
RAMP: RDMA Migration Platform

by

Babar Naveed Memon

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Masters of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Babar Naveed Memon 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Remote Direct Memory Access (RDMA) can be used to implement a shared storage
abstraction or a shared-nothing abstraction for distributed applications. We argue that the
shared storage abstraction is overkill for loosely coupled applications and that the shared-
nothing abstraction does not leverage all the benefits of RDMA. In this thesis, we propose
an alternative abstraction for such applications using a shared-on-demand architecture,
and present the RDMA Migration Platform (RAMP). RAMP is a lightweight coordination
service for building loosely coupled distributed applications. This thesis describes the
RAMP system, its programming model and operations, and evaluates the performance
of RAMP using microbenchmarks. Furthermore, we illustrate RAMPs load balancing
capabilities with a case study of a loosely coupled application that uses RAMP to balance
a partition skew under load.

iii

Acknowledgements

I want to begin by thanking my supervisor, Prof. Ken Salem, for his continuous sup-
port, guidance, and advice throughout my graduate studies and research. Ken has helped
me understand the database and systems research landscape and his research style and
methodology has taught me how to approach research problems. I am grateful for every-
thing I have learned under his mentorship.

I express my sincerest gratitude to Prof. Bernard Wong and Prof. Tim Brecht for
their continuous guidance and feedback which has been instrumental in building this work.
They also graciously served on my thesis committee. I also want to extend my gratitude to
Xiayue Charles Lin, Arshia Mufti, Scott Wesley, and Benjamin Cassel. Their collaboration
and help have been indispensable in completing my thesis work.

A special shout-out to my colleague Siddhartha Sahu for helping me formulate my ideas
and taking the time to proofread my thesis . I also thank my lab mates in the data systems
group, Chathura Kankanamge and Amine Mhedhbi for patiently listening to the various
problems that came up throughout my graduate studies and providing helpful suggestions.
I extend my gratitude to my friends in Waterloo, Akanksha Mahajan and Tarun Patel, and
to my friends spread across the world, Farah Zafar, Danial Azam, and Nina Anklesaria,
for supporting me in all my endeavours. You hold a special place in my heart.

Finally, I am deeply grateful to my family for their unconditional love and support
throughout my studies. This thesis would not be possible without the constant encourage-
ment from my mother Mussarat Naveed, my sister Iqra Naveed and brother-in-law Mursal
Shamsi who kept me energized with their constant supply of love, food and care, and last
but definitely not the least, my siblings Zohaib Naveed, Danish Naveed, and Ahmed Shoaib
whose entertaining conversations from the other side of the globe made me feel like I was
home with them. Thank you and I love you all.

iv

Dedication

This thesis is dedicated to my mother, Mussarat Naveed, for her love and countless
sacrifices for my education and to my late father, Naveed Ghulam Qadir, who taught me
to be passionate, kind, and encouraged me to pursue my dreams.

v

Table of Contents

List of Figures viii

1 Introduction 1

2 RDMA Background 4

2.1 The Problem with Traditional Sockets . 4

2.2 Remote Direct Memory Access (RDMA) 5

2.3 RDMA Programming Model and the Need for Redesign 8

3 RAMP: RDMA Migration Platform 11

3.1 System Overview . 11

3.2 Architecture . 12

3.3 Memory Segment Layer . 13

3.4 Migration . 15

3.4.1 Ownership Transfer . 15

3.4.2 Data Pulls . 17

3.4.3 Paging Layer . 18

3.5 Migratable Containers . 19

4 Fault Tolerance 21

4.1 Failure Model . 22

vi

4.2 Properties . 22

4.3 Implementation . 23

4.3.1 The Global State . 23

4.3.2 Operations . 24

4.3.3 get segments . 26

5 Evaluation 28

5.1 Ownership Transfer . 28

5.2 Data Pulls . 31

5.3 Live Load Balancing Case Study . 34

6 Related Work 37

6.1 Distributed Shared Memory Systems . 37

6.2 RDMA-Based Systems . 38

6.2.1 Shared Memory Systems . 38

6.2.2 Shared-Nothing Systems . 39

6.3 Data Migration Techniques . 40

7 Summary and Future Work 43

References 45

vii

List of Figures

2.1 Indirect Data Placement in Traditional Sockets From [22] 5

2.2 RDMA Providers . 6

2.3 RDMA Operations [35] . 7

2.4 RDMA Programming Model [22] . 8

2.5 Memory Registration Latency . 10

3.1 RAMP Architecture . 12

3.2 Coordinated Allocator Reservation . 13

3.3 RAMP API . 14

3.4 Transfer of Ownership in RAMP . 16

4.1 RAMP Structures in Zookeeper . 24

4.2 Ownership Transfer with Fault Tolerance 1. Src sets Dst as destination
synchronously in Zookeeper 2. Dst adds Dst as source and clears destination
asynchronously in Zookeeper . 27

5.1 Latency of Ownership Transfer . 30

5.2 Latency of the Transfer Operation . 31

5.3 Post-Migration Container Access Latency (Size = 128 MB) 33

5.4 Post-Migration Container Access Latency (Size = 256 MB) 33

5.5 Rcached Without Load Balancing . 36

5.6 Rcached With Load Balancing . 36

viii

Chapter 1

Introduction

Remote Direct Memory Access (RDMA) technology allows servers to directly access the
memory of other servers in a cluster. This can significantly reduce network latency and
network-related bottlenecks. However, exploiting RDMA requires a significant redesign of
cluster applications. Therefore, the key question is how we should leverage RDMA to build
distributed applications. One common strategy is to use RDMA to implement a cluster-
wide shared memory abstraction, such as a shared virtual address space or a database.
Using this strategy, developers build applications that can access shared state from any
server in the cluster. Another common strategy is to use RDMA to provide high perfor-
mance remote procedure calls (RPC) or message passing. This strategy allows developers
to build shared-nothing applications with high-performance inter-process communication.

The shared state approach is very flexible, and RDMA-based shared state systems can
be carefully engineered to achieve impressive performance [34, 14, 59]. However, although
RDMA provides low-latency access to remote memory, access to local memory is still orders
of magnitude faster. Furthermore, building a cluster-wide shared memory abstraction to
take advantage of RDMA introduces additional overheads. A shared memory system must
have some mechanism for locating data on every application access and this imposes a level
of indirection between the application and shared memory. In addition, since memory is
shared, applications must have some means of synchronizing access. Most shared memory
systems also only support storing strings or simple primitive types. Storing structured
data requires serialization, which can introduce additional delays.

As a concrete example, access to a distributed hash table implemented on FaRM re-
quires a few tens of microseconds, depending on the number of servers involved [14]. On
one hand, this is impressive, especially considering that the hash table provides fault tol-

1

erance through replication and can be scaled out across servers. On the other hand, a
simple single-server hashmap, stored in local memory, has sub-microsecond access latency,
which is orders of magnitude faster. Therefore, even with RDMA, maximizing local access
is preferred.

RDMA can be used to build a fast message passing layer. Such systems can also be
engineered to achieve great performance [27]. However such systems do not utilize remote
server bypass, which is RDMA’s most attractive property. They are also typically designed
to support small message sizes. Movement of large amounts of structured data requires
serialization and deserialization, which adds additional overhead.

Many applications do not need the flexibility of fully shared data but require a richer
mechanism than RPCs for sharing data. The data and workload of such applications are
easily partitionable, and normally each server can handle its part of the workload using
only local data. However, servers may occasionally need to perform coordination operations
which require access to remote data. For example, servers may need to rebalance data and
load because of time-varying hot spots or the system may need to scale in or scale out
dynamically to handle time-varying load intensity, or it may reconfigure itself in response
to a server failure.

In this thesis, we argue that shared state is overkill for such loosely coupled applications
and the RPC abstraction is insufficient to utilize the benefits of RDMA. Instead, we present
a lightweight shared-on-demand model, called RAMP, that is well suited to support such
applications. RAMP is lightweight in the sense that it does much less than shared state
alternatives and yet provides an efficient mechanism to move large amounts of data. Unless
the application is coordinating (e.g., load balancing), RAMP stays out of the way, allowing
the application to run at local memory speeds. The primary service provided by RAMP
is a low-impact and application-controlled state migration using RDMA. Loosely coupled
applications use this service when they require coordination between servers. The low
impact aspect of our approach is especially important because the migration source may
be overloaded due to a load imbalance. RAMP enables a design point in between the shared
memory and the shared-nothing models which benefits from RDMA’s remote server bypass
and eliminates access synchronization and data serialization costs.

The main contributions of this thesis are:

1. The design of RAMP.

2. An implementation of the RAMP model.

3. A performance evaluation of RAMP’s operations with microbenchmarks and an ap-
plication based case study.

2

4. An analysis of fault tolerance in RAMP, and extensions to the RAMP design to
address failures.

The rest of this thesis is organized as follows: Chapter 2 provides RDMA background
and highlights why applications require redesign to utilize it. Chapter 3 presents RAMP’s
memory model, describes its API, and illustrates how the API can be utilized by applica-
tions. Chapter 4 presents the fault tolerance mechanisms in RAMP. Chapter 5 presents the
RAMP performance evaluation as well as an example of the use of RAMP in an applica-
tion. Chapter 6 presents related work and Chapter 7 concludes the thesis while exploring
potential future work.

3

Chapter 2

RDMA Background

This chapter provides an overview of Remote Direct Memory Access (RDMA). It describes
the motivation for RDMA, compares RDMA with traditional TCP sockets, and highlights
the performance gains possible with RDMA. Furthermore, this chapter discusses the pro-
gramming model for RDMA and explains why there is a need to redesign applications that
want to take advantage of RDMA primitives.

2.1 The Problem with Traditional Sockets

The Transmission Control Protocol (TCP) and Internet Protocol (IP) (denoted as TCP/IP
together) and the traditional socket network programming model have been studied thor-
oughly over the years. In this section, we discuss why the socket programming model over
TCP/IP is unable to provide the best possible performance for network communications.

When transmitting data using traditional sockets over TCP/IP, the data has to pass
through multiple layers. It goes first from user space into a temporary socket buffer in
kernel space and then through the TCP/IP layer (requiring additional processing to add
appropriate headers), and finally to the network interface controller (NIC) using a direct
memory access (DMA) operation. When a packet is received, the process is reversed.
The data is moved from the NIC to kernel space with a DMA copy followed by a copy
to user space when the application performs a read operation. Frey et al. [22] show that
the main reason for performance degradation in the socket abstraction comes from CPU
overhead due to the indirect data placement for network transfers, as shown in Figure 2.1.
In addition to CPU overhead, Frey et al. [22] also show that the intermediate copies cause

4

Application
Buffer

Socket
Buffer

Memory

NIC Network

CPU Copy

DMA Copy

Figure 2.1: Indirect Data Placement in Traditional Sockets From [22]

performance degradation due to high memory bus traffic and numerous context switches
occurring on kernel interrupts. The research community and industry have worked on
optimizations, such as TCP offloading [11], in order to mitigate performance degradation
in sockets. However, indirect data placement remains the primary bottleneck in the socket
abstraction. RDMA circumvents this issue by using a zero-copy mechanism to transfer
data.

2.2 Remote Direct Memory Access (RDMA)

RDMA is a network protocol that allows for a zero-copy transfer or direct data placement
(DDP) when transferring data over a network. The transport protocol is implemented
directly in the hardware drivers and exposed at the user-level. RDMA-enabled network
controllers (RNICs) transfer memory directly from the user space of a process on one
server to the user space of a process on the target server, avoiding intermediate copies
in the kernel space. To enable DDP in RDMA, applications are required to explicitly
manage memory buffers and register them with the network card. The registration process
pins the virtual memory to physical memory, assigns it an identifier and maps it to the
network card. Servers having the identifiers to this memory block may access it as long as
it has not been de-registered. The latest RNICs are capable of completing requests in 1-3
microseconds at a bandwidth of 100 Gbps, thus providing more than an order of magnitude
better performance than TCP/IP [13].

As shown in Figure 2.2, there are multiple variants of RDMA with varying underlying

5

Ethernet

VERBS

Application

iWARP Driver

TCP/IP

HW Driver

NIC

IP Network

VERBS

Application

HW Driver

Ethernet

VERBS

Application

RoCE Driver

HW Driver

NIC

Ethernet

VERBS

Application

HW Driver

Infiniband

IB VERBS

Application

HW Driver

HCA

SoftiWARP iWARP Soft RoCE InfiniBandRoCE

iWARP

Ethernet

 RNIC

iWARP

TCP/IP

 RNIC

H
ar

dw
ar

e
K

er
ne

l S
pa

ce
U

se
r S

pa
ce

Figure 2.2: RDMA Providers

hardware. They all provide a verbs interface as defined in the RDMA specification. One
such variant is InfiniBand (IB) [1], a network fabric used for high-performance computing
for enterprise data centres. It is designed to provide high throughput, low latency, quality
of service guarantees, and failover mechanisms. It provides an RDMA interface using Host
Channel Adaptors (HCA) via a specialized NIC and an IB Verbs interface. Other variants
include Internet Wide Area RDMA (iWARP) [9] and RDMA over Converged Ethernet
(RoCE) [2] that provide RDMA interfaces over the IP and the Ethernet layer respectively
using specialized NICs. SoftiWARP [3] and Soft RoCE [4], on the other hand, are software
variants of iWARP and RoCE. They are kernel modules designed to inter-operate with
remote hardware-based iWARP and RoCE. This enables a commodity NIC to interact
with RDMA traffic at the software level. In essence, RDMA is an alternative network
protocol with a verbs interface that provides the key feature of a zero copy transfer of data
between remote servers over the network.

RDMA offers multiple types of communication mechanisms using Queue Pairs (QP). A
QP is a socket equivalent in RDMA and is described in Section 2.3. The communication
mechanisms offered are:

• Reliable Connected (RC)

6

Figure 2.3: RDMA Operations [35]

• Reliable Datagram (RD)

• Unreliable Connected (UC)

• Unreliable Datagram (UD)

The RC and UD protocols are similar to TCP and UDP in the socket programming
model. The RD protocol is not supported by the verbs interface. Figure 2.3 shows a
summary of different QPs offered in RDMA along with the operations they support.

The RC protocol supports reliable in order delivery of large data transfers. It supports
both paired transfer (two-sided operations) for sending and receiving data and un-paired
transfer (one-sided operations) involving an RDMA read or an RDMA write. Two-sided
operations follow a message passing model and require the active involvement of CPUs on
both the sending and the receiving servers. After establishing a connection, the sending
process registers a memory region and sends data using the SEND verb to the target
destination. The receiving process, however, needs to register a memory region and post it
with the RNIC using the RECEIVE verb for storing the incoming data. The RNIC then
places this data in the posted memory region and adds it to the receive queue. One-sided
read and write operations bypass the remote CPU and operate directly on remote memory
using a DMA. In order to enable one-sided read and write operations, the host process
establishes connections with the remote processes and registers memory regions with the
RNIC specifying permissions for one-sided operations. The host process then exchanges
memory region and access key information with remote processes. Using these access
keys and memory region information, together with the starting address and size, remote

7

Figure 2.4: RDMA Programming Model [22]

processes may perform read and write operations directly without the involvement of the
host CPU. The RC protocol also supports atomic compare-and-swap and fetch-and-add
operations for 64-bit memory regions that work in the same fashion as RDMA read and
write operations.

The UC and UD protocols are unreliable and unordered transport protocols. There is
no guarantee that the receiving node will receive incoming messages. Corrupted and out of
sequence packets are simply dropped. The UC protocol supports large message transfers
using SEND and RECEIVE operations similar to RC. The UD protocol only supports
datagrams up to 4 KB but it does not require a connection to be established between
endpoints and it supports multicast.

2.3 RDMA Programming Model and the Need for

Redesign

RDMA’s queue-based asynchronous programming model differs significantly from tradi-
tional socket programming. Using the verbs interface, applications interact with the RNIC
and request operations. The communication paradigm is based on a send queue (SQ) and
receive queue (RQ) as shown in Figure 2.4. These queues are together known as a queue
pair (QP). A completion queue (CQ) is also attached to every QP. The application creates

8

work requests (WR) and posts them on the QP. Outgoing requests are placed on the SQ
while incoming requests are posted on the RQ. As work requests are completed, a comple-
tion queue element (CQE) is posted on the CQ. Applications periodically poll the CQ for
notifications. Alternatively, applications poll the local memory regions directly. Further
details can be found in a study conducted by Frey et al. [22].

The stark difference between RDMA and socket programming means that a significant
porting effort is required to move socket-based applications to RDMA. This issue is exac-
erbated by the fact that RDMA requires users to explicitly manage network buffers and
poll for request completions. The difference in programming models and explicit buffer
management introduces hidden costs to using RDMA. When handled without careful con-
sideration, they may negate the performance benefits that RDMA brings.

One such hidden cost is memory registration latency. To illustrate this cost, we per-
formed an experiment to measure the latency to register and de-register memory with a
RNIC. We set up a server to allocate 10 memory regions of a particular size (configurations
for the server and RNIC are described in Chapter 5). These memory regions are registered
with the RNIC one by one using a single thread and then de-registered. The registra-
tion and de-registration periods of the 10 memory regions are measured separately. We
calculate the mean and the standard deviation of our latency measurements. The results
(shown in Figure 2.5) demonstrate that memory registration and de-registration with the
RNIC have high latency and therefore should be handled outside the performance critical
path of execution. Note that the standard deviations are often too small to be visible in
the figure.

Frey et al. [20] presents several other hidden RDMA costs, such as increased connection
setup time and complex RDMA object management. Therefore, it is important that special
attention is given to software design when using RDMA.

9

0 200 400 600 800 1000
Size of Memory Region (MB)

0

50

100

150

200

250

La
te

nc
y

(m
s)

registration
deregistration

Figure 2.5: Memory Registration Latency

10

Chapter 3

RAMP: RDMA Migration Platform

This chapter provides an overview of RAMP. It describes the system architecture and the
RAMP programming model. Furthermore, this chapter describes RAMP operations and
their internal workings.

3.1 System Overview

RAMP is a migration platform for loosely coupled data-intensive applications. It provides
a programming model that leverages RDMA to seamlessly migrate memory segments be-
tween nodes in a cluster. A memory segment is a block of contiguous virtual memory
allocated through the RAMP interface. RAMP uses a coordinated allocator to ensure that
virtual addresses of a memory segment are reserved across the cluster. This coordinated
allocation permits data migration without serialization or deserialization. RAMP allows
applications to create, migrate, and delete memory segments while ensuring that system
properties are upheld. RAMP is designed to minimize memory access latencies during
segment migrations. In order to achieve this, RAMP decouples the ownership of a memory
segment from the movement of data during migration. Ownership is transferred using
migration operations described in Section 3.4.1 and the data is moved across the cluster
using one-sided RDMA read operations (Section 3.4.2).

11

Memory Segments

Containers

Paging

RDMA

Application

Server Stack

RAMP

User
Application

Network

Figure 3.1: RAMP Architecture

3.2 Architecture

Figure 3.1 shows the RAMP software stack. At the base, RAMP uses Reliable Connected
(RC) RDMA for its network operations. RDMA connections, buffer management for mes-
sage exchanges, and memory registration are handled internally by RAMP. The RAMP
system has three components: a memory segment layer, a paging layer, and a container
layer. Each layer builds on the functionality and API of the underlying layer. Applications
can use the system through any layer.

The memory segment layer provides the programming model and the base RAMP API.
It allows applications to create, migrate, and delete memory segments. The paging layer
automates and customizes data movements during migrations. After an ownership transfer,
the paging layer pulls small chunks of the memory segment on demand, keeping data
access latency low. The containers layer allows applications to create standard template
library (STL) data structures stored within a memory segment. Applications leverage the
containers layer to utilize RAMP migration functionality with their existing data model
with minimal porting effort.

12

3.3 Memory Segment Layer

P1 P2 Pn

RAMP Memory
Arena

Process
virtual
address
space

S1

S2

Sn

Memory segment reservation

Memory segment

Figure 3.2: Coordinated Allocator Reservation

The RAMP programming model is based on coordinated memory segments. A memory
segment is a contiguous range of virtual addresses and provides the basic unit of abstraction
in RAMP. A coordinated memory segment is a memory segment that is reserved across all
configured servers in RAMP. All operations are performed against a memory segment and
RAMP ensures that only a single process owns a memory segment at any time. Further-
more, only the segment owner is allowed to read or write to the virtual addresses within a
memory segment, i.e., single reader and single writer semantics are enforced.

RAMP’s memory model is illustrated in Figure 3.2. The figure shows the virtual address
spaces of n processes, where each process represents a different server. RAMP reserves a
memory arena, a common range of virtual addresses, in every process. Outside of the
RAMP arena, each process is free to allocate and use memory independently of other
processes in the system.

Applications use the RAMP API, as shown in Figure 3.3, to allocate and deallocate
memory segments within the RAMP arena. At startup, a configuration file is used to

13

// a l l o c a t i o n
void∗ Al l o ca t e (s i z e t s i z e , int segment id) ;
int Dea l l o ca t e (i n t 6 4 t segment id)

//migrat ion i n i t i a t i o n
int Connect (int pro c e s s i d , int segment id) ;

// t r an s f e r o f ownership
int Trans fer (int segment id) ;
void∗ Receive (int & segment id , bool paging , bool pre f e t ch , s i z e t p ag e s i z e) ;

// t r an s f e r o f data
int Pul l (void∗ address , s i z e t s i z e , s i z e t p ag e s i z e) ;

//migrat ion terminat ion
int Close (i n t 6 4 t segment id)

Figure 3.3: RAMP API

assign a unique process id (p id) to each server and the application assigns a unique
segment id (s id) to each memory segment on allocation. Applications use the p id and
s id to uniquely identify the servers and memory segments throughout the cluster. s ids
are used for allocation, migration, deallocation, and fault tolerance. Each coordinated
memory segment occupies a fixed-length contiguous range of virtual addresses within the
RAMP arena.

RAMP uses Zookeeper to track allocated and free space within the RAMP arena. By
coordinating through Zookeeper, the system ensures that a memory segment allocated by
one process does not overlap memory segments allocated by any other RAMP process.
Allocating a coordinated memory segment in a process Pi causes that associated virtual
address range to be mapped and available to process Pi, but not to any other RAMP
processes. This reservation across processes, as shown in Figure 3.2, allows RAMP to
avoid serialization and deserialization costs when migrating memory segments. RAMP
assumes that servers have the same memory architecture. Once a memory segment has
been allocated, the process Pi is free to read and write to virtual addresses within the
memory segment and RAMP considers process Pi to own the memory segment. Further
details of allocation and deallocation are discussed in Section 4.3. Once a memory segment
has been allocated, RAMP does not interfere with memory access by the process that owns
the segment. All reads and writes are performed directly in local memory.

14

3.4 Migration

The key functionality of RAMP is the ability to migrate a memory segment from one
RAMP server to another. Ideally, migration in RAMP would atomically and instanta-
neously transfer a segment from a source process to a destination process on another
server. Specifically, the source would be able to read and write to the segment at local
memory speeds up until migration. After this migration, the source would lose its ability
to access the segment and the destination would gain read and write access to the segment
in its local memory. The destination would be able to read the final writes of the source
as of the migration point.

In practice, however, this is not possible. Segment migration in RAMP diverges from
the ideal case in two ways. First, migrations are not instantaneous. There is a period
during which neither the source nor the target can access the segment. RAMP’s migration
procedure is intended to keep this window as short as possible (a few microseconds), re-
gardless of the size of the segment being transferred. Second, the destination process may
not be able to access the segment at local memory speeds for some window of time imme-
diately after the migration. RAMP’s design minimizes this access penalty while keeping
the window short.

To achieve such migrations, RAMP decouples the transfer of ownership from the move-
ment of data during segment migration. The ownership of the segment is transferred
eagerly. The segment data is then pulled from the source by the destination, either on-
demand or asynchronously, in small chunks after ownership transfer. This general ap-
proach of separating ownership transfer from data movement has also been used in other
systems [16, 18, 31, 50]. Separating ownership transfer from data movement keeps the
former operation short while migrating data gradually helps keep the access penalty low.

Section 3.4.1 describes the ownership transfer operation and the Section 3.4.2 presents
data pulling mechanisms in detail.

3.4.1 Ownership Transfer

Figure 3.4 illustrates RAMP’s ownership transfer protocol. The transfer is initiated by
the application when the source calls Connect (point 1 in figure), specifying the memory
segment (S) to be transferred and the destination process. On Connect, RAMP establishes
a reliable RDMA connection from the source to the destination and registers S with the
RDMA NIC at the source (pinning S in physical memory). This will later permit one-
sided RDMA access to S from the destination. The source then sends (via the RDMA

15

Pi Pj

Connect

Accept

Transfer

Register Memory
Segment

Register Memory Segment

Pj ownership

No owner

Pi ownership

2

1

3

Figure 3.4: Transfer of Ownership in RAMP

connection) a Connect message to the destination specifying the starting address and size
of S. At the destination, RAMP maps the segment’s virtual addresses and registers it with
the RDMA NIC. The mapping is possible because virtual addresses associated with this
segment were reserved in the RAMP arena at allocation. Once this operation succeeds, the
destination process is ready to receive the incoming segment S and responds by sending
an Accept message back to the source process indicating that the connection setup was
successful and the transfer operation can be executed.

This connection process is relatively expensive as it involves RDMA connection setup,
a two-sided RDMA message exchange, and RDMA memory registrations (see Section 2.3
regarding the cost for memory registration) on both sides of the migration setup. However,
the source retains ownership of S during the entire duration of this process and can continue
to read and write to the segment. The connection setup introduces a delay from the point
at which the source decides to migrate S to the actual ownership transfer but this lag does

16

not impact memory access latency at the source.

The actual transfer of ownership does not occur until the source calls Transfer (point
2 in figure) and the destination calls Receive (point 3 in figure). When the source calls
Transfer, it gives up its right to read or write to S. RAMP then sends a Transfer
message to the destination process notifying it that the ownership has been transferred.
The application at the destination then receives the address and s id of the segment on the
Receive call. The destination process may execute read and write operations in S even
though it does not yet have the relevant segment state.

To ensure that these properties are upheld, RAMP must regulate access to the memory
segment. However one of the RAMP design goals is to not interfere with local read and
write operations of a process. RAMP enforces single reader and single writer semantics by
managing memory protection using mprotect. As the segment ownership is being trans-
ferred RAMP mprotects the virtual addresses at the source process, thus preventing any
local reads and writes. This ensures that state of the memory segment is consistent at the
source process and that the destination process can read the last writes at the source. At
the destination, the same virtual addresses are already protected because they are within
the RAMP arena. As the destination receives ownership, RAMP updates these settings to
allow the process to have read and write access.

3.4.2 Data Pulls

A successful transfer operation does not migrate the data in a memory segment. Instead,
the source retains the data and the transfer mechanism only makes the data available
remotely to the destination. The destination must pull the data using the Pull method
in the RAMP API. The data pulls can either be managed explicitly by the application or
the application can use the Paging layer to automate data migration.

When the destination calls Receive, it sets the modes of data migration. RAMP sup-
ports Pulls, Paging, and Prefetching. The Pull operation reads a contiguous chunk of
memory within the memory segment specified by the application. Without paging and
prefetching, the application controls all reads and writes to the memory segment, but it
needs to Pull the relevant state before performing any operations. With paging enabled,
RAMP regulates access to a memory segment by mprotecting the segment’s virtual ad-
dresses, thus preventing any reads or writes. The data is then pulled in small chunks,
i.e. pages, as the application attempts to access the segment. With prefetching, RAMP
instantiates a thread to automatically pull in all virtual addresses of the memory segment
in addition to the paging mechanism. The pull, paging, and prefetching mechanisms can

17

be used together on the same process. Section 3.4.3 provides further details about paging
and prefetching in RAMP.

When all the relevant data is pulled by the application, the destination process uses
Close to terminate the migration. Close serves two purposes:

1. It cleans up the migration resources

• S is de-registered at the source and destination.

• S is unmapped at the source.

• The RDMA connection is shut down and associated objects are freed.

2. RAMP requires the destination to terminate the migration of S using the Close

operation before it can initiate a new migration of S to another destination. Note that
it is not necessary for the application to pull all of S before closing the connection.
This permits applications to only pull parts of S that are required and in use.

3.4.3 Paging Layer

The paging layer automates data migration. When a memory segment is received with
paging enabled, RAMP regulates application access to the memory segment by using
mprotect. The application does not need to synchronously pull sections of a memory
segment before accessing them. Instead, it accesses data as if it was locally available. On a
memory access, the protection settings raise a SIGSEGV fault. RAMP then intercepts the
SIGSEGV notification, pulls in the relevant virtual addresses and updates the protection
settings to allow local read and writes. The control is then returned back to the applica-
tion process which then executes the last instruction and continues processing, oblivious
to the remote fetching event. This process is called demand paging. In addition to demand
paging, applications can enable prefetching as well. With prefetching, RAMP initializes
another thread which automatically pulls in pages of S and updates the paging protection
settings until all virtual address of S have been copied. The prefetching mechanism works
in tandem with demand faults and pulls in one page at a time to keep access latency low.
When prefetching is enabled, the Close operation blocks until RAMP copies the entire
memory segment.

Both paging and prefetching can be used alongside explicit pulls directed by the appli-
cation. RAMP tracks the state of each page to ensure that the data is pulled only once.
Internally, RAMP tracks pages in units of 2 KB and applications are restricted to issue pull

18

requests in multiples of the base unit. The base unit of 2 KB is experimentally evaluated
to ensure maximum latency gain with RDMA RC. All pages are initialized to a default
state of Remote when a Receive is called. They are atomically updated to In-Flight state
when a request is issued on them. Finally, the state is set to Local after the protection set-
tings have been updated to permit local read and write operations. A Pull request is only
issued on a page if an atomic-compare-and-swap operation successfully updates the state
from Remote to In-Flight. The RAMP exception handler can also differentiate between
SIGSEGV signals generated by read and write operations within a protected memory seg-
ment from illegal memory accesses outside all protected memory segments. RAMP searches
the virtual address that generated the SIGSEGV in the list of memory segments that have
been protected. If the virtual address originates from within the protected regions, RAMP
handles the signal by fetching the remote pages or restarting the operation if the pages are
already in-flight, while the remaining signals are passed onto the application.

The paging layer provides flexible data migration. As memory segments grow larger, a
single Pull to migrate the segment data (stop-and-copy) will take more time. Instead of
pulling in the entire memory segment with a stop-and-copy operation, the application can
enable paging and use Pull as a form of directed prefetching. This allows S to be available
to the destination process throughout the migration. Furthermore, RAMP’s prefetching
can be used if the entire memory segment needs to be migrated. The paging layer allows
applications to determine the best migration mechanism and control the trade-off between
access latency and bandwidth utilization

3.5 Migratable Containers

One way for applications to use RAMP is to place self-contained data structures within a
migratable memory segment. These structures can then be migrated between servers by
migrating the underlying memory segment. There is no need to serialize or deserialize the
structure when it migrates since a memory segment’s position in the virtual address space
of the destination is the same as its position at the source. Migratable containers allow
applications to operate at a higher level of abstraction, at which data structures, rather
than memory segments, are migrated.

To illustrate this usage pattern, RAMP includes migratable containers for C++ ap-
plications. A migratable container is a standard C++ standard template library (STL)
container (e.g., a hash-map) with a few modifications. First, a migratable container uses a
custom C++ scoped memory allocator that ensures that all memory allocated for the con-
tainer and its contents lies within a segment. The underlying memory segment is allocated

19

from within the RAMP arena when the container is first created. The scoped allocator is
created within the memory segment as well. Second, the container in RAMP is equipped
with an additional constructor, which is used to initialize the container at the destination
after migration. Finally, the container’s normal interface is supplemented with additional
methods, analogous to those in Figure 3.3, to provide container migration capability. Apart
from the migration capability, migratable containers are identical to their non-migratable
cousins and run at their original local memory speeds.

To migrate a container, the application uses the container’s Connect and Transfer

methods, which transfer the container’s underlying memory segment. At the destination,
the application immediately begins using the container as soon as it receives ownership
of the segment. RAMP’s paging is used to migrate the segment data on demand as the
application uses the migrated container at the destination. In addition, the application
can use RAMP’s explicit paging mechanism to pull (prefetch) chunks of segment data
from the source. The scoped allocator tracks parts of the memory segment that have been
allocated. Using this information, the container Pulls only the allocated parts of the
memory segment from the source.

With the exception of the custom memory allocation and the additional migration
related methods added to containers in RAMP, it is not necessary to modify the interface
or implementation of the underlying STL container to support migration.

20

Chapter 4

Fault Tolerance

RAMP is a migration platform for distributed applications running on a cluster of ma-
chines, where arbitrary server failures can result in the loss of data residing in a memory
segment or metadata such as the allocation state of the RAMP arena or segment ownership
information. RAMP does not protect against the loss of data within a memory segment
due to server failures. This functionality was omitted to keep RAMP’s design simple and
lightweight. Also, since many distributed applications already use logging or replication to
protect data integrity, building data protection functionality in RAMP would be redundant
and complicate its design.

In RAMP, if a process pi fails, the contents of the memory segments it owns will be lost.
In addition, for any ongoing migration of a memory segment S from process pi to process
pj for which ownership has been transferred but the migration has not been completed, a
failure of pi will result in loss of data that had not been migrated. For such cases, data
pulls or memory segment accesses fail and RAMP raises an exception.

Although RAMP does not protect the contents of the memory segments in the presence
of server failures, it is designed to preserve the allocation state of the RAMP arena and
segment ownership information. This functionality is critical for RAMP so that failures
do not result in memory leaks in the RAMP arena.

The remainder of this chapter describes the failure model for RAMP, the fault tolerance
properties that RAMP guarantees and how these properties are incorporated in RAMP.

21

4.1 Failure Model

RAMP assumes a fail-stop model for server and process failures in an asynchronous network
environment with arbitrary delays. In this model, servers can crash arbitrarily and other
functioning servers detect that a server has crashed. On a failure, servers stops responding
to requests. RAMP uses Reliable Connection (RC) RDMA connections for messages. RC
is comparable to TCP and guarantees the following:

1. All packets/messages are reliably delivered and acknowledged to the sender.

2. All packets/messages are delivered in the order in which they were sent.

Therefore, RAMP assumes that all acknowledged messages in RAMP have been delivered.

4.2 Properties

The goal of fault tolerance in RAMP is to preserve the allocation state and reliably track
ownership information for allocated memory segments. As such, RAMP guarantees the
following properties:

1. At any given point, a memory segment will have at most one owner process.

2. Allocation state of the RAMP arena and memory segment ownership information are
persistent.

3. Allocation and deallocation operations in RAMP are atomic, i.e., once these opera-
tions are issued they will either succeed entirely or fail entirely.

4. Transfer operations may fail as a result of a failure of the source or the destination
process, leaving either the source, or the destination, or neither (but not both) with
the ownership of the segment.

5. Applications can query memory segment ownership information for failed RAMP
processes. RAMP will identify all memory segments owned by the failed process, as
well as any segments whose ownership is in doubt due to a failed transfer to or from
the specified process.

22

The last property enables the application to clean up resources after process failures by
querying RAMP for the memory segments owned by the failed process and then deallo-
cating them. The deallocation, in turn, enables RAMP to clean up the allocation state of
the RAMP arena to prevent memory leaks.

4.3 Implementation

To ensure the properties described in Section 4.2, RAMP uses Zookeeper to track and
maintain the global state of allocations and memory segment ownership. Zookeeper ensures
that the global state is replicated and persistent. We extend the RAMP API (Figure 3.3)
with a single method, get_segments:

vector<segment_info> get_segments(int process_id);

get_segments allows any process to query the memory segments owned by a given
process. It is described in more detail in Section 4.3.3.

4.3.1 The Global State

RAMP stores and persists the global allocation and memory segment state for RAMP
using Zookeeper. The allocation and deallocation state of the RAMP arena is stored in
an allocation node while the memory segment state is stored in memory segment nodes in
Zookeeper’s hierarchical namespace, as shown in Figure 4.1.

The allocation node consists of a memory allocation list and a memory free list serialized
as strings within a single Zookeeper node. These lists store information for all virtual
addresses allocated and deallocated in the RAMP arena. For allocation and deallocation,
RAMP reads the latest state of the allocation node and updates it atomically. Further
details for allocation and deallocation operations are discussed in Section 4.3.2.

As memory segments are allocated, RAMP creates a memory segment node to track
the ownership information (and other metadata) for the memory segment. These nodes
are stored as children of the memory-segment-info node using the segment id specified
by the clients at allocation. RAMP ensures that segment ids are unique. For any given
memory segment S, RAMP stores the segment id, source process id, destination process id,
the starting virtual address in the RAMP arena, and the size of the memory segment. The

23

source process id is always set and represents the process that owns the memory segment.
The destination process id is only set when the ownership of a memory segment is being
transferred from the source process to the destination process. During this interval, the
ownership of a memory segment is in doubt and the global state cannot determine which
process owns the memory segment. RAMP’s ownership transfer protocol, described in
Section 4.3.2, is designed to keep this window short. RAMP uses the global state to
answer the get_segments queries and determine which memory segments were owned by
a process.

/

/allocation /memory-segment-info

/segment_id1 /segment_id2 /segment_idn

Figure 4.1: RAMP Structures in Zookeeper

4.3.2 Operations

This section provides details describes how RAMP operations store and maintain global
state.

Allocation and deallocation in RAMP are coordinated via Zookeeper using the
allocation node. For an allocation at process pi, RAMP reads the allocation state from
Zookeeper and prepares a synchronous and atomic multi operation to update the allocation
node and create a memory segment node with the source process set to pi. The multi op-
eration in Zookeeper is a set of operations that are guaranteed to execute as a transaction.
For deallocation, RAMP reads the allocation node and prepares an atomic multi operation
to update the free-list and delete the memory segment node created to track the ownership

24

information for the memory segment. RAMP relies on Zookeeper’s optimistic concurrency
control mechanisms to ensure that updates to the allocation node are atomic. Both allo-
cation and deallocation operations in RAMP are idempotent, as long as the application
does not recycle the segment ids. When there is high contention on the allocation node,
the multi operation may fail. For such cases, RAMP restarts the allocation or deallocation
operation.

Migrations in RAMP consist of an ownership transfer with the operations Connect,
Transfer, Receive, and Close and data transfers with the Pull operation. Figure 4.2
shows how RAMP’s ownership transfer mechanism is extended to provide fault tolerance.
The figure illustrates the transfer of a segment S from a source process (Src) to a des-
tination process (Dst) with RAMP’s fault tolerance mechanisms. The protocol ensures
that the global state is updated with atomic writes to Zookeeper and that these updates
are not on the critical path of an ownership transfer, i.e., the Transfer operation. Op-
eration 1 synchronously adds the destination id to the memory segment node with an
atomic Zookeeper write operation once the Connect operation is completed and before the
Transfer message is sent. The memory segment ownership is now ‘in doubt’, as the global
state has both the source and the destination set. Operation 2 asynchronously updates
the memory segment node with an atomic Zookeeper write operation and sets the source
process id to the destination process id and clearing the destination process id after the
destination process receives the Transfer message from the source. The memory segment
ownership is now known (as Dst). While the Transfer message is being sent, neither the
source nor the destination process can access the memory segment. RAMP’s design ensures
that updates to the global state do not increase this period of inaccessibility. RAMP does
not guarantee progress of migration operations. However, RAMP uses RDMA connection
timeouts to maintain the open connections until they are either closed by the application
or broken due to network failure.

Data transfer operations do not update the global state. However, until all of the
data in a memory segment has been pulled, a failure of the source server may cause Pull

operations to fail at the destination server. Pull failures notify the application that the
remote virtual addresses of the memory segment are no longer available. In addition,
RAMP also de-registers the memory segment and cleans the connection object when an
RDMA connection breaks or times out. This operation does not affect RAMP’s fault
tolerance guarantees but does allow RAMP to free resources that were allocated for the
migration.

25

4.3.3 get segments

The get_segments call can be used by the application to get a list of memory segments
that were owned by a process that has failed. RAMP tracks the memory segment ownership
globally as described in Section 4.3.2. On a call to get_segments for process pi, RAMP
reads the latest snapshot of the global state for memory segments stored at Zookeeper.
RAMP then searches the memory segment nodes and returns the segment ids from all of
the nodes for which the source or the destination is pi. This list represents the memory
segments that might have been owned by pi. To prevent memory leaks in the RAMP arena,
a safe action for the application is to deallocate all such memory segments.

26

Figure 4.2: Ownership Transfer with Fault Tolerance
1. Src sets Dst as destination synchronously in Zookeeper
2. Dst adds Dst as source and clears destination asynchronously in
Zookeeper

27

Chapter 5

Evaluation

This chapter presents an empirical evaluation of the RAMP platform. We use the following
sets of experiments to evaluate RAMP:

1. Microbenchmarks to evaluate RAMP ownership transfer and data migration opera-
tions.

2. A case study of a loosely coupled application that uses RAMP to perform live load
balancing.

Note that the experiments do not use the fault tolerance features in RAMP.

All experiments are conducted on a cluster of Supermicro SYS-6017R-TDF servers
with one Mellanox 10GbE SFP port, 64 GB of RAM, and two Intel E5-2620v2 CPUs each
having 6 cores with a frequency of 2.6 GHz. Each node is connected to a Mellanox SX1012
10/40 GbE switch. All nodes run an Ubuntu 14.04.1 server distribution with Linux kernel
version 3.13.0.

5.1 Ownership Transfer

In order to evaluate ownership transfer, we set up two experiments. The first evaluates the
time required for complete ownership transfer of a memory segment from a source node
to a destination node, as described in Section 3.4.1. This includes the time to set up and
close the transfer, as well as the actual transfer itself. The second experiment focuses on

28

the latency of the actual Transfer operation and the Transfer message sent as part of this
operation. The Transfer message represents the critical period for an ownership transfer,
since the segment has no owner while the transfer occurs. Both experiments are repeated
for memory segments of sizes ranging from 1 MB to 512 MB.

For the first experiment, we evaluate the total time it takes to migrate ownership of a
memory segment from a source process to a destination process. We set the source process
on one server and the destination process on another server. The source process allocates
a memory segment and then calls Connect and Transfer and the destination process calls
Receive and Close without pulling in any data. This ensures that data transfers do not
add additional latency to the ownership transfer process. The memory segment is then
deallocated at the destination process. At the source, we measure the total time taken
from Connect to receipt of the Close notification from the destination. The experiment is
repeated 10 times for a memory segment of a given size. We plot the mean latency over
the ten runs as well as the standard deviation.

Figure 5.1 shows the results as a function of the segment size (note that standard devia-
tion is too small to be visible in the figure). Although no data is transferred the migration
latency increases linearly with the size of the memory segment. We experimentally de-
termined that this latency is dominated by the time required to pin the virtual memory
during the RDMA registrations which occur as a result of the Connect call. Moreover,
the total latency for migrations is within a few milliseconds (∼2 ms) of twice the memory
registration time of a memory segment (see Figure 2.5). This is expected, as the Connect

call registers the memory segment twice, once at the source and once at the destination.

Although it can take hundreds of milliseconds to transfer the segment ownership, the
segment remains accessible to the source node for most of this time. There is only a short
window of unavailability after Transfer is called at the source and before the Receive

returns at the destination. We set up a second experiment to measure this window. It is
difficult to measure this window as it starts at the source process, pi, on one server and ends
at the destination process, pj, on another server. Therefore, in order to correctly capture
this duration, we set up an experiment that synchronizes two migrations such that we can
measure, at the source process, the time taken for two transfers. The experiment is set up
as follows: pi allocates a memory segment Si and pj allocates another memory segment
Sj of the same size. pi connects to pj and vice versa. However, the memory segments are
not immediately transferred. After both Si and Sj have Connected (i.e. registrations for
both segments have been completed), pi begins the experiment by starting a clock and
calling Transfer on Si to pj. On Receive of Si at pj, pj calls Transfer on Sj to pi. pi
stops the clock on Receive of Sj. This records twice the time taken to transfer a memory
segment. Half of this window of time represents the time taken for a Transfer operation,

29

0 100 200 300 400 500
Memory Segment Size (MB)

0

50

100

150

200

250

300

M
ea

n
La

te
nc

y
(m

s)

Figure 5.1: Latency of Ownership Transfer

it captures the latency of the RDMA transfer message and the processing time in RAMP.
In an effort to better understand the transfer operation we also record the round-trip time
for the RDMA transfer message from pi to pj on Transfer using the RDMA notification
sent back to pi on a successful delivery to pj. The experiment is repeated 10 times for a
memory segment of a particular size and the results are halved to show the latency for a
single Transfer operation and one side of the RDMA transfer message. We plot the mean
and standard deviation of these times across all 10 runs.

Figure 5.2 shows the results of this experiment. The duration of the critical transfer
operation is about 40-60 µs, independent of the size of the memory segment. The RDMA
transfer message has a mean latency of around 15-20 µs which indicates that RAMP
processing takes up a majority of the time during the transfer operation. There was some
variation for each run in this experiment, although the long error bars in Figure 5.2 are
due to 1 or 2 outliers in each run.

30

0 100 200 300 400 500
Memory Segment Size (MB)

10

20

30

40

50

60
M

ea
n

La
te

nc
y

(u
s)

transfer and processing
transfer

Figure 5.2: Latency of the Transfer Operation

5.2 Data Pulls

Migrations in RAMP have two parts, an ownership transfer and data pulls. The ownership
transfer does not itself migrate any data. Data is moved using subsequent Pull calls. A
targeted use case for RAMP is one in which the application at the destination pulls data
from the source on demand as it accesses the migrated segment. We set up experiments to
measure the performance impact of these data pulls on the application at the destination.

We set up two experiments, each with a C++ unordered map contained within a
memory segment. In the first experiment, the segment size was 128 MB and in the second
experiment the memory segment size was 256 MB. Each map was populated with pairs
of 8 byte keys and 128 byte values until the entire memory segment was utilized by the
container (approximately 500 thousand and 1 million entries, respectively). To evaluate
data pulls, each segment was migrated from a source node to the destination node using
RAMP’s ownership transfer mechanism. At the destination, a single application thread
begins performing get and set operations (1:1 ratio) on the unordered map in a tight loop
immediately after receiving the incoming container. We ran three different versions of the
experiment to test different ways of pulling segment data. In the first version, the container

31

data is pulled on demand, with a page size of 4 KB. In the second version, demand faults
are supplemented by sequential prefetching. In the third, which we refer to as stop-and-
copy, the application uses a single large Pull request to pull all of its data before allowing
any container operations.

Figures 5.3 and 5.4 illustrate the latency of container operations as a function of time
for containers of sizes 128MB and 256 MB respectively. Time zero represents the point at
which the destination node receives ownership of the container. We show the mean and
95th percentile latency, measured over 100 ms windows.

By using the stop-and-copy approach, all container accesses are performed at local
memory speeds, with tail latencies of about 1 µs and sub-microsecond mean access times.
However, the container is effectively unavailable for several hundred milliseconds after
ownership is transferred, while the data is pulled. This unavailability window grows from
230 ms to 350 ms as we increase the memory segment size from 128 MB to 256 MB. This
unavailability window depends on container size and link bandwidth. With paging, the
container is available immediately but there is a period of about 0.75 s (128 MB) and 1.5 s
(256 MB) during which the container access latencies are elevated. Tail latencies remain
below 50 µs during most of this period. Prefetching pulls the container data even faster,
with the container access latencies dropping to local speeds after around 0.65 s (128 MB)
and 1.3 s (256 MB). Prefetching also lowers the average access latency while the data is
pulled but results in higher latencies immediately after migration. This is because RAMP
uses a single RDMA connection between the source and the destination, causing prefetches
to delay demand pulls. The initial higher latency can be mitigated by establishing a second
connection for prefetches. Once the underlying segment has been pulled, container memory
accesses are completely local, and the container again provides local memory speeds, with
sub-microsecond access latencies. Tail latencies are unaffected by the size of the container.

32

0 500 1000 1500 2000
Time (ms) (bucket size = 100 ms)

100

101

102

M
ea

n
La

te
nc

y
(u

s)

paging mean
prefetching mean
stop and copy mean
paging 95 %ile
prefetching 95 %ile
stop and copy 95 %ile

Figure 5.3: Post-Migration Container Access Latency (Size = 128 MB)

0 500 1000 1500 2000
Time (ms) (bucket size = 100 ms)

100

101

102

M
ea

n
La

te
nc

y
(u

s)

paging mean
prefetching mean
stop and copy mean
paging 95 %ile
prefetching 95 %ile
stop and copy 95 %ile

Figure 5.4: Post-Migration Container Access Latency (Size = 256 MB)

33

5.3 Live Load Balancing Case Study

RAMP is designed to provide coordination services for applications to reconfigure data
within a cluster. In order to illustrate the use of RAMP for migrations, we conducted
a case study in which we use RAMP for load balancing operations in a loosely coupled
distributed application under load.

For the purposes of this experiment, we built a loosely coupled distributed application
called rcached , based on memcached [19]. memcached is a widely used distributed in-
memory key-value storage system. rcached is a simple drop-in replacement for memcached,
with the added ability to perform load balancing operations using RAMP. rcached uses
hashing to partition the key space, and stores each partition in a C++ unordered map
contained within a RAMP memory segment. rcached uses consistent hashing to map keys
to partitions and subsequently partitions to the backend servers. Each server is responsible
for a subset of the partitions. rcached uses a consistent hashing ring to migrate partitions
and it enables paging on Receive. rcached servers currently do not use prefetching.

When a partition migrates, rcached clients receive a negative acknowledgement from
the source server as they attempt to access the partition. Clients then redirect their requests
to a new server which is determined by the consistent hashing ring. Clients continue to
redirect requests to the server next on the list until the partition is located. No data is lost
during rcached migrations. While rcached is not as heavily engineered as memcached,
under light loads its performance is similar.

On our servers, a lightly loaded memcached server with four request-handling threads
has mean request latency of about 35 µs, while a similarly configured rcached server has
a mean request latency of about 50 µs.

The load balancing rcached experiment was configured with a cluster of four rcached
servers which store 40 million keys partitioned in 128 partitions (c++ unordered maps).
100 closed-loop clients issue get requests, using a Zipf distribution with parameter 0.99
over the key space and no think time. Figure 5.5 shows the client side request latencies
averaged over windows of 40,000 requests and broken down by server id. The results show
that this configuration has some request skew as the load is not perfectly distributed across
all servers. Server 1 ends up receiving the most requests and as a result experiences higher
latency. Overall, the average request throughput was about 380,000 requests per second
over the experiment.

To test migrations, we ran the same experiment again. This time after an initial warm
up period, we used RAMP to migrate two heavily loaded partitions from server 1 to server
2 to better balance the load. Figure 5.6 shows the results of the load balancing experiment.

34

We report the mean client-side request latency averaged over windows of 40,000 requests
, broken down by the server that handled the request. The two vertical lines indicate
the approximate time at which a partition migration occurred. The overloaded server 1
experiences a drop in load while the all other servers including server 2 experience an
increased load. This is because of the closed-loop nature of our clients. As expected,
Server 2 also shows short spikes in mean and 95th percentile (not shown) at the time of
migrations. However, these spikes are no worse than regular rcached latency variation due
to short-term load fluctuations. The overall throughout after migrations increased from
380,000 requests per second to 390,000 requests per second.

This case study shows that RAMP can successfully balance load for a loosely coupled
distributed application with minimal interruptions. RAMP behaves as expected; ownership
transfers do not significantly impact the availability of partitions in rcached. Also, the
data pulls have minimal effect on client-side latency and the application achieves lower
latency per server as a result of reconfigurations with RAMP.

35

Figure 5.5: Rcached Without Load Balancing

Figure 5.6: Rcached With Load Balancing

36

Chapter 6

Related Work

RAMP is related to work in three different research areas: distributed shared memory
systems, RDMA-based systems, and migration platforms. In this chapter, we survey the
previous work done in these areas.

6.1 Distributed Shared Memory Systems

Protic et al. [47] surveyed the Distributed Shared Memory (DSM) landscape in 1996 and
extensively covered DSM algorithms, systems, and consistency models. DSM systems offer
a general shared memory programming model, using either implicit message passing or an
extended cache coherence protocol for private (local) and shared (remote) memory. DSM
algorithms deal with data distribution and accesses by leveraging compiler and operating
system support for data invalidation, access, and update protocols. Ivy [41], Blizzard [36],
and Mermaid [55] are examples of popular DSM systems that do not use RDMA.

Several software-based DSM systems use RDMA [42, 43]. Noronha et al [42] present
NGDSM, a software-based cache coherence protocol using RDMA primitives. The same
authors also explore using RDMA for reducing diff overheads for software based DSM
systems. These systems are similar to shared memory systems discussed in Section 6.2.

RAMP has similar properties to a DSM system as it allows processes to share data
in certain sections of its virtual address space. However, RAMP is not a DSM system as
it does not try to invalidate data access or use data update protocols. Instead, RAMP
is designed to cater to applications that migrate large amounts of data, while minimizing

37

access penalties. Unlike DSM systems, memory segment ownership and data movement in
RAMP is controlled by the application.

6.2 RDMA-Based Systems

There has been significant research and industrial interest [44, 48, 33] in RDMA-based
systems in last few years. These systems can broadly be categorized as offering either
a shared-storage abstraction or a shared-nothing abstraction. Systems offering a shared
memory abstraction use cluster-wide memory to expose a shared address space (like a DSM)
or a database. Systems that offer a shared-nothing abstraction use RDMA to provide a
message passing model among separate per-server address spaces. In the following sections,
we present both types of RDMA systems.

6.2.1 Shared Memory Systems

FaRM [14, 15] exposes the memory of a cluster of nodes as a shared address space, leverag-
ing RDMA to build a computing platform. FaRM offers lock-free reads and transactional
support with strict serializability, using two-phase commit (2PC) across the cluster to com-
mit transactions. Several other systems [40, 26, 8, 57] leverage RDMA and other hardware
features, such as hardware transactional memory (HTM), to build low latency and high
throughput transaction processing systems or key-value stores. These systems also expose
the memory of a cluster in a similar fashion as FaRM and employ various concurrency
control mechanisms.

Nam-DB [59, 7] and Tell [34] are RDMA-based database systems that offer snapshot
isolation guarantees. Nam-DB uses one-sided RDMA reads to remotely read data items
for each access. Nam-DB uses global counters to track the latest snapshot of a data
item and two-sided RDMA messages for index lookups. Nam-DB foregos the inherent
message ordering and delivery guarantees of RDMA. On the other hand, Tell decouples
transactional query processing from data storage by using a centralized commit manager
and distributed multi-versioned concurrency control (MVCC), using a BwTree. Tell is
limited by its centralized commit manager, which is a single point of contention.

Infiniswap [24] provides a remote memory paging system for a cluster of machines. It
handles memory overflows on a machine by using the un-utilized memory on the other
machines in the cluster. It allows memory disaggregation in a cluster, where underutilized

38

memory on one machine can be utilized by another machine. By using Infiniswap, processes
can avoid the disk access penalty due to pages being swapped in and out of disk.

In all these systems, access to data in shared memory may require access to a remote
server. These accesses require coordination, which requires some kind of locking, eviction,
or versioning strategy. In contrast, RAMP’s programming model provides single reader,
single writer semantics, which removes the need for regulating concurrent accesses. Another
notable difference is that applications may need to pay network costs each time they want
to access it. RAMP ensures that all memory accesses are local except during application-
initiated migrations.

6.2.2 Shared-Nothing Systems

FaSST [27] is an in-memory transaction system that focuses on scalability by building
an RPC abstraction on top of one-to-many unreliable datagrams using the SEND and
RECEIVE RDMA verbs. FaSST cites the storage limitation of current RNICs and the
amount of stored state required by each reliable persistent connection for their design
choice. FaSST shows that the limited storage available on RNICs limit the scalability of
its design. Su et al. [53] present another way to build an RPC abstraction over RDMA.
They argue that one-sided RDMA reads and writes do not maximize the RNICs capabilities
due to the asymmetry between incoming and outgoing message rates. They further argue
that performance degrades as systems need to regulate access to shared memory with
some kind of locking or versioning scheme. They build and evaluate a remote procedure
call (RPC) system based on one-sided RDMA message transfers. Clients write to remote
server memory to send requests, and then read responses from remote server memory on
completion of the request.

DARE [46] and APUS [54] are consensus algorithms based on the RDMA networking
stack. The idea behind these systems is to improve the runtime, throughput and scalability
of state machine replication algorithms by exchanging small messages between different
servers quickly. These systems share memory specifically to improve message passing and
coordination between the consensus groups leveraging single (DARE) and multiple (APUS)
connections.

Other research [6, 21, 49] focuses on distributed join processing with RDMA. Barthels
et al. [6] primarily use pinned buffers to accelerate the data flow between servers, each
of which is computing a part of the join. Frey et al. [21] suggest a new architecture for
transferring messages between participating nodes and evaluate their approach for different
distributed join processing algorithms. Flow-join [49] suggests a lightweight adaptive skew

39

handling technique for distributed join processing systems and exchanges messages so that
skew in workload does not impact performance.

Shared-nothing systems use RDMA to take advantage of the performance gains of new
hardware technologies. However, they do not fully utilize RDMA’s performance benefits as
data still needs to be serialized for transfers and deserialized on receipt. Furthermore, most
shared-nothing systems can only support small message transfers and their performance
degrades for large message transfers. On the other hand, RAMP is designed to fully utilize
the RDMA’s performance benefits and supports transfers of large memory segments and
structured data without serializing and deserializing across servers with the same mem-
ory architecture. RAMP also avoids the limitations of RNICs asymmetry for incoming
and outgoing messages, conflict resolution mechanisms used by shared memory abstrac-
tion systems, and RNICs limitations in storing states by only establishing connections on
demand and enforcing single writer semantics.

6.3 Data Migration Techniques

The key functionality of RAMP is the ability to migrate potentially large memory segments
between servers without disrupting access. Most distributed systems, especially distributed
database management systems (DBMS), face a similar issue where data movement leads to
performance degradation. As such, data migration techniques have been widely studied. In
this section, we present various data migration techniques and how they relate to RAMP.

Stop-and-copy is the simplest migration approach. In stop-and-copy, the system stops
processing requests at the source, copies relevant state to the destination, and then con-
tinues execution of the incoming requests at the destination. This approach results in
significant downtime and performance degradation. Alternately, the Synchronous migra-
tion [17] approach avoids this downtime by creating a replica of the partition or state at the
destination. Depending on the implementation, either logs or snapshots are used to bring
the replica up to date with the source. Requests are then executed at both the source and
the destination. After synchronization, the source may simply use a failover mechanism to
make the destination the primary replica and complete a migration.

Albatross [12] is a live migration system that tries to avoid the downtime of stop-
and-copy by using a flush-and-copy mechanism. Albatross [12] copies a snapshot of the
partition asynchronously to the destination. Incoming updates are iteratively shipped to
the destination until the partitions at the source and destination converge. On convergence,
Albatross uses an atomic handover to move ownership of the partition to the destination.

40

This may cause a small downtime if there are pending updates to be shipped. Slacker
[5] is another system that uses the live migration technique but minimizes the impact of
migration by throttling the rate at which pages are migrated.

Zephyr [18] migrates partitions by allowing concurrent execution at the source and
destination without using distributed transactions. Incoming requests get rerouted to the
destination forcing a pull. Any requests at the source for data that has been migrated
need to be restarted at the destination. Zephyr’s approach does not cause a downtime but
requires any indexing structure to be frozen for the duration of the migration. A copy of the
database’s physical structure is also copied to the destination at the start of the migration.
ProRea [50] extends Zephyr’s approach by migrating hot tuples to the destination at the
start of migration to reduce load at the source.

Minhas et al. [38] describe another mechanism for live migration using the replication
and recovery mechanism in a DBMS. Squall [16] allows for fine-grained live reconfiguration
by closely keeping track of the tuples at both source and destination. The decentralized
approach safely moves data across the nodes in the presence of distributed transactions by
reactively pulling data when required at the destination. Squall requires a global lock to
initialize the reconfiguration. Rocksteady [31] extends Squall by eagerly transferring owner-
ship of the migrating partition from the source, like RAMP. RockSteady uses RamCloud’s
[45] server bypass mechanism for low latency access to migrate data (both reactively and
pro-actively) and only serve requests at the destination. RockSteady ensures that it meets
service level agreements by throttling the amount of work that the source is required to
do to move the data. Unlike RAMP, RockSteady does not utilize one-sided RDMA reads
for data migration, since a RamCloud tablet (the unit of migration) may be scattered in
memory. Instead, it utilizes remote procedure calls over the RAMCloud stack.

Wei et al. [56] described a live reconfiguration approach which extends DrTM+R
[57] using a pre-copy approach similar to Albatross [12]. They resolve several issues with
the pre-copy approach by using DrTM+R’s fault tolerance mechanisms. Using one-sided
RDMA reads they transfer the difference between the source copy and destination copy.
They further use log forwarding to ensure that source and destination partitions converge.

Live migrations have also been explored in the context of virtual machine (VM) cloning [32,
39] and migrations [10, 25]. Like DMBS migrations these systems use some combination
of pulling data from the source, like RAMP, and pushing it from the source to accom-
plish migration. SnowFlock [32] pulls data from source to destination on demand, like
RAMP, although it does not use RDMA. Clark et al. [10], like several other DBMS ap-
proaches [12, 56], rely on pushing data from the source before transferring control. This
reduces the post-transfer performance penalty, but at the expense of delaying migration.

41

Kharabrov et al. [30], describe a technique that allows users to share higher order
data structures by storing them in a global heap in Java. These structures can then be
accessed by other nodes by transferring the raw data from the global heap space. The
system is based on TCP/IP although it could be modified to leverage RDMA. However,
this approach is Java specific and objects are immutable after migration.

Unlike other migration systems, RAMP’s share-on-demand architecture provides a few
unique properties. RAMP relieves the source node of CPU load for data movement after
an ownership transfer and avoids serialization and deserialization costs. Data structures
in RAMP can be edited by the owner process as soon as they receive ownership (with
minimal latency) and RAMP data migrations work well for large transfers. Additionally,
the RAMP programming model can make use of several migration techniques described in
this section to further improve its performance.

42

Chapter 7

Summary and Future Work

RAMP is an RDMA-enabled migration platform that enables low impact data migrations
for distributed applications. RAMP provides a useful abstraction for building coordina-
tion services for loosely coupled distributed applications. RAMP is based on a shared-
on-demand architecture where servers exchange memory segments. The key feature of
RAMP is the decoupling of the ownership of data from the migration of data. We present
RAMP’s programming model, which is based on memory segments, and the RAMP API,
which includes operations for allocation, deallocation, ownership transfer, and data migra-
tion. Furthermore, we describe the fault tolerance properties of RAMP and discuss the
guarantees they provide. In addition, we show that RAMP can be used to build migratable
data structures that can be transferred between servers without significant performance
impact.

We designed experiments to evaluate RAMP’s ownership transfer and data migration
operations. We show that a container data structure can be live-migrated using RAMP
while keeping tail access latencies below 100 us and an ownership transfer can be ac-
complished with a delay of a few tens of microseconds. Furthermore, we demonstrate
that RAMP can be used for balancing load in a loosely coupled distributed system called
rcached, which is a distributed in-memory key-value cache.

Looking forward, there are a few optimizations and extensions that can be built to
further improve RAMP. The performance of data migration in RAMP can be improved by
spreading data pulls across multiple connections. This would enable RAMP to prioritize
demand or explicit pulls while prefetching. Another extension to this work would be
to utilize RAMP’s API to implement low impact transfers using Google Protobuf [23],
which is Google’s library for serializing and deserializing structured data. Applications

43

can rewrite their protobuf files and extend Protobufs to use RAMP to migrate data. This
would allow distributed applications to leverage RAMP’s low impact migration capabilities
using the existing protobuf code in their applications. Finally, RAMP’s data pull could
be modified to instead push data and keep partitions synchronized across multiple servers.
This functionality could be used to implement fault tolerance in databases that replicate
data partitions across multiple instances for fast failovers.

44

References

[1] Infiniband Trade Association. Infiniband. http://www.infinibandta.org. [Online;
accessed 3-January-2018].

[2] Infiniband Trade Association. RDMA over Converged Ethernet (RoCE). [Online;
accessed 3-January-2018, Supplement to InfiniBand Architecture Specification Volume
1 Release 1.2.2 Annex A16].

[3] Open Fabrics Association. SoftiWARP. https://github.com/zrlio/softiwarp,
2010. [Online; accessed 8-March-2018].

[4] Open Fabrics Association. SoftRoCE. https://github.com/SoftRoCE, 2014. [On-
line; accessed 8-March-2018].

[5] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant Shenoy. Cut
Me Some Slack: Latency-aware Live Migration for Databases. In Proceedings of the
15th International Conference on Extending Database Technology, EDBT ’12, pages
432–443, New York, NY, USA, 2012. ACM.

[6] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. Rack-Scale
In-Memory Join Processing Using RDMA. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 1463–1475.
ACM, 2015.

[7] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow., 9(7):528–
539, March 2016.

[8] B. Cassell, T. Szepesi, B. Wong, T. Brecht, J. Ma, and X. Liu. Nessie: A Decoupled,
Client-Driven Key-Value Store Using RDMA. IEEE Transactions on Parallel and
Distributed Systems, 28(12):3537–3552, Dec 2017.

45

http://www.infinibandta.org
https://github.com/zrlio/softiwarp
https://github.com/SoftRoCE

[9] Chelsio. iWARP: From Clusters to Cloud RDMA. https://www.chelsio.

com/wp-content/uploads/resources/iWARP_Then_and_Now.pdf, 2014. [Online; ac-
cessed 8-March-2018].

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live Migration of Virtual Machines. In Proc. NSDI, pages 273–286,
2005.

[11] Andy Currid. TCP Offload to the Rescue. Queue, 2(3):58–65, May 2004.

[12] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Albatross:
Lightweight Elasticity in Shared Storage Databases for the Cloud Using Live Data
Migration. Proc. VLDB Endow., 4(8):494–505, May 2011.

[13] Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. RDMA Reads:
To Use or Not to Use? IEEE Data Eng. Bull., 40:3–14, 2017.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI’14, pages 401–414, Berkeley,
CA, USA, 2014. USENIX Association.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No Compromises:
Distributed Transactions with Consistency, Availability, and Performance. In Proceed-
ings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 54–70,
New York, NY, USA, 2015. ACM.

[16] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. Squall: Fine-Grained Live Reconfiguration for Partitioned Main
Memory Databases. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, pages 299–313, New York, NY, USA,
2015. ACM.

[17] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Towards
an elastic and autonomic multitenant database. In Proceedings of 6th International
Workshop on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[18] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr: Live
Migration in Shared Nothing Databases for Elastic Cloud Platforms. In Proceedings of

46

https://www.chelsio.com/wp-content/uploads/resources/iWARP_Then_and_Now.pdf
https://www.chelsio.com/wp-content/uploads/resources/iWARP_Then_and_Now.pdf

the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD
’11, pages 301–312, New York, NY, USA, 2011. ACM.

[19] Brad Fitzpatrick. Distributed caching with memcached. Linux journal, 2004(124),
2004.

[20] P. W. Frey and G. Alonso. Minimizing the Hidden Cost of RDMA. In 2009 29th
IEEE International Conference on Distributed Computing Systems, pages 553–560,
June 2009.

[21] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens Teubner. A Spinning
Join That Does Not Get Dizzy. In Proceedings of the 2010 IEEE 30th International
Conference on Distributed Computing Systems, ICDCS ’10, pages 283–292, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

[22] Philip Werner Frey. Zero - Copy Network Communication : An Applicability Study
of iWARP beyond Micro Benchmarks. 2010.

[23] Google. Protocol Buffers. https://developers.google.com/protocol-buffers/,
2017. [Online; accessed 3-April-2018].

[24] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. Efficient Memory Disaggregation with Infiniswap. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages 649–667, Boston,
MA, 2017. USENIX Association.

[25] W. Huang, Q. Gao, J. Liu, and D. K. Panda. High performance virtual machine
migration with RDMA over modern interconnects. In Proc. IEEE Int’l Conf. on
Cluster Computing, pages 11–20, 2007.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA Efficiently
for Key-value Services. SIGCOMM Comput. Commun. Rev., 44(4):295–306, August
2014.

[27] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, Scalable and
Simple Distributed Transactions with Two-sided (RDMA) Datagram RPCs. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’16, pages 185–201, Berkeley, CA, USA, 2016. USENIX Association.

[28] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols

47

https://developers.google.com/protocol-buffers/

for Relieving Hot Spots on the World Wide Web. In Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 654–663, New
York, NY, USA, 1997. ACM.

[29] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina,
Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi. Web caching with
consistent hashing. Computer Networks, 31(11):1203 – 1213, 1999.

[30] Alexey Khrabrov and Eyal De Lara. Accelerating Complex Data Transfer for Cluster
Computing. In Proceedings of the 8th USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’16, pages 40–45, Berkeley, CA, USA, 2016. USENIX Associa-
tion.

[31] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and Ryan Stutsman.
Rocksteady: Fast Migration for Low-latency In-memory Storage. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, pages 390–405, New
York, NY, USA, 2017. ACM.

[32] H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant, P. Patchin, M. Brudno, E. de Lara,
S. M. Rumble, M. Satyanarayanan, and A. Scannell. SnowFlock: Virtual Machine
Cloning as a First-Class Cloud Primitive. ACM Trans. Comput. Syst., 29(1):2:1–2:45,
2011.

[33] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accelerating Rela-
tional Databases by Leveraging Remote Memory and RDMA. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD ’16, pages 355–370,
New York, NY, USA, 2016. ACM.

[34] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. On the Design
and Scalability of Distributed Shared-Data Databases. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15,
pages 663–676, New York, NY, USA, 2015. ACM.

[35] Mellanox. RDMA Aware Networks Programming User Manual. https:

//www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_

user_manual.pdf, 2015. [Online; accessed 8-March-2018].

[36] James Mickens, Edmund B. Nightingale, Jeremy Elson, Krishna Nareddy, Darren
Gehring, Bin Fan, Asim Kadav, Vijay Chidambaram, and Osama Khan. Blizzard:
Fast, Cloud-scale Block Storage for Cloud-oblivious Applications. In Proceedings

48

https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

of the 11th USENIX Conference on Networked Systems Design and Implementation,
NSDI’14, pages 257–273, Berkeley, CA, USA, 2014. USENIX Association.

[37] Microsoft. RDMA-capable instances. https://docs.microsoft.com/en-us/azure/
virtual-machines/linux/sizes-hpc#rdma-capable-instances, 2017. [Online; ac-
cessed 31-October-2017].

[38] Umar Farooq Minhas, Rui Liu, Ashraf Aboulnaga, Kenneth Salem, Jonathan Ng, and
Sean Robertson. Elastic Scale-Out for Partition-Based Database Systems. In Proceed-
ings of the 2012 IEEE 28th International Conference on Data Engineering Workshops,
ICDEW ’12, pages 281–288, Washington, DC, USA, 2012. IEEE Computer Society.

[39] M. J. Mior and E. de Lara. FlurryDB: a dynamically scalable relational database with
virtual machine cloning. In Proc. SYSTOR, 2011.

[40] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-sided RDMA Reads to
Build a Fast, CPU-efficient Key-value Store. In Proceedings of the 2013 USENIX Con-
ference on Annual Technical Conference, USENIX ATC’13, pages 103–114, Berkeley,
CA, USA, 2013. USENIX Association.

[41] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:
A Read/Write Peer-to-peer File System. SIGOPS Oper. Syst. Rev., 36(SI):31–44,
December 2002.

[42] R. Noronha and D. K. Panda. Designing high performance DSM systems using In-
finiBand features. In IEEE International Symposium on Cluster Computing and the
Grid, 2004. CCGrid 2004., pages 467–474, April 2004.

[43] Ranjit Noronha and Dhabaleswar K. Panda. Reducing Diff Overhead in Software
DSM Systems using RDMA Operations in InfiniBand. 2004.

[44] ORACLE. Delivering Application Performance with Oracle’s Infiniband Tech-
nology. http://www.oracle.com/technetwork/server-storage/networking/

documentation/o12-020-1653901.pdf, 2012. [Online; accessed 31-October-2017].

[45] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam
Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen
Rumble, Ryan Stutsman, and Stephen Yang. The RAMCloud Storage System. ACM
Trans. Comput. Syst., 33(3):7:1–7:55, August 2015.

49

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-hpc#rdma-capable-instances
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-hpc#rdma-capable-instances
http://www.oracle.com/technetwork/server-storage/networking/documentation/o12-020-1653901.pdf
http://www.oracle.com/technetwork/server-storage/networking/documentation/o12-020-1653901.pdf

[46] Marius Poke and Torsten Hoefler. DARE: High-Performance State Machine Repli-
cation on RDMA Networks. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’15, pages 107–118,
New York, NY, USA, 2015. ACM.

[47] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed Shared Memory:
Concepts and Systems. IEEE Parallel Distrib. Technol., 4(2):63–79, June 1996.

[48] An IBM Redbooks publication. Delivering Continuity and Extreme Capacity with
the IBM DB2 pureScale Feature. http://www.redbooks.ibm.com/redbooks/pdfs/

sg248018.pdf, 2012. [Online; accessed 32-October-2017].

[49] W. Rdiger, S. Idicula, A. Kemper, and T. Neumann. Flow-Join: Adaptive skew han-
dling for distributed joins over high-speed networks. In 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pages 1194–1205, May 2016.

[50] Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. ProRea: Live Database
Migration for Multi-tenant RDBMS with Snapshot Isolation. In Proceedings of the
16th International Conference on Extending Database Technology, EDBT ’13, pages
53–64, New York, NY, USA, 2013. ACM.

[51] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking, 11(1):17–32, Feb 2003.

[52] Michael Stonebraker and Ugur Cetintemel. One Size Fits All: An Idea Whose Time
Has Come and Gone. In Proceedings of the 21st International Conference on Data
Engineering, ICDE ’05, pages 2–11, Washington, DC, USA, 2005. IEEE Computer
Society.

[53] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. RFP:
When RPC is Faster Than Server-Bypass with RDMA. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys ’17, pages 1–15, New York, NY,
USA, 2017. ACM.

[54] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. APUS : Fast
and Scalable PAXOS on RDMA. Technical report, Department of Computer Science,
University of Hong Kong, March 2017.

[55] Kazuo Watabe, Shiro Sakata, Kazutoshi Maeno, Hideyuki Fukuoka, and Toyoko
Ohmori. Distributed Multiparty Desktop Conferencing System: MERMAID. In

50

http://www.redbooks.ibm.com/redbooks/pdfs/sg248018.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248018.pdf

Proceedings of the 1990 ACM Conference on Computer-supported Cooperative Work,
CSCW ’90, pages 27–38, New York, NY, USA, 1990. ACM.

[56] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. Replication-driven Live Re-
configuration for Fast Distributed Transaction Processing. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 335–347, Santa Clara, CA, 2017.
USENIX Association.

[57] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast In-memory
Transaction Processing Using RDMA and HTM. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, pages 87–104, New York, NY, USA, 2015.
ACM.

[58] Alex Wiggins and Jimmy Langston. Enhancing the scalability of memcached. Intel
document, unpublished, 2012.

[59] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The End of a Myth:
Distributed Transactions Can Scale. Proc. VLDB Endow., 10(6):685–696, February
2017.

[60] Wei Zhang, Jinho Hwang, Timothy Wood, K. K. Ramakrishnan, and H. Howie Huang.
Load Balancing of Heterogeneous Workloads in Memcached Clusters. In Feedback
Computing, 2014.

51

	List of Figures
	Introduction
	RDMA Background
	The Problem with Traditional Sockets
	Remote Direct Memory Access (RDMA)
	RDMA Programming Model and the Need for Redesign

	RAMP: RDMA Migration Platform
	System Overview
	Architecture
	Memory Segment Layer
	Migration
	Ownership Transfer
	Data Pulls
	Paging Layer

	Migratable Containers

	Fault Tolerance
	Failure Model
	Properties
	Implementation
	The Global State
	Operations
	get_segments

	Evaluation
	Ownership Transfer
	Data Pulls
	Live Load Balancing Case Study

	Related Work
	Distributed Shared Memory Systems
	RDMA-Based Systems
	Shared Memory Systems
	Shared-Nothing Systems

	Data Migration Techniques

	Summary and Future Work
	References

