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Abstract

Conversations depend on information from the context. To go beyond one-round con-
versation, a chatbot must resolve contextual information such as: 1) co-reference resolution,
2) ellipsis resolution, and 3) conjunctive relationship resolution.

There are simply not enough data to avoid these problems by trying to train a sequence-
to-sequence model for multi-round conversation similar to that of one-round conversation.

The contributions of this paper are: 1) We formulate the problem of context resolution
for conversation; 2) We present deep learning models, including an end-to-end network for
context resolution; 3) We propose a way of creating a huge amount of realistic data for
training such models with good experimental results.
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Chapter 1

Introduction

1.1 Background

Conversation has helped to create human civilization and conversation will soon become a
part of the platform for the next generation of human-computer interface.

For one-round conversation, the problem can be reasonably solved by a combination
of traditional approach and a sequence-to-sequence model [39] trained on massive social
network conversation data.

However, this approach does not generalize to more than one round conversation easily.
We face the problem of co-reference resolution, ellipsis resolution, and conjunctive relation-
ship resolution, or the multi-round conversation data requirement immediately leads to a
geometric growth of training data: if we need Ω(N) data to train a one-round sequence-
to-sequence conversation model, then potentially we need Ω(N2) data to train two rounds,
and Ω(Nk) for k rounds. This data requirement is problematic even for a single vertical
domain.

1.2 Problem Definition

1.2.1 Context Resolutions

We wish to decompose a multi-round conversation or dialogue into many single rounds by
loading the prior context relevant semantics to the current and independent sentence or
question.
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Figure 1.1: Multi-round conversation breakdown

Classical studies on co-reference, ellipsis, and conjunctions all appear in the context of
conversations in different forms, and require different kinds of training data. We define
three types of context resolution problems as follows.

Co-reference resolution: Co-reference in linguistics is defined as the phenomenon
when two or more expressions in a text refer to the same person or thing; they have the same
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referent. In the case of conversation, we do not consider the same sentence co-reference
because such co-reference can be taken care of by our one-round conversation mechanism.
We also do not consider cataphora (when the anaphor appears after the antecedent) as it
does not naturally happen in a conversation. We will particularly focus on co-references for
names, time, locations, and noun phrases. For example, “it” in -I went to dinner at Jim’s
last night. -Was it delicious? is a case of co-reference. Identifying “it” with “dinner” is
the task of co-reference resolution.

Ellipsis resolution. Ellipsis happens more frequently in conversation than in a one-
person monologue. Ellipsis in conversations means that the expression of an entity is
omitted when the entity occurred in the previous conversation. For example, What are the
ingredients in McDonalds fries? Why taste bitter when cooling down? Ellipsis resolution is
to complete the second sentence to Why McDonalds’ fries taste bitter when cooling down?.

Conjunctive relation resolution: In texts, conjunctions help connect sentences.
conjunctive relationship means two sentences are syntactically connected by conjunctive
words[1]. The semantic meanings of these sentences are complete only when the sentences
are joined together. While co-reference and ellipsis indicate a reference to some object from
the preceding sentence, conjunctive generally indicate a reference to the entire preceding
sentence. These conjunctions can be coordinating, such as for (reason), but/yet (contrast),
and (addition), or (alternative), so (consequence); subordinating, such as after, although, as,
as long as, because, before, which usually introduce some condition to the main sentence; or
correlative, which are pairs such as both/and, whether/or, either/or, neither/nor, not/but,
rather/than.

In the next round conversation, often speakers, sometimes losing such conjunctions,
add or ask for: agreement, nouns, reasons, alternatives, conditions, or consequences. For
example, A: What do you like to do? B: Read books. A: And? Or A: I hate books.
In this latter case, A omitted conjunction “But”. We collectively call these “conjunctive
relations”.

The goal is to convert a multi-round dialogue to many single-rounds, and solve the
resolution problems so that these single-round sentences have complete and independent
semantic meanings, so are answerable.

Converting the multi-round dialogue into single-round ones and changing the problem
to “context resolution” problems significantly reduces the dimensionality of the problem.

This certainly does not solve all the problems, and to load all the semantics from the
context into a single sentence often is impossible or extremely cumbersome. For example,
consider a dialogue with two people discussing restaurants they liked and disliked for ten
minutes, then one asks: “what is a restaurant that is liked by both of us?” However, we

3



will cover a large fraction of practical cases. We will at least be able to handle co-reference
cases such as: I went to dinner at Jim’s last night. Was it delicious? and Who is the
prime minister of Canada? Who is his wife? ; ellipsis cases such as: Will Tom go to the
party? Unless invited., and What is the population of Canada? What about China?

1.2.2 Context Resolution Detection and Completion

In order to tackle the above context resolution problems in conversations, we furthur break
down the problem into two tasks, as shown in Figure 1.2:

1 context resolutions detection and classification.

2 incomplete sentences completion.

Figure 1.2: An illustration of breaking a multi-round conversation into complete single-
round conversations.
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Figure 1.3: An example of the detection and completion process.

For any sentence from a conversation, we first need to detect whether there exists
co-reference or/and ellipsis in the sentence, the types and positions where those context
related problem occurs in the sentence. There are four types of co-reference and ellipsis we
particularly focus on: people, time, locations and noun phrases. From the previous
example in Fig 1.3, an example of ellipsis occurs in Why taste bitter when cooling down?,
after the word Why and before the word taste. Next, the missing part of the sentence
needs to be located from the contexts. Therefore, The noun phrase McDonalds fries in
the context What are the ingredients in McDonalds fries? is our target to complete the
conversation.

To tackle the first task, we build a deep neural network model to

1 detect the co-reference and/or ellipsis in a given sentence

2 locate the position of them

3 classify the type of co-reference and ellipsis

For the second task, if the type of context resolution is one of people, time and locations,
the related entity could be easily retrieved from the context with the help of a Named
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Entity Recognizer such as [13]. The task becomes nasty when it comes to noun phrase
type, for the reason that there could be multiply noun phrases in the previous sentence.
Therefore, we build a deep neural network model to select the best matching noun phrase
of a given incomplete sentence by scoring all the potential noun phrases with the sentence.

1.3 Contributions

The contributions of this thesis are: 1) We initiate a comprehensive study of context resolu-
tion in conversation, where we defined a method to breakdown multi-round conversations
into single-round conversations and reduced the dimensionality of the problem. To our
knowledge, this is the first attempt at systematically defining and solving the problem of
contextual resolution in conversation.

2) We present deep learning models for context resolution.

3) We propose our novel method of generating a huge amount of realistic data for
training such models with good experimental results.

1.4 Thesis Organization

Chapter 2 and Chapter 3 introduce the background knownledge and related work of context
resolution. Chapter 4 introduces the method on constructing training data. Chapter 5
and Chapter 6 introduce the deep neural network models we proposed and the experiment
results. Chapter 7 introduces the conclusion and discussion of this thesis.
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Chapter 2

Background

2.1 Convolution Neural Network

Convolution Neural Networks(CNN) efficiently captures local features. Ever since LeCun
et al.,[27] first applied backpropagation and gradient-based learning to train CNN and
succeded in document recognition, CNN has become one of the most widely used neural
networks on various areas such as Image Recognition [24], Speech Recognition [4] and
Natural Language Processing [14].

CNN preserve the spatial structure of the input matrix. For example, as shown in
Figure 2.1, the input is a (28 × 28 × 3) matrix, which means the height and width of the
input is 28 and the depth of which is 3. Then, we employ a “filter” of size (5 × 5 × 3).
We convolve the filter with the input by sliding the filter both vertically and horizontally
over the input and compute the dot products. Therefore, after “convolving”, we result
in a (24 × 24 × 1) matrix. Multiple filters could be applied on the same input to extract
different features. For example, if we apply 8 filters, the result will be of size (24× 24× 8).
Activation functions such as ReLU and sigmoid are commonly applied on top of the dot
products.

Pooling layers basically downsample the result and make the representation smaller.
For the previous example, if we apply a max pooling layer with (3× 3) filters with stride
3 only on the height and width, we will end up in the result of size (8× 8× 8).

7



Figure 2.1: Two layer CNN example

2.2 Recurrent Neural Network

Recurrent Neural Networks(RNN) has shown promising results on processing sequencial
data. It has been applied on Image Generation [18], Sequence-to-Sequence learning [43]
and language modeling [42].

A general RNN cell has the following structure as shown in Figure 2.2. The key to
handling sequential data is that, every time an input is fed to the RNN cell, the RNN cell
will compute and update its hidden state which will be fed back into the model the next
time a new input is fed. We denote a sequence of vectors as x, the input vector at each
time step as xt. We can formularize a RNN cell as:

ht = fW (ht−1, xt)

, where ht denotes the hidden state at time step t, and fW is the recurrent activation
function with parameters W of the RNN cell. Different RNN cells have different functions
and compute yt according to W differently.

Long Short Term Memory networks (LSTM) are a type of RNN introduced by [21]. In
LSTM, a sigmoid layer called “forget gate” is employed to avoid useless history information.
The LSTM cell has the following recurrent activation function.

ft = σ(Wf · [ht−1, xt] + bf )
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Figure 2.2: RNN structure

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(WO · [ht−1, xt] + bO)

ht = ot ∗ tanh(Ct)

, where xt is the input vector, Wf ,Wi,WC ,WO, bf , bi, bC , bO are weight matrices and bias
vector parameters of the LSTM cell, Ct is the cell state vector and ht is the output vector
of the LSTM cell.

2.2.1 RNN encoder-decoder

The RNN encoder-decoder was first introduced by [10], the idea is to model an entire
process, such as machine translation [10] and conversation generation [40], through a neural
network. An RNN encoder-decoder consists of two RNN cells, as shown in Figure 2.3. The
RNN cell that reads the input sequence one at a time is the encoder. The final hidden
state hN of the encoder contains the compressed information of the entire input sequence.
The RNN decoder decodes the information from hN . There are many variances on the
decoder, [5] uses the weighted sum of the encoder’s output at each time step as the input
of the decoder, [10] uses hN as attention and feed it to the decoder at each time step along
with the output of the decoder at last time step.

The RNN encoder-decoder provides a possibility for end-to-end training where all the
parameters are optimized at the same time. It is particularly useful for context resolution
since it has the power to expliote and understand the contexts.
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Figure 2.3: RNN Encoder-decoder Architecture
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Chapter 3

Related Work

For text, there has been much classical or linguistic theoretical work on co-reference res-
olution and some work on ellipsis resolution, as well as conjunctions in texts. Some used
deep learning for co-reference in text [47], with limited datasets, applications, and models.

There are three main aspects that distinguish our study from existing work. First,
conversation is quite different from text. In conversation, we do not consider co-reference
or ellipsis in the same sentence (these are usually resolved by cQA, grammar rules, or an
lLSTM), neither do we consider cataphora, where the cataphor precedes the expression
to which it refers. The conjunctive relation resolution is more subtle, as in text there are
conjunction words, but in conversation they are sometimes naturally missing.

Second, we have created extensive training data to enable our learning. In text, there
are two small well-labeled datasets: the MUC and CoNLL-2011 shared task dataset. These
are far from enough and do not suit the conversation task. Our constructed data, however,
do not have context information during the training phase. That is, for co-reference, we
only learn the “reference” but do not have the “referenced entity” in the training data.

Last, other than classical studies of “ellipsis resolution”, we have not found machine
learning based research on “ellipsis resolution” or “conjunctive relation resolution”, even
in text. Texts are typically one personal monologue and the conjunction words logically
connect two sentences, thus there is no need to do “conjunctive relation resolution”.

Orthogonal to our research, there are other approaches using generative adversarial
network and reinforcement learning, for example, to avoid topics that would end a conver-
sation [28, 29].

In the following sections, we introduce neural networks that we applied in our models,
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including word embedding, convolution neural networks, recurrent neural networks, and
their variances.
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Chapter 4

Creating Training Data

Context resolution requires large scale and annotated training data. Obtaining such a data
set is key to this project. We now describe our idea of how to obtain such data, via one
concrete example.

The ideal training data for co-reference is a collection of small conversations, with
proper labels, such as follows:

A: Who is Pierre Trudeau?
B: Justin’s father.
A: When did he die?
Label: When did Pierre Trudeau die?

Thus, using this ideal data set to train a neural network, we will be able to complete
“When did he die” to “When did Pierre Trudeau die?” Then a one-round conversation
engine can continue the conversation smoothly.

Although we do not have such ideal data sets, we do have many sentences such as
“When did Pierre Trudeau die?” That is, different from normal learning tasks where
putting labels on the data is a major problem, here, we have many labels, but no data.
However, observing that the “data” (When did he die) in fact is not that different from the
“label” (When did Pierre Trudeau die), and with careful manipulations, we can construct
the data:

When did [he] die?

While this is an easy case, many other cases are more complicated and to be discussed
next.

13



4.1 Training Data Components

First, we introduce the core components of our dataset. In order to precisely detect co-
reference and ellipsis, our dataset consists of three main parts: positive co-reference, posi-
tive ellipsis, and negative examples.

Positive co-reference examples are positive data of co-reference cases. They are
sentences that contain pronouns that refer to entities from the context. Pronouns that
have referring functions are labeled. Positive co-reference examples give our model the
ability to detect real co-reference cases.

Positive ellipsis examples are sentences that contain ellipsis cases. Entities from
the context are omitted in these sentences leaving the sentence incomplete. The positions
of the missing entities are labeled. Positive ellipsis examples give our model the ability to
detect real ellipsis cases.

Negative examples are complete sentences and have complete semantic meanings.
They have two main purposes: 1) to work as control groups to help the model distinguish
real co-references and ellipsis from those complete sentences with similar structures, 2) and
to provide a large variety of natural language patterns.

There are two types of negative examples. The first type is negative examples for
co-reference. Pronouns in natural languages have multiple meanings. For example:

1. it seems like you have not slept yet.

2. it belongs to Jim.

In the first sentence, “it” does not have co-reference meaning. While in the second sen-
tence, “it” does. Sentences that contain pronouns, but do not have reference meanings are
included in this part. These sentences give our model the ability to distinguish pronouns
and reference words that have co-reference functionality from those that do not.

The second type is general negative examples. These sentences are complete sentences
and have a large variety of patterns. They serve as both the negative examples of ellipsis
cases and general language pattern providers. These sentences provide our model with
complex natural language patterns and give our model the ability to distinguish between
complete sentences and incomplete sentences.

14



4.2 Training Data Construction

Next, we introduce how we create the above three components. There are four phases in
the data construction process: data collection, keywords detection, data modification, and
data label generation. Figure 4.1 shows the workflow of the training data construction
process. A full process of constructing the Chinese dataset with details is in Appendix.1.

Figure 4.1: The flow chart of training data construction
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4.2.1 Data Collection

Sentences in dialogues have the features of being short and containing only one or two
entities. Language data from Community Question Answering (cQA) websites fit our
purpose perfectly since 1) these questions and answers tend to be short and precise; 2)
large user groups provide a huge corpus data; 3) these single round question-answering
dialogues share some language features with chatting dialogues.

Initially, QA pairs from the internet are collected. These are our raw data. These
raw data are mostly precise, complete, short, and independent sentences and contain no
co-references to the context.

Datasets are constructed out of these raw data. We will focus on four types of most
common entities: location, time, people, and noun-phrases. A large number of co-reference,
ellipsis, and conjunctive relationships occur to them. Therefore, we construct four datasets
in total. Each dataset contains training data for a certain type of entity.

4.2.2 Keywords Detection

First, we need to detect and label words that refer to time, location, people or noun phrases.
We parse questions using the Stanford Parser [38] to generate syntax trees annotated
with POS tags. The POS-tags provide syntactic information that helps guide the data
generation rules. Then, we use the Stanford Named Entity Recognizer (NER) [13] to tag
tokens that refer to time, location or people entities. We call these words marked words.
The positive examples and negative examples are then randomly sampled to keep the ratio
balanced.

Data Modification

Our goal is to transform short sentences from dialogues into positive examples of coreference
and ellipsis. The main challenge in generating those is to identify segments that can be
omitted or replaced with a pronoun so that the resulting sentence is both grammatical and
natural. Our method modifies complete sentences into sentences that contain co-reference
or ellipsis according to syntactic patterns.

Create positive co-reference examples: Since pronouns in co-reference sentences
actually refer to an entity from the context, we can reverse the process and create co-
reference cases by replacing entities with pronouns in sentences. It is feasible also because

16



for a certain entity type (e.g. time), the corresponding pronouns are limited. Therefore,
we create positive co-reference examples by replacing the marked words in the sentence by
certain pronouns.

Create positive ellipsis examples: For the same reason as above, the process of
understanding ellipsis could be reversed. We can create ellipsis cases by omitting entities
in sentences. Therefore, we create ellipsis cases by deleting the marked words in the
sentence directly.

The above two modifications could result in some sentences that do not make sense.
However, since our raw data consists of a large variety of sentence patterns, refining the
grammar constraints could limit this disadvantage greatly.

Create negative examples: Because of the functionality of negative examples as
stated above, these sentences are complete sentences. In order to provide enough language
patterns, negative examples are randomly sampled out of raw data. In addition, a number
of complete sentences that contains pronouns already are added. It could enhance our
model’s ability to distinguish real co-reference and “fake” co-reference.

Figure 4.2: An example of creating training data
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4.2.3 Data Label Generation

Given a modified sentence s consisting of m words, denotes as

s = (s1, . . . , sm)

, the label is a sequence with the same length as s, as

l = (l1, . . . , lm)

Each element in l corresponds to a word in s and indicates the type of its corresponding
word. There are three types:

• type 0: the word is not referring to any entity,

• type 1: the word is next to an omitted or replaced entity,

• type 2: the word is referring to an entity.

Figure 4.2 shows an example of the data creation procesure. Note that there could be two
or more consequent 2s in one label for the reason that a co-reference case could be more
than one word.

Therefore, two consequent 1s in one label indicates an ellipsis occurance between these
two positions. One 1 followed by one or more 2s, followed by zero or one 1 in one label
indicates an co-reference occurance there.

4.3 Addressing Issues In Constructed Data

Constructed data are not exactly the same as real data. Due to the fact that a group of
grammar rules is applied when constructing the data, the most common “hidden danger” is
that there are differences between the real data and the constructed data, where some real
co-reference and ellipsis cases are either not covered or categorized incorrectly. Therefore,
we face the problem that the performance of our model will decrease when facing user-
generated real data. In this section, we will introduce how we address the issues which
are related to the differences between the constructed data and real data, in order to 1)
generalize the constructed data to make it more realistic, and 2) reduce the impact on the
performance of our deep neural network models due to those differences.
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Figure 4.3: Venn diagram: area A stands for false negative examples, area B stands for
true positive examples, area C stands for false positive examples.

First, we define false negative and false positive regarding the differences between
the constructed data and real data as follows, see Figure 4.3. False negative examples are
the real data that do contain co-reference or ellipsis but are not included in the constructed
dataset. False positive, on the contrary, means that real data that do not contain co-
reference or ellipsis but categorized as they do in the constructed dataset.

4.3.1 Reducing False Negatives

The key here is to distinguish “real” co-reference/ellipsis among the corpus. Therefore,
first, we enlarged the coverage of our constructed data and reduce the portion of uncovered
real cases. Intuitively, we want area B in Figure 4.3 as large as possible. As humans, when
we come up with a sentence that has co-reference or ellipsis in it, most of the time we
actually know the complete and exact meaning of the sentence in our brains. See the
example in Figure 4.4, this provides the insight that a part of the co-reference and ellipsis
occurrence could actually be transformed from complete sentences. Therefore, we tried
to mimic the procedure when humans actually transform a sentence into co-reference and
ellipsis sentences in their brains by a large group of grammar rules that follows our language
nature, so that this part of real data widely covered in the constructed data. For example,
in the Chinese dataset, nine categories of “candidates” that could be transformed into
co-reference and ellipsis data are proposed and each with detailed syntactic rules to keep
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the transformation as smooth and realistic as possible. Applying such rules on our 300
million collected raw data provides the prosperousness in the constructed data.

Figure 4.4: The person on the left actually asks for information about Pierre Trudeau
when he says When did he die?.

However, despite the part of data that could be transformed from complete sentences
naturally with grammar rules, there still exists real examples that violate those assump-
tions. For instance, gender and number agreements could be very tricky to cover fully.
Although there exists a numerous number of syntactic forms of co-reference and ellipsis
in natural linguistics, the semantics and sentiments in the sentences are similar. Given
an unfamiliar syntactic form, the human can still understand the sentence base on the
meanings of the words in a sentence. For instance, “Saw the trailer? Pretty cool right?”
is a syntactic form that is difficult to cover by grammar rules. However, with the help of
“saw”, ”trailer” and “cool”, we can inference that there occurs an ellipsis in a movie or a
television show.

Therefore, the key to making the model have good performance on real cases that are
not covered by the grammar rules is to fit the model on the semantics and sentiment mean-
ings as well as the syntactic of the sentences, and most importantly, to avoid overfitting
on the grammar rules we generated. To achieve this, we first employ a large amount of
corpus to provide the prosperousness in semantics. For the Chinese dataset, the 300 million
collected sentences are rich in semantics and sentiments. And also, an advantage of using
deep neural network model is that we can introduce prior sentiment information by using
pre-trained word embedding [31]. Secondly, to enhance the richness of semantics in the
constructed data, the grammar rules are strictly syntactic based. That is, instead of writ-
ing grammars based on words, grammars are based on the syntactic roles (e.g. subjective,
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objective, pronoun). In this way, the constructed data will keep the richness in the original
corpus without filtering out sentences that do not contain certain words.

4.3.2 Reducing False Positives

False positives examples are examples are cases that have similar syntactic structure, but
naturally do not have co-reference or ellipsis inside. The challenge here is to make the
model learn to distinguish positive and negative cases given syntactically similar sentences.
For example, “it seems like you have not slept yet.” and “it belongs to Jim” all have “it”
followed by a verb. The first “it” does not have co-reference meaning while the second does.
Therefore, the problem could be addressed by adding negative training data. Adding a
certain number of sentences like the first sentence in the example to the dataset makes
the dataset balanced. Selecting negative examples is very important in constructing the
dataset. For the Chinese dataset, we first carefully select complete sentences that have
similar syntactic structures to our “candidate” structures and keep the ratio of negative
and positive examples 1 : 1. In addition, these sentences also provide a large variety of
natural language patterns which also benefits in reducing the false negatives.
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Chapter 5

Context Resolution Models

5.1 Co-reference and Ellipsis Detection Model

The Co-reference and Ellipsis Detection model is to predict the type of each word suggested
in Section 4.2.3 of a given sentence s = {s1, . . . , sn} and its corresponding POS-tags t =
{t1, . . . , tn}. We formulate the model as follows:

{d1, . . . , dn} = F(s, t)

where F indicates our model, di indicates the probability distribution over the three types
of word si. Initially, s and t could be of various length. They are first zero-padded into a
fixed length m. We denote the padded sentence as s = {s1, . . . , sm}, where si is a word.
We denote the padded POS-tag sequence as t = {t1, . . . , tm} as well. Our model has the
following components.

Word and POS-tag encoding: As shown in 5.2, we first apply a 200-dimensional
embedding [31] to s and a 15-dimensional embedding to t. Let se = {se1, . . . , sem} and te =
{te1, . . . , tem} be the embedded representations. As suggested by [16], we also include the
position embeddings in the model, denoted as p = (p1, . . . , pm). The word embeddings and
positional information are incorporated together as e = {se1 + p1, . . . , s

e
m + pm}. Finally te

and e, are concated together as the final output: p = {p1, . . . , pm}, where pi = [se1 + p1, t
e
1].

5.1.1 Sequence-CNN-pooling:

Recently, Convolutional Neural Networks (CNN) based models have shown promising re-
sults in sentiment analysis [22] and translation [16]. Inspired by the recent success of
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Figure 5.1: Co-reference and Ellipsis Detection Model Architecture
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Figure 5.2: Word and Pos-tag encoding layer

Figure 5.3: The Sequence-CNN-pooling structure

Convolutional sequence-to-sequence model [16]. As shown in Figure 5.3, we apply a stack
of five convolution layers followed by a global max pooling layer on top of the word and
POS-tag encodings to extract underlying patterns in the sentence. The convolution layers
have 512 filters of size 3. We use gated linear units (GLU) [11] as the activation func-
tion, and we included residual connections to reduce training difficulty [20]. The output
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is denoted as hphrase = CNN(p) which contains the meaning of every phrases consist of
consequent seven words.

Figure 5.4: Embedding layer to Sequence-CNN-pooling layers

5.1.2 LSTM decoder:

Next, as shown in Figure 5.5, hphrase is set as the initial state of an LSTM-decoder. The
embedded sentence se is then fed into the decoder one word at a time. We denote the
output of the decoder as hdecoded = {h1, . . . , hm} where hi is the output at timestep i.

Figure 5.5: LSTM decoder layers
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5.1.3 Prediction:

Finally, hdecoded is fed to a time-distributed fully connected layer, which means each hi is
fed to a fully connected layer FCi. Each fully connected layer has 3 output units. We
denote the final output of a time-distributed fully connected layer as d = {d1, . . . , dn},
where di indicates the probability distribution over the three types of word si.

5.1.4 Loss Function:

To train this model, we apply cross entropy loss. We denote the real distribution of each
word in the sentence as y = (y1, . . . , ym), where yi ∈ R3. The loss is as follows:

L = − 1

n

m∑
i=1

fclass∑
j=1

yij log(dij)

5.2 Pronoun Resolution Model

The Pronoun Resolution model is to estimate the ”appropriateness” of inserting a noun
phrase into the orginal sentence. For instance, the score of “[slot] compete freely with each
other“ and “companies“ is 4.0449, while the score of the same sentencec and “materials“ is
-0.0021. Similarly to the detection model, given a sentence smarked =

{
smarked
1 , . . . , smarked

n

}
with marked slots where noun phrases are omitted or replaced, where smarked

i could either
be a word or a marked slot, its corresponding POS-tags tmarked =

{
tmarked
1 , . . . , tmarked

n

}
,

and a candidate noun phrase n = {n1, . . . , nk}. we formulate the model as follows:

g = F(smarked, tmarked,n)

where g is the score of appropriateness.

First, smarked and tmarked are fed into the Word and POS-tag encoding and the
Sequence-CNN-pooling components in Section 5.1. We denote the output as pmarked

s,t .
Next we feed the 200-dimensional word embeddings of n to the Sequence-CNN-pooling
component and denote the output as pn. Finally, pmarked

s,t and pn are concated and fed to
a multilayer perceptron (MLP), which consists of two hidden layers, each with 128 rectified
linear unit [32]. The output g = F(s,n) is a scalar score for the match between the input
sentence and noun phrase.
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Loss Function: To train this model we apply hinge loss. During training for each
sentence s we know the correct corresponding noun phrase n+; meanwhile we random
sample a noun phrase n− as the negative sample. Then the hinge loss is defined as:

Lhinge = max{0,∆ + F(smarked, tmarked,n−)−
F(smarked, tmarked,n+)}

By optimizing the parameters to minimize Lhinge, we encourage the model to learn that
F(smarked, tmarked,n+) should be at least F(smarked, tmarked,n−) plus a margin ∆.

5.3 The End-to-end Model

Based on the above two individual models, we further propose an end-to-end model where
the detections and resolutions are done simultaneously:

[{d1, . . . , dn} , g] = F(s, t)

The idea is straight-forward. s and t are processed by Word and POS-tag encoding,
Sequence-CNN-pooling, LSTM encoder-decoder and Prediction components the
same as in Section 5.1 to generate the output distributions d. The output of Sequence-
CNN-pooling during this step is denoted as ps,t. Then, n is processed the same as in
Section 5.2. Following the same procesure in Section 5.2 only replacing pmarked

s,t with ps,t,
the score g is generated.

5.3.1 Loss Function

To train this model, we calculate the hinge loss Lhinge and the cross entropy loss Lcross−entropy

samely as above. The two losses are added up with a coefficient for balancing:

L = Lhinge + fbalance ∗ Lcross−entropy
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Figure 5.6: End to end Resolution Model Architecture
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Chapter 6

Experiments

6.1 Datasets And Formats

All of our models are language independent. We ran experiments on Chinese datasets.
Our Chinese dataset is made from data collected from Chinese cQA websites including
BaiduZhidao, SosoWenwen, which contains over 300,000,000 QA pairs. We generated
time, location, people and noun phrase examples according to the breakdown in Table
6.1. Because Chinese language is graphically based, Jieba [41], a Chinese segmentor which
segments a sentence into a sequence of words, is applied on each sentence prior to our data
generation.

Each dataset is divided into two parts, the training data and the testing data, at the
ratio of 9:1; the testing data is completely out-sampled from the training data. The Co-
reference and Ellipsis Detection Model is trained and tested on all four datasets. The
Pronoun Resolution Model and End-to-end Model are tested on the noun phrases dataset.

Dataset Negative Ellipsis Coreference Total

Chinese

Noun phrase 1 000 000 800 000 1,200 000 3,000 000
Location 1 000 000 200 000 750 000 1 950 000
People 1 000 000 990 000 601 000 1 700 000
Time 750 000 20 0000 500 000 1 450 000

Table 6.1: Number of sentences for each dataset in this paper.
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6.2 Implementing Details

The Chinese word embeddings are pre-trained using word2vec [31], with the raw data of
our corpus. The models are trained by the Adam algorithm [23] and with a learning rate
of 3× 10−4.

6.3 Results

6.3.1 Co-reference And Ellipsis Detection Model

Sentences as long as POS-tag sequences are fed to the model. The model outputs the
positions of co-reference and ellipsis if they exist. More specifically, the model predicts the
probability distributions for each word in the sentence, and the word is then classified to
the type with the highest probability. We denote the output as d, where d = {d1, . . . , dm},
the real type as l = {l1, . . . , lm}. Under this setting, we define the follows:

• true positive data point (TP): ∀i = 1, . . . ,m, st. di = li and ∃i = 1, . . . ,m st.
li = 1 ∨ li = 2.

• true negative data point (TN): ∀i = 1, . . . ,m, st. di = li and ∀i = 1, . . . ,m st. li = 0.

• false positive data point (FP): ∃i = 1, . . . ,m st. di 6= li and ∃i = 1, . . .m st.
di = 1 ∨ di = 2.

• false negative data point (FN): ∃i = 1, . . . ,m st. di 6= li and ∀i = 1, . . . ,m st. li = 0.

The accuracy, precision, and recall rate are then calculated accordingly. The experiment
results are in Table 6.2.

Dataset Accuracy Precision Recall

Chinese

Noun phrase 93.2% 92.7% 96.9%
Location 95.6% 95.3% 95.7%
People 96.1% 92.9% 97.5%
Time 93.8% 91.1% 95.7%

Table 6.2: Accuracy, Recall and Precision Rates of Co-reference and Ellipsis Detection
models
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The high accuracies indicate the strong ability to distinguish positive examples and
negative examples. The slightly higher recall rate than precision indicates the model tends
to treat potentially words as positive and retrieve more potentially positive candidates,
which meets our requirements in this field properly.

6.3.2 Pronoun resolution model

The model is trained and tested on noun phrase datasets. The model is not tested on time,
people, and location datasets because the resolutions in these datasets are straightforward.
The corresponding named entity could be retrieved easily from the context according to
its specific type (time, people or location). On the contrary, noun phrases are ambiguous
and difficult to resolve with simple mechanisms.

We evaluate the model’s performance on the test set. For each sentence in the test
set, we feed it into the model together with the correct noun phrase and nine randomly
sampled noun phrases. The model outputs the ’appropriateness’ scores for all 10 noun
phrases and we choose the one with the highest score as the model’s prediction. Under
this setting, a naive model that outputs random scores will have an overall accuracy close
to 10%. Our Pronoun Resolution Model’s (PRM) performance is listed in Table 6.3.

Dataset Model K = 1 K = 2 K = 3

Chinese
PRM 67.2% 84.8% 91.2%
PRM with PAD 69.1% 85.2% 91.2%
Bigram 22.8% 37.1% 48.2%

Table 6.3: Top K accuracies of Pronoun Resolution models

When integrating the PRM with Reference Identifying Model(RIM), we find that some-
times RIM predicts a word in a sentence to be a reference when it is not. This requires our
PRM to have the ability to predict that nothing fits for a PRONOUN slot. To achieve
that we create a special token PAD, representing the null string. Then we modify the
hinge loss to be:

Lhinge = max{0,∆ + F(s,n−)−F(s,n0)}+
max{0,∆ + F(s,n0)−F(s,n+)}
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Where n0 represents the word embedding for PAD. At inference time we can input
PAD along with other candidate noun phrases to PRM. If PAD token has the highest

score, that means nothing should be fit into the reference slot given by RIM. We trained
PRM again with the aforementioned modifications on the same training data set. Surpris-
ingly, we find that the top 1 accuracy on the test set improves by 1.86% and we cannot
yet justify why. For comparison, we experimented ranking the candidates based on bigram
frequency. The result is shown in Table 6.3.

6.3.3 End-to-end Model

The end-to-end model is also tested only on the noun phrase dataset for the same reason as
above. This model is trained with the original sentence as well as the correct noun phrase
and 9 random sampled noun phrases. As for outputs, it has two parts, the co-reference
and ellipsis detection of the sentence, and the score of ’appropriateness’. The experiment
results of the end-to-end model are shown in Table 6.4.

Dataset Accuracy Precision Recall K=1 K=2 K=3
Chinese 93.8% 95.5% 95.3% 70.1% 82.9% 89.0%

Table 6.4: Accuracy, precision and recall rate, and top K resolution accuracies of the
end-to-end model

Comparing the end-to-end model with the detection model, for the Chinese dataset,
we found that the end-to-end model has improvements of 0.6% on accuracy and 2.8% on
precision. The recall rate has dropped by 1.6%. The result shows that involving candidate
phrase information, the ability of detecting the correct co-reference and ellipsis is improved.

Comparing to end-to-end model with the PRM, for Chinese dataset, we found that the
top 1 accuracy is slightly improved by 2.9%, while top 2 and top 3 accuracies are dropped
by 1.9% and 1.2%. The drops are expected as the position information of co-reference and
ellipsis are not given. The accuracy of resolution is based on the accuracy of detection in
the end-to-end model.

6.3.4 Selected Results

Table 6.5 presents several conversations resolution examples by our models. Symbols in
the sentences have the following meanings. 4 indicates eclipses. Blue words indicate
co-references followed by the type of co-referencing in square brackets.
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Detection

A:加拿大总理是谁?
(Who is the prime minister of Canada?)
B: 贾斯汀鲁铎.
(Justin Trudeau.)
A:他[People]老爸是谁?
(Who is his[People] father?)

Resolution 贾斯汀鲁铎老爸是谁? (Who is Justin Trudeau’s father?)

Detection

A: 绵中离我们近吗, 我朋友去那里[Location]上学.
(How far is the Mian High school? My friend is studying there[Location].)
B: 打车过去4[Location]十分钟 (Ten munites cab 4[Location].)
A: 打车钱他[People]报销我就去4[Location]
(I will go 4[Location] if he[People] reimbursed me the cab fee.)

Resolution

A: 绵中离我们近吗, 我朋友去绵中复读
(How far is the Mian High school? My friend is studying in Mian High school.)
B:打车过去绵中十分钟.
(Ten munites cab to Mian High school.)
A:打车钱我朋友报销我就去绵中.
(I will go to Mian High school if my friend reimbursed me the cab fee.)

Detection
A:麦当劳的薯条是什么做的?为什么4[Noun phrase]凉了吃会涩呢？
(What are the ingredients in McDonalds’ fries? Why 4[Noun phrase]
taste bitter when cooling down?)

Resolution
为什么麦当劳的薯条凉了吃会涩呢？
(Why McDonalds’ fries taste bitter when cooling down?)

Detection
A:法国人喜欢吃生一点的牛排.
(The French prefer steaks rare.)
B:4[People]为什么不吃熟的4[Noun phrase]
(4[People]Why not eat well-done ones4[Noun phrase]?

Resolution
法国人为什么不吃熟的牛排?
Why not the French like well-done steaks?

Table 6.5: Selected Examples
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Chapter 7

Conclusion and Discussion

Currently, most chatting robots depend on grammar rules to handle multiple-round conver-
sation for special cases. Many people even think the multiple-round conversation can only
be implemented in vertical domains by such special custom rules. We have argued that
a multi-round conversation can be decomposed into single-round conversations together
with context resolution.

We have systematically defined the context resolution problem for conversation and
initiated a comprehensive study of this problem. We have demonstrated how to create
training data to train an end-to-end deep learning network to solve our problem with high
accuracy, for a large sub-class of our problem.

This study leads to many open studies. Our work could be extended to wider con-
textual domains, including more conjunctive relations and more careful linguistic studies
of conjunctive relations in conversations. Our work could be extended to wider language
domains, since our framework is language independent. Studies could go beyond context
resolution and include semantics from conversation history. At the application level, an
end-to-end Question-Answering system could be formed by combining our work with QA
works, for example, that of [8]. Moreover, beyond context-resolution, multi-round chatting
by a chatbot certainly involves many other aspects, such as avoiding conversation-ending
topics [29] and consistency [36]. Eventually all these should be integrated to an end-to-end
system with the context resolution models.
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APPENDICES

.1 Training Data Creation Process

In this section, we will introduce the procesure we follow to create our training data.

.1.1 Word labeling

Initially, we have collected over 300,000,000 Question-Answer pairs from Chinese cQA
websites including BaiduZhidao1, SosoWenwen2 and others. All our training data are
created out of these collected sentences. The following steps are applied.

• Sentences of length longer than 25 words are removed. The leftover sentences usually
contain 6-7 words in our new data set D.

• 9 types of sentences, to be defined in Section .1.2, are then selected from D, for each
of the following 4 datasets. Of these 9 types, types 1,2,9 do not contain labeled words,
types 1-4 will serve as negative examples and type 2 is essential “everything else in
D” and thus is trimmed to the current sizes in Table 2. Type 9 contains sentences
that already have co-referents themselves. Types 5-8 will be used to generate positive
examples (by replacing a word as a case of co-reference or by removing a word as a
case of eclipse or conjunction). All other types, except for type 2, keep their original
sizes.

– Time dataset: we denote the time-words as “labeled words”.

– Location dataset: we denote the location-words as the “labeled words”.

1https://zhidao.baidu.com/
2https://wenwen.sogou.com/
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– People dataset: we denote the people-words as the “labeled words”.

– Noun phrase dataset: we denote the noun phrases as the “labeled words”.

The final data set contains 8003752 sentences, detailed in Table 2. The sizes of above
4 datasets are also given in Table 2. Note that there exist some overlaps among these four
datasets: if a sentence S contains a time-word and a location-word then S belongs to both
Time dataset and Location dataset; however, in the Time dataset, the time-word in S is
the only labeled word, and in the Location dataset, the location-word S is the only labeled
word. Ditto for People and Noun phrase datasets.

.1.2 Word replacement

At the beginning of Section 4, we have replaced “Trudeau” by “he” to show how to con-
struct the training data. Other replacement rules are tedious, although not beyond control,
and they will be defined in this section. As these are Chinese language-specific details and
using the same idea, a non-Chinese reader can safely skip the rest of this section.

We now explain how to replace the entities we found from the previous step. We divide
the sentences into nine different types in each of the 4 domains: time, people, location,
noun phrase. In order to define these nine type of sentences, we first, need to introduce
our Reference Word (RW) lists for each the four datasets.

Let X=Noun phrase, Location, People, or Time. Consider a sentence SX in domain
X. RWX

4 includes a complete list of co-reference words for in SX . RWX
3 contains the list

of pronouns or similar we will use to replace corresponding entities in SX . When a word
in RWX

1 appears before a labeled word or a word in RWX
2 appears after a labeled word,

then they are not a real pronoun and do not serve as a co-referent, in SX .

• Noun phrase:

– RWN
1 , RWN

2 , RWN
3 , RWN

4 = {”这” (this, it),”那” (that),”这个” (this one),
”那个” (that one), ”这些” (these),”那些” (those) }

• Location:

– RWL
1 , RWL

2 = {”这” (here),”那” (there),”这儿” (here),”那儿” (there), ”这个”
(here),”那个” (there), ”这里” (here), ”那里” (there), ”这边” (here), ”那边”
(there)},
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– RWL
3 = {”这” (here),”那” (there), ”这个” (here), ”那个” (there) },

– RWL
4 = {”这儿” (here), ”那儿” (there), ”这里” (here), ”那里” (there), ”这边”

(here), ”那边” (there), ”这地方” (here), ”那地方” (there), ”这个地方” (here),
”那个地方” (there)}

• People:

– RW P
1 = {”这” (this),”那” (that), ”这个” (this one), ”那个” (that one), ”这些”

(these), ”那些” (those)},
– RW P

2 = {”她” (she, her,), ”他” (he, him, his), ”它” (it, its), ”他们” (they,
their), ”她们” (they, their), ”它们” (they, (their)},

– RW P
3 = {”这” (this), ”那” (that), ”这个” (this one), ”那个” (that one), ”这些”

(these),”那些” (those)},
– RW P

4 = {”她” (she), ”他” (he), ”他们” (they, them), ”她们” (they, them), ”这
个人” (this person), ”那个人” (that person), ”这些人” (these people), ”那些
人” (those people), ”这人” (this person), ”那人” (that person), ”那谁” (that
guy)}

• Time:

– RW T
1 , RW T

2 = {”这” (this time point, it), ”那” (that time point, then), ”这
个” (this time point),”那个” (that time point), ”这时” (this time), ”那时” (that
time, then),”这时候” (this time), ”那时候” (that time), ”这天” (this day), ”那
天” (that day), ”那年” (that year)},

– RW T
3 , RW T

4 = {”这时” (this time), ”那时” (that time, then), ”这时候” (this
time), ”那时候” (that time), ”这天” (this day), ”那天” (that day), ”这个时候”
(this moment), ”那个时候” (that moment), ”那年” (that year)}

These four sets of reference words provide the flexibility of modification and prevent
generating incomplete sentences. Next, as shown in Figure 1 and Figure 3, in each of the
four domains X ∈ = {Time, People, Location, Noun Phrase }, we search for the sentences
of nine types according to the following rules.

The sentence, SX for domain X is considered a sequence of words:

S = {w1, w2..., wn}

where we will use a ∗ to denote a labeled word, w∗. We use wl to denote the word left to
word w, and wr the word on the right. Noun denotes the set of all nouns. Conj denotes
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labeled = null

∃w s.t. w ∈ S ∧ w ∈ RW4

∧w∗, w∗∗ /∈ (Noun ∪ Pron ∪ Adv)
∧w∗ /∈ Sym

type 9

otherwise

RW3 ∩ S 6= ∅

type 1

RW3 ∩ S = ∅

type 2

Figure 1: Classifications for Sentences Contain No Labeled Words

labeled 6= null

RW3 ∩ S 6= ∅

type 3

RW3 ∩ S = ∅

type 4

(labeled∗ = null∨
labeled∗ ∈ Pron∨

labeled∗ ∈ (RW1 ∪RW2)∨
labeled∗∗ ∈ (RW1 ∪RW2))
∧labeled∗ /∈ Conj
∧labeled∗∗ /∈ Conj

type 5

Figure 2: Classifications for Sentences Contain Labeled Words

labeled 6= null

labeled∗ /∈ RW1

∧
labeled∗ /∈ RW2

type 6

(labeled∗ ∈ RW1

∨labeled∗∗ ∈ RW1)
∧labeled∗∗ /∈ Noun

type 7

labeled∗∗ ∈ Noun

type 8

Figure 3: Classifications for Sentences Contain Labeled Words Continued

the set of all conjunction words. Pron denotes the set of all pronouns. Adv denotes the
set of all adverbs. Sym denotes the set of all punctuations.

We present examples for each type in Table 1, where special words (e.g. labeled words)
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are in special colors and followed by its label in brackets.

Type Dataset Sentence and Translation

Type
1

Noun Phrase
我都醒了你这(RWN

3 )是还没睡呐.
I woke up already, it seems like you have not slept yet.

Time
那(RW T

3 )你毕业了想做什么呢
Then what is your plan after graduation.

Type 2 People
中国自古以来谁的武功最高啊？
Who is the top martial artist of all times in China?

Type 3 People
那(RW P

3 )小编肯定不是东北 银(labeled words).
So, that the editor must not be a northeastern folk.

Type 4 Time
狗狗一年四季(labeled word)都伸舌头是为什么
Why do dogs stick their tongues out all year round?

Type
5

Location
这(RWL

1 )北京(labeled word)的霾被你赶上了哈哈.
This Beijing fog caught you!

Noun Phrase
葡萄酒(labeled word)放久了还能再喝吗？
Is wine stored a long time okay to drink?

Type 6 Location
西直门(labeled word)有啥好吃的吗？
Any great food around Xizhimen?

Type 7 People
那个(RW P

1 )小罗伯特唐尼非常帅!
That Robert Downey Jr is very handsome.

Type 8 People
杜莎夫人(labeled word)蜡像馆(noun)有学生票吗?
Does Madame Tussauds wax museum have student tickets?

Type 9 Noun Phrase
因为那(RWN

4 )是大年夜.
Because that was New Year’s Eve.

Table 1: Examples of sentences and translations with labeled words (red) and other special
words (blue) of nine types

Sentences are divided into the above nine types according to their syntaxes and seman-
tics. Different modification rules are applied to different types in order to ensure that the
modified sentences are proper sentences.

Sentences belong to types 1-4, are complete sentences and have complete semantic
meanings. Even though sentences from type 3 and type 4 contain reference words, these
words do not have co-reference funtionality. The first example in Table 1, the word 这这这
(this) in 我都醒了你[这这这][RW3]是还没睡呐(I woke up already, it seems like you have not
slept yet.) does not refer to any context.
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These complete sentences are divided into the above four types in order to balance the
data ratios. These sentences give our model the ability to distinguish reference words that
have co-reference functionality from those not.

In sentences belong to type 5, labeled words could be omitted and the leftover parts
of these sentences still make sense. In the 6th example in Table 1, when 北北北京京京 Beijing is
removed from [这这这][RW1][北北北京京京][labeled word]的霾被你赶上了哈哈(This Beijing fog caught
you!), the leftover part, [这这这][RW1]的霾被你赶上了哈哈(The fog here caught you!) is still
a good sentence and this is clearly an example of eclipse. These sentences make good data
for the eclipse detection and some conjunctive relations.

In sentences belong to type 6 and type 7, labeled words could be replaced by reference
words and the modified sentences still make sense. In the 8th example in Table 1, [西西西直直直
门门门(Xizhimen)] in [西西西直直直门门门]有啥好吃的吗？(Any great food around Xizhimen?) could
be replaced by [那儿](there) and 那儿有啥好吃的吗(Any great food there) is a typical
co-reference case. While in type 8, the labeled words are used as adjectives and could be
replaced by reference words followed by a ”的” (of/’s). For example, [杜杜杜莎莎莎 夫夫夫人人人(Madame
Tussauds)] in [杜杜杜莎莎莎夫夫夫人人人][labeled word][蜡蜡蜡像像像馆馆馆][noun]有学生票吗(Does Madame Tussauds
wax museum have student tickets?). could be replaced by [她(she)] followed by a ”的(’s)”3.
她的[蜡蜡蜡像像像馆馆馆][noun]有学生票吗 (Does her wax museum have student tickets?) is well-form
sentence with co-reference. These sentences are good data for co-references.

Sentences belong to type 9 contain co-references already.

Finally, we edit each sentence according to the following rules.

• type 1, 2, 3, 4: No editing.

• type 5: Delete the labeled words. Label the position of the deleted words.

• type 6: Replace the labeled words with words from RW3, and label the position of
the replacement.

• type 7: Replace the labeled words with words from RW4, and label the position of
the replacement.

• type 8: Replace the labeled words with words from RW3 or RW4 and add ”的” right
after, and label the position of the replacement.

• type 9: No editing. Label the position of words from RW4.

The data sizes of each type are listed in Table2.

3In Chinese, [她(she)的(’s)] means her.
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Noun phrase Location People Time
type 1 10 52 53 0
type 2 25 35 40 59.9
type 3 45 3 2 0.1
type 4 20 10 5 15
type 5 80 20 9.9 20
type 6 116.5 62.4 20 47.5
type 7 0 0 28 0
type 8 0.5 9 2 2
type 9 3 3.6 10.1 0.5

Table 2: Data size of each type, unit: 10000
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