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Abstract 

One of the largest environmental challenges faced by Canada is the cleanup and reclamation of 

land and water impacted by mining operations in the Athabasca oil sands. The persistence of 

toxicity associated with the soluble naphthenic organic compounds (NOCs) of oil sands process-

affected water (OSPW) implies that a treatment solution may be necessary to enable safe return 

of this water to the environment, and the industry is currently exploring passive (i.e., no energy 

or chemical input) remediation solutions. Among the methods investigated for OSPW treatment, 

advanced oxidation processes (AOPs) have been shown to be particularly effective for degrading 

NOCs and reducing OSPW toxicity. However, AOPs are chemically and energy intensive, and 

are generally considered impractically expensive to meet the scale of treatment required. Solar 

photocatalysis is a powerful AOP with the potential for passive treatment, however the 

separation and recycling of nanoparticle photocatalysts remains a key barrier to implementation. 

This thesis focuses on evaluating photocatalytic treatment of NOCs in OSPW, and the 

development of composite materials to facilitate separation and recycling of nanoparticle 

photocatalysts. Solar photocatalysis over TiO2 was found to degrade OSPW naphthenic acids 

(NAs) through superoxide-dependent oxidative mineralization. The important water and process 

parameters affecting the rate of photocatalytic treatment were elucidated, and an empirical model 

was proposed to predict OSPW treatment kinetics in different tailings ponds. Magnetic 

flocculation was developed as a new paradigm for magnetic nanoparticle capture, and 

demonstrated to efficiently recycle colloidally dispersed TiO2 nanoparticles in a closed-loop 

process. Floating photocatalysts were also synthesized to adapt the photocatalytic process 

towards a passive deployment paradigm, by immobilizing TiO2 nanoparticles onto buoyant glass 

microspheres. Floating photocatalysts were demonstrated to preferentially treat OSPW base- and 

neutral-extractable organics and priority toxic naphthenic organic classes of concern. 

Firstly, photocatalysis with TiO2 was evaluated for the first time in raw OSPW under natural 

sunlight. One day of photocatalytic treatment under natural sunlight eradicated acid-extractable 

organics (AEO) from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was 

eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day 

equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-

mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized 

intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs 

(higher number of double bond equivalents), which are the most environmentally persistent 

fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar 

photocatalysis was concluded to be a promising “green” AOP for OSPW treatment. 

Further studies focused on factors affecting the kinetics of photocatalytic AEO degradation in 

OSPW. The rate of photocatalytic treatment varied significantly in two different OSPW sources, 

which could not be accounted for by differences in AEO composition, as studied by HRMS. The 

effects of inorganic water constituents were investigated using factorial and response surface 
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experiments, which revealed that hydroxyl (HO•) radical scavenging by iron (Fe3+) and 

bicarbonate (HCO3
-) inhibited the NA degradation rate. The effects of NA concentration and 

temperature on the treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood 

and Arrhenius models; pH and temperature were identified as weak factors, while dissolved 

oxygen (DO) was critical to the photo-oxidation reaction. Accounting for all of these variables, a 

general empirical kinetic expression was proposed, enabling prediction of photocatalytic 

treatment performance in diverse sources of OSPW. 

Considering the challenge of TiO2 nanoparticle separation from colloidal dispersions, magnetic 

flocculation was developed as a new approach to nanoparticle recovery. Flocculant polymers 

were coated onto magnetic nanoparticles (Fe3O4@SiO2) to prepare reusable magnetic flocculants 

(MFs). When added to colloidal nanoparticle dispersions, MFs aggregate with the suspended 

nanoparticles to form magnetically responsive flocs, which upon separation can be reversibly 

deflocculated for nanoparticle release, and reuse in a closed loop process. High separation 

efficiency was attained in a variety of nanoparticle suspensions, including Au, Ag, Pd, Pt, and 

TiO2, stabilized by different coatings and surface charge. The MFs were shown to be recyclable 

for photocatalytic treatment of naphthenic acids in oil sands process-affected water (OSPW) and 

selenium in flue gas desulfurization wastewater (FGDW). Magnetic flocculation thus represents 

a general platform and alternative paradigm for nanoparticle separation, with potential 

applications in water treatment and remediation of nanoparticle pollution. 

As an alternative passive catalyst recycling strategy, floating photocatalysts (FPCs) were 

prepared by immobilizing TiO2 on glass microbubbles, such that the composite particles float at 

the air-water interface for passive solar photocatalysis. The FPCs were demonstrated to 

outperform P25 TiO2 nanoparticles in degrading AEO in raw OSPW under natural sunlight and 

gentle mixing conditions. The FPCs were also found to be recyclable for multiple uses through 

simple flotation and skimming. Thus the concept of a potentially passive or semi-passive AOP 

for OSPW treatment was demonstrated for the first time. 

Finally, OSPW treatment using FPCs was evaluated under a petroleomics paradigm: chemical 

changes across acid-, base- and neutral-extractable organic fractions were tracked throughout the 

treatment with both positive and negative ion mode HRMS. Transformation of OS+ and NO+ 

classes of concern in the earliest stages of the treatment, along with preferential degradation of 

high carbon-numbered O2
- acids, suggest that photocatalysis may detoxify OSPW with higher 

efficiency than previously thought, given that the majority of the toxicity of OSPW is currently 

understood to derive from a subset of such toxic classes, comprising only a minority of the total 

NOCs.  

Overall, this thesis advances the understanding of the photocatalytic treatment of OSPW, as well 

as separation processes for nanoparticle photocatalysts. Combining a sunlight-driven, chemical-

oxidant-free catalytic oxidation process with a low-energy, membrane-free catalyst separation 

and recovery technique may represent a promising strategy to adapt advanced oxidation process 

(AOP) technology for the passive treatment of OSPW, or other remote mining-impacted waters.  
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Chapter 1 

General Introduction 

1.1 Overview 

One of the largest environmental challenges faced by Canada is the cleanup and reclamation of 

land and water impacted by mining operations in the Athabasca oil sands. The Clark process 

used for extraction of bitumen in Canada’s oil sands generates large volumes of water as a by-

product, referred to as oil sands process-affected water (OSPW), which is stored on site in 

tailings ponds for water recycling. The oil sands mining companies are obligated to eventually 

return this water to the environment,1–3 but currently are operating on a zero-discharge policy, 

due in part to the water’s toxicity, which is primarily attributed to dissolved bitumen-derived 

organics.4–7 Fractions of these organics are highly persistent,8,9 and remain potently toxic even 

after decades of aging.10 Thus treatment of OSPW may be required to enable safe discharge, and 

the industry is currently exploring passive (i.e., no energy or chemical input) remediation 

solutions.11 

OSPW is a complex saline solution containing high concentrations of suspended clays, dissolved 

organic compounds, trace heavy metals, and residual bitumen and solvents. A primary source of 

OSPW toxicity has been attributed to the naphthenic organic compounds (NOCs), including 

naphthenic acids (NAs), which are structurally diverse alkyl-branched acyclic and cycloaliphatic 

carboxylic acids with the conventional formula CnH2n+zO2 (where z is a negative even integer 

related to the number of rings and double bonds).12,13 

Among the methods investigated for OSPW treatment, advanced oxidation processes (AOPs) 

have been shown to be particularly effective for degrading NAs and reducing OSPW toxicity.14–

18 Unfortunately, AOPs are typically chemically intensive, requiring oxidant dosing of the 

contaminated water (e.g., with O3,16 H2O2,15 S2O8
2−,19 OCl−,20 or FO4

2−21), or require significant 

input of electrical power (e.g., to generate O3 or UV light), and thus are conventionally 

considered to by operationally expensive. Furthermore, considering the infrastructure 

requirements to implement AOPs, they remain essentially the opposite of the passive treatment 

solution sought by industry, and thus despite their proven efficacy for OSPW treatment at the 

bench-scale, conventional AOPs may be impractical to deploy to remote mining locations or to 

truly address the scale of OSPW treatment required. 

Photocatalysis over TiO2 is an extremely powerful AOP that has been proven to eliminate a 

broad spectrum of organic pollutants in wastewaters. In aqueous suspension, photocatalysts 

absorb light to generate highly reactive free radicals, such as hydroxyl and superoxide radicals, 

which are capable of mineralizing even recalcitrant organic contaminants.22,23 TiO2 is a low-cost, 

earth abundant, and chemically stable photocatalytic material which, in principle, can be 

recovered and reused over multiple treatment cycles. Using sunlight as an abundant free energy 

source, and given the ability of the photocatalyst to be recycled without the need for continuous 
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chemical amendment of the water, photocatalysis may not suffer from the same limitations of 

cost and scale as other AOPs, and may instead share some advantages of passive treatment 

processes. Given these advantages, it was hypothesized that solar photocatalysis may be a 

promising technology for treating the organic constituents of OSPW, provided a means of 

recovering or recycling the photocatalytic material could be developed. 

For photocatalytic water treatment, the most efficient implementations involve dispersion of 

nanoparticle photocatalysts into the contaminated water as a slurry.22,24,25 Nanoparticle recovery 

after the treatment process is essential not only for reuse of the catalyst, but also to prevent 

nanoparticle contamination of the treated effluent. Unfortunately, nanoparticle separation 

challenges have proven a critical hurdle to practical application of this promising treatment 

technology.26–28 

Therefore this thesis sought to evaluate the potential of photocatalysis to treat the naphthenic 

organic compounds in OSPW, as well as apply nanotechnology engineering principles to 

develop composite materials and catalyst recycling systems to enable practical deployment. 

Firstly, the potential of heterogenous photocatalysis over TiO2 nanoparticles to mineralize 

naphthenic organics in raw OSPW under natural sunlight was established. The kinetics of 

photocatalytic OSPW treatment was further studied in different sources of OSPW, and the effect 

of key process variables was used to propose an empirical kinetics model. Flocculation and 

magnetic separation concepts were combined to develop a magnetic flocculation platform as a 

reusable system for slurry nanoparticle recycling. TiO2 nanoparticles were also immobilized onto 

buoyant microspheres as a passive deployment system for OSPW treatment, and application of 

these floating photocatalysts were thoroughly investigated under a petroleomics paradigm.  

1.2 Research Objectives 

The overall objective of this research project was to develop a recyclable photocatalytic solution 

for OSPW treatment. The ability of TiO2 nanoparticle heterogeneous photocatalysis to feasibly 

operate in raw OSPW under natural sunlight and affect oxidative degradation of naphthenic 

organics was first established. The effect of important water and process factors on the treatment 

kinetics were then further studied to establish key parameters towards the eventual design of 

scaled OSPW treatment systems. Finally, magnetic and flotation-based recovery systems were 

developed as solutions for nanoparticle photocatalyst recycling. 

The specific objectives of the study are as follows: 

1. Demonstrate the ability of solar photocatalysis over TiO2 nanoparticles to oxidize 

naphthenic acids in raw OSPW 

• Investigate degradation of naphthenic acids by the conventional FTIR analytical 

method 

• Determine extent of organics mineralization throughout the treatment process 

• Confirm oxidative reaction pathway 
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2. Determine the effect of key process and operating parameters on the kinetics of 

photocatalytic OSPW treatment 

• Determine photocatalytic treatment kinetics of OSPW from different industrial 

suppliers 

• Determine the impact of specific inorganic constituents, organics concentration, 

temperature, pH, and dissolved oxygen on the OSPW treatment rate 

• Develop an empirical kinetics model for photocatalytic OSPW treatment 

3. Develop reusable magnetic flocculants (MFs) for photocatalyst nanoparticle separation 

and recycling 

• Synthesize polyelectrolyte-coated Fe3O4@SiO2 nanoparticles as MFs 

• Characterize the material properties of the synthesized MFs 

• Determine physical mechanism of magnetic flocculation, and optimize TiO2 

nanoparticle separation 

• Demonstrate reusable performance of the MFs in a closed-loop process 

4. Develop buoyant photocatalyst composite particles for passive photocatalyst separation 

and recycling 

• Synthesize TiO2 nanoparticle-coated hollow glass microspheres as buoyant 

photocatalysts (BPCs) 

• Determine BPC OSPW treatment kinetics relative to slurry TiO2 nanoparticles 

under gentle mixing conditions  

5. Demonstrate the treatment of OSPW acid-, base- and neutral-extractable organics with 

buoyant photocatalysts (BPCs) under a petroleomics paradigm 

• Develop a new silica-binder formulation for anchoring TiO2 nanoparticles to 

hollow glass microsphere supports 

• Determine kinetics of the BPCs to degrade acid-, base- and neutral-extractable 

organics in OSPW 

• Investigate degradation of specific naphthenic organic classes of concern during 

the photocatalytic treatment process 

1.3 Thesis Outline 

The thesis is composed of eight chapters: the introduction, a literature review, five experimental 

research-based chapters, and a final chapter summarizing the conclusions and recommendations 

for future research. 

Chapter 1 introduces the context of the thesis, the motivating challenges, scope of work, research 

hypothesis, and specific research objectives. 

Chapter 2 reviews the literature regarding the fundamentals of magnetic separation processes for 

nanoparticle recovery, within the context of water treatment. The fundamental magnetic 

properties and forces relating to magnetophoretic phenomena are presented, and the importance 

of many-particle interactions (i.e., cooperative magnetophoresis) in magnetic nanoparticle 
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separation is highlighted. The implications of these principles for engineering of magnetically-

separable nanoparticles for water treatment is discussed. 

Chapter 3 evaluates the potential of heterogeneous photocatalysis over TiO2 to degrade organic 

compounds in OSPW under natural sunlight. One day of photocatalytic treatment eliminates acid 

extractable organics, while nearly complete mineralization of organic carbon is achieved with 

sufficient solar exposure, and degradation is shown to proceed through a superoxide-mediated 

oxidation pathway. This chapter establishes the potential of solar photocatalysis as an OSPW 

treatment solution. 

Chapter 4 builds upon the results of Chapter 3 by applying the photocatalytic treatment process 

to OSPW received from different oil sands industrial suppliers. The starkly different treatment 

kinetics between the two OSPW sources motivates a statistical investigation of the causative 

factors, and specific inorganic constituents are identified as deleterious elements. To deepen the 

understanding of potential factors affecting OSPW treatment kinetics, the role of organics 

concentration, temperature, pH, and dissolved oxygen on the OSPW treatment rate are also 

established. This chapter presents a kinetics model for OSPW treatment using slurried TiO2 

nanoparticles, which provides a basis to understand the important water and process parameters 

affecting the photocatalytic treatment process. 

Chapter 5 demonstrates the synthesis of reusable magnetic flocculant (MF) nanoparticles for the 

capture, separation, and recycling of nanoparticles such as TiO2 photocatalysts. While previous 

chapters demonstrated the performance of photocatalysis to treat OSPW, TiO2 nanoparticle 

slurries are prohibitive to implement due to the challenge of capturing free nanoparticles. 

Therefore this chapter optimizes a membrane-free closed-loop system for flocculation, magnetic 

separation, and release of TiO2 nanoparticles, and demonstrates recyclable OSPW treatment 

using this system. 

Chapter 6 demonstrates buoyant photocatalyst composite particles as a proof-of-concept 

deployment method for potentially passive OSPW treatment. While the MF system of Chapter 5 

demonstrated a novel method for magnetic recycling of photocatalysts, the multi-step separation 

process and magnetic equipment requirements disqualify it as a “passive” process as sought by 

the oil sands industry. This chapter evaluates simple flotation as an alternate catalyst separation 

technique that aligns with a passive treatment paradigm, and demonstrates promising treatment 

performance under gentle mixing conditions. 

Chapter 7 revisits the concept of buoyant photocatalysts (BPCs), and implements an alternate 

synthesis technique using mesoporous silica as a binder to coat the TiO2 nanoparticles onto the 

buoyant supports. The treatment of OSPW with BPCs is comprehensively investigated with 

high-resolution mass spectrometry from a petroleomic perspective, to gain a holistic insight into 

the various chemical transformations occurring to the complex mixture of OSPW naphthenic 

organics during photocatalytic treatment. This chapter demonstrates that photocatalysis 

preferentially treats naphthenic organics classes of concern well before full mineralization of 
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organics, and suggests that only relatively short solar exposures may be needed to 

photocatalytically detoxify OSPW. 

Finally, Chapter 8 highlights the overall conclusions drawn from the research in the preceding 

chapters, and presents recommendations for future work building on these findings. A number of 

these recommendations are towards strategies to increase the photocatalytic treatment efficiency, 

through either materials engineering approaches or combined treatment processes (e.g., 

adsorption, biodegradation), while the other recommendations are directed at key steps towards 

developing the technology for practical deployment. 
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Chapter 2 

Literature Review* 

 

2.1 Summary 

Nanoparticle colloidal dispersions are highly promising for use in water purification, but 

practical and cost-effective options to separate the dispersed nanoparticles from the treated water 

remain a critical roadblock to industrial adoption. Magnetic separation of superparamagnetic 

nanoparticles from water for recycling and reuse has the potential to be an efficient, practical, 

and low-cost slurry-type water treatment method. In this chapter we review the fundamental 

theory and concepts of magnetic nanoparticle separations. 

2.2 Introduction 

Nanotechnologies based on magnetic separations show huge promise in the field of water 

treatment and purification, and magnetic nanomaterials are being heavily researched for 

scrubbing water of a wide variety of contaminants. This chapter is primarily focused on the 

magnetic separation or recovery of nanoscale particles from a colloidal dispersion or slurry, and 

their use in water purification, with the potential for recyclability. Slurry-type water treatment 

technologies involving colloidal particles show distinct advantages compared with other 

treatment methodologies, such as the use of membranes, flocculation, or chemical methods such 

as chlorination. The concept of a slurry is the dispersion of (nano)particles throughout the 

volume of contaminated water to be treated, purifying the water using these dispersed particles, 

and then recovering them afterwards from the treated water (potentially for reuse/recycling of the 

particles in subsequent rounds of treatment). Such a nano-colloid allows a huge specific surface 

area to be mobilized and dispersed throughout the water volume in an energy-efficient manner, 

allowing for easy mixing of the particles with the polluted water (due to the enhanced diffusion 

coefficients of fine particles) and efficient mass transfer with the target contaminants, which has 

the potential to exhibit superior treatment kinetics at lower applied energy and cost compared to 

membrane technology for example. If the nanoparticles can be reused multiple times, this only 

adds to the cost savings. Nanoparticles in a slurry formulation can treat water through adsorption 

or chelation of contaminants, catalytic degradation, flocculation, or other means dependent on 

                                                 

 

 

* This chapter is adapted from a previously published book chapter: Leshuk, T.; Gu, F. 

Magnetically Recyclable Nanomaterials for Water Treatment. In Nanotechnology for Water 

Treatment and Purification; Hu, A., Apblett, A., Eds.; Lecture Notes in Nanoscale Science and 

Technology; Springer, 2014; Vol. 22. 
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accessible surface area of the colloidal particles. Furthermore, magnetic nanoparticles can be 

used as the support or substrate for any conventional water treatment materials; similarly, 

composite materials containing a magnetic component can be used as magnetically active 

particles. 

An obvious and critical concern when using nanoparticle slurries however is the difficulty in 

fully recovering the nanoparticles from the water in a cost-efficient manner. Indeed, due to 

concerns of nanotoxicology or environmental release of “nanopollutants,” it is imperative to 

avoid leaving any residual nanoparticles in the final treated water, which is why having a fast 

and cost-effective method to recover the nanoparticles from dispersion is essential. The basic 

concept of magnetic separation is that when a magnet or magnetic field gradient is applied to a 

slurry of magnetic nanoparticles in the treated water, the particles will move towards the magnet 

for collection, resulting in nanoparticle-free treated water for discharge. Using permanent 

magnets for the separation step is also low energy and cost efficient. Thus the magnetic 

separation paradigm has the potential to enable efficient and cheap water purification, with the 

ability to address many of the same water contaminants treated by conventional means, but 

without requiring the use of chemical additives (which can be relatively expensive or leave 

degradation by-products in the treated water). Magnetic separations for water treatment purposes 

could be envisioned to be applied at an industrial or civic scale, for the purification of industrial 

effluent or drinking water; for environmental cleanup; in niche applications such as aerospace; or 

in point-of-use processes where more advanced water treatment infrastructure is nonexistent. 

Indeed, it should be emphasized that magnetic separation technology has already been 

extensively employed in industry (e.g., mining, food quality control, etc.).29,30 

Conceptually, the process of magnetic separation is easily envisaged – many of us have played 

with magnets and iron filings as children, and the principle seems clear and concrete: magnetic 

particles simply move towards a magnet. Indeed, several recent reviews on magnetically 

recyclable particles make a similar assumption that simply by virtue of their magnetic nature, 

magnetic particles will be automatically separated from dispersion upon application of a 

magnetic field.31,32 In actuality however, magnetic separation of particles from a suspension 

involves complex physics, and magnetic separability is far from guaranteed, but rather depends 

on the nature of the magnetic materials used, the concentration of particles and their colloidal 

stability, the magnitude of magnetic field gradients, among many other variables. The purpose of 

this section is to introduce some of the physics governing magnetophoretic phenomena, and 

considerations to be taken into account when designing magnetic separations. 

2.3 Magnetism and Magnetization 

In the context of nanotechnology for water treatment, we are primarily interested in nanoparticles 

of magnetic materials, or nanomaterials and composites comprised of such particles, due to their 

small size and high specific surface area. Therefore the following discussion will relate primarily 

to ultrafine particles of magnetic materials, and is drawn from references.33–36 
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For magnetic separations in a water treatment, oxide nanoparticles are typically used, as fine 

metallic particles are highly reactive in aqueous environments and oxidize readily under 

environmental conditions, which would lead to variable or unpredictable magnetic properties as 

the particles oxidize over time. Iron oxides have been especially studied and implemented as 

magnetic nanomaterials due to economic considerations (iron is cheap and abundant, compared 

to cobalt for example, or rare earth elements), their relatively low toxicity and low environmental 

threat, along with their ease of synthesis and well-understood chemistry. 

The iron ion possesses a strong magnetic moment due to the unpaired spin magnetic moments of 

its valence electrons. In crystals containing iron, these permanent atomic magnetic moments can 

align or orient themselves with respect to each other in various arrangements, giving rise to 

paramagnetic, ferromagnetic, antiferromagnetic, or ferrimagnetic materials (Figure 1). In a 

paramagnetic material, the individual atomic magnetic moments are randomly oriented in the 

absence of a magnetic field, irrespective of temperature, giving the bulk material a net magnetic 

moment of zero (Figure 1a). On application of an external magnetic field however, some of the 

atomic moments will align in the direction of the field, imparting a small net magnetic moment 

to the material, which disappears on removal of the external field. In a ferromagnetic crystal, the 

atomic magnetic moments are aligned parallel with each other even in the absence of an applied 

field (Figure 1b), while in an antiferromagnetic crystal the moments are aligned but in opposite 

directions (Figure 1c), cancelling each other out and rendering a net zero magnetic moment to 

the material as a whole. A ferrimagnetic material is similar to an antiferromagnetic material, but 

where the antiparallel magnetic moments are of different magnitudes (Figure 1d), and thus the 

material retains a net magnetic moment, behaving like a ferromagnet. 
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Figure 1. Simple schematic of the alignment of atomic magnetic domains in different magnetic 

materials: (a) paramagnetic, (b) ferromagnetic, (c) antiferromagnetic, and (d) ferrimagnetic. 

Figure adapted from.36 

Thermal energy typically alignment of these atomic magnetic moments, and the ordered 

alignment breaks down above a certain temperature, namely the Curie temperature 𝑻𝑪 for 

ferromagnetic and ferrimagnetic materials, or the Néel temperature 𝑻𝑵 for antiferromagnetic 

materials, above which temperatures the magnetic moments of the materials are randomly 

oriented like a paramagnetic material, retaining no net magnetic moment. 

A bulk ferromagnetic material is comprised of multiple microscopic magnetic domains, where 

the atomic magnetic moments within each domain are aligned with each other (as in Figure 1b), 

but not necessarily with adjacent domains. Crystal grain boundaries delineate magnetic domains 

in a polycrystalline material, although a single crystal grain can be composed of multiple 

magnetic domains. 

The magnetization of a material 𝑴 is defined as its net magnetic moment per unit volume, and is 

the sum of the individual magnetic moments composing the material, per unit volume. On a bulk 

scale, the magnetization of a material is thus the sum of the magnetization of the constituent 

magnetic domains, while on the microscopic level of the domains, the magnetization is the sum 

of the atomic magnetic moments in that domain. Within a single domain, due to the alignment of 

all the atomic magnetic moments (in a ferromagnet), the magnetization of the material is 

saturated at a maximum value 𝑴𝒔 (in the direction of the alignment of the atomic moments), 

which is limited by the magnitude of the atomic moments and their arrangement and packing 

within the crystal lattice. Thus 𝑀𝑠 is a material-specific property, dependent on the atomic 

composition and crystal structure of the particular material. However, on the bulk scale again, 

the net magnetization of a ferromagnetic material can be zero, as all the domain magnetic 
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moments within the material, despite being each magnetized at 𝑀𝑠, can be oriented in random 

directions, cancelling each other out. 

On application of an external magnetic field 𝑯, the magnetization of the material can be altered, 

producing a magnetization curve (Figure 2). Starting from zero, the magnetization of a bulk 

ferromagnetic material increases with 𝐻 until a saturation value of 𝑀𝑠 is reached. This process 

corresponds to the reorientation and alignment of the individual domain moments composing the 

material in the direction of the externally applied field, converting a multi-domain material to 

effectively a single domain (alignment of all microscopic domains). Thus 𝑀𝑠 is naturally reached 

when all the domains, each magnetized at 𝑀𝑠, are oriented in the same direction. Thus 

magnetization of a material does not alter the magnitude of magnetization in any domain, but 

rather the direction of their magnetization. 

 

Figure 2. Magnetization curve of a typical ferromagnetic material, adapted from.33 

However, when 𝐻 is removed, the magnetization of the material does not return to net zero, since 

the magnetic domains do not all return to their original random orientations, but rather some 

remain aligned with each other in the previous direction of 𝐻. This residual magnetization, 𝑴𝑹, 

is called the remanence. To reduce the net magnetization of the material 𝑀𝑅 back to zero, an 

externally applied field of magnitude 𝑯𝑪 must be applied in the opposite direction of 𝑀𝑅, where 

𝐻𝐶 is called the coercivity. This effect leads to hysteresis in the magnetization curve. The 

susceptibility of the material is the relation between 𝐻 and 𝑀, where the differential 

susceptibility 𝝌𝒅 = 𝑑𝑀 𝑑𝐻⁄ , with an initial susceptibility 𝝌𝟎 given by the value of 𝜒𝑑 at 𝑀 = 0, 

i.e., the slope of the magnetization curve at the origin. 

Magnetite (Fe3O4) and maghemite (γ-Fe2O3) are common magnetic iron oxides, and are 

ferrimagnetic at room temperature, with 𝑇𝐶 of 850 K (although 𝑇𝐶 is difficult to measure for 

maghemite, as it is unstable at high temperatures, irreversibly transforming to hematite at ~670 
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K). Magnetite contains a 2:1 ratio of Fe3+:Fe2+ ions, where maghemite is the typical oxidation 

product of magnetite, produced through removal of the Fe2+ ions from the magnetite crystal 

lattice. Both materials have an average susceptibility of ~3 (SI units), although magnetite has a 

higher saturation magnetization of 92 A m2 kg-1, compared to maghemite’s 76 A m2 kg-1. Despite 

the higher 𝑀𝑠 of magnetite, maghemite is also frequently employed in nanotechnology 

applications, since the spontaneous oxidation of magnetite under standard conditions is very 

difficult to prevent, and from an engineering perspective it can be useful to pre-oxidize magnetite 

nanomaterials to maghemite in order to avoid oxidation-induced iron leaching over time, and the 

inevitable change in magnetic properties that this oxidation process implies. 

Superparamagnetism is a nano-specific phenomenon that arises when ferromagnetic (or 

ferrimagnetic) crystals are reduced in size to the nanoscale. Below a certain size, such 

nanocrystals can only support a single magnetic domain, and thus some of the above properties 

of bulk magnetic materials emerging from the collective ensemble of many domains disappear in 

magnetic nanocrystals (e.g., superparamagnetic nanocrystals do not possess hysteresis in their 

magnetization curve). Simply put, thermal energy is sufficient to demagnetize small crystals. As 

stated above, single magnetic domains can be thought of as possessing a single large magnetic 

moment (the sum of the atomic moments aligned with each other). However after application of 

an external magnetic field 𝐻, for a single domain particle (of volume 𝑽) to maintain its magnetic 

polarization against the randomizing thermal background energy, its magnetic anisotropy energy, 

𝑲𝑽, be much greater than thermal energy 𝒌𝑩𝑻, or 𝐾𝑉 ≫ 𝑘𝐵𝑇. Since 𝐾𝑉 is a function of volume, 

below a certain size and above a certain temperature, the magnetic anisotropy energy is too weak 

to prevent the thermal fluctuation of the particle’s magnetic moment, and thus on removal of 𝐻, 

the magnetization of the nanoparticle rapidly flips directions, rendering a net zero magnetization 

for the particle at zero applied field (i.e., no hysteresis). However, upon application of an 

external field, the particle’s magnetic moment will align in the direction of 𝐻 and will approach 

𝑀𝑠 like a bulk ferromagnetic material. Hence this effect was termed superparamagnetism, as the 

thermal spin randomization is conceptually similar to paramagnetic materials, although the 

attainable magnetization values in an externally applied field are much higher than for 

paramagnets. The implication is that superparamagnetic nanocrystals possess no permanent 

magnetic dipole moment at zero applied field, but when placed in an externally applied field can 

be temporarily magnetized with strength equivalent to a bulk ferromagnetic material. 

It should also be noted that possessing a single magnetic domain is not sufficient to render a 

particle superparamagnetic; superparamagnetism is an independent function of size. 

Conveniently, magnetite and maghemite are superparamagnetic at room temperature below 

crystal sizes of ~30 nm, above which threshold size they regain ferrimagnetic properties, 

although they may still be single domain. Interfacial effects are also important in nanocrystals, 

and the measured saturation magnetization of nanocrystals is typically smaller than that of their 

corresponding bulk materials, due to surface spin canting, undercoordination, or crystal defects. 
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Although useful in magnetic data recording media, ferromagnetic materials are typically 

impractical for magnetic separation-based water treatment. Due to their permanent magnetic 

moments at zero applied field, ferromagnetic particles tend to strongly aggregate in water due to 

dipolar attraction, reducing the accessible surface area and diffusion coefficient of the particles, 

and even leading to gravity settling of the aggregates (i.e., the particles removing themselves 

from the water treatment volume). These problems have been observed for ferromagnetic 

nanoscale zero-valent iron particles used in water treatment.37 Thus the primary advantages of 

using nanoparticles and nanostructured materials for water treatment (viz. high specific surface 

area, excellent dispersibility throughout the water matrix) are counteracted by magnetic 

aggregation.  

From an engineering perspective, the ideal particles for magnetic separation-based water 

treatment processes would behave as “on-off” magnetic switches: unmagnetized when dispersed 

throughout the water matrix for treatment (in order to avoid the aforementioned deleterious 

magnetic dipolar aggregation), but which can be easily and strongly magnetized after the 

treatment process in order to be magnetically separated, and then demagnetized again prior being 

employed in subsequent treatment cycles, etc. This is of course a description of 

superparamagnetism, where the magnetism of the particles is “switched on” by application of an 

external magnetic field. Thus the significance of superparamagnetism for magnetic water 

treatment is primarily to minimize uncontrolled nanoparticle aggregation during the treatment 

process, yet allow for easy magnetic recovery afterwards. Iron oxide nanoparticles of magnetite 

or maghemite below 30 nm in diameter are superparamagnetic at room temperature (termed 

SPIONs, superparamagnetic iron oxide nanocrystals), and are thus heavily employed in water 

treatment nanotechnologies, although other ferrite materials, or even non-superparamagnetic 

nanoparticles, can be used if properly stabilized against aggregation. 

2.4 Forces in a Magnetic Colloid 

As referred to above, typically the ideal magnetic separation-based water treatment 

nanotechnology can be described as a colloidal dispersion (slurry) of non-interacting 

nanoparticles or nanomaterials, diffusing freely throughout the volume of water to be treated, 

which can be rapidly separated from the water once the treatment is complete through 

application of an externally applied magnetic field. However, achieving such a system is 

nontrivial, due to the complexity of designing for the number of forces acting on the particles at 

the different stages of the separation process. Particles may be either too magnetic (leading to 

extensive interparticle magnetic aggregation) or not magnetic enough (requiring impractically 

long times for nanoparticle magnetic separation). 

In order to achieve directional magnetophoresis, the magnetic force must be greater than the 

forces opposing motion, namely Brownian motion in the case of nanoparticles. The magnetic 

force acting on a spherical magnetic particle of volume 𝑽 (radius 𝒓) in a magnetic field gradient 

is 
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 𝐹𝑚⃑⃑ ⃑⃑  = 𝑉(𝑀⃑⃑ ⋅ ∇⃑⃑ )𝐵⃑ =
4

3
𝜋𝑟3(𝑀⃑⃑ ⋅ ∇⃑⃑ )𝐵⃑  (1) 

where 𝑀⃑⃑  is the magnetization of the particle per unit volume and 𝐵⃑  is the externally applied 

magnetic field. 

For nanoparticles, gravitational forces are typically insignificant, but may be more important for 

dense iron-based particles, and should thus be considered for completeness: 

 𝐹𝑔⃑⃑  ⃑ = 𝑚𝑔 =
4

3
𝜋𝑟3∆𝜌𝑔  (2) 

where ∆𝜌 is difference of the particle’s density from that of the surrounding medium (e.g., 

water), and 𝑔  is the acceleration due to gravity. 

The motion of the nanoparticles is opposed by viscous drag forces, given by Stokes’ law as 

 𝐹𝑑
⃑⃑⃑⃑ = −3𝜋𝜂𝐷𝐻𝑣 ≃ −6𝜋𝜂𝑟𝑣  (3) 

where 𝜂 is the dynamic viscosity of the medium (𝜂 = 10−3 Pa s for water at room temperature), 

𝐷𝐻 is the hydrodynamic diameter of the particle (which can be approximated by 𝐷𝐻 = 2𝑟), and 𝑣  

is the velocity of the particle. The average magnetophoretic velocity of a single particle can thus 

be estimated by balancing Eqs. 1 and 3: 

𝐹𝑚
⃑⃑ ⃑⃑  + 𝐹𝑑

⃑⃑⃑⃑ = 0 

4

3
𝜋𝑟3(𝑀⃑⃑ ⋅ ∇⃑⃑ )𝐵⃑ − 6𝜋𝜂𝑟𝑣 = 0 

 𝑣 =
2𝑟2(𝑀⃑⃑ ⋅ ∇⃑⃑ )𝐵⃑ 

9𝜂
 (4) 

More generally however, the motion of the particle in any single direction is opposed by 

Brownian motion, where a simplified representation of the Brownian force at a particular 

moment in time can be given by 

 𝐹𝐵
⃑⃑⃑⃑ = 𝜉 (12𝜋𝜂𝑟𝑘𝐵𝑇 𝑑𝑡⁄ )

1
2 (5) 

where 𝜉  is a fluctuating random vector with a Gaussian distribution, 𝑘𝐵 is the Boltzmann 

constant, 𝑇 is the temperature, and 𝑑𝑡 is the time increment.38 An approximation of the time 

average Brownian force can be simply taken as the thermal energy in opposition to motion of the 

particle by a significant amount (e.g., distance 𝑟) in any specific direction: 

 𝑘𝐵𝑇 = (𝐹𝑚⃑⃑ ⃑⃑  + 𝐹𝑔⃑⃑  ⃑ + 𝐹𝑑
⃑⃑⃑⃑ ) ⋅ 𝑟  (6) 

When the right-hand side of Eq. 6 is significantly greater than the thermal energy of order 𝑘𝐵𝑇, 

the particle can have directional motion, and if significantly less than 𝑘𝐵𝑇, the net directional 

forces acting on the particle are insufficient to overcome the randomizing Brownian force, and 
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the particle remains dispersed in suspension. Thus as a rough approximation,39 the threshold 

Brownian force for the particle to overcome is 

 𝐹𝐵 ≈
𝑘𝐵𝑇

𝑟
 (7) 

This accounts for the size dependence of the Brownian force, where large microparticles are less 

susceptible to such randomizing molecular motions and can settle under the force of gravity, 

while for small nanocrystals Brownian forces dominate.40 Alternatively, comparing Eqs. 1 and 2 

with Eq. 5, it can be seen that the directional forces scale with 𝑟3, while the Brownian force only 

scales as  𝑟
1

2, indicating the diminished significance of Brownian forces for larger particles. 

In summary, to achieve directional magnetophoresis, 𝐹𝑚⃑⃑ ⃑⃑   should be ≫ (𝐹𝐵
⃑⃑⃑⃑ + 𝐹𝑔⃑⃑  ⃑ + 𝐹𝑑

⃑⃑⃑⃑ ). From Eq. 

1 it can be seen that for a constant applied magnetic field gradient there are only two ways to 

increase |𝐹𝑚⃑⃑ ⃑⃑  | through engineering of the nanoparticles: either by selection of a material with 

higher magnetization, or for a fixed material, by increasing the particle size. However, as stated 

above, superparamagnetism is a size-dependant nanoscale phenomenon, and upon increasing the 

size of magnetic nanocrystals above a particular threshold diameter they transition to 

ferromagnetic behaviour, resulting in deleterious uncontrolled magnetic dipolar aggregation in 

suspension. Since superparamagnetism is an essential property for many magnetic separation-

based water treatment processes, there would appear to be an upper limit on the per-particle |𝐹𝑚⃑⃑ ⃑⃑  |, 

since superparamagnetism is limited to nanocrystals ≲ 30 nm in size (for magnetite/maghemite). 

However, as discussed in Section 2.5 below, such small nanocrystals are often found to be 

magnetically inseparable from suspension (i.e., |𝐹𝑚⃑⃑ ⃑⃑  | ≪ 𝑘𝐵𝑇 𝑟⁄ ), thus requiring a larger |𝐹𝑚⃑⃑ ⃑⃑  | to 

enable magnetophoresis, yet apparently requiring the sacrifice of superparamagnetism in order to 

achieve it. However, this apparent paradox can be resolved through the use of polycrystalline 

particles, where every constituent crystal in the polycrystalline particle is below the 

superparamagnetic threshold in size (i.e., nanocrystals), yet where the 𝐹𝑚⃑⃑ ⃑⃑   of all these crystals 

sum together to render a larger net 𝐹𝑚⃑⃑ ⃑⃑   for the particle as a whole, enabling magnetophoresis 

while preserving superparamagnetism. Such polycrystalline or supraparticles can be composed 

exclusively of magnetic nanocrystals, or multiple SPIONs dispersed in a matrix or composite 

material (e.g., Dynabeads® as used in biological magnetic separations). 

2.5 Interparticle Interactions and Cooperative Magnetophoresis 

Magnetic nanocrystals < 20 nm in diameter (SPIONs) should not be magnetically separable at 

low field gradients (< 100 T m-1) according to the above considerations. For example, for a 10 

nm magnetite nanocrystal (𝑀𝑠 ≃ 4.8 × 105 A m-1) in a 100 T m-1 field gradient at 300 K, 𝐹𝑚 =

2.5 × 10−17 N, while 𝐹𝐵 ≈ 𝑘𝐵𝑇 𝑟⁄ = 8.3 × 10−13 N; that is, 𝐹𝐵 ≫ 𝐹𝑚. Indeed, by this logic only 

magnetite crystals larger than ~135 nm should be magnetically separable. Even without 

considering Brownian motion, from Eq. 4 the average magnetophoretic velocity of the above 10 

nm SPIONs should be only ~0.3 µm s-1 in water. However, this is several orders of magnitude 
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slower than experimentally observed SPION magnetophoretic velocities under similar 

conditions.39 This experimental observation that SPIONs can in fact be readily magnetically 

separable even under low field gradients has thus prompted the expansion of magnetophoretic 

theory to include interparticle interactions. 

To explain the low field gradient magnetic separability of superparamagnetic nanoparticles, it 

was theorized that when magnetized, nanocrystals would be expected to exhibit very large field 

gradients near their surface, which could lead to the magnetic aggregation of the particles into 

larger “effective particles” or aggregate structures with sufficient net magnetic force to overcome 

Brownian motion.39 Thus nanoparticles could be expected to accelerate or catalyze their own 

magnetic separation in a cooperative manner. For superparamagnetic particles, removal of the 

externally applied magnetic field should dissipate magnetic interactions, resulting in aggregate 

dissociation. Such transient magnetic aggregation behaviour (chain formation) has been observed 

experimentally.41 

The group of Faraudo and Camacho has perhaps done the most work in describing the physical 

concepts of cooperative magnetophoresis, and the following discussion is derived primarily from 

references 41–43. 

The dipole-dipole interaction energy between two superparamagnetic colloidal particles in an 

externally applied magnetic field is given by 

 𝑈𝑑𝑑 =
𝜇0𝑚𝑑

2

4𝜋𝑥3
(1 − 3 cos2 𝜃) (8) 

where 𝜇0 is the magnetic permeability of free space, 𝑥 is the distance separating the particles 

(centre-to-centre), 𝜃 is the angle between the direction of the externally applied field and the line 

joining the centres of the two particles, and 𝑚𝑑 is the dipole moment of the particles, given by 

 𝑚𝑑 =
4

3
𝜋𝑟3𝑀𝑠 (9) 

where the assumption is made that under typical fields applied during magnetic separation, the 

magnetization of the sample reaches saturation. The minimum energy configuration is obtained 

when 𝑥 = 𝑑 (the diameter of the particles) and 𝜃 = 0, or 

 𝑈𝑑𝑑
max = −

𝜇0𝑚𝑑
2

2𝜋𝑑3
 (10) 

A useful means by which to characterize the relative strength of this magnetic interaction is to 

take its ratio with the thermal energy, defining a magnetic coupling parameter Γ as 

 Γ =
|𝑈𝑑𝑑

max|

𝑘𝐵𝑇
=

𝜇0𝑚𝑑
2

2𝜋𝑑3𝑘𝐵𝑇
= (

𝜆𝐵
𝑚

𝑑
)

3

 (11) 

where 𝜆𝐵
𝑚 is called the magnetic Bjerrum length, the characteristic interparticle distance at which 

magnetic interactions are significant compared to thermal energy, given by 
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 𝜆𝐵
𝑚 = (

𝜇0𝑚𝑑
2

2𝜋𝑘𝐵𝑇
)

1
3

 (12) 

Physically, interparticle magnetic interactions are significant (i.e., magnetic aggregation and 

cooperative magnetophoresis are possible) for Γ ≫ 1, while for Γ ≪ 1 thermal energy 

dominates. For the above example of 10 nm SPIONs, Γ ≃ 3.05, indicating the possibility of 

cooperative magnetic separation where the non-interacting model predicted magnetophoresis to 

be impossible, thus demonstrating the importance of considering interparticle interactions. 

With this understanding of the effect of interparticle distance on magnetic interactions, the 

kinetics of cooperative magnetophoretic separation can be elucidated in terms of particle 

concentration in suspension (i.e., the higher the particle concentration, the closer their spacing 

and thus higher their magnetic interactions). The mass concentration of particles in a suspension 

is given as 

 𝐶 =
𝑁𝑚

𝑉𝑡
=

4𝜋𝑟3𝜌𝑁

3𝑉𝑡
=

4𝜋𝑟3𝜌

3𝑥3
 (13) 

where 𝑁 is the total number of particles in a suspension of volume 𝑉𝑡, 𝑚 is the mass of a single 

particle of density 𝜌, and 𝑥 = √𝑉𝑡 𝑁⁄3
 is the average interparticle distance. A characteristic 

concentration 𝐶∗ can be defined when 𝑥 = 𝜆𝐵
𝑚, 

 𝐶∗ =
4𝜋𝑟3𝜌

3𝜆𝐵
𝑚3 =

𝜋𝜌

6Γ
 (14) 

Experimentally,41 the cooperative magnetophoretic separation time 𝑡𝑠 of superparamagnetic 

particles has been found to have an exponential dependence on particle concentration of the 

form: 

 𝑡𝑠 = 𝑡0 (
𝐶∗

𝐶
)
𝛼

 (15) 

where 𝑡0 (in units of time) and 𝛼 are experimentally determined parameters dependant on the 

dimensions of the magnetic separator, field gradient applied, etc., although an ab initio argument 

for 𝛼 ≃
1

4
 (which was the experimentally fitted value) is given in reference,43 which relates to the 

growth kinetics and magnetophoretic velocity of the particle aggregates/chains. 

The obvious assumption in the above discussion is that, apart from their magnetic interactions, 

the particles are otherwise non-interacting. However, for colloidal nanoparticles, this assumption 

is generally untrue, and other colloidal interactions can be significant in comparison to the 

magnetic dipolar energy. In magnetic separation-based water treatment applications, the ideally 

desirable situation is for the transient magnetic aggregation to behave as a reversible “on-off 

switch,” i.e., for the particles to be relatively non-interacting and highly colloidally stable in the 

absence of an externally applied magnetic field (in order for the particles to diffuse freely, 
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expose a high surface area, and exhibit good mass transfer kinetics in the volume of water to be 

treated), to rapidly form transient aggregates when an external field is applied (for efficient 

magnetic separation), and then for the aggregates to reversibly dissociate and return the particles 

to a highly dispersed colloidal state when the external field is removed again. Actually achieving 

such behaviour in realistic matrices is non-trivial however, since frequently (due to nonmagnetic 

interactions discussed below) the particles will either be too colloidally stable to form the 

transient aggregates in the first place (thus remaining magnetically inseparable), or they will 

form irreversible aggregates which cannot be re-dispersed back to a stable colloid when 

demagnetized. Avoiding such undesirable outcomes requires understanding and balancing all the 

colloidal forces present in the system. 

Apart from the magnetic interaction energy given above (Eq. 8), other interactions to consider 

are electrostatics (DLVO theory) and dispersion forces. The van der Waals potential between 

two spherical particles with radii 𝑟1 and 𝑟2 is given by 

 𝑈𝑣𝑑𝑊 = −
𝐴𝐻

6
[

2𝑟1𝑟2
𝑥2 − (𝑟1 + 𝑟2)2

+
2𝑟1𝑟2

𝑥2 − (𝑟1 − 𝑟2)2
+ ln(

𝑥2 − (𝑟1 + 𝑟2)
2

𝑥2 − (𝑟1 − 𝑟2)2
)] (16) 

where 𝐴𝐻 is the Hamaker constant between the particles through the surrounding medium (𝐴𝐻 =

33 × 10−21 J for magnetite nanoparticles interacting across water44) and 𝑥 is the distance 

between the centres of the spheres (where the distance between the surfaces is 𝐷 = 𝑥 − 𝑟1 −

𝑟2).45 For equally-sized particles (𝑟1 = 𝑟2 = 𝑟), the above equation can be simplified to 

 𝑈𝑣𝑑𝑊 = −
𝐴𝐻

6
[
4𝑥2𝑟2 − 8𝑟4

𝑥4 − 4𝑥2𝑟2
+ ln (

𝑥2 − 4𝑟2

𝑥2
)] (17) 

Calculation of the electric double layer interaction between two particles is often a complex 

consideration, typically involving many approximations. For more rigorous equations (beyond 

Derjaguin’s approximation) describing the double layer interaction between nanoparticles at low 

ionic strengths, refer to 46. More accessible (and hence more approximate) equations for the 

interaction potential between two equally sized spheres with equal surface potentials are given 

below.46,47 For large interparticle separations (𝜅𝐷 > 4, where 𝜅 is the inverse Debye-Huckel 

length), assuming the surface potential of one particle does not affect the other, thin double 

layers and symmetrical electrolytes, the linear superposition approximation can be used: 

 𝑈𝐷𝐿 =
64𝜋𝜀0𝜀𝑟𝑟

2

𝑥
(
𝛾𝑘𝐵𝑇

𝑧𝑒
)
2

exp(−𝜅𝐷) (18) 

 𝛾 = 4 tanh (
Φ

4
) , for 𝜅𝑥 ≥ 10 and Φ < 8 (19) 

 Φ =
𝑧𝑒𝜓

𝑘𝐵𝑇
 (20) 
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 𝜅 = √
2𝑐0𝑧2𝑒2

𝜀0𝜀𝑟𝑘𝐵𝑇
 (21) 

where 𝜀0 is the vacuum permittivity, 𝜀𝑟 is the relative permittivity of the solvent, 𝑧 is the charge 

number (electrolyte valence), 𝑐0 is the concentration of the symmetrical electrolyte (in units of 

m-3), 𝑒 is the elementary charge, and 𝜓 is the surface potential of the particles (which can be 

estimated from the Grahame equation if only the charge of the colloid is known42). For small 

interparticle separation distances, the Derjaguin approximation can be used: 

 𝑈𝐷𝐿 =
𝜋𝜀0𝜀𝑟𝑟𝜓

2

2
ln[1 + exp(−𝜅𝐷)] (22) 

If the particles are surfactant-stabilized (the above assumes simple electrostatic stabilization), 

additional repulsion forces must be taken into account. However these above equations are 

sufficient for a basic energy balance on the system during magnetic separation, where the total 

interaction energy between two nanoparticles in suspension is the sum of Eqs. 8, 17, and 18/22, 

given by 𝑈 = 𝑈𝑑𝑑 + 𝑈𝑣𝑑𝑊 + 𝑈𝐷𝐿 . This results in a potential energy curve as a function of 

interparticle separation distance, examples of which are given in Figure 3. 

 

Figure 3. Potential energy profiles of magnetic particles in colloidal dispersion: (a) desirable 

curve for non-magnetized particles, (b) desirable curve for magnetized particles to enable 

reversible magnetic aggregation, (c) undesirable curve (dotted line) for magnetized particles, 

resulting in irreversible magnetic aggregation. 

The desirable situation in most magnetic separations (the “on-off switch” as described above) is 

for the potential energy to be everywhere positive in the absence of an applied magnetic field 

(Figure 3a, repulsive force to stabilize the colloidal dispersion and prevent aggregation), and 

exhibit a secondary minimum in the potential energy curve when the particles are magnetized  to 
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allow for transient magnetic aggregation (Figure 3b), but with an energy barrier (provided by 

electrostatic repulsion) to prevent the particles from approaching each other too closely (resulting 

in irreversible aggregation at the primary energy minimum). This way, when the magnetic field 

is removed, the secondary minimum disappears, and the particles repel each other once again, 

returning to a dispersed colloid. The undesirable situation occurs when the magnetic dipolar 

interaction is too strong, or electrostatic repulsion insufficient, in which case there is no energy 

barrier to prevent irreversible aggregation of the magnetized particles at the primary minimum 

(Figure 3c). As can be seen, this delicate energy balance is a function of particle size, surface 

charge, applied field gradient, and ionic strength of the water to be treated, and thus many factors 

must be taken into account to ensure timely and practical reversible magnetic separation is 

achievable in the system of interest. 

2.6 Challenges for Magnetic Water Treatment 

Due to the cooperative magnetophoretic mechanism and balance of forces required to prevent 

irreversible aggregation, designing a reusable magnetic separation-based water treatment system 

can be challenging from an engineering perspective, and it is usually not obvious to predict 

whether the magnetic particles of interest will even separate when a magnetic field is applied to 

the suspension. Several challenges when designing water treatment systems based on magnetic 

separation nanotechnology are discussed below. 

Firstly, as discussed above, the energy balance of the colloidal dispersion of nanoparticles should 

be considered under both magnetized and demagnetized conditions (assuming demagnetization is 

possible, given superparamagnetic particles). If the repulsive interparticle interactions are too 

strong, the particles may not be able to transiently aggregate even when magnetized, inhibiting 

cooperative magnetophoresis and resulting in magnetic inseparability of the particles from 

suspension. Conversely, if repulsive interactions are low, irreversible aggregation of the particles 

could result during magnetic separation, rendering them essentially single use. Although only 

electrostatic stabilization was considered above, steric stabilization of the colloidal particles with 

polymers can either help or hinder magnetic separability according to the same principles (i.e., if 

particles cannot approach each other closely enough, cooperative magnetophoresis will be 

impossible). When not magnetized, high colloidal stability of the nanoparticle dispersion is 

typically desired, in order to expose a high surface area throughout the volume of water to be 

treated. Ensuring colloidal stability in realistic matrices (i.e., water with ionic strength, dissolved 

contaminants, humic acids, etc.) is challenging for even nonmagnetic particles, as adsorption of 

contaminants or flocculation with dissolved substances can change the surface energy balance of 

the particles, or result in premature flocculation and sedimentation. Such destabilizing of 

otherwise too-stable nanoparticle dispersions can be desirable in some cases (enabling magnetic 

separation of otherwise inseparable particles through the formation of larger 

aggregates/supraparticles), but uncontrolled aggregation is difficult to predict through modeling. 

Another engineering challenge is the different length scales at work in typical magnetic 

separations, from within angstroms from the surface of single nanoparticles to the scale of meters 
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in a magnetic separator. Although this brief review has focused primarily on the nanoscale, 

predicting and designing a system for a particular required magnetic separation duration or 

magnetophoretic velocity will also incorporate macroscopic considerations, such as the geometry 

of the magnetic separator and magnetic fields. For example, macroscopic time scales for 

separating magnetic nanoparticles are influenced by the cooperative magnetic separation 

mechanisms discussed above, while these mechanisms are simultaneously influenced by field 

gradients which are a function of separator design; the micro- and macroscopic are convoluted. 

Furthermore, many of the equations provided herein assume static fluid, although for magnetic 

separations involving flowing water (e.g., a flow-through magnetic separator), additional fluid 

dynamics must be brought to bear on the system. 

It should also be emphasized that the cooperative magnetophoresis mechanism discussed herein, 

while enabling the separation of nanoparticles that would be individually nonmagnetically 

separable, still has a strong built-in size dependence, and does not guarantee the separation of 

magnetic nanoparticles. For example, it is still controversial whether SPIONs are magnetically 

separable under low field conditions.48 Indeed, the main industrial application of SPIONs is as 

ferrofluids, which are designed to be magnetically inseparable. Thus although use of 

nanoparticles (SPIONs) may be especially desirable in water treatment applications due to their 

extraordinary specific surface area, care should be taken to ensure that they will still be 

magnetically separable from the target matrix. 

Finally, an additional concern of the cooperative magnetic separation paradigm is the potential 

for trace residual nanoparticles remaining in suspension after the magnetic separation process. 

That is, if nanoparticles require cooperative assembly into transient magnetic aggregates to 

enable magnetic separability, there is the possibility that particles which are not incorporated into 

the transient aggregates in time would be “stranded” in suspension, unable to magnetically 

separate on their own. Given the concerns about environmental contamination by nanoparticles 

or nanoparticle toxicity, the potential for adding low concentrations of nanoparticles to treated 

water in the process of magnetic separation is clearly of concern. Thus for practical applications 

of magnetic separation nanotechnology, at least until this potential problem of nanoparticles left 

behind is investigated further, magnetic separators should probably be coupled with a filtration 

process, to separate any residual trace nanoparticles which were not recovered in the “first pass” 

magnetic separation step.  

2.7 Application to Photocatalysis 

Photocatalysis over nanoscale titanium dioxide is a highly promising technique for the 

deactivation or mineralization of a broad spectrum of waterborne contaminants, due to the low 

cost, abundance and minimal toxicity of TiO2, as well as the central concept that the TiO2 can 

theoretically be reused indefinitely for cost-effective purification of large volumes of water. In 

photocatalytic water treatment, the most efficient reactors involve dispersion of the nanocatalyst 

into the contaminated water as a slurry.22,24,25 Nanoparticle recovery after the treatment process 

is essential not only for reuse of the catalyst, but also to prevent nanoparticle contamination of 
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the treated effluent. Unfortunately, nanoparticle separation challenges remain a critical hurdle to 

practical application of this promising treatment technology.26–28 

Magnetic separation is especially useful in nanotechnology for collection of nanoparticles which 

are challenging to manipulate by other means.30,49–52 To render non-magnetic nanomaterials 

magnetically separable, typically composite nanoparticles are synthesized by immobilizing the 

functional nanomaterial on a superparamagnetic support (e.g., in a core-shell structure).53–58 We 

have previously employed this strategy to synthesize magnetically recyclable TiO2 

photocatalysts.54 To adapt the magnetic separation paradigm to practical TiO2 recycling, we 

started with a larger polycrystalline magnetite core to increase the total magnetic moment of each 

particle for faster separation, yet where the individual magnetite nanocrystals in the core are each 

below the ferromagnetic threshold size and thus collectively preserve the crucial property of 

superparamagnetism. Thus, application of magnetic recycling has been successfully 

demonstrated for photocatalyst recycling, and implementation of magnetic recovery concepts are 

presented in Chapter 5. 
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Chapter 3 

Solar Photocatalytic Degradation of Naphthenic Acids in Oil 

Sands Process-Affected Water† 

 

3.1 Summary 

Bitumen mining in the Canadian oil sands 

creates large volumes of oil sands process-

affected water (OSPW), the toxicity of which 

is due in part to naphthenic acids (NAs) and 

other acid extractable organics (AEO). The 

objective of this work was to evaluate the 

potential of solar photocatalysis over TiO2 to 

remove AEO from OSPW. One day of 

photocatalytic treatment under natural sunlight 

(25 MJ/m2 over ~14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the 

OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon 

was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to 

proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry 

(HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the 

heavier and more cyclic NAs (higher number of double bond equivalents), which are the most 

environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple 

uses, and thus solar photocatalysis may be a promising “green” advanced oxidation process 

(AOP) for OSPW treatment. 

3.2 Introduction 

Bitumen mining in the Athabasca oil sands is one of the largest industrial projects in the world, 

and development in the region continues to expand. An alkaline hot water method is used to 

extract surface-mined bitumen, generating large volumes of oil sands process-affected water 

(OSPW) in the process. OSPW has been found to be acutely and chronically toxic to many forms 

of life,59–61 and is therefore stored on site in tailings ponds due to the industry’s “zero discharge” 

policy, as there is currently no established method to treat the water for environmental discharge. 

                                                 

 

 

† This chapter is adapted from a previously published article: Leshuk, T.; Wong, T.; Linley, S.; 

Peru, K. M.; Headley, J. V.; Gu, F. Solar Photocatalytic Degradation of Naphthenic Acids in Oil 

Sands Process-Affected Water. Chemosphere 2016, 144, 1854–1861. 
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To date, an estimated 1 billion m3 of OSPW has been accumulated in over 170 km2 of tailings 

ponds in Alberta.62,63 

OSPW is a complex saline solution containing high concentrations of suspended clays, dissolved 

organic compounds (including naphthenic acids, polycyclic aromatic hydrocarbons (PAHs), and 

BTEX compounds), trace heavy metals, and residual bitumen and solvents. A primary source of 

OSPW toxicity has been attributed to the acid extractable organics (AEO), including naphthenic 

acids (NAs), which are structurally diverse alkyl-branched acyclic and cycloaliphatic carboxylic 

acids with the conventional formula CnH2n+zO2 (where z is a negative even integer related to the 

number of rings and double bonds).12,13 Recently, high resolution mass spectrometry (HRMS) 

has also identified aromatic and diamondoid acids in OSPW AEO, as well as species containing 

multiple carboxylates or heteroatoms.64–66 NAs and OSPW toxicity are also associated with the 

base-neutral extractable organic fractions, although the focus of this work is on the AEO. While 

low molecular weight NAs are somewhat biodegradable, the heavier branched fractions are 

recalcitrant and highly environmentally persistent.8,9,67 Thus, a water treatment solution is 

required for reclamation of the tailings ponds. 

Among the methods investigated for OSPW treatment, advanced oxidation processes (AOPs) 

have been shown to be particularly effective for degrading NAs and reducing OSPW toxicity.14–

18 Photocatalysis over TiO2 is an extremely powerful AOP that has been proven to eliminate a 

broad spectrum of organic pollutants in wastewaters, including NAs.68–70 In aqueous suspension, 

photocatalysts absorb light to generate highly reactive free radicals, such as hydroxyl and 

superoxide radicals, which are capable of mineralizing even recalcitrant organic 

contaminants.22,23 TiO2 is a low-cost, earth abundant, and chemically stable photocatalytic 

material which can be recovered and reused over multiple treatment cycles.  

Although powerful, the high capital and operating costs of AOPs could limit large-scale 

industrial application. Sunlight is a free and renewable energy source with the potential to greatly 

reduce the operating costs associated with water treatment, and it is well established that TiO2 

can absorb solar UV radiation to power the photocatalytic process.27,71 Without the need to add 

chemical oxidants to the water, and considering the recyclability of the catalyst material, solar 

photocatalysis may be more practical than conventional methods for OSPW treatment.  

The objective of this work was to evaluate the performance of solar photocatalysis to remove 

AEO from real OSPW. This research builds on the previous investigations into photocatalysis by 

Headley and co-workers.69,70 Headley et al. previously demonstrated ~75% destruction of OSPW 

NAs through solar photocatalysis,69 and Mishra et al. showed that UV254 photocatalytic treatment 

could eliminate acute NA toxicity according to the Microtox assay.70 Despite these promising 

results, there has since been no research into how the process performs in OSPW, as previous 

researchers used either commercial NAs or model waters.19,69,70 This is significant since the high 

ionic strength and suspended solids in the OSPW may have deleterious effects on the process 

efficacy or degradation kinetics. We thus sought to examine the feasibility of photocatalytic 
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treatment of real OSPW using natural sunlight. For this study we chose to use a TiO2 

nanoparticle slurry, a system which is often employed as a benchmark standard in the literature, 

to establish a treatability baseline for photocatalysis in OSPW. We also explored the 

photocatalytic reaction pathway and oxidized intermediate compounds using high resolution MS, 

and assessed the acute toxicity of the treated water toward Vibrio fischeri. 

3.3 Experimental 

3.3.1 Materials 

OSPW collected on March 17, 2014 was provided by Shell Canada, and stored in sealed 

polyethylene containers in the dark. The OSPW was homogenized by stirring before each use, 

herein referred to as raw OSPW. For experiments where it was desirable to remove the 

suspended solids, the OSPW was centrifuged at 14,000 xg prior to use, and then referred to as 

centrifuged OSPW. A commercial mixture of naphthenic acids (technical grade), 

dichloromethane (DCM, ≥99.9%, HPLC grade), ammonium oxalate monohydrate (>99%, ACS 

grade), 1,4-benzoquinone (98%), sodium persulfate (≥99%), and tert-butyl alcohol (≥99.7%, 

ACS grade) were purchased from Sigma-Aldrich and used as received. Sulfuric acid (95-98%, 

ACS grade, Fisher), formic acid (Caledon Laboratories Ltd., Georgetown, ON), acetonitrile 

(HPLC grade, Caledon Laboratories Ltd., Georgetown, ON) and titanium dioxide nanoparticles 

(Aeroxide P25, ~10-50 nm particle diameter, 55 m2 g-1 surface area, Acros) were used as 

received. P25 TiO2 nanoparticles have been extensively studied and characterized in the 

literature, and are often used as a benchmark photocatalyst. 

3.3.2 Photocatalysis Experiments 

Outdoor solar photocatalytic experiments were performed during July – September 2014 at the 

University of Waterloo (Waterloo, ON, Canada). All experiments were performed in duplicate or 

triplicate. TiO2 powder was first stirred into 200 mL of OSPW in a borosilicate glass beaker (82 

mm O.D.) and dispersed by bath sonication. Beakers were sealed with polyethylene film (Glad, 

measured to be UV transparent by spectrophotometry) to prevent evaporation during the 

experiments. The mixture was then placed on a rooftop outdoors (43°28'17.9"N 80°32'32.2"W) 

and exposed to sunlight while stirring at 500 rpm. Controls included OSPW exposed to sunlight 

in the absence of TiO2, and the TiO2 OSPW mixture stored in the dark. Following solar 

treatment, the OSPW mixture was centrifuged to remove the TiO2 nanoparticles, retaining the 

supernatant for analysis (stored at 4 °C in the dark). For one experiment, the TiO2 collected by 

centrifugation was subsequently washed thrice with deionized water by centrifugation, dried 

overnight at 70 °C, and then redispersed into a fresh sample of OSPW for solar treatment, in 

order to test the photocatalyst’s recyclability.  

In one experiment, to investigate the radical species involved in the photocatalytic reaction, 0.1 

g/L of a radical scavenger (ammonium oxalate, 1,4- benzoquinone, sodium persulfate or tert-

butyl alcohol)72,73 was added to the suspension (0.5 g/L TiO2 in centrifuged OSPW) immediately 

before sunlight exposure. Inhibition of photocatalytic activity was calculated from the residual 
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AEO concentration following treatment in the presence and absence of the radical scavenger (𝐶𝑠 

and 𝐶𝑛, respectively), according to the equation 

% inhibition =
𝐶𝑠 − 𝐶𝑛

𝐶0 − 𝐶𝑛
 

where 𝐶0 was the initial concentration of AEO in the OSPW. 

The dates and weather conditions for the solar photocatalytic experiments described herein are 

presented in Table 1. Weather data was obtained from the University of Waterloo Weather 

Station archives.74 Cumulative insolation was calculated by integrating the incoming shortwave 

radiation (measured by the weather station using a Kipp & Zonen CM11 pyranometer) over the 

duration of each experiment. 
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Table 1. Weather conditions for the outdoor photocatalytic experiments performed in this chapter. 

Experiment 
Date & Time 

Started 

Date & Time 

Ended 

Cumulative 

Insolation 

(MJ/m2) 

Ambient Air Temperature 

During Daylight Hours 

Average Daily 

High (°C) 

Average Daily 

Low (°C) 

Figure 4a 16/07/2014 21:16 17/07/2014 20:55 24.7 22.2 9.6 

Figure 4b (centrifuged OSPW) 21/07/2014 21:02 22/07/2014 20:55 25.3 29.0 15.8 

Figure 4b (raw OSPW) 24/07/2014 21:01 25/07/2014 21:47 23.4 23.9 9.9 

Figure 11, 6 and 7 (midpoint)a 13/09/2014 19:30 16/09/2014 13:30 31.4 15.9 6.2 

Figure 11 (endpoint)b 17/09/2014 19:45 29/09/2014 12:00 181.4 20.9 8.9 

Figure 17 18/08/2014 17:33 19/08/2014 17:28 20.5 25.0 9.2 

Figure 5 05/08/2014 16:00 08/08/2014 16:03 63.8 24.1 14.0 

Figure 8 30/07/2014 16:58 16/08/2014 14:25 89.4 22.0 11.5 

Cycle 1 30/07/2014 16:58 31/07/2014 16:58 23.2 23.7 11.3 

Cycle 2 05/08/2014 16:00 06/08/2014 15:57 21.2 24.7 12.6 

Cycle 3 07/08/2014 15:57 08/08/2014 16:03 21.9 24.4 9.9 

Cycle 4 13/08/2014 16:30 14/08/2014 16:28 14.4 16.7 10.9 

Cycle 5 15/08/2014 16:12 16/08/2014 14:25 8.7 20.5 12.9 

Figure 9 17/08/2014 17:00 18/08/2014 17:33 21.5 23.8 10.2 
aExperiment was paused (beakers moved indoors) from 15/09/2014 12:17 PM to 16/09/2014 7:15 AM due to predicted rain. 
bExperiment was paused (beakers moved indoors) from 20/09/2014 8:00 PM to 22/09/2014 1:00 PM due to predicted rain.
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To assess the temperature dependence of the photocatalytic degradation kinetics, an Arrhenius 

plot was prepared using the data from all experiments performed with 0.5 g/L TiO2 in 

centrifuged OSPW which had a measured AEO concentration greater than zero. An apparent rate 

constant was calculated for each data point from a pseudo-first order kinetics model, which was 

then correlated with the average ambient temperature measured during the period of treatment. 

3.3.3 Analysis 

The concentration of AEO was measured by Fourier transform infrared spectroscopy (FTIR, 

Bruker Tensor 27) according to the standard method75,76 with minor modifications (viz., the 

acidified samples were extracted thrice with DCM in a 1:12.5 solvent to sample volumetric ratio, 

with 65% total recovery), using the commercial NA mixture to prepare the calibration curve. The 

method detection limit (MDL) was 0.6 mg/L. AEO is a composite measure of classical NAs, 

oxy-NAs (CnH2n+zOx, where x > 2), and other organic acids.64 

Samples were filtered prior to the following analyses (Whatman 934-AH glass fiber filter), with 

the exception of analyses where suspended solids were of interest (i.e., UV/vis, turbidity, TSS, 

TDS). 

Electrospray ionization high resolution mass spectrometry (ESI-HRMS) was used to analyze the 

composition and speciation of the OSPW AEO. For ESI-HRMS, solid phase extraction (SPE), as 

previously described by Headley et al.77 was used as a concentration and cleanup technique 

(method recovery was 79 ± 7%). In brief, 10 mL of each sample was acidified using 

concentrated formic acid to a pH of ~2 . SPE cartridges (200mg, ENV+, Biotage®, Charlotte, 

NC), were preconditioned with 7 mL each of acetonitrile and Milli-Q water. Eluents were 

discarded and the organic fraction eluted at a flow rate of ~1 mL/min using 7 mL of acetonitrile. 

Extracts were collected in 10 mL glass test tubes and evaporated using N2 to just dryness. The 

dried residue was then reconstituted in 1 mL of 50:50 Milli-Q water:acetonitrile with 0.1% 

ammonium hydroxide and transferred to 2 mL amber GC vials. 

The ESI-HRMS chemical analysis was conducted using an LTQ Orbitrap Elite (Thermo Fisher 

Scientific, San Jose, CA) operating in full scan and negative-ion mode. Mass resolution was set 

to 240,000 with an m/z scan range of 100-600. ESI source had the following conditions: sheath 

gas flow rate 25 (arbitrary units), spray voltage 2.90 kV, auxiliary gas flow rate 5 (arbitrary 

units), S lens RF level 67%, heater temperature 50 °C, and capillary temperature 275 °C. 

Infusion solvent used was 50:50 acetonitrile:water containing 0.1% ammonium hydroxide at a 

flow rate of 200 µL/min. The mass accuracy was <2 ppm error for all mass assignments, and the 

root mean square (RMS) error for all assignments associated with the entire mass spectra was in 

the range of 0.12 – 0.45 ppm. The instrumental detection limit was 1 mg/L and the method 

detection limit was 0.10 mg/L for AEO. Software used for molecular analysis was Xcalibur v 2.1 

(Thermo Fisher Scientific, San Jose, CA) and Composer v 1.0.6 (Sierra Analytics, Inc., Modesto, 

CA).  
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The total AEO concentration measured by ESI-HRMS is referred to below as AEOMS (where not 

specified, AEO was measured by the FTIR method). For ESI-HRMS quantification, external 

standard calibration was performed using a pre-defined 5-point regression of OSPW-derived 

organic acids at known concentrations and used to determine resulting AEO concentrations in 

samples. The values of total AEOMS measured in the initial and treated OSPW samples should be 

considered semi-quantitative due to: a) a lack of certified naphthenic acid standards or 

alternatives; b) limited method validation and uncertainty estimates. The method and analytical 

parameters used in the present method can be found in SOPs (available from the Environment 

Canada website). It should be understood that the present semi-quantitative method is a step in 

progression to a final quantitation goal. 

UV/visible optical absorption was measured with a spectrophotometer (BioTek Epoch). 

Turbidity (APHA 2130B), total suspended solids (TSS, APHA 2540D), total dissolved solids 

(TDS, APHA 2540C), mineral oil and grease (APHA 5520B), total organic carbon (TOC, APHA 

5310B, combustion temperature 800 °C), chemical oxygen demand (COD, APHA 5220D), 

biochemical oxygen demand (BOD, APHA 5210B), anion concentration by ion chromatography 

(bromide, chloride, fluoride, nitrate, nitrite and sulfate, EPA 300.0), speciated alkalinity (as 

CaCO3, EPA 310.2), dissolved metals by inductively coupled plasma mass spectrometry 

(ICPMS, EPA 200.8), free chlorine, total residual chlorine (SM 4500-CL G, EPA 330.5) and 

total trihalomethanes (SW846 8260) were measured according to standard methods by ALS 

Environmental (Waterloo, ON, Canada), a laboratory accredited by the Canadian Association for 

Laboratory Accreditation (CALA) according to international standards (ISO 17025). 

The acute toxicity of the OSPW towards Vibrio fischeri was measured according to the Microtox 

assay, performed according to Environment Canada protocol EPS 1/RM/24 by AquaTox Testing 

& Consulting Inc. (Guelph, ON, Canada), a CALA certified laboratory. The Microtox assay 

measures changes in light emission of the luminescent bacteria following 15 min sample 

incubation, where the IC20 (inhibitory concentration 20%) refers to the concentration of test 

sample at which the intensity of bacteria light emission is reduced by 20%. 

3.4 Results and Discussion 

3.4.1 Degradation of AEO by Solar Photocatalysis 

AEO and NA concentration, along with other water quality characteristics of the OSPW used in 

these experiments, are presented in Table 2 and Table 3. The measured values were found to be 

within the range of values typically reported for OSPW,78 and the majority of the dissolved 

organic carbon (TOC) was accounted for by the AEO (assuming ~75% of the AEO mass is 

carbon). Centrifuged OSPW (i.e., with suspended solids removed) was used for most 

experiments, since suspended solids content in OSPW varies between different process streams 

and tailings ponds, and so to avoid these complications and ensure our findings are generally 

applicable, we focused our study on the water matrix and dissolved compounds. 
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Table 2. Water quality characteristics of OSPW. 

Parameter Raw OSPW 

pH 8.38 

Mineral Oil & Grease (mg/L) <1.0 

Turbidity (NTU) >200 

TSS (mg/L) 49.5 

TDS (mg/L) 1450 

Conductivity (mS/cm) 1.695 

Anionsa  

Bromide (mg/L) <0.50 

Chloride (mg/L) 158 

Fluoride (mg/L) 3.87 

Nitrate (mg/L) <0.50 

Nitrite (mg/L) <0.50 

Sulphate (mg/L) 204 

Alkalinity (mg/L as CaCO3) 444 

Dissolved Metals  

Aluminum (Al) (mg/L) <0.10 

Antimony (Sb) (mg/L) <0.0050 

Arsenic (As) (mg/L) <0.010 

Barium (Ba) (mg/L) 0.197 

Beryllium (Be) (mg/L) <0.0050 

Bismuth (Bi) (mg/L) <0.010 

Boron (B) (mg/L) 2.29 

Cadmium (Cd) (mg/L) <0.00090 

Calcium (Ca) (mg/L) 20.8 

Chromium (Cr) (mg/L) <0.0050 

Cobalt (Co) (mg/L) <0.0050 

Copper (Cu) (mg/L) <0.010 

Iron (Fe) (mg/L) <0.50 

Lead (Pb) (mg/L) <0.0050 

Lithium (Li) (mg/L) <1.0 

Magnesium (Mg) (mg/L) 10.6 
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Manganese (Mn) (mg/L) <0.010 

Molybdenum (Mo) (mg/L) 0.0675 

Nickel (Ni) (mg/L) <0.010 

Phosphorus (P) (mg/L) <0.50 

Potassium (K) (mg/L) 18 

Selenium (Se) (mg/L) <0.0040 

Silicon (Si) (mg/L) <10 

Silver (Ag) (mg/L) <0.0010 

Sodium (Na) (mg/L) 315 

Strontium (Sr) (mg/L) 0.499 

Thallium (Tl) (mg/L) <0.0030 

Tin (Sn) (mg/L) <0.010 

Titanium (Ti) (mg/L) <0.020 

Tungsten (W) (mg/L) <0.10 

Uranium (U) (mg/L) <0.010 

Vanadium (V) (mg/L) <0.0050 

Zinc (Zn) (mg/L) <0.030 

Zirconium (Zr) (mg/L) <0.040 

aDetermined for centrifuged and filtered OSPW 

 

The initial experiment exposed OSPW containing different concentrations of photocatalyst (0.01 

– 0.5 g/L) to natural sunlight to evaluate the feasibility of the method and optimize treatment 

conditions (Figure 4a). One day of sunlight exposure (typically ~25 MJ/m2 over ~14 h daylight, 

Table 1) was found to virtually eliminate AEO at a TiO2 loading of 0.5 g/L, and substantial 

removal was observed at significantly lower TiO2 concentrations, validating the potential of solar 

photocatalysis. These results compare favourably to a previous study by Headley et al. which 

showed 75% removal of AEO spiked into deionized water (64 mg/L) after 8 h of photocatalytic 

treatment.69 TiO2 concentrations above 0.5 g/L offered no further improvements in AEO 

degradation rate, presumably due to excess TiO2 occluding light penetration into solution, and 

thus 0.5 g/L TiO2 was used in subsequent experiments. 
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Figure 4. (a) Remaining AEO in centrifuged OSPW after 1 day of solar photocatalytic treatment 

at various concentrations of TiO2. (b) Solar photocatalytic degradation of AEO in centrifuged (○) 

and raw (●) OSPW over the course of 1 day in the presence of 0.5 g/L TiO2; the dashed trend 

indicates OSPW exposed to sunlight in the absence of TiO2. 

 

The rate of the photocatalytic AEO removal was investigated (Figure 4b). The results 

demonstrated that the process obeyed apparent first-order kinetics (pseudo-first order rate 

constant 1.86 ± 0.13 x 10-7 m2/J), with 80% of the AEO eliminated within the first 6 hours of 

sunlight exposure (~9 MJ/m2 insolation, from dawn until noon), and complete removal achieved 

after 14 hours (i.e., at 25 MJ/m2 insolation by the end of the day). Even at a comparatively low 

TiO2 loading of 0.01 g/L, substantial AEO removal (74 ± 14%) could be achieved within three 

days of sunlight exposure (64 MJ/m2 insolation over 41.5 hours, Figure 5). Put into context of 

other AOPs, potassium permanganate and sodium persulfate (at 5 and 10 g/L respectively) each 

required between 20-40 days to remove 80% of OSPW AEO (from an initial concentration of 
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~56 mg/L).14 Without sunlight exposure, 4% of the AEO was removed after 24 h of stirring with 

TiO2 in the dark, representing only slight adsorption to the catalyst, and confirming that the 

extensive AEO removal observed under sunlight is the result of a photochemical process. 

Minimal AEO removal (~10-15%) was observed under sunlight alone in the absence of the 

photocatalyst (Figure 4b, Figure 5). This minor degradation is attributed to the natural photolysis 

of NAs, presumably due to absorbance of the carbonyl group or aromatic species (Figure 6).79 

 

 

Figure 5. Solar photocatalytic degradation of AEO in centrifuged OSPW in the presence of 0.01 

g/L TiO2; the dashed trend indicates OSPW exposed to sunlight in the absence of TiO2. 

 

 

Figure 6. UV/visible optical density of raw and centrifuged OSPW, and 0.5 g/L TiO2 suspension 

in centrifuged OSPW, with the solar spectrum for comparison (ASTM G173-03 global tilt). Note 
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that for the raw OSPW and TiO2 suspension, optical density includes contributions from particle 

light scattering. 

 

The temperature dependence of the degradation kinetics was assessed through an Arrhenius 

treatment (Figure 7), yielding an apparent activation energy of 31.9 kJ/mol for the reaction, 

which is within the range previously reported for photocatalytic reactions.80,81 However, since 

our experiments were performed at ambient outdoor conditions subject to natural environmental 

variation, the effect of temperature on the photocatalytic treatment will be examined more 

closely in future work under controlled conditions. 

 

 

Figure 7. Arrhenius plot of solar photocatalytic degradation of AEO in centrifuged OSPW in the 

presence of 0.5 g/L TiO2, where k is the apparent rate constant (with units of m2/MJ). The linear 

regression fit is given as a dashed line, where the data point highlighted in red is taken as an 

outlier. 

 

The photocatalysts were also found to be largely reusable with minimal loss in photocatalytic 

activity (Figure 8). Some loss in performance after five treatment cycles (~20% lower apparent 

rate constant) is possibly due to aggregation of the particles (arising from compaction during 

collection by centrifugation), or fouling of the TiO2 surface over time, and could likely be 

mitigated with better dispersion or particle washing techniques. However, such process 

optimization was beyond the scope of this work. 
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Figure 8. Recyclability of a single batch of TiO2 nanoparticles to degrade AEO in centrifuged 

OSPW at 0.5 g/L TiO2 under sunlight. 

 

While clarified water offers idealized conditions for photochemical experiments, light 

penetration into turbid wastewaters is a practical concern for realistic usage scenarios. To 

understand the effect of suspended solids on the photocatalytic treatment, the treatment was also 

performed in raw OSPW containing 50 mg/L suspended solids (turbidity >200 NTU, Table 2), 

which has a much greater light attenuation compared to centrifuged OSPW (Figure 6). 

Remarkably, the degradation rate was not significantly different in raw versus centrifuged 

OSPW (Figure 4b, p = 0.07), which is surprising since the turbidity of OSPW has previously 

been assumed to be an insurmountable barrier for application of light-dependent treatment 

processes.13,79 However, considering that UV light attenuation by 0.5 g/L TiO2 is actually greater 

than that due to natural suspended solids in the OSPW (Figure 6), we hypothesized that the 

majority of the observed photocatalytic activity was originating near the surface of the water 

where light absorption by the catalyst was greatest. Indeed, not stirring the OSPW during 

photocatalytic treatment resulted in significantly less degradation of AEO (Figure 9), as the TiO2 

nanoparticles settle out of suspension under the influence of gravity (Figure 10). Thus solar 

photocatalysis is feasible even in raw OSPW provided the system is sufficiently well-mixed to 

facilitate mass transfer to the interface and illumination of the catalyst. 

It must also be acknowledged that the impact of natural suspended solids in the raw OSPW could 

affect the photocatalytic treatment through more complex mechanisms beyond simply light 

screening. Suspended OSPW clays could serve as a source of adsorbed AEO, which could be 

released throughout the treatment, and similarly as a sink for sorption of partially oxidized 

intermediates. Furthermore, heterocoagulation with clays could lower available surface area of 

TiO2 nanoparticles for treatment. However, given the similar treatment kinetics observed 
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between the centrifuged and raw OSPW, these potential mechanisms are not thought to be 

practically significant. 

 

 

Figure 9. The influence of stirring on the remaining AEO in OSPW after solar photocatalytic 

treatment for 1 day at 0.5 g/L TiO2. 
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Figure 10. Gravity settling of TiO2 suspensions in vials of centrifuged OSPW after 0 h (a), 1 h 

(b) and 24 h (c). From left-to-right, the vials contain 0.5, 0.1, 0.05, 0.01 and 0 g/L TiO2, 

respectively. 

 

3.4.2 Mineralization, Toxicity, and Biodegradability Assessment 

A more detailed study was conducted of the organic constituents in the photocatalytically treated 

water (Table 3, Figure 11). Both FTIR and HRMS, two independent measurement techniques, 

revealed the same trend in AEO degradation. While HRMS confirmed photodegradation of the 

majority of the AEO within ~1 day-equivalent of sunlight exposure (90% AEOMS removal after 

30 MJ/m2 insolation), only 45% of the TOC was removed, indicating that photocatalytic 

mineralization had not yet proceeded to completion, but suggesting rather the transformation of 

the AEO into oxidized intermediates. This residual organic carbon was found to be significantly 

more biodegradable than the initial AEO however, where the ratio of BOD to TOC or COD is 

taken as a rough metric of biodegradability (i.e., the BOD/TOC ratio was found to increase 

throughout the course of treatment, Figure 11). Furthermore, after photocatalytic treatment the 

initial acute toxicity of the OSPW towards the microorganism Vibrio fischeri was eliminated, 

which is notable since degradation intermediates and byproducts are sometimes implicated to 

have greater toxicity than the parent compounds. With sufficient treatment time (~1 week-

equivalent of sunlight exposure, Table 3, Treated OSPW Endpoint), AEO was undetectable by 

FTIR or HRMS, and TOC had dropped to near the detection limit (of 1.0 mg/L). This may 

indicate that mineralization eventually proceeds to completion, implying that all AEO and 
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intermediate species are susceptible to photocatalytic degradation. This is significant since other 

AOPs, such as ozonation, cannot fully oxidize AEO to completion, leaving degradation 

byproducts and a high residual TOC concentration in the treated water.16,82,83 

 

Table 3. Changes in OSPW water quality characteristics due to solar photocatalytic treatment. 

Parameter Initial 

OSPWa 

Treated OSPWb 

(Midpoint) 

Treated OSPWb 

(Endpoint) 

Solar Controlc 

(Endpoint) 

Insolation (MJ/m2) 0 31.4 181.4 181.4 

AEO (mg/L)d 39.8 ± 1.1 0.7 ± 0.3 <0.6 28.9 ± 1.0 

AEOMS (mg/L) 43.4 4.2 0.2  

TOC (mg/L) 45.1 24.7 3.5  

COD (mg/L) 135 54 <10  

BOD (mg/L) <2.0 12.7 4.4  

Microtox 15 min 

IC20 (% v/v) 

77.2 ± 3.4 >90 >90 75.7 ± 5.0 

aCentrifuged OSPW bTreated with 0.5 g/L TiO2 under the insolation indicated cInsolated in the 

absence of TiO2; AEOMS, TOC, COD and BOD were not measured for this sample dDetermined 

by FTIR 

 

 

Figure 11. Solar photocatalytic removal of AEO (measured by FTIR), AEOMS and TOC, and 

increase in organic carbon biodegradability (BOD/TOC ratio), over the course of ~1 week-

equivalent insolation of centrifuged OSPW containing 0.5 g/L TiO2. Lines connecting data 

points are simply a visual guide. 
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3.4.3 Analysis of Degradation Intermediates  

In order to investigate the photocatalytic degradation process in OSPW, and gain a better 

understanding as to the composition of the organic intermediates formed, high resolution MS 

analysis of the treated water was performed (Figure 12). The initial OSPW AEO was found to be 

primarily composed of O2, O3 and O4 species, along with their singly sulfur-substituted 

counterparts (OxS classes, Figure 13). Following photocatalysis, a dramatic shift towards higher 

oxygen content in the residual AEO was observed (Figure 13). Similar trends have been 

observed previously in the photooxidation of petroleum samples,84–88 albeit by a different 

mechanism in the absence of a photocatalyst, and given that OSPW AEO composes 

predominantly saturated compounds known to be resistant to natural photolysis.13,79 The total 

AEO concentration after treatment was only 4.2 mg/L (Table 3, Figure 14), and thus the majority 

of the initial AEO was presumably oxidized to intermediate compounds, still measurable as TOC 

and COD. These findings indicate that the photocatalytic degradation of AEO proceeds via 

progressive addition of oxygen to the AEO en route to complete mineralization. This is 

significant since some oxidized NAs have been previously reported to have lower toxicity and 

higher biodegradability than their parent NAs,16,89 which correlates well with the BOD and 

Microtox results (Table 3). Interestingly, following treatment, OxS classes were found to 

comprise a relatively smaller fraction of the AEO than initially (0.07 vs. 0.32 OxS:Ox, 

respectively), potentially indicating preferential photocatalytic degradation of the sulfur 

heteroatomic species (Figure 13). Preferential photochemical reactivity of sulfur heterotomic 

petroleum compounds has also been previously observed, and has been attributed to the 

availability of the sulfur non-bonding electrons.85–87,90 
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Figure 12. Mass spectra of the initial OSPW (a), OSPW after photocatalytic treatment with 31 

MJ/m2 insolation (b) and 181 MJ/m2 insolation (c) (c.f. Table 3). Note that the AEO 
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concentrations measured from (c) were at the detection limit of the instrument, and thus the mass 

spectrum (c) likely represents artefacts from the sampling or extraction process. 

 

 

Figure 13. Distribution of Ox and OxS classes in OSPW AEO (normalized based on the relative 

abundance of each species within the individual samples) before and after photocatalytic 

treatment (31 MJ/m2 insolation, c.f. Table 3). Other heteroatomic classes were at negligible 

concentration and thus excluded from this figure. Note that the total AEO concentration in the 

treated sample is only ~10% that of the initial OSPW (c.f. Table 3). 

 

 

Figure 14. Distribution of Ox and OxS classes in OSPW AEO (based on intensity values) before 

and after photocatalytic treatment (31 MJ/m2 insolation, c.f. Table 3). Other heteroatomic classes 

were at negligible concentration and thus excluded from this figure. 
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In addition to monitoring the change in oxygen content of the AEO, the O2 and O4 NA classes 

were selected as representative classes for investigating changes in the molecular weight and 

structural complexity of the AEO following photocatalytic treatment (Figure 15). A shift towards 

lower carbon numbers after treatment was observed for both the O2 and O4 classes, suggesting 

preferential photocatalytic oxidation of higher molecular weight species. Furthermore, the initial 

cluster in the range of 6-8 double bond equivalents (DBE) for the O2 distribution (Figure 15a) 

was almost completely photodegraded after treatment (Figure 15c), indicating higher reactivity 

of photocatalysis towards NAs with more complex molecular structures (i.e., more cyclic or 

unsaturated compounds). Photocatalysis and other radical-based AOPs have been previously 

reported to preferentially target branch points in NAs and other aliphatic contaminants.15,89,91,92 

Similar trends of reduced carbon numbers and DBEs following treatment were observed for the 

O5 – O7 classes (Figure 16); if it is assumed that some of the initial O2 & O4 AEO are oxidized to 

O5 – O7 species during treatment, the effect is similarly pronounced. These findings are very 

promising since AEO species with higher DBE and carbon numbers are the most 

environmentally persistent and resistant to biodegradation,8,9,67 and thus higher priority targets 

for alternative water treatment methods. 

 

 

Figure 15. Relative distribution of O2 (a & c) and O4 (b & d) AEO classes before (a & b) and 

after (c & d) photocatalytic treatment (31 MJ/m2 of insolation, c.f. Table 3). The data is 

normalized based on the relative abundance of each species within the individual samples; note 

that the total AEO concentration in the treated sample is only ~10% that of the initial OSPW (c.f. 

Table 3). 
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Figure 16. Relative distribution of O5 (a & d), O6 (b & e) and O7 (c & f) AEO classes before (a–

c) and after (d–f) photocatalytic treatment (31 MJ/m2 of insolation, c.f. Table 3). The data is 

normalized based on the relative abundance of each species within the individual samples; note 

that the total AEO concentration in the treated sample is only ~10% that of the initial OSPW (c.f. 

Table 3). 

 

3.4.4 Superoxide-Mediated Reaction Pathway 

To gain further insight into the photocatalytic reaction mechanism and radical species involved 

in the NA degradation process, we spiked various radical scavengers into the OSPW prior to 

treatment in order to selectively quench specific free radical species formed during 

photocatalysis. Addition of benzoquinone, a scavenger for superoxide anion radicals, resulted in 

a dramatic inhibition of AEO degradation (Figure 17), implicating superoxide as the critical 

radical species mediating photocatalysis in OSPW. This is an unanticipated finding, as 

conventionally hydroxyl radicals or valence band holes are identified as the primary oxidants 

driving photocatalysis, and superoxide is often considered merely as a byproduct formed from 

the reduction half-reaction at the conduction band.27,93 In OSPW however, superoxide appears to 

be the primary radical species driving the reaction. 
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Figure 17. Inhibition of TiO2 solar photocatalytic activity in the presence of different radical 

scavengers: ammonium oxalate (AO, scavenger of photogenerated holes), 1,4-benzoquinone 

(BQ, scavenger of superoxide radicals), sodium persulfate (SP, scavenger of photogenerated 

electrons), and tert-butyl alcohol (TB, scavenger of hydroxyl radicals). 

 

Halide and bicarbonate anions are known to be strong scavengers of hydroxyl radicals and 

valence band holes, which react to form less powerful halide and carbonate radicals.22,94 Given 

the high concentration of these anions in the OSPW (Table 2), it is presumed that hydroxyl 

radicals and valence band holes are already strongly suppressed during the photocatalytic 

reaction, and thus providing additional scavengers for these species had little effect (Figure 17). 

Superoxide anion is known to be significantly less susceptible to anion quenching, with a half-

life on the order of hundreds of seconds.95,96 

While superoxide can simply add to organic contaminants to form ketones or hydroxyl groups,97 

we hypothesize that the primary reason the photocatalytic degradation of NAs is so heavily 

superoxide dependent is that superoxide may be essential for ring-opening, which is a necessary 

intermediate step when mineralization is the known endpoint. Although less reactive than 

hydroxyl radicals, halide radicals are known to be selective oxidants capable of one-electron 

oxidation and hydrogen abstraction,94 and the carbon-centered radicals formed in these processes 

could subsequently react with superoxide to initiate ring-opening.98 For example, one potential 

mechanism of superoxide-mediated C-C bond cleavage is the elimination of a β-hydrogen via a 

hydroperoxide intermediate (Scheme 1), as reported for lipid peroxides.99,100 Superoxide is also 

well known to react across double-bonds through a dioxetane, as in the photocatalytic ring-

opening of aromatics (Scheme 2).101–103,81 Further reaction according to the photo-Kolbe process 

could then degrade the linearized NAs.104,105  
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Scheme 1. Suggested mechanism of superoxide bond cleavage via a hydroperoxide intermediate, 

where X• represents an oxidizing free radical. 

 

 

Scheme 2. Suggested mechanism of superoxide bond cleavage via a dioxetane intermediate, 

where X• represents an oxidizing free radical. 

 

Considering that halide radicals may be involved in the photocatalytic degradation process, we 

were concerned as to potential formation of toxic chlorinated byproducts, as has been observed 

previously for photocatalysis in saline waters.106–108 We thus had the treated OSPW tested for 

residual chlorine or trihalomethanes, but found no measurable concentrations of either. 

Combined with the absence Microtox toxicity post-treatment, the treated OSPW appears to be 

free of at least these particular byproducts. 

3.5 Environmental Significance 

We have demonstrated that solar photocatalysis is feasible in raw OSPW, with the potential to 

eliminate toxicity and completely mineralize recalcitrant compounds through a superoxide-

mediated oxidative pathway. Efficient degradation kinetics were achieved despite the water’s 

high ionic strength and suspended solids content. This study thus represents the successful solar 

photocatalytic remediation of a highly complex target pollutant in a challenging industrial 

wastewater. 

Given the large increase in biodegradability of the oxidized intermediate species and elimination 

of toxicity achieved after only one day of treatment, complete mineralization by photocatalysis is 

likely not required, but rather photocatalysis may serve to complement existing treatment 

methods, such as biodegradation. Ensuring sufficient mixing to keep the catalyst and 

contaminants suspended near the illuminated interface will be a key concern in the continued 

development of this technology. Practical methods to recover and recycle the photocatalyst 

nanoparticles must also be assessed, although a number of potential solutions have already been 

described.54,109 
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Many well-established water treatment methods, while proven effective for OSPW treatment in 

the lab, are defeated by the scale of the problem for practical implementation. While natural 

photolysis of OSPW organics in the tailings ponds is presumably negligible,79 considering that 

photocatalysts are in principle indefinitely recyclable, and given the vast surface area of the 

ponds exposed to sunlight, we believe that solar photocatalysis is a compelling “green” AOP 

with the potential to address challenging water treatment problems in the oil industry.  
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Chapter 4 

Photocatalytic degradation kinetics of naphthenic acids in oil 

sands process-affected water: multifactorial determination of 

significant factors‡ 

 

4.1 Summary 

Oil sands process-affected water (OSPW) is 

generated as a byproduct of bitumen 

extraction in Canada’s oil sands. Due to the 

water’s toxicity, associated with dissolved 

acid extractable organics (AEO), especially 

naphthenic acids (NAs), along with base-

neutral organics, OSPW may require 

treatment to enable safe discharge to the 

environment. Heterogeneous photocatalysis 

is a promising advanced oxidation process (AOP) for OSPW remediation, however, predicting 

treatment efficacy can be challenging due to the unique water chemistry of OSPW from different 

tailings ponds. The objective of this work was to study various factors affecting the kinetics of 

photocatalytic AEO degradation in OSPW. The rate of photocatalytic treatment varied 

significantly in two different OSPW sources, which could not be accounted for by differences in 

AEO composition, as studied by high resolution mass spectrometry (HRMS). The effects of 

inorganic water constituents were investigated using factorial and response surface experiments, 

which revealed that hydroxyl (HO•) radical scavenging by iron (Fe3+) and bicarbonate (HCO3
-) 

inhibited the NA degradation rate. The effects of NA concentration and temperature on the 

treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood and Arrhenius 

models; pH and temperature were identified as weak factors, while dissolved oxygen (DO) was 

critical to the photo-oxidation reaction. Accounting for all of these variables, a general empirical 

kinetic expression is proposed, enabling prediction of photocatalytic treatment performance in 

diverse sources of OSPW.  

                                                 

 

 

‡ This chapter is adapted from a previously published article: Leshuk, T.; de Oliveira Livera, D.; 

Peru, K. M.; Headley, J. V.; Vijayaraghavan, S.; Wong, T.; Gu, F. Photocatalytic Degradation 

Kinetics of Naphthenic Acids in Oil Sands Process-Affected Water: Multifactorial Determination 

of Significant Factors. Chemosphere 2016, 165, 10–17. 
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4.2 Introduction 

Surface mining of bitumen in Canada’s Athabasca region produces large quantities of oil sands 

process-affected water (OSPW) as a byproduct of bitumen extraction, which is stored on site in 

tailings ponds for reuse. Despite water recycling efforts, fresh water consumption by the oil 

sands industry was ~170 million m3 in 2014,110 and over 1 billion m3 of tailings have been 

accumulated in at least 170 km2 of ponds in Alberta.62,63 OSPW is a saline mixture of suspended 

clays and bitumen-derived dissolved organics, known to be acutely and chronically toxic to 

aquatic and mammalian species;59–61,111,112 thus there is currently no deliberate release of OSPW 

to the environment. The toxicity of OSPW is attributed in part to the acid extractable organics 

(AEO), especially naphthenic acids (NAs),113 a complex mixture of acyclic and cycloaliphatic 

carboxylic acids with the conventional formula CnH2n+zO2 (where z is a negative even integer 

related to the number of rings and double bonds).12,13 OSPW AEO also contains a broad range of 

organics not conforming to this classical NA structure, including aromatic and heteroatom-

containing acids, as well as low polarity species.114–116,64 As NAs are resistant to 

biodegradation,8,9 and their toxicity persists after decades of environmental exposure,10 

reclamation of the oil sands tailings ponds and safe discharge OSPW will require new water 

treatment strategies.1 

The exceptionally large volume of water, and the recalcitrance of the AEO contaminants, may 

render OSPW treatment using conventional processes impractical or cost-prohibitive. Advanced 

oxidation processes (AOPs) have been shown to be particularly effective at detoxifying low 

concentrations of persistent organic pollutants, including NAs.15,19,117,118 Heterogeneous 

photocatalysis is an especially powerful AOP, and solar photocatalysis over TiO2 has been 

demonstrated to eliminate AEO from OSPW through oxidative mineralization.69,70,119 Using 

sunlight as an abundant free energy source, and given the ability of the photocatalyst to be 

recycled without the need for continuous chemical amendment of the water, photocatalysis may 

not suffer from the same limitations of cost and scale as other AOPs, and may instead share some 

advantages of passive treatment processes. 

Given the potential of photocatalysis for OSPW treatment, this study aimed to address some 

outstanding questions related to the kinetics and efficiency of the process. One challenge in 

translating technology from the laboratory into real use scenarios is that different wastewater 

streams, or tailings ponds in the case of OSPW, may have unique compositions, which may 

unpredictably affect treatment efficacy. Thus an objective of this work was to investigate factors 

affecting the kinetics of photocatalytic AEO degradation in OSPW, studied in two different 

OSPW samples. Another goal of this work was to provide a general kinetic expression for 

photocatalytic AEO degradation in different OSPW sources, to facilitate modelling of large-scale 

treatment systems, which is a critical step towards potential implementation. 
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4.3 Experimental 

4.3.1 Materials 

OSPW samples were provided by each of two producers operating in the Athabasca oil sands 

(Industry A and B), and stored at 4 °C in the dark. Prior to use, the OSPW was homogenized by 

stirring, and then centrifuged at 14,000 xg to remove suspended solids. 

A commercial mixture of naphthenic acids (technical grade, carbon numbers 6 – 20, z-classes 0 

to -4, as characterized by Damasceno et al.120), dichloromethane (DCM, ≥99.9%, HPLC grade), 

iron(III) nitrate nonahydrate (≥98%, ACS grade), sodium fluoride (≥99%, ACS grade), sodium 

phosphate dibasic (≥99%), nitrotetrazolium blue chloride (~98%) and terephthalic acid (98%) 

were purchased from Sigma-Aldrich and used as received. Sulfuric acid (95-98%, ACS grade, 

Fisher), sodium sulfate (≥99%, ACS grade, EMD), sodium chloride (≥99%, ACS grade, EMD), 

sodium bicarbonate (≥99%, ACS grade, Anachemia) and titanium dioxide nanoparticles 

(Aeroxide P25, ~10-50 nm particle diameter, 55 m2 g-1 surface area, Acros) were used as 

received. P25 TiO2 nanoparticles have been extensively studied and characterized in the 

literature, and are often used as a benchmark photocatalyst. 

Simulated OSPW was prepared using the commercial NA mixture, and unless otherwise stated, 

typically contained 85 mg/L NAs (from a 55.2 g/L stock solution in 1 M NaOH), 800 mg/L 

HCO3
- (from NaHCO3), 200 mg/L Cl- (from NaCl), and 200 mg/L SO4

2- (from Na2SO4), with a 

final pH of 8.7 (adjusted with HNO3). 

4.3.2 Photocatalytic Experiments 

Photocatalytic experiments were performed under in a custom photoreactor enclosure, consisting 

of an array of UVA fluorescent bulbs (Philips F20T12/BL, peak emission ~350 nm) suspended 

above the samples (Figure 18). The UV intensity was measured to be ~40 W/m2 with a UVA/B 

light meter (Sper Scientific, NIST certified calibration), which is similar to the UV content of the 

solar spectrum (ASTM G173-03 global tilt). Natural sunlight, however, due to its periodicity and 

variation in intensity, is significantly different from the constant UV intensity provided in this 

photoreactor. TiO2 powder (0.1 g) was first stirred into 200 mL of OSPW in a borosilicate glass 

beaker (63 mm diameter) and dispersed by bath sonication. Beakers were sealed with 

polyethylene film (Glad, measured to be UV transparent by spectrophotometry) to prevent 

evaporation during the experiments, and the sides were wrapped with Al foil. The mixture was 

then placed in the photoreactor and exposed to UV light while stirring at 500 rpm. Following the 

UV treatment, the OSPW mixture was centrifuged to remove the TiO2 nanoparticles, retaining 

the supernatant for analysis (stored at 4 °C in the dark). 
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Figure 18. (a) UV photoreactor used for the photocatalytic tests, and (b) the relative spectral 

distribution of its emission. 

 

In one experiment, to compare photocatalysis of AEO in the absence of matrix ions, AEO was 

extracted from each of the Industry A and B OSPW (using the same protocol as described for 

FTIR analysis below), reconstituted into 1 M NaOH, and then dissolved into deionized water at a 

concentration of ~70 mg/L. The pH of each solution was adjusted to ~8.7, and the AEO extracts 

in water were then photocatalytically treated as above for 2.5 h. 

To investigate the effect of dissolved ions on the photocatalytic treatment, factorial screening and 

response surface designed experiments were conducted using simulated OSPW with ion 

concentrations as indicated in the text (the concentrations of Cl- and SO4
2- were kept at 200 mg/L 

for all samples in the response surface study), and a UV exposure of 2 h. 

To test the effect of dissolved ions in real OSPW, in one experiment OSPW from Industry A was 

amended with Fe(NO3)3·9H2O and NaHCO3 to have the same concentrations of Fe and HCO3
- as 

Industry B OSPW (c.f. Table 4), prior to photocatalytic treatment (2 h UV exposure). 

 

Table 4. Water quality characteristics of OSPW from Industry A and Industry B. 

Parameter Industry A Industry B 

AEO (mg/L) 39.8 49 

TOC (mg/L) 45.1 56.8 

COD (mg/L) 135 193 

BOD (mg/L) <2.0 <2.0 
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pH 8.38 8.67 

Conductivity (mS/cm) 1.695 3.062 

Anions   

Bromide (mg/L) <0.50 0.14 

Chloride (mg/L) 158 101 

Fluoride (mg/L) 3.87 0.37 

Nitrate (mg/L) <0.50 0.67 

Nitrite (mg/L) <0.50 <0.10 

Sulphate (mg/L) 204 15.1 

Alkalinity (mg/L as 

CaCO3) 
444 796 

Dissolved Metals   

Aluminum (Al) (mg/L) <0.10 <0.10 

Antimony (Sb) (mg/L) <0.0050 <0.0050 

Arsenic (As) (mg/L) <0.010 <0.010 

Barium (Ba) (mg/L) 0.197 0.288 

Beryllium (Be) (mg/L) <0.0050 <0.0050 

Bismuth (Bi) (mg/L) <0.010 <0.010 

Boron (B) (mg/L) 2.29 2.67 

Cadmium (Cd) (mg/L) <0.00090 <0.00090 

Calcium (Ca) (mg/L) 20.8 13.8 

Chromium (Cr) (mg/L) <0.0050 <0.0050 

Cobalt (Co) (mg/L) <0.0050 <0.0050 

Copper (Cu) (mg/L) <0.010 <0.010 

Iron (Fe) (mg/L) <0.50 13.1 

Lead (Pb) (mg/L) <0.0050 <0.0050 

Lithium (Li) (mg/L) <1.0 <1.0 

Magnesium (Mg) (mg/L) 10.6 6.3 

Manganese (Mn) (mg/L) <0.010 0.045 

Molybdenum (Mo) 

(mg/L) 
0.0675 0.0369 

Nickel (Ni) (mg/L) <0.010 <0.010 

Phosphorus (P) (mg/L) <0.50 7.01 

Potassium (K) (mg/L) 18 11 
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Selenium (Se) (mg/L) <0.0040 <0.0040 

Silicon (Si) (mg/L) <10 <10 

Silver (Ag) (mg/L) <0.0010 <0.0010 

Sodium (Na) (mg/L) 315 698 

Strontium (Sr) (mg/L) 0.499 0.373 

Thallium (Tl) (mg/L) <0.0030 <0.0030 

Tin (Sn) (mg/L) <0.010 <0.010 

Titanium (Ti) (mg/L) <0.020 <0.020 

Tungsten (W) (mg/L) <0.10 <0.10 

Uranium (U) (mg/L) <0.010 <0.010 

Vanadium (V) (mg/L) <0.0050 <0.0050 

Zinc (Zn) (mg/L) <0.030 0.943 

Zirconium (Zr) (mg/L) <0.040 <0.040 

 

The effect of temperature on the photocatalytic kinetics was studied in OSPW from Industry A. 

Samples were equilibrated at temperature for 1 h in the dark before UV exposure. 

The effect of dissolved oxygen on the photocatalytic kinetics was assessed using simulated 

OSPW (50 mg/L NAs) in a septum-sealed flask, sparged with either air or pure N2 for 2 h in the 

dark before UV exposure, as well as continuously during the photocatalytic treatment. 

4.3.3 Radical Probe Assays 

Nitrotetrazolium blue chloride (NBT) at a concentration of 4 × 10-5 M was used to quantitatively 

detect superoxide radical (O2
•¯) generated by the TiO2 photocatalytic system. Superoxide 

concentrations were indirectly determined by monitoring the NBT maximum absorbance at 259 

nm with a spectrophotometer (BioTek Epoch) at set time intervals.121–123 The role of hydroxyl 

radicals (OH•) was investigated using a terephthalic acid (TA) fluorescence probe method,124,125 

with TA present at a concentration of 1 × 10-3 M in dilute NaOH (1 × 10-2 M). Fluorescence 

spectra were recorded on a Photon Technology International QM-4SE fluorimeter. The above 

procedure for photocatalytic experiments was adapted for these probe molecules, with NBT or 

TA replacing the NAs. 

4.3.4 Analysis 

The concentration of AEO (NAs in the case of simulated OSPW) was measured by Fourier 

transform infrared spectroscopy (FTIR) according to the standard method75,76 with minor 

modifications (viz., the acidified samples were extracted thrice with DCM in a 1:12.5 solvent to 

sample volumetric ratio, with 80 ± 4% total recovery), using the commercial NA mixture to 
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prepare the calibration curve. AEO is a composite measure of classical NAs, oxy-NAs 

(CnH2n+zOx, where x > 2), and other organic acids.64 

Samples were filtered prior to the following analyses (Whatman 934-AH glass fiber filter). 

UV/visible optical absorption was measured with a spectrophotometer (BioTek Epoch). Total 

organic carbon (TOC, APHA 5310B, combustion temperature 800 °C), chemical oxygen 

demand (COD, APHA 5220D), biochemical oxygen demand (BOD, APHA 5210B), anion 

concentration by ion chromatography (bromide, chloride, fluoride, nitrate, nitrite and sulfate, 

EPA 300.0), speciated alkalinity (as CaCO3, EPA 310.2), and dissolved metals by inductively 

coupled plasma mass spectrometry (ICPMS, EPA 200.8) were measured according to standard 

methods by ALS Environmental (Waterloo, ON, Canada), a laboratory accredited by the 

Canadian Association for Laboratory Accreditation (CALA) according to international standards 

(ISO 17025).  

4.3.4.1 High Resolution Mass Spectrometry 

Electrospray ionization high resolution mass spectrometry (ESI-HRMS) was used to analyze the 

composition and speciation of the OSPW AEO. For ESI-HRMS, solid phase extraction (SPE), as 

previously described by Headley et al.77 was used as a concentration and cleanup technique 

(method recovery was 79 ± 7%). In brief, 10 mL of each sample was acidified using 

concentrated formic acid to a pH of ~2 . SPE cartridges (200mg, ENV+, Biotage®, Charlotte, 

NC), were preconditioned with 7 mL each of acetonitrile and Milli-Q water. Eluents were 

discarded and the organic fraction eluted at a flow rate of ~1 mL/min using 7 mL of acetonitrile. 

Extracts were collected in 10 mL glass test tubes and evaporated using N2 to just dryness. The 

dried residue was then reconstituted in 1 mL of 50:50 Milli-Q water:acetonitrile with 0.1% 

ammonium hydroxide and transferred to 2 mL amber GC vials. 

The ESI-HRMS chemical analysis was conducted using an LTQ Orbitrap Elite (Thermo Fisher 

Scientific, San Jose, CA) operating in full scan and negative-ion mode. Mass resolution was set 

to 240,000 with an m/z scan range of 100-600. ESI source had the following conditions: sheath 

gas flow rate 25 (arbitrary units), spray voltage 2.90 kV, auxiliary gas flow rate 5 (arbitrary 

units), S lens RF level 67%, heater temperature 50 °C, and capillary temperature 275 °C. 

Infusion solvent used was 50:50 acetonitrile:water containing 0.1% ammonium hydroxide at a 

flow rate of 200 µL/min. The mass accuracy was <2 ppm error for all mass assignments, and the 

root mean square (RMS) error for all assignments associated with the entire mass spectra was in 

the range of 0.12 – 0.45 ppm. The instrumental detection limit was 1 mg/L and the method 

detection limit was 0.10 mg/L for AEO. Software used for molecular analysis was Xcalibur v 2.1 

(Thermo Fisher Scientific, San Jose, CA) and Composer v 1.0.6 (Sierra Analytics, Inc., Modesto, 

CA). 

4.3.4.2 Fractal Image Analysis 

Photomicrographs of TiO2 aggregates were obtained using an optical microscope (Zeiss 

Axioskop with AxioCam ERc 5s camera). Images were converted to binary using the GNU 

Image Manipulation Program, and then the aggregate size and shape descriptors were measured 
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in ImageJ (only aggregates with a projected area ≥4 µm2 were counted, due to optical resolution 

limitations). 

The specific surface area of aqueous TiO2 nanoparticle aggregates was estimated from the 

microscopy measurements according to fractal scaling properties,126–129 combining data from 

multiple micrographs of the same sample. The two-dimensional fractal dimension of aggregates 

(D2) were determined through regression of the projected area (A) and Feret diameter (or 

maximum length, L), of the aggregates as 

 𝐴 ∝ 𝐿𝐷2  (23) 

The three-dimensional fractal dimension (D3) was then estimated according to the model 

provided by Lee and Kramer:127 

 𝐷3 = 1.391 + 0.01𝑒2.164𝐷2 (24) 

The number of primary particles in an aggregate (N) can be estimated as 

 𝑁 = 𝑘𝑓 (
𝐿

𝑑0
)
𝐷3

 (25) 

where d0 is  the diameter of the primary particles (taken as 28 nm for P25 TiO2 nanoparticles), 

and kf is a proportionality prefactor, estimated according to Ehrl et al. as:128  

 𝑘𝑓 = 4.46𝐷3
−2.08 (26) 

The mass of the aggregates could then be calculated given the density of TiO2. The surface area 

of the aggregates (AS) was estimated as 𝐴𝑆 = 4𝐴, which holds for randomly oriented convex 

particles, and is only a first-order approximation in the case of fractal aggregates.130 The specific 

surface area (Asp) was then calculated as simply AS divided by aggregate mass. 

4.3.4.3 Statistics 

Multiple linear regression was used to fit the models for the factorial screening and response 

surface experiments according to standard methods.131,132 Error bars given in figures represent 

sample standard deviation (where replicates are indicated), or the standard error of the AEO/NA 

concentration measurement (arising primarily from the uncertainty in the method extraction 

efficiency) for single data points. For computed quantities, error bars represent the standard error 

of the corresponding regression coefficients. 

4.4 Results and Discussion 

4.4.1 Photocatalytic kinetics can vary significantly with OSPW source 

The rate of photocatalytic AEO removal was investigated in two samples of OSPW from 

different industrial suppliers (Figure 19). Apparent first-order kinetics were observed for each 

sample, with pseudo-first order rate constants of 11.0 ± 0.5 × 10-5 s-1 and 1.33 ± 0.06 × 10-5 s-1 

measured for OSPW from Industry A and B, respectively. Given the similar AEO concentration, 
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pH and conductivity of the OSPW samples (Table 4), it was unexpected that the degradation rate 

in Industry B OSPW would be fully 8.3 times slower than Industry A OSPW. We hypothesized 

that this difference in photocatalytic reactivity between the two samples could be due to (1) 

different AEO compositions, given the structure-reactivity dependence of NAs demonstrated in 

other AOPs;15,91 (2) different water content of inorganic species; or (3) a combination of organic 

and inorganic factors. 

 

 

Figure 19. Photocatalytic degradation of AEO in OSPW from Industry A (●) and Industry B (○), 

where C and C0 are the concentration and initial concentration of AEO, respectively. 

4.4.2 AEO speciation does not explain variation in photocatalytic rate between 

OSPW sources 

To investigate the first hypothesis above, i.e., whether the presence of any significant differences 

in molecular structure could account for the different photocatalytic reactivity, the AEO 

composition of the OSPW samples was analysed by high resolution mass spectrometry (HRMS). 

The AEO class distributions of the two samples were found to be largely similar, primarily 

composed of O2, O3 and O4 compounds, along with their singly sulfur-containing counterparts 

(OxS classes, Figure 20). These sulfur classes, thought to be more photocatalytically reactive,119 

comprised a slightly larger fraction of the Industry A AEO (0.32 OxS:Ox vs. 0.23 in Industry B). 

The O2 class was taken as representative to investigate further structural differences, wherein 

both samples were found to have similar distributions of carbon numbers and double bond 

equivalents (DBE), including two foci of intensity centred on the same species (Figure 21). 

While the Industry B O2 compounds had a slightly higher carbon number and DBE averages 

(15.4 and 5.4, respectively) than the Industry A source (15.2 and 5.2), the overall differences 

between the two AEO samples appeared to be relatively minor. 
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Figure 20. Distribution of Ox and OxS classes in AEO from Industry A and B OSPW 

(normalized based on the relative abundance of each species within the individual samples). 

Other heteroatomic classes were at negligible concentration and thus excluded from this figure. 

 

 

Figure 21. Relative distribution of O2 class AEO from (a) Industry A and (b) Industry B OSPW. 

The data is normalized based on the relative abundance of each species within the individual 

samples. 

 

As a preliminary test of whether differences in molecular composition could explain the lower 

reactivity of the Industry B AEO towards photocatalytic degradation, AEO was extracted from 

each OSPW sample and spiked into deionized water. Photocatalytic treatment of these spiked 

solutions (0.36 MJ/m2 UV exposure) revealed that the two AEO samples were equivalently 
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susceptible to degradation when isolated from their original matrices (Figure 22). While this 

experiment was only a gross assessment of photocatalytic non-specificity toward different AEO 

mixtures, the result suggested the possibility of an inhibitory matrix effect, without precluding a 

more complex interaction between AEO and dissolved inorganics in OSPW. Furthermore, the 

most striking visual difference between the two OSPW samples was the strong yellow color of 

the Industry B OSPW, which was revealed in the course of this experiment to be associated with 

the OSPW matrix rather than the AEO (Figure 23). This observation suggested a significant 

difference in inorganic water constituents between the two OSPW samples, which may have 

affected the photocatalytic rate. 

 

 

Figure 22. Photocatalytic degradation of OSPW AEO extracts spiked into deionized water (n = 

2). 
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Figure 23. UV/visible absorption of Industry A (black) and Industry B (red) OSPW (solid lines) 

and OSPW AEO extracts spiked into deionized water (dashed lines). Inset: Industry A (left) and 

Industry B (right) OSPW (upper) and OSPW AEO extracts spiked into deionized water (lower). 

 

4.4.3 Iron and bicarbonate inhibit photocatalytic NA degradation 

The effect of inorganic matrix constituents on photocatalytic NA degradation was investigated 

under controlled conditions, focusing on six factors (listed in Table 5), which were found at 

significantly different concentrations in the Industry A and B OSPW samples (Table 4). Many of 

these species have been previously reported to modulate photocatalytic activity.133,134 

Considering the alkaline pH, the dissolved iron measured in the Industry B OSPW was likely 

ligated with organic acids,135,136 which could also account for the water’s color (Figure 23), 

given the strong optical absorption of iron complexes.27 

A factorial experiment in simulated OSPW was designed to screen the ions for their effect on the 

photocatalytic treatment. It was assumed that higher order interactions between the ions would 

be negligible, so the scope of the test was limited to main effects and second-order interactions. 

Therefore a 26-2 fractional factorial design was employed to minimize the number of experiments 

required, while still providing resolution IV data. The ranges of each ion were chosen to bracket 

the concentrations measured in the two OSPW samples (as well as for OSPW in literature, Table 

5), and relative NA degradation (measured after a fixed UV exposure) was taken as the response 

variable (i.e., 𝑦 = 1 − 𝐶 𝐶0⁄ ). The design matrix and results are given in Table 6. It is important 

to note that this statistical analysis is agnostic as to the solubility state of the ions during the 

treatment, and is performed on the basis of the total ions initially spiked into the samples, such 

that any complexation or precipitation phenomena are accounted for in the interaction terms of 

the model. 
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Table 5. Range, levels and coding of the experimental variables in the factorial screening 

experiment. Levels refer to total rather than dissolved concentrations of each species. 

Designation Factor 
Range and Level 

-1 0 1 

A Iron (mg/L) 0 25 50 

B Fluoride (mg/L) 0 10 20 

C Phosphate (mg/L) 0 25 50 

D Sulfate (mg/L) 0 150 300 

E Chloride (mg/L) 10 255 500 

F Bicarbonate (mg/L) 100 550 1000 
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Table 6. Design matrix, experimental results, fitted values and residuals for the 2IV
6-2 factorial screening experiment with 4 center point 

replicates. Factor and level coding corresponds to Table 5. 

Run 

Factor Levels Relative 

Degradation 

(1 - C/C0), yi 

Fitted Values, 

ŷi 

Residuals, 

ei 

Standardized 

Residuals, di 

Internally 

Studentized 

Residuals, ri 
A B C D 

E = 

ABC 

F = 

BCD 

1 -1 -1 -1 -1 -1 -1 0.5256 0.5517 -0.0262 -0.2631 -0.2896 

2 -1 -1 -1 1 -1 1 0.4223 0.3904 0.0319 0.3209 0.3533 

3 -1 -1 1 -1 1 1 0.5821 0.3904 0.1917 1.9271 2.1217 

4 -1 -1 1 1 1 -1 0.5242 0.5517 -0.0275 -0.2769 -0.3048 

5 -1 1 -1 -1 1 1 0.3451 0.3904 -0.0453 -0.4555 -0.5015 

6 -1 1 -1 1 1 -1 0.5083 0.5517 -0.0435 -0.4371 -0.4812 

7 -1 1 1 -1 -1 -1 0.5988 0.5517 0.0470 0.4728 0.5205 

8 -1 1 1 1 -1 1 0.4748 0.3904 0.0844 0.8485 0.9342 

9 1 -1 -1 -1 1 -1 0.3846 0.2694 0.1152 1.1578 1.2747 

10 1 -1 -1 1 1 1 0.1593 0.1081 0.0512 0.5146 0.5666 

11 1 -1 1 -1 -1 1 0.0170 0.1081 -0.0911 -0.9162 -1.0087 

12 1 -1 1 1 -1 -1 0.2511 0.2694 -0.0183 -0.1841 -0.2027 

13 1 1 -1 -1 -1 1 0.1451 0.1081 0.0370 0.3719 0.4094 

14 1 1 -1 1 -1 -1 0.4518 0.2694 0.1824 1.8335 2.0186 

15 1 1 1 -1 1 -1 0.2529 0.2694 -0.0165 -0.1662 -0.1830 

16 1 1 1 1 1 1 0.0609 0.1081 -0.0472 -0.4745 -0.5224 

17 0 0 0 0 0 0 0.2993 0.3299 -0.0306 -0.3081 -0.3161 

18 0 0 0 0 0 0 0.2105 0.3299 -0.1194 -1.2000 -1.2312 

19 0 0 0 0 0 0 0.2151 0.3299 -0.1148 -1.1539 -1.1839 

20 0 0 0 0 0 0 0.1696 0.3299 -0.1603 -1.6116 -1.6535 
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A simple probability plot was sufficient to identify iron, bicarbonate, and the iron-phosphate and 

iron bicarbonate interactions as the significant effects (Figure 24). Four centre point replicates in 

the experiment were used to obtain an error estimate, which was then used for analysis of 

variance (ANOVA). ANOVA confirmed the results of the normal probability plot, although only 

the main iron and bicarbonate effects were found to be significant with p < 0.05 (Table 7). 

Regression yielded the reduced empirical model 

 𝑦̂ = 0.3299 − 0.1412𝐴 − 0.0807𝐹 (27) 

which, in terms of the natural variables, is given as 

 𝑦̂ = 0.5697 − (5.647 × 10−3)𝐶
Fe3+ − (1.792 × 10−4)𝐶HCO3

− (28) 

where 𝐶
Fe3+ is the concentration of iron (mg/L), and 𝐶𝐻𝐶𝑂3

− is the concentration of bicarbonate 

(mg/L). ANOVA and regression diagnostics for this model are presented in Table 8 and Figure 

25, respectively. 

 

 

Figure 24. Half-normal probability plot of main effects and interactions for the factorial 

screening experiment. 

 

Table 7. Analysis of variance for the factorial screening experiment, full model. Factor coding 

corresponds to Table 5. 

Source of 

Variation 

Effect 

Estimate 

Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F0 P-Value 

Regression 
 

0.5227 13 0.0402 3.5233 0.0656 

A -0.2823 0.3189 1 0.3189 27.9422 0.0019 
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B -0.0036 0.0001 1 0.0001 0.0045 0.9489 

C -0.0225 0.0020 1 0.0020 0.1780 0.6878 

D 0.0002 0.0000 1 0.0000 0.0000 0.9971 

E = ABC -0.0086 0.0003 1 0.0003 0.0262 0.8768 

F = BCD -0.1613 0.1041 1 0.1041 9.1224 0.0234 

AB = CE 0.0282 0.0032 1 0.0032 0.2796 0.6159 

AC = BE -0.1172 0.0549 1 0.0549 4.8135 0.0707 

AD = EF 0.0307 0.0038 1 0.0038 0.3301 0.5865 

AE = BC = DF 0.0068 0.0002 1 0.0002 0.0163 0.9027 

AF = DE -0.0782 0.0245 1 0.0245 2.1440 0.1935 

BD = CF 0.0383 0.0059 1 0.0059 0.5136 0.5005 

BF = CD -0.0351 0.0049 1 0.0049 0.4325 0.5352 

Curvature 
 

0.0565 1 0.0565 19.0714 0.0222 

Residual 
 

0.0685 6 0.0114 
  

Pure Error 
 

0.0089 3 0.0030 
  

Total 
 

0.5911 19 0.0311 
  

 

Table 8. Analysis of variance for the factorial screening experiment, reduced model. Factor 

coding corresponds to Table 5. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Squares F0 P-Value 

Regression 0.4230 2 0.2115 21.3764 2.2896E-05 

A 0.3189 1 0.3189 32.2305 2.7275E-05 

F 0.1041 1 0.1041 10.5224 0.00478 

Curvature 0.0565 1 0.0565 19.0714 0.02220 

Residual 0.1682 17 0.0099 
  

Lack-of-fit 0.1593 14 0.0114 3.8432 0.14715 

Pure error 0.0089 3 0.0030 
  

Total 0.5911 19 0.0311 
  

Coefficients of multiple determination: 𝑅2 = 0.715, 𝑅adj
2 = 0.682 
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Figure 25. (a) Half-normal probability plot of residuals, (b) predicted vs. actual degradation 

values and (c) residual plot for the factorial screening experiment, reduced model. 

 

To confirm the findings of this factorial screening study in real OSPW, Industry A OSPW was 

amended with both Fe3+ and HCO3
- so as to have the same concentrations of each ion as was 

measured in the Industry B OSPW (Table 4), and then photocatalytically tested. The NA 

degradation in the Industry A OSPW was significantly diminished at the higher ion 

concentrations, and became indistinguishable from the photocatalytic activity measured in 

Industry B OSPW (Figure 26), validating the inhibitory role of these two species in the 

treatment. 

 

 

Figure 26. Photocatalytic degradation of AEO in OSPW from Industry A, Industry B, and 

Industry A amended with iron and bicarbonate (A*). 
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Notably however, ANOVA indicated the presence of significant curvature within the 

experimental domain (p < 0.05, Table 8), which was not adequately captured by the above model 

(Equations (27) and (28)). Therefore, while the fractional factorial design was an efficient 

method to identify the critical matrix factors, a secondary factorial experiment was undertaken to 

probe their effects with higher resolution. 

4.4.4 Response surface modelling of the iron and bicarbonate effects 

Response surface methodology was used to develop an empirical model for the effects of Fe3+ 

and HCO3
+ on NA photocatalysis, following a central composite design (Table 9, Table 10), 

again taking relative degradation as the response. 

 

Table 9. Range, levels and coding of the experimental variables in the response surface study. 

Levels refer to total rather than dissolved concentrations of each species. 

Designation Factor 
Range and Level 

-1 0 1 

𝑥1 Iron (mg/L) 0 25 50 

𝑥2 Bicarbonate (mg/L) 100 800 1500 
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Table 10. Central composite design, experimental results, fitted values and residuals for the response surface study with 3 center point 

replicates, and 3 additional replicates (runs 12 – 14). Factor and level coding corresponds to Table 9. 

Run 

Factor Levels Relative 

Degradation 

(1 - C/C0), yi 

Fitted 

Values, ŷi 

Residuals, 

ei 

Standardized 

Residuals, di 

Internally 

Studentized 

Residuals, ri 
𝑥1 𝑥2 𝑥1

2 𝑥2
2 𝑥1𝑥2 

1 -1 -1 1 1 1 0.5116 0.4974 0.0142 0.3478 0.6370 

2 1 -1 1 1 -1 0.3349 0.3333 0.0016 0.0387 0.0512 

3 -1 1 1 1 -1 0.2995 0.3317 -0.0321 -0.7866 -1.5375 

4 1 1 1 1 1 0.0176 0.0111 0.0065 0.1592 0.3409 

5 -1 0 1 0 0 0.3631 0.3367 0.0264 0.6467 0.7894 

6 1 0 1 0 0 0.0351 0.0944 -0.0593 -1.4528 -1.9263 

7 0 -1 0 1 0 0.2916 0.3193 -0.0277 -0.6776 -0.8190 

8 0 1 0 1 0 0.1009 0.0753 0.0256 0.6274 0.8593 

9 0 0 0 0 0 0.1008 0.1195 -0.0187 -0.4579 -0.5267 

10 0 0 0 0 0 0.1463 0.1195 0.0268 0.6572 0.7561 

11 0 0 0 0 0 0.1528 0.1195 0.0333 0.8146 0.9370 

12 1 -1 1 1 -1 0.3845 0.3333 0.0512 1.2549 1.6606 

13 -1 0 1 0 0 0.3283 0.3367 -0.0085 -0.2079 -0.2538 

14 0 -1 0 1 0 0.2799 0.3193 -0.0394 -0.9638 -1.1649 
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The least squares regression fit of the response surface is given in Figure 27, described by the 

relationship 

 𝑦̂ = 0.1195 − 0.1212𝑥1 − 0.1220𝑥2 + 0.0961𝑥1
2 + 0.0778𝑥2

2 − 0.0391𝑥1𝑥2 (29) 

or specified in the natural variables as 

 

𝑦̂ = 0.5332 − (1.075 × 10−2)𝐶
Fe3+ − (3.725 × 10−4)𝐶HCO3

−

+ (1.538 × 10−4)𝐶
Fe3+
2 + (1.588 × 10−7)𝐶HCO3

−
2

− (2.234 × 10−6)𝐶
Fe3+𝐶HCO3

− 

(30) 

 

 

Figure 27. (a) Response surface fit (𝒚̂) of the relative photocatalytic degradation of NAs in 

simulated OSPW in the presence of iron and bicarbonate, and (b) the corresponding standard 

error of the estimated response. 

Canonical analysis of the model revealed a stationary point (minimum) located outside the 

experimental domain at 𝑥𝑠 = (1.194, 1.384). ANOVA and regression diagnostics for the 

response surface are presented in Table 11 and Figure 28, respectively. The model is 

approximately comparable to the initial model from the ion screening study (Equations (27) and 

(28)), and the R2 values are significantly improved. 

 

Table 11. Analysis of variance for the response surface study (Type III partial sum of squares). 

Factor coding corresponds to Table 9. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 
F0 P-Value 

Regression 0.2676 5 0.0535 32.0952 4.329E-05 
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𝑥1  0.1100 1 0.1100 65.9500 3.919E-05 

𝑥2  0.1087 1 0.1087 65.2112 4.082E-05 

𝑥1
2  0.0307 1 0.0307 18.4364 0.0026 

𝑥2
2  0.0192 1 0.0192 11.5008 0.0095 

𝑥1𝑥2  0.0071 1 0.0071 4.2800 0.0724 

Residual 0.0133 8 0.0017   

Lack-of-fit 0.0117 6 0.0020 2.4375 0.3192 

Pure error 0.0016 2 0.0008   

Total 0.2809 13 0.0216   

Coefficients of multiple determination: 𝑅2 = 0.953, 𝑅adj
2 = 0.923 

 

 

Figure 28. (a) Half-normal probability plot of residuals, (b) predicted vs. actual degradation 

values and (c) residual plot for the response surface regression. 

 

The results of this study highlight the significant influence of Fe3+ and HCO3
- on the 

photocatalytic reaction (Figure 27). Independently, each ion has a limited impact on degradation 

efficacy, however in combination their inhibitory effect is strong, essentially completely 

deactivating the catalyst at high concentrations. It is unclear from this experiment however 

whether their effect is synergistic (p = 0.07 for the interaction term, Table 11). 

4.4.5 Iron inhibits photocatalytic HO• generation 

The detrimental effect of iron was a surprising finding, given previous reports of iron 

enhancement of TiO2 photocatalytic activity.137–143 A number of chemical and physico-chemical 

mechanisms could be hypothesized to explain this differing result. Therefore, the involvement of 

Fe3+ and HCO3
- in the photocatalytic chemistry was investigated using radical probe techniques 

(Figure 29). 
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Figure 29. Photocatalytic free radical generation in deionized water (DI), or saline solutions 

containing 200 mg/L Cl- (C), 200 mg/L SO4
- (S), 800 mg/L HCO3

- (B), or 25 mg/L Fe3+ (F). 

While HCO3
- was observed to diminish photocatalytic HO• radical production, through its role as 

a moderate HO• scavenger (k = 8.5 x 106 M-1 s-1), 17,144 the presence of Fe drastically inhibited 

the HO• generation rate. Ferrous iron is a potent HO• scavenger (k = 2.6 - 5.8 x 108 M-1 s-1),27 and 

it is hypothesized that Fe2+ is readily available throughout the photocatalytic process from 

reduction of Fe3+ by TiO2 conduction band electrons,138 or by O2
•- through the Haber-Weiss 

mechanism: 

 Fe3+ + O2
•− ⇌ Fe2+ + O2 (31) 

Insignificant photocatalytic H2O2 production in the alkaline saline solution presumably negated 

any HO• contributions by means of Fe2+ as a Fenton catalyst. 

While the presence of iron appeared to slightly enhance photocatalytic O2
•- production, HCO3

- 

significantly increased the observed O2
•- generation rate, as has been reported previously.145 

Although the origin of this HCO3
- effect is unclear, we hypothesize that excess O2

•- may arise 

through HCO3
- scavenging of TiO2 valence band holes, reducing recombination of 

photogenerated electrons, and thereby accelerating the reduction of dissolved oxygen; or 

alternatively through the decay process of photocatalytically generated CO3
•- radicals.146,147 

These radical probe results may be explained by the model for photocatalytic NA degradation 

proposed previously,119 namely a two-step reaction initiated through single-electron oxidation or 

hydrogen abstraction from the NA (by HO• or derived Cl•, SO4
•- and CO3

•-), followed by O2
•- 

reaction at the resultant carbon-centered radical. Thus interference of Fe3+ in the first step of this 

oxidation process through HO• quenching likely serves to limit the overall photocatalytic NA 

degradation rate. 
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Physico-chemically, iron is a potent coagulant, and iron-induced TiO2 nanoparticle aggregation 

could essentially eliminate reactive surface area from the system. Another possibility, assuming 

NA degradation occurs at the TiO2 surface, is that Fe3+ may compete with the surface reaction 

through NA complexation in solution, or through occupying active surface sites, thereby 

blocking NA adsorption. Dissolved Fe3+ also strongly absorbs UV, and could attenuate the light 

impinging the photocatalyst. As for bicarbonate, it may serve to destabilize TiO2 nanoparticles 

through double layer compression at high ionic strength, according to DLVO theory. Some 

combination of all these mechanisms could be at work to produce the performance deterioration 

observed in the presence of Fe3+ and HCO3
-. 

4.4.6 Effect of NA concentration 

While the experiments described above appear to have identified the primary cause of the 

different photocatalytic rate observed in the two industrial OSPW samples (Figure 19), we 

sought a more comprehensive description of photocatalytic kinetics in OSPW, towards 

development of a predictive model for the performance of photocatalysis in new OSPW streams. 

The concentration of OSPW AEO can significantly vary by tailings pond, typically in the range 

of 20 – 120 mg/L.12,78,148 Thus the effect of initial NA concentration on the photocatalytic 

degradation rate was investigated (Figure 30). 
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Figure 30. (a) Photocatalytic degradation of different concentrations of NAs in simulated OSPW 

(mg/L): 40 (●), 55 (○), 80 (■), and 160 (□). (b) Dependence of the initial photocatalytic 

degradation rate, r0, on the initial concentration of naphthenic acids, C0. 

 

Heterogeneous photocatalytic kinetics are conventionally described by the Langmuir-

Hinshelwood (L-H) model 

 𝑟 = −
d𝐶

d𝑡
= 𝑘𝑟𝜃 =

𝑘𝑟𝐾𝐶

1 + 𝐾𝐶0
 (32) 

where r is the reaction rate, C is the concentration of organic species, kr is the reaction rate 

constant, 𝜃 is the fraction of occupied catalyst surface sites, and K is the Langmuir adsorption 

constant. The C0 term in the denominator accounts for the competitive adsorption of degradation 

intermediates, under the assumption that these competing species, with concentration Ci, have 

similar adsorption constants, Ki, as the parent compounds,149 i.e.,  
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 𝐾𝐶 + ∑𝐾𝑖𝐶𝑖

𝑖

= 𝐾𝐶0 (33) 

 

The model assumes dynamic equilibrium, and no competition for catalyst surface sites (e.g., by 

degradation intermediates). At low organics concentration, integration of Equation (32) yields 

the typical pseudo-first order form: 

 ln (
𝐶0

𝐶
) = 𝑘𝑟𝐾𝑡 = 𝑘app𝑡 (34) 

where kapp is the apparent first-order rate constant, and t is the reaction time. The linearized form 

of Equation (32) enables determination of kr and K: 

 
1

𝑟0
=

1

𝑘𝑟𝐾𝐶0
+

1

𝑘𝑟
 (35) 

where r0 is the initial rate. 

Regression of 1/r0 against 1/C0 yielded kr = 1.05 ± 0.24 x 10-2 mg L-1 s-1 and K = 1.31 ± 0.37 x 

10-2 L mg-1 (Figure 30b). For the typical AEO concentrations found in OSPW, these values 

represent the transitional regime between adsorption-limited and reaction-limited kinetics (i.e., 

𝐾𝐶 ≈ 1). The measured value of K is comparable to values previously reported for adsorption of 

organic acids on TiO2.150–152 Notably, K here only represents the adsorption constant under 

illuminated conditions, and would also be expected to change with molecular composition of the 

AEO. Furthermore, both kr and K are only apparent constants, as the actual form of the reaction 

is presumably more complex (e.g., involving dissolved oxygen, free radicals, intermediate 

compounds, etc.).27 Nevertheless, the L-H description is useful from an engineering perspective.  

4.4.7 Temperature minimally affects treatment rate 

Given the northern climate of the oil sands and seasonal variability of OSPW temperature,148 it is 

important to understand the effect of temperature on proposed treatment processes. Therefore, 

the rate of photocatalytic AEO degradation was investigated at 4, 20 and 40 °C. 

While the pseudo-first order rate constant kapp was lowest at 4 °C, at 40 °C it was measured to be 

equivalent to that at 20 °C (Table 12). However, in the course of the experiment, it was observed 

that the TiO2 dispersion appeared unstable at 40 °C, and after the test the particles settled more 

quickly than at 4 °C. Microscopic observation revealed the presence of TiO2 nanoparticle 

aggregates ~5-10 µm in diameter in all the dispersions, although those formed at 40 °C appeared 

slightly larger and denser than those at lower temperatures (Figure 31). Image analysis revealed 

the aggregate size distribution of the 40 °C sample to indeed be larger than the 4 °C sample 

(Figure 32, p < 0.01 for the log-transformed data). This observation complicated analysis of rate 

temperature dependence according to standard Arrhenius theory, as the concentration of one 

“reactant” (i.e., active surface sites on the catalyst) was not constant with temperature, but rather 

changed with nanoparticle aggregation state. 
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Table 12. Temperature dependent photocatalytic properties. 

Parameter Description 
Temperature (°C) 

4 20 40 

𝑘app × 105 (s-1) Apparent first order rate constant 2.544 ± 0.052 3.433 ± 0.270 3.308 ± 0.270 

𝑘̂app × 105 (s-1) 

Apparent first order rate constant, 

normalized with respect to surface 

area 

3.569 ± 0.074 4.743 ± 0.373 6.344 ± 0.518 

𝑛 Number of aggregates measured 321 304 372 

𝐿 (µm) Mean Feret diameter 6.23 ± 2.67 7.39 ± 3.97 7.10 ± 3.09 

𝐷2 2D fractal dimension 1.803 ± 0.035 1.807 ± 0.027 1.881 ± 0.027 

𝐷3 Mass (3D) fractal dimension 1.886 ± 0.037 1.890 ± 0.029 1.976 ± 0.034 

𝐴𝑠𝑝  (m2/g) Estimated specific surface area 39.2 ± 8.7 39.8 ± 8.4 28.7 ± 5.8 

 

 

Figure 31. Microscope images of TiO2 nanoparticle aggregates formed at (a) 4 °C, (b) 20 °C and 

(c) 40 °C, in OSPW. 
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Figure 32. Size distribution (Feret diameter) of TiO2 nanoparticle aggregates formed at different 

temperatures, as observed by optical microscopy. 

 

To account for this differential thermal aggregation, the measured rate constants were 

normalized with respect to accessible catalyst surface area. Image analysis of the micrographs 

yielded the fractal dimensions of the TiO2 aggregates formed at different temperatures (Figure 

33), which were used to obtain an estimate of the specific surface area of the aggregates (Asp, 

Table 12).126–129 Surface area analysis by gas adsorption was not attempted over concerns that 

drying would affect the aggregate structure, and light scattering could not be used to measure the 

mass fractal dimension (D3), as the aggregate size and refractive index were too large for 

Rayleigh-Gans-Debye (RGD) theory to apply.153,154 The lower Asp of the TiO2 aggregates formed 

at 40 °C is congruous with their larger size (L) and more compact structure (D3), compared to the 

lower temperature samples. It is hypothesized that higher thermal energy lowers solution 

viscosity and increases particle collision frequency, allowing the aggregated nanoparticles to 

access more thermodynamically favourable compact structures with higher fractal dimensions.155 

The measured rate constants (kapp) were then normalized relative to 55 m2 g-1, which corresponds 

to the specific surface area of the photocatalyst in its non-aggregated state (𝑘̂app, Table 12).156–158 
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Figure 33. Estimate of the two-dimensional fractal dimension (D2) of TiO2 nanoparticle 

aggregates formed at (a) 4 °C, (b) 20 °C and (c) 40 °C, from the linear regression of their 

projected area (A) and Feret diameter (L), as measured by optical microscopy. 

 

The Arrhenius plot of the adjusted pseudo-first order rate constants (adjusted to account for TiO2 

nanoparticle aggregation as discussed above) indicated an activation energy (Ea) of 11.53 ± 0.26 

kJ mol-1 for the photocatalytic reaction (Figure 34a), within the range typically reported for the 

degradation of organics over TiO2.149,159,160 Relatively low apparent activation energies are 

expected for photocatalysis, where the driving energy is optical absorption.161 Treatment of the 

same data according to the Eyring equation 

 ln (
𝑘

𝑇
) = −

∆𝐻‡

𝑅𝑇
+ ln (

𝑘𝐵

ℎ
) +

∆𝑆‡

𝑅
 (36) 

where ∆𝐻‡ and ∆𝑆‡ are the enthalpy and entropy of activation, and 𝑅, 𝑘𝐵, and ℎ are the gas, 

Boltzmann and Planck constants, respectively, yielded ∆𝐻‡ = 9.07 ± 0.30 kJ mol-1 and ∆𝑆‡ = -

297 ± 1 J K-1 mol-1 (Figure 34b). The large negative value of ∆𝑆‡ indicates an associative 

mechanism in the transition state, which could correspond to a surface reaction of adsorbed NAs, 

consistent with the L-H model above. 
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Figure 34. (a) Arrhenius plot and (b) Eyring plot of photocatalytic degradation of AEO in 

OSPW, where k is the apparent rate constant (with units of s-1), normalized with respect to 

surface area. 

 

In terms of impact on treatment efficacy, the real effect of temperature on the degradation rate 

was relatively small (kapp at 4 °C was only ~25% lower than at 40 °C), due to the mitigating 

effect of increased catalyst aggregation with temperature. The effect of temperature on 

nanoparticle aggregation merits further investigation, as aggregation state is known to have a 

large impact on photocatalytic kinetics in slurry systems.162 

4.4.8 pH has negligible effect on treatment rate 

Photocatalytic reactions are often observed to be pH dependent, where the catalyst’s surface 

charge is determined by solution pH in relation to its point of zero charge (PZC), with 

implications for adsorption of ionic species. Solution pH also affects the flatband potential of 
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semiconducting oxides according the Nernstian relation,163 where higher pH should increase the 

overpotential of conduction band electrons driving reduction of dissolved O2 to superoxide.164 

Therefore photocatalytic performance was tested within the typical range of pH encountered in 

OSPW (pH 7 – 9, Figure 35). 

 

 

Figure 35. Effect of pH on the pseudo-first order rate constant (kapp) of the photocatalytic 

degradation of NAs in simulated OSPW. 

 

Within the typical range found in OSPW, pH had no significant effect on the reaction rate. Given 

that the PZC of TiO2 is ~5.5,23,27 the catalyst surface was consistently negatively charged 

between pH 7-9, and thus no significant change in the adsorption of naphthenate anions would be 

expected, from an electrostatic perspective. Note that the pH of OSPW does not change 

throughout the photocatalytic treatment, presumably due to the strong buffering capacity of 

dissolved bicarbonate. 

4.4.9 Dissolved oxygen is necessary for NA degradation 

Dissolved oxygen (DO) plays an important role in photocatalytic water treatment as the primary 

acceptor for excited conduction band electrons from the photocatalyst. Electron transfer to DO 

has even been implicated as the rate limiting step for photocatalysis as a whole, where electron 

accumulation on the catalyst accelerates recombination with photogenerated holes, degrading 

quantum efficiency.165,166 Reduction of DO also generates superoxide, which has been identified 

as a critical radical species involved in photocatalytic NA degradation in OSPW.119 

The dependence of the photocatalytic treatment on DO was assessed in suspensions sparged 

continuously with either air or pure N2 (Figure 36). The results highlight the significant influence 

of DO, where kapp varied between 1.22 ± 0.08 x 10-4 s-1 and 9.78 ± 4.41 x 10-6 s-1 for the air and 
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N2 sparged tests, respectively (although it could not be ascertained with confidence whether the 

N2 purged condition followed first-order kinetics). Furthermore, the 78% inhibition of NA 

degradation under N2 purge is comparable to the 65% inhibition observed previously in the 

presence of 1,4-benzoquinone, a O2
•- scavenger (Chapter 3),119 where either eliminating DO or 

quenching any DO-derived O2
•- would be expected to have the same effect on the photocatalytic 

reaction. This experiment is therefore consistent with the purported role of O2
•- in the treatment 

process. From an application perspective, DO limitations are unlikely to be encountered in 

practice, despite hypoxic/anoxic conditions biologically induced in deeper tailings pond strata, as 

photocatalytic OSPW treatment would presumably only be implemented in illuminated surface 

waters, corresponding to DO enriched conditions. 

 

 

Figure 36. Photocatalytic degradation of NAs in simulated OSPW sparged with air or nitrogen. 

 

4.4.10 Empirical kinetics model 

To develop a more comprehensive description of the photocatalytic kinetics in OSPW, it was 

hypothesized that the NA degradation rate could be modeled by the expression 

 𝑟 = 𝑘∗𝑒−
𝐸𝑎
𝑅𝑇 ln (

1

1 − 𝑦̂
)

𝐾𝐶

1 + 𝐾𝐶0
 (37) 

where 𝑘∗ is a constant subsuming multiple preexponential factors, 𝑦̂ is calculated according to 

Eq. (30) (taken within a natural logarithm term as the kinetics of the response surface study 

assumed to be pseudo-first order), and other variables are given as previously.149,159 Regression 

fitting (on the data from Figure 30) yielded k* = 2.57 ± 0.09 mg L-1 s-1. The apparent first-order 

rate constant can thus be estimated as 
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 𝑘app = 𝑘∗𝑒−
𝐸𝑎
𝑅𝑇 ln (

1

1 − 𝑦̂
)

𝐾

1 + 𝐾𝐶0
 (38) 

An assumption of this treatment is that K does not significantly vary with temperature, 𝐶
Fe3+ or 

𝐶𝐻𝐶𝑂3
−, or rather, that any variation in K is accounted for by the other terms in the model. The 

model also makes no attempt to account for aggregation state of the catalyst, as aggregation 

phenomena are highly complex, and influenced by other factors than temperature alone (e.g., 

mixing conditions, dissolved and suspended solids content). In practice, the treatment rate will 

also depend on solar UV intensity, which varies with time (unlike the constant intensity UV 

source used in this study). 

Substituting values from Table 4, Eq. (38) predicted the photocatalytic rate constant in the 

Industry A OSPW to be 1.27 x 10-4 s-1, which compares favorably to the measured value of 1.10 

x 10-4 s-1. However, for a measured rate of 1.33 x 10-5 s-1 in the Industry B OSPW, the model 

predicted kapp to be 5.94 x 10-5 s-1. Given that Ea was experimentally determined in the Industry 

A OSPW, it is possible that the model was not specified correctly for the Industry B sample. 

Thus if Ea is instead taken as 15.3 kJ mol-1, the equation can accurately calculate the Industry B 

OSPW rate constant at 300 K. A higher apparent activation energy in the Industry B OSPW 

could potentially arise from its higher ionic strength affecting AEO interaction with the catalyst, 

or possibly from more recalcitrant or complex AEO molecular structures. The structure-activity 

relationship of photocatalytic NA degradation is the subject of ongoing investigations in our 

laboratory. 

4.4.11 Estimation of external quantum efficiency (EQE) 

The external quantum efficiency (EQE), or apparent photonic efficiency, of a photocatalytic 

reaction can be estimated as 

 𝐸𝑄𝐸 =
𝑟

Φ
 (39) 

where r is the rate (mol L-1 s-1), and Φ is the incident photon flux (mol L-1 s-1).134 According to 

Eq. (37), taking C = C0 = 50 mg L-1, 𝐶
Fe3+ = 0 mg L-1, 𝐶𝐻𝐶𝑂3

− = 800 mg L-1, T = 300 K, and 

assuming an average NA molecular weight of ~225 g mol-1,120 r = 1.82 x 10-8 mol L-1 s-1. Given 

the light intensity of 40 W m-2 (with spectral distribution as given, Figure 18b), beaker diameter 

of 63 mm, and reaction volume 0.2 L, Φ = 1.84 x 10-6 mol L-1 s-1. 

The external quantum efficiency (EQE), or apparent photonic efficiency, of the treatment was 

estimated as ~0.99%. Note that this value merely represents an approximate lower bound on the 

efficiency, as photochemically rigorous calculations use absorbed photon flux, and account for 

the degradation mechanism.167 While ~1% EQE is typical of photocatalysis,168,169 efficiencies as 

high as 50% have been reported,170 indicating an opportunity for significant enhancement in 

OSPW treatment kinetics with optimized catalysts and reactor geometries. 

4.5 Environmental significance 



78 
 

This study addresses a number of key process variables affecting the behaviour and kinetics of 

photocatalytic treatment in various OSPW streams. It is anticipated that the models proposed 

herein will be useful for estimation of UV dose requirements, contact time, and other operating 

parameters necessary for the design of scaled treatment systems. 

The utility of statistical design of experiments (DoE) is also highlighted for efficient 

troubleshooting of unknown obstacles when adapting a treatment process to new environmental 

sources, where complex water composition may obscure assessment of the underlying factors. 

The strong deleterious effect of iron on photocatalytic NA degradation is a new finding that may 

have significant implications for OSPW treatment, where HO• radical quenching may limit 

degradation rates in brackish waters. Where possible, integrating photocatalysis following ion 

exchange or desalination steps in a treatment train has the potential to significantly improve 

photocatalytic kinetics. 

Solar photocatalysis is very promising for OSPW treatment and environmental remediation 

applications. Nevertheless, the technology’s full potential has not yet been realised in an 

optimized system, and there is still great opportunity for significant advances in process 

efficiency, accessible through materials engineering, catalyst optimization, and deployment 

strategy. 
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Chapter 5 

Magnetic flocculation for nanoparticle separation and 

catalyst recycling§ 

 

5.1 Summary 

Nanoparticles are heavily researched for 

environmental applications, such as 

photocatalytic water treatment, however 

practical separation of nanoparticles from 

colloidal dispersions remains a critical 

challenge. Here, we demonstrate a new 

approach to nanoparticle recovery, 

combining the advantages of flocculation 

with magnetic separation to enable simple 

collection of non-magnetic nanoparticles. Flocculant polymers were coated onto magnetic 

nanoparticles (Fe3O4@SiO2) to prepare reusable magnetic flocculants (MFs). When added to 

colloidal nanoparticle dispersions, MFs aggregate with the suspended nanoparticles to form 

magnetically responsive flocs, which upon separation can be reversibly deflocculated for 

nanoparticle release, and reuse in a closed loop process. High separation efficiency was attained 

in a variety of nanoparticle suspensions, including Au, Ag, Pd, Pt, and TiO2, stabilized by 

different coatings and surface charge. The MFs were shown to be recyclable for photocatalytic 

treatment of naphthenic acids in oil sands process-affected water (OSPW) and selenium in flue 

gas desulfurization wastewater (FGDW). Magnetic flocculation thus represents a general 

platform and alternative paradigm for nanoparticle separation, with potential applications in 

water treatment and remediation of nanoparticle pollution. Furthermore, given that flocculant 

chemicals can be recovered and reused in this process, magnetic flocculation may also serve as 

an environmentally sustainable solution to conventional flocculation challenges. 

 

5.2 Introduction 

                                                 

 

 

§ This chapter is adapted from a previously published article: Leshuk, T.; Holmes, A. B.; 

Ranatunga, D.; Chen, P. Z.; Jiang, Y.; Gu, F. Magnetic Flocculation for Nanoparticle Separation 

and Catalyst Recycling. Environ. Sci.: Nano 2018, 5 (2), 509–519. 
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The advent of nanotechnology has led to diverse practical applications of colloidal nanoparticle 

dispersions in numerous fields of research and engineering, from biotechnology to environmental 

remediation.171–175,119 However, nanoparticle dispersions are often difficult to work with, 

primarily due to the challenge of separating nanoparticles from suspension upon completion of 

their function.176,177 Colloidal nanoparticles can remain stably suspended against gravitational 

settling for decades, and frequently can only be disrupted by intensive and expensive membrane 

filtration processes.178,179 For example, in photocatalytic water treatment, the most efficient 

reactors involve dispersion of the nanocatalyst into the contaminated water as a slurry.22,24,25 

Nanoparticle recovery after the treatment process is essential not only for reuse of the catalyst, 

but also to prevent nanoparticle contamination of the treated effluent. Unfortunately, 

nanoparticle separation challenges remain a critical hurdle to practical application of this 

promising treatment technology.26–28 

Magnetic separation is a powerful method for particle recovery, and has been researched for 

biomolecule enrichment,180,181 biosensing,182–184 and catalyst recycling.31,32,185 Magnetic 

separation is especially useful in nanotechnology for collection of nanoparticles which are 

challenging to manipulate by other means.30,49–52 Superparamagnetism is a useful property in 

magnetic nanoparticle separation, a phenomenon whereby a nanostructured magnetic material is 

essentially magnetized only in the presence of an applied magnetic field.34 Superparamagnetic 

nanoparticles can thus form stable colloids, which can be reversibly magnetized and separated on 

demand. 

Extrinsic magnetic separation, i.e., the addition of magnetic particles to bind or capture a non-

magnetic material, has been previously studied for small molecule adsorption or cell 

harvesting,49,186–188 however nanoparticles are more challenging to separate, e.g., due to the lack 

of specific affinity interactions available to biomolecules. To render non-magnetic nanomaterials 

magnetically separable, typically composite nanoparticles are synthesized by immobilizing the 

functional nanomaterial on a superparamagnetic support (e.g., in a core-shell structure).53–58 

However, this immobilization strategy imposes various synthesis and process constraints, and 

can inhibit nanocatalyst efficiency by reducing accessible surface area, while introducing mass 

transfer and illumination limitations. Furthermore, shearing of the immobilized nanomaterial 

from the magnetic core has been previously reported, leading to poor recyclability,56,189,190 and 

raising concerns of nanoparticle water pollution. Herein, we propose an alternative paradigm for 

magnetic nanoparticle separation, surmounting these complications by drawing inspiration from 

some of the earliest particle separation technologies developed, coagulation and flocculation. 

Coagulation and flocculation (CF) processes are well established separation techniques for 

precipitating a broad range of suspended solids, and have been extensively used in the water 

treatment industry for over a century.191–193 These methods involve chemical dosing of the water 

with metallic salts or polymers to aggregate suspended fine particles, forming larger 

agglomerates which can be removed by settling or filtration. Although effective at separating a 

diverse spectrum of colloidal materials,194–196 CF have not been successfully implemented for 
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nanoparticle recovery and recycling due to the irreversible nature of the aggregation process. 

Furthermore, recent reports have raised various health and ecotoxicity concerns associated with 

CF chemical additives.197–201 In response, biodegradable flocculants have been investigated as a 

renewable alternative,202,203 and reusing flocculant polymers has been recently proposed,204 

thereby avoiding chemical discharge altogether.  

It was hypothesized that the advantages of both CF and magnetic separation processes could be 

combined to form magnetic flocculants, through binding flocculant polymers to magnetic 

nanoparticles, enabling a new approach to nanoparticle separation challenges. By leveraging the 

broad spectrum separation capabilities characteristic of CF processes, while achieving reversible 

aggregation through magnetic separation, magnetic flocculation could thus provide a general 

platform for recovery and recycling of a wide variety of functional nanoparticles. A first 

demonstration of this concept is reported herein. The magnetic flocculants are only added to a 

nanoparticle suspension when required at the point of separation, avoiding the problems 

associated with immobilizing nanoparticles on a magnetic support. The target nanoparticles in 

suspension are separated through flocculation, while the magnetic properties of the flocculant 

enable a reversible aggregation process. A key novelty of this system is that both the 

nanoparticles and flocculant material are reusable, which avoids chemical amendment of the 

water, and thus magnetic flocculants may represent not only a new approach to nanoparticle 

separations, but also an environmentally sustainable alternative to conventional CF processes, by 

providing a means for recovery of polymer additives. 

 

5.3 Experimental 

5.3.1 Materials 

FeCl3·6H2O (Sigma-Aldrich, ≥99%), NaH2PO4 (Amresco, reagent grade), NH4OH (Sigma-

Aldrich, ACS reagent, 28.0-30.0 % NH3 basis), ethanol (EtOH, ≥99%, ACS reagent), tetraethyl 

orthosilicate (TEOS, Sigma-Aldrich, 98%), poly(diallyldimethylammonium chloride) 

(PDADMAC, Sigma-Aldrich, 100-200 kDA), NaOH (Sigma-Aldrich, ACS reagent), NaCl 

(EMD, ACS reagent), poly(sodium 4-styrenesulfonate) (PSS, Sigma-Aldrich, 70 kDa), NaBH4 

(Sigma-Aldrich, 99.99%), trisodium citrate dihydrate (Sigma-Aldrich, ≥99%), HAuCl4·xH2O 

(Sigma-Aldrich, 99.999%), hexadecyltrimethylammonium bromide (CTAB, Sigma-Aldrich, 

≥99%), AgNO3 (Sigma-Aldrich, ≥99%), K2PdCl4 (Sigma-Aldrich, 98%), ethylene glycol (EG, 

Sigma-Aldrich, anhydrous, 99.8%), poly(vinylpyrrolidone) (PVP, Sigma-Aldrich, 40 kDa), 

H2PtCl6·6H2O (Sigma-Aldrich, ACS reagent, ≥37.50% Pt basis), NaNO3 (Sigma-Aldrich, ACS 

reagent), dichloromethane (DCM, ≥99.9%, HPLC grade), and TiO2 nanoparticles (Evonik 

Aeroxide P25, ~21 nm particle diameter, 55 m2 g-1 surface area, Acros) were used as received. 

P25 TiO2 nanoparticles have been extensively studied and characterized in the literature, and are 

often used as a benchmark photocatalyst. Poly(acrylic acid) (PAA, Sigma-Aldrich, 250 kDa), at 

10 wt.% in water, was neutralized with NaOH to pH 7 before use. Chitosan (CS, Sigma-Aldrich, 
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50 kDa, deacetylated chain, poly(D-glucosamine)) was dissolved at 1 g/L in a 1 wt.% acetic acid 

(Fisher Scientific, ACS reagent) aqueous saline solution (0.5 mol/L NaCl) at 70 °C before use. 

Oil sands process-affected water (OSPW) was provided by Shell Canada, and stored at 4 °C in 

the dark. The concentrations of the organic and inorganic constituents of the OSPW are given in 

Table 13. Flue gas desulphurization wastewater (FGDW) was provided by by a coal-fired power 

plant in the southeastern United States, and stored at 4 °C in the dark. Prior to use, the OSPW 

and FGDW were homogenized by stirring, and filtered through glass microfiber filters 

(Whatman 934-AH) to remove suspended solids. 

 

Table 13. Water quality characteristics of OSPW. All parameters apart from NAs and AEO were 

measured according to standard methods by ALS Environmental (Waterloo, ON, Canada), a 

laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA) 

according to international standards (ISO 17025). 

Parameter Value 

NAs (mg/L) 79.5 ± 2.3 

AEO (mg/L)a 40.9 ± 2.4 

TOC (mg/L) 54 

COD (mg/L) 153 

BOD (mg/L) 3.0 

pH 8.30 

Conductivity (mS/cm) 1.630 

Anions  

Bromide (mg/L) <0.50 

Chloride (mg/L) 172 

Fluoride (mg/L) 3.00 

Nitrate (mg/L) <0.10 

Nitrite (mg/L) <0.050 

Sulphate (mg/L) 207 

Alkalinity (mg/L as CaCO3) 400 

Dissolved Metals  

Aluminum (Al) (mg/L) <0.050 

Antimony (Sb) (mg/L) 0.0011 

Arsenic (As) (mg/L) 0.0027 

Barium (Ba) (mg/L) 0.0976 
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Beryllium (Be) (mg/L) <0.0010 

Bismuth (Bi) (mg/L) <0.00050 

Boron (B) (mg/L) 2.00 

Cadmium (Cd) (mg/L) <0.00010 

Calcium (Ca) (mg/L) 15.7 

Chromium (Cr) (mg/L) <0.0050 

Cobalt (Co) (mg/L) 0.0022 

Copper (Cu) (mg/L) 0.0021 

Iron (Fe) (mg/L) <0.10 

Lead (Pb) (mg/L) <0.00050 

Lithium (Li) (mg/L) 0.140 

Magnesium (Mg) (mg/L) 14.4 

Manganese (Mn) (mg/L) 0.0205 

Molybdenum (Mo) (mg/L) 0.0613 

Nickel (Ni) (mg/L) 0.0075 

Phosphorus (P) (mg/L) <0.50 

Potassium (K) (mg/L) 15.6 

Rubidium (Rb) (mg/L) 0.0144 

Selenium (Se) (mg/L) 0.00056 

Silicon (Si) (mg/L) 2.81 

Silver (Ag) (mg/L) <0.00050 

Sodium (Na) (mg/L) 300 

Strontium (Sr) (mg/L) 0.468 

Sulfur (S) (mg/L) 71.0 

Tellurium (Te) (mg/L) <0.0020 

Thallium (Tl) (mg/L) <0.00010 

Thorium (Th) (mg/L) <0.0010 

Tin (Sn) (mg/L) <0.0010 

Titanium (Ti) (mg/L) <0.0030 

Tungsten (W) (mg/L) 0.0047 

Uranium (U) (mg/L) 0.00376 

Vanadium (V) (mg/L) <0.0050 

Zinc (Zn) (mg/L) <0.010 
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Zirconium (Zr) (mg/L) <0.0030 
aAEO = acid extractable organics, measured by FTIR and quantified using a calibration curve 

prepared from a commercial naphthenic acid mixture, described previously.205 

 

5.3.2 Magnetic Flocculant Synthesis 

α-Fe2O3 ellipsoids were prepared by aging an aqueous solution of 20 mmol/L FeCl3 and 0.2 

mmol/L NaH2PO4 at 105 °C for 50 h,206 washing the product thrice with deionized (DI) water, 

once with 1 mol/L NH3, and thrice again with water by centrifugation. The α-Fe2O3 ellipsoids 

were then coated with silica using a modified Stöber process.207,208 The α-Fe2O3 powder was 

dispersed into a solution of EtOH and DI water by probe sonication. NH4OH was then added to 

the dispersion, followed by the dropwise addition of 1 mol/L TEOS in EtOH solution over 1 h, 

under vigorous mechanical stirring, such that the final concentrations of reagents were 25 

mmol/L TEOS, 0.3 mol/L NH3, 12 mol/L H2O, and 1.5 g/L α-Fe2O3. This mixture was then 

stirred at room temperature for 18 h, after which the product (α-Fe2O3@SiO2) was washed thrice 

with EtOH by centrifugation. The α-Fe2O3@SiO2 powder was then reduced in a tube furnace at 

350 °C under 100 cm3/min of 50% H2 in Ar for 6 h, washing the product (Fe3O4@SiO2) 

thoroughly with DI water by magnetic decantation. The Fe3O4@SiO2 particles were then coated 

with flocculant polymers using a layer-by-layer (LbL) technique.209,210 The Fe3O4@SiO2 powder 

was dispersed into a pH 12 NaOH aqueous solution by probe sonication, to which a 1 g/L 

PDADMAC aqueous saline solution (0.5 mol/L NaCl) was added under vigorous mechanical 

stirring, such that the final concentrations of reagents were 0.5 g/L PDADMAC, 0.25 mol/L 

NaCl, and 5 g/L Fe3O4@SiO2. The mixture was gently stirred for 20 min, after which the 

particles were washed thrice with DI water by magnetic decantation, and resuspended into DI 

water by probe sonication (1st layer PDADMAC). A 1 g/L PSS aqueous saline solution (0.5 

mol/L NaCl) was then added under vigorous mechanical stirring, such that the final 

concentrations of reagents were 0.5 g/L PSS, 0.25 mol/L NaCl, and 5 g/L Fe3O4@SiO2. The 

mixture was gently stirred for 20 min, after which the particles were washed thrice with DI water 

by magnetic decantation, and resuspended into DI water by probe sonication (2nd layer PSS). A 1 

g/L PDADMAC aqueous saline solution (0.5 mol/L NaCl) was then added under vigorous 

mechanical stirring, such that the final concentrations of reagents were 0.5 g/L PDADMAC, 0.25 

mol/L NaCl, and 5 g/L Fe3O4@SiO2. The mixture was gently stirred for 20 min, after which the 

particles were washed thrice with DI water by magnetic decantation, and resuspended into DI 

water by probe sonication (3rd layer PDADMAC). These three-layer coated particles 

(PDADMAC, PSS, PDADMAC), referred to as Fe3O4@SiO2@PDADMAC, were used as a base 

to prepare the other magnetic flocculant formulations. A fourth layer was coated to prepare each 

of Fe3O4@SiO2@PSS and Fe3O4@SiO2@PAA formulations: either a 1 g/L PAA or PSS aqueous 

saline solution (0.5 mol/L NaCl) was added under vigorous mechanical stirring, such that the 

final concentrations of reagents were 0.5 g/L PAA or PSS, 0.25 mol/L NaCl, and 5 g/L 

Fe3O4@SiO2. The mixture was gently stirred for 20 min, after which the particles were washed 
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thrice with DI water by magnetic decantation, and resuspended into DI water by probe sonication 

(4th layer PAA or PSS). A fifth layer was coated on Fe3O4@SiO2@PSS particles to prepare the 

Fe3O4@SiO2@CS: a 1 g/L CS aqueous saline solution (0.5 mol/L NaCl in 1 wt. % acetic acid) 

was added under vigorous mechanical stirring, such that the final concentrations of reagents were 

0.5 g/L CS, 0.25 mol/L NaCl, 0.5 wt. % acetic acid, and 5 g/L Fe3O4@SiO2. The mixture was 

gently stirred for 20 min, after which the particles were washed thrice with DI water by magnetic 

decantation, and resuspended into DI water by probe sonication (5th layer CS). In all cases, the 

polymer designated in the sample name refers to the terminal or outermost polymer layer. 

5.3.3 Metallic Nanoparticle Synthesis 

Citrate-stabilized Au nanoparticles were prepared reductively at room temperature.211–213 60 L 

of freshly prepared, ice-cold 0.1 mol/L NaBH4 were added to an aqueous solution of 2.5 x 10-4 

mol/L HAuCl4·xH2O and 10-4 mol/L trisodium citrate dihydrate under vigorous stirring, and left 

overnight. Then, the solution was filtered using a 0.2 m syringe filter and stored in the dark at 4 

°C until use. CTAB stabilized Ag nanoparticles were prepared by dropwise addition of an 

aqueous solution of 8 mmol/L NaBH4 and 0.5 mmol/L CTAB to an equal volume of a 2 mmol/L 

AgNO3, 0.4 mol/L NH3, and 0.5 mmol/L CTAB aqueous solution under vigorous stirring in an 

ice bath, followed by stirring for 4 h, and then heating the solution at 90 °C for 1 h.214,215 PVP 

stabilized Pd nanoparticles were prepared by simultaneously injecting 3 mL of a 0.157 mol/L 

K2PdCl4 solution in EG and 3 mL of a 26.67 g/L solution of PVP in EG each at 45 mL/h into 5 

mL of EG at 110 °C under vigorous stirring, reacting at 110 °C for 3 h, and washing the product 

once with acetone and thrice with EtOH, by centrifugation, before resuspending into DI water.216 

PVP stabilized Pt nanoparticles were prepared by adding 1 mL of a H2PtCl6·6H2O solution in 

EG to 7 mL of a solution of NaNO3 and PVP in EG at 160 °C under vigorous stirring, such that 

the final concentrations of reagents were 10 mmol/L H2PtCl6, 33 mmol/L NaNO3, and 3.33 g/L 

PVP.217 The solution was stirred at 160 °C for 15 min, followed by washing the product once 

with acetone and thrice with EtOH by centrifugation before resuspending the into DI water.  

5.3.4 Flocculation Experiments 

The flocculation experiments were performed in triplicate in glass vials. TiO2 nanoparticle 

powder was dispersed into DI water by probe sonication at a typical concentration of 100 mg/L. 

A sonicated suspension of magnetic flocculant (10 g/L) was rapidly added to the TiO2 

suspension, which was then rapidly mixed for 60 s by vortex mixing, followed by 20 min of slow 

mixing at 25 rpm on a rotary mixer. The mixture was then settled over an Nd rare earth block 

magnet (5.08 x 5.08 x 2.54 cm l x w x h) for 30 min, and the supernatant sampled to determine 

remaining TiO2 concentration in suspension. Following separation of the supernatant by 

magnetic decantation, the settled flocs were dispersed into an equal volume of aqueous HCl 

solution (typically pH 2.5), and sonicated for 20 min to induce deflocculation. The magnetic 

flocculant particles were then magnetically settled for 30 min as above, and the supernatant TiO2 

suspension separated by magnetic decantation for reuse in another flocculation cycle, following 

neutralization to pH 7 with NaOH. A control TiO2 suspension, without addition of magnetic 
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flocculant, was run alongside each experiment according to the same conditions, and relative 

TiO2 concentrations in the flocculated samples were calculated in comparison to this control. 

In one experiment, to study the effect of pH, the flocculation tests were performed in 10 mmol/L 

phosphate or carbonate buffer instead of DI water. In another experiment, to study recyclability 

of the system, the flocculation tests were performed in PTFE beakers instead of vials, and the 

same set of TiO2 nanoparticles and magnetic flocculant nanoparticles were reused continuously 

throughout the experiment. 

TiO2 nanoparticle concentrations were determined by UV/Vis spectroscopy at 250 nm, 

comparing to calibration curves prepared from TiO2 suspensions of known concentration (Figure 

37 and Table 14). In the case that the measured absorbance at 250 nm was >1.5, the absorbance 

at 350 or 400 nm was used instead. In one experiment, to measure the nanoparticle residual after 

flocculation, TiO2 concentrations were instead determined ICPMS of total Ti (EPA method 

200.8, limit of detection 3 µg/L Ti) by ALS Environmental (Waterloo, ON, Canada), comparing 

to a calibration curve prepared from TiO2 suspensions of known concentration (Figure 38). This 

method was also used to measure TiO2 concentrations in the recyclability study (Figure 59a). 

 

 

Figure 37. (a) UV/Vis spectra of TiO2 nanoparticle aqueous suspensions and (b) calibration 

curves prepared from the spectra in (a). 

 

Table 14. Regression parameters of the UV/Vis calibration curves used to determine TiO2 

concentration. 

 250 nm 350 nm 400 nm 

Slope x 103 (L/mg) 37.94 ± 0.10 21.95 ± 0.21 12.02 ± 0.06 
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Intercept x 103 62.44 ± 2.08 54.63 ± 7.18 36.79 ± 2.02 

Limit of Detection (mg/L) 0.16 0.98 0.50 

Limit of Quantification (mg/L) 0.55 3.27 1.68 

 

 

Figure 38. Calibration curve relating TiO2 nanoparticle concentration to total Ti measured by 

ICPMS. 

 

5.3.5 Photocatalytic Treatment Experiments 

The OSPW photocatalytic treatment experiment was performed in a custom photoreactor 

enclosure described previously,205 consisting of an array of UVA fluorescent bulbs (Philips 

F20T12/BL, peak emission ~350 nm, Figure 18) suspended above the samples. The UV intensity 

was measured to be ~45 W/m2 with a UVA/B light meter (Sper Scientific, NIST certified 

calibration), which is similar to the UV content of the solar spectrum (ASTM G173-03 global 

tilt). TiO2 nanoparticles were stirred into 80 mL of OSPW (0.1 g/L) in a borosilicate glass beaker 

(46 mm diameter) and dispersed by sonication. The beaker was sealed with polyethylene film 

(Glad, measured to be UV transparent by spectrophotometry) to prevent evaporation during the 

experiment, and its sides were wrapped with Al foil. The mixture was stirred in the dark for 1 h 

to attain adsorption-desorption equilibrium of organics with the TiO2 surface, and then placed in 

the photoreactor and exposed to UV light while stirring, with 1 mL aliquots sampled periodically 

for measurement of NA concentration, which were subsequently returned to the beaker.  

The FGDW photocatalytic treatment experiment was performed in a custom photoreactor 

enclosure consisting of an array of UVC fluorescent bulbs (Sani-Ray RRDHO36-4, peak 

emission ~254 nm) suspended above the samples. The UV intensity was measured to be ~16 

W/m2 with a UVC light meter (Sper Scientific, NIST certified calibration) at the surface of the 
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water within the reaction chamber through the quartz window. TiO2 nanoparticles were stirred 

into 350 mL of FGDW (0.2 g/L) in a polytetrafluoroethylene (PTFE) beaker (76 mm diameter) 

along with 300 ppm formic acid to act as an electron hole scavenger for the reduction reaction. 

The beaker was sealed in an air tight stainless steel vessel with a quartz window to prevent 

exposure to oxygen during the experiment, while N2 gas was purged throughout the reaction to 

remove any H2Se gas generation which was flowed through two subsequent liquid scrubbers of 

CuSO4 and NaOH, respectively.218,219 The mixture was stirred in the dark for 1 h to attain 

adsorption-desorption equilibrium of inorganics with the TiO2 surface, and then placed in the 

photoreactor and exposed to UV light while stirring, with 5 mL aliquots sampled periodically for 

measurement of Se concentration, which were centrifuged so the TiO2 could be returned to the 

beaker at the end of the experiment. 

For both the OSPW and FGDW experiments, following the UV treatment, the TiO2 suspension 

was separated by magnetic flocculation and deflocculated as described above, using 

Fe3O4@SiO2@PDADMAC particles (at 0.316 g/L) as the MF, and stirring at 120 rpm and 15 

rpm with a mechanical stirrer for the flash and slow mix periods respectively. The recovered 

TiO2 was then dispersed into a fresh sample of either OSPW or FGDW for a subsequent cycle of 

photocatalytic treatment. 

Naphthenic acid fraction extractable organics (NAs) concentrations were determined by UV/Vis 

spectroscopy at 220 nm,220 comparing to a calibration curve prepared from NAs extracted from 

the same OSPW sample. Briefly, OSPW was adjusted to pH 10.5 with NH4OH, extracted thrice 

with DCM (in total 1:2 solvent to sample volumetric ratio), acidified to pH 7 with H2SO4, 

extracted thrice with DCM, and finally acidified to pH 2 with H2SO4, and extracted thrice with 

DCM. The acidic, neutral, and basic DCM extracts were then combined, and dried under N2. 

While naphthenic acids are defined by the classic formula CnH2n+zO2 (where z is a negative even 

integer related to the number of rings and double bonds), OSPW naphthenic acid fraction 

extractable organics (referred to as NAs herein) also contain a broad range of organics not 

conforming to this classic structure, including aromatic and heteroatom-containing acids, as well 

as basic and low polarity species.114–116,64 

Selenium concentrations were determined using a hydride generation set-up (CETAC, HGX-200 

Advanced Membrane Cold-Vapor and Hydride Generation System) prior to quantification using 

inductively coupled plasma optical emission spectroscopy (ICP-OES, Teledyne Leeman 

Prodigy). The samples were acid digested in 6M hydrochloric acid (HCl) and 0.2M nitric acid 

(HNO3) by adding 3.9 mL of HCl and 0.1 mL HNO3 to a 4 mL aqueous sample. Samples were 

then boiled for 30 minutes prior to hydride generation and analysed using ICP-OES to pre-reduce 

all selenate to selenite. The LOD of the above Se detection technique is 2 μg/L. The starting 

concentration of the FGDW, 300 ± 15 μg/L, was reduced past the detection limit for the first 4 

cycles. 
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5.3.6 Materials Characterization 

Particle size and structure was analyzed by TEM (Philips CM-10, 60 keV). The hydrodynamic 

diameter of the particles in water was measured by DLS (Brookhaven 90Plus Particle Size 

Analyzer, lognormal volume-weighted median diameter). Crystal phase was assessed by powder 

XRD (Bruker D8-Advance, Våntec-1 detector, 1.5405 Å Cu-Kα radiation). The magnetic 

properties of the powders were measured at 300 K with SQUID VSM (Quantum Design 

MPMS). The surface area of the particles (pre-dried at 200 °C in N2) was calculated from the 

Brunauer–Emmett–Teller (BET) equation using data from N2 adsorption isotherms obtained at 

77 K (Micrometrics Gemini VII 2390 Surface Area Analyser). Zeta potential measurements were 

taken with a Malvern Zetasizer Nano ZS. FTIR spectra were obtained for powder samples in 

KBr pellets (Bruker Tensor 27). XPS was performed at room temperature (VG Scientific 

ESCALab 250, Al Kα radiation), and the binding energy scale was corrected by referencing the 

C 1s peak to 285 eV. TGA was performed at 10 °C/min in air (TA Instruments Q500). 

Photomicrographs of flocs were obtained using an optical microscope (Zeiss Axioskop with 

AxioCam ERc 5s camera). 

5.4 Results and Discussion 

To create recyclable flocculants for nanoparticle separation, the critical challenges involve 

deflocculation of separated flocs, and collection of the flocculant from the released nanoparticles 

for reuse. As flocculation processes are based on electrostatic surface interactions of polymer 

flocculants with suspended solids, deflocculation is possible provided either the flocculant or 

target solid is amphoteric, or that their isoelectric points differ, such that a pH shift can reverse 

charge polarity and thus induce a repulsive force to dissolve the flocs. It was hypothesized that 

flocculant recollection could be most conveniently accomplished by designing the flocculant to 

be magnetic. 

Scheme 3 illustrates this concept of an entirely recyclable CF system using magnetic flocculants 

(MFs), in the example of photocatalytic water treatment using colloidal TiO2. Following 

photocatalysis, TiO2 nanoparticles are flocculated by addition of MF particles, settling the flocs 

either magnetically or gravitationally, to enable discharge of the treated water free of 

nanoparticles. In a smaller volume or sludge, the flocs can then be deflocculated by pH shift: 

given that TiO2 is amphoteric with an isoelectric point of ~5.5 (negatively charged at neutral pH, 

Figure 39), and using MFs with a permanent positive charge, pH adjustment to below 5.5 

induces electrostatic repulsion between the TiO2 and MF, dissolving the flocs to form a 

dispersion of free TiO2 and MF particles. Since TiO2 is non-magnetic, the MFs can then be easily 

separated from this mixture by magnetic separation, and both the TiO2 and MFs can be recycled 

in the process (following pH reneutralization). 

 

Scheme 3. Process for recycling TiO2 nanoparticles with reusable magnetic flocculants for 

photocatalytic water treatment: (a) photocatalytic treatment of contaminated water with a TiO2 
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nanoparticle slurry, (b) flocculation with magnetic flocculants following treatment, (c) magnetic 

separation of flocs and discharge of treated water, (d) deflocculation to release the nanoparticles, 

and (e) magnetic separation of flocculants, for recycling of both the TiO2 and flocculants. 

 

 

 

Figure 39. Zeta potential of aqueous TiO2 nanoparticle suspensions as a function of pH, where 

pI is the isoelectric point. 
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5.4.1 Magnetic flocculant synthesis and characterization 

The MF particles were synthesized according to the process indicated in Figure 40a. Hematite 

ellipsoids were synthesized according to an aqueous precipitation process, and encapsulated with 

a silica shell to serve as a protective barrier against oxidation and dissolution of the magnetic 

core during repeated flocculation cycles. The particles were then subjected to mild reduction in 

H2 to convert the hematite cores to magnetite, rendering them magnetically responsive. This 

synthesis strategy was designed to produce polycrystalline Fe3O4 cores (to achieve high per-core 

magnetic moment while retaining superparamagnetism) starting from a clean, polymer-free iron 

oxide surface. These Fe3O4@SiO2 ellipsoids were then coated with various flocculant polymers 

according to a layer-by-layer (LbL) process, a well-established technique to immobilize 

polyelectrolytes through strong multivalent ionic bonds.209,210  

 

Figure 40. Synthesis process of MF particles (a) and TEM images taken at each stage: (b) α-

Fe2O3 ellipsoids, (c) α-Fe2O3@SiO2, (d) Fe3O4@SiO2 and (e) Fe3O4@SiO2@PDADMAC. Insets 

show photos of the sample appearance. 

The particle structure was confirmed at each stage of the synthesis process by transmission 

electron microscopy (TEM) and dynamic light scattering (DLS) (Figure 40, Table 15). The close 

agreement of TEM and DLS measured diameters indicated the particles remained non-

aggregated and monodispersed throughout the synthesis process. In the precipitation of the α-

Fe2O3 ellipsoids, phosphate concentration controls both particle size and axial ratio (yielding an 

ellipsoidal structure),206 therefore a particle size of ~115 nm diameter and ~290 nm length was 

selected to minimize final particle size and thus maximize specific surface area for flocculation, 

while simultaneously providing sufficient core volume to enable rapid magnetic 

separability.48,221 The silica shell was measured to be ~33 nm thick, and provided a suitably 

charged surface for stable polymer binding.222 
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X-ray diffraction (XRD) confirmed complete conversion of α-Fe2O3 to polycrystalline Fe3O4 in 

the reduction step (Figure 41), with an average Fe3O4 crystal size of 14.9 nm calculated by the 

Scherrer formula from the (311) reflection. While this crystal size is well below the single 

domain threshold for magnetite (typically reported as ~30 nm),223 below which particles are 

superparamagnetic at room temperature, magnetic measurements on the MFs revealed some 

hysteresis, and a remanence of 7.7 emu g-1 (Figure 42). Nevertheless, in practice the MFs in 

suspension behaved as though they were superparamagnetic, exhibiting a high saturation 

magnetization of 33.9 emu g-1 without magnetic aggregation in the absence of an applied field, 

presumably due to a balance of other colloidal forces.52,42 

 

 

Figure 41. Powder XRD patterns of the α-Fe2O3@SiO2 particles (lower), α-Fe2O3 indexed to 

JCPDS no. 33-0664, and the Fe3O4@SiO2 particles (upper), Fe3O4 indexed to JCPDS no. 19-

0629. 
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Figure 42. Magnetic hysteresis curve of the Fe3O4@SiO2@PDADMAC particles at 300 K. 

 

 

Figure 43. TEM images of (a) Fe3O4@SiO2@PDADMAC particles, exhibiting strands as 

potential evidence of the polymeric coating, and (b) Fe3O4@SiO2@CS particles exhibiting ~1 

µm aggregates. 
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Several MF formulations were prepared by depositing different polymers as the outermost LbL layer, including poly(diallyldimethylammonium 

chloride) (PDADMAC) and chitosan (CS) as positively charged polyelectrolytes (PEs), and poly(sodium 4-styrenesulfonate) (PSS) and poly(acrylic 

acid) (PAA) as negatively charged PEs. These polymers have all been used as flocculants in conventional CF processes.224 While the polymeric 

coatings were not clearly visible by TEM (Figure 40e, Figure 43a), an increase in the hydrodynamic diameter of the particles following PE coating 

possibly indicated swelling of the polymer shell in water (Table 15). The significantly larger hydrodynamic size of the CS-coated particles was the 

result of interparticle bridging in the LbL process (Figure 43b). Although the molecular weights of the polymers used to coat the particles were lower 

than those of flocculants typically used in water treatment, since multiple polymer chains were bound to each Fe3O4@SiO2 core, it was hypothesized 

that the coated particles as a whole would behave as flocculants with a higher effective molecular weight, given their relatively large hydrodynamic 

volumes (Table 15). Indeed, the hydrodynamic volume of polymer flocculants in a random coil configuration is on the order of 100 nm.224 

 

Table 15. Particle size and charge, measured by TEM, DLS and zeta potential. 

 α-Fe2O3 
α-

Fe2O3@SiO2 
Fe3O4@SiO2 

Fe3O4@SiO2

@PDADMAC 

Fe3O4@SiO2

@PSS 

Fe3O4@SiO2

@PAA 

Fe3O4@SiO2

@CS 

Long axis mean (nm) 287 ± 49.1 351 ± 55.2 353 ± 57.3 359 ± 44.9    

Short axis mean (nm) 113 ± 16.9 176 ± 16.3 182 ± 18.6 178 ± 14.4    

Diameter of equivolume 

sphere (nm)a 
154 221 227 225    

Hydrodynamic diameter (nm) 175 265.1 258.6 272 278.1 462 1180.3 

Geometric standard 

deviation, σg 
1.427 1.163 1.224 1.303 1.155 1.599 1.717 

Zeta potential (mV)   -51.3 29.0 ± 3.48 -56.2 ± 5.53 -52.1 ± 3.97 -35.9 ± 4.87 
aCalculated from ellipsoid volume according to the mean axis lengths measured by TEM. 
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Alternating polarity of the particles’ surface charge was observed by zeta potential throughout 

the LbL coating process (Figure 44), characteristic of successful binding of each polymer 

layer,210 although the charge density of CS was apparently insufficient to fully compensate the 

negative charge from the underlying PSS layer in the Fe3O4@SiO2@CS sample. While Fourier 

transform infrared spectroscopy (FTIR) could not detect any specific functional groups 

associated with the PEs (Figure 45), X-ray photoelectron spectroscopy (XPS) of the 

Fe3O4@SiO2@PDADMAC sample revealed the presence of nitrogen and sulfur (attributed to 

PDADMAC and PSS) and a significant increase in surface carbon content following the polymer 

coating (Figure 46). N and S were present at the particle surface in approximately equal 

concentration (3.93 and 3.49 atomic %, respectively), and no Na or Cl peaks were detected, 

indicating the PDADMAC and PSS layers were acting as counterions for each other as expected. 

Thermal gravimetric analysis (TGA) of the Fe3O4@SiO2@PDADMAC particles revealed a mass 

loss of 1.52 wt.% at 600 °C attributed to burn off of the polymeric coating (Figure 47). 

 

 

Figure 44. Zeta potential of aqueous suspensions of MF particles throughout the LbL coating 

process, where the positive potentials represent PDADMAC coatings. 
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Figure 45. FTIR spectra of the particle formulations, where the 1113 cm-1 peak is characteristic 

of silica, and the 3425 cm-1 peak is attributed to hydroxyl groups. 
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Figure 46. XPS (a) survey spectra of the Fe3O4@SiO2 and Fe3O4@SiO2@PDADMAC particles, 

as well as (b) N 1s and (c) S 2p narrow scan spectra of the Fe3O4@SiO2@PDADMAC particles. 
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Figure 47. TGA curves of the Fe3O4@SiO2 and Fe3O4@SiO2@PDADMAC particles, with the 

weight of each sample normalized at 200 °C (weight loss below this temperature taken as water 

evaporation). 

 

A BET surface area of 12.3 m2 g-1 was calculated for the Fe3O4@SiO2@PDADMAC particles by 

N2 adsorption, which matched closely to the theoretical specific surface area of 9.8 m2 g-1 as 

calculated geometrically from the TEM ellipsoidal dimensions, indicating the MF particles were 

relatively smooth and non-porous. Qualitatively, all of the MF samples readily formed aqueous 

colloidal dispersions, and were strongly magnetically responsive for easy recollection. Therefore 

the conclusion of the above materials characterization confirmed synthesis of MF particles with 

the intended structure. 

5.4.2 Separation of TiO2 nanoparticles by magnetic flocculants with different 

polymer coatings 

The synthesized MF particles were subsequently assessed for flocculation performance toward 

TiO2 nanoparticle recovery, where TiO2 is a prominent photocatalyst researched for water 

decontamination, serving here as an example heterogeneous catalyst separation challenge. Since 

the flocculation performance of different polymers varies with respect to the suspended solid 

material, water matrix composition, and especially pH, several MF formulations (coated with the 

different polymers as described above) were tested for their ability to flocculate with TiO2 

nanoparticles (Aeroxide P25, Figure 48) and remove them from aqueous suspension across a 

range of pH values, the results of which are shown in Figure 49a. 
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Figure 48. TEM image of the TiO2 nanoparticles used in this work (Evonik Aeroxide P25). The 

mean primary particle diameter was measured to be 24.0 ± 7.1 nm (n = 121), and is reported by 

the manufacturer to be ~21 nm. 
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Figure 49. (a) Flocculation efficacy of MFs (0.1 g L-1), coated with the different polymers 

indicated (SiO2 refers to the uncoated Fe3O4@SiO2 particles), toward separation of TiO2 

nanoparticles (0.1 g L-1 in 10 mmol L-1 aqueous buffers), and (b) zeta potentials of the particles 

in the same conditions. 

A large difference was observed between the MF formulations, with the 

Fe3O4@SiO2@PDADMAC particles removing a significant fraction of the TiO2 nanoparticles at 

all pH values, while the CS coated particles exhibited only ~12% removal, and the uncoated and 

PAA and PSS coated particles minimally interacted with the TiO2 above pH 4. The TiO2 

suspension was observed to be colloidally unstable at pH 2, and therefore all MF particles non-

specifically facilitated TiO2 settling. These results confirmed that, at least for the PDADMAC 

coated MFs, the bound polymers were still sufficiently accessible to interact with suspended 

nanoparticles to enable magnetic separation. Furthermore, the superior performance of the 
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cationic polymer coated MFs over the negatively charged samples suggested an electrostatic 

interaction with the TiO2, the same mechanism by which PEs interact with suspended solids in 

conventional CF.192,224 Therefore, the zeta potential of the particles was studied as a function of 

pH (Figure 49b). 

In buffer, the TiO2 nanoparticles possessed a negative zeta potential across the pH range, while 

the Fe3O4@SiO2@PDADMAC particles, the most effective MFs, were the only formulation with 

a constant positive charge, supporting electrostatic attraction as the mechanism of interaction. 

The Fe3O4@SiO2 particles and PAA and PSS coated MFs exhibited negative zeta potential above 

pH 4, thus presumably electrostatically repelling the suspended TiO2. Colloidal instability of the 

TiO2 nanoparticles near their isoelectric point (shifted to lower pH in phosphate buffer) 

accounted for their easy separability by all MF samples at pH 2. Thus as in conventional CF, the 

relative charge of the flocculant with respect to the suspended solid was a critical factor to enable 

separation. 

5.4.3 Magnetic flocculation of metallic nanoparticle suspensions 

To further investigate the zeta potential dependence and specificity of the flocculation process, 

the MF particles were tested for their ability to remove other types of colloidal nanoparticles 

from suspension: citrate stabilized Au, hexadecyltrimethylammonium bromide (CTAB) 

stabilized Ag, poly(vinylpyrrolidone) (PVP) stabilized Pd, and PVP stabilized Pt (Figure 50a). 

These nanomaterials also represent practically important targets for magnetic separation, with 

applications in plasmonic photocatalysis,225,226 water treatment,227,228 and environmental 

analysis.229 Furthermore, controlling environmental release of Ag nanoparticles is a significant 

concern for wastewater treatment plants.230–232 PDADMAC and PSS coated MFs, as positively 

and negatively charged particles, were compared against each type of nanoparticle. The 

Fe3O4@SiO2@PDADMAC particles demonstrated excellent separation of the negatively charged 

Au, Pd, and Pt nanoparticles (Figure 50b), while similarly as with TiO2, the Fe3O4@SiO2@PSS 

MFs exhibited minimal interaction with these suspensions. Notably however, the PSS coated 

MFs were efficient at separating cationic Ag nanoparticles, while the PDADMAC MFs failed in 

this system (Figure 51), thus providing further evidence of the electrostatic interaction 

mechanism. Furthermore, since aqueous nanoparticle colloidal dispersions frequently possess a 

surface charge for electrostatic stabilization, these results demonstrate that magnetic flocculation 

could serve as a general method for nanoparticle separation. 
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Figure 50. Photos of Au, Ag, Pd, and Pt nanoparticle aqueous suspensions, with zeta potentials 

indicated, (a) before and (b) after separation by magnetic flocculation with the MF particles 

indicated (added at 0.316 g L-1). 
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Figure 51. Photos of CTAB stabilized Ag nanoparticle aqueous suspensions (a) before and (b) 

after separation by magnetic flocculation with the MF particles indicated (added at 0.316 g L-1). 

 

5.4.4 Concentration dependence of nanoparticle separation performance 

The success of conventional CF processes for water clarification typically exhibits a strong 

concentration dependence, where selecting the correct flocculant dose for optimal separation of a 

given suspended solids concentration represents a significant challenge faced by water treatment 

operators. Therefore a factorial study was used to investigate the separation efficacy of magnetic 

flocculation at different concentrations of both TiO2 and PDADMAC coated MF particles 

(Figure 52), where the TiO2 concentration range studied (≤1 g L-1) is typical of photocatalytic 

applications. 

Increasing the concentration of MF particles added to the suspensions (CMF) increased the TiO2 

removal percentage, to ~100% at CMF >300 mg L-1, thereby indicating that the incomplete 

separation achieved by the Fe3O4@SiO2@PDADMAC particles in the initial study (Figure 49a) 

was simply the result of an unoptimized MF:TiO2 ratio. At low MF concentrations, a valley was 

observed in the response, with high TiO2 separation achieved at both low and high TiO2 
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concentrations (CTiO2), but poor recovery attained at intermediate CTiO2. To interpret this result, it 

was hypothesized that at low CTiO2, the ratio of MF particles was sufficient to bind and remove 

the majority of the TiO2, while increasing CTiO2 overwhelmed the MF surface area available for 

nanoparticle attachment, and at high CTiO2 of ~1 g L-1 the TiO2 nanoparticles were suspended as 

micron scale aggregates rather than individually dispersed nanoparticles,27 and thus susceptible 

sweep flocculation at even low CMF. Finally, the ~100% removal achieved at even a high 

MF:TiO2 ratio is an important result, as this contrasts with the behaviour of conventional 

flocculant polymers, where polymer overdosing can electrosterically re-stabilize suspended 

particles and reduce separation efficiency; thus determining optimal polymer concentration is a 

critical implementation challenge for conventional flocculants.191,192,224 The MF particles do not 

appear to exhibit this overdosing issue, since no matter the configuration by which they bind the 

suspended nanoparticles, magnetic separation is enabled. 
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Figure 52. (a) Third order response surface fit (𝒚̂) of TiO2 nanoparticle recovery by magnetic 

flocculation, as a function of the concentration of TiO2 (CTiO2) and Fe3O4@SiO2@PDADMAC 

particles (CMF), and (b) the corresponding standard error of the estimated response. 

Following magnetic flocculation, inductively coupled plasma mass spectrometry (ICPMS) was 

used to measure trace residual TiO2 nanoparticles remaining in suspension at concentrations 

below the detection limits of UV/Vis spectroscopy (Figure 53). Fe3O4@SiO2@PDADMAC 

particles, added at 316 mg L-1 to 100 mg L-1 TiO2, reduced the TiO2 nanoparticle concentration 

to 0.52 mg L-1. Subsequent passes of MF particles were therefore investigated for removal of this 

nanoparticle residual, and it was found that a second round of flocculation was sufficient to 

reduce TiO2 concentration to below the ICPMS detection limit (3 µg L-1 Ti). While further study 

is required to probe even lower detection limits, magnetic flocculation apparently provides 
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logarithmic reduction in suspended particle concentration, and the process is effective at 

separating ultra-low nanoparticle concentrations. 

 

 

Figure 53. Relative TiO2 concentration remaining in suspension after sequential magnetic 

flocculation passes of Fe3O4@SiO2@PDADMAC particles (added at 316 mg L-1). LOD refers to 

the ICPMS limit of detection.  

 

The flocculation efficacy of the Fe3O4@SiO2@PDADMAC particles was compared to freely 

dissolved polymeric PDADMAC (Figure 54). At low concentrations (<0.5 mg L-1), the free 

polymer was more efficient than the MFs at nanoparticle separation, presumably since in the MF 

formulation a large fraction of the PDADMAC quaternary ammonium groups were already 

consumed through binding to the MF surface, which may have also constricted PDADMAC 

conformational configurations and rendered it less available for nanoparticle interaction. 

Provided at sufficient concentration however, the MFs matched the performance of free 

PDADMAC to achieve high TiO2 removal rates, while the free polymer exhibited a prominent 

overdosing and re-stabilization effect at higher concentrations. 

 



107 
 

 

 

 

Figure 54. Flocculation efficacy of free polymeric PDADMAC compared to PDADMAC bound 

on Fe3O4@SiO2@PDADMAC MFs, toward separation of TiO2 nanoparticles (0.1 g L-1). The 

concentration of PDADMAC in the MF sample was calculated from the mass fraction of the 

terminal PDADMAC layer, taken as one third of the total polymer coating mass measured by 

TGA, i.e., 0.51 wt.%. 

 

5.4.5 Microscopic observation of floc structure 

Although the magnetic separation process of nanoparticle suspensions qualitatively appeared to 

follow a flocculation mechanism, the mixtures were analyzed microscopically to study the 

interparticle interactions and aggregate structures (Figure 55). Large aggregates >10 µm in size 

were observed at CMF ≥ 100 mg L-1, which increased in both size and density with increasing MF 

concentration, confirming the magnetic separation proceeded by flocculation. A benefit of 

forming such large flocs is that they can be rapidly magnetically collected (within seconds), 

another advantage of magnetic flocculation over the relatively slow gravitational settling 

provided with conventional CF. Only small aggregates <3 µm in size were observed at CMF = 32 

mg L-1 (Figure 55a&b), suggesting nanoparticle adsorption to the MF surface may also be a 

process occurring at low MF:TiO2 mass ratios. 
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Figure 55. Optical micrographs of flocs formed in TiO2 nanoparticle suspensions (0.1 g L-1) 

following addition of Fe3O4@SiO2@PDADMAC particles at different concentrations: (a) & (b) 

31.6 mg L-1, (c) & (d) 100 mg L-1, (e) & (f) 316 mg L-1, and (g) & (h) 1 g L-1. 

 

Floc structure was also observed by TEM. At low CMF, significant quantities of free unbound 

TiO2 was observed (Figure 56a&b), correlating with the low TiO2 recovery measured in this 

condition (Figure 49). In contrast, at CMF ≥316 mg L-1, associated with ~100% recovery, TiO2 

nanoparticles were completely encompassed by a network of MF particles (Figure 56e-h). From 

these observations, it is hypothesized that magnetic flocculation efficiency is associated with 

particle surface area ratios, where the threshold CMF for complete nanoparticle separation occurs 

when the surface area of the MFs and suspended nanoparticles are approximately equal (e.g., at 

CTiO2 = 100 mg L-1, this threshold CMF ≈ 316 mg L-1, corresponding to surface areas of 5.5 and 

3.9 m2 L-1 for the TiO2 and MF particles, respectively). This theory may provide a useful basis 

for adapting magnetic flocculation to other nanoparticle systems. 
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Figure 56. TEM images of flocs formed in TiO2 nanoparticle suspensions (0.1 g L-1) following 

addition of Fe3O4@SiO2@PDADMAC particles at different concentrations: (a) & (b) 31.6 mg L-

1, (c) & (d) 100 mg L-1, (e) & (f) 316 mg L-1, and (g) & (h) 1 g L-1. 

 

5.4.6 Deflocculation and flocculant recycling 

Since the above experiments indicated an electrostatic mechanism of flocculation, pH shift was 

investigated as a deflocculation mechanism to release nanoparticles from separated flocs. While 

the TiO2 and the Fe3O4@SiO2@PDADMAC particles possessed opposite surface charge at 

neutral pH, resulting in flocculation, below its isoelectric point TiO2 takes on a positive charge 

(Figure 39), which was expected to induce electrostatic repulsion towards the MF particles 

leading to floc disintegration. Importantly, LbL PE coatings are known to be extremely stable 

over a wide pH range.233 Flocs formed from addition of PDADMAC coated MFs (at 316 mg L-1) 

to a TiO2 suspension (100 mg L-1) were collected and redispersed into acidic solutions, resulting 

in ~100% TiO2 release at pH ~2.5 (Figure 57). This deflocculation did not show a strong pH 

dependence in the range studied, although TiO2 release was strongly inhibited at pH 1, 

presumably due to protonation of the PSS in the LbL layer at its pKa. This experiment thus 

confirmed that the magnetic flocculation process was easily reversible. 
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Figure 57. TiO2 nanoparticle recovery following deflocculation of 

Fe3O4@SiO2@PDADMAC/TiO2 flocs as a function of pH. 

Therefore, to assess the reusability of the MF particles for nanoparticle recycling, three cycles of 

flocculation and deflocculation were performed using the same set of 

Fe3O4@SiO2@PDADMAC and TiO2 nanoparticles (Figure 58). Flocculation performance 

remained the same over the course of the experiment (p > 0.1), confirming that the properties of 

the MF particles remain intact over multiple flocculation cycles, and thus demonstrating the 

concept of magnetically recyclable flocculants. 

 

 

Figure 58. Separation of TiO2 nanoparticles from aqueous suspension (0.1 g L-1) by magnetic 

flocculation and deflocculation recovery with Fe3O4@SiO2@PDADMAC particles, where the 

same TiO2 and MF particles were recycled and used throughout each test. 
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To demonstrate the full closed loop magnetic flocculation process of Scheme 3, TiO2 

nanoparticles were used as photocatalysts for the oxidative and reductive treatment of both 

organic and inorganic water contaminants, wherein the TiO2 was recycled by magnetic 

flocculation and reused over multiple treatment cycles (Figure 59). Inorganic selenium 

oxyanions, of recent interest due to the reduction in effluent limit guidelines by the US EPA234 

and a primary source of toxicity in flue gas desulphurization wastewater (FGDW),235,236 were 

removed through photocatalytic reduction (Figure 5a).218,219 Naphthenic acid fraction extractable 

organics (NAs), a complex mixture of bitumen-derived water soluble acyclic and cycloaliphatic 

compounds and a primary source of toxicity in oil sands process-affected water (OSPW),6,113,237 

were degraded through photocatalytic oxidation (Figure 59b).70,119,205 The photocatalytic 

properties of TiO2 nanoparticles remained largely intact following magnetic flocculation, where 

apparent losses in performance may have been due to fouling or aggregation of the TiO2 over 

multiple cycles without rinsing. Extrapolating these results, the particles could be recycled 13 

times in FGDW and 5 times in OSPW before losing 50% of initial photocatalytic activity. Both 

treatments were performed in real wastewater samples, demonstrating practical performance and 

tolerance of the MFs to dissolved species.  

 

Figure 59. Photocatalytic treatment of (a) Se in FGDW and (b) NAs in OSPW using TiO2 

nanoparticles (0.1 g L-1) recycled by magnetic flocculation, where the grey bands indicate points 

at which the TiO2 was magnetically separated, deflocculated into a fresh sample of FGDW or 
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OSPW, and equilibrated in the dark. In each experiment Fe3O4@SiO2@PDADMAC particles 

were used as the flocculant, and the same TiO2 and MF particles were recycled and used 

throughout each test. 

As far as limitations of the magnetic flocculation for nanoparticle recovery in water treatment 

applications, the presence of natural suspended solids (TSS) in water could represent a 

competing interference. However, this is not anticipated as a practical concern for recycling of 

photocatalytic nanoparticles, as advanced oxidation processes (AOPs) like photocatalysis are 

typically applied as tertiary treatments for water that has already been pre-treated to remove TSS. 

Similarly, dissolved ions or organic matter (NOM) could interfere to reduce flocculation 

efficiency, however the above experiment in real FGDW and OSPW demonstrates performance 

at even relatively high ion and NOM concentrations. Another practical limitation of the magnetic 

flocculation process is the increase in salinity (total dissolved solids, TSS), induced by the pH 

swings required for deflocculation and water reneutralization, which is undesirable from a water 

quality perspective. A further treatment stage downstream of the magnetic flocculation process 

may therefore be required for desalination. 

5.5 Conclusions 

Magnetic flocculation is presented as an alternative paradigm for nanoparticle recycling by 

magnetic separation, without disadvantages associated with immobilizing nanoparticles in core-

shell magnetic nanocomposites. The MF particles were effective at flocculating a variety of 

different nanoparticles through an electrostatic association mechanism, without the overdosing 

issues associated with conventional flocculants, and logarithmic reduction in suspended particle 

concentration was possible over multiple flocculation passes. With the recent research focus on 

applications of plasmonic nanoparticles in catalysis and sensing, the effective separation of 

several metallic nanoparticles herein is significant, and further studies on metallic nanoparticle 

recycling are warranted. The MFs were also capable of collecting ultra-low concentrations of 

nanoparticles, and were reusable over multiple flocculation cycles. Furthermore, given that 

flocculant chemicals can be recovered and reused in this process, magnetic flocculation 

represents an environmentally sustainable solution to conventional flocculation challenges, and 

may have applications not only for nanocatalyst recycling, but also in remediation of 

nanoparticle pollution, algae dewatering, and wastewater treatment.  
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Chapter 6 

Floating photocatalysts for passive solar degradation of 

naphthenic acids in oil sands process-affected water** 

 

6.1 Summary 

Oil sands process-affected water (OSPW), generated from bitumen extraction in the Canadian oil 

sands, may require treatment to enable safe discharge to receiving watersheds, as dissolved 

naphthenic acids (NAs) and other acid extractable organics (AEO), identified as the primary 

toxic components of OSPW, are environmentally persistent and poorly biodegradable. However, 

conventional advanced oxidation processes (AOPs) are impractically expensive to treat the 

volumes of OSPW stockpiled in the Athabasca region. Here we prepared floating photocatalysts 

(FPCs) by immobilizing TiO2 on glass microbubbles, such that the composite particles float at 

the air-water interface for passive solar photocatalysis. The FPCs were demonstrated to 

outperform P25 TiO2 nanoparticles in degrading AEO in raw OSPW under natural sunlight and 

gentle mixing conditions. The FPCs were also found to be recyclable for multiple uses through 

simple flotation and skimming. This paper thus demonstrates the concept of a fully passive AOP 

that may be scalable to oil sands water treatment challenges, achieving efficient NA reduction 

solely through the energy provided by sunlight and natural mixing processes (wind and waves). 

 

6.2 Introduction 

Bitumen extraction in Canada’s oil sands uses large volumes of water, which is contaminated in 

the process by compounds leached from the oil sands ore, and referred to as oil sands process-

affected water (OSPW). Release of OSPW to the environment is hindered by the toxicity of the 

water, due primarily to dissolved naphthenic acids (NAs) and other acid extractable organics 

(AEO),113,238 and thus an estimated 1 billion m3 of OSPW to date has been retained in tailings 

ponds on site. NAs are not fully biodegradable,8,239 and their toxicity persists over decades,10 

therefore a water treatment solution may be required to enable OSPW discharge. 

                                                 

 

 

** This chapter is adapted from a previously published article: Leshuk, T.; Krishnakumar, H.; de 

Oliveira Livera, D.; Gu, F. Floating Photocatalysts for Passive Solar Degradation of Naphthenic 

Acids in Oil Sands Process-Affected Water. Water 2018, 10 (2), 202. 
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Recently the oil sands industry has sought passive, or low energy, water treatment technologies 

capable of addressing large volumes of OSPW.11 Considering the large sunlight-exposed surface 

area of oil sands tailings ponds, solar photocatalysis is a promising advanced oxidation process 

(AOP) with demonstrated capability to fully degrade OSPW AEO through hydroxyl and 

superoxide radical-mediated oxidative mineralization.69,119,205 In contrast to other advanced 

oxidation processes (AOPs) that have been tested for OSPW treatment,16,108 solar photocatalysis 

enables complete degradation of even recalcitrant NAs, without the need for chemical 

amendment of the water or electrical power consumption. Nevertheless, there remain a number 

of key technical challenges towards application of photocatalysis for OSPW treatment. Previous 

research has studied photocatalytic nanoparticles dispersed into OSPW as a slurry, and while 

slurries enable high treatment rates through efficient mass transfer, they require continuous 

mixing to remain suspended, as without mixing the photocatalyst near the water surface, the 

turbidity of OSPW is likely to occlude sunlight from reaching the catalyst. Indeed our previous 

measurements indicated the UV light penetrates <1 cm into OSPW.119 Since the photocatalytic 

reaction thus only occurs at the water surface, the bulk majority of slurried catalyst dispersed in 

the dark zone below the surface is not effectively utilized, resulting in unnecessary material 

oversupply. Furthermore, slurries present challenges for cost effective nanocatalyst recovery and 

reuse at a large scale. 

It was hypothesized that immobilizing a photocatalyst onto a buoyant support could address the 

above challenges, while adapting this promising treatment technology into a passive platform 

enabling large-scale deployment. On floating cores, the photocatalyst is naturally concentrated 

without any mixing at the water surface, where sunlight intensity is greatest, and the catalyst can 

be easily collected by simple skimming. Thus in this work we sought to demonstrate treatment of 

AEO in raw OSPW by use of floating photocatalysts under natural sunlight. While buoyant 

photocatalysts have been synthesized previously,240–242 this report represents the first 

demonstration of such materials as a passive treatment for OSPW remediation. 

 

6.3 Experimental 

6.3.1 Materials 

OSPW collected on March 17, 2014 was provided by Shell Canada, and stored in sealed 

polyethylene containers in the dark at 4 °C. The OSPW was homogenized by stirring before each 

use, herein referred to as raw OSPW. The OSPW was characterized previously to have a 

conductivity of 1.695 mS/cm, 1450 mg/L total dissolved solids (TDS), 49.5 mg/L total 

suspended solids (TSS), and a turbidity >200 NTU.119 The AEO concentration was measured by 

the FTIR method below to be 26.3 mg/L. 
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A commercial mixture of naphthenic acids (technical grade, carbon numbers 6 – 20, z-classes 0 

to -4, as characterized by Damasceno et al.120), dichloromethane (DCM, ≥99.9%, HPLC grade) 

NaOH (≥98%, ACS grade) and nitric acid (70%, ACS grade) were purchased from Sigma-

Aldrich and used as received. Sulfuric acid (95-98%, ACS grade, Fisher) and titanium dioxide 

nanoparticles (Aeroxide P25, ~10-50 nm particle diameter, 55 m2 g-1 surface area, Acros) were 

used as received. Glass microbubbles (3M iM30k, soda-lime-borosilicate glass, ~10-30 µm 

diameter, 0.6 g/cm3 density) were washed by 1 mol/L HNO3 and 0.1 mol/L NaOH before use (at 

125 g/L microbubbles), rinsing thrice with deionized (DI) water after each wash, then drying at 

120 °C in air. 

6.3.2 Floating Photocatalyst Synthesis and Characterization 

TiO2 nanoparticle powder was dispersed at 60 g/L into DI water by probe sonication, after which 

0.1 mol/L HNO3 was added to a concentration of 1 mmol/L, thereby adjusting the suspension to 

a nominal pH of ~3. This TiO2 suspension was then added to microbubble powder (17.75 mL per 

g microbubbles), and the mixture was stirred at 500 rpm for 2 h, before transferring to a 

separatory funnel. The floating layer was collected after 1 h, vacuum filtered to form a cake, 

dried and crushed to a powder, which was then calcined for 4 h at 500 °C in air (5 °C/min ramp 

rate) to form the floating photocatalysts (FPCs). 

Particle morphology was analysed by SEM (Zeiss Merlin FESEM), and elemental composition 

was measured by EDX (EDAX). Crystal phase was assessed by powder XRD (Bruker D8-

Advance, Våntec-1 detector, 1.5405 Å Cu-Kα radiation). 

6.3.3 Photocatalysis Experiments 

Outdoor solar photocatalytic experiments were performed between August 22-28, 2015 at the 

University of Waterloo (Waterloo, ON, Canada). 1 g of FPC powder (or 0.5 g of P25 TiO2) was 

stirred into 500 mL of raw OSPW in a borosilicate glass beaker (90 mm O.D.). Beakers were 

sealed from above with polyethylene film (Glad, measured to be UV transparent by 

spectrophotometry) to prevent evaporation during the experiments, and wrapped around the sides 

with Al foil. The beakers were then placed on a rooftop outdoors (43°28'17.9"N 80°32'32.2"W) 

and exposed to sunlight while stirring at 130 rpm, where a control included OSPW exposed to 

sunlight in the absence of TiO2. The stirring Reynolds number was calculated according to the 

formula Re = 𝑓𝑟2𝜐−1, where 𝑓 is the rotational frequency (130 rpm), 𝑟 is the radius of the stir 

bar (1.905 cm) and 𝜐 is the kinematic viscosity of water.243 Following solar treatment, the 

photocatalyst was separated from the OSPW by flotation or centrifugation, retaining the water 

for analysis (stored at 4 °C in the dark). 

Weather data was obtained from the University of Waterloo Weather Station archives.74 

Cumulative insolation was calculated by integrating the incoming shortwave radiation (measured 

by the weather station using a Kipp & Zonen CM11 pyranometer, spectral range 285 to 2800 
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nm) over the duration of the experiment (Figure 60). Cumulative UV exposure was estimated on 

the basis of the ASTM G173-03 global tilt solar spectrum as 4.72% of the cumulative insolation. 

 

 

Figure 60. Solar irradiance measured throughout the duration of the photocatalytic experiment 

of Figure 2. 

 

Photocatalyst recyclability experiments were performed under in a custom photoreactor 

enclosure, consisting of an array of UVA fluorescent bulbs (Philips F20T12/BL, peak emission 

~350 nm, Figure 18) suspended above the samples.205 The UV intensity was measured to be ~40 

W/m2 with a UVA/B light meter (Sper Scientific, NIST certified calibration), which is similar to 

the UV content of the solar spectrum (ASTM G173-03 global tilt). Following UV exposure, the 

photocatalyst was separated from the OSPW by flotation, and then directly redispersed into a 

fresh sample of OSPW for another round of photocatalytic testing. 

6.3.4 Analysis 

The concentration of AEO was measured by Fourier transform infrared spectroscopy (FTIR) 

according to the standard method75,76 with minor modifications (viz., the acidified samples were 

extracted thrice with DCM in a 1:12.5 solvent to sample volumetric ratio, with 80 ± 4% total 

recovery), using the commercial NA mixture to prepare the calibration curve. AEO is a 

composite measure of classical NAs, oxy-NAs (CnH2n+zOx, where x > 2), and other organic 

acids.64 Samples were filtered prior to the analysis (Whatman 934-AH glass fiber filter). Pseudo-

first order rate constants were calculated on the basis of cumulative incoming solar shortwave 

insolation (285-2800 nm). 

6.4 Results and Discussion 
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Photocatalysts were immobilized on the outer surface of buoyant microspheres, such that the 

composite particles would passively float at the air-water interface and degrade aqueous organic 

contaminants under sunlight illumination (Figure 61a). A heterocoagulation and sintering 

process was used to adhere photocatalytic TiO2 nanoparticles to a high strength glass 

microbubble (GMB) core, wherein the TiO2 and GMBs were mixed together at a pH between 

their respective isoelectric points to induce electrostatic attraction, followed by high temperature 

calcination to fix the nanoparticles in place. Thermal sintering has been previously demonstrated 

to promote strong adhesion of immobilized TiO2 to glass supports,244–246 although reducing 

specific surface area of the TiO2 in the process.247 Floating photocatalysts synthesized previously 

have used plastic supports susceptible to photocatalytic degradation,248–253 or fragile materials 

such as perlite,254–256 which sink upon breaking. The floating photocatalyst (FPC) composites 

prepared herein are entirely inorganic and resistant to photodissolution, and thus more suitable 

towards long term emplacement in a passive treatment system. The synthesized particles were 

observed to readily float at the water surface as intended (Figure 61b). 
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Figure 61. (a) Schematic of the floating photocatalyst (FPC) structure and mechanism of solar 

water treatment for napthenic acid mineralization (not to scale), (b) photograph of the FPCs 

added to water, (c) SEM image of a single FPC particle, and (d) XRD pattern of the FPC 

powder. 

 

SEM was used to confirm the presence of immobilized TiO2 on the surface of the GMBs, 

observed as a rough particulate coating (Figure 61c), with a particle diameter of ~25 nm, similar 

to the diameter of the TiO2 nanocrystals used (Figure 62). SEM images of the uncoated GMBs 

are presented in Figure 63. EDX analysis further confirmed the presence of Ti, and the TiO2 

content of the composite particles was estimated to be 36.6 ± 4.1 wt. % (Figure 64). TiO2 

nanocrystals are known to partially sinter at the temperatures applied during the synthesis,247 

which is proposed to be the mechanism of TiO2 adhesion.257,258 XRD revealed the presence of 

anatase and rutile phases in the FPCs, characteristic of the mixed-phase TiO2 nanocrystals 

used,259 confirming that the calcination step did not significantly affect the crystal phase of the 
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particles. In fact, mild calcination at the temperatures applied herein has been reported to 

enhance the photocatalytic activity of TiO2 nanoparticles.247 

 

 

Figure 62. SEM image of TiO2 nanostructures on the surface of a FPC particle. 
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Figure 63. SEM images of uncoated glass microbubbles (GMBs) at (a) 500x and (b) 3000x 

magnification. GMBs were sputtered with Au prior to imaging. 

 

 

Figure 64. (a)-(c) SEM regions used for EDX elemental analysis and (d) typical EDX spectrum, 

as obtained from region (b). 

 

The photocatalytic activity of the FPC particles was assessed under natural sunlight for the 

degradation of AEO in raw OSPW under gentle mixing conditions (Figure 65). The FPC 

particles degraded >80% of the AEO within 22 h of sunlight exposure (~33.4 kJ L-1 cumulative 
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solar UV), from a starting concentration of ~30 mg L-1 down to 4 mg L-1. The oxidized 

intermediate compounds produced during photocatalytic AEO degradation have been thoroughly 

characterized in our previous work, where photocatalysis was demonstrated to result in nearly 

complete mineralization of organic carbon.119,205 The kinetics were apparently first order, as 

observed previously,119 and the pseudo-first order rate constant for the FPCs was 3.46 ± 0.20 x 

10-8 m2 J-1. The FPCs compared favourably to P25 TiO2 as a benchmark photocatalyst, which 

had a pseudo-first order rate constant of 4.15 ± 0.34 x 10-8 m2 J-1, where the measured rate 

constants were indistinguishable from each other (p > 0.1). However, normalized on a TiO2 mass 

basis, the FPCs outperformed the P25 TiO2, with a rate constant of 9.45 x 10-8 m2 J-1 g-1 

compared to 8.30 x 10-8 m2 J-1 g-1, respectively. Conventionally, nanoparticle slurries would be 

expected to outperform immobilized photocatalysts, such as the FPCs, due to enhanced 

contaminant mass transfer and higher accessible catalyst surface area.24,27 However, in the low 

mixing regimes studied herein, the advantages provided by the FPCs of concentrating the 

photocatalyst at the water surface where sunlight intensity is highest apparently outweighed the 

typical disadvantages of immobilized systems. Thus the FPCs exceeded the activity of a known 

excellent photocatalyst formulation while enabling a convenient means of recycling through their 

buoyant properties. 

 

 

Figure 65. Photocatalytic degradation of AEO in raw OSPW under natural sunlight, where C 

and C0 are the concentration and initial concentration of AEO, respectively. 

 

The Reynolds number of mixing during the test was calculated to be 786, characteristic of a 

gentle laminar flow regime. The OSPW cap layer in oil sands tailings ponds is known to be well 
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mixed by wind and waves,260–262 and NAs are furthermore constantly replenished to the interface 

by methanogenic bubbling in a similar process to dissolved gas flotation (estimated flux of 12 g 

CH4 m-2 day-1).263 Thus as the above photocatalytic results were observed under gentle mixing 

conditions, it is anticipated that the natural mixing processes provided in the tailings ponds could 

be sufficient for OSPW treatment, although this question will be the topic of future studies. 

These results suggest the possibility for photocatalysis to serve as a truly passive AOP process 

with no electrical power input, where energy is provided solely by sunlight and wind. 

Finally, the recyclability of the FPC particles for treating multiple batches of raw OSPW was 

tested under controlled illumination conditions (Figure 66), simply separating the catalyst by 

flotation. The catalyst was found to be reusable with equivalent activity for at least 3 cycles. 

Some deterioration in treatment performance was observed after the third cycle, possibly due to 

experimental difficulties in transferring 100% of the FPC material between cycles with small 

sample volumes, or alternatively due to progressive surface fouling of the catalyst. Effects of 

long term FPC exposure to raw OSPW is the topic of ongoing investigations in our laboratory. 

Signficantly, the durability of the FPCs to freeze-thaw cycling must also be evaluated to 

determine whether solar OSPW treatment would need to be paused over the winter months (i.e., 

collection & redeployment of the FPCs seasonally). 

 

 

Figure 66. Recyclability of a single batch of FPC particles to degrade AEO in raw OSPW, where 

C and C0 are the concentration and initial concentration of AEO, respectively. 

 

6.5 Conclusions 
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A floating photocatalyst composite was demonstrated to match the photocatalytic activity of P25 

TiO2 in raw OSPW under natural sunlight. This is a significant finding, since photocatalytic 

activity was not sacrificed through this immobilization strategy, while the following advantages 

were gained: 

• Due to their buoyancy, FPCs naturally concentrate at the air-water interface where 

sunlight intensity and dissolved oxygen concentrations are highest (i.e., the optimal 

treatment zone); 

• Substantially less photocatalyst material is needed to achieve the same treatment rate as 

slurry deployment, since TiO2 comprises only a minority of the buoyant composite mass, 

while in photocatalytic slurries, the vast majority of particles suspended below the 

illuminated air-water interface do not participate in the treatment process; 

• NAs are naturally enriched at the air-water interface due to their surfactant properties, 

and are replenished to the surface from deeper OSPW in tailings ponds by methane 

bubbling, and through natural mixing provided by wind and waves; 

• FPCs can be easily contained and collected by skimming from the surface, compared 

with the significant technical challenges of collecting colloidal nanoparticles from a 

slurry. 

The use of sunlight and low energy mixing suggests the possibility that photocatalysis could 

serve as a truly passive water treatment process amenable to large scale deployment in the oil 

sands.  
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Chapter 7 

Petroleomic analysis of the treatment of naphthenic organics 

in oil sands process-affected water with buoyant 

photocatalysts†† 

 

7.1 Summary 

The persistence of toxicity associated with 

the soluble naphthenic organic compounds 

(NOCs) of oil sands process-affected water 

(OSPW) implies that a treatment solution 

may be necessary to enable safe return of this 

water to the environment. Due to recent 

advances in high-resolution mass 

spectrometry (HRMS), the majority of the 

toxicity of OSPW is currently understood to 

derive from a subset of toxic classes, comprising only a minority of the total NOCs. Herein, 

oxidative treatment of OSPW with buoyant photocatalysts was evaluated under a petroleomics 

paradigm: chemical changes across acid-, base- and neutral-extractable organic fractions were 

tracked throughout the treatment with both positive and negative ion mode electrospray 

ionization (ESI) Orbitrap MS. Transformation of OS+ and NO+ classes of concern in the earliest 

stages of the treatment, along with preferential degradation of high carbon-numbered O2
- acids, 

suggest that photocatalysis may detoxify OSPW with higher efficiency than previously thought. 

Application of petroleomic level analysis offers unprecedented insights into the treatment of 

petroleum impacted water, allowing reaction trends to be followed across multiple fractions and 

thousands of compounds simultaneously. 

7.2 Introduction 

                                                 

 

 

†† This chapter is adapted from a paper that has been submitted for publication: Leshuk, T.; Peru, 

K. M.; de Oliveira Livera, D.; Tripp, A.; Bardo, P.; Headley, J. V.; Gu, F. Petroleomic analysis 

of the treatment of naphthenic organics in oil sands process-affected water with buoyant 

photocatalysts. Water Res. Submitted Feb. 4, 2018 (Manuscript No.: WR43113). 
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The Clark process used for extraction of bitumen in Canada’s oil sands generates large volumes 

of water as a by-product, referred to as oil sands process-affected water (OSPW), which is stored 

on site in tailings ponds for water recycling. The oil sands mining companies are obligated to 

eventually return this water to the environment,1–3 but currently are operating on a zero-discharge 

policy, due in part to the water’s toxicity, which is primarily attributed to dissolved bitumen-

derived organics.4–7 Fractions of these organics are highly persistent,8,9 and remain potently toxic 

even after decades of aging.10 Thus treatment of OSPW may be required to enable safe 

discharge, and the industry is currently exploring passive remediation solutions.11 

In the past, the organic constituents of OSPW were thought to simply comprise naphthenic acids 

(NAs), of the classical formula CcH2c+ZO2, where Z indicates hydrogen deficiency from rings or 

double bonds.12 However, with the advance of analytical capabilities such as high-resolution 

mass spectrometry (HRMS), far more complexity has been revealed:64,114,116 OSPW is now 

understood to contain not only these conventional NAs, but also oxidized and heteroatomic 

classes,264 and non-acid neutral and basic species,265 referred to collectively herein as naphthenic 

organic compounds (NOCs, of general formula CcH2c+ZNnOoSs). While classic NAs are known 

toxicants,5 recent effects-directed analyses have also shown these base-neutral organics 

contribute significantly to the toxicity of OSPW,113,266 and may also be implicated in its 

endocrine disruptive effects.267,268 With the petroleomic level insights afforded by such rich 

HRMS datasets,269,270 it has even been proposed recently that the whole effluent toxicity (WET) 

of OSPW may be predictable simply through mass spectral analysis.271 

While many of these analytical advances have been driven by the goals of environmental 

forensics,115,272–274 it is important for water treatment technologies to keep pace with the 

scientific progress and be evaluated with the same analytical rigor, to provide validated 

remediation tools for emergent environmental priorities. In terms of technologies studied for 

OSPW treatment, solar photocatalysis (PC) has been shown to be particularly effective at 

eliminating NAs,69,119,205,275,276 and may be the only advanced oxidative process (AOP) with the 

potential for deployment in passive treatment systems, given the vast sunlight-exposed surface 

area of tailings ponds. However, the capacity of PC to treat base-neutral fraction NOCs has not 

been previously studied. 

The objective of this work was to evaluate the performance of buoyant photocatalysts (BPCs) to 

degrade NOCs in OSPW, while tracking chemical changes across acid-, base- and neutral-

extractable organic fractions with HRMS. Through combining pH fractionation with both 

positive and negative ion mode MS, we aimed to gain an unprecedented petroleomic perspective 

of the PC treatment of OSPW, by following molecular transformations across thousands of 

species simultaneously. To our knowledge, this is the first time PC has been studied through the 

lens of petroleomics, not only capturing a more holistic picture of the chemical changes 

occurring during NOC oxidation, but also exposing new insights into treatment of emerging 
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classes of concern (COCs). As not all OSPW organics are equally toxic,5,113 tracking 

transformation of specific COCs in a complex mixture, rather than simply measuring reduction 

of bulk organic metrics, may represent a new standard for evaluating treatment solutions for 

petroleum impacted waters. 

7.3 Experimental 

7.3.1 Materials 

OSPW was provided by an industrial producer operating in the Athabasca oil sands, and stored 

in sealed polyethylene containers in the dark at 4 °C. The OSPW was homogenized by stirring 

before each use, and then centrifuged (14,000 xg) or filtered (Whatman 934-AH glass fiber filter) 

to remove suspended solids. 

A commercial mixture of naphthenic acids (technical grade, carbon numbers 6 – 20, Z numbers 0 

to -4, as characterized by Damasceno et al.1), dichloromethane (DCM, ≥99.9%, HPLC grade), 

NH4OH (28-30%, ACS grade), HNO3 (70%, ACS grade), HCl (37%, ACS grade) 

tetraethylorthosilicate (TEOS, 98%) and Pluronic F127 were purchased from Sigma-Aldrich and 

used as received. Sulfuric acid (95-98%, ACS grade, Fisher), ethanol (EtOH, ACS grade) and 

TiO2 nanoparticles (Aeroxide P25, ~10-50 nm particle diameter, 55 m2 g-1 surface area, Acros) 

were used as received. Hollow glass microspheres (HGMs, 3M iM30k, soda-lime-borosilicate 

glass, ~10-30 µm diameter, 0.6 g/cm3 density) were washed by 1 mol/L HNO3 or H2SO4 before 

use (at 125 g/L microspheres), 3-5 times with deionized (DI) water by flotation, then dried at 120 

°C in air. 

7.3.2 Buoyant photocatalyst (BPC) synthesis 

A silica sol-gel solution was prepared as previously.277 Briefly, an acidic ethanolic TEOS 

solution of molar ratio TEOS:EtOH:H2O:HCl = 1:4:10:0.01 was hydrolysed at 60 °C for 1 h, and 

then cooled to room temperature before use. TiO2 nanoparticles and Pluronic F127 were then 

dispersed into DI H2O by probe sonication, after which silica sol-gel solution and 1 mol/L HNO3 

were added to achieve a molar ratio of Ti:Si:F127 = 1:1:0.01, 0.1 mol/L HNO3, and 25 g/L TiO2. 

This TiO2 suspension was then added to HGM powder at a 2:1 volume:mass ratio, and dried at 

room temperature for ≥24 h. The dried cake was then crushed to a powder, calcined for 6 h at 

400 °C in air to remove the polymeric templates, and then washed with DI H2O by flotation and 

dried. Particle morphology was analyzed by SEM (Zeiss Merlin FESEM). 

7.3.3 Photocatalytic experiments 

Photocatalytic experiments were performed in a custom photoreactor enclosure, consisting of an 

array of UVA fluorescent bulbs (Philips F20T12/BL, peak emission ~350 nm, Figure 18) 

suspended above the samples.205 The UV intensity was measured to be ~36 W/m2 with a UVA/B 
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light meter (Sper Scientific, NIST certified calibration), which is similar to the UV content of the 

solar spectrum (ASTM G173-03 global tilt).  

BPCs were added at 300 g/m2 (≈13.8 g/m2 TiO2) to 1 L of OSPW in a borosilicate glass beaker 

(11 cm I.D., sides wrapped with Al foil), which was sealed with UV-transparent polyethylene 

film. Beakers were equilibrated in the dark for 1 h, then placed in the photoreactor and exposed 

to UV light while stirring at 300 rpm (PTFE coated stir bar, 3.81 × 0.95 cm l × d), with 

periodically sampling (1 mL for UV220) and addition of DI H2O (Millipore, ≥15 MΩ∙cm) to 

correct for evaporation losses. Following the UV treatment, the OSPW mixture was vacuum 

filtered (Whatman 934-AH glass fiber filter) to remove BPC particles, and the filtrate retained 

for analysis (stored at 4 °C in the dark). 

Preliminary experiments on the effect of depth, mixing intensity, catalyst concentration and 

recyclability (Figure 69-Figure 72) were conducted in 500 mL PTFE beakers (7.2 cm I.D.) at a 

UV intensity of ~26 W/m2, with typical BPC coverage of 125 g/m2 (≈5.8 g/m2 TiO2), 300 mL 

OSPW, and 130 rpm stirring, with kinetics measured by UV220. For the recyclability study, 

between UV exposures BPCs were separated by flotation, rinsed thrice with DI H2O, then added 

to fresh OSPW for another treatment cycle. 

7.3.4 Liquid-liquid extraction (pH fractionation) 

For organics extraction, 200 mL OSPW was adjusted with H2SO4 to either pH 2.0 for acid-

extractable organics (AEO), pH 7.0 ± 0.1 for neutral-extractable organics (NEO), or with 

NH4OH to pH 10.5 for base-extractable organics (BEO), then extracted with 100 mL DCM (40, 

40, and 20 mL sequentially), after which the extract was dried under N2. 

For total extractable organics, 400 mL OSPW was first adjusted to pH 10.5 with NH4OH and 

extracted with 100 mL DCM, then to pH 7.0 ± 0.1 with H2SO4 and again extracted with 100 mL 

DCM, then to pH 2.0 with H2SO4 and again extracted with 100 mL DCM, after which the 

extracts were combined and dried under N2. This extract was used to prepare a standard curve for 

UV220 (Figure 67), and from the absorbance of OSPW, extraction efficiency was determined to 

be 49.1%. 
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Figure 67. Calibration curve for determination of total extractable organics (EO) concentration 

from OSPW absorbance at 220 nm (UV220). 

 

7.3.5 Analysis 

AEOFTIR was measured by Fourier transform infrared spectroscopy (FTIR) according to the 

standard method75,76 with minor modifications (viz., the acidified samples were extracted thrice 

with DCM in a 1:12.5 solvent:sample volumetric ratio, with 80 ± 4% total recovery), using the 

commercial NA mixture to prepare the calibration curve. UV absorbance at 220 nm (UV220) was 

measured with a spectrophotometer (BioTek Epoch).220 Chemical oxygen demand (COD) was 

measured with a test kit (Hach, APHA 5220D). Total organic carbon (TOC, APHA 5310B), 

biochemical oxygen demand (BOD, APHA 5210B), anion concentration by ion chromatography 

(EPA 300.1), alkalinity (as CaCO3, EPA 310.2), and dissolved metals by inductively coupled 

plasma mass spectrometry (ICPMS, APHA 3030B/6020A) were measured according to standard 

methods by ALS Environmental (Waterloo, ON, Canada), a laboratory accredited by the 

Canadian Association for Laboratory Accreditation (CALA) according to international standards 

(ISO 17025). 

7.3.5.1 HRMS Analysis 

Dried extracts from the pH fractionation liquid-liquid extractions as described above (AEO, 

NEO and BEO) were each individually re-dissolved in DCM.  Each DCM solution was split into 

two equal portions (with the exception of the NEO extract) and again brought to dryness under a 

gentle stream of N2.  The split dried extracts were then re-dissolved in a solvent system based on 

the corresponding HRMS analysis listed below. For the AEO extract: one dried extract was re-

dissolved in 50:50 acetonitrile (ACN):water with 0.1% NH4OH, and run in negative ion mode 
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with 50:50 ACN:H2O with 0.1% NH4OH as the LC eluent; the second extract was re-dissolved 

in 50:50 ACN:H2O with no pH modifier, and run in positive ion mode with 0.1% formic acid 

(HCOOH) as the LC eluent. For the BEO extract: one dried extract was re-dissolved in 50:50 

ACN:H2O with 0.1% HCOOH, and run in positive ion mode with 50:50 ACN:H2O with 0.1% 

HCOOH as the mobile phase; the second extract was re-dissolved in 50:50 ACN:H2O with no 

pH modifier, and run in negative ion mode with 0.1% NH4OH as the mobile phase. For the NEO 

extract: the dried extract was re-dissolved in in 50:50 ACN:H2O with no pH modifier, and run in 

positive ion with 50:50 ACN:H2O with 0.1% ACN:H2O as the mobile phase, and again in 

negative ion mode with 50:50 ACN:H2O with 0.1% NH4OH as the mobile phase. 

Mass spectrometry analysis was preformed using an LTQ Orbitrap Elite (Thermo Fisher 

Scientific, San Jose, CA) operating in full scan in negative and positive ion mode. Mass 

resolution was set to 240,000 with an m/z scan range of 100-600. For negative ion mode the ESI 

source was operated as follows: sheath gas flow rate 10 (arbitrary units), spray voltage 2.90 kV, 

auxiliary gas flow rate 5 (arbitrary units), S lens RF level 67 %, heater temperature 50 oC, and 

capillary temperature 275 oC. For positive ion mode the ESI source was operated as follows: 

sheath gas flow rate 10 (arbitrary units), spray voltage 3.00 kV, auxiliary gas flow rate 5 

(arbitrary units), S lens RF level 63 %, heater temperature 50 oC, and capillary temperature 275 
oC. As per Composer data analysis, the mass accuracy was < 2 ppm error for all mass 

assignments.   

For negative ion analysis, the mobile phase solvent used was 50:50 ACN:H2O containing 0.1 % 

NH4OH, while positive ion analysis used 50:50 ACN:H2O containing 0.1 % HCOOH. Given that 

the same mobile phase was used for all samples in each ionization mode, class ionization 

efficiency was assumed to be independent of extraction pH when comparing between the 

different pH fractions. A flow rate of 200 uL min-1 was used for both, delivered by an Accela 

1250 solvent pump (Thermo Fisher Scientific, San Jose, CA). A volume of 5 μL was injected 

into the mobile phase stream using a Thermo PAL-HTC Accela autosampler (Thermo Fisher 

Scientific, San Jose, CA). Quantitation was performed using linear regression obtained from a 5 

point external calibration.5 

The software used for instrument control/data acquisition and molecular analysis was Xcalibur 

version 2.1 (Thermo Fisher Scientific, San Jose, CA) and Composer version 1.5.2 (Sierra 

Analytics, Inc., Modesto, CA) respectively. Pseudo-first order rate constants were fit to the O2
± 

class data based on initial trends of when congeners were first detected in the reaction (since 

some congeners displayed complex trends of intensity increasing initially, but decreasing later in 

the treatment). For comparisons between the different pH fractions, it was assumed that the 

ionization efficiency of a given class was independent of extraction pH, given that pH of the 

mobile phase was the same  
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7.4 Results and Discussion 

7.4.1 Buoyant photocatalyst (BPC) design 

Previous OSPW treatment studies have evaluated nanoparticle photocatalysts dispersed as 

slurries in the OSPW,69,70,119 which, while useful as performance benchmarks, are impractical for 

passive deployment due to the requirement for vigorous mixing to keep the particles suspended, 

challenges of catalyst recovery, and concern of environmental release of nanoparticles. Since 

solar PC is driven by sunlight absorption at the water surface, we hypothesized that by 

immobilization on buoyant supports, photocatalysts could remain suspended in the illuminated 

zone without the requirement for vigorous mixing. Such a design should also result in more 

efficient materials utilization, since any photocatalyst particles dispersed in the dark zone below 

the water surface are unreactive, resulting in catalyst oversupply in slurry deployments where the 

catalyst is dispersed throughout the water column. BPCs have been successfully demonstrated 

for treatment of simulated oil spills and dissolved organics.278–280 Therefore we sought to 

demonstrate BPCs for OSPW treatment. 

BPC composite particles were synthesized by coating TiO2 nanoparticles on hollow glass 

microspheres, using mesoporous silica as a binder (Figure 68). Purely inorganic materials were 

selected for the composites to resist photocatalytic attack,249,252,281 and a porous silica binder was 

used to enhance nanoparticle adhesion to the microsphere support,282 while still allowing access 

of solution to the catalyst via mesopores.277 The synthesized BPC material was hydrophilic, and 

floated at the surface of water as a frothy film (Figure 68d&e). 
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Figure 68. Schematic drawings of (a) BPC composite structure and (b) TiO2 nanoparticles 

immobilized in mesoporous silica, (c) SEM image of a BPC composite particle, and photographs 

of a BPC film floating on OSPW, from (d) side and (e) top views. 

The PC performance of the BPCs were evaluated in OSPW. Treatment rate diminished as a 

function of water column depth (Figure 69), consistent with a surface driven reaction. Notably, 

the apparent rate of the BPCs (~4.3 × 10-6 s-1) was similar to that of a TiO2 nanoparticle slurry 

(P25) at low concentrations (<5 g/m2 TiO2, Figure 70) and gentle mixing conditions (Re < 1000, 

Figure 71), although the TiO2 slurry was more efficient under vigorous mixing and at higher 

concentrations. The BPCs were also found to maintain their performance over 10 batch treatment 

cycles (Figure 72). Thus when operating under non-turbulent flow regimes anticipated for 

passive deployment, BPCs match the performance of TiO2 slurries, while enabling easier 

retention and recycling than free nanoparticle dispersions. 
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Figure 69. Variation of BPC apparent pseudo-first order rate constant (kapp) with OSPW depth. 

Depth was changed by varying the volume of OSPW. BPC concentration was 125 g/m2 (≈5.8 

g/m2 as TiO2), and beakers were stirred at 130 rpm. 

 

 

Figure 70. Variation of apparent pseudo-first order rate constant (kapp) of BPC and P25 as a 

function of equivalent TiO2 concentration. OSPW volume was 300 mL (7.4 cm depth), and 

beakers were stirred at 130 rpm. 
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Figure 71. Variation of apparent pseudo-first order rate constant (kapp) of BPC and P25 as a 

function of the stirring Reynolds number. OSPW volume was 300 mL (7.4 cm depth), and BPC 

concentration was 125 g/m2 (≈5.8 g/m2 as TiO2). 

 

 

Figure 72. Relative activity of BPCs over multiple treatment cycles, (1-C/C0)i/(1-C/C0)1, i.e., the 

fraction of NAs degraded on cylcle i relative to the first cycle. 
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7.4.2 Overall treatment kinetics 

Following these preliminary experiments, the transformation of NOCs during the photocatalytic 

process was thoroughly investigated. The initial organics concentrations in the OSPW were 

measured by several methods (Table 16; inorganic parameters given in Table 17). The difference 

of AEO concentrations measured by FTIR and MS is likely due to the use of a commercial NA 

mixture (with low average molecular weight) as the calibration standard for the FTIR method.283 

In terms of fractionation, the most organics (by ESI(-) MS) were extracted at neutral pH with 

113.5 mg/L NEO, ~42% more than the acidic extract, and ~19-fold more than the basic extract, 

where previous studies have similarly measured reduced extraction of negative ion species at 

high pH.83,284 This comparison assumes class response factors are independent of extraction pH 

for a given ionization mode. The high NEO:AEO ratio may be evidence of polar non-acids 

partitioning to the neutral fraction. 

 

Table 16. Measures of dissolved organics in raw OSPW. 

Parameter Concentration (mg/L) 

AEOFTIR 40.9 ± 2.4 

AEOMS
a 79.9 

NEOMS
a 113.5 

BEOMS
a 6.0 

Total EO (UV220) 78.9 ± 1.9 

TOC 54 

COD 153 

BOD 3.0 

a Concentrations calculated only from negative ion MS data, assuming an extraction efficiency of 

49.1%. 

 

Table 17. Water quality characteristics of OSPW 

Parameter Value 

pH 8.30 

Turbidity (NTU) 5.79 

TSS (mg/L) 5.8 

TDS (mg/L) 1080 
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Conductivity (mS/cm) 1.630 

Anions  

Bromide (mg/L) <0.50 

Chloride (mg/L) 172 

Fluoride (mg/L) 3.00 

Nitrate (mg/L) <0.10 

Nitrite (mg/L) <0.050 

Sulphate (mg/L) 207 

Alkalinity (mg/L as 

CaCO3) 
400 

Dissolved Metals  

Aluminum (Al) (mg/L) <0.050 

Antimony (Sb) (mg/L) 0.0011 

Arsenic (As) (mg/L) 0.0027 

Barium (Ba) (mg/L) 0.0976 

Beryllium (Be) (mg/L) <0.0010 

Bismuth (Bi) (mg/L) <0.00050 

Boron (B) (mg/L) 2.00 

Cadmium (Cd) (mg/L) <0.00010 

Calcium (Ca) (mg/L) 15.7 

Cesium (Cs) (mg/L) <0.00010 

Chromium (Cr) (mg/L) <0.0050 

Cobalt (Co) (mg/L) 0.0022 

Copper (Cu) (mg/L) 0.0021 

Iron (Fe) (mg/L) <0.10 

Lead (Pb) (mg/L) <0.00050 

Lithium (Li) (mg/L) 0.140 

Magnesium (Mg) (mg/L) 14.4 

Manganese (Mn) (mg/L) 0.0205 

Molybdenum (Mo) (mg/L) 0.0613 

Nickel (Ni) (mg/L) 0.0075 

Phosphorus (P) (mg/L) <0.50 
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Potassium (K) (mg/L) 15.6 

Rubidium (Rb) (mg/L) 0.0144 

Selenium (Se) (mg/L) 0.00056 

Silicon (Si) (mg/L) 2.81 

Silver (Ag) (mg/L) <0.00050 

Sodium (Na) (mg/L) 300 

Strontium (Sr) (mg/L) 0.468 

Sulfur (S) (mg/L) 71.0 

Tellurium (Te) (mg/L) <0.0020 

Thallium (Tl) (mg/L) <0.00010 

Thorium (Th) (mg/L) <0.0010 

Tin (Sn) (mg/L) <0.0010 

Titanium (Ti) (mg/L) <0.0030 

Tungsten (W) (mg/L) 0.0047 

Uranium (U) (mg/L) 0.00376 

Vanadium (V) (mg/L) <0.0050 

Zinc (Zn) (mg/L) <0.010 

Zirconium (Zr) (mg/L) <0.0030 

 

During the photocatalytic reaction, FTIR was found to be a good surrogate measure for MS 

kinetics, with the apparent pseudo-first order rate constant (kapp) of AEOFTIR removal, 9.2 ± 0.4 × 

10-6 s-1, matching closely to that of AEOMS removal, 11.4 ± 0.4 × 10-6 s-1 (Figure 73a).283,285 The 

NEO and BEO were eliminated significantly more quickly than the AEO, with kapp = 25.1 ± 0.7 

× 10-6 s-1 and 14.9 ± 1.3 × 10-6 s-1 respectively, which is reasonable on the basis that ring-opening 

photocatalytic reactions form carboxylic acid groups,102,286–288 which would lead to accumulation 

of originally base-neutral species in the AEO fraction over the course of the treatment (Figure 

73b). Continuation of photocatalytic exposure resulted in final organics mineralization (reduced 

COD and TOC, Figure 73a), in contrast to weaker oxidation processes such as ozonation, which 

have been shown to leave a toxic organic residual in OSPW even after high O3 doses.16,83,289 

Faster transformation of extractable organics compared to UV220, COD, and TOC, confirms that 

photocatalytic oxidation rapidly increases the polarity of the organics to the point where they are 

no longer extractable by DCM at any pH, after which they are steadily mineralized. The apparent 

increase in TOC at Time 2 is likely an analytical artefact arising from interference of background 

salinity in the sample. 
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Figure 73. (a) Photocatalytic treatment kinetics by various organics measures. (b) Ratios of 

AEO, NEO, and BEO negative ion concentrations throughout the photocatalytic reaction, with 

time indices corresponding to those labeled in (a). 

 

7.4.3 Heteroatomic class transformations 

Recently, heteroatomic and positive ion classes have been implicated in the toxicity of 

OSPW,113,266,290 therefore it is important to understand their transformations during PC. It is 

important to note that the scope of the current study is limited to the extractable organics, where 
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it is understood that a variety of polar organics remain non-extractable with DCM at any pH. 

However, as the aquatic toxicity of OSPW has been repeatedly found to be correlated only with 

the extractable organics, the non-extractables are not a priority from a water treatment 

perspective. 

In terms of initial speciation of negative ions, the neutral and basic fractions were dominated by 

O2
- (classic NAs), while the AEO additionally contained minority O3

-, O4
- and O3S- classes 

(Figure 74), where a high O2
- ratio (relative to Oo

- classes with o >2) may indicate a relatively 

fresh OSPW sample, as o increases with environmental aging.8 As observed previously,114 a 

greater diversity of heteroatomic classes were detected in positive ion mode (Figure 75), with the 

BEO primarily characterized by OS+ (28%), O8
+ (23%) and NO8

+ (26%) classes, the AEO by 

SO3
+ (59%), and the NEO by OS+ (29%) and O3S+ (32%), along with minor NO+ (3.8%), O2

+ 

(7.7%), O3
+ (4.2%), O8

+ (5.8%) and O2S+ (3.6%). 

 

 

Figure 74. Initial relative abundance of species by heteroatom class within each extract from raw 

OSPW by negative ion mode MS. Relative abundances within each extract should not be 

compared as concentrations between extracts.   
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Figure 75. Initial relative abundance of species by heteroatom class within each extract from raw 

OSPW by positive ion mode MS. Note that [H]+ and [Na]+ ions were counted together. Relative 

abundances within each extract should not be compared as concentrations between extracts. 

 

In terms of environmental implications, O2
- has been repeatedly confirmed as one of the most 

acutely toxic negative ion classes,5,113,238 with a narcotic mechanism arising from the NAs’ 

surfactant properties, while higher oxygen numbered species are less acutely toxic.65 O3S- may 

comprise sulfonic acids, and thus impart similar surfactant modes of toxicity.291 Oo positive ions 

likely contain hydroxyl or ketone groups, and may be implicated in the endocrine disrupting 

effects of OSPW.268 The O8
+ and NO8

+ signals may be evidence of “ARN”-like tetra-

carboxylates,292–294 which would mark their first detection in OSPW. The O3S+ class is thought 

to comprise thiophenic hydroxylated aldehydes,295,296 and has previously been found in non-toxic 

NOC fractions.113,266 The O2
-, O+ and OS+ classes have among the highest measured membrane 

partitioning ratios, with potential to bioaccumulate.297,298 While typically measured at lower 

intensity than the O2
- NAs, OS+ and NO+ species are also thought to be potent toxicants,271 with 

potential to inhibit membrane transport proteins and damage DNA through oxidative 

stress.266,290,296 

During the photocatalytic treatment, both positive and negative ions of the heteroatomic OoSs 

family were initially preferentially degraded, such that the class distributions shifted to almost 

exclusively Oo at intermediate time points (Figure 76). These changes in relative composition of 

heteroatomic classes, especially in the positive ion data (where the Oo fraction increases to ~90% 

from ~20% in the raw OSPW), are much larger than observed previously following OSPW 

treatment with O3, UV/H2O2 and Fe(VI) (relative changes of only ~20%),299 potentially 

indicating a more selective oxidation mechanism for PC, in accordance with previous 



140 
 

 

 

observations.119 In the final stages of the photocatalytic reaction, the ratio of OoSs
- and 

NnOo
+/NnOoSs

+ increased again in the AEO/NEO and NEO/BEO extracts, respectively, 

concurrently with decreasing AEO fraction (Figure 73b). Under the assumption that ionization 

efficiency of a given class is similar across all samples investigated, it is hypothesized that while 

raw OoSs species are initially the most reactive NOCs, oxidized intermediates produced during 

the photocatalytic process are more reactive still, possibly due to preferential adsorption of acidic 

and catecholic moieties to TiO2,300,301 such that in the final stages of the treatment acidic Oo 

compounds are preferentially degraded over base-neutral heteroatomics. 

 

 

Figure 76. Relative distribution of heteroatomic families within each time point, where time 

indices correspond to those labelled in Figure 73a. 

 

7.4.4 Class oxidation trends 

Oxygen number o > 2 has been generally shown to be inversely correlated with acute toxicity for 

OSPW NOCs, as the polarity of added oxygen functionalities counteracts the molecules’ 
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surfactant properties.238,302 While the intensity of the negative ions was significantly diminished 

by the first sampling time point (Figure 77), clear trends of increasing o with time were observed 

in all extracts for both Oo
- and OoS- classes (Figure 78). In the AEO, average o increased from 

2.5 in the raw OSPW to 4.3 by the third time point of photocatalytic exposure, which is once 

again a stronger shift than was reported for OSPW AEO oxidation using other AOPs,299 while a 

similarly large increase in o has been observed previously for photocatalytic OSPW AEO 

oxidation.119 Apparent deviation from this trend in some extracts at the final two time points may 

simply be due to poor extraction efficiency in DCM. 

 



142 
 

 

 

 

Figure 77. Trends in oxygen number (o) with time for different heteroatomic classes. Relative 

abundance of species by oxygen number is presented normalized to the maximum intensity 

measured within each class, where time indices correspond to those labelled in Figure 73a. 
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Figure 78. Trends in oxygen number (o) with time for different heteroatomic classes. Relative 

abundance of species by oxygen number is presented normalized to the maximum intensity 

measured within each time point for each class, where time indices correspond to those labelled 

in Figure 73a. 

 

In positive ion mode, any trends in o with time were less clear: the broad distributions in Oo
+ in 

the acidic and neutral extracts may be attributed to the appearance of hydroxylated oxidation 

intermediates.296 Indeed, the increased Oo
+ intensity at Time 1 is correlated with the reduction in 
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Oo
- and OoS- abundance. Some single-class conclusions may also be drawn from the ESI(+) data: 

the OS+ COC was eliminated by the first time point in the BEO and NEO. Similarly, the NO+ 

species in the neutral extract were eliminated by the first time point, along with the O2
+ and O3

+ 

classes. 

The rapid transformation of the presumed most toxic COCs (O2
-, OS+ and NO+)113,296 in the 

earliest stages of the treatment (when AEOFTIR is still measured as 40%) is promising for the 

practicality of photocatalytic OSPW treatment, as only a relatively short exposure may be needed 

to meet WET targets, rather than full organics mineralization. This is supported by our previous 

finding that OSPW toxicity towards Vibrio fischeri could be eliminated by solar PC prior to full 

organics mineralization,119 although more rigorous toxicity testing of PC treated OSPW is 

warranted. 

Previous studies have shown that oxidized NOCs are more readily biodegradable,89,303,304 thus 

given the oxidation patterns observed herein, supplementation of PC with biodegradation may be 

another promising strategy to increase overall OSPW treatment efficiency, e.g., by combination 

of solar PC with passive treatment wetlands.275,305,306 

7.4.5 Carbon and Z number kinetics 

In addition to following chemical transformations between classes, through HRMS it was also 

possible to investigate the molecular weight (carbon number c) and hydrogen deficiency (Z 

number) distribution within any single class throughout the photocatalytic treatment. We thus fit 

a pseudo-first order rate constant to each O2
± species as a function c and Z (Figure 79). It should 

be emphasized that the O2
+ species are likely hydroxylated NOCs rather than NAs, but they are 

still presented together with the O2
- NAs to understand the relative reactivity of positive and 

negative ions within the same treatment. Furthermore, since very little O2
+ compounds were 

detected in the initial BEO (Figure 75), the data for Figure 79f is sparse. 
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Figure 79. Estimates of pseudo-first order rate constants (kapp) of photocatalytic degradation of 

(a)-(c) O2
- and (d)-(f) O2

+ species in the (a)&(d) AEO, (b)&(e) NEO and (c)&(f) BEO fractions. 

Rates of appearance of new species are plotted as negative values of kapp. 

The initial raw OSPW profiles of O2
± in each of the extracts are presented in Figure 80. For the 

O2
-, the NEO and BEO were distributed to higher c and |Z| relative to the AEO, which is as 

expected, since only the most hydrophobic NAs (highest ratio of aliphatic carbon to the 

carboxylate anion) should be extractable at higher pH values. In ESI(+), the O2
+ distribution in 

NEO was also observed to be shifted to slightly higher c and Z numbers versus the AEO. 

 



146 
 

 

 

 

Figure 80. Initial relative distribution of O2
± species within each extract from raw OSPW. 

 

The photocatalytic kinetics show a clear trend, across all fractions, of reactivity increasing with 

carbon number (Figure 79), up to kapp ≈ 10 × 10-5 s-1 for congeners of highest c, while new 

species of lower c and |Z| numbers, which did not appear in the initial profiles (Figure 80), were 

produced over the course of the treatment. This trend is interpreted as arising from photocatalytic 

C-C bond scission, e.g., through ring opening or decarboxylative chain shortening, generating 

smaller, more linear NOCs as reaction by-products. Indeed, it is likely that the true rate constants 

are approximately equal across the O2
- class and largely independent of c and Z, as would be 

expected for a non-specific HO• directed AOP, where the apparent dependence is simply the 

result of intermediate c and Z numbered organics being simultaneously created from the 

degradation of higher c and Z numbered species. Similarly, if acid-extractable O2
+ compounds 

are indeed hydroxylated aldehydes or ketones, the relatively lower rate constants in Figure 79d 

could be interpreted as evidence of their formation during PC, as would be expected from 

multiple pathways of O2
•- driven C-C cleavage.81,286,307 
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The environmental significance of these results is that both the most toxic and environmentally 

persistent NAs are preferentially eliminated during PC treatment. Hughes et al. reported that 

NAs with c ≥ 17 were the most acutely toxic constituents of OSPW to rainbow trout 

(Oncorhynchus mykiss),5 while Yue et al. found that NAs with 14 ≤ c ≤ 18 and -6 ≤ Z ≤ -4 were 

those most correlated with acute toxicity towards Vibrio fischeri,238 similar to the trend of 

increasing NA toxicity with c measured by Jones et al.308 Similarly, NOCs with high c and |Z| 

numbers are known to be the most recalcitrant fractions in OSPW, while smaller and less cyclic 

NAs are more readily biodegradable.8,239,309 However, further research is merited to evaluate the 

toxicity of the lower c and |Z| numbered intermediates formed in the PC treatment process. 

 

7.5 Conclusions 

With recent insights into the structure-activity relationships driving various modes of observed 

OSPW toxicity, it has become clear that only specific classes of organics, comprising only a 

minority of the total NOCs, compose the majority of the toxicity associated with OSPW.5,113 

Through implementing a fractionated HRMS investigation, these COCs could be individually 

tracked in the context of PC oxidation trends occurring in the NOCs as a whole. Revelation that 

the OS+ and NO+ classes were eliminated in the earliest stages of the PC reaction, and that the 

highest molecular weight O2
- NAs were preferentially degraded, may indicate that only relatively 

low solar doses would be required to detoxify OSPW, which could result in more efficient 

treatments as compared to the solar exposures required for complete NOCs oxidation or DOC 

mineralization. This study also demonstrates application of a buoyant photocatalyst formulation 

as a passive treatment concept for oil sands remediation challenges, and further studies to 

develop this paradigm of a passive AOP are ongoing in our lab.  
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Chapter 8 

Conclusions and Future Work 

 

8.1 Summary 

This thesis presents new findings in the fields of chemical engineering, nanotechnology, 

materials science, and water treatment. Solar photocatalysis over TiO2 was found to degrade 

OSPW AEO through superoxide-dependent oxidative mineralization. The kinetics of OSPW 

treatment were found to be impacted by dissolved inorganic species, strongly dependent on 

dissolved oxygen, and weakly affected by temperature and pH, and an empirical model was 

proposed to predict OSPW treatment kinetics in different tailings ponds. Magnetic flocculation 

was developed as a new paradigm for magnetic nanoparticle capture, and demonstrated to 

efficiently separate and recycle colloidally dispersed TiO2 in a closed-loop photocatalytic 

process. Floating photocatalysts were also synthesized to adapt the photocatalytic process 

towards a passive deployment paradigm, by immobilizing TiO2 nanoparticles onto buoyant glass 

microspheres. Floating photocatalysts were demonstrated to preferentially treat OSPW base- and 

neutral-extractable organics and priority toxic naphthenic organic classes of concern. In terms of 

future work, recommendations are given towards materials research for potentially higher 

treatment efficiency, as well as development of the treatment method towards practical 

deployment. 

8.2 Conclusions 

Photocatalytic degradation of AEO in raw OSPW was demonstrated within 1 day of natural 

sunlight exposure in the presence of a slurry of TiO2 nanoparticles, demonstrating that neither 

the water’s natural suspended and dissolved solid content, nor the solar spectrum’s minor UV 

power content, were insurmountable barriers towards achieving practical treatment rates through 

heterogeneous photocatalytic oxidation. With sufficient sunlight exposure (approx. 1 week-

equivalent, 181.4 MJ/m2 insolation), essentially complete photocatalytic mineralization of all 

organics in the water was achieved. However, with only partial oxidation (approx. 1 day-

equivalent of sunlight exposure, 31.4 MJ/m2 insolation), the acute toxicity of the OSPW towards 

Vibrio fischeri was eliminated, and an increased BOD/TOC ratio indicated that the residual 

dissolved organics may have been rendered more readily biodegradable. HRMS analysis 

confirmed the oxidation mechanism, and evidenced a significant increase in oxygen content of 

the intermediate organic species. Radical scavenging studies indicated a significant role of 

superoxide radicals in the oxidation process. Overall, photocatalytic efficacy in OSPW treatment 

was demonstrated, motivating further investigation into treatment kinetics and catalyst recycling 

systems. 
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The rate of AEO degradation was measured to vary significantly between two sources of OSPW 

from different suppliers. Following analysis of the organic constituents of the AEO by HRMS, 

and the inorganic content of the water matrix, a factorial screening experiment of several 

inorganic species in simulated OSPW revealed the deleterious roles of both iron and bicarbonate 

on the photocatalytic treatment rate. Response surface modelling of the Fe and HCO3 effects 

failed to confirm a synergistic interaction of the two factors. The role of Fe in significantly 

inhibiting the photocatalytic generation of HO• in OSPW may explain its effect on the AEO 

degradation rate. Langmuir-Hinshelwood treatment revealed that at a TiO2 concentration of 0.5 

g/L, the kinetics of NA degradation were both adsorption- and reaction-limited. Variation of the 

treatment temperature between 4 – 40 °C revealed a relatively low activation energy of 11.53 ± 

0.26 kJ/mol for the photocatalytic reaction, consistent with optically driven photocatalytic 

processes. While OSPW pH was found to have a negligible impact on the treatment rate within 

the range of pH 7-9, dissolved oxygen was found to be significantly involved in the 

photocatalytic process, consistent with a superoxide-mediated reaction mechanism. The apparent 

external quantum efficiency (EQE) of photocatalytic AEO degradation was estimated to be ~1%, 

consistent with other photocatalytic treatment processes. An empirical kinetics model of 

photocatalytic OSPW treatment was developed, which may aid in predicting efficacy of the PC 

treatment in different OSPW sources. 

Given the challenges associated with separation of colloidal nanoparticulate TiO2 from slurry 

photocatalytically-treated water, the concepts of polymeric flocculation and magnetic separation 

were combined to synthesize magnetic flocculant particles (MFs): polyelectrolyte coated 

Fe3O4@SiO2 core-shell ellipsoids. Successful synthesis of the designed MF particle structure 

was confirmed through a variety of materials characterization techniques, including TEM, DLS, 

XRD, XPS and zeta-potential measurements. Similar to conventional water treatment 

flocculation, magnetic flocculation was demonstrated to proceed through an electrostatic 

association mechanism. By varying the charge of the polyelectrolyte MF coating, targeted 

flocculation of oppositely-charged nanoparticles could be achieved, and the separation process 

was demonstrated to be generalizable to a variety of different nanoparticle and catalyst materials 

with different charge and surface coatings, including TiO2, Au, Ag, Pd and Pt nanoparticles. The 

optimum MF dose to separate TiO2 nanoparticles was found to coincide with approximately 

equal surface area concentrations of TiO2 and MFs in suspension. Logarithmic reduction in 

residual nanoparticle concentration was demonstrated through multiple MF cycles. 

Deflocculation of TiO2-MF flocs was possible through zeta-potential polarity inversion via pH 

shift, enabling reuse of both the TiO2 and MF particles in a closed-loop process. This new 

separation system was demonstrated in both the photocatalytic treatment of OSPW and FGDW, 

illustrating the potential of a low-energy, membrane-free nanoparticle separation technique, as 

well as a novel implementation of magnetic particle recycling compared conventional magnetic 

particle separation strategies. 
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To enable a passive deployment implementation for solar photocatalytic OSPW treatment, as 

well as providing a convenient catalyst capture and recovery system, TiO2 nanoparticles were 

immobilized on the surface of hollow glass microspheres (HGMs) as buoyant supports by 

calcination sintering. Successful TiO2 immobilization was confirmed through SEM, EDX and 

XRD analysis. Under gentle mixing conditions, these synthesized floating photocatalysts (FPCs) 

were measured to match the AEO degradation rate of a slurry dispersion of a benchmark TiO2 

nanoparticle formulation (P25) in raw OSPW under natural sunlight, and on a TiO2 mass-

normalized basis, the FPCs were more efficient than the nanoparticulate TiO2. The FPCs were 

also found to be reusable over at least 3 photocatalytic OSPW treatment cycled through natural 

flotation separation. Given the competitive performance of the FPCs, the concept of catalyst 

immobilization to a buoyant support was concluded to be a promising strategy to apply 

photocatalysis towards passive OSPW treatment. 

The photocatalytic treatment kinetics of naphthenic organic compounds (NOCs) in OSPW was 

studied by HRMS in both positive and negative ion mode across multiple extracts (acidic, 

neutral, and basic), providing a petroleomic picture of the transformations occurring to numerous 

NOC classes throughout the photocatalytic treatment process. FPCs were synthesized by 

immobilizing TiO2 nanoparticles onto HGMs through use of mesoporous silica as an inorganic 

binder, and these particles were confirmed to be recyclable for multiple OSPW treatments, and 

match the performance of slurried TiO2 nanoparticles under gentle mixing conditions. Base and 

neutral extractable organics were photocatalytically degraded more quickly than the conventional 

AEO, and heteroatomic NOCs were also preferentially treated. Transformation of OS+ and NO+ 

classes of concern in the earliest stages of the treatment, along with preferential degradation of 

high carbon-numbered O2
− acids (key NOC classes identified as potently toxic in prior research), 

suggest that photocatalysis may detoxify OSPW with higher efficiency than previously thought. 

As not all OSPW organics are equally toxic, tracking transformation of specific COCs in a 

complex mixture, rather than simply measuring reduction of bulk organic metrics, may represent 

a new standard for evaluating treatment solutions for petroleum impacted waters. 

Overall, this thesis advances the understanding of the photocatalytic treatment of OSPW, as well 

as separation processes for nanoparticle photocatalysts. Combining a sunlight-driven, chemical-

oxidant-free catalytic oxidation process with a low-energy, membrane-free catalyst separation 

and recovery technique may represent a promising strategy to adapt advanced oxidation process 

(AOP) technology for the passive treatment of OSPW, or other remote mining-impacted waters. 

8.3 Recommendations for future work 

The following research directions are recommended based on the conclusions drawn above, to 

further advance this water treatment technology towards practical application: 
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1. Explore the combination of photocatalytic OSPW treatment with biodegradation or 

phytoremediation treatments in a multi-stage process. As has been demonstrated with various 

other AOPs, oxidation of biologically recalcitrant organics can increase their bioavailability 

and render them biodegradable. Considering the elevated BOD/TOC ratio observed in 

partially-oxidized OSPW in Chapter 3, there is some evidence that such an effect may also be 

possible in this system. Furthermore, given that OSPW naturally harbours bacteria tolerant to 

NOCs, and that fractions of NOCs are readily biodegradable, passive bioremediation is a 

possibility. Finally, considering that the oil sands industry is currently heavily researching 

treatment wetlands as another passive treatment solution,310 and that initial reports indicate 

that fractions of NOCs remain non-biodegradable post-wetlands treatment,9,275 mild 

photocatalytic pre-treatment of the OSPW fed to wetlands systems may be a natural coupling 

of two passive technologies, with the potential to greatly reduce the solar exposure times 

required in the PC step (i.e., targeting mild oxidation rather than full mineralization), while 

compensating for a natural limitation of the wetlands process. 

2. Research alternate photocatalytic materials beyond TiO2. While TiO2 possesses many 

intrinsic benefits as a low-cost, (photo)chemically stable material, given the relatively low 

quantum efficiency measured for OSPW treatment in Section 4.4.11, improving the 

efficiency of the catalyst itself is a logical progression. Perhaps an obvious strategy to 

photocatalytic materials improvement for solar applications is to tailor the electronic band 

structure of the semiconductor photocatalyst to productively absorb and utilize visible light, 

comprising a much larger fraction of solar power output compared to the UV emission alone, 

which TiO2 is limited to. One promising direction may be to explore “black” defective 

(vacancy-doped) TiO2 as a catalyst, which has shown large increases in efficiency relative to 

intrinsic TiO2.311–313 An alternate strategy may be to explore co-catalyst materials such as 

single-atom catalysts or metal clusters,170,314–316 with the aim of tuning the free-radical 

production of the photocatalyst, to generate tailored blends of free radicals. Given the 

involvement of superoxide in the oxidation mechanism observed herein, it may be promising 

to attempt to design a material capable of enhanced superoxide production. 

3. Synthesize photocatalyst-adsorbent composites. The Langmuir-Hinshelwood analysis in 

Chapter 4 revealed that adsorption to the TiO2 surface may be rate limiting, thus combination 

of the photocatalyst with an adsorbent material (such as activated carbon, AC) may overcome 

this limitation. Indeed, NOCs are known to readily sorb to AC.317,318 A more elaborate 

implementation of this combined adsorption-degradation strategy would be to design 

materials with tailored adsorption capacity, similar to molecularly imprinted polymers.319,320 

As discussed in Chapter 7, given that only a few classes of NOCs are thought to be 

responsible for the bulk of the toxicity of OSPW, designing a composite catalyst material 

with needle-in-a-haystack targeted adsorption capabilities for these particular toxic classes 
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could greatly enhance overall treatment efficiency, by focusing the photocatalytic reactivity 

towards the priority toxicants. 

4. Evaluate the long-term durability of the floating photocatalysts (FPCs) developed herein. 

While recyclability up to 10 treatments was demonstrated in Chapter 7, in field deployment 

FPCs would be expected to endure days to years of continuous exposure to OSPW and the 

elements. Rigorous chemical and mechanical wear studies would be valuable to determine 

the useful lifetime of the material and failure mechanisms, where this knowledge could then 

be used to further improve the composite formulation. Significantly, durability of the FPCs to 

freeze-thaw cycling must also be evaluated, to inform whether the material would need to be 

collected and redeployed at the beginning and end of the winter, or could be left in-place 

over a number of years. 

5. Study the impact of photocatalytic OSPW treatment towards toxicity endpoints. It has been 

proposed that when an OSPW release regulations are implemented, they will be specified in 

terms of whole effluent toxicity (WET) targets, rather than specific chemical metrics, given 

the complexity of the NOC composition in OSPW. While the potential for total 

mineralization of OSPW organics has been shown to be possible through photocatalytic 

treatment, only a much shorter treatment may be needed to meet WET targets, which could 

greatly enhance treatment throughputs. On the other hand, while this thesis has evaluated 

chemical transformations of NOCs during photocatalytic oxidation, it is important to confirm 

that none of these photocatalytically generated intermediates (oxidized organics) are more 

toxic than the precursor compounds. Studying the progression of OSPW toxicity during 

treatment in combination with detailed HRMS analysis could further elucidate important 

NOC structure-activity relationships throughout the treatment process, which would be 

valuable towards setting photocatalytic treatment thresholds, as well as further optimizing the 

process. 

6. Model the performance of the photocatalytic treatment at large scale. While this thesis has 

demonstrated the concept of a passive deployment system for solar photocatalysis, it remains 

uncertain how the rate of OSPW treatment will scale with water volume, depth, and mixing 

conditions. Computational fluid dynamics (CFD) has been used in many other chemical 

engineering problems to predict the performance of a design at scales beyond those feasible 

to test,321,322 provided sufficient relations and boundary conditions can be determined at the 

lab scale. The kinetics information in Chapter 4 can provide a foundation to input to a CFD 

model to predict the rate of photocatalytic OSPW treatment at industrially relevant scales.  

7. Evaluate the performance of photocatalysis to treat OSPW at the field scale. There must be 

several steps of scale up to develop this technology to treat any practical volumes of OSPW 

in the oil sands. A likely first step would be to evaluate treatment kinetics in deeper water 

columns at the mesocosm scale. Scalable synthesis processes to produce kg to tonnes of 

FPCs may be needed to conduct these experiments. Conducting these larger-scale tests while 
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also evaluating combination with treatment wetlands and measuring toxicity endpoints, as 

recommended above, may be an efficient approach to explore these various directions in 

tandem.  
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