to guide
SPR to generate a correct patch for libtiff-d13be-ccadf, a loose condition bug).

24

3.4 Evaluation

This section presents the experimental setup and the three research questions answered in
this evaluation.

Experimental Setup. Opad is evaluated on the same set of bugs evaluated by previous
work (GenProg, AE, Kali, and SPR). Particularly, we select all bugs for which at least one
of the four repair tools have generated at least one patch. In total, Opad is applied on 45
bugs from 7 systems, and 449 corresponding patches (both overfitted and correct ones) that
are generated by G&V techniques. To generate new test cases, we feed AFL (Section 3.3.1)
with input from non-crashing developer test cases (i.e., test cases that do not make the
program crash). Such non-crashing test cases include all passing test cases and some failing
test cases if the failures are observed by non-crash oracles (e.g., defined expected output).
The reason is that AFL, by its design, does not mutate crashing test cases in order to
avoid focusing on the exact same crash. In this evaluation, AFL is terminated when no
new paths are explored within two hours, since AFL may keep running without manual
interruption. AFL leverages coverage to guide the mutation for better performance, and
the coverage is obtained by running executables from the program under test. For some
evaluated systems that contain more than one executable, AFL is only applied on the
executables that are identified to expose the target bug by developer test cases. Opad
executes each automatically-generated test case against crash oracles ten times to mitigate
possible non-determinism. This number was chosen as an acceptable trade-off between
efficiency of running test cases and efficacy of mitigating non-determinism. The experiment
is primarily conducted in the virtual machine image released by Le Goues et al. [70], except
for SPR’s patches that are obtained from the SPR virtual machine [83]. We host the virtual
machines on computers with 16G RAM and 3.10 GHz Intel i5 CPU.

RQ1: How many overfitted patches does Opad filter out?

Motivation. Identifying overfitted patches is crucial for G&V techniques since it allows
them to continue exploring the search space to eventually find the correct patch. Note
that it is not realistic for G&V techniques to iterate over the entire search space to find all
patches that make the test cases pass. As stated in a recent study [84], there can be up
to thousands of overfitted patches per search space. So, stopping at the first patch that
makes all the test cases pass is a reasonable design choice for G&V techniques. Even if one
generates all patches that make the test cases pass, filtering out overfitted patches could
still save developers’ time in selecting the correct one, as often a few correct patches are
hidden among many overfitted patches [84].

25

Table 3.2: The results of using Opad to filter out overfitted patches from GenProg/AE,
Kali, and SPR. ‘Total’ is the number of overfitted patches evaluated by Opad ; for Kali,
this number is always one (unless a Kali’s patch is correct). Check symbol () means
that GenProg/AE, Kali, or SPR find the correct patch, and these correct patches are not
incorrectly pruned by our approaches. Double check symbol () means that Opad guides
SPR to generate a correct patch (original SPR does not generate this correct patch).

Bug GenProg/AE Kali SPR
Total Crash Mem. Mem. All Crash Mem. Mem. All Total Crash Mem. Mem. All

+ Fuzz + Dev. + Fuzz + Fuzz + Dev. + Fuzz + Fuzz + Dev. + Fuzz
gzip-3fe0-39a3 9 3 0 0 3 1 0 0 1 1 0 0 0 0
gzip-a1d3-f17c 1 0 0 0 0 - - - - 1 0 0 0 0
libtiff-08603-1ba75 6 5 0 0 5 0 0 0 0 1 1 1 1 1
libtiff-5b021-3dfb3 9 9 1 9 9 1 0 1 1 238 238 0 0 238
libtiff-90d13-4c666 1 0 0 0 0 0 0 0 0 1 0 0 0 0
libtiff-d13be-ccadf 6 3 0 0 3 1 0 0 1 13 13 0 0 13
libtiff-ee2ce-b5691 1 0 0 0 0 0 0 0 0 0 0 0 0 0
lighttpd-1794-1795 10 0 0 0 0 - - - - 1 0 0 0 0
lighttpd-1806-1807 6 0 0 0 0 - - - - 1 0 0 0 0
lighttpd-1913-1914 1 0 0 0 0 - - - - 1 0 0 0 0
lighttpd-1948-1949 - - - - - - - - - 1 0 0 0 0
lighttpd-2330-2331 9 0 2 0 2 - - - - 1 0 0 0 0
lighttpd-2661-2662 9 0 0 0 0 - - - - 1 0 0 0 0
python-69223-69224 1 0 0 0 0 - - - - 1 0 0 0 0
python-69368-69372 - - - - - - - - - 1 0 0 1 1
python-69709-69710 - - - - - - - - - 1 0 0 0 0
python-69783-69784 3 0 0 0 0 0 0 0 0 1 0 0 0 0
python-70019-70023 - - - - - - - - - 1 0 0 0 0
python-70098-70101 1 - 1 0 1 0 1 0 1 1 0 0 0 0
wireshark-37112-37111 10 0 10 0 10 0 1 1 1 1 0 0 1 1
wireshark-37172-37171 1 0 1 0 1 0 0 0 0 1 0 0 0 0
wireshark-37172-37173 1 0 1 0 1 0 0 0 0 1 0 1 0 1
wireshark-37284-37285 - - - - - - - - - 1 0 0 0 0
php-307562-307561 - - - - - - - - - 0 0 0 0 0
php-307846-307853 - - - - - - - - - 0 0 0 0 0
php-307914-307915 - - - - - - - - - 0 0 0 0 0
php-307931-307934 9 0 0 1 1 0 0 0 0 1 0 0 0 0
php-308262-308315 - - - - - - - - - 3 0 2 0 2
php-308323-308327 - - - - - - - - - 1 0 0 1 1
php-308525-308529 1 0 0 0 0 0 0 0 0 1 0 1 1 1
php-308734-308761 - - - - - - - - - 0 0 0 0 0
php-309111-309159 1 0 0 0 0 - - - - 1 0 0 0 0
php-309516-309535 - - - - - - - - - 0 0 0 0 0
php-309579-309580 - - - - - - - - - 0 0 0 0 0
php-309688-309716 - - - - - - - - - 1 0 0 0 0
php-309892-309910 0 0 0 0 0 0 0 0 0 0 0 0 0 0
php-309986-310009 10 0 5 0 5 0 0 0 0 1 0 1 0 1
php-310011-310050 9 0 6 5 8 0 1 0 1 6 0 5 0 5
php-310370-310389 - - - - - 0 1 0 1 1 0 0 0 0
php-310673-310681 2 0 0 0 0 0 0 0 0 1 0 0 0 0
php-310991-310999 - - - - - - - - - 0 0 0 0 0
php-311323-311300 - - - - - - - - - 1 0 0 0 0
php-311346-311348 - - - - - 0 0 0 0 0 0 0 0 0
gmp-13420-13421 - - - - - - - - - 0 0 0 0 0
gmp-14166-14167 3 0 0 0 0 0 0 0 0 1 0 0 0 0
Sum 120 20 27 15 49 3 4 2 7 290 252 11 5 265

26

Approach. Opad is applied on four automated G&V techniques (GenProg, AE, Kali,
and SPR) to study whether our approach can correctly filter out overfitted patches while
preserving correct patches. Specifically for GenProg, AE and Kali, the generated patches
are publicly available. So we apply our approach on the released patches and report how
many overfitted patches are successfully pruned by Opad . We obtained the ground truth
for correct and overfitted patches from Qi et al. [117]. A patch is correct if it fixes the bug.
Conversely, a patch is overfitted if it merely causes the test cases to pass and does not
fix the bug. For the bugs that we evaluate, the correct patches from G&V techniques are
semantically equivalent to developer patches.

Results. In total, Opad filters out 75.2% (321/427) overfitted patches from the four
automated G&V techniques. Table 3.2 shows the overall result of filtering out overfitted
patches. Table 3.2 contains all the bugs (45 in total) from the GenProg 2012 benchmark,
for which at least one of the four G&V techniques can generate patches (i.e., overfitted or
correct). Since AE is an adaptive version of GenProg based on a different search algorithm,
we merge GenProg and AE into one column. To show the improvement from different
components of Opad , we show the number of pruned patches in four settings: 1) using
crash oracles on new test cases from fuzz testing (Column “Crash + Fuzz”); 2) using
memory-safety oracles on developer test cases (Column “Mem. + Dev.”); and 3) using
memory-safety oracles on new test cases from fuzz testing (Column “Mem. + Fuzz”); 4)
using the combination of all the above (Opad , Column “All”).

GenProg/AE often generate several patches for a bug, so we show the total number
of patches per bug in Column “GenProg/AE”/“Total”. Kali generates one patch per bug,
which is a total of 17 overfitted patches from Kali (we omit the column that shows the total
number of patches for Kali). For some bugs that SPR has correct patches in the search
space, we set SPR to continue exploring the search space until a patch is accepted by Opad .
Therefore, the number of patches from SPR that are filtered out by Opad may be more
than one. Column “SPR”/“Total” shows the total number of overfitted patches from SPR
that are evaluated by Opad .

The three components of Opad mostly complement each other: 1) using crash oracles
on fuzz test cases filters out 276 overfitted patches (“Crash+Fuzz”); 2) using memory-safety
oracles on developer test cases filters out 42 overfitted patches (“Mem+Dev.”); and 3) using
memory-safety oracles on fuzz test cases filters out 24 overfitted patches (“Mem+Fuzz”).

Opad does not filter out correct patches for ten bugs. We use ‘ ’ or ‘ ’ in Table 3.2
to annotate the bugs that Opad preserves the correct patches for them. However, for three
other bugs, Opad filters out three correct patches (libtiff-5b021-3dfb3, php-307562-307561,
and php-307846-307853) because the correctly-patched programs behave worse than the

27

1 int TIFFWriteDirectoryTagCheckedRational(double value , ...) {
2 assert(value >= 0.0); // failed assertion
3 // the earliest version
4 - if (value == (uint32)value) { ...
5 - } else if (value < 1.0) {...
6 - }
7 + if (value <= 0.0) { // the current version
8 ...}
9 ...}

Figure 3.3: A bug hidden in the buggy version of libtiff-5b021-3dfb3.

buggy programs based on O-measure (i.e., either crash or fail the memory-safety oracles on
some test cases, while the buggy program does not). This happens because there are some
hidden bugs in the buggy version, and such hidden bugs are exposed after the patches are
applied. Such hidden bugs are exposed in the patched version once the patch changes the
control flow of the program (some of these hidden bugs are later fixed by the developers).

We show an example of a hidden bug. In libtiff-5b021-3dfb3, a hidden bug that is
caused by a failed assertion is newly exposed by a correct patch (line 2 in Figure 3.3). We
reported the bug to libtiff developers and the bug has been fixed1. This failed assertion
should have been removed after the functionality had been changed. The earlier version of
this function contains the assertion to abort the program if value is invalid. However, this
function was later modified to capture an invalid value in the if-branch (line 7) and the
assertion became obsolete. The buggy version exits before reaching the assertion (due to the
nature of the target bug), but the correctly patched version continues the execution until
the assertion fails; this results in a non-zero O-measure for the correct patch. Nonetheless,
the generated test cases and our approach should help developers fix the new bugs in the
patched version and, ultimately, improve the quality of the software.

RQ2: Can Opad guide SPR to generate correct patches for more
bugs?

Motivation. We want to evaluate whether Opad can improve automated G&V techniques
in terms of generating correct patches for more bugs. In this evaluation, we focus on
SPR because SPR is shown to have great potential: there are many correct patches in the
SPR search space that are not discovered because they are blocked by overfitted patches.
A prior study [84] shows that there are no more correct patches in the search space of
GenProg/AE and Kali to be discovered for the bugs in this evaluation. Therefore, although
our approach filters out many overfitted patches generated by GenProg/AE, continuing to

1http://bugzilla.maptools.org/show_bug.cgi?id=2535

28

Table 3.3: Results of using Opad to improve SPR (SPR+Opad) on the 19 bugs from the
GenProg 2012 benchmark. Each cell contains two symbols. The first symbol shows whether
SPR+Opad generates a correct patch (Y or N); and the second symbol shows how Opad
contributes in the patch generation process— : filtering out overfitted patches, −: not
filtering out patches (neither overfitted nor correct), B: filtering out both overfitted and
correct patches, and ×: filtering out correct patches only.

Bug ID Crash Mem. Mem. All Bug ID Crash Mem. Mem. All
+ Fuzz + Dev. + Fuzz + Fuzz + Dev. + Fuzz

gzip-a1d3d-f17cb N − N − N − N − php-309111 N − N − N − N −
libtiff-5b021-3dfb3 N B N − N − N B php-309516 Y − Y − Y − Y −
libtiff-d13be-ccadf Y N − N − Y php-309579 Y − Y − Y − Y −
libtiff-ee2ce-b5691 Y − Y − Y − Y − php-309688 N − N − N − N −
python-69783-69784 N − N − N − N − php-309892 Y − Y − Y − Y −
php-307562 Y − Y − N × N × php-310011 N − N N − N
php-307846 Y − Y − N × N × php-310991 Y − Y − Y − Y −
php-307914 Y − Y − Y − Y − php-311346 Y − Y − Y − Y −
php-308262 N − N N − N gmp-13420 Y − Y − Y − Y −
php-308734 Y − Y − Y − Y −

run GenProg/Kali does not generate more correct patches. In contrast, SPR has correct
patches for eight more bugs in its search space (but fails to generate correct patches due to
having too many overfitted patches).

Approach. Opad is integrated with SPR to see if Opad can guide SPR to generate correct
patches for more bugs (see the integration in Figure 5.3). Particularly, whenever SPR
generates one patch that makes existing test cases pass, that patch is validated by Opad (by
calculating O-measure based on new test cases and two oracles). If this patch is determined
as overfitted by Opad (O-measure is non-zero), SPR continues exploring the search space
until it finds the next patch that can pass both the original validation (developer test cases)
and Opad .

Results. Opad guides SPR to generate a correct patch for one additional bug (SPR
previously fixed 11 bugs). Table 3.3 shows the results of applying SPR+Opad on the 19
bugs (from the GenProg 2012 benchmark) for which there are correct patches in SPR’s
search space. We use ‘Y ’ to annotate the case that, Opad helps SPR generate the correct
patch. For libtiff-d13be-ccadf (a loose condition bug), SPR cannot generate a correct patch
without Opad : our approach prunes 13 overfitted patches that block the correct one.

Finding the correct patch. We describe how Opad exposes the flaws in overfitted
patches for libtiff-d13be-ccadf (a loose condition bug), filters them out and finds the correct
patch. The bug is in the image-reading routine (simplified code is presented in Figure 3.4).

29

1 - if (nstrips > 1 // buggy
2 + if (nstrips > 2 // developer
3 + if (nstrips > 1 && 0 // overfitted
4 && compression == COMPRESSION_NONE
5 && stripbytecount [0] != stripbytecount [1]) {
6 TIFFWarning("Wrong␣field ,␣ignoring␣and"
7 "calculating␣from␣imagelength");
8 if (estimate(tif , ...) < 0)
9 goto bad;

10 }

Figure 3.4: Patches for libtiff-d13be-ccadf (a loose condition bug).

The function estimate() at line 8 should only be called when input images are ill-formed.
However, since the condition at line 1 is incorrect, estimate() is called for some well-formed
images as well. The correct patch fixes the condition so that estimate() is only called
when it should be. However, an overfitted patch removes the entire branch (line 3) by
adding &&0 to the condition. Thus, estimate() is never called, even for ill-formed images.
When some automatically-generated test cases exercise the overfitted patch with ill-formed
images, one garbage item, which should otherwise be cleaned up in the estimate() routine,
is used as an array index and this leads to a segmentation violation. All the overfitted
patches that precede the correct one have the described flaw and, therefore, have a non-zero
O-measure and are filtered by Opad . Thus, with the help of automatically-generated test
cases, Opad successfully guides SPR to generate the correct patch.

3.5 Threats to Validity

Non-determinism. Some studied programs show non-deterministic behaviors during the
execution of the automatically-generated test cases. For example, a program may only crash
one out of 10 times given the same input (e.g., due to address space layout randomization).
To mitigate this issue, we execute each automatically-generated test case 10 times, which
reduces the risk of getting spurious results and erroneously filtering out a patch.

Hidden Bugs. In some cases, a correct patch can have a non-zero O-measure because of
hidden bugs. Such correct patches change the control flow of a program and reveal the
bugs that were hidden in the buggy version; this leads to more crashes in the patched
version compared to the buggy version and results in a non-zero O-measure (as described
in Section 3.4 for libtiff-5b021-3dfb3). Although the correct patch would not be accepted
by Opad in this scenario, the test cases that we generated would help developers fix such
hidden bug manually, which remains as future work.

Limitations of Fuzz Testing. Fuzz testing has a limitation of targeting initial levels

30

of input-parsing in programs under test [93]. If a particular patch correctly fixes a bug
in deeper levels of programs, but the program contains other bugs in initial levels, then
the fuzz test cases would crash the program without even reaching the patched code. Our
definition of O-measure eliminates this issue by a comparison with the buggy version: both
versions fail on such a test case and the correct patch is not filtered out.

3.6 Chapter Summary

In conclusion, we experiment with ways to improve existing test cases in order to improve
G&V techniques. We propose an approach to filter out incorrect patches by augmenting
existing test cases. Priv improves existing test cases from two angles—better validity
checking by employing memory-safety oracles and new test cases from fuzz testing. We
propose O-measure, to filter out overfitted patches based on the new test cases and oracles.
Our evaluation on 45 bugs from 7 systems shows that Priv filters out 75.2% of the overfitted
patches. More importantly, Priv helps SPR generate the correct patch for one additional
bug (original SPR can only generate correct patches for 11 bugs).

31

Chapter 4

APARE: Automatically Learning Fix
Patterns from Past Fixes to Generate
Recurring Fixes

4.1 Introduction

Developers spend much of their time fixing bugs in software programs [66]. Unfortunately,
the number of bugs that need to be fixed is significantly larger than the time and resources
allow [13]. Therefore, researchers have recently proposed a number of techniques that aim
to automatically repair programs [70, 115, 117, 51, 61, 58, 75].

Along with proposing techniques for automated repair, researchers recently performed
empirical studies on the nature of bug fixes performed by developers [90, 154, 108]. One
study on bug fixes of Java programs shows that 13.3–27.7% of bug fixes are identical
or similar to another fix that is committed earlier within the same project [108]. This
observation suggests that within a project, past fixes may be leveraged to automatically fix
future bugs. Fixes that are identical or similar to a past fix are referred to as recurring
fixes. This work limits recurring fixes to project-specific recurring fixes and not target the
general recurring fixes across projects (e.g., adding a null check for null pointer exception).

For example, Fig. 4.1 (automatically generated by our approach) and Fig. 4.2 show
two similar fixes from Eclipse SWT. “-” denotes a line to be deleted, and “+” denotes a
line to be added. Both fixes add method calls of ImageList.put(int, Image) when the if
condition index == -1 is not satisfied. If we can learn and apply such recurring fix patterns
automatically, we can save developers time by showing them the correct fix.

32

1 public void setImage (Image image) {
2 checkWidget ();
3 if ((style & SWT.SEPARATOR) != 0) return;
4 super.setImage (image);
5 if (!OS.GTK_IS_IMAGE_MENU_ITEM (handle)) return;
6 if (image != null) { // context
7 ImageList imageList = parent.imageList;
8 if (imageList == null)
9 imageList = parent.imageList = new ImageList ();

10 int imageIndex = imageList.indexOf (image);
11 - if (imageIndex == -1)
12 - imageIndex = imageList.add (image);
13 + if (imageIndex == -1) {
14 + imageIndex = imageList.add (image);
15 + } else {
16 + imageList.put (imageIndex , image);
17 + }
18 ...
19 } else {
20 OS.gtk_image_menu_item_set_image (handle , 0);
21 }
22 }

Figure 4.1: APARE generates this fix automatically, identical to developers’ fix, for Eclipse SWT
bug 94003.

1 int imageIndex (Image image) {
2 if (image == null) // context
3 return OS.I_IMAGENONE;
4 if (imageList == null) { // context
5 Rectangle bounds = image.getBounds ();
6 imageList = display.getImageList(
7 new Point (bounds.width , bounds.height));
8 - int index = imageList.indexOf (image);
9 - if (index == -1)

10 - index = imageList.add (image);
11 ...
12 }
13 int index = imageList.indexOf (image);
14 + if (index == -1) {
15 + index = imageList.add (image);
16 + } else {
17 + imageList.put (index , image);
18 + }
19 ...
20 }

Figure 4.2: APARE leverages this fix to generate the fix in Figure 4.1.

Project-specific recurring fixes are not well handled by current general automated
program repair techniques because such fixes are relatively large in size (or are embedded in
complex fixes) and often contain rich project-specific semantics (e.g., adding an invocation

33

of a project-specific method). For example, the complete fix (i.e., making all failing test
cases pass) for SWT bug 94003 contains 154 lines in seven methods (61 deleted lines and 93
added lines). In this work, we propose APARE to complement existing repair techniques in
generating project-specific recurring fixes.

Current general automated program repair techniques search for a correct repair in
a constructed search space. There are different ways of constructing the search space:
(1) applying modification operators (add, delete, and mutate) on the code (GenProg [70],
RSRepair [116] and Kali [117]), (2) using pre-defined or automatically-learnt common fix
patterns to create a repair (PAR [61], SPR [83], and Genesis [82]), and/or (3) using constraint
solving to fix defective conditions (SPR [83], Angelix [94], SemFix [107], Qlose [31]). Type
(1) techniques do not work well in generating recurring fixes because recurring fixes are
often complex in size and result in large search spaces that make type (1) techniques
intractable. In fact, many fixes of type (1) techniques are single line deletions to avoid
buggy behaviours [117]. Type (2) techniques leverage common fix patterns across projects
but do not recognize project-specific fix patterns. For example, Genesis [82] concludes
common fix patterns for specific types of bugs, such as null pointer exceptions, and class
cast exceptions. Type (3) techniques target the bugs that can be fixed by repairing the
defective conditions, thus they may not be effective in generating recurring fixes with rich
project-specific semantics.

Recent advances in automated program repair leverage past fixes to rank the patch
candidates in the search space. For example, Prophet [85] ranks the patch candidates in
SPR’s search space based on a probability model that is trained from past fixes. Le et
al. [68] propose (referred as HistoryDriven) to rank and select the top patch candidates
based on the code similarity between the patch candidates and mined frequent cross-project
fix patterns. These techniques may not generate project-specific recurring fixes since the
mined fix patterns or the built probability model is based on cross-project fix patterns,
which do not cover project-specific semantics.

Recurring fixes may be full or partial to complete fixes (i.e., making all failing test
cases pass). When partial, recurring fixes are still valuable and can help developers write
complete fixes. Presenting partial fixes to developers can significantly improve debugging
correctness [58, 135]. However, recurring fixes that are partial do not mean such fixes are
recurring at the statement level (e.g., deleting a method invocation). Particularly in this
work, we target generating recurring fixes that are complete at the method level, but maybe
partial to the complete fix. In this work, a complete fix to one method is referred to as a
method fix. As an example, the fix in Fig. 4.1 is a method fix generated by APARE. While
the fix alone does not completely fix the bug, it is a correct and a complete fix for the faulty
method setImage (The complete fix contains seven method fixes). APARE generates four

34

correct method fixes for this bug and the remaining three are not recurring fixes.

4.1.1 Automatically learning and applying project-specific fix pat-
terns: state of the art and challenges

The central issue to generating project-specific recurring fixes is in learning and applying
project-specific fix patterns. The techniques in the systematic editing tools Sydit [95] and
LASE [96] may be used to automatically learn fix patterns at the method level. In fact,
with a few modifications that allow them to search through a project’s commit history, they
can theoretically be used to build a database of project-specific fix patterns and use those
fix patterns to automatically generate recurring fixes.

To determine whether these tools can handle automated repair tasks on project-specific
recurring bugs, this work conducts an empirical study (§4.3) on recurring fixes. Sydit and
LASE are unsuitable for automated repair since they produce an unacceptably large number
of false positives and false negatives. I identified the following challenges that prevent Sydit
and LASE from working well for generating recurring fixes.

(i) More relaxed and accurate context matching: Sydit requires that the contexts—
data and control dependencies, and changed lines (i.e., lines that start with -) of the fix—to
be identical at the Abstract Syntax Tree (AST) level.

The empirical study finds that 27–92% of recurring method fixes have different contexts
at the AST level (§4.3.4). For example, the contexts are different in Fig. 4.1 and 4.2.
According to Sydit’s definition of context, line 2 and 4 are contexts of the edits in Fig. 4.2
and line 6 is a context of the edits in Fig. 4.1, as annotated by comments. Therefore, Sydit
cannot find a matched context for line 4 in Fig. 4.2. Relaxing some context requirements is
needed to match the two examples. In addition, Sydit cannot match line 2 in Fig. 4.2 with
line 6 in Fig. 4.1, which are semantically equivalent (if (image == NULL) return; foo(); is
equivalent to if (image != NULL) foo();), because they are syntactically different. A new
solution is needed to match the semantically equivalent but syntactically different contexts.

(ii) More precise selection of past fixes and faulty locations: Since Sydit and LASE
are designed for refactoring code instead of fixing bugs, they require developers to provide
information such as the faulty methods and past fixes that are similar to the given bug.
Developers often do not know such information. Simply using faulty methods identified by
fault localization and all past fixes are imprecise. The evaluation in Section 4.5.1 shows

1Sydit accepts minor context differences, e.g., if(ptr) and if(foo()) can be matched.

35

that directly applying Sydit and LASE to 20 recurring bugs achieves a precision of 0.003%
and 0.08% only. Precision is the portion of generated fixes that are correct. A new solution
is needed to precisely select fix patterns and generate correct fixes for faulty locations.

In summary, while the systematic editing tools Sydit and LASE can be applied to
automated repair, the high number of false positives and false negatives make it impractical.
A program repair approach that automatically learns fix patterns should significantly
reduce the manual effort and increase the effectiveness of program repair. However, these
techniques are promising and can be made practical by solving the challenges identified in
our empirical study.

4.2 The Main Contributions of this Chapter

This chapter proposes APARE—a novel automated repair technique that learns fix patterns
automatically to effectively generate recurring fixes.

Given a bug with relevant test cases, APARE automatically learns patterns at the
Abstract Syntax Tree (AST) level from past fixes. Next, APARE uses fault localization
techniques [8] to identify likely faulty methods, identifies applicable fix patterns based on
contexts, and generates recurring fixes from the fix patterns automatically.

To address the challenges above (Section 3.1.1), this work implements four main tech-
niques: (1) AST-based program analysis to learn fix patterns, (2) fix pattern filtering to
automatically select past fixes that are big enough for fix pattern matching, (3) a new match-
ing algorithm named semantics-aware percentage context matching algorithm to
match the similar contexts (both syntactic and semantic similarities) between past fixes
and faulty locations with high accuracy, (4) generating new fixes by synthesizing identifiers
and checking the validity of the generated fixes in new locations. Techniques (2)–(4) are
novel, while (1) is similar to that of Sydit and LASE.

These techniques allow APARE to remove the manual effort in learning fix patterns,
which is essential to generate recurring fixes and is required by previous work such as PAR
and R2Fix.

In general, techniques (2)–(4) enable APARE to identify more accurate matches between
past fixes and faulty locations to generate correct recurring fixes. APARE can generate
fixes that are similar but not identical to past fixes; APARE can generate fixes even if the
contexts are different.

36

Table 4.1: Studied Software

Software LOC Bugs Commits of Bug Fixing Method Fixes
Eclipse SWT 731K 1,218 1,752 6,066
Eclipse JDT 2.29M 1,694 4,914 15,374
ZK Web Framework 778K 563 1,064 873
OpenJPA 505K 778 1,345 3,358
Wicket 319K 1,789 2,463 5,420

This chapter evaluates the correctness and completeness of APARE on recurring bugs
from five projects. On the 20 randomly selected recurring bugs, APARE generates 20
correct method fixes that the search-based repair technique RSRepair and the pattern based
technique PAR, cannot generate. The precision of APARE is acceptable compared to that
of existing automated repair techniques (6–23%) [83, 70].

For the 20 recurring bugs, APARE learns 3,838 fix patterns automatically and uses
them to generate 34 method fixes, 24 of which (70.6%) are correct; 83.3% (20 out of 24) are
identical to developer fixes; 5 are complete fixes; 2 are over 75% complete fixes compared to
the complete fixes by developers. APARE is robust—on 5 randomly selected non-recurring
bugs, APARE only generated incorrect method fixes for one of the bugs.

This chapter makes the following contributions:

• a study towards understanding project-specific recurring fixes;

• a novel automated technique (APARE) that targets project-specific recurring fixes;

• an evaluation of APARE on 25 bugs (20 recurring and 5 non-recurring) in real-world Java
projects;

• a comparison of APARE against general automated repair tools (RSRepair, PAR, and
HistoryDriven) on the collected 20 recurring bugs;

4.3 A Study of Project-Specific Recurring Fixes

The main goal of the study is to obtain insights on how to learn and apply fix patterns
for automatically generating recurring fixes. Inspired by Sydit, we study the contexts (i.e.,
control and data flows) of recurring fixes.

Totally five open source systems are studied (Table 4.1), which have been commonly
used by previous work about recurring fixes and systematic edits [95, 96, 108]. The following
bug fixing time periods are studied: from 2004/07 to 2006/07 for SWT and JDT, from

37

2006/05 to 2014/07 for ZK, from 2006/05 to 2014/12 for OpenJPA and 2004/09 to 2014/12
for Wicket.

4.3.1 Identifying Bug Fixing Commits

Bug-fixing commits are identified automatically by scanning the commit logs for bug
IDs defined in bug databases. This automated process uses the same heuristics that are
proposed by Mockus and Votta [99] and used by previous work [114], which is to look for
bug IDs in commit logs by identifying numbers that are separated by delimiters including
“#().,\n\t\r\f". Table 4.1 presents the number of bug fixing commits and the number of
method fixes in the studied software.

4.3.2 Identifying Candidate Recurring Fixes

This empirical study focuses on recurring method fixes, which are two method fixes that
are identical or similar to each other, also referred to as recurring method fix pairs. To
conduct the study, a large sample of recurring method fix pairs should be identified first.
The percentage of recurring method fix pairs is low. For example, if a project has 1,000
method fixes and 20% of them are recurring fixes (fixes that are identical or similar to
another fix), the percentage of recurring fix pairs would be at most 4% and can be as low
as 0.02%1. Therefore, if random 100 pairs are sampled, 0–4 pairs would be expected to
be collected, which would be too small for a comprehensive study. Since recurring fixes
must be similar to some extent, pairs of candidate recurring fixes are identified if that are
at least 60% similar at the Abstract Syntax Tree (AST) level (details at the end of §4.3.2)
to filter out pairs that are unlikely to be similar. Although this approach might miss some
recurring fix pairs, this is the best effort since random sampling is prohibitively expensive.
The threshold is set to be relatively low, i.e., 60%, to minimize missing pairs of recurring
fix.

I propose and apply the following AST-based technique to identify potential recurring
fixes automatically.

Representing Fixes At the AST Level. A widely used tool, ChangeDistiller [35] is
chosen to represent fixes as syntactical instead of textual differences (diff). Specifically, for

1If all 20% of the recurring fixes (200 in total) are similar to each other, then the percentage of recurring
fix pairs is

(
200
2

)
/
(
1000
2

)
=4%. If 200 of the recurring fixes form 100 recurring pairs where each pair is similar

to each other but different from the rest, then the percentage of recurring fix pairs is 100/
(
1000
2

)
=0.02%.

38

1 - OS.gtk_entry_set_max_length (entryHandle , limit);
2 + if (entryHandle !=0)
3 + OS.gtk_entry_set_max_length (entryHandle ,limit);

Figure 4.3: A Bug Fix in Diff Format.

1 INSERT: if (entryHandle !=0)
2 PARENT_CHANGE_OF:
3 OS.gtk_entry_set_max_length(entryHandle , limit);

Figure 4.4: Two Edit Operations from ChangeDistiller for the Fix in Figure 4.3

two versions A and B of a program file (the bug fix is the changes from version A to version
B), ChangeDistiller calculates the minimum tree edits needed from the AST of version A
to the AST of version B. Figure 4.4 shows ChangeDistiller’s representation of the fix in
Figure 4.3. It first inserts an if statement, and then changes the parent of the method
invocation to the newly inserted if statement.

Associating Relevant Edits. Two edits are associated as relevant if they are either defs
or uses of same variables. For example, in Figure 4.4, the two edits are associated because
they are uses of entryHandle.

Similarity Comparison of Bug Fixes. Given two sequences of edits of two bug fixes,
the Longest Common Subsequence (LCS) algorithm is used to find matching edits between
the two sequences, and calculate the similarity using:

SimilarityMetric =
2× No. of Matched Edits in Two Sequences

Sum of the No. of Edits in the Two Sequences
(4.1)

Only pairs of fixes whose SimilarityMetric is 60% or higher are kept as candidate pairs.
Also, a minimal number of matched edits of three is required because if two bug fixes have
only two or fewer edits in common, they are unlikely similar. Two edits are matched if and
only if they have the same change type (e.g., insert), statement type (e.g., if statement),
and similar relevant edits. Relevant edits of two edits are similar if the number of matched
edits between the two is above a threshold (50% in our experiment). In this case, edits
match if they have the same change type and statement type, but similar relevant edits are
not required to match.

39

4.3.3 Manual Examination of Recurring Fixes

Manual analysis is performed on a random sample of 150 pairs of candidate recurring fixes
from each project (a total of 750 pairs for the five projects). One of my co-authors and
I (see “Statement of Contributions”), examine each pair of bug fixes independently and
then reach an agreement on the results, i.e., whether two fixes are similar, and whether
the contexts of recurring pairs are identical or different. If we disagree on a pair, another
co-author examines the pair, and we take the majority voting.

Specifically, we manually check whether a pair of bug fixes are identical, similar, or
different. Identical and similar fix pairs are recurring fixes. A fix pair is similar if they
satisfy one or multiple of the following conditions: (i) fix A is a subset of fix B or vice versa,
(ii) source code has the same method names with different types or different number of
arguments, (iii) fix A and fix B are identical except branch conditions’ syntax is slightly
different, and (iv) source code statements are semantically equivalent (§ 4.4.3-(1)). All
other fix pairs are considered different fixes.

We check whether recurring fixes have identical or different contexts. Inspired by
Sydit [95] and LASE [96], we define context as changed lines (i.e., lines that start with -) of
a fix and their backward control and data dependencies. Two recurring fixes have identical
context if their control and data dependencies are identical. Otherwise, we consider the
two fixes have different contexts. Fig. 4.1 and 4.2 are recurring fixes with different contexts.
The contexts are different because the control dependencies in Fig. 4.1 (line 6) and those in
Fig. 4.2 (line 2 and 4) are different.

4.3.4 Study Results

Table 4.2 shows the results of manual examination of recurring fixes. In total, we verified
242 true recurring fixes (54 from SWT, 63 from JDT, 38 from ZK, 61 from OpenJPA and
26 from Wicket).

Manual verification shows that 27–92% of the recurring fixes have different con-
texts. The results of our empirical study show that state-of-the-art approaches [95] would
not work for most of the recurring fixes due to the different contexts. This empirical finding
exposes challenges of learning and applying recurring fix patterns (§4.1.1). New techniques
are needed to generate recurring fixes with different contexts.

40

Table 4.2: Summary of Recurring Fixes

Software Candidate Sample Recurring Identifical Different
Pair Size Fixes Context Context

Eclipse SWT 5,439 150 54 37% 63%
Eclipse JDT 19,410 150 63 38% 62%
ZK Web Framework 404 150 38 8% 92%
OpenJPA 1,991 150 61 49% 51%
Wicket 4,876 150 26 73% 27%

Semantic-Aware
Percentage Context

matching ($4.4.3)

fault localization
results

Extracting and Filtering
Fix Patterns ($4.4.1)

fix patterns

Generating
Fixes ($4.4.4)

APARE

software
history

buggy
version

+
+
-

+
+
-

Identifying Possible
Faulty Locations ($4.4.2)

failing/passing
test cases

Figure 4.5: The overview of APARE

4.4 Design of APARE

This section describes the four components of APARE (as illustrated in Figure 4.5). APARE
generates fix patterns from all past bug fixes that were committed before this bug was fixed
(§ 4.4.1). Given a set of test cases including at least one failing test case, it then uses fault
localization techniques to identify possible faulty locations (§ 4.4.2), and performs context
matching to identify fix locations and past fix patterns that may be applicable to the given
bug (§ 4.4.3). Finally APARE applies fix patterns to applicable fix locations (§ 4.4.4).

As discussed in §4.3, 27–92% recurring fixes have different contexts, thus techniques such
as Sydit that require identical context matching cannot be applied directly. Simply relaxing
the identical context matching requirement would cause many incorrect fixes generated at
irrelevant locations [95, 96]. APARE addresses this open challenge by using a semantics-
aware percentage context matching algorithm. Inspired by the empirical study results,
the matching algorithm ignores irrelevant contexts, and uses semantic matching to match
semantically equivalent but syntactically different contexts.

41

Manually identifying similar fixes in history is time-consuming. Given the potentially
faulty methods identified by fault localization techniques, a simple heuristic that developers
can use is to search for all past fixes that modify these faulty methods and other methods
with identical names to these faulty methods. However, this simple heuristic could return
many past fixes and the burden would be on the developers to manually select one or many
recurring past method fixes from them. For example, to fix bug 139329 in Eclipse SWT,
the above heuristic returns 589 past method fixes for developers to manually examine.

The design of APARE favours high precision—ensuring generated fixes are correct,
instead of favoring high recall, i.e., generating as many correct fixes as possible. The reason
is two fold. First, incorrect and low quality fixes can hurt debugging correctness [135].
Second, even if no fixes are generated for a bug, developers can still follow their normal
process to fix the bug, in which case APARE adds no cost to the process. Since automatic
fix generation is extremely challenging, it is still valuable even if the recall is low (PAR,
GenProg and SPR [83] fix only 1–17% of bugs automatically [61]).

4.4.1 Extracting and Filtering Fix Patterns

APARE learns general and accurate fix patterns at the AST level from past fixes. Bug
fixing commits are identified using links to bug reports in commit messages, as illustrated
in Section 4.3. Fix patterns include edits at the AST level that transform the code and
contexts of the edits. Contexts are included since they are crucial in deciding if the edits
can be applied to new locations (§ 4.3). For each fix pattern, APARE abstracts identifiers
(e.g., variable names) to make it general to other fix locations. The techniques described
in (1) and (2) below are similar to those in Sydit [95], so the these techniques are briefly
summarized.

(1) Extracting Edits at the AST Level. APARE uses ChangeDistiller [35] to generate
program differences at the AST level. ChangeDistiller uses four types of edit operations to
represent program differences: update, move, delete, and insert.

update(u, v): Statement u is updated to v.

move(u, v, k): Statement u is moved from its current parent to v as a child at index k.

delete(u): Statement u is deleted.

insert(u, v, k): Statement u is inserted as the child of the statement v at index k.

Fig. 4.2 shows a bug fix in diff format. The corresponding edits on an AST are as follows.
For each edit, we show the relevant line numbers. For example, the first edit “move (‘if

42

Figure 4.6: The complete fix pattern extracted by APARE from the motivation example
(Figure 4.2). The grayed statements are the context of the fix – data and control dependencies.
All identifiers are abstracted and ready for matching against new locations.

(index = -1)’, ‘imageIndex’, 3) @L9, L14” means to move the if statement that is originally
at line 9 to be the child of the method imageIndex at index 3, and the new location is line
14.

1. move (‘if (index = -1)’, ‘imageIndex’, 3) @L9, L14

2. insert (else_statement, if_statement=‘if (index == -1)’, 1) @L16

3. insert (‘imageList.put (index, image);’, else_statement, 0) @L17

4. delete @L8

(2) Extracting Data and Control Dependencies. APARE extracts control and data
dependencies of each statement that is inserted, deleted, updated and moved. Specifically,
for two versions of code (original and patched), APARE computes two backward program
slices (one for control dependencies and one for data dependencies) for each changed
statement, where the statements are the seeds for the slice. Then, APARE locates the
corresponding nodes of the control and data dependencies of the patched version in the
original code, and takes a union with the dependencies of the original version to make a
complete dependency set. Taking a union with the dependencies in the patched version is
crucial because applicable edits should follow context in the patched version as well.

(3) Filtering Fix Patterns. Many learnt fix patterns have only one or two lines of change,
e.g., ‘adding a null check’. Such small fix patterns are often applicable to many locations

43

and thus cause many incorrect fixes to be generated. Since APARE aims to generate fixes
with high precision, APARE filters out these small fix patterns, and focuses on generating
more complex fixes. In addition, such small patterns have been successfully applied by
previous work such as PAR [61] and R2Fix [75], and are not the focus of APARE. Instead,
APARE aims to complement existing techniques. Specifically, APARE keeps only the fix
patterns for which both the number of edits and the number of contexts are greater than
two.

An example of the fix pattern extracted by APARE Figure 4.6 shows the fix pattern
that APARE extracts from the past fix in Figure 4.2. The fix pattern is composed of four
edits that are described in (1) and the context. The grayed statements are the context
related to the fix based on control and data dependencies. As described in (1), all the
identifiers of the fix are abstracted in the fix pattern, e.g., image is abstracted to v1.

4.4.2 Identifying Possible Faulty Locations

APARE uses fault localization techniques [8] to narrow down the scope of applicable
methods by identifying possibly faulty locations. APARE collects execution information
from both failing and passing test cases, and ranks the executed lines using the Jaccard
similarity coefficient. APARE selects top ranked lines and uses their corresponding methods
as potentially faulty methods. In this experiment, APARE uses either top 5% or top 200
ranked lines when selecting top 5% ranked lines yields more than 200 lines; this significantly
limits the size of potentially faulty methods when repairing programs with long execution
paths. I observed that methods in the same class involve recurring fixes; however test cases
in the bug reports only trigger one method out of several faulty methods in the same class.
Therefore, APARE includes all methods from the classes of the identified methods, but
only from relatively small classes which have fewer than 70 methods. For classes with more
than 70 methods, only the methods that contain the top ranked lines are included as faulty
methods.

4.4.3 Semantics-Aware Percentage Context
Matching to Find Applicable Fix Patterns

Guided by the empirical study of recurring fixes, APARE proposes a new matching algorithm
which considers both semantic and syntactic similarities, and tolerates some differences
in context: semantics-aware percentage context matching algorithm (Algorithm 1).
Compared to Sydit’s matching algorithm, APARE proposes three key techniques to enable

44

Algorithm 1: Semantics-Aware Percentage Context Matching Algorithm
Input: FP, Method /* the fix pattern and the target method */
Output: m_id /* a set of matched identifiers from FP to Method */
Output: matched /* whether FP and Method are matched */

1 m_leaves ← ∅; /* a set of matched leaf nodes */
2 m_nodes ← ∅; /* a set of matched all nodes*/
3 matched ← false; /*whether FP and Method are matched*/
4 ETranform(FP); ETranform(Method);
5 matchLeafNodesSemantically(FP, Method, m_leaves);
6 m_id ← matchInnerNodesSemantically(FP, Method, m_leaves, m_nodes);
7 matched ← isPercentageMatched(FP, m_nodes);

more accurate matching: (1) equivalence transformations to identify more matches of
similar contexts precisely, (2) semantic matching in addition to syntactic matching for
better accuracy, and (3) percentage context matching to match similar but not identical
context.

Algorithm 1 takes a fix pattern and a target method in AST format as input and
finds matched AST nodes and identifiers between them. First, it performs (1) equivalence
transformations (line 4) on both the fix pattern and the target method to transform
semantically-equivalent but syntactically-different code snippets into syntactically-identical
code snippets. Second, it finds semantically- and syntactically-similar pairs of leaf nodes
between the two ASTs (line 5). Third, for each pair of matched leaf nodes, it matches the
inner nodes (non-leaf nodes) on the two paths from the roots of the ASTs to the two leaf
nodes (line 6) by tolerating syntactic differences caused by unmatched control dependencies.
Both the second and third steps leverage (2) semantic matching to ensure the matched
nodes are semantically similar. Last, the score of similarity is calculated by Formula 4.2
based on the matched nodes. A fix pattern and a target method are matched if the score
passes a threshold. The third and last steps perform (3) percentage context matching.

This section explains the three key techniques. Also, it presents explanations of each
function used in Algorithm 1 when (3) percentage context matching is explained.

(1) Equivalence Transformations. As discovered in our empirical study, recurring fixes
can have different but semantically equivalent contexts. To improve the accuracy of AST-
level context matching between fix patterns and target methods, the following equivalence
pairs are defined, which are used by APARE to transform both fix patterns and target
methods. Fig. 4.7 shows an example of two recurring fixes from SWT that are equivalence
under E6.

45

- double lineWidth = Cairo.cairo_get_line_width(handle);

- Cairo.cairo_set_line_width(handle,

lineWidth/(width/2f));

(a)

- Cairo.cairo_set_line_width(cairo,

Cairo.cairo_get_line_width(cairo)/(width/2f));

(b)

Figure 4.7: An Example of Equivalence 6 (E6)

E1: if (!v) then ThenBlock else ElseBlock
≡ if (v) then ElseBlock else ThenBlock

E2: if (v != Expression) then ThenBlock else ElseBlock
≡ if (v == Expression) then ElseBlock else ThenBlock

E3: if (v) then return; OtherStatements
≡ if (v) then return; else OtherStatements

E4: if (v) then ... else return; OtherStatements
≡ if (v) then ... OtherStatements else return;

E5: Object v; v = Expression;
≡ Object v = Expression;

E6: (Object) v = Expression;
M(..., v, ...); (no defs of v between)
≡ M(..., Expression, ...);

Equivalence transformations are crucial, because they improve the accuracy of AST
context matching by increasing the syntactic similarity of AST structures. For example,
line 6 in Fig. 4.1 and line 2 in Fig. 4.2 are semantically equivalent (E2 and E3), yet they
have different AST structures, which prevents them and their descendent AST nodes from
being matched.

After equivalence transformations on fix patterns and target methods, APARE updates
the edits accordingly. For example, using E3, “1. move (‘if (index = -1)’, ‘imageIndex’, 3)"
becomes “1. move (‘if (index = -1)’, ‘else_statement’, 3)". ‘else_statement’ is the else
statement introduced by the E3 transformation.

(2) Semantic Matching on Method Invocations. As a refactoring tool, Sydit does
not require method, variable, or type names to match. It can afford to do so because it asks

46

developers to pick a past fix and select a target method to apply to. As a fully automatic
tool, APARE needs to identify applicable fixes from many past fixes, and applies them to
many methods because developers often do not know what the faulty methods are. Such
wide application causes many inaccuracies [95, 96] (supported by §4.5.1). To address this
issue, APARE’s AST matching algorithm is restricted by matching only method invocations
with semantic similarity, because we find that recurring fixes often involve changes to
method invocations with semantic similarity. Recall that favoring high precision is our
design choice. The following example shows how APARE decides whether two method
invocations are semantically similar.

For example, in order to compare method invocations OS.XQuery
Color(display, data.colormap, color) and OS.gdk_co
lormap_query_color(colormap, color.pixel, color),
a vector of tokens for each method convocation is constructed based on naming conventions
and delimiters. The first vector is <OS, X, Query, color, display, data, colormap,
color>, and the second vector is <OS, gdk, colormap, query, color, pixel, color>. The
matched names are in bold. These two vectors are compared and the percentage of matched
words in two vectors is calculated, which is 10/15. Two method invocations are semantically
similar if the percentage of matched words passes a threshold (Tsemantic). This threshold is
set to be 0.6 in the evaluation.

(3) Percentage Context Matching. The matching algorithm (Algorithm 1) enables
percentage matching using two steps. First, matchInnerNodesSemantically (line 6 in
Algorithm 1) tolerates syntactic differences of AST structures caused by unmatched control
dependencies. The details are in Algorithm 2. Second, after collecting matches of AST
nodes, APARE leverages the score of similarity (Formula 4.2) to tolerate unmatched
contexts (control/data dependencies and changed code). Technique (2) semantic matching
is leveraged in both leaf and inner node matching to improve the matching accuracy since
semantic similarity is required.

Algorithm 2 allows some inner nodes to be ignored from both the fix pattern and the
target method (lines 11–15). For example, the leaf node “index = imageList.add(image);"
(line 10 in Fig. 4.2) and the leaf node in line 12 of Fig. 4.1 match exactly. However, the
two paths from the roots to the leaf nodes are not matched because the inner nodes on
the paths fail to match after equivalence transformations (e.g., lines 3 and 5 of Fig. 4.1
have no matching nodes in Fig. 4.2). Then these unmatched inner nodes are added to the
sets of ignored nodes (ignoredFP and ignoredM) from the fix pattern and the target method
respectively, so that they are always ignored (line 18). Note that the sets of ignored nodes
are assigned only in the first iteration (lines 5–22). During the rest of the iterations, they

47

Algorithm 2: matchInnerNodesSemantically(FixPattern fp, Method method, LeafNode-
Matches m_leaves, NodeMatches m_nodes)
1 ignored ← false;
2 m_id ← ∅; /*a set of identifier matches*/
3 ignoredFP ← ∅; /* a set of ignored nodes from the fix pattern*/
4 ignoredM ← ∅; /* a set of ignored nodes from the method*/
5 repeat
6 foreach unique (x, y) ∈ m_leaves do
7 /* unique means x matches with y only in m_leaves*/
8 if isPathMatch(x, y) then
9 addNodesFromPaths(x, y, m_nodes);

10 else
11 if !ignored then
12 /* get paths from root to leaf node */
13 p1 = rootFP x; p2 = rootmethod y;
14 addNodesFromPathTolerance(p1, p2, m_nodes, ignoredFP,

ignoredM);
15 end
16 end
17 end
18 ignored ← true; /*only ignore nodes at the first iteration*/
19 addNodeMappingsFromPath(m_nodes, m_leaves, ignoredFP, ignoredM);
20 buildIdentifierMappings(m_id, m_nodes);
21 m_leaves ← m_leaves ∪ relaxConstraints(fp, m_nodes);
22 until m_leaves does not change;
23 return m_id

are not added, as ignored is set to true in line 18. Only in the first iteration, the matching
requirement is relaxed because the mappings of leaf nodes are the most strict, which require
exact matching of AST labels while the rest of the iteration require only type matching in
relaxConstraints (line 21).

The following list of methods presents the functionalities of methods used in Algorithm 1
and 2 below. Compared to Sydit, the following three methods are new. Time and space
complexity is provided for each method, as well as for Algorithm 1 and Algorithm 2 (see
the last of the following list).

• ETransform(FP), ETransform(Method): Performs equivalence transformations on the

48

fix pattern and the target method.
Time complexity: O(n), where n is the number of statements in FP or Method.
Space complexity: constant spaces.

• matchLeafNodesSemantically(fp, method, m_leaves): For every pair of leaf nodes (x,
y) from fp and method, if (i) the AST labels of x and y are equivalent (e.g., "T1 v1 =
M(v3)" and "T2 v2 = M(v4)"), and (ii) x and y are semantically matched (refer to
(2) Semantic Matching on Method Invocations as described earlier), (x, y) is added to
m_leaves.
Time complexity: O(n∗m), where n is the number of leaf nodes in fp and m is the number
of leaf nodes in method.
Space complexity: n+m, where n is the number of leaf nodes in fp and m is the number
of leaf nodes in method.

• isPercentageMatched (FP, m_nodes): Based on matches of AST nodes (m_nodes), the
score of similarity is calculated as Formula 4.2. It returns true if the score passes the
threshold, false otherwise.
Time complexity: O(n +m), where n is the number of AST nodes in FP, and m is the
number of matches of AST nodes in m_nodes.
Space complexity: constant space.

The first three below are modified compared to Sydit. The rest are similar to those of
Sydit.

• addNodesFromPathTolerance(p1, p2, m_nodes, ignoredFP, ignoredM): For every
node x in p1, it finds a node y in p2 that is exactly matched with x (x and y have
equivalent AST labels), and adds (x, y) to m_nodes. If y cannot be found, it adds x to
ignoredFP. Finally, it adds all unmatched nodes in p2 to ignoredM.
Time complexity: O(n), where n is the length of the longer path of p1 and p2.
Space complexity: n+m, where n is the length of p1 and m is the length of p2.

• addNodeMappingsFromPath(m_nodes, m_leaves, ignoredFP, ignoredM): From mul-
tiple leaf node mappings, it adds inner node mappings by selecting the best leaf node
mapping. It uses pathMatchScore and LCSMatchScore from Sydit [95]. Comparing to
Sydit, the modification is that ignoredFP and ignoredM are excluded from the paths from
the root to the leaf node.
Time complexity: O(n), where n is the number of node matches in m_nodes.
Space complexity: constant spaces.

• relaxConstraints(fp, m_nodes): For unmatched nodes in fp, it finds type matched and
semantically matched nodes by leveraging parent-child relationship and the mappings in
m_nodes.

49

Time complexity: O(n ∗m), where n is the number of unmatched nodes in fp, and m is
the number of node matches in m_nodes.
Space complexity: constant spaces.

• isPathMatch(x, y, m_nodes): Compares the paths (p1, p2) from root x and root y,
and returns true if for each node in p1, there is a node in p2 which is type matched with
this node and they are in the same position.
Time complexity: O(n), where n is the length of the longer path of p1 and p2.
Space complexity: constant spaces.

• addNodesFromPath(p1, p2, m_nodes): Adds node pair (u, v) to m_nodes, if u and v are
type matched and on the same position of p1 and p2.
Time complexity: O(n), where n is the length of the longer path of of p1 and p2.
Space complexity: n, where n is the length of the longer path of p1 and p2.

• buildIdentifierMappings(m_id, m_nodes): Adds identifier mappings to m_id based on
the node mappings in m_nodes and removes conflicting mappings.
Time complexity: O(n), where n is the number of node mappings in m_nodes.
Space complexity: n, where n is the number of node mappings in m_nodes.

The time complexity of Algorithm 1 and Algorithm 2 is O(n + m), and the space
complexity is z ∗ (n+m): n is the number of AST nodes in the fix pattern (FP), m is the
number of AST nodes in the method to be matched (Method, see the input of Algorithm 1
and the method declaration in Algorithm 2), and z is a value that depends on the size of
identifier mapppings established (in line 20 of Algorithm 2).

In addition to Algorithm 2, APARE uses the score of similarity defined in Formula 4.2 to
tolerate unmatched contexts (line 7 in Algorithm 1). To balance different types of context
(control/data dependencies and changed code), APARE gives each type a total weight,
named Wctrl, Wdata, and Wcode. The total weight for each type is distributed to each context
based on the portion of edits that depend on this context. Then each control dependency
statement receives different weight as WEctrl=Wctrl ∗ Percedit, where Percedit is the portion
of total edits that depend on this context. The weight of each data dependency (WEdata)
and each changed code (WEcode) is calculated in a similar fashion. The Score of matched
context is calculated as follows,

Score =
∑

MatchedCtrl WEctrl+
∑

MatchedData WEdata+
∑

MatchedCode WEcode

Wctrl+Wdata+Wcode
(4.2)

Our evaluation uses the threshold of Score, named Tpercentage, as 0.7. Wctrl is 2, Wdata is 2
and Wcode is 1.

50

4.4.4 Generating Fixes for Fix Locations

APARE generates fixes for new locations from fix patterns if they are percentage-matched
(§4.4.3). An edit is applicable only if essential nodes have matched nodes in the faulty
method. For example, for insert edits, the parent nodes must exist in the faulty method.

Moreover, APARE extends Sydit’s fix generation to significantly reduce incorrect fixes.
APARE leverages the following techniques to 1) synthesize identifiers and method invoca-
tions; and 2) filter out invalid edits. First, APARE replaces abstract identifiers with concrete
identifiers based on the identifier mappings established by Algorithm 1 and synthesizes
identifiers if needed. Specifically, if there is an identifier that does not have a mapping
in the fix location, APARE checks 1) if this is a newly inserted variable by a previous
applicable edit, and 2) if there is a variable with the same name in the scope. If neither
is satisfied, the edit is not applicable. APARE replaces method invocations in a similar
fashion. If a method name from a past fix is not mapped with one method name in fix
location, APARE tries to synthesize a proper method invocation based on 1) methods with
identical names in the scope; and 2) types of parameters.

Second, APARE conducts sanity checks to ensure that generated fixes do not break
data or control dependencies in the patched version. For example, deleting or moving a
variable declaration is applicable only when the variable is not used by other statements.
APARE conducts necessity checks after the sanity checks. For an edit that is insert, or
move, if the inserted/moved node is a variable declaration, this edit is applicable only if the
declared variable is used and does not conflict with existing variable declarations.

4.5 Evaluation

This section describes the methodology for evaluating APARE and how to conduct the
comparison with current general automated program repair (e.g., RSRepair, PAR and
HistoryDriven). The following four research questions are answered in this evaluation:

RQ1 Complementarity: Can APARE generate project-specific recurring fixes that
current general automated program repair techniques (e.g., RSRepair, PAR and History-
Driven) cannot generate?

RQ2 Correctness, Quality, and Completeness: Can APARE learn fix patterns
automatically and use them to generate correct and high-quality fixes for recurring bugs?
How complete are APARE-generated fixes compared to developer fixes?

51

RQ3 Robustness: Can APARE avoid generating incorrect fixes for non-recurring
bugs?

4.5.1 Collecting Recurring and Non-Recurring Bugs for Evalua-
tion

To evaluate APARE, the evaluation includes 20 recurring bugs and 5 non-recurring bugs
from Eclipse SWT, Eclipse JDT, ZK Web Framework, OpenJPA and Wicket. The bugs
are randomly selected based on the following steps.

For recurring bugs, one (I or one of the co-authors, see “Statement of Contributions”)
examined the randomly sampled pairs of recurring fixes from the empirical study (§4.3),
and read all the corresponding bug reports. All true recurring bugs that can be reproduced
are kept for evaluation. First, if a pair of recurring fixes are from the same commit, the
corresponding bug is excluded from our study. While APARE can still generate method
fixes for those bugs, it is less likely for those fixes to help developers. Second, only the fixes
that fix true bugs are used for evaluation, not adding new features or others. Many bug
reports are not bugs [47]. I and my co-authors manually read these bug reports to identify
true bugs. Third, many bug reports have no clear descriptions and cannot be reproduced.
One tried his/her best to reproduce true bugs by reading the bug reports and the relevant
code and fixes. Fourth, for a pair of recurring fixes, the bug whose fix was committed later,
is reproduced so that APARE can use the pattern learnt from the earlier fix to fix the later
bug automatically. In only two cases, the later bug cannot be reproduced because the bug
report does not contain enough information, in which case, the earlier bug was reproduced.

For non-recurring bugs, we randomly sample bug reports from bug databases and use
the second and third steps described above to find reproducible true bugs. In addition, the
60% matching approach in the empirical study (Section 4.3.2) is used to check if there are
similar fixes in the past. If no similar past fix is identified, this non-recurring bug is kept for
evaluation. If a potentially similar past fix is identified, the past fix is manually checked to
see if they are indeed similar. If not, this bug is non-recurring and remains for evaluation.

The evaluated techniques (APARE, RSRepair) require passing test cases and at least
one failing test case. I collect passing test cases written by developers and failing test
cases from bug reports. If the bug reports do not provide failing test cases to expose the
bug, we write failing test cases based on our understanding. Reproducing the bugs as
described in the bug reports is a common and necessary practice for bug understanding
and fixing [52, 21]. For ZK, the fault localization tool cannot capture the execution traces
within the web-server environment, so fault localization information is manually collected

52

Table 4.3: Characteristics of the 20 Recurring Bugs

ID Bug ID Method Recur. Tests Methods from
Fixes by Method (Fail/Pass) Fault

Developers Fixes Localization
1 SWT-139329 11 8 1/5290 148
2 SWT-94003 7 4 1/5165 183
3 SWT-102481 5 5 2/4960 47
4 SWT-91317 9 5 1/5293 63
5 SWT-71975 5 1 1/4839 126
6 JDT-97809 2 1 1/57 334
7 JDT-77510 1 1 1/130 196
8 JDT-109963 1 1 1/244 338
9 JDT-81244 1 1 1/49 148
10 JDT-99903 1 1 6/90 323
11 JDT-83499 1 1 1/44 54
12 JDT-111812 1 1 1/32 89
13 ZK-1227 1 1 N/A 1
14 ZK-1512 2 2 1/0 414
15 OpenJPA-1053 1 1 1/3 39
16 OpenJPA-819 1 1 1/32 317
17 Wicket-4290 20 2 1/30 43
18 Wicket-4487 10 1 1/36 25
19 Wicket-4829 17 5 1/32 60
20 Wicket-4012 4 1 1/34 168

either from the diagnosis information in bug reports or the execution traces of failing test
case.

Table 4.3 shows the details of the 20 recurring bugs for evaluation. For each bug, it
shows the total number of method fixes by developers in one commit, and among these, the
number of recurring method fixes. The number of recurring method fix is the maximum
number of correct method fixes that we expect APARE to generate. Next, it shows the
number of failing/passing test cases used by fault localization, and the total number of
methods that are identified by fault localization.

RQ1 Complementarity: Can APARE generate project-specific re-
curring fixes that current general automated program repair tech-
niques (e.g., RSRepair, PAR and HistoryDriven) cannot generate?

Motivation. This evaluation compares APARE with general program repair tools because
1) there are no specialized repair techniques for project-specific recurring fixes; and 2) it is
unclear whether general repair tools can also fix recurring bugs effectively. This evaluation
shows that APARE can fix bugs that general program repair tools cannot. However, this

53

evaluation should not be interpreted as APARE can fix more bugs than existing tools for
general bugs. Rather, the evaluation shows that APARE complements existing techniques
by targeting project-specific recurring fixes.

Approach. Many automated program repair techniques explicitly target certain types of
bugs. Particularly, constraint-solving based techniques such as Angelix and SemFix, repair
defective conditions. Project-specific recurring fixes that APARE specializes are unlikely to
be repaired by modifying conditions. In fact, most of the recurring bugs evaluated in this
work cannot be repaired by altering the execution by modifying conditions. In contrast, it
is unclear whether search-based repair techniques can effectively generate project-specific
recurring fixes. Thus, this evaluation chooses to compare APARE with a search-based
technique–RSRepair, which is shown to be more effective than the classic search-based
technique–GenProg, to see if RSRepair is capable of generating fixes with rich project-
specific semantics. In addition, a best case analysis is performed to compare APARE with
a pattern-based technique–PAR and a history-driven technique–HistoryDriven.

Below I describe how the comparison is conducted.

RSRepair: Since the existing implementation of RSRepair only repairs C programs, RSRe-
pair is reimplemented for repairing Java bugs. The implementation is functionally equivalent
to RSRepair. For a fair comparison, the same test cases and fault localization information
are used for both APARE and RSRepair. In addition, this evaluation uses the same
setup that is described in the RSRepair paper: 40 random mutants are produced in each
generation, and totally 10 generations to produce a total of 400 mutants for each bug.
RSRepair is ran 10 times on each bug, which generates a total of 4,000 mutants for each
bug. We consider a fix generated by RSRepair correct if it indeed fixes the bug.

PAR: A best case analys is performed since the source code of PAR is not available. In
order for PAR to generate a complete fix, all the fix ingredients to form the fix must be
covered by the fix patterns. Particularly for PAR, one fix ingredient refers to one fix pattern
used by PAR; a fix from PAR may be composed by one or multiple fix ingredients (i.e.,
fix patterns). Therefore, I examine the fixes of all the 20 recurring bugs and check if one
fix can be formed by one or multiple PAR’s fix patterns. If so, it is considered that the
bug can be fixed by PAR. This estimation is the best case for PAR because even if all fix
ingredients of one fix are included by PAR, there is no guarantee that PAR generates the
fix since it depends on PAR’s search ability.

HistoryDriven: Similar to the comparison with PAR, a best case analysis is performed
for a history-driven technique by Le et al. [68]. HistoryDriven is different from PAR in
two aspects. First, HistoryDriven uses a set of mutation operators (i.e., insert, replace,
and delete operators from GenProg, a few mutation testing operations, and a subset of fix

54

patterns from PAR) to form all patch candidates. Second, HistoryDriven ranks the patch
candidates in the search space by employing a similarity score to measure the similarity
among frequent fix patterns (i.e., mined from a large repository of past fixes). Despite
such differences, in order to form the correct fix, similar to PAR, the fix ingredients must
be covered by one or multiple of the mutation operators by HistoryDriven. Thus, we are
able to conduct a best case analysis (similar to that for PAR) for HistoryDriven as well. I
examine the fixes of all the 20 recurring bugs and check if one fix can be formed by one or
multiple mutation operators of HistoryDriven. If so, the bug can be fixed by HistoryDriven.
HistoryDriven contains three sets of mutation operators: GenProg mutation operators,
mutation testing operators and PAR mutation operators. The later two are pattern-based
operators, and are straightforward to check. The two mutation operators from GenProg,
i.e., insert and replace statements, require correct statements from the buggy version to be
inserted or replaced with. Search the correct statements in the same file is performed by
ignoring white spaces. If such correct statements exist in the buggy file, by this best case
analysis, the insert or replace operators of HistoryDriven are towards forming a correct fix.
Results. Table 4.4 shows the results of applying APARE on the 20 recurring bugs. For
APARE, we show five columns. The first column shows the number of fix patterns learnt.
For APARE, it is the number of fix patterns learned from past fixes after filtering (§4.4.1).
Columns ‘Precision’, ‘Recall’ and ‘Completeness’ of Table 4.4 are defined as follows, where
the definitions of precision and recall are standard: precision is the portion of method
fixes generated that are correct; recall is the portion of recurring method fixes that are
generated correctly; and completeness is the portion of developer fixes generated correctly
(measured at the line level). Column ‘RSRepair’ shows whether RSRepair can generate a
correct fix for each bug. For the fixes generated by RSRepair that make all test cases pass,
I manually examine whether they are correct.

RSRepair: RSRepair cannot be applied on four of the bugs for the following reasons. First,
SWT 71975 and 94003 are two GUI bugs. RSRepair is unable to automatically determine
whether a test case fails or passes for these bugs because it cannot programmatically verify
the graphical state affected by the bug. Conceivably, we could manually verify the GUI
state for each mutant generated by RSRepair. However this is infeasible, since 4000 mutants
are generated per bug, meaning up to 4000 GUI states would need to be manually inspected.
Second, RSRepair can not run on the two ZK bugs because RSRepair needs execution
traces from test cases. However, the fault localization tool cannot capture execution traces
within the web server environment. In contrast, APARE generates 7 correct method fixes
for these four bugs.

Therefore, RSRepair is applied on the remaining 16 recurring bugs. For these bugs,
APARE generates 13 correct method fixes. For two of the 16 bugs, RSRepair generates

55

fixes that pass all test cases; however, upon manual inspection, the two fixes, which are
equivalent to deleting functionalities, are incorrect and do not fix the bug. This finding
complies with a recent study about plausible fixes [117].

PAR: PAR cannot generate fixes for the 20 methods that APARE generates correct fixes
for. PAR may generate correct fixes for three methods that APARE cannot by using two fix
patterns of PAR (‘adding null checker’ and ‘parameter replacer’). The fix pattern ’adding
null checker’ adds a null checker to prevent null pointer exceptions. ‘Parameter replacer’ fix
pattern replaces a parameter of a method call with a type compatible variable or expression.

HistoryDriven: HistoryDriven cannot generate fixes for the 18 methods that APARE
generates correct fixes for (APARE generates 20 in total). HistoryDriven may generate fixes
for 6 methods that APARE cannot by using a combination of several mutation operators
(i.e., ‘replacing method call parameter’, ‘delete statement’, and ‘change type cast’).

In summary, current search-based and pattern-based techniques RSRepair and PAR are
ineffective in repairing the 20 recurring bugs: RSRepair repairs none and PAR potentially
could repair three faulty methods at the best case. Therefore, APARE complements general
automated repair techniques by specializing project-specific recurring fixes.

RQ2 Correctness, Quality, and Completeness: Can APARE learn
fix patterns automatically and use them to generate correct and
high-quality fixes for recurring bugs? How complete are APARE-
generated fixes compared to developer fixes?

Motivation. APARE is applied on the 20 recurring bugs to assess whether APARE can
fix recurring bugs with acceptable precision, recall and completeness level. Reasonable
precision and recall are important for automated program repair techniques. In addition,
the completeness of the fixes generated by APARE is evaluated because although APARE
generates complete fixes for the faulty methods, the generated recurring fixes maybe partial
to the complete fix that fixes the bug as some of the complete fix may not be recurring.

Approach. Given a bug, APARE uses spectrum-based fault localization to generate a
list of possible faulty methods. For a fair comparison, the same list of faulty methods
that is used by RSRepair is used by APARE too. APARE then generates fix patterns
automatically from all the fixes committed before the developer fixes for the given bug, and
applies the novel techniques described in §4.4 to generate method fixes automatically. A fix
that is generated by APARE is correct if it indeed fixes the bug under repair. In addition,

56

Table 4.4: Results on the 20 Recurring Bugs. Column ‘Repair?’ shows whether a bug is repaired
by APARE or RSRepair. 44 indicates that a bug is fixed correctly and completely by an approach.
4 means APARE generates correct method fixes. 8 denotes that an approach failed to fix a bug.
Column ‘Patterns’ shows the number of fix patterns used by APARE. Column ‘Comp.’ shows the
completeness. The completeness and recall of RSRepair is 0. ‘AVG’ in the last row is short for
‘Average’.

ID APARE RSRepair
Patterns Precision Recall Comp. Repair? Recall Repair?

1 1,061 4/6 (66.7%) 4/8 (50%) 66/87 (75.9%) 4 0/0 8

2 374 8/9 (80%) 4/4 (100%) 24/154 (15%) 4 — —
3 530 2/4 (50%) 2/5 (40%) 32/78 (41%) 4 0/2 8

4 1,418 2/3 (66.7%) 2/5 (40%) 10/32 (31.3%) 4 0/0 8

5 46 0/0 (N/A) 0/1 (0%) 0/27 (0%) 8 — —
6 793 1/1 (100%) 1/1 (100%) 3/4 (75%) 4 0/0 8

7 327 0/0 (N/A) 0/1 (0%) 0/8 (0%) 8 0/0 8

8 929 1/1 (100%) 1/1 (100%) 6/6 (100%) 44 0/0 8

9 440 1/1 (100%) 1/1 (100%) 8/8 (100%) 44 0/0 8

10 902 0/0 (N/A) 0/1 (0%) 0/13 (0%) 8 0/0 8

11 426 0/1 (0%) 0/1 (0%) 0/5 (0%) 8 0/0 8

12 998 0/0 (N/A) 0/1 (0%) 0/5 (0%) 8 0/0 8

13 176 1/1 (100%) 1/1 (100%) 6/6 (100%) 44 — —
14 204 2/3 (66.7%) 2/2 (100%) 10/10 (100%) 44 — —
15 507 1/1 (100%) 1/1 (100%) 19/19 (100%) 44 0/0 8

16 273 0/0 (N/A) 0/1 (0%) 0/6 (0%) 8 0/0 8

17 98 0/0 (N/A) 0/2 (0%) 0/151 (0%) 8 0/0 8

18 647 1/1 (100%) 1/1 (100%) 3/120 (1.7%) 4 0/5 8

19 711 0/0 (N/A) 0/5 (0%) 0/0 (0%) 8 0/0 8

20 587 0/2 (0%) 0/1 (0%) 0/27 (0%) 8 0/0 8

AVG 572 24/34 20/44 185/772 0/7
70.6% 45.5% 24.0% 0%

57

whether the fix is equivalent to the developer fix is also assessed. Developer fixes are used
for evaluation only, and are not required for applying APARE.

Results. APARE is applied to repair the 20 recurring bugs under two settings: spectrum-
based fault localization and perfect fault localization information. First, using spectrum-
based fault localization results, APARE achieves 70.6% precision and 45.4% recall on
average (Table 4.4). The recall is low, partially because the design of APARE favors high
precision. Automated program repair is challenging; PAR, SPR and GenProg fix only
1–17% bugs, which is still very valuable nonetheless [61, 70, 117]. As shown in Columns
‘Repair?’ of Table 4.4 (see RQ1), most of the method fixes by APARE cannot be generated
by the current techniques.

Second, APARE is evaluated given perfect fault localization information, which are the
methods that developers fixed. Table 4.5 shows the precision, recall, and completeness
when APARE is given correct and complete fault localization information, the methods
that developers fixed. This setting evaluates the effectiveness of APARE when independent
of fault localization techniques. If developers know which methods are faulty or fault
localization research advances, APARE could have generated more accurate fixes for more
methods. The overall precision increases to 87.1%, and the recall increases to 53.5%. In
total, APARE generated 31 method fixes for the 20 recurring bugs. Among them, 27
method fixes are correct.

Table 4.4 also shows that APARE generated complete fixes for 5 bugs and generated
over 75% complete fixes for an additional 2 compared to the complete fixes by developers.
Although the generated method fixes do not always completely fix the bugs, they should
help developers generate the complex fixes, because they are of high quality. Specifically,
among the 24 correctly generated method fixes, 20 of them are identical to developer fixes.
These fixes should be of high quality based on the definitions of previous studies [61, 135],
which should help developers improve debugging correctness [135]. The manual examination
of the 4 correct patches that are different from developer fixes show, that these 4 patches
are easy to understand and should also be of high quality. A user study to rate the quality
of these fixes remains as future work.

RQ3 Robustness: Can APARE avoid generating incorrect fixes for
non-recurring bugs?

Motivation. When APARE is applied to fix a bug, APARE does not have the knowledge
regarding whether the bug is recurring or not. There are two possible scenarios: 1)
Developers may know the bugs to fix are recurring bugs, then developers will only apply

58

Table 4.5: Results on the 20 Recurring Bugs with Correct and Complete Faulty Locations

ID Bug ID Precision Recall Completeness
1 SWT-139329 4/5 (80%) 4/8 (50%) 69/87 (79.3%)
2 SWT-94003 8/8 (100%) 4/4 (100%) 24/160 (15%)
3 SWT-102481 4/6 (66.7%) 4/5 (80%) 62/78(79.5%)
4 SWT-91317 2/2 (100%) 2/5 (40%) 8/32 (25%)
5 SWT-71975 0/0 (N/A) 0/1 (0%) 0/27 (0%)
6 JDT-97809 1/1 (100%) 1/1 (100%) 3/4 (75%)
7 JDT-77510 0/0 (N/A) 0/1 (0%) 0/8 (0%)
8 JDT-109963 1/1 (100%) 1/1 (100%) 6/6 (100%)
9 JDT-81244 1/1 (100%) 1/1 (100%) 8/8 (100%)
10 JDT-99903 0/0 (N/A) 0/1 (0%) 0/5 (0%)
11 JDT-83499 0/0 (N/A) 0/1 (0%) 0/5 (0%)
12 JDT-111812 0/0 (N/A) 0/1 (0%) 0/5 (0%)
13 ZK-1227 1/1 (100%) 1/1 (100%) 6/6 (100%)
14 ZK-1512 2/3 (66.7%) 2/2 (100%) 10/10 (100%)
15 OpenJPA-1053 1/1 (100%) 1/1 (100%) 19/19 (100%)
16 OpenJPA-819 0/0 (N/A) 0/1 (0%) 0/6 (0%)
17 Wicket-4290 0/0 (N/A) 0/2 (0%) 0/151 (0%)
18 Wicket-4487 1/1 (100%) 1/1 (100%) 3/120 (1.7%)
19 Wicket-4829 1/1 (100%) 1/5 (20%) 3/112 (1.8%)
20 Wicket-4012 0/0 (N/A) 0/0 (0%) 0/27 (0%)

Total/Average 27/31 (87.1%) 23/43 (53.5%) 248/772(32.1%)

59

Table 4.6: Results on the 5 Non-Recurring Bugs

Bug ID Methods Identified Patterns Fixes by APARE
by Fault Localization (After Filtering) (0 is the best)

SWT-90258 393 474 0
SWT-118659 116 1176 0
JDT-82253 4 519 0
JDT-85262 323 773 2

ZK-1008 1 139 0

APARE for recurring bugs; and 2) Developers do not know whether the bugs to fix are
recurring bugs. For the 2) scenario, APARE should be able to avoid generating incorrect
patches for non-recurring bugs. Since APARE is designed for recurring fixes only, non-
recurring bugs are error inputs for APARE.

Approach. APARE is applied to the 5 non-recurring bugs. Section 4.5.1 describes how the
5 non-recurring bugs are collected. Then, the patches generated by APARE are manually
checked to determine whether they are correct.

Results. Table 4.6 shows the details of the 5 evaluated non-recurring bugs. APARE
generates only two incorrect patches for one Eclipse JDT bug and avoids generating
incorrect ones for the other four. I manually check the two false positives and find them
easy to understand so it should be easy for developers to quickly filter them out.

4.6 Discussions and Threats to Validity

4.6.1 Execution Time

The execution time of APARE consists of two parts: 1) fault localization time: the time to
run test cases to obtain fault localization results; and 2) patch generation time: the time to
extract fix patterns and perform matching between fix patterns and the identified target
methods. The fault localization time is required by both APARE and existing techniques
such as RSRepair and PAR, which takes from seconds to hours depending on the time to
run all test cases of a project. Compared to search-based approaches such as RSRepair,
APARE is faster because its time in patch generation is shorter. Particularly, APARE saves
time because APARE does not conduct patch validation (i.e., whether the patched version
passes all the test cases), which is used by RSRepair to significantly reduce the number of
incorrect patches while searching in a sparse searching space. The experiment is conducted
on an 3.1GHz Intel Core i5 machine with 8 GB memory. APARE’s patch generation time

60

is on average 65 minutes per bug for Eclipse JDT, and 75 seconds per bug for all other
evaluated projects. Eclipse JDT bugs take much more time to repair because often Eclipse
JDT code has complex control flows which makes it expensive to compute control and data
dependencies. In the future, all past fixes can be preprocessed and the learnt fix patterns
can be stored in a database to save time for patch generation. In contrast, RSRepair’s
patch generation time ranges from 4–30 hours per bug, much longer than that of APARE,
due to the large search space.

4.6.2 Threats to Validity

APARE specializes in generating correct and high quality fixes to fix recurring bugs. APARE
cannot fix non-recurring bugs, but it can avoid generating incorrect fixes for non-recurring
bugs. Since automatically fixing all bugs is almost impossible, I believe in focusing on
certain types of bugs, i.e., recurring bugs in this paper. It is quite feasible for developers to
combine APARE and existing program repair techniques to generate more fixes.

APARE extracts bug fixing commits from software repository based on keywords and
links to bug reports in commit messages. Therefore, APARE relies on the quality of
the commit messages to obtain an accurate and complete set of past fixes, which means
APARE may not work well for projects with low-quality commit messages. Also, APARE
may not work for projects with short development histories since APARE focuses on
generating project-specific recurring fixes; for projects with short development histories,
other automated program repair techniques that use general patterns across projects (e.g.,
PAR) may be applicable.

In order to compare APARE with RSRepair on the same set of bugs from Java projects,
RSRepair for Java programs (RSRepair-J) is implemented while the original RSRepair [116]
is for C programs (RSRepair-C). RSRepair for Java is re-implemented by carefully reading
the source code of RSRepair in detail and implement that for Java accordingly. However,
there is no way to guarantee the absolute equivalence of the RSRepair-J and RSRepair-C
due to multiple reasons, such as differences of the underlying AST parsers for different
languages (JDT for Java and CIL for C).

4.7 Chapter Summary

This chapter presents APARE, which learns fix patterns from past bug fixes automatically,
and uses the fix patterns to generate bug fixes for new recurring bugs automatically. The

61

evaluation on five programs shows that APARE can generate accurate and high quality bug
fixes. APARE complements existing automated program repair techniques because it can
fix many bugs that existing automated program repair techniques cannot fix. In addition,
this chapter presents an empirical study of recurring fixes, the findings of which guided the
design of APARE to identify recurring fixes with similar contexts.

62

Chapter 5

Priv: Prioritizing, Visualizing and
Fixing Vulnerability Warnings of Static
Application Security Testing

5.1 Introduction

Static analysis techniques are widely used in practice to ensure the quality of the software[?,
17]. In particular, developers often rely on static application security testing (SAST)
techniques to detect security vulnerabilities. Unlike dynamic analysis, SAST is able to
detect potential vulnerabilities that remain uncovered after in-house testing. Hence, SAST
has been shown to be effective in improving the security of applications [79, 54, 121].

Aside from research prototypes[79, 42, 86], there are many popular commercial SAST
products, such as AppScan Source [48], CheckMark [2], and Fortify [3]. However, as shown
in previous studies [53, 26], developers often encounter many challenges when using static
analysis techniques, which results in developers’ underuse of SAST techniques. We have been
working with security experts from AppScan Source for the past four years and, together
with the security experts, we have identified several limitations of SAST techniques.

First, SAST techniques usually detect a large number of vulnerability warnings with a
high false positive rate. Current SAST techniques help reduce the impact of false positives
by grouping the detected warnings based on some categories (e.g., severity, vulnerability
type, etc) [53]. Unfortunately, such categorization does not provide sufficient support to
developers in tackling the large number of vulnerability warnings and prioritizing developers’

63

quality assurance efforts [53, 26]. Second, current SAST techniques lack of support in
identifying actionable vulnerability warnings (i.e., warnings that are both true vulnerabilities
and require a fix)[137]. Finally, SAST techniques do not provide sufficient guidance on
how to fix the vulnerability warnings. SAST techniques may provide a general guidance
(referred as remediation pages) for each type of vulnerability warnings (e.g., one remediation
page for all SQL injection attacks). Such general remediation pages only provide high-level
information, but the needed specific information may vary for each detected warning.

Therefore, to better assist developers in fixing the detected vulnerabilities, this chapter
proposes a set of approaches that specifically help developers with fixing vulnerability
warnings that are detected by SAST. The proposed approaches are implemented as a tool,
named Priv. Priv is well-received by security experts and is under integration into industrial
practice, and helps AppScan Source developers and users with fixing security vulnerability
warnings. Priv includes two phases. Phase I provides a global-view visualization that
helps prioritize developers’ quality assurance effort. Priv first identifies suggested fix
location for each detected vulnerability warning, and uses data visualization to illustrate
the vulnerability warnings in clusters, based on shared suggested fix locations. Phase
II supplements additional essential information for efficient remediation, which includes
identifying actionable vulnerability warnings, and generating customized remediation pages
for each detected warning, which includes the buggy code and the corresponding fix code.

Priv targets the most common and the most prominent vulnerability types: cross-site
scriptings (XSS), SQL injections (SQLi), path traversals (PATHtrv), command injections
(COMMi), and second-order injections. A prior study [129] shows that cross-site scriptings,
SQL injections, and parameter tampering account for more than a third of Web application
attacks. Cross-site scriptings attack systems by executing malicious scripts on victim’s
browser. SQL injections is caused by unsanitized inputs that purposely damage databases.
Second-order injections are closely related to SQL injections. Second order injections arise
when unsanitized user inputs are stored in the system, and using the inputs to access the
database causes damages to the system. Command injection is an attack that executes
commands from untrusted input on the server side.

Priv is developed and integrated into a mature commercial SAST product–AppScan
Source. Priv is evaluated on one closed source (i.e., AltoroJ, an internal testing application
for evaluating AppScan Source) and five open-source web applications that are commonly
used for study vulnerabilities: WebGoat, JavaVulnerable Lab, Vulnerable Web, Bodgeit,
and HeisenBerg. The evaluation of Priv answers the following research questions:

RQ1: How do the suggested fix locations by Priv compare to the ones that are
identified by developers?

64

The evaluation shows that for 50–100% of the detected vulnerability warnings, Priv’s
suggested fix locations are identical to the ones identified by developers.

RQ2: How many actionable warnings can Priv find for better diagnosis?
The evaluation shows that Priv identifies 4–2170 actionable database- or attribute-
related vulnerability warnings. Without Priv, the initial false positive rate would be
up to 88.6%; With Priv, the false positive rate is reduced to 0%.

RQ3: What is the quality of the Priv’s automatically-generated fixes?
The evaluation shows that Priv generates complete fixes for many detected vulnera-
bility warnings.

5.2 Background on SAST and AppScan Source

This section provides background knowledge on static application security testing (SAST),
which applies static analysis techniques to detect vulnerabilities in source code. This section
also describes details of AppScan Source—one of the most prominent commercial SAST
products in which Priv is integrated.

Using Static Analysis to Detect Vulnerabilities. Static analysis, in particular taint
analysis is used to statically detect vulnerabilities in information flow (i.e., how a tainted
object is passed throughout the program) [79]. The tainted object propagation consists
of a source, a sink, and the data-flow (“reachability”) from the source to the sink. An
information-flow vulnerability typically starts with obtaining an untrusted input (i.e.,
source) and finally reaches to statements that perform security-critical functionalities
(i.e., sink), such as executing SQL queries. For example, SQL injections are caused by
unsanitized input being passed to databases for potentially malicious activities. The
untrusted input could come from web application APIs (e.g., through a method call
javax.servlet.http.HttpSession.getAttribute in Java), and passed to database execution
APIs (e.g., java.sql.Statement.executeUpdate). In addition, tainted analysis is applied in
mobile security to protect users’ confidential information from being leaked [16].

AppScan Source. AppScan Source [48] is one of the leading commercial products in
applying static analysis for security testing (i.e., vulnerability detection). With the first
release back in 2003, the latest version of AppScan Source is Version 9.3, which is the
version that Priv is integrated to. Note that although Priv is integrated to AppScan Source,
we believe Priv is general and can be applied to other SAST products due to the similarities
among SAST products.

65

vulnerability
matrix

vulnerability
types

a list of warnings

Figure 5.1: A screenshot of the Report View of AppScan Source.

Figure 5.1 shows a screenshot of the result of applying AppScan Source to the evaluated
projects (AltoroJ). In the screenshot, the top component shows the vulnerability matrix,
which provides multi-dimensional prioritization based on severity level (i.e., high, medium,
and low), and the confidence on the detected vulnerabilities (i.e., definitive, and suspect).
‘Red’ color highlights the number of vulnerabilities with the highest priority to fix. The
bottom-left component shows a list of vulnerability types, such as ‘Cross-Site Scripting’.
The bottom-right component lists the detected vulnerability along with the key information,
such as file name, line number, API, source, and sink.

When users click on one detected vulnerability, AppScan Source shows the detailed
information as shown in Figure 5.2. Such detailed information includes the trace information
(i.e., data-flow of a detected vulnerability), a window to show the code snippet, and a
general solution on how to fix this type of vulnerability in a remediation page. All the
information displayed for one vulnerability warning is stored in an assessment file in XML
format. We built Priv by leveraging the information in assessment files.

An example of SQL injection is used to explain the representation of the trace in
AppScan Source. In Figure 5.2, the tree on the top-left is the visualization of a trace. The
trace contains two red nodes: the left node is the source, and the right node is the sink.

66

Figure 5.2: For each vulnerability warning, AppScan Source shows the trace (i.e., to
visualize the data-flow from source to sink), a code window to show the code snippet of the
highlighted node (i.e., clicked by the user) in the trace, and the current remediation page
(e.g., text description, examples of buggy code and the corresponding fix).

The source uses the API getParameter from the class javax.servlet.ServletRequest,
which takes user input from an HTTP request. Hence, the obtained input parameter value
is considered as a malicious input. The sink executes SQL queries to communicate with the
database (i.e., using java.sql.Statement.executeQuery). The other nodes in the trace
show how the malicious input is propagated from the source to the sink. For example, the
blue node at the root position (i.e., the function doPost) calls getParameter and passes
the obtained parameter value to the function getUserInfo. Since the data flow between
the source and the sink does not contain a validation method and the sink does not call
PreparedStatement, this data flow is determined as a SQL injection.

AppScan Source may report warnings that are false positives due to the limitation of
taint analysis, e.g., infeasible paths. High false positive rate is a common limitation shared
by many static analysis techniques for bug detection, e.g., FindBugs.

67

assessment
files

suggesting preferred
fix locations

vuln. warnings
&& fix locations

buggy code
extraction

actionable warnings
&& their relevant warnings

clustering An interactive
visualization

Priv Phase I: Prioritizing Fixing Efforts on Investigating the Detected Vulnerabilities

Priv Phase II: Supplement Essential Information for Improving Diagnosis and Fixing

A collapsible-
tree visualizationrelevance analysis

current
remediation

pages

buggy code
fix code

generation

customized
remediation

pages

Figure 5.3: The Overview of Priv. The output ‘force-directed graph’ and ‘collapsible tree’
visualizations can be displayed in a browser.

68

5.3 The Design and Implementation of Priv

This section describes the design of Priv in detail. Figure 5.3 shows an overview of the
proposed approach. Priv consists of two phases. Phase I (Section 5.3.1) contains two parts:
1) suggesting preferred fix locations (pFixLoc) for each detected vulnerability warning;
and 2) grouping detected vulnerabilities into clusters based on shared pFixLoc. Phase
II (Section 5.3.2) contains the components of identifying actionable warnings (‘relevance
analysis’ in Figure 5.3), and producing customized remediation pages that includes ‘buggy
code extraction’ and ‘fix code generation’ (as shown in Figure 5.3). The output of Priv
includes a global-view interactive visualization using the force-directed graph to show
clusters of warnings in which they share the same pFixLoc, a tree visualization to illustrate
actionable warnings and their relevant warnings, and a customized remediation page showing
automatically-generated suggested fix for each detected vulnerability warning.

5.3.1 Phase I: Prioritizing Fixing Efforts on Investigating the De-
tected Vulnerabilities

Suggesting Preferred Fix Locations

Given a detected vulnerability warning, there may be multiple places in the code that
developers can add the corresponding fix (e.g., code validation code) to mitigate the security
risk. Therefore, to minimize developers’ efforts on fixing vulnerabilities, one needs to
identify the most cost-effective fix location in the code, where adding a security fix can
resolve the largest number of related vulnerability warnings. Such cost-effective fix locations
are referred to as preferred fix locations (pFixLoc). Priv focuses on suggesting pFixLocs
for four types of vulnerability warnings: SQL injection (SQLi), cross-site scripting (XSS),
command injection (COMMi), and path traversal (PATHtrv). Below is the discussion on
how Priv determines the pFixLoc for the studied vulnerability warnings.

The general fix strategy for the above-mentioned four types of information-flow vulnera-
bilities (i.e., untrusted input being executed) is to add code for validation in the information
flow. Different validation code is used for different types of vulnerability warnings. For
example, the validation to prevent PATHtrv restricts the access to certain directories or
files. The validation to prevent XSS guards execution against malicious scripts.

For the purpose of Priv, which is to prioritize developers’ fixing effort, there are two
factors that Priv should consider when suggesting the preferred fix location for vulnerability
warnings. The first factor is that the suggested pFixLoc should maximize fixing ability,

69

Figure 5.4: A Cross-Site Scripting Example to Illustrate the Possible Fix Locations.

which reflects the number of vulnerability warnings that can be fixed if adding the validation
code at one pFixLoc, also referred to as “fixing multiple vulnerability warnings by fixing one
location”. The second factor is whether the suggested pFixLoc should minimize the potential
interferences, which means that adding the validation code at this pFixLoc has minimal side
effects, such as affecting other data-flow paths that also go through this pFixLoc. When
the first factor is considered, Priv suggests pFixLoc that is close to the source to maximize
the fixing ability. In addition to adding pFixLoc close to the source, security experts from
AppScan Source point out that adding validations in Java classes (e.g., when initializing
class fields) also helps improve fixing ability. The reason is that when untrusted input is
used for initializing class fields of Java objects, developers may want to add customized
validations based on specific class fields. When the second factor is considered, pFixLoc
is preferred to be at the sink because the sink is unlikely to be shared with vulnerability
warnings of different types. Thus, a validation that is specific to one type of vulnerabilities
does not affect the vulnerability warnings of other types.

Priv uses a set of rules for suggesting pFixLoc for the four types of vulnerability
warnings. The set of rules are determined based on the discussions with security experts
from AppScan Source by considering the two above-mentioned factors: maximizing fix
ability and minimizing potential interferences.

70

The strategy of suggesting pFixloc for the studied vulnerabilities considers all the
following information without a particular order:

XSS

• Source;

• Direct caller of source;

• Java objects along the path from source to root caller;

SQLi, COMMi, and PATHtrv

• Sink;

• Direct caller of sink;

• Java objects along the path from root caller to sink;

The cross-site scripting example in Figure 5.4 is used to explain the reasons behind Priv’s
choice of rules in suggesting preferred fix locations. Figure 5.4 shows the trace of an cross-site
scripting warning that includes nodes and the data-flow among the nodes. The root caller
(_jspService) gets untrusted input from the source (getString()) through getBankUsers
and getBankUsernames. Then, the root caller outputs the unsanitized data, which may
contain a malicious script that is sent to a victim’s browser (JspWriter.print()). For
this XSS, Priv suggests some locations (particularly the source, the direct caller of source,
and Java objects in the path) in the path from the source to the root caller to maximize fix
ability. Priv does not narrow down to only one pFixLoc and may suggest several pFixLocs,
because it is possible that adding the validation code to the source does not fix multiple
vulnerability warnings. Priv highlights a list of potential pFixLoc and delegates the final
decision to developers. Note that identifying pFixLoc is the first and an intermediate step
to group the SAST detected warnings for prioritizing the quality assurance effort.

For SQLi, COMMi, and PATHtrv, Priv suggests locations that are close to sink (i.e., on
the path from root caller to sink) as pFixLoc (particularly the sink, the direct caller of the
sink, and the Java objects along the path from root caller to sink) to minimize potential
interferences. If the fix location is not close to the sink, it is possible that the validation
(e.g., white-list style) for SQLi, COMMi, and PATHtrv, may interfere with vulnerability
warnings of different types.

71

Grouping Vulnerability Warnings Based on Preferred Fix Locations

Priv groups vulnerability warnings based on pFixLoc into clusters to help developers
prioritize fixing efforts. When developers investigate the warnings in one cluster instead of
one-by-one, they become aware that working on one pFixLoc can fix the warnings in the
same cluster. In addition, developers can choose to work on a particular cluster (e.g., the
cluster with the most findings) for prioritize fixing efforts. Moreover, viewing the warnings
in clusters enables developers to be aware of potential side-effects of placing validation
methods by looking into the interferences among clusters. For example, if a white-list
validation method is added to one fix location, and this fix location may also appear in the
data flow of other warnings, the fix location is a potential interference point that developers
should be aware of.

An Interactive Visualization for Prioritizing Fixing Efforts

Priv presents the clusters of warnings in an interactive visualization. The visualization
provides a global view of all the SQLi, XSS, COMMi, and PATHtrv warnings that are
detected by SAST in one project. Furthermore, the visualization allows developers to
navigate any cluster of vulnerability warnings, or zoom in for one particular vulnerability
warning.

The global-view visualization prioritizes the warning clusters that have the most signifi-
cant size and/or more complex structures (e.g., with interferences with other clusters). Also,
potential interferences among clusters are implicitly highlighted since clusters are designed
to be distant from each other, so that the interferences among clusters are noticeable.
Figure 5.6 shows an example of a single cluster. The blue node in the center is the shared
fix location suggested by Priv. Each purple node represents one vulnerability warning. The
orange nodes represent the rest of trace nodes that are not suggested as fix locations. The
visualization is interactive so when developers click on one node, the details of the node
are shown (Figure 5.5). The details include which file/class the suggested fix location is at,
what methods the unsanitized input are propagated to, etc.

Priv applies an off-the-shelf graph drawing algorithm–force-directed graph drawing [131]
to layout the global view of detected vulnerability warnings. Force-directed graph drawing
algorithm is designed to simulate a physical system, in which nodes are either pulled close
or pushed away based on forces assigned to them. Force-directed graph drawing algorithm
requires no prior knowledge of the graph layout and tries to eliminate lines across different
clusters of nodes. In the context of displaying clusters of vulnerabilities, the force-directed
graph algorithm centers clusters around nodes that represent pFixLocs and assigns forces to

72

Figure 5.5: An Interactive Single Group Example grouped Force Directed Graph

Figure 5.6: An Example of Warnings in a Single Cluster in Force Directed Graph

73

Figure 5.7: Priv provides the global-view visualization for WebGoat 5.3. Rectangles with
various colors represent different types of vulnerability warnings. Circles present nodes in
the trace: light blue circles are the preferred fix locations; dark blue circles are the pFixLocs
that are from Java objects; orange circles represent the trace nodes other than pFixLocs.

the associated vulnerability warnings. Once the algorithm is finished, vulnerability warnings
that have the same pFixLoc are clustered around the centered node of pFixLoc and are
pushed away from the rest of the vulnerability warnings that do not have the same pFixLoc.
Figure 5.7 shows the global-view visualization of WebGoat 5.3 that is generated by Priv.
The visualization contains complex clusters (e.g., the top-left cluster) and large clusters
(e.g., the bottom-left cluster). This global-view visualization guides developers to work
on the large clusters for prioritizing fixing effort, and notifies developers that there are
interferences among the complex clusters.

74

5.3.2 Phase II: Supplement Essential Information for Improving
Diagnosis and Fixing

Identify Actionable Database/Attribute-Related Warnings

As shown in a previous study [53], high false positive rates add an extra burden to developers
when fixing the warnings of static analysis techniques. Therefore, it is crucial to assist
developers quickly to identify actionable warnings. However, unlike the typical false positives
from static analysis techniques (e.g., caused by infeasible paths), another type of false
positive may exist in SAST because SAST does not construct a complete information flow
for stored injections (e.g., database/attribute-related warnings). These stored injections are
real vulnerabilities only when there exists a complete information flow.

For example, second-order injection warnings are stored injections for which the malicious
input remain dormant in the database. However, not every detected second-order injection
is a real vulnerability. In the case when there is no code that reads the previously-stored
malicious input from the database and passes it to an execution (named exit points), such
second-order injections are neither actionable nor worth fixing. Namely, a second-order
injection warning is actionable if the previously-stored data later is read from the database
and then used by database queries (i.e., causing SQL injections) or in websites (i.e., causing
cross-site scriptings).

Thus, it is crucial to provide developers extra information when identifying actionable
warnings. Priv connects entry points and exit points on the same database tables to
illustrate the complete information flows of second-order injections. First, Priv identifies
entry points whose sinks write to databases and exit points whose sources read from
databases. Second, Priv asks developers to specify the names of database tables that
are accessed by each vulnerability warning of entry points and exit points. Finally, Priv
connects entry and exit points that access the same database table. Note that it remains
as future work for Priv to automatically extract the names of database tables, which is
feasible. Priv is not able to automatically do so now because the current implementation of
Priv has the restriction of using only the AppScan Source assessment files for independence
and easy integration with AppScan Source.

Similar to second-order injections, Priv identifies actionable attribute-related warnings
by connecting entry and exit points that are related to JSP attributes. Priv uses two sets of
APIs to identify entry and exit points. Table 5.1 lists the two sets of APIs that are used by
Priv to identify actionable attribute-related warnings. For example, Priv locates both the
entry-point warnings whose sinks call javax.servlet.http.HttpSession.setAttribute
to set the value of the attribute attr, and the exit-point warnings whose sources call

75

Table 5.1: APIs that are used to identify actionable attribute-related warnings.

API Set I
entry point javax.servlet.http.HttpSession.setAttribute
exit point javax.servlet.http.HttpSession.getAttribute
API Set II
entry point javax.servlet.ServletRequest.setAttribute
exit point javax.servlet.ServletRequest.getAttribute

getAttribute from the same Java package to get the value of the attribute attr. Then,
Priv connects the two sets of vulnerability warnings (i.e., entry point and exit point) that
are related to the attribute attr to provide developers with a complete information flow
of the attribute attr. When connecting attribute-relevant warnings, Priv automatically
extracts the values of attributes from source code using regular expression since the
values of attributes are often string literals when passed to the APIs as parameters (e.g.,
setAttribute or getAttribute).

A Collapsible-Tree Visualization of Actionable Database- or Attribute-Related
Warnings

Priv identifies actionable database- or attribute-related vulnerability warnings by connecting
two sets of warnings that construct the complete information flow.The two sets of warnings
are 1) entry points that write to databases or set attribute values of HTTP sessions/requests;
2) exit points that read from databases or get attribute from HTTP sessions/requests.
Then, Priv presents the two sets of warnings in a collapsible-tree visualization to highlight
actionable warnings.

Figure 5.8 shows an example of the collapsible-tree visualization that is provided by
Priv to highlight actionable second-order injections of WebGoat [138]. The collapsible-tree
visualization contains multiple layers. Figure 5.8 shows the look of the visualization when
it is fully collapsed. Figure 5.8 highlights entry and exit points for the database table
“employee". Note that a complete visualization may include several figures that are similar
to Figure 5.8. In the complete visualization, the database tables are grouped and prioritized
based on: 1) database tables with both entry and exit points; 2) ones with entry points
only; and 3) ones with exit points only. In each of the above-mentioned groups, the tables
are further sorted by the total number of associated entry and exit points.

The “employee” node can be expanded into two branches–entry and exit points. The

76

Figure 5.8: This visualization shows entry and exit points of database table “employee" in
WebGoat 5.3.

layer next to the entry/exit points is the type of incoming sources or outgoing sinks, such
as network or file system. This layer is useful since it provides a high-level understanding
of what type of source makes the database table “employee” vulnerable. In addition, it
helps developers understand that the malicious data enters from ‘network’ (e.g., reading
from HTTP requests) and exits through “network” (e.g., a stored attack through cross-site
scriptings).

The next layer is the vulnerability type. For example, the vulnerability type “SQL
Injection” means that the entry points write to databases without proper validation methods,
e.g., using “PreparedStatement”. “Stored Injection” refers to second-order injection, which
means that “PreparedStatement” is used to prevent SQL injections; however, the warning
may still be harmful since it may suffer from second-order injection attacks. The final layer
(not shown in Figure 5.8) is to list the details of each warning.

Customizing Remediation Pages

SAST techniques may provide remediation pages to help developers understand each type of
vulnerability and provide examples to show how to fix the vulnerabilities. Each vulnerability

77

Figure 5.9: AppScan Source provides a general remediation page for all SQL injections.
We simplified the test description, buggy code, and fix code for easier understanding.

type has one remediation page that is generalized to all the vulnerabilities of this type.
Thus, the general remediation page does not provide customized diagnosis information (e.g.,
buggy code and the corresponding fix code) for each vulnerability since the remediation
page only includes general examples. Therefore, Priv customizes remediation pages for each
detected vulnerability warning for better diagnosis. For each detected vulnerability warning,
Priv intercepts the current remediation page, and replace the general information with
customized information on buggy code and fix suggestions. The current implementation
of Priv offers customized remediation pages for SQL injections, cross-site scriptings, path
traversal, command injections, and cryptography insecurity.

Figure 5.9 shows the existing remediation page of AppScan Source for SQL injections.
Priv customized the current remediation page by replacing the general buggy and fix code,
as shown in Figure 5.10. Priv re-constructs buggy code and generates the corresponding fix

78

Figure 5.10: Priv replaces the general code examples in Figure 5.9 with the customized
code snippets (as shown in the areas of buggy code and fix code).

79

1 <html >
2 - <&= request.getParameter ("name")&>
3 + <&= HTMLEntityEncoder.encode(request.getParameter ("name "))&>
4 </html >

(a) XSS Fix Template

1 - ResultSet var1 = var2.executeQuery(‘‘string_literal ’’ + var3);
2 + final String sql = get_paramerized_query(‘‘string_literal ’’);
3 + final PreparedStatement ps = con.prepareStatement(sql);
4 + ps.setString(1, var3);
5 + ResultSet var1 = ps.executeQuery ();

(b) SQL Injection Fix Template I

1 - String sql = ‘‘string_literal ’’ + var1;
2 - ResultSet var2 = var3.executeQuery(sql);
3
4 + String sql = get_parameterized_query(‘‘string_literal ’’);
5 + final PreparedStatement ps = con.prepareStatement(sql);
6 + ps.setString(1, var1);
7 + ResultSet var1 = ps.executeQuery ();

(c) SQL Injection Fix Template II

1 + if (validate(var2))
2 var1 = Runtime.getRuntime (). exec(var2);

(d) Command Injection Fix Template

1 + if (validateWhiteList(var2))
2 var1 = new File(var2);

(e) Path Traversal Fix Template

1 - var = MessageDigest.getInstance ("MD5 "|"SHA");
2 + var = MessageDigest.getInstance ("SHA -256");

(f) Cryptography Insecurity Fix Template

Figure 5.11: We concluded one fix template for fixing the vulnerabilities based on the
current remediation page of AppScan Source.

80

code by analyzing the trace information in the assessment file (i.e., the files where AppScan
Source stores the analysis results). Currently, fix templates are manually concluded from the
current remediation pages, and so Priv can apply the concluded fix templates to generate
fix code for each vulnerability. For example, the fix template is manually crafted (shown in
Figure 5.11b) for fixing SQL injections based on the fix example shown in Figure 5.9. In the
future, I plan to automate the process of manually crafting fix patterns from documentation.
The buggy code in line 1 executes an unsanitized SQL query. The fix prevents the SQL
injection attack by using PreparedStatement. Line 2 initializes the variable sql with a
modified version of the SQL query used in the buggy code. For example, string_literal
in line 1 is “SELECT COUNT(*)FROM PEOPLE WHERE USER_ID =”, and then the
variable sql in line 2 is assigned with “SELECT COUNT(*)FROM PEOPLE WHERE
USER_ID = ?”, where ? will be setString with var3 (as shown in line 4).

5.3.3 Implementation of Priv

Priv is implemented as a research prototype and then integrated with a commercial SAST
technique (AppScan Source). The commercial SAST technique scans the source code, and
stores the detection results (i.e., vulnerability warnings) in an assessment file, which is
then displayed by the GUI component of the SAST technique so that users/developers
can investigate the detected vulnerability warnings in detail. The assessment file contains
comprehensive information of each vulnerability warning, such as trace nodes and trace
structure (i.e., a graph structure of trace nodes). The intermediate information, such as code
fragments (i.e., context) of the detected warnings, is also stored. The context information is
leveraged by Priv to reverse-engineer the vulnerable code and to generate fix suggestions.
Priv is implemented in a way that it only uses the assessment files, and does not need the
project source code.

The implementation of Priv consists of three parts. The first component (implemented
in Java) reads and analyzes the assessment files, for identifying both preferred fix locations
and actionable database- and attribute-related warnings. Then the analysis results are
re-directed to the second component that is built using the D3.js framework for visualization.
For constructing customized remediation pages, Priv intercepts the current remediation
pages of the underlying SAST technique, then replaces the general buggy and fix code with
customized ones for seamless integration. Priv should be easily extended to analyze the
results of other static-analysis security testing tools, because the information used in Priv,
such as trace, nodes in the trace, sinks and sources, and vulnerability types, are standard
information that is commonly used by other static-analysis security testing techniques.

81

Table 5.2: The summary of the six projects that are used in the evaluation.

Project AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
LOC (Java) 3,724 321,038 2,645 3,022 1,516 4,176

All the Reported Warnings 281 2,215 159 102 2,424 151
Cross-site Scriptings 43 239 31 14 2,083 9

SQL Injections 55 78 5 12 94 16
Command Injection 0 7 0 2 0 0

Path Traversal 3 60 0 3 18 4
Second-order Injections 0 199 2 0 8 0
Cryptography Insecurity 0 2 0 1 1 0

5.4 Evaluation

In this evaluation, Priv is applied to six web applications. All the evaluated projects except
for one (AltoroJ) are open-source projects. Table 5.2 summarizes the detailed information
of the six web applications: AtoroJ is used for internal evaluation by AppScan Source,
and the other five evaluated projects are open-source projects that are commonly used for
studying vulnerabilities in web applications. For each evaluated project, AppScan Source
is used as the commercial SAST tool to detect vulnerabilities. Then Priv is employed
as a new remediation system that provides QA resource prioritization via visualization
and customized fix suggestions. In summary, the following three research questions are
answered:

RQ1: How do the suggested fix locations by Priv compare to the ones that are identified
by developers?

We compared the fix locations suggested by Priv with the ones annotated by developers
for evaluating whether Priv can provide accurate fix location suggestions.

RQ2: How many actionable warnings can Priv find for better diagnosis?

Priv identifies actionable database- and attribute-related vulnerability warnings by
connecting relevant warnings. We evaluate the actual number and the percentage of
actionable warnings that can be identified by Priv.

RQ3: What is the quality of the Priv’s automatically-generated fixes?

Priv uses a set of fix templates to generate a customized remediation information
for each detected vulnerability warning. Thus, whether Priv can provide complete and

82

accurate customized remediation information is evaluated through manual examination of
the generated customized remediation information.

RQ1: How do the suggested fix locations by Priv compare to the
ones that are identified by developers?

Motivation. Priv prioritizes the workloads for fixing vulnerability warnings based on
shared preferred fix locations. However, finding fix location may be subjective. More
specifically, when developers are fixing the detected vulnerabilities without any guidance
(e.g., Priv), they may choose different locations to add the fixes. For example, developers
could choose a different fix location based on their own experience, such as how a similar
warning in the same file was fixed in the past. Therefore, a comparison is conducted
between the pFixLocs chosen by Priv and the ones annotated by developers. Note that
this comparison shall not be positioned as whether Priv suggests better fix locations than
developers, or vice versa, but rather a detailed comparison to highlight the similarities and
differences between Priv and developers.

Approach. As described in details in Section 5.3.1. Priv is applied to four types of
vulnerabilities: cross-site scriptings, SQL injections, command injections, and path traversals
from the six projects listed in Table 5.2. Then, I compare the pFixLocs made by Priv with
the ones annotated by the collaborators from industry who are experienced professional
security developer.

Before listing the comparison results, some statistics on the pFixLocs provided by Priv
are provided. First, reduction is used to measure to what percentage that Priv can narrow
down the scope of fix locations. For example, the trace of one vulnerability warning contains
N trace nodes (i.e., each trace node is a potential fix location where the validation code can
be added). If Priv suggests one pFixLoc, then the reduction of Priv for this vulnerability
warning is (N-1)/N. Second, we use cost to measure the extra cost by Priv since Priv could
suggest more than one fix locations for each vulnerability warning. Cost is the number of
unique pFixLocs suggested by Priv.

To show the comparison results on the fix locations, similarity is used to measure
what percentage of warnings Priv suggests identicial fix locations to the ones by annotated
developers. Since Privmay suggest more than one fix location for one warning, we determines
that Priv suggests identical fix location if any of the suggested pFixLocs matches with the
one annotated by the developers.

To conduct the comparison, the annotations of fix location are obtained from experienced
security developers. However, conducting a complete one-to-one comparison is not feasible

83

because of inconsistent annotation styles. More specifically, the annotations are not
dedicated for the evaluation of Priv, and were used for internal testing purposes. First,
when the developers worked on annotating fix locations, they may not annotate the warnings
that are resulted from the same SAST configuration setting. Also, the developers may
not identify fix locations for every vulnerability warning. Moreover, the underlying SAST
product does not contain a consistent identifier to annotate each warning; therefore, when
the developers annotated the suggested fix locations, they used the line number of the
annotated fix locations to distinguish between different warnings. However, it causes
ambiguity since there may exist more than one warning with the same root. I tried my best
to resolve the above-mentioned issues through discussions with the developer who provides
the annotations. But still, there exist mismatches between the warnings in the evaluation
and the ones annotated by the developers. Such mismatches are excluded in this evaluation.

Results. Table 5.3 shows the comparison results between the fix locations suggested by
Priv and the ones annotated by developers. Due to the reason of inconsistent annotation
style mentioned in the approach section above, the vulnerability warnings included in this
table are a subset of all the warnings from the evaluated projects. Table 5.3 lists the number
of warnings with developers’ annotated fix locations, and the comparison results with Priv’s
suggested fix location (i.e., ‘cannot find’, ‘diff’, and ‘identical’). ‘Cannot find’ refers to the
subset of warnings for which I am not able to find for this experiment due to the inconsistent
annotation style, and thus were excluded from calculating the similarity. ‘Diff’ means that
the fix locations suggested by Priv are different from that of developers. ‘Identical’ means
Priv suggests the same fix location as developers. In summary, Priv achieves a 50–100%
similarity when comparing the suggested fix locations with the ones annotated by developers.

Table 5.4 shows the ability of Priv in limiting the scope of the manual investigation.
For example, for AltoroJ, there are 95 warnings that are either XSS, SQLi, COMMi, or
PATHtrv. For these 95 vulnerability warnings, there are a total of 570 possible fix locations
(i.e., aggregating all data-flow nodes of vulnerability warnings). Priv narrows down the
scope to 152 fix locations. Thus the reduction of Priv on AltoroJ is 73.3%, calculated from
(570-152)/570. Moreover, the table also shows the AVG cost for each warning that Priv
analyzed, which means on average how many fix locations were suggested by Priv.

RQ2: How many actionable warnings can Priv find for better diag-
nosis?

Motivation. Priv identifies actionable database- and attribute-related warnings by con-
necting two sets of warnings in order to form a complete information-flow: from writing

84

Table 5.3: The results of comparing fix locations suggested by Priv with the ones annotated
by developers. Note that the developer did not annotate the fix locations for PATHtrv and
COMMi, thus these two types of vulnerability warnings are not shown in this table.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
XSS

w/ annotations 15 37 69 2 56 15
cannot find 2 15 2 0 17 7

diff 0 11 29 1 0 0
identical 13 11 38 1 17 7
similarity 13/13 (100%) 11/22 (50%) 38/67 (56.7%) 1/2 (50%) 17/17 (100%) 7/7 (100%)
SQLi

w/ annotations 7 13 6 11 20 16
cannot find 0 1 0 9 1 0

diff 0 1 0 2 3 0
identical 7 11 6 0 16 16
similarity 7/7 (100%) 11/12 (91.7%) 6/6 (100%) 0 16/19(84.2%) 16/16 (100%)

Table 5.4: The table shows the statistics on the preferred fix locations that are identified
by Priv. Reduction shows that Priv suggests a few pFixLocs from all possible fix locations
(i.e., all trace anodes). AVG cost shows the average number of fix locations suggested by
Priv for each vulnerability warning.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
num. of warnings analyzed by Priv 95 318 25 27 2,192 29

num. of fix locations suggested by Priv 152 429 25 83 2,294 32
num. of trace nodes 570 1,753 129 230 10,923 168

reduction 73.3% 65.5% 80.6% 63.9% 79% 81%
AVG cost 1.6 1.34 1 3.07 1.04 1.10

85

malicious input to a database or attributes, to reading the previously-written malicious
input. Identifying actionable warnings benefits developers for better diagnosing and im-
plementing the fixes. This RQ answers how many actionable warnings are identified by
Priv.

Approach. Priv is applied on the six projects in Table 5.2 to identify actionable warnings.
For database-related warnings, Priv requires manual effort to specify the names of the
database tables. For the attribute-related warnings, Priv first tries to extract the values of
the attributes if the parameters of getAttribute or setAttribute are string literals. If not,
Priv then requires manual input to specify the names of the attributes. For database-related
warnings in this evaluation, I manually provided the database names. For attribute-related
warnings in this evaluation, Priv automatically extracts correct names of attributes for all
cases. Thus, no manual effort is required for attribute-related warnings.

Results. Table 5.5 concludes the results of applying Priv to identify actionable database-
and attribute-related warnings. For each part (i.e., either database- or attribute-related),
Table 5.5 shows the total number of sets: each set of warnings consists of all the warnings
that either write to or read from the same database table or attribute. For example, all the
vulnerability warnings that write to the database table ‘user’ and the warnings that read
from ‘user’ are connected by Priv, thus resulting in the same set. The number of actionable
sets refers to the sets whose actionable entry and exit sets of vulnerability warnings are
both not empty. Finally, the percentage of actionable warnings is the percentage of both of
the actionable entry and exit vulnerability warnings.

The results on Bodgeit are used to explain the table in details. There are five sets
of database-related warnings in Bodgeit, and the database tables are comments, users,
products, productType, and score. Among the five sets, only one set contains both entry
and exit warnings, and they are related to comments (as shown in the row of ‘# of relevant
sets’, Table 5.5). For the database table comments, there are second-order injections that
write to comments table. There exist vulnerability warnings (e.g., cross-site scriptings)
that read from the same database table–comments. Thus, Priv locates four actionable
vulnerability warnings (entry: 2, and exit: 2) out of 35 database-related warnings. The
remaining 31 can be viewed as less harmful at the moment, until those database tables
become vulnerable or exposed by code evolution. For example, for database table users,
there exist second-order injections that write to it. But there is no code that reads from
users to expose malicious input. Thus, such second-order injections are not actionable at
the moment.

In summary, for the six evaluated projects, Priv detects a total of 2,565 actionable
database-related or attribute-related vulnerability warnings. The percentage of actionable

86

Table 5.5: The results of applying Priv to identify relevant warnings on the six projects.
One set of warnings refers to the warnings that are either related to the same database
table or the same attribute. Each row of ‘# of sets’ is the union of both entry and exit sets
of warnings. Each row of ‘# of relevant sets’ means the intersection of entry and exit sets
and neither entry set nor exit set is empty.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
Database
of sets 1 10 5 0 5 0

of entry vuln. warnings 19 199 4 8 72 16
of exit vuln. warnings 1 99 31 1 56 0

of actionable sets 1 6 1 0 3 0
of actionable entry vuln. warnings 13 152 2 0 53 0
of actionable exit vuln. warnings 1 81 2 0 56 0
perc. of actionable warnings 70.0% 78.2% 11.4% N/A 85.2% N/A

Attribute
of sets 8 17 2 0 0 9

of entry vuln. warnings 8 4 1 0 0 21
of exit vuln. warnings 9 13,320 10 0 0 8

of actionable sets 2 2 1 0 0 7
of actionable entry vuln. warnings 2 2 1 0 0 18
of actionable exit vuln. warnings 2 2,168 5 0 0 7
perc. of actionable warnings 23.5% 16.3% 54.5% N/A N/A 86.2%

warnings ranges from 11.4% to 86.2%. Developers could consider fixing the actionable
vulnerability warnings first since they are more dangerous than the others.

RQ3: What is the quality of the Priv’s automatically-generated
fixes?

Motivation. Priv aims to provide customized remediation pages that include fix suggestions
to elevate the burden from developers. Particularly, Priv generates fix suggestions for
five vulnerability types: cross-site scriptings, SQL injections, path traversals, command
injections, and cryptography insecurities. All of the five except for one are also studied in
Priv–Phase I because cryptography insecurity vulnerability warnings typically only contain
one trace node (i.e., sink), thus there is no need to suggest pFixLoc for them and present
them in the global-view visualization. The best fixes by Priv can be directly applied to
the source code (i.e., contains complete essential and correct semantics to fix the detected
vulnerability). We want to study how many customized remediation pages (i.e., showing
both the buggy code and the corresponding fixes) can Priv generate given all the detected

87

vulnerability warnings. Moreover, we evaluate the quality of the fixes in the remediation
pages regarding whether the fix can be directly applied to the source code, and if not, how
much additional work is required.

Approach. First, I identified the number of vulnerability warnings for which Priv can
provide customized remediation pages (i.e., buggy code and the corresponding fix). Second,
I manually checked the quality of each suggested fix generated by Priv, except for XSS from
JavaVulnLab (totally 2,083 XSS), for which a sample of 100 is taken for manual examination.
To quantitatively evaluate the quality of the fixes by Priv, we manually classify each fix
into one of the following three categories: fully complete, partially compilable/correct (i.e.,
minor modifications required), fix template only (i.e., developers need to add essential code,
such as validation methods). The category–fully complete refers to the fixes that can be
directly applied to the source code without modifications, which means the patched code
is compilable and indeed fixes the targeted vulnerability finding. The category–partially
compilable/correct shows that the suggested fix cannot be directly applied to source code
since the patched code would be either not-compilable or not totally correct. The fixes
of this category require minor modifications to be compilable and correct. For example,
Figure 5.12 shows one SQL injection for which Priv generates a fix that is not completely
correct. The fix is not entirely correct because, in line 8 and 13, dateString should not be
replaced by ‘?’ since dateString is used in a condition instead of concatenating to a SQL
string.

The least complete category–fix template only refers to a fix that only contains the
skeleton of the fix, but lacks concrete implementation, such as the validation method for
checking malicious inputs. For example, to prevent a path traversal in the code File
file = new File(path) when path could be malicious input from users, Priv suggests
validating path. The best practice of the validation method is to create a whitelist that
specifies valid paths; therefore Priv leaves the implementation of this validation method to
developers, and provides a fix template if(validate(path)).

Results. Table 5.6 lists the results of manual examination on the quality of the fixes
generated by Priv. Each fix is manually examined and classified to one of the three categories
explained in the approach section (i.e., fully complete, partially compilable/correct, and fix
template only).

For all the path traversals and command injections, Priv only provides incomplete fixes
due to lack of detailed implementation of validation methods (fix template only). The
concrete validation method requires the knowledge of the context of PATHtrv or COMMi,
such as the range of files that can be safely accessed (PATHtrv).

For most of the cross-site scriptings (up to 100%), Priv provides complete and correct

88

1 if (startDate != null && startDate.length ()>0 && endDate != null && endDate.length ()>0){
2 dateString = "DATE␣BETWEEN␣" +startDate +"␣00:00:00␣AND␣" +endDate +"␣23:59:59";
3 } else if (startDate != null && startDate.length ()>0){
4 dateString = "DATE␣>␣" + startDate +"␣00:00:00";
5 }
6 - String query = "SELECT␣*␣FROM␣TRANSACTIONS␣WHERE␣("
7 + acctIds.toString () + ")␣"
8 + ((dateString==null)?"": "AND␣("
9 + dateString + ")␣")

10 + "ORDER␣BY␣DATE␣DESC" ;
11 + String query = "SELECT␣*␣FROM␣TRANSACTIONS␣WHERE␣("
12 + "?" + ")␣"
13 + (("?"==null)?"": "AND␣("
14 + "?"+ ")␣")
15 + "ORDER␣BY␣DATE␣DESC" ;
16 + query.setString (1, acctIds.toString ());
17 + query.setString (2, dateString);
18 + query.setString (3, dateString);
19 resultSet = statement.executeQuery(query);

Figure 5.12: A fix suggestion that is automatically generated by Priv for a SQL injection
vulnerability. The fix suggestion is classified as ‘partially compilable/correct’ upon manual
examination. +/- represents Priv’s suggested code changes (i.e., add or remove the
corresponding line of code).

1 <%= (request.getAttribute("message_feedback")!=null)?"...%>.

Figure 5.13: An example of cross-site scripting from AltoroJ that Priv generates partially
compilable/correct fix for.

fixes. For the 21 cross-site scriptings from AltoroJ, Priv does not provide fully complete
fixes because the assessment file (which Priv uses as input) from AppScan Source does not
always store the original information of the tainted parameter of the sink. Figure 5.13 shows
an example of such cases, request.getAttribute(...) != null is stored as Temp@11@0
in the assessment file. Thus, Priv is not able to infer that request.getAttribute() is
used in a condition, and therefore replacing the function call in an HTMLEncode validation
method, which is not desired (partially compilable/correct). Priv generates partially compil-
able/correct fixes for one vulnerability warning from Bodgeit, and five from JavaVulnLab
for the same reason.

For SQL injections, Priv generates fully complete fixes for 70.9% (on average) of the
detected SQL injections in the evaluated projects. The primary reason that Priv generates
the fixes of the two incomplete categories (i.e., partially compilable/correct and fix template
only) is the same with that for cross-site scriptings. Specifically, for the example shown in

89

Table 5.6: The Results of Manual Examination on the Qualify of the Fixes by Priv.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
Cross-site Scripting

fully complete 22 239 30 14 951 9
partially compilable/correct 21 0 1 0 5 0

fix template only 0 0 0 0 0 0
SQL Injection
fully complete 42 78 2 0 51 0

partially compilable/correct 6 0 0 0 0 0
fix template only 7 0 3 12 43 9
Path Traversal
fully complete 0 0 N/A 0 0 0

partially compilable/correct 0 0 N/A 0 0 0
fix template only 3 60 N/A 3 18 4

Command Injection
fully complete N/A 0 N/A 0 N/A N/A

partially compilable/correct N/A 0 N/A 0 N/A N/A
fix template only N/A 7 N/A 2 N/A N/A

Cryptography Insecurity
fully complete N/A 2 N/A 1 1 N/A

partially compilable/correct N/A 0 N/A 0 0 N/A
fix template only N/A 0 N/A 0 0 N/A

Figure 5.12, AppScan Source uses intermediate variables to store code elements such as
dateString==null. Therefore Priv is unable to analyze that condition to avoid producing
the incorrect fix: replacing dateString with ‘?’.

5.5 A Case Study on the Performance of Prioritizing
Quality-Assurance Effort by Priv

This section provides a case study on how Priv can prioritize quality-assurance effort. For
example, if the number of clusters in the global-view visualization of Priv is much smaller
than the number of individual warnings, Priv can indeed prioritize developers’ quality-
assurance effort by guiding them to work on the clusters of significant size first. Intuitively,

1based on a sample of 100

90

Table 5.7: The table shows that for AltoroJ, how effective Priv is at prioritizing quality-
assurance efforts.

of fix locations investigated 8 12 14 15 16 17 18 19
of warnings resolved 41 48 52 54 56 58 60 61

AVG warnings resolved per fix location 5.13 4 3.71 3.6 3.5 3.41 3.33 3.21

investigating the largest cluster has a chance to resolve many vulnerability warnings at once
(i.e., they share common fix locations). Therefore, to measure the effectiveness of Priv in
prioritizing workloads, we performed a simulated study on the AltoroJ project. Particularly,
with the assumption that developers work on the biggest cluster of vulnerability warnings,
we sort the clusters based on the number of vulnerability warnings involved. Then, we
record the effort of fixing the current biggest cluster (i.e., number of fix locations suggested)
and the outcome of the fixing effort (i.e., the number of warnings in this cluster).

Table 5.7 shows how Priv can prioritize quality-assurance efforts for AltoroJ (one of the
evaluated projects). The order of each row complies with the order that developers follow
based on the assumption (i.e., starting with the most significant cluster). The first row
shows the aggregated number of fix locations that developers would need to investigate.
Correspondingly, the second row lists the number of fixed warnings resolved if following
each choice of a cluster. The last row shows the average number of warnings that would be
resolved per fix location. For example, when developers choose to work on the first cluster,
41 vulnerability warnings would be resolved if investigating eight fix locations. If there is
no prioritization, for each fix location, developers would resolve 3.21 warnings on average
(as shown in the last column in Table 5.7). With the prioritization by Priv, the average
warnings per fix location are 5.13 to start with, and gradually decreases to 3.21. This shows
that Priv can indeed improve work efficiency by prioritizing quality-assurance efforts.

5.6 Threats to Validity

Priv is designed and built on one commercial product–AppScan Source. Although I believe
Priv can be integrated with other SAST techniques, it is not evaluated how effective that
would be, which remains as future work. The fix location suggestions by Priv are compared
with with the ones by developers (RQ1) based on the annotations from one security expert.
For each evaluated project, the security expert did not leave annotations of fix locations for
every detected vulnerability warning. Thus, for RQ1, I was able to conduct the comparison

91

for a subset of all the warnings. Future research includes a user study to obtain such fix
location annotations for all the applicable warnings of each project from developers.

5.7 Conclusions

This chapter proposes Priv, which is a multi-phase remediation system to assist developers in
fixing vulnerability warnings by SAST techniques more efficiently. Priv prioritizes developers’
quality-assurance efforts by visualizing the clusters of vulnerability warnings based on shared
preferred fix locations. Moreover, Priv provides essential information that could boost the
diagnosis and fixing process of vulnerability warnings. Specifically, Priv identifies actionable
warnings by locating relevant warnings for database- and attribute-related warnings. Finally,
Priv improves current remediation pages with customized remediation that includes buggy
code and fix code. The evaluation on six web applications shows that Priv suggests
identical fix locations to the ones by developers for many warnings. Also, Priv prioritizes
developer’s workloads by making developers aware of the commonality of vulnerability
warnings regarding fix locations. We also show how many actionable database-related and
attribute-related warnings are identified by Priv. Finally, the quality of the generated fixes
from the customized remediation pages are categorized into four categories of completeness.
Priv is able to provide complete fixes to many of the warnings.

92

Chapter 6

Conclusions and Future Work

6.1 Thesis Conclusions

This thesis improves the correctness of current automated program repair: limited correct-
ness guarantee of the automatically-generated patches, and limited hypothesized space of
high-quality patches. One one hand, this thesis proposes Opad to improve the test-suite-
based validation in G&V techniques. The findings on the automatically-generated test
cases highlight that weak oracles prevent the further improvement of G&V techniques. On
the other hand, for enriching the hypothesized space of high-quality patches, this thesis
leverages human knowledge for improving automated program repair: APARE and Priv.
APARE targets project-specific recurring bugs and utilizes past fixes that are considered as
high-quality patches crafted by human beings. Priv targets vulnerability warnings by static
application security testing, and provides workload prioritization, and fix suggestions based
on rules that are developed based on security expertise.

6.2 Future Research Directions

Use of Overfitted Patches. It is commonly believed that the overfitted patches from
G&V techniques, which are incorrect, are not useful. However, I believe the overfitted
patches, which pass regression test suites, contain important information for debugging
and bug fixing. Hence, in the future, I plan to explore the use of the overfitted patches.
First, I plan to conduct a user study on whether the overfitted patches can help developers
generate correct patches. Second, I plan to explore whether overfitted patches can be used

93

to guide G&V techniques generating correct patches. For example, once overfitted patches
are identified, the identified overfitted patches can be used to identify other overfitted
patches in the hypothesized space of patches, such as based on similarity of execution traces
or to rank the patches in the space.

Detect and Repair API Misuses in Data Analytics Code by Leveraging Data-
Sensitive Fix Patterns. More and more applications leverage open-source frameworks
and libraries for data analytics (e.g., Spark, Hadoop, TensorFlow, scikit-learn, weka, etc.).
Despite the differences of such applications, the code segments that use the same API of the
data analytics library or framework typically have similar logic and code structure. Previous
studies on API misuse detection do not automatically fix the misuses. Moreover, such
data analytics API misuses and their fixes are data sensitive, which should be taken into
consideration. I plan to propose a technique that extracts bug patterns and corresponding
fix patterns of API misuses in data analytics code by mining large-scale code repositories
(e.g., GitHub), and applies the learnt patterns to detect and repair previously-unknown
bugs.

A Recommendation Technique for Automated Program Repair. In recent years,
more than a dozen APR techniques have been proposed. The proposed APR techniques
complement each other in fixing bugs [33], instead of existing one winner APR technique
that beats the rest. Given a bug to repair, to fully explore whether APR techniques
can repair the bug, one needs to apply every APR technique to repair the bug, which is
time-consuming and expensive. Also, developers need to spend time and effort to identify
the incorrect patches by APR techniques and choose the correct patches. To improve the
efficiency of applying APR techniques, I plan to propose a recommendation tool for choosing
one or a few APR techniques for a given bug. I anticipate that the proposed technique can
improve the efficiency of APR techniques by saving time and reducing incorrect patches.
For example, if one APR technique is not suitable for a given bug, then it should not be
chosen to repair the bug. The proposed recommendation technique can leverage a collection
of bugs, which have been evaluated by current APR techniques (i.e., the training set), for
recommending a given new bug, which APR techniques would be suitable. I plan to explore
features for classification, such as the characteristics of test suites (e.g., coverage metrics),
and the characteristics of the top-ranked faulty locations (e.g., types of statements). In
addition, I plan to inspect the features that can represent the quality of test suite used for
validation. I believe that different APR techniques have different specialty: one may be
more tolerant of low-quality test suites, or one may be better at repairing conditions.

Cross-Component Automated Program Repair. Current APR techniques focus on
repairing bugs by modifying one component of the applications, i.e., source code files.
However, modern applications typically contains more than one component, e.g., source

94

code, test cases, configurations, and build scripts. Bugs that require fixes across multiple
components are not handled well by current techniques. I plan to propose new APR
techniques that target the bugs that require fixes spanned across multiple components. I
plan to leverage both static and dynamic analysis to build the cross-component links, such
as between configurations and source code [146, 151], and across configurations, source
code, and test cases [27]. The inferred links can be used for extracting cross-component fix
patterns and guiding the search of the correct cross-component repair.

Human-in-the-Loop Repair System. Human knowledge has great potential to improve
automated program repair. The existing research typically incorporates human knowledge
(e.g., past fixes or fix patterns) at the early stage such as when researchers design the
techniques [75, 82, 134], or at the post-mortem stage such as utilized by a ranking strategy
on the automatically-generated patches by APR [68].

In the future, I plan to incorporate in-depth human knowledge with APR techniques
based on the human-in-the-loop methodology. Similar to human-in-the-loop for machine
learning, for automated program repair, I also believe that machines and human knowledge
are winning combination. On one hand, machines can be faster at reasoning than human
by automation (e.g., validation by test cases), and more diligent at edge cases through
iteration. On the other hand, human beings (i.e., developers) have domain expertise that
cannot be fully encoded, and thus can be automated by machines. For example, the current
APR techniques rely on test cases to infer partial specifications [94, 83]. However, complete
specifications (i.e., all correct and incorrect incorrect behaviors) of software are tremendously
challenging to obtain. Therefore, automated program repair can benefit significantly from
the input from developers which specifies correct/incorrect behaviors. The future plan is
to propose an interactive repair system that enables human-in-the-loop methodology. To
begin with, I plan to add live judgments from developers in deciding the correctness of
the automatically-generated patches. I plan to design the repair system to consider the
feedback from developers when generating the next patch. Furthermore, I plan to design
the repair system to take input (e.g., correct/incorrect behaviors) from developers on the
fly (i.e., before generating a patch). It remains as future work to explore when and what to
provide developers for balancing overhead and efficiency.

95

References

[1] American fuzzy lop, 2017. http://lcamtuf.coredump.cx/afl/.

[2] Checkmark static code analysis, 2017. https://www.checkmarx.com/technology/static-
code-analysis-sca.

[3] Fortify static code analyzer, 2017. https://software.microfocus.com/it-it/software/sca.

[4] gcov—a test coverage program, 2017. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[5] tiffcp manual page, 2017. http://www.remotesensing.org/libtiff/man/tiffcp.1.html.

[6] Valgrind, 2017. http://valgrind.org/.

[7] zzuf: multi-purpose fuzzer, 2017. http://caca.zoy.org/wiki/zzuf.

[8] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and Software,
82(11):1780–1792, November 2009.

[9] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Viktor Kunčak. Repairing
decision-making programs under uncertainty. In Computer Aided Verification, pages
181–200, 2017.

[10] Muath Alkhalaf, Abdulbaki Aydin, and Tevfik Bultan. Semantic differential repair for
input validation and sanitization. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA, pages 225–236, 2014.

[11] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
Proceedings of the 2013 Formal Methods in Computer-Aided Design, CAV, pages 1–8,
2013.

96

[12] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University
Press, New York, NY, USA, 1 edition, 2008.

[13] John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with an open bug repository.
In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, Eclipse,
pages 35–39, 2005.

[14] John Anvik and Gail C. Murphy. Reducing the effort of bug report triage: Rec-
ommenders for development-oriented decisions. ACM Transactions on Software
Engineering and Methodology (TOSEM), 20(3):10:1–10:35, August 2011.

[15] A. Arcuri, M.Z. Iqbal, and L. Briand. Random testing: Theoretical results and
practical implications. IEEE Transactions on Software Engineering, 38(2):258–277,
March 2012.

[16] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI, pages 259–269, 2014.

[17] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian
Zhou. Using findbugs on production software. In Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming Systems and Applications
Companion, OOPSLA, pages 805–806, 2007.

[18] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
The plastic surgery hypothesis. In Proceedings of the 22Nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE, pages 306–317,
2004.

[19] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke. Auto-
mated software transplantation. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA, pages 257–269, 2015.

[20] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. DMS: Program transforma-
tions for practical scalable software evolution. In Proceedings of the 26th International
Conference on Software Engineering, ICSE, pages 625–634, 2014.

[21] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and
Thomas Zimmermann. What makes a good bug report? In Proceedings of the 16th

97

ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE, pages 308–318, 2006.

[22] Sam Blackshear and Shuvendu Lahiri. Almost-correct specifications: A modular
semantic framework for assigning confidence to warnings. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI, pages 209–218, 2013.

[23] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho Ugherughe,
and Andreas Zeller. Where is the bug and how is it fixed? an experiment with
practitioners. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE, pages 117–128, 2017.

[24] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI,
pages 209–224, 2008.

[25] Liushan Chen, Yu Pei, and Carlo A. Furia. Contract-based program repair without
the contracts. In Proceedings of the 32Nd IEEE/ACM International Conference on
Automated Software Engineering, ASE, pages 637–647, 2017.

[26] T. H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora. Detecting problems
in the database access code of large scale systems - an industrial experience report.
In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion, ICSE-SEIP, pages 71–80, 2016.

[27] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder
Flora. Cacheoptimizer: Helping developers configure caching frameworks for hibernate-
based database-centric web applications. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE,
pages 666–677, 2016.

[28] Zack Coker and Munawar Hafiz. Program transformations to fix c integers. In
Proceedings of the 2013 International Conference on Software Engineering, ICSE,
pages 792–801, 2013.

[29] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for Java. Software—Practice & Experience, 34(11):1025–1050, September 2004.

98

[30] Loris D'Antoni, Rishabh Singh, and Michael Vaughn. Nofaq: Synthesizing
command repairs from examples. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, pages 582–592, 2017.

[31] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with
quantitative objectives. In Computer Aided Verification, volume 9780 of CAV, pages
383–401, 2016.

[32] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt. In Proceedings of
the 6th International Workshop on Constraints in Software Testing, Verification, and
Analysis, CSTVA, pages 30–39, 2014.

[33] Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Sommerard, and
Jifeng Xuan. Automatic repair of real bugs in java: a large-scale experiment on the
defects4j dataset. Empirical Software Engineering, 22(4):1936–1964, Aug 2015.

[34] Ansgar Fehnker, Ralf Huuck, Sean Seefried, and Michael Tapp. Fade to grey: Tuning
static program analysis. Electronic Notes in Theorectical Computer Science, 266:17–32,
October 2010.

[35] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Transactions
on Software Engineering, 33(11):725–743, 2007.

[36] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE,
pages 416–419, 2011.

[37] Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Extending a search-based
test generator with adaptive dynamic symbolic execution (tool paper). In Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ISSTA, pages
421–424, 2014.

[38] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie, and H. Mei. Safe
memory-leak fixing for c programs. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1 of ICSE, pages 459–470, 2015.

[39] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei. Fixing recurring
crash bugs via analyzing q&a sites (t). In Proceedings of the 30th IEEE/ACM

99

International Conference on Automated Software Engineering, ASE, pages 307–318,
2015.

[40] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, January 2012.

[41] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing
common c language errors by deep learning. In AAAI Conference on Artificial
Intelligence, pages 1–7, 2017.

[42] William G. J. Halfond and Alessandro Orso. Amnesia: Analysis and monitoring for
neutralizing sql-injection attacks. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ASE, pages 174–183, 2005.

[43] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and language
for building system-specific, static analyses. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, PLDI, pages
69–82.

[44] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, (4):279–290, 1977.

[45] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. Finding patterns in static
analysis alerts: Improving actionable alert ranking. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR, pages 152–161, 2014.

[46] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactorings to
support api evolution. In Proceedings of the 27th international conference on Software
engineering, ICSE, pages 274–283, 2005.

[47] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature: How
misclassification impacts bug prediction. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE, pages 392–401, 2013.

[48] IBM. Appscan source, 2017. https://www.ibm.com/us-en/marketplace/ibm-appscan-
source.

[49] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE, pages 435–445, 2014.

100

[50] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceedings of the 29th
international conference on Software Engineering, ICSE, pages 96–105, 2007.

[51] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Automated
concurrency-bug fixing. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI, pages 221–236, 2012.

[52] Wei Jin and Alessandro Orso. Bugredux: Reproducing field failures for in-house de-
bugging. In Proceedings of the 34th International Conference on Software Engineering,
ICSE, pages 474–484, 2012.

[53] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In Proceedings of the
2013 International Conference on Software Engineering, ICSE, pages 672–681, 2013.

[54] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting web
application vulnerabilities. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy, SP, pages 258–263, 2006.

[55] Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. Taming false
alarms from a domain-unaware c analyzer by a bayesian statistical post analysis.
In Proceedings of the 12th International Conference on Static Analysis, SAS, pages
203–217, 2005.

[56] Maximilian Junker, Ralf Huuck, Ansgar Fehnker, and Alexander Knapp. Smt-based
false positive elimination in static program analysis. In Proceedings of the 14th
International Conference on Formal Engineering Methods: Formal Methods and
Software Engineering, ICFEM, pages 316–331, 2012.

[57] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE, pages 654–665, 2004.

[58] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. Minthint:
Automated synthesis of repair hints. In Proceedings of the 36th International Confer-
ence on Software Engineering, ICSE, pages 266–276, 2014.

101

[59] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654 – 670, July 2002.

[60] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repairing programs
with semantic code search. In Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE, pages 295–306, 2015.

[61] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch gen-
eration learned from human-written patches. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE, pages 802–811, 2013.

[62] Miryung Kim and David Notkin. Discovering and representing systematic code
changes. In Proceedings of the 31st International Conference on Software Engineering,
ICSE, pages 309–319, 2009.

[63] Miryung Kim, Vibha Sazawal, and David Notkin. An empirical study of code clone
genealogies. In Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of
software engineering, FSE, pages 187–196, 2005.

[64] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In Proceedings of the 8th International Symposium on Static Analysis,
SAS, pages 40–56, 2001.

[65] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation
exploitation in error ranking. In Proceedings of the 12th ACM SIGSOFT Twelfth
International Symposium on Foundations of Software Engineering, SIGSOFT/FSE,
pages 83–93, 2004.

[66] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
A study of developer work habits. In Proceedings of the 28th international conference
on Software engineering, ICSE, pages 492–501, 2006.

[67] Wei Le and Mary Lou Soffa. Path-based fault correlations. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE, pages 307–316, 2010.

[68] X. B. D. Le, D. Lo, and C. L. Goues. History driven program repair. In Proceedings
of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, volume 1 of SANER, pages 213–224, 2016.

102

[69] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: Syntax- and semantic-guided repair synthesis via programming by examples. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE, pages 593–604, 2017.

[70] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 2012 International Conference on Software Engineering, ICSE,
pages 3–13, 2012.

[71] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on Software Engineering,
32(3):176 – 192, March 2006.

[72] Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. Inferring project-specific
bug patterns for detecting sibling bugs. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE, pages 565–575, 2013.

[73] Yiyan Lin and Sandeep S. Kulkarni. Automatic repair for multi-threaded program
with deadlock/livelock using maximum satisfiability. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA, pages 237–247,
2014.

[74] Richard J Lipton, Richard A DeMillo, and FG Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, 11(4):34–41, 1978.

[75] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. R2Fix: Automatically generating
bug fixes from bug reports. In Proceedings of the 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, ICST, pages 282–291,
2013.

[76] Haopeng Liu, Yuxi Chen, and Shan Lu. Understanding and generating high quality
patches for concurrency bugs. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE, pages 715–
726, 2016.

[77] Peng Liu, Omer Tripp, and Charles Zhang. Grail: Context-aware fixing of concurrency
bugs. In Proceedings of the 22nd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, FSE, pages 318–329, 2014.

103

[78] Xinyuan Liu, Muhan Zeng, Yingfei Xiong, Lu Zhang, and Gang Huang. Identifying
patch correctness in test-based automatic program repair. CoRR, abs/1706.09120,
2017.

[79] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java
applications with static analysis. In Proceedings of the 14th Conference on USENIX
Security Symposium, SSYM, pages 18–18, 2005.

[80] Francesco Logozzo and Thomas Ball. Modular and verified automatic program repair.
SIGPLAN Not., 47(10):133–146, October 2012.

[81] Francesco Logozzo and Matthieu Martel. Automatic repair of overflowing expressions
with abstract interpretation. In CoRR, volume abs/1309.5148, 2013.

[82] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code transforms
for patch generation. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, pages 727–739, 2017.

[83] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In In
proceedings of the 10th Joint Meeting of the European Software Engineering Conference
and the ACM Sigsoft Symposium on the Foundations of Software Engineering, FSE,
pages 166–178, 2015.

[84] Fan Long and Martin Rinard. An analysis of the search spaces for generate and
validate patch generation systems. In Proceedings of the 38th International Conference
on Software Engineering, ICSE, pages 702–713, 2016.

[85] Fan Long and Martin Rinard. Automatic patch generation by learning correct code.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL, pages 298–312, 2016.

[86] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically
vetting android apps for component hijacking vulnerabilities. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS, pages
229–240, 2012.

[87] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond.
Automated repair of layout cross browser issues using search-based techniques. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2017, pages 249–260, New York, NY, USA, 2017. ACM.

104

[88] Paul Dan Marinescu and Cristian Cadar. make test-zesti: A symbolic execution
solution for improving regression testing. In Proceedings of the 34th International
Conference on Software Engineering, ICSE, pages 716–726, 2012.

[89] Matias Martinez, Laurence Duchien, and Martin Monperrus. Automatically extracting
instances of code change patterns with ast analysis. In Proceedings of the 2013 IEEE
International Conference on Software Maintenance, ICSM, pages 388–391, 2013.

[90] Matias Martinez and Martin Monperrus. Mining software repair models for reasoning
on the search space of automated program fixing. Empirical Software Engineering,
20(1):176–205, February 2015.

[91] Matias Martinez and Martin Monperrus. Mining software repair models for reasoning
on the search space of automated program fixing. Journal of Empirical Software
Engineering, 20(1):176–205, February 2015.

[92] Matias Martinez, Westley Weimer, and Martin Monperrus. Do the fix ingredients
already exist? an empirical inquiry into the redundancy assumptions of program
repair approaches. In Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE-C, pages 492–495, 2014.

[93] Richard McNally, Ken Yiu, Duncan Grove, and Damien Gerhardy. Fuzzing: the state
of the art. Technical report, DTIC Document, 2012.

[94] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings of the 38th International
Conference on Software Engineering, ICSE, pages 691–701, 2016.

[95] Na Meng, Miryung Kim, and Kathryn S. McKinley. Sydit: Creating and applying a
program transformation from an example. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE, pages 440–443, 2011.

[96] Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: Locating and applying
systematic edits by learning from examples. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE, pages 502–511, 2013.

[97] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, February 2004.

105

[98] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability
of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[99] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes using
historic databases. In Proceedings of the 2000 International Conference on Software
Maintenance, ICSM, pages 120–120, 2000.

[100] Martin Monperrus. A critical review of "automatic patch generation learned from
human-written patches": Essay on the problem statement and the evaluation of
automatic software repair. In Proceedings of the 36th International Conference on
Software Engineering, ICSE, pages 234–242, 2014.

[101] Martin Monperrus. Automatic Software Repair: a Bibliography. ACM Computing
Surveys, 2017.

[102] Paul Muntean, Vasantha Kommanapalli, Andreas Ibing, and Claudia Eckert. Auto-
mated generation of buffer overflow quick fixes using symbolic execution and smt.
In Proceedings of the 34th International Conference on Computer Safety, Reliability,
and Security - Volume 9337, SAFECOMP, pages 441–456, 2015.

[103] T. B. Muske, A. Baid, and T. Sanas. Review efforts reduction by partitioning of
static analysis warnings. In Proceedings of the 2013 IEEE 13th International Working
Conference on Source Code Analysis and Manipulation, SCAM, pages 106–115, 2013.

[104] Stats Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. Mining fine-
grained code changes to detect unknown change patterns. In Proceedings of the 36th
International Conference on Software Engineering, ICSE, pages 803–813, 2014.

[105] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, and
Hridesh Rajan. A study of repetitiveness of code changes in software evolution. In
Proceedings of the 28th International Conference on Automated Software Engineering,
ASE, pages 180–190, 2013.

[106] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr., Anh Tuan Nguyen,
Miryung Kim, and Tien N. Nguyen. A graph-based approach to api usage adaptation.
In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA, pages 302–321, 2010.

[107] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra.
Semfix: Program repair via semantic analysis. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE, pages 772–781, 2013.

106

[108] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and Tien N.
Nguyen. Recurring bug fixes in object-oriented programs. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE,
pages 315–324, 2010.

[109] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Exterminator: Automatically
correcting memory errors with high probability. Communications of the ACM -
Surviving the data deluge, 51(12):87–95, December 2008.

[110] William F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, Champaign,
IL, USA, 1992. UMI Order No. GAX93-05645.

[111] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing
for java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 815–816, 2007.

[112] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In Proceedings of the 29th International Conference
on Software Engineering, ICSE, pages 75–84, 2007.

[113] Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. Toward an understanding of
bug fix patterns. Empirical Software Engineering, 14(3):286–315, June 2009.

[114] Jihun Park, Miryung Kim, Baishakhi Ray, and Doo-Hwan Bae. An empirical study
of supplementary bug fixes. In Proceedings of the 2012 9th IEEE Working Conference
on Mining Software Repositories, MSR, pages 40–49, 2012.

[115] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan,
Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically
patching errors in deployed software. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP, pages 87–102, 2009.

[116] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength of
random search on automated program repair. In Proceedings of the 36th International
Conference on Software Engineering, ICSE, pages 254–265, 2014.

[117] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch plausibility
and correctness for generate-and-validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA, pages
24–36, 2015.

107

[118] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett.
Counterexample-Guided Quantifier Instantiation for Synthesis in SMT, pages 198–216.
2015.

[119] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki,
and B. Hartmann. Learning syntactic program transformations from examples.
In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software
Engineering, ICSE, pages 404–415, 2017.

[120] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. Predicting accurate and actionable static analysis warnings: An
experimental approach. In Proceedings of the 30th International Conference on
Software Engineering, ICSE, pages 341–350, 2008.

[121] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2006.

[122] Address Sanitizer. Address sanitizer, 2016. https://github.com/google/sanitizers.

[123] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for
c. In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE, pages 263–272, 2005.

[124] Jooyong Yi Sergey Mechtaev and Abhik Roychoudhury. DirectFix: Looking for Simple
Program Repairs. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE, pages 448–458, 2015.

[125] H. Shen, J. Fang, and J. Zhao. Efindbugs: Effective error ranking for findbugs. In
2011 Fourth IEEE International Conference on Software Testing, Verification and
Validation, pages 299–308, 2011.

[126] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. Automatic
error elimination by horizontal code transfer across multiple applications. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pages 43–54, 2015.

[127] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is the cure worse
than the disease? overfitting in automated program repair. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE, pages
532–543, 2015.

108

[128] Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei. Jdf: detecting duplicate bug reports
in jazz. In Proceedings of the 2010 ACM/IEEE 32nd International Conference on
Software Engineering, volume 2, pages 315–316, 2010.

[129] M. Surf and A. Shulman. How safe is it out there? zeroing in on the vulnerabilities
of application security. In Imperva Application Defense Center Paper, 2004.

[130] Michael Sutton. Filefuzz, 2017. http://www.securiteam.com/tools/5PP051FGUE.html.

[131] Roberto Tamassia. Handbook of Graph Drawing and Visualization (Discrete Mathe-
matics and Its Applications). 2007.

[132] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tcomment: Testing
javadoc comments to detect comment-code inconsistencies. In Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification and Validation,
ICST, pages 260–269, 2012.

[133] Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair of software regres-
sions. In Proceedings of the 2015 Internaltional Conference on Software Engineering,
ICSE, pages 471–482, 2015.

[134] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury. Anti-
patterns in search-based program repair. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE,
pages 727–738, 2016.

[135] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. Automatically generated patches
as debugging aids: A human study. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, FSE, pages
64–74, 2014.

[136] Yuchi Tian and Baishakhi Ray. Automatically diagnosing and repairing error handling
bugs in c. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE, pages 752–762, 2017.

[137] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. Aletheia:
Improving the usability of static security analysis. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS, pages 762–774,
2014.

[138] OWASP WebGoat. https://github.com/webgoat, 2017.

109

[139] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging program equiv-
alence for adaptive program repair: Models and first results. In Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineering, ASE,
pages 356–366, 2013.

[140] Aaron Weiss, Arjun Guha, and Yuriy Brun. Tortoise: Interactive system configuration
repair. In Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE, pages 625–636, 2017.

[141] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep
learning code fragments for code clone detection. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE, pages 87–98,
2016.

[142] Tao Xie. Augmenting automatically generated unit-test suites with regression or-
acle checking. In Proceedings of the 20th European Conference on Object-Oriented
Programming, ECOOP, pages 380–403, 2006.

[143] Qi Xin and Steven P. Reiss. Identifying test-suite-overfitted patches through test case
generation. In Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA, pages 226–236, 2017.

[144] Qi Xin and Steven P. Reiss. Leveraging syntax-related code for automated program
repair. In Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE, pages 660–670, 2017.

[145] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. Precise condition synthesis for program repair. In Proceedings of the 39th
International Conference on Software Engineering, ICSE, pages 416–426, 2017.

[146] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. Do not blame users for misconfigurations. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP, pages 244–259, 2013.

[147] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. Lamelas Marcote, T. Durieux,
D. Le Berre, and M. Monperrus. Nopol: Automatic repair of conditional statement
bugs in java programs. IEEE Transactions on Software Engineering, 43(1):34–55,
2017.

110

[148] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test cases for
better automated program repair. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, pages 831–841, 2017.

[149] Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, and Mark Chu-Carroll. Predicting
source code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574–586, 2004.

[150] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus. Test Case Generation
for Program Repair: A Study of Feasibility and Effectiveness. ArXiv e-prints, March
2017.

[151] Sai Zhang and Michael D. Ernst. Which configuration option should i change? In
Proceedings of the 36th International Conference on Software Engineering, ICSE,
pages 152–163, 2014.

[152] Tianyi Zhang, Myoungkyu Song, Joseph Pinebo, and Miryung Kim. Interactive code
review for systematic changes. In Proceedings of the 2015 Internaltional Conference
on Software Engineering, ICSE, pages 111–122, 2015.

[153] Yucheng Zhang and Ali Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Proceedings of the joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE, pages 214–224, 2015.

[154] Hao Zhong and Zhendong Su. An empirical study on real bug fixes. In Proceedings
of the 2015 Internaltional Conference on Software Engineering, ICSE, pages 913–923,
2015.

[155] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. In ICSE, pages 563–572, 2004.

[156] Davor Čubranić and Gail Murphy. Automatic bug triage using text categorization.
In Proceedings of the Sixteenth International Conference on Software Engineering and
Knowledge Engineering, pages 92–97, 2004.

111

	List of Tables
	List of Figures
	Introduction
	Motivation
	Background on Automated Program Repair
	Thesis Statement
	Thesis Contributions

	Related work
	Automated Program Repair
	Studies of Fix Patterns, Recurring Fixes and Code Changes
	Automated Test Generation
	Generating Systematic Edits, Refactoring, and Detecting Clones
	Detecting Vulnerability Warnings Using Static Analysis

	Opad: Better Test Cases for Better Automated Program Repair
	Introduction
	The Main Contributions of this Chapter
	Approach
	Generating New Test Cases Using Fuzz Testing
	Generating Memory-Safety Oracles
	Measuring the Overfitness of a Patch Using an Overfitness Metric (O-measure)
	An Optimized Setting of Opad

	Evaluation
	Threats to Validity
	Chapter Summary

	APARE: Automatically Learning Fix Patterns from Past Fixes to Generate Recurring Fixes
	Introduction
	Automatically learning and applying project-specific fix patterns: state of the art and challenges

	The Main Contributions of this Chapter
	A Study of Project-Specific Recurring Fixes
	Identifying Bug Fixing Commits
	Identifying Candidate Recurring Fixes
	Manual Examination of Recurring Fixes
	Study Results

	Design of APARE
	Extracting and Filtering Fix Patterns
	Identifying Possible Faulty Locations
	Semantics-Aware Percentage Context Matching to Find Applicable Fix Patterns
	Generating Fixes for Fix Locations

	Evaluation
	Collecting Recurring and Non-Recurring Bugs for Evaluation

	Discussions and Threats to Validity
	Execution Time
	Threats to Validity

	Chapter Summary

	Priv: Prioritizing, Visualizing and Fixing Vulnerability Warnings of Static Application Security Testing
	Introduction
	Background on SAST and AppScan Source
	The Design and Implementation of Priv
	Phase I: Prioritizing Fixing Efforts on Investigating the Detected Vulnerabilities
	Phase II: Supplement Essential Information for Improving Diagnosis and Fixing
	Implementation of Priv

	Evaluation
	A Case Study on the Performance of Prioritizing Quality-Assurance Effort by Priv
	Threats to Validity
	Conclusions

	Conclusions and Future Work
	Thesis Conclusions
	Future Research Directions

	References

