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Abstract 

 

Natural organic matter (NOM) is a concern in many surface waters and must be 

removed by water treatment processes for cost-effective production of safe and aesthetically 

pleasing drinking water. Biological filtration is an appealing NOM removal method due to 

its simplicity and low maintenance requirements. Biofiltration is not traditionally used in 

water treatment headworks, however biofiltration without pretreatment (BFwp) breaks with 

common practice to function as both particle and biodegradable NOM removal as a 1st stage 

process. BFwp makes use of indigenous microbial populations embedded in a biofilm matrix 

to remove biodegradable organic matter (BOM) from raw source water. This configuration is 

a viable pretreatment strategy for both low and high pressure membrane filtration due to its 

ability to remove both particulate and soluble BOM, thereby mitigating biofouling on the 

membrane surface. Biofouling has been described as the “Achille’s heel” of membrane 

filtration (Flemming et al., 1997) due to its effects of increased operational cost and 

shortened membrane life-span. Therefore, a targeted effort is needed to understand how 

biofilter ecology affects performance both in the biofilter and downstream in membrane 

filtration units.  

Two parallel pilot scale BFwp units with dual-media were used in the current study 

for a seasonal characterisation of biofilter microbial dynamics and performance. 

Refurbishment of the biofilter pilot plant was performed by Dr. Ahmed Elhadidy and Brad 

Wilson, former students of the NSERC chair in water treatment. The current seasonal 

characterization spanned 14 months and made use of both new sample material as well as 

archived samples from Dr. Elhadidy. Biofilter media biomass was assessed using both 

adenosine tri-phosphate (ATP) and flow cytometric methods. Total protein, carbohydrate 

and free DNA of the media biofilm extracellular polymeric substances (EPS) were 

determined. Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis (PCR-

DGGE) was used to create microbial community fingerprint profiles of the biofilter feed and 

media. It was found that source water quality played a significant role in shaping BFwp 

microbial communities. Multivariate analysis of the PCR-DGGE fingerprints showed a 

media biofilm community shift occurred in response to high ammonia, high low molecular 
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weight acids (LMW-acids) concentrations in the raw feed during January-February 2015. 

This low temperature, high ammonia and LMW-acids induced shift was accompanied by a 

rise in media biomass and EPS. Lower DOC and biopolymer removals were observed 

during the January-February 2015 community shift, however this was attributed largely to 

the effects which lower feed temperatures have on microbial biodegradation kinetics. No 

differences were found in community structures between media types, depths, or biofilter 

columns, however source water exhibited lower diversities and markedly different 

community structure than those of media biofilms. It was determined that media diversity 

and richness were high and did not exhibit seasonal fluctuations. As such these parameters 

could not be reliably related to biofilter DOC and biopolymer removal performance. 

In his investigation of biofiltration as a pretreatment for nanofiltration (NF), Dr. 

Elhadidy archived samples for molecular analysis that were used in the current study. PCR-

DGGE was performed on extracted DNA from source water, media, and fouled membrane 

samples for bacteria, archaea, and fungi. Archaea were present in all samples, however their 

abundance was roughly 1000 fold less than bacteria, which made it difficult to assess their 

significance in the biofiltration and NF processes. Fungi were only screened for in one media 

and one source water sample during method development; both samples were positive. 

Archaeal community organisation was similar to that of bacteria during the autumn BF-NF 

experiment, however no community organisation was discernible during the winter 

experiment. Bacterial community structures from the autumn experiment showed that 

fouled NF membranes fed raw water clustered together with biofilter media, indicating feed 

water rather than substrate material influences bacterial community organisation. 

Comparatively, NF membranes fed with biofilter effluent produced a cluster of drastically 

dissimilar bacterial communities, which corresponded with improved flux and reduced 

biofoulant biomass. 

The microbial communities of biofiltration exhibited dynamic responses to feed 

water quality in both the seasonal and the nanofiltration studies. Biomass and EPS were 

highly correlated and their levels changed in response to community shifts, which in the 

seasonal and nanofiltration studies, were precipitated by changes in feed ammonia and 

BOM. 
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Chapter 1  

Introduction 

1.1 Problem Statement 

 The next generation of water treatment technology will have to confront new 

challenges associated with the demands of population growth coupled to the stressors of a 

changing climate. Seawater, wastewater and compromised groundwater will likely become 

more common as source waters for major utilities. Drinking water infrastructure and 

utilities will therefore have to innovate to meet the challenges and costs currently associated 

with treating these source waters. As awareness of the effects of different biodegradable 

organic matter (BOM) fractions within specific unit treatment processes grows, so too will 

the use of simple and low cost biologically active technologies such as biofiltration. 

Biofiltration reduces concentrations of particles, turbidity, BOM and some inorganic 

nutrients, which makes it ideal for biofouling control via reducing concentrations of 

nutrients in water treatment plants.  

Any filter that is operated without a disinfectant in its influent will become 

biologically active. Biofiltration takes advantage of this phenomenon whereby influent BOM 

can be adsorbed by the media-biofilm matrix and, for some BOM components, undergo 

hydrolysis for either assimilation or degradation by the biomass. Although microbial growth 

and the associated formation of extracellular polymeric substances (EPS) are ubiquitous to 

biofiltration, currently available monitoring tools are limited in their ability to represent and 

interpret the complex microbial systems which are responsible for BOM removal 

performance. Biomass is often measured via adenosine triphosphate; while this is an 

important parameter, especially during media ripening and biofilm maturation, it fails to 

accurately capture or predict BOM removal performance (Pharand et al., 2014). Conversely, 

EPS monitoring is seldom reported in the literature (Lauderdale et al., 2012; Mauclaire et al., 

2004) and the contribution of different EPS fractions to biofilter performance is not well 
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understood. The fluctuations of these fundamental biofilm parameters in response to 

microbial community shifts, as well as standard ecological metrics, can have important 

implications for biofilter performance and management. Therefore a closer look at biofilter 

ecology across seasonal time frames will add a depth of process understanding which 

simple biomass monitoring cannot approximate on its own. Several studies examining the 

bacterial communities of biofiltration exist (e.g. Kaarela et al., 2015; Liao et al., 2013; Pinto et 

al., 2012; Werner, 1982), however the majority of these efforts are hampered by excessive 

taxonomic information and do not relate ecological parameters such as diversity and 

structure directly to process performance. 

Unlike biofiltration, a biologically active filter membrane is anathema, since the 

resultant biofilm either reduces flux or increases the pressure and energy required for 

operation; this is known as biofouling. Therefore membranes must follow a regular 

hydrodynamic and chemical cleaning schedule in order to remove and destroy the nuisance 

cells and slime matrix of associated biofilms. Nanofiltration membranes are used in the 

exclusion of soluble components of 100 - 1000 Da and as such are highly susceptible to 

biofouling (Hilal et al. 2004). Recently, biofiltration has been shown to significantly mitigate 

biofouling of ultrafiltration membranes (Halle et al., 2009). Although nutrient limitation for 

membrane biofouling control has received much speculation within the literature (Dreszer 

et al., 2013; Fonseca et al., 2007; Flemming et al., 1997; Naidu et al., 2013; Persson et al., 2006; 

Shon et al., 2013; Vrouwenvelder et al., 2009) the impact of biofiltration on downstream NF 

membranes has to-date received limited attention. Moreover, the effect of biofiltration on 

downstream biofoulant microbial community structure, and how these effects may be 

related to membrane performance, has received minimal attention within the literature 

(Jeong et al., 2016). In their review of the literature, Vanysacker and colleagues (2014) 

discussed the evidence supporting biofouling as an active process where complex microbial 

communities differentiate from those of the feed. Ivnitsky and colleagues (2007) investigated 

the biofoulant community structure and diversity of NF membranes polishing treated 

wastewater and found that although membrane colonization by multiple Proteobacteria 

subphyla was rapid, permeability was most effected by nuances in EPS. It has also been 

shown that the NF biofilms are highly adaptive to operational changes, being able to modify 
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ecological structure in response to chemical as well as physical stressors including fluid 

velocity (Al Ashab et al., 2014). Therefore, when biofiltration is applied as a membrane 

pretreatment, changes in downstream microbial ecology are likely given that biofiltration is 

particularly effective at nutrient and BOM attenuation. 

Completion of the work to address the research objectives below would result in a 

deeper understanding of the biological systems within biofiltration and how these change 

over a utility’s seasonal constraints, and this insight could direct operation and monitoring 

practices at full scale. Secondly, a detailed understanding of the biofilm characteristics 

between beneficial biofilter biofilms and nuisance biological fouling of membranes can aid 

in the optimisation and harmonisation of this innovative coupling of unit processes. 

1.3 Research Objectives 

1. Assess variations in biofilter media biofilm dynamics (bacterial community 

structure, diversity, biomass and EPS production) over a seasonal time-scale. 

2. Compare biofilter media biofilm dynamics to environmental parameters such as 

nutrient concentrations, temperature, media type, and contact time.  

3. Compare biofilter media biofilm dynamics to feed water NOM removal 

performance. 

4. Screen for the presence of archaea and fungi in a biofiltration-nanofiltration 

coupled process, and evaluate whether these organisms contribute to the 

function of either process. 

5. Determine the impact of biofiltration on downstream nanofiltration biofoulant 

community structure and diversity for both bacteria and archaea, and relate 

observations to system performance. 
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1.4 Thesis structure 

 Chapter 2 presents background material to provide information on the major 

research concepts within this thesis. Chapters 3 and 4 are formatted in the style of journal 

articles and as such contain separate introduction, materials & methods, results, discussion 

and conclusion sections. Chapter 3 presents a seasonal investigation into the biofilm 

dynamics of dual-media pilot scale drinking water biofilters without prior treatment. The 

study time period spans 14 months and includes analyses of bacterial community 

organization, as well as measurements of diversity, biomass, EPS, and water quality 

parameters to characterise feed-water composition and biofilter performance. Media type, 

depth and EBCT are also assessed for effect on bacterial community structure. Samples and 

data from October 2014 to February 2015 were provided by an NSERC Chair colleague 

(Elhadidy, 2015). Chapter 4 is a characterisation of bacterial and archaeal community 

structures on NF membrane samples originating from Ahmed Elhadidy’s PhD investigation 

into the efficacy of biofiltration as a pretreatment to downstream nanofiltration membranes 

(Elhadidy, 2015). The effect of biofiltration on downstream nanofiltration membrane 

biofoulant community structure, and the relationship this has on membrane operation, is 

presented. 
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Chapter 2  

Background 

 This chapter presents background information separated into 6 major parts which 

describe biofiltration, nanofiltration, biofilms and pertinent microbial ecology, biofiltration 

as a membrane pre-treatment, seasonal impacts on biofiltration and gaps in the research 

literature (Sections 2.1 to 2.6). Section 2.1 describes the applications of biofiltration, the 

mechanisms behind its function, factors affecting its performance as well as several 

methodologies used to assess process health and efficacy. Section 2.2 presents a discussion 

on membrane filtration with special attention given to nanofiltration. Biofouling 

development and proactive measures for its control are examined. Section 2.3 explores the 

biofilms in drinking water treatment and examines the biofilm matrix in detail, including 

such topics as biomass, EPS, biofilter media ecology, biofilm development and nanofiltration 

biofoulant microbial ecology. Section 2.4 presents a review of the application of biofiltration 

as a pretreatment to membrane systems and gives examples from use in both nanofiltration 

and reverse osmosis systems. Section 2.5 looks at how biofilm dynamics could vary across 

seasonal time scales while contributing to biofilter BOM removal. Section 2.6 identifies gaps 

in the current understanding of biofiltration as an engineered biological process. Lastly, 

Section 2.7 discusses the current work’s experimental approach and contributions made 

from other research students. 

2.1 Biofiltration 

2.1.1 Applications of Biofiltration 

 There are several reasons why drinking water utilities employ biologically active 

filters, otherwise known as biofilters, with the most common being the removal of particles, 

inorganic nutrients and biodegradable organic matter (BOM) (Urfer et al., 1997). Particle 

reduction decreases turbidity which facilitates pathogen removal, while BOM removal is 
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necessary to reduce disinfection by-product (DBP) precursors, oxidant demand, taste and 

odour attenuation and to mitigate regrowth potential in distribution networks (Juhna & 

Melin, 2006; Servais et al., 1991). Furthermore, biofiltration can potentially remove emerging 

substances of concern (ESOCs) such as ibuprofen and naproxen (Halle et al. 2008). 

Several configurations of biofiltration are employed by water utilities, both with and 

without various forms of pretreatment, and over the decades several operational terms for 

this process have emerged. First stage biofiltration usually refers to floc and particle 

removal, while second stage biofiltration usually refers to nutrient (organic and inorganic) 

removal (Niquette et al., 1998). Some processes, such as ozonation, have been responsible for 

increased adoption of biofiltration at full scale, with many European utilities using the 

ozonation-biofiltration process (Juhna & Melin, 2006). Ozonation is a common drinking 

water treatment process as it can provide effective disinfection without producing chlorine-

containing disinfection by-products. Ozonation also transforms recalcitrant high molecular 

weight NOM to more biodegradable intermediates which are more amenable to removal 

(Basu et al., 2016); however since ozonation increases BOM in bulk water, further treatment 

is recommended to ensure distributed ozone-treated water is biostable, with biofiltration 

often used for this purpose (von Gunten, 2003). Biofiltration without pretreatment (BFwp) 

was defined by Huck et al. (2015), and involves feeding biologically active filters with raw 

water and is sometimes referred to as direct biofiltration. This configuration is a very simple 

and robust unit process which has been shown to have potential as a pretreatment to reduce 

fouling of both low pressure (Halle et al., 2009; Huck et al., 2011; Rahman et al., 2014; 

Siembida-Lösch et al., 2015; Tashi, 2015; Wilson, 2015) and high pressure (Elhadidy, 2013; 

Elhadidy, 2015; Griebe & Flemming, 1998; Jeong et al., 2016) membranes. 

2.1.2 Mechanism of Biofiltration   

 Biofiltration analogues have historically been used as ground infiltration, bank, and 

slow sand filtration, with modern rapid flow granular biofilters initially used following 

ozonation in the Mülheim process (Sontheimer et al., 1978). Within biologically active filters 

an active microbial biomass grows on support media which together participate in particle 

and BOM removal. Regular backwashing is used to remove excess particles and to some 
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extent biomass so that headloss through the filter bed is minimized. Conventional treatment 

processes (coagulation/flocculation/sedimentation and non-biological filtration) have 

difficulty in removing BOM and DBP precursors but biofiltration fills this void via biological 

attenuation (Basu et al., 2016). The active component of biofiltration is a heterogeneous 

biofilm composed of heterotrophic and sometimes lithotrophic bacterial cells embedded in a 

matrix of extracellular polymeric substances (EPS) (Cai et al., 2015; Kaarela et al., 2014) 

however archaea (Bai et al., 2013) and protists (Madoni et al., 2000) have also been observed. 

The biodegradable portion of NOM serves as the substrate for sessile biofilter communities, 

and thus a portion of the NOM is either mineralized or assimilated into new biomass as it 

passes through the filter. Given that biofilms are adept at adsorption of dissolved 

constituents such as humic substances (Flemming & Wingender, 2010), adsorption likely 

plays a role as a mechanism of nutrient and BOM removal as well. It is also important to 

note that biofilms produce new biodegradable material that may exit the filter (Huck et al., 

2013). 

2.1.3 Factors Affecting Performance of Biofiltration  

The most important factors affecting performance in an acclimated biofilter are 

pretreatment with ozone, contact time, media type, influent temperature, influent 

composition, and backwashing procedure (Urfer et al., 1997). Empty bed contact time 

(EBCT) is one of the easiest factors for operators to control. While BOM removal increases 

with EBCT, this relationship is not proportional (Huck et al. 2013). EBCT is calculated as 

filter volume divided by water flow rate (Juhna & Melin, 2006). A good EBCT would allow 

for attachment of cells to media without excessive accumulation (Hozalski et al., 1995) while 

allowing sufficient contact time for biological degradation of influent BOM; therefore the 

optimal EBCT may change depending on temperature and influent water quality (Basu et 

al., 2016). It should be noted however that for relatively recalcitrant contaminants, longer 

EBCT values are needed (Gibert et al., 2013; Zearley & Summers, 2012).  

Common media types are granular activated carbon (GAC), anthracite, or sand, with 

filters often using mixed media. GAC has adsorptive qualities, however these become 

exhausted upon full ripening of the media (Gibert et al., 2013). Although GAC is dominated 
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by micro and mesopores (1 – 100 nm) these are too small to accommodate a bacterial cell 

(Urfer et al., 1997), yet GAC’s higher porosity, surface area, roughness, and different charge 

characteristics compared to sand and anthracite can support a denser microbial community 

(Dussert & Stone, 2000). Dual-media filters such as GAC/sand and anthracite/sand have 

been shown to remove BDOC at similar rates (Huck et al., 2013), however Emelko et al 

(2006) found that GAC had higher BOM removal at low (≤ 10 °C) temperatures than the 

sand and/or anthracite filters. 

Backwashing is a cleaning step where accumulated particulate matter and excess 

biofilm is removed while maintaining the integrity of the biofilm itself (Juhna & Melin, 

2006). Regular backwashing is important to maintain effluent quality and to minimize 

headloss, which increases with filter run time and excessive biological growth (Evans et al., 

2013). The practice of backwashing has been shown to rejuvenate BOM removals impacted 

by accumulated material (Prevost et al., 1995; Liao et al., 2015), and therefore proper 

backwashing will not deleteriously affect BOM removal (Huck et al., 2013). In order for 

BOM removal to be negatively affected by backwashing, biofilm removal would need to be 

in excess of 60% (Hozalski & Bouwer 2001a,b); similarly Liao and colleagues (2015) found 

that 50% of biomass (as phospholipid fatty acid) could be removed with no effect on 

performance, with a recovery of biomass to pre-backwash levels as quickly as 2 days later. 

Several factors have been investigated in backwashing procedures and they include 

chlorination, air scour, flow rate, and bed expansion (Urfer et al. 1997). Current BFwp 

backwashing best practices for downstream membrane filtration would include the use of 

air scour with sub-fluidization velocities which create collapse pulse conditions 

(Amirtharajah, 1993), followed by 50% bed expansion (Wilson, 2015). Given that biomass 

adheres to filter media more strongly than inorganic particles, a high amount of shear stress 

is required for the removal of excess biomass so that effluent quality is maintained (Juhna & 

Melin, 2006). This underscores the need for tailored backwashing procedures for any given 

treatment facility. 

Lower temperatures result in lower BOM removals, as microbiological enzyme 

kinetics, also known as biomass activity, become depressed (Juhna & Melin, 2006; Laurent et 

al., 1999; Urfer et al., 1997). Surprisingly however, no relationship has been found between 
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temperature and biomass (ATP) content in dual-media biofilters (Pharand et al., 2014; 

Rahman, 2013). This makes temperature an important factor controlling BOM removal, 

while its effect on biofilm dynamics is poorly understood. A detailed discussion on 

temperature is provided in Section 2.5. 

Lastly, percentage biofilter removal of BOM is proportional to the influent 

concentration and therefore it is considered a first order process (Huck et al., 2013), where 

mass transfer is not limiting. Zhang and Huck (1996) demonstrated that mass transfer was 

not limiting for AOC removal under drinking water conditions. In addition, increases in 

hydraulic loading (velocity) for a fixed EBCT were unable to increase BOM removal rate 

(Urfer et al., 1997). Soluble BOM therefore is likely to possesses good biofilm penetration 

abilities; when considered alongside the thin volume of a drinking water biofilter media 

biofilm, this observation seems sound. Although backwashing contributes to the removal of 

excess biomass, it is basically the lower nutrient levels in drinking water compared to a 

wastewater which result in a relatively thin biofilm. In addition to BOM, inorganic nutrients 

such as ammonia, nitrate, nitrite and ortho-P have been identified as important for bacterial 

growth and biofilter performance; in bench-scale research, nutrient additions are usually 

applied in a C:N:P ratio of 1:10:100 (Evans et al., 2013; LeChevallier et al., 1991). Biofilms in 

drinking water treatment are usually carbon limited, however in certain circumstances 

where a high BOM content is observed, P-limitation may exist (Yu et al.,  2003). Lauderdale 

et al. (2012) claimed that addition of phosphoric acid and liquid ammonium sulphate to pilot 

scale biofilters showed a 15% decrease in terminal headloss (relative to control) with 

improvements in DOC removal, which they attributed to the >30% increase in biomass 

coupled to a >30% decrease in EPS. In contrast, Azzeh and colleagues (2015) found no 

improvement to biofilter headloss and performance (DOC and biopolymer removal) upon 

addition of phosphoric acid and ammonium chloride; in fact a decrease in performance was 

observed when nutrient addition was increased to 100:40:20. The authors attributed their 

results to possible BOM-limited conditions within the source water. Rahman et al. (2016) 

observed that biofilters fed a riverine source water designated as P-limited did not exhibit 

changes to biomass, activity or performance when dosed with K2PO4. This indicates a need 
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for more sensitive measurements of BOM to be used to ensure biodegradable levels of C are 

accurately assessed. 

2.1.4 Metrics for Evaluation of Biofiltration Performance 

Aside from head loss build-up and filter run length time, biofilter performance can 

be separated into particle removal vs biological performance when particle and BOM 

removal are sought within a single stage system (Urfer et al., 1997).  Conventional 

performance can be indirectly assessed by measuring turbidity as a surrogate for particle 

removal, while the assessment of BOM removal is decidedly more complex. Although DOC 

removal is often used as a metric for biological performance, more appropriate techniques 

exist for the measurement of biodegradable fractions in water and their removals via 

biofiltration. 

 Water contains natural organic matter (NOM) which is a heterogeneous mix of 

dissolved and particulate products from the chemical and biological decomposition of plant, 

animal and microbial biomass (Thurman, 1985). The specific chemical composition of NOM 

in water can be very complex and is usually unknown (Uhl, 2008). The majority of NOM is 

composed of recalcitrant humic substances which make up around 50% of DOC (Thurman, 

1985), with the rest being composed of carbohydrates, proteins, amino acids, lipids and 

transphilic acids (Metsämuuronen et al., 2014). Although DOC removals can be used for 

measuring biofiltration performance, these removals are low as DOC contains recalcitrant as 

well as labile NOM. Given this complexity it wasn’t until the 1980’s that tests which could 

more closely assess BOM and the regrowth potential in raw water were created (Uhl, 2008). 

BOM is therefore typically measured as assimilable organic carbon (AOC) or biodegradable 

dissolved organic carbon (BDOC) (Uhl, 2008). BDOC is the fraction of NOM which can be 

mineralized by heterotrophic biomass, while AOC is the fraction of NOM that results in 

microbial growth (Huck, 1990). The BDOC method involves biofilms grown on a support 

media, which in additional to utilizing easily biodegradable compounds are also able to 

hydrolyse larger polymeric molecules via biofilm embedded exoenzymes; therefore in 

comparison with AOC, the BDOC method should be able to detect a greater range of 

organics than the easily metabolized fractions involved in AOC (Persson et al., 2006). The 
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classic AOC-P17/NOX method measures the regrowth of two pure culture inocula in a water 

sample, and targets easily biodegradable low molecular weight compounds. AOC is 

measured as µg/L acetate-C equivalents and typically comprises between 0.1 - 9.0% of TOC 

(Escobar et al. 2001). The type of BOM metric used would depend on the application; for 

example AOC would be used for bacterial regrowth potential and BDOC would be used for 

chlorine demand or DBP formation potential (Huck 1990).  

The latest AOC technique utilizes flow cytometry to rapidly count fluorescently 

stained autochthonous cells incubated in the test water; compared to the older plate-count 

method, this new AOC technique is much faster, less labour intensive and uses the test 

water’s natural microbial consortium (Hammes & Egli, 2005). As well, these methods may 

be able to measure a broader range of BOM. Recent work by Elhadidy et al. (2016) used a 

natural inoculum AOC method that measured regrowth using flow cytometry. This study 

found that the method could measure the removal of both high molecular weight 

biopolymers and low molecular weight acids. In addition, (van der Kooij, 2015) proposed 

adding a third type of bacterial inoculum to the AOC-P17-NOX method that could measure 

removal of high molecular weight BOM. Though AOC and BDOC are “complimentary but 

not exclusive” (Frias et al 1995), Escobar et al. (2011) aptly depict BDOC as a “hydorolyzable 

pool of carbon available for AOC formation”.   

An innovative NOM analysis platform which has recently been introduced to the 

study of drinking water and biofiltration is LC-OCD (liquid chromatography - organic 

carbon detection) (Boon et al., 2011; Chen et al., 2016; Halle et al., 2009; Huber et al., 2011). In 

natural waters, fractionation of NOM by LC-OCD typically detects 5 groups with different 

susceptibilities to biodegradation (biopolymers, humic substances, humic building blocks, 

low molecular weight acids, and low molecular weight neutrals). Biofiltration is adept at 

removing the majority of the biopolymer fraction, which includes proteins and 

polysaccharides (Halle et al. 2009), while humic acids, which compose most of NOM, are 

fairly recalcitrant and typically exhibit lower removals (10 to 15%) by biofiltration (Chen et 

al., 2016). Humic building blocks and low molecular weight acids and neutrals are generally 

more biodegradable than humic substances, however mixed results are often encountered 

which could be due to changing compositions of these fractions (Chen et al., 2016; Elhadidy 
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et al., 2016). Huber and colleagues (2002) found that biopolymers and low molecular weight 

acids were significantly removed from surface water following biological sand treatment, 

while Elhadidy and colleagues (2016) found both biopolymers and low molecular weight 

acids to be readily biodegradable. Chen et al. (2016) found biopolymers were readily 

removed by biofiltration, while humic substances and low molecular weight neutrals were 

only partially removed, and finally observed no trends for building blocks and low 

molecular weight acids. Biopolymers are especially important for membranes as this fraction 

of NOM has been shown to be associated with biofouling of low (Halle et al., 2009) and high 

(Elhadidy, 2015) pressure membrane filtration. High pressure membranes are particularly 

susceptible to biological fouling, and given that low molecular weight compounds can, 

depending on feed water, be highly biodegradable, their removal by biofiltration is also 

important. The LC-OCD method is not as sensitive to low molecular weight fractions as 

AOC methods, and therefore a combination of approaches could be valuable for accurate 

measurement of NOM removal. 

2.2 Nanofiltration Membranes in Drinking Water Treatment 

2.2.1 Overview  

Membrane filtration uses thin, semi-permeable membranes to separate fluids, gases, 

particles or solutes. Water is purified as it passes across the membrane when solutes are 

rejected, primarily by size exclusion or electrostatic repulsion (Hilal et al., 2004) as a 

minimum transmembrane pressure (TMP) facilitates transport of water across the 

membrane thickness. Generally, the smaller the pore size (specified as the molecular weight 

cut-off), the more pressure required to produce permeate (Thorsen & Flogstad, 2006). 

Therefore nanofiltration (NF) and reverse osmosis (RO) membranes require higher pressure 

when compared to micro and ultrafiltration. NF membranes possess rejection characteristics 

in between those of ultrafiltration (UF) and RO. NF is used to remove hardness (multivalent 

salts) and organics (DBP precursors, pesticides, colour and emerging contaminants) and 

have a molecular weight cut-off as low as 200 - 400 da (Fonseca et al., 2007; Hilal et al., 2004). 

Due to its lower operation pressure and higher flux, nanofiltration has frequently been used 
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as a pretreatment for reverse osmosis membranes (Hilal et al., 2004). Nanofiltration 

membranes are constructed from synthetic organic polymers, usually 0.2 mm thick, held by 

a thicker support medium on the permeate side. The most popular membrane materials are 

thin film composite, polyamides, regenerated cellulose and cellulose acetate deposited on a 

mechanical support such as polysulphone or polyethersulphone (Shon et al., 2013; Thorsen 

& Flogstad, 2006). 

2.2.2 Nanofiltration Membrane Fouling 

Decline in membrane functionality is due to fouling of the membrane surface and in 

some cases pores, which either reduces flux or increases transmembrane pressure (TMP). 

This process can include particulate (deposition of particles and colloids), inorganic (scaling 

of SiO2, Fe(OH)3, CaCO3), organic (NOM deposition) and biological fouling, the latter of 

which is the proliferation of a microbial biofilm on the membrane surface, being described 

as the “Achilles heel” of membranes (Flemming et al., 1997; Vanysackeret al., 2014). Fouling 

of NF membranes is dependent on the type of foulant molecule, its charge, the charge of the 

membrane, pH and ionic strength of solution, as well as membrane surface roughness (Hilal 

et al., 2004). In strict terms, reversible fouling is defined as that which can be resolved with 

backwashing and or chemical treatment while irreversible fouling cannot be remedied; 

however, irreversible fouling can also be defined as material that can only be removed by 

chemical cleaning (Vanysacker et al., 2014). 

2.2.3 Biofouling of Nanofiltration Membranes 

Biofouling is especially difficult to remedy; it is operationally defined as an increase 

of transmembrane resistance due to biofilms and can impact permeate quality and increase 

operation and maintenance costs (Dreszer et al., 2013; Hu et al., 2005). The formation of the 

biofoulant layer has been shown to be a distinct process and is not due to the bulk 

compaction of feed material, but is caused by growth of bacterial communities which are 

quite different from those of the bulk liquid (Vanysacker et al., 2014). Besides increasing 

TMP, additional effects of biofouling are degradation of membrane glue lines, particulate 

deposition into EPS and scale precipitation (Dreszer et al., 2013). The increase of high 
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pressure membrane TMP from biofilms is due mostly to increases in concentration 

polarization which the biofoulant promotes (Dreszer et al., 2013). Nanofiltration membranes 

incur concentration polarisation, where increases in nutrients on the feed side of the 

membrane lead to increased biofilm growth which in turn increases concentration 

polarization; this positive feedback loop is known as the biofilm enhanced osmotic pressure 

(BEOP) effect (Chong et al., 2008; Herzberg & Elimelech, 2008). The BEOP effect has been 

shown to contribute 70% of TMP increase in RO membranes under laboratory conditions; 

furthermore higher flux levels (and their associated increases in concentration polarisation) 

lead to faster biofilm development (Chong et al., 2008).  

Factors affecting biofouling are membrane material, configuration (dead end vs 

cross-flow), hydrodynamics, temperature, pH and feed BOM concentration (Hu et al., 2005; 

Vanysacker et al., 2014). The charge or zeta potential of the membrane surface can 

participate in solute rejection (Shim et al., 2002), and also inhibit biofouling via electrostatic 

repulsion. Hydrophobic membranes exhibit greater colonization (Pasmore et al., 2001), 

while membranes with negative zeta potentials are more resilient to biofouling (Fonseca et 

al., 2007). This phenomenon is likely due to the formation of a larger hydration layer on the 

membrane surface which acts like a barrier to adhesion, however it has proved extremely 

difficult to develop materials that are outright immune to bacterial cell attachment (Simões 

et al., 2010). However, once biofouling is advanced, original surface materials may be 

masked (Flemming et al., 1997).  Flux is also an important operational consideration in 

biofouling. Increases in flux from 20 to 100 L m-1h-1 resulted in increased membrane 

resistance but decreased biofilm thickness (Dreszer et al., 2013). The most important factors 

in biofouling however have been identified as nutrient concentrations and shear forces 

(Flemming et al., 1997).  

2.2.4 Biofouling Control 

In the 1990’s, the two most prevalent strategies to prevent biofouling were the 

physical removal of bacteria via pretreatment or the inactivation of bacteria via biocides, 

oxidants and irradiation. However, more recent approaches include nutrient limitation and 

membrane material modification (Vrouwenvelder et al., 2009). Common approaches to 
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mitigate biofouling include the application of a tangential shear force, backwashing, and 

cleaning via biocidal agents (Zhang et al. 2006). The destruction of bacterial cells via biocides 

is limited in its efficacy as the cell debris and EPS are still present on the membrane after 

chemical treatment; these remnants contribute substantially more to flux decline and act as 

BOM for rapid regrowth (Dreszer et al., 2013; Flemming et al., 1997). A promising mitigation 

strategy in biofouling reduction is nutrient (C, P or N) starvation, as total inhibition of 

biofouling is not likely. This can be achieved via biofiltration (Dreszer et al., 2013; Fonseca et 

al., 2007; Hu et al., 2005).  

2.3 Biofilms in Drinking Water Treatment 

2.3.1 Introduction to Biofilms 

Biofilms can be defined as communities of bacteria attached to a surface, or more 

technically as aggregates of bacteria and their extracellular polymeric substances (EPS), 

which grow at phasic interfaces (Flemming & Wingender, 2010). Biofilms confer distinct 

advantages compared with planktonic (free living) strategies; these benefits include 

increased resistance to a multitude of stressors including nutrient, pH, redox, and moisture 

fluctuations, antibiotics and predation (Costerton, 1995; O'Toole et al., 2000). The 

architecture of mixed species biofilms contains pores, channels and voids which allow for 

penetration of nutrients and removal of wastes in an advective and diffusive manner, which 

ultimately results in convection currents within the biofilm that further facilitate mass 

transport (Costerton et al. 1995).  The majority of biofilm mass (90%) is not attributed to the 

bacterial cells, but rather the EPS (Flemming & Wingender, 2010). This massive investment 

in EPS production by the bacteria ensures that the cells will remain immobilized, providing 

a three dimensional structure within which cell-cell chemical communication (quorum 

activity) can occur (Flemming & Wingender, 2010). This quorum sensing allows within the 

community a cooperative response to environmental changes, leading some authors to call 

this activity a “primitive homeostasis” resemblant of more advanced eukaryotic tissues 

(Costerton, 1995).  
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2.3.2 Extracellular Polymeric Substances 

EPS has many functions within a biofilm and at their core is composed of the four 

biological macromolecules: polysaccharides, nucleic acids, proteins and lipids; an exception 

to these would be humic substances, which are not endogenously produced and can be 

adsorbed into the biofilm EPS matrix from the bulk liquid (Flemming & Wingender, 2010). 

Several  macromolecular types are encountered in an aqueous environmental biofilm, 

performing a given function via synergy; for example structural integrity is often a result of 

the interactions of a base polysaccharide-DNA matrix linked together by lectins and other 

proteins (Flemming & Wingender, 2010). Most exopolysaccharides in a biofilm are 

heteropolymers (both neutral and charged), and are frequently polyanionic; this negative 

character enables many exopolysaccharides to engage in adhesion to negatively charged 

surfaces by way of divalent cation bridging (Flemming & Wingender, 2010). EPS also serves 

in trapping nutrients from the bulk fluid, allowing exoenzymes to hydrolyse large or 

recalcitrant organics into a soluble form more favourable for transport across bacterial 

membranes. These embedded enzymes can also ameliorate oxidative stressors (reduction of 

O2 via cytochromes) and acquire nutrients (corrosion of steel via hydrogenase) by way of 

redox reactions at the periphery of the matrix (Beech & Sunner, 2004). In short, the best way 

to interpret the vast array of exoenzymes within the biofilm matrix is to regard them as an 

“external digestive system” (Flemming & Wingender, 2010). 

2.3.3 Biofilm Development 

In general, the ability of a surface to grow biofilms is determined by roughness, 

hydrophobicity, and surface conditioning. Given the genetic diversity inherent in bacterial 

communities, practically any surface can be colonized under the right conditions (Simões et 

al., 2010).  A multitude of different environmental signals can cause a cell to convert from a 

planktonic phenotype to an adhering sessile one. Depending on the given species, these 

signals can be amino acids, oxygen levels, temperature, osmolarity, pH, Fe, etc.  (O’Toole et 

al. 2000). A prediction of a cell’s ability to attach to a given surface cannot reliably be made 

by judging the cell’s overall charge or zeta potential, as bacterial cell surfaces contain a 

variety of surface components with different charges, and these can change in response to 
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the environment. Furthermore depending on the surface and bulk fluid characteristics, a 

single species can produce different biofilm types by way of different signal pathways: for 

example V. cholera possesses at least three different pathways for biofilm formation, 

depending on whether it is within a human versus shellfish host or simply in an aquatic 

environment (Toole et al., 2000). Tariq et al. (2012) however found that E. faecalis cultures 

expressing a heterogeneous zeta potential were more successful at biofilm formation than 

homogeneous serotypes. 

The first step in biofilm development is the conditioning of the surface to be 

colonized, and typically involves adherence of organic molecules such as glycoproteins and 

proteins (sometimes referred to as the pellicle) to the surface (Toole et al., 2000). These 

conditioning molecules can effectively change the chemistry of the surface regardless of the 

material underneath (Vanysacker et al., 2014). Following some level of conditioning, a cell 

must engage in surface recognition and attachment. Several different cell-surface structures 

can be used in this process, including lipopolysaccharides, pili and even flagella (O’Toole et 

al., 2000; Palmer & White, 1997; Reisner et al., 2003). Attached cells then divide to produce a 

monolayer upon the surface while initiating EPS production, eventually producing 

microcolonies (Palmer & White, 1997; Toole et al., 2000). Depending on genetic potential, 

these microcolonies will further expand to produce a multispecies consortium with 

superstructure voids, channels, pillars and mushroom-like shapes (O’Toole et al., 2000; 

Reisner et al., 2003). This stage is known as “maturation” (Palmer & White, 1997). Lastly, 

mature biofilms detach aggregates which may participate in seeding downstream surfaces 

(Vanysacker et al., 2014). Cell/aggregate detachment and dissemination is achieved by shear 

forces, but also endogenously by EPS–cleaving enzymes (such as alginate lyase in the case of 

P. aeruginosa) and the reversion of sessile phenotypes to the planktonic form; the triggering 

signal associated with this stage is assumed to be depletion of local nutrients (Toole et al., 

2000). It should be noted that none of these processes are regarded as stochastic, and have 

been shown to be highly regulated and involving multiple gene loci (Toole et al., 2000). Such 

processes commonly involve quorum sensing mechanisms, and in fact the 

commercialization of quorum molecules has already begun, with companies such as BioSol 
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(Cheltenham, Australia) claiming to stimulate reversion of sewer biofilms to detached 

planktonic phenotypes. 

2.3.4 Biofilter Biofilm Ecology 

2.3.4.1 Ecology Overview 

Biofilm communities are typically highly heterogeneous and can include an array of 

metabolisms, including both lithotrophic and heterotrophic organisms. In the environment it 

is rare to find a single species biofilm. The cells in a biofilm are phenotypically distinct from 

their planktonic counterparts; this “phenotypic plasticity” is a drastic shift in gene 

expression and is in part what makes biofilms so successful as the preferred mode of growth 

for bacteria in aqueous environments (Costerton, 1995; Palmer & White, 1997; Toole et al., 

2000). Furthermore a single species is capable of differentiating into several different 

phenotypes, each with a specific task (sporulation, acquisition of nitrogen, chemotaxis) in 

order to increase the overall fitness of the population (Claessen et al., 2014). Interspecies co-

metabolism has also been observed (Toole et al., 2000). Thus biofilms can be highly 

cooperative, exhibiting division of labour and recycling of waste and cell debris. In fact 

primitive junctions allowing direct molecular exchange (called septosomes or crosswalls) 

have been observed between certain pure culture aggregates; however due to their nature 

biofilms are also a highly competitive environment where exploitation and biocidal 

exclusion can also take place (Claessen et al., 2014). Biofilm bacterial communities, whether 

in membrane filtration systems or in dental plaque, regularly undergo succession where the 

community composition changes as communities mature and the matrix volume increases 

(Bereschenko et al., 2010; Palmer & White, 1997). 

2.3.4.2 Biofilm Biomass Abundance 

Biofilter biomass concentrations have been reported to be between 1 x 1010 and 5 x 

1011 cells/cm3 in the top few centimetres of sand/anthracite biofilters as measured by total 

direct cell counts (TDCC) (Hallé et al., 2009) and back-calculation using ATP data 

(Lautenschlager et al., 2014), while 5 x 1010  to 1 x 1013 cells/cm3 were reported for GAC 

biofilters using confocal laser scanning microscopy (CLSM) (Gibert et al., 2013). There is 

disagreement within the literature as to if and how much biomass decreases along depth of 
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the biofilter (Pharand et al., 2014), with some authors reporting no decrease (Halle, 2009; 

Lautenschlager et al., 2014) and others reporting more pronounced reductions in biomass 

associated with depth (Gibert et al., 2013; Liao et al., 2013a; Rahman, 2013; Urfer & Huck, 

2001). These data could be affected by BOM levels and biodegradability, as well as 

temperature, backwashing type and frequency, maturity of the biofilter, media type, 

upstream treatment processes and the method of biomass quantification used (Gibert et al., 

2013; Lautenschlager et al., 2014; Pharand et al., 2014). Biomass has been shown to increase 

with higher influent temperature, higher DOC, longer EBCT and upstream ozonation 

(Lautenschlager et al., 2014; Pharand et al., 2014), although Liao et al. (2013a) presented 

evidence that increased EBCT lead to decreased biomass. Cell density usually stabilizes near 

100 days of operation and is aided by the practice of backwashing (Gibert et al., 2013). One 

study of a GAC biofilter found significant differences in biomass stratification initially, but 

after  200 days of operation this stratification disappeared as media colonization extended 

into the depth of the biofilter (Gibert et al., 2013). Although biomass levels can vary with 

depth and acclimation, the amount of biomass within a biofilter does not predict the 

removal of DOC (Pharand et al., 2014; Urfer et al., 1997).  

2.3.4.3 Biofilm Community Dynamics 

A variety of methods are available to assess process microbial community dynamics, 

with most modern methods relying on nucleic acids (RNA & DNA) extracted from feed, 

media and effluent samples. Many DNA based methods are built on the amplification of 

template DNA using polymerase chain reaction (PCR), where molecular probes known as 

primers are used to target and amplify conserved regions of DNA to glean taxonomic or 

functional information from individual populations or the entire community. PCR based 

methods are fast, relatively cheap, and highly discriminatory (Hagedorn et al., 2011). A 

wealth of taxonomic information regarding biofiltration bacterial communities has been 

gained through the use of genetic fingerprinting and sequencing techniques; among these 

methods, denaturing gradient gel electrophoresis (DGGE) and next generation sequencing 

(NGS) have become the most popular. NGS platforms such as Roche 454 and Illumina have 

made vast improvements to the taxonomic understanding of biofilter microbial communities 

and provided insights to the major phyla present. High diversity and an absence of a core 
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biofiltration consortium appear to be a common finding across the literature (Kaarela et al., 

2014; Lautenschlager et al., 2014; Liao et al., 2013a; White et al., 2012); in other words, 

identification of a core microbiome between all or most biofilters is unlikely. Meanwhile, 

fingerprinting techniques such as PCR-DGGE have provided important insights into the 

dynamics of microbial community structure and diversity during start-up and across 

operational conditions (Boon et al., 2011; Fonseca et al., 2001; Yang et al., 2011).  

Studies on biofiltration community analysis have reported significant differences 

between a given biofilter’s media and effluent communities using pyrosequencing, with the 

latter exhibiting higher species richness and a taxonomy dominated by Proteobacteria 

(Lautenschlager et al., 2014). Boon et al. (2011) found that biofilter community dynamics and 

species richness were low in the upper reaches of a pre-ozonated biofilter media bed and 

increased with media depth; the authors concluded that greater process function could be 

attributed to higher community richness and evenness (high evenness in this context being 

lack of a dominant species). Another study using a GAC biofilter fed ozonated and 

chemically filtered water reported that although biomass stability had been achieved after 

six months of operation, the community was still undergoing large shifts at the genus level, 

which began to stabilize at the 12 month mark when the study ended (Liao et al., 2013a). 

Several studies have investigated the taxonomic identities of biofilter bacterial communities, 

and no evidence of pathogenic contamination of filter media has been reported (Gibert et al., 

2013; Lautenschlager et al., 2014; White et al., 2012).  

Since there exists a growing body of work presenting taxonomic observations within 

biofiltration and this work is indirectly related to the current work, a brief review of the 

major and important taxonomies of biofiltration is provided below. The most dominant 

phyla observed across two separate studies of pre-ozonated biofilters were Proteobacteria, 

Acidobacteria, Planctomycetes and Bacteriodetes. The most abundant of these was 

Proteobacteria, with α-Proteobacteria the most common; the Sphingomonas and 

Bradyrhizobium genera were the most abundant of this class (Lautenschlager et al., 2014; Liao 

et al., 2013a); other studies (which include BFwp) have also shown Proteobacteria to be the 

dominant biofilter phylum (Liao et al., 2013b; Zeng et al., 2013). The α-Proteobacteria are a 

slow growing oligotrophic class of bacteria capable of degrading recalcitrant humic 
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substances (Newton et al., 2011), and could be a fulcrum group for DOC degradation in 

biofilters (Liao et al., 2013a). The Sphingomonas and Bradyrhizobium genera have been shown 

to be adept at degrading several different types of toxic organics (Liao et al., 2013a), and 

Sphingomonas in particular has been implicated as a pioneer colonizer of RO (Bereschenko et 

al., 2010; Gutman et al., 2014). Interestingly Actinobacteria, a dominant phylum in the 

freshwater systems of source water, was not observed in secondary GAC biofilters 

(Lautenschlager et al., 2014), however in direct biofiltration (with no pre-ozonation), 

hyphae-like Actinobacteria were observed via confocal laser scanning microscopy (CLSM) 

(Gibert et al., 2013). This shows that upstream processes shift biofilter communities at the 

phylum level. In fact, Moll and colleagues (1998) found that the use of pretreatment with 

ozone shifted the bacterial community structures in pilot scale biofiltration units.  

Changing nutrient concentrations can also affect biofilter ecology by shifting the 

community structure (Lautenschlager et al., 2014; Liao et al., 2013a).  Liao and colleagues 

(2013b) proposed that a high variability in α, β, and ϒ-Proteobacteria between biofilters fed 

different influent water was due to differences in ammonia, with the ammonia oxidizing 

phylum Nitrospirae becoming more abundant with increases of influent ammonia to 1.11 

mg/L.  

2.3.5 High Pressure Membrane Biofoulant Ecology 

Membrane biofoulant bacterial communities are dynamic and persistent; their 

community structures have the ability to rapidly adapt to physical and chemical changes in 

their environment so that key components of the community may survive. Any biofoulant 

control strategy, whether its functional properties arise from chemical oxidation, 

hydrodynamic scouring, or nutrient limitation from pre-biofiltration, will stress the 

microbial communities in the receiving biofilm. How these communities adapt to such 

environmental perturbances is of interest because such knowledge can aid in developing 

better biofoulant control strategies. Furthermore, ecological comparisons of biofilter and 

high pressure membrane filter bacterial communities can provide insights for better 

management of diversity, biomass and EPS within each system. 
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Biofoulant communities have a lot in common with biofilter consortia in that they are 

very dissimilar to the planktonic communities of the feed. For example within wastewater 

membrane bioreactors, biofilm communities were dominated by proteobacteria (Lim et al., 

2012; Zhang et al., 2006), and were significantly different from planktonic communities. Like 

biofiltration biofilms, the bacterial communities of NF biofouling are dominated by the sub-

phylums α-proteobacteria (Ivnitsky et al., 2007; Bereschenko et al., 2010) and sometimes β-

proteobacteria. In addition to nutrient contents in the feed, biofilm age (maturity) as well as 

the amount of hydrodynamic shear can affect which subphylum is dominant, thereby 

resulting in biofoulant community shifts (Al Ashhab et al., 2014) which raises the possibility 

that backwashing can exert an effect on biofilter media communities. Indeed, one study 

observed hydrodynamic shear from backwashing resulted in a shift in bacterial community 

structure, which reverted to pre-backwash structure over the course of 2 to 5 days (Liao et 

al., 2015). Bereschenko and colleagues (2011) report bacterial community shifts on RO 

membranes as early as 5 days into a non-cleaned cycle compared to day 1; furthermore, they 

observed bacterial cells from a variety of subphyla still present the day after control 

membranes received chemical cleaning, albeit with collapsed biofilm structures and no 

visible EPS surrounding the individual cells as determined by CLSM and scanning electron 

microscopy (SEM). Similarly, Calderon and colleagues (2011) found that after cleaning an 

anaerobic membrane bioreactor with NaClO, a basal community of Methanosaeta archaea 

and Sphingomonas were not removed. This shows that biofilms, whether present as a foulant 

layer on nanofiltration membranes or on biofiltration media, are highly sensitive to both 

physical and chemical changes in their environment and frequently shift community 

structures in response. This sensitivity is not a sign of weakness, but a protean capacity to 

bring forth the consortium’s under-utilized metabolic potentials during periods of stress in 

order for the microbiome to persist; such a potential likely increases with diversity (Read et 

al., 2011). Therefore the high diversity of most environmental biofilms acts as a reservoir of 

metabolic redundancy that can be called upon during times of stress. This can help explain 

the persistence of biofilms and their difficulty to remove within industrial processes. 

Therefore it is clear that the strategy of intermittent doses of biocide can never be perfected 

in that community regrowth and succession begins almost immediately after dissipation of 

biocide residual. This is why, from the perspective of microbial ecology, chronic nutrient 
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limitation would be the preferred agent of fouling mitigation as the system will simply not 

possess sufficient electron donors to support a robust biofoulant community. 

 

2.4 Biofiltration as Membrane Pretreatment 

Biofiltration without preceding coagulation or ozonation has been investigated as a 

pretreatment for both low and high pressure membranes treating a variety of source waters. 

Lower fouling rates are observed when biofiltration is used as a pretreatment for 

ultrafiltration, primarily due to the removal of biopolymers (Azzeh et al., 2015; Halle et al., 

2009; Rahman et al., 2014; Siembida-Lösch et al., 2015). Over the years, biofiltration has also 

been recommended by the wider scientific community as a pre-treatment to reduce 

membrane biofouling given that the process efficiently removes BOM (Fonseca et al., 2007; 

Flemming et al., 1997; Naidu et al., 2013; Persson et al., 2006; Shon et al., 2013; 

Vrouwenvelder et al., 2009). Griebe and Flemming (1998) successfully demonstrated that 

biofiltration can reduce biofouling of high pressure membranes and does not serve as a 

source of bacterial contamination providing proper backwashing is performed. Similar 

encouraging conclusions have been reached by others using biofiltration as a membrane pre-

treatment for a variety of applications including treating groundwater for RO (Weng et al., 

2015), synthetic humic-laden water for NF (Mosqueda-Jimenez & Huck, 2009), and UF 

filtered surface water for RO (Brouwer et al., 2006). 

2.5 Effect of Seasonality on Biofiltration 

 Seasonality can be described by several means, and for the purposes of biofiltration 

the discussion should involve seasonal fluctuations in water quality parameters, 

temperature and their effects on biofilter performance and ecology. Using the above 

definition, investigations regarding the effect of seasonality on biofiltration performance, 

biomass and microbial communities remain scarce. In temperate climates, feed water 

temperature varies by more than 20 C° over the course of a year, and this can have profound 
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effects on biofiltration performance. Laurent and colleagues (1999) used a radio-labelled 

glucose respiration method to measure biofilter biomass activity at different temperatures. 

Activity was found to decrease by 60 to 77% when feed temperature was lowered from 25 °C 

to <10 °C. This information was used in model calibration which predicted decreases of 

BDOC removal by about half over the same temperature range. Conversely, Pharand (2015), 

using fluorescein diacetate (FDA), found activity remained stable over high and low (< 10 

°C) temperatures using. Nonetheless it is well established that temperature is a key factor in 

determining biofilter performance at a given EBCT (Basu et al., 2016; Evans et al., 2013; Huck 

et al., 2013; Urfer et al., 1997). Persson et al. (2006) noted that while temperature affected 

biofilter activity and BDOC removal, feed BDOC concentration was more closely related to 

removals, citing first order kinetics to explain this observation.  

 Temperature plays little if any role in determining biofilter biomass as measured by 

ATP  (Pharand et al., 2015; Rahman, 2013), however others have reported lower bacterial 

growth rates (Velten et al., 2011) and biomass levels (Moll & Summers, 1999) at temperatures 

below 15 °C. Similarly, bacterial community diversity and evenness have been reported as 

quite stable and independent of feed temperature variations (Kim et al., 2014; LaPara et al., 

2015). For example, Kim et al. (2014) noted that large temperature decreases from September 

to December did little to affect community composition within the time period observed, but 

that a temperature increase from May to August did in fact result in changes to the 

composition; the authors concluded that while temperature could partially explain changes 

to community composition, it could not explain the observed changes to abundances or 

diversity. It is possible that temperature can alter biofilter communities insofar as it induces 

seasonal changes to water quality, wherein the community structure exhibits a delayed or 

lag response to due to the slower metabolic rates under these conditions coupled to gradual 

changes in the water quality. 

 Therefore in lieu of temperature, water quality parameters may be more likely to 

affect biofilter biomass and bacterial community structure, especially if seasonal fluctuations 

in surface water nutrient compositions are taken into account. Certain nutrients, like AOC, 

ortho-P and ammonia-N would be expected to affect biofilter media bacterial community 

structures due to their importance in bacterial metabolism (LeChevallier et al., 1991). 
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Furthermore, seasonal variation in surface water DOC composition is known to occur (Paul 

et al., 2012), which could subsequently select for different community compositions. For 

example Liao et al. (2015) noted changes in bacterial diversity and community composition 

were related to feed DOC and ammonia-N concentrations. Yang and colleagues (2011) 

observed higher NH3-N and AOC concentrations during wet seasons in an agriculturally 

impacted watershed due to higher river flows, but found that pre-ozonation and not raw 

feed ammonia concentration was the primary driver of biofilter microbial community 

structure. The authors also noted that a longer EBCT resulted in community differentiation 

deeper in the filter, however this was likely due to the attenuation of residual ozone in 

addition to consumption of labile BOM in the upper reaches of the filter, which in turn 

would provide the lower reaches with greater amounts of soluble microbial products. This 

elucidates a problem within the biofiltration literature, where many studies investigating 

biofiltration microbial dynamics utilize prior treatment such as ozone, which substantially 

alters feed water chemistry as well as downstream ecology. Indeed, seasonal fluctuations in 

surface runoff, algae growth, dissolved oxygen, nitrogen cycling etc. can all affect freshwater 

nutrient compositions and the microbial communities which rely on those inputs. Tatari and 

colleagues (2016) found that ammonia oxidizing bacteria (AOB) populations (as measured 

by qPCR) increased two orders of magnitude from cell densities of 1010 to 1012 cells/m3 media 

when ammonia loading was increased from 16 to 275 g NH4-N/m3, with AOB density 

decreasing with biofilter depth. Unfortunately, comparisons of increased nutrient (N and P) 

loading against both community composition and media biomass are scarce.  

2.6 Research Gaps 

2.6.1 Relationship between microbial ecology, biofilm dynamics and BOM 

removal performance within BFwp 

 Most studies thus far have focused on characterising the taxonomy of biofiltration 

(Kaarela et al., 2015; Lautenschlager et al., 2014; Liao et al., 2013a; White et al., 2012) and 

have not proceeded to relate ecological characteristics such as diversity and community 

structure with BOM removal performance. Furthermore these efforts used pre-treated 
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influent (ozonation and/or chemically assisted settling), which can (individually) alter feed 

water chemistry and biofilm ecology (Moll et al., 1998). The measurement of media EPS is 

rare within biofiltration literature (Azzeh et al., 2015; Elhadidy, 2015; Mauclaire et al., 2004) 

and an evaluation of the relationships between EPS, biomass and diversity has yet to be 

presented. Given its substantial presence in biofilter media and its effect on filter hydraulics, 

the relationship between EPS, biomass and community structure would be valuable in 

predicting process behaviour during process upsets and community shifts. 

2.6.2 Impact of seasonal water quality fluctuations on BFwp biofilm dynamics and 

community structure 

 Temperature (Evans et al., 2013; Laurent et al., 1999; Pharand et al., 2015) and 

nutrient concentration (Lauderdale et al., 2012; LeChevallier et al., 1991; Yu et al., 2003) can 

affect BOM removal performance of biofiltration. Given the significant variation of these 

parameters within the Grand River during the course of a year (GRCA, 2013) it is possible 

that they can affect biofilter community structure and diversity as well. The response of 

biofilter community ecology to seasonal water quality fluctuations has yet to be fully 

explored, with few investigations thus far (Kim et al., 2014; LaPara et al., 2015; Yang et al., 

2011). More information is needed to assess changes in the community structure and 

diversity of BFwp over seasonal time scales and which water quality parameters are most 

important for biofilter ecology. 

2.6.3 Unexplored microbial community dynamics of nanofiltration membrane 

biofoulant pre-treated by biofiltration 

Despite widespread use, high pressure membrane filtration has long suffered from 

problems of biofouling (Flemming et al., 1997). Yet there have been limited investigations 

into the microbial dynamics of the biofoulant (Gutman et al., 2014; Ivnitsky et al., 2007; 

Vanysacker et al., 2014). Biofiltration can be a viable pre-treatment method for high pressure 

membrane filtration (Griebe & Flemming, 1998) due to its reduction of feed nutrient 

concentrations. Yet if biofouling reduction through biofiltration is to be optimized, a 

thorough understanding of the microbial communities across these two processes is needed. 
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Todate an investigation of this type (namely exploring the ecology of high pressure 

membrane biofoulant and its relationship with the biofilms of upstream biofiltration) has 

not been performed. 

2.6.4 Limited information on the dynamics of archaea within biofiltration and 

high pressure membrane systems 

 Limited investigations into the presence and role of archaea within drinking water 

biofiltration systems have been performed (Bai et al., 2013; Moll et al., 1998). Given the 

ubiquitous distribution of archaea in soil, marine and freshwater habitats, archaea are likely 

also present in BFwp media. Information regarding their abundance, distribution and niche 

affiliation within BFwp and nanofiltration membrane biofoulant would expand the breadth of 

biodiversity observed within these processes and would complement bacterial 

investigations to better conceptualize and manage drinking water systems ecology.  

2.7 Approach  

Considerable effort has been given to optimizing biofiltration monitoring and 

operation, however the majority of this work has focused on the physicochemical aspects of 

the process, with investigations into biological mechanisms focussing mostly on biomass. 

Currently there is substantial evidence to suggest that biomass is not quantitatively related 

to performance after proper acclimation of the media (Boon et al., 2011; Emelko et al., 2006; 

Pharand et al., 2014) and that a substantial amount of biomass can be removed from the 

media during backwashing without negatively affecting BOM removal (Liao et al., 2015). 

Therefore a more nuanced approach is needed which can investigate the biological basis 

behind biofilter BOM removal performance. To this end, community profiling has been 

applied (Boon et al., 2011; Kaarela et al., 2015; Lautenschlager et al., 2014; Liao et al., 2015). 

These investigations have produced important insights into the richness, diversity and 

major subphyla involved, however they stop short of characterising biofilter community 

dynamics across annual variations in feed, and how these perturbations may impact both 

the communities involved and the performance of the process. Furthermore, a seasonal 
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dataset of biofilm EPS abundance and composition, and how this relates to biofilter 

communities and process performance, is lacking within the literature. The study of EPS, 

biomass, diversity and community structure has seldom been applied to the development of 

membrane biofouling (Bereschenko et al., 2010; Fonseca et al., 2007; Ivnitsky et al., 2007; 

Vanysacker et al., 2014) and a review of the literature has not identified an investigation 

which concomitantly examined all of these parameters; moreover the relationships between 

these parameters across two complimentary processes such as biofiltration without 

pretreatment and nanofiltration has yet to be established.  

The current work addressed these shortcomings using a pilot scale biofiltration and 

nanofiltration plant at the Region of Waterloo’s Mannheim Drinking Water Treatment Plant. 

The biofiltration pilot plant received significant upgrades by former NSERC Chair in Water 

Treatment students Ahmed Elhadidy and Brad Wilson (Elhadidy, 2015; Wilson, 2015). The 

PhD work of Dr. Elhadidy involved a characterisation of the biomass and EPS associated 

with biofilter media as well as novel EPS and biomass extraction techniques and evaluation 

methodologies. His work also assessed seasonal biofilter performance fluctuation and the 

associated response of media biofilm biomass, EPS, and physiological activity. Finally, Dr. 

Elhadidy investigated biofiltration as a pretreatment to bench scale nanofiltration 

membranes, and the effects which this had on biofoulant biomass and EPS. The current 

work builds on Dr. Elhadidy’s efforts by providing molecular fingerprinting of microbial 

community structures for biofilter media across seasonal time scales and investigating how 

water quality variation impacts both the ecology and performance of biofiltration. Secondly, 

the current work describes the effects which biofiltration has on downstream nanofiltration 

biofoulant microbial community structures when used as a pretreatment, and how these 

ecological considerations reflect on membrane fouling and performance. 

Dr. Elhadidy contributed archived samples of biofilter feed-water and effluent, cells 

extracted from biofilter media, and archived nanofiltration membranes from the months of 

October 2014 to February 2015. These samples were archived from his PhD research 

specifically for molecular community analysis at a later date, and provided the first 4 

months of samples for analysis in the current work. In addition, the current work continued 

sampling biofilter feed water and media from May 2015 to November 2015, and to build 
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upon the archived samples by creating a time-series seasonal sample set to provide valuable 

information on biofilter community dynamics. Molecular analyses of community structure 

was performed by the polymerase chain reaction - denaturing gradient gel electrophoresis 

(PCR-DGGE) method, which is a method that is frequently used for molecular analysis of 

large sample sets. The method requires upstream genomic DNA extractions, followed by 

PCR amplification of a 16S rDNA gene target region. Biomass and extracellular polymeric 

substances (EPS) of the associated biofilm communities also examined, as well as biofilter 

removals of feed water DOC and NOM fractions. This study utilized molecular techniques 

for the examination of cellular and extra-cellular constituents of the biofilm matrix and 

related these uncommon process parameters to more conventional ones to identify 

improved operation and monitoring practices. 
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Chapter 3  

A seasonal-scale investigation of biofilm dynamics and 

process performance in dual-media drinking water 

biofiltration with no prior treatment 

3.1 Summary 

Two dual media pilot scale drinking water biofiltration units with no prior treatment 

(BFwp) were used to study bacterial community structure and its relationship with biofilter 

media biofilm dynamics and BOM removal performance over the course of 14 months. 

Polymerase chain reaction (PCR) was used with denaturing gradient gel electrophoresis 

(DGGE) to generate bacterial community profiles. Biofilter performance at several empty 

bed contact times was assessed by measuring the removal of dissolved organic carbon 

(DOC) and discrete fractions of natural organic matter (NOM) as determined by liquid 

chromatography – organic carbon detection (LC-OCD).  

The feed water bacterioplankton were very dissimilar to the media biofilm 

community structure and possessed lower Shannon diversity and richness in comparison. 

The biofilm community structure of BFwp underwent a shift in response to seasonal changes 

in water quality, which was accompanied by increased media biomass and EPS content and 

lower DOC and biopolymer percent removal during the winter of 2014/2015. Ammonia and 

the LC-OCD defined low molecular weight acids were shown by detrended correspondence 

analysis (DCA) to be the water quality parameters most responsible for the dynamic biofilm 

response. In addition to media biofilm community shift, decreasing feed temperatures and 

potential compositional changes in BOM served to impede biofilm biodegradation 

performance. Shannon diversity and community richness were shown to be stable 

irrespective of changing biofilm community structure. 
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Media biomass and EPS showed strong positive correlations with one another, and 

negative correlations with BOM removal performance; such parameters (ATP, cell count, 

EPS carbohydrates, EPS proteins and extracellular DNA) decreased with depth from 20 to 60 

cm, while community structure, diversity and richness did not. Shannon diversity and 

richness of the biofilm were not associated with BOM removal performance. Within the 

media biofilm matrix, a protein to carbohydrate to eDNA ratio of roughly 6:3:1 was 

observed; however, during the water quality mediated biofilm community shift, a lower 

relative protein content was observed, which indicates that although temperature is the 

dominant factor controlling biofilter BOM removal performance, shifts in community 

structure and associated EPS composition may also affect the media’s biodegradation 

abilities.   

3.2 Introduction 

With respect to nuisance natural organic matter (NOM), the purpose of biofiltration 

is to transform the biodegradable fraction of NOM to CO2, biomass, and extracellular 

polymeric substances (EPS). In the absence of disinfectants, indigenous microorganisms 

suspended in the bulk flow of the feed water colonize biofilter media, and through cell-cell 

signalling produce dynamic biofilms (Lautenschlager et al., 2014; Simões et al., 2010). 

Several configurations exist for the use of biofiltration in drinking water treatment trains, 

with some of the more common designs involving biofiltration after initial treatment steps 

such as particle removal (coagulation, flocculation, sedimentation, filtration) and ozonation 

(Evans et al., 2013; Urfer et al., 1997). Biofiltration without pretreatment (BFwp as defined by 

Huck et al. (2015) is intended to achieve particle and BOM removal from untreated water in 

the same stage. Many benefits are associated with biofiltration, chief among them are the 

production of treated water with lower biological regrowth and disinfection by-product 

(DBP) formation (Huck & Sozański, 2011). BFwp also shows promise as an inexpensive 

pretreatment to reduce fouling of membranes such as ultrafiltration (Peldszus et al., 2012), 

nanofiltration (Elhadidy 2015a), and reverse osmosis membranes (Hu et al., 2005). 
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 Assessing biofilter microbial ecology is an important endeavour as information 

regarding composition, community structure, richness, diversity and taxonomic sequences 

could offer insights into potential novel operation and management practices (Kaarela et al., 

2015). Biofilter ATP is currently the most common method for measuring biofilter biomass, 

but other methods include total direct cell counts (Magic-Knezev & van der Kooij, 2004), 

heterotrophic plate counts (Hammes & Egli, 2010), and cell membrane phospholipid 

concentration (Emelko et al., 2006). Some studies report biofiltration biomass levels 

decreasing with depth (Gibert et al., 2013; Pharand et al., 2014; Urfer & Huck, 2001; Velten et 

al., 2011; Elhadidy 2015a), whereas others report no change with depth (Fonseca et al., 2001; 

Lautenschlager et al., 2014). Where biomass decreases occur, it is reasonable to consider that 

biodegradation in the upper parts of the filter has led to measurable decreases in substrate 

concentration as a function of depth. In addition, the substrate components of lower 

biodegradability would form a greater percentage of the overall substrate concentration 

lower in the filter. Several other factors have been shown to influence filter biomass levels 

including upstream oxidation (Moll et al., 1998; Fonseca et al., 2001), backwashing (Fonseca 

et al. 2001, Emelko et al. 2006), temperature (Velten et al., 2011) and biofilter maturity (Gibert 

et al., 2013). Some of these observations are controversial as Pharand and colleagues (2014), 

in a review of published ATP data, as well as full-scale investigations (Pharand et al., 2015), 

showed that temperature, EBCT and backwashing did not affect biomass levels as measured 

by ATP, using feed temperature ranging from 3 to 28 °C, EBCT ranging from 26 to 51 min, 

and a backwashing regime that included 5.5 minutes of air scour, 3 minutes of 400 L/s low 

wash and 7 minutes of 800 L/s high wash using non-chlorinated water. These findings 

illustrate the need for better biological monitoring methods beyond bulk biomass values; as 

such, improved biological monitoring may show potential to infer and predict NOM 

removal so that process operation and management can be tailored to identify and achieve 

the upper limits of system performance. 

Biofilter biofilm community structure investigation via electrophoretic profiling can 

elucidate population shifts due to seasonal, diel or other perturbations (Muyzer & Smalla, 

1998). Biofilter community diversity and richness are generally considered to be quite stable 

whether ozonation is used or not (Liao et al., 2013; White et al., 2012); however the effects of 
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seasonal fluctuations in water quality and temperature on biofilter diversity are unclear. 

Microbial community profiling techniques such as denaturing gradient gel electrophoresis 

(DGGE) excel at assessing the diversity and temporal variation of microbial consortia when 

large numbers of samples are required yet are limited in that identification of populations 

requires laborious post-hoc procedures (Samarajeewa et al., 2015; Vaz-Moreira, Egas, Nunes, 

& Manaia, 2013). Small ribosomal subunit tag sequencing can identify the major groups of 

bacteria present, their community diversity statistics, as well as their organization, but at the 

expense of more sophisticated and costly equipment than electrophoretic profiling. Given 

that the motivation for this work was the relationships between biofiltration performance 

and microbial community dynamics (and not taxonomic identification), sequencing was not 

pursued. Boon and colleagues (2011) used DGGE to show that, within non-backwashed pilot 

scale GAC biofilters receiving ozonated water, there was an increase in community richness 

and evenness (measured as phylotype abundance and phylotype relative dominance, 

respectively) at increasing media depth, presumably due to the absence of residual oxidant 

which they hypothesized led to higher metabolic efficiency at greater depths. This led the 

authors to conclude that richness and community structure, not biomass as ATP, were the 

most important parameters determining DOC removal. Fonseca and colleagues (2001) found 

that community structure based on DGGE did not change with depth, however the addition 

of ozone caused significant community differentiation compared to a non-ozonated control. 

The high diversity typically encountered within biofiltration acts as a reservoir of functional 

redundancy in the face of process upsets (Boon et al., 2011; Fonseca et al., 2001; 

Lautenschlager et al., 2014; Liao et al., 2013a). However direct comparisons between biofilter 

performance and ecological parameters like diversity, community structure and EPS remain 

scarce. Therefore, a greater understanding in how biofilter ecology affects process 

performance is required. 

Bacterial community fingerprinting requires that bacterial cells be extracted or 

concentrated from the environmental matrix in which they are found. Bulk DNA is then 

isolated from the sample and genes encoding a conserved sequence of the 16S ribosomal 

subunit are used as a molecular marker “tag”. These marker tags are amplified several 

million times using polymerase chain reaction (PCR) which, when the copy number 
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becomes high enough, can be detected and used in downstream analyses. These 16S rDNA 

tags contain genetic information which can be used to separate genera, species and 

subspecies; however taxonomic information is not obtained using DGGE, different bacterial 

populations are referred to as phylotypes instead of species. After amplification of the target 

gene sequences using PCR, the amplicons are loaded into a poly-acrylamide gel which 

contains an increasing gradient of DNA denaturing chemicals. An electric current is applied, 

and as the amplicons migrate through the gel matrix, their double stranded DNA begins to 

denature and unwind, thereby retarding the amplicon’s migration. An oligonucleotide 

clamp prohibits complete denaturation to single strands and the amplicon migration is 

finally halted. The location in the gel where a phylotype gene sequence stops migration is 

based on the melting point of the DNA fragment. The DNA bands are then visualized by 

staining with a fluorescent dye. Taken over the entire gradient, several populations of 

phylotypes can be discriminated and thus the community profile obtained. The presence, 

location and intensity of these phylotype bands are then used in downstream statistical 

analyses to compare communities over space and time (Muyzer et al., 1993). 

The factors which affect biofilter NOM removal are generally regarded to be 

temperature, empty-bed contact time, backwashing, media type and size, and feed water 

quality (Basu et al., 2016; Urfer et al., 1997; Zhang et al., 1996). However the extent to which 

these factors may influence biofiltration performance depends on other factors such as 

biomass maturity (Boon et al., 2011; Velten et al., 2011), source water characteristics (Basu et 

al., 2016) and the presence and type of pretreatment (Fonseca et al., 2001). In addition, the 

relationship between biofilm biomass (including cells and EPS) and biofilter performance is 

also unclear. It has been postulated that excess biofilm, which includes EPS, can affect 

biofilter performance. Lauderdale (2012) found that strategies to control the formation of 

EPS in biofilters (through nutrient and peroxide dosing) improved hydraulic performance of 

the biofilters and maintained or increased microbial activity and DOC removal. Azzeh and 

colleagues (2015) similarly found peroxide led to decreased headloss when 0.5 mg/L H2O2 

was applied, but decreased NOM removal at 1 mg/L. This improved functionality was 

attributed to peroxide oxidation of EPS (measured as proteins and polysaccharides), since 

lower EPS levels were observed in peroxide treated biofilters compared to control. The 
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authors further noted that peroxide addition below demand levels would add to the pool of 

biodegradable carbon via the oxidation of NOM and EPS, which could aid biofilm growth. 

Seasonal effects such as temperature are known to affect biofilter NOM removals 

(Emelko et al., 2006; Laurent et al., 1999; Persson et al., 2006; Pharand et al., 2015), but this 

change is not reflected by biomass ATP (Pharand et al., 2015) or phospholipid (Emelko et al., 

2006) levels. It is unknown if seasonal-related changes in NOM removal are exclusively the 

result of temperature-dependent enzyme kinetics as Laurent et al., (1999) suggest, or if 

changes in NOM properties and altered microbial community compositions also play a role. 

Therefore, the purpose of this study was to better understand the seasonal relationships 

between BFwp process performance and media biofilm parameters such as bacterial 

community ecology, and biomass levels including EPS abundance and composition. 

3.3 Materials and Methods 

3.3.1 Biofilters 

Pilot-scale sand-anthracite dual media filters were refurbished by Brad Wilson and 

Ahmed Elhadidy of the NSERC Chair in Water Treatment and commissioned in April 2014, 

with the media having undergone a prior 6 months of low flow pre-acclimation in a separate 

vessel operated in up-flow mode. This pre-acclimation used the same surface water and was 

initiated in the summer months of 2013 to take advantage of warmer feed temperatures to 

enhance biofilm growth. A schematic of the pre-acclimator can be found in the thesis by 

Wilson (2015). Two biofilter columns were used in the current study, each consisting of a 

25.4 cm inner diameter clear PVC column. Biofilter A (BF(A)) contained 20 cm anthracite 

over 20 cm sand, while Biofilter B (BF(B)) contained 20 cm anthracite over 60 cm sand; a 5 

cm layer of gravel occupied the bottom of both biofilters. The sand and anthracite media 

ratios were determined by the needs of previous pilot plant investigations. The filters were 

located at the Mannheim DWTP and fed using the same Grand River water as the full-scale 

plant’s intake, which is affected by the activity of upstream dammed reservoirs, multiple 

wastewater treatment utilities, and various agricultural activities. The Mannheim DWTP 

extracts and holds river water in storage lagoons prior to use. At the pilot plant, the raw 
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water from the lagoons first passed through a roughing filter composed of 10 cm crushed 

gravel for reduction of turbidity spikes. The feed water was then pumped from the roughing 

filter to the biofilters using a centrifugal pump and passed through the filters by gravity. 

Flow rates were maintained with an electronic flow controller at 100 L/h (3.08 m/h) in the 

winter and summer (October 2014 – August 2015), and 50 L/h (1.54 m/h) in the autumn 

(September 2015 – November 2015). This meant BF(A) and BF(B) had empty bed contact 

times of 8 and 16 minutes in the winter and summer, which increased to 16 and 32 minutes 

in the autumn. The change in biofilter operation was required to accommodate the needs of 

another investigation. A detailed description of pilot plant flow controller and 

instrumentation setup can be found in the thesis by B. Wilson (2015), which includes the 

setup for continuous monitoring of pilot plant influent temperature and turbidity. 

Backwashing consisted of 3 min collapse-pulse air scour to remove particles and slough 

excess biofilm, followed by 10 min at 50% bed fluidization to expel backwash water. 

Backwashing was performed 3 times per week in the winter and summer period of the 

study, and twice per week in the autumn. A detailed backwash procedure can be found in 

Appendix C. The Region of Waterloo graciously provided plant influent water quality data 

from its full-scale DWTP operations at Mannheim, which includes dissolved organic carbon 

(DOC), pH, electric conductivity (EC), ortho-P, ammonia (NH3), hardness (as calcium 

carbonate CaCO3), and nitrate (NO3-).  

3.3.3 Sampling Protocol 

 Between October 2014 and November 2015, 11 sampling campaigns were completed 

over 14 months which yielded a total of 53 media and 11 feed water samples from the 

biofilter pilot plant. Sampling events from October 2014 to February 2015, were performed 

by A. Elhadidy. All sampling events from May to November 2015 were performed by P. 

Markin. No sampling was performed in November 2014, nor March and April 2015. 

Sampling took place 24 h after backwashing for all months except in July and August, where 

biofilters were in operation for 40 h before sampling because of issues relating to site access. 

In a study of full-scale biofilters that were also fed using the Grand River, biofilter biomass 

and activity levels were shown to remain unchanged throughout the filter cycle, therefore 
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time since backwashing would not be expected to alter the biofilm (Pharand et al., 2015). 

Furthermore Basu et al. (2016) presented several studies where proper non-chlorinated 

backwashing did not affect biofilter performance, however this may not be the case for all 

systems as Liao et al. (2015) noted changes to biofilter biomass levels (as nmol-P) for 5 days 

following backwashing. Feed water was sampled downstream of the roughing filter before it 

entered the biofilter columns in 1 L DOC clean glass bottles, for which the bottle cleansing 

protocol can be found in Appendix D. Biofilter effluent was also sampled from each column 

using the same protocol as feed water. Water samples were kept cold and analysed within 

24 hours. To collect biofilter media, the biofilter column was drained, and media sampled 

via purpose-built ports using autoclaved sampling straws and placed in 50 mL 

polypropylene centrifuge tubes, which were kept cold and processed within 4 hours. Ports 1 

and 2 in both biofilters corresponded to a depth from the media surface of 10 and 20 cm, 

respectively. The majority of media sampled was at port 2 which aligned with the 

anthracite-sand interface. Port 3 was exclusive to BF(B) at 60 cm depth and located in the 

sand layer. For each sample, sand was separated from anthracite using a sieve. Separated 

media was placed in a 50 mL falcon tube and gently inverted for rinsing 3x using respective 

biofilter effluent followed by final rinsing with phosphate buffered saline (PBS) to remove 

loosely attached biofilm. Rinsed separated media was subjected to two workflows: 

immediate bulk ATP analysis or further processing with cation exchange resin to separate 

cells from EPS. Both workflows are described below. 

3.3.4 ATP Assay 

 ATP analysis was performed on media following the separation of sand from 

anthracite, using the method described by Elhadidy et al (2017). One gram wet weight 

media was placed in a 15 mL centrifuge tube along with 5 mL of lysis buffer (UltraLyse 7, 

LuminUltra). Media and buffer was then vortexed for 20 s and left to incubate at room 

temperature for 10 min. Following incubation 20 µL of supernatant from each sample was 

added to a 96 well plate which was then placed in a microplate luminometer (GloMax, 

Promega, USA). The luminometer aliquoted 100 µL of luciferase enzyme (ENLITEN ATP 

Kit, Promega, USA) into a well and recorded the response over 10 s. A 5-point standard 



38 

 

curve was created using ATP concentrations from 10-5 to 10-1 µM ATP, with dilutions 

prepared in UltraLyse 7 buffer. 

3.3.5 Extraction of Cells and EPS from Biofilter Media Biofilm 

 A cation exchange resin (CER) methodology was used on separated sand and 

anthracite media to extract cells and EPS from media grains and had been optimized by 

Ahmed El Hadidy et al (2017). For all analyses using cells counts (flow cytometry), EPS 

quantification and DNA based investigations (DGGE and biodiversity), the CER method for 

cell and EPS extraction was required. In summary, Dowex Marathon C cation exchange 

resin (Sigma Aldrich, USA) was rinsed with 100 bed volumes of Milli-Q water to remove 

residues from manufacturing. Three (3) g wet weight of rinsed media was added along with 

an equal wet weight of resin to a 50 mL centrifuge tube. After addition of 20 mL 6 mM PBS, 

tubes were shaken at 350 rpm at 15 °C for 1 h. The PBS had been sterilized by filtration 

through a 0.2 µm polyethersulphone (PES) syringe filter (VWR, Canada). After shaking, the 

resin was removed by settling, and then the liquid was withdrawn and centrifuged at 5000 x 

g for 20 min to pellet cells. The supernatant was withdrawn and filtered through 0.2 µm PES 

syringe filters (VWR, Canada) and stored at 4 °C for downstream EPS analysis. Cell pellets 

were re-suspended in 10 mL sterile 6 mM PBS for downstream flow cytometry, and aliquots 

were also frozen at -80 °C for PCR-DGGE community profiling. 

3.3.6 Cell Enumeration by Flow Cytometry 

 Flow cytometry was performed as described by Elhadidy et al (2017). CellTrics 10 

µm filters (Partec, USA) were used to remove large particles from resuspended cells before 

analysis by flow cytometry (Sysmex-Partec Cube6, Germany). One part suspended cells was 

diluted in 9 parts PBS before staining with SYBR Green I (Invitrogen, USA) to a 1x stain 

concentration. Incubation of stained cells was for 15 min at 35 °C. Stained samples were then 

further diluted 1:10 in PBS and, immediately before analysis, diluted 1:5 in 0.2 µm filter 

sterilized ultrapure (Milli-Q) water. The flow cytometer flow rate was 4 µL/s and cell counts 

were measured using the electrode count mode and plotted using a combination of FL-1 

(536 ± 20 nm) green and FL-3 ( > 615 nm) red channels, which allowed for the distinction of 
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living cells vs dead cells and debris. Gating and final counts were performed in FCS Express 

4 (De Novembero Software, USA).  

3.3.7 Quantification of Total Carbohydrates, Total Protein, and Extracellular 

DNA 

 Total protein was quantified in the EPS extracted samples using a Pierce BCA Protein 

Assay Kit (ThermoFisher Scientific), which is a bicinchoninic acid based colourimetric test. 

Bovine serum albumin (BSA) was used to create triplicate standards at 0, 1, 2.5, 5, 7.5, 10, 20, 

and 40 µg/mL concentrations. 1.8 mL of sample was vortexed with 1.8 mL bicinchoninic acid 

working solution and incubated at 60 °C for 1 h in borosilicate glass test tubes. Samples were 

then measured at 562 nm on a Cary 100 UV/VIS spectrophotometer (Agilent Technologies, 

USA) using a 1 cm glass cuvette. 

 Total carbohydrates were measured using the phenol-sulfuric acid method (DuBois 

et al., 1956). Triplicate D-glucose standards were used in 0, 1, 2.5, 5, 7.5, 10, 20, and 40 µg/mL 

concentrations. Pipette tips were rinsed 4x with Milli-Q water to remove any organic 

contamination. Each 9 mL borosilicate glass test tube received 0.5 mL sample, 0.5 mL phenol 

and 2.5 mL H2SO4 (98-99%; Sigma Aldrich, USA) and was subsequently incubated at 30 °C 

for 15 min. Phenol solution was prepared by dissolving solid crystal (Sigma Aldrich, USA) 

at 5% w/v in Milli-Q water. Measurements were performed at 490 nm using a Cary 100 

UV/VIS spectrophotometer (Agilent Technologies, USA) with a 1 cm glass cuvette. Glass 

vials for both protein and carbohydrate assays were cleaned using a special procedure 

involving HCl which can be found in Appendix D. 

 Extracellular DNA was quantified using the Invitrogen QuBit 2.0 platform 

(ThermoFisher, USA) where 10 µL filtered EPS was fluorescently stained using the dsDNA 

BR Assay Kit (ThermoFisher Scientific, USA). Samples were incubated in thin clear wall 0.2 

mL PCR tubes (VWR, Canada) in the dark for 2 min at room temperature. Kit standards 

consist of 0 and 100 ng/µL DNA and were used for calibration curves. 
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3.3.8 Liquid Chromatography – Organic Carbon Detection 

 A variant of size exclusion chromatography based on the Gräntzel thin-film UV 

reactor for detection of ppb (µg/L) levels of organic carbon was used to characterize major 

fractions of natural organic matter (NOM); this technology, otherwise known as liquid 

chromatography – organic carbon detection (LCOCD) (Huber et al., 2011), was used on 

biofilter feed, effluent and EPS extractions from media. A sample chromatogram of LC-OCD 

data from July 2015 feed water can be found in Figure 3.1-a. Operation and maintenance of 

the equipment was performed by Monica Tudorancea under the direction of Sigrid Peldszus 

of the NSERC Chair team. In water samples, the five major fractions (as defined by Huber et 

al. (2011) and their approximate elution times are biopolymers (10 kDa or greater; 25-35 

min), humic acids (40 min), building blocks such as the breakdown products humic 

substances (52 min), low molecular weight acids (55 min) and low molecular weight neutrals 

such as ketones, aldehydes and simple alcohols, sugars and amino acids (60 min or greater) 

(Huber et al., 2011). The method detection limits for biopolymers, humics, humic building 

blocks, LMW-acids and LMW-neutrals were 0.009, 0.009, 0.026, and 0.044 mg/L C, 

respectively, and the reproducibility was 5, 2, 12, and 9% standard deviation, respectively. 

Feed and effluent samples were pre-filtered using 0.45 µm polyethersulphone (PES) filter 

(VWR, Canada), and resulting data were integrated using ChromeCalc and ChromeRes 

software (DOC-Labor, Germany). Low molecular weight humics co-elute with low 

molecular weight acids, and the DOC-Labor software accounts for this by default. This 

mechanism was turned off for the current study, meaning the LMW-acids fraction included 

both LMW-acids and LMW-humics. Biofilm EPS samples were filtered via 0.2 µm PES 

syringe filters (VWR, Canada) to sterilize and filter particulates. Biofilm EPS chromatograms 

presented different response from that of surface water and as such were interpreted via a 

custom MATLAB (MathWorks, USA) algorithm as described by Elhadidy et al. (2016) where 

the areas observed under the 3 peaks were integrated and the ppb amount quantified. The 

first EPS peak is denoted high molecular weight (HMW) and corresponds to sizes larger 

than 13 kDa, eluting at 25 to 35 minutes. Elhadidy et al (2016) found that the HMW peak was 

primarily composed of protein-like substances with a secondary contribution of other 

compounds such as polysaccharides. The EPS intermediate molecular weight (IMW) peak 
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represents compound sizes between 2 and 13 kDa and elutes at 35 to 45 min, which is 

similar in size to the humic and fulvic acids fraction in feed water LC-OCD chromatograms. 

However, Elhadidy et al (2016) found that the IMW EPS fraction was complex and contained 

proteins, carbohydrates and humic-like substances. Finally, the low molecular weight 

(LMW) EPS peak eluted in excess of 45 min and therefore relates to sizes smaller than 2 kDa; 

and is likely composed of low molecular weight compounds such as peptides, amino acids, 

monosaccharides etc. The HMW, IMW and LMW EPS peaks are illustrated in Figure 3.1-b.  

 

 
Figure 3.1: Example LC-OCD chromatograms of biofilter feed water (a), and biofilm EPS extracted from sand 
media (b). 

3.3.9 Bacterial DNA Isolation 

For each liquid sample, one litre of feed water was filtered using two stages of 

polyethersulfone (PES) filters. The first round of filtration used 0.8 µm 47 mm diameter 

Supor® membrane filters while the second round used 0.2 µm 47 mm Supor® filters (Pall 

corporation, USA). This two stage approach ensured timely filtration of feed water with 
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high cell retention for downstream nucleic acid analysis. DNA was isolated from feed water 

filtrate and media biofilm cellular extracts. Samples archived previously by A. Elhadidy 

were used in the current study in conjunction with those gathered and archived by P. 

Markin. Archived water samples were stored as retentate on filter paper in 5 mL centrifuge 

tubes (VWR, USA). Media extracted samples were stored as cell suspensions in 15 and 50 

mL polypropylene falcon tubes (VWR, USA; as per the methodology in Section  3.3.5). All 

samples were stored at -80 °C until molecular work with PCR and DGGE could begin in 

October 2015. 

Sand and anthracite associated DNA was isolated from archived cell extracts using 

the PowerLyser PowerSoil kit (MoBio, USA). DNA isolation was performed on 300 µL of 

thawed and vortexed cell suspensions without the centrifugation for cell concentration, since 

this would result in the loss of freeze-thaw lysed cell DNA within the supernatant. The 

protocol resulted in sufficient DNA concentrations for downstream molecular analyses.  

Isolated DNA was assessed for quantity and quality via fluorometric quantitation 

and agarose gel electrophoresis, respectively. A QuBit 2.0 fluorometer with dsDNA BR 

Assay Kit (ThermoFisher Scientific) was used with 0.5 mL thin walled PCR tubes 

(ThermoFisher Scientific) to determine isolation yield of double stranded nucleic acids. One 

percent (w/v) agarose gels were prepared in 1× Tris-acetate EDTA (TAE) buffer along with 

10 l of GelRed agarose visualization dye (Biotium, USA). A 100 bp ladder (Amresco, USA) 

and 2 l of isolated DNA were each mixed with 4 µL 1x TAE and separated by 

electrophoresis at 100 V for 60 min and visualized using the GelDoc platform (BioRad, USA) 

and QuantityOne 1-D Analysis Software (BioRad, USA). 

3.3.10 DGGE Analysis 

  Bacterial 16S rRNA genes were amplified using a F968 forward primer with a 40 

base pair (bp) GC clamp, and a 1401.1b reverse primer which together targeted the V6-V8 

16S region (Heuer et al., 1997).  These primers have been successfully used in other 

electrophoresis based microbial community profiling studies (Brons & Van Elsas, 2008; 

Gomes et al., 2001; Pereira e Silva et al., 2012). Primers were purchased from Sigma Aldrich. 
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The method described by Brons & Van Elsas (2008) required modification in order to remove 

non-specific bands. The MgCl2 concentration was optimized, and the best results (least 

amplicon smearing in agarose at the 500 bp region) were achieved when DMSO and BSA 

were used. The difficulty associated with achieving a single defined amplicon band could be 

due to a combination of primer design and the use of a GC clamp, which if not optimized, 

could result in heteroduplex formation and mispriming which leads to non-target by-

products in the final PCR product, visible as fuzzy or smeared amplicon bands in agarose 

(Lorenz, 2012). 

Final PCR conditions were as follows, and used a Bio-Rad C1000 thermocycler. Each 

50 µL reaction volume contained 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 3.75 mM Mg2+, 5% 

v/v DMSO (supplier), 2% w/v BSA, 0.2 mM dNTPs (Bio-Rad), 0.2 mM forward and reverse 

primers, and 5 ng DNA template. Tubes were incubated at 94C for 5 min, and then 2.5 

U/reaction of iTaq polymerase (Bio-Rad) was added, to further minimize non-specific 

amplification. The touchdown amplification protocol included: 1 min at 94 °C, 1 min at 60 °C, 

and 2 min at 72 °C; followed by a decrease in annealing temperature of 0.5 C per cycle until 

55 °C was reached. Following this the program consisted of 20 cycles of 94 °C for 1 min, 55 

°C for 1 min, and 72 °C for 2 min with a final extension of 72 °C for 10 min. Bacterial PCR 

amplicons were checked for yield and target size using fluorometry and agarose gel 

electrophoresis in the same way as bulk environmental DNA, as outlined above. Bacterial 

DGGE conditions were optimized and performed using the DCode universal mutation 

detection system (Bio-Rad). A 6% polyacrylamide gel was used, and the denaturing gradient 

was 45-60%, where 100% consisted of 40 mL formamide and 42 g urea per 100 mL solution. 

Gel polymerization was catalysed with 13.2 µL of 20% TEMED-APS (N,N,N’N’, -

tetramethylenediamine – ammonia persulfate; AMRESCO) per mL gel solution. 

Approximately 450 ng of amplification product was loaded into profile lanes along with a 

custom made DGGE marker. The DGGE marker was prepared by combining PCR products 

from several different bacterial pure culture isolate, as described by Van Dyke & McCarthy, 

(2002). DGGE markers are used to align profile bands between lanes to overcome distortions 

in denaturing gradients and aid in lane comparisons. As well, an inter-gel marker composed 

of the amplification product from an August 2015 biofilter feed water sample was included 
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in each gel, in order to accurately compare profiles between gels. Electrophoresis was 

performed in 0.5× TAE buffer for 18 h at 60 °C and 50 V. Gels were stained for 90 min using 

1x PAGE GelRed (Biotium) in 0.5× TAE buffer and subsequent visualization was performed 

on GelDoc XR (Bio-Rad) using QuantityOne software (Bio-Rad). In addition to intra-gel 

markers, quality control was ensured via inter-gel marker comparisons. 

3.3.11 Statistical Analyses 

Intensity matrices were created from electropherograms using BioNumerics v7.0 

(Applied Maths) and analysed using several packages in the open-source Project R software 

(R Core Team, 2013). Detailed information on settings used in BioNumerics can be found in 

the analogous section of Chapter 4. Statistical analysis of the DGGE profiles was 

accomplished by analysing the presence and intensity of the banding patterns they provide. 

Each lane within the profile is loaded with the extracted and PCR amplified DNA from a 

single sample type which, after electrophoresis and staining, produces the observed patterns 

of phylotype bands when exposed to UV. The location of a lane’s bands were measured and 

used to generate a presence/absence matrix. If band intensities are used, such as in the 

current study, relative abundances are measured and the matrix is said to be quantitative. 

The banding patterns and intensities of individual samples within the matrix can then be 

compared against each other using multivariate statistical techniques such as principal 

component analysis (PCA), correspondence analysis (CA) or hierarchical clustering; in this 

way DGGE analysis of microbial communities is in effect no different from other types of 

fingerprinting, such as chemical or metabolite profiling. In this study, cluster analysis was 

performed using agglomerative hierarchical clustering and detrended correspondence 

analysis (DCA). Agglomerative hierarchical clustering approaches start with individual 

samples and then progressively join together similar samples into clusters. In this case a 

distance coefficient matrix is created with the resultant distances assembled into a 

dendogram. Hierarchical clustering was performed using Bray-Curtis distances assembled 

via the Ward algorithm. Bray-Curtis distances (dissimilarity) allow for rare species to affect 

the distances (Legendre & Legendre, 1998), while the Ward algorithm was selected because 

it is a reliable agglomerative methodology and because of its ability to arrange data 
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according to cluster centroids (Legendre & Legendre, 1998). DCA is a multivariate technique 

which clusters phylotype data in reduced space while adjusting for “arch-effect” problems 

inherent to ecological datasets due to their unimodal distributions (Borcard et al., 2011); 

vectors representing environmental gradients are added and their strength of correlation 

with the phylotype data is presented by means of vector length. In order to produce a usable 

ammonia vector for inclusion in DCA analysis, values below the method detection level 

(DL) of 0.1 mg-N/L were substituted with (DL/2) as described by Farnham et al. (2002). A 

Mantel optimal number of clusters test (Borcard et al., 2011) was used to statistically 

determine the optimal number of clusters within the dataset by comparing Pearson 

correlation values between the original Bray-Curtis distances against the Ward assembled 

dendrogram after the latter was cut at different heights, representing different number of 

clusters. In addition, analysis of similarity (ANOSIM) was performed using the Vegan 

package (Oksanen et al., 2016). ANOSIM provides hypothesis testing on the similarity 

within and between groups and therefore is able to impart whether a group is cohesive at a 

defined significance level.  

Biodiversity statistics (Shannon diversity index and richness) were obtained using 

BioDiversiyR (Kindt & Coe, 2005). The approaches used in multivariate investigations of the 

DGGE matrices were informed by Borcard et al. (2011), Legendre & Legendre (1988), and 

Whitlock & Shluter (2009). Several methods are often used to assess the complexity of DGGE 

profiles, among them are band number or richness (Boon et al., 2011; Lyautey et al., 2005), 

which are used to infer how many species are present in a sample, and Shannon diversity 

(Duarte et al., 2012; Moura et al., 2009; Vaz-Moreira et al., 2013). Shannon diversity (H’) 

describes the number of species in a given habitat and their relative abundance. Shannon 

diversity is calculated from community richness (the number of species or phylotypes in a 

community). Diversity is an important measure for assessing a community’s complexity, 

resilience and maturity, and was calculated using Equation 3.1,  

𝐻′ =∑𝑝𝑖

𝑆

𝑖=1

ln 𝑝𝑖 

           

 Eq. 3.1 
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where H’ is diversity, S is the number of species in the community (also known as 

the community richness), and pi is the proportion of the ith species. This means that a 

community with one species will have an H’ of 0, whereas this value will increase with 

increasing richness (Molles & Cahill, 1998). Furthermore, depending on the relative 

abundance of individual phylotypes, it is possible for two communities to exhibit different 

Shannon indices while possessing the same number of species (richness). For the current 

research, the Shannon-Weiner diversity index was selected due to ubiquity within the 

literature, which makes comparisons with other data possible. 

Water quality means for warm (> 10 °C) and cold (≤ 10 °C) conditions were compared 

using t-tests. Water quality was also compared between DGGE profile groups, which 

included feed water communities as well as media biofilm communities using t-tests. Given 

that 50% of feed ammonia data were below detection limit (DL) of 0.1 mg/L and considered 

non-detects, t-test means comparisons using ammonia data were subjected to maximum 

likelihood estimation (MLE) using the NADA package (Lee, 2017) in R; use of this technique 

produces estimated mean and standard deviation (not replacement data) and allows non-

detects to be used in means comparisons; this type of technique is therefore the preferred 

methodology over substitution and non-parametric approaches for dealing with means 

comparisons of non-detect data-sets (USEPA, 2000). Note that in contrast, DL/2 substitutions 

were made for ammonia data pertaining to the DCA plot, as the DCA plot required 

replacement data and therefore could not use the descriptive statistics produced by the MLE 

approach. 

For comparisons of mean biomass, EPS, NOM removal and community diversity 

between BF(A) and BF(B), a paired Student’s t-test was used. Seasonal NOM removals were 

also compared using ANOVA analysis. Finally, Pearson r multiple correlations were 

performed on water quality, biomass, EPS, biodiversity and NOM removal values. 
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3.4 Results  

3.4.1 Biofilter Feed Water Quality 

Several water quality parameters were measured in the raw river water used to feed 

the biofilters and are presented in Figure 3.2. Standard metrics included temperature and 

turbidity (which were continuously measured by on-line equipment at the pilot plant; 

Figure 3.2-a), as well as parameters measured by the Region of Waterloo on a weekly (NH3, 

NO3-) or monthly (ortho-P, total iron, conductivity, hardness and pH) schedule (Figure 3.2-

b). Water quality data is also presented as the range of values obtained during cold and 

warm conditions (Table 3.1).   
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Figure 3.2: Feed water quality including (a) temperature, turbidity and dates media was collected; squares 
show Elhadidy while triangles show Markin sample dates. (b) feed water NH3, ortho-P and total iron 
concentrations; NH3 values below the detection limit of 0.1 mg-N/L are shown as 0.05. (c) feed water DOC, 
nitrate and hardness. (d) LC-OCD fractions including biopolymers (BP), humic substances (HS), building blocks 
(BB), low molecular weight acids (LMW-A), and low molecular weight neutrals (LMW-N). 
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Table 3.1: Biofilter feed water quality during warm and cold conditions. 

Parameter Unit 

Warm Feed Water 

(>10C) 

Cold Feed Water 

(10C) 

MIN MAX n MIN MAX n 

Temperaturea °C 10.50 26.40 NA 1.29 9.93 NA 

Turbiditya NTU 0.55 12.84 NA 0.39 13.63 NA 

DOC mg C/L 5.5 6.9 8 5.1 7.2 3 

Biopolymers OC μg C/L 286 683 8 289 398 3 

Humics OC μg C/L 3330 4465 8 3048 4148 3 

BB OC μg C/L 683 1203 8 608 866 3 

LMW-Acids OC μg C/L 151 218 8 427 525 3 

LMW-Neutrals μg C/L 479 664 8 94 173 3 

Ortho - Phosphateb mg P/L 0.006 0.085 13 0.002 0.05 9 

Ammonia / Ammoniumb mg N/L 0.10 0.15 24 0.10 0.60 15 

Nitrateb mg N/L 1.73 5.96 31 2.54 5.02 18 

Total Ironb mg/L 0.102 0.184 8 0.09 0.32 5 

pHb mg/L 8.09 8.23 8 7.99 8.24 5 

Conductivity (at 25 °C)b µmhos/cm 575 685 8 647 1080 5 

Hardness (as CaCO3)b mg/L 217 297 8 287 343 5 

a and NA denote continuous on-line monitoring at biofilter pilot plant; b denotes data from by Region of 

Waterloo 

 

Cold condition sampling events were those where the temperature of the feed water 

entering the biofilters was at or below 10 °C (December 2014, January & February 2015). 

Warm sampling events were those where the feed temperature was above 10 °C (October 

2014 as well as May to November 2015). The 10 °C temperature point has been used as a 

demarcation between warm and cold water conditions in other biofiltration work (e.g. 

Pharand et al., 2015), as temperature conditions below this point are associated with slower 

biofilter microbial activity and lower NOM removals (Laurent et al., 1999). 

Line charts of seasonal water temperature and turbidity for the 14 month total span 

of the current study (Figure 3.2-a) shows that monthly mean temperature was highest in 

August 2015 (23.1 °C) and lowest in March 2015 (1.6 °C). Figure 3.2-a also shows turbidity 

levels during the study period, which ranged from a high monthly mean of 7.08 NTU in 

December 2014 and a low monthly mean of 1.33 NTU in February 2015. For the majority of 

the year, turbidity was low, averaging below 5 NTU.  
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Figure 3.2-b presents ammonia, ortho-phosphate and total iron during the 14 month 

time span of the current study. Note that ammonia levels were below detection limit (0.1 

mg-N/L) during many of the warmer months and were higher during cold conditions. 

Biofilter samples collected in February 2015 were taken during this period of high ammonia 

concentration, where the monthly concentration averaged 0.43 mg-N/L. As much of the 

ammonia data were below the detection level, the data set was adjusted to make parametric 

means comparisons possible; the data adjustment method was maximum likelihood 

estimation (MLE), which estimates descriptive statistics, yet does not generate replacement 

values. For means comparisons, the MLE approach is widely favoured over substitution 

techniques, which can bias the data (Helsel, 2005; Huston et al., 2009; USEPA, 2000). 

However, the proportion of non-detect data (67%) was higher than the method guideline of 

≤ 50% (USEPA, 2000), and therefore caution was required in assessing differences in mean 

ammonia concentrations between warm and cold conditions. Ammonia concentrations were 

shown as significantly higher in cold (≤ 10 °C) conditions (Table 3.2; t-test using maximum 

likelihood estimation, p < 0.001, alpha = 0.05). In addition to means comparisons, ammonia 

data were also used in detrended correspondence analysis (DCA) in section 3.4.2.; however, 

the use of MLE type approaches were incompatible with DCA as the latter required raw 

data and not generated descriptive statistics (which MLE provides); therefore substitution of 

ammonia data (half the detection limit) was used in the DCA method. Ortho-phosphate and 

total iron concentrations did not show a significant difference between temperature 

categories (Table 3.2). Turbidity also did not show significant differences between warm 

and cold conditions (Table 3.2; t-test, p = 0.787, alpha = 0.05) 

Figure 3.2-c presents DOC, nitrate and hardness levels during the study period. DOC 

concentrations ranged from a high of 7.2 mg/L in December 2014 to a low of 5.1 mg/L in 

February 2015, but there was no significant change in DOC with water temperature (t-test, p 

= 0.333;  = 0.05; Table 3.2). Nitrate concentrations spiked twice during the study: once in 

winter where concentrations ranged from 4.5 to 4.9 mg-N/L during a period spanning 

January to March 2015, and again in June where concentrations peaked at 5.96 mg-N/L. Low 

nitrate concentrations were observed in October 2014 (1.73 mg-N/L), May 2015 (2.03 mg-

N/L) and a period spanning August to October 2015 (~2 mg-N/L). Therefore nitrate 
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concentrations were not significantly different between warm and cold conditions (t-test, p = 

0.056;  = 0.05; Table 3.2). Both hardness and conductivity showed significant increases in 

cold conditions (t-test, p = 0.003 & 0.011, respectively; alpha = 0.05; Table 3.2). 

DOC and NOM size fractions (as determined by LC-OCD) of the biofilter feed water 

were also measured during sampling events, as illustrated on Figure 3.2-a. Black squares 

indicate sampling events performed by Elhadidy while triangles show sampling performed 

by Markin. No sampling events occurred during November 2014, March 2015 or April 2015. 

Figure 3.2-d shows LC-OCD defined organic carbon fractions of the influent over the sample 

period. As is typical for river water, humic substances presented the highest levels out of the 

NOM fractions, at 65% of total C. Biopolymers on average composed only 7% of the feed 

total C. Building blocks, low molecular weight neutrals and acids composed 15, 8 and 5% of 

total C, respectively. The NOM fractions which demonstrated significant differences 

between warm and cold conditions were building blocks, low molecular weight acids and 

low molecular weight neutrals (t-test, p = 0.041, < 0.001 & < 0.0001, respectively; alpha = 0.05; 

Table 3.2). However, interpretation of the cold vs warm LC-OCD means comparison results 

should be met with caution due to the low number of samples in these cold condition data 

since n = 3 (Table 3.1). 

Table 3.2: t-test results (two tailed;  = 0.05) comparing water quality parameters at cold (≤ 10 °C) and warm 
(> 10 °C) conditions. Ammonia means comparison utilized maximum likelihood estimation technique (MLE) to 
account for censored data. Significant differences are marked with an asterisk (*). 

Parameter Warm vs Cold P value 

Turbidity 0.787 

DOC 0.333 

Biopolymers 0.223 

Humics 0.352 

Building Blocks 0.041* 

LMW-Acids <0.001* 

LMW-Neutrals <0.001* 

Ortho - Phosphate 0.855 

Ammonia <0.001* 

Nitrate 0.056 

Total Iron 0.275 

pH 0.482 

Conductivity (at 25 °C) 0.011* 

Hardness (as CaCO3) 0.003* 
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3.4.2 Community Profiling of Feed Water and Biofilter Media Biofilms by DGGE 

Analysis 

3.4.2.1 DGGE Profile Clustering 

DGGE analysis was performed on 11 water samples and 53 biofilter media samples 

collected from October 2014 to November 2015.  All sample amplicons were positive with a 

single band in agarose at the expected size of 473 bp, as well as no band in the negative 

reaction blanks. The amplicon yield was typically 2 x 104 ng /µL. DGGE analysis was able to 

separate bacterial PCR amplification products into a large number of bands (phylotypes) as 

shown in Figure 3.3. Biofilter media sample communities showed visually different banding 

patterns compared to the feed water community (presented in Lane F) and media biofilms 

consistently displayed higher phylotype band number. Overall, the cumulative number of 

unique DGGE ribotypes from all samples was 84. 

 
Figure 3.3: DGGE electropherogram of biofilter media and feed water bacterial communities. Lanes labelled 
“M” are marker lanes, lanes 1-5 and 7-12 were from biofilter media samples, and lane F was a biofilter feed 
water sample. 

Information on the statistical analysis of DGGE results can be found in Section 3.3.11. 

In analysing the banding patterns of biofilter media and feed water samples, the x-axis of 
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Figure 3.4 shows the optimal number of clusters or groups (k) was 5, with a Pearson 

correlation of 0.76 between the distance matrix and the Ward-assembled dendogram. The 

indicated 5 groups relate to a dendogram height of 0.80 as shown in Figure 3.5. 

Hierarchically clustered distances show the relationships between sample communities and 

their immediate similarity to the nearest neighbour, which is quantifiable using the “height” 

scale located at the top of the figure. This height scale represents sample (dis)similarity, 

where a value of 0 represents no dissimilarity and a value greater than 0 represents 

increasing dissimilarity. The greater the height of the vertical bar connecting two clusters, 

the greater the dissimilarity between those clusters. This method of cluster representation 

clearly has advantages over ordinal (reduced dimensional space) clustering as the 

information is presented in a format where a sample’s location within the entire dataset can 

readily be assessed. 

 Reliability of DGGE profiles was evaluated using gel markers. Each DGGE gel 

included intra-gel markers for lane straightening and alignment, as well as a single inter-gel 

marker for comparisons between individual gels. In order to assess DGGE method reliability 

between individual gel profiles, the inter-gel patterns were assembled into a dendrogram 

using Bray-Curtis distances and the Ward algorithm (Appendix A as Figure S1). The 

greatest node height (dissimilarity) between gel profiles was 0.50, which is lower than the 

node height of 0.80 used to discriminate between the optimal number of sample clusters. 

This means that there was good reliability of DGGE gel profiles between gels.  
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Figure 3.4: Mantel optimal number of clusters as determined by Pearson’s correlation between Bray-Curtis 
distances and Ward assembled dendograms cut at different heights (representing number of groups). Optimal 
number of clusters (k) was 5 at a Pearson r of 0.76 

Figure 3.5 shows that a superstructure is easily observed in the DGGE profile 

dendrogram, where feed water (planktonic) bacterial communities exhibit a marked 

dissimilarity from bacterial biofilm communities. Within the two major planktonic and 

biofilm branches, each of the created clusters were assigned an alphabetical group name, 

with the feed water samples divided into two main clusters (A,B) and the media samples 

into three main clusters (C, D, E). Group A contain feed water samples from predominantly 

warm (>10C) conditions, with the exception of the December 2014 sample. Group B 

contains feed water samples collected during both warm and cold temperatures. Group C is 

the first of three media groups encountered. Group C contains all January and February 

2015 media samples; these are cold condition (10C) media biofilm communities. However, 

December 2014, which is also a cold condition media biofilm community, is found in group 

E. Group D is composed solely of October 2014 media samples. The last media group is 
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Group E, which contains the all the warm condition 2015 media samples as well as the cold 

condition December 2014 media communities. Groups C and E present several sub-clusters 

organized by month, which are not organized in a chronological fashion. Community 

structures in Figure 3.5 did not cluster according to media type, depth or biofilters A and B. 
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Figure 3.5: Dendogram of biofilter feed water and media samples from Oct 2014 to Nov 2015. Samples are 

identified by date (month/year), sample type [feed, BF(A), BF(B)], media type [sand (S) or anthracite (A)] and 

sample depth (10, 20 or 60 cm from media surface). Five clusters were identified and labelled A to E, with 

groups A and B composed of planktonic feed water communities and groups C to E composed of media biofilm.
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 The dendogram group cohesion of Figure 3.5 could be evaluated using hypothesis 

testing. Boxplots were created to show results of analysis of similarity (ANOSIM; Figure 3.6), 

which evaluates the mean ranked Bray-Curtis distances (otherwise referred to as dissimilarities) 

between and within groups to allow for nonparametric hypothesis testing of multivariate data 

(Clarke, 1993). The ANOSIM statistic (R value) is a comparison of the ranked dissimilarity mean 

between groups to the mean within groups, where an R value close to 1 indicates high 

dissimilarity between groups. The ANOSIM statistic was determined to be R = 0.92 (p = 0.001, 

alpha = 0.05), validating that the groups created using the clustering analyses yielded significant 

differences. Results also show that the “between” group dissimilarity was higher than the value 

within groups for all except the planktonic feed Group B. Group B contains feed water 

communities from sampling dates which span more than 12 months (October 2014, January, 

February and November 2015), and this could contribute to the greater dissimilarity observed 

within this group. Therefore, the high dissimilarity within Group B indicates that feed water 

Groups A and B could be considered a single cluster. In addition, Group E, the largest of the 

media biofilm clusters, contains 7 outliers all from the August 2015 media sub-cluster as shown 

in Figure 3.6  
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Figure 3.6: Boxplots displaying the ANOSIM dissimilarity between and within DGGE groups. Width of boxes 

represents number of entries within group, horizontal black bars show median, and lower and upper box edges 

represent 1st and 3rd quartiles. Error bars represent the upper and lower range of dissimilarity. Circles are outliers. 

ANOSIM statistic was determined to be R = 0.923 (p = 0.001, alpha = 0.05).  

 In order to investigate relationships between feed water quality and DGGE profile 

community clustering, an ordination type analysis was used. CCA ordination was attempted, 

however an arched or “horseshoe” pattern was observed, which indicates a poor quality of 

analysis (Borcard et al., 2011; Legendre & Legendre, 1998). Therefore detrended correspondence 

analysis (DCA) was used (Figures 3.7 and 3.8), as it is more suited to the data set and is 

commonly favoured in ecological multivariate analyses (Legendre & Legendre, 1998). Bacterial 

communities (as determined by PCR-DGGE profiles) are represented by small open diamonds 

while group clusters are indicated by coloured ellipses. Blue arrows are water quality gradients 

(vectors) showing direction and strength of analyte correlation with species data. A DCA plot 

evaluating the influence of water quality parameters (DOC, nitrogenous compounds, 

phosphorus, iron, temperature, turbidity) is shown in Figure 3.7. The percent of variance 
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explained by the DCA plot axes in Figure 3.7 is 19% and 10% for axes 1 and 2, respectively; this 

permits reasonable observations to be drawn from the figure, and is similar to the variances 

explained by DGGE mediated DCA and RDA analyses elsewhere (Wang et al., 2015). A second 

DCA plot was constructed to evaluate the relationship between the DGGE profile groups and 

feed water NOM fractions as determined by LC-OCD (Figure 3.8).  

The DCA plots showed good agreement with hierarchical cluster arrangements for 

Groups A, B, C and E (Figure 3.5); these similarities served to support the previous dendogram 

results. Group D of the DCA plot however is located within the larger Group E, and serves as 

the only major difference between the dendogram and ordination multivariate methods. 

Therefore Groups D and E were combined into Group D/E for further statistical means testing. 

In comparing the DGGE profile data with the feed water quality data, the NH3 vector within 

Figure 3.7 was larger relative to other vectors, and indicates a proportional relationship with 

DGGE group C. As well, Figure 3.8 shows that the low molecular weight acids vector is also 

oriented towards Group C (January-February 2015 biofilm) at high correlative strength. Group 

D/E (summer/fall biofilms) were associated with elevated temperature and DOC (Figure 3.7), 

and also the other NOM fractions (including biopolymers, humic substances and building 

block, and low molecular weight neutrals) (Figure 3.8) as indicated by vector arrow direction 

and length; the length and direction of these last NOM vectors is also important when 

interpreting Group C, as their direction (pointing away from Group C) indicates negative 

correlative with Group C. 
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Figure 3.7: Detrended correspondence analysis for biofilter feed water and media bacterial communities and water 

quality parameters. DGGE community profiles for each sample are represented by small open circles, while the 

DGGE profile groups are represented by coloured ellipses, with the group letter positioned in ellipsoid centres. Post-

hoc environmental gradients including temperature (Temp), turbidity (Turb), pH, ortho-phosphorous (Ortho.P), 

total iron (T.Iron), nitrate (NO3) and ammonia (NH3) are represented by blue arrow vectors and correspond to the 

correlation strength between the variable and the DCA ordination.   
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Figure 3.8: Detrended correspondence analysis for biofilter feed water and media bacterial communities and natural 

organic matter fractions as measured by DOC and LC-OCD. DGGE community profiles for each sample are 

represented by small open circles, while the DGGE profile groups are represented by coloured ellipses, with the 

group letter positioned in ellipsoid centres. Post-hoc environmental NOM gradients are represented by blue arrow 

vectors and include dissolved organic carbon (DOC), biopolymers (BP), humic substances (HS), humic building 

blocks (BB), low molecular weight acids (LMWA), and low molecular weight neutrals (LMWN).  

3.4.2.2 DGGE Profile Diversity 

Diversity in the biofilter feed water and media biofilm samples was measured using 

DGGE community profiles. Figure 3.9 shows media Shannon-Weiner diversity (a) and richness 

(b) for samples collected from biofilter A and B at 20 cm depth, which is the interface between 

sand and anthracite. Sand and anthracite were separated and values for each parameter are 

presented separately. Figure 3.9 also presents feed water diversity and richness for planktonic 



62 

 

communities. The biofilter loading rate was 3.08 m/h, and this was decreased to 1.54 m/h 

starting in September 2015. Paired t-tests showed that no differences were found between BF(A) 

vs BF(B) sand Shannon diversity (paired t-test, p = 0.985, alpha = 0.05, Table 3.3) as well as 

richness (paired t-test, p = 0.869, alpha = 0.05, Table 3.3). Anthracite however showed a 

significant difference between Shannon index means of BF(A) vs BF(B) (paired t-test, p = 0.046, 

alpha = 0.05, Table 3.3), while no difference between columns was observed in the anthracite 

richness mean (paired t-test, p = 0.126, alpha = 0.05, Table 3.3). The Shannon diversity index (H’) 

values are shown over the 14 month experimental period for samples collected from both feed 

water and biofilter media collected from BFA and BFB at 20 cm depth (Figure 3.9). Overall, the 

feed water planktonic diversity and richness measurements were significantly lower than 

media biofilm sand and anthracite values (ANOVA, p < 0.001 & p = 0.002 for diversity and 

richness, respectively, alpha = 0.05). 

Results for the biofilter media samples (collected at 20 cm depth) show that the diversity 

of bacteria communities on biofilter media was low on the first sample date (October 2014), but 

increased by December. 2014 and remained relatively stable over the remaining study period 

(between 3.0 and 4.26), with average values of 3.80 ± 0.40 for sand and 3.74 ± 0.41 for anthracite 

communities at 20 cm depth. Figure 3.9-a shows that overall media diversity values were high 

and quite stable over the seasonal dataset. Community richness values in Figure 3.9-b were 67 ± 

16 phylotypes in sand and 66 ± 14 phylotypes in anthracite, and were therefore less stable than 

H’ values. This stability was despite the fact that feedwater values were generally lower on the 

first four sampling dates than on subsequent dates. 
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Figure 3.9: Bacterial community diversity (Shannon Index) (a) and richness (b) in feed water and media biofilms. 

Media samples were obtained from the 20 cm depth in BF(A) and BF(B). 

 

Table 3.3: Paired t-test comparing diversity and richness of BF(A) vs BF(B). Sand and anthracite were compared 

separately, and were sampled from the 20 cm depth media intermixing zone. Values were obtained using PCR-

DGGE bacterial community profiling. Significant results are indicated by asterisks (*). 

Media Parameter p value    

Sa
n

d
 

Shannon Diversity 0.985 

Richness 
0.869 

A
n

th
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Shannon Diversity 
0.046* 

Richness 
0.126 
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Differences in biofilm means between 3 seasonal groups were tested using ANOVA 

(Table 3.4). The winter group consisted of those samples below 10 °C (December 2014, January 

& February 2015) during 100 L/h (3.08 m/h) operation, the summer group consisted of 100 L/h 

operation above 10 °C (May to August 2015), and the autumn group contained samples from 

September to November 2015 during 50 L/h (1.54 m/h) operation. Table 3.4 presents the p-

values of this analysis, with neither anthracite nor sand showing seasonal differences in 

richness or Shannon diversity means (alpha = 0.05). 

Table 3.4: Analysis of variance (ANOVA,  = 0.05) comparing biofilter diversity and richness between seasonal 

groups at 20 cm depth. Seasonal groups were winter 2014/2015, summer 2015 and fall 2015. Additionally, feed 

water diversity and richness means were compared with sand and anthracite biofilm (ANOVA,  = 0.05). 

  

ANOVA  
(p values) 

Media Parameter Between Seasons Biofilm 

Sa
n

d
 

Shannon Diversity 
0.750 

Richness 0.807 

A
n

th
ra

ci
te

 

Shannon Diversity 
0.407 

Richness 0.437 

 

Figure 3.10 presents Shannon diversity and richness data for samples collected 

throughout the depth of the biofilter, including those from the top 10 cm of anthracite media, 

the 20 cm mixing zone of sand/anthracite, and the 60 cm sand depth from BF(B). For media 

biofilm bacterial richness and diversity, no change was observed along increasing depths within 

the filter.  
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Figure 3.10: Barplot showing Shannon-Weiner diversity index (a) and richness (b) parameters as a function of 

biofilter media depth across seasonal conditions. 

Pearson correlations between diversity metrics and water quality were performed 

(Tables S2 to S5 in App. A.) and results showed that there was no significant correlation 

between Shannon diversity, richness and water quality parameters, including DOC, NH3 and 

Ortho-P, and values were all below 0.66 and above -0.71. As well, DGGE group (as defined by 

hierarchical clustering and later refined by DCA clustering) diversity parameters are presented 

in Table 3.5. Given that DCA analysis showed Groups D and E to be within the same cluster, 

they were combined into the group labelled as Group D/E (October & December 2014 as well as 

May to November 2015 samples) for further analysis; this Group D/E presented the highest 

diversity at 3.97 ± 0.33 and 3.94 ± 0.30 for sand and anthracite, respectively. Group C was 

composed of biofilter media biofilm communities from January and February 2015, and also 

had high diversity index values of 3.81 ± 0.18 and 3.94 ± 0.17. Within the feed water samples, 

Group A had Shannon diversity of 3.73 ± 0.22, while Group B had a Shannon diversity which 

was much lower, at 2.63 ± 0.37. Table 3.5 also presents richness data for each DGGE group. 
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Richness for Group D/E richness was highest at 70 ± 15 and 70 ± 14 for sand and anthracite 

respectively. Group C richness was lower at 58 ± 10 and 65 ± 10 for sand and anthracite, 

respectively. Feed water community richness for Group A was 62 ± 9 while Group B was again 

much lower at 22 ± 9. 

Table 3.5: Shannon diversity and richness results for DGGE Groups as defined by hierarchical and DCA clustering 

analyses. 

Type Group n 
H'              
mean 

H'         
st. dev. 

Richness       
mean 

Richness             
st. dev. 

Water A 7 3.73 0.22 62 9 

Water B 4 2.63 0.37 22 9 

Sand C 4 3.81 0.18 58 10 

Anth C 4 3.94 0.17 65 10 

Sand D 2 3.33 0.12 40 1 

Anth D 2 3.22 0.16 36 6 

Sand E 16 4.05 0.25 74 11 

Anth E 16 4.03 0.15 70 9 

Sand D/E 18 3.97 0.33 70 15 

Anth D/E 18 3.94 0.30 70 14 

 

3.4.3 Biofilter Media Biofilm Biomass Characterization 

3.4.3.1. Biofilm Cell Concentrations 

Biomass levels on the biofilter media were measured using bulk media ATP values (ng 

ATP/cm3). As well, cell concentration (cells/cm3) of the biofilm extracted from the media was 

measured by flow cytometry. References to biomass will hereafter refer to ATP and cell count 

data. Data in Figure 3.11 show media ATP (a), cell counts (b) and ATP/cell values (c) for 

samples collected from biofilter A and B at 20 cm depth, which corresponded with the 

sand/anthracite interface. Sand and anthracite were separated and values for each parameter are 

presented separately. The loading rate was 3.08 m/h, and this was reduced in December to 1.54 

m/h starting in September 2015. As described earlier, the data shown from October 2014 to 

February 2015 were provided by Elhadidy (2016); while the data from May to November 2015 
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were measured in the current work using the same biomass characterization methods (Elhadidy 

et al., 2017). 

Since biofilters A and B were fed using the same water and loading rates, no differences 

were expected between filters at the same sample depth. Indeed, no differences were found 

between BF(A) and BF(B) for either biomass parameter at 20 cm depth (paired t-tests, α = 0.05, 

Table 3.6). Figure 3.11-a shows that, based on ATP, sand had more biomass per cm3 than 

anthracite. This confirms the findings by Elhadidy (2016) by providing additional data over an 

extended sampling period. The ATP values of both biofilters were averaged for the 11 sampling 

campaigns spanning 14 months and were 2016 ± 705 ng ATP/cm3 for sand and 891 ± 453 ng 

ATP/cm3 for anthracite. The cell counts in Figure 3.11-b use a log scale wherein the trend of 

sand exhibiting more biomass than anthracite is less striking. Average cell counts were 4.86x108 

± 3.72x108 cells/cm3 for sand and 3.06x108 ± 2.56x108 cells/cm3 for anthracite. 

For the results discussed just above, and for further results in this chapter where 

parameter values on anthracite and sand are compared, it is important to keep media size in 

mind. The 20 cm depth in both filters corresponded to the interface between anthracite and 

sand. Thus, the largest anthracite particles would be intermixed with the smallest sand 

particles, although media size measurements were not made. Since results are expressed per 

unit volume of media (cm3), media diameter will play a role because when it is smaller there is a 

greater surface area for biofilm growth per unit filter volume. It would thus be expected that, 

other things being equal, results would be higher for sand than for anthracite. Although other 

factors may have affected observed differences between anthracite and sand were those 

occurred, it is important to keep media size in mind as a probable contributing factor. 

Figure 3.11-a shows ATP values were generally highest in January and February 2015 

(3443 ng ATP/cm3) and lowest in the summer months starting in July. Cell counts in Figure 3.11-

b were similar to ATP, with the highest values in February 2015 and lowest in July 2015. Tables 

S2 to S5 in App. A show the correlations between ATP and cell counts were high for each 

biofilter and media type; Pearson r values ranged from 0.75 to 0.91 (Tables S2 to S5). Biomass 

shared a negative correlation with feed temperature (ranging from an r of -0.81 to -0.91 for ATP 
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and -0.68 to -0.76 for cell counts), yet a positive correlation with feed ammonium concentrations 

(ranging from an r of 0.78 to 0.95 for ATP and 0.73 to 0.78 for cell counts) in Tables S2 to S5. It is 

also important to note that ammonia levels were also highly correlated with temperature (-0.85), 

and that ammonia levels rose above detection limit exclusively during cold winter conditions 

(Figure 3.2b). 

 

 

 
Figure 3.11: Seasonal trends in biofilter media bulk ATP (a), cell count (b), and femtogram ATP/cell (c). 
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Table 3.6: Paired t-test comparing volumetric ATP, cell counts and ATP/cell between BF(A) and BF(B) for sand and 
anthracite media collected at 20 cm depth. Significant results are indicated by asterisks (none in this table). 

Media Parameter p value   

Sa
n

d
 ng ATP/cm3 0.3860 

Cells/cm3 0.7172 

ng ATP/cell 0.4550 

A
n

th
ra

ci
te

 

ng ATP/cm3 0.9772 

Cells/cm3 0.1948 

ng ATP/cell 0.3936 

 

In a seasonal comparison of biomass values using ANOVA, the winter ATP and cell 

count data were significantly higher than summer or fall 2015 values, for both sand and 

anthracite (ANOVA with post-hoc Tukey Honest Significant Difference (HSD), alpha = 0.05). A 

list of p values for the seasonal means comparison can be found in Table 3.7. Figure 3.11-c 

shows fg ATP/cell data for each biofilter and media type at 20 cm depth across the 14 month 

time span of the current study. Average values between both biofilters were 6.17±9.40 fg 

ATP/cell for sand and 3.84±1.51 fg ATP/cell for anthracite. ANOVA with post-hoc Tukey HSD 

(Table 3.7) showed that there was a significant difference between summer-fall and summer-

winter sand ATP/cell values for sand media (p = 0.013 and 0.033 respectively, alpha = 0.05), but 

there was no significant difference in seasonal values for anthracite media. 
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Table 3.7:  Analysis of variance (ANOVA,  = 0.05) comparing biofilter biomass in media samples collected at 20cm 
depth. Seasonal groups were winter 2014/2015, summer 2015 and fall 2015. Tukey honest significant difference 
analysis was performed on significant ANOVA results. Significant results are indicated by asterisks. 

  

ANOVA      
(p values)  

Tukey Honest Significant 
Difference (p values) 

Media Parameter 
Between 

Group            
Summer-
Fall 

Winter-
Fall 

Winter-
Summer 

Sa
n

d
 ng ATP/cm3 0.0004* 0.9024 0.0033* 0.0006* 

Cells/cm3 0.0002* 0.2496 0.0116* 0.0002* 

ng ATP/cell 0.0007* 0.0125* 0.6991 0.0326* 

A
n

th
ra

ci
te

 

ng ATP/cm3 0.0000* 0.9181 0.0003* 0.0000* 

Cells/cm3 0.0005* 0.7465 0.0053* 0.0005* 

ng ATP/cell 0.7515  -  -  -  

 

Figure 3.12-a to 3.12-c presents ATP, cell count and ATP/cell data for 10, 20, and 60 cm 

depths from BF(A) and BF(B) pertaining to both media types. For both ATP and cell counts, 

biomass generally decreased from 20 to 60 cm. However, samples collected at 10 cm depth on 2 

occasions showed that anthracite biomass at the top of the biofilter was similar to that at 20 cm 

depth. 
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Figure 3.12: Biofilter media bulk ATP (a), live cells (b), and femtogram ATP/cell (c) over media depth (10, 20 and 

60 cm below the media surface). 

 

3.4.3.2 Biofilm EPS 

Results in Figures 3.13-a and 3.13-b show that sand had a higher concentration of 

proteins and carbohydrates than anthracite. Total carbohydrate averages were 56 ± 39 µg D-

glc/cm3 for sand and 32 ± 24 µg D-glc/cm3 for anthracite. Figure 3.13 shows for both types of 

media, EPS including both carbohydrates and proteins were highest in the winter months 
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(December, January, February) and were lower in the spring/summer months starting in May 

and continuing until the fall (November). In a seasonal comparison of EPS values using 

ANOVA, the winter carbohydrate and protein data were significantly higher than summer or 

fall 2015 values, for both sand and anthracite (ANOVA with post-hoc Tukey Honest Significant 

Difference (HSD), alpha = 0.05). A list of p values for the seasonal comparisons of EPS means 

can be found in Table 3.8. 

Figure 3.13-c shows carbohydrate: protein ratio (CH/PN) data for each biofilter and 

media type at 20 cm depth across the 14 month time span of the current study. Average CH:PN 

values at 20 cm depth were 0.50 ± 0.12 for sand and 0.46 ± 0.14 for anthracite. Significant 

differences in seasonal means for CH:PN were, as Table 3.8 shows, present between sand 

summer-winter (p < 0.001) and fall-winter (p = 0.005) as well as anthracite summer-winter (p < 

0.001) and fall-winter (p = 0.001) seasons. Means comparisons were performed using the 

ANOVA test with post-hoc Tukey HSD between winter, summer and fall values with alpha set 

to 0.05. These results show that EPS contains relatively more carbohydrates compared with 

proteins in the colder winter months, but in the summer months there is an opposite trend with 

EPS containing a higher proportion of proteins. Summer-fall means comparison showed no 

difference in the ratio of carbohydrates to proteins for either media (Table 3.8).  

A more limited data set was evaluated to measure the concentration of extracellular 

DNA (eDNA) in EPS samples. Figure 3.13-d shows eDNA data for each biofilter and media 

type at 20 cm depth across a 4 month time span (from August to November 2015). Average µg 

eDNA/cm3 values were 22 ± 4.4 for sand and 11 ± 1.4 for anthracite. Similar to the other EPS 

parameters, sand contained higher volumetric eDNA content than anthracite; as mentioned 

previously, sorting of media sizes at the interface may have contributed to this difference. The 

average EPS protein, carbohydrate and eDNA ratio was 5:3:1 for sand media and 6:3:1 for 

anthracite. EPS levels in the biofilms extracted from the biofilter media were also measured 

using bulk media total carbohydrate values (µg D-glc/cm3) and total protein (µg BSA/cm3) as 

measured by colourimetric methods. Similar to ATP and cell concentrations, no differences 
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were found between BF(A) and BF(B) for either EPS parameter at 20 cm depth for either media 

type (paired t-tests, alpha = 0.05, Table 3.9). 
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Figure 3.13: Seasonal trends in EPS from biofilter media including total carbohydrates (measured as D-glucose) (a), 
total proteins (measured as bovine serum albumin) (b), the CH:PN ratio of carbohydrates to proteins (c), and 
extracellular DNA (d). Samples were obtained from the 20 cm media depth. 
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Table 3.8: Analysis of variance (ANOVA) comparing biofilter media EPS carbohydrates, proteins and carbohydrate 
to protein ratio between seasonal groups at 20 cm depth, with alpha set to 0.05. Seasonal groups were winter 
2014/2015, summer 2015 and fall 2015. Sand and anthracite were compared separately, and were sampled from 
the 20 cm depth of the media intermixing zone. Significant results are indicated by asterisks. 

  

ANOVA    
(p values) 

Tukey Honest Significant 
Difference (p values) 

Media Parameter 
Between 

Group            Summer-
Fall 

Winter-
Fall 

Winter-
Summer 

Sa
n

d
 µg D-glc/cm3 0.0000* 0.9983 0.0000* 0.0000* 

µg BSA/cm3 0.0000* 0.5186 0.0000* 0.0000* 

CH:PN 0.0001* 0.2130 0.0048* 0.0000* 

A
n

th
ra

ci
te

 

µg D-glc/cm3 0.0000* 0.0014* 0.0001* 0.0000* 

µg BSA/cm3 0.0000* 0.2163 0.0000* 0.0001* 

CH:PN 0.0000* 0.3367 0.0008* 0.0000* 

 

Table 3.9: Paired t-test comparing biofilter media carbohydrates, proteins and carbohydrate to protein ratio 
(CH:PN) between BF(A) and BF(B). Sand and anthracite were compared separately, and were sampled from the 20 
cm depth of the media intermixing zone. Significant results are indicated by asterisks (alpha = 0.05). 

Media Parameter p value      

Sa
n

d
 µg D-glc/cm3 0.5289 

µg BSA/cm3 0.6992 

CH:PN 0.3035 

A
n

th
ra

ci
te

 

µg D-glc/cm3 0.1085 

µg BSA/cm3 0.9342 

CH:PN 0.0478* 

 

Figure 3.14-a to 3.14-d presents volumetric media biofilm carbohydrate, protein, CH:PN 

and eDNA data for 10, 20, and 60 cm depths from BF(A) and BF(B) as well as from both media 

types. EPS exhibited a similar relationship with depth as biomass. Carbohydrates, proteins and 

eDNA all decreased from 20 to 60 cm. Similar to biomass, the total carbohydrate, protein and 

CH:PN values at 10 cm anthracite were similar to the 20 cm depth. The eDNA concentration at 

10 cm were however slightly higher than at 20 cm. 
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Figure 3.14: Biofilter media EPS as a function of media depth. Total carbohydrates is represented as D-glucose 

equivalent (a), proteins as bovine serum albumin (b), and carbohydrate to protein (CH:PN) ratio (c) for the 11 

sampling campaigns. Note that depth data for eDNA is restricted to Aug 2015. 
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Tables S2 to S5 in App. A present Pearson correlations between total carbohydrates, 

proteins, ATP, cell count and pertinent water quality data. The correlations between EPS 

carbohydrates and proteins were high for each biofilter and media type (Pearson r values 

ranged from 0.92 to 0.96). EPS shared a negative correlation with feed temperature (ranging 

from an r of -0.88 to -0.94 for carbs and -0.70 to -0.85 for proteins), yet a positive correlation with 

feed ammonium concentrations (ranging from an r of 0.79 to 0.87 for carbs and 0.66 to 0.84 for 

proteins). This was quite similar to biomass, and in fact EPS and biomass values shared strong 

positive correlations in Tables S2 to S5 in App. A. For example BF(A) sand volumetric ATP and 

carbohydrate values correlated at a Pearson r of 0.83. For correlations between EPS and water 

quality data, see Tables S2 to S5 in App. A.  

Figure 3.15-a and 3.15-b presents EPS carbohydrates/cell and proteins /cell, respectively, 

for BF(A) and BF(B) as well as for both media types. Samples presented were from a 20 cm bed 

depth. Average sand EPS carbohydrate/cell and anthracite EPS carbohydrate/cell values were 

similar to one another, with sand values determined to be 1.72x10-7 ± 2.11x10-7 µg D-glc/cell, and 

anthracite values as 1.36x10-7 ± 8.47 x10-8 µg D-glc/cell. Average sand EPS protein/cell and 

anthracite EPS protein/cell values per cell were also similar to one another, with sand values 

determined to be 3.38x10-7 ± 3.43x10-7 µg BSA/cell, and anthracite values as 3.06x10-7 ± 1.91-7 µg 

BSA/cell. Overall there were no seasonal trends in the EPS/cell values, and no differences 

between media type or loading rate, as evident by the similar values during the fall 2015 lower 

loading rate of 1.54 m/h. 
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Figure 3.15: Amount of EPS per cell at 20 cm media depth for both biofilters and media types. Carbohydrates were 

measured in µg D-glucose equivalents (a) and proteins were measured in µg BSA equivalents (b). 

LC-OCD defined NOM fractions were also quantified from the same biofilm EPS 

extractions used to assess total carbohydrates, proteins and eDNA, using the approach 

described by Elhadidy et al. (2017). The 3 fractions were defined as high molecular weight 

organic carbon (HMW-OC), intermediate molecular weight organic carbon (IMW-OC), and low 

molecular weight organic carbon (LMW-OC). Data in Figure 3.16 show media biofilm HMW-

OC (a), IMW-OC (b) and LMW-OC values (c) for samples collected from biofilter A and B at 20 

cm depth. Due to delays with method start-up, EPS NOM fractions were not measured for May 

2015 media samples. As with biomass and EPS measurements, sand had higher concentrations 

of LC-OCD defined EPS fractions than anthracite which again could have been due to media 

sorting effects at the sand/anthracite interface. The HMW-OC sand average was 34 ± 13 µg /cm3 

and for anthracite was 17 ± 5 µg/cm3. Figure 3.16-a shows that BF(B) and BF(A) sand and 

anthracite HMW-OC levels were relatively stable over the course of the study period, and were 

poorly correlated with other biomass and EPS parameters (Tables S2 to S5 in App. A). IMW-

OC µg/cm3 were also averaged for both biofilters and were 39 ± 14 µg/cm3 for sand and 24 ± 8 
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µg/cm3 for anthracite. Averaged values for LMW-OC µg/cm3 were 86 ± 35 µg/cm3 for sand and 

52 ± 18 µg/cm3 for anthracite. Figures 3.17-b and 3.17-c show similar seasonal variability for 

IMW-OC and LMW-OC, with higher values occurring in the winter. These two LC-OCD 

defined biofilm parameters shared strong Pearson r correlations with one another, ranging from 

0.86 to 0.95. Furthermore, Pearson correlation r values between both IMW-OC and LMW-OC, 

and the biofilm carbohydrate, protein, ATP and cell count data were positive and ranged from 

low (r < 0.70) to strong (r ≥ 0.90; Tables S2 to S5 in App. A), which indicates these two LC-OCD 

defined biofilm fractions followed similar seasonal and biomass-related patterns as the total 

proteins and carbohydrates values. Specifically, IMW-OC and LMW-OC correlations with ATP 

and cell count ranged from 0.59 to 0.88, while IMW-OC and LMW-OC correlations with 

proteins and carbohydrates were stronger and ranged from 0.83 to 0.96. The high correlation 

strengths between both IMW and LMW-OC parameters and traditionally defined EPS shows 

that seasonal means comparisons for IMW and LMW-OC can be inferred from prior EPS 

investigation.  

Figure 3.17 presents media biofilm HMW, IMW and LMW-OC data for 10, 20, and 60 cm 

depths from BF(A) and BF(B) as well as from both media types. Biofilm LC-OCD fractions 

exhibited a similar relationship with depth as biomass, decreasing from 20 to 60 cm and (for the 

HMW fraction only) exhibiting a slight increase from 10 to 20 cm depth.  
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Figure 3.16: LC-OCD fractions for biofilm EPS including HMW-OC (a), IMW-OC (b), and LMW-OC (c). Note 

that this analysis was not performed in May 2015. 
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Figure 3.17: Biofilter biofilm LC-OCD fractions per cubic centimetre of media. Several depths are considered across 

warm and cold conditions.  

3.4.8 Biofilter Performance 

Performance of the 8 min EBCT biofilter A and 16 min EBCT biofilter B was measured 

by determining the percent removals of DOC and NOM fractions, of which the biopolymers 

had the largest molecular weight. Figure 3.18 shows percent removal of DOC between October 

2014 and November 2015 for both biofilters. The vertical dashed line indicates a decrease in 
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loading rate from 3.08 m/h to 1.54 m/h starting in September 2015. Average DOC removal for 

BF(A) was 10.0 ± 3%. Winter operation had a loading rate of 3.08 m/h and temperatures below 

10 °C (sample dates of December 2015, January 2015 and February 2015; refer to Figure 3.2); 

during this period BF(A) had lower DOC removals (5.8 ± 0.3%), which increased in summer 

2015 to 10.9 ± 1.5%, and to 12.9 ± 1.4% during autumn (September, October and November 2015) 

at which time the loading rate was decreased to 1.54 m/h. DOC removal by the longer EBCT of 

BF(B) followed the same trends as BF(A) but removals were higher. The average DOC removal 

for the study period for BF(B) was 14.3 ± 6.1%. Winter operation resulted in a low DOC percent 

removal by BF(B) of 6.7 ± 0.4%, which increased to 17.3 ± 2.5% during summer 2015. BF(B) DOC 

removals then increased marginally in fall 2015 during the decreased loading rate period, but 

then decreased rapidly to 8.8% in November 2015. 

 

Figure 3.18: Biofilter performance for BF(B) and BF(A) as measured by percent removal of DOC from Oct 2014 to 
Nov 2015. Vertical dash indicates change in operation from 100 L/h (3.08 m/h) to 50 L/h (1.54 m/h). 

Biopolymer percent removal is depicted in the line chart of Figure 3.19 while percent 

removals of the other 4 NOM fractions (humic substances, building blocks, low molecular 

weight acids/humics and low molecular weight neutrals) are presented in Figure 3.20. Average 

biopolymer removal for BF(A) was 47.6 ± 19.4%. Winter operation resulted in a lower average 

biopolymer removal (24.5 ± 6%), which increased in summer 2015 (to 56.3 ± 17.6%). The average 

biopolymer removal for the longer EBCT of BF(B) followed the same trends as BF(A) but, 

similar to DOC, removals were higher in BF(B). Average biopolymer removals for the study 

period by BF(B) were 63.4 ± 26.1%. Winter operation resulted in a low biopolymer percent 
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removal by BF(B) at 28.0 ± 11.6%, which increased to 80.3 ± 16.6% during summer 2015. Unlike 

DOC removal, biopolymer removal showed either no change (BFA) or a decrease (BFB) after the 

flow rate was decreased in September 2015. This could perhaps be related to coincidental 

changes in biopolymer character (and therefore potentially biodegradability) during this time. 

Removal of the humics, BB and LMW fractions were lower (less than 25%) compared 

with the biopolymers fraction, and removal was variable with no temperature trends. Negative 

removal values that sometimes occurred in the BB and LMW fractions was likely due to their 

low concentrations and potential endogenous production within the filter bed. The observed 

higher % removals by BF(B) compared with BF(A) were tested using a paired student’s t-test 

(Table 3.10). Of the 5 LC-OCD defined NOM fractions, only biopolymers exhibited significantly 

higher removal by the longer EBCT of BF(B) when compared against BF(A) (p <0.001, alpha = 

0.05). DOC removal by BF(B) was also found to be significantly higher than BF(A) (p = 0.007, 

alpha = 0.05).  

The seasonal trends in biopolymer and DOC removal for both biofilters were tested 

using ANOVA between the 3 seasonal groups of winter (December 2014, January and February 

2015), summer (May to August 2015) and fall (September to November 2015). Note that the fall 

seasonal period pertained to modified biofilter operation, when loading rates were decreased 

from 3.08 m/h to 1.54 m/h. Table 3.11 shows that there were significantly different removals for 

both BF(A) and BF(B) between seasonal groups regarding DOC (p = 0.0002 and 0.0172 for BF(A) 

and BF(B), respectively; alpha = 0.05) and biopolymers (p = 0.0180 and 0.0032 for BF(A) and 

BF(B), respectively; alpha = 0.005). Additionally, BF(B) showed significantly different removals 

in the LMW-acids fraction (p = 0.0231, alpha = 0.05). These seasonal trends are further supported 

by the multiple correlation data that compared NOM removal and water temperature as shown 

in Tables S2 to S5 in App. A. DOC removal had a positive correlation with temperature with a 

Pearson r value of 0.78 and 0.87 for BF(A) and BF(B), respectively. Biopolymer removal also had 

a positive correlation with temperature with a Pearson r value of 0.85 and 0.91 for BF(A) and 

BF(B), respectively.  
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Figure 3.19: Biofilter performance for BF(A) and BF(B) as measured by percent removal of biopolymers from Oct 
2014 to Nov 2015. Vertical dash indicates change in operation from 100 L/h (3.08 m/h) to 50 L/h (1.54 m/h). 

 

 
Figure 3.20: Biofilter performance for BF A (a) and BF B (b) from Oct 2014 to Nov 2015 as measured by percent 
removal of the NOM fractions as measured by LC-OCD, including humic substances, humic building block (BB), low 
molecular weight acids/ humics (LMWA) and low molecular weight neutral compounds (LMWN). Vertical dash 
indicates change in flow operation from 100 L/h (3.08 m/h) to 50 L/h (1.54 m/h). Nov 2015 LMWA y-axis value was 
-61.5. 
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Table 3.10: Results of paired t-test analysis comparing biofilter NOM removals between BF(A) and BF(B). 
Statistically significant differences are marked with asterisk (*). 

Parameter p value  

DOC 0.0071* 

Biopolymers 0.0004* 

Humics 0.1603 

Building Blocks 0.0729 

LMW-
Acids/humics 0.5058 

LMW-Neutrals 0.7103 

 

Table 3.11: ANOVA results comparing biofilter NOM removals between the seasonal groups of winter 2014/2015, 
summer 2015 and fall 2015. Statistically significant differences are marked with asterisk (*). 

Media Parameter p value  

B
F(

A
) 

DOC 0.0002* 

Biopolymers 0.018* 

Humics 0.0893 

Building Blocks 0.4380 

LMW-Acids 0.3045 

LMW-Neutrals 0.0678 

B
F(

B
) 

DOC 0.0172* 

Biopolymers 0.0032* 

Humics 0.1104 

Building Blocks 0.1233 

LMW-Acids 0.0231* 

LMW-Neutrals 0.5078 

 

3.4.9 Association of Biofilter DGGE Groups with Biofilm Parameters and Process 

Performance 

The DGGE biofilm groups D/E & C were compared with their associated performance 

data (DOC and NOM LC-OCD fraction % removal) for both BF(A) and BF(B) as presented in 

Figure 3.21. Of the two DGGE profile media clusters, Group C had the lower average DOC 

percent removals (6.0 and 6.8% for BF(A) and BF(B), respectively), while Group D/E exhibited 
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higher DOC removal at 10.9 and 15.9% for BF(A) and BF(B), respectively. Group C biopolymer 

removal was lower (25.1 and 32.8% for BF(A) and BF(B), respectively, as were Group C LWM-

acids removals, which were actually negative. Group D/E biopolymer percent removals were 

therefore higher at 53.7 and 72.0% for BF(A) and BF(B), respectively; LMW-acids removals were 

also higher at 9.8 and 14.3% for BF(A) and BF(B), respectively. Removals of other NOM 

fractions by the DGGE biofilm groups can be seen in Figure 3.21. Formal mean removal 

comparisons between DGGE groups were not possible given the small sample size available for 

Group C, given that biofilters A and B had to be treated separately and only two months of 

removal data were associated with this group. 

Pearson r correlations showed strong relationships between DOC as well as biopolymer 

removal and temperature, with r values ranging from 0.93 and 0.85. It is not surprising that 

higher feed ammonia concentrations were associated with lower DOC removals, as higher feed 

ammonia occurred during the cold condition period. Pearson r values for ammonia and DOC 

removals ranged from -0.71 to -0.75 for BF(A) and BF(B), respectively. Feed nitrate 

concentrations were also negatively correlated with DOC and biopolymer percent removals but 

this relationship was not as strong (Tables S2 to S5, Appendix A). Percent removals for all LC-

OCD defined NOM fractions were higher in Group D/E. As expected, DOC and biopolymer 

percent removal were well correlated (Pearson r values of 0.74 and 0.72 for BF(A) and BF(B), 

respectively, Tables S2 to S5, Appendix A). 
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Figure 3.21: Bar charts presenting BF(A) and BF(B) % removal of a) dissolved organic carbon (DOC), b) biopolymers 
(BP), c) humic substances (HS), d) building blocks (BB), e) low molecular weight acids (LMW-A), and f) low molecular 
weight neutrals (LMW-N) relating to DGGE profile media biofilm groups C and D/E as defined by DCA clustering. 

Biofilm characteristics including Shannon diversity, community richness, biomass and 

EPS were also compared between biofilter media DGGE community groups and arranged 

visually in Figure 3.22 Difference between group variances were tested using F tests (Table 

3.12); given that several data sets showed unequal variance, means comparisons between DGGE 

group biofilm parameters were executed using t-tests for unequal variance. Diversity of media 

biofilm groups (Figure 3.22) were not significantly different between Groups D/E and C (t-test 

for unequal variance, alpha = 0.05, p = 0.108 and 0.494 for sand and anthracite respectively, 
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Table 3.12); the same was observed for richness between DGGE groups (t-test for unequal 

variance, alpha = 0.05, p = 0.084 and 0.341 for both sand and anthracite respectively, Table 3.12)  

 Table 3.12: Compiled F-test and t-test values from comparisons of biofilter media biofilm parameters between 
DGGE groups C and D/E. Significantly different variances between Groups C and D/E (significant F-tests) for some 
parameters required the use of unequal variance t-tests for all data presented. Alpha = 0.05. Significant results are 
denoted by an asterisk (*). 

  p values 

Media Test 
Shannon 

H' 
Richness 

ng 
ATP/cm3 

Cells/cm3 
fg 

ATP/cell 
ug D-

glc/cm3 
ug 

BSA/cm3 
CH:PN 

Sand 
F Test 0.170 0.233 0.467 0.008* 0.003* 0.015* 0.082 0.085 

t-Test 0.108 0.084 0.002* 0.042* 0.039* < 0.001* < 0.001* 0.002* 

Anth 
F test 0.203 0.341 0.136 0.009* 0.398 0.012 0.306 0.457 

t-Test 0.494 0.379 < 0.001* 0.042* 0.232 < 0.001* < 0.001* 0.009* 

 

Bulk ATP measurements are arranged by DGGE cluster group, and Group D/E 

presented ng ATP/cm3 media at 1782 and 709 for sand and anthracite, respectively. Recall that 

sorted media diameters at the sand-anthracite interface (largest anthracite grains against 

smallest sand grains) would have impacted the observed differences in biomass levels for each 

media type. Group C showed significantly higher ng ATP/cm3 at 3065 and 1710 for sand and 

anthracite, respectively (t-test for unequal variance, alpha = 0.05, p = 0.002 and p < 0.001 for sand 

and anthracite respectively, Table 3.12). In addition, flow cytometry cell counts were evaluated 

for each DGGE group as presented in Figure 3.22. Group D/E had a cells/cm3 media of 3.68x108 

and 2.26x108 for sand and anthracite, respectively; Group C presented significantly higher 

cells/cm3 media at 10.18x108 and 6.70x108 for sand and anthracite, respectively (t-test for 

unequal variance, alpha = 0.05, p = 0.042 for both sand and anthracite respectively, Table 3.12). 

Group D/E presented higher fg ATP/cell media at 8.01 and 3.98 for sand and anthracite, 

respectively; Group C presented lower fg ATP/cell at 3.49 and 3.20 for sand and anthracite, 

respectively. The higher observed ATP/cell in Group D/E was only significant for sand media (t-

test for unequal variance, alpha = 0.05, p = 0.003, Table 3.12). 

For EPS parameters, carbohydrate EPS measurements are also arranged by group in the 

bar plot of Figure 3.22. Group D/E presented µg D-glc/cm3 values of 43.5 and 23.7 for sand and 
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anthracite, respectively; Group C presented significantly higher µg D-glc /cm3 values at 113.3 

and 69.8 for sand and anthracite, respectively (t-test for unequal variance, alpha = 0.05, p < 0.001 

for both sand and anthracite respectively, Table 3.12). Group D/E also presented lower µg 

BSA/cm3 media at 89.4 and 50.8 for sand and anthracite, respectively; Group C again presented 

significantly higher µg BSA/cm3 at 191.4 and 116.6 for sand and anthracite, respectively (t-test 

for unequal variance, alpha = 0.05, p < 0.001 for both sand and anthracite respectively, Table 

3.12). For the EPS total carbohydrates to proteins ratio (CH:PN), Group D/E presented lower 

values at 0.47 and 0.42 for sand and anthracite respectively, while Group C EPS CH:PN was 

again significantly higher at 0.59 and 0.61 for sand and anthracite, respectively, which indicates 

higher significantly higher carbohydrate EPS content in Group C biofilms (t-test for unequal 

variance, alpha = 0.05, p = 0.002 and 0.009 for sand and anthracite respectively, Table 3.12).  
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Figure 3.22: Bar charts presenting biofilm parameters associated with DGGE profile media biofilm groups C, D and 
E, for both sand and anthracite media. Biofilm parameters presented include a) Shannon diversity, b) richness, c) ng 
ATP/cm3, d) cell counts/cm3, e) fg ATP/cell, f) ug D-glucose/cm3, g) µg BSA/cm3, and h) CH:PN ratio. 
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Biofilm diversity, biomass and EPS data was also compared with performance data. 

Pearson r correlations showed Shannon diversity and community richness was not correlated 

with DOC and biopolymer percent removals (Tables S2 to S5 in Appendix A). ATP was 

negatively correlated with DOC removals (-0.67 to -0.80), and showed slightly stronger values 

associated with biopolymer removal (-0.82 to 0.86). This indicates that the increased biomass 

during the cold condition period was either not contributing to biofilter organic carbon removal 

performance, or if it was, the temperature dependent reductions in enzyme kinetics precluded 

detection. Not all biomass is heterotrophic, and some of the increased biomass may have been 

sustained via the lithotrophic ammonia oxidation pathway since ammonia levels increased 

during this period. Flow cytometric cell counts also showed negative correlations with biofilter 

performance, however at slightly reduced correlative strengths ranging from -0.63 to -0.73. 

Meanwhile ATP/cell exhibited weak positive Pearson r correlations with biofilter performance 

(DOC and biopolymer removal); Figure 3.23 and Figure 3.24 illustrates this relationship for 

sand and anthracite, respectively, where the scatterplots show cold condition (≤ 10 °C) samples 

exhibited similar ATP/cell to warm (> 10 °C) samples, and furthermore that increases in ATP 

per cell do not associate strongly with increased biofilter performance.  

Biofilm EPS shared similar relationships to biofilter performance as biomass. Total 

carbohydrates showed strong negative correlations with performance ranging from -0.82 to -

0.91, with similar values ascribed to both DOC and biopolymer removal (Tables S2 to S5 in 

Appendix A). Total proteins showed slightly less strength in the negative correlations with 

performance, and had Pearson r values ranging from -0.70 to -0.90. CH:PN ratios were also 

negatively correlated with biofilter performance, showing no preference to DOC or biopolymer 

removal, and ranged from -0.40 to -0.80. A full list of biofilm and performance values pertaining 

to each DGGE group is presented in Table S1 in Appendix A. 
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Figure 3.23: Sand biofilm femtogram ATP/cell as a function of a) BF(A) DOC % removal, b) BF(A) biopolymer % 
removal, c) BF(B) DOC % removal, and d) BF(B) % biopolymer removal. Outliers removed for clarity, which involved 
a fg ATP/cell value of 46 in figures a) and b). Blue points present cold condition data (≤ 10 °C), and red points 
present warm condition data (> 10 °C). 
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Figure 3.24: Anthracite biofilm femtogram ATP/cell at 20 cm media depth, as a function of a) BF(A) DOC % removal, 
b) BF(A) biopolymer % removal, c) BF(B) DOC % removal, and d) BF(B) % biopolymer removal. Blue points present 
cold condition data (≤ 10 °C), and red points present warm condition data (> 10 °C). 

3.5 Discussion 

3.5.1 Biofilter Feed Water Quality 

 Feed water quality data was gathered for the 14 month time span of the current study 

and was necessary to describe nutrient profile changes which could impact biofilter bacterial 

ecology and in turn, the performance of the process as a whole. Biofilter feed water quality 

(Figure 3.2-a and 3.2-d) displayed several significant differences within the seasonal dataset. 

During cold conditions (T ≤ 10 °C), ammonia, conductivity, hardness and the LMW-acid 

fraction concentrations increased compared to warm conditions, while the LMW-neutrals 

fraction decreased. Winter conditions within the Grand River are characterized by low surface 

runoff, which increases the proportion of groundwater in the river (GRCA, 2013); higher 

proportions of groundwater were likely responsible for the observed increase in hardness and 

conductivity. Although colder temperatures will increase the solubility of several analytes, ice 
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cover decreases the potential for volatilization and oxygenation; this latter phenomenon leads to 

decreased nitrification of ammonia in the winter due to reduced oxygen availability (GRCA, 

2013). Furthermore the cold temperatures also lead to lower biological activity in the Grand 

River. These pertinent mechanisms result in the annual winter increase in ammonia (GRCA, 

2013). Summer conditions result in much higher biological activity (including nitrogen cycling), 

which effectively removes ammonia from the surface water. Table 3.2 shows that turbidity, 

DOC, biopolymers, humic substances, nitrate, ortho-phosphate, and total iron did not present 

significantly different concentrations in warm vs cold conditions; while building blocks (p = 

0.041), LMW-acids (p < 0.001), LMW-neutrals (p < 0.001), ammonia (p <0.001), conductivity (p = 

0.011) and hardness (p = 0.003) concentrations were significantly different between cold and 

warm conditions (t-test, alpha = 0.05, Table 3.2). These observations point towards a dynamic 

water quality in the Grand River which is largely temperature dependent. 

3.5.2 DGGE Profiling of Biofilter Feed and Media Bacterial Communities 

Cluster analysis showed that a superstructure existed in the DGGE profile data, where 

feed water (planktonic) communities possessed dramatic differences in the dominant 

phylotypes than media biofilm communities, and is a trend that has been previously shown in 

the literature (Lautenschlager et al., 2014; Pinto et al., 2012; Vanysacker et al., 2014; Wu et al., 

2014). The cause of this difference in profile data likely stems from the difference in lifestyle 

habit between planktonic and sessile communities, which arises due to the biofilm’s local 

physicochemical gradients (ORP, pH, nutrients and quorum molecules) increased cell density 

and heightened diversity (Flemming et al., 2016). When bacteria initiate or join a biofilm 

community, phenotypic changes rapidly take place, and gene expression changes in order to 

accommodate the demands of the new environment (Flemming et al., 2016). However there 

comes a point at which this biogenic habitat modification exceeds a phylotype’s ability to adapt, 

and phenotypic plasticity is no longer sufficient.  

In its upper reaches and at the surface of the biofilm, fast growing aerobes dominate and 

given their proximity to the bulk fluid, they have excellent access to electron donors and 
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acceptors. As the biofilm becomes thicker, these organisms deplete the most thermodynamically 

favourable electron donors and acceptors and this leads to a selection pressure on the bacteria 

below.  This can result in a decrease in ORP, which would select for those bacteria which can 

utilize alternative electron acceptors including nitrate, sulphate, organic molecules or 

bicarbonate  (Apgar & Witherspoon, 2008). Note that these ORP regions frequently overlap and 

can quickly change with modifications to flow rate and water quality (WEF, 2011) and likely 

also to backwashing frequency and intensity. The thin biofilms present on well managed 

biofiltration media likely do not contain a substantial ORP gradient due to the scouring effects 

of regular backwashing and low biodegradable carbon availability. To the author’s knowledge 

no investigations have been made in the existence of anoxic microniches within drinking water 

biofiltration media. Free living feed water communities on the other hand are not subject to the 

same nutrient gradients and likewise are not protected by layers of EPS, which should account 

for much of the difference between the community structures of these two sample types. 

 Each of the DGGE hierarchically assembled clusters were assigned an alphabetical 

group name, and with the exception of Group B, were validated as statistically separate groups 

using ANOSIM (Figure 3.6). Group A contained predominantly warm condition feed water 

sample communities, with the exception of the December 2014 sample. Group B contained two 

cold water feed communities (January and February 2015) as well as the warm October 2014 

and November 2015 communities. Group C is the first of three media groups encountered. 

Group C contains all January and February 2015 media samples; and included all cold condition 

media biofilm communities except for December 2014 samples which clustered with group E. 

Group D is composed solely of October 2014 media samples. This group is interesting because 

the hierarchical clustering sets it apart from the larger Group E, which contains all the other 

warm condition biofilm communities plus those from December 2014. One explanation for the 

separation of Group D in the hierarchical clustering is that this sample was taken before the 

bacterial communities in the biofilters had fully stabilized or acclimated. It is difficult to obtain 

an average time for BFwp acclimation due to the lack of long-term community investigation 

research which also encompasses filter commissioning, and acclimation time will also be a 
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function of temperature. The Mannheim biofilter had been operating for 6 months by October 

2014, and at this point the Mannheim biofilter biomass was still increasing (Elhadidy et al., 

2016), indicating that biofilter acclimation, at least from a simple biomass standpoint, was 

ongoing. This compares with Servais et al (1995), who reported stabilization of pilot biofilter 

biomass after roughly 200 days of pilot filter operation. As well, (Xiang et al., 2013) found that 

although start-up of a pilot GAC biofilter showed steady-state dehydrogenase activity after 

only 40 days, community analysis using BioLog Ecoplate methods showed community 

structure changes were on-going. The last media group is Group E, which contains the majority 

of media samples and with the exception of December 2014 samples, were all collected during 

warm water conditions (> 10 °C). Groups C and E present several sub-clusters organized by 

month, yet they are not organized in a chronological fashion. Therefore it seems that beyond the 

January-February 2015 shift of Group C, and the separation of a potentially immature October 

2014 Group D, little reorganization of biofilm communities occurred across the seasonal 

timeline. DCA ordination analysis (Figure 3.7) shows agreement to cluster arrangements for 

Groups A, B, C and E; these similarities support the previous hierarchical clustering results. 

Group D of the DCA plot however is located within the larger Group E, and serves as the only 

major difference between the dendrogram and ordination multivariate methods. For means 

comparisons between biofilm DGGE groups, the DCA clustering results were used, which 

combined these two groups into Group D/E. 

 In the ANOSIM boxplots of Figure 3.6, the feed community represented by Group B 

had a high “within group” dissimilarity value, which begs that caution be exercised when 

considering this as a separate feed water group from the other feed water cluster (Group A). 

Group B contains feed water communities from sampling dates which span more than 12 

months (October 2014, January, February and November 2015), and this could contribute to the 

greater dissimilarity observed within this group. For Group E, there were 7 outliers to the 

boxplots of Figure 3.6, despite having the lowest median of all group boxplots. These outliers 

originate from the August 2015 media sub-cluster in the dendogram of Figure 3.5, where 

changing water quality parameters such as falling nitrate concentrations (from average values 
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of 5.5 and 3.2 mg/L in June and July, respectively, to 2.0 in August) may have influenced the 

biofilm community.  

There was no difference in bacterial communities on media collected from biofilter 

columns A and B, as demonstrated by the hierarchical clustering dendrogram of Figure 3.5. As 

well, the clustering of Figure 3.5 did not organize samples based on media type nor depth, 

showing that microbial communities within BFwp are not affected by these factors. This is 

interesting, since the current study showed that biomass changed with depth (Figure 3.12), 

which is similar to other findings (Gibert et al., 2013; Liao et al., 2013a; Ishita Rahman, 2013; 

Urfer & Huck, 2001). Yet there is still disagreement in the literature whether depth affects 

biofilter community structure. Using DGGE fingerprinting, Fonseca et al. (2001) found no 

obvious differences in community structures of pre-ozonated biofilter communities with 

increasing depth. AP-PCR fingerprinting performed by (Moll et al., 1998) showed that 

community structure in biofilters without prior pretreatment also did not change with depth; 

however they did observe shifts in depth within biofilters fed with ozonated water. The work of 

Liao et al. (2013a) also showed community shifts with depth for biofilter fed with ozonated 

water, while Boon et al. (2011) reported drastically different richness (DGGE band numbers) as 

a function of depth within a pre-ozonated biofilter. However, Lautenschlager and colleagues 

(2014) found that a full scale GAC biofilter receiving ozonated water exhibited no change in 

DGGE community profiles with depth. It would appear that for the most part, depth only plays 

a role in biofilter community organization when upstream ozonation is involved, as it can affect 

biomass by increasing labile carbon content of the feed, or potentially by inhibition by residual 

ozone, or both. A lack of community change with depth within BFwp may be due to high 

recalcitrance of the feed water (65% of DOC in the current study was from humic substances, 

with biopolymers and lower molecular weight more biodegradable components as a much 

smaller percentage of the DOC) coupled to the frequent biofilter backwashing. Although the 

filter bed generally goes back to the same configuration (media size as a function of depth) 

following backwashing, backwashing does provide at least some periodic mixing and de-

stratification of the media communities. 
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3.5.3 Seasonal Relationships Between Water Quality and Biofilter Community 

Structure 

 The DCA plots of Figure 3.7 and Figure 3.8 separated the two feed clusters (A and B). 

Based on the DCA plot alone it is difficult to speculate what caused the observed planktonic 

community shifts. Although the ortho-phosphate vector in the DCA plot points along the axis 

differentiating the two feed communities, its length is small indicating little to no effect. Crump 

& Hobbie (2005) also found that over a 2.5 year period in Maine, river bacterioplankton 

communities differentiated into winter vs summer clusters as a result of temperature associated 

changes to water quality (such as dissolved organic nitrogen and nitrate) as well as bacterial 

production (labelled amino acid assimilation). Wang and colleagues (2015) observed that 

bacterioplankton communities in a subtropical river in China differed during wet and dry 

seasons, and used DGGE fingerprinting and redundancy analysis (RDA) to show that 

temperature, ammonia, orthophosphate and chlorophyll a were strongly correlated with 

bacterioplankton community structures. Primary production by phototrophic microalgae was 

noted as providing a ready carbon source for riverine bacteria. Organic carbon therefore may 

also influence the planktonic community structures. DOC is a blanket term for a cocktail of 

differing organic compounds which can change seasonally in response to many environmental 

conditions, thereby influencing the planktonic bacterial communities. For example, one study 

showed that changes in DOC abundance and composition varied with UV exposure, and 

selected for significantly different freshwater bacterioplankton communities; this shift consisted 

of changes in the α-proteobacteria populations, namely a decrease in Sphingomonadaceae which 

are responsible for recalcitrant NOM degradation and an increase in Burkholderiaceae, which are 

adapted for simple carbon substrates and UV impacted environments (Paul et al., 2012). 

Therefore seasonality such as solar intensity and exposure, along with other variables like storm 

surges and runoff, would affect DOC composition of the Mannheim DWTP feed water.  

 The increase in ammonia from < 0.1 in December 2014 to an average of 0.37 mg/L 

during the Group C sampling period of January and February 2015 corresponds with the 

biofilm community shift observed during the same period, and this is what the DCA ordination 
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plot of Figure 3.7 clearly illustrates; the NH3 vector extends in the direction of the Group C 

community shift, indicating a strong correlation between environmental gradients and 

community structure. Feed temperature was similar (< 5 °C) for December 2014, January 2015 

and February 2015; if the community shift of Group C was the result of temperature drop, the 

December 2014 media communities would have clustered with Group C, which they did not. 

Therefore this suggests that temperature itself was not the primary driver of BFwp biofilm 

community organization, but instead may be due to temperature induced changes in feed water 

nutrients/composition. This indirect effect of temperature means that the biofilter biofilm 

community shift is delayed and the change may be a response to the change in surface water 

chemistry and not a direct response to temperature. Halle et al. (2009a) observed a seasonal lag 

effect on biofilter micro-contaminant removal performance, and noted that caution must also be 

used when relating temperature to biofilter performance. The current results, which depict 

delays in biofilter community shifts due to temperature-mediated changes in feed water quality, 

may provide insight into the mechanisms behind Halle’s observations. In addition to the 

ammonia data of Figure 3.7, Figure 3.8 shows that low molecular weight acids also strongly 

correlated with the Group C fingerprint data, meaning this NOM fraction may also play a role 

in the differentiation of Group C from Groups D & E. Figure 3.2 shows that low molecular 

weight acids began rising in November 2014 and peaked in January 2015 at 525 µg/L. During 

this time, low molecular weight neutrals and building blocks dropped to their lowest observed 

points during the study, at 94 and 643 ug/L, respectively.  

 Ammonia and low molecular weight acids are commonly produced in municipal and 

animal waste, and as such it is possible that the concentrations of these compounds may be due 

to the network of 11 wastewater treatment plants and numerous agricultural operations found 

upstream of the Mannheim WWTP. The high ammonia and LMW-acids can persist longer than 

usual due to reduced river biological activity and ice cover which also prevents volatilization. 

Sonthiphand et al. (2013) noted local WWTPs to be significant sources of ammonia within the 

Grand River. Another study found higher river ammonia content associated with urban rivers 

receiving wastewater (Drury et al., 2013). Li et al. (2015) noted agriculture to be large non-point 
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sources of river ammonia concentrations. Similarly, bacterial community structure in an urban 

European river was shown to shift during winter in response to decreased autochthonous 

activity, changing inorganic nitrogen concentrations, and greater persistence of WWTP bacteria 

(García-Armisen et al., 2014). These results show that observed seasonal ammonia fluctuations 

can have effects on the BFwp community ecology given that the process is fed with raw river 

water.  

 One study using PLFA analysis showed that temperature influenced the community 

structure of pilot scale biofilters fed with ozonated water (Fonseca et al., 2001), however these 

biofilters were in operation for less than one year. Kim and colleagues (2014) found that a 

decreasing feed temperature (similar to that of the current study) resulted in no effect to mature 

full-scale biofilter community composition. Therefore temperature mediated changes in 

nutrient compositions may influence community structures more than temperature alone. In a 

seasonal study using full scale BAC filters across 12 months, LaPara and colleagues (2015) 

observed that the dominant population in all samples was Nitrospira sp., which accounted for 13 

to 21% of community OTUs; surprisingly the ammonia levels in that study were at or below the 

detection limit of 1 mg/L. This indicates nitrifier abundance may play a role in biofilter biomass 

fluctuations. Though the current study encountered ammonia levels up to four times higher 

than those reported in the findings of LaPara et al., nitrifier abundance was not assessed. 

3.5.4 Biofilter Feed and Biofilm Bacterial Community Diversity 

Time-series data for ecological parameters such as diversity and richness are important 

not only to describe a community’s complexity and dynamics, but to also describe its maturity 

and robustness. Ecological parameters are useful as a monitoring tool in describing the biofilter 

microbiome health and adaptability. For example, dominance by a small number of species 

within a system leaves a community vulnerable to functional collapse in the face of 

perturbations (Wittebolle et al., 2009). It is therefore advantageous for a utility if there is a 

microbiome which exhibits robust measures of diversity, so that good functionality can be 

maintained (Boon et al., 2011). In practice, however, the steps that a utility can take to cultivate a 
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process microbiome are quite limited, since it is predominantly constrained by the incoming 

microbiome and water quality. 

Figure 3.9-a shows that bacterial Shannon diversity (H’) in the media biofilm was stable 

during the seasonal study period. Diversity values did not change according to media type, 

depth, or with the autumn change in flow rate. Relatively stable Shannon diversities were also 

observed by Kim and colleagues (2014), who examined conventional BAC bacterial 

communities over 12 months.  Of the media biofilm DGGE profile groups, Group D (October 

2014) demonstrated the lowest mean H’ at 3.33 ± 0.12 and 3.22 ± 0.16 for sand and anthracite, 

respectively, compared the groups C (H’ = 3.81 ± 0.18 and 3.94 ± 0.17 for sand and anthracite, 

respectively) and E (H’ = 4.05 ± 0.25 and 4.03 ±0.15 for sand and anthracite, respectively). The 

low diversity for group D may be because the biofilter was still acclimating and had not yet 

reached a stable biofilm community. The highest diversity values of the DGGE profile groups 

belonged to Group E, which consisted of the 2nd summer of operation for the biofiltration pilot 

plant. This demonstrates that over the course of the year, changes in the community structure 

were taking place and this is in turn reflected in the diversity indices of those communities. 

Media H’ values in the current study were higher than those of a bench-scale GAC biofilter (H’ 

= 2.55) fed with river water for one month as measured by LH-PCR (Wu et al., 2014). Using 

PLFA methodology, much lower Shannon diversity values were also encountered in a pilot 

scale biofilter receiving full scale GAC effluent amended with either glucose or acetate, which 

produced upper H’ values of 0.97 and 1.25 for each amendment after several months of 

operation (Yu et al., 2009). However other studies have reported similar biofilter diversity 

values, including LaPara and colleagues (2015) who observed Shannon diversity levels between 

4.6 and 4.8, and Feng et al., (2013) who observed Shannon diversity values between 2.3 and 3.6. 

Liao and colleagues (2015), working with GAC biofilter communities treating lake water in 

China, reported Shannon diversity levels on GAC biofilter media as high as 5.0 - 6.0; however 

diversity was determined using next generation sequencing, which can detect rare species 

which DGGE, TRFLP and clone library sequencing cannot (Liao et al., 2015). The present BFwp 

media diversities therefore fall within the expected range for a biologically active DWTP 
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process. The high diversity observed represents good functional redundancy within the 

community (McCann, 2000) which implies that many populations exist which are ready to fill 

functional voids created by potential process upsets (Wittebolle et al., 2009). 

Figure 3.9-b shows that media bacterial community richness exhibited more variation 

than the Shannon diversity index, with values ranging between 32 and 83 phylotypes in the 

biofilm samples. The Group D richness of October 2014 biofilm communities was markedly low 

(ranging from 32 to 40) and was roughly half of the study average. This increased rapidly for 

the next sampling event 2 months later in December 2014 to roughly 80 phylotypes. Group C 

(January & February 2015) richness were 58 ± 10 and 65 ± 10 phylotypes for sand and anthracite 

respectively. Group E (December 2014 and May to November 2015) however exhibited higher 

average richness at 74 ± 11 and 70 ± 9 phylotypes for sand and anthracite.  In a comparison of 

different biofilter types including GAC, rapid sand filters and slow sand filter schmutzdecke fed 

with ozonated water, Lautenschlager and colleagues (2014) reported lower DGGE richness 

values of 24, 38, and 43, respectively. Similarly, a bioreactor fed with raw water from the South 

Saskatchewan river for 40 days exhibited DGGE fingerprint richnesses up to a value of 30 

(Lawrence et al., 2004), while a full scale GAC biofilter in Zurich, which was fed pre-ozonated 

lake water, exhibited DGGE richness values from < 10 to almost 50 depending on the depth of 

the filter (Boon et al., 2011). 

To determine if water quality factors related to diversity and richness within the biofilter 

media, Pearson r correlations were evaluated for each biofilter as well as media type (Tables S2 

to S5 in App. A). Results showed that there were no significant correlations between biofilter 

ecological metrics and water quality. Notably ammonia and temperature did not correlate with 

biofilter media diversity. In an analysis of temperature effects on full scale biofilter bacterial 

communities receiving settled and ozonated river water, Kim and colleagues (2014) also found 

that temperature did not significantly affect community Shannon diversity or richness. 

Bacterial feed water diversity was not as high nor as stable as media biofilm 

communities, and exhibited a strong seasonal response where values dropped during colder 

months. This indicates the selective advantage of the biofilm lifestyle habit, as the biofilter 
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diversity levels were much more stable. The average diversities for feed water Groups A and B 

was different at 3.73 ± 0.22 and 2.63 ± 0.37, respectively, which could help resolve the 

underlying mechanisms of the bacterioplankton community shifts observed. The decreased 

diversity of Group B (October 2014, January, February & November 2015 feed water) was 

associated with lower temperatures (Figure 3.2). Bacterioplankton H’ values (as determined by 

next generation sequencing) from the Yellow River were similar to the current results, and 

varied from 3.39 to 4.40 (Xia et al., 2014). On the other hand, Mannheim bacterioplankton 

diversity metrics were higher than those of another Chinese riverine DGGE fingerprinting 

study which reported H’ values between 1.11 and 1.31 (Sekiguchi et al., 2002). The high 

dissimilarity of planktonic community structures relative to biofilm are also associated with 

significantly lower planktonic diversity and richness (ANOVA, p < 0.001 and p= 0.002 for 

diversity and richness, respectively, Table 3.4), which describes a less complex and more 

volatile bacterial assemblage in the biofilter feed water. 

Planktonic richness values were 62 ± 9 and 22 ± 9 for Groups A and B respectively. This 

large difference between the planktonic DGGE groups is interesting, however little statistical 

support exists for the separation of Groups A and B (Figure 3.6). The bacterioplankton richness 

of the BFwp feed water is similar to other DGGE fingerprinting values from river water, as Wang 

et al. (2015) observed a total study richness of 57 across multiple seasons, with an average 

sample richness of 22. Richness showed a more dramatic response to seasonality than diversity, 

with February demonstrating the lowest richness of the study period at only 12 phylotypes, 

which rose to a maximum of 73 phylotypes in July.  

3.5.4 Biofilter Biofilm Dynamics  

 Biomass is a useful monitoring tool for biofiltration as it gives an indication of 

the biodegradation ability within the process; however a suitable biomass parameter that can 

predict NOM removal performance requires more research (Pharand et al., 2014). EPS 

monitoring is a complementary measurement to biomass, since biofilms can be upwards of 90% 

EPS by (dry) mass (Flemming & Wingender, 2010), and in excess it can affect biofilter hydraulic 
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performance (Evans et al. 2013). Biofilter media biomass was measured as ATP and cell counts, 

while EPS was measured as total proteins, total carbohydrates, extracellular DNA, as well 

biofilm LC-OCD fractions as defined in Elhadidy (2016). The current study incorporated data 

collected previously by Elhadidy (2016) from October 2014 to February 2015, and extended the 

evaluation to include media sampling as well as biofilm biomass and EPS measurements until 

November. 2015. The resulting biofilm dataset was obtained for ATP, flow cytometric cell count 

and EPS values for 11 of the 14 months of the study timespan. 

 The extended sampling period (May to November 2015) confirmed results of the earlier 

data by Elhadidy (2016) that biofilters A and B presented a good degree of replication at the 

same depth, as Table 3.6 presents no significant difference in biomass (cell concentration) levels 

between the biofilters for either sand or anthracite at 20 cm depth (paired t-test, alpha = 0.05).  

As with biomass, no difference was detected at the same 20 cm depth between biofilters A and 

B in terms of EPS total proteins, carbohydrates and carbohydrate to protein ratio (Table 3.9), 

with the exception of anthracite CH:PN (paired t-test, p = 0.048, alpha = 0.05). Due likely to its 

higher surface area per unit volume, sand had a higher biomass and EPS content than 

anthracite. 

As expected, ATP and cell counts were strongly correlated, with Pearson r values 

ranging from 0.91 to 0.75 (Tables S2 to S5, App. A). EPS total proteins and carbohydrates 

shared a strong correlation, as the Pearson r values ranged from 0.96 to 0.92 (Tables S2 to S5, 

App. A). As is evident from the bar charts of Figures 3.11 and Figure 3.13, biomass & EPS 

dynamics were very similar, and results showed that there were positive Pearson r correlations 

among the ATP, cell count, total protein and total carbohydrate data which ranged from 0.66 to 

0.89 (Tables S2 to S5, App. A). This indicates that EPS is determined by filter biomass levels, 

which is supported by the carbohydrates and proteins per cell results presented in Figure 3.15, 

which were stable at < 2.5×10-7 µg D-glucose/cell and < 5×10-7 µg BSA/cell (with the exception of 

October 2014 which presented much higher EPS/cell due to low cell counts). The fact that there 

was not a significant increase in EPS production by the cells is interesting, as this is a common 

prokaryotic stress response and survival strategy. This may also be important to biofilter 
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operations, as EPS levels have been shown to affect biofilter hydraulic performance (Evans et al. 

2013). Vanysacker et al. (2014) reports that elevated EPS production can be triggered by a 

variety of conditions including high oxygen levels, N limitation, desiccation, low pH, and low 

temperature. Therefore the conditions within the biofilters A and B during the study period 

were amenable for bacterial growth and did not present significant challenges to their 

metabolism. 

Elhadidy (2016) observed a linear increase in biomass and EPS from his first sampling in 

August 2014 until his last sampling in February 2015, however values decreased afterwards 

over the summer 2015 sampling period. Biomass comparisons between winter 2014/2015, 

summer 2015 and autumn 2015 group means using ANOVA revealed significant differences for 

ATP and cell count data, with post-hoc Tukey HSD showing that these differences were 

between winter-summer and winter-autumn seasonal groups (Table 3.7). Similarly, ANOVA 

with Tukey HSD mean EPS comparisons between seasons showed significant differences 

between the same winter-summer and winter-autumn groups (Table 3.8). These seasonal 

differences in biomass and EPS stem from the higher values detected during December 2014, 

January & February 2015, and their decrease during the warmer period of 2015. As mentioned 

earlier, a community shift was observed during January & February 2015, possibly due to 

increased ammonia and LMW-acids within the feed water, and thus the shift in process 

microbiome organization, along with changing water quality, may have been responsible for 

the observed patterns in seasonal biomass and EPS concentrations. 

Ammonia was positively correlated with biomass and EPS, with r values ranging from 

0.95 to 0.66. Meanwhile, temperature was negatively correlated with biomass and EPS, with r 

values ranging from -0.94 to -0.68. At full scale, Pharand et al. (2015) found that biofilter ATP 

levels did not change across similar seasonal temperature and ammonia variations using pre-

treated Grand River feed water, however these full-scale biofilters received feed water that had 

undergone extensive pretreatment including sand-ballasted clarification and ozonation, and 

therefore the biofilters were fed with considerably different NOM/nutrient composition 

compared to the Mannheim pilot-scale biofilters.  
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Although some works have described that biomass decreases with lower temperatures 

(Huck et al., 2000; Seger and Rothman, 1996), others have shown that biomass remains stable 

with changing feed temperatures (Evans et al., 2013; Pharand et al., 2015; Rahman, 2013). So far, 

no evidence within the literature has been found for biofilter biomass increasing with lower 

temperatures. This supports the hypothesis that increases in biomass during the cold period of 

December 2014 to February 2015 were not due to temperature decreases, but to changes in feed 

water quality. The drop in biomass during summer conditions could therefore stem from a 

return of feed ammonia and LMW-acids to autumn 2014 levels and conversion to the DGGE 

defined Group D/E community structure.  

 Media biofilm ATP, cell concentration, eDNA, total proteins and carbohydrates 

showed no difference with depth from 10 to 20 cm in both cold and warm conditions (Figure 

3.12 and Figure 3.14 for biomass and EPS, respectively). However, there were decreases in all 

parameters from 20 to 60 cm depth. This would posit that a lower nutrient content via extended 

EBCT results in the lower biofilm values encountered at 60 cm. This hypothesis runs into 

difficulty when the biofilm values of the extended EBCT of autumn 2015 are considered, as the 

doubled EBCT during this period did not result in decreased biomass. However the autumn 

2015 extended EBCT did not compare EBCTs using the same feed water, and so the effect of a 

changing water quality on biomass cannot be ruled out.   

As mentioned earlier, no difference in biomass or EPS was observed between depths of 

10 and 20 cm. Conversely, observations of an increase in filter biomass at mid-depth have been 

reported by some (Hallé, 2009; Pharand et al., 2014; Velten et al., 2011). A plausible and perhaps 

under-estimated explanation for suppressed biomass in the top 10 cm of biofilter media is the 

establishment of protozoan bacteriovores within the upper reaches of the media. Indeed, 

Husmann and colleagues (1982) observed 100 protozoan cells/mL of media in the upper reaches 

of biofilter media, which decreased 50 fold at a depth of 600 cm. Protists are known to have 

stabilizing effects on biomass by reducing biofilm volume, increasing porosity, and elevating 

nutrient transport into the biofilm (Böhme et al., 2009). Therefore it is possible that the decrease 

in biomass during spring 2015 was, in addition to changing water quality, also related to 
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enhanced protist activity. Protists have been shown to play significant roles in moderating the 

biomass levels of several engineered systems such as slow sand filtration (Wotton 2004), waste 

air biotrickling filters (Huub and Deschusses, 1999) and have even been shown to maintain and 

stabilize flux through the biofoulant gel layers in gravity driven membrane filtration (Kohler et 

al., 2014). Servais and colleagues (1995) also note that the decrease and subsequent stabilization 

of biomass which they observed within the first year of operation was likely due to the 

establishment of protozoans which assisted in stabilizing not only bacterial cell numbers, but 

biovolume as well. Such a development would indicate an inter-domain ecosystem succession. 

Interestingly, Madoni and colleagues (2000) showed that abundance and diversity of protozoa 

were associated with increased percent removal of ammonia and manganese within full scale 

drinking water biofilters; this phenomenon was likely due to grazing of bacteria by ciliates, 

which removed the outer heterotrophic biofilm layer that, in turn, increased diffusion of 

ammonium and manganese to the lithoautotrophs beneath.  

ATP/cell values did not demonstrate clear seasonal trends and were not correlated with 

any water quality parameter, nor were they correlated with diversity parameters (App. A 

Tables S2 to S5). Media cell counts had higher variation between sampling events for both 

warm and cold conditions when compared to ATP and thus the ATP/cell levels also showed 

high variability (ranged from 2.51 to 13.52 femtograms ATP/cell). During mid to late 2014, the 

observed ATP/cell within Mannheim biofilter media decreased with colder temperatures 

(Elhadidy, 2016). However, based on the extended sampling campaign presented herein, the 

additional ATP/cell values showed enough variability as to indicate temperature-related 

ATP/cell effects were no longer present. Therefore the aforementioned temperature effect may 

have been unique to the acclimation phase. Unfortunately the factors controlling ATP/cell 

content remain unclear. There is evidence to suggest that viable but not culturable (VBNC) cells 

experience an increase in cellular ATP as a result of decreased metabolism and downregulated 

ATP catabolism (Su et al., 2016; Zhao et al., 2016). This is concerning, as it would mean stressed 

biomass could increase media ATP content, giving the illusion of a healthy, growing biofilm, 

which underscores the need for alternative biomass monitoring techniques. Magic-Knezev and 
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van der Kooij (2004) reported 2.1 x 10-2 fg ATP/cell in GAC filters and 3.6 x 10-1 fg ATP/cell in 

rapid sand filters treating ozonated water, while Hammes and colleagues (2008) reported 

between 2.49 x 10-1 and 7.61 x 10-2 fg ATP/cell in their investigation of process water from a 

Swiss DWTP; the fact that these values are lower than those encountered in the current study 

could be due to operational and feed water differences among locations and between 

conventional biofiltration and BFwp, as well as differences in ATP/cell measurement techniques.  

Media EPS carbohydrate to protein (CH:PN) ratios (Figure 3.13-c) decreased from the 

average cold (December to February) condition value of 0.62 ± 0.06 and 0.63 ±0.08 (for sand and 

anthracite respectively) to 0.44 ± 0.09 and 0.39 ± 0.07 (for sand and anthracite respectively) in the 

warm condition period. These values indicate an increase in EPS protein content during the 

summer and fall periods, which is probably an opportunistic response by the biofilm to take 

advantage of increased availabilities of substrates due to higher surface nutrient runoff and 

riverine primary production. In support of this hypothesis, humic building blocks and low 

molecular weight neutrals were significantly higher in warm conditions (p = 0.041 and p < 0.001 

for building blocks and LMW-neutrals, respectively, alpha = 0.05, Table 3.2), therefore these 

fractions may have played a role in the falling CH:PN ratio during this period. The CH:PN 

ratios of the current study are similar to the average ratio of 0.4 found in earlier samples by 

Elhadidy (2016), in his analysis from August 2014 to February 2015. 

 EPS protein, carbohydrate and eDNA ratios (PN:CH:eDNA) were found to be 

approximately 5:3:1 and 6:3:1 for sand and anthracite biofilm, respectively. Within the biofilm 

matrix, carbohydrates (including monosaccharides as well as polysaccharides), serve to bind the 

biofilm together; meanwhile EPS proteins make up the majority of the EPS and serve a variety 

of functions, including hydrolysis of substrates, biofilm detachment, sorption, and the structural 

linkage of polysaccharides (Flemming & Wingender, 2010). Extracellular nucleic acids are not 

exclusive to cell lysis, as they play active roles in biofilm aggregation (Flemming & Wingender, 

2010) and can be actively secreted by cells in biofilms, which take advantage of the large 

polyanionic molecules to bind divalent cations in a bridging role for flocculation and biofilm 
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cohesion (Flemming & Wingender, 2010). Together with lipids, extracellular nucleic acids may 

adjust the rheological properties of the biofilm matrix (Simões et al., 2010).  

Biofilter biofilm EPS fractions were also measured using LC-OCD according to the 

method of Elhadidy (2016). The resulting chromatogram peaks were categorized into 3 major 

fractions: a high molecular weight organic carbon (HMW-OC), intermediate molecular weight 

organic carbon (IMW-OC) and low molecular weight organic carbon (LMW-OC). The HMW-

OC fraction (Figure 3.16) was stable across both warm 2014 and cold 2015 conditions. Given the 

>13 kDa size of the HMW fraction, this group should contain biopolymers; however as Tables 

S2 to S5 in App. A shows, this fraction did not correlate strongly with total carbohydrates, total 

proteins or biomass parameters. However, an increase in both IMW and LMW-OC was 

observed during cold conditions, indicating these fractions may be more closely related to the 

measured total proteins and carbohydrates. Indeed, stronger correlations between IMW and 

LMW-OC and both proteins and carbohydrates were observed (Tables S2 to S5, App. A), and 

ranged from 0.96 to 0.83. Neither IMW or LMW-OC appeared to be better correlated with either 

proteins or carbohydrates fraction of the EPS. Both IMW and LMW-OC were well correlated 

with biomass, ranging in Pearson r values from 0.59 to 0.88. The IMW and LMW-OC fractions 

therefore represent alternative EPS parameters, and followed the same trends with media bed 

depth as previously examined EPS and biomass (Figure 3.17). 

 Given that the size of IMW-OC is between 2 and 13 kDa, this fraction likely contains 

within it humic substances, which was previously confirmed using fluorescence excitation 

emission matrices (Elhadidy 2017). Biofilms can adsorb humic substances (Flemming & 

Wingender, 2010) and therefore they may accumulate within biofilter media during cold 

conditions due to reduced exoenzyme kinetics at low temperatures (Elhadidy 2015). Consisting 

of a molecular weight below 2 kDa, the LMW-OC fraction was the last peak to elute in the EPS 

extract chromatograms, and was found to be the most concentrated of the 3 biofilm fractions 

(Figure 3.16). Elhadidy (2015) observed that LMW-OC increased in cold conditions compared to 

warm 2014 conditions, a similar trend to IMW-OC during the same time period. The extended 

sampling herein showed these 2 fractions again decreased upon resumption of warmer 
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conditions, correlating with temperature with Pearson r values ranging from -0.79 to -0.54 

(Tables S2 to S5, App. A). Similar to bacterial community organisation, biomass, and other EPS 

parameters, the LC-OCD defined biofilm IMW and LMW-OC fractions were also related to 

changes in feed ammonia concentration, which presented Pearson r correlations ranging from 

0.82 to 0.58 (Tables S2 to S5, App. A). 

 Elhadidy et al. (2017) found strong Pearson correlations between HMW-OC and 

proteins as well as carbohydrates, with the latter correlation being slightly lower in strength. 

The current results showed these trends did not persist into the warm 2015 season, as during 

this time, lower molecular weight biofilm LC-OCD fractions were better correlated with total 

protein and carbohydrate EPS parameters, with neither IMW nor IMW presenting stronger 

associations with proteins or carbohydrates. Further investigation into the differences between 

these biofilm fractions is therefore needed to understand their relationships with alternately 

defined EPS parameters. 

3.5.7 Relationship between biofilm dynamics and Biofilter Performance   

Biofilter performance was measured by percent removals of DOC and the five different 

dissolved NOM fractions as determined by LC-OCD. Measuring DOC and NOM fraction 

removals is essential to biofilter performance research as it provides removal results for both 

labile and recalcitrant fractions which can better approximate BOM removal than the 

measurement of DOC alone. Data from October 2014 to February 2015 were obtained by 

Elhadidy (2016), while data from May 2015 to November 2015 was obtained in the current 

study. On average the total NOM was composed of 7, 65, 15, 5 and 8% biopolymers, humic 

substances, building blocks, low molecular weight acids and low molecular weight neutrals, 

respectively. These percentages were quite stable over the year with the exception of 

biopolymers, which spiked in May 2015 to 12% of NOM; a similar seasonal trend with higher 

biopolymer concentration in the Grand River at warm water conditions (>10C) was observed 

by Pharand and colleagues (2015). The was a significant different in NOM removal through 

BFA (8 min EBCT) for DOC and biopolymers. For BF(B) with a longer EBCT of 16 min, there 
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was significant removal of DOC, biopolymer and LMW-acids fraction (Table 3.11). The higher 

EBCT of BF(B) resulted in significantly higher DOC (p = 0.007) and biopolymer removals (p < 

0.001, alpha = 0.05, Table 3.10) compared to BF(A), while no differences in removal were 

observed for the other NOM fractions. Although the increase in DOC or biopolymer removal 

was not directly proportional to the increase in EBCT, this was expected since increasing EBCT 

eventually leads to diminishing returns on BOM removal performance (Huck & Sozański, 2008). 

As well, the flow rates for both biofilters were Decreased during autumn 2015, where the 100 

L/h flow of October 2014 to August 2015 was decreased to 50 L/h for the months of September, 

October and November 2015. This was done in order to accommodate a different experiment 

that was being done at the pilot plant. Thus in the following section the data is partitioned into 

three operational groups: winter (December 2014, January & February 2015; 100 L/h), summer 

(May to August 2015; 100 L/h) and fall (September to November 2015; 50 L/h). Note that 

October 2014 performance data was binned in the summer 100 L/h group as feed temperature 

was above 10 °C and the flow was similarly 100 L/h. The autumn 2015 decreased in hydraulic 

loading rate corresponds with an increase in EBCT from 8 to 16 min for BF(A) and from 16 to 32 

min for BF(B), however this change did not appreciably increase DOC or NOM removals 

(Figure 3.19 and Figure 3.20, respectively). Assessing the effect of EBCT on BOM removal is 

difficult if feed water conditions are not kept constant, and results were also affected by 

decreasing autumn feed water temperature (Figure 3.2). Therefore it is difficult to know how 

these factors  affected microbial BOM removal kinetics at the decreased hydraulic loading rate.  

The summer months from May to August 2015 saw BF(A) and BF(B) removing an 

average of 10.9 and 17.3% of feed DOC, respectively, which are similar to full scale values from 

full-scale biofilters at a DWTP located 50 km downstream of the pilot plant (Pharand et al., 

2015). When the winter results are compared to summer, a 1.9 and 2.6-fold increase in DOC 

percent removal is observed for BF(A) and BF(B), respectively, during warm (>10 °C) 

conditions. Thus the DOC removal performance of both biofilters was heavily dependent on 

feed temperature with a Pearson r correlation of 0.78 and 0.87 for BF(A) and BF(B), respectively 

(Tables S2 to S5, App. A). It is also possible that seasonal changes in NOM composition also 
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had an impact on removals. Both biofilters A and B (8 and 16 min EBCT at 100 L/h; 16 and 32 

min EBCT at 50 L/h, respectively) exhibited significantly different DOC removals across the 

three groups of winter, summer and fall (ANOVA, p < 0.001 & p = 0.017 for BF(A) and BF(B), 

respectively; Table 3.11). Biopolymer removal also increased during the warmer conditions. 

Biopolymer removal of BF(A) and BF(B) correlated with feed temperature, as Pearson r 

correlations were 0.85 and 0.91 for each filter respectively (Tables S2 to S5, App. A). As such, 

significant differences in biopolymer removals across seasons were observed (ANOVA, p = 

0.018 & 0.003 for BF(A) and BF(B), respectively; alpha = 0.05; Table 3.11). The only other NOM 

fraction that showed an increase in removal at warmer temperatures was LMW-acids removal 

by BF(B) (ANOVA, p = 0.023, alpha = 0.05, Table 3.11).  

When temperature and DOC removal decreased, feed ammonia, feed LMW-acids, and 

media biomass and EPS concentrations increased (Figures 3.2 and 3.11), resulting in negative 

correlations between DOC percent removals and ammonia, LMW-acids, biomass and EPS 

(Tables S2 to S5, App. A).  Biopolymer percent removal shared the same correlation trends as 

DOC for biofilm components; biomass, EPS and feed ammonia were all negatively correlated to 

its removal (Tables S2 to S5, App. A), as these values increased during the winter months when 

BOM removal performance declined . 

Removal of NOM fractions were compared with biofilm characteristics including 

bacterial community DGGE groups. The bar plots in Figure 3.21 clearly show that DGGE Group 

C was associated with the least amount of DOC and NOM biopolymers removal from the feed 

water. This is likely due to a combination of temperature effects, community dynamics and 

biofilm response. Group C had a mean temperature of 1.8 °C, while Group D/E had a mean 

temperature of 19.0 °C; this higher mean temperature was related to higher microbial 

degradation kinetics for Group D/E which is what the performance bar plot of Figure 3.21 

shows. Therefore the effects of elevated feed water ammonia and LMW-acids were not wholly 

responsible for the observed decrease in biofilter performance observed for Group C. It is 

possible however that water quality induced changes to the community genotype and 

phenotype could still contribute somewhat to the observed change in performance; for example, 
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the community shift from Group D/E to Group C was accompanied by a higher CH:PN ratio, 

which indicates lower protein content in the EPS. This could result in diminished enzymatic 

ability of the biofilm matrix to hydrolyse incoming dissolved and particulate organic matter, 

which in turn would yield less readily assimilable carbon. In fact the Pearson r correlations 

between biopolymer percent removal and CH:PN ranged from -0.72 to -0.80 (Tables S2 to S5, 

App. A), whereas correlations between DOC and EPS CH:PN were not as strong; this supports 

the hydrolysis theory, as biopolymers are a large molecular weight (≥ 10 kDa) and therefore 

require modification to transport across the cell membrane. Good correlations between 

biopolymer and DOC removals were expected and observed, as biopolymers are a fraction of 

the total dissolved organic carbon, and their removal is presumed to be catalysed by the same 

metabolic pathways following hydrolysis. Unfortunately, limited sample sizes in the BOM 

removals of Group C precluded mean performance comparisons between DGGE groups. 

Figure 3.22 presents bar plots for sand and anthracite data divided into respective 

DGGE groups for the following parameters: Shannon diversity, community richness, ATP, cell 

counts, ATP/cell, total carbohydrates, total proteins, and the EPS carbohydrate to protein ratio. 

Group C showed similar community diversity to Group D/E, with no significant difference 

between groups detected (t-test, alpha = 0.05, Table 3.5). The same trend was observed in the 

richness data between DGGE groups. This shows that diversity levels were stable throughout 

the majority of the study, and indicates mature biomass, since acclimated biofilter media 

usually exhibits stable diversity characteristics (Kim et al., 2014). As Tables S2 to S5 in App. A 

show, diversity parameters correlated weakly with other data in the current study (biomass, 

EPS & performance) and therefore biodiversity is better suited to measure start-up community 

succession and not long term measurement of performance, as diversity and richness data were 

not well correlated with DOC and biopolymer percent removals. 

Of the three DGGE profile groups, Figure 3.21 shows the highest biomass and EPS was 

encountered in Group C. The conspicuously high biomass and EPS observed within Group C 

clearly indicates that the community shift of January and February 2015 was associated with 

higher cell survival. This could be due to the biofilm being exposed to higher ammonia and 
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LMW-acids concentrations. Also, as stated earlier, reduced predation at cold temperature could 

have led to higher biomass levels in the biofilters. The significant differences seen in biomass 

and EPS between DGGE Groups C and D/E (Table 3.5, Figure 2.22) show that biofilter biofilm 

respond to seasonal fluctuations in water quality, which precipitated a shift in the community 

structure. The higher biomass and EPS of the Group C biofilm could, if growth was thick 

enough, hamper the diffusion of oxygen and nutrients to basal populations, which could in turn 

select for different ribotypes. Niquette and colleagues (1998) noted that excessive flocs and 

particles in a biofilter could act as diffusion barriers to dissolved oxygen and nutrients. 

Therefore it is possible the additional biomass and EPS could have a similar effect. Indeed a thin 

biofilm was shown to be required for optimal biofiltration performance (Liao et al., 2015). This 

infers that the biomass and associated EPS should be minimized to retain maximal biological 

activity. As mentioned previously, the role which the Group C community shift played in the 

reduced biofilter performance may also be related to decreased EPS protein content. In addition, 

low temperatures reduce the oxygen diffusion rate into the biofilm matrix (Stewart, 2003), 

which could thereby reduce aerobic NOM degradation. Nonetheless, caution should be 

exercised when assessing the observed negative correlations between biomass, EPS and 

performance in this study, as low temperatures can also affect enzyme kinetics.   

It appears that no significant trends exist between performance parameters and biofilter 

media ATP/cell for the stabilized mature biofilm sampled in 2015. Although earlier results from 

late 2014 and early 2015 (Elhadidy 2015) indicated that higher ATP/cell was associated with 

higher filter performance during warm conditions, the same trends were not observed during 

the extended sampling campaign of the current study. The summer 2014 ATP/cell values were 

elevated because, as the DGGE hierarchical clustering analysis shows, media biofilms were still 

undergoing community succession and the filter may have had a higher proportion of 

colonizing cells in the growth phase, where ATP content is higher (Hamilton & Holm-Hansen, 

1967). Overall the ATP/cell values observed in the Mannheim pilot biofilters were higher than 

the 0.021 and 0.36 fg ATP/cell reported in full scale filters (GAC and rapid sand, respectively) 

(Magic-Knezev & van der Kooij, 2004). In a review of various published ATP/cell values for 



115 

 

biofiltration, Pharand et al. (2014) showed that values form published studies ranged from 10-14 

to 10-19 g ATP/cell, however the majority of reported values were within the range of 10-16 g 

ATP/cell (or an order of magnitude less than the femtogram (10-15 g) ATP/cell values seen in the 

current study). The reason for the consistently high ATP/cell values seen herein could be due to 

the absence of pretreatment in the raw BFwp feed, which would result in a higher diversity of 

carbon and nutrients available for biological growth. 

3.5.10 Conclusions 

This chapter characterized the relationships between BFwp bacterial ecology (community 

organization, diversity and richness) and how they related to biofilm dynamics (biomass and 

EPS) and performance (DOC and LC-OCD defined NOM removal) across a 14 month time span 

(11 sampling campaigns). Although DOC removals stabilized after 4 months of operation 

(Elhadidy 2015), it took approximately 11 months of operation for biofilter biomass levels to 

stabilize; in other words biofilter biomass did not reach stable levels until the second summer of 

operation (summer 2015). DGGE profile analysis showed two planktonic feed communities and 

two major biofilm communities, with the largest community dissimilarities in the analysis 

relating to the planktonic vs biofilm supergroups. The cold condition change in biofilm 

community structure was most influenced by seasonally induced changes to raw feed water 

quality including increased NH3-N and LMW-acids concentrations. These conditions also 

resulted in high media biomass and EPS concentrations yet, surprisingly, low DOC and 

biopolymer removals (Group C; January-February 2015). This study shows that by monitoring 

the concentrations of key nutrients in the raw BFwp feed, operations and maintenance staff can 

anticipate changes to filter biofilm behaviour. 

The lack of correlations between biomass and performance in the current study re-

affirmed the tenet that biomass is not a perfect tool for the monitoring of removal performance 

in mature biofilters. EPS levels closely followed biomass as EPS/cell production remained 

similar over the course of the study period. EPS composition was dominated by proteins whose 

proportion in the biofilm decreased during cold conditions, likely impacting the biofilm’s 
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biodegradation capacity. Community diversity, richness and structure however remained the 

same throughout the depth of the filter. Biofilter biofilm diversity was higher than that of 

planktonic communities and showed relatively small variation across the seasonal analysis, 

indicating the robust and redundant metabolic qualities of the biofilm; however diversity 

shared little relationship with performance. It is likely that the differences in biofilter 

performance between cold and warm conditions were due mostly to lowered enzyme kinetics 

as a function of temperature, and to a lesser extent, to a water quality mediated shift in EPS and 

community composition of the biofilm. A change in the biodegradability of the incoming NOM, 

while not quantified, may also have played a role. 

The increase in EBCT between BF(A) and BF(B) resulted in higher percent removals of 

DOC and biopolymers, however the biomass, EPS, diversities and community structures 

obtained from each biofilter showed, as would be expected, no significant differences between 

the two biofilters when sampled at the same 20 cm depth. Due to higher specific surface area, 

sand media displayed much higher volumetric biomass and EPS values than anthracite.  

BFwp  is a useful process for cost effective BOM removal as a membrane pre-treatment, 

however the unique position of this process at the head of the treatment train can expose the 

biofilm communities to widely fluctuating feed water quality which invariably affects biofilm 

ecology, performance and composition. Further investigations are needed in order to elucidate 

which bacterial populations are responsible for the high biofilm cell counts and EPS observed 

during the cold high ammonia/LMW-acid conditions. The amount of protozoan activity within 

different depths of the media bed is also of interest in BFwp, as protozoa may affect biofilm 

dynamics over the long term via bacterial grazing. Future seasonal investigations should 

include the following: sensitive measures of ammonium below the 0.1 mg/L detection limit of 

the current study in order to detect low summer ammonia values; quantification of wastewater 

and agricultural indicator bacteria (i.e. total coliforms); enumeration of bactivorous protists at 

different depths; sequence analysis to determine the genotypic identities of changing 

community members; and finally the ecological results of still-acclimating biofilter media 
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communities should be compared to those of full scale ‘steady state’ biofilters in order to 

increase understanding of the acclimation process. 
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Chapter 4  

Fighting Biofilms with Biofilms: Characterisation of 

Bacterial and Archaeal Communities in Pilot-Scale 

Biofiltration-Nanofiltration Coupled Process 

4.1 Summary 

 Biofilms are considered nuisance biological growth in the majority of water treatment 

processes, including high pressure membrane filtration where biofilm growth is operationally 

defined as biofouling. The use of BFwp as a low-cost alternative for nanofiltration (NF) 

pretreatment to reduce membrane biofouling was investigated previously (Elhadidy 2015) and 

yielded promising results. In the current study, the bacterial and archaeal community structures 

of the BF-NF coupled process were investigated in order to determine the microbial community 

dynamics associated with the observed reductions of feed channel pressure increase within 

bench-scale NF test cells. Two parallel pilot scale biofilters fed with surface water from the 

Grand River, Ontario, were operated with empty bed contact times (EBCT) of 8 and 16 min 

(loading rate of 3.08 m/h). Biofilter effluents were compared against raw water as feed for NF 

test cells. In total 54 prokaryotic community profiles were analyzed across summer and winter 

conditions via polymerase chain reaction – denaturing gradient gel electrophoresis (PCR-

DGGE), with nested PCR used for archaeal samples. Archaea were shown to be ubiquitous 

across all sample types however their abundances (based on number of bands) were roughly 

1000 fold less than bacteria and displayed no community organization across sample types. 

Bacteria exhibited distinct clustering according to season and source water type. Under warm 

water conditions (>10 °C) there was a shift in biofoulant bacterial communities on NF 

membranes when BFwp  effluent was used in comparison with raw feed. Furthermore, the use of 
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BFwp resulted in biofoulant communities with decreased Shannon diversity indices compared to 

raw water feed. These differences were not observed during winter conditions. These results 

compliment the encouraging findings of Elhadidy (2015) and show that the observed reduction 

of NF feed channel pressure increase by upstream biofiltration is due not only to reductions in 

organic loading but also to fundamental changes in the biofoulant ecology. 

4.2 Introduction 

Nanofiltration (NF) came into being in the 1970s when membranes with lower 

pressures, higher permeability, and lower dissolved component rejections than RO were 

developed to save on energy costs, and these RO type membranes were subsequently referred 

to as NF (Hilal et al., 2004). Still regarded as high pressure membranes, NF is used to remove 

natural organic matter (NOM) which includes disinfection by-product (DBP) precursors, as well 

as trace-level substances such as taste and odour compounds and even emerging contaminants 

of concern such as pesticides  (Fonseca et al., 2007). Furthermore NF has proven particularly 

successful at removing multivalent ions which makes it ideal for treating groundwater (e.g. for 

softening) (Cornelissen et al., 2010; Weng et al., 2015). Generally NF is regarded as any 

membrane which provides a molecular weight cut-off above 200 – 300 Daltons (Vanysacker et 

al., 2014) and as such, this intensive restriction on particulate and dissolved contaminants 

inevitably results in membrane fouling, of which biofouling is arguably the most difficult to 

manage (Flemming et al., 1997).  

Biofouling occurs when labile NOM and other nutrients are assimilated by 

microorganisms which grow into nuisance biofilm on the membrane surface and feed spacer. 

Biofilm formation eventually results in reduced permeability and contaminant rejection as well 

as an increased feed channel and transmembrane pressure (Dreszer et al., 2014; Wood et al., 

2016). The inherent nature of separating contaminants from permeate via membranes results in 

ideal conditions for biofilm growth, as the facilitated transport of nutrients and cells towards 

the surface of the membrane through permeation assists bacterial cells in overcoming 

hydrodynamic layers while simultaneously concentrating nutrients for improved assimilation 
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(Eshed et al., 2008; Ivnitsky et al., 2007). This concentration of dissolved chemical species near 

the membrane surface is referred to as concentration polarization, which is enhanced by the 

presence of a biofilm and serves to increase the pressure required to overcome osmotic forces – 

a phenomenon referred to as biofilm enhanced osmotic pressure or BEOP (Herzberg, 2010; 

Wood et al., 2016). In fact for high pressure membranes it has been postulated that the hydraulic 

resistance of biofilms does not contribute to increases in transmembrane pressure (TMP) nearly 

as much as the concentration polarization effect which they facilitate (Dreszer et al., 2013).  

Several factors determine a membrane’s propensity to grow nuisance biofilms, including 

membrane properties such as surface zeta potential, hydrophilicity, roughness and pore size as 

well as system properties such as crossflow velocity, pH, ionic strength, organic loading, 

application of biocides and permeation rate (Hilal et al., 2004; Ivnitsky et al., 2007; Vanysacker 

et al., 2014). Once a biofilm forms on the membrane surface however, original surface 

characteristics are negated by the tortuous, ubiquitous and diverse EPS matrix which 

interspecies biofilms secrete (Flemming et al., 1997), often cooperating and capitalizing on the 

previous succession’s effort in ways that are only just beginning to be understood (Culotti & 

Packman, 2015). It is for this reason that interdisciplinary research on the mechanisms, ecology 

and prevention of biofouling are needed. To-date special attention has been given to those 

organisms which act as pioneer species, EPS powerhouses, or both. Such problem bacterial 

species, or phylotypes as they are known in the molecular context, include Pseudomonas 

aeruginosa and members of the classes Sphingomonadales  and Rhizobiales (Bereschenko et al., 

2010; Culotti & Packman, 2015; Ivnitsky et al., 2007; Wood et al., 2016). On average archaea 

exhibit more specialized and fastidious metabolisms compared to bacteria, and therefore they 

rarely, if ever, dominate heterotrophic assemblages such as those found in aqueous oligotrophic 

mesothermal systems; therefore their presence in systems such as drinking water treatment and 

distribution has received mixed reporting (Fish et al., 2015; Moll et al., 1998). To the author’s 

knowledge, the presence of archaea within freshwater membrane biofoulant layers has not been 

established. 
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 Biofiltration is a promising option for the reduction of membrane biofouling (Fonseca et 

al., 2007) as it removes biodegradable NOM and inorganic nutrients which are used to form 

biomass (Bereschenko et al., 2010). The use of biofiltration as a pretreatment for high pressure 

membrane filtration has been demonstrated with success before (Elhadidy, 2013; Griebe & 

Flemming, 1998; Mosqueda-Jimenez & Huck, 2009; Weng et al., 2015). In this regard, the 

assimilable organic carbon (AOC) concentration of process water is often used as an indicator to 

measure the potential for biofilm growth (Dreszer et al., 2013). Biofiltration without 

pretreatment enriches the biofilter media with an aquatic oligotrophic consortium similar to 

that on freshwater sediment, and indeed these biofilms perform the same role of 

“environmental purification” as their natural counterparts, which is a mass transfer of dissolved 

and particulate contaminants out of the bulk fluid and into the biofilm matrix, where they are 

physically filtered, sorbed, chelated, hydrolyzed and/or assimilated into biomass (Flemming et 

al., 2016). The bacteria found in drinking water biofilter biofilms are mostly Gram-negative, 

non-fermentative strains(Mittelman & Jones, 2016) and belong to the class Alphaproteobacteria 

and to a lesser extent Betaproteobacteria and Gammaproteobacteria (Kaarela et al., 2014; White et al., 

2012). Other phyla than Proteobacteria such as Bacteroidetes, Chloroflexi, and Planctomycetes are 

often present, though in lower abundance (Liao et al., 2013a; Pinto et al., 2012). 

The strategy of “fighting biofilm with biofilm” by using biofiltration as a pretreatment is 

a sustainable option for biofouling control. Other options to control biofouling development 

such as biocides would have to be regularly applied in high concentrations. Membrane cleaning 

of biofilms has included the use of many different oxidants including hypochlorite, chlorine 

dioxide, chloramines, ozone, sodium hydroxide, hydrogen peroxide, iodine and peracetic acid 

(Nguyen et al., 2012; Zularisam et al., 2006). However many of these biocides can damage the 

membranes  themselves (NaOH, NaOCl, Cl2, peracetic acid), produce disinfection byproducts 

(NH2Cl, O3, Cl-based) fails to remove assimilable organic carbon (AOC) and can even increase 

AOC levels which could compound regrowth downstream (Nguyen et al., 2012). Furthermore, 

toxic wastewater generated as a result of biocide use must undergo treatment or isolation before 
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release into the environment (Griebe & Flemming, 1998). This short term destruction of biomass 

really only treats the symptom and not the cause of biological instability. 

As Pinto and colleagues (2012) stated, biofiltration gives utilities the “opportunity to 

control [the] DWTP microbiome by manipulating filter microbial communities”. Indeed, work 

conducted previously by our group showed that the use of biofiltration without pretreatment 

was itself an effective pretreatment for NF membranes by conducting experiments using 

membrane fouling simulators (MFS) (Elhadidy, 2015). Although biomass, EPS, physiological 

profiles and feed channel pressure data were obtained by Elhadidy (2015), genotypic methods 

were not explored; for this purpose, genomic materials in the form of fouled NF membranes 

and biofilter media biofilms were archived for the purpose of the current research. Therefore, 

this study aims to compare how biofiltration conditions affect the microbial community 

structure and diversity of downstream nanofiltration membrane biofoulants. In this study, 

archived samples were evaluated using 16S rDNA biomarkers and microbial communities were 

compared using denaturing gradient gel electrophoresis (DGGE). This approach added to the 

knowledge of NF biofouling processes and advanced efforts towards its mitigation.  

4.3 Materials and Methods 

4.3.1 Experimental Configuration  

Pilot-scale drinking water biofilters located at the Region of Waterloo’s Mannheim 

Drinking Water Treatment Plant, Kitchener, Ontario, were used in the present study; for a 

detailed description of the biofilter setup refer to Chapter 3. As with the previous chapter, this 

work builds upon previous PhD work by Ahmed Elhadidy (2015), who conducted two 

experiments (autumn 2014 and winter 2015) to evaluate biofiltration as a pretreatment to 

control NF membrane fouling. NF fouling was assessed by measuring increases in the feed 

channel pressure drop (FCP) using membrane fouling simulators (MFS). The autumn 2014 

(September 18th to October 19th) experiment lasted 700 hours (30 days) and consisted of one 

MFS unit receiving untreated raw feed water (referred to as raw-NF), and two replicate MFS 
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units receiving the effluent of the 16 min EBCT biofilter (BF-B). Replicate nanofiltration MFS 

units during the autumn experiment are referred to as BF(B)-NF-R1 and BF(B)-NF-R2.  

The winter 2015 (February 23 to April 15) experimental duration was 1000 hours (42 

days) and consisted of one MFS unit receiving untreated raw feed water, the second MFS unit 

receiving the effluent of the 16 min EBCT biofilter (BF-B), and a third MFS unit receiving the 

effluent of a parallel 8 min EBCT biofilter BF(A). Each MFS unit contained a 20 x 4 cm 

nanofiltration membrane and feed spacer in order to emulate cross flow in full scale spiral-

wound elements. MFS units were designed to study feed channel fouling and therefore did not 

accommodate permeation (Vrouwenvelder et al., 2007). Data from Elhadidy’s autumn and 

winter biofouling experiments are tabulated in Table 4.1, along with diversity and richness 

values obtained from the current study. 
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Table 4.1: Biomass parameters measured for biofilter and NF samples for the fall 2014 and winter 2015 MFS 
experiments. 

Type 
FCP % 

increase 
Shannon 

Index   
Richness 

ng 
ATP/cm2 

(NF) or cm3 

(media) 

cell 
count/cm2  

ng D-
Glucose  

/cm2  

ng 
BSA/cm2 

Feed-Mar  - 2.06 11  -  -  -  - 

Eff-Mar-BF(B)  - 1.91 9  -  -  -  - 

Feed-Feb  - 2.24 14  -  -  -  - 

Eff-Mar-BF(A)  - 1.61 7  -  -  -  - 

Eff-Feb-BF(B)  - 1.69 11  -  -  -  - 

Feed-Oct02  - 2.33 16  -  -  -  - 

Feed-Oct18  - 2.68 20  -  -  -  - 

Eff-Oct-BF(B)  - 2.92 24  -  -  -  - 

Feed-Apr  - 2.71 18  -  -  -  - 

Eff-Apr-BF(B)  - 2.51 16  -  -  -  - 

Eff-Apr-BF(A)  - 2.54 15  -  -  -  - 

NF-Fall-BF(B)-R1-8 24.2 2.38 17 6.4 1.55E+06 ND 2.3 

NF-Fall-BF(B)-R2-8 21.3 2.25 15 7 1.58E+06 ND 2.3 

NF-Fall-BF(B)-R1-4 24.2 2.12 15 7.3 1.85E+06 ND 2.1 

NF-Fall-BF(B)-R2-4 21.3 2.14 16 8.6 2.98E+06 ND 2.7 

Sand-Winter-BF(A)  - 3.08 28 15.9 8.41E+06 633.0 1166.5 

Anth-Winter-BF(A)  - 3.07 25 84.4 3.36E+07 2903.4 5111.0 

Sand-Winter-BF(B)  - 3.28 32 30.4 1.36E+07 958.5 1772.4 

Anth-Winter-BF(B)  - 3.2 27 40.4 2.40E+07 1727.7 3143.4 

NF-Winter-Raw-4 101.7 2.97 25 16.5 2.71E+06 2.1 2.4 

NF-Winter-Raw-8 101.7 3.06 26 11.1 6.01E+06 1.8 3.3 

NF-Winter-BF(A)-4 18.17 3.31 33 13 1.76E+06 ND 2.5 

NF-Winter-BF(A)-8 18.17 3.18 28 11.7 1.05E+06 ND 2.7 

NF-Winter-BF(B)-4 2.81 3.22 32 6.4 3.09E+05 ND 1.7 

NF-Winter-BF(B)-8 2.81 3.27 35 6.3 9.41E+05 ND 2.1 

Sand-Fall-BF(A)  - 3.24 39 9.5 2.07E+05 217.0 343.6 

Anth-Fall-BF(A)  - 3.33 40 10.8 1.75E+06 599.9 1463.7 

Sand-Fall-BF(B)  - 3.41 40 18.7 2.29E+06 678.2 1410.7 

Anth-Fall-BF(B)  - 3.11 32 17.0 2.69E+06 911.8 2015.6 

NF-Fall-Raw-4 126.44 3.45 25 38.5 4.11E+07 2.9 7.5 

NF-Fall-Raw-8 126.44 3.5 36 44.1 5.07E+07 3.7 8.7 
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4.3.2 Samples, Storage and DNA Isolation 

Archived samples of cellular biomass from biofilter feed, effluent, media and NF 

membrane samples were provided by Dr. Elhadidy. Archived biofilter feed, effluent and media 

samples were processed for DNA isolation as described in Chapter 3. Nanofilter membrane 

samples from the previous study (each totalling 4 cm2) were stored at -80 °C in sterile 

polypropylene centrifuge tubes in the absence of PBS buffer. DNA extraction from NF 

membrane samples was done using the same method as the filters used to concentrate 

microorganisms from feed and effluent water samples described in Ch. 3. Briefly, the 4 cm2 

nanofiltration membrane sample was placed in a 5 mL bead tubes (PowerWater DNA Isolation 

Kit (Mo Bio, USA), and DNA was extracted and described by the manufacturer’s protocol. 

As outlined in Ch. 3, isolated DNA from all samples was screened by agarose gel 

electrophoresis for size and quality while the yield of double stranded nucleic acids was 

quantitated using a Qubit 2.0 fluorometer and dsDNA BR Assay Kit (ThermoFisher Scientific) 

in 0.5 mL thin walled PCR tubes (ThermoFisher Scientific).  

4.3.3 PCR Amplification of Extracted Nucleic Acids 

 Bacterial DNA was amplified by PCR in the V6-V8 16S region using a GC-clamped F968 

forward primer and r1401.1b reverse primer as outlined in Ch. 3. PCR amplification of Archaea 

was done using a nested PCR (nPCR) protocol as described in Pereira e Silva and colleagues 

(2012). The outer primer set contained an archaea-specific forward primer Arch21F (DeLong, 

1992) with a universal bacteria reverse primer U1460R (Heijs et al., 2008); this first primer pair 

amplified a larger 1439 bp region while the inner primer set, composed of ARC344 with 40 bp 

GC clamp and reverse universal bacterial primer 517r, amplified a 173 bp region contained 

within the A21F/U1460R amplicons (Bano et al., 2004). PCR mixtures were adapted from Pereira 

e Silva (2012) to include hot start polymerase addition as well as the use of bovine serum 

albumin (BSA) and dimethyl sulphoxide (DMSO) (Hejis, 2008). The PCR mixture for the outer 

primer set consisted of 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2.3 mM Mg2+,  10% wt/vol BSA 

(BioRad, USA), 2% v/v DMSO (Sigma Aldrich, USA), 0.2 µM dNTPs (BioRad, USA), 0.5 µM of 
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each primer, 5 ng template DNA and 0.4 U iTaq polymerase (BioRad, USA). The PCR program 

was modified from Pereira e Silva and colleagues (2012) and consisted of 95 °C for 5 min, 

followed by 30 cycles of 1 min at 94 °C, 30 s at 57.5 °C, and 4 min at 72 °C, and a final extension 

of 7 min at 72 °C. The nested PCR reaction was performed with the ARC344f/U517r set in 50 µL 

total reaction volume based on the method described by Bano et al. (2004). PCR mixtures for 

this reaction were composed of 50 mM KCl, 20 mM Tris-HCl (pH 8.4), 2.5 mM Mg2+, 0.2 µM 

dNTPs and 0.4 uM of each primer, 5 ng template DNA and 1 U iTaq polymerase. PCR program 

consisted of the following steps: 95 °C for 5 min; 1 cycle at 94 °C for 45 s at; touchdown program 

from 65 to 62 °C decreasing 0.5 °C per cycle; touchdown program from 62 to 55 °C decreasing 

by 1 °C per cycle; one cycle at 72 °C for 30 s of; 30 cycles at 94 °C for 45 s, 55 °C for 45 s, 72 °C for 

30 s; and a final 72 °C extension for 5 min. Archaeal amplifications were performed with a 

template-negative control as well as an E. coli negative control. 

The fungal primer set targeted the 18S rDNA internally transcribed spacer (ITS) region, 

and included the ITS1 forward primer with GC clamp and an ITS2 reverse primer (Pereira e 

Silva et al., 2012). Fungal PCR reaction mixtures consisted of 50 mM KCl, 20 mM Tris-HCl (pH 

8.4), 2 mM MgCl2, 0.5 µg BSA, 0.25 mM dNTPs, 0.4 µM each primer, and 2.5 U Taq polymerase. 

The thermocycling program involved 94 °C for 5 minutes, 34 cycles of 94 °C for 30 s, 55 °C for 30 

s, 72 °C for 30 s, with a final extension step of 72 °C for 5 min. All fungal amplifications were 

performed with a template-negative control for contamination detection. 

4.3.4 DGGE Conditions 

The bacterial, archaeal and fungal DGGE conditions were identical to the protocol 

described for bacteria in Ch. 3, except that archaeal amplicons were loaded into polyacrylamide 

gels with a 40 - 60% denaturing gradient. Fungal DGGE conditions used the same conditions 

and gradient as bacteria. DGGE gels were visualized on the GelDoc platform (Bio Rad, USA) 

using Quantity One software v4.6 (Bio Rad, USA) and imported to Bionumerics v7.5 (Applied 

Maths, Belgium). Separate databases were constructed for bacteria and archaea after fingerprint 

background subtraction and alignment to reference lanes. BioNumerics v7.0 settings included 
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arithmetic average least square filtering (cut-off below 0.5%, power of 2.0) as well as 

Richardson-Lucy deconvolution (50 iterations, kernel size 2.0 pixels). These settings allowed for 

greater background noise reduction of electropherogram images. A rolling disk of size 13 was 

used on all densitometric curves, with automatic band searching set at 4% relative to max 

density value. Noise bands resulting from aberrant photograph grains were removed as 

required. The quantitative (intensity) m x n matrices of band data were exported for further 

statistical processing in the open software Project R (R Core Team, 2013). 

4.3.5 Statistical Analysis and Interpretation 

As described in Chapter 3, intensity matrices were analysed using several packages in 

the open-source Project R software (R Core Team, 2013). Ordination and cluster analysis was 

performed using the Vegan (Oksanen et al., 2016) and FactoMineR (Le et al., 2008) packages, 

with biodiversity statistics obtained using BioDiversiyR (Kindt & Coe, 2005). The approaches 

used in multivariate investigations of the DGGE matrices were informed by Borcard et al. 

(2011), Legendre & Legendre (1988), and Whitlock & Shluter (2009).  

The strategy for interpretation of DGGE community profile data was the same used in 

Chapter 3 and summarized as follows. First the band intensity data were used in a Mantel 

optimal number of clusters test, followed by hierarchical clustering, detrended correspondence 

analysis (DCA), and finally analysis of similarity (ANOSIM) to provide hypothesis testing on 

the selected number of clusters. Given that densitometric curves were extracted from DGGE 

profile data, phylotype presence (band occurrence) as well as abundance (band intensities) were 

used. According to Legendre & Legendre (1998), a distance coefficient which can be applied to 

raw quantitative data while allowing for rare species to affect the dissimilarities is the Bray-

Curtis distance (otherwise known as the Koczynski) coefficient; therefore Bray-Curtis distances 

were used for all cluster analyses. Hierarchical clustering of the distance matrix was performed 

using the Ward algorithm. The Ward algorithm uses the agglomerative approach to cluster 

analysis, which is both better suited and less error-prone than divisive methods due to the 

procedural nature of agglomeration (Legendre & Legendre, 1998). The Ward linkage algorithm 
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was selected for cluster assembly because it minimizes the sums of the squared distances 

between cluster centroids. This leads to clustering in which variance is minimized and gives 

cluster centroids a leading role in the cluster topology (Legendre & Legendre, 1998). 

Diversity of the DGGE profiles (Shannon index etc.) was done as described in Chapter 3. 

Normality of the diversity data was tested using the Shapiro-Wilke test for normality in the 

stats package (R Core team, 2016) in Project R. Because the diversity data of the biofilter feed, 

effluent, media and NF membranes were determined to have a non-normal distribution using 

Shapiro Wilke tests, two non-parametric tests were used to compare means of diversity data; 

the Kruskal-Wallis rank-sum test, which determines if a significant difference exists on 

between-group means exists, and the post-hoc Dunn multiple comparison test with Bonferroni 

correction, which was used to compare pairs of sample means. 

4.4 Results  

4.4.1 Detection of microorganisms in biofilter-NF samples by PCR amplification 

A total of 31 samples collected from both the fall and winter experiments were used for 

bacterial analysis, including NF membrane samples collected at both the 4 and 8 cm distance 

from the MFS feed inlet, as well as biofilter media, and biofilter feed water and effluent samples 

from the 8 min EBCT biofilter BF(A) and the 16 min EBCT biofilter BF(B). DNA isolation from 

environmental samples yielded high molecular weight bands. The bacterial primer pair yielded 

positive 16S rDNA amplification bands of the expected size (473 bp) with no contamination of 

PCR blanks. Qubit fluorescence quantitation showed that PCR amplicon yield was high, with 

the bacterial 16S gene double stranded DNA concentration between 18 and 25 ng/µL.  

Fewer samples (15) were included in the archaeal analysis due to labour limitations. 

Samples collected from the fall and winter experiments were used, including NF samples 

collected only at 4 cm from the MFS feed inlet, and biofilter media samples from only the 16 

min EBCT biofilter BF(B). A single biofilter feed and effluent sample from each of the autumn 
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and winter experiments were included. For Archaea, the first round of PCR produced no visible 

bands on agarose gel due to low concentration of amplicons. This necessitated use of a nested 

PCR (nPCR), where amplicons of the 1st round are used as template for a separate, smaller 

region of amplification in the 2nd round of PCR. Following the nested (2nd) archaeal PCR, 

positive 16S rDNA amplification bands of the expected size (213 bp) were observed with no 

contamination or non-specific PCR products for archaeal amplicons. After nested PCR, 

amplicon yield was approximately 20 ng/µL for each sample. 

Only two preliminary samples were amplified for presence of fungal DNA during 

method development (August 2015 biofilter feed and August 2015 biofilter sand at 20 cm 

depth). Due to labour constraints a full evaluation of fungal communities in the biofilter and 

membranes samples could not be performed, however results are included here to provide 

information for future studies. Positive 18S rDNA amplification bands were observed in both 

samples evaluated. The observed bands were  of the expected 350 bp size (Orgiazzi et al., 2012). 

This proves that fungi were a part of both the river water and the biofilter media communities. 

Fungal amplicon yield was 6.0 and 6.2 ng/µL for the media and feed water samples, 

respectively, and were therefore of lower concentration compared to bacteria but higher than 

archaea; therefore it would be worthwhile to further investigate fungal communities in 

biofilters in the future. 

4.4.2 Bacterial & Archaeal Community Profiling 

An example DGGE bacterial community profile is presented in Figure 4.1, and 

exemplifies the phylotypic diversity of the biofilter media biofilm bacteria.  
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Figure 4.1: Example bacterial 16S rDNA DGGE community fingerprint. Lanes 1, 6, 11 and 16 were loaded with a 
custom molecular marker and denoted by “M”. Lane 2 presents a fungal community profile while lanes 3– 5 were 
NF samples (NF-Fall-BF(B)-4-R2, NF-Fall-BF(B)-4-R1, NF-Fall-Raw-4). Lanes 7 – 10 were NF-Winter-Raw-4, NF-
Winter-BF(B)-8, NF-Winter-BF(A)-8, and NF-Winter-Raw-8. Lanes 12 – 15 were Eff-Apr-BF(A), Eff-Apr-BF(B), Feed-
Apr, and Eff-Mar-BF(A).  

In order to determine the number of clusters (groups) present in the data, Mantel 

optimal number of cluster tests were used. The Mantel correlation is algebraically equivalent to 

the Pearson correlation and compares original distance matrix values against a constructed 

dendrogram cut at various heights, which represents groups (Borcard et al., 2011). The number 

of groups which best correlate to the original distances are depicted in Figure 4.2. For bacterial 

dendrogram construction, Bray-Curtis distance coefficients were assembled via the Ward 

algorithm and plotted within the dendrogram of Figure 4.3. A legend is presented in Table 4.2 

which describes the naming convention used for the community profiles in the dendrogram of 

Figure 4.3. For bacterial phylotypes across biofilter feed, media, effluent and NF membrane 

samples, the Mantel optimal number of clusters produced a tie between 5 and 7 clusters since 

each exhibits a Pearson’s correlation of 0.72 between the distance matrix and dendrograms cut 

for each group number. Therefore further analyses were necessary to determine the best way of 

partitioning the bacterial data.  
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The analysis presented in Figure 4.2 provides insight as to whether the bacterial 

fingerprint data contains 5 or 7 groups. The number of groups was determined to be 7 since this 

better differentiated the NF, media and fall/winter groups at a cut height of 0.85. The 7 groups 

were labelled as A-G (Figure 4.3). Group A (purple) contains biofilter feed and effluent samples 

from cold water conditions (February and March 2015), Group B (light blue) contains raw feed 

communities from October2014, Group C (dark blue) contains raw feed and biofilter effluent 

from April 2015 as well as biofilter effluent from October18th 2014. Overall, results show that 

biofilter feed and effluent samples are confined to groups A, B and C, and these samples group 

separately from the media and membrane biofilm samples (groups D to G) at a dendrogram 

cut-off height of 2. The larger data set of biofilter feed water and media samples in Chapter 3 

showed a similar grouping between sample types (planktonic and media biofilms). Group D 

(red) contains only NF biofoulant communities fed with biofilter effluent from the fall 

experiment, Group E (yellow) contains all winter biofilter media communities, Group F (green) 

contains all NF biofoulant communities from the winter experiment, and Group G (brown) 

contains all media biofilm communities from the fall experiment plus the NF biofoulant 

communities from the fall experiment that were fed using raw river water. All media 

communities presented in Figure 4.3 were sampled from 20 cm depth at the interface between 

the upper anthracite and lower sand media.  
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Figure 4.2: Mantel optimal number of clusters (k) using Ward algorithm with bacterial DGGE profile data. The 
Pearson correlation suggests the validity of different numbers of groups. The optimal group number was highest for 
5 and 7 (r = 0.72). 
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Figure 4.3: Dendrogram plot showing hierarchical clustering of bacterial community DGGE profile data for biofilter 
feed and effluent, biofilter media and NF samples. All media samples shown were taken from 20 cm depth. Bray-
Curtis Distances were used in conjunction with the Ward algorithm. Y axis represents dissimilarity height between 
samples, where increasing height between nodes indicates greater dissimilarity between sample communities. A 
total of seven groups were identified and given a group letter. A legend of each sample is in Table 4.2. 
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Table 4.2: Legend explaining x-axis labels in the dendrogram of Figure 4.2. 

Sample code 
(DGGE 

dendrogram)  

Sample 
Type 

Month Experiment Biofilter Replicate 
Distance 

from feed 
inlet (cm) 

NF-Fall-BF(B)-R1-4 Membrane Oct Fall BF(B) 1 4 

NF-Fall-BF(B)-R2-4 Membrane Oct Fall BF(B) 2 4 

NF-Fall-BF(B)-R1-8 Membrane Oct Fall BF(B) 1 8 

NF-Fall-BF(B)-R2-8 Membrane Oct Fall BF(B) 2 8 

NF-Fall-Raw-4 Membrane Oct Fall Raw - 4 

NF-Fall-Raw-8 Membrane Oct Fall Raw - 8 

Sand-Fall-BF(A) Sand Oct Fall BF(A) - - 

Anth-Fall-BF(A) Anthracite Oct Fall BF(A) - - 

Sand-Fall-BF(B) Sand Oct Fall BF(B) - - 

Anth-Fall-BF(B) Anthracite Oct Fall BF(B) - - 

Feed-Oct02 Raw Water Oct Fall - - - 

Feed-Oct18 Raw Water Oct Fall - - - 

Eff-Oct-BF(B) Effluent Oct Fall BF(B) - - 

NF-Winter-BF(A)-4 Membrane Apr Winter BF(A) - 4 

NF-Winter-BF(A)-8 Membrane Apr Winter BF(A) - 8 

NF-Winter-BF(B)-4 Membrane Apr Winter BF(B) - 4 

NF-Winter-BF(B)-8 Membrane Apr Winter BF(B) - 8 

NF-Winter-Raw-4 Membrane Apr Winter Raw - 4 

NF-Winter-Raw-8 Membrane Apr Winter Raw - 8 

Sand-Winter-BF(A) Sand Apr Winter BF(A) - - 

Anth-Winter-BF(A) Anthracite Apr Winter BF(A) - - 

Sand-Winter-BF(B) Sand Apr Winter BF(B) - - 

Anth-Winter-BF(B) Anthracite Apr Winter BF(B) - - 

Feed-Feb Raw Water Feb Winter - - - 

Feed-Mar Raw Water Mar Winter - - - 

Feed-Apr Raw Water Apr Winter - - - 

Eff-Feb-BF(B) Effluent Feb Winter BF(B) - - 

Eff-Mar-BF(A) Effluent Mar Winter BF(A) - - 

Eff-Mar-BF(B) Effluent Mar Winter BF(B) - - 

Eff-Apr-BF(A) Effluent Apr Winter BF(A) - - 

Eff-Apr-BF(B) Effluent Apr Winter BF(B) - - 

 

Samples from the dendrogram analysis labelled according to cluster group (A to G), 

were assessed using correspondence analysis (CA). CA is an ordination technique which 

conserves the chi-squared distances in lieu of using Euclidian distances (like principal 
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component analysis or PCA); the result is a clustering method which is better at handling 

species data. Species data is usually regarded as unimodal when plotted against environmental 

gradients, meaning that species concentration is highest around an optima with respect to an 

environmental variable (Borcard et al., 2011; Legendre & Legendre, 1998). This is also known as 

niche partitioning. CA is therefore a well respected multivariate analysis tool designed to 

handle unimodal data whereas PCA, which assumes a linear response curve to environmental 

variables, is commonly eschewed in such circumstances (Fromin et al., 2002).  Moreover, the 

chi-squared distances in CA have been empirically tested and validated as ideal for the 

ordination of unimodal species data (Braak, 1985; Hill, 1974). Given that chi-squared distances 

are used, CA provides a measure of redundancy to the Bray-Curtis distances used in the 

dendrogram data as a way of validating the defined group memberships. 

  Results for the bacterial community profiles were ordinally clustered and plotted in the 

CA plot of Figure 4.4, with variance explained by the two axes of 19.2 and 10.6 for CA1 and 

CA2, respectfully. This technique presents the bacterial DGGE profile data in 2 dimensions 

where communities exhibiting high similarities to one another are presented closer together 

along the axes of CA1 and CA2. Results show that the feed water groups of A, B and C are 

located in close proximity to one another (except for one point in the B group), as are the media 

and NF membrane biofilm groups of E, F and G (which are even closer to each other). Thus a 

well defined differentiation exists between the biofilm and the planktonic communities, with 

only small dissimilarities observed among the respective biofilm and planktonic communities. 

However, the biofilter fed autumn NF membrane communities of Group D exhibited great 

dissimilarity from any other group in the plot. Therefore feed water and biofilter media 

communities present only small differences between autumn and winter conditions, while the 

BF-NF (biofilter fed NF communities) present dramatic differences between autumn and winter 

conditions. Group G shows tight clustering of the autumn media biofilm communities, with the 

two autumn raw-NF communities (NF-Fall-Raw-4 and NF-Fall-Raw-8) marking an exception 

since they appear to share greater similarity with Group E, winter media; this last observation 

was not apparent using hierarchical clustering. 
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Figure 4.4: Correspondence analysis of bacterial DGGE community profiles. Each data point represents the DGGE 
profile of a sample from the dendrogram groups (A to G) defined in Figure 4.3 The variance of the two axes is 19.2 
and 10.6 % for CA1 and CA2 respectively. 

Examination of exploratory (clustering) analyses revealed a coherent k value of 7 for 

bacteria; therefore analysis of similarity (ANOSIM) was used on Bray-Curtis distances to 

provide hypothesis testing on the selected number of groups as well as to present the amount of 

within group dissimilarity; the results are illustrated in the box and whisker plot of Figure 4.5. 

The two outliers within Group G correspond to the two autumn raw-NF communities. The 

ANOSIM test uses the Bray-Curtis distance matrix rather than the raw DGGE profile intensity 

data, and therefore the y-axis of the boxplot figure represents the Bray-Curtis distance, or 

dissimilarity, between groups. Each group’s dissimilarity is therefore shown by individual 

boxes, which are compared against the between group dissimilarity. Results (Figure 4.5) show 

that the null hypothesis is rejected for the bacterial profile ANOSIM test, as a p-value of 0.001 

(alpha = 0.05) and an R value of 0.98 is obtained. The ANOSIM statistic (R value) is a 

comparison of the ranked between group mean dissimilarity versus the mean within group 

dissimilarity, where an R value close to 1 indicates high dissimilarity between groups. The high 

R value and significant result provide a strong argument in favour of the selected k of 7. 
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Figure 4.5: Hypothesis testing using analysis of similarity (ANOSIM) of bacterial DGGE profile data. ANOSIM significantly 
validated group membership (p=0.001, R=0.979). Dissimilarity is represented by the y-axis and group width shows the number of 
members within each group. Within each box, the horizontal bar shows the group median dissimilarity, while top and bottom of 
the box shows 1st and 3rd quartile, respectively. Whiskers denote minimum and maximum values. Group G possessed two 
outliers (autumn raw-NF samples). 

In addition to assessing the community profiles of bacteria, the occurrence and diversity 

of archaeal communities was also assessed using PCR-DGGE, with an example profile 

presented in Figure 4.6. A Mantel optimal number of clusters analysis (Figure 4.7) was also 

performed on the archaeal profile dataset, and used the same distance coefficient and clustering 

algorithms as before; this analysis resulted in an optimal k of 5 at a Pearson’s r of 0.65. This 

lower r value indicates less agreement between the archaeal distance matrix and any number of 

Ward assembled groups, relative to the bacterial analysis. Therefore in the dendrogram of 

Figure 4.8, 5 archaeal community clusters are present at a cut height of 0.85, with each group 

labelled alphabetically. Results show that the winter archaeal communities did not cluster 

according to sample type (planktonic feed water, media biofilm, membrane biofilm), and that 

the archaeal dataset as a whole presents a less well-defined structure compared to bacteria. Due 
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to time constraints, fewer samples were analyzed compared to bacteria. A legend for samples 

included in the archaeal data-set is found in Table 4.3.   

 

Figure 4.6: Example archaeal 16S rDNA DGGE community profile. Lanes 1, 6, 11 and 16 were loaded with a custom molecular 
marker and denoted by “M”. Lanes 2 – 5 present media biofilm community profiles. Lanes 7 – 10 present Feed and effluent 
profiles. 
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Figure 4.7: Mantel optimal number of clusters using Ward algorithm with archaeal DGGE profile data. Bar height 
represents Pearson’s correlation between original distance matrix and various numbers of groups possible within a 
Ward assembled dendrogram. Optimal number of archaeal groups was 5, with a Pearson r correlation of 0.65.  
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Figure 4.8:  Dendrogram plot showing hierarchical clustering of archaeal community DGGE profile data. Five groups 
were identified at a cut height of 0.90, and given a designated group letter. All NF membrane samples used in the 
archaeal analysis were 4 cm distant from the MFS feed inlet. A legend of each sample is in Table 4.3. 
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Table 4.3: Legend explaining x-axis labels in the archaeal community dendrogram of Figure 4.12. 

Sample code (DGGE 
dendrogram) 

Type Month Experiment Biofilter Replicate 
Depth 
(cm) 

NF-Fall-BF(B)-R1 Membrane Oct Fall BF(B) 1 - 

NF-Fall-BF(B)-R2 Membrane Oct Fall BF(B) 2 - 

NF-Fall-Raw Membrane Oct Fall Raw - - 

Sand-Fall-BF(B)-20cm Sand Oct Fall BF(B) - 20 

Anth-Fall-BF(B) -20cm Anthracite Oct Fall BF(B) - 20 

Sand-Fall-BF(B) -60cm Sand Oct Fall BF(B) - 60 

Feed-Oct Raw Water Oct Fall - - - 

Eff-Oct-BF(B) Effluent Oct Fall BF(B) - - 

NF-Winter-BF(B) Membrane Apr Winter BF(B) - - 

NF-Winter-Raw-4 Membrane Apr Winter Raw - - 

Sand-Winter-BF(B)-20cm Sand Apr Winter BF(B) - 20 

Anth-Winter-BF(B) -20cm Anthracite Apr Winter BF(B) - 20 

Sand-Winter-BF(B) -60cm Sand Apr Winter BF(B) - 60 

Feed-Apr Raw Water Apr Winter - - - 

Eff-Apr-BF(B) Effluent Apr Winter BF(B) - - 

 

Correspondence analysis on archaeal results is plotted in Figure 4.9, with each sample 

labelled according to alphabetical DGGE group membership. The ordination of Figure 4.9 

shows a wide dispersal of data points; the percent of variance explained by the two axes are 

16.4 and 14.1 for CA1 and CA2, respectively. The amount of variance explained by Figure 4.9 is 

therefore similar to the bacterial CA plot (Figure 4.4), however it is clear that the archaeal data-

set as a whole possesses less well defined group memberships, which is similar to the 

hierarchical analysis of Figure 4.8. 
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Figure 4.9: Correspondence analysis of archaeal DGGE community profiles. Each data point represents the DGGE profile of a 
sample from the dendrogram groups H to L defined in Figure 4.12. The variance of the two axes is 18% and 15% for CA1 and CA2 
respectively 

The exploratory analyses produced a k value of 5 for archaea and so an analysis of 

similarity (ANOSIM) was used on archaeal Bray-Curtis distances to evaluate the statistical 

significance of the chosen number of groups; the results are illustrated in the boxplots in Figure 

4.10 for archaea. Once again, the y axis in these figures represents the Bray-Curtis distances or 

dissimilarities within and between groups. Group K only had a single member entry and 

therefore it’s within group dissimilarity could not be calculated, resulting in no box for that 

group. The width of each box is proportional to the number of entries within that group, and 

this is why Group L, with 2 group entries, possesses a small box within the plot. The null 

hypothesis is rejected for this test, with the resulting p-value being 0.001 (alpha = 0.05) and an R 

value of 0.87. However this R value is lower than in the bacterial ANOSIM and again indicates 

less well defined separation among groups.  
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Figure 4.10: Hypothesis testing using analysis of similarity (ANOSIM) on archaeal DGGE profile data. ANOSIM 
validated group membership and number (p=0.001, R=0.865). Dissimilarity is represented by the y-axis and the 
“between” as well as “within” group dissimilarities are illustrated by boxplot height, whose size varies according to 
number of members within each group. 

4.4.3 Comparing Community Diversity with Membrane Fouling Data 

Shannon diversity (H’) describes the number of species in a given habitat and their 

relative abundance; it is calculated from community richness (the number of species in a 

community) and community evenness (the relative abundance of species in a community) 

(Molles & Cahill, 1998). Richness is an important ecological parameter since it consists of the 

number of species observed which itself is inherently useful. Shannon diversity differs from 

richness in that it accounts for the proportions as well as the abundance of species within a 

community. Depending on the relative abundance of individual phylotypes, it is possible for a 

system to present different Shannon indices yet have the same richness, and therefore is an 

important measure for assessing a community’s complexity, resilience and maturity. Shannon 

diversity was calculated using Equation 3.1 as seen in Ch. 3. The Shannon index was selected to 

measure community diversity due to its equal treatment of rare and dominant species (Morris 

et al., 2014). Furthermore, the ubiquity of H’ within the literature makes comparisons to other 

biofiltration studies possible.  
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The bar plots in Figure 4.11 show Shannon diversity and richness associated with 

different bacterial communities. Average bacterial Shannon diversity and richness values were 

2.64 ± 0.49 and 19.26 ± 7.20 respectively. Table 4.4 presents p-values for Shapiro-Wilke tests for 

normality within the distributions of the ecological parameters for both bacteria and archaea. 

The majority of ecological data-sets within the current study were not normally distributed and 

therefore require non-parametric tests. A Kruskal-Wallis rank-sum test on the bacterial Shannon 

diversity and richness data showed significant differences among bacterial DGGE groups for 

each of the three ecological data types (p < 0.001 for both, alpha = 0.05, Table 4.5). Figure 4.11-a 

shows that Shannon diversity was lower for planktonic communities than most biofilm 

communities, with planktonic groups A, B and C exhibiting a Shannon diversities of 1.87 ± 0.18, 

2.31 ± 0.24 and 2.57 ± 0.10, respectively. Dunn’s multiple means comparison test (Table 4.5) 

showed that none of these group diversities were significantly different from one another (p > 

0.5, alpha = 0.05). If only the biofilm communities (media and NF samples) are considered, the 

autumn BF-NF Group D presented the lowest Shannon diversity at 2.17 ± 0.10; this was 

significantly lower than the autumn biofilter media Group G diversity which was observed to 

be 3.06 ± 0.11 (Dunn’s test with Bonferroni correction, p = 0.007, alpha = 0.05). Interestingly, the 

autumn media and raw-NF communities within Group G had very similar diversity values, 

which were also very close to that of Groups E and F (winter media and NF membranes), which 

presented Shannon diversity group means of 3.08 ± 0.18 and 3.03 ± 0.10, respectively. Table S1 

in App. B presents the z scores from all Dunn comparisons performed.  

Figure 4.11-b shows bacterial community richness levels for the different DGGE groups. 

Richness ranged from a high of 32 phylotypes in February 2015 BF(B) sand associated biofilm 

and a low of 8 phylotypes for March 2015 BF(B) effluent. As with Shannon diversity, similar 

trends are observed using the richness parameter, however it is evident that greater variance 

exists in the richness data. The average richness for Groups D and G were 14.25 ± 0.96 and 25.67 

± 2.16, respectively. Dunn’s test showed that the difference in group means was significant (p = 

0.025, alpha = 0.05, Table 4.5). Interestingly, though the winter experiment NF membranes and 

media were grouped into separate clusters (E and F), they presented similar diversity and 
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richness results and thus were not significantly different from each other in both cases (Table 

4.5). 

 

 
Figure 4.11: Shannon diversity (a) and species richness (b) for bacterial community DGGE profile groups derived 
from biofilter feed, effluent and media, and NF biofoulant layers from fall 2014 and winter/spring 2015. 

Table 4.4: Shaprio-WIlke test for normality of bacterial and archaeal Shannon diversity and community richness 
data-sets. Asterisk (*) denotes non-normal distributions. 

  

Bacteria Archaea 

p-value p-value 

Shannon 0.02* 0.4 

richness 0.02* 0.4 
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Table 4.5: Bacterial diversity data compared between DGGE groups, and the results of Kruskal-Wallis and post-hoc Dunn’s test. 
Asterisk denotes significant p values. 

a) 

Parameter Kruskal - Wallis p-values from Dunn's Test with Bonferroni Correction 
Sh

an
n

o
n

 D
iv

er
si

ty
 df 6   A B C D E F 

χ2 27.27 B 1           

p <0.001* C 1 1         

   D 1 1 1       

    E 0.027* 1 1 0.324     

    F 0.013* 1 1 0.256 1   

    G <0.001* 0.275* 0.141 0.007* 1 1 

b) 

Parameter Kruskal - Wallis p-values from Dunn's Test with Bonferroni Correction 

R
ic

h
n

es
s 

df 6   A B C D E F 

χ2 26.34 B 1           

p <0.001* C 1 1         

   D 1 1 1       

    E 0.025* 1 1 0.540     

    F 0.008* 1 0.841 0.345 1   

    G <0.001* 0.476 0.082 0.025* 1 1 

 

As presented in the methods section, Table 4.1 provides a summary of MFS data for 

each sample as provided by ElHadidy (2015), including feed channel pressure increase, ATP 

ng/cm2, cell count/cm2, D-glucose ng/cm2 and BSA ng/cm2. Average archaeal Shannon diversity 

and richness values were 2.38 ± 1.08 and 15.44 ± 6.33 respectively. No significant difference was 

found between archaea and bacteria using Mann-Whitney U tests with Shannon diversity data 

(p = 0.255, alpha = 0.05, Table 4.6), nor richness data (p = 0.267, alpha = 0.05, Table 4.6).  

Table 4.6: Table of p values from unpaired Mann-Whitney U comparison of total bacteria and archaea ecological parameter 
means. Asterisk denotes significant p values. 

  p-value w-value 

Shannon 0.3 100 

richness 0.3 200 

 

Figure 4.12 shows that depth did not appear to affect archaeal diversity or richness 

between 20 and 60 cm within the sand media. The bar plots in Figure 4.12 show archaeal 
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Shannon diversity and richness associated with the archaeal DGGE groups. A Kruskal-Wallis 

rank-sum test was performed on these groups and showed no significant differences between 

DGGE group means for Shannon diversity (p = 0.41, alpha = 0.05) or richness (p = 0.22, alpha = 

0.05); the complete results of this analysis are presented in Table 4.7. Given that diversity was 

not shown to be significantly different between groups, post-hoc Dunn’s tests were not 

performed. 

 

 
 
Figure 4.12:  Shannon diversity (a) and ribotype richness (b) for archaeal community DGGE profile groups derived from biofilter 
feed, effluent and media as well as MFS biofoulant layers from fall 2014 and winter/spring 2015. 
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Table 4.7: Archaeal MFS diversity data was compared between DGGE groups, and the results of a Kruskal-Wallis rank-sum test 
are presented for each parameter. Asterisk denotes significant p values. 

Parameter Kruskal - Wallis 

Sh
an

n
o

n
 

D
iv

er
si

ty
 df 4 

χ2 6.56 

p 0.16 

R
ic

h
n

es
s df 4 

χ2 6.96 

p 0.14 

 

4.5 Discussion 

Elhadidy (2016) observed that autumn MFS units which received raw water exhibited 

3.6-fold faster feed channel pressure increase compared to units fed BF(B) effluent. Furthermore 

autumn raw water fed MFS units (raw-NF) had 5.7-fold higher biomass as ng ATP/cm2, and 

notable differences in the protein:carbohydrate ratio of the biofoulant EPS. Total proteins (as µg 

BSA equivalent/cm2) for the autumn raw water MFS biofoulant were 4-fold greater than the 

BF(B)-NF biofoulant, whereas carbohydrates (as D-glucose equivalents) were present in raw 

water MFS biofoulant yet were below the limit of detection (1.5 ng/cm2) in the BF(B)-NF 

biofoulant. He also showed that the biofilters were able to remove readily biodegradable NOM, 

and this likely resulted in the decreased fouling of NF membranes. The winter MFS experiment 

exhibited similar trends to autumn, however biomass ATP, carbohydrates and proteins were 

similar or lower than the autumn experiment after a 40% longer run time. It was also noted that 

the rate of feed channel pressure increase were not as high during the winter experiment when 

compared to the autumn, and this can be related to the lower temperatures during cold (≤ 10° C) 

conditions, which lowers biofilm activity (Laurent et al., 1999) and could result in slower 

biofilm/biofoulant development. Therefore the central question which the current research 

asked was if the differences in NF membrane biofoulant composition between treatments was 

the result of NOM removal by biofiltration alone, or if biofiltration treatment also induced a 

shift in the biofoulant microbiome that could in turn alter biofoulant composition. Samples were 
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selected for fingerprint analysis by DGGE so that comparisons could be made between 

planktonic and biofilm communities in warm and cold conditions, as well as between those 

biofilm communities present on the filter media and on the feed channel membrane surface.  

4.5.1 Hierarchical Clustering of Bacterial Community Data Based on DGGE Profiles 

Bacterial DGGE profile data were able to successfully partition the samples analyzed 

into significant groups or clusters, and inferences can be made from the structuring of the 

communities in Figure 4.3. Dendrogram results show that the sample banding patterns can be 

divided into two super groups composed of planktonic vs biofilm communities; this 

observation demonstrates the largest differences in bacterial community similarity within the 

DGGE data and is a common phenomenon within the literature (Lautenschlager et al., 2014; 

Pinto et al., 2012; Vanysacker et al., 2014; Wu et al., 2014).  As discussed in Chapter 3, biofilms 

are established following attachment and growth of suspended bacteria indigenous to the 

source water and quickly adapt to the new micro-environment by differentiating 

phenotypically; eventually the developing biofilm creates micro-niches which select for a 

different set of dominant phylotypes than the feed water. These new sets of dominant 

phylotypes are successful in the new habitat as a result of different and more competitive 

metabolic capabilities (Flemming & Wingender, 2010) which results in the differences in DGGE 

profile superstructures between planktonic and biofilm samples. The fact that effluent 

communities clustered together with biofilter feed communities infers that sloughed biofilm 

bacteria were not dominant in the biofilter effluent, which illustrates the efficacy of the 

backwash regime in controlling biofilm growth and detachment cycles. Results showed that the 

planktonic communities divided into 3 partitions at a cut height of 0.85: Group A (February & 

March 2015 biofilter feed and effluent otherwise referred to as cold condition feed and effluent), 

Group B (October 2nd and 18th 2014 biofilter feed) and Group C (April 2015 biofilter feed and 

effluent, plus October 18th 2014 effluent). The fact that biofilter feed and effluent did not cluster 

separately is interesting, and indicates the biofilter units were not producing large amounts of 

detached or sloughed biofilm bacteria. It is difficult to assess if the differences in temperature or 

feed water quality caused the differentiation among the 3 planktonic communities; however, 
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the results of Ch. 3 in which a larger number of feed water samples was analyzed show that 

feed water ammonia and low molecular weight acids concentrations may play a role in 

determining both planktonic and biofilm bacterial community structures. 

At a branch distance of 1.5 within Figure 4.3, Group D is formed and is composed of 

autumn BF(B)-NF membrane communities, whereas the autumn raw-NF samples clustered 

separately in group G. Bereschenko and colleagues (2010) noted that within RO simulator flow 

cells the majority of biofoulant biomass was located near feed inlets, a phenomenon also 

observed in the ATP levels along the axial length of the MFS units by Elhadidy (2015). In the 

current work, hierarchical clustering reveals that the distance from the MFS feed inlet may 

influence community similarity to a small degree, as the membrane communities located 4 cm 

from the feed inlet had higher similarity to each other than those from the 8 cm distance, which 

clustered with other 8 cm distant communities; however no difference in community diversity 

or richness could be attributed to distance from the MFS feed inlet (Figure 4.11).  

Elhadidy (2015) showed that compared to the raw-NF membranes, the autumn BF(B)-

NF samples had 83% less ng ATP/cm2 and 75% less µg BSA/cm2 protein, with no measurable 

carbohydrates. This means that the observed changes between the biofoulant layers of raw vs 

biofilter fed membranes must be due to differences in the respective feed. BF(B) effluent in fact 

presented on average 30% lower AOC concentrations compared to raw feed water. This 

difference is likely responsible for the changes in biofoulant composition across feed type. Since 

the BF-NF membrane communities presented no measurable carbohydrates and reduced 

proteins in the biofilm matrix, the possibility exists that the warm yet low nutrient conditions 

selected for unique populations which secrete different EPS and are unlike those seen on media 

and in raw-feed membrane units; indeed this is what the DGGE profiles show when they are 

plotted in the dendrogram of Figure 4.3. With few polysaccharides in the biofilm matrix, the 

biofoulant layer could be less cohesive as this fraction of EPS is a major contributor to biofilm 

structure (Ahimou et al., 2007). The fact that autumn raw-NF communities did not cluster with 

BF-NF communities and instead clustered with autumn media (Group G), supports the 

hypotheses that i.) feed water quality and not substrate material dictates biofilm community 
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structure and ii.) biofiltration without pretreatment is able to remove nutrients in a sufficient 

manner so as to cause downstream shifts in biofilm community structure. Of course these 

results are only present in the warm condition autumn experiment, indicating that the reduced 

biofoulant growth kinetics and the altered biofilter BOM removal performance during cold 

conditions impact not only the rate of biofilm development, but also the rate of community 

differentiation. 

The dendrogram of Figure 4.3 clearly shows the bacterial communities on the biofilter 

media in the winter months (labelled Group F) clustered separately from biofilter media in the 

autumn (Group G). A similar observation was made in Ch. 3, where winter media communities 

clustered separately from summer and autumn. Therefore the difference between the fall and 

winter experiments’ media communities is likely due to changes in source water quality such as 

ammonia and low molecular weight acids concentrations. 

Unlike the autumn data, winter NF membranes fed with biofilter effluent clustered in 

the same group as those fed with raw water (Group F). One factor which could contribute to 

this observation is temperature, in that a reduced biofilm activity could lead to slower biofilm 

development and differentiation. Slower biofilter bacterial enzyme activity and biofilm growth 

during cold conditions (Laurent et al., 1999) could result in winter bacterial biofilm formation 

being less mature than the faster growing autumn biofoulant, and thus had the experimental 

time period have been extended, the winter raw-NF communities may eventually clustered 

separately from the BF-NF as was observed during the autumn. Indeed if fine scale 

organization is considered, Group F shows that those membranes treated with longer 16 min 

EBCT BF(B) effluent had already begun to differentiate from the sub-cluster which contains 

both shorter 8 min EBCT BF(A)-NF as well as the raw-NF communities; this differentiation 

occurs at a height of 0.6 which is below the cut-off for partitioning performed earlier. In 

addition to a temperature-mediated differentiation of biofoulant growth rates between the 

experiments, feed biopolymers were lower in the winter and thus BF(B) BOM removal was 

lower in the winter experiment; therefore lowered or altered nutrient concentrations and 

removals at colder temperature may have also played a role in the lack of community 
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partitioning in NF biofilms of the winter experiment. In other words, lower nutrients in the feed 

during winter should not be underestimated. This would be corroborated by the findings of Ch. 

3, which showed water quality to be a decisive factor in biofilm community organization and 

dynamics. 

Overall, results show that nutrient limitation via biofiltration during mesophilic 

operation is sufficient to shift downstream membrane communities into very different clusters, 

reiterating the powerful effect biofiltration has on downstream microbial organization. Similar 

findings were observed in a work by Pinto and colleagues (2012), who found that sloughed 

bacterial phylotypes present in the effluent of dual media rapid sand filters overwhelmingly 

modified the distribution network microbial communities across multiple seasons. This led the 

authors to hypothesize that distribution network microbiomes can be controlled by managing 

upstream filter communities, which the results of the current study support. 

  The different clustering between autumn vs winter biofilm communities on biofilter 

media would seem to indicate that temperature has potential to drive biofilm as well as 

planktonic community structure; and yet, other authors have noted temperature has no effect 

on mature biofilter media biofilm biomass (Fonseca et al., 2001; Pharand et al., 2014) or 

community structure (Ivnitsky et al., 2007). Therefore, as was discussed in Chapter 3,  the 

seasonal differences on the biofilter media can be attributed more to differences in water quality 

(for example, ammonia and low molecular weight acids concentrations, as well as changing 

compositions of all LC-OCD fractions although this is currently impossible to measure), while 

the development of biofilms on NF membranes would similarly be affected by water quality 

(i.e. upstream biofilter performance in addition to feed composition).  

The same conclusions reached using hierarchical methods are readily drawn from the 

CA technique presented in Figure 4.4. Results show that the biofilter fed NF samples from the 

autumn experiment cluster separately from those in the winter experiment. Winter NF and 

winter media samples cluster close together, and although the autumn raw-NF membranes are 

associated with media samples, they are located closer to Group E (winter media) rather than 

Group G (fall media). This was also reflected by the ANOSIM boxplot results (Figure 4.5) which 
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shows the two raw-NF communities as outliers of Group G. The CA plot of Figure 4.4 also 

shows Groups G and E (autumn and winter media, respectively) clustering close together 

relative to the other groups. This indicates that though community shifts did occur in the 

biofilter media between autumn and winter, these shifts were relatively small. 

4.5.2 Diversity of Bacterial Groups 

Measuring the diversity of biomass present in bioreactor technologies such as BFwp is 

critical to describe observed differences in performance during acclimation and during system 

perturbances due to operational parameters or inhibitory compounds. As such, monitoring 

biofilm diversity across treatments is an important step in understanding how biological 

systems change under varying conditions, and can assist with the development of new process 

monitoring or management techniques.  

With the exception of Group D (autumn BF-NF communities), all biofilm Shannon 

diversity levels were similar and fairly high, presenting index values around 3, which is 

common for bacteria of these sample types (Fish et al., 2015). Significantly lower mean Shannon 

diversity values were observed in Group D (autumn BF-NF) when compared against Group G 

(autumn media and raw-NF) as seen by the bar plot of Figure 4.11-a and the Dunn’s test results 

in Table 4.5 (p = 0.007, alpha = 0.05). This shows that the community shift caused by upstream 

biofiltration also leads to a reduction in community diversity. A decrease in richness between 

Groups D and G was also observed in the richness data (Dunn’s test, p = 0.025, alpha = 0.05, 

Table 4.5). This means that the biofilter treated membrane biofoulant possesses less metabolic 

potential to deal with perturbances, which could include cleaning via hydrodynamic scouring 

and biocides. This observation could lead to new biofilm control strategies.  

It is interesting to note that the ecological parameters for Group D (BF-NF) resembled 

those of the planktonic communities (Groups A – C). This raises the question as to whether 

there exists further similarities between planktonic communities and Group D. However the 

CA plot of Figure 4.4 shows that the autumn BF-NF communities were separate from the 

planktonic groups within the reduced space of the ordination, meaning that although both the 



154 

 

planktonic groups and Group D share similar (low) diversity, their community organization is 

quite different. 

Also of interest is the high diversity and richness values of the winter BF-NF 

communities of Group F. As previously mentioned, removal of certain BOM fractions by the 

biofilters (i.e. biopolymers, humics) was lower during the winter. Therefore it is possible that 

the high diversity observed in all winter NF biofilm samples, including BF-NF communities, 

was the result of decreased organic matter removal by the biofilters, or was affected by other 

changes in seasonal water quality, including the lower concentrations of biopolymers entering 

the biofilter during winter, as well as the increased feed ammonia concentrations (as discussed 

in Ch. 3).  

4.5.3 Hierarchical Clustering of Archaeal Communities Based on DGGE Profiles 

Though initially labelled “extremophiles” for their abundance in earth’s most hostile 

environments, the domain archaea are now known to be ubiquitous as they inhabit the 

microbiome of many freshwater (Ortiz-alvarez & Casamayor, 2016), marine, (Bano et al., 2004), 

soil (Maier et al., 2009) and engineered (Fish et al., 2015) environments. Archaeal contributions 

to many of these ecosystems remain to be fully understood, however two common functions 

within an environmental engineering context involve ammonia oxidation and methanogenesis 

(Maier et al., 2009). For example, ammonia-oxidizing archaea are capable of performing this key 

ecosystem function at low DO levels which would inhibit their bacterial counterparts (Liu et al., 

2016). 

Although archaeal amplicons were detected in every sample, the concentrations were 

much lower than for bacteria (> 1000 fold lower concentration) and a nested PCR protocol was 

required to produce sufficient amplicons for DGGE analysis. Archaeal abundance was so low 

that no bands were visible in agarose after the first round of PCR, yet appeared strong after the 

second round. Archaeal DGGE data was hierarchically clustered in the dendrogram of Figure 

4.8, and results show that there was no differentiation between planktonic (biofilter feed and 

effluent) and biofilm association (media and NF) samples. Although the winter samples tended 
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to cluster in groups H and I, and the fall samples in groups J, K, L, not all samples followed 

these trends. Correspondence analysis of DGGE profile data (Figure 4.9) produced similar 

results. Additional sample data may be helpful to show trends between sample type and DGGE 

pattern, however the fact that planktonic, media and NF samples do not group separately, 

together with the low concentration of archaea compared with bacteria, suggests that in-depth 

analyses may not be warranted. Yet it is still instructive to note that in both the archaeal 

dendrogram (Figure 4.8) and CA plot (Figure 4.9), the autumn BF-NF archaeal communities 

appear to cluster separately from the rest of the data, which point to biofilter-mediated changes 

in water quality having an effect on archaeal biofoulant organization.  

Given that the pilot plant used Grand River water, which notably has several 

wastewater treatment plants upstream of the Mannheim intake, ammonia-oxidizing archaea 

would likely be one of the dominant archaeal types. Sonthiphand et al. (2013) showed that 

within the Grand river, both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were 

present, but as soon as total ammonia concentrations approached 0.05 mg/L and higher, AOA 

abundance in sediments and the water column plummeted as AOB dominated. The authors 

further concluded that AOB are likely the dominant ammonia-oxidizing prokaryotes in the non-

headwater reaches of the Grand River. Given that ammonia levels increased dramatically 

during the winter MFS experiment, it would follow that archaeal abundance would similarly 

drop and this could help explain why seasonal patterns are one of the few trends that show 

promise based on the archaeal DGGE profiles, however the current dataset may not be large 

enough for a definitive conclusion therein.  

4.5.4 Diversity of Archaeal Groups 

The barplots in Figure 4.12 show archaeal diversity and richness arranged by DGGE 

profile group. These diversity metrics were slightly lower for archaea than bacteria, since mean 

archaeal Shannon indices were 2.36 ± 0.30 whereas bacterial mean H’ was 2.64 ± 0.49; this also 

indicates relatively higher variation within the archaeal dataset. A Mann-Whitney U test 

showed the differences in mean Shannon indices between archaea and bacteria were not 
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significant (p = 0.3, alpha = 0.05, Table 4.6). Mean archaeal richness was 15.33 ± 4.91 which was 

not significantly different from the bacterial values of 19.26 ± 7.20 (Mann-Whitney U, p = 0.3, 

alpha = 0.05, Table 4.6). Within a slow sand filter Schmutzdecke, Wakelin et al. (2011) recovered a 

total of 31 archaeal sequences via PhyloChip, which is double the observed phylotypes 

presented herein and could be related to the differences in filter operation; for example, several 

of the observed archaeal sequences were of methanogenic lineage which indicates anaerobic 

zones within that biofilm, while the biofilms of the current analysis are not expected to possess 

significant anaerobiosis. Wakelin (2011) further observed the majority of archaeal sequences to 

be of Halobacterales origin, and concluded the primary function/metabolism of this group to be 

organoheterotrophic aerobes.  

The similar Shannon diversity and community richness values of archaea and bacteria 

however requires some additional consideration, as archaeal abundances were much lower than 

bacterial. Findings from Neilson et al. (2014) showed multi-band DGGE profiles resulted from 

individual bacterial isolates, and that the same amplicon sequence could form more than one 

conformation in the DGGE gel matrix and thereby produce separate bands. This finding further 

complicates DGGE diversity analysis, as multiple rRNA operons commony exist in bacterial 

genomes. Therefore the authors recommended caution be used when assessing diversity from 

DGGE plots, yet roundly maintained the DGGE method was highly reproducible and an 

excellent choice for high-throughput analysis of community structure. 

 A Kruskal-Wallis means comparison was performed on diversity data between archaeal 

DGGE groups, and no difference was detected (p = 0.16 and 0.14 for Shannon diversity and 

richness, respectively; alpha = 0.05; Table 4.7). Shannon diversity results for archaea (2.62 ± 0.11) 

were slightly higher than reported by Pereira e Silva and colleagues (2012) in their analysis by 

DGGE of archaeal diversity of agricultural soils, which were in the range of 1.68 to 2.40. 

Similarly, Fish and colleagues (2015) reported lower archaeal diversity than the current study at 

2.15 ± 0.67 within pilot drinking water distribution system biofilms; however their experiment 

lasted only 28 days which may have led to lower community diversty than the acclimated 

communities in the current work. However, Fish et al (2015) simiarly found that that archaeal 
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diversity was lower than that of bacteria. It is not known if archaeal contribution to membrane 

biofouling is important, however the current results indicate that archaea, though ubiquitous, 

likely do not play major roles in drinking water membrane biofouling since their abundances 

are so low compared to bacteria. Likewise the low abundances in media samples indicates that 

the contribution of archaea to biofiltration performance is probably insignificant.  

4.5.5 Presence of Fungi Within Pilot Plant Setup 

Only two samples were investigated for fungi, including an August 2015 pilot plant feed 

water and BF(B) sand at 20 cm depth. Results show that fungi were present in both samples, 

proving that fungi were a part of both the summer feed and sand media communities. Little is 

known about the presence and function of fungal communities in the process biofilms of 

biofiltration and membrane filtration. Fungi are adept at degrading recalcitrant environmental 

compounds such as lignin (Maier et al., 2009), and therefore could be associated with humic 

substance degradation in biofiltration, or at least in playing a role in the co-degradation of 

NOM along with bacteria. Unfortunately the current work did not venture beyond this initial 

assessment.  

Fungi were detected directly by PCR amplification without the requirement for a nested 

PCR procedure. The concentration of amplification product was 25 to 33% that of bacterial, 

which suggests that fung may be present in river water and biofilter biofilms at high 

concentrations. However it is difficult to compare amplicon density across primer types and 

cycling programs. Only the fungal amplicons from the August 2015 feed water were analysed 

by DGGE, and showed multiple (9) bands confirming the presence of multiple fungal 

phylotypes. Fish and colleagues (2015) reported the presence of fungi in a model pilot scale 

drinking water distribution system; given that the pilot biofiltration units receive untreated feed 

water, the current finding that fungi are present within BFwp is not surprising. Dominant fungi 

within the Schmutzdecke layer of a slow sand filter were determined to be Ascomycota and 

Chytridiomycota, which made up a total of 5 individual fungal sequences (Wakelin et al., 2011). 

In the current work, the DGGE results indicated gradient optimization outside of that used for 
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bacterial analysis (45-65%) was required for further investigation of fungal communities. 

Therefore further work is needed to assess drinking water biofilter and biofoulant fungal 

ecology in order to provide basic information regarding their presence, distribution, and 

potential contribution to process performance. 

4.6 Conclusions 

The microbial community composition of biofoulant material from polyamide thin-film 

composite nanofiltration membranes situated in membrane fouling simulator (MFS) units was 

evaluated and compared against BFwp media biofilm. Bacteria and archaea were present in all 

sample types, however archaea abundances were roughly 3 orders of magnitude less than 

bacteria, and did not cluster according to sample type. Given their low abundances, archaea 

either do not contribute substantially to biofiltration or membrane biofouling, or if they do it 

was not possible to assess given the current methodology. Fungi were present in summer 

biofilter media biofilm as well as summer raw feed water, with an abundance of roughly a third 

to a quarter that of bacteria, and therefore the effects of fungi on biofilter performance merits 

further investigation. The current study made it clear that bacteria are the major component of 

biofilter and membrane foulants and that through habitat modification via biofilm formation 

they exert profound effects on pilot-scale water treatment processes.  

Community profiling results showed that the driving factor shaping NF biofoulant 

community organization during warm (> 10 °C) conditions was BOM removal, rather than 

substrate type (sand, anthracite, polyamide membranes). For both the autumn and winter 

experiments, the NF biofoulant fed with biofilter effluent possessed less biomass and EPS, 

however only in the fall experiments was there a lower diversity and a shift in community 

structure between biofilter-treated membrane biofilm versus those fed raw water. The autumn 

bacterial NF biofilms fed with raw feed water resembled those of biofilter media, while those 

fed with biofilter-treated water were highly dissimilar to both biofilter media and bulk liquid 

communities. Therefore the improved operation of NF-MFS units pretreated by BFwp compared 

to those fed raw source water is the result of using upstream managed biofilms to remove 
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biodegradable NOM for a biologically stabilized feed. This shows the use of biofilms to fight 

biofilms is a viable approach for enhanced management of biofouling on drinking water 

treatment membranes. Future efforts should include investigations into BFwp as a pretreatment 

for RO membranes, the diversity and structure of biofilter and biofoulant fungal communities, 

as well as evaluate combination methods to biofouling mitigation, such as biofiltration coupled 

with regular chemical cleaning regimens. 
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Chapter 5  

Research Summary & Relevance 

5.1 Summary of Research 

 Biofiltration without pretreatment is capable of simultaneous particle, BOM and 

inorganic nutrient removal; when combined with other treatment options such as hybrid 

membrane processes, these qualities make it an ideal first stage process for drinking water 

treatment in both urban and remote communities. In order to improve BFwp operation and 

monitoring within fluctuating temperature and water quality conditions, the biomass must be 

characterised in a way which reflects its responsive and dynamic nature. Research of this sort 

can provide insights for process design and can also be used to provide operational guidance 

information to better prepare operations staff for seasonal changes in biofilter behaviour and 

performance. 

 To this end, the first phase of this research set out to acquire a time-series dataset of 

physicochemical and ecological metrics relevant to biofiltration, so that a seasonal 

representation of biofilter microbial dynamics could be assembled. A sampling period spanning 

4 seasons was designed and successfully completed on two parallel pilot scale biofilters with 

differing EBCT; the first four sampling campaigns (October & December 2014, January & 

February 2015) were obtained from archived cellular extracts and stored biomass, EPS and 

biofilter performance data, that was graciously provided by former Chair student Ahmed 

Elhadidy. The second phase of this research was to augment findings from the first phase with 

an investigation of downstream nanofiltration membrane biofoulant communities, fed with 

either biofiltered or raw water in both warm and cold (<10 °C) conditions. 
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 The results of both phases are complimentary and provide a deeper understanding of 

biofilm response to both seasonal and engineered conditions; as such the conclusions of this 

research are as follows. 

1. The BFwp bacterial community structures as determined by PCR-DGGE on a seasonal 

sample set were highly dissimilar between feed and biofilm samples; as such the biofilm 

bacterial community dynamics cannot be inferred or approximated from those present 

in the feed. 

2. Community structures were not affected by hydraulic loading rate, media type (sand 

versus anthracite), or bed depth within the biofilter, and therefore these factors were 

observed to have no effect on bacterial communities on biofilter media. 

3. Within the seasonal dataset, multivariate analyses of DGGE patterns grouped samples 

into five major clusters, and this grouping was validated using ANOSIM (R=0.93, 

p=0.001). The feed water samples assembled into 2 clusters while the media biofilm 

assembled into 3 clusters. It is likely that changes in water chemistry including increased 

ammonia and LMW-acid concentrations in the feed during January-February 2015 were 

primarily responsible for the observed community shifts of each sample type.  

4. Bacterial Shannon diversity values (H’) within BFwp were stable throughout the study 

period and were high compared to reported values. Average H’ results at the 

intermixing zone were 3.80 ± 0.40 for sand and 3.74 ± 0.41 for anthracite media. The feed 

water Shannon diversity however was lower at 3.33 (± 0.61) and exhibited higher 

variability throughout the year. Biofilter media Shannon diversity and community 

richness however were not related to DOC or biopolymer removals. 

5. Biomass (ATP and flow cytometric cell counts) increased linearly from commissioning in 

April 2014 until their peak in February 2015 at > 3000 ng ATP/cm3 for sand and > 1650 ng 

ATP/cm3 for anthracite. Biomass concentrations continued to increase well after steady-

state DOC removals were observed in the early summer of 2014. This linear increase was 

likely due to ongoing maturation of the biofilter media. Changes in biomass 

concentrations in cold water conditions were correlated with changes in DGGE patterns.  



162 

 

6. Protein was shown to be the dominant fraction of EPS. Of the three EPS parameters 

examined (proteins, carbohydrates and eDNA), average values showed ratios of 5:3:1 

and 6:3:1 existed for sand and anthracite media, respectively. EPS was highly correlated 

to biomass levels in both biofilters on both media types, and sand media consistently 

exhibited more biomass and EPS per unit filter volume than anthracite, at least in part as 

a result of its higher specific surface area. 

7. As would be expected, DOC removal increased with EBCT, averaging 10.0 ± 3% for 

BF(A) and 14.3 ± 6% for BF(B), and was strongly correlated with feed temperature. Also 

as would be expected, the removal of the biopolymer fraction of NOM also increased 

with EBCT, averaging 47.6 ± 19% for BF(A) and 63.4 ± 26% for BF(B), and was strongly 

correlated with feed temperature. 

8. EPS and biomass were negatively correlated with performance due to the high biomass 

recorded during cold conditions. 

9. PCR-DGGE fingerprint analysis showed that NF membrane samples fed water pre-

treated by BFwp during warm (> 10 °C) conditions possessed highly differentiated 

bacterial communities compared to those fed raw water, indicating the beneficial effects 

which BFwp has on downstream nanofiltration membrane feed channel pressures are at 

least in part due to a drastically altered biofoulant ecology. 

10. Warm condition membrane bacterial communities fed with raw water clustered in the 

same fingerprint group as biofilter media, which shows that in warm conditions feed 

type and not materials determine bacterial community organization. 

11. Conversely, in cold (<10 °C) conditions, all membrane biofoulant communities clustered 

together and were separate from both feed and media biofilm clusters. The winter 

membrane cluster contained membranes fed both BFwp effluent and raw water, 

indicating that the effect which biofiltration had on downstream biofilm communities 

compared to raw water was minimal during these conditions. 

12. Archaea were present in all sample types (feed, media, membrane) however they likely 

did not play a significant role in the examined processes as archaeal abundances were 

roughly 3 orders of magnitude less than bacteria. Archaeal community structures on NF 
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membranes responded similarly to bacterial communities during the warmer autumn 

experiment, giving rise to the hypothesis that feed water type and not substrate material 

affects archaeal community structure as well. No archaeal community shift was 

observed during the colder winter NF experiments. 

5.2 Relevance to Drinking Water Industry 

This research has produced several conclusions about the microbial communities of BFwp 

systems and how their attributes relate to monitoring, performance and downstream 

communities. 

1. BFwp is a successful multifunctional unit process for the removal of particles, DOC and 

BOM (in terms of the biopolymers and other biodegradable components of the LC-OCD 

defined NOM fraction). Due in part to its stable and diverse microbiology, BFwp is a 

strong contender for simple, robust and remote treatment systems. 

2. Temperature decreases below 10 °C significantly impact biofilter DOC and biopolymer 

removal performance.  

3. Seasonal changes in water quality precipitated a microbial community shift in the BFwp 

media biofilm. Significant changes in microbial community structure were encountered 

during periods of elevated ammonia-N and LMW-acids; this water quality-mediated 

community shift was also associated with increased biomass and EPS production in the 

media biofilm. Therefore by monitoring key water quality nutrient parameters in the 

raw feed, operators can anticipate changes in BFwp behaviour. 

4. Shannon diversity and richness of biofilter media bacterial communities was stable year 

round and not related to process performance; however bacterial community structure 

was related to changes in biofilter biofilm behaviour (i.e. biomass and EPS concentration 

as well as ATP/cell and EPS protein content). Evidence suggests community structure 

may also be related to performance. 

5. BFwp successfully shaped the structure of downstream NF membrane communities 

during warm temperature, high BOM removal periods. This effect was not observed 
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during cold periods where lesser BOM removal occurred. This indicates that 

biofiltration can be used as a tool to shape and repress downstream biofilm in 

membranes and potentially in the distribution network when a threshold BOM is 

removed. 

6. Archaea were ubiquitous and their biofoulant community structures were affected by 

biofiltration in a similar manner as the bacterial results. Due to their low abundance 

however they do not appear to be major contributors to the functioning of BFwp using 

the current study’s source water. 

5.3 Future Research 

The current work has shown it possible to control DWTP biofilms using the approach of 

biological BOM removal which could replace or augment more aggressive techniques such as 

biocide and detergent dosing as well as hydrodynamic shear. As a biological unit process, BFwp 

is an open system since it receives raw source water inputs and with the exception of hydraulic 

loading rates and backwashing, is not a tightly controlled environment. This results in a highly 

diverse microbial community which is susceptible to seasonal variations in feed water quality, 

or more specifically, to variations in water chemistry and nutrients during cold conditions. 

These cold condition water quality changes were shown to be an important potential driver of 

media biofilm community structure. Therefore future BFwp research should use a more sensitive 

ammonia-N detection method below 0.1 mg/L as well as measure its removal performance. 

Sequence analysis should be used to taxonomically identify significant changes in community 

structure. Additionally, protozoan counts should be performed in order to assess the role these 

organisms play in stabilizing biomass levels during and after the acclimation period, as well as 

the potential effects they may have during bacterial community differentiation. Finally, future 

efforts should include investigations into BFwp as a pretreatment for RO membranes, the 

diversity and structure of biofilter and biofoulant fungal communities, as well as evaluate 

combination methods for biofouling mitigation, such as biofiltration coupled with membrane 

chemical cleaning regimens. 
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Appendix A                                                                         

Supplementary Information for Chapter 3 

 

 

 

Figure S1: Dendrogram comparing DGGE banding patterns for inter-gel marker controls. Gel FP.17 contained media 
samples from Sep, Oct and Nov 2015, FP.18 contained Jan and Feb 2015, FP.16 contained Dec 2014, FP.19 
contained Jul and May 2015, FP.20 contained feed water samples, FP.22 contained media samples from June and 
Aug 2015, FP.23 contained feed water samples, and FP.24 contained media and feed water samples from Oct 2014. 
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Table S1: Averages for several biofilm and performance parameters according to DGGE profile Groups. 

Sample 
Type 

DGGE 
Group 

  Group Means 

ng 
ATP/ 
cm3 

Cells/cm3 
fg ATP 
/cell 

µg D-
glc/cm3 

µg 
BSA/ 
cm3 

CH:PN 
 

BF 
DOC 
% R 

BP     
% R 

HS     
% R 

BB     
% R 

LMW-
Acids     
% R 

LMW-
Neutr

als     
% R 

Water A  -  -   -  -         

Water B  -  -   -  -         

Sand C 3065 1.02E+09 3.5 113.3 191.4 0.59 BF(B) 6.76 32.77 1.4 -1.0 -2.5 13.7 

Anth C 1710 6.7E+08 3.2 69.8 116.6 0.61 BF(A) 5.96 25.05 -0.2 8.3 -2.5 9.3 

Sand D 1562 1.38E+08 27.1 49.3 97.3 0.55 BF(B) 15.30 56.70 9.2 7.1 25.7 24.8 

Anth D 580 9.26E+07 6.3 31.2 72.7 0.43 BF(A) 10.20 38.20 5.6 7.3 22.6 15.8 

Sand E 1770 3.97E+08 5.6 42.7 88.5 0.46 BF(B) 16.01 71.95 10.6 17.0 7.8 22.7 

Anth E 734 2.42E+08 3.7 22.8 50.8 0.44 BF(A) 10.96 53.71 6.8 4.7 13.3 22.0 

Sand D/E 1782 3.68E+08 8.0 43.5 89.4 0.47 BF(B) 15.93 70.25 10.42 15.87 9.79 22.90 

Anth D/E 709 2.26E+08 4.0 23.7 50.8 0.42 BF(A) 10.88 51.98 6.65 5.00 14.34 21.28 
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Table S2: Pearson correlation analysis comparing BF(A) sand biofilm and BF(A) performance parameters examined in the study. Media samples were taken from 20 cm bed 
depth. Ammonia data below detection limit was treated as DL/2. Blue, yellow, orange and red cell shading indicate correlation strengths of positive or negative 0.6, 0.7, 0.8 
and 0.9 respectively. 
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HMW.OC 1                                             

IMW.OC 0.74 1                                           

LMW.OC 0.82 0.94 1                                         

Diversity 0.47 0.14 0.25 1                                       

Richness 0.34 0.01 0.14 0.98 1                                     

Cell Count 0.56 0.88 0.70 -0.08 -0.20 1                                   

ATP  0.42 0.85 0.69 0.01 -0.07 0.91 1                                 

ATP/Cell -0.81 -0.65 -0.64 -0.71 -0.55 -0.50 -0.41 1                               

Carbohydrates 0.42 0.87 0.78 -0.07 -0.13 0.78 0.83 -0.32 1                             

Proteins 0.56 0.94 0.86 0.00 -0.09 0.84 0.84 -0.47 0.96 1                           

CH:PN -0.06 0.40 0.34 -0.42 -0.37 0.41 0.56 0.27 0.75 0.55 1                         

% R DOC  -0.19 -0.75 -0.65 0.25 0.30 -0.68 -0.67 0.11 -0.88 -0.84 -0.69 1                       

% R BP  -0.19 -0.67 -0.55 0.01 0.03 -0.72 -0.86 0.23 -0.88 -0.82 -0.73 0.74 1                     

DOC 0.01 -0.44 -0.20 0.36 0.43 -0.69 -0.70 0.15 -0.56 -0.53 -0.47 0.41 0.62 1                   

NO3 0.57 0.73 0.78 0.09 0.03 0.55 0.64 -0.41 0.68 0.79 0.32 -0.44 -0.61 -0.32 1                 

NH3 0.29 0.80 0.65 -0.23 -0.30 0.75 0.78 -0.25 0.85 0.84 0.58 -0.75 -0.65 -0.70 0.60 1               

Ortho-P -0.07 0.02 0.17 -0.28 -0.18 -0.06 0.02 0.45 0.22 0.19 0.41 -0.33 -0.28 0.31 0.35 -0.08 1             

pH -0.63 -0.43 -0.36 -0.41 -0.29 -0.26 -0.07 0.66 -0.11 -0.30 0.51 -0.01 -0.09 -0.05 -0.29 -0.20 0.36 1           

Total Iron -0.03 0.15 0.26 0.00 0.11 -0.03 0.08 0.24 0.48 0.30 0.69 -0.51 -0.45 0.18 0.11 0.12 0.62 0.38 1         

Conductivity 0.20 0.69 0.50 -0.47 -0.57 0.83 0.79 -0.15 0.74 0.72 0.60 -0.69 -0.63 -0.87 0.45 0.86 -0.12 0.04 -0.05 1       

Hardness 0.13 0.59 0.48 -0.59 -0.63 0.65 0.68 0.09 0.79 0.73 0.81 -0.71 -0.71 -0.68 0.59 0.73 0.32 0.19 0.28 0.84 1     

Temperature -0.18 -0.70 -0.54 0.25 0.30 -0.71 -0.81 0.14 -0.92 -0.81 -0.84 0.78 0.85 0.70 -0.53 -0.85 -0.08 -0.05 -0.39 -0.81 -0.86 1   

Turbidity 0.29 -0.07 0.09 0.60 0.65 -0.32 -0.19 -0.20 -0.04 -0.12 0.01 0.22 0.04 0.60 0.00 -0.37 0.15 -0.07 0.45 -0.57 -0.30 0.09 1 

                          

Legend:   r ≥ 0.90    r ≥ 0.80    r ≥ 0.70    r < 0.70                        

 
HMW.OC = high molecular weight organic carbon | IMW.OC = intermediate molecular weight organic carbon | LMW.OC = low molecular weight organic carbon 
% R DOC =  Biofilter percent removal of dissolved organic carbon | % R BP = Biofilter percent removal of biopolymers 
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Table S3: Multiple Pearson correlation for BF(A) Anthracite biofilm and BF(A) performance parameters examined in the study. Media data were taken from 20 cm bed depth. 
October 2015 data was excluded due to flawed EPS extraction. Ammonia data below detection limit was treated as DL/2. Each of the four multiple correlation tables (S4 to 
S7) correspond to single media type (sand vs anthracite) and a single biofilter (BF-A vs BF-B). 
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HMW.OC 1                                             

IMW.OC 0.49 1                                           

LMW.OC 0.44 0.86 1                                         

Diversity 0.42 0.13 0.09 1                                       

Richness 0.37 0.09 0.04 0.97 1                                     

Cell Count 0.30 0.77 0.82 0.03 -0.07 1                                   

ATP  0.08 0.72 0.85 0.18 0.10 0.87 1                                 

ATP/Cell -0.81 -0.74 -0.59 -0.23 -0.12 -0.69 -0.41 1                               

Carbohydrates 0.24 0.84 0.92 0.10 0.10 0.78 0.88 -0.42 1                             

Proteins 0.23 0.86 0.96 0.01 -0.01 0.81 0.89 -0.46 0.96 1                           

CH:PN 0.13 0.58 0.68 0.04 0.11 0.57 0.66 -0.20 0.87 0.74 1                         

% R DOC  -0.26 -0.80 -0.87 -0.02 0.00 -0.65 -0.72 0.40 -0.91 -0.90 -0.71 1                       

% R BP  -0.09 -0.66 -0.74 -0.30 -0.32 -0.72 -0.85 0.36 -0.88 -0.84 -0.79 0.74 1                     

DOC 0.19 -0.59 -0.54 0.18 0.24 -0.75 -0.80 0.34 -0.62 -0.64 -0.50 0.41 0.62 1                   

NO3 0.30 0.52 0.73 0.42 0.42 0.50 0.71 -0.23 0.63 0.67 0.42 -0.44 -0.61 -0.32 1                 

NH3 0.02 0.74 0.82 0.01 -0.05 0.73 0.88 -0.23 0.87 0.84 0.67 -0.75 -0.65 -0.70 0.60 1               

Ortho-P 0.11 0.07 0.28 -0.08 0.07 -0.08 -0.01 0.14 0.25 0.32 0.27 -0.33 -0.28 0.31 0.35 -0.08 1             

pH -0.33 -0.27 -0.07 -0.36 -0.28 -0.16 -0.10 0.27 -0.01 -0.01 0.24 -0.01 -0.09 -0.05 -0.29 -0.20 0.36 1           

Total Iron 0.23 0.29 0.29 0.20 0.35 -0.03 0.06 0.02 0.47 0.34 0.66 -0.51 -0.45 0.18 0.11 0.12 0.62 0.38 1         

Conductivity 0.06 0.73 0.82 -0.23 -0.32 0.87 0.88 -0.45 0.80 0.84 0.61 -0.69 -0.63 -0.87 0.45 0.86 -0.12 0.04 -0.05 1       

Hardness 0.15 0.66 0.85 -0.24 -0.22 0.72 0.78 -0.34 0.86 0.87 0.81 -0.71 -0.71 -0.68 0.59 0.73 0.32 0.19 0.28 0.84 1     

Temperature -0.10 -0.69 -0.79 -0.05 -0.05 -0.76 -0.87 0.32 -0.94 -0.85 -0.93 0.78 0.85 0.70 -0.53 -0.85 -0.08 -0.05 -0.39 -0.81 -0.86 1   

Turbidity 0.37 -0.33 -0.27 0.59 0.66 -0.31 -0.33 0.07 -0.16 -0.35 0.13 0.22 0.04 0.60 0.00 -0.37 0.15 -0.07 0.45 -0.57 -0.30 0.09 1 

                          

Legend:   r ≥ 0.90    r ≥ 0.80    r ≥ 0.70    r < 0.70                        

HMW.OC = high molecular weight organic carbon | IMW.OC = intermediate molecular weight organic carbon | LMW.OC = low molecular weight organic carbon 
% R DOC =  Biofilter percent removal of dissolved organic carbon | % R BP = Biofilter percent removal of biopolymers 
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Table S4: Multiple Pearson correlation for BF(B) sand biofilm and BF(B) performance parameters examined in the study. Media data were taken from 20 cm bed depth. 
October 2015 data was excluded due to flawed EPS extraction. Ammonia data below detection limit was treated as DL/2. Each of the four multiple correlation tables (S4 to 
S7) correspond to single media type (sand vs anthracite) and a single biofilter (BF-A vs BF-B). 
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HMW.OC 1                                             

IMW.OC 0.37 1                                           

LMW.OC 0.29 0.87 1                                         

Diversity 0.33 0.21 0.15 1                                       

Richness 0.34 0.15 0.11 1.00 1                                     

Cell Count 0.31 0.86 0.59 0.19 0.15 1                                   

ATP  0.09 0.84 0.74 0.00 -0.05 0.86 1                                 

ATP/Cell -0.60 -0.81 -0.63 -0.27 -0.24 -0.77 -0.64 1                               

Carbohydrates -0.02 0.85 0.85 0.01 -0.04 0.69 0.82 -0.58 1                             

Proteins -0.01 0.83 0.89 -0.05 -0.09 0.67 0.82 -0.46 0.96 1                           

CH:PN -0.01 0.60 0.49 0.17 0.11 0.50 0.60 -0.71 0.68 0.47 1                         

% R DOC  -0.25 -0.88 -0.79 0.05 0.09 -0.63 -0.68 0.52 -0.82 -0.80 -0.40 1                       

% R BP  0.17 -0.70 -0.61 -0.04 0.01 -0.70 -0.82 0.47 -0.91 -0.83 -0.72 0.72 1                     

DOC 0.07 -0.60 -0.42 0.25 0.31 -0.71 -0.87 0.52 -0.59 -0.54 -0.58 0.42 0.63 1                   

NO3 0.07 0.52 0.49 0.26 0.24 0.42 0.55 -0.14 0.48 0.54 0.04 -0.66 -0.44 -0.32 1                 

NH3 -0.09 0.81 0.58 0.02 -0.05 0.78 0.83 -0.49 0.79 0.73 0.54 -0.71 -0.77 -0.78 0.57 1               

Ortho-P 0.05 0.15 0.49 0.24 0.26 -0.06 0.11 0.14 0.35 0.47 -0.07 -0.30 -0.31 0.31 0.35 -0.10 1             

pH -0.25 -0.06 0.26 -0.31 -0.31 -0.26 0.08 0.12 0.13 0.11 0.24 0.01 -0.18 -0.05 -0.29 -0.14 0.36 1           

Total Iron 0.00 0.25 0.41 0.21 0.20 -0.05 0.08 -0.17 0.53 0.41 0.51 -0.44 -0.50 0.18 0.11 0.09 0.62 0.38 1         

Conductivity 0.11 0.88 0.69 -0.12 -0.18 0.86 0.92 -0.64 0.76 0.74 0.53 -0.70 -0.70 -0.87 0.45 0.90 -0.12 0.04 -0.05 1       

Hardness 0.13 0.84 0.84 -0.22 -0.26 0.69 0.88 -0.51 0.88 0.91 0.45 -0.89 -0.79 -0.68 0.59 0.75 0.32 0.19 0.28 0.84 1     

Temperature 0.09 -0.79 -0.63 0.13 0.19 -0.70 -0.82 0.53 -0.90 -0.81 -0.67 0.87 0.91 0.70 -0.53 -0.87 -0.08 -0.05 -0.39 -0.81 -0.86 1   

Turbidity 0.02 -0.36 -0.38 0.09 0.12 -0.43 -0.50 0.22 -0.25 -0.34 -0.10 -0.06 0.13 0.60 0.00 -0.43 0.15 -0.07 0.45 -0.57 -0.30 0.09 1 

                          

Legend:   r ≥ 0.90    r ≥ 0.80    r ≥ 0.70    r < 0.70                        
 HMW.OC = high molecular weight organic carbon | IMW.OC = intermediate molecular weight organic carbon | LMW.OC = low molecular weight organic carbon 
% R DOC =  Biofilter percent removal of dissolved organic carbon | % R BP = Biofilter percent removal of biopolymers 
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Table S5: Multiple Pearson correlation for BF(B) Anthracite biofilm and BF(B) performance parameters examined in the study. Media data were taken from 20 cm bed depth. October 2015 data 
was excluded due to flawed EPS extraction. Ammonia data below detection limit was treated as DL/2. Each of the four multiple correlation tables (S4 to S7) correspond to single media type 
(sand vs anthracite) and a single biofilter (BF-A vs BF-B). 
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HMW.OC 1                                             

IMW.OC 0.72 1                                           

LMW.OC 0.68 0.95 1                                         

Diversity 0.09 -0.10 -0.11 1                                       

Richness 0.00 -0.20 -0.17 0.98 1                                     

Cell Count 0.61 0.84 0.74 0.25 0.18 1                                   

ATP  0.37 0.80 0.77 0.17 0.11 0.75 1                                 

ATP/Cell -0.56 -0.43 -0.45 -0.52 -0.49 -0.66 -0.21 1                               

Carbohydrates 0.50 0.87 0.83 0.01 -0.06 0.66 0.89 -0.12 1                             

Proteins 0.64 0.93 0.90 -0.16 -0.24 0.68 0.74 -0.19 0.92 1                           

CH:PN 0.15 0.50 0.44 0.20 0.17 0.41 0.80 0.11 0.81 0.54 1                         

% R DOC † -0.64 -0.89 -0.83 0.02 0.12 -0.57 -0.80 0.05 -0.90 -0.84 -0.68 1                       

% R BP ‡ -0.36 -0.77 -0.71 -0.11 -0.09 -0.73 -0.82 0.26 -0.84 -0.70 -0.80 0.72 1                     

DOC -0.21 -0.52 -0.45 -0.12 -0.12 -0.69 -0.79 0.19 -0.51 -0.35 -0.59 0.42 0.63 1                   

NO3 0.52 0.58 0.68 0.37 0.33 0.51 0.67 -0.26 0.64 0.66 0.43 -0.66 -0.44 -0.32 1                 

NH3 0.19 0.68 0.60 0.21 0.16 0.70 0.95 -0.13 0.83 0.66 0.79 -0.71 -0.74 -0.76 0.57 1               

Ortho-P 0.31 0.39 0.55 -0.36 -0.34 0.03 0.08 -0.03 0.38 0.55 0.08 -0.30 -0.31 0.31 0.35 -0.10 1             

pH -0.23 0.05 0.09 -0.57 -0.55 -0.22 0.03 0.43 0.09 0.04 0.29 0.01 -0.18 -0.05 -0.29 -0.09 0.36 1           

Total Iron 0.18 0.31 0.34 -0.10 -0.10 -0.04 0.23 0.12 0.55 0.45 0.56 -0.44 -0.50 0.18 0.11 0.15 0.62 0.38 1         

Conductivity 0.41 0.81 0.71 -0.02 -0.10 0.83 0.90 -0.23 0.74 0.66 0.60 -0.70 -0.70 -0.87 0.45 0.87 -0.12 0.04 -0.05 1       

Hardness 0.54 0.88 0.86 -0.21 -0.26 0.65 0.87 -0.05 0.85 0.81 0.65 -0.89 -0.79 -0.68 0.59 0.73 0.32 0.19 0.28 0.84 1     

Temperature -0.38 -0.77 -0.68 -0.15 -0.09 -0.68 -0.91 0.10 -0.88 -0.70 -0.87 0.87 0.91 0.70 -0.53 -0.87 -0.08 -0.05 -0.39 -0.81 -0.86 1   

Turbidity 0.06 -0.31 -0.31 0.32 0.29 -0.45 -0.35 0.19 -0.14 -0.21 0.04 -0.06 0.13 0.60 0.00 -0.39 0.15 -0.07 0.45 -0.57 -0.30 0.09 1 

                          

Legend:   r ≥ 0.90    r ≥ 0.80    r ≥ 0.70    r < 0.70                        

HMW.OC = high molecular weight organic carbon | IMW.OC = intermediate molecular weight organic carbon | LMW.OC = low molecular weight organic carbon 
% R DOC =  Biofilter percent removal of dissolved organic carbon | % R BP = Biofilter percent removal of biopolymers 
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Table S6: Biofilter media biofilm data for diversity, liquid chromatography, biomass and EPS parameters obtained from the 54 media samples used in this study. 
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10/02/2014 BF(A) 20 S 3.24 39 2.29E+07 1052 4.60E-14 24 38 0.61 39 35 96 

10/02/2014 BF(A) 20 A 3.33 40 7.29E+07 452 6.20E-15 25 61 0.4 21 18 37 

10/02/2014 BF(B) 20 S 3.41 40 2.53E+08 2072 8.19E-15 75 156 0.48 31 36 93 

10/02/2014 BF(B) 20 A 3.11 32 1.12E+08 708 6.31E-15 38 84 0.45 23 22 47 

12/04/2014 BF(A) 20 S 4.19 81 7.40E+08 2657 3.59E-15 125 180 0.69 41 53 120 

12/04/2014 BF(A) 20 A 4.19 80 4.90E+08 1109 2.26E-15 65 97 0.67 21 31 66 

12/04/2014 BF(B) 20 S 4.25 82 7.10E+08 2307 3.25E-15 107 161 0.66 38 30 44 

12/04/2014 BF(B) 20 A 4.26 81 4.30E+08 1191 2.77E-15 66 99 0.67 23 32 66 

12/04/2014 BF(B) 60 S 4.16 76 2.80E+08 829 2.96E-15 43 69 0.62 10 19 42 

01/29/2015 BF(A) 20 S 3.89 63 6.00E+08 2604 4.34E-15 117 182 0.64 30 53 123 

01/29/2015 BF(A) 20 A 4.02 69 4.10E+08 1560 3.80E-15 65 109 0.59 16 33 76 

01/29/2015 BF(B) 20 S 3.73 53 5.70E+08 2772 4.86E-15 109 175 0.62 47 61 52 

01/29/2015 BF(B) 20 A 4.04 72 3.40E+08 1840 5.41E-15 73 97 0.75 15 30 66 

01/29/2015 BF(B) 60 S 4.05 77 1.60E+08 679 4.24E-15 34 65 0.52 17 17 40 

02/16/2015 BF(A) 20 S 3.6 47 1.40E+09 3519 2.51E-15 121 213 0.57 45 65 127 

02/16/2015 BF(A) 20 A 3.68 49 9.30E+08 1756 1.89E-15 70 129 0.54 16 36 76 

02/16/2015 BF(B) 20 S 4.01 68 1.50E+09 3367 2.24E-15 106 196 0.54 104 122 117 
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02/16/2015 BF(B) 20 A 4.02 68 1.00E+09 1685 1.68E-15 72 131 0.55 26 42 79 

02/16/2015 BF(B) 60 S 4.07 72 3.30E+08 815 2.47E-15 38 74 0.52 15 21 40 

05/21/2015 BF(A) 20 S 4.1 75 6.91E+08 2516 3.64E-15 39 84 0.47 #N/A #N/A #N/A 

05/21/2015 BF(A) 20 A 3.99 64 4.75E+08 997 2.10E-15 24 63 0.38 #N/A #N/A #N/A 

05/21/2015 BF(B) 20 S 4.28 84 5.75E+08 2373 4.13E-15 41 67 0.61 #N/A #N/A #N/A 

05/21/2015 BF(B) 20 A 4.12 75 4.27E+08 901 2.11E-15 23 47 0.5 #N/A #N/A #N/A 

06/18/2015 BF(A) 20 S 4.14 78 3.77E+08 2022 8.39E-15 45 122 0.37 38 36 98 

06/18/2015 BF(A) 20 A 4.14 77 2.04E+08 925 2.46E-15 23 65 0.35 28 36 89 

06/18/2015 BF(B) 20 S 4.17 81 2.69E+08 2034 9.98E-15 40 110 0.36 34 30 87 

06/18/2015 BF(A) 20 A 4.19 82 2.41E+08 812 3.02E-15 28 73 0.38 35 40 107 

07/20/2016 BF(A) 20 S 4.14 78 1.93E+08 1231 6.37E-15 33 81 0.41 49 39 117 

07/20/2016 BF(A) 20 A 4 68 8.90E+07 416 4.67E-15 15 41 0.37 35 38 82 

07/20/2016 BF(B) 10 S 4.19 79 1.29E+08 652 5.06E-15 27 66 0.41 33 26 73 

07/20/2016 BF(B) 10 S 4.01 71 1.59E+08 344 2.16E-15 15 39 0.38 36 36 83 

07/20/2016 BF(B) 20 S 4.25 83 1.58E+08 1225 7.78E-15 16 42 0.39 36 39 76 

07/20/2016 BF(B) 20 S 3.88 61 9.11E+07 482 5.29E-15 35 83 0.42 49 36 81 

07/20/2016 BF(B) 60 S 4.08 71 1.46E+08 594 4.06E-15 20 58 0.35 30 22 73 

08/24/2016 BF(A) 20 S 4 66 1.85E+08 1236 6.67E-15 21 79 0.27 31 36 79 

08/24/2016 BF(A) 20 A 3.83 56 1.76E+08 481 2.73E-15 12 44 0.27 33 39 80 

08/24/2016 BF(B) 10 S 3.92 62 4.33E+08 1738 4.02E-15 23 87 0.26 36 38 96 

08/24/2016 BF(B) 10 A 3.96 64 2.62E+08 805 3.07E-15 16 53 0.3 33 48 102 

08/24/2016 BF(B) 20 S 4.11 76 4.44E+08 1502 5.75E-15 38 88 0.43 37 38 89 

08/24/2016 BF(B) 20 A 3.93 65 1.86E+08 497 2.67E-15 10 41 0.24 25 38 84 

08/24/2016 BF(B) 60 S 4.14 82 1.53E+08 699 4.58E-15 13 58 0.22 23 22 54 

09/30/2015 BF(A) 20 S 4.09 75 2.96E+08 1039 3.51E-15 24 73 0.32 31 24 54 

09/30/2015 BF(A) 20 A 3.94 67 1.58E+08 490 3.11E-15 14 41 0.34 28 28 55 
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09/30/2015 BF(B) 20 S 4.09 75 3.86E+08 1813 4.69E-15 33 60 0.55 43 31 70 

09/30/2015 BF(B) 20 A 4.16 83 1.83E+08 544 2.97E-15 13 34 0.39 31 32 64 

10/30/2015 BF(A) 20 S 4.18 82 1.37E+08 1799 1.31E-14 15 37 0.39 20 20 36 

10/30/2015 BF(A) 20 A 3.93 64 9.47E+07 691 7.29E-15 7 19 0.39 12 20 35 

10/30/2015 BF(B) 20 S 3.47 42 1.23E+08 1427 1.16E-14 16 35 0.44 0 0 3 

10/30/2015 BF(B) 20 A 4.19 81 8.94E+07 536 5.99E-15 9 18 0.48 14 19 34 

11/30/2015 BF(A) 20 S 3.84 59 4.39E+08 1668 3.80E-15 34 73 0.46 40 32 73 

11/30/2015 BF(A) 20 S 3.83 59 4.05E+08 764 1.89E-15 20 43 0.46 36 38 80 

11/30/2015 BF(B) 20 A 3.87 62 1.48E+08 773 5.21E-15 19 44 0.43 39 41 83 

11/30/2015 BF(B) 20 S 3.3 60 4.91E+08 2109 4.29E-15 38 81 0.46 47 38 84 
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Appendix B                                                                        

Supplementary Information for Chapter 4 

 

 

Table S1: Post-hoc Dunn test p values derived from Kruskal-Wallis test on Shannon Diversity results in Chapter 4. 
Kruskal-Wallis p=0.0001, df=4, chi-squared=23.15. Dunn test p values adjusted for Bonferroni correction. Asterisk 
(*) denotes significant differences. 

Dunn Test with Bonferroni: Shannon   

Comparison Z P.adj 

Media Fall - Media Winter -0.339 1.000 

Media Fall - NF Fall 2.657 0.079   

Media Winter - NF Fall 2.960 0.031* 

Media Fall - NF Spring 0.108 1.000 

Media Winter - NF Winter 0.446 1.000 

NF Fall - NF Winter -2.560 0.105 

Media Fall - Water 3.176 0.015* 

Media Winter - Water 3.555 0.004* 

NF Fall - Water -0.126 1.000 

NF Winter - Water 3.056 0.022* 
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Appendix C                                                                                                             

Backwash Procedures 

Backwash procedure for the Mannheim pilot biofilters required the columns to be 

drained to 30 cm above the media surface by closing the ball valves of both the feed and effluent 

lines. A backwash pump was used at 450 L/h flow rate to inject effluent into the bottom of the 

column and sub-fluidize the media while air scour was initiated using 10 psi at 30 mm flow 

rate. This resulted in collapse pulse conditions and was maintained for 3 minutes. Following air 

scour, a bed expansion step was used to remove backwash liquor from the column. Depending 

on water viscosity due to seasonal temperature variation, 10 minutes of 50% bed expansion was 

maintained at 1500 to 1100 L/h. 
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Appendix D                                                                                                              

Glassware Cleaning Procedures for DOC, LCOCD and 

EPS Quantification 

Sample Bottles and caps – DOC, LCOCD 

1. Wash at 50C with Jet-clean detergent (Fisher Scientific), and rinse thoroughly with deionized 

water  

2. Rinse twice with Milli-Q water  

3. Incubate at 105 °C for at least 6 h  

Vials – DOC, LC-OCD 

1. Wash at 50C with Jet-clean detergent, and rinse thoroughly with deionized water  

2. Rinse twice with Milli-Q water  

3. Incubate at 400C for 1 h 

Vials – EPS Quantification Assays 

1. Wash at 50C with Jet-clean detergent, and rinse thoroughly with deionized water  

2. Incubate in HCl for 6 h 

3. Rinse twice with deionized water and twice with Milli-Q water  

4. Incubate at 400C for 1 h 

 


