
Rheology and Pipeline Flow Behavior of Fumed Silica Nanoparticle 

Suspensions 

 

by 

 

 

Arshdeep Singh 

 

 

 

 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the  

thesis requirement for the degree of  

Master of Applied science  

in  

Chemical Engineering 

 

 

 

 

 
 

 

 

Waterloo, Ontario, Canada, 2018 

 

© Arshdeep Singh 2018



  ii 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my supervisor and examiners. 

I understand that the thesis may be made electronically available to the public. 

  



  iii 

ABSTRACT 

Suspensions are used in a wide variety of industrial and household applications; some examples 

being paints, ink, wastewater streams, cough syrups, and sauces. Rheology of suspensions depends 

on various factors such as the particle size, shape and their surface chemistry other than the nature 

of the continuous phase. Nanoparticles, when used to produce suspensions offer unique rheological 

properties due to their extremely small size and high surface area. In this study, fumed silica 

nanoparticles of hydrophilic grade were used to form suspensions in water. Three different 

hydrophilic grades of fumed silica nanoparticles were chosen for rheological studies. Various 

properties such as zeta potential, particle size distribution, rheological and pipeline flow behavior 

were studied as a function of concentration, pH change, temperature, and presence of an electrolyte 

in the study. 

The results show that the silica nanoparticles form stable suspensions in water. The suspensions 

show shear-thinning behavior for the range of shear rates investigated. With an increase in particle 

concentration, the suspensions become more and more viscous. The Dynamic light scattering 

results show that the particle size increases with an increase in concentration. The shear viscosity 

decreases with an increase in temperature. Zeta potential results show that the particles are 

negatively charged in the aqueous phase and zeta potential value decreases in magnitude with an 

increase in particle concentration. The size distribution peaks do not show any pattern with a 

change in pH in the absence of an electrolyte whereas, in the presence of an electrolyte, the peaks 

move toward higher particle size confirming the presence of bigger aggregates in the presence of 

an electrolyte. The relative viscosity of suspensions increases more rapidly than the Einstein 

equation for hard spheres. Also, the relative viscosity at low pH value is higher for very low 

particle concentration suspensions but with an increase in concentration, suspensions show higher 

viscosity at high pH values. An addition of an electrolyte has a sharp increasing effect on the 

viscosity of dilute suspensions. Also, zeta potential turns more and more negative with increase in 

pH in the absence of an electrolyte whereas zeta potential values get compressed in the presence 

of an electrolyte. Pipeline flow results show that suspensions show drag reduction characteristics 

for very low particle concentration samples whereas almost no drag reduction properties for 

relatively higher particle concentration suspensions. 
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Chapter 1: Introduction 

1.1 Background: 

Silicon and Oxygen are the most common constituents of earth’s crust and together they form 

silicon dioxide (SiO2), commonly referred to as Silica. The building block of silica and silicate 

structures is SiO4 tetrahedron where oxygen is covalently bonded to silica in a tetrahedral geometry 

with four of the oxygen atoms covalently bonded to each silicon atom; hence forming large 

interconnected networks [1]. Silica can be classified on the basis of whether it is natural or 

synthetically produced, is in a crystalline form such as quartz or in an amorphous form such as 

glass. The Figure 1 given below depicts silica in an amorphous form:  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 1: Amorphous structure of Silicon dioxide [2] 
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Silica nanoparticles (SiO2) have been a part of extensive research due to their numerous 

applications [3-5]. Another interesting property of silica nanoparticles is that they can be 

chemically modified to suit various applications [6] and their properties like shape, size, surface 

area, porosity can be precisely controlled to suit them for diverse applications [7]. Silica is an 

abundant material and is found in many minerals on earth, is found in sand and clay mostly in its 

crystalline form, which is Quartz [8]. 

1.2 Fumed silica: 

Fumed Silica, is the non-crystalline form of silica. It is usually produced as fine and very small 

particles with a high surface area and low bulk density prepared via the flame hydrolysis process 

[9]. Owing to its small particle size, special morphology, unique surface properties, these particles 

find their usage in many applications in industry. The specific surface area of fumed silica powders 

can range anywhere from 50 to 600 m2/g [10]. 

1.2.1 Manufacturing process: 

The manufacturing process of fumed silica powder is a vapor-based process operated at elevated 

temperatures. It is generally prepared via hydrolysis reaction of vapors of Silicon tetrachloride 

(SiCl4) in the presence of hydrogen and oxygen at a temperature of 1000 °C [11]. The flame 

hydrolysis is essentially a process that involves the reaction of the mixture of a precursor 

(commonly a metal chloride), air/water and Hydrogen in a reactor. The process is generally 

operated on a continuous basis. The precursor, such as metal chloride reacts with water vapor 

which is formed by the reaction of Oxygen and Hydrogen present in the mixture [12]. The reactions 

involved in the production process of fumed silica are mentioned as follows: 

2𝐻2 + 𝑂2 → 2𝐻2𝑂 

𝑆𝑖𝐶𝑙4 + 2𝐻2𝑂 → 𝑆𝑖𝑂2 +   4𝐻𝐶𝑙 

 

                                                2𝐻2 + 𝑂2 + 𝑆𝑖𝐶𝑙4 →  𝑆𝑖𝑂2 + 4𝐻𝐶𝑙           (1) 

The reaction of  SiCl4  (Silicon tetrachloride) when it burns in oxygen and hydrogen flame, 

produces primary particles. While it is in a molten state, the primary particles constantly collide 

with each other; they fuse together into bigger secondary particles called as aggregates, by surface 

interactions. Before the separation of silica particles from HCl, the reaction mixture is sent to a 

cooling zone. The silica particles, being very small and having a huge surface area, physically 
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absorb the HCl which is removed by the treatment of Silica with moist air. This treatment, in turn, 

lowers the content of HCl in silica product to a very low value i.e. 0.025 % [11]. The controlling 

parameters for bringing out a change in surface area of fumed silica powders are the proportion in 

which reactants are added, the temperature of the reaction mixture and turbulence of the flow [13]. 

The aggregates in fumed silica particle suspensions, often form agglomerates due to attractive 

forces between them. A graphical representation of the formation of agglomerates is presented in 

the figure given below: 

 

 

Figure 2: Schematic representation of the formation of an agglomerate from aggregates [10] 

1.2.2 Classification of fumed silica: 

Fumed silica exists in different grades depending upon the nature of primary particle’s surface. It 

can be broadly classified into two types as given below:   

1. Hydrophilic Silica: It has been found that Silanol groups (Si-OH) groups are present on the 

surface of silica [14]. A silanol group is present per every second atom of silica. Due to the 

presence of such large numbers of these groups, interactions by fumed silica particles are 

majorly governed by those groups. Owing to the silanol groups on its surface and its oxide 

nature, the fumed silica produced by flame hydrolysis process is hydrophilic in nature [15]. 

2. Hydrophobic Silica: The hydrophobic silica is produced by chemical conversion of surface 

groups i.e. Si-O-H groups on its surface. The elimination of hydroxyl bonds present on the 

originally hydrophilic surface can lead to a hydrophobic surface. This can be done by a 

treatment of hydrophilic grade silica with alkyl chloro-silanes or alkyl silazanes which 

deactivates the surface silanol groups and the surface becomes hydrophobic [15,16]. 
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1.2.3 Applications of fumed silica: 

Fumed silica, due to its unique properties, provides benefits for many consumer and industrial 

applications, some which are: 

1. Composite polymer electrolyte for batteries: The usage of solid polymer electrolytes in 

batteries has many benefits; they help get rid of battery leakage, there is no more need for a 

separator and they are also capable of being produced at low cost. But they suffer from low 

conductivity problem. If silica is introduced as a filler, it forms a three-dimensional network 

and hence the composite polymer electrolytes then show high conductivity value, mechanical 

stability, and easy processability. The composite also exhibits shear thinning behavior which 

is also beneficial for electrolyte processing [17]. 

2. For removal of excess phosphorous from wastewater: Phosphorus is a very vital nutrient, 

but an excess of phosphorus can cause a problem which is eutrophication of water bodies. 

Investigations show that fumed silica powder when used within coordination with pulverized 

oyster shell, calcined and hydrothermally annealed at a certain temperature and batch time 

produces a material that can remove phosphorous which does not break down easily to form 

sludge. This phosphate removal material can readily remove phosphate by precipitating Ca- 

phosphates. So, fumed silica can be used as a reagent for phosphorous removal [18]. 

3. Producing photocatalytic material: Fumed silica and TiO2 composite porous ceramic 

material prepared using phosphoric acid binder changes the photocatalytic activity of TiO2. 

The photocatalytic porous ceramic material thus produced exhibits higher tensile stress, higher 

surface areas and a reasonable activity as a photocatalyst. It also overcomes common 

limitations associated with TiO2 i.e. separation and recovery issues with the TiO2 based 

originally used photocatalytic material [19]. 

4. Removal of Zinc (Zn) from wastewater: Heavy metals, such as Zinc are being continuously 

released into the environment due to industrial processes and are a health hazard for human 

and for aquatic habitat [20]. Electrodialysis is one of the various methods that are in place to 

remove heavy metals from a stream of wastewater. It involves the application of electric 

potential difference which brings ions in motion which are separated using a semipermeable 

membrane [21, 22]. It was found that the polymer membranes used for dialysis when doped 

with fumed silica powder experience a significant increase in performance; the membranes 
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were more resistant to fouling and ionic conductivity and membrane hydrophobicity was also 

enhanced [23]. 

5. Rheology control: The usage of paints and coating for a particular application depend a lot on 

their flow behavior. To meet the requirements such as high surface finish and good leveling 

characteristics, different binders and additives have been used from time to time. Pyrogenic 

silica is a very effective rheology modifier and is widely used as a rheology modifier in many 

systems such as Coating and paints [24]. 

6. Enhanced oil recovery: Polymer flooding is the most commonly used technique for Oil 

recovery. It is quite effective but expensive at the same time because it consumes extensive 

quantities of polymer. Emerging nanomaterials especially silica-based nanomaterials help to 

deal with this challenge. Addition of silica nanomaterials changes viscosity considerably and 

significantly improves oil recovery [25].  

7. Nanocomposites: Recently, use of nanotechnology has created many new opportunities such 

as producing valuable inorganic-organic hybrid composites. Nano-sized inorganic filler such 

as silica can surprisingly modify properties of the composite materials; they can significantly 

enhance thermal properties and strength of materials and make them more usable to suit the 

operating environment. The crystalline form of silica nanoparticles has received a lot of interest 

recently for their application in nanocomposites because they have a very ordered structure, 

they have a very high surface area are relatively cheaper to produce [26].  

8. Reinforcement of elastomers: The reinforcement of soft materials such as elastomers is done 

by blending them with rigid and hard materials and it has a lot of Industrial applications. Using 

fumed silica as a reinforcing filler in elastomers such as high-performance rubber products 

produces a considerable improvement in their mechanical properties as they can reap both the 

benefits by gaining stiffness of the reinforcing material and yet retaining the original elastic 

nature and properties [27].  

9. Fabrication of super hydrophobic surfaces: Non-wettable surfaces which have high water 

contact angles (WCA’s) and an easy sliding of water droplets coming into contact are called 

as super hydrophobic or ultra-hydrophobic surfaces [28]. For a surface to be super-

hydrophobic, it requires certain conditions of chemical composition and surface topography 

[29]. Hydrophobically modified Silica can be used to prepare super hydrophobic coatings on 

glass which show self-cleaning properties and withstand its super hydrophobicity even after 
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multiple cycles of abrasion and adhesion. It can withstand its super hydrophobicity at different 

pH values and it works on any size and shape of glass [30]. 

10. Recyclable gas storage: Natural gas is a potential source of energy. Methane is the primary 

constituent of natural gas and is relatively green energy source as it produces less CO2 as 

compared to fossil fuels. Methods currently in practice for transportation or storage of natural 

gas require compressing the gas to high pressures and then cooling it to a temperature less than 

190.6 K which makes it very expensive. Gas hydrate is a promising candidate for storing 

natural gas in a cost-effective, extremely safe, non-explosive and environmentally friendly 

manner [32]. A recent investigation about the formation-dissociation cycle of methane gas 

hydrate in a silica-water suspension show high hydrate conversion and offers many other 

advantages over existing conventional methods. Therefore, use of silica in methane hydrate 

presents us with a viable platform for recyclable gas storage [33]. 
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Chapter 2: Literature review 

A suspension can be thought of as a heterogeneous fluid which contains solid particles well 

dispersed throughout the system and which are large enough to settle if left undisturbed. The solute 

particles do not dissolve in the medium and are suspended throughout the bulk of the solvent. The 

suspended particles may be seen under the microscope. Suspensions are unstable from the 

thermodynamic point of view. We see a lot of suspensions in daily life around us such as fog, 

smoke, dust, milk, blood etc. [34]. Several classifications are used in the literature to describe 

suspensions. Depending upon the nature of dispersion medium and the dispersed phase, 

suspensions can be classified into following types: 

• Aerosols: Aerosols consist of solid or liquid particles in gases such as smoke (solid in gas) or 

fog (liquid in gas). 

• Bubbly liquids: As the name suggests, they are liquids with the presence of bubbles in them 

such as effervescent liquids. 

• Emulsions: Emulsions are a suspension of immiscible liquid droplets in a host liquid, such as 

milk. 

• Hydrosols: They consist of solid particles in a host liquid such as paint pigments. 

The size of particles in suspensions can vary from submicron to millimeter range [35]. Colloids, 

on the other hand, are the uniformly dispersed mixtures in which dispersed particles are smaller 

and they do not settle. Due to their small very particle size, surface area to volume ratio for colloids 

is very large. Colloids and suspensions are different from solutions in which dissolved substance 

does not exist as a solid because solvent and solute are mixed homogeneously [34]. The rheology 

of suspensions, their stability criterion, and their flow behavior and drag reduction have been 

elaborated subsequently.  

2.1 Fundamentals of Rheology: 

“Rheology is the science dealing with the deformation and flow of materials” [36]. It deals with 

how materials respond to the application of mechanical forces or to deformation or a combination 

of both. Various factors such as temperature, pressure, shear rate, duration of shear and pressure 

may affect the rheological properties of a material [37]. The field of rheology is dominated by an 

inquiry into the flow of complex fluids such as polymers, emulsions, slurries, and suspensions etc. 

The shear stress versus shear rate relationship of complex fluids is usually quite different than for 
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a Newtonian fluid, which describes the shear behavior for simple liquids. These fluids are 

generally very viscous, and their rheological properties are also of importance. Hence, the flow 

behavior of non-Newtonian fluids is a central part of rheology [38]. Consider a layer of fluid in 

motion between two large parallel plates. Both the plates have a surface area A and have a distance 

Y between them, as shown in figure 3 given below: 

 

 

Figure 3: A graphical representation of one directional shear flow 

The lower plate is stationary while the upper plate starts moving in the positive x-direction with a 

constant velocity “V”. The fluid starts gaining some momentum and the moving plate will generate 

a motion in other layers of liquid as well. After some time, the system reaches a steady state 

situation. Once steady state is reached, the velocity of a layer of fluid just above the lower 

stationary plate will be zero whereas the layer of fluid just below the uppermost moving plate will 

move with the velocity same as the moving plate i.e. “V”. Also, if we investigate the velocity 

profile between two plates, we will find that it increases linearly with the positive “y” axis from 

lower to the upper plate. We observe that a constant force “F” opposite is required to keep the 

upper plate in motion. This force required to maintain the motion of the upper plate per unit surface 

area of the plate “A” is called as shear stress and it is found to be directly proportional to the 
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velocity of the upper plate and also it bears an inversely proportional relationship with the distance 

“Y” between the two plates as: 

     
𝐹

𝐴
= 𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 ∝  

𝑉

𝑌
=  µ 

𝑉

𝑌
                      (2) 

The proportionality constant µ in the above equation is a fluid property called as the dynamic 

viscosity of the fluid. As the velocity profile is linear, the Equation 2 can be written similarly for 

a very small segment fluid. So, the differential form of Equation 2 can be written as: 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 =   𝜏𝑦, 𝑥 = − µ 
𝑑𝑉

𝑑𝑦
                                      (3) 

In Equation 3, we replace  
𝐹

𝐴
  by the shear stress symbol τy, x  i.e. a force acting in the -direction 

on a unit area normal to the “y” direction. The negative sign indicates that the shear stress acts 

opposite to the direction of motion on a faster-moving fluid. Equation 3, which states that the shear 

force per unit area is directly proportional to the negative of velocity gradient, is known as 

Newton’s law of viscosity. The fluids which follow this law are known as Newtonian fluids. 

Polymeric liquids, slurries, and suspensions often do not follow this and are called as non-

Newtonian fluids. We can also understand the same situation from the perspective of momentum 

transfer as:  

The equation 2 for an incompressible fluid of density 𝜌 can also be re-written as:       

                       𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 =   𝜏𝑦, 𝑥 = − 
µ

𝜌
 

d

𝑑𝑦
(𝜌V𝑥)                               (4) 

The quantity “ρ Vx” can be looked at representing momentum per unit volume of fluid and 

therefore τ y, x represents the transfer of x-direction momentum in the y-direction. The negative 

sign means that the transfer of momentum happens downhill w.r.t velocity i.e. in the direction of 

a fluid layer having a higher velocity to the lower velocity fluid layer. The velocity gradient serves 

as a driving force for momentum transport. Often the ratio of viscosity and density of a liquid is 

represented by a symbol as: 

                                                                    𝜈 =
𝜇

𝜌
                                                  (5) 

 

Where ν is known as Kinematic viscosity [39, 40]. 
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2.2 Flow behavior of suspensions: 

Viscosity is the most commonly sought after rheological quantity and it plays a significant role in 

flow behavior of any fluid. Viscosity is constant for Newtonian fluids at a given pressure and 

temperature and is independent of shear rate (γ) whereas when we talk about non-Newtonian 

fluids, viscosity depends and is specified at a given shear rate and is known as shear viscosity. The 

shear viscosity of a liquid is obtained by dividing its shear stress with shear rate and it depends on 

different factors such as flow geometry and forces acting on the fluid in the past other than shear 

rate. Because apparent viscosity depends on shear rate, it is generally known as shear viscosity 

[41]. In real life, viscosity depends a lot on pressure, temperature and on how long shear is applied. 

When subjected to shear rate, suspensions generally show two distinct types of non-Newtonian 

behavior explained as under.  

2.2.1 Shear Thinning behavior: 

Flow behavior of a lot of materials such as slurries, emulsions, and polymer solutions are different 

from a Newtonian fluid & follow shear thinning behavior. Shear thinning is a non-Newtonian 

behavior in which viscosity of a fluid decreases with an increase in shear rate. It is also sometimes 

referred to as pseudo-plastic behavior [42]. In polymeric solutions, it was observed that for very 

low shear rates, the apparent viscosity is almost independent of shear rate and tends to be constant 

called as Zero shear viscosity generally represented by"𝜂0” 

                 𝑙𝑖𝑚
𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒→0

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑆ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒
 = 𝜂0                    (6) 

Apparent viscosity also approaches a constant value at very high shear rates for polymer solutions; 

and that value is called as infinite shear viscosity, 𝜂∞.  

                              𝑙𝑖𝑚
𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒→∞

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑆ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒
 = 𝜂∞         (7) 

The strength of shear-thinning varies from one system to another. The minimum shear rate value 

beyond which any fluid starts showing shear-thinning behavior is known as critical shear rate value 

which depends on various factors like particle shape and size, polymer concentration, nature of 

solvent etc. [41]. The figure given below depicts the flow behavior for a typical shear-thinning 

fluid (log-log scale): 
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Figure 4: Flow behavior for a typical shear thinning fluid [43] 

2.2.2 Shear thickening behavior:  

The liquids for which the apparent viscosity increases with an increase in shear rate are known as 

Shear thickening fluids [44]. This happens due to increased flow resistance as shear rate increases. 

Generally, such behavior is found in concentrated suspensions at high shear rates whereas some 

suspensions also exhibit this kind of behavior even at lower shear rates. Some of the examples 

include concentrated suspensions of titanium oxide, china clay and cornstarch in water etc. There 

are a lot of explanations that have been given at times to explain the shear thickening behavior. A 

widely accepted explanation is that at high shear rates, the liquid is incapable of filling the void 

space and hence unable to lubricate and decrease frictional forces between particles which in turn, 

is seen as an increase in apparent viscosity [45]. The figure given below depicts the flow behavior 

of a shear-thickening fluid: 
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Figure 5: Flow behavior of TiO2 suspensions at different particle concentrations [46] 

To approximate the fluid behavior, various mathematical equations and models have been 

presented in literature from time to time. One of most popular model used is power law model 

which is explained as under: 

Generally, the relation between shear rate (γ) and shear stress (τ) can be approximated by a power 

curve and can be written as: 

   𝜏 = 𝑚 (𝛾)𝑛                                                     (8) 

The above relation can be re-written in terms of apparent/shear viscosity and shear rate as: 

           𝜂 = 𝑚(𝛾̇)𝑛−1                                       (9) 

Where n and m are two empirical parameters called as power-law index and fluid consistency 

index respectively [47, 48]. 
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Table 1: Power law index values for different fluid flow behavior 

Value of n  Fluid behavior 

n=1 Newtonian fluid 

n<1 Shear-thinning fluid 

n>1 Shear-thickening fluid 

 

2.3 Stability of suspended particles: DLVO theory  

The stability of suspended systems is important for its applications and various theories have been 

proposed from time to time to explain and predict particle stability. One of the most popular theory 

about colloidal stability is DLVO theory which is named after Landau, Derjaguin, Overbeck, and 

Verwey; the researchers who developed this theory. DLVO theory takes into account two major 

forces acting between charged particles in a liquid media i.e. Van der Wall forces and electrostatic 

forces. According to DLVO theory, the net interaction between charged particles may be assumed 

as an addition of Van der Waal and columbic interactions and both these interactions form the 

basis of colloidal stability. Both the Van der Waals and electrostatic forces are explained as under: 

2.3.1 Van der Waals forces:  

All the atoms, be it polar or non-polar in nature, have the presence of dipoles on them. Where polar 

molecules already have existing dipoles on them due to the difference in electronegativity of atoms 

on a molecule, even non-polar molecules form instantaneous diploes in an aqueous phase due to 

the interactions of the electrons surrounding an atom’s nucleus. The attractive forces that result 

from the interaction between these dipoles are known as Van der Waals forces. There are two types 

of Van der Waals forces: London forces and dipole-dipole forces. Being the most common, 

London forces come into existence when electron cloud in a neutral atom experiences a momentary 

fluctuation. This fluctuation causes a dipole on the atom and which in turn induces a dipole in a 

neighboring atom or molecule. Oppositely charged surfaces of two dipoles attract each other. The 

presence of permanent dipoles in polar molecules like HCl can also induce temporary dipoles in 

neighboring molecules. Van der wall forces are weak and are additive in nature i.e. the total Van 

der Waal interaction of a system can be found by the summation of all the interactions among all 

the neighboring surfaces. They depend a lot on the geometry of the system. For two particles of 

spherical shape with Radius equal to R, the Van der Waals force FA between them is approximated 

as: 
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                     𝐹𝐴 =
𝐻∗𝑅

12∗𝐿2                                                       (10) 

 

 Where H is called as Hamaker constant and L is the distance separating the particles. This 

expression holds true for a distance between particles to be relatively small w.r.t particle Radius 

I.e. L<<R. Hamaker constant depends on material properties such as density and polarizability. 

The presence of a medium also affects the value of Hamaker constant and an increase in Hamaker 

constant means the particles will have more attractive forces between them [49]. 

2.3.2 Electrostatic repulsion between particles: 

The Van der Waals forces, being attractive in nature for two similar particles, tend to destabilize 

the suspension. The reason behind it is that if there were only forces of attraction amongst particles, 

they would have a tendency to aggregate and eventually precipitate. However, this does not happen 

as there is a presence of repulsive forces because particles in a medium like water, which has high 

dielectric constant, acquire some charge on them and start repelling each other. Repulsion is 

electrostatic in nature and is relatively a long-range force. Often, repulsive forces are high enough 

to negate the Van der Waals forces of attraction and hence stabilize the suspensions. There are two 

different mechanisms that can cause particles to acquire certain charge in a liquid medium that are: 

1. Charged surface developed due to ionization or dissociation of the surface groups, leaving 

behind a charged surface.  

2. Sometimes ions present in solution adsorb on uncharged surfaces and hence the particles 

acquire charge on them. 

The system as a single unit is neutral, so medium should carry an equal charge of opposite sign. 

This opposite charge is carried by ions in the solution known as counter-ions. The counter-ions are 

present in solution in such a way that the particle has a distribution of them around itself in the 

form of layers known as a double layer. The double layer is made up of two sections; Inner part 

constitutes the ions that are adsorbed onto the particle surface due to chemical interactions whereas 

the outer part is formed by the ions loosely bound to the particle surface and which are free to 

move. [50]. The charge on a suspended particle can be measured by knowing the value of zeta 

potential, which is the potential observed at the shear plane between the colloid and liquid. A 

typical charge distribution surrounding a colloid is presented in the figure given below: 
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Figure 6: Electrostatic double layer around a particle [51] 

The figure given above shows a colloid that acquires a net negative charge due to adsorption of 

negatively charged ions. As it gains a negative charge, now the particle attracts the positive ions 

in the solution to counterbalance its negative charge. Electrical potential happens to be maximum 

at the colloid surface and it keeps on decreasing as we move away from the particle to the bulk of 

the solution. The inner ions in the double layer can’t move as they are tightly bound to the particle 

surface whereas ions in the other part of double layer i.e. diffuse layer are movable counter-ions. 
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The potential at the interface of both these layers is known as Zeta potential and the plane 

separating these two layers is called as shear plane [52]. The value of zeta potential gives us an 

information about the nature and magnitude of charge on the particle surface which determines the 

forces between the particles. A non-zero value of Zeta potential implies that the particles would 

have the presence of charge on their surface. There are some factors that affect the level of particle 

interaction and hence the value of zeta potential as well. The zeta potential, in general depends on 

the pH value and the concentration of ions in the medium explained in the sections given below. 

2.3.3 Effect of pH:  

The pH of the medium can dramatically affect the value of zeta potential. At low pH, zeta potential 

values tend to be positive in nature whereas in a highly basic medium the zeta potential values tend 

to be negative indicating negative charge on the particle surface. The increase in pH of the medium 

causes a decrease in zeta potential value till it becomes zero, for a pH value known as the Iso-

electric point. As you increase pH value of medium beyond the Iso-electric point, particles acquire 

a negative charge and zeta potential value starts increasing on a negative scale. [20]. The reason 

for having a positive value of zeta potential at low pH values is because of the presence of a lot of 

H+ ions at the particle’s surface. However, this is not the case for all the materials [54]. 

2.3.4 Effect of Ionic strength: 

When the concentration of ions in a medium is increased by providing ions which do not 

specifically interact with the surface of the particle, the double layer is compressed and that results 

in a higher attractive electrostatic force [53]. This in response, causes a decrease in the Zeta 

potential value and as the ionic strength increases, the Zeta potential value decreases and goes 

towards zero. However, if the ions can specifically adsorb on the particle surface, the magnitude 

and even the sign of charge and zeta potential on the particle can change. A presence of such ions 

can also bring out a change in IEP [54]. According to the DLVO theory, the overall interactions 

can be found by adding the attractive interactions and repulsive interactions, as shown under: 

           𝑉𝑇 = 𝑉𝑅 + 𝑉𝐴                     (11) 

Where the total Interaction energy VT is equal to the sum of repulsive interaction energy, VR due 

to the electrostatic forces and attractive interaction energy, VA  due to Van der Waals forces. 

Contrary to the electrostatic interactions, the van der Waals interaction energy does not depend on 

ionic strength or a change in pH of medium [50]. 
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2.4 Rheology of fumed silica nanoparticle suspensions: 

Suspensions have a widespread use in our daily life and are observed commonly as things like 

ketchup, pharmaceuticals such as a cough syrup, paints and even dust particles in the air. 

Suspensions are encountered in various stages of petroleum processing and recovery such as 

sludges in oil filed surface facilities, as drilling fluids and during production and transport [55].  

The rheology of fumed silica nanoparticle suspensions has been a topic of continuous interest to 

researchers due to the widespread use of silica and potential applications that silica nanoparticles 

have to offer [17-26]. The suspensions prepared by the addition of hydrophilic fumed silica to 

polar liquids such as water and alcohols are stabilized due to the hydrogen bonding between the 

liquid molecules and surface silanol groups of particles for low and moderate particle 

concentrations (e.g. ø<=0.15). Whereas when it comes to hydrophobic fumed silica particles, they 

can stay well dispersed in organic solvents for a relatively higher particle concentration because 

of hydrophobic interactions between hydrophobic groups of modified silica particles and 

dispersing liquids. But, with an increase in particle concentration, the fumed silica suspensions 

change its state from sol to gel, whether hydrophilic or hydrophobic [63]. Gel formation occurs 

because attractive forces dominate over repulsive forces which makes aggregates of particle form 

clusters which grow in size and result in a 3-dimensional network of particles yielding a gel 

structure. 

The rheological behavior of colloidal suspensions depends on a lot of parameters. The most 

important of them are the methods of preparation, shape, and size of the particle, particles volume 

fraction, temperature, surfactant concentration & properties of continuous phase [57-59]. It has 

been observed that fumed silica suspensions show a shear thinning behavior at low shear rates and 

show shear thickening behavior at high shear rates. So, their apparent viscosity decreases with an 

increase in shear rate upto a critical point and then starts increasing with a further increase in shear 

rate beyond this point [50-62]. Madhi H. Et al. reported that for silica suspensions in Poly Ethylene 

Glycol (PEG), the apparent viscosity vs shear rate plot of silica nanoparticle suspensions shows 

three different behaviors: shear thinning for low shear rates, following shear thickening transition 

for shear rates over critical shear rate till a point and then finally shear thinning behavior at very 

high shear rates [63, 64]. The shear thickening behavior of fumed silica nanoparticle suspensions 

can be attributed to the formation of hydro clusters, in which hydrodynamic lubrication forces 
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overcome inter-particle forces. This causes a formation of particle clusters that developsunder 

strong flows and therefore results in an increase in suspension viscosity [63, 65, and 66]. 

The apparent viscosity of fumed silica suspensions decreases with an elevation in temperature. 

Also, with an increase in temperature, critical shear rate increases whereas critical shear stress is 

independent of temperature. This is due to the increased Brownian motion of silica nanoparticles 

in suspension [63, 67]. The fumed silica suspensions are acidic in nature because they release H+ 

ions in an aqueous phase and their natural pH ranges from 5.6-6.1 [68]. An increase in particle 

concentration makes the shear thickening effect become stronger and also the onset value of shear 

thickening behavior changes to a relatively low shear rate [62, 65]. The rheology of a suspension 

depends on factors like particle interaction, hydrodynamic interactions, and Brownian forces. 

There are various methods that can be used to tune the rheological behavior of suspensions such 

as introducing an electrolyte to control the concentration of ions in medium or changing the pH 

value. It was observed that an increase in salt concentration in medium increases the viscosity of 

suspensions at any pH value [63, 69]. 

Through various studies, the Iso-Electric Point of fumed silica suspensions is found to be 

approximately around pH=2. With an increase in pH, the zeta potential of silica suspensions is 

found to become increasingly negative and tend to be invariant for high pH values [67, 70, and 

71]. For a very low electrolyte concentration such as salt concentration less than 0.01 M, there is 

no visible effect of electrolyte concentration on zeta potential or Iso-electric point. But a shift in 

Iso-electric point to relatively high pH value at higher electrolyte concentrations has been reported 

[69]. Keiko Y. Et al. observed that there was a suppression in the magnitude of zeta potential with 

electrolyte presence in suspension possibly due to the adsorption of counter-ion on double layer 

neutralizing some of the charge on particle surface [56]. 

The particle size of silica nanoparticles observed in suspension is larger than its primary particle 

size [67], potentially because silica nanoparticles undergo chain-like aggregation in aqueous phase 

[56, 64]. Even though the primary particle size of fumed silica particles is anywhere between 5-50 

nm, the particles form stable aggregates in the suspensions in a size range of 100-500 nm due to 

the hydrogen bonding. There is not any appreciable effect of pH change observed on particle size 

for silica nanoparticles [67]. The particle size as reported by DLS increases with the concentration 

of the sample whereas it is not possible to measure the particle size for higher particle concentration 

due to the presence of multiple peaks in particle size distribution [10]. 
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2.5 Fluid Flow and friction factor: 

Fluid flow can be classified into two major regimes on the basis of the pattern in which fluid flows; 

Laminar or turbulent. The basic difference between these two types was demonstrated by Reynolds 

in 1883. He carried out an experiment in which he injected a stream of dye in flowing water in a 

small glass tube and the flow could be regulated by a valve at the outlet. At low flow rates, he 

observed that the stream of dye followed a well-defined straight-line path without any mixing of 

the dye with surrounding water. At very high flow rates, the dye started following an irregular 

motion and it spread randomly into the tube cross-section. This led to a classification of fluid flow 

in two major categories defined as under: 

• Laminar flow: Laminar flow, also called as a streamline or viscous flow is the flow in which 

layers of fluid slide past each other in parallel layers with no visible mixing across the layers. 

Laminar flow can be observed at low flow rates. 

• Turbulent flow: Turbulent flow can be described as a rapid and irregular movement of fluid 

with the presence of eddies. Properties such as velocity and pressure fluctuate a lot for each 

location in turbulent flow. Turbulent flow occurs beyond a certain flow rate known as critical 

flow rate [72]. 

 

Figure 7: Laminar and turbulent flow in pipes [73] 
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2.5.1 Reynolds Number (Re):  

Osborne Reynolds studies the flow conditions in which the flow of fluid in pipes transitioned from 

laminar to turbulent flow. He observed that the flow transition depends on the flow velocity, the 

kinematic viscosity of the fluid and the diameter of the tube. The higher the velocity, & the lesser 

the viscous the liquid, the more turbulent the flow is. He presented the connection between these 

quantities in a dimensionless number, called as Reynolds number Re [74]: 

            𝑅𝑒 =
𝜌∗𝑉∗𝐷

𝜇
                      (12) 

 Where Re is the Reynolds Number, ρ is the fluid’s density, D is the Diameter of the pipe, V is the 

velocity of the fluid, and 𝜇 is dynamic viscosity of the fluid. Reynolds number can be understood 

as a measurement of the ratio of inertial to viscous forces. Inertial forces involve force due to the 

momentum of the mass of a flowing fluid such as the fluid’s resistance to any change in velocity 

i.e. its magnitude or direction. Whereas viscous forces deal with the friction between different 

layers of flowing liquid.  

2.5.2 Fluid flow in Pipelines: 

Fluid flow in circular pipes in commonly encountered in daily life such as the flow of hot and cold 

water to our homes or the transportation of oil and natural gas. When a fluid flowing at a constant 

velocity enters the section of a pipe, the layers of fluid next to the walls slow down gradually due 

to the friction. As a consequence, a boundary layer develops in which effect of fluid deceleration 

can be felt by the fluid. This boundary layer extends as the fluid flows further downstream and at 

a certain distance ahead of the entrance, it develops till the pipe center and covers the entire cross 

-section of the pipe. After this point, the flow conditions remain constant and the flow is called as 

fully developed flow. The flow type depends upon the Reynolds number. It has been found that for 

a smooth circular pipe, the flow is generally laminar for a value of Reynolds number less than 

2000 and turbulent for values of Reynolds number greater than 4000 [75].   
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Figure 8: Laminar flow in a smooth circular pipe 

The figure given above depicts the velocity distribution and shear stress distribution for a fully 

developed flow in a smooth circular pipe for laminar flow where D is the diameter of the pipe, Le 

is the entrance length, u is the velocity distribution and 𝜏 is the shear stress distribution across the 

cross-section of the pipe. The distance from the entrance to just where boundary layer develops 

fully to the tube center is called as Entrance length, and is calculated from the relation as under 

[76]: 

         𝐹𝑜𝑟 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤             𝐿𝑒 = 0.065 (𝑅𝑒 ∗ 𝐷)                            (13) 

 

                                    𝐹𝑜𝑟 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤             𝐿𝑒 = 0.693 (𝑅𝑒0.25 ∗ 𝐷)                       (14) 

The parabolic velocity profile given in the above figure for laminar flow is given by the equation: 

                           𝑢 = 𝑢𝑚𝑎𝑥 ∗ (1 −
𝑟2

𝑅2)       (15)  

where                      𝑢𝑚𝑎𝑥 =  
𝑅2∗∆𝑃

4∗𝜇∗𝐿
                  (16) 

Where ∆P is the pressure drop across the entire length of the pipe, R is the radius of the pipe, 𝜇 is 

the dynamic viscosity of the liquid, L is the length of the pipe and 𝑢𝑚𝑎𝑥 is the maximum velocity 

observed at the center of the pipe. 

2.5.3 Friction factor & Pressure losses in a pipe: 

Whenever a fluid flows in a closed pipe, there is a pressure drop in the flow direction. This pressure 

drop is due to various factors, majorly due to friction to the flow. So, there is a certain power 

requirement to maintain the flow. The pressure drop across a pipe of some length varies 
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proportionally with the flow rate for a laminar type flow whereas for a turbulent flow it increases 

more sharply as shown in the figure below [77]: 

 

Figure 9: Pressure drop vs flow rate for a fluid flowing in a pipe [6] 

As mentioned earlier, the major loss of energy in a pipe is due to the friction forces between the 

pipe walls and the fluid. This loss of energy is manifested in the form of pressure loss and can be 

related to the frictional forces present in the pipe. This friction is defined either in the terms of skin 

friction coefficient, also called as Fanning friction factor or Darcy’s friction factor. The fanning 

friction factor, f is defined as the ratio of the wall shear stress to the product of the density and the 

velocity head as under [78]: 

               𝑓 =  
𝜏𝑤

𝜌∗𝑉2

2

          (17) 

Where V is the flow velocity (averaged) inside a pipeline, 𝜏𝑤  is the shear stress at wall surface and 

𝜌 is the density of the fluid. Also, the wall shear stress 𝜏𝑤 in a pipe can be related to the pressure 

drop due to the friction in a pipe as [77]: 

                                                               𝜏𝑤 =
∆𝑃∗𝐷

4𝐿
                           (18) 
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Now if we substitute the value of wall shear stress from equation 18 in equation 17, we get: 

                                    𝑓 =  
∆𝑃∗𝐷

2∗𝐿∗ 𝜌∗𝑉2                       (19) 

Now average velocity of the fluid, V is related to the volumetric flow rate of the fluid, Q as: 

                      𝑉 =
𝑄

𝐴
               (20) 

Where A is the area of cross-section of the pipe and is calculated as: 

 

                            𝐴 =
1

4
𝜋𝐷2

                   (21) 

After substituting the value of Velocity, V in terms of diameter, D and volumetric flow rate, Q, we 

get: 

               𝑓 =  
𝜋2𝐷5∆𝑃

32 𝜌𝐿𝑄2               (22) 

So, knowing the fluid properties, pressure difference, and volumetric flow rate, we can easily 

calculate the value of friction factor. Also, Reynolds number can be written as: 

                              𝑅𝑒 = 4𝜌𝑄
𝜋𝜇𝐷

                   (23) 

The equation 22 given above is valid for laminar as well as turbulent flow. The pressure drop for 

a Newtonian fluid in laminar flow in a pipe of a constant cross-sectional area is often given using 

Hagen-Poiseuille equation as [79]: 

           ∆𝑃 =
128 𝜇𝐿𝑄

𝜋𝐷4                      (24) 

Substituting the value of Pressure drop from equation 24 in equation 22 and simplifying we get 

friction factor for fully developed laminar flow: 

                𝑓 =
16

𝑅𝑒
                                           (25) 

For fully developed Turbulent flow, friction factor doesn’t only depend on the value of Reynolds 

number but also depends upon the value of relative roughness of the pipe wall i.e. ∈/D. For a 

smooth pipe with negligible roughness, some empirical equations have been presented for a 

different range of Reynolds number to approximate the values of friction factor. Most popular of 

them is Blasius equation which is given as under [77]: 

           𝑓 = 0.079 𝑅𝑒−0.25           (26) 
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Equation number 26 is only valid for a Reynolds number value from 3000 to 105. Some other 

empirical equations for friction factor in smooth pipes are: 

Table 2: Empirical equations for calculating friction factor in fully developed turbulent flow 

For rough pipes, Colebrook equation is used to estimate the friction factor in turbulent flow for a 

value of Reynolds number above 4000 [84]: 

     𝑓−0.5 = −2.0 𝑙𝑜𝑔 (
∈

𝐷
+

2.51

𝑅𝑒∗√𝑓
)       (27) 

Another popular equation given by S.E. Haaland in 1983 is [8]: 

                                    𝑓−0.5 = −3.6 𝑙𝑜𝑔 ((
∈

𝐷

3.7
)

1.11

+
6.9

𝑅𝑒
)                              (28) 

2.6 Turbulent Drag reduction: 

Drag reduction is the reduction in the pressure drop of the flow of a turbulent pipe at the same flow 

rate due to additives. In other words, as Lumley (1969) explained: 

“Drag reduction is the reduction of skin friction in turbulent flow below that of the solvent”. 

As the definition implies, drag reduction is applicable to turbulent flows. It allows us to increase 

the pumping capacity or decrease the pumping requirement Drag reduction occurs with the 

addition of an additive if the pressure drop decreases at a constant flow rate or the flow rate 

increases at a constant pressure. It is generally calculated as: 

              % 𝐷. 𝑅. =
𝑓0−𝑓𝑠

𝑓0
× 100                          (29) 

Researchers Equation Applicability 

Von Karman, 

Prandtl, Kuradse    

[80,81] 

𝑓−0.5 = 4.0 𝑙𝑜𝑔(𝑅𝑒 ∗ 𝑓0.5) − 0.40 3.1×103 <Re< 3.2×106 

Moody [82] 𝑓 =
0.184

𝑅𝑒0.2
 1×104 <Re<1×106 

Colebrook [83] 𝑓−0.5 = 1.8 𝑙𝑜𝑔 (
𝑅𝑒

6.9
) 3×103 <Re< 1×108 

Drew [77] 𝑓 = 0.00140 + 0.125 𝑅𝑒−0.32 3×103 <Re< 3×106 
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Where % D.R. is the percentage drag reduction, 𝑓0 and 𝑓𝑠 represent the friction factor of solvent 

and solution respectively. In terms of pressure drop, it is written as: 

          % 𝐷. 𝑅. =
𝑃0−𝑃𝑠

𝑃0
× 100              (30) 

Where 𝑃0  and 𝑃𝑠  represent the Pressure drop in a given pipe length obtained for solvent and 

solution respectively.  At first, the phenomenon of drag reduction was observed by Toms [85] in 

1948 when he discovered that even a minute amount of long-chain polymer molecules if added to 

the aqueous phase, reduced the pressure drop in a turbulent pipe flow. Even small amounts of 

polymers had a dramatic effect in decreasing the pressure drop at the same flow rate. Because 

Toms discovered it, it is also sometimes referred to Tom’s effect [85]. After he discovered it, 

extensive research was done to understand the mechanism and potential of drag reduction by 

various researchers. In 1964, Metzner and Park [86] investigated the turbulence flow 

characteristics of viscoelastic fluids and proposed that the turbulent-drag reduction by polymers is 

due to their viscoelastic properties. In 1969, Lumley [87] published a condense review about the 

drag reduction and its research finding till that time in the first volume of Annual Review of fluid 

mechanics. In 1975, Virk [88] published a review in which he described the fundamentals of drag 

reduction, presented some empirical equations along with physical explanations by mechanisms. 

In 1978, Zakin & Huntston [89] published results on a mechanical degradation of polymers in 

organic solvents. This was followed by a series of conference proceedings about drag reduction 

initiated by BHRA [85]. Drag reduction still continues to be a topic of interest and a subject of 

active research these days [90-93].  

2.6.1 Drag reduction using nanoparticles: 

Recently, the effect of nanoparticles alone or in combination with polymers or surfactants is being 

investigated for drag reduction characteristics. Nanofluids, for an instance, are a current topic of 

interest for research. Nanofluids are suspensions which have nanoparticles dispersed in a liquid 

phase such as water or oil by surfactants or Ultra-sonication. Nanoparticles, because of their unique 

properties and surface chemistry can be potential candidates for usage as drag reducing additives. 

Some of the research carried out recently in this area is listed below: 

Dai X. and Liu H. used TiO2-Polyolefin nanocomposite for drag reduction. Polyolefin is 

conventionally used as a drag reducing additive in oil pipelines. It was observed that its use as a 

drag reducing additive in turbulent flows has some limitations i.e. it gets mechanically degraded 
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at high shear rates. Under high shear rates, its long polymer chains would break and lose their drag 

reducing properties. It was observed that a surface modified TiO2 with organic chains along with 

Polyolefin shows improved drag reduction properties and more resistance to shear degradation. 

The TiO2 nanoparticles used were modified with a Silane-coupling agent and then used to create 

the nanocomposite [94]. 

Yanuar, Sealtial M., Kurniawan T.W., Okky A.P. and Rifqi H. discovered the drag reduction 

characteristics of alumina (Al2O3) Nanofluid by using a spiral pipe setup in turbulent flow 

conditions. Alumina nanoparticles were dispersed in water at different concentrations with 

different mixing times. It was observed that the long mixing time and an increase in nanoparticle 

concentration both had an increasing effect on the drag reduction capabilities. Also, the spiral pipe 

provides better results than a circular pipe under the same conditions. A maximum of 38 % drag 

reduction was observed at a Reynold number value of 20,000 with a concentration of 300 ppm of 

nanoparticles and a mixing time of 120 minutes [95]. 

Adam S., Ilker S.B., and Eric L. observed the drag reducing characteristics of Carbon Nano-tube 

(CNT) additives. They found that though CNT additives alone do not show any drag reducing 

performance but when coupled with polymers, they enhance the polymer’s drag reduction 

performance. A 55 to 45 wt. % water-glycerine solution was used as a baseline fluid and the 

polymer used was (PEO) Polyethylene glycol. It was observed that a 100-ppm concentration of 

CNT’s mixed with 300-ppm PEO solution improved the drag reduction performance as compared 

to what could have been achieved using PEO alone. It was also observed that CNT additives do 

not produce any substantial drag reduction with degraded PEO polymer [96]. 

Pouranfard A.R., Mowla D. & Esmaeilzadeh F. had an experimental study on drag reduction 

properties of nano-SiO2 particles in a slug flow of water and air in horizontal pipeline flow. They 

also discovered that drag reduction performance was better for a pipe of smaller diameter than 

performance for larger diameter pipe. They prepared homogeneous suspensions by dispersing the 

silica nanoparticles into a solution of a surfactant prepared in a base fluid. These suspensions with 

different concentration of silica nanoparticles were used as Nano-fluids for drag reduction studies. 

The surfactant used in study was Sodium dodecyl sulfate (SDS). The results show that the amount 

of drag reduction increases with the increase in Nanofluid concentration up to a critical 

concentration value (0.75 %) after which there is no increment in the performance of drag 

reduction. Also, the injection of nanoparticles increased the performance of the surfactant 
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significantly with maximum drag reduction achieved equal to 66.8 % for 0.75 % mass 

concentration of silica [97]. 

Drzazga M., Gierczycki A., Grzegorz D. & Marcin L. investigated the impact of non-ionic 

surfactant on drag reduction effect of metal oxide in water Nanofluid. They prepared the Cu (II) 

oxide Nanofluid and used Tri-ammonium citrate to stabilize the Nanosuspension. Two different 

non-ionic surfactants were used i.e. Rokanol K7 and Rokacet O7 for investigation. The results 

obtained show that the Rockacet O7 surfactant with Nanofluid shows better drag reduction 

performance at low Reynolds number but shows very less drag reduction at low Reynolds number. 

On the other hand, Rockanol K7 show better drag reduction at higher Reynolds number. Overall, 

the Nano Fluid-Surfactant combination shows less friction factor hence better drag reduction 

performance than pure Nano fluid alone [98]. 

Another experiment was done by Yanuar, Talahatu M.A., Mau S., Waskito K.T. and Wulandari 

W. on the drag reducing characteristics of Calcium carbonate i.e. CaCO3. The working fluid was 

prepared by mixing the Nanoparticle in water at different concentrations and then circulated into 

a spiral and a circular pipe. The highest drag reduction observed was 35 % at a Reynolds number 

value equal to 40000 for a 500-ppm concentration for the spiral pipe whereas the circular pipe 

experienced a maximum of 26 % drag reduction. Thus CaCO3, an inexpensive and an 

environmentally friendly material is a potential additive for drag reduction applications [99].  

Budi K., Samsul K., Suhanan and Yanuar conducted experiments to investigate drag reduction 

performance of Titania TiO2 Nanofluids in a circular pipe using three base fluids i.e. distilled 

water, ethylene glycol-distilled water and propylene glycol-distilled water mixture. The TiO2-

distilled water system showed a shear thinning behavior. The results show that friction factor 

values obtained for TiO2/distilled water combination were less than friction factor for water in 

turbulent flow regime indicating that the TiO2-distilled water combination has drag reduction 

characteristics [100]. 
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Chapter 3: Materials and methods 

3.1 Materials: 

The experimental grade silica nanoparticles were provided by Wacker Chemicals Pvt. Ltd. Three 

different types of silica particles i.e. HDK N20, HDK T30 and HDK S13 were used for the study. 

All three grades of silica particles used for the study were hydrophilic in nature. Hydrochloric acid 

and Sodium hydroxide were obtained from Sigma-Aldrich Co. LLC.  

3.2 Preparation of silica nanoparticle suspensions: 

For preparing suspensions of a particular concentration, the calculated amount of nanoparticles 

was weighed and added to 500 ml water. For suspensions that required an electrolyte presence, the 

required amount in ml of the 1M stock solution of NaCl was added to maintain 0.1 M NaCl 

concentration. The mixture was then homogenized at room temperature (~22 °C) initial 

temperature with a homogenizer (GIFFORD WOOD, model 1L). After adding the nanoparticles, 

the mixing was carried out for at least 40 minutes or more if required to make a stable suspension. 

While mixing, the temperature of the suspension could rise due to the friction between the agitator 

shaft and the suspension. For maintaining a pH value of 4 or 7, small quantities of dilute stock 

solutions of NaOH or HCl were added to the suspensions. Whereas for maintaining very low pH 

values i.e. 1 or 2, a few drops of concentrated HCl stock solution were added instead of dilute HCl 

stock solution to avoid unnecessary dilution of suspensions. 

3.3 Viscosity measurements of dilute silica nanoparticle suspensions: 

For a dilute suspension with particles that are non-interacting and are of spherical shape, the 

relative viscosity of the suspension can be related to the volume fraction of particles using Einstein 

equation as [101]: 

                                                                                  𝜂𝑟 = 1 + 𝐵𝜙                            (31) 

where 𝜂𝑟 is the relative viscosity of the suspension which is the ratio of the viscosity observed by 

suspension to the viscosity of the continuous phase (medium), φ being the volume fraction of the 

particles i.e. a ratio of volume occupied by the particles to the total volume of the suspension and 

B is called as “Einstein coefficient” with a value equal to 2.5 for hard spheres.  The relative 

viscosity of low concentration silica nanoparticle suspensions was measured by using CANNON® 

Ubbelohde viscometer at a room temperature of 22 ℃.  
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3.4 Rheological measurements & flow behavior: 

The entire experimental work was divided into two parts; Bench-scale experiments and Pipeline 

flow studies: 

3.4.1 Bench-scale experiments & equipment: 

Bench-scale experiments were done to investigate the rheological behavior of the suspensions. 

After the preparation, suspensions were maintained at the desired pH values. The effect of 

temperature and change in shear rate was investigated for different particle concentration samples 

of suspensions using Fann and Haake viscometers. The particle size measurements were performed 

using ‘’Dynamic Light Scattering’’ method using DLS Zetasizer Nano zs90 manufactured by 

Malvern Instruments Ltd. The version of software used for measurements was Zetasizer 6.20. The 

samples were tested in ZEN0112, low volume disposable sizing cuvette at the standard 25 °C 

temperature with an equilibration time of 120 seconds for the sample analysis. There was no delay 

between different measurements. Also, the Zeta potential measurements were done with the same 

instrument using an electrode cuvette. Some of the equipment used for Bench-scale studies are: 

1.  Fann Viscometer: The shear viscosity of concentrated suspensions was measured using Fann 

viscometer model no. 35A which is a coaxial cylindrical viscometer. When the outer cylinder 

of Fann viscometer is rotated at a known velocity, it exerts a drag force on the fluid contained 

between both cylinders. This effect can be felt as torque on the bob which can be measured 

and is deflected as a Dial reading. The dial reading can be related to shear stress and hence 

viscosity can be measured as the shear rate is known for a given rpm. The shear rate could be 

increased up to 1020 s-1. Further information about calibration and equipment specification can 

be found in Appendix A and B respectively.  

2.  Haake Viscometer: For experiments at elevated temperatures, the shear viscosity was 

measured using Haake viscometer Rotovisco® RV 12 which is a coaxial type cylindrical 

viscometer. A fluid of unknown viscosity is placed between the cylindrical annular space. The 

inner cylinder is a bob that rotates at a set speed, which can be controlled by changing the rpm. 

The inner rotating cylinder imparts momentum to the adjacent fluid and the flow resistance of 

the fluid can be estimated using the torque experienced by it.   The torque required to keep the 

bob running is proportional to the viscosity and hence the information required on viscosity, 

shear rate and shear stress can be calculated using the magnitude of the torque, the set speed 

and the geometry of the bob. The results are displayed digitally. The viscometer is equipped 
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with an inline temperature measurement and control system, so shear viscosity of suspensions 

can be measured at different operating temperatures. The shear rate could be varied as high up 

to approximately 1198 s-1 which correspond to an rpm value of 512. The viscometer is equipped 

with different bobs and the system used for measurements was MV I. Further information 

about calibration and equipment specification can be found in Appendix A and B respectively. 

The figure given below presents the Haake viscometer used for measurements:  

 

Figure 10: The Haake coaxial viscometer setup. 

3.  PH meter: All the pH measurements of nanoparticle suspensions were done by the Fisher 

Scientific accumet AE150 pH Benchtop meter. The pH meter is equipped with pH electrode 

and temperature electrode to measure pH and temperature readings respectively. The newly 

installed pH meter measures a reading as precisely as 0.01 units for pH and 0.1 ℃ for 

temperature. It measures the voltage and converts it into a pH value that is displayed on the 

system. To measure the pH value, the electrode sensor has to be dipped in tot the solution. To 

electrode has to be kept vertically straight while doing measurements. For this reason, the 
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system has been equipped with an electrode arm to keep electrode straight while taking 

measurements. The figure given below shows the pH meter setup:   

 

Figure 11: The digital Fisher scientific accumet AE 150 pH meter 

3.4.2 Pipeline flow behavior of silica nanoparticle suspensions: 

The experiments were performed in a pipeline flow loop setup. Figure 12 is a graphical 

representation of the system used to observe the pipeline flow behavior whereas Figure 13 includes 

some pictures of some sections of the experimental setup.  

A concentrated suspension 18 percent by wt. of silica S13 nanoparticles was prepared in the lab 

and then was diluted in the large mixing tank to achieve the desired concentration for flow loop 

studies. The mixing tank has a jacket and a thermal controller for temperature maintenance during 

experiments. The tank has been provided with a powerful agitator which runs on a motor. For 

pumping and circulating the fluid in the flow loop, the system is equipped with two centrifugal 
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pumps. The flow data was collected from three pipes of different nominal diameters i.e. 0.5-inch, 

1-inch, and 1.5-inch. The test section for all the three pipes was chosen such that it would 

accommodate the entrance length and so that the pressure taps would measure pressure for a fully 

developed fluid flow. The test section of the pipes is connected to a pressure transducer system 

that can measure pressure drop of the flowing liquid over a certain length. The pressure transducer 

system is flexible and is configured in such a manner that the pressure drop for the test section can 

be measured by the transducer by connecting to the respective taps for the test section. The whole 

setup is equipped with a data acquisition system which displays pressure variations and readings 

on the attached computer (Figure 13c) with the help of the LABVIEW software. 

 

Figure 12: Schematic diagram of the experimental setup for flow loop measurements [102] 
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Figure 13: Different sections of the pipeline flow loop system (a) Control panel; (b) Different 

diameter pipelines; (c) Computer terminal of data acquisition system; (d) Mixing tank 

As shown in the above picture, the flow loop is equipped with three horizontal pipes of different 

diameters and the table given below provides information about their dimensions and tapping 

locations: 

(a) (b)

(c) (d)
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Table 3: Important information about the flow loop pipelines. 

Pipeline 

number 

Nominal 

diameter (inch) 

Inside diameter 

(mm) 

Entrance length 

(mm) 

Test section 

length (m) 

1 0.5 9.45 91.44 1.219 

2 1 22.02 154.2 3.048 

3 1.5 34.8 154.2 3.048 

 

Also, the system is equipped with three pressure transducers. The pressure transducers are set up 

in such a way that they can be connected independently to the pipeline in use and to the tapping 

locations we want to measure the pressure drop across. This could be achieved easily by opening 

the valves that are connected to the respective tapping locations without disturbing the whole 

system. The pressure transducers were calibrated by Dr. Ali Mohsenipour [102] during installation 

of the pipeline flow loop system. The calibration equation for each pressure transducer relates the 

digital voltage readings and the pressure drop observed by the transducer as given below:  

Table 4: Calibration equations for pressure transducer system [102] 

Transducer 

No. 

Corresponding voltage 

Reading (mV) 

Measurement 

Range (psi) 

Calibration equation for 

pressure drop (psi)  

1 V2 0-0.5  ∆𝑃 = 0.1221 ∗ 𝑉2 − 0.102 

2 V3 0-5.0 ∆𝑃 = 1.2581 ∗ 𝑉3 − 1.2823 

3 V0 0-10 ∆𝑃 = 2.5297 ∗ 𝑉2 − 2.5573 

 

3.4.2.1 Calibration of the flow meter and pipeline test section:  

The flow rate is measured by a Coriolis digital flowmeter which is installed in the flow loop 

system. To calibrate the flowmeter, the average flow rate of liquid passing through the flow meter 

was measured by manually weighing the collected water in a certain time. These flow rate readings 

were then plotted on a vertical axis with the corresponding voltage readings on a horizontal axis 

to get the calibration curve. Figure 14 shows the calibration equation obtained by plotting flow 

rate vs voltage as shown below: 
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Figure 14: Calibration curve for Coriolis flow meter 

As shown in the figure above, the calibration equation obtained is: 

            𝑦 = 1.5954 𝑥 − 1.6055        (32)  

The pipeline test section was also calibrated using water before doing any experiments. The 

voltage readings were obtained for different flow rates of water in pipelines. These voltage 

readings can be used to obtain the pressure drop. So, the voltage readings were converted to 

corresponding pressure drop values using equations given in table 4 above. Also, the voltage 

readings can be used to estimate the flow rate from the calibration equation of Coriolis flowmeter 

i.e. equation number 32. Then, this data was used to plot friction factor vs Reynolds number in the 

pipes and was compared with the Blasius equation for flow in smooth pipes. Figure 15 shows a 

comparison between experimental data obtained for water and the Blasius equation for 1-inch 

nominal diameter pipe. The Blasius equation for calculating friction factor for a given Reynolds 

number for a Newtonian fluid flow in a smooth pipe is: 

          𝑓 =
0.079

𝑅𝑒0.25     (33) 

y = 1.5954x - 1.6055
R² = 0.9983
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Figure 15: Comparison between Blasius equation and experimental results from the pipeline 

flow of water in a 1-inch pipe 

As it can be observed from the figure given above, the pipeline flow results for water are in a nice 

agreement with the Blasius equation. In this research, the water line was used as a reference line 

for comparison of friction factor of suspensions. Other information about calibration of flow loop 

& pipeline test section is available in Appendix A. 
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Chapter 4: Results and Discussion 

The various results obtained for particle size distribution, zeta potential, the relative viscosity for 

dilute suspensions, the shear viscosity for concentrated suspensions, effect of temperature, pH and 

presence of electrolyte on rheology are explained as under: 

4.1 Size distribution of different grades of silica nanoparticles: 

The size distribution of silica nanoparticles for different particle concentrations was analyzed by 

Zetasizer Nano zs90 using Dynamic Light Scattering method. Figure 16 summarizes the Intensity 

distribution peaks observed and Figure 17 summarizes the Number distribution peaks observed for 

three grades of silica nanoparticles i.e. HDK S13, T30 and N20, all hydrophilic in nature. It was 

observed that with an increase in particle concentration, peaks move toward the higher particle 

size which indicates that the increase in particle concentration leads to the formation of bigger 

aggregates in suspension. 

 

Figure 16: Size distribution plots (Intensity %) of S13, T30, and N20 silica nanoparticles 
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Figure 17: Size distribution plots (Number %) of S13, T30, and N20 silica nanoparticles 

4.1.1 Effect of pH on Size distribution: 

To observe the effect of pH, samples were maintained at different pH values and were analyzed 

for particle size distribution using Dynamic Light Scattering method. These experiments were 

done for dilute samples i.e. for 0.50, 0.75 and 1 wt. % particle concentrations. Figure 18 shows the 

results obtained for these experiments. Though results show slightly higher peak values at low pH, 

there is no specific pattern observed with respect to the pH of the suspensions for all samples. 
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Figure 18: Size distribution plots (Intensity %) of S13 silica nanoparticles at different pH values 

4.1.2 Effect of Electrolyte addition on Size distribution: 

To investigate the effect of electrolyte presence on size distribution, suspensions were prepared at 

different pH values in the presence of 0.1 M NaCl. The results from Dynamic Light Scattering 

show that on the addition of electrolyte at the given concentration, the size of aggregates in the 

suspensions increases. This can also be seen in the figure given below; the peaks obtained for the 

samples with electrolyte presence move toward a higher particle size irrespective of the pH value 

or the particle concentration of the sample. 
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Figure 19: Size distribution (Intensity %) of S13 silica nanoparticles in the presence (orange fill 

and marker) and absence of electrolyte (blue fill and marker) 

The effect of electrolyte addition on size distribution can also be seen in figure 20 given below as 

the Intensity mean diameter of particle in suspension increases sharply in the presence of an 

electrolyte.              
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Figure 20: Intensity mean diameter for dilute S13 silica nanoparticles in the presence (orange 

bar) and absence (blue bar) of an electrolyte. 

4.2 Relative viscosity of dilute Silica nanoparticle suspensions: 

The volume fraction of solute particles has a useful role in determining the viscosity of a 

suspension. The relative viscosity of dilute silica nanoparticle suspensions was measured using 

Ubbelohde viscometer and plotted as a function of volume fraction of silica nanoparticles in 

suspension. Figure 21 shows the relative viscosity vs volume fraction for S13, T30 and N20 grades 
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equation for relative viscosity of hard spheres. Also, the relative viscosity of N20 silica 

suspensions increases more sharply than the S13 and T30 silica nanoparticle suspensions. 

 

Figure 21: Viscosity of dilute silica nanoparticle suspensions; where green dot marker 

represents the experimental data and dashed line represents the Einstein equation data. 

4.2.1 Effect of pH on relative viscosity: 

A change in pH can control the concentration of positive and negative ions in the solution which 

in turn can manipulate the charge on the double layer. This change results in decrease or increase 

in inter-particle forces and can have a significant effect on relative viscosity of suspensions. The 

relative viscosity of S13 silica nanoparticles was studied as a function of pH and the effect of 

elevation in temperature was also investigated. Figure 22 and 23 show the results obtained: 

 

Figure 22: Relative viscosity vs volume fraction at different pH for dilute silica suspensions 

0

1

2

3

4

5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

a) S13 Nanoparticles

0 0.005 0.01 0.015 0.02 0.025 0.03

Volume fraction ɸ

b) T30 Nanoparticles

0 0.005 0.01 0.015 0.02 0.025 0.03

c) N20 Nanoparticles

R
e

la
ti

ve
 v

is
co

si
ty

 μ
r

1

2

4

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Re
la

ti
ve

 V
is

co
si

ty
, μ

r

Volume fraction, ɸ

einstein
data

pH=1

pH=2

pH=4

pH=7



  43 

 

Figure 23: Effect of temperature on relative viscosity of S13 silica nanoparticle suspensions  

It can be observed from the Figure 22 that at very low particle concentration, the relative viscosity 

for low pH values is slightly greater than at higher pH values but at relatively higher particle 

concentration (5 wt.%), the reverse happens; the relative viscosity is higher for suspensions at 

higher pH values. In Figure 23, it can be observed that with an increase in temperature, the relative 

viscosity of suspensions decreases irrespective of pH value of the suspension. 

4.2.2 Effect of electrolyte presence on relative viscosity:  

The presence of electrolyte can dramatically affect the viscosity of nanoparticle suspensions. 

Electrolyte presence diminishes the charge on double layer and hence also diminishes the repulsive 

forces of interaction between the particles in a suspension which can cause particle aggregation 

and an increase in viscosity. Figure 24 given below shows the comparison between the relative 

viscosity of suspensions in the presence of electrolyte and suspensions without any electrolyte 

presence.  
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Figure 24: The effect of electrolyte on relative viscosity of silica nanoparticle suspensions 

It was observed that the addition of electrolyte had an increasing effect on the viscosity of silica 

suspensions even for very low particle concentration samples. Though suspensions with low 

particle concentrations had a slight increase in relative viscosity irrespective of their pH whereas 

the viscosity of suspensions at pH=4 and pH=7 increased very sharply for relatively higher particle 

concentration values. The viscosity of 5 wt. % suspensions at pH=4 and 7 and 4 & 5 wt. % 

suspensions at pH=7 could not be measured using Capillary viscometer as their viscosity was too 

high for that viscometer. The effect of temperature was also investigated on relative viscosity of 

suspensions as shown in figure 25; it was observed that the relative viscosity decreases with 

increase in temperature of suspensions. 
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Figure 25: Effect of temperature on relative viscosity of suspensions with electrolyte presence 

4.3 Rheology of concentrated suspensions: 

The rheology of non-dilute silica suspensions was determined using Fann viscometer model 35 for 

room temperature experiments & Haake viscometer Rotovisco® RV 12 with system MV I system 

for elevated temperature experiments. The effect of temperature change and concentration on the 

rheology of suspensions was determined. 
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4.3.1 Effect of temperature: 

Shear viscosity vs shear rate was investigated at different temperatures for S13, T30, N20 silica 

suspensions. The resulting plots, as shown in Figure 26, show that the suspensions behave as a 

shear thinning fluid for the given shear rates as the apparent viscosity of suspensions decreases 

with an increase in shear rate. 

 

  

 

  

Figure 26: Viscosity vs shear rate behavior of S13, T30 and N20 silica nanoparticle suspensions 

at different operating temperatures 
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4.3.2 Effect of particle concentration: 

The Shear viscosity of the hydrophilic grades of silica i.e. S13, N20 and T30 were measured as a 

function of shear rate for particle concentration samples. All the measurements were taken at room 

temperature of 22 °C. The flow was of shear thinning nature for the given shear rates. With an 

increase in particle concentration, the apparent viscosity increases for a fixed shear rate. The flow 

curves of fumed silica suspension can be fitted to a power law model as: 

          𝜇 = 𝑘 𝛾−𝑛                  (34) 

 

Where 𝜇 is the apparent viscosity, 𝛾 is the shear rate, k is a consistency index representing the 

suspension’s viscosity at a unit shear rate and n is the shear thinning index. The above equation 

can also be written as: 

         log(𝜇) = log(𝑘) − 𝑛 𝑙𝑜𝑔(𝛾)                          (35) 

The plots are given in Figure 27. It can be observed that all the hydrophilic grades of silica under 

investigation show a shear thinning nature. The values of k and n from power law curve fitting are 

mentioned in Table 5 as below: 

 

Table 5:  Values of shear-thinning index and consistency index for fumed silica suspensions 

S13 

Concentration 

(wt. %) 

6 7 8 9 10 15 20 

n 0.281 0.247 0.248 0.257 0.319 0.406 0.415 

k 19.50 18.76 22.99 25.52 40.78 181.62 341.39 

 

T30 

Concentration 

(wt. %) 

5 6 7 8 9 10 

n 0.251 0.327 0.462 0.420 0.400 0.471 

k 19.54 43.83 128.40 156.48 144.52 331.82 

 

N20 

Concentration 

(wt. %) 

6 7 8 9 10 

n 0.356 0.350 0.358 0.380 0.389 

k 43.67 49.04 68.77 92.32 185.67 
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Figure 27: Apparent viscosity vs shear rate behavior of silica nanoparticle suspensions  
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4.4 Zeta Potential of fumed silica suspensions: 

The zeta potential values give us an information about the charge on particles in suspensions. It 

also decides the stability of a colloidal system. A low or zero zeta potential value can diminish the 

repulsive forces between particles and can lead to precipitation. The effect of pH and electrolyte 

presence on zeta potential is explained in the sections below: 

4.4.1 Zeta Potential of original silica suspensions: 

Hydrophilic silica nanoparticles in aqueous state acquire negative charge due to the presence of 

silanol groups on them and hence their zeta potential values are negative. Table 6 summarizes the 

mean Zeta potential values for the three hydrophilic grades of silica. The Zeta Potential of all the 

three silica nanoparticles is negative indicating that the particles acquire negative charge in  an 

aqueous phase. The magnitude of zeta potential decreases with an increase in particle 

concentration. High values of zeta potential indicate that suspensions are electrochemically stable. 

Table 6: Mean Zeta Potential values for different concentrations of silica suspensions  

Mean Zeta Potential(mV) 

Concentration (wt. %) S13 T30  N20 

0.05 -30 -24.2 -37.3 

1 -38.5 -34.1 -36.7 

5 -26.5 -20.8 -34.4 

 

4.4.2 Effect of pH on Zeta potential: 

A change in pH can change the concentration of H+ and OH- ions in solution and which can change 

the charge on double layer; hence changing the zeta potential of particles in suspension. The zeta 

potential of different fumed silica suspensions was measured for a set of pH values. Table 7 

summarizes all the results obtained. Also, the zeta potential is plotted against the pH of the 

suspension in Figure 28. It can be observed from the results that zeta potential becomes 

increasingly negative with an increase in pH of the suspension. The I.E.P. of S13 fumed silica 

suspensions was found to be very close to 1.98 with zeta potential being 0.0319 mV at that pH. A 

shift in P.Z.C. is observed with an increase in particle concentration. This can be attributed to an 

increase in particle interaction due to an increase in particle concentration.  
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Table 7: Mean Zeta Potential values of silica nanoparticle suspensions at different pH values. 

Mean Zeta Potential (mV) 

Particle conc.  (wt. %) 0.5 0.75 1 2 3 4 5 

pH=1 0.719 2.09 0.322 2.9 1.47 2.94 0.827 

pH=2 -0.18 -0.085 -0.231 -0.425 0.199 0.084 0.108 

pH=4 -13 -12.9 -11.1 -7.23 -3.53 -5.92 -13.9 

pH=7 -48.2 -43.2 -35.7 -34.4 -32.9 -36.2 -37.5 

 

 

Figure 28: Effect of pH on zeta potential for S13 silica nanoparticle suspensions 

4.4.3 Effect of electrolyte addition on Zeta potential: 

To investigate the effect of electrolyte, suspensions prepared in the presence of 0.1 M NaCl were 

examined for zeta potential. Table 8 summarizes the mean zeta potential values obtained for S13 

grade fumed silica suspensions in the presence of an electrolyte. 

Table 8: Mean zeta potential values for fumed silica S13 suspensions with 0.1 M NaCl. 

Mean Zeta Potential(mV) 

Particle conc. (wt.%) 0.5 0.75 1 2 3 4 5 

pH=1 -1.8 -0.889 -1.63 -2.98 -1.13 -0.536 -1.51 

pH=2 1.04 1.1 1.29 0.811 1.37 1.01 0.773 

pH=4 -0.523 -1.23 -0.695 -0.107 -0.629 -0.629 -0.586 

pH=7 -23.8 -23.7 -23.6 -23.8 -29.3 -28.7 -- 

 

It can be observed from the results obtained that the magnitude of zeta potential values for a pH 

value of 4 and 7 decreased with the addition of an electrolyte. This can be attributed to the 

compression of the double layer in the presence of electrolyte which partially neutralizes the charge 
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on the double layer due to the excess ions provided by the electrolyte. This is in an agreement with 

the DLVO theory. This can be easily noticed in figure 29.  The zeta potential values show an 

anomalous behavior turning negative with a decrease in pH value from 2 to 1. Knowing that in the 

presence of an electrolyte, the point of zero charge shifts to a value between pH=2 and pH=4, 

getting a negative value of Zeta potential below pH=2 is an interesting observation. This might be 

due to specific adsorption of Cl- ions at very low pH providing a negative charge to the particle 

due to charge reversal phenomena.  

 

Figure 29: Effect of electrolyte presence on Zeta potential, the blue and orange bars represent 

the suspensions with and without the presence of 0.1 M NaCl respectively 

4.5 Pipeline flow behavior of fumed silica suspensions: 

Pipeline flow studies were conducted for low concentration S13 silica suspensions to investigate 

that if they have drag reducing characteristics or not. Flow loop experiments were conducted in 1, 

1.5 and 0.5-inch nominal diameter pipelines. The drag reduction can be examined by comparing 

the experimental data of friction factor and the Blasius line. Figure 30 shows the fanning friction 

factor of 0.5, 0.75 1 and 2 wt.% S13 silica suspensions as compared to friction factor without their 

presence. As observed from the figure, friction factor line for 1 and 2 wt. % S13 suspensions fall 

close to water line whereas 0.75 and 0.50 wt. % S13 suspensions fall below the reference line 

showing drag reduction characteristics. 
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Figure 30: Friction factor vs. Reynolds number for S13 nanoparticle suspensions 
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Chapter 5: Conclusions 

Owing to their unique properties, silica nanoparticles have a lot of potential applications in a 

number of industries. After a careful examination of rheological behavior, particle size 

distribution, zeta potential and pipeline flow behavior results, following conclusions can be made: 

1. All the grades of silica nanoparticle suspensions show shear-thinning behavior showing a 

decrease in apparent viscosity with an increase in shear rate. Also, the shear viscosity of 

suspensions decreases with an increase in temperature for all the particle concentrations 

irrespective of pH and presence of an electrolyte. 

2. The relative viscosity of suspensions increases more rapidly than what is predicted by the 

Einstein equation for hard spheres. Also, the relative viscosity of suspensions with very low 

particle concentration is slightly higher at low pH values whereas with an increase in particle 

concentration, suspensions show higher viscosity at high pH values.  

3. The presence of electrolyte has an increasing effect on the viscosity of suspensions and the 

effect is more pronounced at high pH values and higher particle concentrations, with the 

suspensions becoming highly viscous for higher particle concentration. 

4. Size distribution results do not show any specific pattern with a change in pH in absence of an 

electrolyte whereas in the presence of electrolyte, peaks show higher particle size indicating 

the bigger aggregates in the presence of an electrolyte. 

5. Zeta potential results show that particles acquire negative charge in an aqueous phase and zeta 

potential values decrease in magnitude with increase in particle concentration indicating the 

increase in particle interaction at higher particle concentrations. The highly negative zeta 

potential values indicate that the suspensions are electrochemically stable at low particle 

concentrations. 

6. In the absence of an electrolyte, zeta potential results show that the Iso-electric point lies close 

to 1.98. Also, the zeta potential results indicate that the P.Z.C. (Point of zero charge) shifts 

with an increase in particle concentration due to the increase in interaction between particles 

at higher concentration. In the presence of an electrolyte, zeta potential values become smaller 

indicating the compression of double layer whereas the sign of zeta potential values shows an 

anomalous behavior which could probably happen due to the specific interaction of co-ion at 

low pH values. 
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7. Pipeline flow results show that suspensions with low particle concentration (0.50 and 0.75 wt. 

%) have drag reduction properties as the friction factor vs Reynolds number line falls slightly 

below the water line (reference line) whereas a little increase in particle concentration loses 

the drag reduction properties of the suspension as confirmed by the closeness of the friction 

factor vs Reynolds number line with the water line (reference line) for 1 and 2 wt. % 

suspensions.  
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Appendix A: Experimental Data 

6.1 Flow loop data: 

Flow loop experiments included the calibration of the pipeline test section and experiments with 

dilute suspensions as mentioned under: 

6.1.1 Calibration of flow loop: 

As mentioned earlier, pipeline flow loop was calibrated with water as a flowing liquid. Flow rate 

in pipes could be estimated by the Calibration equation (equation no. 32) of Coriolis digital 

flowmeter by using V1 (mV) voltage. The corresponding pressure drop in the pipeline were 

obtained using voltage readings V2, V3 and V0 of channels 2, 3 and 0 respectively using the 

equations given in Table 4. The flow rate and pressure drop values thus measured were used to 

calculate and plot friction factor vs Reynolds number and this plot was compared with the standard 

Blasius line to check if data meets the theoretically expected values for water. The data (Table A1) 

showed good agreement with theoretical Blasius line. The table listing the calibration data obtained 

is given below: 

Table A1: Flow data for water in pipeline system 

Pipe 

Dia. 

V1 

(mV) 
Ṁ (kg/h) 

Q 

(m3/sec) 
Re V (mV) Channel ∆P (Pa) f 

1 

inch 

1.136 744.74 0.0002072 11967.95 1.686 2 715.89 0.008737 

1.162 894.07 0.0002488 14367.64 1.923 2 915.35 0.007751 

1.18 997.45 0.0002776 16028.97 2.098 2 1062.64 0.007230 

1.196 1089.35 0.0003032 17505.71 2.239 2 1181.31 0.006738 

1.21 1169.76 0.0003255 187097.85 2.41 2 1325.22 0.006556 

1.222 1238.68 0.0003447 19905.40 2.544 2 1438.00 0.006344 

1.225 1225.91 0.0003495 20182.29 2.59 2 1476.71 0.006337 

1.237 1324.83 0.0003687 21289.84 2.747 2 1608.85 0.006205 

1.251 1405.24 0.0003911 22581.98 2.936 2 1767.91 0.006060 

1.608 3455.65 0.0009618 55531.64 2.105 2 1068.53 0.005971 

1.655 3725.59 0.0010369 59869.55 2.305 2 1236.85 0.005946 

1.704 4007.02 0.0011152 64392.05 2.605 2 1489.34 0.006190 

1.843 4805.36 0.0013374 77221.18 2.963 2 1790.64 0.005175 
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1.947 5402.67 0.0015037 86819.96 3.688 2 2400.81 0.005489 

1.970 5534.77 0.0015405 88942.77 3.443 2 2194.61 0.004781 

1.971 5540.52 0.0015421 89035.06 3.637 2 2357.89 0.005126 

2.286 7349.70 0.0020456 118108.3 1.427 3 3536.09 0.004368 

3.059 11789.38 0.0032810 189453.1 2.011 3 8600.48 0.004129 

3.597 14879.35 0.0041410 239108.3 2.541 3 13196.60 0.003978 

1.5 

inch 

1.426 2410.34 0.0006708 24509.12 1.616 2 656.98 0.007546 

1.461 2611.36 0.0007268 26553.16 1.714 2 739.46 0.007236 

1.511 2898.53 0.0008067 29473.21 1.839 2 844.66 0.006708 

1.574 3260.37 0.0009074 33152.48 2.035 2 1009.62 0.006337 

1.608 3455.65 0.0009618 35138.12 2.105 2 1068.53 0.005971 

1.655 3725.59 0.0010369 37882.97 2.305 2 1236.85 0.005946 

1.704 4007.02 0.0011152 40744.62 2.605 2 1489.34 0.006189 

1.843 4805.35 0.0013374 48862.36 2.963 2 1790.64 0.005174 

1.971 5540.52 0.0015421 56377.70 3.637 2 2357.89 0.005125 

2.286 7349.70 0.0020456 74734.03 1.427 3 3536.09 0.004368 

2.670 9555.18 0.0026595 97160.04 1.689 3 5808.13 0.004245 

3.059 11789.38 0.0032813 119878.05 2.011 3 8600.48 0.004129 

3.252 12897.86 0.0035899 131149.45 2.243 3 10612.36 0.004256 

3.597 14879.35 0.0041414 151297.81 2.541 3 13196.59 0.003977 

3.961 16969.96 0.0047233 172555.80 3.033 3 17463.17 0.004046 

4.138 17986.55 0.0050062 182892.78 3.172 3 18668.56 0.003850 

4.604 20662.99 0.0057512 210107.68 3.876 3 24773.58 0.003871 

0.5 

inch 

1.079 417.37 0.0001161 15628.56 4.279 2 2898.21 0.004099 

1.086 457.57 0.0001273 17134.01 4.973 2 3482.29 0.004098 

1.092 492.03 0.0001369 18424.40 1.498 3 4151.80 0.004225 

1.097 520.75 0.0001449 19499.72 1.559 3 4680.78 0.004253 

1.101 543.72 0.0001513 20359.98 1.614 3 5157.74 0.004298 

1.103 555.21 0.0001545 20790.11 1.636 3 5348.52 0.004275 

1.195 1083.61 0.0003016 40576.01 3.226 3 19136.85 0.004015 
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1.215 1198.48 0.0003335 44877.30 3.658 3 22883.11 0.003925 

1.229 1278.88 0.0003559 47888.19 4.002 3 25866.25 0.003896 

1.254 1422.47 0.0003959 53264.80 4.608 3 31121.42 0.003789 

1.278 1560.31 0.0004342 58426.34 3.173 0 37700.05 0.003815 

1.299 1680.92 0.0004678 62942.69 3.474 0 42948.55 0.003745 

1.321 1807.28 0.0005030 67674.10 3.876 0 49958.17 0.003768 

1.346 1950.87 0.0005429 73050.71 4.238 0 56270.31 0.003643 

1.359 2025.53 0.0005637 75846.54 4.445 0 59879.74 0.003596 

1.366 2065.73 0.0005749 77351.99 4.703 0 64378.45 0.003717 

Where V1 is the voltage reading of channel 1, Ṁ is the mass flow rate of liquid, Q is the volumetric 

flow rate of fluid, Re is the Reynolds number, V is the voltage reading used to find pressure drop, 

∆P is the pressure drop across the pipeline test section and f is the fanning friction factor. 

6.1.2 Dilute suspension flow data: 

The flow loop experiments were done with three different concentrations of Silica nanoparticle 

suspensions i.e. 0.50, 0.75 and 1 wt.% respectively. Flow rate could be obtained by using the 

calibration equation 32 for Coriolis flowmeter. The corresponding pressure drop in the pipeline 

were obtained using voltage readings V2, V3 and V0 of channels 2, 3 and 0 respectively using the 

equations given in Table 4. The flow rate and pressure drop values thus measured were used to 

calculate and plot friction factor vs Reynolds number and this plot was compared with the water 

line to see if the suspension has drag reduction properties or not. A detailed data processing 

approach has been given in the next section. The table no A2, A3, A4 and A5 given below list 

down the flow data obtained for 0.50, 0.75,1 and 2 wt.% suspensions: 

Table A2: Flow data for 0.50 wt.% suspensions 

Pipe 

Dia. 

V1 

(mV) 
Ṁ (kg/h) 

Q 

(m3/sec) 
Re 

V 

(mV) 
Channel ∆P (Pa) f 

1 

inch 

1.284 1594.77 0.0004437 24881.31 3.086 2 24881.31 0.005043 

1.479 2714.74 0.0007553 42354.81 1.621 3 42354.81 0.004794 

1.624 3547.54 0.0009870 55347.93 1.985 3 55347.93 0.004506 

1.693 3943.84 0.0010972 61530.86 2.171 3 61530.86 0.004348 

1.711 4047.22 0.001126 63143.80 2.214 3 63143.80 0.004283 
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1.869 4954.68 0.0013785 77301.82 2.765 3 77301.82 0.004175 

2.292 7384.16 0.0020544 115205.89 4.572 3 115205.89 0.003826 

2.953 11180.57 0.0031106 174436.58 4.887 0 174436.58 0.003661 

3.534 14517.51 0.0040391 226498.66 7.203 0 226498.66 0.003469 

3.618 14999.96 0.0041733 234025.71 7.572 0 234025.71 0.003443 

1.5 

inch 

1.509 2887.05 0.0008032 28501.37 1.237 2 338.00 0.002707 

1.719 4093.17 0.0011388 40408.38 1.824 2 832.03 0.003315 

1.959 5471.59 0.0015223 54016.39 2.843 2 1689.64 0.0037676 

1.996 5684.10 0.0015814 56114.30 2.980 2 1804.94 0.003729 

2.018 5810.46 0.0016166 57361.70 3.114 2 1917.72 0.003791 

2.208 6901.71 0.0019202 68134.71 4.151 2 2790.48 0.003910 

2.761 10077.83 0.002803 99489.84 1.743 3 6276.41 0.004125 

3.659 15235.44 0.0042388 150406.48 2.570 3 13448.08 0.003867 

4.312 18985.91 0.0052823 187431.62 3.355 3 20255.52 0.003751 

4.799 21782.96 0.0060605 215044.54 4.002 3 25866.24 0.003639 

0.5 

inch 

1.075 394.39 0.0010973 14338.16 2.585 2 1472.51 0.002333 

1.095 509.26 0.0001416 18514.17 4.373 2 2988.32 0.002829 

1.107 578.18 0.0001608 21019.77 1.459 3 3813.59 0.002811 

1.118 641.36 0.0001784 23316.57 1.587 3 4923.60 0.002950 

1.125 681.57 0.0001896 24778.17 1.687 3 5790.79 0.003072 

1.126 687.31 0.0001912 24986.97 1.682 3 5747.43 0.002998 

1.129 704.54 0.0001960 25613.37 1.725 3 6120.32 0.003039 

1.134 733.26 0.0002040 26657.37 1.818 3 6926.80 0.003175 

1.167 922.79 0.0002567 33547.78 2.276 3 10898.54 0.003154 

1.179 991.71 0.0002759 36053.38 2.470 3 12580.89 0.003152 

1.212 1181.24 0.0003286 42943.79 3.007 3 17237.70 0.003044 

1.221 1232.94 0.0003430 44822.99 3.236 3 19223.56 0.003116 

1.295 1657.95 0.0004612 60274.21 3.116 0 36706.15 0.003291 
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Table A3: Flow data for 0.75 wt.% suspensions 

Pipe 

Dia. 

V1 

(mV) 
Ṁ (kg/h) 

Q 

(m3/sec) 
Re 

V 

(mV) 
Channel ∆P (Pa) f 

1 

inch 

1.413 2335.68 0.0006482 34121.75 1.482 3 4013.05 0.004993 

1.580 3294.83 0.0009145 48133.95 1.878 3 7447.12 0.004656 

1.585 3323.55 0.0009224 48553.48 1.88 3 7464.46 0.004586 

1.651 3702.61 0.0010276 54091.23 2.059 3 9016.73 0.004464 

1.678 3857.69 0.0010707 56356.68 2.145 3 9762.52 0.004452 

1.735 4185.06 0.0011615 61139.29 2.34 3 11453.54 0.004438 

2.26 7200.37 0.0019985 105189.62 4.481 3 30020.08 0.003930 

2.851 10594.74 0.0029406 154777.72 4.58 0 62233.71 0.003763 

3.024 11588.36 0.0032164 169293.35 5.139 0 71980.92 0.003638 

3.548 14597.92 0.0040517 213259.78 7.318 0 109975.84 0.003503 

3.606 14931.04 0.0041441 218126.30 7.608 0 115032.53 0.003502 

1.5 

inch 

1.452 2559.67 0.0007104 23661.41 1.244 2 343.90 0.003512 

1.553 3139.76 0.0008714 29023.69 1.493 2 553.46 0.003756 

1.69 3926.61 0.0010898 36297.27 1.842 2 847.18 0.003676 

1.836 4765.15 0.0013225 44048.69 2.352 2 1276.41 0.003761 

1.923 5264.83 0.0014612 48667.68 2.753 2 1613.90 0.003896 

1.966 5511.80 0.0015298 50950.63 2.971 2 1797.37 0.003959 

1.997 5689.84 0.0015792 52596.48 3.124 2 1926.14 0.003981 

2.05 5994.252 0.0016637 55410.35 3.407 2 2164.32 0.004030 

2.145 6539.87 0.0018151 60454.07 3.9 2 2579.23 0.004035 

2.834 10497.10 0.0029135 97034.37 1.799 3 6762.04 0.004106 

4.788 21719.79 0.0060284 200775.88 3.963 3 25528.04 0.003621 

0.5 

inch 

1.08 423.11 0.0001174 14403.29 3.216 2 2003.57 0.002765 

1.086 457.57 0.0001270 15576.37 3.636 2 2357.05 0.002781 

1.103 555.21 0.0001541 18900.09 1.471 3 3917.65 0.003139 

1.113 612.64 0.0001700 20855.22 1.584 3 4897.58 0.003223 

1.115 624.13 0.0001732 21246.25 1.615 3 5166.41 0.003276 
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1.14 767.72 0.0002130 26134.07 1.965 3 8201.57 0.003438 

1.172 951.51 0.0002640 32390.48 2.467 3 12554.87 0.003426 

1.243 1359.29 0.0003772 46271.90 3.872 3 24738.9 0.003308 

Table A4: Flow data for 1 wt.% suspensions 

Pipe 

Dia. 

V1 

(mV) 
Ṁ (kg/h) 

Q 

(m3/sec) 
Re 

V 

(mV) 
Channel ∆P (Pa) f 

1 

inch 

1.407 2301.22 0.000636 32438.72 1.462 3 3839.61 0.004938 

1.584 3317.80 0.000917 46768.88 1.888 3 7533.84 0.004661 

1.637 3622.21 0.001001 51059.84 2.023 3 8704.55 0.004518 

2.01 5764.51 0.001594 81258.42 3.398 3 20628.41 0.004228 

2.41 8061.89 0.002230 113642.96 3.292 0 39775.04 0.004168 

2.645 9411.59 0.002603 132668.88 4.03 0 52643.44 0.004047 

2.787 10227.16 0.002828 144165.39 4.467 0 60263.35 0.003924 

3.056 11772.15 0.003256 165944.00 5.446 0 77334.03 0.003800 

3.381 13638.77 0.003772 192256.44 6.774 0 100490.18 0.003679 

3.538 14540.49 0.004022 204967.37 7.519 0 113480.64 0.003655 

1.5 

inch 

1.545 3093.81 0.000855 27595.48 1.9 2 896.00 0.006285 

1.727 4139.12 0.001144 36919.16 2.587 2 1474.19 0.005777 

1.841 4793.87 0.001326 42759.26 3.014 2 1833.56 0.005357 

1.901 5138.47 0.001421 45833.00 3.298 2 2072.58 0.005270 

1.927 5287.80 0.001462 47164.96 3.397 2 2155.90 0.005177 

2.303 7447.34 0.002060 66427.06 1.446 3 3700.86 0.004480 

2.66 9497.75 0.002627 84715.81 1.686 3 5782.11 0.004303 

2.886 10795.76 0.002986 96293.56 1.86 3 7291.02 0.004200 

3.109 12076.55 0.003340 107717.63 2.049 3 8930.01 0.004111 

3.526 14471.56 0.004003 129080.12 2.471 3 12589.56 0.004036 

3.94 16849.35 0.004660 150288.92 2.947 3 16717.38 0.003953 

4.365 19290.31 0.005336 172061.25 3.491 3 21434.90 0.003867 

4.526 20215.00 0.005591 180309.12 3.693 3 23186.62 0.003809 

1.055 279.52 7.732E-05 9181.59 2.388 2 1306.71 0.004145 
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0.5 

inch 

1.068 354.19 9.797E-05 11634.08 3.255 2 2036.39 0.004024 

1.122 664.33 0.000183 21821.33 1.892 3 7568.53 0.004251 

1.195 1083.61 0.0002997 35592.99 3.183 3 18763.95 0.003961 

1.326 1836.00 0.0005078 60306.51 3.798 0 48598.09 0.003574 

1.339 1910.66 0.0005285 62758.99 4.086 0 53619.90 0.003641 

1.356 2008.30 0.0005555 65966.09 4.283 0 57054.96 0.003506 

1.363 2048.50 0.0005666 67286.66 4.403 0 59147.39 0.003494 

Table A5: Flow data for 2 wt.% suspensions 

Pipe 

Dia. 

V1 

(mV) 
Ṁ (kg/h) 

Q 

(m3/sec) 
Re 

V 

(mV) 
Channel ∆P (Pa) f 

1 

inch 

1.444 2513.72 0.0006927 28771.43 1.551 3 4611.41 0.004989 

1.517 2932.99 0.0008082 33570.30 1.722 3 6094.30 0.004843 

1.793 4518.18 0.0012450 51713.94 2.597 3 13682.22 0.004582 

2.038 5925.33 0.0016328 67819.72 3.651 3 22822.40 0.004444 

2.389 7941.27 0.0021884 90893.70 3.231 0 38711.39 0.004196 

3.241 12834.68 0.0035368 146902.35 6.169 0 89940.88 0.003732 

3.473 14167.16 0.0039040 162153.54 7.312 0 109871.21 0.003742 

1.5 

inch 

1.325 1830.258 0.0005043 13255.42 1.387 2 464.25 0.009340 

1.654 3719.84 0.0010250 26940.57 2.34 2 1266.31 0.006168 

1.742 4225.27 0.0011643 30601.04 2.625 2 1506.17 0.005686 

1.846 4822.59 0.0013289 34927.04 3.098 2 1904.26 0.005518 

1.906 5167.19 0.0014239 37422.81 3.357 2 2122.23 0.005357 

1.941 5368.21 0.0014793 38878.68 3.532 2 2269.52 0.005307 

1.959 5471.59 0.0015078 39627.41 3.638 2 2358.73 0.005310 

3.628 15057.40 0.0041494 109051.46 2.592 3 13638.86 0.004054 

4.618 20743.40 0.0057163 150231.69 3.861 3 24643.50 0.003860 

0.5 

inch 

1.075 394.39 0.0001097 14338.16 2.585 2 1472.51 0.002333 

1.095 509.26 0.0001416 18514.16 4.373 2 2977.32 0.002829 

1.107 578.18 0.0001608 21019.76 1.459 3 3813.59 0.002811 

1.118 641.36 0.0001784 23316.57 1.587 3 4923.60 0.002950 
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1.125 681.57 0.0001896 24778.17 1.687 3 5790.79 0.003072 

1.126 687.31 0.0001912 24986.97 1.682 3 5747.43 0.002998 

1.129 704.54 0.0001960 25613.37 1.725 3 6120.32 0.003039 

1.134 733.26 0.0002040 26657.37 1.818 3 6926.80 0.003175 

1.167 922.79 0.0002567 33547.78 2.276 3 10898.54 0.003154 

1.179 991.71 0.0002759 36053.38 2.47 3 12580.89 0.003152 

1.212 1181.24 0.0003286 42943.78 3.007 3 17237.70 0.003044 

1.221 1232.94 0.0003430 44822.99 3.236 3 19223.56 0.003116 

6.1.3 Calculation approach: 

The Voltage V1 represents the voltage signal from Channel 1 that is used to estimate the flow rate, 

Voltage V2 represent the voltage signal of 0-0.5 psi pressure transducer, V3 represent the voltage 

signal of 0-5 psi pressure transducer and V0 represent the voltage signal of 0-10 psi pressure 

transducer. The voltage signals V2, V3 and V0 are used to estimate the pressure drop across the test 

section of the pipelines. For measuring the flow rate (kg/s), we use the Voltage V1 (mV) and 

substitute in the following equation: 

𝑦 = 1.5954 𝑥 − 1.6055 

The flow rate thus obtained has units of kg/s and is multiplied by a factor of 3600 to convert the 

units to kg/h and hence obtain and then is divided by the density of the flowing fluid to get the 

volumetric flow rate, Q. To calculate the pressure drop (psi), following equations are used:  

For measuring the pressure drop (psi) using Voltage reading given from channel 2, we use: 

∆𝑃 = 0.1221 ∗ 𝑉2 − 0.102 

For measuring the pressure drop (psi) using voltage reading given from channel 3, we use: 

∆𝑃 = 1.2581 ∗ 𝑉3 − 1.2823 

For measuring the pressure drop (psi) using voltage reading given from channel 0, we use: 

∆𝑃 = 2.5297 ∗ 𝑉2 − 2.5573 

To calculate the Reynolds number, we use the following equation: 

𝑅𝑒 =
4𝜌𝑄

𝜋𝜇𝐷
 

Where 𝜌 and 𝜇 are the density and dynamic viscosity of the flowing fluid, D is the diameter of 

the pipe and Q is the volumetric flow rate. To find the Fanning friction factor f, we use: 
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𝑓 =  
∆𝑃 ∗ 𝐷

2 ∗ 𝐿 ∗  𝜌 ∗ 𝑉2
 

Where L is length of the pipeline and V is the velocity of the fluid, 𝜌, ∆𝑃 and D as stated above. 

6.2 Density and volume fraction data: 

The density and volume fraction of dilute silica suspensions was obtained as under:  

6.2.1 Measurement of density: 

The density of dilute suspensions was measured using a basic weight and volume measurement 

technique. A conical volumetric flask was used for this process. The weight W1 of empty conical 

flask was measured before filling it with the dilute suspension. Then, another measurement W2 

was taken after filling the flask precisely to 50 ml marking with the suspension. The difference 

between these two measurements would give the actual weight of 50 ml volume of suspension.  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝜌 (
𝑔

𝑚𝑙
) =

𝑊2 − 𝑊1 

50 
 

The density results obtained for S13, T30 and N20 Silica nanoparticle suspensions are: 

Table A6: Density of silica nanoparticle suspensions 

S13 

Concentration 

(wt.%)  

0.50 0.75 1 2 3 4 5 6 

Density 

(g/cm3) 

0.998 1.0008 1.0042 1.008 1.0132 1.0196 1.025 1.0296 

 

T30 

Concentration 

(wt.%) 

1 2 3 4 

Density 

(g/cm3) 

1.0012 1.0061 1.0113 1.0194 

 

N20 

Concentration 

(wt.%) 

1 2 3 4 5 

Density 

(g/cm3) 

1.0010 1.0068 1.0107 1.0178 1.0268 

6.2.2 Conversion of weight fraction to volume fraction: 

The volume fraction, ɸ of particles in suspension can be obtained from weight fraction, 𝑥 , density 

of suspension 𝜌𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛  and density of nanoparticles 𝜌𝑛𝑝 using the following formula: 
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𝜙 =
𝑥 × 𝜌𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛

𝜌𝑛𝑝
 

Where 𝜌𝑛𝑝 was obtained as follows: 

The total volume of suspension, VT  can be written as sum of volume occupied by Nanoparticles 

(Vnp) and the continuous phase (VC) as: 

𝑉𝑇 = 𝑉𝑛𝑝 + 𝑉𝐶 

In terms of Volume and density, this can also be written as: 

𝑀𝑠𝑢𝑠𝑝

𝜌𝑠𝑢𝑠𝑝
=  

𝑀𝑛𝑝

𝜌𝑛𝑝
+

𝑀𝐶

𝜌𝐶
 

Where Msusp, Mnp and MC are the mass of suspension, nanoparticles and continuous phase 

respectively and 𝜌𝑠𝑢𝑠𝑝 , 𝜌𝑛𝑝 and  𝜌𝐶  are the density of suspension, nanoparticle and continuous 

phase respectively. Dividing the above equation by Msusp, we get: 

1

𝜌𝑠𝑢𝑠𝑝
=  

𝑥

𝜌𝑛𝑝
+

1 − 𝑥

𝜌𝐶
 

Where 𝑥 is the mass fraction of silica nanoparticles in the suspension. Rearranging, we get: 

𝜌𝐶 =  𝜌𝑛𝑝 [1 +
1

𝑥
(

𝜌𝐶

𝜌𝑠𝑢𝑠𝑝
− 1)] 

So 𝜌𝑛𝑝 can be obtained by finding slope of the above given line. The continuous phase for silica 

suspensions was water and hence, 𝜌𝐶   is 0.998 g/ml. Also, the values of 𝜌𝑛𝑝  thus obtained are: 

Table A7: Density of silica nanoparticles 

Silica grade S13 T30 N20 

𝜌𝑛𝑝 (g/ml) 2.062 1.905 2.005 

Using these density values given in Table A7, the volume fraction obtained for particles is 

Table A8: Volume fraction of silica nanoparticle suspensions 

S13 

Weight 

fraction 

0.0050 0.0075 0.01 0.02 0.03 0.04 0.05 0.06 

Volume 

fraction 

0.00241 0.00363 0.00486 0.00977 0.0147 0.0197 0.02484 0.0299 
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T30 

Weight 

fraction 

0.01 0.02 0.03 0.04 

Volume 

fraction 

0.005253 0.01055 0.01592 0.02139 

 

N20 

Weight 

fraction 

0.01 0.02 0.03 0.04 0.05 

Volume 

fraction 

0.00499 0.01004 0.001512 0.02030 0.02560 

6.3 Viscosity of dilute silica suspensions: 

The viscosity of dilute silica suspensions was measured by CANNON Ubbelhoode viscometer. 

The experimental results are shown below in the table: 

Table A9: Viscosity (cP) of different grades of silica nanoparticle suspensions 

S13 

Concentration 

(wt.%)  

0.50 0.75 1 2 3 4 5 6 

Viscosity (cP) 1.03 1.10 1.14 1.404 1.597 2.062 2.467 3.238 

 

T30 

Concentration 

(wt.%) 

1 2 3 4 

Viscosity (cP) 1.13 1.396 1.745 2.685 

 

N20 

Concentration 

(wt.%) 

1 2 3 4 5 

Viscosity (cP) 1.201 1.854 2.566 3.562 4.70 

Table A10: Viscosity (cP) of S13 silica nanoparticle suspensions at room temperature 

Viscosity (cP) 

Concentration 
Without electrolyte presence With electrolyte (0.1 M NaCl) 

pH=1 pH=2 pH=4 pH=7 pH=1 pH=2 pH=4 pH=7 

0.50 wt. % 1.0047 0.9960 0.9960 0.9982 1.0330 1.0461 1.0243 1.0025 

0.75 wt. % 1.0399 1.0224 1.0312 1.0224 1.1185 1.0486 0.9831 1.0486 
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1 wt. % 1.1355 1.0741 1.0632 1.0522 1.1574 1.1925 1.0960 1.0434 

2 wt. % 1.4170 1.3202 1.2762 1.2366 1.3510 1.4038 1.4303 1.4170 

3 wt. % 1.8933 1.7030 1.7561 1.5925 2.4064 1.7517 1.8269 1.6234 

4 wt. % 1.9720 1.9275 2.0121 1.9854 2.4172 2.6709 3.1739 -- 

5 wt. % 2.2733 2.4658 3.9828 2.9625 4.8443 2.6224 -- -- 

Table A11: Viscosity (cP) of S13 silica nanoparticle suspensions at 40 ℃ 

Viscosity (cP) 

Concentration 
Without electrolyte presence 

In the presence of an electrolyte     

(0.1 M NaCl) 

pH=1 pH=2 pH=4 pH=7 pH=1 pH=2 pH=4 pH=7 

1 wt. % 0.7891 0.7847 0.7804 0.7453 0.8198 0.8461 0.8111 -- 

2 wt. % 1.0785 1.0610 0.9996 1.1486 0.9645 0.9601 1.082 -- 

3 wt. % 1.3898 1.0610 1.1618 1.0040 1.5082 1.4731 1.5695 -- 

4 wt. % 1.4205 1.4555 1.4687 1.4029 1.5564 1.4073 2.8059 -- 

5 wt. % 1.7361 1.8984 2.8761 1.7142 3.1479 1.7318 -- -- 

6.4 Rheological data: 

The Rheology data was measured using Fann model 35 viscometer and Haake Rotovisco RV 12 

viscometers. The room temperature experiments were done with Fann viscometer and the 

experiments with elevated temperatures were done with Haake as mentioned under: 

6.4.1 Calibration of Haake viscometer: 

According to the equipment manual, shear stress, shear rate and apparent viscosity can be 

measured using the following formulas: 

𝑆ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 = 𝑀 ×  𝑛 

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝐺 × 𝑆

𝑛
 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝐴 × 𝑆 

Where 𝑛 is rpm of the rotor bob, S is the digital reading, G is the instrument factor, A is the shear 

stress factor and M is the shear rate factor. Before using HAAKE for temperature experiments, it 

was calibrated with standard fluid of viscosity, μ=97.5 cP and the following data was obtained: 
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Table A12: Calibration data of Haake viscometer 

𝒏 (rpm) Shear rate (s-1) μ*n S, Digital reading 

16 37.44 1560 4.81 

25.6 59.904 2496 7.783 

32 74.88 3120 9.516 

51.2 119.808 4992 15.38 

64 149.76 6240 18.967 

128 299.52 12480 38.55 

256 599.04 24960 77.25 

The value of M is constant and is given as 2.34 (minute/sec). The value of G was obtained by 

finding the slope for a linear regression of μ*N (on vertical axis) vs S value (on horizontal axis). 

The value of A was obtained by using the following formula: 

𝐴 = 0.001 × 𝐺 × 𝑀 

After the calibration, the values of parameters G, A and M obtained are given below: 

Table A13: Values of different constants of HAAKE viscometer 

Parameter G (mPa*s/Scale 

grad*min) 

A (Pa/Scale grade) M (minute/sec) 

Value 323.7 0.757 2.34 

6.4.2 Rheological data obtained with Haake viscometer: 

The rheological data obtained with Haake viscometer for temperature experiments is: 

Table A14: Shear stress vs shear rate for S13 (15 wt. %) at different temperatures 

Temperature 
n 

(RPM) 

S (Digital 

output) 

Viscosity 

(cP) 

Shear rate 

(s-1) 

Shear stress 

(mPa) 

22°C 25.6 1.083 13.694 59.904 819.83 
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32 1.13 11.430 74.88 855.41 

51.2 1.63 10.305 119.808 1233.91 

64 1.716 8.679 149.76 1299.01 

128 2.83 7.156 299.52 2142.31 

256 4.96 6.271 599.04 3754.72 

34°C 

25.6 0.9166 11.589 59.904 693.866 

32 0.966 9.771 74.88 731.26 

51.2 1.4 8.851 119.808 1059.8 

64 1.616 8.173 149.76 1223.3 

128 2.566 6.489 299.52 1942.46 

256 4.35 5.500 599.04 3292.95 

40°C 

25.6 0.916 11.582 59.904 693.41 

32 0.8833 8.93 74.88 668.65 

51.2 1.27 8.029 119.808 961.39 

64 1.4 7.08 149.76 1059.8 

128 2.25 5.6900 299.52 1703.25 

256 3.916 4.951 599.04 2964.41 

50°C 

25.6 0.8 10.115 59.904 605.6 

32 0.866 8.760 74.88 655.56 

51.2 1.15 7.270 119.808 870.55 

64 1.31 6.625 149.76 991.67 



  78 

128 2.1 5.310 299.52 1589.7 

256 3.55 4.488 599.04 2687.35 

60°C 

25.6 0.67 8.471 59.904 507.19 

32 0.7 7.080 74.88 529.9 

51.2 1.016 6.423 119.808 769.11 

64 1.13 5.715 149.76 855.41 

128 1.816 4.594 299.52 1375.16 

256 3.15 3.983 599.04 2384.55 

Table A15: Shear stress vs shear rate for T30 (15 wt. %) at different temperatures 

Temperature 
n 

(RPM) 

S (Digital 

output) 

Viscosity 

(cP) 

Shear rate 

(s-1) 

Shear stress 

(mPa) 

22°C 

25.6 2.116 26.755 59.90 1601.81 

32 2.35 23.771 74.88 1778.95 

51.2 3.483 22.020 119.80 2636.63 

64 3.86 19.523 149.76 2922.02 

128 6.38 16.134 299.52 4829.66 

256 10.81 13.668 599.04 8183.17 

34°C 

25.6 1.93 24.403 59.904 1461.01 

32 2.13 21.546 74.88 1612.41 

51.2 3.066 19.384 119.80 2320.96 

64 3.48 17.601 149.76 2634.36 

128 5.65 14.288 299.52 4277.05 
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256 9.366 11.842 599.04 7090.06 

40°C 

25.6 1.783 22.545 59.904 1349.73 

32 2.066 20.898 74.88 1563.96 

51.2 2.83 17.892 119.80 2142.31 

64 3.316 16.771 149.76 2510.21 

128 5.3 13.403 299.52 4012.1 

256 8.78 11.101 599.04 6646.46 

50°C 

25.6 1.9 24.024 59.904 1438.3 

32 2.01 20.393 74.88 1526.11 

51.2 2.98 18.840 119.80 2255.86 

64 3.33 16.842 149.76 2520.81 

128 5.28 13.352 299.52 3996.96 

256 8.5 10.747 599.04 6434.5 

Table A16: Shear stress vs shear rate for N20 (8 wt. %) at different temperatures 

Temperatur

e 

n 

(RPM) 

S (Digital 

output) 

Viscosity 

(cP) 

Shear rate 

(s-1) 

Shear stress 

(mPa) 

22°C 

25.6 0.6333 8.008 59.90 479.43 

32 0.65 6.575 74.88 492.05 

51.2 0.9 5.690 119.80 681.3 

64 1.016 5.142 149.76 769.61 

128 1.666 4.214 299.52 1261.66 

256 2.883 3.645 599.04 2182.68 
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34°C 

25.6 0.633 8.008 59.90 479.43 

32 0.65 6.575 74.88 492.05 

51.2 0.9 5.690 119.80 681.3 

64 1.016 5.142 149.76 769.61 

128 1.666 4.214 299.52 1261.66 

256 2.833 3.582 599.04 2144.83 

40°C 

25.6 0.7 8.851 59.904 529.9 

32 0.716 7.249 74.88 542.51 

51.2 0.9 5.690 119.80 681.3 

64 1.05 5.310 149.76 794.85 

128 1.666 4.214 299.52 1261.66 

256 2.833 3.582 599.04 2144.83 

50°C 

25.6 0.666 8.429 59.90 504.66 

32 0.683 6.912 74.88 517.28 

51.2 0.85 5.373 119.808 643.45 

64 0.95 4.804 149.76 719.15 

128 1.6 4.046 299.52 1211.2 

256 2.616 3.308 599.04 1980.81 

60°C 

25.6 0.616 7.797 59.904 466.81 

32 0.633 6.406 74.88 479.43 

51.2 0.8 5.057 119.808 605.6 
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64 0.9 4.552 149.76 681.3 

128 1.4 3.540 299.52 1059.8 

256 2.4 3.034 599.04 1816.8 

6.4.3 Calibration of Fann viscometer: 

Before using Fann viscometer, it was calibrated with standard fluids of viscosity 9.8 cP and 97.5 

cP. The readings obtained for calibration are as follows: 

Table A17: Calibration data of Fann viscometer 

Standard 

fluid 
N (RPM) 

Shear rate (s-

1) 
Dial Reading 

Shear stress 

(mPa) 

97.5 cP 

6 10.2 12 994.5 

30 51 56 4972.5 

60 102 110 9945 

90 153 165 14917.5 

100 170 180 16575 

9.8 cP 

90 153 18 1499.4 

100 170 21 1666 

180 306 34 2998.8 

200 340 38 3332 

300 510 56 4998 

The Shear rate and shear stress could be measured using the following formulas: 

𝑆ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 = 𝑘 ×  𝑅𝑃𝑀 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝜇 ×  𝑆ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 
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Where 𝜇 is the dynamic viscosity of the standard fluid used and 𝑘 is spring constant which is a 

constant for the given geometry i.e. k=1.7. Also, the calibration equation of Fann viscometer was 

found by a linear regression of Shear stress data vs Dial reading and the equation obtained was: 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑚𝑃𝑎) = 92.509 × (𝐷𝑖𝑎𝑙 𝑅𝑒𝑎𝑑𝑖𝑛𝑔) − 175.23 

6.4.4 Rheological data obtained with Haake viscometer:  

The rheological data for S13, T30 and N20 suspensions is given in the tables 13, 14 and 15 

below: 

Table A18: Rheological data for S13 suspensions at Room Temperature (22°C) 

Concentration 

(wt. %) 
RPM 

Dial 

Reading 

Shear rate  

(s-1) 

Shear stress 

(mPa) 

Viscosity 

(cP) 

6 wt.% 

180 15 306 1212.405 3.962 

200 16 340 1304.914 3.837 

300 20 510 1674.95 3.2842 

600 33 1020 2877.567 2.821 

7 wt.% 

180 17 306 1397.42 4.566 

200 18 340 1489.93 4.382 

300 24 510 2044.98 4.009 

600 39 1020 3432.62 3.365 

8 wt. % 

180 20 306 1674.95 5.473 

200 22 340 1859.96 5.470 

300 29 510 2507.53 4.916 

600 47 1020 4172.69 4.090 

9 wt.% 100 15 170 1212.40 7.131 
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180 21 306 1767.46 5.776 

200 23 340 1952.47 5.742 

300 30 510 2600.04 5.098 

600 49 1020 4357.71 4.272 

10 wt. % 

100 16 170 1304.91 7.675 

180 24 306 2044.98 6.682 

200 25 340 2137.49 6.286 

300 32 510 2785.05 5.460 

600 52 1020 4635.23 4.544 

15 wt.% 

100 44 170 3895.16 22.912 

180 61 306 5467.81 17.868 

200 64 340 5745.34 16.898 

300 80 510 7225.49 14.167 

600 123 1020 11203.37 10.983 

20 wt. % 

100 76 170 6855.45 40.326 

180 106 306 9630.72 31.472 

200 112 340 10185.77 29.958 

300 140 510 12776.03 25.051 

600 220 1020 20176.75 19.781 

Table A19: Rheological data for T30 suspensions at room temperature (22°C) 

Concentration 

(wt. %) 
RPM 

Dial 

Reading 

Shear rate  

(s-1) 

Shear stress 

(mPa) 

Viscosity 

(cP) 
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5 wt.% 

180 17 306 1397.42 4.566 

200 19 340 1582.44 4.654 

300 24 510 2044.98 4.009 

600 40 1020 3525.13 3.456 

6 wt.% 

180 24 306 2044.98 6.682 

200 26 340 2230.00 6.558 

300 33 510 2877.56 5.642 

600 52 1020 4635.23 4.544 

7 wt.% 

180 32 306 2785.05 9.101 

200 34 340 2970.07 8.735 

300 41 510 3617.63 7.093 

600 60 1020 5375.31 5.269 

8 wt.% 

100 35 170 3062.6 18.015 

180 49 306 4357.71 14.240 

200 51 340 4542.73 13.360 

300 64 510 5745.34 11.265 

9 wt.% 

100 36 170 3155.09 18.559 

180 51 306 4542.73 14.845 

200 53 340 4727.74 13.905 

300 68 510 6115.38 11.990 

600 102 1020 9260.68 9.079 
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10 wt.% 

100 52 170 4635.24 27.266 

180 76 306 6855.45 22.403 

200 77 340 6947.96 20.435 

300 98 510 8890.65 17.432 

600 156 1020 14256.17 13.976 

Table A20: Rheological data for N20 suspensions at room temperature (22°C) 

Concentration 

(wt. %) 
RPM 

Dial 

Reading 

Shear rate 

(s-1) 

Shear stress 

(mPa) 

Viscosity 

(cP) 

6 wt.% 

100 15 170 1212.40 7.131 

180 20 306 1674.95 5.473 

200 22 340 1859.96 5.470 

300 28 510 2415.022 4.735 

600 44 1020 3895.16 3.818 

7 wt.% 

90 16 153 1304.91 8.528 

180 24 306 2044.98 6.683 

200 25 340 2137.49 6.286 

300 32 510 2785.05 5.460 

600 50 1020 4450.22 4.363 

8 wt.% 

100 22 170 1859.96 10.941 

180 31 306 2692.55 8.799 

200 33 340 2877.56 8.463 

300 42 510 3710.14 7.274 
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600 66 1020 5930.36 5.814 

9 wt.% 

100 26 170 2230.00 13.117 

180 37 306 3247.60 10.613 

200 38 340 3340.11 9.823 

300 48 510 4265.20 8.3631 

600 77 1020 6947.96 6.811 

10 wt.% 

100 49 170 4357.71 25.633 

180 73 306 6577.93 21.496 

200 72 340 6485.42 19.074 

300 88 510 7965.56 15.618 

600 148 1020 13516.10 13.251 

6.5 Size distribution results: 

The raw data of Intensity and Number distribution of 0.05, 0.50 and 1 wt.% silica nanoparticles 

are given: 

Table A21: Intensity % data for silica nanoparticles 

Size 

(d.nm) 

Mean Intensity % 

S13 T30 N20 

0.05 

wt.% 

0.50 

wt.% 

1.0 

wt.% 

0.05 

wt.% 

0.50 

wt.% 

1.0 

wt.% 

0.05 

wt.% 

0.50 

wt.% 

1.0 

wt.% 

0.4 0 0 0 0 0 0 0 0 0 

0.4632 0 0 0 0 0 0 0 0 0 

0.5365 0 0 0 0 0 0 0 0 0 

0.6213 0 0 0 0 0 0 0 0 0 

0.7195 0 0 0 0 0 0 0 0 0 

0.8332 0 0 0 0 0 0 0 0 0 
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0.9649 0 0 0 0 0 0 0 0 0 

1.117 0 0 0 0 0 0 0 0 0 

1.294 0 0 0 0 0 0 0 0 0 

1.499 0 0 0 0 0 0 0 0 0 

1.736 0 0 0 0 0 0 0 0 0 

2.01 0 0 0 0 0 0 0 0 0 

2.328 0 0 0 0 0 0 0 0 0 

2.696 0 0 0 0 0 0 0 0 0 

3.122 0 0 0 0 0 0 0 0 0 

3.615 0 0 0 0 0 0 0 0 0 

4.187 0 0 0 0 0 0 0 0 0 

4.849 0 0 0 0 0 0 0 0 0 

5.615 0 0 0 0 0 0 0 0 0 

6.503 0 0 0 0 0 0 0 0 0 

7.531 0 0 0 0 0 0 0 0 0 

8.721 0 0 0 0 0 0 0 0 0 

10.1 0 0 0 0 0 0 0 0 0 

11.7 0 0 0 0 0 0 0 0 0 

13.54 0 0 0 0 0 0 0 0 0 

15.69 0 0 0 0 0 0 0 0 0 

18.17 0 0 0 0 0 0 0 0 0 

21.04 0 0 0 0 0 0 0 0 0 

24.36 0 0 0 0 0 0 0 0 0 

28.21 0 0 0 0 0 0 0 0 0 

32.67 0 0 0 0 0 0 0 0 0 

37.84 0 0 0 0 0 0 0 0 0 

43.82 0 0 0 0 0 0 0 0 0 

50.75 0 0 0 0 0.1 0 0 0 0 

58.77 0 0 0 0 0.2 0.4 0 0 0 

68.06 0 0 0 0.1 0.2 0.8 0 0 0 
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78.82 0 0 0 0.4 0.3 1.3 0 0 0 

91.28 0 0 0.7 0.8 0.4 1.6 0 0 0 

105.7 0 0 1.5 1.4 0.7 1.6 0 0.2 0.2 

122.4 0.1 0.4 2.2 2.4 1.1 1.5 0 0.8 0.8 

141.8 0.8 1.7 2.4 3.7 2.2 1.6 0 2.1 2.1 

164.2 2.3 3.4 2.2 5.4 4.1 2.2 1.3 3.8 3.7 

190.1 4.4 4.9 2.1 7.4 6.5 3.7 4.2 5.5 5.2 

220.2 6.7 6 2.5 9.4 8.9 5.8 8.1 6.9 6.4 

255 8.9 6.8 3.5 11 11 8.2 11.9 7.9 7.2 

295.3 10.5 7.2 5.3 11.9 12.2 10.4 14.6 8.5 7.7 

342 11.4 7.6 7.4 11.9 12.4 11.9 15.6 8.6 7.9 

396.1 11.4 8 9.4 10.9 11.5 12.4 14.6 8.5 7.9 

458.7 10.8 8.3 10.9 9.1 9.7 11.6 12.1 8.1 7.8 

531.2 9.5 8.5 11.6 6.8 7.4 9.8 8.6 7.5 7.4 

615.1 7.8 8.4 11.2 4.3 5 7.2 5.1 6.7 6.9 

712.4 5.9 7.9 9.8 2.2 3 4.5 2.4 5.9 6.1 

825 4.1 7 7.7 0.7 1.7 2.1 0.8 5 5.1 

955.4 2.5 5.7 5.2 0 1 0.6 0.1 4 3.9 

1106 1.3 4.1 2.9 0 0.5 0 0 3.1 2.8 

1281 0.5 2.5 1.2 0 0.1 0 0 2.2 1.8 

1484 0.1 1.2 0.3 0 0 0 0 1.6 1.2 

1718 0 0.3 0 0 0 0 0 1.1 1.1 

1990 0 0 0 0 0 0 0 0.8 1.2 

2305 0 0 0 0 0 0 0 0.6 1.3 

2669 0 0 0 0 0 0 0 0.4 1.2 

3091 0 0 0 0 0 0 0 0.3 1.1 

3580 0 0 0 0 0 0 0 0.1 0.9 

4145 0 0 0 0 0 0 0 0.1 0.6 

4801 0 0 0 0 0 0 0.2 0 0.4 

5560 0 0 0 0 0 0 0.4 0 0.2 
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6439 0 0 0 0 0 0 0 0 0 

7456 0 0 0 0 0 0 0 0 0 

8635 0 0 0 0 0 0 0 0 0 

1.00E+04 0 0 0 0 0 0 0 0 0 

Table A22: Number % data for silica nanoparticles 

Size 

(d.nm) 

Mean Number % 

S13 T30 N20 

0.05 

wt.% 

0.50 

wt.% 

1.0 

wt.% 

0.05 

wt.% 

0.50 

wt.% 

1.0 

wt.% 

0.05 

wt.% 

0.50 

wt.% 

1.0 

wt.% 

0.4 0 0 0 0 0 0 0 0 0 

0.4632 0 0 0 0 0 0 0 0 0 

0.5365 0 0 0 0 0 0 0 0 0 

0.6213 0 0 0 0 0 0 0 0 0 

0.7195 0 0 0 0 0 0 0 0 0 

0.8332 0 0 0 0 0 0 0 0 0 

0.9649 0 0 0 0 0 0 0 0 0 

1.117 0 0 0 0 0 0 0 0 0 

1.294 0 0 0 0 0 0 0 0 0 

1.499 0 0 0 0 0 0 0 0 0 

1.736 0 0 0 0 0 0 0 0 0 

2.01 0 0 0 0 0 0 0 0 0 

2.328 0 0 0 0 0 0 0 0 0 

2.696 0 0 0 0 0 0 0 0 0 

3.122 0 0 0 0 0 0 0 0 0 

3.615 0 0 0 0 0 0 0 0 0 

4.187 0 0 0 0 0 0 0 0 0 

4.849 0 0 0 0 0 0 0 0 0 

5.615 0 0 0 0 0 0 0 0 0 

6.503 0 0 0 0 0 0 0 0 0 

7.531 0 0 0 0 0 0 0 0 0 
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8.721 0 0 0 0 0 0 0 0 0 

10.1 0 0 0 0 0 0 0 0 0 

11.7 0 0 0 0 0 0 0 0 0 

13.54 0 0 0 0 0 0 0 0 0 

15.69 0 0 0 0 0 0 0 0 0 

18.17 0 0 0 0 0 0 0 0 0 

21.04 0 0 0 0 0 0 0 0 0 

24.36 0 0 0 0 0 0 0 0 0 

28.21 0 0 0 0 0 0 0 0 0 

32.67 0 0 0 0 0 0 0 0 0 

37.84 0 0 0 0 0 0 0 0 0 

43.82 0 0 0 0 0 0 0 0 0 

50.75 0 0 0 0 0 0 0 0 0 

58.77 0 0 0 0 0 0 0 0 0 

68.06 0 0 0.9 0 0 0 0 0 0 

78.82 3 0 7.2 0 0 0 0 0 0 

91.28 0 0 18.2 0 1.6 1.6 0 1.6 1.6 

105.7 0.4 2.4 23.1 0 6.4 6.3 0 6.4 6.3 

122.4 3.5 9.6 18.5 0.1 12.5 12.2 0.1 12.5 12.2 

141.8 9.7 16.7 11.2 2.3 16.1 16.1 2.3 16.1 16.1 

164.2 14.2 17.7 6 8.1 15.6 16 8.1 15.6 16 

190.1 14.8 14.2 3.2 13.7 12.5 12.9 13.7 12.5 12.9 

220.2 13.4 10.4 2.1 15.7 9.3 9.6 15.7 9.3 9.6 

255 11.6 7.6 1.7 15.6 7.1 7.1 15.6 7.1 7.1 

295.3 9.6 5.7 1.5 14.5 5.6 5.6 14.5 5.6 5.6 

342 7.5 4.3 1.4 11.8 4.4 4.3 11.8 4.4 4.3 

396.1 5.5 3.2 1.3 8.3 3.2 3 8.3 3.2 3 

458.7 3.9 2.5 1.1 5.1 2.2 2 5.1 2.2 2 

531.2 2.7 2 0.9 2.8 1.5 1.3 2.8 1.5 1.3 

615.1 1.6 1.4 0.7 1.3 1 0.9 1.3 1 0.9 
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712.4 0.9 0.9 0.4 0.5 0.6 0.5 0.5 0.6 0.5 

825 0.4 0.6 0.2 0.2 0.4 0.3 0.2 0.4 0.3 

955.4 0.2 0.3 0.1 0 0.2 0.1 0 0.2 0.1 

1106 0.1 0.2 0.1 0 0.1 0.1 0 0.1 0.1 

1281 0 0.1 0 0 0 0 0 0 0 

1484 0 0 0 0 0 0 0 0 0 

1718 0 0 0 0 0 0 0 0 0 

1990 0 0 0 0 0 0 0 0 0 

2305 0 0 0 0 0 0 0 0 0 

2669 0 0 0 0 0 0 0 0 0 

3091 0 0 0 0 0 0 0 0 0 

3580 0 0 0 0 0 0 0 0 0 

4145 0 0 0 0 0 0 0 0 0 

4801 0 0 0 0 0 0 0 0 0 

5560 0 0 0 0 0 0 0 0 0 

6439 0 0 0 0 0 0 0 0 0 

7456 0 0 0 0 0 0 0 0 0 

8635 0 0 0 0 0 0 0 0 0 

1.00E+04 0 0 0 0 0 0 0 0 0 

Table A23: Intensity % data for S13 silica nanoparticles at different pH values 

Size 

(r.nm) 

Mean Intensity % for S13  

0.50 wt.% 0.75 wt.% 1 wt.% 

pH 

=1 

pH 

=2 

pH 

=4 

pH 

=7 

pH 

=1 

pH 

=2 

pH 

=4 

pH 

=7 

pH 

=1 

pH 

=2 

pH 

=4 

pH 

=7 

0.2 0 0 0 0 0 0 0 0 0 0 0 0 

0.2316 0 0 0 0 0 0 0 0 0 0 0 0 

0.2682 0 0 0 0 0 0 0 0 0 0 0 0 

0.3106 0 0 0 0 0 0 0 0 0 0 0 0 

0.3597 0 0 0 0 0 0 0 0 0 0 0 0 

0.4166 0 0 0 0 0 0 0 0 0 0 0 0 
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0.4825 0 0 0 0 0 0 0 0 0 0 0 0 

0.5587 0 0 0 0 0 0 0 0 0 0 0 0 

0.647 0 0 0 0 0 0 0 0 0 0 0 0 

0.7493 0 0 0 0 0 0 0 0 0 0 0 0 

0.8678 0 0 0 0 0 0 0 0 0 0 0 0 

1.005 0 0 0 0 0 0 0 0 0 0 0 0 

1.164 0 0 0 0 0 0 0 0 0 0 0 0 

1.348 0 0 0 0 0 0 0 0 0 0 0 0 

1.561 0 0 0 0 0 0 0 0 0 0 0 0 

1.808 0 0 0 0 0 0 0 0 0 0 0 0 

2.093 0 0 0 0 0 0 0 0 0 0 0 0 

2.424 0 0 0 0 0 0 0 0 0 0 0 0 

2.807 0 0 0 0 0 0 0 0 0 0 0 0 

3.251 0 0 0 0 0 0 0 0 0 0 0 0 

3.765 0 0 0 0 0 0 0 0 0 0 0 0 

4.36 0 0 0 0 0 0 0 0 0 0 0 0 

5.05 0 0 0 0 0 0 0 0 0 0 0 0 

5.848 0 0 0 0 0 0 0 0 0 0 0 0 

6.772 0 0 0 0 0 0 0 0 0 0 0 0 

7.843 0 0 0 0 0 0 0 0 0 0 0 0 

9.083 0 0 0 0 0 0 0 0 0 0 0 0 

10.52 0 0 0 0 0 0 0 0 0 0 0 0 

12.18 0 0 0 0 0 0 0 0 0 0 0 0 

14.11 0 0 0 0 0 0 0 0 0 0 0 0 

16.34 0 0 0 0 0 0 0 0 0 0 0 0 

18.92 0 0 0 0 0 0 0 0 0 0 0 0 

21.91 0 0 0 0 0 0 0 0 0 0 0 0 

25.37 0 0 0 0 0 0 0 0 0 0 0 0 

29.39 0 0 0 0 0 0 0.2 0 0 0 0 0 

34.03 0 0 0 0 0 0 0.4 0 0 0 0 0 
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39.41 0.3 0 0 0 0.5 0 0.4 0.3 0 0 0 0 

45.64 0.9 0.4 0 0 0.9 0 0.3 0.7 0 0 0.5 0 

52.85 1.2 0.9 0.1 0 1.1 0.5 0.2 1 0 0.8 1 0 

61.21 1 1.3 0.4 0 1.1 1.4 0.4 1 0 1.7 1 0 

70.89 0.8 1.7 1.4 0 1.1 2.5 1.1 1.1 0 2.2 0.8 0.2 

82.09 1.2 2.3 3 1.5 1.5 3.6 2.5 1.7 0.2 2.1 0.8 1.7 

95.07 2.5 3.5 5.4 4.5 2.6 4.8 4.4 3 1.4 1.8 1.6 4.2 

110.1 4.8 5.3 8 8.3 4.5 6.1 6.5 5 3.7 1.9 3.3 6.8 

127.5 7.8 7.5 10.5 11.9 6.8 7.5 8.6 7.6 6.9 3 5.9 9 

147.7 10.9 9.8 12.4 14.4 9.2 8.9 10.3 10.1 10.1 5 8.9 10.4 

171 13.3 11.8 13.2 15.2 11.3 10.1 11.4 12.2 12.7 7.7 11.7 11.1 

198 14.3 12.8 12.9 14.2 12.5 10.8 11.6 13.2 14.1 10.4 13.6 11 

229.3 13.7 12.6 11.5 11.9 12.6 10.9 11 13 14.1 12.5 14.1 10.3 

265.6 11.6 11.2 9.1 8.6 11.6 10.2 9.7 11.4 12.7 13.3 13.1 9.2 

307.6 8.4 8.8 6.4 5.3 9.5 8.7 7.9 8.9 10.2 12.7 10.6 7.8 

356.2 4.9 5.9 3.7 2.5 6.8 6.6 5.9 5.9 7.2 10.7 7.4 6.3 

412.5 2 3.1 1.6 0.7 4.1 4.4 3.9 3 4.3 7.7 4.1 4.8 

477.7 0.4 1.1 0.4 0 1.8 2.3 2.2 1 2 4.5 1.5 3.4 

553.2 0 0.1 0 0 0.4 0.8 0.9 0 0.5 1.8 0.1 0 

640.7 0 0 0 0 0 0.1 0.2 0 0 0.3 0 2.2 

741.9 0 0 0 0 0 0 0 0 0 0 0 1.2 

859.2 0 0 0 0 0 0 0 0 0 0 0 0.5 

995.1 0 0 0 0 0 0 0 0 0 0 0 0.1 

1152 0 0 0 0 0 0 0 0 0 0 0 0 

1335 0 0 0 0 0 0 0 0 0 0 0 0 

1545 0 0 0 0 0 0 0 0 0 0 0 0 

1790 0 0 0 0 0 0 0 0 0 0 0 0 

2073 0 0 0 0 0 0 0 0 0 0 0 0 

2400 0 0 0 0 0 0 0 0 0 0 0 0 

2780 0 0 0 0 0 0 0 0 0 0 0 0 
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3219 0 0 0 0 0 0 0 0 0 0 0 0 

3728 0 0 0 0 0 0 0 0 0 0 0 0 

4317 0 0 0 0 0 0 0 0 0 0 0 0 

5000 0 0 0 0 0 0 0 0 0 0 0 0 

Table A24: Intensity % data for S13 silica nanoparticles in the presence of 0.1 M NaCl 

Size 

(r.nm) 

Mean Intensity % for S13  

0.50 wt.% 0.75 wt.% 1 wt.% 

pH 

=1 

pH 

=2 

pH 

=4 

pH 

=7 

pH 

=1 

pH 

=2 

pH 

=4 

pH 

=7 

pH 

=1 

pH 

=2 

pH 

=4 

pH 

=7 

0.2 0 0 0 0 0 0 0 0 0 0 0 0 

0.2316 0 0 0 0 0 0 0 0 0 0 0 0 

0.2682 0 0 0 0 0 0 0 0 0 0 0 0 

0.3106 0 0 0 0 0 0 0 0 0 0 0 0 

0.3597 0 0 0 0 0 0 0 0 0 0 0 0 

0.4166 0 0 0 0 0 0 0 0 0 0 0 0 

0.4825 0 0 0 0 0 0 0 0 0 0 0 0 

0.5587 0 0 0 0 0 0 0 0 0 0 0 0 

0.647 0 0 0 0 0 0 0 0 0 0 0 0 

0.7493 0 0 0 0 0 0 0 0 0 0 0 0 

0.8678 0 0 0 0 0 0 0 0 0 0 0 0 

1.005 0 0 0 0 0 0 0 0 0 0 0 0 

1.164 0 0 0 0 0 0 0 0 0 0 0 0 

1.348 0 0 0 0 0 0 0 0 0 0 0 0 

1.561 0 0 0 0 0 0 0 0 0 0 0 0 

1.808 0 0 0 0 0 0 0 0 0 0 0 0 

2.093 0 0 0 0 0 0 0 0 0 0 0 0 

2.424 0 0 0 0 0 0 0 0 0 0 0 0 

2.807 0 0 0 0 0 0 0 0 0 0 0 0 

3.251 0 0 0 0 0 0 0 0 0 0 0 0 

3.765 0 0 0 0 0 0 0 0 0 0 0 0 
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4.36 0 0 0 0 0 0 0 0 0 0 0 0 

5.05 0 0 0 0 0 0 0 0 0 0 0 0 

5.848 0 0 0 0 0 0 0 0 0 0 0 0 

6.772 0 0 0 0 0 0 0 0 0 0 0 0 

7.843 0 0 0 0 0 0 0 0 0 0 0 0 

9.083 0 0 0 0 0 0 0 0 0 0 0 0 

10.52 0 0 0 0 0 0 0 0 0 0 0 0 

12.18 0 0 0 0 0 0 0 0 0 0 0 0 

14.11 0 0 0 0 0 0 0 0 0 0 0 0 

16.34 0 0 0 0 0 0 0 0 0 0 0 0 

18.92 0 0 0 0 0 0 0 0 0 0 0 0 

21.91 0 0 0 0 0 0 0 0 0 0 0 0 

25.37 0 0 0 0 0 0 0 0 0 0 0 0 

29.39 0 0 0 0 0 0 0 0 0 0 0 0 

34.03 0 0 0 0 0 0 0 0 0 0 0 0 

39.41 0 0 0 1.6 0 0 0 0 0 0 0 0 

45.64 0 0 0 8.3 0.2 0.1 0 0 0 0 0 0 

52.85 0 0 0 17.1 0.5 0.5 0 0 0 0 0 0 

61.21 0 0 0 19 0.8 0.9 0 0.1 0 0 0 0 

70.89 0 0 0 14.5 0.9 1 0 0.9 0 0 0.1 0 

82.09 0 0 0 9.5 1 0.9 0 2.2 0 0 0.8 1.2 

95.07 0 0 0.3 6.1 1 0.8 0 3.6 0 0 1.7 3.4 

110.1 0 0 1.2 4.3 1.2 1.1 0.5 4.9 0 0 2.5 5.9 

127.5 0 0 2.7 3.6 1.8 2.1 2 5.9 0 2.4 3.1 8.1 

147.7 1.5 0 4.4 3.4 3 3.9 4.6 6.8 0 6.5 3.6 9.3 

171 4.9 0 6.2 3.2 4.6 6.1 7.7 7.6 0 10.9 4.1 9.7 

198 8.4 0 7.7 2.7 6.6 8.5 10.9 8.3 0 14.3 4.8 9.4 

229.3 10.8 1.6 8.8 2.2 8.5 10.7 13.3 8.9 0 15.8 5.5 8.5 

265.6 11.1 6 9.4 1.7 10.1 12.1 14.5 9.2 3.7 15.1 6.3 7.3 

307.6 9.7 11.9 9.5 1.2 11.1 12.6 14.2 9.2 12.9 12.6 7 6.2 
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356.2 7.1 17 9.1 0.9 11.3 11.9 12.4 8.7 21.8 9.1 7.6 5.2 

412.5 4.2 19.5 8.5 0.5 10.6 10.2 9.6 7.8 25 5.5 8 4.4 

477.7 1.8 18.3 7.6 0.3 9.2 7.7 6.2 6.4 20.8 2.5 8 3.8 

553.2 0.4 14.1 6.5 0.1 7.2 5.1 3.1 4.7 1.2 0.7 7.7 3.4 

640.7 0 8.3 5.4 0 5.1 2.6 1 3 3.6 0 7.1 3.1 

741.9 0.4 3.1 4.3 0 3.1 0.9 0 1.5 0 0 6.2 2.7 

859.2 1.5 0.2 3.3 0 1.5 0.1 0 0.5 0 0 5.1 2.4 

995.1 2.9 0 2.3 0 0.5 0 0 0 0 0 4 2 

1152 4.4 0 1.5 0 0.1 0 0 0 0 0 2.9 1.6 

1335 5.5 0 0.9 0 0 0 0 0 0 0 1.9 1.1 

1545 6.1 0 0.4 0 0 0 0 0 0 0 1.1 0.7 

1790 6.1 0 0.1 0 0 0 0 0 0 0.2 0.5 0.4 

2073 5.5 0 0 0 0 0 0 0 0 0.8 0.2 0.1 

2400 4.4 0 0 0 0 0 0 0 0 1.5 0 0 

2780 3.1 0 0 0 0 0 0 0 0 2.2 0 0 

3219 0 0 0 0 0 0 0 0 0 0 0 0 

3728 0 0 0 0 0 0 0 0 0 0 0 0 

4317 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix B: Apparatus Information 

7.1 Haake Viscometer manual: 
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7.2 Fann Viscometer manual: 
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1 Introduction 

Fann Model 35 viscometers are direct-reading instruments which are available in 

six- speed and twelve- speed designs for use on either 50 Hz or 60 Hz electrical 

power. The standard power source is 115 volts, but all models may be fitted with a 

transformer, making operation with 220/230 volts possible. 

Fann Model 35 viscometers are used in research and production. These viscometers 

are recommended for evaluating the rheological properties of fluids, Newtonian 

and non-Newtonian. The design includes a R1 Rotor Sleeve, B1 Bob, F1 Torsion 

Spring, and a stainless steel sample cup for testing according to American 

Petroleum Institute Recommended Practice for Field Testing Water Based Drilling 

Fluids, API RP 13B-1/ISO 10414-1 Specification. 

1.1 Background 

Fann Model 35 viscometers are Couette rotational viscometers.  In this viscometer, 

the test fluid is contained in the annular space (shear gap) between an outer cylinder 

and the bob (inner cylinder). Viscosity measurements are made when the outer 

cylinder, rotating at a known velocity, causes a viscous drag exerted by the fluid. 

This drag creates a torque on the bob, which is transmitted to a precision spring 

where its deflection is measured.  

Viscosity measured by a Couette viscometer, such as the Model 35, is a measure of 

the shear stress caused by a given shear rate. This relationship is a linear function 

for Newtonian fluids (i.e., a plot of shear stress vs. shear rate is a straight line).  

The instrument is designed so that the viscosity in centipoise (or millipascal 

second) of a Newtonian fluid is indicated on the dial with the standard rotor R1, 

bob B1, and torsion spring F1 operating at 300 rpm. Viscosities at other test speeds 

may be measured by using multipliers of the dial reading. A simple calculation that 

closely approximates the viscosity of a pseudo-plastic fluid, such as a drilling fluid 

is described in Section 7.  

The shear rate may be changed by changing the rotor speed and rotor-bob 

combination. Various torsion springs are available and are easily interchanged in 

order to broaden shear stress ranges and allow viscosity measurements in a variety 

of fluids.   
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5.1 Operating the Model 35A and 35SA 

The Model 35A and 35SA viscometers operate at six speeds, ranging from 3 rpm 

to 600 rpm. To select the desired speed, set the speed switch (located on the right 

side of the base) to the high or low speed position as desired. Then turn the motor 

on and move the gear shift knob (located on the top of the instrument) to the 

position that corresponds to the desired speed.  

Table 5-1 lists the positions for the viscometer switch and the gear knob 

combinations to obtain the desired speed. The viscometer gear shift knob may be 

engaged while the motor is running. Read the dial for shear stress values. 

Table 5-1 Six-Speed Testing Combinations for Models 35A and 35SA 

Speed RPM Viscometer Switch Gear Shift Knob 

600 High Down 

300 Low Down 

200 High Up 

100 Low Up 

6 High Center 

3 Low Center 

5.2  
Operating the Model 35A/SR-12 and 35SA/SR-12 

The Model 35A/SR-12 and 35SA/SR-12 have twelve speeds for testing 

capabilities. To achieve this broader testing range from 0.9 rpm to 600 rpm, an 

additional gear box shift lever is used; it is located on the right side of the gear box. 

See Figure 5-1. Move this lever to the left or right as determined from Table 5-2.  

 

Never change the gear box shift lever while the motor is running. 

Changing it while the motor is running will result in gear damage. 

 

 

 

 

Only the viscometer gear shift knob (on top of the instrument) 

can be changed while the motor is running. 
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Table 3-3 Rotor and Bob Dimensions 

Table 3-4 Rotor-Bob Specifications 

ROTOR-BOB R1 B1 R2 B1 R3 B1 R1 B2 R1 B3 R1 B4 

Rotor Radius, R0  (cm) 1.8415 1.7588 2.5866 1.8415 1.8415 1.8415 

Bob Radius, R i  (cm) 1.7245 1.7245 1.7245 1.2276 0.8622 0.8622 

Bob Height, L  (cm) 3.8 3.8 3.8 3.8 3.8 1.9 

Shear Gap in Annulus 
(cm) 

0.117 0.0343 0.8261 0.6139 0.9793 0.9793 

Radii Ratio, R i /R0 0.9365 0.9805 0.667 0.666 0.468 0.468 

Maximum Use 
Temperature (oC) 

93 93 93 93 93 93 

Minimum Use 
Temperature (oC) 

0 0 0 0 0 0 

 

Table 3-5 Range of Environmental Conditions 

 

Unit 
Radius 

(cm) 
Length 

(cm) 
Cylinder Area (cm2) x Radius (cm) 

B1 1.7245 3.8 71.005 

B2 1.2276 3.8 35.981 

B3 0.86225 3.8 17.751 

B4 0.86225 1.9 8.876 

R1 1.8415 n/a n/a 

R2 1.7589 n/a n/a 

R3 2.5867 n/a n/a 

Maximum Altitude 6562 ft  (2000 m) 

Temperature Range 41oF to 104oF (5oC to 40oC) 

Maximum Relative Humidity (RH) 
80% RH at 87.8oF (31oC)  or less 
50% RH at 104oF (40oC) 
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Table 3-1 Model 35 Viscometer Specifications 

Table 3-2 Model 35 Viscometer Sizes  

Model No. Part No. 
Dimensions 

(LxDxH) 
Weight 

35A 207198 
15.2 x 6 x 10.5 in. 

39 x 15 x 27 cm 

15 lb 

6.8 kg 

35SA 207199 
15.2 x 6 x 10.5 in. 

39 x 15 x 27 cm 

15 lb 

6.8 kg 

35A/SR-12 207200 
15.2 x 6 x 10.5 in. 

39 x 15 x 27 cm 
15 lb 

6.8 kg 

35SA/SR-12 207201 
15.2 x 6 x 10.5 in. 

39 x 15 x 27 cm 
15 lb 

6.8 kg 

35A w/ case 101671768 
8 x 16 x 19 in. 

20.3 x 40.6 x 48.3 cm 

26 lb 

11.8 kg 

35SA w/ case 101671770 
8 x 16 x 19 in. 

20.3 x 40.6 x 48.3 cm 

26 lb 

11.8 kg 

 

Model No. Part No. Electrical 
No. of 

Speeds 
Speeds 

35A 207198 115V, 60 Hz, 90W 6 600, 300, 200, 100, 6, 3 

35SA 207199 115V, 50 Hz, 90W 6 600, 300, 200, 100, 6, 3 

35A/SR-12 207200 115V, 60 Hz, 90W 12 
600, 300, 200, 180, 100, 
90, 60, 30, 6, 3, 1.8, 0.9 

35SA/SR-12 207201 115V, 50 Hz, 90W 12 
600, 300, 200, 180, 100, 
90, 60, 30, 6, 3, 1.8, 0.9 
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3 Features and Specifications 

The Fann direct-indicating viscometers are equipped with the standard R1 rotor 

sleeve, B1 bob, F1 torsion spring, and a stainless steel sample cup. Other rotor-bob 

combinations and/or torsion springs can be substituted to extend the torque 

measuring range or increase the sensitivity of the torque measurement. 

Each viscometer is supplied with a 115 volt motor. For operation on 230 volts, a 

step-down transformer is required. 

The viscometers are available in six-speed and twelve-speed models.                   

See Table 3-1, Table 3-2, Table 3-3 and Table 3-4for specifications. Table 3-5 lists 

the recommended environmental conditions for use. 

The photo in Figure 3-1 shows the viscometer and the detailed drawing in Figure 

3-2  identifies the individual parts. 

 

 

Figure 3-1 Model 35SA Viscometer 


	Author’s Declaration
	ABSTRACT
	Acknowledgements
	Author’s Declaration ii
	ABSTRACT iii
	Acknowledgements iv
	List of Figures vii
	List of Tables ix
	Chapter 1 : Introduction 1
	1.1 Background: 1
	1.2 Fumed silica: 2
	1.2.1 Manufacturing process: 2
	1.2.2 Classification of fumed silica: 3
	1.2.3 Applications of fumed silica: 4


	Chapter 2 : Literature review 7
	2.1 Fundamentals of Rheology: 7
	2.2 Flow behavior of suspensions: 10
	2.2.1 Shear Thinning behavior: 10
	2.2.2 Shear thickening behavior: 11

	2.3 Stability of suspended particles: DLVO theory 13
	2.3.1 Van der Waals forces: 13
	2.3.2 Electrostatic repulsion between particles: 14
	2.3.3 Effect of pH: 16
	2.3.4 Effect of Ionic strength: 16

	2.4 Rheology of fumed silica nanoparticle suspensions: 17
	2.5 Fluid Flow and friction factor: 19
	2.5.1 Reynolds Number (Re): 20
	2.5.2 Fluid flow in Pipelines: 20
	2.5.3 Friction factor & Pressure losses in a pipe: 21

	2.6 Turbulent Drag reduction: 24
	2.6.1 Drag reduction using nanoparticles: 25


	Chapter 3 : Materials and methods 28
	3.1 Materials: 28
	3.2 Preparation of silica nanoparticle suspensions: 28
	3.3 Viscosity measurements of dilute silica nanoparticle suspensions: 28
	3.4 Rheological measurements & flow behavior: 29
	3.4.1 Bench-scale experiments & equipment: 29
	3.4.2 Pipeline flow behavior of silica nanoparticle suspensions: 31


	Chapter 4 : Results and Discussion 37
	4.1 Size distribution of different grades of silica nanoparticles: 37
	4.1.1 Effect of pH on Size distribution: 38
	4.1.2 Effect of Electrolyte addition on Size distribution: 39

	4.2 Relative viscosity of dilute Silica nanoparticle suspensions: 41
	4.2.1 Effect of pH on relative viscosity: 42
	4.2.2 Effect of electrolyte presence on relative viscosity: 43

	4.3 Rheology of concentrated suspensions: 45
	4.3.1 Effect of temperature: 46
	4.3.2 Effect of particle concentration: 47

	4.4 Zeta Potential of fumed silica suspensions: 49
	4.4.1 Zeta Potential of original silica suspensions: 49
	4.4.2 Effect of pH on Zeta potential: 49
	4.4.3 Effect of electrolyte addition on Zeta potential: 50

	4.5 Pipeline flow behavior of fumed silica suspensions: 51

	Chapter 5 : Conclusions 53
	Bibliography 55
	Appendix A: Experimental Data 64
	Appendix B: Apparatus Information 97
	List of Figures
	List of Tables
	1.1  Background:
	1.2  Fumed silica:
	1.2.1  Manufacturing process:
	1.2.2  Classification of fumed silica:
	1.2.3  Applications of fumed silica:


	Chapter 2 : Literature review
	2.1  Fundamentals of Rheology:
	2.2  Flow behavior of suspensions:
	2.2.1  Shear Thinning behavior:
	2.2.2  Shear thickening behavior:

	2.3  Stability of suspended particles: DLVO theory
	2.3.1  Van der Waals forces:
	2.3.2  Electrostatic repulsion between particles:
	2.3.3  Effect of pH:
	2.3.4  Effect of Ionic strength:

	2.4  Rheology of fumed silica nanoparticle suspensions:
	2.5  Fluid Flow and friction factor:
	2.5.1  Reynolds Number (Re):
	2.5.2  Fluid flow in Pipelines:
	2.5.3  Friction factor & Pressure losses in a pipe:

	2.6  Turbulent Drag reduction:
	2.6.1  Drag reduction using nanoparticles:


	Chapter 3 : Materials and methods
	3.1  Materials:
	3.2  Preparation of silica nanoparticle suspensions:
	3.3  Viscosity measurements of dilute silica nanoparticle suspensions:
	3.4  Rheological measurements & flow behavior:
	3.4.1  Bench-scale experiments & equipment:
	3.4.2  Pipeline flow behavior of silica nanoparticle suspensions:


	Chapter 4 : Results and Discussion
	4.1  Size distribution of different grades of silica nanoparticles:
	4.1.1  Effect of pH on Size distribution:
	4.1.2  Effect of Electrolyte addition on Size distribution:

	4.2  Relative viscosity of dilute Silica nanoparticle suspensions:
	4.2.1  Effect of pH on relative viscosity:
	4.2.2  Effect of electrolyte presence on relative viscosity:

	4.3  Rheology of concentrated suspensions:
	4.3.1  Effect of temperature:
	4.3.2  Effect of particle concentration:

	4.4  Zeta Potential of fumed silica suspensions:
	4.4.1  Zeta Potential of original silica suspensions:
	4.4.2  Effect of pH on Zeta potential:
	4.4.3  Effect of electrolyte addition on Zeta potential:

	4.5  Pipeline flow behavior of fumed silica suspensions:

	Chapter 5 : Conclusions
	Bibliography
	Appendix A: Experimental Data
	Appendix B: Apparatus Information

