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Abstract

This thesis addresses challenges in short-term scheduling of multipurpose facilities us-
ing mathematical optimization. Such approach involves the formulation of a predictive
model and an objective function, and the development of a solution strategy around such
scheduling model formulation in order to obtain an operating schedule that achieves cer-
tain objectives, such as maximization of throughput or minimization of makespan. There
are many choices that must be made in these aspects of short-term scheduling, and these
choices often lead to a trade-off between the solution quality and computational time.
This thesis presents two studies analyzing the quality-CPU time trade-off in two major
aspects: time representations in model formulation, and the strategy for handling multiple
conflicting objectives. The ultimate goal is to develop bi-objective short-term scheduling
approaches to tackle industrial-sized problems for multitasking multipurpose plants that
are computationally inexpensive, but provide practical schedules with a good balance be-
tween throughput and makespan.

The first study addresses the first aspect of interest and compares two different time
representation approaches: discrete-time and continuous-time approaches. This compari-
son is made considering maximization of throughput as the sole objective. We show that,
for the modeling framework implemented in this work, the selected discrete-time formula-
tion typically obtained higher quality solutions, and required less time to solve compared
to the selected continuous-time formulation, as the continuous-time formulation exhibited
detrimental trade-off between computational time and solution quality. We also show that
within the scope of this study, non-uniform discretization schemes typically yielded solu-
tions of similar quality compared to a fine uniform discretization scheme, but required only
a fraction of the computational time.

The second study builds on the first study and develops a strategy around an efficient
non-uniform discretization approach to handle the conflicting objectives of throughput
maximization and makespan minimization, focusing on a priori multi-objective methods.
Two main contributions are presented in this regard. The first contribution is to propose
a priort bi-objective methods based on the hybridization of compromise programming
and the e-constraint method. The second is to present short-term operational objective
functions, that can be used within short-term scheduling to optimize desired long term ob-
jectives of maximizing throughput and minimizing makespan. Two numerical case studies,
one in a semiconductor processing plant and an analytical services facility, are presented
using a rolling horizon framework, which demonstrate the potential for the proposed meth-
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ods to improve solution quality over a traditional a prior: approach.
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Chapter 1

Introduction

With improving hardware technologies and computation techniques, industries are in-
creasingly looking to implement decision making techniques based on data and advanced
optimization-based methods. Short-term scheduling of operations based on mathematical
optimization is a field that has been gaining traction in the Process Systems Engineering
(PSE) community 21:8%95:108:132] © Qych approach involves the use of short-term scheduling
models to determine the optimal timings of operations subject to operational objectives
and constraints. This approach can effectively streamline operations of complex systems
and has found applications in various fields of interest to chemical engineers!™! such as
food processing 260484 oil refinery operations!™®10%121] and pharmaceutical manufactur-

ing (83129,

The main problem of interest in this thesis is short-term scheduling of an actual mul-
tipurpose plant in the analytical services sector. A multipurpose plant is a facility that
requires different processes (e.g., drying, filtration) to carry out various tasks (e.g., man-
ufacturing a product, performing certain analysis for a client), and different tasks may
follow different paths (sequence of processes, e.g., production path, recipe) through the
network of processes!'’!l. Given their prevalence in various industries, optimal scheduling
of multipurpose plants have received significant attention from researchers in the Opera-
tions Research and PSE communities 19314754 74,76;86;87:89;97,101-103;:120:13L133] - The analytical
services sector is a major sector in which various types of analysis are carried out on a set
of samples to determine its properties and chemical composition, which can be used in the
decision-making process by end-customers in various industries. For example, composition
analysis of meat[®? is used by food processing companies to produce realistic meat ana-
logues*¥. Analytical services facilities may receive samples in the order of thousands to



be processed through a complex system with over a hundred processing units, each pro-
cessing unit containing multiple machines to carry out processes (e.g., heaters, filtration
units), on a daily basis with operational features such as material splitting (a subset of
samples from a task may be processed in any given machine) and multitasking (a machine
may process samples from several different tasks simultaneously). Furthermore, short-term
scheduling models provide operational level day-to-day decisions, and often solutions need
to be provided within a short amount of time, using only information available up to a
limited time horizon, such as availability of raw materials and resources. One challenge
that arises from these situations is that the short amount of time available for a decision
maker (DM) to take a decision means that one needs to carefully consider that, whatever
approach is considered, it must not take too long to provide a solution. Therefore, there
is a need to develop practical approaches that can be effective without taking too much
computational time.

Central to solving any process optimization problem is the formulation of the optimiza-
tion model, which has three key elements!!:

e An objective function that needs to be maximized, e.g., profit, throughput (the
amount of material passing through a network of processes over a specific period
of time), or minimized, e.g., pollutant emissions, average makespan (the average
completion time of a task on the last process of its path over a specific period of
time).

e A predictive model that describes the system using a set of constraints (equations
and inequalities), e.g., material balances and capacity constraints.

e A set of decision variables that appear in the objective function and the predictive
model, e.g., the batch size and timing of a unit operation. If a set of values for the
decision variables satisfy all constraints, it is considered to be a feasible solution; and
if the value of the objective function for a feasible solution is the minimum among
all feasible solutions, then it is also the optimal solution.

In short-term scheduling applications, formulations are dominantly based on mixed-
integer linear programming (MILP)[!5'32] due to their rigorosity and flexibility ™29, In
an MILP formulation, the objective function and all constraints are linear, and one or
more decision variables are integer or binary variables!*’). Such MILP models can be
solved efficiently using modern branch-and-bound based solvers such as CPLEX!™. Dom-
inance of linearity in short-term scheduling formulations is in contrast to other common



applications of mathematical optimization in chemical engineering, such as process design
and control 11:808L122139] given that predictive models in chemical engineering often exhibit
nonlinear behavior (e.g., blending of oil products®). Maintaining linearity of scheduling
models as MILP formulations through various methods such as problem simplication and
linear approximation/reformulation is of great interest, as this helps to reduce computa-
tional complexity for finding a global optimal solution 4775129135 - Given that tractabil-
ity is a key issue in short-term scheduling, this thesis also focuses on MILP formulations,
and attention is given to maintaining linearity of the objective function and the predic-
tive model. Fortunately, the problem of the analytical services facility naturally leads to
a MILP formulation assuming that all processing times are constant and known in advance.

There are several choices which must be made in the implementation of MILP schedul-
ing models, which may have significant effects on both the quality (the values of the
objective function) of the schedules and the time needed to obtain these schedules. This
thesis addresses two major challenges: the selection of a time representation approach, and
the expression and handling of multiple conflicting objectives in short-term scheduling for
an analytical services (multipurpose) facility.

For time representations, the two most common approaches are: discrete-time ap-
proaches, which prespecify a finite set of time points at which scheduling decisions may
occur, and continuous-time approaches, in which the optimization model determines the
positions of time points through the use of continuous decision variables. Furthermore,
when using a discrete-time approach, the DM must choose between using a uniform or
non-uniform discretization scheme, and decide on the spacing between the time points.
While a discretization scheme with finely and uniformly spaced time points can provide
solutions of higher quality when compared to using a coarsely and uniformly spaced time
points, the fine uniform discretization scheme may require considerably longer time to ob-
tain a solution. On the other hand, a non-uniform discretization scheme aims to provide a
good balance between the solution quality and the CPU time by using a fine discretization
only when necessary.

Similarly, when using the continuous-time approach, the DM must choose between us-
ing a global time scale (analogous to using a uniform discretization scheme) or unit-specific
time scales (analogous to using a non-uniform discretization scheme), and decide on the
number of time points to use. A unit-specific continuous-time formulation aims to provide
a balance between using a global time scale using a high number of time points and using a
global time scale using fewer time points. In general, using more time points increases the



quality of the schedule for both discrete and continuous time approaches as timings of op-
erations can be determined with greater details and more precisely; however, this leads to
larger MILP formulations and higher computational demands. Furthermore, while the use
of continuous variables to represent time may provide higher precision than using prespec-
ified time points, the constraints required to describe such continuous variables may lead
to a more complex formulation. Therefore, balancing of tractability and solution quality
is a key challenge in selecting an appropriate time representation approach in the model
formulation. For this purpose, this thesis performs computational studies comparing the
discrete-time and the continuous-time approaches incorporating new developments in mod-
eling methodologies and operational characteristics, such as multitasking, not addressed
by other similar studies[''%12%132) ayailable in the literature.

In addition to selecting an appropriate model formulation approach, it is important
for the DM to build an appropriate solution strategy around the model formulation. One
common challenge is that, for a business, there are multiple conflicting objectives, which
must be balanced in order to maximize their profit. In most cases, it may be desirable
to solve scheduling problems with profit maximization as the only objective [*7:108:132;141]
However, modeling the profit of each operation in the entire system may be challenging and
insufficient data may be available to write a single profit function for the entire system. In
such cases, the solution strategy must focus on secondary objectives such as maximization
of the total throughput (TTP) and minimization of the average makespan (AMS), which
are in conflict of each other (i.e., a schedule providing the maximum feasible throughput
does not provide the minimum feasible makespan, and vice versa). This issue of conflicting
objectives can be addressed by selecting one single objective function to solve for, or by
combining objectives into a single function with arbitrarily selected weights. However, it
can be advantageous to use an appropriate multi-objective optimization method, which can
provide the DM with a greater control over the quality of the trade-off between the conflict-
ing objectives, and guarantee the efficiency of the trade-off®%l. In keeping with the theme
of this thesis, the implementation of such multi-objective approach and the associated ben-
efits have to be considered taking into account any additional computational time required.

Moreover, another challenge often found inside organizations is that TTP and AMS are
objectives that are realized over a longer period of time (e.g., weeks) than what is consid-
ered in short-term scheduling (e.g., days or hours). For instance, a sequence of operations
to be scheduled may not have any measurable AMS or TTP after several days, which would
in turn make it no better than just scheduling no operations (from the point of view of
the optimization model that only considers a limited time horizon, e.g., one day of oper-



ations). Thus, there is a need to consider short-term objective functions that are not the
actual TTP or AMS, but instead objective functions designed with the aim of achieving
high TTP or low AMS over multiple periods of operation using a rolling horizon framework.

Given the challenges identified above and in the introduction, the objectives of the
thesis are as follows:

1. Study the strengths and weaknesses of the different time representation approaches
relative to each other, and by doing so, determine the favorable approach to solv-
ing industrial-sized short-term scheduling problems for a multipurpose plant where
multitasking is a key operational feature.

2. Present multi-objective algorithms that can provide practical solutions to multi-
objective problems that emerge in short-term scheduling.

3. Study objective function formulations that can account for TTP and AMS in short-
term scheduling to address the issue of the difference in time scales between short-
term scheduling (e.g., days or hours) and the long-term realization of TTP and AMS
(e.g., weeks).

The remainder of this thesis is structured as follows: In Chapter 2, literature review
and background are provided for time representations and multi-objective optimization
methods, as well as gaps in literature, the objectives for this thesis. The study on time
representations is presented in Chapter 3, which includes the description of the operations
of a multipurpose plant and presentation of the multitasking MILP scheduling formulations
and proposed time discretization schemes. The study on bi-objective short-term schedul-
ing is presented in Chapter 4, which includes presentation of new bi-objective methods
and proposed alternative objective functions to approximate TTP and AMS for the use
in a rolling horizon framework. Finally, concluding remarks and potential future research
directions are provided in Chapter 5.



Chapter 2

Background and Literature Review

This chapter provides the necessary background and literature reviews for the issues dis-
cussed in this thesis. First, a general background on the different types of optimization
problems and the techniques for solving these problems is provided in Section 2.1. Litera-
ture reviews on the two main issues addressed in this thesis are presented in Sections 2.2
and 2.3, discussing time representations in short-term scheduling formulations and multi-
objective optimization approaches. In these sections, and in fact, all throughout this thesis,
there exists a recurring theme of trade-off between computational cost and solution quality,
which should be kept in mind. In the following literature reviews, specific challenges with
regards to short-term scheduling applications are identified, and the gaps in literature with
respect to these challenges are identified in section 2.4.

2.1 Problem classifications and optimization techniques

Optimization problems can largely be classified according to two different characteristics:
the existence or the absence of nonlinearity in the objective function and the constraints,
and whether or not there are binary or integer variables in the model formulation. A
problem where the objective function and the constraints are linear and only continuous
variables exist (i.e., no binary or integer variables) is called a linear program (LP). A prob-
lem with one or more nonlinear constraints and/or a nonlinear objective function is called
a nonlinear program (NLP). If one or more of the decision variables are discrete variables
(binary or integer), a linear or nonlinear problem is referred to as a mixed integer linear
program (MILP) or a mixed integer nonlinear program (MINLP). These classifications are
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Table 2.1: Classifications of optimization problems

Type of decision variables

All continuous | Mixed continuous/discrete All discrete
Formulation (Mixed Integer Programs - | (Integer Programs
linearity MIP) - IP)
Linear Linear Program Mixed Integer Linear Integer Linear

(LP) Program (MILP) Program (ILP)

Nonlinear Nonlinear Mixed Integer Nonlinear Integer Nonlinear

Program (NLP) Program (MINLP) Program (INLP)

summarized in Table 2.115%0 Different types of problems require different types of op-
timization techniques, and these techniques are used by solvers (computer programs) to
solve optimization problems with varying degrees of effectiveness.

The techniques for solving LP problems, such as the simplex algorithm and barrier
methods are among the most widely used and effective optimization techniques!*!. In
fact, branch-and-bound methods, which are the most widely used techniques for solving
mixed integer linear programs (MILP), repeatedly call on LP techniques while solving a
MILP. In the first step of branch-and-bound for solving a MILP problem, all discrete vari-
ables are assumed to be continuous, i.e., the MILP is converted into a LP; this is called LP
relaxation and this initial LP problem is called the root node. This root node relaxation
can be solved using a LP technique, and if the optimal LLP solution to the root note meets
all integrality requirements (i.e., integer feasible), then the optimal LP solution is the op-
timal solution to the original MILP problem. Otherwise, the optimal LP objective value is
considered to be the best bound, and branching occurs at the root node. In the branching
step, a variable with a fractional value is chosen, and two subproblems called nodes are
created imposing that the fractional value is a number less or greater than the nearest inte-
ger values. For instance, if a variable z; has value 2.3, then one of the subproblems would
impose that x; < 2, while the other imposes that x; > 3. If a subproblem is optimal and
integer feasible, then the integer optimal solution is compared to the best feasible solution
found so far and, if better, it is considered to be the incumbent, and its objective value is
the best integer; this node is then considered to be fathomed and no longer branched on.
If a subproblem is either infeasible or has a worse objective value than the incumbent, it
is eliminated from the search (these nodes are also fathomed); otherwise, this node must
be further branched on. At any point during the search, for a minimization problem, the



best bound is the minimum of the LP optimal objective values (the maximum for a max-
imization problem) of all unfathomed nodes!®. The optimality gap may be calculated as
the difference between the current best bound and best integer. The branching process
in this algorithm continues, creating a search tree of nodes over time, until the optimality
gap falls below a tolerance criteria!*%™!. The incumbent (the integer feasible solution with
the best objective value on the search tree) at the time of termination is considered the
optimal solution to the original MILP.

Given the dependence of the branch-and-bound technique for solving a MILP on solv-
ing multiple LP subproblems, solvers inherently require more time and memory to solve a
MILP than to solve its LP counterpart. Different MILP formulations also require different
amounts of time to solve depending on the number of variables, the problem structure,
and datal*”). Furthermore, the optimality gap at the root node relaxation may be used as
an indicator for how computationally demanding a MILP formulation may be to solve. In
general, a formulation leading to a small optimality gap at the root node relaxation (also
said to be a tight formulation) is computationally less expensive when compared to a for-
mulation leading to a large optimality gap at the root node relaxation. Therefore, modern
commercial solvers, such as CPLEX, attempt to tighten the formulation by adding cuts,
starting with the root node. A cut is a constraint added to the model, which rules out
certain fractional solutions without eliminating legal integer solutions, and adding cuts
helps prevent the search tree from getting too large[™.

Despite these challenges in solving MILP problems, short-term scheduling formulations
are still predominantly MILPs!"132 as opposed to NLPs and MINLPs as the techniques
for solving such nonlinear problems, such as general reduced gradient methods, face unique
challenges that affect the ability of nonlinear solvers to obtain and recognize a solution.
For example, an inaccurate estimation of first derivatives, required by all major NLP
algorithms, can lead to a very slow algorithmic progress, or in extreme cases, declare
a suboptimal solution to be the optimal solution”). Solving MINLPs tend to be even
more challenging given that the branch-and-bound methods for solving MINLPs depend
on solving NLP subproblems. Therefore, it is generally desirable to try to avoid solving

nonlinear problems when possible even if the problems of interest contain inherent nonlin-
earity[15;47;75;1295135].



2.2 Time representations for operations scheduling mod-
els

Over the past few decades, several discrete-time formulations have been proposed, in which
scheduling decisions, such as the beginning of sample processing by a machine, can only
occur on a finite set of prespecified time points. A general discrete-time MILP formula-
tion for short-term scheduling of batch operations in a multiproduct/multipurpose plant
was proposed by Kondili et al.!®?l, which included batch operations and material /products
explicitly as network nodes in a State-Task Network (STN). Computational issues sur-
rounding this approach were discussed by Shah et al.['?®!; Pantelides!"'®] presented the
more general Resource-Task Network (RTN) representation as a unified framework. The
STN representation is still widely used today. Patil et al.['?’] presented an Integer Lin-
ear Program (ILP), a special case of MILP with only integer decision variables; based on
a uniform discrete-time formulation adapted from the STN representation based on flow
conservation equations. This ILP formulation by Patil et al.['?’ included the multitasking
feature, which is a key operational feature for the problems considered in this thesis.

Traditionally, as Velez and Maravelias!'*’l have noted, discrete-time models only rep-
resented time on a single global time grid with uniformly spaced time points where events
may occur [B82118120:128] with the time grid being shared between all processing units. These
uniform discrete-time formulations could result in MILPs involving large numbers of bi-
nary variables, leading to large computational demands[®%'?%l. To address this issue, Velez
and Maravelias['°) proposed a flexible discrete-time formulation with multiple and pos-
sibly non-uniform time grids. In a follow up study, Velez and Maravelias!'*!! generalized
their ideas into a general framework for developing such scheduling models, and further
explored the algorithms for generating the non-uniform time grids. In this approach, each
processing unit is given its own discretized time grid, and events can happen at different
times for different processing units, effectively allowing many decisions to be made for some
of the units without defining unnecessary time points for the rest of the process network.
Furthermore, when using multiple time grids, each time grid does not necessarily need to
have uniformly spaced time points. Such an approach has the advantage of obtaining a
better balance between solution quality and computational demand, since finer discretiza-
tions are only used when needed, for example, for processing units with relatively short
processing times. Velez et al.['*?] successfully implemented the multi-grid approach to solve
three large examples, including a case study based on production operations by the Dow
Chemical Company, while extending the approach to consider various features including
changeovers and storage policies. More recently, Lagzi!®® extended the multitasking ILP
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Figure 2.1: Different discretization approaches (predefined time points)

formulation of Patil et al.['? to include the flexible discretization scheme of Velez and
Maravelias['?!. This ILP multitasking flexible discrete-time formulation implemented in
this thesis using both the uniform discrete (UD) and the non-uniform discrete (NUD) time
representations.

Both of these time discretization approaches are illustrated in Figure 2.1. In this figure,
the length of each time grid represents the prespecified length of the scheduling horizon
H starting at time 0. Each tick mark represents the prespecified location of each time
point at which an event (e.g., turning on a machine) may occur. Figure 2.1a shows two
different approaches of uniform time discretization where events for all processes occur
on either a shared coarsely or finely discretized time grid with uniformly distributed time
points. Figure 2.1b, on the other hand, shows the approach by Velez and Maravelias!'*"]
where events for each processing unit occurs on its unit-specific time grid with possibly
non-uniform time point distribution; events across all unit-specific time grids are then
scheduled simultaneously by the optimization algorithm.

One important aspect of the discrete-time formulations is that a very fine discretiza-
tion (e.g., every minute) allows for a high degree of flexibility in the solutions, possibly
resulting in higher quality solutions compared to a coarser discretization. However, such
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a fine discretization requires a larger number of decision variables, and results in larger
(and more computationally intensive) optimization problems to solve. Thus, there exists
a trade-off between computational time and solution quality.

A different time representation approach only predefines the number of time points,
and the optimization algorithm determines the optimal positions of the time points (i.e.,
the times within the scheduling horizon at which scheduling decisions may occur) as con-
tinuous decision variables. The formulations implementing this approach are referred to as
continuous-time formulations. Events may either occur on a single global time scale for all
units 1957879095 102,107 11%1261315143154] 6 o multiple unit-specific time scales 2055154 7476:97:113;133]
Recently, Lagzi et al.[®6] adapted the flow conservation equations of Patil et al.['?’! and the
continuous-time formulation of Sundaramoorthy and Karimil"®'l and presented a MILP
multitasking global continuous-time formulation. However, a multitasking unit-specific
continuous-time formulation has not yet been developed, and not included in the scope of
this thesis. Regardless, these two approaches of continuous-time representation are illus-
trated in Figure 2.2 for a predefined scheduling horizon length of H (i.e., H is an input
parameter).

In Figure 2.2, variable T}, represents the position of the n'* time point, variable SL,
represents the distance between the n* and (n — 1) time points, and the second alpha-
betical index for SL,x in Figure 2.2b refers to the specific processing unit X. The values
of these continuous variables, i.e.; the locations of the time points, are determined by the
optimization algorithm to provide the optimal objective value. The global continuous-time
scale presented in Figure 2.2a is analogous to the uniform discretization approach presented
in Figure 2.1a in that events for all processes occur on a shared time scale. On the other
hand, the unit-specific continuous-time scales are analogous to the flexible non-uniform
time grids presented in Figure 2.1b.

Since the timing of events is not predetermined in continuous-time formulations, more
accurate solutions may be obtained without considerably increasing the size of the for-
mulations. Furthermore, the continuous-time formulations are capable of modeling some
operational features, such as variable machine processing times, with relative ease, which
are challenging for discrete-time formulations. The flexibility provided by continuous-time
approaches also make them suitable for developing frameworks for scheduling under un-
certainty, as Lappas and Gounaris!®®! have demonstrated by successfully developing an
adjustable robust optimization (ARO) framework utilizing the global event-based model
by Castro et al.!'); Wang et al.["** developed a rescheduling framework for crude-oil oper-
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Figure 2.2: Different continuous-time approaches (time points are decision variables)

ations under uncertainty utilizing the unit-specific model by Furman et al.[®!l. Similar to

the discrete-time approach, however, there exists a trade-off between computational time
and solution quality as higher number of time points are required to improve solution qual-
ity. There also exists an upper limit of the number of time points for a continuous-time
formulation for a given problem beyond which no improvement in solution quality can be
observed [19:86],

While discrete-time and continuous-time formulations have often been studied sepa-
rately, few studies have considered a comparison between these two approaches[!10:129:132]
Stefansson et al.['?%) compared these two approaches with a case study based on a multi-
stage, multi-product pharmaceutical production facility. They solved their strongly NP-
hard problem by decomposing the problem into two parts, and solving the individual
parts using discrete-time and continuous-time formulations. Stefansson et al.['?’] found
the continuous-time approach to be more suitable in solving their problem as it required
less time to solve, and the resulting schedules were more precise. Sundaramoorthy and
Maravelias['3?! compared these two approaches using a collection of more than 100 prob-
lem instances. They found that while continuous-time formulations appeared to solve faster
than their discrete-time counterparts for relatively short scheduling horizons, the perfor-
mance of the continuous-time formulations suffered significantly with increasing length of
horizons and increasing number of time points. On the other hand, the performance of
discrete-time formulations was found to be relatively consistent. Sundaramoorthy and
Maravelias['*?! also found the discrete-time formulations to consistently provide better so-
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lutions. Merchan et al.[''% compared four discrete-time models against a continuous-time
model using a total of 1808 runs, and found that all the proposed discrete-time models
outperformed the continuous-time model as the discrete-time models required significantly
less time to solve.

2.3 Multi-objective methods

When there exists more than one objective function that must be minimized in an opti-
mization problem, it is said to be a multi-objective optimization problem. The general
form of such problem is min{ f;(¥) : ¥ € x | Vi = 1, ..., k}, where k is the number of objec-
tive functions, ¥ is a decision vector of n variables, and 7 is the feasible set of constraints.
The main concern in a multi-objective optimization problem is that the objectives may be
conflicting with each other, i.e., improving the objective value in one objective function
may deteriorate the objective values in other objective functions. The first attempt to
methodically address the issue of conflicting objectives is usually attributed to Pareto!''?],
who introduced the concept now referred to as Pareto optimality. In short, a solution is
said to be efficient or Pareto optimal if there exists no solution that is strictly better for at
least one objective and at least as good for all other objectives. A set of Pareto solutions
forms the trade-off surface or the Pareto set, also called the Pareto front or the Pareto
frontier. A more formal definition of Pareto optimality is as follows!1:

Definition 2.3.1. A decision vector ©* € x is Pareto optimal if there does not exist

another decision vector & € x such that f;(¥) < fi(@*)Vi =1,...,k and f;(Z) < f;(&*) for
at least one index j.

One way to handle problems with conflicting objectives is to express the various objec-
tives in a single objective function as a sum of several weighted objectives, i.e. the weighted
sum method . The weights may, for example, be chosen arbitrarily based on experience,
or by trial and error. While this approach may be straight forward to implement and to
solve, the decision maker (DM) may face difficulties in objectively evaluating the quality of
the solution with regards to the conflicting objectives. Furthermore, the arbitrary selection
of the weights may introduce bias in the decision making process, which deviates from the
preferences of the DM. Furthermore, the weighted sum method is not guaranteed to return
a Pareto optimal solution for a nonconvex problem!?%!. This is undesirable for the problem
of interest for this thesis given that MILP problems are inherently nonconvex 4",
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Various other multi-objective optimization techniques address the shortcomings of the
traditional weighted sum method by providing the DM with a set of efficient solutions, or
by providing the DM with greater flexibility and control over the trade-off between the con-
flicting objectives. The multi-objective techniques typically fall under two main categories:
a priori and a posteriori methods. A posteriori methods aim to provide a DM with a set of
Pareto optimal solutions. The DM can then afterwards look at the set of Pareto solutions
provided and select one that complies with the DM’s needs. Currently, the most dominant
a posteritori methods in the multi-objective optimization research community are approx-
imation methods based on heuristics and metaheuristics. These methods are typically
inspired by behaviours and mechanisms in nature, e.g., biology, evolution, and physics?7.
The popularity of such methods are evident in several reviews of multi-objective meth-
0ds29:27:5391:130:146:156] i cluding those focusing on scheduling problems[2553:915130:146] (¢ o
Yenisey and Yagmahan![6] noted that more than 80% of the articles reviewed in their sur-
vey dealt with heuristic and metaheuristic and approaches). These metaheuristics methods
include variants of Evolutionary/Genetic Algorithms (EA/GA)[17:2366:116:127136] - Simylated
Annealing (SA) %%l Tabu Search (TS) 3123 Ant Colony Optimization (ACO) 6792 and
Particle Swarm Optimization (PSO)[3. The metaheuristics methods are useful for solv-
ing “hard” optimization problems, such as “NP-hard” combinatorial problems, such as
integer programs (IP) including MILP problems!?’). Furthermore, EAs are particularly
well suited to generating a set of non-dominated solutions due to the possibility of search-
ing for several solutions concurrently*’, then allowing the DM to choose a posteriori a
solution to implement. However, these methods are stochastic in nature, as they employ
stochastic search methods and the quality of solutions depend on the initial population
and this stochastic process can negatively impact computational efficiency*%. Given that
the DM often has a limited amount of time to make a decision in short-term scheduling
applications, such a posteriori methods may not be suitable in such cases, and obtaining
a set of alternative solutions may be unnecessary or impractical. Since this thesis aims
at providing practical solutions in reasonable computational times, this study will focus
on a priori methods. Comprehensive reviews on multi-objective methods can be found

clsewhere [25-27541553;91;105;130;146;156]

In contrast to a posteriori methods, the DM’s preferences are selected in advance in a
priori methods; hence, a single trade-off solution is obtained after a unique search %41
rather than a set of solutions for the DM to evaluate. Reference point methods, such as
compromise programming 7 are very popular a priori methods that have been widely
used in practice'%#*! The benefit of compromise programming lies in that it returns the
compromise solution that best approximates an ideal unattainable solution!'%%!. The e-
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constraint method, first proposed by Haimes et al.[") is another method that has enjoyed

popularity due to its relative simplicity*4%6). In this method, a prioritized objective is
optimized with other objectives being transformed into bounding constraints to guarantee
the minimum/maximum values (¢) of the non-prioritized objectives. In other words, the
original multi-objective problem is transformed into a single-objective problem that can
be solved using efficient MILP solvers such as CPLEX. While the e-constraint method
is typically classified as a posteriori method (although this is not based on heuristics or
metaheuristics typical of other popular a posteriori methods)43%111 there are studies
that have classified it as a priori method 219! as the DM’s preferences can be expressed
in the choice of the prioritized objective, and the selection of the ¢ values. Similar to
other a posteriori methods, the e-constraint method as a posteriori method suffers the
drawback of being computationally demanding due to its iterative nature®. Therefore
this thesis focuses on the a priori aspect of the e-constraint method in this thesis. This
thesis, however, does not utilize the original e-constraint method by Haimes et al.lf! as
this method is not guaranteed to return a non-dominated solution in certain cases involv-
ing integer decision variables. To address this issue, Ozlen and Azizolu!™7 presented a
general method for finding all non-dominated solutions within the output efficiency range
for a multiobjective integer programming problem with integer objective values by suc-
cessively solving constrained weighted single objective integer programming problem with
progressively changing € bounds. This thesis utilizes this variation of e-constraint method
by Ozlen and Azizolu!"7 in order to propose new practical a priori methods through its

hybridization with the compromise programming method of Yu "7

2.4 Gaps in literature and thesis contributions

In performing literature reviews as presented in Sections 2.2 and 2.3, several gaps in liter-
ature were identified, providing objectives for the studies presented in this thesis.

First, on the issue of time representations, relatively few studies have directly compared
the discrete-time and the continuous-time formulations11%12%132] - Nevertheless, these com-
parison studies either did not consider the situation where the discrete-time formulation
is capable of accommodating flexible time discretization!'?%32 or the continuous-time
formulation is unable to handle material splitting!"'%'?% or multitasking!!'%12%132  These
gaps in literature are addressed in Chapter 3 through computational studies comparing the
flexible discrete-time and the global continuous-time formulations presented by Lagzil(®°,
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which incorporate these features. Small and industrial-sized instances are considered with
discrete batches, material splitting, and multitasking, where batches are not allowed to
mix, and the machines are single purpose machines with constant and identical processing
times for all compatible tasks. These instances are based on an actual analytical services
facility. Chapter 3 also presents heuristics for non-uniform discretization using the flexible
discrete-time formulation with the aim of balancing the solution quality and the computa-
tional demands.

Second, on the issue of multiple conflicting objectives, researchers in the multi-objective
optimization community are predominantly focused on methods based on heuristics and
metaheuristics. Despite having enjoyed practical popularity and advances in methodolo-
gies!?17 there have been relatively few studies on scheduling problems that have applied
reference point methods[® or the e-constraint method?%°%148 in recent years. Allouche
et al.[! solved a small job shop scheduling problem (5 jobs, 2 machines) using compromise
programming to simultaneously consider the makespan, the total flow time, and the total
tardiness. Gutierrez-Limon et al.[’®! applied the e-constraint method to solve a problem in
simultaneous scheduling and control of a single reactor with 3 to 5 products with potentially
simultaneous reactions to manage the trade-off between economic profits and dynamic per-
formance. Both Yue and Youl'*¥! and Castro et al.[??! applied the e-constraint method for
problems in batch plant scheduling with 4-11 products and 3-14 stages, respectively. While
Yue and You!'®! considered the economic and environmental objectives, Castro et al.[??]
considered the makespan and the total utility demand. A common factor in those studies is
that the size of the problems considered are relatively small. Furthermore, to the authors’
knowledge, a multi-objective short-term scheduling study that considers a rolling horizon
approach is not available. These issues are addressed in Chapter 4 where a prior:i multi-
objective algorithms based on the hybridization of the e-constraint method and compromise
programming are presented with the aim to provide practical solutions to multi-objective
problems in short-term scheduling. The performances of these new approaches are com-
pared against the traditional compromise programming approach. Computational studies
are performed using a rolling horizon framework, testing the performances of several al-
ternative objective functions that account for TTP and AMS in short-term scheduling to
address the issue of the difference in time scales between short-term scheduling (e.g., days
or hours) and the long-term realization (e.g., weeks) of these conflicting objectives.
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Chapter 3

Study of Time Representations

This chapter presents the study comparing the different time representation approaches
(discrete-time and continuous-time) discussed in Section 2.2. The aim of this study is to
use existing discrete-time and continuous-time formulations in the literature, which are
able to readily handle the operational details as described in the problem definition of Sec-
tion 3.1 without major modifications. These are the ILP flexible discrete-time formulation
and the MILP global continuous-time formulation by Lagzi!®®!, which were developed by
combining existing ideas in the scheduling literature. These formulations were also pre-
sented in the published manuscript 7, for which the author of this thesis is a co-author;
they are presented again in this thesis for completeness and to reflect some of the minor
changes that were made from the original formulations presented by Lagzi(®!. Note that
while this thesis presents these scheduling models as ILP and MILP formulations, some of
the integer decision variables can be relaxed as continuous decision variables in order to
handle a variety of problems using these formulations. For example, tasks do not need to
be composed of strictly discrete samples or materials (e.g., a task can be composed of 4.7
kg of a liquid reagent).

While Lagzi[®®! focused primarily on the development of model formulations, the study
presented in this chapter represents a much more rigorous and extensive computational
study comparing the performances of these formulations using a total of 190 small and
industrial sized instances, comprised of 1030 runs with 25 processing units and up to 200
tasks based on data from the actual analytical services facility. In contrast, Lagzi[®®! pre-
sented 12 instances with 3-8 processing units and 2-9 tasks, where the data are not based
on the actual analytical services facility. The 25 processing units considered in this study
retain the characteristics of the majority of the operations at this facility; however, not
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all units at this facility were considered in this chapter due to tractability concerns for
the computationally demanding approaches and instances. This chapter also presents and
compares heuristics for discretization using the flexible discrete-time formulation, which
were not considered by Lagzi!®!, with the aim of balancing solution quality and CPU time.

This study focuses on the single-objective optimization approach, and serves as the
basis for the study on multi-objective methods presented in Chapter 4. A multi-objective
approach is not considered for this study given that such comparison may be too compu-
tationally demanding. This study focuses on throughput maximization assuming that for
this particular problem, throughput maximization is the sole key priority in the absence
of an appropriate multi-objective framework.

The rest of the chapter is organized as follows: First, the problem definition and ter-
minology describing the operations of the multipurpose facility are provided in section 3.1.
Then, the flexible discrete-time and the continuous-time formulations for the problem are
presented in Sections 3.2.1 and 3.2.2, respectively. Computational results and discussions
are presented in Section 3.3, along with proposed discretization schemes for the flexible-
discrete time formulation. Finally, a chapter summary in Section 3.4.

3.1 Problem definition

The main problem that will be considered in this thesis is based on an actual industrial
analytical services facility; this problem is studied in both Chapters 3 and 4. The facility
receives a set of tasks (a task may represent a single request from a client to perform certain
analysis on some materials), I, and needs to process them within a scheduling horizon, H,
using a set of processing units, P. Each processing unit, p € P, consists of a set of identical
machines (e.g., heaters, filtration units), .J,, that perform a specific process (e.g., drying,
filtration). The set of all machines in the facility is denoted by J, where J is the disjoint
union of J,’s.

For task ¢ € I, a; number of samples (e.g., in discrete containers such as test tubes)
become available at the beginning of the scheduling horizon for process pi € P, which
need to visit a specific sequence of processing units, called a path. For example, a sample
may be some amount of meat or liquid mixture, for which a client would like to know its
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chemical compositions. The path of tasks i, denoted by g;, is a sequence of n(i) distinct
processing units {p!, ... ,p;(i)}, where pi, € P for alli € I, k = 1,...,n(i). Within the
context of this work, samples for a task may be introduced at any processing unit in the
path at the beginning of the scheduling horizon. The incoming samples a;, V1 < k < n(1)
simulate samples that had been processed at the preceding processing unit pi_, during
a previous scheduling horizon. The samples in task ¢ introduced at p} must visit each
subsequent processing unit in g; sequentially, that is, p} 41 in @; can only be visited if P
has already been visited. Samples are considered to have visited processing unit, p, if it
has been processed by one of the machines in J,. It is assumed that at the beginning
of the scheduling horizon, the machines in the facility, 7 € J, will become available to
start processing materials at the facility. We also assume that there is no transportation
time between different processing units, and that there are no restrictions on intermediate
storage.

An illustration of material flow through processing units is presented in Figure 3.1.
This illustration contains two tasks, i = 1,2 with paths p; = [1,3,4] and ps = [2,3,5].
There are 5 unique processing units, p = 1,...,5 where p = 3 is a common process in the
paths of both tasks. It is possible for the materials from the two tasks coming from p = 1
and p = 2 to be processed simultaneously at p = 3. Note, however, that this multitasking
operation is not a blending or mixing operation (the materials are solids, or separated in
individual containers). After having been processed simultaneously at p = 3, the materials
for the two different tasks go onto two different processing units, p = 4 and p = 5; this
is called material splitting. For an example map of the process network of the analytical
services facility considered in this thesis, readers can refer to Figure 3.2.

p=1 | i=I i=1 5 p=4

~,
N,
N

p=2 " =2 i=2 N p=5

Figure 3.1: Hlustration of material flow featuring multitasking and material splitting
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Machines in a processing unit p have a specific capacity, denoted as 3,, and an asso-
ciated processing time, denoted as 7(p). This means that machine j € J, can be loaded
with at most (3, number of samples from potentially different tasks. Once a machine
has been turned on to process the samples, it will run without interruption for a time
7(p). After this time, the machine is considered to be available; also, the samples are
considered to have visited the corresponding processing unit and they are ready to visit
the next processing unit in their path. Since machines are assumed to be identical, the
processing time of the machines in a processing unit can be referred to as the processing
time of the processing unit. Furthermore, there is no minimum working capacity for any
machine, that is, the machines can be turned on with any number of samples between 0
and 3,. It is assumed that the information described above is available and known a priori.

3.2 Short-term scheduling formulations

For the facility under consideration, maximization of the number of samples to be processed
is a key priority. Ideally, we would like to maximize the true throughput of the facility
over an extended period of time, defining the throughput to be the number of samples for
which the last process in their respective paths have been completed. However, we can
only define the objective function over the scheduling horizon, and defining the objective
function to maximize the throughput can only lead to suboptimal resource utilization over
an extended period of time in a capacity constrained environment. This suboptimal re-
source utilization happens when there is not enough time or capacity to finish processing
some samples within the scheduling horizon, and a simple throughput maximization ob-
jective would have no objective incentive to start processing these samples. With such an
objective function, processing units with processing times that are longer than the schedul-
ing horizon will always be idle. Therefore, the objective functions to be presented for the
discrete and continuous-time formulations in Sections 3.2.1 and 3.2.2 will give incentive
for samples to be processed even if they cannot reach the end of their respective paths,
and even if processing cannot be completed within the scheduling horizon. Similarly, flow
constraints for these formulations will allow processes to continue processing even after the
end of the scheduling horizon, once processing starts for a machine. Processing may also
start at the end of the scheduling horizon, but no processes are allowed to start after the
end of the scheduling horizon. This particular feature in our formulation is indeed required
to reflect the actual operation in analytical service facilities.

20



3.2.1 Flexible discrete-time formulation

The flexible discrete-time formulation presented in this study extends the multitasking
uniform discrete-time ILP formulation presented by Patil et al.l'?’], by incorporating the
multiple non-uniform time grids approach proposed by Velez and Maravelias['*%). To derive
such extension, additional notation and assumptions are needed. The revised formulation
is presented below. The time domain for each individual processing unit will be discretized
into a predetermined series of time points.

Each p € P will have a time step A(p), which represents the time elapsed between two
consecutive time points for processing unit p. Let £(p) = (0, @p1, Pp2; - - - Pp(lem)|—2): H)
represent the increasing sequence of time points of processing unit p along the axis of time.
Let @p,Vt = 0,...,|E(p)| — 1 represent the t*™ element of £(p), i.e., the time value of
the ¢ time point of a discretized time grid. Given the above descriptions for the flexible
discrete-time representation, we define a time step as

A(p) = Ppt+1) — Ppts Vi=1,..., |g(p)| -2 (31>

Note that, V p € P, £(p) is known a priori; also the machines in the processing unit can only
be turned on at the beginning of a time point of the processing unit. The present formula-
tion assumes that the time steps are fixed for each processing unit; however, this condition
can be relaxed to consider variable time steps. The different discretization schemes to be
considered for this work will be discussed in Section 3.3.1.

Since the machines in a processing unit are assumed to be identical in the flexible
discrete-time formulation, it is not needed to consider the machines J, of processing unit
p on an individual basis, rather they are considered as resources of the processing units.
Accordingly, R, := |J,| represents the number of machines in processing unit p, for all
peP.

The first set of decision variables for the flexible discrete-time formulation are described
next.
Bir:: Is a nonnegative integer variable representing the number of samples from task 7 that
are set to start being processed at the k™ processing unit in the path of task i, pi. € @;, at
the time point ¢, Vie I, 1 <k <n(i), t=0,...,[E@pL)| — 1.
Xy Is a nonnegative integer variable representing the number of machines from processing
unit p that are being used at time point t, Vpe P, t =0,...,|E(p)| — 1.
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Constraints (3.2)-(3.3) ensure that the machines in the facility are not overloaded with
samples.

Y B < XpuBy VpeP t=0,...[E(p)—1 (3.2)
i,k:p=pl,
> Xp<R, VpeP t=0,...|Ep)|—1 (3.3)

0€E(p):opt <@po+7(P) <@pt+7(p)

As mentioned above, a sample from task 7 can visit processing unit pi in @; only if it has
already visited the previous processing unit, pi ,, in @;. Also, a sample from task i is
considered to have visited processing unit p{ in g;, if it has been processed by one of the
machines in J,. To account for these conditions, the following notation is considered:

Wike: is a nonnegative integer variable representing the number of samples from task
i that have visited pi , and are ready to visit processing unit p, at time point ¢ , V i €
I, k=2,....n(i), t=0,...,|E@L)| — 1.

Constraint (3.4) ensures that a subset of materials from task i can visit processing
unit p} in p; at time point ¢, if it has already visited processing unit p} , in @; before
time point ¢. Furthermore, it ensures that the same number of samples from task ¢ that
enter a processing unit, leave the processing unit after completing their processing, i.e.,
constraint (3.4) is a flow conservation constraint, preventing samples from being created or
lost. Because of its structure, constraint (3.4) can not be extended to the first processing
unit in the path of a task and the first time point of the processing unit; hence, constraint
(3.5) is introduced to extend constraint (3.4) to the first process in the paths of the tasks.

Bikt + Wik = Wig—1) + > Bi(k-1)6; (3.4)
0=1,. |},
Poi—1<Ppi_ oFTPR_1)SPyi,

Viel, k=2,....n(), t=1,...,|E(,)] -1
Biy + Wiy = Wag-1y; Viel, t=1,...|E(p,)| -1 (3.5)

Constraint (3.6) introduces a;;, samples for task i at processing unit pi, at the beginning
of the scheduling horizon as the number of samples waiting to start processing at that unit.

Given that the samples are introduced as samples waiting to start processing at the first
time point, constraint (3.7) prevents samples from being processed at the first time point.
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Therefore, for each discretization scheme and for all processing units, discretization was
carried out to set the value of the first two time points, .0 and ¢, to zero in order to
allow events to occur at the beginning of the scheduling horizon. For this reason, eq (3.1)
defined the time steps starting at ¢ = 1 rather than ¢ = 0.

The following objective function aims to maximize throughput while optimally utilizing

available resources.
) |5‘ Pk ‘ 1

maxrimize Z Z Z k zkt (38>

i€l k=1 t=0

The Welght is the relative position of processing unit p; in path p; with n(:) number

of processing unlts. For example, the 4" processing unit (p4) in a path with 7 process-
ing units (n(i) = 7) will have a weight of 2. This weight () therefore, gives priority
to beginning the last process of a task’s path. This approach is utilized over an explicit
throughput maximization approach in order to avoid situations where available resources
are left idling if a task may not be completed by the end of the scheduling horizon as
discussed in the opening of this chapter. This objective function represents one of the sev-
eral possible approaches for approximating the total throughput (TTP) for a short-term
scheduling horizon as discussed further later in this thesis in Section 4.2.2. This particular
objective function is used for this study given its relative simplicity of expression, while we
deemed it to be a better approximate expression of the TTP when compared to using, for
example, a constant weight of 1.

3.2.2 Continuous-time formulation

Lagzi et al.[®¢) introduced a global event-based MILP formulation that has been modified
to model the problem considered in this work. For the purpose of completeness, we will
describe the formulation here as used in this work. The formulation was modified to remove
features that were not considered for this work, namely, minimum processing load, and the
feature allowing samples to be introduced after the beginning of the scheduling horizon.
An idle task will be assigned to a machine whenever the machine is being idle. The idle
task is denoted as task number 0 whereas I = 1, ..., |I] is the set of the actual tasks. Note
that, for every p € P and j € J,, we denote by I;, the subset of tasks i € I where p € g;.
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The time domain will be partitioned into N + 1 predetermined number of time points,
where the distance between two consecutive time points is called a time slot. The time
points are shared by all the tasks and machines and their locations along the time axis is
determined through the optimization model. Note that the first and last time points, 0 and
N, have their locations fixed at the beginning and at the end of the scheduling horizon,
i.e. times 0 and H, respectively. Accordingly, T, € [0, H], YV n =0,..., N, is the decision
variable representing the location of time point n and SL,, € [0, H] is the decision variable
representing the length of time slot n, where time slot n is the time between T,, and T;,_1,
for allm € 1,..., N. Notice that the number of time points is assumed to be given as an
input. The problem of determining the appropriate value of N will be discussed in Section
3.3.1. The rest of the decision variables used in the continuous-time formulation are as
follows:

Zjn € {0,1}: 1 if machine j is turned on at time point n, and 0 otherwise; V j € J, n =
0,...,N.

Yiin € {0,1}: 1 if samples from task i start being processed at machine j at time point n,
and 0 otherwise; V j € J, i € TU{0}, n=0,...,N.

Y E,j, € {0,1}: 1if machine j is set to finish processing samples from task ¢ at time point
n, and 0 otherwise; V j € J, i € TU{0}, n=0,...,N.

YR;j, € {0,1}: 1 if machine j is set to continue processing samples from task i at time
point n, and 0 otherwise; V j € J, i € TU{0}, n=0,...,N.

TR;jn: A nonnegative continuous variable, representing the amount of time remaining
to complete processing samples from task ¢ that are set to continue being processed at
machine j at time point n; V je J, i € ;U{0}, n=0,...,N.

Bijn: A nonnegative integer variable representing the number of samples from task ¢ that
are set to begin processing at machine j at time point n; Vj € J, i € [;U{0}, n=0,..., N.
BE;;,: A nonnegative integer variable representing the number of samples from task ¢ that
are set to finish being processed at machine j at time point n; V j € J, i € [; U{0}, n =
0,...,N.

BR;;n: A nonnegative integer variable representing the number of samples from task ¢ that
are set to continue being processed at machine j at time point n; V j € J, i € [;U{0}, n =
0,...,N.

Wikn: A nonnegative integer variable representing the number of samples from task ¢ that
have visited p,_, and are ready to visit processing unit p} at time point n; Vi € TU{0}, k =
2,...,n(i), n=0,...,N.
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Constraints (3.9)-(3.11) model the relationship between T,, and SL,,.

N

Z SL, = H (3.9)
n=1
To—T,1=SL,; ¥Yn=1,...,N (3.10)
T, =0 (3.11)

Constraints (3.12)-(3.18) ensure that turning machine j on at time point n is coordinated
with machine j starting, continuing, or finishing processing samples from a set of tasks.
They also assure that a machine cannot continue processing samples and start processing
new samples, at any time point.

Zin > Yin; Vi€ J, i€ ;u{0}, n=0,...,N (3.12)

Zin< > Yiw Vj€J n=0,... N (3.13)
icl;U{0}

Zin>YEjy; Yj€d, i€ [U{0}, n=1...,N (3.14)

Y Y YEj;=0 (3.15)

i€J iel;u{0}

Zjngl—YRZ]n, VJEJ,ZEI]U{O},TL:O,,N (316)

(1= > YRy)<Zm VjeJ n=1...,N (3.17)
iEI]‘U{O}

ieI;u{0}

Constraint (3.19) ensures that, if samples from task i started or continued to be processed
at machine j at time point n, then, at the next time point the samples will either complete
their processing or continue being processed in machine j.

YRijn = YRij(n—l) + Yij(n—l) - YEz’jn; V] € J, 1 € Ij U {0}, n = 1, ey N (319)

Constraint (3.20) ensures that a machine cannot process samples while the machine is
being idle.

Yiin <1—=Yon; VjeJ icljn=0,...,N (3.20)
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Constraints (3.21)-(3.28) ensure that the number of samples in a machine is at most equal
to the capacity machine j.

YZ]’N,SBZ]’VM VpEP, jG Jp, ZE]]U{O}, TZ:]_,...7N (322)
> Biyu<ByZjn; VpeP jeJ, n=0,... N (3.23)

1el;U{0}

BRijn S BpYR’LjTL) Vp € P, ] € Jp, 1€ Ij U {0}, n = O, e 7]\/v (324)
Y BRy.<B,(1-Zj); VpeEP, jE€J, n=0,...,N (3.25)

iEIJ‘U{O}

YEZ]TLSBE’L]H) ‘v’pGP, jE Jp7 ZG]]U{0}7 nzl,...,N (327)
> BEy, < ByZj; VpeP, je ), n=0,... N (3.28)

1el;U{0}

Constraint (3.29) introduces a;;, samples for task 7 at processing unit pi at the beginning of
the scheduling horizon as the number of samples waiting to start processing at that unit.

Wiko = Aik; Vi € [, k= 1,... ,n(z) (329)

Given that the samples are introduced as samples waiting to start processing at the begin-
ning of the scheduling horizon, all machines are set to idle for the first time point according
to constraint(3.30). Note that the optimal schedule can still have machines starting pro-
cessing at the beginning of the scheduling horizon if 77 = 0.

Constraint (3.31) ensures that the number of samples that finishes processing or continues
to be processed at machine j at time point n is equal to the number of samples that started
or continued to be processed in machine j at the previous time points, i.e., samples are
not created or lost.

BRZ'jn + BEZ]TL = BRij(n—l) + Bij(n—l); vj € J; (S Iju n = 17 A N (331>

Constraint (3.32) ensures that a sample from task i can visit processing unit pj in g; at
time point n, if it has already visited processing unit p} , in p; before time point n.

Z Bz]n‘{'mkn:Wzk(nfl)‘*’ Z BEijn; ViGI, k:2,,n(z),n:1,

JEJp: p:p}; JEJp: p:p}'ci1
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Constraint (3.33) is a flow constraint similar to constraint (3.32), but for the first processing
unit of path ;.

Z Bijn + Wit = Win—1); Viel, n=1,...,N (3.33)
JEJp: p:pli

Constraints (3.34)-(3.35) regulate the amount of time remaining to finish processing sam-
ples from task ¢ at machine j at time point n if machine j is set to continue processing
samples from task ¢ at time point n.

TRijn ST(]?)YR”TL, VpEP, j EJp, ZEIJU{O}, TLZO,...,N (334)
TRij(n—i—l)ZTRijn_’_T(p)}/ijn_SLn—l—l; VPEP, jEJp, iE]j, TLZO,,N—]_
(3.35)

Note that constraint (3.34) is not considered for the idle task, since a machine can stop
being idle at any time if a set of samples are assigned to start being processed at the
machine at that time.

The objective function for the continuous-time formulation is expressed so that it can
be directly comparable to the objective function for the flexible discrete-time formulation
presented in eq (3.8).

N ] n()

maximize Z Z Z %szn (3.36)

n=0 i=1 k=1 ]'EJp;p:p?C

3.3 Computational study

In this section, we present the case study, composed of a total of 190 instances and 1,030
runs, based on an actual analytical services facility. In Section 3.3.1, we define the network
of processing units defined by various paths, we present model parameters used for this
study, we present the metrics by which comparisons were made, and we present the dis-
cretization schemes that were compared. In Sections 3.3.1 — 3.3.4, we present and discuss
the results of these comparisons.
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Table 3.1: Paths of analytical processes defining the process network. Default path pre-
cursor A-B-C-D considered in the analysis but omitted in the table for brevity.

Path ID | Sequence of processing units
P1 F
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11

K

<

D R T R bR A bl A

mozZnszZZzomZdz

N CREOR RS R
[

S E R

3.3.1 Experimental data and design of instances

The network of the processing units being considered in this work is presented in Figure
3.2. This network resembles the actual analytical services facility that was studied. The
identity of the industrial partner and the names of involved processes are not disclosed
as per our non-disclosure agreement with the industrial partner. However, the proposed
computational studies retain the characteristics of the majority of the operations at this
facility. This network of 25 processing units is defined by the 11 paths presented in Table
3.1. Each task entering the facility goes through processes A, B, C, and D prior to starting
processes defined by the paths in Table 3.1. For example, a task with Path ID, P1, will
have a path of A-B-C-D-X-F-M-P-K; the first part of the path, A-B-C-D, is the default
precursor path, and X-F-M-P-K is the unique path defined in Table 3.1.

In this work, the resources in each process unit p have the same processing capacity
B, and processing time 7(p), where a resource may represent a machine, a worker, or a
machine-worker combination. Each processing unit represents a group of such resources
performing a specific process or unit operation (e.g., drying, filtration). The number of
resources, the capacity, and the processing time for each processing unit considered for
this study are reported in Table 3.2. Instances created with the process information values
reported in Table 3.2 will be referred to as baseline instances.

28



Table 3.2: Process capacity, resources, and processing time information

Process Capacity Resources Processing Time (min)

A 500 2 15
B 60 3 60
C 2250 2 1440
D 20 4 375
E 42 2 40
F 216 2 300
G 21 2 150
H 48 1 615
I 7 1 1440
J 150 1 240
K 480 3 180
L 440 2 240
M 216 4 120
N 440 4 220
O 1 1 10
P 180 1 390
Q 240 1 1440
R 720 10 735
S 480 10 471
T 112 8 1256
U 135 8 1141
\Y 22 1 60
W 440 4 1620
X 10 6 10
Y 10 1 10
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Figure 3.2: Map of the process network

In all computational studies, experiments are designed with the following experimental
design parameters: number of tasks (|/|]), length of the scheduling horizon (H), number of
time points for the continuous-time formulation (N), and processing time variability (T'),
which has been defined in this work as follows::

max 7(p) — min 7(p)

= (3.37)

min 7(p)

Note that in the context of these computational studies, processing time variability as
defined by eq (3.37) does not refer to variability of processing time with respect to a de-
pendent variable, but it is a relative measure of the discrepancy between the longest and
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the shortest processing times considered in these instances. The baseline instances have
processing time variability of 161.

In the present work, a set of instances contains ten instances with the same experi-
mental design parameters. However, for each of the ten instances within a set, each task
considers:

a) a randomly generated number of samples between 10 and 500, which is the typically
observed range of task size at the analytical services facility under study,

b) a randomly assigned Path ID and the path associated with it, and

¢) a randomly generated starting point within the path.

In what follows, UD will refer to implementation of the discrete-time formulation with
uniform time discretization, and NUD will refer to implementation of the discrete-time
formulation with non-uniform time discretization. When UD or NUD is followed by a
number, the number will indicate the discretization scheme. For UD, the number will
indicate the size of the uniform time steps. For example, each p € P in UD10 will have
a time step A(p) = 10. For NUD, the number will indicate the maximum discretization
value. For example, for NUD30, each p’ € P with 7(p/) < 30 will have a time step
A(p') = 7(p’) and each p” € P with 7(p”) > 30 will have a time step A(p”) = 30. For
either UD or NUD, given a time step A(p) for processing unit p, the unit-specific time grid
is discretized according to eq (3.38).

E(p) = (0,0,A(p),2A(p), - -, ([ 7= 1 = 2DAM), ([ 751 — DAWR), H) (3.38)

H H
A(p) A(p)

E(p) has (fﬁ} — 1) + 3 time points index from ¢t = 0 to t = |€(p)| — 1. Note that if A(p)
is not a factor of H, then H — ¢pg(p)—2) # A(p). For this reason, eq (3.1) defined the time

steps up to t = |E(p)| — 2 rather than t = |E(p)| — 1.

Based on the above, UD10, UD30, UD60, NUD30, and NUDG60 discretization schemes
are studied in the following computational studies. In practice, for short-term scheduling,
we would like to be able to make decisions at least on an hourly basis, but it can also
becomes impractical to define schedules down to the minute. We consider UD10 to be the
finest discretization where the uniform A(p) equals to the minimum allowable accuracy,
whereas UDG60 represents the coarse discretization where the uniform A(p) equals to the
maximum allowable accuracy. For all sets of instances, each instance was solved for all five
of these discretization schemes, and the continuous-time formulation was solved in addition
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to these five discretization schemes when the continuous-time formulation was compared
against the flexible discrete-time formulation.

Regarding the continuous-time formulation, each of the instances was solved for a se-
lected number of time points, and instances with different numbers of time points were
considered to analyze the effect of increasing number of time points on the computational
time. Increasing the number of time points, starting with a small number of time points,
will increase both the solution quality and computational demand, until a point when
adding time points will not improve the quality of the solution. The procedure of starting
with a small number of time points and increasing it until no improvement can is observed
was used by Ierapetritou and Floudas!™!. However, before the maximum number of useful
time points is reached, the problem may become intractable, or fail to be solved to op-
timality within a given CPU time limit. In this work, we initialized the continuous-time
formulation with 6 time points, and aimed to increase the number of time points until no
improvement in the solutions are detected. A CPU time limit of 8 hours was considered for
these simulations. This CPU time limit was imposed based on the expected time needed to
arrive to optimal solutions for industrial-case problems, especially in a short-term schedul-
ing context for analytical service facilities (i.e., a new schedule may be required every day).

For the remainder of this study, the computation of a particular discretization scheme
or the continuous-time formulation has been referred to as a run. To summarize, a set
of instances has ten instances with the same experimental design parameters, and each
instance has five or six instances depending on whether or not the continuous-time formu-
lation is considered for that instance.

In principle, UD60, as the coarse discretization scheme, may result in the worst ob-
jective value and the lowest computational time among those five discretization schemes,
and the continuous-time formulation should also yield better solutions than UD60 perhaps
at the cost of additional computational time, provided enough number of time points are
specified in the continuous-time formulation. Note that comparing absolute values of the
objective function and the computational time between different instances may not pro-
vide insightful or meaningful conclusions due to different experimental design parameters.
Therefore, to evaluate each approach fairly, we compute, for each run within an instance,
the 'Relative Objective Benefit (ROB)’ and the 'Relative CPU time Disadvantage (RCD)’
compared to the objective value and CPU time yielded by UD60 for that instance. ROB
and RCD are defined as follows:
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ObjVal(y) — ObjVal(U D60)

B(x) = .
ROB() ObjVal(U D60) (3:39)
CPUtime(x) — CPUtime(U D60)
_ 4
RCD() CPUtime(U D60) (340)

where Y is one of the discretization schemes or the continuous-time formulation under con-
sideration.

When the mean of a value over a set of instances is reported, the associated standard
error of the mean (SEM) is calculated and reported as follows:

sev = L2EVS (3.41)

VNIST

where STDEV.S is the sample standard deviation, and NIST is the number of instances.

As stated in the Introduction, the following computational experiments are expected to
evaluate the strengths and weaknesses of the different time representation approaches rela-
tive to each other, and by doing so, determine the favorable approach to solving industrial-
sized short-term scheduling problems for a multipurpose plant. All the computational
experiments were performed on a Linux server with 250 GB of RAM and 4 CPUs, each
with 12 cores and a processing speed of 2.4 GHz using IBM ILOG CPLEX Optimizer
12.6.0"). CPLEX was run with the default settings, except for the CPU time limit of 8
hours. Particularly, this means that the setting for parallelism allowed utilization of all 48
available logical cores.

3.3.2 Comparing the discrete-time and the continuous-time for-
mulations

In order to compare the different discretization schemes along with the continuous-time
formulation, 80 relatively small sized instances (i.e., eight sets of instances, each set with
ten randomly generated instances with the same experimental design parameters) were
considered with the number of tasks ranging from 5 to 10, the number of time points for
the continuous-time formulation ranging from 6 to 8, with a set scheduling horizon of 8

33



hours. We aimed to start with a low number of time points for the continuous-time for-
mulation, and increase the number of time points until the computational time for the
continuous-time formulation becomes prohibitive. For each instance, six runs were made
for the five discretization schemes and the continuous-time formulation.

Results from these 480 runs are shown in Figure 3.3, where each point on the plot repre-
sents a run, and demonstrates the trade-off between the solution quality and the computa-
tional time depending on its position within the plot. There are 400 points shown on Figure
3.3 since 80 of the 480 runs are for UD60, whereas ROB(UD60) = 0, RCD(UD60) = 0
as per eq (3.40) and (3.41) respectively. Thus, these values are not shown for brevity.
In this figure, the RCD values are plotted on the horizontal axis, while the ROB val-
ues are plotted on the vertical axis. As shown in Figure 3.3, a perfectly vertical trend
would represent improved relative solution quality at absolutely no deterioration in rela-
tive computational cost. On the other hand, a perfectly horizontal trend would represent
deterioration in relative computational cost with absolutely no relative gain in solution
quality. Therefore, a time representation scheme with a steep trend resembling a vertical
line close to the vertical axis would be generally more desirable over a scheme with a flat
trend resembling a horizontal line far from the vertical axis. The horizontal axis for the
RCDs is given in logarithmic scale for readability. Note that with the logarithmic scale, a
trend that is closer to the vertical axis has a steeper slope and a narrower spread compared
to a trend that appears to have similar spread and slope, but further from the vertical axis.

In addition to the slope of the trend, the positions of the scattered points are important
performance indicators of a particular scheme. Having scattered points closer to the verti-
cal axis indicates the ability to provide solutions quickly, while having scattered points far
from the horizontal axis indicates the ability to provide high quality solutions. Comparing
the maximum ROB values (the heights of the trends) of the different schemes is a sim-
ple way to compare the potentials of the different schemes to provide high quality solutions.

The mean ROB and RCD values for each set of ten instances and their associated
standard errors are reported in Tables 3.4-3.7. All runs reached optimality for the flexi-
ble discrete-time formulation, whereas 72 of 80 runs for the continuous-time formulation
reached optimality, and 8 runs failed to reach optimality within a CPU time limit of 8
hours. The CPU time limit was set to 8 hours in order to be able to complete these runs
within a reasonable time frame. More detailed information including the optimality gaps
on these 8 runs are reported in Table 3.3.
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Table 3.3: Runs that failed to reach optimality within eight hours

Number of Number of Horizon Number of Optimality
Run Type Tasks Samples (hr)  Time Points  Gap (%)

Continuous 6 1624 8 6 1.99
Continuous 7 1275 8 6 5.36
Continuous 8 2975 8 6 16.01
Continuous 9 2163 8 6 5.41
Continuous 9 2845 8 6 10.96
Continuous 9 2555 8 6 13.37
Continuous 10 1803 8 6 16.39
Continuous 10 2367 8 6 13.55
Continuous 10 2742 8 6 9.92
Continuous 5 1418 8 7 0.44
Continuous 5 1440 8 8 3.9
Continuous 5 1364 8 8 2.13

These runs that failed to reach optimality within 8 hours still appear in Figure 3.3 and
are included in mean value calculations. The ROB and RCD for these failed runs were
computed using the objective value at the point of forced termination of the optimization
run using 8 hours as the CPU time. Here, optimality gap is calculated as:

UB—-0BJ

05 (3.42)

where UB denotes the smallest upper bound on the objective function value obtained from
the branch-and-bound tree search, and OBJ is the objective function value of the best
feasible solution found within the CPU time limit of eight hours.

In Figure 3.3, we can observe the discrete-time formulation forming steep vertical trends
and the continuous-time formulation forming a relatively flat trend. For the multi-tasking
modeling framework presented in Section 3.2 for this case study, the discrete-time formu-
lation was also generally able to provide higher quality solutions than the continuous-time
formulation. In particular, NUD30, NUDG60, UD10, and UD30 returned significantly higher
maximum ROB values compared to the continuous-time formulation. Figure 3.3 suggests
that the modeling framework developed in this work may not be suitable for solving large
instances while using the continuous-time formulation as computational cost deteriorates
rapidly for a small gain in solution quality.
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Figure 3.3: Comparison of different time representations
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As reported in Table 3.4, the continuous-time formulation generally provided better
quality solutions than UD60 with 5 tasks when implemented with more than 6 time
points. However, as reported in Table 3.6, the computational time increased rapidly for the
continuous-time formulation with increasing number of time points, as well as increasing
number of tasks. The continuous-time formulation required, on average, 395 seconds for
a run with 5 tasks and 6 time points, but a run with 5 tasks and 8 time points required
4,939 seconds, and a run with 10 tasks and 6 time points required 9,153 seconds. On the
other hand, NUD30, NUD60, UD10, and UD30 all produced lower mean RCDs with 10
tasks than they did with 5 tasks, generally requiring less than 8 seconds to compute.

These results are in line with the observations of optimality gap at the root node re-
laxation, the number of variables, and the number of constraints as reported in Tables 3.8,
3.9, and 3.10. While the continuous-time formulation returned lower optimality gap at the
root node relaxation than UD10 and UDG60 for certain instances, it returned, on average,
much higher optimality gap compared to its NUD and UD counterparts. This indicates
that, within the scope of this work, the flexible discrete-time formulation generally led to
tighter problems than the continuous-time formulation presented in this work (recall that
a tighter formulation is generally less computationally demanding as discussed in Section
2.1). In addition, the average value of this gap for the continuous-time formulation in-
creased 3 fold when the number of time points was increased from 6 to 8, which indicates
a significant trade-off between computational time and solution quality. The continuous-
time formulation also produced much higher average numbers of variables and constraints
compared to its NUD and UD counterparts, indicating much higher computational demand.

Furthermore, while Standard Error of Mean (SEM) values of ROB were lower for the
continuous-time formulation compared to the discrete-time formulation as reported in Ta-
ble 3.5, SEM values of RCD were much higher for the continuous-time formulation as
reported in Table 3.7, and this gap in SEM values of RCD increased with increasing num-
ber of tasks and increasing number of time points. This indicates that, for the application
studied in this work, while the continuous-time formulation may provide solutions with
more consistent quality, it may be computationally less consistent, and the CPU time con-
sistency deteriorates with increasing problem size.

These results suggest that the discrete-time representation is more suitable for the
present multi-tasking modeling framework since it is able to handle industrial-sized short-
term scheduling problems of this nature with hundreds of tasks. However, the continuous-
time formulation demonstrated that it can obtain higher quality solutions than the coarse
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Table 3.4: Mean Relative Objective Benefit (ROB) over UD60

Number Number of UD60
of Tasks Time Points (C) NUD30 NUD60 UDI10 UD30 C ObjVal

5 6 0.24 0.23 0.24 0.16 0.00 747

5 7 0.24 0.23 0.24 0.16 0.08 747

5 8 0.24 0.23 0.24 0.16 0.06 747

6 6 0.35 0.35 0.35 0.19 —0.05 898

7 6 0.25 0.25 0.25 0.13 —0.151 1,198

8 6 0.22 0.22 0.22 0.14 —-0.11 ] 1,178

9 6 0.22 0.22 0.22 0.14 —0.14 | 1,205

10 6 0.19 0.18 0.19 0.13 —0.17 | 1,245

Table 3.5: Standard Error of Mean (SEM) of ROB over UD60

Number Number of
of Tasks Time Points (C) NUD30 NUD60 UDI10 UD30 C
5 6 0.04 0.04 0.04 0.03 0.00
5 7 0.04 0.04 0.04 0.03 0.00
5 8 0.04 0.04 0.04 0.03 0.00
6 6 0.11 0.11 0.11 0.05 0.00
7 6 0.05 0.05 0.05 0.02 0.00
8 6 0.07 0.07 0.07 0.04 0.00
9 6 0.07 0.07 0.07 0.03 0.00
10 6 0.06 0.06 0.06 0.02 0.00

Table 3.6: Mean Relative CPU time disadvantage (RCD) over UD60

Number Number of UD60 CPU
of Tasks Time Points (C) NUD30 NUD 60 UDI10 UD30 C time (s)
5 6 2.83 0.68 8.01 3.10 206 0.78
5 7 2.83 0.68 8.01 3.10 1,444 0.78
5 8 2.83 0.68 8.01 3.10 6,331 0.78
6 6 0.61 0.26 2.18 0.37 6,912 0.24
7 6 0.73 0.28 2.55 0.37 13,172 0.26
8 6 0.69 0.29 2.63 0.38 17,790 0.27
9 6 0.77 0.34 291 0.47 26,828 0.27
10 6 0.79 0.33 3.17 0.49 33,898 0.27
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Table 3.7: Standard Error of Mean (SEM) of RCD over UD60

Number Number of
of Tasks Time Points (C) NUD30 NUD60 UDI10 UD30 C
5 6 1.04 0.55 2.31 1.31 1.40
5 7 1.04 0.55 2.31 1.31 3.03
5 8 1.04 0.55 2.31 1.31  17.13
6 6 0.05 0.04 0.09 0.04 15.53
7 6 0.05 0.03 0.10 0.02  40.26
8 6 0.03 0.03 0.17 0.04 42.02
9 6 0.09 0.04 0.12 0.05 51.88
10 6 0.05 0.03 0.07 0.04 54.28

Table 3.8: Mean optimality gap (%) at the root node relaxation

Number Number of
of Tasks Time Points (C) NUD30 NUD60 UD10 UD30 UDG60 C
5 6 1.16 0.76 6.38 3.25 049 93.33
5 7 1.16 0.76 6.38 3.25 049 73.65
5 8 1.16 0.76 6.38 3.25 0.49 288.43
6 6 0.00 0.55 7.46 5.25 0.81  54.69
7 6 0.97 0.26 2.68 1.75 0.16  56.75
8 6 1.51 0.00 6.17 0.00 16.67 52.99
9 6 5.11 0.00 6.30 1.33 0.00  76.58
10 6 0.87 0.00 8.35 2.11 0.00 148.98

Table 3.9: Mean number of variables for the discrete and continuous time formulations

Number Number of
of Tasks Time Points (C) NUD30 NUD60 UD10 UD30 UDG60 C
5 6 2,669 1,968 5,671 2042 1,135 23,569
5 7 2,669 1,968 5,671 2,042 1,135 27,608
5 8 2,669 1,968 5,671 2,042 1,135 31,705
6 6 3,078 2,270 6,41 2,355 1,309 27,276
7 6 3,477 2,568 7,391 2,661 1,479 31,059
8 6 3,930 2,894 8351 3,007 1,671 34,780
9 6 4,331 3,206 9,171 3,302 1,835 38,598
10 6 4,687 3,455 9,991 3,597 1,999 42345
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Table 3.10: Mean number of constraints for the discrete and continuous time formulations

Number Number of
of Tasks Time Points (C) NUD30 NUD60 UD10 UD30 UDG60 C
5 6 2,280 1,661 4,903 1,793 1,015 21,034
5 7 2,280 1,661 4,903 1,793 1,015 24,759
5 8 2,280 1,661 4,903 1,793 1,015 28,968
6 6 2,493 1,821 5,347 1,958 1,111 23,636
7 6 2,702 1,978 5,780 2,120 1,204 26,851
8 6 2,937 2,151 6,270 2,302 1,310 29,483
9 6 3,146 2,315 6,688 2458 1,400 32,998
10 6 3,332 2448 7,106 2,614 1,490 35,923

uniform discretization scheme when dealing with small numbers of tasks. One advantage of
the continuous-time formulation over the coarse uniform discretization scheme is that while
the coarse uniform discretization scheme can only provide schedules with events occurring
at coarsely predefined time points (e.g., every hour) events can occur anywhere along the
scheduling horizon for a schedule provided by the continuous-time formulation. For some
scheduling problems involving small number of tasks, for example, scheduling for an indus-
trial chemical plant producing small number of products but in large volumes with long
processing times should be able to successfully implement a continuous-time formulation,
especially if large CPU time limits can be accepted. For these problems, having precise
time points can be important, and defining very fine time points over a long scheduling
horizon can make the problems intractable. As reported in Table 3.6, UD10 required more
time to compute by several factors compared to the coarser discretization schemes even
when handling a small number of tasks. In addition, the continuous-time approaches must
be considered if variable machine processing times is a significant feature of the scheduling
problem since discrete-time approaches cannot readily handle this feature without result-
ing in large, computationally demanding formulations #6132,

Comparing among the different discretization schemes, NUD30, NUD60, and UD10
provided solutions of very similar quality as shown in Figure 3.3 and Table 3.4. UD30
provided significantly worse solutions with little benefit to the computational time, if at
all. While UD10 required more time to compute than the other discretization schemes, it
still only required seconds to compute. Therefore, when considering short-term schedul-
ing problems with such small number of tasks, implementing a fine uniform discretization
scheme may seem to be suitable over coarser discretization schemes as the fine uniform
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discretization scheme can provide schedules with more precise event points.

In the following subsections, much larger instances with hundreds of tasks will be
considered as the objective of this work is to study industrial-sized problems. However,
these large instances are intractable for the continuous-time formulation considered in this
study as made evident above with just 6 to 10 tasks, therefore the following subsections
will not consider the continuous-time formulation.

3.3.3 Comparing uniform and non-uniform discretization: vary-
ing |/| and H

In order to compare the performances of the different discretization schemes, 90 instances
with the number of tasks ranging from 100 to 200 and the length of the scheduling horizon
ranging from 24 to 40 hours were considered. The instances with 100 tasks consisted of
25,600 samples on average. Given that the facility under consideration typically receives
around 1000 — 4000 samples for every 8 hours of operation, the sizes of these instances
reflect operations of an actual analytical services facility with particularly heavy client
demands. All 450 runs for these instances reached optimality.

In Figure 3.4, the different discretization schemes can be distinguished easily. While
NUD30, NUD60, and UD10 all provided significantly better solutions than UDG60, the
computational time deteriorated relatively quickly for UD10 compared to the non-uniform
discretization schemes. While the trend for NUDG0 is much steeper compared to the trend
for UD10 (recall that the horizontal axis is in logarithmic scale), the maximum ROB value
of NUDG60 on this plot is almost as high as that of UD10. That is, NUD60 provided
solutions that were virtually as good as those provided by UD10 at a fraction of the com-
putational cost compared to UD10 (99% less RCD, on average, as reported on Table 3.13).

Superior tractability of NUD60 compared to UD10 is clearly demonstrated in Tables
3.15-3.17, which show that NUDG60 required, on average, 67% less variables, 66% less con-
straints, and produced 89% lower optimality gap at the root node relaxation compared
to UD10. Similarly, NUD30 also produced, on average, 84% less RCD, required 54% less
variables and constraints, and produced, on average, 53% lower optimality gap at the root
node relaxation. However, NUD30 provided the same quality of solutions as UD10. While
UD30 required around the same amount of time to solve as NUD30, and NUD30 required
34% less variables and 33% less constraints, UD30 produced, on average, 51% and 48%
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Figure 3.4: Comparison of different discretization schemes
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Table 3.11: Mean Relative Objective Benefit (ROB) over UD60

Number UD60
of Tasks Horizon (h) NUD30 NUD60 UDI10 UD30 | ObjVal
100 24 0.28 0.28 0.28 0.22 {10,021
100 32 0.29 0.28 0.29 0.24 10,189
100 40 0.29 0.29 0.29 0.25 |10,160
150 24 0.40 0.39 0.40 0.28 {10,705
150 32 0.46 0.45 0.46 0.29 10,539
150 40 0.45 0.44 0.45 0.29 (10,660
200 24 0.47 0.47 0.47 0.27 11,080
200 32 0.55 0.54 0.55 0.28 {10,957
200 40 0.45 0.44 0.45 0.27 11,122

Table 3.12: Standard Error of Mean (SEM) of ROB over UD60

Number

of Tasks Horizon (h) NUD30 NUD60 UD10 UD30
100 24 0.03 0.03 0.03 0.03
100 32 0.04 0.04 0.04 0.02
100 40 0.03 0.03 0.03 0.02
150 24 0.03 0.03 0.03 0.01
150 32 0.03 0.03 0.03 0.01
150 40 0.02 0.02 0.02 0.00
200 24 0.03 0.03 0.03 0.01
200 32 0.03 0.02 0.03 0.00
200 40 0.03 0.03 0.03 0.01

lower ROB compared to NUD30 and NUDGO, respectively, as reported on Table 3.11. Fur-
thermore, while NUDG0 required merely 3% less variables and constraints compared to
UD30, NUDG60 produced, on average, 92% lower RCD, since NUD60 led to much tighter
problems with 85% lower optimality gap at the root node relaxation. These results clearly
demonstrate the superiority of non-uniform discretization schemes over uniform discretiza-

tion schemes when handling large problems of this nature.

By inspecting Table 3.11, we can also observe the relative advantage of finer discretiza-
tion schemes (NUD30, NUDG60, and UD10) becoming more significant compared to the
coarser discretization schemes (UD30 and UDG60) as higher numbers of tasks are consid-
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Table 3.13: Mean Relative CPU time disadvantage (RCD) over UD60

Number UD60 CPU
of Tasks Horizon (h) NUD30 NUD60 UDI10 UD30 | time (s)
100 24 1.90 0.19 10.30 1.77 7
100 32 2.22 0.40 12.41 2.21 6
100 40 1.47 0.12 9.84 1.85 8
150 24 2.26 0.06 14.06 2.04 11
150 32 1.97 0.15 13.04 1.59 12
150 40 2.06 0.04 14.20 2.14 12
200 24 3.18 0.16 28.63 2.47 14
200 32 2.91 0.18 16.71 1.97 15
200 40 2.17 0.08 14.73 1.85 17

ered. However, by inspecting Table 3.13, we can observe mean RCD values increasing
noticeably with increasing number of tasks for UD10, while the increases in mean RCD
values are not significant for NUD30, and the mean RCD values appear to decrease for
NUDG0 with increasing number of tasks. In addition, while Standard Error of Mean (SEM)
values of ROB between NUD30, NUD60, and UD10 were very close as reported in 3.12,
SEM values of RCD were much higher for UD10, as well as for UD30 to a certain degree,
compared to NUD30 and NUDG0 as reported in 3.14, and this gap in SEM values of RCD
increased with increasing number of tasks. These results indicate that the gap between
non-uniform discretization schemes and uniform discretization schemes only enlarges with
increasing problem size, and that the non-uniform discretization schemes perform more
consistently with regards to the CPU time.
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Table 3.14: Standard Error of Mean (SEM) of RCD over UD60

Number

of Tasks Horizon (h) NUD30 NUD60 UD10 UD30
100 24 0.20 0.06 0.77 0.36
100 32 0.31 0.12 1.57 0.40
100 40 0.12 0.06 0.69 0.26
150 24 0.26 0.06 0.79 0.22
150 32 0.28 0.08 1.05 0.24
150 40 0.36 0.05 1.95 0.42
200 24 0.49 0.08 6.56 0.34
200 32 0.43 0.09 2.68 0.30
200 40 0.28 0.07 1.15 0.35

Table 3.15: Mean optimality gap (%) at the root node relaxation

Number

of Tasks Horizon (h) NUD30 NUD60 UDI10 UD30 UD60
100 24 1.39 0.43 4.24 1.35 3.13
100 32 1.61 0.34 2.99 2.82 2.36
100 40 3.45 0.73 5.74 7.20 4.92
150 24 2.30 0.03 3.44 3.70 2.78
150 32 0.63 0.42 6.64 1.80 1.48
150 40 1.86 0.13 4.35 4.29 1.49
200 24 0.10 0.46 1.26 1.24 0.85
200 32 1.61 0.20 1.46 3.31 1.65
200 40 2.28 0.12 6.06 1.25 1.40
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Table 3.16: Mean number of variables for the NUD and UD discretization schemes

Number

of Tasks Horizon (h) NUD30 NUD60 UD10 UD30 UDG60
100 24 116,866 ~ 84,933 255,501 87,501 45,501
100 32 118,271 86,267 257,165 88,071 45,797
100 40 117,108 84,977 256,377 87,801 45,657
150 24 174,885 127,150 382,112 130,861 68,048
150 32 175,747 127,959 382,930 131,141 68,194
150 40 175,564 127,694 383,134 131,211 68,230
200 24 232,277 168,636 508,256 174,061 90,512
200 32 232,670 169,290 507,818 173,911 90,434
200 40 233,297 169,570 509,366 174,441 90,710

Table 3.17: Mean number of constraints for the NUD and UD discretization schemes

Number

of Tasks Horizon (h) NUD30 NUD60 UD10 UD30 UDG60
100 24 61,829 45,054 134,525 46,637 24,665
100 32 62,037 45,727 135,362 46,927 24,818
100 40 61,953 45,079 134,966 46,790 24,746
150 24 91,272 66,596 198,264 68,750 36,372
150 32 91,706 67,004 198,675 68,893 36,447
150 40 91,615 66,872 198,778 68,929 36,466
200 24 120,400 87,771 261,768 90,782 48,036
200 32 120,595 88,097 261,547 90,706 47,995
200 40 120,914 88,242 262,326 90,976 48,138
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3.3.4 Comparing uniform and non-uniform discretization: ef-
fects of processing time variability

The preceding computational studies clearly demonstrated the superiority of non-uniform
discretization schemes compared to uniform discretization schemes in solving large in-
stances of the nature of problems considered in this study. However, those instances only
considered instances with the baseline processing time variability [' of 161. Note that at I’
of 1, NUD30 and NUDG60 would be equivalent to UD10, where 10 minutes is the smallest
given processing time. Therefore, as I' approaches 1 from the baseline value of 161, the
relative performance superiority of NUD30 and NUDG60 over UD10 as observed previously
should gradually diminish. To observe whether or not the conclusions drawn previously
for the baseline instances still holds at relatively lower values of I' still exceeding 1, the
set of instances with 100 tasks and 24 hour scheduling horizon as used in Section 3.3.3
were re-run at ' values of 40 and 100. To set the I' value to 40, for example, minimum
processing time was kept at 10 minutes, and any processing times exceeding 400 minutes
were set to 400 minutes. At I' = 40, we can still observe superior efficiency of the non-
uniform discrete schemes compared to the uniform discrete schemes, as shown in Figure 3.5.

Since we are interested in observing how the relative performance superiority of NUD30
and NUDG60 over UD10 changes with changing I', the mean ROB values at their correspond-
ing I" values, as well as their SEM values given as error bars, are presented in Figure 3.6
instead. The mean ROB values at each I' value were spaced out horizontally for read-
ability. Note that in Figure 3.6, the mean ROB values for NUD30, NUD60, and UD10
appear close to each other for I' = 161. For I' = 40, there is clearly a gap between
NUDG60 and the finer discretizations, NUD30 and UD10. This indicates that the superior-
ity of non-uniform discretization schemes becomes less pronounced with lower processing
time variability. When large CPU time limits can be accepted, some of the finer uniform
discretization schemes may be more appealing than some of the coarser non-uniform dis-
cretization schemes, especially for instances with relatively lower numbers of tasks given
the observations made in Section 3.3.3. Similarly, for problems with low processing time
variability, finer non-uniform discretization schemes may be more desirable than coarser
non-uniform discretization schemes.
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3.4 Chapter summary

This chapter presented comparisons between existing multitasking discrete-time and continuous-
time formulations, as well as comparison between different discretization schemes for the
flexible-discrete time formulation. The continuous-time formulation considered in this
study appeared not to be suitable for handling industrial-sized problems for the problem

of interest for this thesis due to a detrimental trade-off between solution quality and CPU
time. On the other hand, the non-uniform discretization schemes exhibited good balance
between solution quality and CPU time, especially NUDG0.
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Chapter 4

Study of Conflicting Objective
Functions

This chapter presents the study of short-term scheduling problems with conflicting objec-
tives, focusing on a priori approaches as discussed in Section 2.3. The aim of this study
is to develop and explore practical approaches for handling conflicting objectives in short-
term scheduling using a rolling horizon framework. In addition, this study will also explore
different objective function formulations that can account for TTP and AMS in short-term
scheduling. These two issues will be studied within the context of two application settings:
a semiconductor manufacturing plant and the actual analytical services facility also studied
in Chapter 3.

In this chapter, we utilize the non-uniform discretization approach as the results of the
study presented in the previous chapter showed that this modeling approach is effective
in solving large-scale integer linear programming (ILP) short-term scheduling problems
where multitasking is a key operational feature. In contrast to the last chapter, however,
the study in this chapter models the entire network of the facility containing over 100
unique processing units, where as the previous chapter only considered a portion of it due
to tractability concerns for the computationally demanding approaches. The problem size
is increased in this chapter given that this thesis ultimately aims to present methods for
solving real-life industrial-sized problems.

The organization of this chapter is as follows. Section 4.1 presents two new methods
considered in this work to address multi-objective problems in short-term scheduling. The
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specific objective functions to address TTP and AMS in short-term scheduling are pre-
sented in Section 4.2. Extensions to the flexible discrete-time formulation presented in
Section 3.2.1 required to incorporate the rolling horizon framework and operational char-
acteristics of the semiconductor problem are presented in Section 4.3. The two case studies
featuring multi-objective problems for short-term scheduling are presented in Section 4.4.
Finally, a summary of the chapter is provided in Section 4.5.

4.1 Multi-objective a priori scalarization methods

In this section, we first present a reference point method of relevance to the present study,
i.e., minimizing the 1-norm distance to the utopia point (INM method). We then present
two new methods that are based on the hybridization of the INM method and the e-
constraint method.

4.1.1 1-norm minimization (1NM) method

Assume y is the set of constraints, T is the vector of decision variables, and f;, fo are
functions that we wish to maximize /minimize, respectively. In this study, we choose as the
reference point the utopia point at the coordinate (UB(f1), LB(f2)) as shown on Figure 4.1.
The coordinates (UB(f1),UB(f2)) and (LB(f1), LB(f2)) represent the upper and lower
bounds of the output efficiency range, which are computed by solving the single-objective
problems max{fi(Z) : ¥ € x} and min{fo(Z) : & € x}, respectively. A compromise
solution on the trade-off surface is obtained by minimizing a p-norm distance (d,) from the
utopia point 7. This approach is also referred to as compromise programming, and it is
considered to be a special case of the reference point methods!™*%.

In the a priori compromise programming approach, the DM’s preference is expressed in
the selection of the p-norm distance to minimize. In the INM method, we minimize the
I-norm distance (1) to the utopia point, and we refer to the obtained compromise solution
as the INM Point. For the following bi-objective problem:

max f1(Z)
min fo(7) (4.1)
st. T €y
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the 1INM Point is computed by solving the following aggregated and scalarized problem [

min (1 — f,(2)) + fo(2) (4.2)
st. T €y

where fi(Z) and fo(Z) are normalizations of f1(Z) and fo(Z):
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The 1INM method thus has the advantage of simplifying decision making by providing
the DM with a single ideal compromise solution, which best approximates the unobtainable
utopia point. The INM method is also guaranteed to return a non-dominated solution even
if the output space is nonconvex!7: also, this 1-norm based approach leads to a linear
formulation given linear objective functions and constraints as shown in problem (4.2).
However, one downside of the INM method is that the DM preferences are inherently as-
sumed, i.e., p = 1, and the DM has no freedom to express other preferences. In general, the
articulation of the DM preferences can be challenging given that 1 < p < oo norms lead
to nonlinear aggregating functions, and a oo-norm solution may be a dominated solution
for a nonconvex output space!'*” which are more common in pure integer problems!®!.
Furthermore, in practice, the DM may want to express their preferences in terms of spe-
cific objectives, rather than in terms of the p-norm. Therefore, we present in this work two
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methods to address these shortcomings, which are presented next.

4.1.2 Modified e-constraint method (Mod-¢)

Another option of a priori method is to compute the Pareto frontier (a set of non-dominated
solutions), and choose one trade-off solution to implement according to a rule. In fact,
the 1INM method can be considered to be an application of such a rule to select the
INM Point within the Pareto frontier. In this work, it is desired to consider different
solutions that may be preferred by the DM than the 1INM Point. One alternative way to
devise an a priori approach is to compute the Pareto frontier (e.g., using the e-constraint
method) and having a pre-determined rule on how to choose a point from it. However,
such approach is typically computationally expensive. In this Section, we propose a non-
iterative hybrid method between the 1NM method described in Section 4.1.1 and the
e-constraint method, referred henceforth as the Mod-¢ method. We use a variant of a
posteiori e-constraint method presented by Ozlen and Azizolu!''") as the basis given that
it is adapted for integer programming problems as we would like to be able to solve in this
work. We propose two options for searching of the trade-off solution: search for a trade-off
solution in the direction of increasing objective values (i.e., from the 1INM Point towards
(UB(f1), UB(f2)) in Figure 4.1, or in the decreasing search direction (i.e., from the INM
Point towards (LB(f;), LB(f2)) in Figure 4.1). We present the Mod-¢ method below for
the bi-objective problem (4.1):

1. Compute the bounds of the output efficiency range: LB(f1), LB(f2), UB(f1), UB(f1).
2. Compute the INM Point, Z* (i.e. solve problem (4.2)).

for the f; objective (increasing search direction), or

3. Set weight wy =

_ 1
set W2 = GBI LB (s

1
UB(f1)—LB(f1)+1
777 for the fy objective (decreasing search direction).

4. Given the a priori DM preference value, 0 < T <1 (T =0 and YT = 1 correspond to
the INM Point and either the lower or upper bound of the output efficiency range,
respectively), and the INM Point, #*, set bound ¢, = f;(&*)+ Y (UB(f1) — f1(Z*)) for
the fi objective (increasing search direction), or set bound ey = fo(Z*) — T(fo(2*) —
LB(fy)) for the f; objective (decreasing search direction).

5. Solve the constrained weighted problem (4.4) (increasing search direction), or prob-
lem (4.5) (decreasing search direction). This returns the final DM preferred solution
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in the desired search direction.

min f5(Z) — wy f1(7) (4.4) max f1(Z) — wa f2(7) (4.5)
s.t. fl(f) Z &1 s.t. fg(f) S E9
ey ey

Note that the weights w; and w, shown above are expressed such that the solution of
problem (4.4) or (4.5) are bi-objective efficient for an integer programming problem (see
Theorems 2.1-2.3 of Ozlen and Azizolu[''"l). Therefore, in this work, we limit the discus-
sion and implementation of the Mod-¢ method to integer programming problems.

The motivation for the proposed approach is that the DM preferred solution is typi-
cally close to the INM Point; hence, we express the DM preferences relative to the 1INM
Point and the bounds of the output efficiency range. Expression of DM preferences and
the non-iterative structure are the major differences between the Mod-¢ method and the
iterative a posteriori approach of Ozlen and Azizolu!'*”), which lacks any expression of DM
preferences; also, we aim to reduce the time required to obtain a good practical solution
using the Mod-¢ method through these differences. The Mod-¢ method also addresses the
concerns regarding compromise programming raised in Section 4.1.1, as the constrained
weighted problems (4.4) and (4.5) maintains linearity for linear constraint ¥ € .

Furthermore, expressing the DM preferences in T with respect to the INM Point and
the bounds of the output efficiency range can potentially give the DM greater control over
the degree of trade-off between the conflicting objectives compared to some arbitrary selec-
tion of p-norm in compromise programming or the value of € in the e-constraint method.
Note that if we consider the 1INM Point to be the ideal attainable compromise between
the conflicting objectives, then moving further away from the 1NM Point along the Pareto
frontier (i.e., higher T) would typically mean greater deviation from ideal trade-off. In fact,
the Mod-¢ method can be considered as an extension of the 1INM method, which allows
the DM to express a priori the degree of deviation from ideal objective trade-off the DM
is willing to tolerate in order to prioritize one objective over the other, without having to
compute the entire Pareto frontier.
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4.1.3 1NM e-constraint method (1NM-¢)

In this section, we propose the INM e-constraint method (1INM-¢), which has a similar
structure to the Mod-¢ method described in the previous section. While the motivation
for this method is the same, i.e. that the DM’s preference would be close to the INM
Point, the major difference is that rather than solving the constrained weighted problem
(4.4) or (4.5), we search for the compromise solution with the lowest 1-norm distance on
the e-constrained Pareto frontier that excludes at least the INM Point. We present the
INM-¢ method below for the bi-objective problem (4.1):

1. Compute the bounds of the output efficiency range: LB(f1), LB(f2), UB(f1), UB(f1).
2. Compute the INM Point, Z* (solve problem (4.2)).

3. Given the a pm’om’ DM preference value, 0 < T < 1, and the 1INM Point, ¥*
set bound e = f1(#*) + T(UB(f1) — fi(2*)) for the f; objective and set bound
g5 = fo(Z*) for the f, objective (increasing search direction); alternatively, set bound
g5 = fo(@*) — Y(fo(2*) — LB(f2)) for the f objective and set bound e = f;(&*) for

the fi objective (decreasing search direction).

4. Solve the 1-norm minimization problem (4.6) (increasing search direction), or prob-
lem (4.7) (decreasing search direction). This returns the final DM preferred solution
in the desired search direction.

min (1 — f,(Z)) + fo(Z) (4.6) min (1 — f1(%)) + fo(Z) (4.7)
st (@) > et st [i(@) <
fo(@) > &5 fo(Z) <&y
TEYX ey

By solving a 1-norm minimization problem in its last step rather than solving a con-
strained weighted problem like the Mod-¢ method, the 1INM-¢ method has a larger em-
phasis on obtaining a good trade-off between the conflicting objectives compared to the
Mod-¢ method. This behavior arises from the fact that for the Pareto frontier of the
1NM-£ method, moving from the INM Point towards either the upper or lower bound of
the output efficiency range, we would inherently observe, by design, a continuous increase
in the normalized 1-norm distance (4;). This is not necessarily the case for the Mod-¢
method, and it is possible to observe localized decrease in o (i.e., localized decrease in
trade-off quality). Therefore, the Pareto frontier of the INM-& method is either equivalent
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to the Pareto frontier of the Mod-¢ method, or a subset of the Mod-¢ Pareto frontier that
excludes localized decrease in 6,. However, this does not necessarily mean that the INM-¢
method would always provide results that are more preferable to the DM. For example,
given the same problem and using the same value of T, the Mod-¢ method cannot return
higher values for f; and f5 than the INM-¢ method in the direction of increasing f; and fo
from the INM Point if the INM-¢ Pareto frontier is a smaller subset of the Mod-¢ Pareto
frontier; however, the DM might prefer the Mod-¢ solution with lower values of f; and fs,
even if the corresponding 1NM-¢ solution has lower 1-norm distance to the utopia point.
Furthermore, if the two methods have the same Pareto frontier, then their solutions would
also be the same using the same value of T.

4.2 Short-term objective functions

As discussed in the introduction, maximizing the total throughput (TTP) and minimizing
the average makespan (AMS) can be challenging due to the difference in time scale be-
tween tactical level decision making (TTP/AMS) and short-term scheduling. In order to
address this issue of approximating TTP and AMS for short-term scheduling, we present
here a rolling horizon approach for short-term scheduling applications. While the present
approaches have been tested on two particular applications, i.e., a semiconductor plant
and the analytical services facility introduced in Chapter 3, a wide variety of industrial
applications require this approach to schedule operations in an optimal fashion, e.g., steel-
making® and industrial gases supply chain!*®?. In order to provide the necessary rolling
horizon context for the objective functions proposed in this work, we first define our rolling
horizon framework in Section 4.2.1 before presenting the alternative objective functions in
Section 4.2.2. In section 4.2.1, we also introduce the concept of operational modes in order
to incorporate the characteristics of the semiconductor plant. The notation used in the
remainder of this section is consistent with the notation introduced in Sections 3.1 and
3.2.1.

4.2.1 Rolling horizon framework and operational modes
For the problems considered in this study, a facility receives a set of tasks I that need to

be processed within a rolling scheduling horizon (RH). A predetermined number of con-
stituent horizons (CH), each with a scheduling horizon of length H, form the overall RH.
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Within the context of this study, a CH represents a single day of operations (e.g., there
can be 30 CHs (days) within the RH (month), with H = 8 hours or 24 hours). Each task
¢ is introduced at the beginning of a CH, but not necessarily at the beginning of the RH,
and at the beginning of a path g;.

For the semiconductor case study of Section 4.4.1, we introduce the concept of opera-
tional modes in order to allow for potentially different processing times for each processing
unit. For each task 7 and its path g;, there is a specific sequence of operational modes
{m}, ... ,mfl(i)}, denoted by M;, and mode m, dictates the length of processing time Toi mi
All machines in a processing unit p have |¥,| > 1 possible predetermined values of pro-
cessing times 7,,, where ¥, denotes the set of one or more possible operational modes for

p, ¥, ={1,..., |V, |}

Based on this description of the operational modes, we also present the following modifi-
cation to the NUDG0 discretization scheme: E(p) = (ST, @p1, p2; - - - » Pp(lE(m)|-3)s Lp(I€ @) —-2)
, ST + H) represents the unit-specific sequence of time points of length |E(p)| for process-
ing unit p along the axis of time for a CH starting at time S7T' and ending at time ST + H
within the RH, where ¢, represents the actual time value of the ™ time point for pro-
cessing unit p. In this work, we set the difference in time values of two consecutive to be
the minimum value between the greatest common divisor of (7, ... ,Tp‘\p‘) and 60. This
modified NUDG60 scheme is used in the semiconductor case study presented in Section 4.4.1.

For the problems being considered in this study, we allow a machine j € in to con-
tinue to process materials for task i during the gap between the CHs, if any, as long as
the machine was turned on for mode m{, during or at the end of the CH. If the gap is long
enough for the machine to complete processing before the beginning of the next CH, then
machine 7 will become available to process more materials at the beginning of the following
CH, and the materials that completed processing during the gap will become available to
be processed at (k + 1) process in its path if k¥ < n(i). Otherwise, the machine will be
occupied, and the materials unavailable for further processing until processing has been
completed at that machine. At the beginning of the RH, machines in J may be occupied,
or not, depending on the specific operating conditions of the facility.
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4.2.2 Objective functions
Objective functions for throughput maximization (f)

Within the context of this study, we define the throughput of a task i (T'P;) as the cumu-
lative sum of the amount of materials for task ¢, which have either started or completed
being processed at the last processing unit in its path, pn ) for the RH. We also define
the total throughput as TTP := > TP;, Vi € I, and a key objective is to maximize TTP
for the RH. However, simply maximizing the amount of materials starting from the last

process » . ; lef "7 Bi n(iy for each CH does not necessarily maximize TTP for the RH.
For instance, if none of the materlals can complete the last process in their respective paths
during the CH under consideration, which may happen, for example, at the beginning of
a production campaign, the value of such objective function would be 0 for all feasible
solutions. In such instance, a schedule that does not process any materials during the CH
would be considered to be just as good as any other feasible schedule. Therefore, we pro-
pose operational throughput maximization objective functions (i.e. fi in problem (4.1)) of
the following form:
n(i) |€(p})1-1

maxzz Z (weight) By (4.8)

i€l k=1 t=0

The above objective function uses the weights presented in Table 4.1, each with an identi-
fying f11D, which attempt to produce schedules with close to optimal TTP for the RH. In
this work, we consider the optimal TTP for the RH to be the TTP that could be achieved
by explicitly maximizing the TTP by solving a single large problem with a scheduling
horizon equivalent to the length of the RH. Note that objective functions of the form
shown in equation (4.8) can easily account for other problem specific details, such as rush
jobs, by adding another weight factor in front of By, to prioritize tasks with higher priority.
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Table 4.1: Proposed weights for the throughput maximization objective functions

fllD‘ weight ‘Description/Rationale

0 1 Maximizes the sum of all materials starting to be processed at all
processing units for all tasks during the CH.
k
1 — Provides higher priority to materials starting to be processed at pro-

cessing units later in the path g;, relative to the units earlier in g;
(Closer approximation to TTP for the CH than using the weight of 1)

L N2
2 <—> Shifts the priority towards the end of p; compared to -

n (i) n(i)’
k
3 o If there are no materials for task i, which started being processed
S during the CH, but did not arrive at the last processing unit by
j=1 the end of the CH, then Zzg thg:(fk)l %Bm = TP, for the CH
j=1
(Closer approximation to TPP for the CH than other weights where
SO SNEE eight) By > TP, for the CH).
k
21 Tpjmi, 4
4 i;)— Similar to the ratio of the length of p; up to and including pj. to the
ST total length of g; in terms of processing times. Prioritizes processing
7=t ™| units with longer processing times compared to other weights.
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Objective functions for makespan minimization

Within the context of this study, we consider task i to be completed when there are no
materials waiting to start being processed at p;, 1 < k < n(i), and we define the makespan
of task i (MS;) as the time elapsed since the task was made available (AT};) to be processed
at p¢ until the expected time of completion of p for the last remaining materials in task
1. For example, if a batch of material unit 51ze 5 became available to be processed at
the first processing unit on day 1 at 9 hours, and all 5 units of material reached the last
processing unit requiring 1 hour of processing time on day 3 at 15 hours (i.e. 3 p.m.), then
the makespan of this task is {24 hours/day x2 days 4+(15 — 9) hours +1 processing hour
= 55 hours}. Given this definition for M.S;, we define the average makespan (AMS) for a
given set of tasks I to be the arithmetic mean of M S; for tasks ¢ € I that are completed.
For short-term scheduling problems where the system is sufficiently constrained, or one or
more tasks have paths that are longer than the length of the scheduling horizon, explicitly
minimizing AMS as the objective function may be undesirable. For instance, if there are no
tasks that can be completed within the CH, then the value of such objective function would
be 0 for all feasible solutions. Given the above considerations, we propose the following
operational makespan minimization objective functions (i.e. fo in problem (4.1)) of the
following form:

mmzz (ST — AT —1—2 vamable) (4.9)

i€l k=1

The above objective function uses the variables presented in Table 4.2, each with an iden-
tifying f2ID, which attempt to produce schedules with close to optimal AMS for the RH.
In eq (4.9), ST represents the start time of the CH. Note that in contrast to the f; objec-
tive function, the f5 objective functions are differentiated using different decision variables,
rather than different weights.

The constraints (4.10) and (4.11) shown below define the binary decision variable S
for foID = 0 and foID = 1, respectively. When implementing the objective functions,
f2ID = 0 and f5ID = 1, S;; must be introduced as a decision variable, in addition to the
other decision variables, and the respective constraint (4.10) or (4.11) must be added to
the scheduling model according to the foID.

Wz‘kz\s(p,;n
|E(®L)
1+Z] DSt agg,

< Sip < ch|5 i) VZEI,]{IIL,TL(’L) (410)
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Table 4.2: Proposed weights for the makespan minimization objective functions (f2)

f2ID ‘ variable ‘ Description /rationale
Sik A
0 |eq (4.10) | Six = 1 if processing unit pj, has materials waiting to be processed at
the end of the CH; otherwise, S;; = 0. Promotes materials to arrive
at the last processing unit together, since a task is not completed until
all materials get to the end.

Sk,
1 | eq(4.11) | S; = 1 if processing unit p} has materials waiting to be processed at
the end of the CH, or materials that started being processed at p; and
expected to continue being processed at pi after the end of the CH;
otherwise, S;r; = 0. Penalizes in-process materials for being at earlier
processing units rather than later, in addition to waiting materials.

2 Wikjepiy | Minimizes the amount of materials waiting to be processed at each
processing unit at the end of the CH. Higher priorities are given to
tasks with more waiting samples.

VVz'kIS(p};)\ + Etlzl. @i, Tt i > Pt o) B
1+ Zn(z \S(pk lafzyt
+ > Byw VieIk=1,...,n(i) (4.11)

V=LoeenlE PR o Tt s >

< Sik < Winei))

pil1E(PL)

For each fs, the general approach is to consider as weight, for each task i € I : AT; <
ST and process unit pj, 1 < k < n(i), the sum of elapsed time since AT; to ST and the
total processing time remaining in path g;, then provide incentive for task completion by
promoting materials to progress through g; during the CH. This weight prioritizes pro-
cessing of materials at process units that are earlier in p; compared to the units that are
later in p;, and completion of tasks that are introduced earlier and tasks with longer paths.
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4.3 Modifications to the flexible discrete-time formu-
lation

The modifications made to the scheduling model presented in Section 3.2.1 incorporating
operational modes and the rolling horizon framework described in Section 4.2.1 are pre-
sented below.

While B and W did not change from the original formulation presented in Section
3.2.1, the index, m was added to X+ (the number of machines being used) to account for
the different operational modes of processing unit p and redefined below.

Xpme: the number of machines from processing unit p that are operating in mode m
and being used at time point t, Vpe P, me V,, t =0,...,|E(p)| — 1

Thus, capacity and equipment resource constraints, i.e. equations (3.2) and (3.3) from
Section 3.2.1, are reformulated as follows:

> B < XpmuBy; VpEP, meW, t=0,...|E(p)—1 (4.12)

i,k:p:pfC

Zpt + Z ZXpmGSRp§ VpePb t=0,...[Ep) -1,

mev, 0

NS E(p) * Ppt < Ppb + Tpm S Ppt + Tpm (413)

Bp is the capacity of a machine in processing unit p that has R, number of machines as
defined in Section 3.1. In constraint (4.13), z, is an input parameter representing the
number of machines for processing unit p that are occupied up until time point t. For a
particular CH within the RH, the values of 2, are calculated in pre-processing based on
the solutions from preceding CHs (the number of machines turned on, the time at which
a machine was turned on, and processing time of the machine for the given operational
mode). For the very first CH in the RH, the values of z, are based on the status of the
facility being considered. If all the machines in the facility are available at the beginning of
the RH, then z,, =0V pe P, t =0,...,|E(p)| — 1. Otherwise, z,; has a non-zero positive
value for some or all pe P, t =0,...,|E(p)| — 1.
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The flow conservation eq (3.4) from Section 3.2.1 has been reformulated as follows:

Birt + Wirg = Wig—1) + Z Bik—1)0 + @it (4.14)
0:1,...,|S(p}'€_1)\:
Pt a0 Ty S

Viel, k=2,...,n(i), t=1,...,|E@p)| — 1

In eq (4.14), a; is an input parameter representing the amount of materials from task i be-
coming available to be processed at processing unit p} at time point ¢. For a particular CH
and ajy >0, Vi€ [Lk>1,t=0,...,]E(p,)| — 1, a; materials must have started being
processing at p; , during one of the preceding CHs, and have completed being processed
by time point t. Note that a;;;, as an input parameter, does not account for materials that
started being processed at p} , during the current CH, which are accounted for by the
decision variable Wj;.

4.4 Computational studies

We test the performance of our proposed multi-objective formulations using two different
case studies. The first case study is based on the semiconductor processing case study pre-
sented by Senties et al.['>"], whereas the second is a full industrial-sized case study of the
analytical services scheduling problem previously reported in the literature®%87120  For
the different methods (single-objective, INM, Mod-¢ and 1NM-¢), we compare the CPU
time along with the total throughput (TTP) and the average makespan (AMS) as defined
in Sections 4.2.2 and 4.2.2, respectively. For all rolling horizon (RH) results presented in
Sections 4.4.1 and 4.4.2, we present mean CPU times and mean optimality gaps as mean
across the entire RH for one constituent horizon (CH).

For all a priori Mod-¢ and 1INM-¢ implementations, we chose the DM preference value
of T = 0.4 to calculate the values of ¢ and e/~ as defined in Sections 4.1.2 and 4.1.3.
This value was chosen to obtain a trade-off solution about half way between the 1NM
Point and the bounds of the output efficiency range, in order to produce results that were
distinguishable from the single-objective implementations and the INM method. However,
we did not want to potentially exclude the ‘half way point’ solution of T = 0.5.
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In order to simplify reference to specific objectives, we use the notation flf P and fo 21D

when referring to f; and fy objectives with specific f;ID weight and f,ID variable as pre-
sented in Tables 4.1 and 4.2, respectively. For example, f{ refers to f; objective function
with fiID = 1 (weight shown in Table 4.1). For both case studies, we do not implement
the Mod-¢ method with f! and f? as these f; objectives lead to non-integer values, and
the Mod-¢ method is intended to be used for problems with integer-valued objectives as
discussed in Section 4.1.2.

All reported CPU times include operations leading up to the final optimization run of
each algorithm (i.e. model generation, solver pre-processing, obtaining bounds of the out-
put efficiency range, and computation of INM Point). All implementations were performed
using Julia programming language (0.6.0)!'% and JuMP modeling language (0.18.0)17.
Optimization runs were performed using IBM ILOG CPLEX Optimizer (12.6.0) ] on a
shared Linux server with 250 GB of RAM and 4 CPUs, each with 12 cores and a processing
speed of 2.4 GHz. For all optimization runs, we used a CPLEX solver time limit of 1 hour
(unless stated otherwise) and 8 GB size limit on the MIP branch-and-cut tree[™.

4.4.1 Semiconductor case study

We solved two instances of the semiconductor case study adapted from the case study
presented by Senties et al.['>”) which contains 5 different product recipes (paths) and 12
processing units with a total of 14 equipment resources, where two of those processing
units had two identical equipment resources in parallel. The network of the processing
units defined by the product recipes are presented in Figure 4.2. The product recipes and
the data on each processing unit are presented in Tables 4.1 and 4.2.

For this case study, we define a task as the group of wafer lots (the processed mate-
rials) with the same arrival time belonging to the same product. For the rolling horizon
(RH) approach, we consider a constituent horizon (CH) to be a single day, and the plant
is assumed to operate 24 hours/day (i.e. H = 24 hours) for each day in the RH without
any interruption. The CH is discretized according to the modified NUDGO discretization
scheme described in Section 4.2.1. The first instance is a problem containing 50 tasks
consisted of 90 wafer lots. The second instance is a larger problem with 63 tasks consisted
of 900 wafer lots. Full instance data are presented in Tables 4.3 and 4.4.
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Figure 4.2: Map of the process network for the semiconductor case study

Table 4.1: Product recipes for the semiconductor case study

Product 1 Product 2 Product 3 Product 4 Product 5
Proc. Mode | Proc. Mode | Proc. Mode | Proc. Mode | Proc. Mode
A 1 A 1 A 1 A 1 A 1
EF 4 EF 1 B 3 B 1 B 2
C 1 C 1 C 1 C 1 C 1
D 1 D 1 D 1 D 1 D 1
GH 4 GH 3 EF 4 EF 3 EF 2
C 1 C 1 C 1 C 1 C 1
D 1 D 1 D 1 D 1 D 1
I 1 I 1 GH 2 GH 4 GH 1
J 1 J 2 C 1 I 1 I 1
C 2 C 2 D 1 C 2 C 2
D 2 D 2 I 1 D 2 D 2
L 1 L 2 J 3 K 1 K 2
M 1 M 1 C 2 C 2 C 2
C 1 C 1 D 2 D 2 D 2
D 2 D 2 L 3 M 1 M 1
N 1 N 1 M 1 C 1 C 1
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Table 4.2: Process capacity, resources, and processing time information for the semi-
conductor case study (both instances)

Processing times by lot [min]

Number of Capacity
Process | Resources Zone [lots] Mode 1 Mode 2 Mode 3 Mode 4
A 1 (5) Diffusion 1(2) 120
B 1(5) Diffusion 4 (8) 700 850 1000
C 1 (5) Photo 1(2) 20 30
D 1 (15) Engraving 1 (2) 15 20
EF 2 (10) Diffusion 2 (4) 200 300 400 500
GH 2 (10) Diffusion 2 (4) 400 500 600 700
I 1 (5) Test 1(2) 1
J 1 (5) Diffusion 2 (4) 350 400 500
K 1 (5) Diffusion 2 (4) 400 500
L 1(5) Engraving 1 (2) 140 180 200
M 1 (5) Metal 1(2) 120
N 1(5) Metal 1(2) 20

Values for the number of resources and capacity for each resource for the second instance are
given inside ()
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Table 4.3: Daily product demand for each task for the first semiconductor instance

Arrival Daily product demands [lots]

Day Product 1 Product 2 Product 3 Product 4 Product 5
1 6 6 6 6 6
3 1 1 2 1
4 1 2 1 1
5 1 1 2 1

6 1 3 1
7 1 2 1 1
8 1 2 1 1
9 1 2 1 1
10 1 2

11 1 1 2 1
12 1 1 3
13 1 2 1 1
14 1 1 2 1

Table 4.4: Daily product demand for each task for the second semiconductor instance

Arrival Daily product demands [lots]

Day Product 1 Product 2 Product 3 Product 4 Product 5
1 60 60 60 60 60
3 7 13 5 13 12
4 7 5 15 5 18
5 15 12 11 1 11
6 8 3 25 11 3
7 25 1 24
8 1 9 3 16 21
9 5 8 14 10 13
10 11 13 15 6 5
11 5 14 1 16 14
12 18 4 7 10 11
13 33 1 3 12 1
14 24 1 7 7 11
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Rolling horizon results: semiconductor

For this case study, we compare TTP and AMS at the end of a 15-day RH given that
for both instances, more than 80% of tasks were completed by the end of day 15 for all
approaches. While more comprehensive results are presented in Appendix A, including the
number of days required to complete all tasks for each approach and the AMS at 100%
task completion, we present the key results and comparative analysis in this section.

First, for each instance, we identified the f;ID and f5ID for the single-objective max f;
and min f, RH runs, which produced the highest TTP (TTP") and lowest AMS (AMS")
at the end of the 15-day RH, as presented in Table 4.5. In order to perform easier com-
parisons of TTP and AMS for different approaches, we compute the relative differences in
TTP (d.(TTP)) and AMS (d,(AMS)) for a particular approach to the best case TTP" and

AMS™ as follows: TTP _ TTP* AMS — AMS*
4,(TTP) = ———— (4.15)  di(AMS) = —— e

(4.16)

Table 4.5: Rolling horizon results for single-objective implementations for the
semiconductor case study

fi fo d,(TTP) d(AMS) | Mean CPU  Mean
ID ID | TTP [%] AMS (%] time [sec]  Gap [%]
0 - 81 —0.01 4685 0.04 42 0.00
1 - 81 —0.01 4740 0.05 11 0.01
2 - 81 —0.01 5067 0.12 65 0.00
Ist 3% - 82¢ 0.00 | 4951 0.10 21 0.00
inst. 4 - 82 0.00 | 4892 0.08 21 0.00
-0 74 —0.10 | 6506 0.44 133 0.00
-1 38 —0.54 | 4515° 0.00 84 0.00
-2 74 —0.10 | 6478 0.43 101 0.00
0* - | 876" 0.00 | 4800 0.02 47 0.00
1 - 871 —0.01 4742 0.01 38 0.00
2 - 875 —0.00 | 4863 0.04 148 0.00
2nd 3 - 865 —-0.01 4844 0.03 62 0.00
inst. 4 - 858 —0.02 | 4694 0.00 85 0.00
- 0| 736 —0.16 | 8174 0.74 49 0.00
- 1* | 605 —0.31 | 4692° 0.00 286 0.00
- 2] 739 —0.16 7726 0.65 73 0.00

Values with superscripts a and b represent TTP" and AMS”, respectively. The
f1ID and foID corresponding to TTP* and AMS™ are identified with *.
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Figure 4.3: d,.(TTP) vs d,.(AMS) for the first instance of the semiconductor case study

In Figures 4.3 and 4.4, we compare the different approaches by plotting d,.(TTP) on
the horizontal axis, and d,(AMS) on the vertical axis for each instance. For each data
point, the corresponding method is identified by the marker, the (f;ID, foID) combination
is identified inside the parenthesis, and mean CPU time is provided next to the parenthesis.
For the INM-¢ and Mod-¢, we identify the search direction as the suffixes ‘Inc’ and ‘Dec’. In
comparing the d,(TTP) and d,(AMS) of different approaches, we can describe a dominance
relationship similar to the notion of Pareto efficiency: approach A dominates over approach
B if {d,(TTP)* > d.(TTP)? && d,.(AMS)* < d,.(AMS)?} or {d,(TTP)* > d.(TTP)?
&& d.(AMS)? < d,(AMS)P}. Based on this dominance relationship, we present results
that are closer to the bottom right quadrant, and exclude most of the dominated results.

In Figure 4.3, three non-dominated approaches are observed for the first instance: Max
fP, INM-¢ Inc (f?, f3), and INM (f}, f2). In Figure 4.4, one non-dominated approach is
observed: 1NM-¢ Inc (f{, f3). These results demonstrate that the a priori multi-objective
scalarization methods can be used to improve TTP and AMS over a rolling horizon com-
pared to a single-objective approach. Furthermore, the a priori INM-¢ and Mod-¢ ap-
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Figure 4.4: d,(TTP)vs d,(AMS)for the second instance of the semiconductor case study

proaches proposed in this work were able to improve TTP or AMS, if not both, compared
to the INM method. For example, for the second instance, Mod-¢ Inc (f?, f5) produced
both higher TTP and lower AMS (d,(TTP) = —0.41, d,(AMS) = —3.16) compared to
INM (f?, f3) (d.(TTP) = —0.91, d,(AMS) = —1.48) as shown in Figure 4.4. However,
the improvements in TTP and AMS were generally achieved at the expense of additional
CPU time.

Based on the results of Figures 4.3 and 4.4, we compare how d,.(TTP) and d,(AMS)
change throughout the RH for the two instances in Figures 4.5 and 4.6. Given that only one
non-dominated approach is observed for the second instance, we identified three additional
dominant approaches excluding 1INM-¢ Inc (f}, f2), and included them in Figure 4.6.
Furthermore, we compare these results to the single-objective Max f; run producing TTP”
for each instance as reported in Table 4.5. We did not, however, compare the results to
the single-objective Min fJ} run given that it produced significantly lower d,(TTP) at all
points throughout the RH compared to the other methods for each instance (-51 to -100%
and -28 to -100% for the first and second instances, respectively).

In Figures 4.5 and 4.6, we can observe that the TTPs of the dominant approaches
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Figure 4.6: Change in d,(TTP) and d,(AMS) throughout the RH for the second instance

72



tend to converge around day 8 of the 15-day RH for both instances. Given this behavior
of converging TTP, the main benefit of applying a multi-objective scalarization method
over a single-objective f; maximization approach is to reduce AMS without a substantial
trade-off in TTP. For both instances, the INM-¢ Inc approach provided the lowest AMS for
most of the RH among the approaches compared in Figures 4.5 and 4.6, while its d,.(TTP)
did not fall below -10.5% at any point during the RH for 1INM-¢ Inc.

Overall, it was beneficial to obtain a trade-off solution within the output efficiency
range in the direction of increasing f; from the 1INM Point using the 1INM-¢ method for
this particular case study. f? and f{ were identified as the dominant throughput maximiza-
tion objectives, while f} was the dominant makespan minimization objective. However,
depending on the problem being considered, different objectives may be dominant, and the
Mod-¢ method may be more appropriate (e.g., if the Mod-£ method has better or similar
solution quality, with similar or lower CPU times).

4.4.2 Analytical services case study

While the case study presented in Section 3.3 considered a network of 25 processing units
defined by 11 paths, in this study, we consider a more comprehensive network of 118 pro-
cessing units and 117 unique paths; a part of this network formed by 39 processing units
and 19 paths is presented in Figure 4.7. The 19 paths defining this partial network are
presented in Tables 4.6, and capacities, resources, and processing times are presented in
Table 4.7. The identity of the industrial partner and the complete data for this case study
are not disclosed as per our nondisclosure agreement with the industrial partner.

For this analytical services case, a task consists of a group discrete samples received
from a client that must follow a specific path of processing units to be analyzed. We con-
sider a constituent horizon (CH) to be a single day, and the plant is assumed to operate 8
hours/day (i.e. H = 8 hours) for each day in the RH. The CH is discretized according to
the NUDG0 discretization scheme presented in Section 3.3.1. The instance studied in this
work was generated by first taking a snapshot of the analytical services facility to capture
the tasks that are currently in the system, then introducing new tasks for each day within
the rolling horizon. A task for each day is generated through uniform random assignment
of task size between 1 and 100 samples, and tasks are generated in this manner until the
total number of samples arriving that day exceeds 4,000, the approximate nominal daily
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Figure 4.7: Partial map of the process network for the analytical services case study

Table 4.6: Paths of processes defining the partial analytical services network of Figure 4.7

Path ID ‘ Sequence of processing units

P1 X F M P K

P2 X F E K

P3 X G M T L

P4 X F R K

P5 X F M T L

P6 Y F M Q J

P7 H M T L

PS8 X W S K

P9 X W N U L

PI0 | X W O I V

PI1 | X W E K

P12 |AF AC AD AN AA E 7
P13 |AF AC AD AN AA AB U 7%
Pl4 |AF AC AD AN AA AE 7
P15 |AF AC AD AN AA S 7
P16 |AF AC AD AN AG Al AJ
P17 |AF AC AD AN AA AE 7
PI8 | X AG Al AK

P19 | X AH Al AK

\]
N



Table 4.7: Process capacity, resources, and processing
time information for analytical services case study

Normalized Number of Scaled
Process | Capacity = Resources Processing Time

E 0.06 2 4
F 0.30 2 30
G 0.03 2 15
H 0.07 1 62
I 0.01 1 144
J 0.21 1 24
K 0.67 3 18
L 0.61 2 24
M 0.30 4 12
N 0.61 4 22
O 0.00 1 1
P 0.25 1 39
Q 0.33 1 144
R 1 10 74
S 0.67 10 47
T 0.16 8 126
U 0.19 8 114
\Y 0.03 1 6
W 0.61 4 162
X 0.01 6 1
Y 0.01 1 1
Z 0.06 2 1
AA 0.12 1 6
AB 0.01 2 33
AC 0.06 2 4
AD 0.06 2 2
AE 0.06 2 8
AF 0.06 1 4
AG 0.50 1 1,008
AH 0.50 1 1,008
Al 0.48 6 48
Al 0.20 1 1
AK 0.02 1 2
AN 0.06 2 7

Reported capacities are normalized to a maximum value of
1, and processing times are scaled to a minimum value of 1.
Actual plant numbers cannot be disclosed for confidentiality.
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processing capacity of this network of units considered in this study. Paths were assigned
to the tasks to generate a distribution of paths reflecting the facility’s actual operating
distribution of paths.

Rolling horizon results: analytical services

In this section, we compare TTP and AMS at the end of a 30-day RH, at which point
67-78% of tasks are completed for the multi-objective methods. While more comprehen-
sive results tables are presented in Appendix B, we present key results and comparative
analysis in this section.

For this case study, Max f! and Min fJ single-objective RH runs produced the highest
TTP (TTP") and lowest AMS (AMS”) at the end of the 30-day RH, as presented in Table
4.8. Therefore, relative differences d,.(TTP) and d,.(AMS) are presented in this section
with respect to Max f{ and Min f; in this section as defined in eq (4.15)-(4.16).

In Figure 4.8, d,(TTP) and d,.(AMS) of the different approaches are compared. In
this case study, bi-objective implementations were not performed with fZ as each single-
objective Max f? iteration required 4 hours, on average, to compute due to computationally
inefficient model generation. Furthermore, based on the observation that f2 consistently
provided inferior trade-off results due to producing significantly high d,(AMS) (35-37%),
the Mod-¢ and 1INM-¢ methods were not implemented with f7 objective (see Tables B.1
and B.2 in Appendix B). Results for the Mod-¢ and 1NM-¢ methods for the search direction
of decreasing f; and f5 could not be obtained as no feasible solution could be found in this
direction on Day 1 of the RH for any (f;, f2). During the INM method implementations,
we also noticed that the final 1-norm minimization run often reached the solver time limit
of 1 hour. To address this issue, we also performed bi-objective implementations using a 6
minute solver time limit, based on our observation that most single objective runs compute
the bounds of the output efficiency range in less than 6 minutes, and the optimality gap
for the 1-norm minimization runs typically reached below 1% within the first 6 minutes.

In Figure 4.8, three non-dominated approaches are observed: Mod-¢ Inc (f}, f1), INM
(fL, f2) (6 minute time limit), and INM-¢ Inc (f}, f3). These results demonstrate that
the proposed 1NM-¢ and Mod-¢ methods, as well as the INM method can be used to pro-
duce results that are non-inferior, if not dominant, when compared to a single-objective
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Table 4.8: Rolling horizon results for single-objective runs for the analyt-
ical services case study

i fa d,(TTP) d(AMS) | Mean CPU  Mean

ID ID | TTP (%] AMS (%] time [sec]  Gap [%]
0 - |61,321 —1.08 21,132 18.3 88 0.00
1* - | 61990 0 20,447 14.5 88 0.00
2 - 161,246 —1.20 120,540 15.0 14,343 0.00
3 - |61,205 —1.27 120,331 13.8 84 0.00
4 - 159,229 —4.45 20,729 16.1 141 0.00
- 0 |58,343 —5.88 120,664 15.7 1,214 0.02
- 1% 32,025 —48.34 | 17859° 0 251 0.01
-2 160,049 —3.13 125,206 41.1 98 0.00

Values with superscripts a and b represent TTP* and AMS”, respectively. The
f1ID and foID corresponding to TTP* and AMS™ are identified with *.

15
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Figure 4.8: d,.(TTP) vs d,.(AMS) for the analytical services case study
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d.(TTP)(%)

d, (AMS) (%)

- Max f} ——INM-6min (f}, f1) —+ 1NM-¢ Inc (f{, f3)
—— INM-6min (f?, f3) —+ Mod-¢ Inc (f?, f3)

Figure 4.9: Change in d,(TTP) and d,.(AMS) throughout the rolling horizon

approach for an industrial sized problem using a rolling horizon approach. Furthermore,
for the INM method, the overall CPU time could be reduced by 67% and 78% for (f{, f3)
and (f2, f3), respectively, by setting the solver time limit to 6 minutes instead of 1 hour,
while d,(TTP) and d,(AMS) improved by 0.43 and 1.12 percentage points, respectively, for
(fL, f3), and by 0.14 and 0.61 percentage points, respectively, for (f7, f9). These results
show that, since the operational f; and fs objectives do not explicitly maximize TTP and
minimize AMS, but rather approximate expressions with the goals to maximize TTP and
minimize AMS, it is not necessary to solve problems to optimality when computing the
1INM Point to obtain a good trade-off solutions in terms of TTP and AMS. However, the
same success could not be obtained for the INM-¢ and Mod-¢ methods using a 6 minute
time limit, as 5 of 8 (f1, fo) combinations failed to produce a feasible solution in the in-
creasing search direction within 6 minutes at some point during the RH.

In Figure 4.9, the changes in d,(TTP) and d.(AMS) of the three non-dominated ap-
proaches throughout the rolling horizon are presented, along with Max f{, as the reference
for computing d,.(TTP), as well as INM (f?, f2) to provide a comparison parallel to INM-&
Inc (fL, f1) vs INM (fL, f}). These results demonstrate that the choice of the f; objec-
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tive in a bi-objective implementation produces a significant difference in TTP, as single
objective max fl, INM (fi, f}) and 1INM-eInc (f{, f3) produced average d,.(TTP) of -
0.28% over the RH, while INM (f?, f3) and Mod-eInc (f?, f3) produced average d,.(TTP)
of -5.29%. Furthermore, the effectiveness of taking an alternative trade-off solution after
finding the 1INM solution appeared to depend on the choice of f;. On average, throughout
the RH, the INM-e method only increased d,(TTP)by 0.27% point and reduced d,(AMS)
by 0.29% point over INM method for (f{, f;), while the Mod-¢ method increased d,.(TTP)
by 1.05% point and reduced d,(AMS) by -4.94% point for (f7, f3).

These results demonstrated potential benefits to using a priori scalarization methods
for industrial sized problems in a rolling horizon applications. For this particular case
study, the traditional 1INM approach provided good trade-off solutions within 6 minutes,
and the proposed 1INM-¢ and Mod-¢ methods can be used to further increase the TTP or
reduce the AMS using the dominant objective functions (fY and f] for throughput maxi-
mization, and f] for makespan minimization).

4.5 Chapter summary

In this chapter, two new a priori approaches for handling problems with conflicting objec-
tives of maximizing the TTP and minimizing the AMS, which were compared against the
traditional compromise programming approach. In addition, alternative objective func-
tion formulations for approximating the TTP and the AMS for the use in a rolling horizon
framework were presented. The two case studies in this chapter showed that some of the
proposed objective function formulations were dominant over others. Furthermore, the
multi-objective methods were shown to produce favourable trade-off solutions when com-
pared to single-objective implementations, and the new a priori approaches proposed in
this work demonstrated the potential to improve the quality of the solutions when com-
pared to the traditional compromise programming approach.
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Chapter 5

Conclusions

The overall goal of this thesis was to present approaches to handle industrial-sized prob-
lems in short-term scheduling with conflicting objectives of throughput maximization, and
makespan minimization. The problem was tackled in two major aspects: time represen-
tation in the model formulation, and the approaches for handling the conflicting objectives.

Chapter 3 presented a comparison between a flexible discrete-time formulation, with
both uniform and non-uniform time discretizations, and a continuous-time formulation
in the context of short-term scheduling of operations in an analytical services facility.
Through a series of computational experiments designed based on an actual analytical ser-
vices facility, the strengths and weaknesses of the different time representation approaches
relative to each other were studied in order to determine the favorable approach to solving
industrial-sized short-term scheduling problems for a multipurpose plant.

Based on the results of the computational study presented in Section 3.3.2, the mul-
titasking continuous-time formulation based on conservation of flow proposed by Lagzi
et al.[3”) may not be suitable for addressing large-scale problems. For the instances consid-
ered in this work, the flexible discrete-time formulation led to tighter and smaller problems
compared to the continuous-time formulation. Computational cost for the continuous-
time formulation became prohibitive, taking hundreds to tens of thousands of times longer
to compute compared to the flexible discrete-time formulation, while almost all of the
instances resulted in poorer solution quality for the continuous-time formulation. The per-
formance of the continuous-time formulation presented in this work deteriorates even more
with increasing problem size. These results are in contrast to some of the previous results
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reported in the literature on comparing the performance of discrete (without flexible time
discretization capability) and continuous-time formulations?%. This contrast highlights
the importance of further investigations to be conducted on discrete-time formulations,
since the conclusions may vary from application to application.

For the flexible discrete-time formulation, non-uniform discretization schemes solved
large instances more efficiently compared to the uniform discretization schemes within
the scope of this study. While the quality of solutions for the non-uniform discretization
schemes was virtually as good as the quality of solutions for the finest uniform discretization
scheme, the computational times for the non-uniform discretization schemes were merely
fractions of the computational times for the finest uniform discretization scheme, as the
non-uniform discretization schemes generally led to tighter problems with smaller num-
bers of variables and constraints. The superior relative performance of the non-uniform
discretization schemes become even more apparent with increasing problem size, as the
computational cost deteriorates much more rapidly for the uniform discretization schemes
compared to the non-uniform discretization schemes. Superior relative performance of the
non-uniform discretization schemes also become more pronounced with increasing process-
ing time variability. For problems with low processing time variability, however, a fine
uniform discretization scheme might be more desirable compared to a relatively coarse
non-uniform discretization scheme if solution quality is of utmost importance while long
CPU time limits can be tolerated.

In Chapter 4 effective alternatives to address some of the issues regarding short-term
scheduling of multipurpose plants were proposed, where there exists two conflicting tactical
objectives in maximizing the total throughput of the plant, and minimizing the average
makespan of tasks being completed. The contributions in addressing these issues are a
priori multi-objective optimization methods, and approximation of the tactical objectives
as alternative operational objective functions. The effectiveness and limitations of these
different approaches are studied using a semiconductor processing plant case study, and a
larger, industrial-sized analytical services sector case study. In these case studies, a rolling
horizon approach was used to compare the performances of the different multi-objective
approaches and the operational objective functions in terms of the total throughput of the
plant, and the average makespan of completed tasks.

The multi-objective methods implemented in this work were focused around the ref-
erence point based compromise programming approach, an a prior: scalarization method,
which minimizes the 1-norm distance of a trade-off solution to the utopia point (1NM
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method). In this work, two new algorithms, i.e., the Mod-¢ and 1NM-& methods, are pro-
posed based on hybridization of the e-constraint method and the 1-norm distance based
compromise programming. For both case studies, with appropriately selected operational
objective functions, the a prior: methods provided lower average makespan than single-
objective throughput maximization approach, without a significant reduction in the total
throughput, if any. In particular, the a priori 1INM-e approach, searching in the direction
of increasing operational objective values, was particularly effective in this regard. How-
ever, the effectiveness and required CPU time varied between the different instances and
the different combinations of the operational objective functions. Therefore, it is impor-
tant to understand these problem-specific behaviors for their implementation in practice.
Furthermore, when dealing with a large-scale problem, consideration should be made to
impose a relatively small solver time limit for the 1-norm minimization run, and it was
shown that this approach can significantly reduce the CPU time for an industrial-sized
problem without a significant degradation in solution quality, if any.

5.1 Potential future research directions

There are multiple potential future research directions to take in time representations.
For discrete-time approaches, one direction is to explore algorithms for discretizing the
multiple and non-uniform time grids for the flexible discrete-time approaches, which do
not necessarily produce time grids with equally spaced time points. These advanced dis-
cretization schemes may provide better balance between precision of event points and the
computational cost.

For the continuous-time approaches, one direction is to explore alternatives that would
improve the solution time for the continuous-time approaches by developing formulations
with smaller number binary variables, using new model representations (e.g., state-task net-
work, STN), or by tightening the LP relaxations of the existing formulations. Unit-specific
continuous-time formulations may also be extended to include more operational character-
istics, such as multitasking. Researchers have been successful in reducing formulation size
and computational demands by implementing unit-specific approaches [P47476:97:113;133]

When it comes to methods for handling multiple conflicting objectives, this thesis fo-
cused on relatively simple a priori approaches with demonstrated practical applicability,
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but have not been given prominent attention from researchers in the multi-objective com-
munity. Therefore, possible future research directions include developing and applying
state of the art a Priori multi-objective methods based on heuristics and metaheuristics
as methods in this category are continually improved by the majority of the researchers in
this field. Furthermore, generalization of the Mod-¢ and 1NM-¢ methods proposed in this
work to handle more than two objectives is another possible future research direction.
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Appendix A

Full rolling horizon results for the

semiconductor case study (Section
4.4.1)

In the following results tables for the semiconductor case study, 'Max Iter.” refers to the
number of days required to complete 100% of the tasks, which failed to complete all tasks
by the end of day 30, which was the maximum length of the rolling horizon we were con-
sidering.
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Table A.1: Rolling horizon results for the INM-¢ and Mod-& methods for the
1st semiconductor instance

at max
fi fo | Max| iter. at day 15 | Mean CPU Mean

Method ID ID| Iter.] AMS | TTP AMS | time [sec]  gap [%]
INMEpsInc | O 0 | 17 | 5,273 55 5,184 7 0.00
INMEpsInc | O 1 | 17 | 4,825 56 4,691 282 0.00
INMEps Inc | O 2 | 17 | 5,064 60 4,997 154 0.00
INMEpsInc | 1 0 | 18 | 5,436 52 5,420 325 0.18
INMEpsInc | 1 1 | 17 | 5,186 55 5,169 221 0.00
INMEpsInc | 1 2 | 18 | 5,221 57 5,140 70 0.00
INMEpsInc | 2 0 | 18 | 5,117 57 4,893 165 0.00
INMEpsInc | 2 1 | 17 | 5,181 52 5,157 338 0.00
INMEps Inc | 2 2 | 17 | 5,229 56 5,193 228 0.09
INMEpsInc | 3 0 | 17 | 4,816 58 4,721 111 0.00
INMEpsInc | 3 1 | 17 | 5,181 55 5,126 222 0.00
INMEpsInc | 3 2 | 18 | 5,074 58 4,993 145 0.00
INMEpsInc | 4 0 | 18 | 5,253 57 5,100 134 0.00
INMEpsInc | 4 1 | 18 | 5,265 57 5,237 217 0.00
INMEpsInc | 4 2 | 18 | 5,441 56 5,261 183 0.00
INMEps Dec | O 0 | 18 | 5,416 57 5,301 198 0.00
INMEps Dec | 0 2 | 18 | 5,264 56 5,230 158 0.00
INMEps Dec | 1 0 | 18 | 5,278 58 5,206 193 0.00
INMEps Dec | 1 1 | 18 | 5,121 58 5,086 236 0.00
INMEps Dec | 1 2 | 18 | 5,376 56 5,300 126 0.00
INMEps Dec | 2 0 | 18 | 5,444 55 5,215 181 0.00
INMEps Dec | 21 | 17 | 5,689 50 5,762 508 0.00
INMEps Dec | 2 2 | 18 | 5,337 57 5,246 320 0.00
INMEps Dec | 3 0 | 18 | 5,374 57 5,248 110 0.00
INMEps Dec | 3 1 | 17 | 5,394 49 5,436 584 0.00
INMEps Dec | 3 2 | 17 | 5,301 56 5,181 140 0.00
INMEps Dec | 4 0 | 18 | 5,404 56 5,268 130 0.00
INMEps Dec | 4 1 | 18 | 5,276 58 5,138 418 0.00
INMEps Dec | 4 2 | 18 | 5,352 56 5,276 286 0.00
ModEpsInc | O 0 | 18 | 5,034 58 4,823 98 0.00
ModEpsInc | O 1 | 17 | 4,914 56 4,832 230 0.00
ModEps Inc | O 2 | 17 | 5,092 57 5,020 110 0.00
ModEps Dec | 0 0 | 17 | 5,046 55 4,992 245 0.00
ModEps Dec | 0 1 | 17 | 5,581 54 5,640 623 0.00
ModEps Dec | 0 2 | 18 | 5,153 56 5,040 150 0.00

Note: INMEps Dec for (f?, f3) is not included due to not being able to find a feasible
solution for the € bounded problem on day 5 of the rolling horizon.
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Table A.2: Rolling horizon results for the INM-¢ and Mod-¢ methods for the 2nd semi-
conductor instance

at max
fi fo | Max| iter. at day 15 | Mean CPU Mean

Method ID ID| Iter.] AMS | TTP AMS | time [sec]  gap [%]
INMEpsInc | O 0 | 17 | 4,579 612 4,556 638 0.11
INMEpsInc | O 1 | 16 | 4477 614 4,493 984 0.12
INMEpsInc | O 2 | 17 | 4,752 598 4,750 704 0.75
INMEpsInc | 1 0 | 17 | 4,757 616 4,751 1,223 0.01
INMEpsInc | 1 1 | 16 | 4,660 585 4,686 1,918 0.55
INMEpsInc | 1 2 | 16 | 4,768 609 4,800 1,207 0.46
INMEpsInc | 2 0 | 17 | 4,739 608 4,761 1,116 0.15
INMEpsInc | 2 1 | 17 | 4,502 611 4,498 1,813 0.12
INMEps Inc | 2 2 | 17 | 4,857 604 4,875 1,117 1.25
INMEpsInc | 3 0 | 17 | 4,763 614 4,759 776 5.43
INMEpsInc | 3 1 | 17 | 4,812 578 4,815 1,333 0.36
INMEpsInc | 3 2 | 17 | 4,723 603 4,726 1,906 0.39
INMEpsInc | 4 0 | 17 | 4,800 610 4,807 792 0.00
INMEpsInc | 4 1 | 17 | 4,285 610 4,261 2,115 0.44
INMEpsInc | 4 2 | 17 | 4,722 606 4,728 1,549 0.23
INMEps Dec | O 0 | 17 | 4,669 604 4,649 670 0.00
INMEps Dec | 0 1 | 16 | 4,552 605 4,579 1,816 0.07
INMEps Dec | O 2 | 17 | 4,745 610 4,751 1,227 0.32
INMEps Dec | 1 0 | 17 | 4,681 598 4,663 994 0.01
INMEps Dec | 1 1 | 16 | 4,476 593 4,507 1,255 0.13
INMEps Dec | 1 2 | 16 | 4,683 604 4,713 1,163 0.39
INMEps Dec | 2 0 | 17 | 4,712 606 4,699 957 0.00
INMEps Dec | 21 | 16 | 4,708 524 4,732 1,609 0.00
INMEps Dec | 2 2 | 17 | 4,818 605 4,814 1,882 0.09
INMEps Dec | 3 0 | 16 | 4,683 607 4,691 804 0.00
INMEps Dec | 3 1 | 16 | 4,630 587 4,637 3,043 0.11
INMEps Dec | 3 2 | 17 | 4,851 592 4,854 1,602 0.03
INMEps Dec | 4 0 | 16 | 4,613 604 4,631 817 0.19
INMEps Dec | 4 1 | 16 | 4,305 608 4,318 1,986 0.13
INMEps Dec | 4 2 | 16 | 4,787 593 4,830 1,287 0.00
ModEps Inc | O 0 | 17 | 4,749 596 4,754 345 0.25
ModEpsInc | 0 1 | 16 | 4,548 605 4,544 1,491 0.61
ModEpsInc | O 2 | 16 | 4,736 603 4,775 510 0.00
ModEps Dec | 0 0 | 17 | 4,690 609 4,692 443 0.00
ModEps Dec | 0 1 | 16 | 4,366 596 4,395 2,522 0.31
ModEps Dec | 0 2 | 16 | 4,650 609 4,662 1,513 0.01
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Appendix B

Full rolling horizon results for the
analytical services case study

(Section 4.4.2)

Table B.1: Rolling horizon results for the INM method for the analytical services case
study

i [ d,(TTP) d.(AMS) | cpu Gap

ID ID | TTP (%] AMS (%] t. [sec]  [%)]

0 0 ]60,418 —2.54 120,413 14.3 3,681 0.11
0 1 /60,706 —2.07 18,657 4.5 1,887 0.03
0 2 160,228  —2.84 |24,546 37.4 206 0.00
10 160,915 —1.73 120,053 12.3 2,158 0.06
1 1 161,719 —0.44 19,512 9.3 1,894 0.03
12 160,399 —2.57 24,318 36.2 268 0.00
3 0 [61,854 —0.22 20,052 12.3 3,244 0.06
3 1 160,422 —2.53 |19,566 9.6 2,039 0.03
3 2 ]61,136 —1.38 |24,142 35.2 165 0.00
4 0 (59,739 —3.63 19,703 10.3 2,773 0.06
4 1 [58,735 —5.25 19,850 11.1 2,276 0.03
4 2 160,419 —2.53 (24,205 35.5 355 0.00
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Table B.2: Rolling horizon results for the 1INM method with 6 minute solver time limit

fi  fo d,(TTP) d(AMS) | Mean CPU ~ Gap

ID ID | TTP [%] AMS (%] time [sec] (%]

0 0 ]60,335 —2.67 20,266 13.5 738 0.13
0 1 /60,870 —1.81 |19,694 10.3 649 0.05
1 0 61,178 —1.31 120,028 12.1 710 0.07
1 1 (61,988 — 0.003 |19,312 8.1 630 0.04
3 0 161,943 —0.08 [19,943 11.7 713 0.09
3 1 /60,885 —1.78 19,613 9.8 275 0.03
4 0 (59,373 —4.22 19,709 10.4 819 0.20
4 1 158,540 —5.57 19,838 11.1 670 0.05

Table B.3: Rolling horizon results for the 1INM-¢ and Mod-¢ methods

i fo dr(TTP) dr(AMS) Mean CPU Gap
Method | ID 1ID | TTP (%] AMS %] time [sec] [%]
0 0 160,329 —2.68 [20,310 13.7 6,314 0.22
0 1 (61,059 —150 |18,567 4.0 4,014 0.09
10 (61,490 —0.81 [20,001 12.0 7.999 0.18
INM-e Tne | 1 1 (62,123 0.21 |19,555 9.5 3,769 0.10
3 1 060,906 —1.75 |19,324 8.2 5,595 0.14
4 0 |59307 —4.33 |19,588 9.7 7.933 0.12
4 1 |58812 513 |19,763 10.7 6,175 0.1
INMee T | O 0 [60.214 286 |20,357 14.0 1,086 1.70
(6 min) 0 1 (60,859 —1.82 [19.359 8.4 1,091 0.42
10 [61,150 —1.36 [19,849 11.1 1,061 0.35
Mode Tne | 00 [60.352  —2.64 [20.268 13.5 4,446 0.03
OFEMC g 1 |61427 —0.91 |18441 3.3 5,326 0.05
Mod-¢
Tnc (6min) | 0 0 (60,336 —2.67 |20,308 13.7 1,113 0.09

Results for the search direction of decreasing f; and f, are not shown since no feasible
solution was found in this direction for any of the (f1, f2) combination on day 1 of the RH.
(3, 13) is omitted for the INM-¢ method, since no feasible solution was found in the search
direction of increasing f; and fs.
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