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Abstract

Building large-scale brain models is one method used by theoretical neuroscientists to understand

the way the human brain functions. Researchers typically use either a bottom-up approach, which

focuses on the detailed modelling of various biological properties of the brain and places less

importance on reproducing functional behaviour, or a top-down approach, which generally aim

to reproduce the behaviour observed in real cognitive agents, but typically sacrifices adherence

to constraints imposed by the neuro-biology. The focus of this thesis is Spaun, a large-scale brain

model constructed using a combination of the bottom-up and top-down approaches to brain

modelling. Spaun is currently the world’s largest functional brain model, capable of performing

eight distinct cognitive tasks ranging from digit recognition to inductive reasoning. The thesis is

organized to discuss three aspects of the Spaun model.

First, it describes the original Spaun model, and explores how a top-down approach, known

as the Semantic Pointer Architecture (SPA), has been combined with a bottom-up approach,

known as the Neural Engineering Framework (NEF), to integrate six existing cognitive models

into a unified cognitive model that is Spaun.

Next, the thesis identifies some of the concerns with the original Spaun model, and show the

modifications made to the network to remedy these issues. It also characterizes how the Spaun

model was re-organized and re-implemented (to include the aforementioned modifications) as the

Spaun 2.0 model. As part of the discussion of the Spaun 2.0 model, task performance results

are presented that compare the original Spaun model and the re-implemented Spaun 2.0 model,

demonstrating that the modifications to the Spaun 2.0 model have improved its accuracy on the

working memory task, and the two induction tasks.

Finally, three extensions to Spaun 2.0 are presented. These extensions take advantage of

the re-organized Spaun model, giving Spaun 2.0 new capabilities – a motor system capable of

adapting to unknown force fields applied to its arm; a visual system capable of processing 256×256

full-colour images; and the ability to follow general instructions.

The Spaun model and architecture presented in this thesis demonstrate that by using the SPA

and the NEF, it is not only possible to construct functional large-scale brain models, but to do so

in a manner that supports complex extensions to the model. The final Spaun 2.0 model consists

of approximately 6.6 million neurons, can perform 12 cognitive tasks, and has been demonstrated

to reproduce behavioural and neurological data observed in natural cognitive agents.
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Chapter 1

Introduction

Understanding the inner workings of the human brain is, perhaps, the main goal of theoretical

neuroscience. One method of achieving this goal is by building computational models that the

modeller believes to mimic processes in the brain, and by comparing the behaviour of these models

to that of the real brain.

The Blue Brain project [Markram, 2006] and the SyNAPSE project [Modha et al., 2011]

take a bottom-up approach to achieving this goal. The Blue Brain project (now Human Brain

Project) attempts to replicate many of the biological properties (e.g. the 3-dimensional structure,

location of individual synapse, and neuronal connectivity) of a particular arrangement of neurons

(a neocortical column) located in one specific location in cortex (the rat somatosensory cortex).

Their hope is that emergent behaviour, eventually to the point of intelligence, will manifest as

they increase the complexity of their simulations [Markram, 2006]. The SyNAPSE project, in

contrast, uses less complex neuron models in their networks. However, they incorporate a learning

mechanism known as spike-time-dependent plasticity (STDP) and use their models to explore the

computational requirements needed for running large brain-sized models. While both of these

projects have succeeded in simulating brain models containing large number of neurons (Human

Brain Project – approximately 1 million neurons; SyNAPSE – approximately 1 billion neurons),

these approaches have been criticized as unlikely to succeed given the complexity of the brain,

their lack of focus on function, and our uncertainty about how best to identify relevant levels of

explanation for different behaviours [Eliasmith and Trujillo, 2013].

An alternative approach, typically used by the cognitive modelling community, is to analyze

the human brain from a behavioural perspective. Notably, the ACT-R [Anderson, 1996] and

SOAR [Laird et al., 1987] communities have been able to accurately model human behaviours

in tasks ranging from attention and perception, to problem solving and decision making. These
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approaches generally construct models by defining actions and language-like rules. These are

used in conjunction with an architecture that recursively applies these actions and rules, simi-

lar to how computer processors are programmed in assembly. Consequently, these approaches

generally ignore the underlying neurobiology, and importantly, disregard the constraints that the

neurobiology can have on the behaviour of their models.

The cognitive models described in this thesis has been designed and implemented using a

different approach to the ones mentioned above, one that combines both the low-level “neuron”

approach and the high-level “behavioural” approach. The high-level approach is achieved using

the Semantic Pointer Architecture (SPA) [Eliasmith, 2013], which defines a type of representation

and a set of computations that can be used to perform cognitive tasks. It also specifies a standard

architectural design for cognitive models. This approach is married with a low-level approach,

through the use of the Neural Engineering Framework (NEF) [Eliasmith and Anderson, 2003].

The NEF defines a set of methods that dictate how mathematical functions can be converted

into neural networks, while, importantly, adhering to the biological constraints of the underlying

neural substrate. The SPA and NEF have been used to combine six existing neural models of

different cognitive functions (e.g., vision, motor, memory, and so forth) into a unified network

called the SPA Unified Network (Spaun) Eliasmith et al. [2012]. At the time of writing, Spaun is

the world’s largest behaviourally functional brain model, containing roughly 2.5 million neurons.

The purpose of this thesis is four-fold. First, it demonstrates how the NEF and SPA were

used to integrate the six existing functional models together to form the Spaun model. Second,

it addresses the majority of concerns with the original Spaun model, and shows the changes

necessary to generalize the model. The changes to the original Spaun model have been combined

to implement a new model, called “Spaun 2.0”. Third, it demonstrates the general-use capabilities

of the Spaun 2.0 model, through the exploration of three extensions implemented for the model.

Last, and most importantly, this thesis serves as an example of how the NEF and SPA can enable

an individual to construct large-scale neural networks capable of performing complex cognitive

tasks. In the context of this thesis, all work described in this thesis has been developed by

the author, with the exception of the NEF and SPA (developed by Chris Eliasmith), and the

precursor networks described in Section 3.1 (developed by their respective authors).

1.1 Thesis Organization

This thesis is divided into six chapters, the first of which is this introduction. Next, Chapter 2

provides background on the SPA and NEF. The SPA provides the framework on which Spaun is

constructed, by specifying the types of representations and computations that can be performed

within the Spaun model, and by defining a standardized structure by the components of Spaun
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are designed around. In a similar fashion, the NEF specifies a set of principles with which the

SPA computations can be converted into realized implementations in networks of spiking neurons.

Chapter 3 details the development and construction of the Semantic Pointer Architecture

Unified Network (Spaun) model. The chapter begins with an exploration of the six networks

that were used as the initial building blocks for the Spaun model. Next, a description of Spaun’s

original eight tasks are provided, each detailing how the SPA has been used to perform the

computations necessary for each task. Finally, the architecture of the Spaun model is described,

showing how the functionality required for each of Spaun’s tasks has been implemented in the

final Spaun model.

Chapter 4 focuses on a re-implementation of the original Spaun model. The re-implemented

Spaun model (dubbed Spaun 2.0) is a result of work done to formalize the original Spaun model,

and to address some of the major concerns regarding the original implementation. This chapter

systematically progresses through each of Spaun’s functional modules, and describe the modifica-

tions that have been made to improve the reliability, performance, and general usability of these

components.

Chapter 5 explores three extensions constructed for the Spaun 2.0 network. These extensions

enhance the functionality of Spaun, adding an adaptive motor controller capable of adapting to

unknown force fields applied to its arm; the ability to classify 256× 256 pixel full-colour images

(as opposed to the original 28 × 28 pixel grayscale images); and the ability to follow general

instructions.

Chapter 6 concludes this thesis with a summary of the contributions made, a discussion of

several avenues for future work, and closing remarks.
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Chapter 2

The Semantic Pointer Architecture

A näıve approach to combining existing neural models into a larger unified model, such as Spaun,

would be to take the output of one neural network and feed it as the input to the next neural

network, with some sort of “translation” layer in between. However, this approach cannot guar-

antee that the individual networks will communicate well with each other and it may be the case

that the “translation” layer needs to be overly complex to ensure that the different aspects of

the information being communicated (e.g., the content of the data, the timing of the data and

control signals, etc.) match the specifications required for each network. In addition, the näıve

approach does not leverage the commonalities between the individual networks to construct more

efficient and streamlined models.

Another approach to building unified networks is to define a common framework that each of

the individual models have to adhere to. This framework needs to define a set of “standards” (for

computers, things like: data format, communication protocol, implementation of data processing

algorithms, etc.) such that if each network were to follow these standards, it would be possible

to construct the unified models with relative ease. Additionally, because each individual network

is implemented with the same framework, network components that perform specific tasks (e.g.,

memory, decision making) should have almost identical implementations and can thus be reused,

resulting in unified networks that are more efficient and generalizable than with the näıve ap-

proach. To that end, the Semantic Pointer Architecture (SPA) [Eliasmith, 2013] was developed

as a framework to be used to build unified cognitive neural networks, while adhering to known

neuro-anatomical and physiological constraints. The standards for this framework have thus been

devised to result in biologically plausible, unified models.
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2.1 Core SPA Principles

At its core, the SPA proposes that compressed representations – referred to as “semantic pointers”

– are used to represent every form of information used within the framework. Additionally,

the SPA specifies that compressive operators are used to generate semantic pointers, and to

perform transformations between semantic pointers, with the latter enabling computations to be

performed using the SPA.

In complex systems implemented using the SPA (e.g., Spaun), it is typical that each func-

tionally distinct component (i.e., vision, motor control, etc.) use its own method for generating

semantic pointers, and defines its own set of compressive operators to manipulate the semantic

pointers. In the sections that follow, the discussion focuses on the SPA formulations used in the

core cognitive components of Spaun as it forms the foundation of Spaun’s cognitive functionality,

with the perceptual and motor aspects of the architecture mirroring those described in [Eliasmith,

2013].

The “cognitive” aspects of the SPA can be understood from multiple viewpoints:

1. As a way to symbolically visualize the underlying, non-symbolic meaning and computation

being performed on the information being represented within the unified network.

2. As a numerical implementation of the symbol-like visualization.

3. As a standardized structure that each component of the unified network follows when being

physically implemented.

Each of these viewpoints is described in the sections that follow (Sections 2.2, 2.3, and 2.4 respec-

tively). One aspect of network modelling that is not intrinsic to the SPA is the implementation

of the SPA-conceptual network as a network of spiking neurons. For this, the Neural Engineering

Framework (NEF) [Eliasmith and Anderson, 2003] is used (see Section 2.5.4).

2.2 The Semantic Pointer Architecture: Cognitive Computation

with Symbol-like Representations

As alluded to in the introduction, Spaun is constructed as the amalgamation of six distinct models

of difference brain functions (vision, motor control, memory, inductive reasoning, cognitive action

planning and control, and learning). Since each of the individual models has its own form of

representing information, each model was restructured to be used in the SPA, and thus speak

the same “language”. In this section, this SPA “language” is discussed in the context of the

core cognitive components (memory, inductive reasoning, cognitive action planning and control)
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by using the symbolic representational form of these representations, despite the fact that these

representations are implemented in spiking neurons in implemented SPA models. Additionally,

this section explores how information (concepts) are represented in the SPA, and discusses how

computation is performed on these symbolic forms.

2.2.1 SPA Concepts and SPA Expressions

As mentioned previously, all of the computation in the SPA is performed on abstract conceptual

representational forms known as “semantic pointers”. These forms are “semantic” because when

compared, semantic pointers will have higher similarity rankings when conceptually alike and

lower similarity rankings when conceptually dissimilar (see Section 2.3.1), thus defining a local

semantic space. These forms are also known as “pointers” because they behave similarly to

the pointers used in coding languages (e.g., C, C++)(see Section 2.2.7.1). Specifically, these

“pointers” can be “de-referenced” to extract additional information from the representations.

In this thesis, semantic pointers will be indicated by a word formatted in the following format:

CONCEPT. As an example, the concept of the colour “blue” is represented in the SPA as:

BLUE

For the primary purpose of performing computation, SPA concepts are combined with alge-

braic and SPA operators (see succeeding sections) to form SPA expressions. As a basic example,

using just the assignment operator (=), the conceptual assignment of “blue” as a “favourite

colour” can be symbolically represented as:

FAV COLOUR = BLUE

2.2.2 SPA Binding

One of most fundamental concepts related to cognitive representations in the SPA is the concept

of “binding”. Binding is an operation applied to two or more semantic pointers to produce a new

semantic pointer that represents a concept with the combined properties of the bound semantic

pointers. In this document, the symbol (~) is used to represent the binding operation. As an

example, the concept of a “blue square” can be constructed as the bound result of a “blue” and

a “square” semantic pointer:

BLUE SQUARE = BLUE~ SQUARE.
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It should be noted that the binding operator discussed here is assumed to be commutative, and

as such (using the example above),

BLUE SQUARE = BLUE~ SQUARE

= SQUARE~ BLUE

Practically, the binding operator is not only used to bind concrete concepts (e.g., “blue”,

“red”, “square”, “triangle”) together to form new conceptual semantic pointers; it is also used

to bind concrete and abstract concepts (e.g., “colour”, “shape”) together to form more complex

representations (see Section 2.2.6).

The SPA binding operator does not limit what can be bound together and it is sometimes

useful to bind identical semantic pointers together, creating “bound powers” of semantic pointers.

As a shorthand, these bound powers are denoted with a superscript numeral indicating how many

times the semantic pointer has been bound with itself. For example,

BLUE~ BLUE = BLUE2, and

BLUE~ BLUE~ BLUE = BLUE3

2.2.3 SPA Collections

While the SPA binding operator combines semantic pointers to create new semantic pointers

that merge the conceptual properties of their constituent semantic pointers, the SPA also defines

a collection operator that serves to create semantic pointers that function more like groups of

semantic pointers. In this thesis, the SPA collection operator is represented by the algebraic

addition (+) operator.

An unordered list of numbers can be used to demonstrate the typical use of the SPA collection

operator. For example, with the semantic pointer representations of the numbers 1, 2, and 3

(ONE, TWO, THREE), the semantic pointer that represents the unordered list of these numbers

can be created like so:

LIST = ONE + TWO + THREE

Mathematically, the SPA collection operator functions identically to the algebraic addition

operator. That being the case, scalar numbers and the algebraic multiplication operator (×) can

be used with semantic pointers to denote collections of identical semantic pointers. For example,

ONE + ONE = 2×ONE, and

ONE + ONE + TWO + TWO + TWO + TWO = 2×ONE + 4× TWO
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It should also be noted that like the binding operator, the SPA collection operator is commutative.

2.2.4 Special Semantic Pointers

Apart from the standard semantic pointers described in Section 2.2.1, the SPA also defines two

special semantic pointers (the identity semantic pointer and the null semantic pointer) with

unique properties.

2.2.4.1 The Identity Semantic Pointer

The identity semantic pointer (I) is defined such that binding a semantic pointer with the identity

semantic pointer results in no change to the former semantic pointer. I.e.

CONCEPT~ I = CONCEPT (2.1)

2.2.4.2 The Null Semantic Pointer

The null semantic pointer (∅) is defined such that any semantic pointer bound with the null

semantic pointer always results in the null semantic pointer. I.e.

CONCEPT~ ∅ = ∅ (2.2)

Because the definition above is not particularly useful for computational purposes, the null se-

mantic pointer is usually also defined such that adding the null semantic pointer to an SPA

collection results in no change to the collection:

CONCEPT + ∅ = CONCEPT (2.3)

It should be noted that with the definition above, the null semantic pointer can be considered

equivalent to an empty SPA collection.

2.2.5 SPA Extraction Operators

Thus far, the SPA operators presented (binding and collecting) serve to combine semantic pointers

into new semantic pointers that are conceptually distinct from their constituent parts. In the

SPA, it is also possible to take such a semantic pointer, and extract these constituent semantic

pointers from them.
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2.2.5.1 Unbinding

The unbinding operation details how to take a semantic pointer generated using the binding

operation and extract information from it. In order to do so, the concept of a semantic pointer

inverse must be introduced. The semantic pointer inverse is defined such that binding a semantic

pointer and its inverse (denoted by a “¬” symbol preceding the semantic pointer) results in the

identity semantic pointer:

CONCEPT~ ¬CONCEPT = I (2.4)

With this definition, it can be shown that extracting a semantic pointer from a bound result

can be achieved by binding the bound result with the inverse of all semantic pointers that are

to be excluded from the extraction operation. This is best illustrated using the bound result of

three semantic pointers. For example, given

D = A~ B~ C,

A can be extracted from D by binding D with the semantic pointer inverses of all semantic

pointers excluded from the extraction operation (in this case, B and C),

D~ ¬B~ ¬C = (A~ B~ C)~ ¬B~ ¬C
= A~ (B~ ¬B)~ (C~ ¬C)

= A~ I~ I = A

2.2.5.2 Un-collecting

Because the SPA collection operator behaves identically to the algebraic addition operator, se-

mantic pointers can be extracted from an SPA collection by subtracting all semantic pointers

that are to be excluded from the extraction operation from the SPA collection. For example,

given

D = A + B + C,

A can be extract from D by subtracting of all semantic pointers excluded from the extraction

operation (in this case, B and C) from D,

D− B− C = (A + B + C)− B− C

= A + (B− B) + (C− C)

= A + ∅ + ∅ = A
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As demonstrated above, the key limitation for both the unbinding and un-collecting operations

is that the extraction of semantic pointers can only take place if the semantic pointers to be

excluded from the extraction are known. Without this information, it is impossible to deconstruct

a semantic pointer into the semantic pointers that were used to create the combined result.

2.2.6 Complex SPA Representation and Computation

Thus far, the computations demonstrated have been relatively simple, consisting of the indepen-

dent use of either the binding operator, or the collection operator. To demonstrate how the SPA

can be used to represent more complex concepts, and perform more complex computations, the

SPA will be used to describe Figure 2.1.

 

 
 

 

Figure 2.1: Diagram of a small red triangle and a big blue square used to demonstrate how the
SPA is used to represent this scene and how to extract information of this scene from the SPA
representation.

Before the SPA can be used to construct a representation of the figure, or perform computa-

tions on the SPA representation, a predefined vocabulary of semantic pointers must be identified.

It is necessary to define this vocabulary to constrain the results of the SPA computations to

produce meaningful concepts. The mechanism for performing this constraint procedure is further

discussed in Sections 2.3.7 and 2.5.5.5. For the example in Figure 2.1, the SPA vocabulary is

defined as: {BLUE, RED, TRIANGLE, SQUARE, SMALL, BIG}.
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Considering just the shape and the colour of the objects in the figure, the SPA representation

of the figure can be computed as such:

FIGURE = RED~ TRIANGLE + BLUE~ SQUARE (2.5)

With this representation, it is possible to query the shape of blue object by binding the SPA

representation of the figure with the inverse of the BLUE semantic pointer:

FIGURE~ ¬BLUE = (RED~ TRIANGLE + BLUE~ SQUARE)~ ¬BLUE

= (RED~ TRIANGLE~ ¬BLUE) + (BLUE~ SQUARE~ ¬BLUE)

= (RED~ TRIANGLE~ ¬BLUE) + SQUARE

≈ SQUARE

(2.6)

Equation (2.6) demonstrates that binding the SPA representation of the figure with the inverse

of BLUE results in an SPA collection comprised of BLUE and the superfluous semantic pointer

(RED ~ TRIANGLE ~ ¬BLUE). While the result of the binding is not exactly SQUARE (be-

cause of the addition of the superfluous semantic pointer), computing the similarity between the

result and SQUARE will result in a high similarity value, if the expected similarity between

the SQUARE semantic pointer and the superfluous semantic pointer is low. This places some

constraints on the specific operators that can be used for the binding operation (see Section 2.3.2).

The result of the binding operation can be improved by comparing it to the semantic pointers

in the vocabulary. With this comparison the term (RED~TRIANGLE~¬BLUE) is ignored (as

it is not in one of the members of the vocabulary), and the resulting answer is exactly SQUARE.

This operation of comparing a semantic pointer to a fixed vocabulary and choosing the semantic

pointer(s) that best match the input is known as “cleanup” and will henceforth be represented

in the SPA formulations as (cleanup{}). For the example figure, this is written as:

cleanup{(RED~ TRIANGLE~ ¬BLUE) + SQUARE}

Since the semantic pointer (RED~TRIANGLE~¬BLUE) is not a member of the vocabulary, it

can be ignored, resulting in the desired answer of SQUARE:

cleanup{(RED~ TRIANGLE~ ¬BLUE) + SQUARE}
= [(RED~ TRIANGLE~ ¬BLUE) + SQUARE]

= SQUARE

While the SPA representation presented above is adequate for simple 2-concept forms, more

complex formulations are required to represent more detailed information. For example, if the
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colour, shape, and size of the objects are considered, a simplistic SPA representation could be

formulated as such:

FIGURE2 = RED~ TRIANGLE~ SMALL + BLUE~ SQUARE~ BIG

An issue arises when information is extracted from the FIGURE2 semantic pointer. In order to

obtain the shape of the blue object, both the colour and the size of the object need to be provided.

Working through the calculations, it can be shown that querying the FIGURE2 semantic pointer

with just the inverse of BLUE results in the bound result of both SQUARE and BIG:

FIGURE2~ ¬BLUE = (RED~ TRIANGLE~ SMALL + BLUE~ SQUARE~ BIG)~ ¬BLUE

= (RED~ TRIANGLE~ SMALL~ ¬BLUE) +

(BLUE~ SQUARE~ BIG~ ¬BLUE)

= (RED~ TRIANGLE~ SMALL~ ¬BLUE) + SQUARE~ BIG

Since the semantic pointer (SQUARE ~ BIG) is not a member of the predefined vocabulary,

feeding the result of (FIGURE2 ~ ¬BLUE) into the cleanup operation would result an empty

SPA collection since no semantic pointer matches would be found.

For these more complex SPA representations, additional conceptual “tags” are commonly

used. For the example above, the semantic pointers for each of the concepts of shape, colour and

size (SHAPE, COLOUR, SIZE) are used in the following schema to generate the representations

for each of the shapes:

OBJECT = SHAPE~ shape+ COLOUR~ colour + SIZE~ size (2.7)

With this schema, the SPA representation for the big blue square can be constructed as such:

BLUE SQUARE = SHAPE~ SQUARE + COLOUR~ BLUE + SIZE~ BIG

Querying one or multiple attributes from the SPA representation of a single object generated

with schema (2.7) can be done as before, by binding the semantic pointer with the inverse of the

semantic pointers to be queried (in this case, one of the “abstract concept” semantic pointers).
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For example, querying the semantic pointer BLUE SQUARE for its size and shape is as follows:

BLUE SQUARE~ (¬SHAPE + ¬SIZE)

= (SHAPE~ SQUARE + COLOUR~ BLUE + SIZE~ BIG)~ (¬SHAPE + ¬SIZE)

= [(SHAPE~ SQUARE~ ¬SHAPE) + (COLOUR~ BLUE~ ¬SHAPE) +

(SIZE~ BIG~ ¬SHAPE)] +

[(SHAPE~ SQUARE~ ¬SIZE) + (COLOUR~ BLUE~ ¬SIZE) +

(SIZE~ BIG~ ¬SIZE)]

= [(SQUARE) + (COLOUR~ BLUE~ ¬SHAPE) + (SIZE~ BIG~ ¬SHAPE)] +

[(SHAPE~ SQUARE~ ¬SIZE) + (COLOUR~ BLUE~ ¬SIZE) + (BIG)]

cleanup{BLUE SQUARE~ (¬SHAPE + ¬SIZE)}
= [(SQUARE) + (COLOUR~ BLUE~ ¬SHAPE) + (SIZE~ BIG~ ¬SHAPE)] +

[(SHAPE~ SQUARE~ ¬SIZE) + (COLOUR~ BLUE~ ¬SIZE) + (BIG)]

= SQUARE + BIG

Using schema (2.7) with multiple objects presents a minor problem. Given

RED TRIANGLE = SHAPE~ TRIANGLE + COLOUR~ RED + SIZE~ SMALL

and,

BLUE SQUARE = SHAPE~ SQUARE + COLOUR~ BLUE + SIZE~ BIG,

the result of using the SPA collection operator to amalgamate the different semantic pointers into

one semantic pointer is:

FIGURE3 = SHAPE~ TRIANGLE + COLOUR~ RED + SIZE~ SMALL +

SHAPE~ SQUARE + COLOUR~ BLUE + SIZE~ BIG

(2.8)

Since the SPA collection operator is commutative (i.e., the order of the operands do not matter),

the SPA representation of a big blue triangle and a small red square (compared to the small red

triangle and a big blue square in the example figure) will result in an identical set of tag-attribute

pairs. In order to differentially group the semantic pointers that belong to one object or the

other, additional conceptual object “tags” are required. For the example figure, the tags POS4
and POS� will be used to denote the position of the object within the figure. Thus, the complete
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figure is represented as:

FIGURE4 = POS4 ~ RED TRIANGLE + POS� ~ BLUE SQUARE (2.9)

A straightforward query for information from the SPA representation (2.9) requires two pieces

of information: the position of the object in question, and the attribute to be queried. For

example, extracting the colour of the leftmost object is computed as:

FIGURE4~ ¬POS4 ~ ¬COLOUR

= (POS4 ~ RED TRIANGLE + POS� ~ BLUE SQUARE)~ ¬POS4 ~ ¬COLOUR

= (POS4 ~ RED TRIANGLE~ ¬POS4 ~ ¬COLOUR) +

(POS� ~ BLUE SQUARE~ ¬POS4 ~ ¬COLOUR)

= (RED TRIANGLE~ ¬COLOUR) +

(POS� ~ BLUE SQUARE~ ¬POS4 ~ ¬COLOUR)

= (SHAPE~ TRIANGLE~ ¬COLOUR + RED + SIZE~ SMALL~ ¬COLOUR) +

(POS� ~ BLUE SQUARE~ ¬POS4 ~ ¬COLOUR)

cleanup{FIGURE4~ ¬POS4 ~ ¬COLOUR}
= (SHAPE~ TRIANGLE~ ¬COLOUR + RED + SIZE~ SMALL~ ¬COLOUR) +

(POS� ~ BLUE SQUARE~ ¬POS4 ~ ¬COLOUR)

= RED

(2.10)

It is possible to query the SPA representation (2.9) without first knowing the position of the

object. However, the information extraction process becomes a two-step procedure. First, the

given piece of information is used to determine the position of the object. Next, the position

of the object and the attribute to be queried is used to extract the desired information (as seen

in (2.10)). To extract the position of the object from the representation (2.9), the semantic

pointer is bound with the inverse of the given attribute’s tag-value pair. For example, to query

for the colour of the small object (given information: the object’s size is small), the process is as
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follows:

FIGURE4~ ¬(SIZE~ SMALL)

= (POS4 ~ RED TRIANGLE + POS� ~ BLUE SQUARE)~ ¬(SIZE~ SMALL)

= [POS4 ~ RED TRIANGLE~ ¬(SIZE~ SMALL)] +

[POS� ~ BLUE SQUARE~ ¬(SIZE~ SMALL)]

= [POS4 ~ (SHAPE~ TRIANGLE + COLOUR~ RED + SIZE~ SMALL)~

¬(SIZE~ SMALL)] +

[POS� ~ BLUE SQUARE~ ¬(SIZE~ SMALL)]

= {[(POS4 ~ SHAPE~ TRIANGLE) + (POS4 ~ COLOUR~ RED) +

(POS4 ~ SIZE~ SMALL)]~ ¬(SIZE~ SMALL)}+

[POS� ~ BLUE SQUARE~ ¬(SIZE~ SMALL)]

= [· · ·+ (POS4 ~ SIZE~ SMALL~ ¬SIZE~ ¬SMALL) + · · · ] +

[· · ·+ (POS� ~ SIZE~ BIG~ ¬SIZE~ ¬SMALL) + · · · ]
= · · ·+ (POS4) + · · ·+ (POS� ~ SIZE~ BIG~ ¬SIZE~ ¬SMALL) + · · ·

(2.11)

Since the desired information is the position of the object, performing the cleanup operation

on this result with a vocabulary consisting of all possible values of the position attribute (i.e.,

{POS4,POS�}) yields:

cleanup{FIGURE4~ ¬(SIZE~ SMALL)}
= · · · + (POS4) + · · · + (POS� ~ SIZE~ BIG~ ¬SIZE~ ¬SMALL) + · · ·
= POS4

Next, with the known position POS4, and the query attribute COLOUR, the information ex-

traction process proceeds as in (2.10).

It is important to note that while the information extraction process described above (from

Eq. (2.11) onwards) may seem complex, it can be accurately summarized as two iterative appli-

cations of the binding operation followed by the cleanup operation on the result of the binding

operation:

1. FIGURE4~ ¬(SIZE~ SMALL) = RESULTPOS

2. cleanup{RESULTPOS} = POS4
3. FIGURE4~ ¬POS4 ~ ¬COLOUR = RESULTCOLOUR

4. cleanup{RESULTCOLOUR} = RED
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In addition, the sequence of SPA operations needed for extracting information from a semantic

pointer is solely determined by the schema (i.e., a specific combination and order of semantic

pointer operators) used to encode the information as a semantic pointer. Importantly, the SPA

does not place limitations on how information is represented as semantic pointer, nor does it

hypothesize the specific encoding schemata used in the biological brain; and, it should be em-

phasized that the encoding used in the example above is merely one of many possible ways the

symbolic representation of the SPA can be used to represent information.

2.2.7 Discussion

This section discussed the use of the SPA to perform symbol-like computation, demonstrating how

information can be represented and manipulated in this form. In this section, three additional

topics will be discussed: the idea of compression, decompression and pointers in the SPA; the

issue regarding the commutativity of the SPA operators; and the caveats regarding the semantic

pointer inverse.

2.2.7.1 Compression, Decompression, and Pointers

A recurring concept in the SPA is the idea of compression and decompression of information, and

the use of this mechanic to create “pointers” to data. In the symbolic interpretation of the SPA,

both the binding and collection operators can be considered compression operators as the results

of using these operations can be represented by another semantic pointer. For example, in the

following formulation:

A = B + C

the semantic pointer “A” (a singular semantic pointer) is considered a compressed representation

as it contains the information “B + C” (the result of the collection operator applied to two

semantic pointers). Conversely, semantic pointers can be decompressed using the unbinding and

un-collecting operators. The compressive property of semantic pointers is important in the SPA

because it allows for scalability. Having unbounded (uncompressed) representations would be

detrimental to the overall effort of realizing the SPA as a physical cognitive system, seeing as

most physical system have constraints on their representational capacity.

In the SPA, because these compressed representations can be decompressed to extract addi-

tional information stored within the semantic pointers, they act much in the same way pointers

do in computer systems. In computer systems, a pointer is abstract value, on which an operation

(dereferencing – traversing to the location in computer memory specified by the pointer’s value)

can be applied to extract more information. In the SPA, a “pointer” is conceptual representa-

tion that has a semantic context (hence the name “semantic pointer”), on which decompression
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operations can be applied to extract additional information. Importantly, as with pointers in

computer systems, mathematical operations can be performed on semantic pointers without the

need to first dereference the pointer values. The analogy between semantic pointers and pointers

in computer systems is further discussed in Section 2.3.9.

2.2.7.2 Operator Commutativity

Both the binding and collecting operators discussed in the previous section are commutative,

producing identical results independent of the order of their operands. While this property is

generally useful in physical implementations of the SPA (because no extra complexity is needed

to keep track of the order of the operators), there are instances where enforcing the order of

the operands is useful. Consider the scenario presented in Equation (2.8). In that scenario, the

commutativity of the collection operator meant that images containing different combinations of

{RED, BLUE, SQUARE, TRIANGLE, BIG, SMALL} would be encoded as the same semantic

pointer. In the standard SPA, this issue was circumvented by adding an additional “position” tag

to the semantic pointers. However, this issue can also be addressed by using non-commutative

operators.

For this discussion, the following assumptions are made:

� The SPA operators can be made non-commutative by marking its operands with an order.

This is denoted by a numerical subscript and angle brackets. For example,

〈X〉1 + 〈Y〉2 6= 〈Y〉1 + 〈X〉2

� Performing a distributive operation with marked operands only affects marked operands of

the same number. For example,

(〈X〉1 + 〈Y〉2)~ 〈Z〉2 = 〈X〉1 + 〈Y ~ Z〉2

These assumptions, when applied to the scenario presented with Equation (2.8) results in the

ability to extract information in a more straightforward process. To understand how this can be

done, Equation (2.9) is first redefined as follows, with the “POS4” and “POS�” objects marked

with the operand number 1 and 2 respectively:

FIGURE4 = 〈RED TRIANGLE〉1 + 〈BLUE SQUARE〉2
= 〈SHAPE~ TRIANGLE + COLOUR~ RED + SIZE~ SMALL〉1 +

〈SHAPE~ SQUARE + COLOUR~ BLUE + SIZE~ BIG〉2
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As before, this example will query the semantic pointer for the colour of the leftmost object. In

order to do so, the query semantic pointer (COLOUR) is first inverted, then marked with the

appropriate number (1), and finally, bound with the FIGURE4 semantic pointer.

FIGURE4~ 〈¬COLOUR〉1
= (〈RED TRIANGLE〉1 + 〈BLUE SQUARE〉2)~ 〈¬COLOUR〉1
= (〈RED TRIANGLE~ ¬COLOUR〉1 + 〈BLUE SQUARE〉2)
= 〈SHAPE~ TRIANGLE~ ¬COLOUR + RED + SIZE~ SMALL~ ¬COLOUR〉1 +

〈BLUE SQUARE〉2

cleanup{FIGURE4~ 〈¬COLOUR〉1}
= 〈SHAPE~ TRIANGLE~ ¬COLOUR + RED + SIZE~ SMALL~ ¬COLOUR〉1 +

〈BLUE SQUARE〉2
= RED

Unfortunately, this way of enforcing non-commutativity does not support the 2-step query process

described by Equation (2.11), which illustrates the limitations of this approach.

2.2.7.3 Semantic Pointer Inverses

When introducing the semantic pointer inverse, Section 2.2.5 only discussed its application to

one semantic pointer. Unfortunately, when used with the collection operator, it behaves similar

to the algebraic reciprocal in terms of distributivity. In essence:

¬ (A + B) 6= (¬A + ¬B) (2.12)

Because of this property, some SPA expressions cannot be fully expanded, for example (A ~
¬ (B + C)). In the SPA, it is common to use a distributive form of the inverse operator –

called the “approximate inverse”, and denoted by the (∼) symbol – to expand SPA expressions

to further computation. While convenient, the use of the approximate inverse does introduce

additional terms (noise) into the SPA computation. As an example, consider the expression

((A + B) ~ ¬ (A + B)). Using the exact semantic pointer inverse, the expression evaluates to
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exactly I. However, using the approximate inverse results in:

(A + B)~∼ (A + B) = (A + B)~ (∼A +∼B)

= (A~∼A) + (A~∼B) + (B~∼A) + (B~∼B)

= I + (A~∼B) + (B~∼A) + I

= 2× I + (A~∼B) + (B~∼A)

As the equations show, two additional terms have been introduced as a result of using the ap-

proximate inverse. The issue is compounded if the SPA computation consists of multiple steps,

and may necessitate introducing cleanup operations between each step to remove the extraneous

terms. The approximate inverse however, is not without its uses (e.g., for numerical stability), as

will be discussed in Section 2.3.4.3.

2.3 The Semantic Pointer Architecture: Cognitive Computation

with Vectors

The previous section discussed the symbol-like nature of the SPA, and while it is useful in concep-

tualizing how information can be encoded, manipulated, and extracted using semantic pointers,

the symbol-like characterization of the SPA does not provide any details on how the computation

is performed numerically. While it is possible to specify a system’s cognitive computation purely

using the symbol-like SPA representation, a numerically grounded version of the SPA provides

the first step in the goal of implementing the SPA in a neural architecture.

The SPA itself does not impose a constraint on the type of numerical system to be used, but

does impose the following criteria:

� The numerical representation of the semantic pointers must be vector or matrix based.

� For semantic pointers that interact, the dimensionality of the vector or matrix representation

of the semantic pointers must be of equal size.

� Between the binding and collection operators, one operator must generate a semantic pointer

that is semantically similar to the input semantic pointers, and one operator must generate

a semantic pointer that is semantically different to the input semantic pointers. As a

convention, in Spaun, the collection operator has the former property, and the binding

operator has the latter property.

As long as they keep with these criteria, any numerical system can be used – assuming they can

be adapted to support the representational structure, semantic relationships, and symbolic oper-

ations presumed present in the SPA. A numerical system adapted from the Plate’s Holographic
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Reduced Representation (HRR) [Plate, 1994] was chosen for the Spaun model, and in this section

the HRR-based implementation of the SPA will be explored. Henceforth, the term “HRR-SPA”

will be used to reference the HRR-based implementation of the “cognitive” symbol-like form of

the SPA discussed in Section 2.2.

2.3.1 SPA Concepts, Expressions, and Similarity

As HRRs, concepts are represented by high-dimensional vectors (Spaun uses 512 dimensional

vectors), where each element of the vector is chosen from a normal distribution with a mean of 0

and a variance of 1/d, where d is the dimensionality of the vector. Spaun borrows this definition

and generates a majority of its semantic pointers1 in the same fashion.

The reasons for generating the vectors in this fashion are two-fold. First, generating the

vector from a normal distribution results in an expected vector magnitude of 1, and this will be of

importance in the definition of a similarity measure (see below) and in the neural implementation

of the SPA (see Section 2.5.5.1). Second, computing the Fourier transform on these vectors

generates Fourier coefficients that are uniformly distributed around 0 and an identical variance

across all frequency components (see Figure 2.3). The importance of the Fourier transform will

be discussed in Section 2.3.2. Additionally, the common variance across all frequency components

will prove advantageous in the neural implementation (see Section 2.5.5.3).

In Spaun, the discrete Fourier transform (DFT) is used to compute the Fourier transform of

the semantic pointer vectors. Performing the DFT on a semantic pointer results in a complex-

valued vector (i.e., each element in the vector is a complex number) of the same dimensionality

as the input vector. For a given semantic pointer vector X = [x0, x1, . . . , xd−1] of dimensionality

d, the DFT (F) and the inverse DFT (F−1) is defined as:

For Y = F(X), yj =
d−1∑
k=0

xke
− (2πi)

d
jk (2.13)

For X = F−1(Y), xj =
1

d

d−1∑
k=0

yke
(2πi)
d

jk (2.14)

where i =
√
−1

Figure 2.2 illustrates the effect of performing the DFT on a 10-dimensional semantic pointer, with

each complex value of the Fourier vector computed, and also represented as two-dimensional vec-

tors on the real-complex plane. Figure 2.3 compares the difference between the Fourier coefficients

1In the HRR-based implementation of the SPA, each semantic pointer is a vector, and as such, the term
“semantic pointer” and “vector” will be used interchangeably.
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A = [0.60, 0.12,−0.12,−0.17,−0.37, 0.46,−0.07, 0.44,−0.13, 0.09]

F(A) = [0.86 + 0.00i, 0.51 + 0.73i, 0.98− 0.69i, 0.37− 0.11i, 1.26 + 0.40i,−1.03 + 0.00i, 1.26− 0.40i, 0.37 + 0.11i, 0.98 + 0.69i, 0.51− 0.73i]

A = [0.60, 0.12,−0.12,−0.17,−0.37, 0.46,−0.07, 0.44,−0.13, 0.09]

F(A) = [0.86 + 0.00i, 0.51 + 0.73i, 0.98− 0.69i, 0.37− 0.11i, 1.26 + 0.40i,−1.03 + 0.00i, 1.26− 0.40i, 0.37 + 0.11i, 0.98 + 0.69i, 0.51− 0.73i]

Figure 2.2: Depiction of a randomly generated 10-dimensional semantic pointer (A) in vector
space (top), the complex-valued vector (F(A)) in Fourier space (bottom). Displayed are the nu-
merical vector values as well as an illustration of each vector component plotted as a 2-dimensional
vector in the real-complex plane.

of an HRR-SPA vector and a vector with elements chosen from a uniform distribution from the

range [0, 1).

It is important to note that with the HRR-SPA, the semantic pointers remain at a fixed

dimensionality regardless of the number of operations performed (this is not necessarily true

for SPA expressions encoded with other operators). In essence, what this implies is that all

SPA expressions generated using any combination of the SPA operators discussed in the section

previous have the same dimensionality. This fact is important because it allows for the neural

implementation to be constructed independent of the number of operations performed within

the system, and this makes the neural implementation more flexible as it will inherently support

an infinite number of operations (the size of the neural network does not limit the number of

operations), and it also does not require the network to be partitioned based off the number of

operations to be performed.

With regards to the “semantics” of a semantic pointer, in the HRR-SPA, semantic pointers

that have similar meanings are themselves similar when compared to each other. To compute the

similarity of two semantic pointers, the vector dot product (•) is used. For two given semantic

pointers X and Y, the similarity measure (s) between the two vectors is defined as:

s = X • Y =
d−1∑
k=0

xkyk (2.15)
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Figure 2.3: Plots showing the expected values of the Fourier coefficients produced as a result
of performing the discrete Fourier transform on an HRR-SPA vector (left), and a normalized
vector generated with elements chosen from a uniform distribution with a value range of [0, 1)
(right). For both plots, data was collected for a thousand 512-dimensional vectors, with the 95%
confidence interval plotted for each of the Fourier coefficients. The values for the real-valued
coefficients are shown in blue, while the values of the imaginary-valued coefficients are shown in
red. From the plots, it can be seen that the HRR-SPA vectors produce Fourier coefficients that
are uniformly distributed, and constrained within the range of about -1 to 1. In contrast, the
uniformly-distributed vectors produce Fourier coefficients that are mostly uniformly distributed,
with the exception of the first coefficient.

It should be noted that Equation (2.15) assumes that the vectors are of unit length (i.e., their

magnitudes2 equal 1), which is in keeping with the definition of how the semantic pointers are

randomly generated. While it is possible to normalize the similarity equation by the vector

magnitudes (i.e., computing the cosine angle between the two vectors), the division operation

is relatively expensive to implement in a neural architecture (see Section 4.4) and thus in most

cases where the similarity measure is required, the un-normalized version is used.

2The magnitude (‖x‖) of the vector x is computed using the L2 norm. i.e., ‖x‖ =
(∑d−1

k=0 x
2
k

)0.5
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2.3.2 SPA Binding

The binding operation used in the Spaun implementation of the SPA is based on the HRR binding

operation. With HRRs, two vectors are bound by computing the circular convolution between

the two vectors. The circular convolution operation is similar to the convolution operation, with

the primary difference being that the vector operands are circular (i.e., they “wrap” back on

themselves). Appendix A.1 illustrates the difference between the standard convolution and the

circular convolution operations. Formally, the circular convolution operation (hereafter referred

to using the SPA binding symbol “~”) is defined as:

If X = [x0, x1, . . . , xd−1] and Y = [y0, y1, . . . , yd−1],

For R = X~ Y,

rj =

d−1∑
k=0

xkyj−k, for j = 0 to d− 1,

(where the subscripts for y are modulo-d, and d is the dimensionality of the vectors)

(2.16)

This formal form of the circular convolution operation is rather computationally expensive, re-

quiring d2 multiplication operations to compute. Conveniently, the number of multiplication

operations can be reduced by projecting the vectors into the Fourier domain to do the computa-

tion.

For R = X~ Y,

R = F−1(F(X)�F(Y)),

(where� is the element-wise multiplication operation)

(2.17)

In the Fourier domain, the circular convolution operation amounts to the element-wise multi-

plication between each of the complex-valued vector coefficients, which requires a maximum of

4d multiplications (d multiplications for each combination of real and imaginary components) to

compute.
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2.3.3 SPA Collections

In HRR-SPA, the collections operation is performed by computing the superposition (element-

wise addition) of the input vectors. In essence:

If X = [x0, x1, . . . , xd−1] and Y = [y0, y1, . . . , yd−1],

For R = X + Y,

rk = xk + yk, for k = 0 to d− 1

(2.18)

2.3.4 Special Semantic Pointers

Section 2.2.4 discussed 2 special semantic pointers – the identity and null semantic pointers – and

Section 2.2.5 discussed the method for computing the inverse of a semantic pointer. This section

will discuss how these semantic pointers are represented and calculated in the HRR-SPA.

2.3.4.1 The Identity Semantic Pointer

Equation (2.1) defines the identity semantic pointer such that binding any semantic pointer with

the identity semantic pointer results in no change to original semantic pointer. In HRR-SPA,

there is only one vector that satisfies this criterion, and this vector can be calculated in one of two

ways. The most direct method is to consider the definition of the HRR-SPA binding operation.3

From Equation (2.17), the binding operation with the identity semantic pointer is defined as:

X~ I = F−1(F(X)�F(I))

For the result of the element-wise multiplication of the Fourier coefficients to remain unchanged,

F(I) must be a vector of ones ([1, 1, . . . , 1]). Thus,

F(I) = [1, 1, . . . , 1]

F−1(F(I)) = F−1([1, 1, . . . , 1])

I = [1, 0, 0, . . . , 0]

2.3.4.2 The Null Semantic Pointer

Equation (2.2) defines the null semantic pointer such that binding it with any semantic pointer re-

sults in the null semantic pointer. The null semantic pointer can be determined using the method

3The other method is to recognize that performing a convolution with an impulse vector ([1, 0, 0, . . . , 0]) results
in no change to the original vector.
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used to compute the identity semantic pointer. With the null semantic pointer, the observation

can be made that performing the element-wise multiplication of the Fourier coefficients with a

vector of zeros ([0, 0, . . . , 0]) provides the desired properties of the null semantic pointer. Thus,

F(∅) = [0, 0, . . . , 0]

F−1(F(∅)) = F−1([0, 0, . . . , 0])

∅ = [0, 0, 0, . . . , 0]

Coincidentally, the HRR-SPA null semantic pointer also meets the requirements of Equation (2.3)

as X + [0, 0, . . . , 0] = X.

2.3.4.3 The Inverse of a Semantic Pointer

Equation (2.19) defines the inverse of a semantic pointer such that binding a semantic pointer

with its inverse results in the identity semantic pointer. From this, and Equation (2.17), the

inverse of a semantic pointer can be computed:

X~ ¬X = F−1(F(X)�F(¬X)) = I

F(X)�F(¬X) = F(I)

F(¬X) = F(I)�F(X)

¬X = F−1(F(I)�F(X)),

(where� is the element-wise division operation)

(2.19)

As Equation (2.19) illustrates, the Fourier coefficients of the inverse semantic pointer is computed

by taking the complex reciprocal4 of the Fourier coefficients of the original semantic pointer.

However, because the Fourier coefficients of a semantic pointer have a mean of 0, it is possible

to generate semantic pointers with very small valued Fourier coefficients, and since the complex

reciprocal involves a division, taking the reciprocal of small Fourier coefficients results in large

Fourier coefficients (potentially infinite) in the inverse semantic pointer. This is an undesirable

property, both mathematically, and for the neural implementation of the inverse operation.

Fortunately, the HRR defines an inverse operation (henceforth referred to as the “approximate

inverse”, and given the symbol “∼”). In the HRR, the approximate inverse of a vector is computed

as in Equation (2.19), with the exception that instead of using the complex reciprocal, the complex

4For a complex number (a+ bi), the complex reciprocal is ( a
a2+b2

− b
a2+b2

i).
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F(A) = [0.86 + 0.00i, 0.51 + 0.73i, 0.98− 0.69i, 0.37− 0.11i, 1.26 + 0.40i,−1.03 + 0.00i, 1.26− 0.40i, 0.37 + 0.11i, 0.98 + 0.69i, 0.51− 0.73i]

F(¬A) = [1.17 + 0.00i, 0.64− 0.93i, 0.68 + 0.48i, 2.51 + 0.74i, 0.72− 0.23i,−0.97− 0.00i, 0.72 + 0.23i, 2.51− 0.74i, 0.68− 0.48i, 0.64 + 0.93i]

F(∼ A) = [0.86− 0.00i, 0.51− 0.73i, 0.98 + 0.69i, 0.37 + 0.11i, 1.26− 0.40i,−1.03− 0.00i, 1.26 + 0.40i, 0.37− 0.11i, 0.98− 0.69i, 0.51 + 0.73i]

F(A) = [0.86 + 0.00i, 0.51 + 0.73i, 0.98− 0.69i, 0.37− 0.11i, 1.26 + 0.40i,−1.03 + 0.00i, 1.26− 0.40i, 0.37 + 0.11i, 0.98 + 0.69i, 0.51− 0.73i]

F(¬A) = [1.17 + 0.00i, 0.64− 0.93i, 0.68 + 0.48i, 2.51 + 0.74i, 0.72− 0.23i,−0.97− 0.00i, 0.72 + 0.23i, 2.51− 0.74i, 0.68− 0.48i, 0.64 + 0.93i]

F(∼ A) = [0.86− 0.00i, 0.51− 0.73i, 0.98 + 0.69i, 0.37 + 0.11i, 1.26− 0.40i,−1.03− 0.00i, 1.26 + 0.40i, 0.37− 0.11i, 0.98− 0.69i, 0.51 + 0.73i]

Figure 2.4: Illustration of the Fourier coefficients of one randomly generated semantic pointer (A)
(top), its exact inverse (¬A) (middle), and its approximate inverse (∼A) (bottom). The Fourier
coefficients are represented as 2-dimensional vectors in the real-complex plane. See the text for
details on how these Fourier coefficients are computed. Comparing the Fourier coefficients of
the exact inverse and the approximate inverse reveals that the coefficients of the approximate
inverse maintains the same angle as the coefficients of the exact inverse, while keeping the same
magnitudes as the coefficients of the DFT.

conjugate is used.5

F(∼X) = F(X)

∼X = F−1
(
F(X)

)
,

(where z is the complex conjugate of the complex number z)

(2.20)

Figure 2.4 illustrates the difference between the Fourier coefficients of a randomly generated

semantic pointer, the inverse of the semantic pointer, and the approximate inverse of the semantic

pointer.

5For a complex number (a + bi), the complex conjugate is (a − bi). In essence, the complex conjugate is the
complex reciprocal without compensating for the magnitude of the complex number.
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Interestingly, the performing the approximate inverse on a vector is equivalent to reversing

the order of elements 1 to d− 1 of the original vector (see Appendix A.2). I.e.

For Y = ∼X,

yk = x−k, for j = 0 to d− 1, modulo d, or

[y0, y1, y2, . . . , yd−1] = [x0, xd−1, xd−2, . . . , x1]

(2.21)

It should be noted that the use of the term “approximate inverse” and the symbol (∼) here

is deliberate. Since the process of reversing the order of the vector elements is a linear operation,

it is distributive, and thus matches the definition of the “approximate inverse” described in

Section 2.2.7. In addition, it incurs all of the disadvantages mentioned in that section.

2.3.5 Unitary Semantic Pointers

Section 2.2.2 introduced the concept of bound powers, and this is used extensively in Spaun to

generate positional and numerical concept semantic pointers (see Section 3.2.5 and 3.2.6). Because

the HRR-SPA binding operation involves the multiplication of Fourier coefficients, computing

bound powers results in an explosive growth of the vector magnitude (see Figure 2.5).

Fortunately, the HRR defines a special class of vectors that do not suffer from this problem.

Plate refers to this class of vectors as “unitary vectors”, and they have the crucial property that

all of their Fourier coefficients always have a magnitude6 of 1 (i.e., they are of unit length). In

HRR-SPA, unitary semantic pointers are generated using a 3-step process:

1. Generate a random semantic pointer using the method defined in Section 2.3.1.

2. Compute the DFT on the semantic pointer and normalize each Fourier coefficient of the

DFT such that their magnitudes are equal to 1. I.e.

If Y = F(X), and Z = F (Unitary(X)) , then

Zk =
Yk
‖Yk‖

3. Compute the inverse DFT on the normalized Fourier coefficients to transform the semantic

pointer back from the Fourier domain.

The unitary semantic pointer itself has several useful properties:

1. A unitary semantic pointer is always of unit length (its vector magnitude is always 1)

6For the complex number z = a+ bi, its magnitude ‖z‖ =
√
a2 + b2.
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Figure 2.5: Illustration of the expected semantic pointer magnitudes for multiple applications
of the binding operation. Each plot illustrates both the expected magnitudes from binding n
randomly generated 512-dimensional semantic pointers (blue) and from calculating the bound
nth power of a single randomly generated 512-dimensional semantic pointer (red). Displayed are
data from 1000 iterations with 95% confidence interval bars included. (Left) Expected semantic
pointer magnitudes using randomly generated semantic pointers. (Right) Expected semantic
pointer magnitudes using randomly generated unitary semantic pointers.

2. Since the complex reciprocal and complex conjugate of a unit length complex number are

equal, it follows that the inverse and approximate inverse of a unitary semantic pointer are

also equal.

3. The result of binding a unitary semantic pointer with another unitary semantic pointer is

always a unitary semantic pointer.

2.3.6 Semantic Pointer Normalization

One of the primary assumptions of the HRR-SPA implementation is that the semantic pointers

have an expected vector magnitude of approximately 1. While this assumption is not crucial

for the purely mathematical representation of the SPA, it synergizes well with the neural im-

plementation of the SPA (see Section 2.5.5.1). In the HRR-SPA, the semantic pointers can be
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normalized by dividing the vector value with its magnitude, i.e.,

Â =
A

‖A‖ , (2.22)

where Â is the normalized form of the semantic pointer A. It should be noted that performing

the vector normalization operation does result in the loss of information, and for a collection

of semantic pointers, the expected vector magnitude of each component semantic pointer (after

vector normalization) is 1√
n

, where n is the number of semantic pointers in the collection. As

an example, given the collection A = B + C + D, the vector normalized semantic pointer Â ≈
1√
3
B + 1√

3
C + 1√

3
D.

2.3.7 Semantic Pointer Cleanup

Section 2.2.6 introduced the idea of the “cleanup” operation whereby a semantic pointer is com-

pared to a vocabulary of semantic pointers to constrain the possible values it can take. The

HRR-SPA cleanup operation proceeds using the following steps:

1. Calculate the similarity measure of A against all of the semantic pointers in the vocabulary.

2. From the calculated similarity measures, identify the largest one.

3. Identify the semantic pointer (from the vocabulary) that is paired with the largest similarity

measure. This is the result of the cleanup operation.

It should be noted that the equivalence between the dot product operation X • Y and the

matrix operation ~X~Y T – where ~X and ~Y are the vector equivalents of the semantic pointers X

and Y, respectively, and the superscript T represents the transpose of the vector – can be used

to reduce the computational complexity of the first step of the cleanup operation. This is further

explored in Section 2.5.5.5.

2.3.8 SPA Operator Non-commutativity

Section 2.2.7 introduced the concept of enforcing operand order on the SPA operators. With

respect to the HRR, Plate [2003] discusses three methods of implementing non-commutative

variants of the circular convolution operator:

1. By applying a different vector-space permutation to each of the operands.

2. By applying a different Fourier-space permutation to each of the operands.

3. And by replacing the circular convolution operator by a randomized outer product opera-

tion.
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Since the latter two methods of the list above is only applicable to the circular convolution

operator, the HRR-SPA uses the first method to create non-commutative variants of the SPA

operators. As in Section 2.2.7, the scenario presented by Equation (2.8) is used to illustrate the

use of these random permutations in creating non-commutative SPA operators.

In Section 2.2.7, operator non-commutativity was achieved by “marking” each operand with

different numerical indices. The HRR-SPA follows a similar procedure, but does so using per-

mutation matrices to perform the operand marking. In contrast with the SPA operand marking

however, the HRR-SPA requires both a permutation and inverse permutation matrix to perform

the operand marking. The permutation matrix (P) is created by randomly shuffling the rows of

an identity matrix, while the inverse permutation matrix is defined such that doing the matrix

multiplication between the permutation matrix and its inverse results in the identity matrix. In

this case, the inverse permutation matrix is equals to the transpose of the permutation matrix

(PT ), since PPT = I.

To illustrate the application of the permutation matrices, the example described in Sec-

tion 2.2.7 is re-used below. As in that section, the “POS4” and “POS�” semantic pointers

are replaced with non-commutative enforcers. Here, instead of operand markings, two permuta-

tion matrices (P4 and P�) will be used to “mark” the “POS4” and “POS�” semantic pointers

respectively. With this, Equation (2.9) is redefined as follows:

FIGURE4 = (RED TRIANGLE) P4 + (BLUE SQUARE) P�

Once again, the query is regarding the colour of the leftmost object in the image. In order to per-

form the query, the query semantic pointer is inverted, permuted using the “POS4” permutation

matrix, and then bound with the FIGURE4 semantic pointer:

FIGURE4~ (¬COLOUR) P4

= ((RED TRIANGLE) P4 + (BLUE SQUARE) P�)~ (¬COLOUR) P4

= [(RED TRIANGLE) P4 ~ (¬COLOUR) P4] + [(BLUE SQUARE) P� ~ (¬COLOUR) P4]

= [(RED TRIANGLE~ ¬COLOUR) P4] + . . .

= [(SHAPE~ TRIANGLE~ ¬COLOUR + RED + SIZE~ SMALL~ ¬COLOUR) P4] + . . .

Unlike in Section 2.2.7, since the cleanup dictionary only contains the non-permuted forms of

the semantic pointers, the cleanup operation cannot be performed directly on the result above.

Instead, the above result needs to be permuted with the inverse permutation matrix (in this case,
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PT
4) before performing the cleanup operation:

cleanup{(FIGURE4~ (¬COLOUR) P4) PT
4}

= cleanup{((SHAPE~ TRIANGLE~ ¬COLOUR + RED +

SIZE~ SMALL~ ¬COLOUR)P4)PT
4 +

((BLUE SQUARE) P� ~ (¬COLOUR) P4) PT
4}

= cleanup{(SHAPE~ TRIANGLE~ ¬COLOUR + RED +

SIZE~ SMALL~ ¬COLOUR)I +

((BLUE SQUARE) P� ~ (¬COLOUR) P4) PT
4}

= (SHAPE~ TRIANGLE~ ¬COLOUR + RED + SIZE~ SMALL~ ¬COLOUR) +

((BLUE SQUARE) P� ~ (¬COLOUR) P4) PT
4

= RED

It should be noted that the limitations discussed in Section 2.2.7 also apply to this method of

generating non-commutative variants of the HRR-SPA operators.

2.3.9 Discussion

This section presented a specific implementation of the SPA using the Holographic Reduced repre-

sentations as a basis for generating and manipulating the numerical representation of the semantic

pointers. Discussed were the techniques used to generate a HRR-SPA semantic pointer, and the

use of the circular convolution and superposition operations, used respectively to implement the

binding and collection SPA operators. In addition, numerically grounded examples of special

semantic pointers (null, identity, inverse and unitary semantic pointers) were also examined.

Continuing the discussion regarding compression, and the idea of pointers and pointer deref-

erencing (see Section 2.2.7), it can be shown that this concept is also evident in the HRR-SPA.

2.3.9.1 Compression

Compression in the HRR-SPA comes in multiple forms. As discussed in Section 2.2.7, each seman-

tic pointer can represent any combination of the SPA operators on multiple semantic pointers.

Furthermore, in the HRR-SPA, regardless of the number of SPA operations performed, the se-

mantic pointers maintain a fixed dimensionality, necessitating that all of the information provided

in the creation of a semantic pointer is compressed into the predefined dimensionality. This is in

contrast to other encoding techniques (e.g., tensor products [Smolensky, 1990], the binary spatter
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code [Kanerva, 1996]) where the dimensionality of the representation increases for each operation

performed. Additionally, with the use of the normalization operation (see Section 2.3.6), infor-

mation stored within a semantic pointer are not only compressed to a fixed dimensionality, but

also compressed to a fixed magnitude in vector space, usually resulting in the loss of information

in the process.

2.3.9.2 Dereferencing Pointers

In the HRR-SPA, all of the analogies discussed in Section 2.2.7 still apply to the idea of the

dereferencing of semantic pointers. Moreover, the use of the vector normalization operation

on semantic pointers result in semantic pointers that represent an “averaged” amalgamation

of its constituent semantic pointers which is arguably a more abstract form of representation

of information when compared the symbol-like SPA semantic pointers. Because of this lossy

compression, the use of the cleanup operation is necessary to successfully extract information

from semantic pointers. Once again, the cleanup operation is an operation that takes an abstract

value as an input, and produces known concepts as an output, furthering the analogy of how

semantic pointers behave like pointers in computer systems.

2.4 The Semantic Pointer Architecture: Cognitive Computation

with a Standardized Structure

The previous sections have thus far only discussed the symbol-like “cognitive” SPA in abstract

terms, with no mention of how it would be implemented as a physical system. This section

explores the standardized structure (referred to in [Eliasmith, 2013] as a “subsystem”) which

the SPA defines as the common building block of all physically realized SPA systems (see Fig-

ure 2.6B). As illustrated in Figure 2.6A, the SPA subsystem consists of three major components:

the mechanism for semantic pointer compression, the mechanism to perform operations on the se-

mantic pointers, and the mechanism to control the flow of information throughout the subsystem.

2.4.1 Semantic Pointer Compression

The SPA does not impose any restrictions on the methods used to create compressed semantic

pointer representations, as long as the compressed semantic pointer representations adhere to the

list of criteria listed in Section 2.3. This section briefly introduces two compressive mechanism

used in Spaun: a memory-based network, and a compressive hierarchical network.
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Figure 2.6: Illustration of the SPA subsystem and a generic SPA model. (A) The schematic of an
SPA subsystem showing the three component parts: the semantic pointer compression mechanism,
the semantic pointer transformation system and the action selection system. (B) The schematic
of a generic SPA model showing the integration of the SPA subsystem as part of the overall
model. The model consists of several interconnected SPA subsystems with the semantic pointer
representations being transmitted over the subsystem interconnections (dark solid lines). Each
subsystem consists of one compression component, and at least one transformation component.
In this particular SPA model, the action selection component is shared amongst all of the SPA
subsystems. (Figures adapted from [Eliasmith, 2013] with permission.)

The memory-based compressive network involves the use of a memory element, a recurrent

connection, and the desired SPA operations (see Figure 2.7A). In Spaun, networks with similar

structures are used within the working memory system to generate the compressed representa-

tions used as Spaun’s internal “cognitive” semantic pointers. As an example of this compres-

sive method, the semantic pointer for the list [A,B,C] – represented as the semantic pointer

L = A + B + C – can be constructed by configuring the network to recursively apply the HRR-

SPA collection operator, and then sequentially presenting each item in the list to the network

(see Figure 2.7B).

The hierarchical network method for compression proposes the use of a multi-layer topology
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Figure 2.7: Illustration of a generic memory component for compressing semantic pointer rep-
resentations. (A) Schematic of a generic SPA memory component. The memory component
consists of a memory unit, recursively applied SPA operations, and a recurrent connection from
the memory unit to the SPA operations. (B) Illustration of how the SPA memory component can
be used to recursively compute the semantic pointer L = A + B + C. The process starts in with
the top-left diagram, followed by the top-right, then the bottom-left, and finally the bottom-right
diagram. For the memory network to construct L, the recursive SPA operation needed is the col-
lection operation. It should be noted that the semantic pointer value in the recurrent projection
is the same as the value of the output of the SPA memory component. In the first image, the
memory unit contains no value (∅), and the input to the memory is A. When a control signal
is provided, the result of (∅ + A) is fed into the memory unit, and the input to the memory is
changed to B, resulting in the second image. This process is repeated two more times with the
inputs C and ∅, resulting in the final image where the value stored in the memory unit is the
desired L = A + B + C.

to create compressed semantic pointer representations. Each layer takes, as input, the semantic

pointer representation of the previous layer, and compresses it (commonly resulting in a change in

the dimensionality of the semantic pointer) to produce the input to the next layer in the hierarchy.

This method is inspired by the hierarchical topologies found in neurobiology, especially in the
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Figure 2.8: Illustration of a generic compressive hierarchy for semantic pointer generation. Shown
is a four-layer hierarchical structure that receives input (e.g., raw visual input) through the
“input interface” and uses the data to create a compressed semantic pointer representation at
each layer. The semantic pointer representation at the top-most layer is considered the final
compressed “output” semantic pointer of the hierarchy. The downward facing arrows indicate
that the hierarchy can be used as a generative model, meaning that semantic pointers can be
input to the top of the hierarchy and dereferenced by moving down the layers. (Figure adapted
from [Eliasmith, 2013] with permission.)

sensory processing areas of the brain, the primary example being areas V1 through IT of the

visual cortex in the human brain.7 Logically, this compressive method is used within Spaun’s

visual system to generate Spaun’s “visual” semantic pointers. Hierarchical networks also leverage

the work done in the machine learning community in building statistical models that process

sensory information (see Section 2.5.6.2). Figure 2.8 illustrates a generalized hierarchical network

where each layer compresses the semantic pointer representation of the previous layer.

2.4.2 Semantic Pointer Transformation

The transformation mechanism of an SPA subsystem contains all of the components needed to

perform the SPA operations (collecting, binding, or other brain area specific computation) desired

7The visual pathway of the human brain starts with the primary visual cortex (V1), then visual area V2,
followed by visual area V4, and lastly the inferior temporal cortex (IT).
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for the system.

2.4.3 Information Flow Control

The last component of the SPA subsystem is some mechanism to control the flow of information.

The SPA network structure is meant to serve as a framework for neural systems which, by their

nature have components that operate concurrently. To ensure that the appropriate pieces of

information arrive at different parts of the network only when they are needed, the SPA proposes

the use of an “action selection” system. The action selection system consists of an action selector

that monitors the current state of the system and generates the signals necessary to configure the

information flow in the rest of the system. These control signals are used by gates to either allow

or inhibit the flow of information within each SPA subsystem, and also between SPA subsystems.

2.4.4 Discussion

This section described the general structure of the SPA subsystem. As will be discussed in

Section 3.3, various forms of this structure are used to construct the Spaun cognitive model. The

specific neural implementations of each component of the SPA subsystem are further explored in

Section 2.5.6.

It should be noted that the description of the SPA subsystem thus far portrays it as a static

(unchanging) system. However, this is not the case, and accommodations have been built into the

SPA subsystem to allow it to be modified using externally or internally generated error signals.

As illustrated in Figure 2.9, both the compression and transformation mechanisms can be used

to generate error signals that can be used to modify the behaviour of each part of the SPA

subsystem.

2.5 The Semantic Pointer Architecture and the Neural Engineer-

ing Framework: Cognitive Computation with Neurons

Thus far, the SPA has been used to demonstrate how cognitive computation can be done sym-

bolically with abstract symbols, and numerically in vector space. This section starts with a basic

description of the operating principles of a neuron in biology, followed by the neuron model used

in Spaun. Next, the principles of the neural engineering framework (NEF) are outlined, and the

section concludes with examples of how the NEF can be combined with the vector-based SPA

computations described in previous sections to construct the computational SPA neural networks

that serve as the building blocks of the Spaun model.
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Figure 2.9: Schematic of an SPA subsystem showing error signals that can be used in conjunction
with learning algorithms to modify parts of the subsystem. (Figure adapted from [Eliasmith, 2013]
with permission.)

The text and figures in this section have been adapted from [Choo, 2010].

2.5.1 Neuron Basics

One of the primary motivations behind the Spaun model is to demonstrate that cognitive com-

putation can be performed in a neural network which takes inspiration (and constraints) from

the human brain. The human brain itself consists of roughly 10 to 100 billion neurons. In

the pre-frontal cortex, which is believed to be important to the cognitive abilities of humans

[Goldman-rakic, 1995; Henson et al., 2000], most of these neurons are large pyramidal neurons

[DeFelipe and Jones, 1988; Elston, 2003], and this is the main type of neuron that the neurons in

Spaun try to emulate (see Section 2.5.3); although there are also a variety of other neuron types

used throughout the model, including medium spiny cells and gabaergic interneurons.

A closer look at a single neuron reveals how they function. Individually, each neuron can

be considered a self-enclosed processing unit, with multiple inputs and in the case of the large

pyramidal neurons, one output. The inputs to a neuron are called dendrites, and the output of

the neuron is called the axon. Neurons communicate with each other in the form of electrical

spikes, which are generated in the body (soma) of the neuron. These spikes then travel down the

38



length of the axon, and to the dendrites of any neuron which the axon is connected to. The arrival

of the spike at this junction (called a synapse) causes the release of neurotransmitters from the

presynaptic neuron that flow across the gap between the neurons (the synaptic cleft) and bind to

neuroreceptors on the efferent neuron. These neurotransmitters then cause a flow of ionic current

into the dendrite that then flows down the dendrite and into the soma. The soma sums all of

the input current coming from all of the dendrites, and if it exceeds a certain threshold, causes

a spike to be sent down the axon of the neuron, restarting the entire spike generation process in

the neurons it is connected to. Figure 2.10 shows what a typical large pyramidal cell looks like

and also illustrates the process of spike generation.

2.5.2 Generating a Spike

Because neurons are physical systems, they undergo physical changes to generate spikes (i.e., the

spike generation is not instantaneous), and the process of generating a spike results in a very

distinctive profile in the voltage measured across the neuron’s cell membrane.

As mentioned in the previous section, the arrival of a spike at a synapse causes current to flow

down the dendrite and into the soma. This current flow is referred to as the postsynaptic current

(PSC). When a spike arrives at a synapse, the PSC peaks, and then decays back to zero. The

shape and duration of the PSC depends on the neurotransmitters being utilized at the synapse

(see Figure 2.15 for an example).

The influx of current into the soma results in a buildup of electric charge within the cell body,

increasing the difference in electric charge between the interior and exterior of the neuron, known

as the membrane potential. The neuron’s cell membrane – the wall that separates the interior

and exterior of the neuron – prevents this charge from immediately equalizing. Instead, electric

charge slowly leaks out of the cell through a type of ion channel. If the rate of current flow into

the soma exceeds the rate at which current leaks from the cell, then current will build up in the

cell, increasing the membrane potential (this is called depolarization).

When the membrane potential exceeds a certain level; called the spiking threshold; gates

(ion channels) in the cell membrane open, first causing more charge to flow quickly into the cell,

and then a very short time after, cause the charge to quickly exit the cell. This rapid up and

down movement in the membrane potential is called an action potential, or “spike” because of its

characteristic shape. After the spike is generated, the ion channels in the membrane remain open

for some time, called the refractory period, to allow the membrane potential to equalize back

to its resting state. During this time, no spikes will be generated regardless of the magnitude

of the input current provided to the neuron. After the refractory period however, if the input

current is sufficient to drive the membrane potential past the threshold level, another spike will
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Figure 2.10: An simple schematic of a large pyramidal neuron detailing the dendrites and axon.
The illustration also shows the effects of receiving an incoming spike at the neuron’s dendrites.
1O Spike from preceding neuron travels down its axon and arrives at the synapse.
2O Dendrites to send current to the soma.
3O Membrane potential increases in the soma.
4O A spike is sent down the axon.

(Figure reproduced from [Choo, 2010] with permission.)
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be generated, repeating the cycle of rapid depolarization and subsequent return to equilibrium of

the membrane potential. Measuring the membrane potential throughout this process produces a

graph similar to the one shown in Figure 2.11.

One must note that the initiation of a spike happens at the base of the soma, where the axon

originates. The electric charge that flows into this area of the cell during the rapid upswing of the

action potential will disperse within the cell body, causing the membrane potential in the area

slightly downstream of the trigger area to rise and then exceed the spiking threshold. Essentially,

a spike originating in the trigger area will cause another spike slightly downstream of the trigger

area, and like a row of dominoes, the spike will continue to propagate in this manner, travelling

like a wave down the length of the axon.

2.5.3 Simulating Neurons

As the functional mechanism of a neuron is complex, the degree to which neurons are simulated

varies. Some models simulate neurons by including details of individual ion channels and their

effects on the neurons membrane potential, as well as taking into account the physical size of the

neurons and the effect this has on the speed of spike propagation [Carnevale and Hines, 2006].

Others abstract the behaviour of the membrane potential with a simple mathematical equation,

and treat all neurons as point sources, ignoring the effects of the size of the neuron on spike

propagation speed. Spaun, which is composed of millions of neurons, takes the latter approach,

to reduce the computational requirements needed to run the model.

The neurons used in Spaun use the “leaky-integrate-and-fire” (LIF) neuron model. The LIF

neuron has been shown to simulate the spiking behaviour of the pyramidal neurons found in the

human neocortex8 [Rauch et al., 2003].

The LIF neuron model is based off an electrical circuit known as an “RC” (resistor-capacitor)

circuit. In an RC circuit, given a constant input current, the capacitor will slowly accumulate

charge. When the input current is removed, the resistor will cause the accumulated charge to

dissipate, and it is these two behaviours that make it ideal to simulate the membrane potential

of a neuron – the capacitor emulating the accumulation of charge across the cell membrane in

the soma, and the resistor emulating the slow leak current out of the soma. The combination of

the resistor and capacitor values determine the “RC time constant” (τRC), which is the rate at

which electric charge is accumulated and dissipated. The changes in the voltage across an RC

circuit – or the change in voltage across the cell membrane in the LIF neuron model – can be

8Neocortex refers to the “new” parts of the brain. The term “neocortex” is used interchangeably with the
term “cerebral cortex” which is on the “surface” of the brain. Older cortical structures are generally found deeper
within the brain.
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Figure 2.11: Illustration of the components of an action potential (spike) generated by a typical
large pyramidal neuron. The graph shown is a plot of the membrane potential measured at the
trigger zone of the neuron.
1O Current from dendrites cause increase in membrane potential.
2O Membrane potential exceeds spiking threshold.
3O Gates in the cell membrane open, causing a large influx of electric charge into the cell.
4O Followed by a large outflow of electric charge out of the cell.
5O Membrane potential returns to resting conditions.
6O Refractory period.
7O Cycle continues if neuron is being provided more input current.

(Figure reproduced from [Choo, 2010] with permission.)
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calculated using Equation (2.23).

τRC = RC,

dV

dt
= − 1

τRC
(V − JinR), (2.23)

where R and C are the resistor and capacitor values of the RC circuit, dV
dt is the rate of change

of electric charge in the neuron, V is the membrane potential of the neuron at a moment in

time, and Jin is the total amount of current flowing into the soma from the dendrites. When

the membrane potential of the simulated neuron reaches the threshold level, a spike is “pasted”

in, and the membrane potential is reset to its resting level. The model then fixes the membrane

potential at the resting level for the duration of the refractory period (τ ref ), after which it is

allowed to accumulate incoming electric charge again. Figure 2.12 illustrates the simulation of

the LIF neuron when provided with a constant input current. The LIF neuron model is explored

in greater detail in Eliasmith and Anderson (2003), where they describe the full RC circuit used,

as well as discuss the advantages and disadvantages of the LIF neuron model.

2.5.4 The Neural Engineering Framework

Given the description of the behaviour of a single neuron, it is hard to imagine how they can be

used to perform the complex computations needed in the SPA. However, the Neural Engineering

Framework [Eliasmith and Anderson, 2003] provides a systematic approach to designing neural

networks within the constraints of the underlying neurobiology.

Starting from the level of a single neuron, and working up to the level of networks of popula-

tions of neurons, this section describes how the NEF can be used to create networks to compute

the arbitrary functions needed by any application, including Spaun. It should be noted that

while Spaun utilizes the NEF to build computational networks out of LIF neurons, the methods

described by the NEF can be applied to any type of neuron.

2.5.4.1 Representation with Single Neurons

This section starts at the very root of the problem of performing complex computations in neural

networks. Here, the issue to be solved is the use of a single neuron to perform the simplest

computation – the representation of an arbitrary scalar value.

As described in the previous section, the primary principle behind the neuron’s operation is

the manipulation of input currents to the neuron that in turn alter the electric charge within

the neuron. The first step to using neurons to represent physical values is to somehow link these

43



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Simulated LIF Neuron Spike

V
ol

ta
ge

 (
V

)

Time (ms)

V
th

  Pasted Spike

↓
τref

Figure 2.12: A simulation of the response of a leaky-integrate-and-fire (LIF) neuron given a
constant input. The sub-threshold soma voltage curve was calculated using Equation (2.23).
When the voltage exceeds the spiking threshold, Vth, a spike is inserted, and the voltage is reset
to 0. The voltage is kept at 0 until a predefined period, τ ref , has passed; after which, the voltage
is allowed to increase again. (Figure reproduced from [Choo, 2010] with permission.)

input currents to the physical values that are to be represented. In the NEF, the assumption

is made that there is a directly proportional relationship between the physical value x, and the

total input current J to the neuron. This relationship can be written as:

J(x) = αx+ Jbias, (2.24)

where J(x) is the input current as a function of the variable x, α is a scaling factor that converts

x into the appropriate units used by the input current, and Jbias is a background current that

results from the background firing of all the neurons connected to the neuron we are modelling.

By measuring the steady-state fire rate of the neuron while varying this input current, the

response curve of the neuron can then be plotted. Figure 2.13 compares the response curves of

neocortical neurons and the response curves generated using the LIF neuron model. For the LIF

model, the LIF equations (Equation (2.23)) can be used to derive the equations for the neuron
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Figure 2.13: Example neuron response curves: (Left) Response curves plotted for regular-spiking
neurons found in the guinea pig neocortex, from [McCormick et al., 1985]. (Right) Response
curves generated by the LIF neuron model using Equation (2.25). Note that for this graph, the
x-axis does not indicate the input current, but rather a value proportional to the input (injected)
current. (Figures reproduced from [Choo, 2010] with permission.)

response curve, which is defined as:

a(x) = G[J(x)] =


1

τref−τRC ln
(
1− Jth

J(x)

) , if J(x) > J th

0, otherwise
(2.25)

where a(x) is the activity of the neuron – reported in spikes per second – for the input value

x; G[. . .] is the function that defines the non-linear response curve of the neuron to the input

current J(x); τRC and τ ref are the RC and refractory time constants mentioned before; J th is

the threshold current above which the neuron will begin spiking, and is directly proportional to

the spiking threshold level mentioned in the previous sections; and J(x) is the total input current

that was derived before.

The units of a(x) are given in spikes per second (Hz), which is not ideal, and in the NEF, a

scaling factor is used to “decode” the activity value back into the appropriate units for x. We

can then write the estimated representation of x as:

x̂ = a(x)d, (2.26)

where x̂ represents the estimate of the value of x, and d is the scaling factor – known as a

“decoder” in the NEF – used to convert the activity of the neuron back into the units and scale
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of x.

Even with this decoder, the use of a single neuron is insufficient for constructing a network

that accurately represents the given value x. As the equations demonstrate, a linear change in x

results in a non-linear change in a(x), and no amount of scaling will reverse this non-linearity. In

order to compensate for the non-linearity, additional neurons need to be recruited.

2.5.4.2 Representation using Populations of Neurons

The rationale behind the utilization of multiple neurons to achieve a better representation of a

physical scalar value is similar to the explanation of how additional bits in floating point number

(on a digital system) can be used to add precision to the value being represented.

In the NEF, the addition of neurons increases the number of non-linearities the network

contains, which increases the representational capacity of the network. The NEF achieves this

by performing a linear summation of scaled versions of the neural response curves, as illustrated

in Figure 2.14

From Equation (2.26) it can be seen that the independent scaling of the response curves can

already be achieved by manipulating the decoder values for each neuron. The reconstructed

estimate of the input x for a population (network) of n neurons can then be re-written as:

x̂ =
n∑
i=1

ai(x)di, (2.27)

where ai and di are the response curve and the decoder for the ith neuron, respectively. One

approach to obtaining the decoder values needed to accurately reconstruct the input value is to

solve for the decoders using the method of least squares, which results in the following equations:

d = Γ−1Υ, where Γ = AAT and Υ = AXT (2.28)

In the equation above, A is the population’s activity matrix9, and X is a vector of x values that

the population needs to represent. A detailed derivation of the equations used to compute the

decoders can be found in [Eliasmith and Anderson, 2003, Appendix A].

It is important to note that within the NEF, the decoders are solved to optimize the rep-

resentational accuracy over a specified range. In the case of Equation (2.28), the decoders are

9The activity matrix is a matrix that is constructed from the neuron response curves from all of the neurons
in the neural network. Each row in this matrix corresponds to the neuron response curve of one neuron in the
population of neurons.
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Figure 2.14: An illustration of how the response curves from multiple neurons can be appro-
priately scaled to estimate the input x value. In the left column, the original response curves
for the neurons are shown. In the right column, the rescaled version of each response curve is
shown (solid grey lines), in addition to the reconstructed x values (solid black line), and the ideal
reconstruction of the x values (dashed line). The reconstructed x values are calculated by adding
together the weighted response curves. Note that the response curves that lie below the zero
line are response curves that have been scaled by a negative amount. From top to bottom, it is
observed that as the number of neurons increases (from 2 to 5 to 15), the reconstructed estimate
x improves. (Figure reproduced from [Choo, 2010] with permission.)
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optimized such that the representational accuracy of the neural population is highest for the

range of x values in the X vector.

2.5.4.3 Representation in Higher Dimensions

In 1986, Georgopoulos et al. recorded the activity of neurons from the motor cortex of rhesus

monkeys while the monkeys were doing a task involving the movement of their arm in one of

8 spatial directions. They made the observation that these neurons would fire maximally when

the monkey was commanded to move its arm, and that the direction of the arm’s movement

would affect which neuron would be most active. In spatial coordinates, each one of these “pre-

ferred directions” can be thought of as a two dimensional vector originating from the initial arm

position and pointing toward the final arm position. In essence, each neuron was encoding a

two-dimensional vector value as a spike rate. By knowing the preferred direction for each neu-

ron, and the firing rate of each neuron, it would then be possible to get a reconstruction of the

two-dimensional vector direction that the monkey had been commanded to move.

The NEF uses a similar concept to enable the representation of multi-dimensional vector values

in neural populations. As with the observations Georgopoulos made, each randomly generated

neuron in the NEF is given a randomly generated “encoder” vector with the same dimensionality

of the vector value being represented. These encoders represent the preferred direction vector

of each neuron. To compute the associated scalar value to be used in the neurons input current

equation (Eq. (2.24)), input vector must be projected onto the preferred direction vector. In the

NEF, this is done using the dot product operator, and thus, the input current equation can be

modified to be:

J(~x) = α(~e • ~x) + Jbias (2.29)

In the equation above, the input current J is now a function of ~x, the commanded (input)

direction vector. Instead of being directly proportional to the input vector ~x, the current is now

proportional to the dot product (•) of the preferred direction vector (~e) and ~x. Note that in the

original definition of the input current equation, J(x) is a scalar value. Since the dot product

also produces a scalar value10 the modified input current J(~x) is also a scalar value. This means

that it can be directly substituted into the neuron response function without needing to make

any additional changes:

a(~x) = G[J(~x)] =


1

τref−τRC ln
(
1−Jthreshold

J(~x)

) , if J(~x) > J threshold

0, otherwise
(2.30)

10In fact, the encoder can be thought of as projecting the input vector into the one-dimensional scalar space
that represents the current being input to the neuron.
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Reconstructing an estimate of the original input vector becomes slightly more complex because

the result of the reconstruction should match the dimensionality of the input vector. Since

the response curves of the neurons produce scalar values, performing the vector reconstruction

requires increasing the dimensionality of the decoders to match the desired output dimensionality.

Fortunately, calculating the decoders remains the same as in the scalar case,

~d = Γ−1Υ, where Γ = AAT and Υ = AXT , (2.31)

with the exception that X is no longer a vector of x values that the population needs to represent,

but rather a matrix of vectors that the population needs to represent. Performing the matrix

calculation reveals that the dimensionality of the decoders does indeed match the dimensionality

of the input vector. The reconstruction of the original input vector can then be computed as:

x̂ =
n∑
i=1

ai(~x)~di (2.32)

As in the scalar case, x̂ is the reconstruction of the input vector, ai is the ith neuron’s response

to the ~x, and ~di is the ith neuron’s now multi-dimensional decoding vector.

2.5.4.4 Representation Over Time

The discussion thus far has been concerned about time-invariant values, be they scalar or multi-

dimensional. However, being physical (and dynamic) systems, neurons almost exclusively operate

with signals that vary over time. This implies that the framework that has been discussed so

far must be extended to the temporal domain. However, the task of doing so is similar to the

method used to extend the NEF from the representation of scalar to the representation of multi-

dimensional values and requires minimal changes.

To perform an analysis in the temporal domain, rather than using the static input ~x, the

time-varying input ~x(t) is used. This signal can be thought of as vector that changes its direction

over time. Now, as in the vector case, the input current is:

J(~x(t)) = α(~e • ~x(t)) + Jbias (2.33)

Note that in this case, J(~x(t)) changes with time because ~x(t) is a time-varying signal. Calculating

the response a of the neuron population becomes more complex because ideally, the response of

the neurons should be in terms of spikes and the previous method of calculating the response

only provided a static rate response rather than a response that changes over time. Using the

mechanism described in Section 2.5.3 to generate the spiking behaviour, the individual spike
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response for each neuron in the population can be rewritten as:

a(~x(t)) =
∑
s

δ(t− ts), (2.34)

where s is the number of spikes there are in the spike train, and δ(t− ts) denotes the time of each

spike. The function δ(t) is equal to 1 at t = 0 and 0 everywhere else.

In order to reconstruct the input signal ~x(t), or in this case, to determine how the downstream

neuron is interpreting the outgoing spike trains of the entire population, an additional mecha-

nism is needed to “smooth” out the spike train into a time-varying signal. The NEF borrows

from biology and uses the concept of applying a post-synaptic filter (h(t)) to the spike train to

produce post-synaptic current input to the neuron.11 Applying the post-synaptic filter h(t) to

the reconstruction equation results in:

x̂(t) =

(
n∑
i=1

ai(~x(t))~di

)
∗ h(t) (2.35)

It should be noted that the decoders in the equation above are identical to the time-invariant

cases. [Eliasmith and Anderson, 2003, Appendix B] provides further details as to the reasoning

behind why it is possible to use the time-invariant decoders for the spiking neuron systems.

The effect of applying (convolving) the post-synaptic filter with the spike train is illustrated in

Figure 2.15.

As an aside, the convolution with the PSC signal h(t) can also be performed in the calculation

of the neuron response function a. Conceptually, this is a more accurate characterization of the

neurobiology because the current flowing to the soma of the downstream neuron is the sum of all

the PSC’s from the dendrites, and not the sum of all the spike trains. The neuron responses can

then be rewritten as:

a(~x(t)) =
∑
s

δ(t− ts) ∗ h(t) =
∑
s

h(t− ts), (2.36)

and the reconstructed estimate as:

x̂(t) =

n∑
i=1

ai(~x(t))~di (2.37)

11As mentioned in Section 2.5.2, the arrival of a spike at a synapse causes an influx of current into the dendrite
that decays with an exponential time constant. With time-varying signals, this effect can be achieved by convolving
a spike with the signal h(t) that has the same exponentially decaying shape as the PSC
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Figure 2.15: (Top Left) Plot of the shape of the PSC signal, h(t), in response to one spike arriving
at the synapse. (Top Right) The input spike train,

∑
s δ(t− ts), used in this example. (Bottom)

Plot of the total input current going into the soma, calculated using Equation (2.36). The input
spike train is overlaid on this plot in grey. (Figure reproduced from [Choo, 2010] with permission.)
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2.5.4.5 Representation of Arbitrary Transformations

Thus far, the discussion has been centered around the reconstruction of the original input signal

(i.e., x̂ ≈ x). While this has been valuable in deriving the formulae necessary to perform repre-

sentations in neurons, it does not provide many interesting applications. This section therefore

discusses how the framework can be easily extended to perform arbitrary transformations to the

input signal.

Consider a weighted linear combination of two signals: ~z = C1~x + C2~y.12 To perform this

transformation, three populations are needed, one for each variable, to be connected as shown in

Figure 2.16.

 

…
 

…
 

Neurons from 
population x 

Neurons from 
population z 

Connection 
Weights 

Pop. 
x 

Pop. 
y 

Pop. 
z 

�⃗�  

𝐲  

�̂� 

Figure 2.16: A connection diagram of the neural network needed to compute the transformation
~z = C1~x + C2~y. Each neuron in one population is fully connected with all of the neurons in the
other population (shown in pop-up). (Figure reproduced from [Choo, 2010] with permission.)

In the following analysis, a superscript letter will be used to denote these populations. For

example, ax will be used to denote the neuronal response of the population responsible for the

signal ~x. As with the analysis in the previous sections, the input current for one neuron in the

output population – in this case the “z” population – is first derived.

Jz(C1~x + C2~y) = α(~ez • (C1~x + C2~y)) + Jbias (2.38)

Since the outputs of the “x” and “y” populations would be the reconstructions of the inputs, x̂

12Note that while the variables ~x, ~y, and ~z are listed as time-invariant values here, the same analysis can be
easily performed with time-varying signals. See Section 2.5.4.4
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and ŷ are substituted for ~x and ~y, respectively. The equation for the input current then becomes:

Jz(C1~x + C2~y) = α(~ez • (C1x̂ + C2ŷ)) + Jbias

= α

~ez •
C1

∑
i

axi (~x)~dx
i + C2

∑
j

ayj (~y)~dy
j

+ Jbias

=
∑
i

wx
i a

x
i (~x) +

∑
j

wy
j a

y
j (~y) + Jbias, (2.39)

where wx
i = αC1

(
~ez ⊗ ~dx

i

)
, and wy

j = αC2

(
~ez ⊗ ~dy

j

)
, and (⊗) represents the outer product

operation. In the general case, the scalar variables C1 and C2 may be substituted with the

matrices C1 and C2. The weights wx
i and wy

j then become wx
i = α

(
(~ezC1)⊗ ~dx

i

)
.

With the input current equation derived, the output ~z can then be computed as:

az(C1~x + C2~y) = G [Jz(C1~x + C2~y)] (2.40)

ẑ =

n∑
k=1

azk(C1~x + C2~y)~dz
k (2.41)

Note that in Equation (2.40), the function G[. . .] is the non-linear neuron response as detailed in

Equation (2.30), or for time-varying signals, a spike train, as in Equation (2.36).

2.5.4.6 Computation of Arbitrary Functions

The previous sections have described how the NEF can be used to compute linear projections

and transformations of scalar and multi-dimensional values. In this section, one of the powerful

advantages of the NEF method will be described – using the NEF to compute arbitrary non-linear

functions in neural networks.

Surprisingly, the method by which neural populations can be used to compute arbitrary func-

tions has already been discussed. Previous sections demonstrated how decoders can be calculated

for each neuron in such a way as to allow the neural population to represent the input value x.

In essence, the decoders have been computed to perform the identity function. Similarly, the

same method can be used to solve for decoders that allow the neural population to compute –

or more accurately, approximate – arbitrary functions. Figure 2.17 illustrates how this concept

is applied to get a neural population to compute the non-linear function f(x) = sin(2πx). As

with Figure 2.14, it can be seen that the accuracy of the approximated function improves with

the number of neurons used in the network.

53



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 2 Neurons

x value

F
iri

ng
 R

at
e 

(H
z 

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Weighted Response Curves and Reconstructed Output − 2 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 5 Neurons

x value

F
iri

ng
 R

at
e 

(H
z 

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Weighted Response Curves and Reconstructed Output − 5 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 15 Neurons

x value

F
iri

ng
 R

at
e 

(H
z 

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Weighted Response Curves and Reconstructed Output − 15 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

Figure 2.17: An illustration of how decoders can be used to weight the neuron response curves
to reconstruct any desired function. The function used in this example is sin(2πx), and the ideal
reconstruction of this function is denoted by the dotted line. The layout of this figure and the
number of neurons used for each row are identical to Figure 2.14. (Figure reproduced from [Choo,
2010] with permission.)
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Formally, the decoders for a population of neurons that computes the function f(x) can be

determined by modifying Equation (2.28) such that in the calculation of Υ, the values of the

desired function applied to X, f(X), are used in place of X:

df(x) = Γ−1Υ, where Γ = AAT and Υ = Af(X)T (2.42)

This same method can also be extended to compute functions dependent on multiple inputs.

In the next example, the neural implementation for the scalar non-linear function z = xy is

derived.13 Since the desired function is a function of both x and y, the neural population needs

to have information of both x and y in order to perform the computation. This is done by setting

up a linear transformation (see Figure 2.16) to project the independent scalar x and y values into

a 2-dimensional space, where each dimension is used to represent x and y, respectively:

~m = [x y] = [1 0]x+ [0 1]y

= C1x+ C2y, (2.43)

where C1 = [1 0] and C2 = [0 1].

Then, to compute the multiplication function, the decoders of the “z” population are com-

puted using the function z = (m1 ·m2) – where m1 is the first element of the vector ~m (which

contains the value of x), and m2 is the first element of the vector ~m (which contains the value of

y) – to generate the appropriate f(X) matrix in Equation (2.42). An alternative understanding

of this method is to consider that the decoders for the neural population have been solved to

compute the mapping of a 2-dimensional vector onto a 1-dimensional scalar which is derived as

is the result of multiplying both elements in the vector together. As an example, part of this

mapping is:

[0.0, 0.0]→ 0

[0.0, 1.0]→ 0

[1.0, 1.0]→ 1

[0.5, 0.5]→ 0.25

2.5.4.7 Relating the NEF to Biology

The discussion about the NEF introduced abstract concepts such as neural encoders (e) and

decoders (d), and one might get the misconception that these properties are intrinsic to each

13In this example, a scalar function is used only because of its simplicity. The same analysis, albeit more
involved, can be performed for multi-dimensional functions.
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neuron. Looking at the neurobiology, neurons receive inputs in terms of current, and produce

outputs in terms of spikes, both of which are scalar values. This makes it difficult to reconcile

the mechanism by which neurons represent these multi-dimensional encoder and decoder values.

It is important to note that individual neurons in isolation do not have the ability to represent

such objects. Rather, it is the configuration of the connection weight matrix between neurons

that enables the neurons to represent such objects. The NEF merely presents a framework by

which to calculate the connection weight matrix in such a way as to enable the neural population

to compute a desired function.

A re-examination of the input current derived for a linear transformation of inputs to a neural

population reveals that the encoders, decoders and transformation matrices can be mathemati-

cally combined to form a single connection weight matrix. Consider, as an example, the network

described in Figure 2.16. The current equation for that network is:

Jz(C1~x + C2~y) = α(~ez • (C1x̂ + C2ŷ)) + Jbias

= α

~ez •
C1

∑
i

axi (~x)~dx
i + C2

∑
j

ayj (~y)~dy
j

+ Jbias,

that can be re-written as:

Jz(C1~x + C2~y) =
∑
i

wx
i a

x
i (~x) +

∑
j

wy
j a

y
j (~y) + Jbias,

where wx
i = αC1

(
~ez ⊗ ~dx

i

)
, and wy

j = αC2

(
~ez ⊗ ~dy

j

)
, (2.44)

which demonstrate that in addition to being abstract concepts, the encoders and decoders are

combined to construct the physical connection weight matrix between two populations of neurons.

2.5.5 HRR-SPA Operators Implemented as Neural Networks

While the NEF provides a basic set of tools that can be used to implement any mathematical

function in a population of spiking neurons, the exact application of these tools varies depending

on the complexity of the function to be implemented. This section demonstrates how the NEF is

used to realize the various SPA operators (specifically, the operators defined by the HRR-SPA)

as spiking neural networks, and discusses some of the nuances to the various approaches used.
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2.5.5.1 Semantic Pointer Representation

As mentioned in Section 2.3.1, the randomly generated HRR-SPA semantic pointers have an

expected vector magnitude of 1. This means that the concepts introduced in the NEF – namely

the multi-dimensional encoders and decoders – can be used to construct a neural network capable

of representing a semantic pointer. Briefly, constructing a neural network to represent an HRR-

SPA semantic pointer involves creating a multidimensional neural ensemble14 with randomly

generated d-dimensional encoders, and d-dimensional decoders optimized to represent the vector

values within the unit d-dimensional hypersphere.

However, an issue does arise with the large number of dimensions used in the semantic pointer

representation for Spaun. Referring back to Equation (2.31), part of the derivation of the decoders

requires calculating the inverse of the Γ matrix. Since the Γ matrix is an n × n matrix (where

n is the number of neurons in the population), it scales quadratically with a linear increase in

the number of neurons. While this is not an issue with a small number of neurons, in Spaun,

the neural ensembles typically contain 30× 512 = 15360 each.15 For such a neural ensemble, the

decoder calculation would require the computation of the inverse of a matrix with 235, 929, 600

elements.

Because of the computation cost of calculating the inverses of these huge matrices, the mul-

tidimensional ensembles in Spaun are implemented in a different manner. Instead of having one

ensemble represent all of the dimensions in the semantic pointer, multiple neural ensembles are

used to represent subsections of the semantic pointer. In particular, Spaun uses d one-dimensional

ensembles to represent the d-dimensional semantic pointers. These ensembles are arranged in a

collection referred to as an “ensemble array”. In order to maximize the representational accuracy

of the ensemble array, each ensemble in the ensemble array is optimized to represent a scalar value

in the range of ±3.5/
√
d.16 Figure 2.18 illustrates the difference between the multidimensional

ensemble and the equivalent ensemble array.

14A neural ensemble is a population of neurons that has been constructed with the principles of the NEF to
compute a specific function. The term “ensemble” and “population” are used interchangeably in this document.

15The number of neurons that would be used in a single multidimensional ensemble in Spaun is at minimum
m×d, where m is the number of neurons per dimension, and d is the number of dimensions in the semantic pointer
representation. Typically, m = 30 and d = 512.

16From Section 2.3.1, each element in an HRR-SPA semantic pointer is chosen from a normal distribution with
a mean of 0 and a variance of 1/d. From experimental data, for dimension sizes larger than 15, in order to ensure
that the neural ensembles are able to represent at least 99.9% of the possible values an element in the semantic
pointer can take, the ensembles are optimized to represent scalar values in the range of ±3.5σ = ±3.5/

√
d. For

dimension sizes less than or equal to 15, ensembles are optimized to represent the scalar values in the range of ±1.
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Figure 2.18: Connection diagrams illustrating the differences between a multidimensional ensem-
ble and the equivalent ensemble array. (A) A single sixteen-dimensional neural ensemble with
480 neurons. The ensemble has a representational range of the 16D unit hypersphere (|r| ≤ 1).
(B) A sixteen-dimensional ensemble array comprised of 16 one-dimensional ensembles. Each en-
semble in the ensemble array consists of 30 neurons and has a representational range of ±3.5/

√
16

(|r| ≤ 0.875). Also illustrated are the appropriate transformation matrices (dimensional isolation
matrices) necessary to achieve the correct representation for each ensemble.

2.5.5.2 SPA Collections Operator

Section 2.3.3 defined the collection operator as the element-wise vector sum of the input semantic

pointers. A network like the one described in Figure 2.16 can be used to perform this operation.

For such a network, the transformation weights C1 . . . Cn = 1.

2.5.5.3 SPA Binding Operator

There are multiple approaches to using the NEF to implement the SPA binding operator in a

neural network. The näıve approach is to utilize a single neural ensemble and optimize the de-

coders to compute the circular convolution operation. However, this approach runs into the same

computational complexity problems encountered with using a single neural ensemble to repre-

sent multidimensional vector values. For this reason, a different approach is needed to efficiently
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implement the binding operator in a neural network. Here, the approach is to decompose the

binding operator into easy-to-construct base parts which are then later combined to achieve the

desired circular convolution operation.

From Equation (2.17), the binding operation can be computed using the DFT, inverse DFT,

and element-wise multiplication operators. Both the DFT and inverse DFT of a vector can be

computed as a linear transformation, by performing the matrix multiplication between the vector

and a DFT (or inverse DFT) matrix. Both the DFT and inverse DFT matrices are d× d in size,

with the DFT matrix (W) defined as:

W =


w0,0 w0,1 . . . w0,d−1
w1,0 w1,1 . . . w1,d−1
...

...
. . .

...

wd−1,0 wd−1,1 . . . wd−1,d−1

 , where wj,k = e−
(2πi)
d

jk, (2.45)

And likewise, the inverse DFT matrix V is defined as:

V =


v0,0 v0,1 . . . v0,d−1
v1,0 v1,1 . . . v1,d−1
...

...
. . .

...

vd−1,0 vd−1,1 . . . vd−1,d−1

 , where vj,k =
1

n
e

(2πi)
d

jk (2.46)

Because neural ensembles can only represent physical (non-imaginary) values, the real and

imaginary components of the DFT operation must be considered separately. In order to do this,

the DFT and inverse DFT matrices are modified slightly:

W = WR + WIi, where wR
j,k = cos

(
−2π

n
jk

)
and wI

j,k = sin

(
−2π

n
jk

)
, (2.47)

and,

V = VR + VIi, where vRj,k =
1

n
cos

(
2π

n
jk

)
and vIj,k =

1

n
sin

(
2π

n
jk

)
(2.48)

Note that in the equation above, the superscript R denotes the real-valued component of the

matrices, while the superscript I denotes the imaginary component of the matrices.

With the DFT and inverse DFT matrices, the HRR-SPA binding operation can be written
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as:

A~B = F−1(F(A)�F(B))

= F−1(A(WR + WIi)�B(WR + WIi)) (2.49)

= F−1(AWR �BWR + AWR �BWIi+ AWIi�BWR + AWIi�BWIi) (2.50)

= (AWR �BWR + AWR �BWIi+ AWIi�BWR −AWI �BWI)(VR + VIi) (2.51)

= (AWR �BWR)VR + (AWR �BWI)VRi+ (AWI �BWR)VRi− (AWI �BWI)VR +

(AWR �BWR)VIi− (AWR �BWI)VI − (AWI �BWR)VI − (AWI �BWI)VIi

(2.52)

Note that in the equations above, the property that i × i = −1 has been used to simplify the

equations. In addition, because the circular convolution operation involving two real-valued vec-

tors always produces a real-valued result, any term in the equation producing an imaginary value

can be removed. The final equation for the circular convolution operation after this simplification

is then:

A~B = (AWR�BWR)VR−(AWR�BWI)VI−(AWI�BWR)VI−(AWI�BWI)VR (2.53)

In this rewritten form of the circular convolution operation, it can be seen that performing the

SPA binding operation requires 4 element-wise multiplication operations, 8 DFT transformation

matrices, and 4 inverse DFT transformation matrices. The element-wise multiplication operation

can be constructed as an ensemble array (see Figure 2.18) of multiplication operations (see Equa-

tions (2.42) and (2.43)). Combining this information with the methods described in the previous

sections, the circular convolution neural network can be constructed as shown in Figure 2.19. As

all of the frequency components of the DFT operation have the same variance (see Section 2.3.1),

each of the ensembles in the ensemble arrays can be optimized to work with the same range of

values, and no additional scaling mechanisms are needed, simplifying the network construction.

It is important to note that while the binding network seems complex, the final network is,

ultimately, a collection of neurons and connection weights, indistinguishable from networks that

compute any other function. In addition, the implementation described above is only one of

many possible neural implementations of the HRR-SPA binding operation. Bekolay (2011) even

demonstrate that a single-layer spiking neural network can be trained to compute the HRR-SPA

binding operation.17

17Though possible, the binding networks used in Spaun are not learned using the methods outlined in Bekolay
(2011). This is due to the long training times required and the desire to reduce Spaun’s already lengthy construction
times.
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Figure 2.19: An illustration of the circular convolution operation A~B implemented using a net-
work of neural populations. The network is comprised of 5 ensemble arrays, four of them to com-
pute the element-wise multiplication operations, and remaining one to perform the inverse DFT
operation and reconstitute result of the element-wise operations back into a single d-dimensional
vector. The small blue and red squares represent the transformation matrices required to per-
form the DFT and inverse DFT operations, respectively, while the large grey rounded-squares
represent the ensemble arrays. (Figure adapted from [Choo, 2010] with permission.)

2.5.5.4 Semantic Pointer (Approximate) Inverse

Equation (2.21) defines the HRR-SPA semantic pointer (approximate) inverse as reversing the

order of the vector elements for all except the first vector elements. Since this is a linear trans-

formation, the inverse operator can be implemented using the appropriate (C) transformation

matrix in Equation (2.41). For the inverse operator, the transformation matrix (L) is an n × n
matrix with 1 in the top left corner and a reverse diagonal of 1’s in the bottom right corner (see
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Appendix A.2). The semantic pointer inverse matrix for an n dimensional HRR-SPA vector is:

L =



1 0 0 . . . 0 0

0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
... . .

. ...
...

0 0 1 . . . 0 0

0 1 0 . . . 0 0


(2.54)

It should be noted that because the inverse operation is a linear transformation, the neural

network for the SPA unbinding operation is identical to the neural network used for the binding

operation, with the exception that the input vector to be inverted has a transformation matrix

that is a combination of the DFT transformation and the inverse transformation. Figure 2.20

illustrates an inverse network, and an unbinding network.

2.5.5.5 Semantic Pointer Cleanup

The semantic pointer cleanup algorithm described in Section 2.3.7 can be adapted for use with

the NEF to create a neural implementation [Stewart et al., 2011]. As a recap of the cleanup

algorithm, the cleanup operation on the semantic pointer A is computed by using the following

steps:

1. Calculate the similarity measure of A against all of the semantic pointers in the vocabulary.

2. From the calculated similarity measures, identify the largest one.

3. Identify the semantic pointer (from the vocabulary) that is paired with the largest similarity

measure. This is the result of the cleanup operation.

As the methods of the NEF work seamlessly with linear matrix operations, the cleanup operation

implementation can be simplified by taking advantage of the fact that the matrix multiplication

of a vector with a matrix simultaneously computes the dot product of the vector with each column

of the matrix. In essence, the matrix M can be constructed by vertically stacking the semantic

pointers in the vocabulary into a matrix:

M =


SP1

SP2
...

SPN

 =


sp10 sp11 sp12 . . . sp1d−1
sp20 sp21 sp22 . . . sp2d−1
...

...
...

. . .
...

spN0 spN1 spN2 . . . spNd−1

 ,
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Figure 2.20: Network diagrams for the HRR-SPA inverse operation and the HRR-SPA unbind-
ing operation. (A) Neural network to compute the HRR-SPA (approximate) inverse operation
∼C. The network comprises of one ensemble array, and the appropriate inverse matrix (L) to
compute the inverse (see accompanying text for details). In the network diagram, the inverse
transformation matrix is represented by the white shaded square. (B) Neural network to com-
pute the HRR-SPA unbinding operation C~∼D. The small blue and red squares represent the
transformation matrices required to perform the DFT and inverse DFT operations, respectively.
The blue shaded squares represent the transformation matrices that are the result of combining
the HRR-SPA inverse matrix with the DFT matrix (i.e., LW).

where SP1, SP2, etc., are the semantic pointers that make up the cleanup vocabulary, and

sp10, sp11, etc., are the vector elements of each semantic pointer. With the M matrix, the three

step cleanup operation can be re-written as the following steps[Stewart et al., 2011]:

1. Use the matrix multiplication ~AMT to simultaneously compute the dot product of A with

all of the semantic pointer vectors in the vocabulary (stacked together to form the matrix

M). This operation results in a vector of similarity values (~S).

2. Identify the largest dot product value in ~S and set that to 1. All other elements are set to

0.

3. Perform the matrix multiplication ~SM to compute the semantic pointer vector result of the

cleanup operation.

The core of the cleanup algorithm is the generation and manipulation of the N -dimensional
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similarity vector (where N is the number of semantic pointers in the cleanup vocabulary). Since

the operations performed on each of the elements in the similarity vector are independent of each

other, using the NEF, an N -dimensional ensemble array can be used to represent the similarity

vector. Both the generation of the similarity vector ( ~AMT ) and the generation of the “cleaned”

result (~SM) are matrix operations, and as demonstrated previously, can be implemented as

transformation matrices on the input and output connections to the ensemble array, respectively.

This leaves step 2 as the last part of the algorithm to be neurally implemented.

Step 2 of the algorithm involves isolating the maximum similarity value – also known as

a “winner-take-all” (WTA) operation – and setting that value to 1. To implement the WTA

mechanism in a neural network, two changes must be made to the standard randomly-generated

neural ensembles of the NEF. First, the encoders for each of the ensembles in the ensemble array

are aligned along a common direction. Since each ensemble in the ensemble array represents a

scalar value, all of the encoders are aligned towards the positive x direction. Additionally, the

gains (α) and bias currents (Jbias) for each neuron (see Equation (2.24)) are specifically chosen

such that neuron response curves are only active beyond a preset x value threshold. Second,

negatively weighted recurrent connections are added such that the output of each ensemble in

the ensemble array inhibits all of the other ensembles in the ensemble array. With these negative

recurrent connections, any active ensemble in the ensemble array suppresses all other ensembles

in the ensemble array, thus computing a WTA function.18

Lastly, setting the output of the WTA result to 1 can be achieved by projecting it to another

ensemble array with thresholded ensembles where the decoders of these ensembles have been

optimized such that they output a fixed value (of 1) whenever the neural population is active

(i.e., the neural ensembles are computing the function f(x) = 1). Figure 2.21 illustrates the

complete HRR-SPA cleanup neural network.

It should be noted that in the description above, the vocabulary and outputs of the cleanup

memory network are matching semantic pointers. This is known as an auto-associative memory,

as an input that is similar to the semantic pointer A is cleaned-up (associated) to the semantic

pointer A. By altering the output vocabulary matrix (M), the cleanup memory is converted from

an auto-associative memory to a “regular”, or hetero-associative memory. This is particularly

helpful in the scenarios where a non-matching mapping between the input and output vocabularies

is required by the particular SPA operation – as an example, converting between different semantic

pointer conceptual spaces of differing dimensional sizes.

18It should be noted that another approach to computing the WTA function is to have a single N -dimensional
ensemble, and solving the decoders such that they compute the WTA function. But, this approach is often less
“clean” and introduces noise (multiple output semantic pointers) to the resulting output. However, this approach
is more amenable if the neural ensemble is required to learn or modify the WTA function in any way – either by
having to learn the WTA function from scratch, or if additional items are added to the cleanup vocabulary.
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Figure 2.21: The neural network used to compute the HRR-SPA cleanup operation. To compute
the similarity values, the input vector is multiplied with the transpose of the cleanup vocabulary
matrix M . Next, recurrent inhibitory connections are used to perform the WTA operation on the
similarity values, which have been thresholded by appropriately adjusting the response curves of
each neural ensemble. The result of the WTA operation is projected onto another population
that calculates the function f(x) = 1 for any population that is active as a result of the WTA
operation, converting the similarity vector into a binary (either 0 or 1) vector. Finally, the binary
similarity vector is multiplied with the cleanup vocabulary matrix to generate the final cleaned
semantic pointer output. To reduce clutter, the recurrent inhibitory connections have only been
shown for the first two ensembles. In reality, each ensemble has an inhibitory projection onto all
other ensembles.

2.5.6 SPA Subsystem Components Implemented as Neural Networks

Section 2.4 introduced the major components of the SPA subsystem as the mechanisms for se-

mantic pointer compression, semantic pointer transformation, and an action selection system. As

the neural implementations for the components of the transformation mechanisms were discussed
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in the previous section, this section will explore the neural implementations of the compression

and action selection mechanisms.

2.5.6.1 Semantic Pointer Compression – Memory

Mathematically, an integrator is the simplest form of memory, because it accumulates input over

time. In addition, an integrator “remembers” the value that has been accumulated when the input

to the integrator is removed. In the NEF discussion thus far, two of the three principles of the

NEF (representation and transformation) have been discussed. To construct an neural integrator,

the third principle of the NEF is used. Detailed in Chapter 8 of Eliasmith and Anderson (2003),

the third principle of the NEF states that any dynamical system of the form

ẋ(t) = Ax(t) +Bu(t) (2.55)

can be understood in block diagram network form as shown in Figure 2.22A. Converting the

block diagram form into a neural implementation requires replacing the integrator (central box)

with the transfer function of the neural synapse and compensating for this change in the A and

B matrices, with the new matrices referred to as A′ and B′ respectively (see Figure 2.22B).

 
 
 

A B 

ẋ(t) 
B x(t) u(t) + 

A 

∫ B’ x(t) u(t) + 

A’ 

h(s) 
ẋ(t) 

Figure 2.22: Block diagrams of a generic dynamical system, and the equivalent neural imple-
mentation. (A) Block diagram representation for the dynamical system ẋ(t) = Ax(t) + Bu(t).
(B) Neural implementation equivalent of the previous block diagram. The integrator is replaced
with the transfer function of the neural synapse (h(s)), and the A and B matrices are replaced
by A′ and B′, which compensate for the replacement of the integrator. The exact values of A′

and B′ depend on the dynamics of the synapse (i.e., h(s)). (Figure adapted from [Eliasmith and
Anderson, 2003] with permission.)

For the exponential synapses used in the Spaun model (see Figure 2.15), the weights A′ =

τA+I and B′ = τB, where τ is the time constant of the exponential synapse used. The dynamical

systems equation for an integrator is

ẋ(t) = u(t) (2.56)
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Figure 2.23: Simple schematic of how an integrator is implemented with a population of neurons.
The grey circle represents a population of neurons and the square boxes represents the constant
weights A′ and B′ applied to each signal. For an “ideal” integrator, A′ = 1 and B′ = τPSC .
(Figure adapted from [Choo, 2010] with permission.)

which results in a neural network where A′ = 1 and B′ = τPSC (see Figure 2.23).

More complex (controlled) integrators and memory systems are constructed using the same

underlying concept with additional circuitry used to control the flow of information into the inte-

grator or within the integrator via the feedback loop (see Section 2.5.6.4 for constructs to control

the flow of information, and Section 3.3.8.3 for examples of more complex memory systems).

2.5.6.2 Semantic Pointer Compression – Compressive Hierarchy

The methods of the NEF are not used to directly construct hierarchical neural networks used to

perform tasks like sensory input classification. This is because while the NEF can be used to

approximate the complex functions necessary for these hierarchies, the machine learning commu-

nity has developed more effective methods for generating these hierarchies. Rather, to construct

hierarchical neural networks, the machine learning community initializes the networks with ran-

domized connection matrices and a learning algorithm is applied to modify the weights to perform

the appropriate task.

However, once a hierarchical model has been trained using the various machine learning

techniques, converting them into spiking neuron models using the NEF is straightforward. The

connection weights defined in the hierarchical model is used as the transformation matrix C

(see Equation 2.41), and an ensemble of neurons is used to approximate the non-linearity (e.g.,

logistic, tanh, etc.) used in each node of the original hierarchical model. Figure 2.24 illustrates an

example hierarchical 3-layer model using sigmoid “neurons”, and the equivalent NEF hierarchical

3-layer spiking neural network.

It should be noted that the method for constructing a spiking compressive hierarchy presented

above is a näıve approach using only the NEF methods of function approximation discussed so
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Figure 2.24: Comparison of a generic machine-learned hierarchical network and the equivalent
NEF hierarchical network. (A) Schematic of a generic 3-layer hierarchical network. Each layer
consists of nodes that compute a sigmoid function non-linearity. The output of each layer is
projected onto a weight matrix (W), the result of which is used as the input to the next network
layer. (B) Schematic of the hierarchical network in (A) converted into a spiking neural network
using the NEF. Each node in the former network is replaced with a neural ensemble with enough
neurons to approximate the original sigmoid non-linearity. The sigmoid function itself is computed
though the network projections between layers (dotted lines). The weight matrices in both
networks are identical.

far. Section 4.1.1 explores a more elegant method of directly constructing spiking hierarchical

neural networks.

2.5.6.3 Information Flow Control – Action Selection

As discussed in a Section 2.4, the action selection component of the SPA subsystem monitors

the current state of the system, and produces the appropriate control signals (actions) necessary

to control the flow of information in the model. Since the model in question is an SPA model,
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semantic pointers are used to represent the various states the system can occupy. For the action

selection component to decide which action to perform, it needs to compare the various semantic

pointers representing the current state (the “system state”) to a bank of predetermined state

semantic pointers (the “condition set”), each of which are associated with a specific action (the

“consequence set”).

The state semantic pointer comparison operation can be implemented using the cleanup mem-

ory network discussed previously. In the context of building cognitive models, however, they are

not used because for semantic pointers with close similarities, the cleanup memory network can

output the wrong result, especially during the transition from one semantic pointer input to

another.19 Additionally, because the action selection component is a critical part of a model’s

decision making system, in order to replicate behavioural effects (e.g., spiking activity patterns,

reaction times, etc.), it is necessary to take inspiration from biology for this part of the SPA

subsystem.

Both neuroscientists and cognitive scientists generally believe that the basal ganglia (BG) is

part of the brain’s action selection system (e.g., [Kropotov and Etlinger, 1999; Redgrave et al.,

1999]). In 2001, Gurney, Prescott and Redgrave developed a rate-based basal ganglia model

constrained by the known neuron types and connectivity of the biological basal ganglia. Using

the principles of the NEF, this model has been adapted for use as the core of the action selection

component of the SPA [Stewart et al., 2010]. In terms of operation within the larger SPA model,

semantic pointers of the system state are projected onto the input ensembles (the striatum D1

and D2 populations, and the subthalamic nucleus) of the basal ganglia through transformations

similar to the cleanup memory network. The transformations convert the system state semantic

pointer into a utility value for each condition in the condition set. As a consequence of the way the

inhibitory and excitatory connections are set up in the basal ganglia network, a winner-take-all-

like operation is performed on these utility values, and an inhibitory output signal is produced.20

The inhibitory output of the basal ganglia is then inverted through a projection onto a neural

ensemble. Figure 2.25 illustrates the structure and operation of a 3-condition set NEF basal

ganglia model.

Section 3.3.8 provides a more detailed description of how the basal ganglia model is integrated

with various working memory components and the other information flow components to form

the complete action selection system.

19While this drawback can be mitigated in other parts of the network through the use of appropriate information
flow control, the same mitigation methods cannot be applied to the action selection component (as it is an integral
part of the flow control system).

20The basal ganglia produces inhibitory outputs, where the output with no activity is the “chosen” action.
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Figure 2.25: Schematic of the basal ganglia (BG) network, and plots of an example operation of
the network. (A) Schematic of a 3-condition set basal ganglia network used in the majority of
NEF models. Shown are the excitatory and inhibitory projections between the neural ensembles.
Note that the projections shown are generic projections between the populations representing
the different brain areas in the basal ganglia, not individual projections between each neural
ensemble. (B) Decoded value plots of a 3-condition set NEF basal ganglia network. The top
plot shows the input utility values (values fed to BG input) starting from [0.3, 0.5, 0.8], and
transitioning to [0.5, 0.8, 0.3], and lastly to [0.8, 0.3, 0.5]. The bottom plot shows the output
of the basal ganglia, showing it selecting “Output 3”, then “Output 2”, and finally “Output 1”,
demonstrating the network’s ability to perform a WTA-like operation. Note that output of the
basal ganglia is inhibitory, meaning that the “chosen” output has the lowest (almost 0) decoded
value.
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2.5.6.4 Information Flow Control – Gating

As described in Section 2.4.3, the goal of the gating component is to restrict the flow of information

to parts of the subsystem when given the appropriate control signal from the action selection

component. As neurons spike only when there is sufficient input current, mathematically, the

gating behaviour can be achieved by introducing enough negative current into the neuron such

that the neuron does not activate. Biologically, restricting the neuron from firing through the

introduction of a control signal is known as inhibition. The negative inhibitory current can be

achieved through the influx of negatively charged ions into the neuron (inhibitory post-synaptic

potentials), or by opening channels in the dendrites that cause the current to flow out of the cell

(shunting inhibition).

In the NEF, gating inhibition is achieved by adding an inhibitory input to each neuron. On

the population level however, the inhibitory control signal cannot simply be a negative x value,

since the neural populations are typically optimized to operate with both positive and negative x

values. In addition, for multidimensional ensembles, a “negative x value” cannot be appropriately

defined. As such, the connection weights for the inhibitory connection is modified such that given

a positive inhibitory signal, a negative current is added to the input current to the neuron. In

terms of the NEF, the inhibitory input is represented just like any other input to the population,

and the output of the population is represented as the linear combination of the original input x

and the inhibitory input q (see Section 2.5.4.5).

The connection weight matrix between the input population x and the output population z is

calculated as usual – that is to say, using the decoders and encoders to calculate the weight matrix.

However, the connection weight matrix for the inhibitory input population, q, is predefined such

that every connection has a weight of −1. The input current to each neuron in the output

population is then:

Jz(C1~x + C2q) =
∑
i

wx
i a

x
i (~x) +

∑
j

wq
j a

q
j (q) + Jbias, (2.57)

where wx
i = αC1

(
~ez ⊗ ~dx

i

)
, and wq

j = αC2(−1). Note that the value of the weight C2 can be

set to any arbitrary value that is greater than the maximum optimal representational range of

the neuronal population. It should be noted that because the inhibitory input connection weight

matrix does not include encoders or decoders, Equation (2.57) is applicable to multidimensional

ensembles with no modifications necessary. Figure 2.26 shows the effect of adding an inhibitory

input to a population of neurons representing the identity function (y = x).

As is the common theme of the NEF, the method of gating information flow through inhibition

is not the only method available to neural network modellers. Gating can also be accomplished
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Figure 2.26: Illustration of the effect of inhibiting the output of a 50-neuron population. (Left)
Plot of the decoded output of the neural population overlaid with the inhibitory input to the
population, and the input signal to the population. When the inhibitory input is present, the
output of the population drops to 0, and all the neurons in the population stop spiking (see right
plot). (Right) Spike raster plot for each neuron in the population.

though the use of a multiplication or binding ensemble (through the multiplication with 0, or

the binding with the “∅” semantic pointer), or through the use of non-linear multiplicative den-

drites [Bobier, 2011].

2.5.6.5 Information Flow Control – Inhibited Biased Populations

The basal ganglia network described in the previous section poses a unique problem in terms of

its outputs: the output values are inverted and meant to inhibit the efferent populations. Because

of the inversion, a mechanism is needed to reverse the inversion before the signal is used in the

rest of the system.

In the NEF, biased neural populations take on this role. Biased neural populations are created

by adding a constant current input to the neurons such that when no input (i.e., x(t) = 0) is

provided to the neural population, the output of the neural population is the desired bias value.

As an example, if the desired bias value (C) is 0.5, using equation (2.29) the input current to the
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neurons is calculated as:

J(~x) = α(~e • ~x) + Jbias + α(~e •C)

J(~x) = α(~e • ~x) + Jbias + α(~e • 0.5),

where α(~e •C) is the constant bias input current added to the neural population.

These biased neural populations can be used to invert the output of the basal ganglia by setting

C = 1, and by using the output of the basal ganglia as inhibitory inputs (see Section 2.5.6.4) to

gate each biased ensemble (see Figure 2.27A). In essence, when the output of the basal ganglia

is active (i.e., the action is not “chosen”), the biased population will be gated and the output

will be 0. When the output of the basal ganglia is close to 0 (i.e., the action has been “chosen”),

the biased population will stop being inhibited, allowing the predefined biased value (1) to be

propagated to the rest of the system. Should another value be desired, the decoders of the biased

population can be calculated to provide that value.

In most SPA models, the biased populations that invert the output of the basal ganglia are

collected together in a network referred to as the thalamus, referencing the part of the biological

brain that receives the majority of inhibitory outputs from the basal ganglia [Le Gros Clark,

1932]. Functionally, the thalamus is believed to play a crucial role in the routing of information

between different areas of the brain (e.g., [Uno et al., 1970; Vives and Mogenson, 1985; Hwang

et al., 2017]) which match the intended role for the thalamus in SPA models (see Section 3.1.4).

Figure 2.27 illustrates the structure and operation of the thalamus for the 3-condition set NEF

basal ganglia model from Figure 2.25.

2.5.7 Discussion

This section outlined the basic principles of the NEF, and provided examples of how they are used

to implement the various HRR-SPA operators in neural networks. It should be noted that in the

interest of brevity, this presentation of the NEF deliberately overlooked some of the finer details

of the neural calculations; in particular, the discussion of how to compensate for the inherent

noisiness of neurons (since they communicate in discreet spikes and not in real-valued signals)

has been omitted. Details on the derivations of the NEF equations that compensate for this and

other sources of noise can be found in [Eliasmith and Anderson, 2003].

2.5.7.1 Saturation: Side-effects of a Neural Implementation

Biologically, and looking at Equation 2.25, it can be seen that because neurons have a refractory

period in which they cannot fire regardless of the magnitude of the input current, neurons have a
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Figure 2.27: Schematic of the thalamus network, and plots of an example operation of the network.
(A) Schematic of a 3-action set thalamus network. The inhibitory input projections are the
outputs of a BG network. For the 3-action set thalamus network, a 3-condition set BG network is
required, such as the one illustrated in Figure 2.25. The BG outputs inhibit the neural populations
in the thalamus network using the mechanisms described in the previous section. (B) Decoded
value plots of the 3-action set thalamus network. The top plot shows the output of the BG
network that serves as the input to the thalamus network. The middle plot shows the output of
the thalamus network before the output transformation is applied. Since the thalamus consists of
neural populations with a bias value of 1, the output of the thalamus is 1 when the appropriate
thalamus action is “chosen” (As in Figure 2.25, “Out(put) 3” is selected, followed by “Out 2”,
and lastly “Out 1”). The bottom plot shows the output of the thalamus network, after the output
transform has been applied. While the output shown in the figure is only two dimensional, this is
meant to demonstrate that the thalamus can be configured to output multidimensional semantic
pointers to the rest of the system. The correct transform output values are shown in the legend.
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fixed upper bound on how fast they can fire. In the NEF, this can be demonstrated by providing a

neural ensemble with an input value outside the range in which the decoders have been optimized.

This “saturation” effect is evident in both the scalar and multidimensional ensembles as well as

in their equivalent ensemble arrays (see Figure 2.28). Because the saturation phenomenon limits

the magnitude of the output vector without greatly affecting the proportional difference between

each vector element, the effect of saturation is similar to the HRR-SPA normalization operation

(see Section 2.3.6), and is sometimes referred to as a having a “soft-normalization” effect on the

semantic pointers.

The saturation effect is also apparent in the ensemble arrays, however, the amount of satura-

tion differs depending on how the ensemble array is configured. Because ensemble arrays represent

subsets of the vector value independently, the effects of saturation depend on the dimensionality

of each ensemble within the ensemble array (referred to as “sub-ensembles”). Figure 2.29 demon-

strates the effect of saturation on a 512-dimensional ensemble array constructed with 1D, 8D,

16D, and 64D sub-ensembles.
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Figure 2.28: Demonstration of the neural saturation effects of multidimensional neural ensembles
and ensemble arrays. For each plot, the neural ensembles / ensemble arrays are scaled linearly
with the dimensionality, with the single-dimensional ensemble comprised of 30 neurons. Addi-
tionally, the 95% confidence ranges for 10 randomly generated trials are displayed. (Left) Plots
of the input and output values for several multidimensional ensembles. Without the effects of
saturation, the input and output values will match (reference line). As the plots demonstrate,
the output of the ensemble saturates regardless of the dimensionality of the ensemble. However,
the effect of the saturation reduces as the dimensionality increases. It is hypothesized that the
increased number of neurons allows for larger vectors to be represented before saturating the
ensemble. (Right) Saturation plots for equivalent ensemble arrays (composed of one-dimensional
sub-ensembles). Each sub-ensemble in the ensemble array is optimized to the value ranges as per
the discussion in Section 2.5.5.1. The ensemble arrays display similar saturation effects, however
since each dimension can be represented independently, the saturation effect is less pronounced
as the dimensionality increases (compared to the multidimensional ensemble counterpart).
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Figure 2.29: Demonstration of the neural saturation effects on a fixed dimensionality ensemble
array configured with sub-ensembles of 1 dimension, 8 dimensions, 16 dimensions, and 64 dimen-
sions. As the plots illustrate, the saturation effect is present regardless of the dimensionality of
the sub-ensembles, with larger sub-ensemble dimensionality exhibiting more saturation.
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Chapter 3

Spaun

Spaun [Eliasmith et al., 2012] is, the world’s largest functional brain model, consisting of roughly

2.5 million neurons, and able to perform eight tasks of varying cognitive difficulties. To understand

the tasks that Spaun was designed to perform, as well as the architecture of its design and the

role the SPA plays in this architecture, it is helpful to review the history of Spaun’s history.

Spaun was conceived as a proof-of-concept neural network, constructed using the methods de-

scribed by the NEF and the SPA, and importantly, it had to be entirely self-contained, mimicking

the biological condition whereby all inputs received by the system would be sensory information,

and all outputs produced would be some form of motor action. Prior to the construction of

Spaun, various models of different cognitive functions (e.g., visual processing, working memory,

action planning) had been developed, and it was hypothesized that the NEF and the SPA could

serve as the tools to integrate these various models together into a truly self-contained system.

This chapter briefly describes each of the “precursor” networks that served as the building

blocks of Spaun, followed by the description of each of Spaun’s eight task and how the SPA was

used to accomplish each of these tasks, a description of the different modules of Spaun.

3.1 Precursor Networks

The initial iteration of Spaun integrated six existing stand-alone neural networks. Importantly,

these networks were chosen because each contributed to a different aspect of the computation

needed to perform the set of Spaun’s tasks.21 These six neural network models were:

21It should be noted that all of the models were also developed by various members of the Computational
Neuroscience Research Group at the University of Waterloo, the same lab which developed Spaun.
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� An MNIST classification vision neural network [Tang and Eliasmith, 2010]

� The NOCH motor control framework [DeWolf, 2010]

� The OSE serial working memory model [Choo, 2010]

� A basal ganglia (BG)-based symbolic reasoning system [Stewart et al., 2010]

� A general inductive reasoning neural network [Rasmussen, 2010]

� An adaptive spiking BG model [Stewart et al., 2012]

3.1.1 MNIST Visual Network

The MNIST (Modified National Institute of Standards and Technology) visual network is a sparse

deep belief network constructed using traditional machine learning techniques to perform digit

classification using the images contained in the MNIST dataset. The network consists of four

hidden layers of 1000, 500, 300 and 50 nodes, with each node computing a sigmoid non-linearity

(Figure 2.8 illustrates how the network is structurally constructed). Stimuli are provided to the

network as a 28 × 28 pixel image “flattened” into a 768 dimensional vector. The output of the

final layer is a 50-dimensional vector that is used as an input to a classifier that classifies the input

into one of the ten image classes (one class for each digit from 0 to 9). The connection weights

between each layer were computed by training each layer using a greedy unsupervised learning

algorithm on Restricted Boltzman Machine (RBM)-based auto-encoders [Tang and Eliasmith,

2010] using images from the MNIST dataset.

3.1.2 NOCH Motor Control Framework

The NOCH (Neural Optimal Control Hierarchy) framework is a control-theoretic approach to

modelling the different areas of the brain involved in motor control. It proposes that various

motor-related brain areas compute specific functions that are hierarchically combined to perform

the overall task of motor control (see Figure 3.1). It takes, as an input, a trajectory in XY

space and uses a hierarchical network architecture to compute the control signals required to

achieve the desired trajectory, by projecting the XY control signals into a lower-level (but higher

dimensional) joint-angle space, and finally, to compute the necessary motor (muscle) commands

from the joint-angle space control signals [DeWolf, 2010].

3.1.3 OSE Serial Working Memory Model

The OSE model is a semantic pointer-based model of serial working memory that is able to

reproduce several recall effects (primacy and recency for both immediate and delayed recall)
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Figure 3.1: Schematic of the NOCH motor control framework. The solid arrows indicate control
signals generated within and projected to other parts of the NOCH framework. The dashed arrows
indicate feedback signals provided by external sensory stimuli and projected back up through the
motor hierarchy. (Figure adapted from [DeWolf, 2010] with permission)

observed in human participants. In the OSE model, information is encoded using positional

vectors. As an example, the list [ONE,TWO,THREE] is encoded as:

LIST = POS1~ONE + POS2~ TWO + POS3~ THREE

where ONE, TWO, and THREE are randomly generated HRR vectors representing the individual

items in the list, and POS1, POS2, and POS3 are randomly generated HRR vectors representing

the positional information of each item in the list.

Architecturally, the list information is stored within two groups of multi-dimensional recur-
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rent attractor neural networks (see Figure 3.2A). The recurrent attractor networks are based

on work done in [Singh and Eliasmith, 2006]. The two neural attractor networks reproduce the

functionality of the working memory system and the hippocampus [Choo, 2010]. It should be

noted that it is hypothesized that the compression of semantic pointers due to neural saturation

(see Section 2.5.7.1) is responsible for model’s ability to faithfully reproduce the memory recall

curves observed in human experiments (see Figure 3.2B).

3.1.4 The (Symbol-like) Reasoning System

The reasoning system [Stewart et al., 2010] is an extension of the NEF implementation of the SPA

action selection system described in Section 2.5.6.3. It consists of three components: a generalized

spiking neuron model of cortex, a spiking basal ganglia network, and a spiking model of the

thalamus. The cortex network consists of ensembles and memory networks that represent or store

information as semantic pointers. As in Section 2.5.6.3, the basal ganglia network compares all

of its input values and determines the one with the highest utility. Finally, the thalamus network

takes the output of the basal ganglia and projects it back into semantic pointer space. These three

elements are connected in a loop such that the information stored in cortex influences the output

of the basal ganglia, thus changing the output of the thalamus. The output of the thalamus

then modifies the values stored in cortex, completing the loop (see Figure 3.3). Importantly, the

reasoning system presents a method by which this loop – called the cortico-basal ganglia-thalamic

loop – can be used to perform complex cognitive reasoning tasks.

The recursive structure of the (cortico-basal ganglia-thalamic) loop allows for the reasoning

system to be constructed as a set of condition-consequence pairs. As will be discussed in the

sections to follow, in a neural system, the conditions are implemented as projections from the

cortex to the basal ganglia. Likewise, the consequences are implemented as projections from the

thalamus back to the cortex. By combining the conditions and consequences into the condition-

consequence pairs, the reasoning system completes the (cortico-basal ganglia-thalamic) loop.

Conceptually, conditions denote the comparison of the system state to a set of predetermined

requirements, and in doing so, generate the utility values necessary for the basal ganglia’s oper-

ation. Similarly, consequences denote the “actions” (information flow) performed as a result of

the winner-take-all-like mechanism of the basal ganglia-thalamus combination.

Together, the condition-consequence pairs allow structures similar to decision trees, state

machines, and production rule systems (e.g., [Anderson, 1996; Laird, 2012]) to be constructed in

a network of spiking neurons. The remainder of this section describes the neural implementation

of different conditional types and different consequence types, and how the entire loop can be

employed to perform a series of reasoning tasks (sequence repetition and question answering).
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Figure 3.2: (A) Schematic of the OSE memory model, comprising of two recurrent attractor
networks – a “working memory” component and a “hippocampal” component. (B) Results
obtained with the OSE model compared to human recall data. (Top) Human serial recall data
for lists varying in length from 3 to 6 items. (Middle) OSE model serial recall data for lists
varying in length from 3 to 6 items, illustrating that the OSE model is capable of capturing the
overall recall trends (primacy and recency) observed in the human recall data. (Bottom) Recall
accuracy plots for 6-item lists using the OSE model modified to use vector normalization (L2-
norm) rather than depending on neural saturation for normalization. It can be seen that using
this method of normalization, the OSE model is unable to match the human recall data. This is
true across a range of values for one of the OSE model’s free parameters (ρ), which affects the
feedback weighting in the hippocampal component of the model. (Figures adapted from [Choo,
2010] with permission)
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Figure 3.3: Schematic of the reasoning system, illustrating the core cortico-basal ganglia-thalamic
loop. Information stored and represented in the cortical areas ( 1O) are projected into the basal
ganglia network through an input transformation matrix to generate the basal ganglia input
utility values ( 2O). These utility values affect the outputs of the basal ganglia, which serve as
inhibitory inputs to the thalamus ( 3O). This in turn affects the output of the thalamus, which
through the thalamic output transformation matrix modifies the information stored in cortex
( 4O), completing the cortico-basal ganglia-thalamic loop.

It should be noted that while the reasoning system described in [Stewart et al., 2010] outlines

the basic foundation of the reasoning system, the notation and definitions used in the succeeding

sections have been expanded, formalized and formulated to facilitate specifically the discussion

of Spaun’s action selection system (see Section 3.3.8). In addition, the implementation of sev-

eral networks, in particular the consequence networks (described below), have been modified to

improve the ease of integration into the Spaun model.
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3.1.4.1 Notation

In this thesis, the following notation is used to denote the different components of the condition-

consequence pairs:

� Lower-case italicized names are used to represent the locations holding state information

(i.e., the neural ensembles representing the state semantic pointers). As an example, the

symbol “vision” might be used to represent state information originating in the visual

system.

� Condition statements are represented using algebraic and HRR-SPA operators (in particu-

lar, the dot product operator (•)). For example, a condition statement might be represented

as: 0.5× (vision • BLUE) + 0.5× (vision • RED)

� Consequence statements are also represented using algebraic and HRR-SPA operators. In

addition, because consequences result in information being transferred back into cortex, the

“⇒” symbol is used to signify this transfer. As an example, a consequence that results in

the semantic pointer “BLUE” being transferred into visual memory (vis mem) is written as:

BLUE⇒ vis mem. Consequences that result in multiple consecutive transfers to different

areas of cortex are written as comma-separated list of each transfer, for example:

BLUE⇒ vis mem,WALK⇒ motor

� Conditions and consequences are paired up using the “ 7−→” symbol. For example:

vision • RED 7−→ RED⇒ vis mem

3.1.4.2 Conditions

There are two types of conditions in the reasoning system: static conditions, and dynamic con-

ditions. As previously stated, the goal of both condition types are to generate the utility values

necessary for the basal ganglia network’s operation. The difference between the two types of

conditions are the methods by which the utility values are computed.

To generate the basal ganglia utility values, static conditions involve the comparison of the

state of the system (represented by spiking neural ensembles) to pre-specified semantic pointer

values that do not change as the system is running. In the HRR-SPA, this comparison is performed

using the dot product operator:

state • STATIC SP

Because one operand of the dot product operation is unchanging, the spiking NEF implemen-

tation of comparison can be computed by using a transformation matrix M composed of the
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necessary pre-specified semantic pointer values, similar to the methods used to construct the

cleanup memory networks.

While static conditions make comparisons to unchanging semantic pointer values, dynamic

conditions compare the state of the system to a semantic pointer stored in other areas of cortex

(i.e., in a neural ensemble), which can change values during the course of operation of the system.

These other areas of cortex can also be used as state information, and as such, dynamic conditions

are written as:

state1 • state2

Because both operands of the dot product operation are variable with the dynamic condition,

the dot product operation cannot be computed as a linear transform. Instead, a dot product net-

work22 is added between the cortical state ensembles and the input of the basal ganglia network.

It should be noted that because each dynamic condition requires its own dot product network, the

NEF implementation of the dynamic conditions is expensive in terms of neuron counts. Figure 3.4

illustrates the implementation of a set of static conditions, and a set of dynamic conditions.

In addition to static and dynamic conditions, individual conditions can be constructed as

compound conditions, where multiple conditions can be combined to exhibit behaviours like the

binary operators AND, OR, and NOT . In the examples that follow, static conditions are used to

simplify the conditional constructs. Additionally, it is assumed that the maximum utility value

a condition can have is 1, as this is consistent with the definition of the dot product operator, as

well as the understanding that, by default, scalar neural ensembles constructed using the NEF

are optimized to represent values in the range (−1, 1).23

Compound OR Conditions: Compound OR conditions can be constructed simply by adding

multiple conditions together. Assuming that the maximum utility value of the conditions is 1, as

long as one of the conditions is true, the overall conditional utility value should be greater than

1. Figure 3.5 illustrates a 3 set setup of compound OR conditionals and an example operation.

This approach works in the majority of cases; however, there are some caveats that must be

considered. First, conditions can take negative values, which means that the combined condi-

tional utility might not be greater than 1, reducing the effectiveness of the “OR” behaviour (see

Figure 3.5B, segment 4O). Additionally, the recurrent and neural nature of the basal ganglia

network means that extremely large utility values – which are possible if all of the conditions

22In the NEF, a dot product network can be constructed using an ensemble array of multiplication sub-ensembles.
The output of the multiplication sub-ensembles are summed to produce the dot product value.

23The convention that 1 is the maximum utility value for the basal ganglia network is not strict. This convention
can be violated as long as the appropriate changes are made to the neural ensembles within the basal ganglia, and
that every condition follow the same convention.
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Figure 3.4: Schematic of example implementations of the static and the dynamic conditions
of the reasoning system. (A) Schematic of the implementation of the static condition (state •
STATIC SP). The basal ganglia input utility value is determined by computing the dot product
between the output of the state ensemble, and the static semantic pointer STATIC SP. This
is implemented using a transformation matrix with the value STATIC SPT , similar to the dot
product operation in the cleanup memory networks. (B) Schematic of the implementation of
the dynamic condition (state1 • state2). The basal ganglia input utility value is determined by
computing the dot product between the output of the state1 and state2 ensembles, through the
use of a neural dot product network.

in the compound OR condition evaluate to true – can cause the basal ganglia network to ex-

hibit unexpected behaviours (e.g., choosing the wrong utility value, or sticking to the previously

chosen utility value). Both of these caveats can be mitigated by adding additional networks to

“pre-process” the utility values of the constituent conditions.

Compound AND Conditions: Like the compound OR conditions, the compound AND

conditions can be constructed by using the addition operator. However, each constituent condition

is scaled such that the compound condition only evaluates to 1 when all of the constituent

conditions are met. Figure 3.6 illustrates a 2 set setup of compound AND conditionals and an

example operation.
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Figure 3.5: Schematic and operation of example OR conditionals in the reasoning system. (A)
Schematic of a 3-set setup of OR conditionals, where the first condition only activates when state1
is A OR when state2 is B, the second condition only activates when state2 is C OR when state3
is D, and the third condition only activates when state1 is E OR when state2 is F. Listed are the
equivalent condition statements, and the necessary basal ganglia input transforms needed to com-
pute the appropriate basal ganglia utility values. Additionally, the network structure equivalent
of the 3-set OR conditionals is illustrated. (B) Example operation of the OR conditionals. The
plots are divided into four segments, separated by the dashed lines. For compactness, only the
outputs of state1 and state2 are displayed, with the output of state3 fixed to be ∅. [ 1O] In this
segment, it is observed that satisfying part of the first conditional (i.e., state1 is A) results in the
first conditional being activated (“Out 1”)(recall that the basal ganglia output is inhibitory). [ 2O]
In this segment, it is observed that satisfying the second half of the first conditional (i.e., state2
is B) results in the first conditional being activated (“Out 1”). [ 3O] In this segment, the value
of state2 changes to C, satisfying the second conditional, resulting in the appropriate change in
the activated conditional (“Out 2”). [ 4O] In this final segment, both parts of the first conditional
are satisfied, resulting in a utility value (“Utility 1”) that is outside the optimized range of the
basal ganglia network (which is typically from 0.5 to 1.5). This causes an unexpected output of
the basal ganglia network – in this case, rather than being activated, the first condition (“Out
1”) is slightly inhibited, as evidenced by a positive deviation of the output value from the zero
line. As a reminder, the output of the BG network is inhibitory, and thus, if all of the outputs
are positively valued (as is the case in this segment), none of the conditionals are active.
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As with the compound OR conditional, the compound AND conditional comes with caveats,

primarily due to the non-binary nature of the real-valued utility values. Figure 3.6B, segments

4O and 5O illustrate two consequences of the real-valued nature of the utility value. In the first

example, a compound AND conditional has an overall utility value equal than 1 despite only

having half of the conditions met. In the second example, because none of the conditions evaluate

to a higher utility, a compound AND conditional is “chosen” when only a portion of its conditions

are met, even when the overall utility of the compound condition evaluates to less than 1. In

contrast, in a purely binary implementation, because none of the conditionals are fully satisfied,

none of the conditions would have been chosen.

NOT Conditions: In the reasoning system, the NOT condition (i.e., the condition should be

“chosen” when the state is any value other than the specified semantic pointer) is implemented

using a biased subtraction. In essence, if a negation of the conditional value C is desired, the

system is configured such that the utility calculation 1 − C (see Figure 3.7). As with the OR

and AND conditionals, the NOT condition is not without caveats, particularly in ensuring the

output of the utility calculation is well defined. As an example, unexpected results can occur

when the utility value of the conditional C is between 0 and 1, because the 1 − C computation

may result in a utility value high enough for the condition to be activated.

Additionally, combining the NOT conditional with other compound conditions can be un-

intuitive. As an example, compounding two conditions together to form an AND conditional

typically involves applying weights to each condition. To illustrate, the conditional statement for

“state1 is A AND state2 is B” is:

(0.5× state1 • A + 0.5× state2 • B).

Likewise, the compound condition “state1 is A AND state2 is NOT B” can be stated as:

(0.5× state1 • A + 0.5× (1− state2 • B)).

However, a “cleaner” definition of the compound NOT condition (see Appendix A.3) is:

(state1 • A− state2 • B).

Segments 3O through 6O of Figure 3.7B also illustrate two other examples of compounding the

NOT with the AND and OR conditionals.

Default Conditions: The reasoning system also allows for the implementation of “default”

conditions, which are conditions that are “chosen” when all other conditions are not fully met.
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Figure 3.6: Schematic and operation of example AND conditionals in the reasoning system. (A)
Schematic of a 2-set setup of AND conditionals, where the first condition only activates when
state1 is A AND when state2 is B, and the second condition only activates when state1 is C
AND when state2 is D AND when state2 is E. Listed are the equivalent condition statements,
and the necessary basal ganglia input transforms needed to compute the appropriate basal ganglia
utility values. Additionally, the network structure equivalent of the 2-set AND conditionals is
illustrated. (B) Example operation of the AND conditionals. The plots are divided into five
segments, separated by the dashed lines. For compactness, only the outputs of state1 and state2
are displayed, with the output of state3 fixed to be ∅. Additionally, the basal ganglia network
is configured such that only utility values greater than 0.5 will activate it. [ 1O & 2O] In these
segments, it is observed that satisfying only half of the first AND conditional (state1 is A,
followed by state2 is B) does not result in any conditions being activated. [ 3O] In this segment,
the first AND conditional is fully satisfied, resulting in a utility value of 1 (“Utility 1”), and an
activated condition (“Out 1”). [ 4O] Here, the input to the first condition is “state1 is 2 × A”,
which technically only satisfies half of the conditional. However, because the computed utility
(“Utility 1”) has a value of 1 (due to the non-binary nature of the computation), the first condition
remains activated (“Out 1”). [ 5O] In the final segment, two of the three conditions in the second
AND conditional is satisfied (state1 is C AND state2 is D), resulting in a utility value of 0.7.
However, because the utility value of this condition is large enough to trigger the basal ganglia
network, it is erroneously activated (“Out 2”).
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Figure 3.7: Schematic and operation of example NOT conditionals in the reasoning system.
(A) Schematic of a 3-set setup of compound NOT conditionals. The first condition activates
whenever state1 is NOT A, the second condition activates when state1 is B OR when state2 is
NOT C, and the third condition activates when state1 is D AND when state2 is NOT E. Listed
are the equivalent condition statements, the necessary basal ganglia input transforms needed
to compute the appropriate basal ganglia utility values, and the network implementation. The
constant “1” inputs to the conditionals are provided by bias populations, similar those in the
thalamus network. (B) Example operation of the NOT conditionals. The plots are divided into
six segments, separated by the dashed lines. [ 1O & 2O] These segments demonstrate the first (C1:
singular NOT ) conditional. In segment 1O, none of the conditions are satisfied, thus none of
them are activated. In segment 2O, state1 is ∅, satisfying the first condition (“Out 1”), resulting
in it being activated. [ 3O & 4O] These segments demonstrate the second (C2: compound NOT
and OR) conditional. In segment 3O, the first half of the second condition (state1 is B) is met,
thus the second condition (“Out 2”) is active. Similarly, in segment 4O, the second half of the
second condition (state2 is B, which is NOT C) is met, thus “Out 2” remains active. [ 5O & 6O]
These segments demonstrate the third (C3: compound NOT and AND) conditional. In segment
5O, only half of the third conditional is met (state1 is D), thus resulting in no active conditionals.

In segment 6O, both halves of the third condition are met (state1 is D AND state2 is NOT E).
Consequently, the third conditional is activated (“Out 3”).
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Default conditions are implemented as conditions consisting of only scalar values. The scalar value

is chosen such that is it between the potential maximum utility value of a partially met condition

and the utility value of a fully met condition (typically 1). Figure 3.8 illustrates an example

implementation of a default condition, and its interaction with other compound conditions.

3.1.4.3 Consequences

While conditions transform the state of the system into utility values for the basal ganglia network,

consequences perform the inverse role of transforming the output of the thalamic network into

usable values projected back into cortex.

As with the conditions, consequences also come in multiple types: static consequences, dy-

namic consequences, and hybrid consequences. Static consequences result in a constant value

output to the cortex, while dynamic consequences result in a value being transferred from one

area of cortex to another, regardless of the actual value being transferred. Hybrid consequences

combine the effect of the static and the dynamic consequence types, and result in the cortex being

fed with a value that is a result of a value in cortex combined with a static value (typically these

values are combined with the SPA binding operation).

Regardless of type, consequences are implemented as transformations on the output of the

thalamus network (see Figure 2.27 for the spiking neuron implementation of the thalamus net-

work). Static consequences are implemented as direct transforms that convert the activated “1”

output of the thalamus into a semantic pointer as part of the projection from the thalamus to an

area of cortex. If the consequence is not activated, the “0” output of the thalamus is converted

into the null semantic pointer. Figure 3.9 illustrates the implementation and operation of the

static consequences.

Dynamic consequences are implemented as gates positioned between two desired areas of

cortex. The output of the thalamus is inverted and used as the inhibitory control signal for the

gate. With this implementation, when the dynamic consequence is active, the gate is dis-inhibited,

allowing information to flow from one area of cortex to another. When the dynamic consequence

is inactive, the gate is inhibited, stopping the information flow. Dynamic consequences can also

modify the value of the information being transferred from one cortical area to another. Typically,

it is desirable to have the value stored in one area of cortex be bound to a static semantic pointer

before projecting it into another area of cortex. These types of dynamic consequences (henceforth

referred to as “hybrid” consequences, as they are a cross between the static consequence and the

“standard” dynamic consequence) are implemented in the same way as previously described, with

the exception of an additional transform matrix to perform the desired binding (or other) SPA

operations. Figure 3.10 illustrates the implementation of the dynamic and hybrid consequences.
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Figure 3.8: Schematic and operation of an example default conditional in the reasoning system.
(A) Schematic of a 3-set setup of compound conditionals. The first condition is a default con-
ditional that feeds a constant utility of 0.83 to the basal ganglia network. The second and third
conditionals are identical to the AND conditionals used in Figure 3.6. (B) Example operation
of the default conditional. For compactness, only the outputs of state1 and state2 are displayed,
with the output of state3 fixed to be ∅. [ 1O] This segment demonstrates the default conditional
operating with no competition from other conditionals. As observed, the default condition is
correctly activated (“Out 1”). [ 2O & 3O] These segments demonstrate the default conditional
interacting with the second conditional. In segment 2O, only half of the AND conditional is met,
and the resulting utility value (“Utility 2”) is lower than the default conditional utility (“Util-
ity 1”), resulting in the correct behaviour of the default condition (“Out 1”) being activated.
In segment 3O, the AND condition is fully met, resulting in a utility higher than the default
conditional utility, thus allowing the second condition to override the default condition and be
activated (“Out 2”). [ 4O] This segment demonstrates the default conditional interacting with the
third conditional. From Figure 3.6B segment 5O, it can be deduced that for these inputs (i.e.,
state1 is C AND state2 is D, identical to those used in Figure 3.6), for a network without the
default conditional, this condition (C3) would be incorrectly activated (when the conditional is
only partially satisfied). In this network, with the addition of the default condition, which has
a utility value of 0.83 – higher than the two-thirds activation of the third conditional, but lower
than the full activation of any condition – it is observed that for these inputs, the third condition
(“Out 3”) is no longer active and the default condition (“Out 1”) is correctly activated.
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Figure 3.9: Schematic and operation of example static consequences in the reasoning system.
(A) Schematic of a 2-set setup of static consequences. The consequences are set up to modify
the values stored in the cortical ensemble state1 and the cortical memory network state2. When
active, the first consequence projects A into state1, and projects C into state2. When active,
the second consequence projects B into state1, and projects (D - C) into state2. Note that the
addition of −C to the value projected to state2 is to remove the potential value of C stored in
the state2 memory network. Shown are the equivalent consequence statements, the implemented
network structure, and the necessary thalamic output transform matrices. (B) Example operation
of the two consequence statements. [ 1O] Here, the output of the basal ganglia (Top graph)
indicates that the none of the consequences are active, resulting in no change to neither state1
nor state2. [Segments 2O& 3O] These segments demonstrate the operation of the first consequence
statement. In segment 2O the basal ganglia output indicate consequence 1 is activate (“Thal 1”),
resulting in the change of the value of state1 to A, and the value of state2 to C. In segment 3O,
the basal ganglia output once again indicate no consequences are active, resulting in the output
of the thalamus to drop to 0. Since state1 has no memory, it reflects this change, and its value
changes to ∅. state2, however, is a memory network, and thus maintains its value (C) even when
the thalamus is producing no output. [ 4O and 5O] These segments demonstrate the operation of
the second consequence statement. The order of operations is similar to the first consequence
statement: In segment 4O, the second consequence is active, resulting in the appropriate changes
in the values of state1 and state2, and in segment 5O, all consequences are inactive, causing
state1 to loose its value, and state2 to remember its last input.
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Figure 3.10: Schematic and operation of example dynamic and hybrid consequences in the rea-
soning system. (A) Schematic of a 2-set setup of on dynamic consequence (C1) and one hybrid
consequence (C2). Both consequences are set up to modify the value stored in the cortical en-
semble state2. When active, the first consequence projects the value in state1 into state2 (by
dis-inhibiting the “Gate1” ensemble). When active, the second consequence projects the value
of state1 ~ A into state2 (by dis-inhibiting the “Gate2” ensemble). Shown are the equivalent
consequence statements, the implemented network structure, and the necessary thalamic output
transform matrices. (B) Example operation of the dynamic and hybrid consequence statements.
In the example operations of the consequence statements, the values in state1 are not modified
by the consequences, rather they are modified by the experimental (external) setup. [ 1O & 5O]
In these segments, the output of the basal ganglia (Top graph) indicates that the none of the
consequences are active, resulting in no value being projected to state2. [ 2O & 3O] These seg-
ments demonstrate the dynamic consequence. In segment 2O, when the consequence is activated
(“BG 1” and “Thal 1”), the value represented in state1 is projected into state2. In segment
3O, the consequence remains active, however, the value represented in state1 is modified to D,

and the change is reflected in state2 demonstrating that the information channel between state1
and state2 is still open. [ 4O] Here, the hybrid consequence is activated. In this consequence,
instead of projecting the value represented in state1 directly into state2, it is passed through a
transformation matrix that computes the binding operation with A. As a result, when the hybrid
consequence is activated, the value in state2 becomes A~D (where D was the value represented
in state1).
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Thus far, the consequences described involve the transfer of information where computation

performed on the “source” of the information (i.e., the LHS of the ⇒ in the consequence state-

ments) consists of at most one “dynamic” (i.e., a non-static semantic pointer value represented

in a cortical ensemble) operand. The reasoning system also allows for “sources” to consist of

complex SPA operations performed on multiple dynamic operands. The implementation of these

“compound” consequences is similar to that of the dynamic consequences. However, instead of

using a gate ensemble between the desired areas of cortex, a neural network that has been con-

figured to performed the desired SPA operations is placed between the cortical areas, and the

(inverted) output of the thalamus is used to gate the output of this network (see Figure 3.11).

3.1.4.4 Example Reasoning Task Implementation: Sequence Repetition

This section demonstrates how the reasoning system can be configured to perform the task of

sequence repetition [Stewart et al., 2010]. Here, the goal of the system is to continuously cycle

through a pre-determined sequence of state values, demonstrating that the reasoning system can

be configured to create cognitive networks that are entirely self-driven and self-sustaining.

To configure the reasoning system for the sequence repetition task, a condition-consequence

pair is constructed for each desired state value. The condition of the condition-consequence pair

is set as a specific state semantic pointer, and the consequence is set to be the desired next

sequentially ordered state semantic pointer. In this example, the state values A, B, and C are

used, with the desired repetition sequence being A followed by B then C and back again to A.

It is important to note that the system should be able to complete the sequence repetition given

any starting state. The full set of condition-consequence pairs for this task are:

state • A 7−→ B⇒ state

state • B 7−→ C⇒ state

state • C 7−→ A⇒ state

Figure 3.12 illustrates the state diagram for a 3 state sequence, as well as the implementation

and operation of the spiking network equivalent implemented as a reasoning system.

3.1.4.5 Example Reasoning Task Implementation: Question Answering

This section demonstrates how the reasoning system can be configured to perform a rudimentary

question and answering task [Stewart et al., 2010]. This task is more complex than the sequence

repetition task, requiring the model to remember information it has been provided, as well as to

use that information to correctly answer queries when prompted.
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Figure 3.11: Schematic of example compound consequences in the reasoning system, illustrating
a 2-set setup of compound consequences. In the first compound consequence, when it is active,
the value of state1~ state2 is projected into state5. This is accomplished by using the inverted
thalamic output (C1) to dis-inhibit the output of the computational network related to the first
consequence (“C1 Computation Network”). In this example, the C1 computation network would
be configured to calculate the SPA binding operation. The second compound consequence is
implemented similar to the first compound consequence, with the only difference being that the
second computation network is more complex. However, as in the implementation of the first
compound consequence, the second compound consequence is implemented by dis-inhibiting the
output of the computation network (“C2 Computation Network”) when the consequence is active.
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Figure 3.12: Schematic and operation of the reasoning system configured to perform the sequence
repetition task. (A) Schematic of the reasoning system configured to perform the sequence
repetition task. Shown are the condition-consequence pairs used in the network (as described
in the main text), the network transforms necessary for this network, and the implementation
of the network itself, using the static condition and static consequence sub-networks described
previously. (B) Example operation of the sequence repetition task. In this example, the value
represented in state is initialized to B, to demonstrate that the sequence repetition network is
capable of performing the sequence repetition task from any point in the sequence. From the
plots, the value representing in the state (Top) determines the value of the basal ganglia input
utilities (Second). The input utility values then affect the output of the basal ganglia network
(Third), in turn modifying the output of the thalamus network (Bottom), changing the value
represented in the state ensemble, and completing the loop. As an example, the value in state is
initialized to B, resulting in the activation of the second condition (“Cond 2”), and the activation
of the second consequence (“Cons 2”). The activation of the second consequence projects the
value of C into state, changing its value to C. The process then repeats with activation of the
third condition-consequence pair (“Cond 3” and “Cons 3”).
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For this task, the reasoning system is configured to interact with three cortical states: it

receives information from a “visual processing” area (vision), it stores information in a “working

memory” area (memory), and it outputs information to a “motor planning” area (motor). Within

the model, information is represented using a schema similar to Eq. (2.5) (i.e., a collection of

bound semantic pointers).

Conceptually, the question answering task can be divided into two distinct sub-tasks: storing

information in memory when prompted, and retrieving the appropriate information (to answer

a question) from memory when directed. To distinguish the two commands, “cue” semantic

pointers are added to the visual semantic pointer representation. As an example, to direct the

model to remember a scene with a blue square and a red triangle24, the provided visual semantic

pointer would be:

STATEMENT + BLUE~ SQUARE + RED~ TRIANGLE (3.1)

Likewise, to prompt the model to provide a response to the question “which shape is blue?”, the

provided visual semantic pointer would be:

QUESTION + BLUE (3.2)

The first sub-task results in information being transferred from the visual area to the working

memory area when the STATEMENT prompt is provided. With the reasoning system, this can

be achieved using a single condition-consequence pair. As the sub-task causes information to flow

from the visual area to the memory area the consequence can be stated as:

vision⇒ memory (3.3)

To construct the condition for this sub-task, it is noted that the condition-consequence pair

should activate as long as the STATEMENT prompt is being provided. Thus, the condition can

be stated as:

vision • STATEMENT (3.4)

The condition takes advantage of the dot product operator, as the dot product operation of

Eq. (3.1.4.5) with STATEMENT should produce a value close to 1. This is true as long as

STATEMENT is present in the visual semantic pointer, regardless of the additional object infor-

24To reduce the complexity of the model, it is assumed that objects are described by a maximum of 2 charac-
teristics. For the example given, each object is described by its colour and shape.
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mation that is included in the collection. As an example:

(STATEMENT + BLUE~ SQUARE + RED~ TRIANGLE) • STATEMENT ≈ 1

(STATEMENT + GREEN~ CIRCLE + BLACK~DIAMOND) • STATEMENT ≈ 1

Combining the condition and consequence results in the condition-consequence pair for the first

sub-task:

vision • STATEMENT 7−→ vision⇒ memory (3.5)

The second sub-task involves transferring information from the working memory area to the

motor area when the QUESTION prompt is provided. The condition for the second sub-task

follows the same style as the condition for the first sub-task, activating only when a specific

prompt is provided to the model. As such, the condition for the second sub-task is written as:

vision •QUESTION (3.6)

Unlike the first sub-task, the consequence of the second sub-task involves more than just a

straight-forward transfer of information from one area of cortex to another. Equation (2.6)

demonstrates that in order to extract the appropriate information from the stored semantic

pointer, it needs to be bound to the inverse of a query semantic pointer. In the case of this model,

the query semantic pointer is represented in the vision state, implying that the consequence

required for this sub-task is:

memory ~ ¬vision⇒ motor (3.7)

Combining the condition and consequence for the second sub-task yields the full condition-

consequence pair for the second sub-task:

vision •QUESTION 7−→ memory ~ ¬vision⇒ motor (3.8)

With the condition-consequence pairs for each sub-task, the reasoning system is fully config-

ured to perform the simple question answering task. Figure 3.13 illustrates the complete system

as well as its operation.

3.1.5 Inductive Reasoning in a Spiking Neural Network

The Raven’s Progressive Matrix (RPM) model is a semantic pointer-based model designed specif-

ically to demonstrate how semantic pointers can be used to perform the inductive reasoning

necessary to solve the Raven’s progressive matrices[Rasmussen, 2010]. A Raven’s progressive ma-

trix is a 3 × 3 grid of shapes specifically assembled with a relational dependence between them.
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Figure 3.13: Schematic and operation of the reasoning system configured to perform the question
answering task. (A) Schematic of the reasoning system configured to perform the question
answering task. The network combines the static condition, dynamic consequence, and compound
consequence sub-networks described previously. (B) Example operation of the question answering
task. [ 1O] To start, the network is presented (through “External Stimuli”) with the statement
“STATEMENT + BLUE~ SQUARE + RED~ TRIANGLE”. This activates the first condition-
consequence pair (“Cond 1” and “Cons 1”), resulting in the projection of the statement into
the memory ensemble. [ 2O] Here, the external stimulus is changed to “QUESTION + BLUE”
(“What is BLUE?”), causing the activation of the second condition-consequence pair. This
routes the semantic pointer stored in memory through the inverse binding computation (X~¬Y )
network to the motor ensemble. The network responds correctly with “SQUARE”. [ 3O] Finally,
the external stimulus is changed to “QUESTION + TRIANGLE”, in order to demonstrate the
network’s ability to answer multiple (variable) questions. Here, the second condition-consequence
pair remains active, and the network correctly responds with “RED”.
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The subject is tasked to choose the final (bottom-right cell) shape from a selection of 8 possible

answers (see Figure 3.14A).

The relationships between each figure can be divided into three general categories: being part

of a sequence, being part of a set, and being the result of the combination (or subtraction) of

other figures in the matrix. Architecturally, the RPM model is divided into three individual

networks, each targeted at solving each of the three aforementioned aspects of the inductive

relations. (see Figure 3.14B). However, it is important to note that the networks share a common

representational schema for describing the shapes in each cell of the progressive matrix.

As the Spaun model implements only the sequence solver, only it shall be discussed. Details

on the set and figure solvers can be found in [Rasmussen, 2010]. The sequence solver presumes

that the relationship between each adjacent cell can be described by a “transformation” semantic

pointer representation T, and that the semantic pointer representation of one cell can be computed

by binding the semantic pointer representation of the previous cell with T. In essence, given two

adjacent cells, CELLA followed by CELLB,

CELLB = CELLA ~ T. (3.9)

To compute the transformation semantic pointer for the entire matrix, Equation (3.9) is reversed,

calculated for each adjacent cell pair, and averaged across the entire matrix. Reversing Equa-

tion (3.9) reveals that each transformation T can be calculated as:

T = CELLB ~ ¬CELLA (3.10)

Using the averaged transform Tave, the solution to the matrix can be found by binding the

averaged transform with the cell adjacent to the missing cell.

3.1.6 Adaptive Spiking BG Model

This work combines a general purpose NEF learning rule [Stewart et al., 2012] with the basal

ganglia model from Section 2.5.6.3. The basal ganglia network described in the previous section

does not have a mechanism with which the basal ganglia input weights can be changed while the

model is running. That is to say, once constructed, the possible conditions that trigger each basal

ganglia action (condition-consequence pair) are fixed. The addition of the learning rule allows the

basal ganglia actions to be altered with the use of an error signal. This is achieved by changing

the connection weights between the cortex and basal ganglia according to the learning rule:

∆wij = καj~ejEai, (3.11)
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Figure 3.14: Example Ravens’ style matrix and schematic of the Raven’s progressive matrix
solver model. (A) Example Raven’s style matrix, consisting of a 3 × 3 grid of figures. The
induction problem requires the subject to deduce the correct figure to fill in the empty cell,
chosen from the 8 possible answers displayed just below the 3 × 3 matrix. (B) Schematic of
the Raven’s progressive matrix solver model. The problem matrix is manually encoded into a
semantic pointer representation, which is provided to the controller. The controller is responsible
for choosing the appropriate solver(s) to use, coordinating the flow of information to and from the
solvers, and choosing the model’s response from the list of provided answers. (Figures adapted
from [Rasmussen, 2010] with permission.)
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where wij is the connection weight between neuron i of the pre-synaptic population and j of the

post-synaptic population, κ is the learning rate, α is the neuron gain (see Eq. (2.24)), ~e is the

neuron’s preferred direction vector (see Eq. (2.29), a is the activity of the afferent neuron, and E

is the error signal. Figure 3.15 illustrates the extra neural populations, and the additional neural

projections necessary to combine the learning rule with the basal ganglia network.
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Figure 3.15: Schematic of the adaptive spiking basal ganglia model. To make the “standard” basal
ganglia model adaptive, cortical information is combined with the reward stimulus to compute
an error signal. This error signal is then used to modulate the weights for the neural projections
between the cortical areas and the basal ganglia network. Biologically, this model hypothesizes
that the error signal is computed through projections in the ventral striatum (vStr) and the
substanstia nigra pars compacta (SNc), both of which are neural populations found in the basal
ganglia. The vStr population receives information from cortex (state), and the reward stimulus to
compute the reward values. These values are then projected to the SNc population that converts
them to error signals, which are in turn projected back into cortex (in the figure these are the
“modulatory error signal projections”) through the doperminergic system.
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3.2 Spaun’s Tasks

Given the unique capabilities of each of Spaun’s “precursor” models, 8 tasks were chosen to

highlight the different cognitive abilities each model brought to Spaun, and to demonstrate that

despite being vastly different in nature, using the SPA and the NEF allows all of the models to

be integrated into a functional end-to-end cognitive system. The 8 tasks are:

Copy drawing: To demonstrate that the compressed semantic pointers generated by the

visual system, and those used by the motor system retain enough feature information such that a

for each digit, a generalized relationship between the two sets of semantic pointers can be found.

Digit recognition: To demonstrate that the vision system described in Section 3.1.1 can

be successfully integrated and used in Spaun to recognize and reproduce the digits presented as

inputs to Spaun.

N-arm bandit task: To demonstrate that the adapting basal ganglia network (Section 3.1.6)

can be integrated into Spaun and demonstrate the ability to adapt itself when provided the

appropriate error feedback.

List memory: To demonstrate that after integration, the working memory model (Sec-

tion 3.1.3) is still able to remember and recall lists of digits presented to Spaun.

Counting: To demonstrate that the basal ganglia network is able to perform an internally

guided task (e.g., silent counting) in the context of a larger integrated system. A secondary goal

is to demonstrate that Spaun to modify information stored within its memory system in order to

accomplish this task.

Question answering: To demonstrate that Spaun’s internal SPA representation is flexible

enough to be probed for information using different types of queries.

Rapid variable creation: To demonstrate that Spaun has the ability to perform an induc-

tion task which involves finding the variable inputs amongst a set of static digits.

Fluid Induction: To demonstrate that Spaun has the ability of performing the pattern

induction task similar to the sequential variants of the Raven’s progressive matrices.

The following sections describe several constraints imposed on the design of Spaun, and

demonstrate how the SPA has been used to perform the 8 cognitive tasks listed above.

3.2.1 Task Constraints

In addition to influencing the variety of tasks Spaun is designed to accomplish, the precursor

models imposed several constraints on the design of Spaun itself. This section discusses these
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constraints, as well as the decisions made in order to facilitate the amalgamation of the precursor

models as the Spaun network.

3.2.1.1 Input Constraints

The biggest constraint imposed on the Spaun network is the method by which information is

presented to Spaun. Spaun’s visual system – currently the primary method by which information

is presented to Spaun – is based on the MNIST vision network described in Section 3.1.1. Since the

construction and training of the MNIST vision network limits it to being able to classify images

containing only a single handwritten digit, information presented to Spaun can consequently only

be done one digit (character) at a time.

The single digit input constraint imposes yet another constraint on how information is fed

to Spaun. With composited images (i.e., images containing multiple digits or figures), access to

the multiple dimensions allows a greater depth of information to be transmitted. As an example,

two groups of numbers can be made distinct simply by changing the spatial relation between the

numbers within each group and space between each group. Using the single digit presentation

style of Spaun however, additional digits (hereby referred to as “control characters”) have to

be used to relay this extra information. Figure 3.16 illustrates some examples of the control

characters used in Spaun. The meaning and use of the control characters is discussed in the next

section.

Because the MNIST dataset includes human handwriting, which is of varying quality, a set

of “standardized” digits (generated using computer fonts) that the visual network is trained to

classify correctly with high accuracy is also used. Figure 3.16 illustrates Spaun’s “standardized”

digits compared with examples of handwritten digits obtained using from the MNIST dataset.

3.2.1.2 Control Characters

As previously discussed, the Spaun’s input character repertoire requires additional control char-

acters in order to convey additional syntactic information to Spaun. Table 3.1 lists the common

control characters (each task may have task-specific control characters) and their meaning as part

of the task character sequence presented to Spaun.

3.2.1.3 Output Constraints

The constraints on Spaun’s output depends on the implementation of Spaun’s motor system.

The NOCH motor system utilizes a concatenated set of trajectory points as its semantic pointer
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Spaun Control
Characters

Spaun "Standard"
Digits

Example MNIST
Digits

Figure 3.16: Example MNIST-based Spaun input stimuli, illustrating several Spaun control char-
acters, the Spaun “standardized” digits, and examples from the MNIST dataset.

Pixel image Control character usage

A Used to denote the start of each task. It is followed by a digit indicating
the specific task (out of the 8) to perform.

I Used to denote the start of a list of digits. This character may also be
used to separate the task specification control sequence (see previous
control character) from other task specific information.

J Used to denote the end of a list of digits.

? Used indicate that an answer (motor response) is required from Spaun
to complete the task.

Table 3.1: Table of common Spaun control characters and their usage in the Spaun input character
sequences.

representation. This implies that Spaun’s outputs must be constructed using a single unbroken
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trajectory. In addition, each set of trajectories is centered about a common origin. This means

that tasks producing multiple character outputs will have each subsequent character in its output

overwrite the preceding character.

3.2.1.4 Constraints on Internal SPA Representations

The use of the MNIST vision network as the method for classifying visual input limits Spaun’s

core conceptual repertoire to the set of numbers from 0 to 9. This implies that the task specific

information for each task has to be numerical. In addition, the numerical range restriction means

that the result of the counting task cannot exceed 9.25

In addition to the limiting Spaun’s concepts to numerical value (0 to 9), it was decided to

use the OSE’s semantic pointer list representation as the basis for Spaun’s internal cognitive

representation. This decision implies that multiple digit sequences are treated as lists of digits

rather than their numerical equivalent (e.g., “123” is considered the list “[1, 2, 3]” rather than the

number “one hundred and twenty-three”). Section 3.2.5 discusses Spaun’s list representation in

greater detail. The use of a list representation also necessitates the implementation of additional

cognitive processes required to convert the sequential stream of single characters into the list

representation (see Section 3.3.3), and to translate the list representation into the sequentially

written digits (see Section 3.3.4).

Regarding the dimensionality of the semantic pointers used in Spaun, across the entire model,

semantic pointers are capped at 512 dimensions, with the particular implementation of each

subsystem determining the dimensionality of its internal representation. The MNIST vision model

described in Section 3.1.1 has an output dimensionality of 50, the NOCH motor model described

in Section 3.1.2 has an input dimensionality of 54, and the internal cognitive representation of

Spaun utilizes the maximum 512 dimensions.

3.2.2 Copy Drawing

Description: The copy drawing task requires Spaun to produce a motor output in the style

of the presented digit. As an example, if Spaun were presented with a curly-bottomed “2” (as

opposed to a 2 with a straight-edged bottom), Spaun’s motor response should replicate the curled

feature of the 2.

25From a semantic pointer perspective, the result of the counting task can exceed 9 without necessitating any
changes to Spaun (see Section 3.2.6). However, because Spaun is only designed to output singular digits, a counting
result exceeding 9 would produce an invalid output.
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Task Syntax: The input character sequence for the copy drawing task is:

A 0 I x ?

In the character sequence, “A0” informs Spaun that the task to be completed is the copy drawing

task, and x is a place-holder for the MNIST digit desired for this task. Spaun is expected to

produce the appropriate motor response after the question mark is shown.

Implementation: The SPA implementation of the copy drawing task makes following assump-

tions:

1. The visual system is capable of producing a visual semantic pointer SPVIS for the input

digit images.

2. The motor system is capable of processing a motor semantic pointer SPMTR into the

appropriate motor output.

3. For any given input digit image x, there is visual semantic pointer SPxVIS produced by

the visual system as a result of feeding it x, and a corresponding motor semantic pointer

SPxMTR that will generate a motor output replicating the path traced out by the digit in

x.

4. A transform T can be found such that for a given visual semantic pointer SPVIS, the motor

semantic pointer SPMTR that best captures the features of the input digit can be found by

computing SPMTR = SPVIST.

For Spaun, the goal is to find a generalized transformation that can be applied to any of the

digits from the MNIST dataset. In order to do this, the transforms (T0 . . .T9) is calculated for

each one of the 10 digit classes (0 to 9) of the MNIST dataset. Computing the transform for each

digit class then requires collecting SPVIS and SPMTR for multiple samples of that digit class

from the MNIST dataset (preferably using samples that capture the wide range of digit styles

found in the dataset) and computing the matrix inverse between the two sample sets.

As an example, to compute the transform T2 for the “2” digit class, five “2” images (v, w,

x, y, and z) are chosen from the MNIST dataset. Next the visual semantic pointers SPvVIS

through SPzVIS are generated by running each image through the visual network. After this, the

motor semantic pointers SPvMTR through SPzMTR are determined such that running each motor

semantic pointer through the motor system would produce outputs resembling the digits v to z.
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Finally, by inverting the equation SPMTR = SPVIST, T2 can be calculated as:

T2 =


SPvVIS

SPwVIS

SPxVIS

SPyVIS

SPzVIS


−1 

SPvMTR

SPwMTR

SPxMTR

SPyMTR

SPzMTR


System Requirements: For this task, Spaun is required to have:

� A visual network capable of producing SPVIS.

� A motor network capable of utilizing SPMTR

� When Spaun is prompted to produce its output, the input to the visual network is the ?

prompt, implying that the output of the visual network is SP?
VIS and not SPxVIS. As a

consequence, a memory network is required to remember SPVIS for the last seen digit (i.e.,

the digit before the ? prompt).

� Because a different transform matrix T is used for each of the digit classes, a separate

mechanism is needed to identify the stored SPxVIS in order to ensure that the appropriate

transform is used in the SPMTR calculation. It is not possible to use the classifier allocated

for the “live” digits because when Spaun is being prompted for its response, the classifier

should be occupied with the task of classifying the “?” prompt.

3.2.3 Digit Recognition

Description: The digit recognition task requires Spaun to correctly classify a given MNIST

digit into one of the ten (0 to 9) digit classes. The expected response is the Spaun’s canonical

representation of the numerical digit that represents each class (i.e., the “0” class should prompt

Spaun to output a “0” in its own handwriting).

Task Syntax: The input character sequence for the digit recognition task is:

A 1 I x ?

In the character sequence, “A1” informs Spaun that the task to be completed is the digit recog-

nition task, and x is a placeholder for the MNIST digit desired for this task. Spaun is expected

to produce the appropriate motor response after the question mark is shown.

110



Implementation: The Spaun implementation of the copy drawing task requires a separate

classifier to classify the visual semantic pointer stored in memory. In theory, the output of this

classifier can be used to perform the digit recognition task. However, the observation can be

made that the digit recognition task is equivalent to performing the list memory task where the

list consists of a single digit. Following this observation, no additional logic (apart from the logic

required to perform the list memory task) is required.

System Requirements: Since the implementation of this task is identical to the list memory

task, no additional requirements are needed.

3.2.4 N-arm Bandit Task

Description: TheN -arm bandit task is a reinforcement learning task used to investigate animal

models of learning (e.g., [Sutton and Barto, 1998; Kretchmar, 2002]). The task involves requiring

the animal to make a choice of N (typically 2) actions. Based on the action chosen, the animal is

rewarded according to the probability of rewarding the different actions. Generally, it is observed

that the animal gravitates towards the action that provides the highest probability of reward,

and crucially, when the reward probabilities for the different actions are changed, the animal is

observed to be able to adapt to the changes and change their actions to consistently choose the

one providing the highest probability of reward.

Task Syntax: In the case of Spaun, the N -arm bandit task requires it to choose one digit from

0 to (N − 1) to respond with. After Spaun responds with its action, it is presented with a “0” if

no reward is given, and a “1” if it has been rewarded. Spaun is expected to continue producing

responses as long as it has been prompted.

The input character sequence for the N -arm bandit task is:

A 2 ? r ? r . . .

In the character sequence, “A2” informs Spaun that the task to be completed is the N -arm bandit

task, “?” prompts Spaun to provide its chosen action, and r is a placeholder for the reward it is

given (“0” for no rewards, “1” for having received a reward). The digit representing the reward

value is only shown to Spaun after it has provided its action response.

Implementation: From the perspective of the SPA, the core learning mechanism required to

accomplish the bandit task is already present in the adaptive basal ganglia model discussed in
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Section 3.1.6. Spaun, however, requires additional circuitry to translate the “reward” digits (“0”

or “1”) into the error signals that the adaptive basal ganglia network requires. Additionally, the

error value provided to the action that Spaun has chosen to perform differs from the error value

provided to all of the other (unchosen) actions. Table 3.2 displays the error value (En) that is

applied to each action (An) in the various scenarios of action / reward pairs for the 3-arm bandit

task.

Error Values
Action Chosen Reward Digit E1 E2 E3

A1
0 1 -1 -1
1 -1 1 1

A2
0 -1 1 -1
1 1 -1 1

A3
0 -1 -1 1
1 1 1 -1

Table 3.2: Table of mappings between actions chosen, reward stimulus input, and error values
required for Spaun’s 3-arm bandit task. Error signals are “-1” for the error values matching the
chosen action, if and only if the chosen action is rewarded. Otherwise, the error signal is “1”.

In Spaun, the error values are set such that if the chosen action is rewarded, a negative error26

signal is provided for the corresponding condition-consequence pair of the basal ganglia network

(thus making it more likely to be chosen again), and a positive error signal is provided to all

other condition-consequence pairs (to suppress the likelihood of choosing those actions). The

error values are reversed if not reward is obtained for the chosen action.

The computation of the error values (En) is performed in two steps. First, intermediary values

an and r are generated based on the chosen action, and the reward digit received, respectively.

Next, using the observation that if an is given the value 1 if the chosen action matches the n

subscript, and −1 otherwise (i.e., if A1 is chosen, a1 = 1, and a2 = a3 = . . . = an = −1), and if

r is given the value 1 if a reward is received and −1 otherwise, the value of En can be computed

as En = an × (1− r). Table 3.3 demonstrates this calculation for the 3-arm bandit task.

Using the SPA, the values of an and r can be computed using the vector dot product and

the appropriate use of additions and subtractions. Assuming that the basal ganglia represent

the chosen action with the semantic pointer SPACT, and that each one of the possible actions is

26In Spaun, the term “error” implies that an incorrect action has been taken, and thus, a positive error signal
penalizes the chosen action.
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a Values Error Values (an × (1− r))
Action Chosen a1 a2 a3 Reward Digit r E1 E2 E3

A1
1 -1 -1 0 -1 1 -1 -1
1 -1 -1 1 1 -1 1 1

A2
-1 1 -1 0 -1 -1 1 -1
-1 1 -1 1 1 1 -1 1

A3
-1 -1 1 0 -1 -1 -1 1
-1 -1 1 1 1 1 1 -1

Table 3.3: Table demonstrating the intermediary values and computation required to produce
the error values listed in Table 3.2.

represented by the semantic pointer AN (i.e., action A1 is represented by the semantic pointer

A1), using the 3-arm bandit task example, an can be computed for a given action semantic pointer

using:

a1 = SPACT • (A1− A2− A3)

a2 = SPACT • (−A1 + A2− A3)

a3 = SPACT • (−A1− A2 + A3)

As an example, if SPACT = A2,

a1 = A2 • (A1− A2− A3) = (A2 • A1)− (A2 • A2)− (A2 • A3)

≈ 0− 1− 0 = −1

a2 = A2 • (−A1 + A2− A3) = −(A2 • A1) + (A2 • A2)− (A2 • A3)

≈ 0 + 1− 0 = 1

a3 = A2 • (−A1− A2 + A3) = −(A2 • A1)− (A2 • A2) + (A2 • A3)

≈ 0− 1 + 0 = −1

In a similar fashion, if each of the possible reward values are represented by the semantic pointers

REWARD (rewarded) and NO REWARD (non-rewarded), the value of r can be computed by

performing the vector dot product of the visual semantic pointer (SPVIS) with the combination
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of the reward semantic pointers, i.e.,

r = SPVIS • (REWARD−NO REWARD)

System Requirements: For this task, Spaun is required to have:

� A visual network capable of producing SPVIS.

� An adaptive reasoning system (i.e., the reasoning system that uses the adaptive basal ganglia

network) configured with the appropriate condition-consequence pairs to output the action

semantic pointers (SPACT) when the particular action is chosen.

� A neural network to calculate the error values (En) following the steps described previously.

3.2.5 List Memory

Description: The list memory task requires Spaun to remember the list of digits it is presented,

and recall the list (in the order it was presented) when prompted. The digits can either be from

the MNIST data set, or from the set of “standardized” digits.

Task Syntax: The input character sequence for the list memory task is:

A 3 I x1 x2 . . . xn J ?

In the character sequence, “A3” informs Spaun that the task to be completed is the list memory

task, and xn are placeholders for the desired task-specific digit inputs. The triangular symbols

denote the boundaries of the list.

Implementation: Spaun’s SPA list representation is based on the OSE list representation (see

Section 3.1.3). That is to say that the SPA representation used within the working memory

network of Spaun is of the form:

MEMORY = POS1~DIGIT1 + POS2~DIGIT2 + . . .+ POSN ~DIGITN

However, while the position semantic pointer tags (POSN) in the OSE model are randomly

generated, that approach is not feasible for the Spaun model, as there is no limit on the number

of items (in a list) that Spaun can be presented. Instead, an unbounded method is required

for generating the position semantic pointers. In Spaun this is accomplished with the use of two

randomly generated unitary semantic pointers (see Section 2.3.5), one to represent the first item’s

position (POS1) and another to serve as an increment operation (INC). With these two unitary
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semantic pointers, the rest of the position semantic pointers can be generated using the following

recursive algorithm:

POSN = POS(N − 1)~ INC (3.12)

As an example,

POS2 = POS1~ INC

POS3 = POS2~ INC

Another challenge posed by the sequential nature of Spaun’s input is the process necessary

to “build” the list representation as digits are presented to Spaun. Conveniently, because the list

representation is a collection of bound pairs, as digits are presented to Spaun, the list represen-

tation can be constructed by adding the bound result of the current digit and position semantic

pointers with the list representation stored in working memory:

MEMORY = MEMORY + POSN ~DIGITN (3.13)

where POSN is the position semantic pointer of Spaun’s current input, and DIGITN is the digit

semantic pointer of Spaun’s current input. If the item being presented is the first item in the list,

MEMORY = ∅ and POSN = POS1.

System Requirements: For this task, Spaun is required to have:

� A visual network capable of producing SPVIS, and transforming the visual semantic pointer

into its cognitive equivalent DIGITN .

� A neural network responsible for the recursive generation of the position semantic pointer

POSN . It should be noted that this network is required to keep track of the “current”

position semantic pointer as it is necessary for the computation of the subsequent position

semantic pointers.

� A separate working memory network to store the list representation.

3.2.6 Counting

Description: The counting task requires Spaun to, given a starting digit and a desired count,

silently (internally) count up from the starting digit by the desired number of counts. Spaun is

required to start this counting process only when prompted, and is expected to produce a written

digit response upon completion of the silent counting process.
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Task Syntax: The input character sequence for the counting task is:

A 4 I x J I y J ?

In the character sequence, “A4” informs Spaun that the task to be completed is the counting

task, the first list containing the digit x is the starting digit, and the second list containing the

digit y is the number of counts Spaun is required to perform. Both the first and second list should

only contain a single digit, and should sum to a maximum value of 9 (for Spaun to produce valid

outputs).

Implementation: To perform the counting task using the SPA, a semantic relationship must

first be established between the semantic pointer representations of Spaun’s cognitive concept of

the numerical digits.

In Spaun, a method similar to that used in the generation of the list position semantic pointers

is used to construct this semantic relationship. In essence, two randomly generated unitary

semantic pointers are used to represent the concepts of “zero” and “add one”, ZERO and ADD1,

respectively. With these two semantic pointers, the remaining numerical semantic pointers can be

generated by binding ZERO with the nth bound power of ADD1, where n is the desired number.

As an example,

ONE = ZERO~ ADD11 = ZER~ ADD1

TWO = ZERO~ ADD12 = ZER~ ADD1~ ADD1

...

NINE = ZERO~ ADD19 (3.14)

It is important to note that this semantic relationship (e.g., “two” is equal to “zero add one, add

one”) not only holds true between the concept of “zero” and the rest of the numerals, but also

between any two arbitrary numerals:

TWO = ZERO~ ADD12

= ZER~ ADD1~ ADD1

= (ZER~ ADD1)~ ADD1

= ONE~ ADD1 (i.e., “One add one”)

With the relationship between each number established, the core algorithm of the counting

task can be discussed. In the counting task, two pieces of information are provided to Spaun:
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the starting number, and the number of counts to perform. To complete this task, however,

Spaun is required to remember three pieces of information: the number of counts to perform

(NUM COUNT), the current count result (RESULT), and the number of counts already per-

formed (CURR COUNT).

When the counting task is started, RESULT is initialized to the starting number provided,

NUM COUNT is set to the desired number of counts, and CURR COUNT is initialized to zero.

It is important to note that in order to reduce the complexity of the information encoding and

retrieval logic of the working memory network, Spaun represents all of three pieces of information

required for the counting task as single item lists. As an example, if Spaun is tasked to start at

the number 5, and count by 2, at the start of the count task,

RESULT = POS1~ FIVE

NUM COUNT = POS1~ TWO

CURR COUNT = POS1~ ZERO

Spaun then proceeds with the counting task by iteratively binding ADD1 to both RESULT and

to CURR COUNT. Spaun stops the counting process when the value of CURR COUNT is equal

to that of NUM COUNT. Table 3.4 demonstrates this process for the counting example above.

Semantic Pointer Start Step 1 Step 2 (Stop)

RESULT POS1~ FIVE POS1~ SIX POS1~ SEVEN

NUM COUNT POS1~ TWO POS1~ TWO POS1~ TWO

CURR COUNT POS1~ ZERO POS1~ONE POS1~ TWO

Table 3.4: Table detailing the individual steps required for Spaun to perform the (internal)
counting task. Shown are the intermediary values for each step of the counting process for the
three semantic pointer values RESULT, NUM COUNT, and CURR COUNT. Refer to the main
text for the use of each of these semantic pointers in the counting task.

System Requirements: For this task, Spaun is required to have:

� At least three working memory networks, each one to keep track of the values of RESULT,

NUM COUNT, and CURR COUNT respectively.
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� Neural circuitry capable of performing the ADD1 binding operation with the values in

working memory (and subsequently storing them back into working memory).

� A mechanism of internally driving the (silent) counting process without the need for external

interference.

� A neural network (dot product network) to perform the comparison between the values of

NUM COUNT and CURR COUNT, needed to stop the counting process.

3.2.7 Question Answering

Description: The question answering task requires Spaun to answer two possible questions

after being provided with a list of digits. Spaun can be prompted to provide the digit found a

specified position of the list, or Spaun can be asked to figure out where in the list a particular

digit is located. For simplicity, it is assumed that for the latter question, Spaun is presented a

list without duplicate digits.

Task Syntax: As two different questions can be asked of Spaun, the input character sequence

for the question answering task comes in two variants. To prompt Spaun for the digit in a specific

position, the character sequence is:

A 5 I x1 x2 . . . xn J P I y J ?

Likewise, to prompt Spaun for the position of a specific digit, the character sequence is:

A 5 I x1 x2 . . . xn J K I y J ?

As in the list memory task, xn are placeholders for the desired list entries. Specific to the question

answering task, the character P is used to denote the position prompt, whereas the character K

is used to denote a query for a desired kind (digit). Additionally, y is a placeholder for the digit

representing the desired value for the position or kind query.

Implementation: Because the list representation used in Spaun is a collection of bound pairs,

the question answering task can be accomplished by binding the list representation with the

inverse of the query prompt, similar to the method used in Equation (2.6). As an example, for

the list [2, 4, 1], i.e., MEMORY = POS1~TWO+POS2~FOUR+POS3~ONE, querying for

the digit in the second position of the list requires the SPA operation:

MEMORY ~∼POS2 ≈ FOUR (3.15)
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Similarly, querying the list representation for the position of the digit “1” requires the SPA

operation:

MEMORY ~∼ONE ≈ POS3 (3.16)

Analysis of the query mechanism, however, reveals an issue with directly using this method

for querying the list representation. Since all numerical inputs provided to Spaun are encoded

as lists, querying Spaun for the digit in the second results in Spaun storing “POS1 ~ TWO” in

working memory as the query for both the position and kind prompts, as opposed to required

semantic pointers “POS2” and “TWO” respectively. In addition, the result of the inverse binding

operation (Eq. (3.15) and (3.16)) are not list representations, meaning that the motor system will

not be able to use the results directly to produce Spaun’s output.

Both of these issues can be addressed with the use of associative memory networks (see Sec-

tion 2.5.5.5) to map the list representations to the appropriate numerical or position semantic

pointers, and to map the output of the inverse binding operation to the appropriate list repre-

sentations. This network implementation is illustrated in Figure 3.17 with the example query for

either the second list position, or for the digit “2”.

System Requirements: For this task, Spaun is required to have:

� At least two working memory networks, one to store the list representation, and one to

store the query probe value.

� A binding network to perform the inverse binding task.

� Associative memory networks to perform the four mapping operations (to and from the list

representation onto either the digit or position representations) discussed previously.

3.2.8 Rapid Variable Creation

Description: The rapid variable creation task is a pattern induction task proposed by Hadley

[2009] as a task for which he argues is impossible for neural networks to solve.

The rapid variable creation task involves the presentation of training set of input-output

pairs that have been constructed with a specific pattern of constant and variable mappings, and

requires the system to produce the correct output mapping given a novel input stimulus. Hadley

illustrates this task with the example (with the expected answer indicated in parenthesis):
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Figure 3.17: Network schematic and example operation for the “position” (“what is at position
X?”) and “kind” (“in what position is digit X?”) variants of Spaun’s question answering task.
The network implementations for both variants of the question answering task are identical with
the exception of the mappings performed by the associative memory networks. (A) Network
schematic for the “kind” variant of Spaun’s question answering task. In Spaun, both pieces of
information are encoded as list representations, and associative memory networks are used to map
the list representation of the probe semantic pointer into the appropriate digit semantic pointer
(POS1 ~ NUM → NUM). An associative memory network is also required to map Spaun’s
answer (which is a position semantic pointer) back to the list representation (POSN → POS1~
NUM) so that the motor system is able to parse and output the correct answer. Displayed in blue
text are the semantic pointer representations at each step of the network. (B) Network schematic
for the “position” variant of Spaun’s question answering task. As in the “kind” variant, an
associative memory network is required to map the probe list representation into the appropriate
semantic pointer. For the position variant, the mapping is done from the list representation
into a position semantic pointer (POS1 ~ NUM → POSN). An associative memory network
is also required to map Spaun’s answer (which is a numerical semantic pointer) back to the
list representation (NUM → POS1 ~ NUM). Displayed in blue text are the semantic pointer
representations at each step of the network.
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Input Output

Biffle biffle rose zarple rose zarple

Training Set Biffle biffle frog zarple frog zarple

Biffle biffle dog zarple dog zarple

Test Set Biffle biffle quoggio zarple ? (quoggio zarple)

In Hadley’s example, the first, second and fourth item of the input lists are constants, while the

third item is variable (hence the name of the task), while the output lists should contain only

the third and fourth items from the input list. The task is “rapid” as the expected time for the

system to produce an output is on the order of seconds, compared to the tens of trials typical

learning tasks require.

As Spaun operates completely in the domain of numerical digits, the Spaun equivalent of the

rapid variable creation task is:

Input Output

9 9 5 4 5 4

Training Set 9 9 3 4 3 4

9 9 7 4 7 4

Test Set 9 9 2 4 ? (2 4 )

It should be noted that the rapid variable creation tasks for Spaun do not necessarily have to

follow the exact syntax described above. The only requirement for Spaun’s rapid variable creation

task is that both the input and output lists should contain at least one variable.

Task Syntax: The input character sequence for the rapid variable creation task is of the form:

A 6 I IN1 J I OUT1 J . . . I INN J I OUTN J I TEST J ?

In the character sequence, the training set is provided to Spaun as alternating pairs of inputs

(INN ) and output (OUTN ) lists. The test set (TEST ) is provided to Spaun as the last list before

the prompt for an answer.

Implementation: None of the precursor models described in the previous section were specif-

ically constructed to perform the rapid variable creation task. However, the Spaun model hy-
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pothesizes that the ordinal-based structure of the list representation of the OSE model (Sec-

tion 3.1.3) can be combined with the sequence solver from the Raven’s progressive matrix model

(Section 3.1.5) to perform the rapid variable creation task.

Spaun’s working memory network already inherently remembers information as lists of num-

bers, and therefore, performing the rapid variable creation task simply involves using two work-

ing memory networks to store the input (IN) and output (OUT) lists of each training pair.

Following the method used in the sequence solver, the transform T can then be calculated as

T = OUT~∼IN. Following the presentation of the entire training set, the average of all T trans-

forms can be averaged (Tave), and bound to the test list (TEST) to compute Spaun’s answer for

the rapid variable creation task: ANSWER = TEST~ Tave.

An issue arises, however, in the calculation of Tave: the number of pairs in the training set

is not known until the answer prompt is provided. Additionally, even if Spaun were capable of

remembering the number of pairs it has been shown, calculating the average through the use of

a division is ill-advised as the neural (NEF) implementation of the division operator is accurate

over a limited range of values for the divisor (see Section 4.4). For these reasons, Spaun uses the

following moving average calculation to compute Tave:

Tave = α× TN + (1− α)× Tave (3.17)

For the Spaun model, the value of α was set to 0.275 as this minimized the difference between

the value of the true average and the value of the moving average for the averages of 5 items27

(see Figure 3.18).

System Requirements: For this task, Spaun is required to have:

� At least two working memory networks, one to store the training input list representation,

and one to store the training output list representation.

� One working memory network for the computation of the moving average of the transform

T.

� A binding network to perform the inverse binding operation necessary to compute the

transform T.28

� A binding network to perform the binding operation necessary to compute Spaun’s answer.28

275 items was chosen as it is the maximum number of transforms averaged for the RVC task, and the fluid
induction task (see Section 3.2.9).

28It should be noted that a single binding network (with properly configured inputs) can be used to perform
both the inverse binding operation and the answer binding operation.
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Figure 3.18: Comparison of the Euclidean differences between the true and moving averages for
different average scaling factors (α). The plots are generated using 512-dimensional semantic
pointers for lists varying in length from 2 to 6 items. Equation (3.17) is used to calculate the
moving averages. Shaded regions indicate the 95% confidence intervals for each plot.

3.2.9 Fluid Induction

Description: Spaun’s fluid induction task is based on the sequence variant of the Raven’s

progressive matrices, i.e., Spaun is required to solve a 3 × 3 matrix of entries that have been

constructed to conform to a specific sequential pattern. The sequence relationship used to con-

struct the matrix can be one of two types, either the numerical (digit) difference between each

cell can be sequential, or the number of list items between each cell can be sequential. Figure 3.19

demonstrates examples of these two types of sequential matrix patterns.

Task Syntax: The Raven’s progressive matrix task is typically presented as a 3 × 3 matrix.

However, because Spaun is only able to process sequences of digits, the matrix is “flattened” to

form a sequence of eight lists, with each list representing the configuration of each cell. Thus, a

matrix of the form

C1 C2 C3

C4 C5 C6

C7 C8 ?

is presented to Spaun as a character sequence of the form:

A 7 I C1 J I C2 J I C3 J I C4 J I C5 J I C6 J I C7 J I C8 J ?
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11 

77 
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333 
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111 

3 33 

Figure 3.19: Examples of the two forms of sequential sequence matrix patterns for Spaun’s fluid
induction task. (A) Example matrix pattern where the sequential pattern is applied to the
numerical difference between the numbers of each cell. (B) Example matrix pattern where the
sequential pattern is applied to the number of list items (individual digits) present in each cell.

Implementation: The mechanism Spaun employs to perform the fluid induction task is essen-

tially identical to that used for the rapid variable creation task with the exception of what inputs

are used to calculate the transform T. As an example, in the rapid variable creation task, the

first two T transforms are calculated using the first and second input/output training pairs:

T1 = OUT1 ~∼IN1

T2 = OUT2 ~∼IN2

In contrast, the first two T transforms for the fluid induction task involve only the cells in the

first row of the matrix:

T1 = CELL2 ~∼CELL1
T2 = CELL3 ~∼CELL2

It is important to note that Spaun’s “understanding” of the structure of the matrix is implemented

through the inputs provided to the transform calculation. As an example, the nature of the matrix

implies that the last cell of the first row and the first cell of the second row may not have any

relation, and thus, the third T transform for the fluid intelligence task should be between the
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fourth and fifth cells (instead of the third and fourth cells). It follows then that:

T3 = CELL5 ~∼CELL4
T4 = CELL6 ~∼CELL5
T5 = CELL8 ~∼CELL7

Additionally, while the number of input/output pairs that can be used to calculate the trans-

form T is unbounded for the rapid variable creation task, in a (well-formed) fluid induction task,

only 5 transform calculations are needed. This fact, however, does not alter the algorithm Spaun

uses to perform the fluid induction task.

System Requirements: The requirements for this task are identical to that of the rapid

variable creation task.

3.3 Spaun Architecture

Using the system requirements detailed in the previous section, this section describes how these

requirements have been organized to form Spaun’s general architecture. Spaun’s architecture is

divided in 8 distinct modules, connected to each other as shown in Figure 3.20. In brief, these

modules are:

1. The vision module – contains all of the networks related to Spaun’s visual processing needs.

2. The motor module – contains all of the networks necessary for Spaun to produce a hand-

written output (using its simulated arm).

3. The encoding module – the functional group of networks necessary to encode incoming

visual information into Spaun’s internal semantic pointer list representation.

4. The decoding module – the functional group of neural networks necessary to convert Spaun’s

internal list representation into the sequence of “digit” semantic pointers the motor module

uses to produce Spaun’s handwritten outputs.

5. The working memory module – contains the memory networks required for Spaun to com-

plete the various tasks (all of Spaun’s tasks with the exception of the copy-drawing and

learning tasks).

6. The transformation module – contains the various networks to compute the various SPA

operations needed to complete the question answering and induction tasks.

7. The reward evaluation module – the collection of networks required to compute the reward

calculation detailed in Table 3.3.
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8. The action selection module – the collection of networks responsible for keeping track of

Spaun’s current state, deciding on Spaun’s actions with respect to its current state, and

managing the flow of information throughout the Spaun model.

It should be noted that Spaun’s architecture illustrated in Figure 3.20 differs slightly from

the architecture used in the original Spaun model (as described in [Eliasmith et al., 2012], Fig-

ure 1B). Notably, the “motor processing” and “motor” modules of the original architecture have

been combined into a singular “motor” module. Additionally, the flow control projections project

directly onto each module, instead of projecting on flow control nodes as in the original archi-

tectural diagram. These changes more closely reflect the actual implementation of the Spaun

model.

In addition to the changes made to Spaun’s overall architectural diagram, the modules de-

scribed in the following sections also differ slightly from the original Spaun implementation. The

original Spaun model was constructed in a piecemeal fashion, with incremental additions made

to the Spaun model to enable it to perform additional tasks. As part of this development process,

the Spaun model was organized into the different functional modules (vision, motor, etc.) only

after the model was mostly completed, resulting in obscure interdependencies existing between

several of Spaun’s modules. The Spaun architecture described in the following sections, how-

ever, is based on work done to re-analyze and formalize the Spaun model as part of the effort to

re-implement and improve the Spaun model as Spaun 2.0 (see Chapter 4).

It is also important to note that architectural descriptions detailed in the following sections

present a generalized Spaun architecture, with no constraints applied on the implementation of

individual components. As an example, the hierarchical vision network does not have to be

implemented as the network described in Section 3.1.1. Both the original Spaun model, and the

Spaun 2.0 model can be considered specific instantiations of this generalized architecture.

3.3.1 Vision Module

Spaun’s vision module contains all of Spaun’s vision-related processing networks. This includes

a visual hierarchy and a visual semantic pointer classifier, necessary for every task; and a visual

working memory network, required for the copy-drawing task. In addition, as Spaun is almost

entirely vision stimulus driven, a network is also required to identify changes in the visual stimuli.

The output of this “stimulus change detector” network is then used to drive the action selection

system, enabling Spaun to progress through each task as the visual stimuli are presented. Fig-

ure 3.21 illustrates how each of these components are connected to form Spaun’s vision module.
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Figure 3.20: High-level architectural diagram of the Spaun model.

3.3.2 Motor Module

Spaun’s motor module contains all of the networks required for Spaun to convert a motor semantic

pointer into the equivalent hand-written digit output. The motor module consists of a motor

hierarchy, and a network that generates the appropriate motor timing control signals necessary

to coordinate the operation of the motor hierarchy with the operation of the simulated arm.

Figure 3.22 illustrates how these components are connected in Spaun’s motor module.

3.3.3 Information Encoding Module

Spaun’s information encoding module contains the networks necessary to encode the sequential

digit semantic pointers into Spaun’s list semantic pointer representation. This module consists

of a network to generate the position semantic pointer tags, and a network to perform the SPA

operation(s) needed to generate list semantic pointer representation. Figure 3.23 illustrates the

design of the information encoding module.
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Figure 3.21: Architectural schematic of Spaun’s vision module. See accompanying text for a
detailed description of each component.
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Figure 3.22: Architectural schematic of Spaun’s motor module. See accompanying text for a
detailed description of each component.
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Figure 3.23: Architectural schematic of Spaun’s information encoding module. See accompanying
text for a detailed description of each component.

3.3.4 Information Decoding Module

Spaun’s information decoding module is responsible for converting Spaun’s various internal se-

mantic pointer representations into the semantic pointer representation used by the motor mod-

ule. This module includes the networks required to recall information from Spaun’s list semantic

pointer representation, and the networks required to perform the transformations between the

visual and motor semantic pointer representations necessary for Spaun’s copy-drawing task (see

Section 3.2.2).

In addition to these task specific components, Spaun’s information decoding module contains

several flow control networks, required to generate the appropriate flow control signals based

off the state of the recall networks (“decode control”), and to route the appropriate semantic

pointer information to the module’s output based on the task being performed (“output selector”).

Figure 3.23 illustrates how these components have been connected in the information decoding

module.

3.3.5 Working Memory Module

Spaun’s working memory module contains the memory networks required to complete Spaun’s

variety of tasks. These memory networks include the three memory networks required for the

counting task, which, using control signals generated by the action selection module, can be

reused for Spaun’s other tasks as well. In addition to the “standard” list memory networks, the
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Figure 3.24: Architectural schematic of Spaun’s information decoding module. See accompanying
text for a detailed description of each component.

memory module also contains a specialized averaging network for Spaun’s induction tasks (see

Section 3.2.8, specifically Eq. (3.17)). Figure 3.25 illustrates the layout of the memory module.

3.3.6 Transformation Module

Spaun’s transformation module houses the networks necessary for computing the transformation

calculations necessary for the question answering (see Section 3.2.7) and induction tasks (see

Sections 3.2.8, 3.2.9). Careful analysis of the individual task requirements reveals that, with the

use of information flow control networks (“input selector”), only one SPA binding network is

necessary to compute all of the transforms required.

In addition to the SPA binding network, the transformation module includes the associative

memory networks required for the question answering task (see Figure 3.17), a dot product

network to perform the semantic pointer comparison needed to generate the “stop” condition for

the counting task (see Table 3.4), and an information flow network (“output selector”) to ensure

that depending on the task being performed, the outputs of the appropriate networks are routed

to the output of the transformation module.
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Figure 3.25: Architectural schematic of Spaun’s memory module. See accompanying text for a
detailed description of each component.

Figure 3.26 illustrates how each module component has been connected to achieve the func-

tionality required of the transformation module.

3.3.7 Reward Evaluation Module

Spaun’s reward evaluation module computes the appropriate learning error values detailed in

Table 3.3. As such, the reward evaluation module consists solely of the network used to perform

this calculation, as illustrated in Figure 3.27.

3.3.8 Action Selection Module

Spaun’s action selection module is responsible for keeping track of Spaun’s progress and deciding

what actions to perform as it executes each task. Additionally, the action selection system is

responsible for managing the flow of information throughout the different networks that make up

Spaun.
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Figure 3.26: Architectural schematic of Spaun’s transformation module. See accompanying text
for a detailed description of each component.
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Figure 3.27: Architectural schematic of Spaun’s reward evaluation module. See accompanying
text for a detailed description of each component.

Näıvely, the reasoning system described in Section 3.1.4 can be used to implement all of the

functionality required of Spaun’s action selection module. However, as the following example will

illustrate, implementing Spaun’s action selection module using just the reasoning system results
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in increasingly complex condition-consequence pairs, and consequently, and overly convoluted

implementation.

In the following example, the rapid variable creation (RVC) task (refer to Section 3.2.8 will

be used to demonstrate how the condition-consequence pairs of the reasoning system can be used

to implement the action selection module of Spaun. Processing the RVC task can be divided into

four distinct parts: initialization of the task, storing the input list (INN ) into memory, storing the

output list (OUTN ) and averaged transform into memory, and finally, outputting the result to the

motor system. As the action selection module is responsible for tracking Spaun’s task progress,

using the reasoning system in Spaun requires the addition of a working memory network (task)

to store the semantic pointers that will be used to represent each of the four stages of the RVC

task (TASK ASSIGN, STORE IN, STORE OUT, RVC OUTPUT).

The initialization stage of the RVC task handles the “A6” input character sequence that

denotes the RVC task. When Spaun is shown the “A” character, it has to shift into the INIT

state. If (and only if) Spaun is in the INIT state, and Spaun is presented with the digit “6” does

it move then into the STORE IN task stage. The condition-consequence pairs necessary for this

functionality are:

vision •A 7−→ INIT⇒ task

0.5× (task • INIT + vision • 6) 7−→ STORE IN⇒ task

The next stage of the RVC task requires Spaun to store the incoming digit sequence into a

working memory location (mem1). As part of this stage, when Spaun is shown the “I” character

(indicating the start of a list), the action selection module has to clear any semantic pointers stored

in mem1, and reset the position working memory (pos mem) representation back to POS1 in

preparation to correctly encode and store in the incoming digit list. As digits are presented, the

action selection module projects the output of the encoding system (enc) into working memory.

This stage of the RVC task is concluded when Spaun is presented the “J” character, at which

point Spaun moves into the STORE OUT step of the RVC task. The condition-consequence

pairs for this stage of the task are:

0.5× (task • STORE IN + vision • I) 7−→ ∅⇒ mem1,POS1⇒ pos mem

task • STORE IN− vision • (I + J) 7−→ mem1 + enc⇒ mem1,

pos mem~ INC⇒ pos mem

0.5× (task • STORE IN + vision • J) 7−→ STORE OUT⇒ task

The third step of the RVC task is essentially identical to the second step of the RVC task,
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with two notable exceptions. First, instead of storing the incoming digit list into mem1, the

digit list has to be stored in another memory location (mem2) to avoid overwriting the list

information encoded in the previous stage of the RVC task. Second, when Spaun is presented

with the “J” character, the action selection module has to transition back to the STORE IN

state, in preparation for the next set of IN and OUT list pairs. Additionally, the inductive

transform T needs to be calculated and stored in the “averaging” memory network (mem ave).

The condition-consequence pairs for this stage of the task are:

0.5× (task • STORE OUT + vision • I) 7−→ ∅⇒ mem2,POS1⇒ pos mem

task • STORE OUT− vision • (I + J) 7−→ mem2 + enc⇒ mem2,

pos mem~ INC⇒ pos mem

0.5× (task • STORE OUT + vision • J) 7−→ mem2 ~ ∼ mem1⇒ mem ave,

STORE IN⇒ task

(3.18)

The final step of the RVC task is initiated when Spaun is presented with the “?” character.

When presented with the question mark, the action selection module shifts Spaun into the RE-

CALL task stage, and resets the semantic pointer in position working memory back to POS1.

In the recall phase, the output of the decoding module (dec) is projected to the motor module

(mtr) every time the motor module state (mtr state) indicates it has completed writing a digit.

The condition-consequence pairs for final stage of the RVC task are:

0.5× (task • (STORE IN + STORE OUT) + vision • ?) 7−→ RECALL⇒ task,

POS1⇒ pos mem

0.5× (task • RECALL +mtr state •DONE) 7−→ dec⇒ mtr,

pos mem~ INC⇒ pos mem

As the example illustrates, a substantial number of condition-consequence pairs are required if

the reasoning system is solely used to implement Spaun’s action selection module. A contributing

factor to the number of condition-consequence pairs is that while the second and third stages

(STORE IN and STORE OUT, respectively) of the RVC task are fairly similar, the condition-

consequence pairs cannot be combined because the target working memory locations are different.

This issue is further exacerbated in the fluid intelligence task, with it requiring three sets of

similarly structured condition-consequence pairs.

In order to reduce the number and complexity of the condition-consequence pairs, Spaun’s

action selection module is implemented as a three-layer hierarchy, with each layer of the hierarchy

responsible for the different functions the action selection system is responsible for. The top level
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of the hierarchy receives input from the vision module and is only responsible for high-level

tracking, planning, and execution of Spaun’s task progress. In Spaun, this layer is implemented

using the reasoning system described in Section 3.1.4. The second layer of the hierarchy combines

the state representation of the top layer with the visual semantic pointers to generate the module-

specific control signals used to control the flow of information within each of Spaun’s modules. The

last layer of the action selection hierarchy are the physical networks (and network architectures)

necessary to accomplish the information flows dictated by the outputs of the second layer of the

action selection hierarchy. Figure 3.28 illustrates the structure and projections to and from the

action selection hierarchy.

3.3.8.1 Layer 1: Task Progress Management

As described previously, Spaun uses the adaptive reasoning system to implement the first layer of

the action selection hierarchy. However, instead of using the näıve reasoning system implementa-

tion described in the previously described RVC example, the condition-consequence pairs used in

Spaun’s action selection hierarchy have been derived by analyzing and identifying commonalities

in the stages necessary to process each of Spaun’s tasks. It should be noted that the action

selection hierarchy does not impose any restrictions on the condition-consequence pairs used in

the adaptive reasoning system. Rather, the condition-consequence pairs used should be tailored

to the tasks assigned to the cognitive system. As a matter of fact, because of the conclusions

of the task analysis yielded different grouping of task commonalities, the condition-consequence

pairs used in the original Spaun model and the Spaun 2.0 model differ slightly. The reasoning

system description provided below is based on Spaun 2.0’s reasoning system.

Spaun’s reasoning system is implemented using three cortical state semantic pointers. The

semantic pointers represent the various tasks Spaun is capable of performing, the different task

processing stages (i.e., processing of task information presented before the “?” character), and

the different task decode stages (i.e., the steps necessary to produce the correct output for a

specified task).

Task Representation (task): Spaun’s task representation is used to keep track of the task

that Spaun has been instructed to perform. For its task representation, Spaun uses nine semantic

pointer values, one to represent each of Spaun’s eight tasks, and an additional semantic pointer to

represent the “initialization” task step as described in the RVC example from the previous section.

Table 3.5 lists the task semantic pointer mapping used in future sections of this document.29

Task Processing Stage Representation (task stage): Spaun’s task processing stage repre-

sentation is used to represent the task stage Spaun is in the process of performing. The task

29It should be noted that while the semantic pointers are conceptually consistent, the names used in Table 3.5
differ from that in Spaun’s code base, primarily to facilitate ease of conceptual understanding in this document.
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Figure 3.28: Schematic diagram of the action selection hierarchy. The action selection hierar-
chy consists of three layers. The first layer is responsible for tracking, planning and executing
Spaun’s progression through its tasks. This layer contains the adaptive reasoning system (a com-
bination of the networks described in Sections 3.1.4 and 3.1.6) that performs Spaun’s core decision
making process. The second layer consists of multiple networks that combine the output of the
task state memory networks (in Layer 1) with visual information to generate the appropriate
module-specific flow control signals. The final layer contains the physical flow control network
implementations (i.e., the networks that receive “action selection control input” projections in
Figures 3.22 through 3.26) that realizes the intended effect of the flow control signals generated in
the second layer of the action selection hierarchy. It is important to note that unlike traditional
hierarchies where each layer is typically contained within a network, the actions implemented by
the various components in layer 2 and 3 of Spaun’s action selection hierarchy are module specific,
and are thus distributed amongst the different Spaun modules. In the figure, this is denoted by
the vertical grouping of the individual components in layer 2 and 3 of the hierarchy.
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Semantic Pointer Conceptual Meaning

INIT Task initialization phase.

COPY DRAW Copy-drawing task.

RECOG Digit recognition task.

LEARN Bandit task (learning).

WM Working memory task.

COUNT Counting task.

QA Question answering task.

RVC Rapid variable creation task.

FLUID IND Fluid induction (Raven’s progressive matrix) task.

DECODE Task output generation (decode) phase.

Table 3.5: Table of Spaun task representation semantic pointers, and their respective conceptual
meanings.

stage representations are denoted to maximize its reuse amongst the variety of Spaun’s tasks.

As an example, the first step in each task, with the exception of the copy-drawing and learning

tasks, is to process a digit sequence and store it in a memory location. In Spaun, this common

first step is assigned the representation “STORE”. Another example of a common task step is

the second stage of both induction (RVC, and fluid induction) tasks. In this step, referred to as

“TRANSFORM1”, Spaun is to process a digit sequence, store it in a memory location distinct

from the memory location used in the STORE stage, and compute the semantic pointer transform

between the first (STORE) and second (TRANSFORM1) memory locations. Table 3.6 lists the

various task processing stage semantic pointer representations found in Spaun.

Task Decoding State Representation (task decode): Spaun’s task decoding state repre-

sentation is used to represent the different types of operations necessary to generate Spaun’s

output from the Spaun’s various internal semantic pointer representations. As an example, the

“FORWARD” decoding type is used for the digit recognition, memory, and question answering

tasks, and converts the output of the transformation module into a sequence of written digits.

Table 3.7 lists the various task decoding state semantic pointer representations found in Spaun.

RVC Task Implementation Example: With the three different semantic pointer representa-

tions, the condition-consequence pairs can be constructed to process each of Spaun’s tasks. Once

again, the RVC task is used as an example.

The initialization stage of the RVC task remains unchanged from the previous condition-
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Semantic Pointer Conceptual Meaning

STORE Common task stage to process the digit list for the digit
recognition and memory tasks, the first digit list for the
counting and question answering tasks, the input digit lists
for the RVC task (INN ), and the first column of cells for the

fluid induction task (C1, C4, C7).
TRANSFORM1 Common task stage to process the output digit list for the

RVC (OUTN ) and the second column of cells for the fluid

induction task (C2, C5, C8).
TRANSFORM2 Task stage to process the third column of cells for the fluid

induction task (C3, C7).
QAP Task stage to process the “position” query of the question

answering task.
QAK Task stage to process the “kind” query of the question an-

swering task.
COUNT1 Task stage to process the storing of the second list in the

counting task.
COUNT2 Task stage to process the internal incrementing of semantic

pointers stored in memory during the silent counting process

of the counting task.
LEARN Task stage to handle the input-to-reward mapping for the

bandit task.

Table 3.6: Table of Spaun task processing stage semantic pointers, and their respective conceptual
meanings.

consequence implementation, with the exception that the STORE IN state replaced with the

STORE state, and that Spaun now keeps track of the task it is performing:

vision •A 7−→ INIT⇒ task

0.5× (task • INIT + vision • 6) 7−→ RVC⇒ task,STORE⇒ task stage

After the STORE state completes, the next stage of the RVC task is to store the “output” list, and

compute the induction transform T. This is denoted by shifting Spaun into the TRANSFORM1
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Semantic Pointer Conceptual Meaning

FORWARD Decoding type used to convert the output of the transfor-
mation module into a list of written digits, recalled in the

forwards manner.
COUNT Decoding type used to maintain motor system perpetuation

during the silent counting process.
DRAW Decoding type used to convert stored visual semantic point-

ers into motor semantic pointers through the use of the copy-

drawing transform T.
INDUCTION Decoding type used to generate the outputs of the induction

task, which require binding the semantic pointers stored in

memory with the calculated averaged transforms.

Table 3.7: Table of Spaun task decoding state semantic pointers, and their respective conceptual
meanings.

task state like so:

0.5× (task • RVC + task stage • STORE)− (vision • ?) 7−→ TRANSFORM1⇒ task stage

Once the processing of the “output” list is completed, Spaun loops back to the processing of the

“input” list:

0.5× (task • RVC + task stage • TRANSFORM1)− (vision • ?) 7−→ STORE⇒ task stage

As before, the final step of the RVC task is initiated when Spaun is presented with the “?”

character, shifting Spaun into the “INDUCTION” decoding state, and appending “DECODE”

to the task representation. It should be noted that the task stage representation is not changed

as it determines which semantic pointers to use when calculating the output of the averaged

transform binding operation. The condition-consequence pair for this step is:

vision • ? 7−→ task + DECODE⇒ task, task stage⇒ task stage, INDUCTION⇒ task decode

As the RVC task example above demonstrates, by restructuring the reasoning system to

maximize the common processing steps identified in each task and by delegating the processing

of these steps to the second and third layer of the action selection hierarchy, the number and

complexity of the condition-consequence pairs can be reduced (in the case of the RVC task, the
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number of condition-consequence pairs has been halved). As a result of this optimization, the

behaviour of the reasoning system is less prone to error (i.e., activation of the wrong condition-

consequence pair) and more efficient (i.e., utilizes fewer neurons). In addition, as demonstrated

in Section 5.2.2, tasks with similar structure can be added with relative ease.

3.3.8.2 Layer 2: Flow Control Signal Generation

The second layer of the action selection hierarchy generates module-specific control signals for the

flow control networks used in each module. The control signals are generated using a combination

of information from the visual system, and from the task information represented in the first layer

of the action selection hierarchy.

Regardless of the source of information used to formulate the flow control signals, the signals

themselves are usually generated using the same mechanism to compute the similarity values used

in the associative memory networks (see Section 2.5.5.5) and the basal ganglia utility values used

in the reasoning system (see Section 3.1.4) – that is, by using a transformation matrix combined

with a neural ensemble.

The control signals computed by using the transformation matrices are typically single-

dimensional “binary” values (i.e., only the “low” or “high” values convey meaning). The exact

effect the control signals have on the third layer of the action selection hierarchy depends on the

particulars of the flow control network (refer to the next section) the control signals project to.

Examples of the interaction between the second and third layer of the action selection hierarchy

are presented in Section 3.3.8.4.

3.3.8.3 Layer 3: Physical Flow Control Networks

The last layer of the action selection hierarchy consists of the physical neural networks that

physically control the flow of information within and between the different modules of Spaun.

The function of these flow control networks are similar to the gating component introduced in

Section 2.5.6.4. However, while the gating component only has one input and one output, the

flow control networks described here typically have multiple inputs or multiple outputs.

Two categories of flow control networks are used in Spaun: networks that are used to route

the flow of information to different Spaun components, and networks with memory functionality

that control the timing of when information is presented (or stored) in the different modules of

Spaun.
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Routing Networks: The routing flow control networks in Spaun are implemented by com-

bining multiple gates together in different configurations. This section describes two flow control

elements: the selector and the router.

The selector has multiple inputs and one output, and functions like a switch that connects

a desired input to the output based on the control signals it is provided.30 To implement the

selector in a neural network, each of the inputs are connected to a gate, and the outputs of the

gate are connected to the output of the selector network. To control the selector, a “select”

control signal is needed for each of the inputs, and it is connected in such a way that when one

input is selected, all other inputs are gated. Figure 3.29 illustrates the layout of a 3-input selector,

along with the spiking activity graph and the decoded activity graph for the selector network.

The router is similar in function to the selector, except in reverse – it has one input that it

connects to one-of-many outputs.31 To implement the router in a neural network, one gate is

used per output, and the input to the router is connected to the inputs of all of the gates. As

with the selector, “route” control signals are added to the network such that when a particular

output is selected, only that output gets connected to the input while all of the other outputs are

inhibited. Figure 3.30 illustrates the layout of a 3-input router, along with the spiking activity

graph and the decoded activity graph for the selector network.

Both the selector and router networks are used extensively in Spaun as they are necessary in

order to allow commonly used components (e.g., the working memory system) to be generically

available instead of task specific.

Memory Networks: The flow control memory networks control the timing of when informa-

tion is stored and projected to the different modules in Spaun. The task state memory example

in Section 3.3.8.4 demonstrates this particular functionality of the flow control memory networks.

In addition to this functionality, the flow control memory networks are also used to implement

another crucial requirement in Spaun: the simultaneous “reading” and “writing” of a semantic

pointer.

The requirement to “read” and “write” to the same semantic pointer occur whenever an

operation of the form arises:

A = A ∗ X, (3.19)

where A and X are semantic pointers, and the symbol (∗) represents any SPA operator. Examples

of constructs in this form are the generation the position semantic pointers (1), the construction

of list semantic pointers (2), and even the condition-consequence pairs used in the first layer of

the action selection hierarchy (3):

30In electronic circuit design, this is known as a multiplexer.
31In electronic circuit design, this is known as a demultiplexer.
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Figure 3.29: Schematic and recorded inputs and outputs of a three-channel spiking neural selector.
(A) Schematic of a generic three-channel selector. The selector has three inputs and one output.
The output of the selector is determined by the “select” control signals provided (through the
use of the inhibitory connections). (B) Recorded inputs and outputs of a three-channel single-
dimensional selector implemented in a spiking neural network. (Top) The selector is provided
with three input values: 0.8, 0.5 and 0.3 for Inputs 1, 2 and 3 respectively. (Middle) The provided
selector control signals. The selector is instructed to select Input 1 from t = 0 to 0.25s, Input 2
from t = 0.25 to 0.2s, and Input 3 from t = 0.5 to 0.75s. (Bottom) Decoded output and spike
plots for the selector network. As illustrated, the selector selects the appropriate values when
given the select control signals. Additionally, the spike graphs indicate that for any given “select”
control signal, only one of the neural populations is active.

1. POSN = POS(N − 1)~ INC

2. MEMORY = MEMORY + POSN ~DIGITN

3. 0.5× (task • INIT + . . .) 7−→ TASK⇒ task, . . .

Because the neural networks found in Spaun represent continuous values, the näıve approaches

to implementing these functions, typically by using a feedback projection can result in “runaway”

computations (e.g., values that keep accumulating) if nothing is done to regulate the flow of
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Figure 3.30: Schematic and recorded inputs and outputs of a three-channel spiking neural router.
(A) Schematic of a generic three-channel router. The router has one input and three outputs.
The value of each output of the router is determined by the “route” control signals provided. At
most one output is connected to the input at any one time. (B) Recorded inputs and outputs of
a three-channel single-dimensional router implemented in a spiking neural network. (Top) The
router is provided with an input value of 0.5. Additionally, the router is instructed to route to
Output 1 from t = 0 to 0.25s, Output 2 from t = 0.25 to 0.2s, and Output 3 from t = 0.5 to 0.75s.
(Middle) Decoded output plots for the router network. As illustrated, the outputs of the router
take on the right value (0.5) depending on the router control signals, while all of the other (non-
selected) outputs remain at 0. (Bottom) Spike plots for the router network showing that for any
given “route” control signal, only one of the neural populations is active.

information through the network. Spaun’s action selection hierarchy addresses these issues by

using a memory-enabled flow control network referred to as a “memory block”.

The core concept behind the memory blocks is the use of two memory networks (e.g., integra-

tors), one to perform the “read” operation, and one to perform the “write” operation. The flow

of information to these memory networks is controlled through the use of the gating networks

described in Section 2.5.6.4.
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In Spaun, the memory block networks are constructed using two memory sub-networks con-

nected in a serial fashion, with gating ensembles located to control the flow of information into

these memory sub-networks (see Figure 3.31). For a given flow control signal value, gating signals

are generated such that information is permitted to flow into one of the memory sub-networks,

and prohibited from flowing into the other. With this mechanism, information can be projected

(“written”) to the memory block without affecting the information being projected out (“read”)

from the memory block. Figure 3.31 illustrates the network structure of the memory block, and

demonstrates an example operation of the memory block, showing the interaction between the

value of the flow control signal and the information stored within each memory sub-network.

It is important to note that the “simultaneous-read-and-write” functionality can be achieved

using just the integrator memory network discussed in Section 2.5.6.1 – through the use of inter-

mediate “delay” neural ensembles, and by balancing the input weight into the integrator and the

synaptic time constants of the various feedback projections. However, the Spaun model opts to

use the somewhat engineered approach described above as it results in a memory network that

performs robustly and consistently without the need to re-balance the memory network whenever

slight changes are made to the Spaun model (as part of Spaun’s development and testing process).

3.3.8.4 Action Selection Hierarchy Examples

As demonstrations of how the second layer of the action selection hierarchy performs its role, two

examples will be used: the control signal generation for the task state memory networks found in

the first layer of the action selection hierarchy, and the generation of the control signals specific

to the transformation module during the second phase of the RVC task.

Task State Memory Control Signals Example: A closer look at the condition-consequence

pairs derived for the RVC task reveals that they should oscillate, much like the example se-

quence repetition implementation of the reasoning system (see Section 3.1.4.4). The condition-

consequence pairs in question are:

0.5× (task • RVC + task stage • STORE) 7−→ TRANSFORM1⇒ task stage (3.20)

0.5× (task • RVC + task stage • TRANSFORM1) 7−→ STORE⇒ task stage, (3.21)

which are of the sequence repetition form:

state • A 7−→ B⇒ state

state • B 7−→ A⇒ state
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Figure 3.31: Schematic and recorded inputs and outputs of a memory block network. (A)
Schematic of a generic memory block network. The memory block network has two inputs, one
for information to be stored within the network, and one that serves as the flow control signal to
the network. The flow control signal is used to generate the gating signals to each gate (“Gate1”
and “Gate2”). The gating signals are configured such that information is allowed to pass only
one gate at any moment in time. (B) Recorded inputs and outputs of a 256-dimensional memory
network. [ 1O] In this segment, the provided control signal has a “low” value, thus allowing the
input value to be projected to “Mem1”. [ 2O & 3O] In this segment, the provided control has a
“high” value, thus inhibiting “Gate1” and preventing the input from modifying the value stored
in “Mem1”. Meanwhile, “Gate2” is dis-inhibited, allowing “Mem2” to be updated with the value
stored in “Mem1”. As segment 3O demonstrates, changing the input value to the memory block
has no effect on the output values. [ 4O] In this segment, the control value is once again “low”,
allowing the input value B to be projected into “Mem1”. However, since “Gate2” is inhibited,
the output of the network is unchanged. This thus demonstrates the “simultaneous-read-and-
write” ability for the memory block network. [ 5O] The flow control signal is “high” once again,
allowing the output value of the network to be updated. (C) Schematic representations of the
two states of the memory block network. (Left) This diagram represents the “control signal low”
state of the memory block, whereby the input value is stored in “Mem1”, while the output of
the network remains unchanged. (Right) This diagram represents the “control signal high” state
of the memory block, whereby the output of the network is updated with the values previously
stored in “Mem1”, meanwhile ignoring any changes to the input to the memory block network.
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A comparison with the näıve derivation of the RVC task’s condition-consequence pairs (re-

produced below for convenience) reveal that the oscillatory behaviour is not desired. Rather, the

task stage representation should only change when the “J” character is presented to Spaun:

0.5× (task • STORE IN + vision • J) 7−→ STORE OUT⇒ task

0.5× (task • STORE OUT + vision • J) 7−→ STORE IN⇒ task

Spaun action selection hierarchy addresses this issue using the same 3-layer hierarchical struc-

ture: the first layer determines the state transitions based on the current state representation

(as described previously); using visual information, the second layer generates the flow control

signals; and finally, using the memory block networks, the third layer breaks the oscillatory feed-

back by enabling the controlled simultaneous reading and writing of the state representations.

Figure 3.32 illustrates this hierarchical structure and demonstrates an example of how the task

representation is updated.

Transformation Module Control Signals Example: The previous sections describe how

the first layer of the action selection hierarchy is used to generalize common task stages into

abstract task states, and how the second and third layer are supposed to be used to implement

the desschematic ired actions (consequences) for each of the abstract task states. This example

will demonstrate how this process has been accomplished for Spaun’s transformation module,

focusing primarily on how the second layer of the hierarchy is configured to generate the desired

flow control signals.

This example examines two scenarios of the transformation module configuration during

different task processing stages. In the first scenario, the flow control signals generated by

the second layer of the action selection hierarchy configures the transformation module for the

“TRANSFORM1” task stage. Referring to table 3.6, this task stage is common to both the RVC

and fluid induction tasks, and it involves computing the transformation matrix between the se-

mantic pointer representations stored inmem1 andmem2 (see condition-consequence pair (3.18)).

The transformation module specific condition-consequence pair for this task stage is:

task stage • TRANSFORM1− task decode • INDUCTION 7−→ mem2~∼mem1⇒ output

(3.22)

Using this condition-consequence pair, the action selection hierarchy’s second layer transform can

be determined as illustrated in Figure 3.33.

In the second scenario, the flow control signals generated by the second layer of the hierarchy

configures the transformation module for the “INDUCTION” task decode stage. The configura-
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Figure 3.32: Example update operation of the task state representation in Spaun’s action selection
hierarchy. (A) In this scenario, the output of the task and task stage memory blocks are RVC
and STORE, respectively ( 1O). This activates condition-consequence pair (3.20), which projects
“TRANSFORM1” to the input of task stage ( 2O). However, because the visual system is being
presented a “5” ( 3O), the flow control signal value projected to task stage is “low”, resulting in no
change to its output ( 4O). Consequently, no oscillation happens in the task stage representation.
(B) In this scenario, the visual system is being presented with the J character ( 5O), resulting
in a “high” value being projected as the task stage flow control signal. This in turn causes the
task stage memory block to switch its state ( 6O), updating its output value to “TRANSFORM1”
( 7O). This activates condition-consequence pair (3.21), resulting in the projection of “STORE”
to the input of task stage ( 8O). However, as the flow control signal is “high”, the task stage
memory block ignores its input (see 6O), once again preventing an oscillation in the task stage
representation.

147



 

 

task_stage 

Transformed 
SP Output 

MemBlock1 

Averaged 
Transforms  

Output 
Selector 

Input 
Selector1 

Input 
Selector2 

⊛ 

MemBlock2 

MemBlock3 

  

 T1 

… 

3 

1 

2 

task_decode 

SEL2 

SEL2 

SEL1 

TRANSFORM1 

− INDUCTION 

Flow Control 
Network 

Neural 
Network 

Information 
Projections 

Flow Control 
Projections 

  

Semantic Pointer 
Values 

Flow Control  
Signal Values 

SP 

X 

Semantic Pointer 
Matrices 

Figure 3.33: Illustration of the flow control signal configuration for the transformation module
in the “TRANSFORM1” task stage. Here, the hierarchy’s second layer transform (T1) is set
such that when task stage has a value of “TRANSFORM1”, the “select2” signal is set for “input
selector 1”, the “select1” signal is set for “input selector 2”, and the “select2” signal is set
for the “output selector”. This ensures that the SPA binding network receives inputs from
mem2 ( 1O), and ∼mem1 ( 2O), and projects the output of the binding network to the output
of the module ( 3O), thereby configuring the transformation module to performed the desired
consequence “mem2~∼mem1⇒ output” (see (3.22)) for this task stage.

tion of the transformation module for this task decode stage is dependent on the stimuli Spaun

received before the “?” prompt was presented. Here, Spaun is assumed to have been presented

with the first digit list of the inductive problem (e.g., the C7 list for the fluid induction task) before

being prompted for an answer. This results in the value of task stage being “TRANSFORM1”

when the “?” prompt is presented. The transformation module specific condition-consequence

pair for this task stage is:

0.5× (task stage • TRANSFORM1 + task decode • INDUCTION) 7−→
mem1~∼mem ave⇒ output
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Using this condition-consequence pair, the action selection hierarchy’s second layer transform can

be determined as illustrated in Figure 3.34.
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Figure 3.34: Illustration of the flow control signal configuration for the transformation module in
the “INDUCTION” task decode stage. Here, the hierarchy’s second layer transform (T2) is set
such that when task decode has a value of “INDUCTION”, the “select1” signal is set for “input
selector 1”, the “select3” signal is set for “input selector 2”, and the “select2” signal is set for
the “output selector”. This ensures that the SPA binding network receives inputs from mem1
( 1O), and the stored averaged transforms ( 2O), and projects the output of the binding network
to the output of the module ( 3O), thereby configuring the transformation module to performed
the desired consequence for this task stage.

149





Chapter 4

Spaun 2.0

The original Spaun model was completed in 2012, and was designed to be simulated using the

Nengo (version 1.4) [Stewart et al., 2009] neural simulation software. In 2013, work began on

a new version of the Nengo software (dubbed Nengo 2.0 [Bekolay et al., 2014]). Concurrently,

it was decided to update the Spaun model for this new version of Nengo. While it would have

been straight-forward to port Spaun directly from Nengo 1.4 to Nengo 2.0, a quick analysis of the

Spaun code base revealed that in order to maximize the longevity and usefulness of the Spaun

project, it was more beneficial to analyze and properly formalize the Spaun architecture, and

completely rewrite the Spaun model in the Nengo 2.0 software.

The re-implemented Spaun model (henceforth referred to as “Spaun 2.0”) is the focus of

this section of this thesis. Improvements have been made to the majority of Spaun’s systems to

address concerns with the original model, and this section details the most important changes to

each of Spaun’s systems (excluding the encoding and decoding systems32).

Following the description of the updated Spaun 2.0 system, this section compares the results

of the re-implemented Spaun 2.0 model with the original Spaun model to see how these changes

have affected Spaun’s performance on the eight original Spaun tasks.

4.1 Vision System

Architecturally, Spaun 2.0’s vision system has not changed significantly from the original Spaun

implementation. However, both the visual hierarchy and the stimulus change detector networks

32The encoding system did not receive substantial changes between Spaun and Spaun 2.0, while the changes
made to the decoding system were not motivated by any of the critical issues of the original Spaun model.
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(see Figure 3.21) have been modified to address important concerns about Spaun’s original visual

system.

4.1.1 Visual Hierarchy

Issue Description: The original Spaun visual hierarchy was constructed using the methods

outlined in Section 2.5.6.2, whereby a hierarchical (non-spiking) neural network is trained using

conventional machine learning techniques and then “converted” into a spiking neural network

by using neural ensembles to approximate the non-linearities used in each node of the original

hierarchy. While this network proved sufficient for Spaun’s purposes, the non-linearities in the

hierarchical network required approximately 200 spiking LIF neurons to approximate well enough

for the spiking neurons to achieve the same level of classification accuracy as the original non-

spiking network.

Considering that Spaun’s original visual hierarchy comprised a total of 1,850 nodes (see Sec-

tion 3.1.1), the spiking network equivalent required 370,000 spiking LIF neurons, which is roughly

16% of Spaun’s 2.3 million neuron count (this count excludes the visual hierarchy – refer to Sec-

tion 4.6.1 for a detailed breakdown of the neuron count). In an effort to reduce the overall

simulation time of the Spaun model, the total neuron count of the running mode was reduced by

configuring the visual hierarchy to run in a purely function-based (i.e., non-spiking) mode.

Updated Implementation: Conceptually, the machine learning techniques used to train the

hierarchical networks (similar in type to the one used in Spaun’s visual system) do not place

restrictions on the types of functions that can be used as the individual node’s non-linearities –

with the exception that the functions need to be continuous and differentiable. Unfortunately,

the standard LIF neuron tuning curves (see Figure 2.13, and Figure 4.1) violate the differentiable

requirement, as they contain a disjoint transition at the neuron firing threshold.

In 2015, Hunsberger and Eliasmith [2015] successfully trained a hierarchical network using a

modified LIF neuron (called the “softLIF” neuron) which has a continuously differentiable tuning

curve (see Figure 4.1). With this modified tuning curve, they were able to train a 2-layer hierar-

chical network that could perform with the same classification accuracy as Spaun’s original visual

hierarchy. Importantly, because the tuning curves of the softLIF neurons are almost identical to

their LIF counterparts, a spiking version of the hierarchical network can be constructed by replac-

ing all of the softLIF neurons with equivalent LIF neurons, without the need of modifying any of

the trained neural connection weights, and without requiring additional neurons to represent the

sigmoid non-linearity (as was the case in the original Spaun model) [Hunsberger and Eliasmith,

2015].
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Figure 4.1: Tuning curve (left) and tuning curve derivative (right) plot comparison between the
LIF and softLIF neuron types. Note that while the derivative of the LIF neuron tuning curve is
infinite at the firing threshold (i.e., when the input current j = 1), the derivative of the softLIF
neuron tuning curve remains well defined.

Spaun 2.0’s updated visual hierarchy is identical to the softLIF hierarchical network, with the

exception that it has been trained to classify Spaun’s control characters (see Section 3.2.1.1) as

well. The final implementation of the visual hierarchy contains 2 layers of spiking LIF neurons,

which contain 500 neurons and 200 neurons, respectively. Using the MNIST dataset, the reported

classification accuracy of Spaun’s original visual hierarchy (non-spiking) is 98.76% [Tang and

Eliasmith, 2010], while the fully spiking LIF visual hierarchy achieved a classification accuracy

of 98.37% [Hunsberger and Eliasmith, 2015]. It is important to note that both of these accuracy

figures are just for the hierarchical networks, and exclude any impact Spaun’s remaining systems

(particularly the working memory system) might have on its performance.

4.1.2 Stimulus Change Detector

Issue Description: As mentioned previously, the Spaun model is primarily driven by visual

stimuli, to the extent that Spaun will not make any progress on the task it is performing if

no changes are detected in the visual input. It is thus crucial for Spaun to employ a robust

mechanism for detecting changes in the visual stream so that the appropriate control signals can
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be generated and propagated to the rest of the Spaun network (see Section 3.3.1).

The original Spaun model achieved this by containing a network specifically designed to detect

when the visual input is “blank” (i.e., contains no bright pixels). This was achieved by training the

visual network to classify the “blank” input as a Spaun specific control character (i.e., associating

it with its own semantic pointer representation). A simplified associative memory network was

then used to detect the presence of the “blank” semantic pointer (at the output of the visual

semantic pointer classifier), and produce a “high” signal value, which is then used to generate

the control signals for the rest of Spaun’s systems.

While robust, this method of detecting changes in Spaun’s visual stimulus introduced the

artificial constraint that a “blank” character is needed to separate all of the items in the stream

of visual images – a constraint that, to someone without full knowledge of the internal workings

of the Spaun network, seems to be an unnecessary addition.

Updated Implementation: Unlike the original Spaun model, Spaun 2.0’s visual system does

not rely on a “blank” stimulus to determine if changes have occurred to the visual image stream.

Instead, the updated stimulus change detector network uses a differentiator circuit to detect

changes in the visual stimulus.

Conceptually, the differentiation operation (i.e., derivative) for a time-varying signal is de-

fined as the difference between the input signal and a time-delayed version of the input signal

(normalized by the amount of temporal delay), as the size of the temporal delay approaches 0.

Implementing a differentiator network in neurons thus requires three inputs: the input signal, a

delayed version of the input signal, and a scaling factor to account for the normalization of the

signal difference.

Computing the signal that is the exact delay of the input is possible [Voelker and Eliasmith,

2015], however, for the purposes of the change detect network, the exact delay is unnecessary.

Rather, the change detect network uses projections with differently valued synaptic time constants

to achieve the approximation of the delay. As illustrated in Figure 4.2, for a neural ensemble that

is provided with a step input, and using the first-order exponential synapses used in the Spaun

model, a longer synaptic time constant results in the output signal of the neural ensemble taking

longer to reach the value of the stepped input. Essentially, the longer synaptic time constant has

“delayed” the time it takes for the output signal to reach the value of the input.

By using differing post-synaptic time constant values to generate a “pass-through” and “de-

layed” version of the input signal, the differentiator circuit can then be constructed by subtract-

ing the “delayed” signal from the “pass-through” signal [Tripp and Eliasmith, 2010]. Figure 4.3

demonstrates this circuit, and provides a graph of the expected output of the differentiator when
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Figure 4.2: Plot of the decoded output response of an ensemble to a given step input. The
decoded output plots are shown for varying values for the input post-synaptic time constant,
ranging from 0.005s to 0.1s.

it is provided with a step input. It should be noted that because the exact derivative of the

input signal is not required for the change detect network, the normalization scaling factor can

be arbitrarily set (for the circuit in Figure 4.3, it is set to 1).
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Figure 4.3: Schematic and decoded output plots of the differentiator circuit. (A) Network
schematic of the differentiator circuit. The input is projected to the same neural ensemble through
two projections with different values for their synaptic time constants. The projection with the
longer synaptic time constant (τ2) has a negative transform matrix to subtract its value from the
input signal. (B) Decoded output value plots for two different differentiator circuits. Both have
identical “fast” synaptic time constants (τ1 = 0.005s), with different “delayed” synaptic time
constants (τ2 = 0.05s and τ2 = 0.1s, respectively). It is observed that a bigger relative difference
between τ1 and τ2 results in a larger output “spike”.
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To construct the full change detect circuit, a bank of differentiator circuits is constructed,

each receiving a projection from different pixels in Spaun’s input stimulus image.33 Next, the

outputs of the differentiator array is projected to another neural ensemble to sum and produce

the final change detect “spike” output. Because the output of the differentiator circuit can be

both a negative and positive spike, depending on the “direction” of change exhibited by the input

signal, the projections from the differentiators to the output ensemble are configured to compute

the absolute value function f(x) = abs(x). Finally, the goal of the change detect network is to

indicate when the stimulus has changed from one image to another. Thus, to avoid the appearance

of two spikes when blank input stimuli (the blank input is not considered a “proper” image) are

used34, the output of a “blank detect” circuit is also projected to the output ensemble. Because

the change detect circuit operates using the individual pixel values in the input image, the blank

detection circuit is constructed by projecting the sum of all of the pixel values into an inhibited

biased ensemble (see Section 2.5.6.5) with thresholded tuning curves. With this setup, the output

of the blank detection circuit will be “high” when a blank is detected, and “low” when a non-

blank image is presented. Figure 4.4 shows the schematic of the final change detect network, and

demonstrates the behaviour of the network to different stimuli presentation sequences.

4.2 Motor System

As with the visual system, the architecture of the motor system (see Figure 3.22) has not substan-

tially changed between the Spaun and Spaun 2.0 models. However, the majority of the Spaun’s

original motor system was not implemented in a neural architecture, and this forms the primary

cause of the issues addressed by the Spaun 2.0 model. In the original Spaun model, the use of a

non-neural motor system affected both the motor timing controller and the motor hierarchy (arm

controller).

4.2.1 Motor Timing Controller

Issue Description: In the original Spaun model, the motor timing controller had two respon-

sibilities:

� Ensuring the timing requirements for the memory networks are met for the internally-

controlled portion of the counting task.

33To reduce the number of neurons needed to implement the change detector circuit, the bank of differentiators
can also be connected to a randomly selected subset of the input pixels, rather than to all of the pixels.

34“Blank” input images are still used to differentiate the appearance of two identical input images.
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Figure 4.4: Schematic and recorded input and outputs of the change detector network used in
the visual system of the Spaun 2.0 model. (A) Network schematic of the full change detector
(combined with the blank detector) network. See accompanying text for specific details of the
network implementation. (B) Recorded behaviour of the change detector network. Four stimulus
images were presented to the change detect network, the first image (“Image 1”) is followed
immediately by the second image (“Image 2”) at t = 0.25s. Next, a blank stimulus is presented
at t = 0.5s. This is done to separate the independent instances of the sequential presentation
of Image 2, of which the second presentation occurs at t = 0.75s. (Top) The image sequence
presented to the change detect network. (Bottom) The output recorded from the change detect
network. When used to generate flow control signals for the rest of the Spaun model, a value above
0.5 (dot-dashed line) is considered to be indicative of a change having occurred (or is currently
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0.5 while the blank stimulus is being presented).
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� Approximating the time taken to write a digit. This was necessary as the motor hierarchy

was not implemented as part of the Spaun neural network, and thus outputs from the motor

hierarchy could not be fed back to the Spaun model to generate the appropriate control

signals.

To simplify the implementation of the motor timing controller, and efficiently meet the two

requirements, a ramp signal (generated by an integrator network) was used. Because the ramp

output of an integrator rises as a fixed rate, the time taken for the ramp signal to reach a pre-

determined value can be used as a time duration to approximate the action (i.e., writing a digit)

of the motor hierarchy. Additionally, the ramp signal can be used to generate the control signals

for the counting task requirement.

While the ramp signal is sufficient to generate the appropriate control signals, and to “time”

the actions of the motor hierarchy, for it to function appropriate for the sequential production

of output digits, it needs to be reset after each digit is produced. In the original Spaun model,

this is achieved by using a non-neural functional node35 to detect when the ramp signal has

crossed a pre-determined threshold, and to inhibit (reset) the ramp network when this occurs

(see Figure 4.5). Because one of the goals of the Spaun 2.0 model is the use of a fully realized

neural network, the “detect-and-reset” functionality of the aforementioned non-neural node has

to be replicated in a neural network.
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Figure 4.5: Schematic of the motor timing control circuit used in the original Spaun model.

Updated Implementation: The “detect-and-reset” functionality required by the motor tim-

ing controller can be naturally divided into two separate circuits, one to detect the ramp signal

crossing the pre-determined threshold value, and another to generate the inhibitory signal neces-

sary to reset the integrator.

35A non-neural functional node was used in the original Spaun model as it was necessary to use the ramp timing
signal to write the motor outputs to file, so that it could be processed by the external (coded in MATLAB®) motor
hierarchy at a later time.
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To detect when the ramp signal has crossed a pre-determined threshold, an ensemble with

thresholded response curves (similar to the ensembles found in the associative memory network) is

used. The threshold of the neurons’ response curves are configured such that they are only active

when the input to the neurons (i.e., the ramp signal) crosses the pre-specified value. Because of

the dynamics within the integrator circuit (the synaptic filter in the feedback loop), the inhibitory

signal must be presented for a minimum amount of time for the integrator value to fully reset.

Since the threshold circuit is directly driven by the output of the integrator, using its output to

reset the integrator instead results in the network reaching a steady state, alternating between

the integrator driving the thresholded output and the thresholded output barely inhibiting the

integrator.

Decoupling the output of the ramp integrator from the reset signal generation involves the use

of another memory (integrator) circuit. The goal of this memory circuit is to, upon presentation

of the thresholded input, “remember” to generate an output signal for a fixed amount of time.

Given the description of its behaviour, this circuit will henceforth be referred to as a “pulse

generator”. In the Spaun 2.0 model, the pulse generator circuit is implemented using a modified

integrator circuit. First, the synaptic time constant on the feedback projection is reduced to

ensure a fast rise time of the output pulse. Next, a thresholded ensemble is used to ensure that

the pulse is not prematurely triggered, and to ensure that when the pulse output drops below

a certain value, no neural activity will be output. This is to make sure that the ramp circuit is

not accidentally inhibited by the output of the pulse generator. Finally, a small negative bias

is introduced to the pulse generator, to force the pulse output to decay over a fixed time. The

size of the negative bias can be altered to reduce or lengthen the shape of the pulse. Figure 4.6

illustrates the pulse generator circuit, its behaviour when the negative bias is not provided, and

its behaviour when properly configured.

With both the “detect” and “reset” circuit designs, the core of Spaun’s motor timing circuit

can be constructed.36 As illustrated in Figure 4.7A, the motor timing circuit is assembled by using

the output of the ramp integrator to drive the output of the threshold “detect” circuit, which

in turn is used to drive the pulse generator circuit, that finally inhibits the ramp integrator.

Figure 4.7B demonstrates how the ramp signal and the pulse signal activate in sequence to

generate the cyclic behaviour of the motor timing circuit during the Spaun’s internal counting

process.

36The full motor timing network contains additional circuitry to ensure that the ramp signal operates in syn-
chrony with the actions of the arm’s end effector. For the sake of brevity, this is not discussed in the text above.
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Figure 4.6: Schematic and example outputs of the pulse generator circuit used in the Spaun 2.0
model. (A) Diagram of the pulse generator circuit. See accompanying text for the details of its
design. (B) Recorded outputs of the pulse generator circuit. For these plots, the pulse generator
is configured with τfdbk = 0.005s, Win = 5, Wbias = −0.1, and a neuron threshold of 0.07. (Top)
Output of the pulse generator when no negative bias is introduced. Note that the trigger input
(dashed line) is able to successfully initiate the pulse, but when it is removed, the pulse output
remains stable. (Bottom) Output of the pulse generator when a negative bias is introduced.
The trigger input is able to initiate the pulse, which gradually decays after the trigger input is
removed. Note that the width of the pulse can be modified by adjusting the value of Wbias.

4.2.2 Motor Hierarchy (Arm Controller)

Issue Description: As previously mentioned, the original Spaun model did not contain an

embedded arm controller. Rather, the motor semantic pointers generated by the decoding system

were recorded to file by the motor timing controller (see Section 4.2.1), and then processed by an

external MATLAB® script simulating the motor hierarchy and a physics based model of Spaun’s

“arm”, only after the Spaun simulation had completed. To further the effort of implementing

the entire Spaun 2.0 model in networks of spiking neurons, a neural implementation of the arm

controller is required.
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Figure 4.7: Schematic and recorded output of the core of Spaun 2.0’s motor timing network. (A)
Schematic of the Spaun 2.0’s motor timing circuit. See accompanying text regarding the design
of the network. (B) Example output of the motor timing network during the internally-driven
portion of the counting task. At t = 0.1s, the motor “Go” signal goes to a value of 1, causing the
ramp generator to start producing the ramp output (“Ramp Output”). When the ramp output
exceeds a value of 1, the threshold detect circuit causes the pulse generator to generate the pulse
signal used to reset the ramp (“Ramp Reset Signal”). As observed, when the ramp reset signal
is active, the ramp output is nullified. When the ramp reset signal dissipates, the “Go” signal
causes the ramp generator to restart the ramp, initiating another cycle of the network. The cyclic
behaviour continues until the motor “Go” signal is removed.

Updated Implementation: The motor hierarchy used in the Spaun 2.0 model is based on the

recurrent error-driven adaptive control hierarchy (REACH) neural model [DeWolf, 2014], modified

to function within the Spaun ecosystem. The REACH model consists of two sub-components, the

dynamic motor primitives (DMP) component, meant to represent the brain’s pre-motor cortex,

and the operational space controller (OSC), meant to represent the M1 and cerebellar regions of

the brain.

Functionally, the DMP network takes a ramp signal, and an end point (in 2-D Cartesian

space), and generates a 2-dimensional point that, over the course of the ramp signal, specifies a

trajectory that traces out the figure the motor system is attempting to replicate. It does this by

using the ramp signal to generate a forcing function that morphs (forces) the typically straight-

line path of the point attractor network into the desired shape as it travels from its current
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position to the specified end position. The 2-dimensional point generated by the DMP system is

the projected to the OSC system, which combines it with information about the current position

of the arm’s end effector to compute the low-level (muscle) control signals necessary for the arm

to move to the point desired by the DMP system.

While the REACH system is a neural network that can be used to accurately control Spaun’s

arm simulation, a major hurdle is introduced by the specification of one of Spaun’s tasks. Mathe-

matically, the generation of the 2-D Cartesian (x, y) point though the use of the forcing functions

is:

[x, y] = [FFx(v), FFy(v)],

where FFx is the forcing function used to generate the “x” component of the Cartesian point,

FFy is the forcing function used to generate the “y” component of the Cartesian point, v is

the instantaneous of the ramp input. For known trajectories (known when the model is con-

structed), this can be achieved in a neural ensemble by solving for a set of decoders that satisfy

the desired forcing function. However, the core algorithm of Spaun’s copy-drawing task uses a

matrix computation to determine the trajectory to be used. This implies that a neural solution

is required where the neural network solves the forcing function given the desired ramp value v,

and this problem is substantially more complex than solving for the appropriate neural decoders.

While it is theoretically possible to implement a solution through the use of vector-like function

space representations37 [Eliasmith and Anderson, 2003], until recently, the Nengo 2.0 simulation

software did not fully support this form of representation.

Instead, the “DMP” network used in the Spaun 2.0 model borrows a technique from the

original Spaun model. Rather than using a function to represent the desired trajectory, a sampled

version of the trajectory is used, and the “DMP” network merely outputs the point along the

trajectory that corresponds to the amount of progress made by the ramp signal. Spaun 2.0

achieves this by using a “function evaluator” network (details on the exact implementation of

this network can be found in Spaun 2.0’s code base – see Appendix B.1). Note that because this

network is not a true implementation of the DMP system, it is referred to as the “trajectory

evaluator” network instead.

Fortunately, the OSC network from the REACH model can be used in the Spaun architecture

without any modifications. Thus, the final motor hierarchy of the Spaun 2.0 model consists of

the trajectory evaluator network, which projects to the OSC network. Figure 4.8 shows the

network schematics of a hypothetical DMP-based implementation of Spaun 2.0’s motor hierarchy

(naturally, it would be unable to perform the copy-drawing task), as well as the final trajectory-

37Each component in the vector represents a coefficient of a basis function. Weighting the basis functions by
their respective coefficients and combining them together results in the equivalent function form of the vector
representation.
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evaluator-based implementation of the Spaun 2.0 motor hierarchy.

4.3 Working Memory

While the general network layout (see Section 3.3.5) of the working memory has not changed

significantly between Spaun and Spaun 2.0, the specific implementation of several memory net-

works within the working memory module has been altered to address several shortcomings of

the original Spaun implementation. These affect both the list memory networks (Section 4.3.1)

and the averaging memory network (Section 4.3.2).

4.3.1 List Item Memory

Issue Description: While the integrator network described in Section 2.5.6.1 can be used as a

memory network, it requires precise stimulus presentation durations to store a specific value. As

an example, to store a value x, a “standard” integrator (A′ = τfdbk, B
′ = 1) requires the input

value x to be presented for exactly 1 second.

To circumvent this problem, the integrator networks in the OSE model used the difference

between the input value (desired value to be stored) and the value being stored in the integrator

as the input to the integrator (see Figure 4.9A). With this configuration (hereby referred to

as the “gated difference integrator”), the value stored in the integrator will always approach

the input value, regardless of how the input value changes (positive or negative) with respect

to the value stored in the integrator. In addition, a weighting factor can be introduced (see

Figure 4.9A: Win) to adjust the time required for the integrator value to equalize to the input

value (see Figure 4.9B). When no further changes to the stored integrator value is desired, the

difference-calculation population is inhibited, resulting in no further inputs to the integrator (and

the integrator holding its value). Assuming the integrator is given enough time to equalize to

the input value, this operational mechanism removes the strict dependence on the presentation

duration of the input signal, removing the need for additional timing circuitry to be implemented.

The gated difference integrator network was used as Spaun’s prototype integrator network.

However, in an effort to reduce Spaun’s total network simulation time (which took 2.5 hours

to simulate 1 second of the network [Eliasmith et al., 2012]), the presentation duration of each

symbol of Spaun’s input stimuli was reduced from 500ms (the OSE model’s standard) to 150ms.

This change revealed that regardless of the value of the scaling factor Win, the gated difference

integrator network was not capable of accurately storing a value with a presentation duration of

150ms (see Figure 4.9B, graphs III and IV). For this reason, a different integrator network design

(the gated feedback integrator) was used in the final version of the Spaun model.
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Figure 4.8: Two possible implementations of Spaun 2.0’s motor hierarchy. (A) Hypothetical
DMP-based implementation of the motor hierarchy. Here, the ramp signal is used to generate
the forcing functions (FF0 to FF9) for each of Spaun’s output digits. A selector then used to
select the forcing function for the desired digit (determined by the decoding system) and projects
it to a point attractor which generates a 2-D Cartesian point along the digit’s trajectory. This
information is used by the OSC network to move the arm along the provided trajectory, causing
it to trace out the desired digit. (B) Current implementation of the Spaun 2.0 motor hierarchy.
The value of the ramp signal (v), along with the desired motor semantic pointer (P – which is a
sampled version of the desired trajectory) is projected to the function evaluator network which
computes the function P (v). This generates a 2-D Cartesian point along the digit’s trajectory,
which is fed to the OSC network as before, enabling Spaun’s arm to reproduce the desired digit.
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Figure 4.9: Schematic and output graphs for the various configurations of the gated difference
integrator. (A) Schematic of the gated difference integrator. The gated difference integrator
consists of the integrator population (intg) and a differencing population (diff ), which calculates
the difference between the integrator output and the input to the memory. When the gating
input is “high” the difference population is inhibited, resulting in no input values fed to the
integrator, and it holding its value. (B) Recorded output graphs for various gated difference
integrator configurations. For each of the different integrator configurations, τfdbk = 0.1s. (I)
The “default” configuration, where the difference scaling factor (Win) is 1, and the gate signal is
set “high” at t = 1s. Note that for this configuration, 1 second is insufficient for the output of
the integrator to match the desired input value. (II) Increasing the difference scaling factor to 30
enables the gated difference integrator to accurately store the desired input value. (III and IV)
For these plots, the gate signal is set after only 150ms (see text for details), and regardless of the
difference scaling factor (Win = 30 and 300, respectively), the network is unable to accurately
store the desired input value.
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The gated feedback integrator network operated differently compared to the gated difference

integrator network. Rather than having the stored integrator value approach the input value

asymptotically, the gated feedback integrator used two differentially gated population to control

the flow of information input to the integrator, and in the integrator’s feedback loop (see Fig-

ure 4.10A). In the first mode of operation, the feedback population (fdbk) is inhibited, and the

remaining uninhibited populations (gate, buffer) behaves exactly like a communication channel

(i.e., the networks represent the input value with no change). Inhibiting the feedback population

also interrupts the flow of information in the feedback loop, allowing the value represented by the

integrator population (buffer) to quickly change, thus allowing the network to meet the 150ms in-

put stimulus duration requirement. In the second mode of operation the input population (gate)

is inhibited, and the feedback population (fdbk) is dis-inhibited. This allows any value being

represented in the integrator to be fed back on itself, with the combined feedback and integrator

populations (fdbk, buffer) to behave like a standard integrator.

While the gated feedback integrator is able to load values within the 150ms requirement, it

does have a couple of disadvantages. Because the inhibition of the input and feedback populations

(gate, feedback) is not instantaneous, and because the propagation of values between the neural

populations is limited by the synaptic time constant, the value stored in the gated feedback

integrator network is subject to a consistent drop when compared to the desired input value.

Additionally, over the same interval of time, the value stored in the gated feedback integrator

decays faster than the gated difference integrator (see Figure 4.10B). While the consistent drop in

stored value can be partially mitigated through the use of scaling factors elsewhere in the Spaun

network, no mechanisms exist for compensating for the faster decay.

Updated Implementation: As part of Spaun 2.0’s development, the implementation of the

integrator networks was re-examined, as it was hypothesized to be the primary contributor of

the reduction in recall accuracy in Spaun’s working memory task (see Section 4.6.3.4). By im-

plementing the gated difference integrator network in a network of “rate” neurons (non-spiking

neurons), it was observed that the failure of the gated difference integrator network with large

input scaling factors was due to induced oscillations in the output of the integrator – which was

also fed back to the input of the integrator via the feedback projection (see Figure 4.11).

The origin of these oscillations was traced to the mismatch in the rate of change of the

output of the integrator and the rate of change of the input to the integrator (computed as

the difference between the input and the output of the integrator), and was exacerbated by the

feedback projection. The rate of change of the integrator’s output is determined by the synaptic

time constant of the feedback projection. Likewise, the rate of change of the integrator’s input

is determined by the synaptic time constant of the input projection. By using identical synaptic

time constants for both projections (see Figure 4.12A), the oscillations in the integrator output
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Figure 4.10: Schematic and output graphs for the various configurations of the gated feedback
integrator. (A) Schematic of the gated feedback integrator. The gated difference integrator three
neural populations: the input gate population (gate), the feedback population (fdbk), and the
“integrator” population (buff ). When the gate signal is “low”, the fdbk population is inhibited,
and the combination of gate and buff populations function like a communication channel. When
the gate signal is “high”, the gate population is inhibited, and the fdbk and buff populations
function like a “standard” integrator. (B) Recorded output graphs of the gated feedback inte-
grator in different operating scenarios. Note that for both graphs, the input to the integrator has
been scaled to account for the consistent dip in the output value when the gating signal switches
from “low” to “high”. (I) Demonstration of the gated feedback integrator operating when the
gate signal switch is set at t = 1.0s. (II) Demonstration of the gated feedback integrator oper-
ating when the gate signal switch is set at t = 150ms, showing that unlike the gated difference
integrator from Figure 4.9, the gated feedback integrator is able to store the desired input value,
at the expense of a more complex circuit, a faster decay in the output value, and the consistent
drop in the integrator output when the gate signal switches.
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Figure 4.11: Plot of the oscillations observed in a rate neuron version of the gated difference
integrator. The effect of the oscillations amplify as the difference scaling factor (Win) is increased.

is reduced substantially, allowing the input scaling factor to be increased to a value that satisfies

the 150ms stimulus duration requirement (see Figure 4.12B).

In addition to meeting the stimulus duration requirement, the updated gated difference in-

tegrator network can be implemented with fewer neurons when compared to the gated feedback

integrator network, accounting for the fact that the feedback population (fdbk) and the differ-

ential gating populations are not required. In addition, the input scaling factor (Win) can be

adjusted such that the gated difference integrator can surpass the 150ms stimulus duration re-

quirement, allowing it to successfully store values within a 50ms duration (see Figure 4.12B,

graph III). This implies that unlike the memory networks used in Spaun (which are primarily

driven by the changes in the visual stimulus), the updated difference integrator network can also

be used for memory networks directly controlled by the basal ganglia network (which have been

demonstrated to require an average of 50ms to transition between action [Anderson et al., 1995]).

4.3.2 Averaging Memory

Issue Description: The short-comings of Spaun’s transform averaging network were discovered

through the analysis of Spaun’s performance in the fluid induction (progressive matrices) task.

It was observed that while Spaun’s raw performance accuracy was 70.8% for the sequential digit

variant (refer to Figure 3.19A) of the progressive matrices, it was only about 26.3% for the

sequential list variant (refer to Figure 3.19B) of the progressive matrices (see Section 3.2.9).

Stepping through the transformation calculation for each type of progressive matrix reveals the

reason behind the discrepancy in the results.

Recall that for the fluid induction task, the inductive transform T is computed as the bound
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Figure 4.12: Schematic and output graphs for the updated gated difference integrator. (A)
Schematic of the updated gated difference integrator. The updated network is identical to the
network in Figure 4.9, with the exception of the inclusion of a matching synaptic time constant on
the input projection to the integrator (τin). For the Spaun network, τin = τfdbk. (B) Recorded
output graphs of the updated gated difference integrator in different operating scenarios. (I)
Demonstration of the gated feedback integrator operating when the gate signal switch is set at
t = 1.0s. (II) Demonstration of the updated integrator operating when the gate signal switch
is set at t = 150ms, showing that unlike the gated difference integrator from Figure 4.9, the
updated difference integrator is able to store the desired input value. Additionally, unlike the
gated feedback integrator from Figure 4.10, the updated difference integrator is able to accurately
store the input value without any substantial degradation to the value. (III) Demonstration that
with an increase of the difference scaling factor (Win = 90), the updated difference integrator is
able to accurately store values when the gating signal is switched after only 50ms.
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result of the SPA representation of two cells in the progressive matrix (refer to Eq. (3.9)). The

result of the transformation calculation is then averaged (refer to Eq. (3.17)) and applied to the

penultimate cell to compute the Spaun’s SPA representation of the final cell.

Using the progressive matrix from Figure 3.19A combined with Spaun’s list representation

(see Eq. (3.13)) and Spaun’s digit representation (see Eq. (3.14)) as an example, the transform

matrix T between the first two cells of the sequential digit variant of the progressive matrix can

be computed as follows:

T = CELL2 ~∼CELL1
= (POS1~ TWO)~∼(POS1~ ZERO)

= POS1~ TWO~∼POS1~∼ZERO
= (POS1~∼POS1)~ (TWO~∼ZERO)

= I~ (ZERO~ ADD12 ~∼ZERO)

= I~ I~ ADD12

= ADD12

It can be shown that by performing the identical computation for the remaining cell pairs of this

particular sequential digit progressive matrix, the transform matrix T results in ADD12 for each

computation. Thus, the averaged transform matrix Tave should also have a value of ADD12.

Applying the averaged transform to the penultimate cell produces the result POS1 ~ EIGHT,

which is the desired answer:

CELL9 = Tave ~ CELL8

= ADD12 ~ POS1~ SIX

= POS1~ (SIX~ ADD12)

= POS1~ EIGHT

Likewise, the transform matrix computation can be performed for the list sequence variant of

the progressive matrix. Here, the matrix illustrated in Figure 3.19B is used as an example. The

transform matrix between the first two cells can be computed as (it is important to note that the
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definition of Spaun’s list item position – see Eq. (3.12) – is used in this computation):

T1,2 = (POS1~ THREE + POS2~ THREE)~∼(POS1~ THREE)

= (POS1~ THREE~∼(POS1~ THREE)) + (POS2~ THREE~∼(POS1~ THREE))

= I + (POS2~∼POS1~ THREE~∼THREE)

= I + (INC~ I)

= I + INC

Performing the transform calculation for the second and third cell generates a similar result:

T2,3 = (POS1~ THREE + POS2~ THREE + POS3~ THREE)~

∼(POS1~ THREE + POS2~ THREE)

= I + INC + INC2 +∼INC + I + INC

= 2× I + 2× INC + INC2 +∼INC

Taking the average of both transforms results in the transform representation:

Tave = 1.5× I + 1.5× INC + 0.5× INC2 + 0.5×∼INC (4.1)

Applying the sequential list averaged transform to the penultimate cell results in:

CELL9 = CELL8 ~ Tave

= (POS1~ SEVEN + POS2~ SEVEN)~

(1.5× I + 1.5× INC + 0.5× INC2 + 0.5×∼INC)

= 2× POS1~ SEVEN + 3× POS2~ SEVEN + 2× POS3~ SEVEN +

0.5× POS4~ SEVEN

Because neural ensembles (ensemble arrays) are used to represent the semantic pointer informa-

tion within Spaun, the saturation of the neurons produces an effect similar to vector normal-

ization (see Section 2.5.7.1). Because of this effect, the smaller vector components (relative to

the strengths of the other vector components) in the CELL9 representation are ignored during

Spaun’s digit recall phase, resulting in a representation approximating POS1~SEVEN+POS2~
SEVEN + POS3~ SEVEN.

The use of the ensemble arrays to represent the transform semantic pointer, however, intro-

duces a caveat as to the type of information that can be accurately represented. Because the

construction of the ensemble array assumes that the vector components of the semantic pointer (to
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be represented) are normally distributed, the radii of each sub-ensemble in the ensemble array is

configured to be 3.5/
√
d, where d is the dimensionality of the semantic pointer (see Section 2.18).

However, because the transform representation of the sequential list matrix contains the iden-

tity vector (which violates the normal distribution assumption), the ensemble arrays used in the

original Spaun model could not accurately represent the transform representation, resulting in a

decrease in the performance accuracy for the sequential list variant of the fluid induction task.

To elaborate, because each sub-ensemble in the ensemble array had a radius of 3.5/
√
d, the

maximal value an individual element in the semantic pointer could take is approximately 4.5/
√
d

(because of the effect of neural saturation demonstrated in Figure 2.5.7.1). Because all of the

information in an identity semantic pointer is contained only within the first vector element (see

Section 2.3.4.1), the consequence of the neural saturation is that identity pointers can only be

maximally represented as (4.5/
√
d) × I. For the 512-dimensional semantic pointers used in the

Spaun model, this is approximately 0.2× I.

Applying the saturation effect to the transform representation computed in Eq. (4.1) results

in:

T′ave = 0.2× I + 1.5× INC + 0.5× INC2 + 0.5×∼INC

Propagating this change to the computation of the final cell produces the following result:

CELL′9 = CELL8 ~ T′ave

= (POS1~ SEVEN + POS2~ SEVEN)~

(0.2× I + 1.5× INC + 0.5× INC2 + 0.5×∼INC)

= 0.7× POS1~ SEVEN + 1.7× POS2~ SEVEN + 2× POS3~ SEVEN +

0.5× POS4~ SEVEN

Compared to the previous result (CELL9), the first item of the list representation of CELL′9
is smaller relative to the vector contributions of the remaining items. Additionally, the vector

contribution of the extraneous fourth list item is larger relative to the vector contribution of

the remaining items. Experimentally, this results in a decrease in Spaun’s ability to correctly

identify the first item of its response, or erroneously append a fourth item to its response, both

of which results in a decrease in the generative accuracy of the sequential list variant of the fluid

intelligence task.

Updated Implementation: Because the configuration of the ensembles within the ensemble

array is the primary cause of the reduction in performance accuracy, Spaun 2.0’s ensemble arrays

are configured such that they are able to accurately represent the identity semantic pointer. This
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Figure 4.13: Schematic of the updated ensemble array networks used in Spaun 2.0. Shown is
a sixteen-dimensional ensemble array comprised of 16 one-dimensional ensembles. Each ensem-
ble in the ensemble array consists of 30 neurons and has a representational range of ±3.5/

√
16

(|r| ≤ 0.875), with the exception of the first ensemble, which has a representational range (ra-
dius) of 1 (see accompanying text). Also illustrated are the appropriate transformation matrices
(dimensional isolation matrices) necessary to achieve the correct representation for each ensemble.

is made possible by adjusting the radius of the first (and only the first) sub-ensemble in each

ensemble array to have a value of 1, instead of 3.5/
√
d (see Figure 4.13).

Setting the radius of the first sub-ensemble to 1 does reduce the ability for the sub-ensemble to

represent the first vector component (because of the loss of representational resolution). However,

for semantic pointers of sufficiently large dimensionality, the impact on the overall representation

of the semantic pointer is negligible.

In addition to the changes to the ensemble arrays, Spaun 2.0 also slightly modifies the com-

putation of the running-average transform. The formulation:

Tave =

{
TN if ‖Tave‖ = 0

α× TN + (1− α)× Tave otherwise
(4.2)

is used instead of the running average formulation described by Eq. (3.17). The updated for-
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Figure 4.14: Schematic of the updated transform averaging memory network used in Spaun 2.0,
modified from the original Spaun averaging memory network to account for the initial condition
in Eq. 4.2.

mulation accounts for the initial case where the value of Tave starts at ∅, and more accurately

approximates the true average.

In the neural implementation, the updated running-average computation is achieved by using

a selector, and an ensemble that computes the (vector) magnitude of the information stored in the

averaged transform memory (see Figure 4.14). The result of the vector magnitude computation is

used to determine the configuration of the selector such that when no information is stored within

the averaging memory (i.e., when the vector magnitude is 0), the selector routes the unscaled

version of the input vector into the memory network. If the memory network contains a semantic

pointer representation, the selector network routes the appropriately scaled version of the input

vector (along with the scaled contribution of the averaged transform) into the memory network.

4.4 Transformation System

The transformation system has been significantly changed between the original Spaun and Spaun

2.0 models. However, most of the changes involve the reorganization of the sub-networks and

neural projections to improve the re-use of the functional components (e.g., the SPA binding

network) across Spaun’s different tasks. Figure 3.26 illustrates the result of the functional re-

organization, with the major difference being that Spaun 2.0’s transformation system requires
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only one SPA binding network compared to Spaun’s transformation system, which required two

SPA binding networks.

Apart from the functional re-organization, one significant functional addition has been made to

the Spaun 2.0 transformation system to improve Spaun’s performance accuracy for the induction

tasks, and Spaun’s performance reliability while executing the counting task.

Issue Description: During the process of re-implementing the Spaun model, it was discov-

ered that the lack of a robust normalization function partially contributed to the reduction in

performance accuracy of the induction tasks (both the rapid variable creation task and the fluid

induction task), and a reduction in the behavioural consistency of the counting task (i.e., main-

taining the internal dynamics that govern the sub-vocal counting process).

Typically, neural SPA systems are not required to accommodate a semantic pointer normal-

ization feature, since the majority of SPA operations do not modify the magnitude of the semantic

pointers.38 However, the internal dynamics of Spaun’s memory system results in Spaun breaking

with this convention.

Spaun’s memory system (see Section 3.1.3) contains a sub-component that actively decays

stored information over time, resulting in stored semantic pointers that, over time, approach ∅.

The memory system also contains a sub-component that applies a multiplicative increase to the

stored semantic pointer representation for each item presented. This results in stored semantic

pointer representations that increase in magnitude over multiple stimulus presentations. Further

complicating the behavioural dynamics, the output of each sub-component is added to generate

the output of Spaun’s memory system, which (anecdotally) results in output semantic pointer

representations that have magnitudes with an approximate range of 0.7 to 2.5.

Performing an example induction transform computation demonstrates the effect non-unitary

magnitudes can have on the output accuracy of Spaun’s induction tasks. Using the progres-

sive matrix list sequence variant example from Section 4.3.2, the transform T can be computed

for semantic pointer representations with non-unity magnitudes. In the following example, the

semantic pointer representations for each cell in the progressive matrix has been doubled in

magnitude. The transform representation T1,2 for the first two cells in the progressive matrix is:

T1,2 = 2× (POS1~ THREE + POS2~ THREE)~∼2× (POS1~ THREE)

= 4× ((POS1~ THREE + POS2~ THREE)~∼(POS1~ THREE))

= 4× (I + INC)

38An exception is the SPA collection operator, which does modify the semantic pointer magnitude. Assuming the
semantic pointer representations are roughly orthonormal, the SPA collection operator will increase the magnitude
of the output representation by approximately /sqrtN , where N is the number of semantic pointers in the collection.
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Likewise, performing the same computation for the next two cells in the progressive matrix reveals

that the transform T2,3 for the second and third cell is:

T2,3 = 4× (2× I + 2× INC + INC2 +∼INC)

= 8× I + 8× INC + 4× INC2 + 4×∼INC

And averaging the two transform representations result in:

Tave = 6× I + 6× INC + 2× INC2 + 2×∼INC

Applying the averaged transform representation to the eighth cell (once again, doubled in mag-

nitude) produces the representation:

CELL9 = CELL8 ~ Tave

= 2× (POS1~ SEVEN + POS2~ SEVEN)~ (6× I + 6× INC + 2× INC2 + 2×∼INC)

= 16× POS1~ SEVEN + 18× POS2~ SEVEN + 16× POS3~ SEVEN +

4× POS4~ SEVEN

As the calculations above demonstrate, the non-unity magnitudes multiplicatively propagate

through the transform calculations, resulting in an output representation that is 8 times the

magnitude of the input semantic pointers. Because Spaun’s decoding system (i.e., the associative

memories) can only be configured to expect semantic pointer representations of a fixed (and

small) range of magnitudes, the increase in vector magnitudes in the induction task output could

result in Spaun producing extraneous outputs (in the case of the example above, Spaun would

most likely include the “fourth” digit in its response).

Un-normalized semantic pointers can also affect Spaun’s behaviour in the counting task.

Spaun’s counting mechanism uses on the dot produce operator to determine if the stopping

condition has been met (as described in Section 3.2.6), typically by checking if the dot product

between the NUM COUNT representation and the CURR COUNT representation is above a

specified threshold. If the two representations contain semantic pointers that match, but have

under-unity magnitudes, the result of the dot product may not exceed the required threshold,

thus preventing Spaun from stopping the internal counting process at the appropriate count.

Conversely, if the two representations contain semantic pointers that are non-match but have

above-unity magnitudes, the dot product operation could produce a result that is above the

required threshold, thus causing Spaun to prematurely stop the internal counting process.

It is important to note that the importance of normalizing the semantic pointer representa-

tions was known during the construction of the original Spaun model, and some of the issues
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described above were somewhat mitigated through the use of a pseudo-normalization network.

This network (described in further detail below) uses the saturating property of the neural en-

sembles to approximate the vector normalization function. However, as illustrated in Figure 2.29

and Figure 4.16, these rudimentary networks were limited in their effectiveness.

Updated Implementation: To address the issues outlined in above, the Spaun 2.0 model

implements a robust normalization network. Three different implementations of the normalization

network were explored, and are briefly discussed in this section.

The first method of normalization is identical to the method used in the original Spaun model.

That is to say, the neural saturation effects demonstrated in Figure 2.28 are used to approximate

the vector normalization function. This effect is most pronounced in the scalar case, where

the decoded output of a neural ensemble saturates at a value of approximately 1.3 for input

values exceeding 2 (i.e., the input value has been “normalized” to a value of 1.3). For multi-

dimensional neural ensembles, the saturation has the effect of restricting the vector magnitude

while keeping the vector’s orientation mostly unchanged. The original Spaun model employs a

512-dimensional ensemble array consisting of 8-dimensional sub-ensembles to approximate the

desired vector normalization. However, from Figure 2.29, it can be inferred that this method is

only effective for vector magnitudes exceeding 3 (and the vectors are normalized to a magnitude

of about 3).

Both the second and third method for computing the normalization function consist of two

steps. The first step, common to both methods, requires that the magnitude of the semantic

pointer be computed. Recall that the magnitude of the d-dimensional semantic pointer A is

computed as follows:

‖A‖ =

√√√√d−1∑
k=0

a2k, (4.3)

where ak is the kth vector element of the semantic pointer A. From Eq. (4.3), the vector magnitude

can be computed in a neural network by having a set of neural ensembles (an ensemble array)

compute the square of each vector element, the results of which are projected (and summed)

into a neural ensemble that computes the square root of the summed squares, as illustrated in

Figure 4.16.

Following the computation of the vector magnitude, the second method for computing the

normalization function involves performing the vector normalization directly (i.e., each element

of the input vector is divided by the total vector magnitude). Just as how a 2-dimensional

ensemble can be used to compute the product of two numbers (by computing a set of decoders

that approximates the multiplication function), a similar method can be used to compute the
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division function. However, this method cannot be used to compute the division function for the

“standard” range of input values (typically -1 to 1) because of the singularity at x = 0 (where the

function 1/x is undefined). However, for the purpose of computing the vector magnitude in the

Spaun network, this problem can be mitigated by restricting the range of the dividend to match

the expected input vector magnitudes (defined using empirical data as 0.7 to 2.5).

While the method of directly computing the vector normalization function is sufficient for

Spaun’s transformation network, the method described below produces more accurate results

(using neural networks with identical neuron counts) and has the added advantage of including

the functionality of being able to disable the normalization computation when desired. Instead

of using a divisive process to reduce the magnitude of the input vector, the third normalization

method computes the amount of vector “overshoot” (or “undershoot”) and subtracts it from the

original input vector in order to normalize it. Mathematically, this can be formulated as:

A

‖A‖ = A− ‖A‖ − 1

‖A‖ × A

Implementing the third vector normalization technique in a neural network consists of four

steps. First, the vector magnitude ‖~v‖ for the input vector ~v is computed as described above.

Second, the amount of “overshoot” is computed using the function f(m) = (m − 1)/m, where

m is the value of the input vector magnitude. Next, the input vector is multiplied with the

“overshoot” magnitude m to produce a scaled version of the input vector m~v. Finally, the

scaled vector m~v is subtracted from the input vector to produce the normalized vector result.

Note that in the neural implementation, it is possible to combine the first and second step

into one computation using the function f(s) = (
√
s − 1)/

√
s, where s is the sum of squares

computed by the vector magnitude ensemble array. With this simplification, both the direct

normalization method and the subtractive normalization method can be implemented using neural

networks of the identical sizes. Figure 4.15 compares the neural implementations of both of

these networks. Additionally, with this method of vector normalization, it is possible to disable

the vector normalization computation (e.g., for computations where vector normalization is not

required) by inhibiting the multiplication network. When the multiplication network is inhibited,

nothing is subtracted from the input vector, resulting in no change to the input vector.

Choosing the appropriate implementation for Spaun 2.0 involved comparing the computational

accuracy of all three normalization networks. Figure 4.16 plots the input vector magnitudes with

the output (“normalized”) vector magnitudes of all three normalization methods for input vector

magnitudes ranging from 0.5 to 3.0. As the figure demonstrates, the overshoot subtraction method

for vector normalization produces the most accurate results over the optimized range. This, and

the advantage of being able to inhibit the effects of the normalization is the reason why this

network is used in the updated Spaun 2.0 model.
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Figure 4.15: Comparison of the network designs for the direct method of vector normalization and
overshoot subtraction method of vector normalization. Comparison of the network designs for the
direct method of vector normalization and overshoot subtraction method of vector normalization.
(A) Network schematic for the direct method of vector normalization, whereby the division
function is computed in a neural network (“Elementwise Division”). See accompanying text
for a description of the limitations of this network. (B) Network schematic for the overshoot
subtraction method of vector normalization. See accompanying text for a description of the
limitations of this network. It is important to note that an additional network is not necessary
to perform the subtraction operation as it can be computed at the input of the target network
(i.e., the network using the normalized results).
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Figure 4.16: Comparison of neural normalization results for the ensemble array normalization
network, the division-based (direct) normalization network, and the subtraction-based (overshoot
subtraction) normalization network. The data presented is collected over 10 trials testing the nor-
malization efficacy of each network on randomly generated 512-dimensional semantic pointers.
The ensemble array network contains 25,600 spiking LIF neurons, while the division and sub-
traction networks both contain 102,450 neurons. The networks were tested on semantic pointers
with vector magnitudes ranging from 0.2 to 3.0, while the networks were optimized for the range
of vector magnitudes between 0.7 and 2.5 (non-shaded region). The dashed line indicates the
result if no normalization were to occur, while the dotted line indicates the result assuming
ideal normalization. Also included is the 95% confidence interval of the results for each network
(shaded coloured regions for each plot line). This graph demonstrates that amongst the three
networks, the overshoot subtraction network produces the most accurate results for inputs within
the optimized range of vector magnitudes.
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4.5 Reward Evaluation System

Referring to Section 3.3.7, Spaun’s reward evaluation system is relatively simple, compared to

Spaun’s other functional modules. Recall that the reward evaluation system is responsible for

combining Spaun’s visual stimuli with Spaun’s current actions to generate the error signals re-

quired for the adaptive reasoning system. The error signals generated by the reward evaluation

system modify the weights39 projecting from cortex to the basal ganglia, thereby altering the util-

ity value of these conditions. Despite the simplicity of its operation, the Spaun 2.0 model makes

one significant change to this system to increase the robustness of Spaun’s behaviour during the

learning task (the n-arm bandit task).

Issue Description: As part of the process to formalize and re-implement Spaun, it was dis-

covered that the error value computation described in Section 3.2.4 did not impose any upper or

lower bounds on the learned basal ganglia utility values. Without strict bounds, given sufficient

reward, the utility values can increase to a value large enough to disrupt the proper operation of

the basal ganglia network, resulting in a basal ganglia network that chooses the wrong actions,

or ceases to function entirely (refer to Section 3.1.4 and Figure 4.17).

While potentially catastrophic, this issue did not arise in the original Spaun model as it was

only tested on tasks where rewards were probabilistically assigned (the maximum probability

of reward was 72% – see Figure 4.22). In addition, the duration of each phase in the learning

task was shortened (from 40 trials to 20 trials) in order to reduce the time required to collect

necessary data for the task40, which meant that Spaun was never presented with number of

sequential reward stimuli required to increase the utility values beyond the defined operating

range of the basal ganglia network.

Updated Implementation: In Spaun 2.0, enforcing an upper and lower bound on the utility

values is achieved by factoring in the current utility values in the error signal calculation. For

negative error signals (i.e., Spaun is rewarded for the action taken), the error value is calculated

as the difference between 1 and the current utility value of the action. This ensures that the

maximum value the utility can take is 1, in which case, the computed error value is 0 (i.e., the

action is neither rewarded nor penalized).

39Recall that these weights determine the condition of the condition-consequence pairs.
40Spaun was run on a compute cluster with a maximum job run time of 7 days. Given that the compute

cluster required 2.5 hours to simulate 1 second of the Spaun simulation, the maximum total simulation time was
67 seconds. Since each trial of the learning task required about 1 second to complete, for the 3-arm bandit task in
Figure 4.22, a maximum of 20 trials could be run for each “arm”.
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Figure 4.17: Basal ganglia utility value plots using Spaun’s (original) reward evaluation system.
The graphs show plots of the basal ganglia utilities and Spaun’s chosen action for the three-arm
bandit task over 40 learning trials. The reward chances for the task are: Action 1 – 12%, Action
2 – 72%, Action 3 – 12%. It is important to note that a simplified Spaun network (containing
just the basal ganglia and reward evaluation networks) was used to generate the data for this
figure. (Top) Plot of the effect the error signals generated by the reward evaluation system have
on the values of the input utilities to the basal ganglia network. Black ’x’ marks indicate a
trial in which Spaun received a reward. From the graph, it can be seen that the original reward
evaluation system allows the basal ganglia utility values to grow beyond the expected range of [0,
1]. (Bottom) Graph of the Spaun’s chosen action throughout the learning task, demonstrating
that Spaun is able to correctly identify the task with the highest reward (Action 2). However,
when the basal ganglia utility values get too high (outside it’s operating range), the basal ganglia
network starts exhibiting errors in its operation, being unable to consistently indicate a chosen
action (trials 34 – 40).
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Conversely, for positive error signals (i.e., Spaun not rewarded for the chosen action), the

error value is calculated as the difference between 0 and the current utility value of the action.

As with the negative error signals, this difference ensures that 0 is the minimal value the utility

can have. Table 4.1 illustrates the updated error values for every combination of actions taken

and reward stimuli for the 3-arm bandit task.

Error Values
Action Chosen Reward Digit E1 E2 E3

A1
0 U1 U2 − 1 U3 − 1
1 U1 − 1 U2 U3

A2
0 U1 − 1 U2 U3 − 1
1 U1 U2 − 1 U3

A3
0 U1 − 1 U2 − 1 U3

1 U1 U2 U3 − 1

Table 4.1: Table of the updated Spaun 2.0 mappings between actions chosen, reward stimulus
input, basal ganglia utility values, and error values required for Spaun’s 3-arm bandit task. If
presented with a reward stimulus, the error value is Un − 1 for the chosen action, and Un for
the other actions, where Un is the basal ganglia utility value for the nth action (i.e., An). If
presented with a non-reward stimulus, the error is Un for the chosen action, and Un − 1 for the
other actions. It is important to note that for the basal ganglia network, the utility values should
be bounded by the range [0, 1]. Additionally, recall that a positive error value penalizes the action
(decreasing its utility value), while a negative error value rewards the action (increasing its utility
value).

Unlike the original Spaun model where the intermediary action values (an) are given a value 1

if the chosen action is the nth action, and -1 otherwise; Spaun 2.0 assigns “standard” binary values

to the intermediary action values – where a value of 1 is assigned to chosen action, and 0 otherwise.

An identical assignment is made for the intermediary reward values (r) as well – where a value

of 1 is assigned if a reward is presented, and a value of 0 is assigned otherwise. Using this binary

system, the value for the error signals can be computed as En = Un− (an× r)− (1− an)(1− r),
where Un is the basal ganglia utility value of the nth action. The details for the derivation of

this formulation can be found in Appendix B.3. Table 4.2 demonstrates how this computation is

applied to the three-arm bandit task.

While more complex than the original Spaun implementation, the updated Spaun 2.0 reward

evaluation computation offers two advantages. First, because the updated intermediary values are
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a Values Error Values (Un − (anr)− (1− an)(1− r))
Action Chosen a1 a2 a3 Reward Digit r E1 E2 E3

A1
1 0 0 0 0 U1 U2 − 1 U3 − 1
1 0 0 1 1 U1 − 1 U2 U3

A2
0 1 0 0 0 U1 − 1 U2 U3 − 1
0 1 0 1 1 U1 U2 − 1 U3

A3
0 0 1 0 0 U1 − 1 U2 − 1 U3

0 0 1 1 1 U1 U2 U3 − 1

Table 4.2: Table demonstrating the intermediary values and computation required to produce
the error values listed in Table 4.1.

“standard” binary values, the SPA computation needed to generate these values are simplified.

Shown below is a comparison of the SPA operations needed to compute the intermediary action

value an for the original Spaun model (left), and the Spaun 2.0 model (right). Recall that

the semantic pointer SPACT is the basal ganglia representation for the chosen action, and the

semantic pointer AN represents each of the possible actions.

a1 = SPACT • (A1− A2− A3) a1 = SPACT • A1
a2 = SPACT • (−A1 + A2− A3) a2 = SPACT • A2
a3 = SPACT • (−A1− A2 + A3) a3 = SPACT • A3

The SPA computation for the intermediary reward value r has been similarly simplified to:

r = SPVIS • REWARD

The second advantage to the updated reward evaluation computation involves the neural

implementation of the error signal computation. The original Spaun formulation required the use

of the multiplication operator to generate the error values. This in turn requires a 2-dimensional

neural ensemble to compute the multiplication function. However, because the updated error

signal formulation involves a multiplication with 0 (and not a real-valued number, as did the

original formulation), the multiplication can be achieved through the use of inhibitory projections.

That is to say, if the function x × y is required, and y can only take on the values 0 and

1, the aforementioned function can be neurally implemented by inhibiting the neural ensemble

representing x with the binary inverse of y (i.e., 1−y). This forgoes the need for the 2-dimensional

neural ensemble, reducing the overall neuron count and the complexity of the system.
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Figure 4.18 illustrates how this multiplication implementation is combined with the SPA

computations to form the updated neural implementation of the reward evaluation network.

Because the utility values are included in the error value calculations, the updated network also

features an error signal suppression network that inhibits the error signal when neither an action

has been taken nor a reward presented.

Figure 4.19 demonstrates the updated reward evaluation network used in a simplified Spaun

network, containing just the basal ganglia and reward evaluation networks. As in Figure 4.17, the

network was tested using the three-arm bandit task. However, in Figure 4.19, the reward prob-

abilities were updated such that only 1 action (Action 2) has a 100% chance of being rewarded.

This was done to demonstrate that even when receiving continuous reward signals, the updated

reward evaluation network is able to keep the basal ganglia values bounded to the expected range

of [0, 1] so that it functions correctly.

4.6 Comparison of Spaun and Spaun 2.0

While architecturally similar, due to the major changes to several core systems, the Spaun 2.0

model is significantly different to the original Spaun model. This section briefly explores the

logistical differences between the two Spaun models (Section 4.6.1), the changes made to the

organization of the Spaun code base (Section 4.6.2), and most importantly, a comparison between

the task performances of the original Spaun and the updated Spaun 2.0 model (Section 4.6.3).

4.6.1 Logistics

Perhaps the core logistical difference between the original Spaun model and the Spaun 2.0 model

is that the Spaun 2.0 model is entirely implemented using spiking LIF neurons, whereas parts of

the original Spaun model (e.g. visual hierarchy, motor system) were not. As such, the number

of neurons used to implement the model has increased from approximately 2.34 million neurons

(Spaun) to approximately 4.58 million neurons (Spaun 2.0). Table 4.3 provides a more detailed

comparison of the neuron counts of the major systems in the Spaun and Spaun 2.0 models.

As Table 4.3 demonstrates, most of Spaun’s modules have increased in neuron count between

the Spaun and Spaun 2.0 implementations. The following list briefly summarizes the modifications

in each module that can be attributed to the change in neuron count.

� Vision Module: While the implementation of a fully spiking visual hierarchy contributed to

the change in neuron count for this module, the primary reason for the increase in neuron

count is the reorganization of the visual working memory as part of the vision system (the
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Figure 4.18: Network schematic of Spaun 2.0’s updated reward evaluation network, illustrating
the various networks and transformation matrices used to compute the intermediary action and
reward values necessary to generate the error signal value. Note the use of inhibitory connections
to implement the multiplication operator. Also note that the utility value computation network
has additional input projections to suppress its output when no reward is provided to Spaun.
Refer to the accompanying text for details.
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Figure 4.19: Basal ganglia utility value plots using Spaun 2.0’s updated reward evaluation system.
The graphs show plots of the basal ganglia utilities and Spaun’s chosen action for the three-arm
bandit task over 40 learning trials. The reward chances for the task are: Action 1 – 0%, Action
2 – 100%, Action 3 – 0%. (Top) Plot of the effect the error signals generated by the reward
evaluation system have on the values of the input utilities to the basal ganglia network. Black
’x’ marks indicate a trial in which Spaun received a reward. From the graph, it can be seen that
despite receiving continual rewards, the utility values remain in the range [0, 1]. (Bottom) Graph
of the Spaun’s chosen action throughout the learning task, demonstrating that Spaun is able to
correctly (and consistently) identify the task with the highest reward (Action 2).
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Module Name Spaun Model Spaun 2.0 Model

Vision 52,021 186,400
Motor 7,620 99,850

Information Encoding 437,360 618,620
Information Decoding 155,070 533,820

Working Memory 1,060,620 1,540,950
Transformation 527,850 903,910

Reward Evaluation 710 600
Action Selection Hierarchy (Layer 1) 99,991 692,860

Total neuron count 2,341,242 4,577,010

Table 4.3: Comparison of the neuron counts for each major module in the Spaun and Spaun 2.0
models.

original visual working memory network was part of the general working memory module),

and the modification of the change detect network from being a semantic pointer based

network to a pixel based network.

� Motor Module: The implementation of the fully spiking motor hierarchy, and the fully

spiking motor timing controller contributed heavily to the increase in neuron count for this

module.

� Information Encoding Module: The architecture of this module remained unchanged, but

the position working memory network was made more robust to longer list lengths. Addi-

tionally, networks were implemented to provide functionality for serial recall in the reverse

direction.

� Information Decoding Module: While not discussed in the previous sections (as the changes

did not specifically address a critical issue with the Spaun model), the information decoding

module has been re-implemented to be more robust during the decoding process. This

included a hierarchical cleanup memory to better discern between “known” outputs (Spaun

is confident about the output value) and “unknown” outputs (Spaun is confident there is

an output digit, but is unsure of the value of the digit).

� Working Memory Module: Architecturally identical to the original working memory, with

the exception that the counting circuitry has been implemented within each integrator of

the working memory module. This allows all memories to be incremented simultaneously,

rather Spaun needing to route the information to the transformation system to do so.

� Transformation Module: The transformation module received additional selector networks

to increase its general-use capability.
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� Reward Evaluation Module: This is the only module that decreased in neuron count. This is

due to the simplification of the multiplication function used in the error signal computation

(see Section 4.5).

� Action Selection Hierarchy: To reduce the neuron count of the original (Spaun) action

selection hierarchy, it used axis-aligned semantic pointers, rather than randomly generated

semantic pointers. This reduced the dimensionality (and thus the size of the task memory

networks) of the semantic pointers to 10. In Spaun 2.0, the task memory networks in the

action selection hierarchy use the full 512-dimensional semantic pointers, thus increasing

the neuron count for this module.

The increase in the number of neurons between the Spaun and Spaun 2.0 models has undoubt-

edly increased the simulation time for each model. To collect the data published in [Eliasmith

et al., 2012], the original Spaun model was run on a compute cluster with 4-core, 2.4Ghz AMD

Opteron processors, requiring about 2.5 hours to simulate 1 second of Spaun’s simulation. Us-

ing more up-to-date hardware (6-core, 3.5Ghz Intel® Xeon® E5-1650v3 processor), the original

Spaun model requires approximately 50 minutes per second of simulation time. In contrast, the

Spaun 2.0 model requires approximately 2 hours per second of simulation time on the newer hard-

ware. Fortunately, the time required to run the Spaun simulations can be reduced by leveraging

the massively parallel processing architecture of modern GPUs. Using the nengo ocl (Nengo

simulator implemented with in OpenCL�) software package, and the Nvidia® Titan X graphics

card, the Spaun 2.0 model required only 30s to process 1s of the simulation.

4.6.2 Code base

One of the primary objectives of the re-implementation of Spaun is the reorganization of the

Spaun code base. As illustrated in Figure 4.20, the majority of Spaun’s code was contained in one

monolithic script file (spaun main.py). Spaun 2.0 improves the organization of the code base by

dividing each module’s code into a separate file, and groups them in their own folder. Additionally,

the SPA-specific network scripts, and the generic network scripts have been relocated in their

respective folders. The changes to the code base make the Spaun 2.0 model easier to maintain

and build expansions for, thereby working towards the goal of realizing Spaun as a test bed for

experimental neural algorithms.

4.6.3 Results

Compared to the original Spaun model, the Spaun 2.0 model contains several substantial changes

in each of its modules, most of which have been made to address concerns regarding the original
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Figure 4.20: Comparison of the organization of the Spaun and Spaun 2.0 code base. Note that
only the major files and folders are included in each directory tree. (A) Directory tree for the
Spaun code base. (B) Directory tree for the Spaun 2.0 code base. The full Spaun 2.0 code can
be found at https://github.com/xchoo/spaun2.0.

Spaun model. To demonstrate the effects these changes have made to the behaviour of the

updated Spaun model, it was run against the same battery of tasks (refer to Section 3.2) as the

original Spaun model. This section compares and contrasts the results from the original and

improved Spaun models.

4.6.3.1 Copy Drawing

The Spaun 2.0 model uses a completely different visual hierarchy than the original Spaun model.

Thus, the results of the copy drawing task demonstrate that the visual semantic pointer generated
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by the updated visual hierarchy retains sufficient feature information for the methods described

in Section 3.2.2 to use in generating the motor semantic pointer.

 A B 

Figure 4.21: Comparison of Spaun and Spaun 2.0 results for the copy drawing task. For each
pair of digits, the MNIST stimulus image used is displayed on the left, and Spaun’s reproduction
is displayed on the right. Shown are two randomly selected examples for each digit from 0 to 9.
(A) Copy drawing task results for the Spaun model. (Adapted from [Eliasmith et al., 2012] with
permission) (B) Copy drawing task results for the Spaun 2.0 model.

As Figure 4.21 demonstrates, the semantic pointers generated by the updated hierarchy con-

tain enough semantic information to be successfully used for this task, enabling Spaun 2.0 to

(as with the original Spaun model) capture distinctive features (e.g. the slant of the digit, the

appearance of loops, etc.) of the stimulus images. Additionally, the results demonstrate that

using the updated (fully-spiking) motor arm controller in Spaun 2.0 results in “cleaner” (less

ragged) digits compared to the original Spaun model.

4.6.3.2 Digit Recognition

For the purpose of comparing the original Spaun and Spaun 2.0 models, the digit recognition task

serves as a sanity check to ensure that the updated visual system is able to operate correctly in
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conjunction with the rest of Spaun’s modules.

The original Spaun model reported a digit recognition task accuracy of 94% [Eliasmith et al.,

2012], while the Spaun 2.0 model achieves a performance accuracy of 97.76% (95% confidence

interval of 96.76% to 98.66%) on the digit recognition task. Compared to the original Spaun

model, Spaun 2.0’s results more closely match human performance, which is reported to be

approximately 98% [Chaaban and Scheessele, 2007].

4.6.3.3 N-arm Bandit Task

As one of the major changes in the Spaun 2.0 model involves the modification of the error signal

computations, the N -arm bandit task serves to demonstrate that the updated Spaun 2.0 model

is able to reproduce the results demonstrated by Spaun. Additionally, the bandit task can be

run for extended trial counts to demonstrate that Spaun 2.0 is capable of performing the longer

learning tasks without suffering from any unintended disruption in Spaun’s behaviour.

Figure 4.22 compares the results of the bandit task for both the Spaun and Spaun 2.0 models.

Both models were configured with similar learning rates41 and run on a 3-arm bandit task con-

figured with identical reward probabilities and number of trials (see figure caption for details).

As the figure illustrates, for each set of 20 trials, both the Spaun and Spaun 2.0 models were able

to correctly identify the action with the highest probability of reward.

In order to demonstrate that the modified reward evaluation system (combined with the action

selection system) is capable of continual performance for prolonged learning trials, the Spaun 2.0

model was also run on the 2-arm bandit task for a total of 160 learning trials (compared to

60 in the Figure 4.22). The 2-arm bandit task consisted of 4 sets of 40 trials, with the reward

probabilities modified for each set of trials. Figure 4.23 compares the results obtained from the

Spaun 2.0 model with the results obtained from the adaptive basal ganglia model from [Stewart

et al., 2012].

The results illustrated in Figure 4.23 demonstrate that with the changes to the reward eval-

uation system, Spaun 2.0 is capable of performing extended learning tasks, whereas the original

Spaun model might have failed to do so correctly (see Section 4.5). Of importance to note, for

the Spaun 2.0 results, the drop in the probability of choosing “Action 1” for the last couple of

trials (trials 158 – 160) is an artifact of how the Spaun simulation is run. The Spaun simulation

is run for a predetermined amount of time, which is estimated by combining the number of input

stimuli Spaun is to receive with the number of responses Spaun is expected to provide. However,

41The neural learning rule implementation differs slightly between the Nengo 1.4 and Nengo 2.0 simulation
software. The learning rate of Spaun 2.0 was configured to best match the effects of learning in both versions of
the Nengo software.
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Figure 4.22: Comparison of Spaun and Spaun 2.0 results for the 3-arm bandit task. For this
specific task, the reward chance for action 1 (A1) is 12% for the first 20 trials, 12% for the next
20 trials, and 72% for the last 20 trials. Likewise, the reward chance for the second action (A2)
is 12%, then 72%, and lastly 12%. For the third action (A3), the reward chances are 72%, then
12%, and finally 12%. Rewarded trials are marked with a ’x’. Spaun’s probability of choosing
a particular action is computed over a 5-trial window. (Left) 3-arm bandit task results for the
Spaun model. (Adapted from [Eliasmith et al., 2012] with permission) (Right) 3-arm bandit task
results for the Spaun 2.0 model. The particular experimental run displayed was chosen out of
a batch of 10 randomly instantiated Spaun 2.0 models. Out of the 10 experimental runs, the
run shown above was chosen as the pattern of rewarded trials most closely matched the original
Spaun data.

because the timing of Spaun’s responses is non-deterministic, it is possible that, within the fixed

simulation time, Spaun is unable to complete all 160 learning trials. Trials that Spaun is unable

to complete are marked as having no action been taken, thus reducing the overall probability of

choosing Action 1 for the last couple of learning trials.

4.6.3.4 List Memory

The Spaun 2.0 model significantly altered the design and behaviour of the integrator networks used

in the memory system, reducing the decay rate of the integrators, and removing the consistent

dip in stored representations when the gating signal is switched (see Section 4.3). As such, it is

193



40 80 120 160
Trial Number

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y 

of
 M

ov
in

g 
Le

ft
L:0.21 R:0.63 L:0.63 R:0.21 L:0.12 R:0.72 L:0.72 R:0.12

2-arm Bandit Task: Adaptive Spiking Basal Ganglia Model

Average over 200 runs
One experimental run
One simulation run

40 80 120 160
Trial Number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 C
ho

os
in

g 
Ac

tio
n 

1

A1:0.21 A2:0.63 A1:0.63 A2:0.21 A1:0.12 A2:0.72 A1:0.72 A2:0.12
2-arm Bandit Task: Spaun 2.0 Model

Average over 150 runs
One experimental run
One simulation run

Figure 4.23: Comparison of results between the adaptive basal ganglia model [Stewart et al.,
2012] and the Spaun 2.0 model for the 2-arm bandit task. The task consists of 4 sets of 40
learning trials, with the probabilities of rewarded actions listed above each set of trials. Note
that the adaptive spiking model uses the terms “Left” and “Right” to denote the actions, while
the Spaun model uses the terms “Action 1 (A1)” and “Action 2 (A2)”. For each graph, the
model’s probability of choosing the first action is averaged over all of the runs and plotted in
gray, with the shaded region indicating the 95% confidence interval. Also plotted (dashed line) is
sample data from [Kim et al., 2009], where rats were trained to perform the 2-arm bandit task.
Additionally, each graph plots a single run of the respective models, using an averaging window
of 10 trials. (Top) Data obtained from the adaptive spiking basal ganglia model [Stewart et al.,
2012]. (Adapted from [Stewart et al., 2012] with permission). (Bottom) Data obtained for the
Spaun 2.0 model. Note that the mean choice performance is averaged over 150 runs, compared
to the 200 in the previous graph.
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expected that these changes will affect Spaun’s performance on the list memory task.

Figure 4.24 compares the recall accuracy curves for the serial list memory task for lists 4

to 8 digits in length. Both data from the original Spaun model, and the Spaun 2.0 model are

illustrated, as well as human recall accuracy data (for lists of numbers) as reported in [Dosher,

1999]. As the graphs indicate, addressing the shortcomings of Spaun’s integrator networks has

resulted in an improvement in Spaun’s recall accuracy, resulting in data that more closely matches

human performance data. Comparing the performance results of the Spaun 2.0 model, and human

subjects, it can be seen that the general shape of the recall curves match, however the Spaun

2.0 model is more accurate at recalling longer lists. It is important to note that this may be

because the Spaun 2.0 model was configured with the same memory parameters as the original

Spaun model (which borrowed its parameters from the OSE memory model), and no effort was

made to fit the performance of Spaun 2.0 to the human data. It is also hypothesized that the

implementation of a more realistic episodic memory component (see Section 3.1.3) may result in

a better match to human data, however, this is left for future work.
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Figure 4.24: Comparison of results between the Spaun model, the Spaun 2.0 model and human
performance for the serial list recall task. For both Spaun models, the shaded region indicates
the 95% confidence intervals for the data collected. (Left) Results from the original Spaun model.
(Adapted from [Eliasmith et al., 2012] with permission). (Center) Human serial recall perfor-
mance data for digit lists, as reported in [Dosher, 1999] (Adapted from [Eliasmith et al., 2012]
with permission). (Right) Results from the Spaun 2.0 model, which included a re-implementation
of the core integrator networks within the memory system.
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4.6.3.5 Counting

Unlike most of the mechanisms (e.g. inductive reasoning, question answering, etc.) within Spaun

– which are primarily driven by the visual system – the core of Spaun’s counting mechanism is

driven by internal control signals generated within the motor system (see Section 4.2). As such,

the updates to the motor timing controller (see Section 4.2.1) will alter Spaun’s behaviour during

the counting task. Figure 4.25 compares the response generation time for the Spaun model

(as reported in [Eliasmith et al., 2012]) and the Spaun 2.0 model. From the graphs, several

observations can be made. First, for both the original Spaun model, and the updated Spaun 2.0

model, the task response time increases linearly with respect to the count length. Second, the

variability in the response timing increases as the number of counts increases, demonstrating that

both models reproduce an effect known as “Weber’s Law” [Krueger, 1989].

The differences between the data is also important to note. It is observed that the variance in

response times for the Spaun 2.0 model is greater than for the original Spaun model. This is most

likely due to the fully neural implementation of the motor timing controller, which introduces

more noise (and thus more variance) in the timing of Spaun’s responses.

Additionally, the count time per item for the Spaun 2.0 model is greater than for the Spaun

model – measured to be 475 ± 63 ms and 419 ± 10 ms [Eliasmith et al., 2012], respectively.

Compared to the subvocal count time (per item) for human subjects [Landauer, 1962], Spaun

2.0’s results lies on the edge of the measured human range of 344 ± 135 ms. The increase

in count time between the Spaun and Spaun 2.0 models can be attributed to the fully neural

implementation of the motor timing controller. While the ramp timing (i.e., the time it takes

the ramp to go from 0 to 1) remains unchanged between the two models, the Spaun 2.0 model

does not reset the ramp instantaneously. Rather, the Spaun 2.0 model relies on the ramp reset

circuitry to reset the ramp (see Section 4.2.1), thus adding to the count time for each item.

With regards to the difference between the count times reported for the human subjects

and the Spaun models in general, this is likely due to the fact that the Spaun’s method of

“subvocalization” differs from the human subjects (Spaun “imagines” writing the digit instead).

Implementing a proper subvocalization mechanism (i.e., one that is independent of the motor

system) would probably result in a better match to human data, however, this is left to future

work.

4.6.3.6 Question Answering

The original Spaun model made the prediction that the memory effects observed in the serial list

recall task (i.e., the effects of primacy and recency) would also manifest in the recall accuracies
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Figure 4.25: Comparison of Spaun and Spaun 2.0 response timings for the counting task. Shaded
regions indicate +/- one standard deviation of the reported data. Refer to accompanying text for
an analysis of the results. (Left) Results from the Spaun model (adapted from [Eliasmith et al.,
2012] with permission). (Right) Results from the Spaun 2.0 model.

of the question answering task. Additionally, this effect is independent of the task type (“kind”

versus “position”), resulting in similar recall curves between the two task types. Because the

recency and primacy effects are a direct consequence of the memory implementation, the changes

to Spaun 2.0’s memory system should also affect the results obtained for the question answering

task. As demonstrated by Figure 4.26, the improved integrator networks in Spaun 2.0 does result

in higher recall accuracies for the question answering task, while retaining the characteristic

U-shaped recall curves.

4.6.3.7 Rapid Variable Creation (RVC)

The Spaun 2.0 model implements changes to the memory and transformation system particularly

to address the shortcomings of the original Spaun model’s performance in the induction tasks.

Comparing the performance of the original Spaun model and the Spaun 2.0 model on the RVC

task demonstrates the effect these changes have on the behaviour of the Spaun model. For the

plots discussed in this section, the Spaun 2.0 model was tasked with three variants of the RVC

task. Each task variant consisted of three exemplar input-output pairs, followed by the query

input list. The task variant descriptions are as follows:

� aX → X: The input list consists of one constant digit (constant across the three exemplar

input-output pairs), followed by a variable digit (changes across the three exemplar pairs).

The output list consists only of the variable digit.

� aXb → Xb: The input list consists of one constant digit, then by a variable digit, and finally
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Figure 4.26: Comparison of recall accuracy for the question answering task between the Spaun
and Spaun 2.0 models. For this task, list lengths of 7 items were used. Shaded regions indicate
the 95% confidence intervals in the recall data. (Left) Recall data from the Spaun model as
reported in [Eliasmith et al., 2012]. (Adapted from [Eliasmith et al., 2012] with permission).
(Right) Recall data from the Spaun 2.0 model.

by another constant digit that differs in value to the first constant digit. The output list is

composed of the variable digit and the last constant digit.

� aaXb → Xb: The input list consists of two identical constant digits, then by a variable

digit, and finally by another constant digit that differs in value to the first set of constant

digits. The output list is composed of the variable digit and the last constant digit. This

variant is identical to the “biffle biffle rose zarple” example described in Section 3.2.8.

Figure 4.27 compares the original Spaun model and the Spaun 2.0 model’s performance on

the three variants of the RVC task mentioned above. It should be noted that while [Eliasmith

et al., 2012] demonstrates Spaun performing both the “aX → X” and “aaXb → Xb” task variants,

insufficient data was collected for the latter variant to construct a meaningful plot. For the data

collected, two scoring criteria were used to generate the performance metrics. The first (relaxed)

scoring criteria ignores extraneous digits in Spaun’s response, and marks Spaun’s answer as

“correct” if the first N digits of Spaun’s response fully match the expected response. I.e., if the

expected response is the list [45], the response [4512] would be considered correct, while the

response [4] would be considered incorrect. The second (strict) scoring criteria only marks the
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response as correct if and only if all the digits in Spaun’s response match the expected answer.
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Figure 4.27: Comparison of task performance for the Spaun and Spaun 2.0 models on the rapid
variable creation (RVC) task. Error bars indicate the 95% confidence interval of the reported
data. For each task type, the model’s task response is graded according to a relaxed performance
metric, and a strict performance metric. See accompanying text for details on the performance
metrics used, and for an analysis of the data collected. (Left) Performance of the Spaun model
on the aaXb → Xb variant of the RVC task. (Right) Performance of the Spaun 2.0 model on 3
variants of the RVC task.

As illustrated in Figure 4.27, the changes made to the Spaun 2.0 model does result in an

increase in Spaun’s performance on the “aaXb → Xb” variant of the RVC task. However, a sharp

decrease in performance is observed as the RVC task variants get more complex. Figures 4.28

and 4.29 show more detailed analysis of Spaun’s responses to help enumerate the possible reasons

for this performance drop.

Figure 4.28 compares Spaun’s response to each of the 3 exemplar input-output pairs provided

to it as part of the RVC task training set. From the graphs, it is observed that the responses of

the original Spaun model favoured the third exemplar pair (i.e., the responses Spaun provided

was for the third exemplar input list, and not the query list). The data also suggests that

this issue is largely addressed in the Spaun 2.0 model, likely from the updates to the transform

averaging network (specifically, the addition of the initialization condition – see Section 4.3.2),

although other changes to the Spaun 2.0 model (e.g., the addition of the normalization network)

may have contributed as well. Despite the reduction in the probability of Spaun answering with

an exemplar response, the performance on the “aaXb → Xb” task variant has not significantly

increased, indicating that some other factor is responsible for the poor performance on that

variant of the task.

Figure 4.29 shows a breakdown of Spaun 2.0’s responses compared to individual digits of the
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Figure 4.28: RVC task results for the Spaun and Spaun 2.0 models showing a breakdown of
Spaun’s response compared to the exemplars provided as part of the RVC task set up. For each
task variant, the graph is divided into 4 sections, labelled “Ex 1” to “Query”. These indicate the
accuracy of Spaun’s response when compared to each of the three exemplar input-output pairs,
followed by the accuracy of Spaun’s response to the query input list. (Left) Exemplar breakdown
of results from the original Spaun model. (Right) Exemplar breakdown of results from the Spaun
2.0 model.
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Figure 4.29: Comparison of Spaun 2.0’s responses to individual digits of the expected task re-
sponse. Note that an analysis of the “Xb → X” task variant results is not included in this figure as
it would be identical to the “relaxed criterion” results (for Spaun 2.0, on the “aX → X” variant)
illustrated in Figure 4.27.
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“correct” task response. As the figure demonstrates, the Spaun 2.0 performs reasonably well

at identifying (chance identification of an individual digit is 10%) both digits of the “aXb →
Xb” variant, and the second digit of the “aaXb → Xb” variant. The reduction in the overall

task performance is a consequence of the Spaun 2.0 model being unable to identify both digits

correctly, simultaneously.

Using the analysis performed in Figures 4.27 through 4.29, several factors contributing to

Spaun’s performance on the RVC task can be inferred (see below). Further investigation to

deduce the actual cause(s) of Spaun’s performance issues with the RVC task is, however, left for

future work.

� The weighting factor for the transform averaging factor was chosen to minimize the differ-

ence between the true average and the moving average of 5 transforms (see Section 3.2.8).

Having a mismatched weighting factor for the RVC task manifests as Spaun’s responses

favouring the exemplar lists instead of the query list. Changing the weighting factor to

favour the RVC task (as opposed to the fluid induction task) may increase Spaun’s perfor-

mance on the RVC task, however, doing so may negatively impact Spaun’s performance on

the fluid induction task. Additionally, from the data plotted in Figure 4.28, it will, at best,

improve Spaun’s performance by 10% on the “aaXb → Xb” variant of the RVC task.

� The list encoding schema (see Section 3.2.5) used for the information stored in memory

might not be particularly suitable for the RVC task. As demonstrated by the examples

detailed in Section 4.3.2, the results of the transformation calculation often result in super-

fluous digits being included in Spaun’s final result, which makes it difficult for Spaun to

effectively “remove” digits as part of the transform calculation. The effect the superfluous

digits have on the task performance of Spaun can be inferred from the difference in accuracy

numbers between the “relaxed” and “strict” criteria in Figure 4.27. However, this really

only applies to the “aX → X” variant of the RVC task.

� The thresholds of the associative memories used in the decoding system might need to be

adjusted to do a better job at filtering out the superfluous digits from Spaun’s responses.

However, care must be taken to ensure that changes to the decoding system appropriately

affect Spaun’s performance on its other tasks.

� The induction required to perform the RVC task correctly does not fall into the “sequence”

task type that the original RPM sequence solver was designed for (see Section 3.1.5). As

such, the RVC task should be tested with the full range of solvers implemented in the

original RPM solver. The combination of outputs from the 3 solvers may boost Spaun’s

performance in the RVC task.

� Perhaps the most probable cause of Spaun’s performance degradation (as the complexity

of the RVC task increases) is the primacy and recency effects embedded within the repre-

sentations stored in memory. These effects are achieved through the preferential weighting
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of items at the start of the list (primacy), and the decay of items in memory (recency).

While the semantic pointer as a whole can be normalized, this does not affect the individ-

ual weightings of each list item’s contribution to the list memory representation, effectively

resulting in non-unitary contributions to the list memory. As demonstrated in Section 4.3.2,

the use of non-unitary semantic pointers in the transform calculations have a multiplicative

effect on the final result. The list format of the RVC task is most susceptible to this effect,

as the differences between the relative list positions of items in the input and output lists

increase as the task variants get more complex. This is evidenced by the large drop in

accuracy for the first digit of the “aaXb → Xb” task variant in Figure 4.29. Testing this

hypothesis involves running Spaun on a RVC task variant where the relative list positions

between the input and output is minimized (e.g., “Xbaa → Xb”). Additionally, tests can

be conducted with a memory system that employs a different (non differentially weighted)

list encoding to further verify this hypothesis.

4.6.3.8 Fluid Induction

While the changes to the memory and transformation system were directed at improving the

Spaun’s performance accuracy in both induction tasks, the changes were mostly focused at im-

proving the fluid induction task in particular (as demonstrated in Section 4.3.2). Figure 4.30

compares the performance of the Spaun and Spaun 2.0 models on 9 different variants of the fluid

induction task. These variants include:

� [1][2][3]: The digit sequence variant of the progressive matrix, where each cell contains

a single digit that is one numerical value higher than the previous cell.

� [3][2][1]: The digit sequence variant of the progressive matrix, where each cell contains

a single digit that is one numerical value lower than the previous cell.

� [X][XX][XXX]: The list length sequence variant of the progressive matrix, where each cell

contains one more item than the previous cell. The first cell of each row always begins with

1 item in the list.

� [X][XXX][XXXXX]: The list length sequence variant of the progressive matrix, where each

cell contains two more item than the previous cell. The first cell of each row always begins

with 1 item in the list.

� [XXX][XX][X]: The list length sequence variant of the progressive matrix, where each cell

contains one less item than the previous cell. The first cell of each row always begins with

3 items in the list.

� [1][3][5]: The digit sequence variant of the progressive matrix, where each cell contains

a single digit that is two numerical values higher than the previous cell.

� [5][3][1]: The digit sequence variant of the progressive matrix, where each cell contains

a single digit that is two numerical values lower than the previous cell.
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� [1][12][123]: A combination of the digit and list length sequence variants of the progres-

sive matrix. In addition to the lists growing by 1 item from the previous cell, the added

item is one numerical value higher than the item added in the previous cell.

� [3][32][321]: A combination of the digit and list length sequence variants of the progres-

sive matrix. In addition to the lists growing by 1 item from the previous cell, the added

item is one numerical value lower than the item added in the previous cell.

A detailed analysis of the results is provided below.

[1][2][3] [3][2][1] [X][XX][XXX] [X][XXX][XXXXX] [XXX][XX][X] [1][3][5] [5][3][1] [1][12][123] [3][32][321]
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Figure 4.30: Comparison of task performance accuracy between the Spaun and Spaun 2.0
models for multiple variants of the fluid induction task. Shown are comparison between the
Spaun and Spaun 2.0 models for 5 variants of the fluid induction task (“[1][2][3]” through
“[XXX][XX][X]”). Also included are the answer generation accuracies for 4 fluid induction task
variants not tested on the original Spaun model (“[1][3][5]” through “[3][32][321]”). The
black error bars indicate the 95% confidence intervals of the reported data. See accompanying
text for a detailed analysis of the data shown. Note that the size of the confidence intervals on
the original Spaun data is due to the number of trials run (10 trials for Spaun, compared to 60
trials for Spaun 2.0).

In Eliasmith et al. [2012], the performance accuracy of the original Spaun model on the fluid

induction task was reported to be 88%. This result was computed as the average accuracy for the

“[1][2][3]”, “[3][2][1]”, and “[X][XX][XXX]” variants of the induction task. Additionally, it

assumed Spaun had access to the 8 possible answers and was tasked to chose the correct answer.

Using the same metric, the accuracy for the Spaun 2.0 model on the same set of matrices is

92.5% (raw accuracy of 80%, with a 95% confidence interval of 72.5% to 86.67%, with a match-

adjusted rate of 80% + 25% × 50% = 92.5% – see [Eliasmith et al., 2012] for a breakdown of
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the computation). As a comparison, human subjects averaged 89% on the Raven’s progressive

matrices that included only an induction rule (5 out of the possible 36 matrix types – see [Forbes,

1964]).

The results presented in Figure 4.30 use a different performance metric for a more direct

comparison of the performance of the two Spaun models. First, there is no assumption that Spaun

is provided with the possible answers to the matrix, rather Spaun is graded on the generation

of the correct answer. Second, unlike the RVC induction task (see Section 4.6.3.7, responses are

only marked correct if the entire answer matches the expected answer, and no partial matches

are considered. An analysis of the results follows:

� [1][2][3] and [3][2][1]: Of the two changes to Spaun targeting the induction tasks,

only the addition of the normalization network affects the performance accuracy on both

of these matrix variants (see Section 4.3.2). From Figure 4.30, it can be seen that addition

of the normalization network results in an increase of the mean performance accuracy

of digit sequence variant of the progressive matrix (no statistically significant increase in

the accuracy of the “[1][2][3]” variant, but a significant increase in accuracy of the

“[3][2][1]” variant.)

� [X][XX][XXX] and [X][XXX][XXXXX]: The modification of Spaun 2.0’s transform averaging

memory was made particularly to address the performance accuracy on the list sequence

variants of the progressive matrices. As the data illustrates, both the 1-digit-increase list se-

quence, and the 2-digit-increase list sequence variants received boosts in their performance

for Spaun 2.0. The reduction in performance when compared to the digit sequence variants

can be attributed to the list representation used by Spaun. Because Spaun is unable to

discern patterns in the input stimulus, each list is treated as a list of distinct (and inde-

pendent) items, and Spaun has to remember the entire list to perform the task correctly.

Human subjects, however, would be more likely to encode the lists as “N items of X”,

simplifying the representation, and increasing performance on this task. Note that using

the strict grading criteria described above, the original Spaun model was unable to correctly

answer any of the trials of the “[X][XXX][XXXXX]” variant of the task.

� [XXX][XX][X]: Similar to the results of the RVC induction task, the Spaun and Spaun 2.0

models perform poorly on the list sequence variant that involves the removal of an item as

part of the transformation. See Section 4.6.3.7 for a discussion on this phenomenon.

� [1][3][5] and [5][3][1]: From the perspective of the SPA (and the encoding of list infor-

mation within Spaun), these task variants are identical to the “[1][2][3]” and “[3][2][1]”,

with the only difference being the result of the transform computation. As such, similar

results are seen between all four task variants.

� [1][12][123] and [3][32][321]: The performance of this variant is dependent on Spaun’s

performance on the digit sequence variant, and the list sequence variant of the progressive
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matrices. Since Spaun 2.0 performs perfectly on the digit sequence matrix variants, the

results of the “[1][12][123]” and “[3][32][321]” should be similar to the results of the

“[X][XX][XXX]”. This is indeed the case, as demonstrated by the data.

4.7 Discussion

Overall, the modifications made to the original Spaun model to produce Spaun 2.0 have resulted

in significant functional improvements across many of the original tasks. In particular, changes

to the integrator networks in the working memory system have resulted in improvements in recall

accuracies for both the working memory and question answering tasks. Additionally, the rework

of the averaging memory network and the addition of the vector normalization network have

increased performance accuracy for the Spaun’s two induction tasks. Aside from the changes to

the implementation details of Spaun’s networks, Spaun’s code base has also been significantly

reorganized, focused on improving the modularity of the Spaun 2.0 network implementation.

These improvements make Spaun 2.0 more robust and more extensible than the previous version.

In the next chapter, this is taken advantage of, and a significant new behaviour is introduced to

the model. Specifically, Spaun 2.0 is extended to have a more complex visual system, an adaptive

motor system, and most importantly, the ability to process and execute customized instructions.
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Chapter 5

Extensions to Spaun 2.0

The process of formalizing and reimplementing the Spaun model presented the opportunity to

generalize the architectural design of each of Spaun’s modules (Section 3.3), and to reorganize

Spaun’s code base (Section 4.6.2). This was done to enhance the modularity of the Spaun model,

providing it with the theoretical ability to swap and test different individual (or multiple) module

implementations without affecting the rest of the model.

This chapter explores the methods involved in implementing and integrating new module

variants for the Spaun 2.0 model, and discusses the additional functionality they bring to the

Spaun 2.0 model. This section also looks at adding new tasks, and modifying core functionality

of the Spaun 2.0 model. Three extensions to the Spaun model, each increasing in complexity

from the last, are described in this section. They are, in order:

1. Adaptive motor control – to demonstrate how the modularity of the Spaun 2.0 can be used

to add functionality to only one of Spaun’s modules.

2. ImageNet visual system – to demonstrate how the modularity of the Spaun 2.0 can be used

to add functionality to only one of Spaun’s modules, and to show how new tasks are added

to the Spaun architecture.

3. Generalized instruction following – to show how new tasks are added to the Spaun architec-

ture, and demonstrate how new modules can be added to the Spaun architecture to modify

the behaviour of core Spaun modules.

5.1 Adaptive Motor Control

One feature omitted from the Spaun 2.0 implementation of the REACH model described in

Section 4.2.2 is the ability of the controller to compensate for non-linear perturbations applied to
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the end effector of the arm it is controlling. In [DeWolf, 2014], this adaptation is demonstrated

using the perturbed reaching task, whereby subjects are instructed to move their arm to one of

eight points – equally distributed around a circle – while an unknown force is applied as they

affect the movement. Figure 5.1 illustrates the recorded trajectories of a simulated arm with two

different types of velocity force fields (the force applied is proportional to the velocity of the arm),

and the result using the REACH model after adaptation.

 A  B 
A

Figure 5.1: Reaching task trajectories recorded for a simulated arm showing the effects of various
force fields, and the effect of adaptation using the REACH model. The thin lines indicate the
ideal reach trajectory, while the thick lines indicate the trajectory of the simulated arm under the
effects of the force field. (A) Recorded trajectories of the simulated arm in an end-effector based
velocity force field (left) and a joint based velocity force field (right). (B) Recorded trajectory
of the simulated arm when controlled by the REACH model, after having adapted to the joint
velocity based force field.

5.1.1 Spaun 2.0 Implementation

In [DeWolf, 2014], the adaptation in the motor hierarchy is achieved by using the control output

(u) of the M1 population as an error signal for an additional adaptive control signal (uadapt) pro-

jected to the arm. The final control signal projected to the arm is then u+uadapt. Modifying the

Spaun 2.0 motor hierarchy discussed in Section 4.2 to include the adaptive functionality involves

adding these same projections to the motor hierarchy, as illustrated by Figure 5.2. Moreover, as

the inputs and outputs from the motor module remain unchanged, the different (non-adaptive,
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and adaptive) motor systems can be interchanged with no additional changes to the rest of the

Spaun network.
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Figure 5.2: Schematic of the Spaun 2.0 motor hierarchy modified to include the adaptive control
signal. Note that the common functional components of the Spaun 2.0 motor hierarchy (from
Figure 4.8) have been grayed out to highlight the changes made to the network to implement the
adaptation algorithm.

5.1.2 Results

In the REACH model, motor control adaptation was demonstrated using the 8-point reaching task

illustrated in Figure 5.1. The repertoire of outputs of the Spaun model is, however, constrained

to the digits from 0 to 9. Thus, to demonstrate the adaptation of the motor hierarchy in action,

the Spaun model was instructed to repeatedly perform the list recall task with its simulated arm

placed in a velocity based force field.

Figures 5.3 and 5.4 show the recorded inputs and outputs of Spaun for eight sequentially

performed 4-digit list memory tasks, with its simulated arm placed the presence of a joint velocity

based force field. In Figure 5.3, the Spaun 2.0 model did not feature the adaptive motor hierarchy.

As the recorded outputs illustrate, no improvement in its written outputs is observed regardless

of the amount of time spent experiencing the effects of the force field.

In Figure 5.4, the Spaun 2.0 model included the adaptation in the motor hierarchy, and

consequently, shows improvement in its written output as more time is spent experiencing the

effects of the force field. Additionally, on the seventh list memory task, Spaun wrongly identifies
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the first digit as a “6” instead of a “4”, but is still able to adequately reproduce a “6”, despite

having not previously experienced writing the “6” under the effects of the force field. This

demonstrates that the adaptive motor hierarchy is generalizing to the force field, rather than to

the individual digits.

For reference, Figure 5.5 provides sample outputs from Spaun 2.0’s non-adaptive motor system

without the effect of the force field.

Figure 5.3: Recorded input stimuli and produced outputs for the Spaun 2.0 model with a non-
adaptive motor hierarchy while its arm is subjected to a joint velocity modulated force field. To
differentiate between the two, the input stimuli are presented against a black background, while
Spaun’s written responses are against a white background. See accompanying text for an analysis
of the results.

5.2 ImageNet

ImageNet [Russakovsky et al., 2015] is a dataset of over a million images used to test visual

classification networks, similar in purpose to the MNIST dataset. However, while the images in

the MNIST dataset are grayscale, 28 × 28 pixels in size, and only feature handwritten digits

(i.e., there are 10 possible classification classes), the images from the ImageNet dataset are fully
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Figure 5.4: Recorded input stimuli and produced outputs for the Spaun 2.0 model with an
adaptive motor hierarchy while its arm is subjected to a joint velocity modulated force field. See
accompanying text for an analysis of the results.

Figure 5.5: Reference outputs for the digits “2”, “4”, “5”, “6”, and “7” written by Spaun under
normal (no external force field, no motor adaptation) conditions.

coloured (RGB), can vary in size (typically 256 × 256 pixels), and are classified into 1000 output

classes ranging from specific animals (e.g. specific breeds of dogs) to mechanical devices (e.g.

police cars, ambulances). Figure 5.6 shows several example images from the ImageNet dataset,

along their assigned classification class(es).

In 2016, Hunsberger and Eliasmith [2016] combined the AlexNet visual system architec-

ture [Krizhevsky et al., 2012] with the methods described in Section 4.1.1 to develop a spiking

visual hierarchy capable of classifying the images from the ImageNet dataset. The spiking Ima-
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Figure 5.6: Example images from the ImageNet dataset [Russakovsky et al., 2015], and their
associated class label.

geNet visual hierarchy consists of 6 layers of spiking neurons, containing 193,600, 139,968, 64,896,

43,264, and 43,264, 8,192 neurons respectively, for a total of 493,184 spiking LIF neurons. The

network receives input as a full colour (RGB) 224 × 224 pixel image (cropped to account for

the differing sizes of images found in the ImageNet dataset), and produces a 1000-dimensional

vector as an output, with each vector element corresponding to 1 of the 1000 possible classes in

the ImageNet dataset.

This section describes the process of integrating the ImageNet visual hierarchy with the Spaun

2.0 model. The discussion proceeds in three parts: first, Section 5.2.1 details the Spaun imple-

mentation of the ImageNet visual hierarchy, and discusses the modifications made to the network

to facilitate the integration with Spaun. This is followed in Section 5.2.2 by a discussion regarding

the addition of a new task to the Spaun collection of tasks, necessary because Spaun’s output

is limited to the range of digits from 0 to 9. Finally, Section 5.2.3 explores the results of data

collected using the ImageNet capable Spaun 2.0 model.

5.2.1 Spaun Implementation

Adapting the ImageNet visual hierarchy to the Spaun network required several modifications to

be made to the interface between the visual hierarchy and the rest of the Spaun 2.0 visual system.

These modifications are the focus of this section.
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5.2.1.1 Spaun Control Characters

The first and most obvious change is to the input stimulus provided to the visual hierarchy. The

ImageNet dataset does not contain the Spaun specific control characters necessary for Spaun to

operate correctly, so the existing 28 × 28 pixel control character images were up-scaled to match

the input resolution (224×224 pixels) of the ImageNet visual hierarchy. A Gaussian filter was also

applied to the images to smooth out the pixel boundaries introduced as a result of the up-scaling

process. Lastly, the images were converted from grayscale to RBG to match the full colour input

expected by the ImageNet visual hierarchy. Figure 5.7 compares a sample MNIST-based control

character image with the equivalent ImageNet compatible image.

 A  B 

Figure 5.7: To-scale comparison of Spaun control characters used with the MNIST visual hierarchy
(A), and the ImageNet visual hierarchy (B).

5.2.1.2 Change Detect Network

Section 4.1.2 describes the modifications made to the original Spaun visual change detection

network to remove the artificial dependence on the “blank” input stimulus. The changes made to

the change detection network shifted its operation from the output of the visual classifier (512-

dimensional output) to working directly with the pixel-based input to the visual hierarchy. For

the MNIST dataset, the images are 28× 28 pixels, so the change detection network has an input

dimensionality of 768 (28× 28).

In contrast, the ImageNet visual hierarchy receives 224× 224 pixel images. Additionally, the

images are coloured, with one channel each for the red, green and blue components respectively.

Thus the total dimensionality of the input to the ImageNet visual hierarchy is 224 × 224 × 3 =

150, 528. If every single pixel were used to generate the output of the change detection network,
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using 30 neurons per differentiator results in a total neuron count of 4,515,840 (more than 9 times

larger than the visual hierarchy!).

To reduce the overall neuron count of the ImageNet visual system, instead of projecting every

pixel to the change detection network, projections from a maximum of 5000 randomly selected

pixels are used. This caps the neuron count for the change detection network to a maximum of

150,000 neurons.

5.2.1.3 Classifier Networks

As mentioned above, the output of the ImageNet visual hierarchy is a 1000-dimensional vector,

with each element of the vector representing each class found in the ImageNet dataset. To convert

the output of the visual hierarchy into the 512D semantic pointer format used by Spaun’s other

modules, the 1000D output of the visual hierarchy is projected into an 1000-element associative

memory (see Section 2.5.5.5) that associates each of the 1000 output classes with a randomly

generated 512-dimensional semantic pointer.

Unlike the MNIST visual hierarchy, the classification accuracy of the ImageNet visual hierar-

chy can either be reported as “Top-1” or “Top-5”. “Top-1” refers to the classification accuracy

when only the highest output class is considered for each image, whereas “Top-5” refers to the

classification accuracy when the top 5 highest output classes are considered in the accuracy com-

putation (i.e., the output result is marked “correct” if any one of the top 5 output classes match

the expected class for the image).

For the Spaun implementation of the ImageNet-based visual system [Hunsberger and Elia-

smith, 2016], classifying the inputs according to the “Top-1” criteria involves using a winner-

take-all (WTA) network to restrict the output of the associative memory to only one of the 1000

possible classes. This is the method already in use for the MNIST-based visual system. Imple-

menting the “Top-5” criteria is however, not possible. Instead, it is approximated by removing

the WTA network, and adjusting the thresholds of the neural ensembles in the associative mem-

ory such that across the entire set of training images, the maximum number of output classes

projected to the output of the associative memory is 5. Through trial and error, the threshold

value of 0.21 was determined to produce this effect, with most images projecting 2 class semantic

pointers to the output of the associative memory. To differentiate the difference in behaviour, this

scoring criteria will be referred to as “Top-N”. The results presented in Section 5.2.3 demonstrates

the difference in classification accuracy when using the “Top-1” and “Top-N” criteria.

Because the Spaun control characters were not included in the set of training images, the

output classes of the ImageNet visual hierarchy do not include a class for each of the control

characters. Instead of repeating the lengthy process of training the ImageNet visual hierarchy
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specifically to include Spaun’s control characters, it was hypothesized that because the images in

the ImageNet dataset were sufficiently diverse, the semantic pointer output of the second layer of

the visual hierarchy could be used to identify the Spaun control characters. This mandated the

used of a separate associative memory network to classify just the control characters. However,

by using the output of the “control character” associative memory to inhibit the “ImageNet”

associative memory, this two-associative-memory approach offered the advantage of being able to

give the identification of the control characters priority over the ImageNet images (i.e., if Spaun

thinks the input image is a control character, it will not attempt to classify it under the 1000

ImageNet classes), making Spaun less prone to errors in classifying the control characters (which

are crucial to Spaun’s correct operation). This prioritization is not possible using the “standard”

single associative memory approach.

5.2.1.4 Spaun 2.0 ImageNet Visual System

Using the modifications discussed in the previous sections, the full ImageNet visual system can

be constructed. To summarize the architectural modifications:

� Instead of receiving projections from all of the pixels of the input stimulus, the change

detection network receives projections from a randomly selected subset of pixels.

� The 1000-dimensional output of the visual hierarchy is projected into an associative memory

that maps the 1000D vector into a 512D semantic pointer.

� A two associative memory configuration is used to prioritize the classification of Spaun’s

control characters over the classification of the ImageNet images.

Figure 5.8 shows the network schematic of the final Spaun 2.0 implementation of the visual

system. Note that because the output of the associative memory networks (and thus the output

of the visual system) remains a 512 dimensional semantic pointer, no additional changes to the

rest of the Spaun 2.0 network are required to integrate the ImageNet functionality into Spaun.

5.2.2 Stimulus Matching Task

While the previous section details how the ImageNet visual hierarchy can be integrated into

Spaun, one crucial concern remains to be addressed. Because Spaun’s output is restricted to the

digits from 0 to 9, and no mapping has been established between each of the possible ImageNet

classes and a written response, all of Spaun’s existing tasks cannot be used to demonstrate a

successful ImageNet integration.42 To address this issue, a new task – the stimulus matching

42Technically, probes can be used to record neural activity from the memory networks to demonstrate that
Spaun is able to internally represent the ImageNet classes, but this is not in the spirit of Spaun’s “input-to-output”
encapsulation.
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Figure 5.8: Network schematic of the Spaun 2.0 implementation of the ImageNet capable visual
system. Note that the winner-take-all network ( 1O) is included in the visual classifier network
to implement the “Top-1” classification criteria, and is omitted from the visual classifier to im-
plement the “Top-N” classification criteria. Refer to the accompanying text for details on the
modifications made to the network shown in Figure 3.21 to allow Spaun to process images from
the ImageNet dataset.

task – was added to Spaun’s repertoire of tasks. This section discusses the specifics of the new

task, and explores how existing Spaun networks can be used to implement this task with minimal

additions to the Spaun 2.0 model.

Task Description: The stimulus matching task involves Spaun’s indicating if there is a class-

based match between the two presented stimuli. Spaun is to write a “1” if a match is identified,

and a “0” otherwise.

Task Syntax: The input character sequence for the stimulus matching task follows the form:

A C I x J I y J ?
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In the character sequence, “AC” informs Spaun that the task to follow is the stimulus match

(comparison) task. After this, two single-digit lists (x and y) containing the items to be com-

pared are presented. Finally, Spaun is prompted for its response with the question mark control

character, after which Spaun is expected to respond with either a “0” (no match found) or a “1”

(match found). It is important to note that the task is not limited to the ImageNet dataset, and

should work with any variants of the visual system.

Conceptual Implementation: Using the SPA, the comparison of two semantic pointer rep-

resentations is typically achieved by computing the dot product between the two representations.

If the result of the dot product is above a pre-determined threshold, a match is declared. Once

a match is declared (or a “non-match” outcome is decided), the outcome of the dot product

operation is mapped onto their respective semantic pointer list representations to produce the

appropriate “0” or “1” motor output (similar to the question answer task output mapping – see

Section 3.2.7).

System Requirements: For this task, Spaun is required to have:

� At least two working memories, one for each of the two input lists.

� A neural network (dot product network) to perform the comparison between the stored

representations of the two input lists.

� An method to map the output of the dot product network to the “0” and “1” responses

Spaun is expected to provide.

Functional Implementation: Adding a new task to Spaun follows a straightforward process.

First, the task-specific system requirements are determined (see above). From the system re-

quirements, and after analyzing the existing Spaun model, the additional component(s) required

to implement the new task are identified and implemented – prioritizing the reuse of existing

networks. Finally, condition-consequence pairs are added to the action selection hierarchy to

construct the task processing logic required for Spaun to perform the new task.

Looking at the system requirements for the stimulus matching task, Spaun already contains

the necessary number of working memory networks for this task. Additionally, the dot product

(compare) network used to determine the stopping condition in the counting task can be reused

for the stimulus matching task. The only system requirement not met by the existing Spaun

2.0 network is the need for a mapping between the output of the dot product network and the

list-format semantic pointer representation required by the motor system (to produce the “0”

or “1” output). This functionality can be achieved by using an associative memory network to

map the output of the comparison network to the desired list representation. This approach is
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similar to the method used to map the output of the binding network onto the list representations

required for the output of the question answering task (see Figure 3.17). Figure 5.9 illustrates

the modifications made to Spaun 2.0’s transformation system to support the implementation of

the stimulus matching task.
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Figure 5.9: Schematic of Spaun 2.0’s transformation system updated to support the stimulus
matching task. Pre-existing networks and projections from the Spaun 2.0 implementation (see
Figure 3.26) have been grayed out to better indicate the network changes added to support the
stimulus matching task.

Modifying the action selection hierarchy is perhaps the most complex step to adding a task to

the Spaun 2.0 model. Because Spaun’s tasks are visually driven, the necessary modifications to

the action selection hierarchy are systematically determined by stepping through the task steps

determined by the control character sequence (similar to the steps taken in the RVC example

from Section 3.3.8.1).

To start, so that Spaun keep track of the status of the matching task, a new semantic pointer

(COMPARE) is added to the list of task representations (refer to Table 3.5). Next, it needs to be

determined where Spaun is to store the representations of the two lists it is presented. As part of
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the requirements for the counting task, the transformation system (which houses the dot product

network to be used for the matching task) is already configured to route information from the

“Memory Block 2” and “Memory Block 3” components of the working memory system.43 Addi-

tionally, since Spaun is configured to store the incoming input into “Memory Block 2” during the

TRANSFORM1 task processing stage, and into “Memory Block 3” during the TRANSFORM2

task processing stage, these task processing stages can be reused for the matching task. The first

two condition-consequence pairs for this task are then:

0.5× (task • INIT + vision •C) 7−→ COMPARE⇒ task,

TRANSFORM1⇒ task stage

(5.1)

0.5× (task • COMPARE + task stage • TRANSFORM1) 7−→ TRANSFORM2⇒ task stage

(5.2)

After remembering the list containing the second stimulus, Spaun is expected to produce

a “match” or “no-match” response (“1” or “0”, respectively). In order to do this, Spaun’s

updated transformation system (see Figure 5.9) has to be configured to route information from

“Memory Block 2” and “Memory Block 3” to the dot product network, and from the output of

the match-response associative memory to the output of the transformation system. Since no task

processing stage fulfils this exact configuration requirement, a new task stage (TRANSFORMC)

is added to the list of task processing stages (refer to Table 3.6). The appropriate action selection

hierarchy transforms (see Section 3.3.8.2) are then added to set the correct routing paths within

the transformation module during the TRANSFORMC task stage, as shown in Figure 5.10. The

third condition-consequence pair is then defined as:

0.5× (task • COMPARE + task stage • TRANSFORM2) 7−→ TRANSFORMC⇒ task stage

(5.3)

Finally, because the output of the transformation system is a list representation – which

requires no further processing before the decoding (to handwritten outputs) stage – when Spaun

is prompted with the question mark prompt, the task decoding state (see Table 3.7) needs to

be set to FORWARD, concluding the last condition-consequence pair required to implement the

43During the counting task, “Memory Block 2” stores the NUM COUNT representation, while “Memory Block
3” stores the CURR COUNT representation. Both are routed to the dot product network to determine when the
counting task stopping condition is met (see Section 3.2.6).
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Figure 5.10: Illustration of the flow control signal configuration for the transformation module in
the matching task specific “TRANSFORMC” task stage. Here, the actions selection hierarchy
transform (T1) is configured such that when task stage has a value of “TRANSFORMC”, the
“select3” signal is set for “input selector 1”, and the “select2” signal is set for “input selector
2”. This routes information from mem3 ( 1O), and from mem2 ( 2O) to the dot product network.
Additionally, the “select4” signal is set for the “output selector” ensuring that the output of
the match task associative transform (see accompanying text) is routed as the output of the
transformation system ( 3O). Note that the projections and networks unused by the matching
task have been grayed out to enhance the clarity of the schematic.
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matching task in Spaun:

0.5× (task • COMPARE + vision • ?) 7−→ task stage⇒ task stage,FORWARD⇒ task decode

(5.4)

To summarize, adding the stimulus matching task to the Spaun 2.0 model required the fol-

lowing additions to be made:

� The addition of an associative memory network to the transformation network to implement

the matching task output mapping. This is shown in Figure 5.9.

� The addition of the COMPARE semantic pointer to the list of task representations, and the

addition of the TRANSFORMC semantic pointer to the list of task stage representations.

� The addition of layer 2 (of the action selection hierarchy) transform matrices to configure

the path of information flow in the transformation system during the TRANSFORMC task

stage. This is demonstrated in Figure 5.10.

� The addition of four condition-consequence pairs to implement the task control logic for

the stimulus matching task. These are Eqs. (5.1) through (5.4).

5.2.3 Results

In order to quantify the efficacy of the Spaun 2.0’s ImageNet and stimulus-match task implemen-

tations, three types of tests were conducted. First, as with the implementations of the original

Spaun and Spaun 2.0 MNIST visual hierarchies, the classification accuracy of the Spaun 2.0’s

non-integrated ImageNet visual hierarchy is compared against its non-spiking counterpart. Next,

to test the correctness of the stimulus-match task, data is collected using Spaun 2.0’s (verified-

working) MNIST visual hierarchy. Finally, the fully integrated ImageNet visual hierarchy and the

stimulus-match task implementation are combined to demonstrate the new ImageNet processing

capabilities of Spaun.

Standalone Visual Hierarchy: Here, the results of Spaun’s non-integrated ImageNet visual

hierarchy is compared to the non-spiking, rectified-linear (ReLU) neuron-based ImageNet visual

hierarchy of the same architectural design from [Hunsberger and Eliasmith, 2016]. Using the

“Top-1” classification criteria, Spaun’s ImageNet visual hierarchy achieved a 50.4% classification

accuracy, while the non-spiking visual hierarchy achieved a 54.6% classification accuracy.

Using the “Top-5” classification criteria, Spaun’s ImageNet visual hierarchy achieved a 62.2%

classification accuracy, while the non-spiking visual hierarchy achieved a 79.1% classification

accuracy. It is important to restate (see Section 5.2.1.3), however, that due to the limitations
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MNIST 0 1 2 3 4 5 6 7 8 9

0 94.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1 98.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 98.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 95.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 99.1% 0.0% 0.0% 0.0% 0.0% 0.0%
5 96.5% 0.0% 0.0% 11.1% 0.0%
6 93.9% 0.0% 0.0% 0.0%
7 96.5% 0.0% 0.0%
8 92.3% 0.0%
9 91.4%

Table 5.1: Stimulus matching task performance accuracy using the MNIST visual hierarchy,
showing the probability of identifying one input stimulus digit against another input stimulus
digit. The diagonal (shaded gray) indicates the accuracy of correctly identifying two matching
stimuli, while the off-diagonals indicate the percentage of false positives in matching two non-
matching stimuli.

of the neural implementation, Spaun’s ImageNet visual hierarchy is incapable of achieving the

“Top-5” criteria for all image classes. Thus, the comparison of the “Top-5” accuracies is difficult

to interpret.

MNIST Stimulus-match Task: In order to verify the correct operation of the newly added

stimulus matching task, data was collected running the task with Spaun 2.0’s MNIST-based visual

hierarchy – which, as demonstrated in Section 4.6.3, has been verified to be correctly integrated

into the Spaun 2.0 model. Table 5.1 shows the percentage matches collected for 1,157 matching

pairs of stimuli, and 404 non-matching pairs of stimuli, distributed roughly evenly across all 10

possible digit classes. For this task (roughly 100 trials for each matching pair, and 10 trials

for each combination of non-matching pairs), the handwritten MNIST digits are presented to

introduce the possibility that Spaun will incorrectly classify the digit’s class (Spaun’s control

characters have an almost 100% classification accuracy).

From the data shown in Table 5.1, it can be seen that the average in-class match accuracy

of 95.61% is in line with the classification accuracy of the digit recognition task (from Sec-

tion 4.6.3.2), accounting for the fact that for a match to be determined, both stimuli have to

be classified correctly (i.e., probability of correctly classifying one digit: 97.76%, probability of

correctly classifying both digits: 97.76% × 97.76% = 95.57%). Additionally, using the MNIST
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dataset, only 1 false positive was reported across all of the collected data (mismatch between the

5 and 8 digits, 1 trial out of 9). The data thus demonstrates that the stimulus matching task has

been correctly implemented within the Spaun 2.0 model.

ImageNet Stimulus-match Task: The previous sections demonstrated the effective imple-

mentation of Spaun 2.0’s ImageNet visual hierarchy, as well as the stimulus matching task. Here,

the integration of the ImageNet visual hierarchy with the stimulus matching task is discussed.

To begin, Figure 5.11 shows the recorded inputs and outputs of three instances where Spaun

performed the ImageNet stimulus matching task correctly (showing both the true positive, and

true negative cases). Next, Figure 5.12 demonstrates two instances where Spaun performs the

ImageNet stimulus matching task incorrectly, in one instance, failing to identify a match between

two images belonging to the same class (false negative), and in the other instance, incorrectly

identifying two images from different classes as a match (false positive).

Figure 5.11: Recorded input stimuli and Spaun outputs for the ImageNet stimulus matching task.
In this figure, Spaun responds with correct answers to the matching task. (Top) Here, the input
stimuli are both guenons, and Spaun responds correctly with a “1” indicating it has identified
images from the same class. (Middle) Here, the first input stimulus is a guenon (monkey), while
the second stimulus is a titi (monkey). While both stimuli are monkeys, Spaun correctly identifies
that they belong to different ImageNet classes, and responds with a “0” indicating so. (Bottom)
Here, the first input stimulus is a guenon, and the second stimulus is a kit fox. Spaun correctly
identifies that the images do not belong to the same image class, and responds accordingly.

In addition to the demonstration of Spaun performing the ImageNet stimulus matching task,

overall performance data was also collected. To generate the overall performance data, the top 5

most populous images classes were identified within the set of test images. These were the: box

turtle, sewing machine, guenon (monkey), Tibetan Terrier, and the Persian cat. Spaun was then

instructed to perform the stimulus matching task using every combination of these five image

classes. Table 5.2 presents the accuracy results with the ImageNet visual system configured to
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Figure 5.12: Recorded input stimuli and Spaun outputs for the ImageNet stimulus matching
task demonstrating Spaun providing incorrect responses to the task. (Top) Here, both input
stimuli are Clumber Spaniels, meaning Spaun should ideally respond with a “1”. However,
Spaun misidentifies one of the images as a different class, and thus responds to the task with
a “0”, indicating that it considers both images to belong to different ImageNet classes (i.e., a
false negative). (Bottom) Here, the first stimulus is of a Brittany Spaniel, and the second image
is of a Clumber Spaniel (identical to the image used previously). For these two stimuli, Spaun
misidentifies the second image as a Brittany Spaniel (this can be deduced from the results in the
top plot) and responds with a “1”, as it believes both images belong to the same class (i.e., a
false positive).

perform the “Top-1” classification criteria, while Table 5.3 presents the accuracy results with the

visual system configured to perform the “Top-N” classification criteria. Each table presents:

� The raw classification accuracy as a ratio of the number of correctly classified images versus

the total number of images in that class.

� The percentage of correctly identified matches for images belonging to the same class.

� The percentage of falsely identified matches (false positives) for images belonging to different

classes, with one percentage accuracy value for each combination of image classes.

For each accuracy number, the Spaun model was run with the stimulus comparison task for an

average of 80 trials.

From Table 5.2, it can be seen that Spaun has a 45.6% average task performance accuracy

on the stimulus matching task using the “Top-1” classification criteria. This follows the trend

of the raw classification accuracy. It is important to note that the chance accuracy for the raw

image classification is 1/103. However, for the stimulus matching task to be successful, Spaun

has to correctly classify both stimuli, which has a chance success rate of 1/106. From the data,

it is also observed that across the 5 image classes, Spaun has an average 0.81% false positive rate

for non-matching stimuli.

From Table 5.3, it is observed that using the “Top-N” classification criteria, the raw classi-

fication accuracies for each image class is increased. Additionally, Spaun’s average overall per-

formance on the stimulus matching task increases to 64.40%, with improvements across all but

224



ImageNet (Top-1) Box
Turtle

Sewing
Machine

Guenon Tibetan
Terrier

Persian
Cat

Raw classification accuracy 10/13
(76.92%)

4/13
(30.77%)

7/12
(58.33%)

8/11
(72.72%)

6/11
(54.54%)

Matched against:

Box Turtle 54.00% 0.00% 0.00% 0.00% 1.00%
Sewing Machine 33.00% 0.00% 1.33% 0.00%

Guenon 52.00% 3.53% 0.00%
Tibetan Terrier 43.00% 2.22%

Persian Cat 46.00%

Table 5.2: Stimulus matching task performance accuracy results using the top 5 most populous
image categories from the ImageNet test set. The table presents the results of the visual system
configured to output the “Top-1” image class. The diagonals indicate correct performance, while
the off-diagonals indicate false positives. See accompanying text for an analysis of the results.

ImageNet (Top-N) Box
Turtle

Sewing
Machine

Guenon Tibetan
Terrier

Persian
Cat

Raw classification accuracy 12/13
(92.31%)

5/13
(38.46%)

9/12
(75.00%)

10/11
(90.90%)

9/11
(81.81%)

Matched against:

Box Turtle 78.00% 1.00% 3.08% 8.00% 10.53%
Sewing Machine 25.00% 3.85% 6.003% 5.26%

Guenon 65.00% 2.31% 6.40%
Tibetan Terrier 81.00% 8.42%

Persian Cat 73.00%

Table 5.3: Stimulus matching task performance accuracy results using the top 5 most populous
image categories from the ImageNet test set used. The table presents the results of the visual
system configured to output the “Top-N” image classes. The diagonals indicate correct perfor-
mance, while the off-diagonals indicate false positives. See accompanying text for an analysis of
the results.
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one image classes. A decrease in accuracy is observed for the “sewing machine” class. How-

ever, the reported accuracy of 25% is still above the expected accuracy of 14.79% (classification

accuracy for one “sewing machine” image is 38.46%, so the expected accuracy of identifying a

match is 38.46% × 38.46% = 14.79%). As was the case with the “Top-1” configuration, the av-

erage matching-class accuracy follows the trend of the raw classification accuracy. However, the

data also indicates that using the “Top-N” classification criteria leads to an increase in the false

positive rate, to 5.49%.

The results from Table 5.2 and 5.3 demonstrate that the ImageNet visual system and the new

stimulus matching task can be integrated into the Spaun 2.0 model simultaneously. Additionally,

it is observed that the use of the ImageNet visual system for the stimulus matching task does not

negatively impact the classification performance of the ImageNet visual hierarchy, showing that

Spaun’s visual system performance is independent of the task used (and vice versa). Finally, the

demonstrated ability for Spaun to perform the stimulus matching task with either the MNIST

visual system or the ImageNet visual system illustrates the modular capabilities of the Spaun 2.0

model.

5.3 Generalized Instruction Processing

The previous sections demonstrate that because of Spaun 2.0’s updated modular design, both

the motor system and the visual system can be interchanged with alternative implementations

– as long as their input and output interfaces remain the same. While left for future work, this

modularity can be demonstrated for the other Spaun 2.0 modules as well, allowing additional

functionality to be introduced into the Spaun 2.0 model.

Despite the improved modularity of the Spaun 2.0 model, one aspect of Spaun remains in-

variant, and that is the set of tasks that Spaun is able to accomplish. As demonstrated in the

previous sections, adding new tasks to Spaun requires, at minimum, making changes to the action

selection hierarchy (particularly layer 1).

In 2013, Choo and Eliasmith demonstrated a proof-of-concept implementation of a modified

cortico-basal ganglia-thalamic loop that was capable of processing and executing customized non-

static condition-consequence pairs (i.e., the pairs could change during the course of the simulation

run). This section explores the integration of this proof-of-concept network (hereafter referred

to as the “instruction processing system”) into the Spaun architecture, so that it may eventually

serve as the foundation for a more flexible action selection hierarchy, thus removing Spaun’s

restriction to its eight original tasks.

Because the integration of the instruction processing system into Spaun affects its core func-

tionality (and thus introduces complex behaviour), this section is divided into 6 sub-sections. First
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the general architecture of the instruction processing system is described (see Section 5.3.1). This

is followed by one section (Sections 5.3.2 through 5.3.6) for each of the 5 stages in the imple-

mentation of the instruction processing system within the Spaun architecture, with each stage

expanding upon the discussion of the previous sections and adding more complexity to Spaun.

The 5 stages begin with the implementation of the non-instructed stimulus-response task,

which serves as a benchmark for the second stage. The second stage is the implementation of

the instructed stimulus response task, which serves the demonstrate, for the first time, how the

instruction processing system can be used to allow Spaun to perform a task where the task pa-

rameters are defined after the model has been constructed. The third and fourth stages describe

how the instruction processing system can be applied to tasks more complex than just stimulus-

response mappings, allowing it to affect the representations stored in memory (stage 3) and the

representations within the action selection hierarchy (stage 4). Finally, the last stage demon-

strates how the processing of sequential instructions can be implemented within the Spaun 2.0

architecture. This section concludes with a discussion of the instruction processing system as a

whole.

5.3.1 The Instruction Processing System

The core of Spaun’s action selection system is the set of condition-consequence pairs that dictate

the logic behind how each task proceeds. Unfortunately, because the condition-consequence pairs

are implemented as matrix transforms on the inputs to the basal ganglia network and the outputs

of the thalamus network, they are essentially static after the model is built (with the exception

of slow changes that can be made using the error signals and learning rules). This in turn implies

that the set of tasks, and the processing steps within each task, are unchangeable after the Spaun

model is built.

The primary idea of the instruction processing system is to have a method whereby the

condition-consequence information is represented by neural activity (instead of a weight matrix),

thus allowing the information to be modified after the model is constructed. Assuming that the

information extracted from the decoding of the neural activity can be used to effect changes in the

rest of the action selection hierarchy (methods for achieving this are discussed in later sections),

the ability to change the neural representation of the condition-consequence pairs implies that

logical processing steps of tasks can be altered, allowing Spaun to perform tasks it could not have

performed before. Figure 5.13 compares the high-level architecture of the existing structure of

the action selection hierarchy with one that includes the instruction processing system.

In the discussion that follows, the explanation of how the instruction processing system works

is divided into two parts. First is an explanation of the schema used to encode each condition-

consequences pair, as well as the schema used to encode collections of condition-consequence
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Figure 5.13: Comparison of schematic overviews of Spaun 2.0’s current action selection hierarchy,
and the instruction processing action selection hierarchy. (A) Simplified schematic of the cur-
rent action selection hierarchy. As described in Section 3.3.8, state information in cortex affects
the outputs of the basal ganglia and thalamic networks, resulting in changes in the representa-
tions stored in cortex. (B) Simplified schematic of the instruction processing action selection
hierarchy, showing the additional mechanism (the cortical-instruction processing loop) by which
cortical state information is combined with an instruction semantic pointer to effect changes in
the representations stored in cortex, as well as the behaviour of the rest of the action selection
hierarchy. Note that the existing action selection hierarchy networks and projections have been
grayed out to better contrast the two network architectures.

pairs (referred to as an “instruction”). This is followed by an elaboration of how the encoding

schema is procedurally reversed such that when the instruction processing system is provided

with appropriate information, it can identify the consequence(s) that best match the state of the

Spaun network, similar in functionality to the purpose of Spaun’s action selection hierarchy.

Encoding Instructions: Spaun’s implementation of the instruction processing system borrows

concepts from the instruction processing network in [Choo and Eliasmith, 2013]. To facilitate the

explanation of how Spaun’s condition-consequence pairs can be encoded in neural activity, the

following condition-consequence pair is used for the examples to follow:

vision • ZERO 7−→ POS1~ONE⇒ motor (5.5)

To encode the conditionals and consequences, Spaun’s instruction processing system uses bound

pairs, with special “tag” semantic pointers to indicate the specific cortical area associated with the

conditional or consequence. Thus, with the example conditional-consequence pair (see Eq. (5.5)),

228



Spaun’s instruction processing system would encode the conditional as:

CONDITION = VISION~ ZERO, (5.6)

where “VISION” is the semantic pointer “tag” associated with the vision system. Likewise, the

consequence of Eq. 5.5 would be encoded as:

CONSEQUENCE = MOTOR~ POS1~ONE, (5.7)

where “MOTOR” is the semantic pointer associated with the motor system.

To construct the representation of the entire condition-consequence pair, the collections oper-

ator is used with permuted versions of the condition and consequence representations, with one

permutation matrix used to mark the conditional (Pant)
44 and a different permutation matrix

used to mark the consequence (Pcons). The reason for the use of the permutations will become

obvious momentarily. Thus, the entire condition-consequence pair from Eq. (5.5) is encoded as:

CC PAIR = (CONDITION)Pant + (CONSEQUENCE)Pcons

= (VISION~ ZERO)Pant + (MOTOR~ POS1~ONE)Pcons

Instructions contain multiple condition-consequence pairs, and are constructed by are using

the list representation used in Spaun’s memory system. As an example, an instruction containing

three condition-consequence pairs is represented as:

INSTRUCTION = POS1~ CC PAIR1 + POS2~ CC PAIR2 + POS3~ CC PAIR3

There are several important notes about the use of the list representation for the instruction.

First, although the use of the list representation implicitly imparts an order to the condition-

consequence pairs within the instruction, the order information is typically not a necessary prop-

erty to the instruction as a whole (similar to how the condition-consequence pairs in the action

selection hierarchy are unordered). Rather, the list representation is used because it provides a

convenient method to “tag” each condition-consequence pair within the instruction. Second, the

list representation is the reason for the use of the permutation matrices to mark the conditions

and consequences within the instruction set.

As an example, by using “ANT” and “CONS” tags instead of the permutation matrices, the

44Here, the abbreviation “ant” is used to denote the condition (antecedent) of the condition-consequence pair.
This is done to minimize possible confusion between the abbreviations for “conditional” (“cond”) and “consequence”
(“cons”).
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following two-condition-consequence-pair instruction:

vision • ZERO 7−→ POS1~ONE⇒ motor

vision • TWO 7−→ POS1~ TWO⇒ motor,

is represented as the following semantic pointer in the instruction processing system:

INSTRUCTION = POS1~ ((ANT~ VISION~ ZERO) + (CONS~MOTOR~ POS1~ONE)) +

POS2~ ((ANT~ VISION~ TWO) + (CONS~MOTOR~ POS1~ TWO))
(5.8)

However, because the SPA binding operation is commutative (see Section 2.3.8), the semantic

pointer representation of Eq. 5.8 is equivalent to:

INSTRUCTION = POS1~ ((ANT~ VISION~ ZERO) + (CONS~MOTOR~ POS1~ONE)) +

POS1~ (CONS~MOTOR~ POS2~ TWO) +

POS2~ (ANT~ VISION~ TWO),
(5.9)

which can be translated back into the following set of condition-consequence pairs:

vision • ZERO 7−→ POS1~ONE⇒ motor,POS2~ TWO⇒ motor

vision • TWO 7−→ ∅

Since the goal of the instruction schema is to have a unique mapping between the set of condition-

consequence pairs and its SPA representation, the permutation matrices are used to enforce non-

commutativity of the binding operation, thus avoiding the issues demonstrated by the example

above.

Decoding Instructions: The primary purpose of the instruction processing system is to use

information about the state of the Spaun network, along with the provided instruction semantic

pointer representation (which contains information on the non-static condition-consequence pairs)

to extract appropriate non-static consequence information which can then be used to augment

the behaviour of the action selection hierarchy. In order to do this, the schema used to encode

the instruction semantic pointer must essentially be reversed.

Extracting information from the instruction semantic pointer is a two step process, similar to

the process outlined by Eq. (2.11). First, the information gathered about the state of the Spaun

network is used to construct a “probe” semantic pointer. This “probe” is then used to identify

which condition of each condition-consequence pair within the instruction best matches the given
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state of the system. Once the closest matching condition-consequence pair has been identified,

that information can then be used to extract information about the consequence of that pair

(which is then propagated to the rest of the Spaun network).

Using the following instruction semantic pointer as an example,

INSTRUCTION = POS1~ ((VISION~ ZERO)Pant + (MOTOR~ POS1~ONE)Pcons) +

POS2~ ((VISION~ TWO)Pant + (MOTOR~ POS1~ TWO)Pcons)
(5.10)

the information extraction process can be demonstrated algebraically. The first step to the

information decoding process is to tag information with the semantic pointer representations

of their respective sources. Additionally, to indicate that the incoming state representations

are to be used as the conditions for each condition-consequence pair within the instruction,

the “ant” permutation is applied. As an example, if Spaun is visually presented with a “2”,

the “condition” probe semantic pointer (PROBE COND) internal to the instruction processing

system is constructed as:

PROBE COND = (VISION~ TWO)Pant (5.11)

Next, using this probe semantic pointer, the most appropriate condition-consequence pair is

identified. This is achieved by binding the instruction semantic pointer with the inverse of the

probe representation, resulting in a collection of list position semantic pointers. The list position

semantic pointer which has the highest contribution in the result indicates the position of the most

appropriate condition-consequence pair within the instruction. With the probe representation

given by Eq. (5.11), and the instruction semantic pointer given by Eq. (5.10), the list position

(LIST POS) of the best matching condition-consequence pair is determined by:

LIST POS = INSTRUCTION~∼PROBE COND

= [POS1~ ((VISION~ ZERO)Pant + (MOTOR~ POS1~ONE)Pcons) +

POS2~ ((VISION~ TWO)Pant + (MOTOR~ POS1~ TWO)Pcons)]~

∼(VISION~ TWO)Pant

= [∼(VISION~ TWO)Pant ~ POS1~ (. . .) +

∼(VISION~ TWO)Pant ~ POS2~ (VISION~ TWO)Pant +

∼(VISION~ TWO)Pant ~ POS2~ (MOTOR~ POS1~ TWO)Pcons]

= [. . .+ POS2 + . . .]

Once the list position representation is computed, it is fed through a cleanup memory to remove
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extraneous semantic pointer terms introduced by the binding operation:

LIST POS′ = cleanup{LIST POS}
= POS2

Binding the instruction semantic pointer with the inverse of the cleaned list position semantic

pointer results in the semantic pointer representation of the condition-consequence pair

(PROBED CC PAIR) occupying the specified list position:

PROBED CC PAIR = INSTRUCTION~∼LIST POS′ (5.12)

= INSTRUCTION~∼POS2

= [POS1~∼POS2~ (. . .) +

POS2~∼POS2~ ((VISION~ TWO)Pant +

(MOTOR~ POS1~ TWO)Pcons)]

= [. . .+ (VISION~ TWO)Pant + (MOTOR~ POS1~ TWO)Pcons]

Using the probed condition-consequence pair, the desired semantic pointer representation of the

consequence (PROBED CONS) can be extracted by applying an inverse “cons” permutation

matrix. From Section 2.3.8, the inverse “cons” permutation matrix is simply its matrix transpose

(PT
cons):

PROBED CONS = (PROBED CC PAIR)PT
cons

= [. . .+ (VISION~ TWO)PantP
T
cons + (MOTOR~ POS1~ TWO)PconsP

T
cons]

= [. . .+ (MOTOR~ POS1~ TWO)]

Finally, information (DATA) can be extracted from the consequence representation by binding

it with the inverse of the tags representing each downstream module (i.e., each module that the

conditions within the instruction target):

DATA = PROBED CONS~∼MOTOR

= [. . .+ (MOTOR~ POS1~ TWO)~∼MOTOR]

≈ POS1~ TWO

To summarize, the steps required to extract the semantic pointer representation of the con-

sequence that best matches the state of the Spaun network are:

1. Tag the representations projected from the various Spaun modules with the semantic pointer
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tags representing each module.

2. Apply the “ant” permutation matrix to the collection of all the tagged representations,

creating the PROBE COND representation.

3. Bind the instruction semantic pointer with the inverse of the probe semantic pointer to get

the representation of the best matching list positions (LIST POS).

4. Apply the cleanup operation to the list position representation (LIST POS) to isolate only

the top matching list position (LIST POS′).

5. Bind the instruction semantic pointer with the inverse of the top matching list posi-

tion semantic pointer (LIST POS′) to get the best matching condition-consequence pair

(PROBED CC PAIR).

6. Apply the inverse “cons” permutation matrix to the best matching condition-consequence

pair (PROBED CC PAIR) to undo the “cons” permutation matrix, resulting in the conse-

quence representation PROBED CONS.

7. For each module that the conditions target, extract the relevant information by binding

the probed consequence representation (PROBED CONS) with the inverse of the semantic

pointer tags representing each target module.

Figure 5.14 illustrates the schematic of the instruction decoding network, using the steps above

to extract the relevant condition information from a given instruction semantic pointer.

5.3.2 Stage 1: The Stimulus-response Task

Stages 1 and 2 of integrating the instruction processing task into the Spaun 2.0 model involve

the demonstration of non-instructed (Stage 1) and instructed (Stage 2) versions of a simple task

– the stimulus-response task. For stage 1 of the integration process, the conditions and expected

actions of the stimulus response task are hard-wired into the Spaun network (i.e., changing the

task parameters require the Spaun network to be re-built), while in stage 2 of integration process

involves adapting this task to use the instruction processing system, thus allowing the conditions

and expected actions of the stimulus response task to be changed while the Spaun simulation is

running.

Task Description: The stimulus-response task is straightforward. When Spaun is presented

with a stimulus, it is expected to respond with a digit. Both the trigger stimulus and the expected

digit response are predetermined before the Spaun simulation commences (i.e., they are pre-set

as part of the model construction process).
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Figure 5.14: Network schematic of the instruction processing system detailing how the decoding
steps (steps 1O through 7O) outlined in the accompanying text is achieved. There are several
important details to note about the network implementation of the instruction decoding process.
First, because the “tagging” of the Spaun network state information ( 1O) is implemented using
the SPA binding operator with an unchanging “tag” semantic pointer, this can be implemented
in the network as a matrix transform. This applies to the “un-tagging” process ( 7O) as well.
Additionally, because both the binding and permutation operations are linear, they can be com-
bined into one matrix (see “Network Transforms”). This applies to both the application of the
“ant” permutation ( 2O), and the removal of the “cons” permutation ( 6O).
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Task Syntax: The input character sequence for the stimulus-response task follows the form:

A 8 ? x r . . . ,

where the character sequence “A8” indicates that Spaun is to perform the stimulus-response

task, x is the stimuli provided to Spaun (may not necessarily be the trigger stimulus), and r is

the response Spaun provides to the provided stimulus image.

Conceptual Implementation: Conceptually, this task is physical manifestation of the condition-

consequence pairs, as they both share the same “if-then” reasoning. As an example, is Spaun

were needed to respond with a “1” upon the presentation of the “8” stimulus image, this can be

implemented using the condition-consequence pair:

vision • EIGHT 7−→ POS1~ONE⇒ motor

System Requirements: For this task, Spaun is required to have no additional components,

as it already contains the action selection hierarchy (which is used to implement the condition-

consequence pairs).

Functional Implementation: While the stimulus-response task can be (conceptually) imple-

mented using one condition-consequence pair per stimulus-response pair, the actual functional

Spaun 2.0 implementation requires additional supporting infrastructure. First, as with the addi-

tion of the stimulus matching task, an additional task representation (RESPONSE) is added.

Next, in order to configure the Spaun network to correctly handle incoming information, the

appropriate task stage representation needs to be determined. To generate a response for the

stimulus-response task, information needs to be routed to the motor system. While a new task

stage and supporting flow control networks can be added to achieve this, the Spaun 2.0 implemen-

tation takes advantage of the existing projections (and selector networks) from the transformation

network to the decoding system (which already contain the necessary logic to convert the internal

representations into the appropriate motor semantic pointers). Thus, the output of the thalamus

is projected to the transformation network, and a new task stage (DIRECT) is added to configure

the transformation network to route this thalamic projection to the output of the transformation

system.

With this network configuration, the condition-consequence pairs to initialize the stimulus-

response task is then:

0.5× (task • INIT + vision • EIGHT) 7−→ RESPONSE⇒ task,DIRECT⇒ task stage
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The condition-consequence pairs for each stimulus-response mapping is then of the form:

0.5× (task • RESPONSE + vision • x) 7−→ y⇒ transform,

where x is the semantic pointer representation of the trigger stimulus, and y is the semantic

pointer representation of the expected response. As an example, using the stimulus-response

mapping provided above (see “8”, write “1”), the corresponding Spaun 2.0 condition-consequence

pair would be:

0.5× (task • RESPONSE + vision • EIGHT) 7−→ POS1~ONE⇒ transform

Figure 5.15 illustrates the changes necessary to the transformation system needed to imple-

ment the stimulus-response task.

5.3.2.1 Results

To demonstrate Spaun’s efficacy at the stimulus-response task, two metrics were collected. For

both metrics, the action selection hierarchy of the Spaun model was configured to respond with a

“3” when shown a “1”, and respond with a “4” when shown a “2”. Figure 5.16 shows the stimulus

inputs and corresponding Spaun outputs for the task, demonstrating that Spaun is capable of

performing the task. Over 390 trials, Spaun reported a task performance accuracy of 98.97%.

Additionally, response timing data were collected for the task. For the 390 trials, Spaun took

290.55ms (95% confidence interval of 278.59ms to 303.16ms) to successfully complete the task.

This data compares well to human response times measured for this task, which is reported as

274±43ms in [Grice et al., 1982]. Figure 5.17 compares the mean response times for this task for

the instruction processing model from [Choo and Eliasmith, 2013], human data from [Grice et al.,

1982], and the Spaun 2.0 model. It should be noted that two values are reported for the original

instruction processing model – the raw response times reported for the model, and the response

times of the model adjusted to include average visual processing times (reported in [Anderson

and Lebiere, 2014] as 85ms) and average motor processing times (reported in [Meyer and Kieras,

1997] as 150ms). This was done as the original instruction processing model did not include a

visual network implementation nor a motor network implementation.

5.3.3 Stage 2: The Instructed Stimulus-response Task

Stage 2 of the integration process involves the implementation of the instructed stimulus-response

task. At the high level, this task is behaviourally identical to the stimulus-response task from
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Figure 5.15: Schematic of Spaun 2.0’s transformation system (see Figure 3.26) updated to support
the stimulus-response task. Existing networks and projections from the Spaun 2.0 implementation
have been grayed out to highlight the changes made to the network architecture.

Figure 5.16: Recorded input stimuli and Spaun outputs for the stimulus-response task. Here,
two iterations of the task (for a total of 4 trials) are shown. As the figure illustrates, because the
stimulus-response mapping is “hard-coded” into the condition-consequence pairs of the action
selection hierarchy, both iterations of the task produce the same stimulus-response mappings.
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Figure 5.17: Comparison of response times for the stimulus-response task. Shown are data from
the original instruction processing model [Choo and Eliasmith, 2013], human data [Grice et al.,
1982], and the Spaun 2.0 model. Refer to accompanying text for additional details.

Stage 1. However, the unique property of the instructed stimulus-response task is that it is the first

demonstration of how the instruction processing system can be used to modify the conditions and

consequences of Spaun’s task during the simulation run (i.e., after the Spaun model is created),

without requiring the Spaun model to be reconstructed.

Task Description: The instructed stimulus-response task is identical its non-instructed coun-

terpart. That is to say, the task defines a stimulus-response mapping, and when presented with

the trigger stimulus, Spaun is expected to provide the appropriately mapped response. The dif-

ference between the two task lies in how the stimulus-response mapping is provided to Spaun.

In Stage 1, it is presumed that Spaun has intrinsic knowledge of the desired stimulus-response

mapping. For the instructed stimulus-response task however, Spaun is provided with the desired

mapping (encoded as the instruction semantic pointer) as the task is being processed.

Task Syntax: The input character sequence for the stimulus matching task follows the form:

A 9 ? x r . . . ,

where the character sequence “A9” indicates that Spaun is to perform the instructed stimulus-

response task, and as before, x is the stimuli provided to Spaun, and r is the response Spaun

provides to the provided stimulus image.
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Task Instruction Format: In the static stimulus-response task, the stimulus-response map-

pings are “encoded” in the condition-consequence pairs of the action selection hierarchy. As an

example, if the desired stimulus-response mappings are:

� See “eight”, write “one”;

� See “two”, write “three”;

the static stimulus-response condition-consequence pairs (for Stage 1) would be:

0.5× (task • RESPONSE + vision • EIGHT) 7−→ POS1~ONE⇒ transform

0.5× (task • RESPONSE + vision • TWO) 7−→ POS1~ THREE⇒ transform,

For the instructed stimulus-response task, the stimulus-response mappings are encoded in the

instruction semantic pointer. The encoding schema used is identical to the schema introduced

by Eq. (5.10), with the exception that the “payload” of the consequence statements are tagged

with “DATA” instead of “MOTOR”. While it is the case that the consequence statements for

the stimulus-response task directly affects the motor system, the “DATA” tag is used increase

the generalizability of the network used to implement this task (see Figure 5.18 and the Stage 3

integration process). With this change, the general encoding format of the instruction semantic

pointer for this task is:

INSTRUCTION = POSN ~ ((VISION~ x)Pant + (DATA~ y)Pcons) + . . . , (5.13)

where x is the semantic pointer representation of the trigger stimuli, and y is the semantic pointer

representation of the expected responses. Using this encoding format, the equivalent instruction

semantic pointer for the example 2-set stimulus-response mapping described above would be:

INSTRUCTION = POS1~ ((VISION~ EIGHT)Pant + (DATA~ POS1~ONE)Pcons) +

POS2~ ((VISION~ TWO)Pant + (DATA~ POS1~ THREE)Pcons)

Conceptual Implementation: While the static stimulus-response task is implemented through

the construction of condition-consequence pairs, the implementation of the instructed stimulus-

response task leverages the operation of the instruction processing system to achieve the same

(condition-consequence) functionality. Section 5.3.1 demonstrates how the instruction processing

system network can be used to extract consequence information from a given instruction seman-

tic pointer. Thus, if the instruction processing system is provided with visual information, and

with the appropriate instruction semantic pointer, all that is required is to ensure the extracted

consequence information is properly routed to the motor system to achieve the same functionality

that the condition-consequence pairs provide in Stage 1.
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System Requirements: For this task, Spaun is required to have:

� The instruction processing system.

Functional Implementation: Much of the supporting framework for the instructed stimulus-

response task has already been added through the implementation of its non-instructed counter-

part. The only necessary change to the Spaun 2.0 network to support the instructed stimulus-

response task is the addition of the instruction processing system (see Figure 5.14).

Adding the instructed stimulus-response task to Spaun follows the same basic steps as before.

First, a new task representation (INSTR RESP) is added so that Spaun can keep track of the

progress of the new task. Next, as with the static stimulus-response task, information needs to

be routed to the motor system. However, as a task stage representation (DIRECT) already exists

for that, it is re-used. This means that the first condition-consequence pair for this task can be

written as:

0.5× (task • INIT + vision •NINE) 7−→ INSTR RESP⇒ task,DIRECT⇒ task stage

The next condition-consequence pair for this task dictates what information is routed to

the transformation system (and subsequently the motor system) when the trigger stimuli are

presented. In the static stimulus-response task, the information to be routed was determined by

the consequence set in the condition-consequence pair. For the instructed stimulus-response task,

however, the flexibility of the instruction processing system is taken advantage of.

If an instruction semantic pointer encoded with the appropriate information (see Section 5.3.1)

is projected into the instruction processing system, it can use information from the visual system

to determine the appropriate task response. The condition-consequence pair for this task only

ensures that the output of the instruction processing system is routed to the appropriate input

of the transformation module. Referring to the instruction encoding format described above (see

“Task Instruction Format”), the data output of the instruction processing system (instr data)

needs to be projected to the transform input of the transformation module. This is accomplished

using the following condition-consequence pair:

task • INSTR RESP 7−→ instr data⇒ transform (5.14)

It is important to note that in the case of the static stimulus-response task, one condition-

consequence pair is needed for each desired stimulus-response mapping. However, because the

instruction processing system handles the job of extracting the appropriate responses from the

instruction semantic pointer, only one condition-consequence pair (Eq. (5.14)) is needed for the

instructed stimulus-response task.
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Figure 5.18 illustrates the networks and projections necessary to implement the instructed

stimulus-response task. In the figure, the inputs and outputs of the instruction processing system

(see Figure 5.13) and transformation system (modified to support the stimulus-response tasks in

general – see Figure 5.15) have been included for clarity.
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Figure 5.18: Schematic diagram of the networks and projections necessary to implement the
instructed stimulus-response task. Note that only the networks involved in the stimulus-response
task are shown – the rest of Spaun’s other networks are omitted to simplify the network diagram.
Also note that the “gate” network used to control the flow of information between the output of
the instruction processing system and the input of the transformation system is a result of the
implementation of the dynamic consequence (see Section 3.1.4.3 and Figure 3.10) in Eq. (5.14).

5.3.3.1 Results

Similar to the stimulus-response task, two metrics were used to demonstrate Spaun’s efficacy

on the instructed stimulus-response task. For the recorded data, Spaun was provided with two

instructions, distributed equally between the trials:

� See “1”, write “8”; see “2”, write “1”;

� See “1”, write “2”; see “2”, write “8”.

Figure 5.19 demonstrates Spaun performing the instructed stimulus-response task during one

simulation run in which the instruction provided is changed halfway through the simulation.

As the figure demonstrates, Spaun is able to perform the task correctly, without needing any
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permanent changes to the Spaun model (i.e., needing to re-construct the model). Over 320 trials,

the Spaun model reported a mean task performance accuracy of 91.56%.

By comparing the task performance accuracy of this task to the non-instructed variant, it

can be inferred that the addition of the instruction processing system decreased the performance

accuracy by roughly 7.5%. This is probably due to the fact that the extraction of information

from the instruction processing system introduces noise into the system, especially since a cleanup

network is not used, thus decreasing the probability of successful recall from the decoding system,

resulting in Spaun responding incorrectly (or not at all) to the provided stimulus.

Figure 5.19: Recorded input stimuli and Spaun outputs for the instructed stimulus-response task.
In the figure, two iterations of the task are shown. During the first iteration (top row) Spaun is
provided with the instruction “see ‘1’, write ‘8’; see ‘2’, write ‘1”’, and during the second task
iteration (bottom row), Spaun is provided with the instruction “see ‘1’, write ‘2’; see ‘2’, write
‘8”’. It is observed that for both task iterations, Spaun is able to produce the correct responses,
demonstrating that it is able to correctly modify its behaviour when the instruction changes. It
is important to note that the data shown is collected from one simulation of the Spaun model,
with no changes made to the model between the two task iterations.

As with the non-instructed stimulus-response task, response timing data were also collected.

The Spaun model reported an average task response time of 373.31ms (95% confidence interval

of 360.01ms to 383.63ms). This also compares well to the human response times on a similar

task, reported in [Grice et al., 1982] to be 355 ± 58ms. Figure 5.20 compares the response time

data collected using the original instruction processing model from [Choo and Eliasmith, 2013],

human data reported in [Grice et al., 1982], and the Spaun 2.0 model.

In addition to the “raw” response times, Figure 5.20 also compares the response time differ-

ences between the instructed and non-instructed variants of the stimulus-response task. As the

graphs show, for the Spaun 2.0 model, the extra processing time introduced by instruction pro-

cessing system (81.76ms) matches the difference in response times reported for the human data

(81ms), and is a more favourable match when compared to the response time difference reported

for the original instruction processing model (73.2ms).
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Figure 5.20: Comparison of response times for the instructed stimulus-response task. (Left)
Comparison of the response times for the instructed stimulus-response task between the original
instruction processing model from [Choo and Eliasmith, 2013], human data reported in [Grice
et al., 1982], and the Spaun 2.0 model. As with Figure 5.17, two response times are reported
for the original instruction processing model, the “raw” response times, and the response times
taking into account averaged visual and motor processing times. (Right) Comparison of response
time differences between the instructed and non-instructed variants of the stimulus-response task.
Note that the error bars for this graph are the absolute minimum and maximum differences in
response times between the two task variants, using the error bar data reported in the previous
graphs.

5.3.4 Stage 3: Delayed Instructed Stimulus-Response Task

Stage 2 of the instruction processing system integration process allowed Spaun to, for the first

time, adjust its responses based of the information provided as an instruction. However, for Spaun

to be able to use the instruction processing system to augment the action selection hierarchy, the

instruction processing system needs to be able to change the values stored within the memory

networks of Spaun (in particular, the task state memory networks).

In the Stage 2 integration of the instruction processing system, for Spaun to generate its

responses for the instructed stimulus-response task, the visual stimulus is required to be present.

If it is absent, the instruction processing system will not have the required conditional information

to generate the appropriate consequence output (and thus, no response will be generated by

Spaun). As a consequence, this implies that the Stage 2 integration is insufficient for providing

the instruction processing system with the ability to affect Spaun’s memory system.

To address this issue, Stage 3 of the integration process focuses on how the instruction pro-

cessing system is integrated with the memory systems in Spaun. This is achieved by implementing

the delayed instructed stimulus-response task.
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Task Description: The delayed instructed stimulus-response task is similar to the stimulus-

response task, with the exception that a delay is introduced between the presentation of the

stimulus, and the prompt for Spaun’s response.

Task Syntax: The input character sequence for the stimulus matching task follows the form:

M x ? r,

where the character “M” indicates that Spaun is to perform the delayed instructed stimulus-

response task, and as with the previous two stages, x is the stimulus provided to Spaun, and r is

the response Spaun provides to the stimulus image.

Task Instruction Format: The task instruction format for the delayed instructed stimulus-

response task is identical to the format for the instructed stimulus-response task (see Eq. (5.13)).

Conceptual Implementation: Stage 2 of the integration process demonstrated that the in-

struction processing system can be used to extract meaningful data from the instruction semantic

pointer. In addition, Stage 2 demonstrated that this data can be appropriately routed to the

motor system so that Spaun can generate the correct responses. Conceptually, the implementa-

tion of the delayed and instantaneous variants of the instructed stimulus-response task is similar,

with the primary difference being where the information extracted by the instruction processing

system is routed. While this information is routed to the motor system (via the decoding system)

in the instantaneous task variant, for the delayed task variant, the information needs to be routed

to Spaun’s memory system (which is then routed to the motor system when the “?” prompt is

given).

System Requirements: The system requirements for this task are identical to those of Stage

2.

Functional Implementation: As was the case with the previous integration stages, the first

step is to assemble the task initialization condition-consequence pair. For this instructed task

(and the tasks in Stage 4 and 5), a new task semantic pointer representation (“INSTRUCT”) is

used. Additionally, the use of the “M” control character (in contrast to the “A” control character

in previous tasks) to indicate the start of the task means that the condition-consequence pair for

this task is slightly different than for Spaun’s previous tasks. The condition-consequence pair to
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initialize the delayed instructed stimulus-response task is:

vision •M 7−→ INSTRUCT⇒ task,STORE⇒ task stage,FORWARD⇒ task decode (5.15)

Note that for this task, the initialization condition-consequence pair sets initial values for the

task stage and task decode representations. This is to ensure that unless altered by the instruc-

tion provided, Spaun will default to storing the incoming data into “Memory Block 1”, and will

also default to performing the “forward” list decoding when prompted for a response.

With the task initialization complete, the next step is to set up the routing logic for this

task. Since the transformation network already projects to the memory system, the DIRECT

task stage can be used to route information from the output of the instruction processing system

to the inputs of the memory system, just as it was done for the previous integration stages.

However, the task stage representations also determine which memory block (within the memory

system) information gets stored in (see Table 3.6). This would imply that a separate “DIRECT”

task stage would be needed for each of the memory blocks in the memory network.

To avoid this overhead, a different routing solution has been implemented: a direct projection

is created from the output of the instruction processing system to the input of the memory

system. However, since the memory system receives direct projections (i.e., projections not

controlled by the action selection hierarchy) from the information encoding system, a selector

circuit (see Figure 3.29) is used to be able to switch between the two sources of information. The

“select” flow control signal to this input selector is then configured to route information from

the instruction processing system when the task representation is INSTRUCT, and to route

information from the encoding system otherwise. It is important to note that the use of the input

selector networks also lays the foundation for how other sources of information can be routed

to the memory networks while minimizing conflicts (e.g., accidental addition of representations)

between the different sources.

In addition to the routed information, the memory networks also require a control signal to

direct when they are to store their input values (see Figure 3.31). For information projected

from the encoding system, the memory control signal is generated from the output of the visual

change detector network (see Figure 4.4) – this is because Spaun is driven mostly by changes in

visual stimuli. As for information being routed from the instruction processing system, the same

concept can be applied – the memory control signal is generated based on changes detected in the

output of the extracted data semantic pointer. As with the information inputs to the memory

network, a selector network is used to ensure the memory control signal being used is matched

with the source of the information being fed into the memory networks.

Figure 5.21 illustrates the changes required to the instruction processing system (i.e., the

addition of the change detect network). Likewise, Figure 5.22 illustrates the updated memory
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system with the changes (additional selector networks) required to support the delayed instructed

stimulus-response task. Finally, Figure 5.23 shows how the output of the instruction processing

system is projected to the memory system. Note that because the memory network receives

a direct projection from the output of the instruction processing system, no other condition-

consequence pair is required to implement the delayed instructed stimulus-response task.
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Figure 5.21: Schematic diagram of the instruction processing system updated to support the
delayed instructed stimulus-response task. Existing networks and projections from the initial
implementation (see Figure 5.14) have been grayed out to better indicate the modifications made.

5.3.4.1 Results

Figure 5.24 demonstrates Spaun performing the delayed instructed stimulus-response task using

the same instructions as before, with the exception that instead of immediately producing its

response, Spaun is instructed to remember the desired output (which Spaun is prompted for at

a later time).

� See “1”, remember “8”; see “2”, remember “1”;

� See “1”, remember “2”; see “2”, remember “8”.

The key difference between this task and the non-delayed variant of the task is that the stimulus

is no longer present when Spaun is prompted for the stimulus-matched response. In Figure 5.24,

this is illustrated by the presentation of the “?” prompt, which removes the presence of the digit

stimulus as Spaun is prompted for its response – and just as in the 8 original tasks, Spaun only

responds after the “?” is removed. As the figure demonstrates, the changes introduced in Stage

3 of the integration process allows Spaun to correctly complete this task.
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Figure 5.22: Schematic diagram of Spaun 2.0’s memory system updated to support the delayed
instructed stimulus-response task. Pre-existing networks and projections from the Spaun 2.0
implementation (see Figure 3.25) have been grayed out to better indicate the modifications made.

Population data was also collected for the delayed instructed stimulus-response task. Fig-

ure 5.25 plots Spaun’s performance accuracy as the number of tasks within the provided instruc-

tion is increased from 2 to 6. As the figure demonstrates, Spaun’s ability to successfully extract

information from the instruction semantic pointer decreases as the complexity of the semantic

pointer increases, dropping to about 50% when the instruction semantic pointer contains 6 in-

structed tasks. This behaviour is to be expected as adding instructed tasks increases the number

of superfluous semantic pointer terms introduced during the information extraction process. This

decreases the likelihood of Spaun’s ability to either determine the appropriate task position se-

mantic pointer, or the data that is to be stored in working memory (resulting in a failed list recall

when prompted).

Figure 5.26 plots Spaun’s performance on a slight variant of the delayed instructed stimulus-

response task. In the figure, Spaun has been tasked to respond with a list of varying length when

provided with a visual stimulus. This plot is shown to demonstrate the difference between the

representations presented as a visual list, versus as a list encoded in the instruction semantic

pointer. As the plot shows, the recency effect is missing from the recall data of the instructed

list. This is to be expected as the primacy and recency effects are a consequence of how lists are

encoded into memory as each list item is presented to Spaun (i.e., because of the rehearsal and the
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Figure 5.23: Schematic diagram of the networks and projections necessary to implement the
delayed instructed stimulus-response task. Note that only the networks involved with the in-
structed stimulus-response tasks (Stage 2 and Stage 3) are shown – the rest of Spaun’s networks
are omitted to simplify the network diagram. Additionally, the networks and projections involved
solely with the non-delayed instructed stimulus-response task has been grayed out to provide a
comparison between the two implementations.

Figure 5.24: Recorded input stimuli and Spaun outputs for the delayed instructed stimulus-
response task. In the figure, two iterations of the task are shown. During the first iteration (top
row) Spaun is provided with the instruction “see ‘1’, remember ‘8’; see ‘2’, remember ‘1”’, and
during the second task iteration (bottom row), Spaun is provided with the instruction “see ‘1’,
remember ‘2’; see ‘2’, remember ‘8”’. As in Figure 5.19, the data shown was collected in one
simulation run of the Spaun model.
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Figure 5.25: Delayed instructed stimulus-response task performance for increasing number of
instructed tasks included in the instruction semantic pointer. See accompanying text for an
analysis of the results.

decay parameters, each list item contributes a different amount to the overall list representation).

This is in contrast to the list representations encoded in the instruction semantic pointer, where

every item in the list contribute the same amount to the overall list representation.

Figure 5.26 also plots Spaun’s performance on a 3-list variant of the delayed instructed

stimulus-response task. Similar to Figure 5.25, data has been collected for an increasing num-

ber of instructed task contained within the instruction semantic pointer (from 1 to 3 instructed

tasks). This plot serves to demonstrate that the probability of successfully extracting information

from the instruction semantic pointer decreases dramatically if the “payload” of the instruction

is complex. In the case of the 3-list variant of the task, each additional instructed task added

to the instruction adds an 4 bound semantic pointer products (1 double-bound product, and

3 triple-bound products) to the instruction semantic pointer. In contrast, in Figure 5.25, each

instructed task added to the instruction only adds 2 bound products (1 double-bound product,

and 1 triple-bound product) to the instruction semantic pointer.

5.3.5 Stage 4: Instructed Stimulus-Task Task

Stage 3 of the integration process demonstrated that with the appropriate modifications to the

instruction processing system and working memory module, the instruction processing system

is capable of making changes to the representations stored in working memory. The purpose

of Stage 4 is to apply the methods described in Stage 3 to the “task state” memory networks
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Figure 5.26: Spaun performance accuracy on list variants of the delayed instructed stimulus-
response task. (Left) Recall curves for instructions containing one instructed list recall task, for
lists increasing in length from 3 to 7. (Right) Recall curves for instructions containing 1 to 3
instructed list recall tasks, with each list being a fixed length of 3. See accompanying text for an
analysis of the results.

contained within the action selection hierarchy, which should theoretically allow the instruction

processing system to directly affect the task progression logic controlled by the action selection

hierarchy.

Task Description: The instructed stimulus-task task is similar to the instructed stimulus-

response task, with the only difference being that instead of a response being mapped to a

stimulus, one of Spaun’s original 8 tasks is mapped to a stimulus image.

Task Syntax: The input character sequence for the stimulus matching task follows the form:

M x s1 . . . sn ? r1 . . . rn,

where the character “M” indicates that Spaun is to perform the delayed instructed stimulus-

response task, and as with the previous two stages, x is the stimulus provided to Spaun, s1 to sn
are the instructed task’s specific stimulus inputs (control characters and digits), and r1 to rn are

the response Spaun provides to answer the instructed task. As an example, if the stimulus-task

mapping mapped the “1” stimulus to the counting task, s1 to sn would be “I x J I y J”,

and r1 would be the result of the counting task (i.e., x+ y).
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Task Instruction Format: The task instruction format for the instructed stimulus-task task

is identical to the instruction format of the instructed stimulus-response task (see Eq. (5.13)),

with the exception that the “payload” is tagged with “TASK”, instead of “DATA” (since the

mapping is to a specific task, and not to working memory). For this task, the general encoding

format for the instruction semantic pointer is then:

INSTRUCTION = POSN ~ ((VISION~ x)Pant + (TASK~ y)Pcons) + . . . ,

where x is the semantic pointer representation of the trigger stimuli, and y is the semantic pointer

representation (from Table 3.5) of the associated task. The instruction semantic pointer may also

include information to modify the task stage and task decode representations stored in memory.

These are tagged with the representations “TASK STAGE” and “TASK DECODE” respectively.

Conceptual Implementation: The memory networks contained within the working memory

module, and the memory networks used in the action selection hierarchy have similar operational

dynamics. Thus, it should be straightforward to apply the techniques used in Stage 3 to the Stage

4 integration process in order to integrate the instruction processing system with the memory

networks within the action selection hierarchy.

System Requirements: The system requirements for this task are identical to those of Stages

2 and 3.

Functional Implementation: To initialize the instructed stimulus-task task, Spaun needs to

internally register that it is performing an instructed task. Stage 3 introduced the “INSTRUCT”

task representation, that indicates to Spaun to route the outputs of the instruction processing

system to the rest of Spaun’s modules. As this is the desired routing state for the instructed

stimulus-task task, the task initialization condition-consequence pair determined in Stage 3 (see

Eq. (5.15)) can be re-used to initialize the stimulus-task task as well.

The next step to the integration process involves ensuring that the task (and possibly task

stage or task decode states) is extracted from the instruction semantic pointer in a robust fashion.

The encoding schema of the instruction semantic pointer does not place any restrictions on the

type of data it can hold, and any data can be encoded, as long as the appropriate “tags” are used.

This being the case, extracting the task representations from the encoded instruction conditions

is no different than extracting the “data” representation.

However, because the task semantic representations came from a predefined list of semantic

pointers (see Tables 3.5, 3.6 and 3.7), an associative memory network can be used to make the
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information extraction process more robust. The output of the associative memory networks can

also be projected into the change detect networks to generate the flow control signals needed

for the correct operation of the task state memory networks. These changes to the instruction

processing system are illustrated in Figure 5.27.
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Figure 5.27: Schematic diagram of the instruction processing system updated to support the
delayed instructed stimulus-task task. Existing networks and projections from the Stage 3 im-
plementation (see Figure 5.21) have been grayed out to better indicate the modifications made.

Finally, the task information extracted from the instruction processing system needs to be

routed to the task state memory networks. Because the representations in the task state mem-

ory networks are modified only by the action selection hierarchy (in particular, the condition-

consequence pairs that dictate the logic of each task), the inputs to the task state memory are

controlled solely by the thalamus network. That being the case, a condition-consequence pair

can be used to route the task information to the task state memory networks (just like in Stage
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2). The condition-consequence pair used is:

task • INSTRUCT 7−→ instr task ⇒ task,

instr task stage⇒ task stage,

inst task decode⇒ task decode

5.3.5.1 Results

Figure 5.28 demonstrates Spaun performing the instructed stimulus-task task. In the figure,

Spaun has been instructed to perform the following tasks for the first two rows:

� See “1”, perform the working memory task,

� See “2”, perform the question answering task,

followed by the following tasks for the last row of images:

� See “1”, perform the counting task,

As the figure shows, Spaun is able to perform the tasks correctly, and as with the results from

Stage 2 and 3 of the integration process, without stopping the simulation to reconstruct the

Spaun model. The results from this figure also demonstrates that the changes made in the Stage

4 integration process have provided the instruction processing system with the ability to modify

Spaun’s internal task representations, which is a necessary step to allowing Spaun to perform

tasks outside of its 8 original tasks.

Figure 5.28: Stimulus inputs and Spaun outputs for the instructed stimulus-task task. See
accompanying text for details.

For this task, data was also collected measuring Spaun’s probability of successfully performing

an instructed task as the number of instructed tasks within an instruction is increased from 2

to 6. The results of the analysis of the data is shown in Figure 5.29. As the plot in Figure 5.29
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Figure 5.29: Instructed stimulus-task task performance for increasing number of instructed tasks
included in the instruction semantic pointer. See accompanying text for an analysis of the results.

demonstrates, the same general trend of a decrease in the probability of task success is observed.

It is, however, observed that compared to Figure 5.25, the performance accuracies are higher in

general. It is hypothesized that this is because the payload for the stimulus-task task contains,

on average, a single-bound semantic pointer (e.g., “TASK ~ MEMORY”). In contrast, the

payload for the delayed stimulus-response task contains a double-bound semantic pointer (e.g.,

“DATA ~ POS1 ~ TWO”), which introduces more noise (and lowering the task performance

success rate) than the latter payload. It should be noted that the slight increase in the task

performance accuracy for the last data point (6 instructed tasks in the instruction) is unexpected.

Additional data collection is necessary to elucidate the exact cause of this result.

5.3.6 Stage 5: Sequentially Instructed Tasks

Stage 4 of the integration process demonstrated that, with the appropriate modifications, the

instruction processing system can be used to alter the representations stored in the task state

memory networks. This allows the instruction processing system to emulate the functions of the

first layer of the action selection hierarchy (i.e., the basal ganglia-thalamus network). However,

one aspect of the task progression logic remains to be implemented, and that is the focus of Stage

5 of the integration process.

Each of Spaun’s original 8 tasks can be decomposed into the sequential activation of condition-

consequence pairs45, and it is this sequential activation that Stage 5 aims to integrate. To do

45Note that while the condition-consequence pairs for the induction tasks essentially forms a loop, a fixed length
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this, Stage 5 implements the ability to process sequentially instructed tasks.

Task Description: The sequentially instructed task is a task where Spaun is provided with

an ordered (but not necessarily in order) list of tasks. Spaun can then either be instructed to

perform a task corresponding to a specific ordinal number, or to step through the list of tasks

sequentially (following the ordinal numbering of each task).

Task Syntax: The input character sequence to sequentially process instructions follow the

form:

M P p s1 . . . sn ? r1 . . . rn,

where the character sequence MP indicates to Spaun that it is to perform the task associated

with the ordinal number p. Similar to Stage 4, s1 to sn are the instructed task’s specific stimulus

inputs, and r1 to rn are the response Spaun provides to answer the instructed task.

For the sequentially instructed tasks, Spaun can also be presented with the control character

V to inform it to advance to the next task (following the order of the numbering) in the task list.

The input character sequence for this scenario is:

V s1 . . . sn ? r1 . . . rn,

It is important to note that the V control character is meant to only be used after a starting

task number (using the MPp character sequence) has been provided.

Conceptual Implementation: The encoding schema of the instruction semantic pointer in-

trinsically includes the list position for each of the condition-consequence pairs included in the

instruction. It should be straightforward to take advantage of this intrinsic positional encoding to

implement the sequential instruction processing task. [Choo and Eliasmith, 2013] demonstrated

that using the built-in list position tags, it is possible to build an instruction processing system

to perform a counting task, which involved the sequential execution of each step of the count.

However, the use of the intrinsic list position tags has a major disadvantage – the method can

only be applied to condition-less condition-consequence pairs. Since the list position tags are used

to determine which consequence information to extract from the instruction semantic pointer (see

Eq. (5.12)), using the list position tags as a positional indicator would negate the need for the

conditions as part of the information extraction process (since it would “skip” the first step of

loop can still be “unravelled” into a sequence of condition-consequence pairs.
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the two step decoding processing). This implies that this method of sequential processing ignores

any conditions set in the instruction semantic pointer, which may not be desired.

Thus, in the Spaun 2.0 implementation, a different approach is used. Instead of re-using the

list position tags to encode the task order, the task order is encoded as part of the condition for

each condition-consequence pair. In addition to supporting both condition-less and “standard”

condition-consequence pairs, this method of encoding the task order information also allows out-

of-order tasks to be encoded without needing any additional logic to handle the non-sequential

ordering.

Task Instruction Format: The task instruction format for ordered tasks follows the encoding

schema used in Stages 2 through 4. For this task, the novel addition is the inclusion of positional

information within the condition of each condition-consequence pair. The general instruction

encoding format is:

INSTRUCTION = POSN ~ ((POSM + . . .)Pant + (TASK~ y + . . .)Pcons) + . . . ,

where POSM is the order information associated with the specific condition-consequence pair,

and y is the semantic pointer representation of the task associated with the specific condition-

consequence pair. As an example, the following list of tasks:

1. Task 2: See “3”, perform the digit recognition task

2. Task 1: Perform the working memory task

is encoded as:

INSTRUCTION = POS1~ (0.5× (POS2 + VISION~ THREE)Pant + (TASK~ RECOG)Pcons) +

POS2~ ((POS1)Pant + (TASK~WM)Pcons)

System Requirements: The system requirements for this task are identical to those of Stages

2,3 and 4.

Functional Implementation: Because the task order information is encoded within the condi-

tions of the instruction semantic pointer, the infrastructure developed for the previous integration

stages can be reused to support the sequential execution of tasks. The condition-consequence pairs
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to initialize and route the instruction processing outputs are then:

vision •M 7−→ INSTRUCT⇒ task,STORE⇒ task stage,FORWARD⇒ task decode

task • INSTRUCT 7−→ instr task ⇒ task, instr task stage⇒ task stage,

inst task decode⇒ task decode

To support the use of the position semantic pointers as conditional arguments, a position

memory network is added to the instruction processing system. The inputs to the position

memory network are controlled by the task’s “P” and “V” control characters. When presented

with the “P” character (and only in the “instruction” task state), Spaun is required to store

the next incoming digit and use it as a condition to drive the extraction of information from the

instruction semantic pointer. To achieve this, a new task stage representation (INSTRUCT POS)

is added, and the following two condition-consequence pairs are used to shift Spaun into and out

of this new task stage:

0.5× (task • INSTRUCT + vision •P) 7−→ INSTRUCT POS⇒ task stage

0.5× (task • INSTRUCT + task stage • INSTRUCT POS) 7−→ STORE⇒ task stage

In the INSTRUCT POS task stage, the instruction processing system is configured to convert any

visually presented digits into their corresponding position semantic pointer (using an associative

memory network, similar to the question answering task – see Figure 3.17). The position repre-

sentation is then stored in the position memory network within the instruction processing system,

where it is treated no differently than any of the other conditional arguments (e.g., vision).

To advance the position memory by one increment following the presentation of the “V”

control character, the “V” representation is used to create a flow control signal that routes the

output of the position memory through a position increment circuit, and then back into the

position memory. This flow control signal generation is similar to the method used to dictate the

flow of information between memory circuits for the RVC task example shown in Figure 3.32.

The addition of the position memory, the associative digit-to-position mapping, and the incre-

ment circuit to the instruction processing system are illustrated in Figure 5.30. As the position

semantic pointers are used as conditional arguments – which does not alter the remainder of the

consequence information extraction network – no additional changes to the instruction process-

ing system, nor the need for additional condition-consequence pairs, are necessary to implement

Stage 5 of the integration process.
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Figure 5.30: Schematic diagram of the instruction processing system updated to support the
sequential processing of instructed tasks. Existing networks and projections from the initial
implementation (see Figure 5.27) have been grayed out to better indicate the modifications made.
Refer to the accompanying text for details.

5.3.6.1 Results

Figure 5.31 demonstrates Spaun performing a positional and sequential processing of instructed

tasks. The instruction provided to Spaun for this task was:

1. Task 1: Perform the counting task,

2. Task 2: Perform the working memory task.

In the first row of the figure, Spaun is directed to perform the second task in the instruction (using

the control character sequence “MP2”). This is followed by a direction for Spaun to perform

the first task in the instruction (using the control character sequence “MP1”). Last, Spaun

is directed to perform the “next” task in the instruction. Since the previous task performed

was the first task, Spaun proceeds to perform the second task in the instruction. Looking at
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the instruction provided, Spaun is expected to perform the working memory task, followed by

the counting task, and finally the working memory task again. As the figure demonstrates, the

modifications made for the Stage 5 integration process allow Spaun to accurately perform this

task. As with Stages 2 through 4, the data shown in the figure was collected over one simulation

run, without requiring any offline modifications to be made to the Spaun network.

Figure 5.31: Stimulus inputs and Spaun outputs recorded from Spaun performing a sequential
instruction of tasks. Refer to the accompanying text for details on the tasks provided to Spaun.

As before, data was collected for this task over an increasing number of instructed tasks

contained within the provided instruction. This data is plotted in Figure 5.32, and once again,

the general trend of a decrease in task performance accuracy is observed. However, it should

be noted that the overall task success rate is higher than in Figure 5.29. Unlike the comparison

between Figure 5.25 and Figure 5.29, it is hypothesized that the reason for the increase in task

performance accuracy in this case is due to the reduction of complexity in the task conditions

(rather than in the task payload). As an example, the task conditions for the sequential tasks

contain an unbound semantic pointer (e.g., “POS2”), compared to the task conditions for the

stimulus-task task which contain a bound pair of semantic pointers (e.g., “VIS~ TWO”).

5.3.7 System Integration Results

The previous sections detailed how the instruction processing system is integrated into Spaun

2.0 in the effort of enhancing one of the core systems in the model, demonstrating the ability to:

use information from the instruction semantic pointer to directly affect Spaun’s output (Stage

2); extract and modify representations stored in working memory, so that it can be used at a

later time (Stage 3); modify the task state representations stored in the action selection hierarchy

(Stage 4); and sequentially process tasks contained within the instruction semantic pointer (Stage

5). While, using these changes, it is theoretically possible to direct Spaun to perform tasks that

it was not originally designed to do, this has yet been demonstrated.
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Figure 5.32: Task performance success rates for sequentially instructed tasks, for an increasing
number of instructed tasks (from 2 to 6) within the instruction. Note that for the data plotted,
in order to minimize complexity in analyzing the results, Spaun was directed only with positional
task probes (i.e, “V” was not used). See accompanying text for an analysis of the results.

Before continuing, however, it is important to note that even with the changes made to the

Spaun network, each step of any new task defined has to exist as a processing step of the existing

8 Spaun tasks. As an example, without the changes to the transformation module to implement

the direct stimulus-response task, Spaun would have been unable to perform the task (even if

instructed) because the neural projections necessary to complete the task would not have been

present.

As a demonstration of the capabilities of the Spaun 2.0 model with the integrated instruction

processing system, Figures 5.33 to 5.34 present customized instructed tasks, ordered by the

complexity of each task. It should be noted that for the customized tasks, no population level

task performance statistics were collected as they are expected to follow the trends observed in

Figure 5.32.

Extended Question Answering Task: To start, Figure 5.33 shows Spaun instructed to

perform a customized task where all of the task processing elements come from a single “original”

Spaun task (in this case, each task processing element is part of the original question answering

task). To generate the behaviour shown in the figure, the instruction provided to Spaun was:

1. Task 1: Perform the question answering task using the information to be provided.

2. Task 2: Using the list presented in Task 1, perform the “kind” question using the information

to be provided.
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3. Task 3: Using the list presented in Task 1, perform the “position” question using the

information to be provided.

In essence, the instruction provided to Spaun performs the “standard” question answering task,

with the important exception that the task does not have to be restarted every time a new

question is asked (i.e., the input list can be reused). Converting the custom task into a format

Spaun can process, the equivalent instruction semantic pointer is:

INSTRUCTION = POS1~ ((POS1)Pant + (TASK~QA)Pcons) +

POS2~ ((POS2)Pant + (TASK~QA + TASK STAGE~QAK)Pcons) +

POS3~ ((POS3)Pant + (TASK~QA + TASK STAGE~QAP)Pcons)

Figure 5.33: Stimulus inputs and Spaun outputs for the extended question answering task. See
accompanying text for details.

In Figure 5.33, Spaun is first directed to perform the first task in the instruction (using the

character sequence “MP1”). It is then presented the list “[2764]”, and probed for the item in the

third position, which Spaun correctly identifies as “6”. Spaun is then directed to perform the next

task in the instruction (using the control character “V”), and presented with the single digit list

“[2]”. Referring to the instruction provided to Spaun, Spaun is to interpret this list as a direction

to identify the location of the “2” in the input list shown in the first task. When prompted,

Spaun responds with “1”, indicating correctly that the “2” is the first item of the original input

list. Lastly, Spaun is directed to perform the third task, and once again provided with the list

“[2]”. However, this part of the task requires Spaun to interpret the “2” as a positional probe,

and is expected to, when prompted, respond with the second item in the original list – which it

does so correctly, identifying the “7” as the second item in the original input list of “[2764]”.

Applied Counting Task: Figure 5.34 demonstrates the interaction of subcomponents from

three different tasks: the working memory task, the counting task, and the question answering

task. For this task, Spaun is provided with the instruction:
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1. Task 1: Remember the list to be provided.

2. Task 2: Perform the counting task with the list provided in Task 1, with the number of

counts that is to be provided.

3. Task 3: Using the results of the counting task, perform the question answering task using

the question probe information that is to be provided.

This task (referred to as the “applied counting task”) demonstrates that the instruction processing

system can be used to create custom tasks where portions of the task use products generated as

a result of stepping through the task. The equivalent instruction semantic pointer for applied

counting task is:

INSTRUCTION = POS1~ ((POS1)Pant + (TASK~WM)Pcons) +

POS2~ ((POS2)Pant +

(TASK~ COUNT + TASK STAGE~ COUNT1)Pcons) +

POS3~ ((POS3)Pant + (TASK~QA)Pcons)

Figure 5.34: Stimulus inputs and Spaun outputs for the applied counting task. See accompanying
text for details.

In Figure 5.34, as per the instruction provided to Spaun, it is first directed to perform the

working memory task with the list “[326]”. Note that because Spaun is not prompted for a

response, it does not produce any written output. Rather, Spaun just holds the information it

has been presented in working memory. Next, it is directed to perform the counting task, and is

presented with the list “[3]”. As per the instruction provided, Spaun is to use this information to

modify its counting behaviour (i.e., since it was presented a “3”, Spaun is to internally count 3

times). Since the internal counting process only happens when Spaun is prompted for a response,

it is prompted for a response. Here, it is important to note that because Spaun treats a sequence

of numbers as a list of numbers, directing Spaun to perform the counting task on a list of numbers

implies that it should increment all of the numbers by the desired amount. That being the case,

Spaun’s responds correctly with the output list “[659]”. Finally, Spaun is directed to perform

the last part of the instruction, and is provided with the character “P”, followed by the list “[2]”.
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Referring to the instruction provided to Spaun, these inputs dictate that Spaun is to perform

answer the question: “what is the second item in the list?”, where the “list” refers to the result

of the counting task just prior. As the figure demonstrates, Spaun correctly responds with the

answer “5”.

Applied Induction Task: Finally, Figure 5.35 demonstrates a custom task where an inductive

transformation representation is applied to an input that is not originally part of the induction

task. For this custom task, the instruction provided to Spaun is:

1. Task 1: Deduce the pattern between pairs of input lists (presented using the RVC task

format).

2. Task 2: Perform the question answering task.

3. Task 3: Apply the inductive pattern from Task 1 to the first argument of the question

answering task (i.e., the input list).

4. Task 4: Apply the inductive pattern from Task 1 to the second argument of the question

answering task (i.e., the probe list).

The instruction semantic pointer representation for this task is:

INSTRUCTION = POS1~ ((POS1)Pant + (TASK~ RVC)Pcons) +

POS2~ ((POS2)Pant + (TASK~QA)Pcons) +

POS3~ ((POS3)Pant + (TASK~ FLUID IND +

TASK STAGE~ TRANSFORM1)Pcons) +

POS4~ ((POS4)Pant + (TASK~ FLUID IND +

TASK STAGE~ TRANSFORM2)Pcons)

It should be noted that in the instruction semantic pointer, Task 3 and 4 of the instruction

are being achieved by essentially “tricking” Spaun into considering the arguments used for the

question answering task as input cells for the fluid induction task. However, because Spaun

does not apply any context to the list representations stored in working memory, this method is

considered by Spaun to be perfectly valid.

Figure 5.35 shows inputs and outputs of a Spaun model that has been instructed to perform

the applied induction task. First, Spaun is presented with a sequence of lists (“[1]”, “[3]”, “[2]”,

and “[4]”) that it has been directed to parse using the RVC task format. While Spaun has not been

instructed to provide a response, as part of the RVC task process, it still computes the inductive

transform between the list pairs. Next, Spaun is directed to perform the question answering task.

As part of the task setup, Spaun is provided with three inputs: the input list (“[472]”), the task
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Figure 5.35: Stimulus inputs and Spaun outputs for the applied induction task. See accompanying
text for details.

type (“P”), and a single digit query list (“[2]”). Using this information, Spaun correctly answers

the prompt with “7”. Next, it is directed to apply the inductive transform computed in Task 1 to

the first argument of the question answering task (i.e., the list “[472]”). Looking at the list pairs

from Task 1, the correct pattern to apply to the list is to increment each element by 2, which

Spaun does correctly, responding with the list “[694]” when prompted. Last, Spaun is directed

to apply the inductive transform to the second argument of the question answering task (i.e., the

list “[2]”). Once again, it does so correctly, responding with the single digit output “4” when

prompted to do so.

5.4 Discussion

This chapter explored three extensions to the Spaun project that brought new capabilities to the

Spaun 2.0 model, providing it with an adaptive motor controller (Section 5.1), a visual system

capable of processing 256×256 pixel full-colour images (Section 5.2), and an instruction processing

system that allows Spaun to perform customized tasks (Section 5.3). While each extension has

been successful in its own right, the generalized design of the re-organized Spaun 2.0 architecture

makes it straightforward to interchange variants of functional Spaun modules, as long as the

interface to these modules are not changed.

As a final demonstration of a fully integrated Spaun 2.0, Figures 5.36 through 5.38 show a

Spaun model constructed with all three extensions described in this chapter performing a variety

of tasks (both new and original). This feat is possible because the design of Spaun 2.0 allows

variant implementations of Spaun modules to interact with one another as long as the variant

implementations do not modify the input and output projections from each module (a requirement

that each of the new extensions abide by). As a point of comparison, Table 5.4 shows the neuron
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counts of the original Spaun 2.0 model, and the neuron counts of a Spaun 2.0 model constructed

with all three extensions described in this chapter.

Module Name Spaun 2.0 Spaun 2.0 w/ Extensions

Vision (MNIST / ImageNet) 186,400 999,284 (+812,884)
Motor (Non-adaptive / Adaptive) 99,850 100,850 (+1,000)

Information Encoding 618,620 618,620
Information Decoding 533,820 533,820

Working Memory 1,540,950 1,540,950
Transformation 903,910 929,510 (+25,600)

Reward Evaluation 600 600
Action Selection Hierarchy 692,860 747,650 (+54,790)

Instruction Processing System – 1,141,200

Total neuron count 4,577,010 6,637,284 (+2,060,274)

Table 5.4: Comparison of the neuron counts for the original Spaun 2.0 model, and a Spaun 2.0
model containing all three extensions described in this chapter. For modules that have increased
in neuron count, the increase in neuron count is indicated in the parenthesis.

In Figures 5.36 through 5.38, Spaun is presented with 10 instances of the instructed stimulus-

response task (“A9”) using the ImageNet dataset as the image source, followed by 2 instances of

the original working memory task using Spaun’s control characters as the image source. For the

first 5 instances of the instructed stimulus-response task, Spaun is provided with the instruction:

� Respond with a “7” when an image of a “police van” is presented,

� Respond with a “3” when an image of a “puck” is presented,

� Respond with a “9” when an image of a “grey whale” is presented.

For the next 5 instances of the instructed stimulus-response task, the instruction provided to

Spaun is modified to:

� Respond with a “1” when an image of an “organ” is presented,

� Respond with a “8” when an image of a “grey whale” is presented,

� Respond with a “2” when an image of a “half track” is presented.

And finally, for the 2 instances of the working memory task, Spaun is first presented with the

list “[938]”, which is followed by the list “[456]”. For Figure 5.36, all of the task instances

are performed with Spaun’s simulated arm placed in the presence of an unknown force field.

Thus, the significance of the digits chosen for the working memory task is the demonstration
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that adaptive motor controller is able to learn and adapt to the unknown force field for digits it

had prior training with (i.e., the digits “9”, “3”, and “8”, which are responses for the instructed

stimulus-response task), and digits with which it had no prior training writing (i.e., the digits

“4”, “5”, and “6”).

As already mentioned, Figure 5.36 demonstrates Spaun performing the task in the presence of

the unknown force field. As a point of reference, Figure 5.37 shows the output of the tasks with the

external force field applied, but, using a Spaun model that does not contain the adaptive motor

controller. Lastly, Figure 5.38 provides a reference sample of Spaun’s “standard” handwriting

when no external force field is applied.

In closing, it should be made clear that the Spaun model is by no means complete, and that

there are plenty of opportunities for future work, which will be elaborated upon in the next chapter

of this thesis. Some future work relevant to the extensions described in this chapter apply, in

particular, to the instruction processing system. Of note is the fact that the instruction semantic

pointer provided to Spaun has to be constructed using in-depth knowledge of the structure (and

logical task flow) of the action selection hierarchy. This makes the instruction processing system

somewhat artificial, deviating from the Spaun project goal of having a fully enclosed neural

cognitive system.
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Figure 5.36: Stimulus inputs and Spaun outputs for the combined ImageNet instructed stimulus-
response task, and working memory task – using a Spaun model containing all three Spaun 2.0
extensions. For the first 5 rows, Spaun is directed to perform an instructed response-stimulus
task with the “police van”, “puck” and “grey whale” images. For the next 5 rows, Spaun is asked
to perform the instructed response-stimulus task with a different set of images (“organ”, “grey
whale”, and “half-track”). Missing responses (images followed by a question mark) are a result
of Spaun misclassifying the input images. Finally, Spaun is directed to perform two list memory
tasks (last two rows). Spaun’s adaptive motor system can be seen adapting to the unknown force
field, being able to reproduce both digits it has had practice writing before, as well as digits which
it had no prior practice. See accompanying text for additional details.

267



Figure 5.37: Stimulus inputs and Spaun outputs for the combined ImageNet instructed stimulus-
response task, and working memory task – using a Spaun model containing only the ImageNet
visual hierarchy and instruction processing system extensions. In this figure, an unknown force
field has been applied to Spaun’s simulated arm. However, without the adaptive motor system,
it is observed that Spaun is unable to adapt to the force field, and in the case of the two working
memory tasks, unable to reproduce all of the digits in the list in the time allotted.
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Figure 5.38: Stimulus inputs and Spaun outputs for the combined ImageNet instructed stimulus-
response task, and working memory task – showing stereotypical Spaun outputs produced without
the presence of an external force field. This figure serves as a reference for the output digits
produced in Figure 5.36.
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Chapter 6

Conclusion

This thesis described the design and implementation of the Spaun model, its evolution and re-

implementation as Spaun 2.0, and three extensions to the Spaun 2.0 model. The original Spaun

model was assembled from six pre-existing cognitive models, each originally designed to emulate

different functional capabilities of the brain, ranging from visual processing to inductive reasoning.

A framework known as the SPA was used to define a common foundation with which the various

“precursor” models could be integrated, and the methods described by the NEF allowed the

unified model (Spaun) to be implemented in a network of spiking neurons. The Spaun model

itself is able to perform 8 cognitive tasks including digit recognition, list memory, self-guided

counting, and inductive reasoning. The success of the Spaun model demonstrates several points:

� That the SPA is a scalable approach, and it can be used to design large-scale functional

brain models.

� That the methods described by the NEF can be reliably used to implement SPA-based

networks as spiking neural networks.

� That by combining the SPA and the NEF, it is possible to implement a fully-enclosed

cognitive system, capable of internally generating all the control signals it needs to operate.

While a successful demonstrator of the SPA, the original Spaun model was not without is-

sues. The Spaun 2.0 model was created to address these concerns, by analyzing, re-organizing,

and re-implementing the original Spaun architecture. The modifications implemented in Spaun

2.0 included fully spiking visual and motor systems, improved list and averaging memory net-

works, the addition of a normalization network in the transformation system, and the addition

of a bounded-limit mechanism to Spaun’s learning system. These changes have resulted in an

improvement in Spaun’s task performance, particularly with the working memory, question an-
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swering, and both induction tasks. Additionally, through the analysis of the original Spaun

model, and its re-implementation as Spaun 2.0, several lessons can be derived:

� The neural implementations of the visual and motor systems demonstrate that the design of

the control signal generation networks is as equally important as the design of the function

network.

� The modifications necessary for the working memory networks illustrate that minor changes

to the behaviour of these “building block” networks can have a major change on the be-

haviour of the entire model. As such, changes to these components must be carefully

evaluated.

� The addition of the normalization network to the transformation system, and the addi-

tion of the bound-limiting function to the reward evaluation system demonstrate that care

must be taken when translating mathematical formulation into a neural implementation,

as assumptions made in the mathematical formulation may not hold true in the neural

implementation.

Lastly, to further demonstrate the flexibility of the Spaun 2.0 model, three extensions to the

Spaun 2.0 model were presented. These extensions gave Spaun an adaptive motor system, the

visual system capable of processing colour images, and the ability to process generalized task in-

structions. These extensions also serve to demonstrate that the re-organized and re-implemented

Spaun 2.0 network is flexible enough to serve as a test bed for alternative implementations of

functional cognitive subsystems.

6.1 Contributions

Given its complexity and design, the Spaun model sits at the unique intersection of multiple

areas of research. Analyzing Spaun using a top-down approach and considering it a carefully

constructed collection of functional modules, Spaun’s architectural design contains many features

of modern computing hardware. As an example, the working memory system can be thought of as

analogous to the cache or registers within a typical processor, while the transformation system is

Spaun’s equivalent to a processor’s arithmetic logic unit. Using this approach categorizes Spaun

within the realm of computer science and computer engineering.

However, it is equally valid to analyze the Spaun model from a bottom-up perspective; in

which case, Spaun is simply a collection of simulated spiking LIF neurons that are interconnected

using specifically determined connection weight matrices. The consequence of this perspective is

the categorization of Spaun as part of the computational neuroscience research field.

This section briefly discusses the contributions of the Spaun model to the areas of computer

science and computational neuroscience.
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6.1.1 Contributions to Computer Science and Computer Engineering

This project’s contributions to the fields of computer science and computer engineering are pri-

marily related to the development of neuromorphic hardware. Unlike the binary-based logic used

in traditional digital hardware, neuromorphic systems perform computations using electronic cir-

cuits designed to emulate the electrical behaviour of biological neurons (e.g., [Mead, 1990; Indiveri

et al., 2011]). While traditional programming techniques cannot be used to program neuromorphic

hardware, the design of neuromorphic hardware can offer benefits with regards to the efficiency

in the use of silicon, and the energy consumption while performing computations [Mead, 1990;

Stöckel et al., 2017].

On the topic of programming neuromorphic hardware, one difficulty in doing so is determining

the necessary configuration of connections and weights needed to perform a specific function with

the hardware. While machine learning techniques can be used to address this issue, the Neural

Engineering Framework (see Section 2.5.4) provides a concise and efficient method for solving this

problem. Since the components of Spaun described in Section 3.3 can be functionally implemented

using the NEF, these components can be easily transferred onto neuromorphic hardware and can

be used to construct the neuromorphic analogues of the components found in microprocessor

architectures. In particular, Spaun’s action selection hierarchy (see Section 3.3.8) demonstrates

how the flow of information within a neural network can be controlled using a set of logical

constructs (the condition-consequence pairs), similar to how processor instructions (opcodes) are

used to control the flow of information within a microprocessor.

6.1.2 Contributions to Computational Neuroscience

With regards to the field of computational neuroscience, Spaun aims to serve as a modular

test platform on which various biologically based algorithms can be trialled. By leveraging the

modularity of the Spaun 2.0 model, alternative implementations of Spaun’s various systems can

be tested within the context of Spaun’s existing known behaviours. Two such examples have

already been discussed in this thesis; namely, the adaptive motor system (Section 5.1) and the

ImageNet visual system (Section 5.2). Additionally, the Spaun model has been used to test the

effects of more realistic implementations of neurons.

Eliasmith et al. [2016] describe a Spaun model in which the LIF neurons in part of Spaun’s

working memory system have been replaced with conductance-based compartmental neuron mod-

els of a pyramidal cell. The results of the work show that the behaviour of Spaun remains consis-

tent with the LIF-neuron-based version, as well as making predictions on how the recall accuracy

of the working memory task is negatively affected when a neurotoxin (tetrodotoxin (TTX)) is

applied to the neurons. Because the simulated neurotoxin affects the behaviour of the neuron’s
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ion channels, such a prediction would not have been possible using the purely LIF-neuron-based

model, as the LIF neuron model used in Spaun (see Section 2.5.3) does not model the effects

changing the behaviour of the ion channels.

6.2 Future Work

The complexity of the Spaun architecture provides many avenues for future work, some of which

have already been briefly mentioned in the previous sections. This section explores some of these

areas of future work, grouped according to their application to the different functional modules

within Spaun.

6.2.1 Vision Module

The implementation of Spaun’s visual system imposes the largest constraint on Spaun’s ability

to process incoming information. Because the visual hierarchies implemented thus far have been

trained to classify each visual scene as a single concept, complex ideas (e.g., number lists) have to

be decomposed into their constituent parts before they can be presented to Spaun. This makes

it difficult to “program” Spaun to parse compound visual constructs (e.g., words, number lists,

etc.), and necessitated the use of Spaun’s special control characters to convey the necessary task

information to Spaun.

Fully addressing this issue is a research topic in its own right, and would probably require a

neural network with a complexity that is on par (or exceeds) that of Spaun. However, a proposed

“first-step” would be to reduce Spaun’s dependence on its control characters. Using the MNIST-

based visual system as an example, a possible approach to reducing the need for control characters

would be to implement an attention routing circuit (e.g., [Bobier, 2011]) to physically “parse”

the visual field. As a proof-of-concept implementation, the location and size of each shift of the

foveal area can be fixed (see Figure 6.1A). Additionally, specific areas of the entire visual field can

be dedicated to the various input arguments required by each of Spaun’s tasks (see Figure 6.1B).

Integrating the attention routing circuit with the rest of the Spaun network would also be

relatively straightforward. Assuming the output dimensionality of the attention routing circuit is

matched with the input dimensions of Spaun’s visual hierarchy, the output of the visual attention

circuit can be projected directly to the input of the visual hierarchy (see Figure 6.2). The most

challenging part of the integration process would be the implementation of the control circuitry

that is necessary to detect and determine various aspects of the visual scene. For example,

� Determining temporal events as part of the task progression (e.g., the start of the task –

traditionally indicated with the “A” character; the prompt for a response – traditionally
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Figure 6.1: Layout of the visual field for Spaun’s proposed visual attention routing circuit. (A)
Proposed interaction between the visual attention routing circuit and visual stimulus. The atten-
tion routing circuit routes a predefined portion (receptive field) of the entire visual stimulus to the
visual hierarchy. To simplify the initial implementation, shifts in the receptive field are proposed
to be of a fixed size. (B) Proposed organization of Spaun’s visual stimulus, using predefined areas
to segregate task specific information. The organizational areas are aligned to a predetermined
vertical coordinate to reduce the complexity of the proposed implementation.

indicated with the “?” character). A possible solution would be to have the routing circuit

return back to a pre-determined location in the visual scene after processing the individual

task elements. This location in the visual scene can then be used to initiate new tasks

(by showing a task number), or to prompt for a response (by showing the question mark

character).

� Determining the start and ends of input lists. A possible solution would be to fix the start

of each list along the same vertical axis, and use a “blank” input to indicate the end of the

list (see Figure 6.1B for an example).

6.2.2 Motor Module

Compared to Spaun’s original implementation of the motor system, Spaun 2.0’s implementation

of the motor system was a marked improvement, with the improvements stemming from its

realization as a fully spiking neural network. However, as described in Section 4.2.2, because
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Figure 6.2: Proposed schematic of Spaun’s visual system that includes an attention routing
network. Existing Spaun networks have been grayed out to highlight the proposed additions.

Spaun 2.0’s implementation of the motor hierarchy is missing the DMP system, it is not a complete

REACH [DeWolf, 2014] model. Implementing the full REACH model would allow Spaun to

reproduce effects like the ability to modify the scale and rotation of the output digits by changing

a single parameter of the DMP system, as the Spaun simulation is running [DeWolf et al., 2016;

DeWolf and Eliasmith, 2017]. Additionally, the use of the DMP system can produce “hybrid”

digits that contain features of multiple “standard” digits (see Figure 6.3) [DeWolf and Eliasmith,

2017], or to combine multiple digit sequences with one fluid motion. This will open up possibilities

for Spaun to produce more fluid handwriting, or allow for the implementation of tasks while

require Spaun to be “creative” with its output (e.g., expressing a combination of concepts as a

single output).

With the updates to the Nengo simulation software – which now has support for vector-based

function representations [DeWolf and Eliasmith, 2017] – the most obvious avenue of future work

is to adapt the DMP system to function within the Spaun ecosystem. Much of the infrastructure

is already present, and in theory, all that is required is to use a basis-function evaluator network

combined with the point attractor network to implement a Spaun-compatible DMP network, as

illustrated in Figure 6.4. Several implementation details would have to be determined and tested,

including:
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Figure 6.3: Illustration of “compound” digits produced by the REACH model. Each “compound”
digit is produced by combining features of the numerical digits listed below each diagram. (Re-
produced from [DeWolf and Eliasmith, 2017] with permission)

� Determining an appropriate solution to generating the “target point”, which is necessary

for the correct operation of the point attractor network, and is specific to each type of digit

(i.e., numerical value) being written.

� Testing the robustness of using the vector representation of each digit’s specific forcing func-

tion when used with the algorithm for generating the copy-drawing transformation matrices.

Thus far, the algorithm has proved successful with trajectory-based vector representations,

but it is unknown if this will be the case with function-based representations.

6.2.3 Information Encoding, Decoding, Working Memory Modules

While the implementation of the working memory system (both the original OSE implemen-

tation [Choo, 2010], and the updated Spaun 2.0 implementation) has proved to be effective at

reproducing the recall behaviours observed in human experiments, it is also to some extent,
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Figure 6.4: Schematic of Spaun’s proposed motor system implemented using the DMP network.
In this network, a sub-network is used to combine a set of basis functions (BF ) with a vector-
based representation of the desired forcing function (W ). The output of the forcing function
(FF (v)) is computed by taking the inner product of the motor semantic pointer (W ) with the
basis functions evaluated at the value determined by the ramp input (i.e., BF (v)W ).

unsatisfactory. This is primary because Spaun’s implementation of the working memory sys-

tem approximates the rehearsal process simply as a scaling factor on the inputs to the working

memory networks (see Section 3.1.3).

Since Spaun is a fully enclosed cognitive architecture, it should be possible to use the existing

encoding and decoding networks to create a physical rehearsal process – in which list items are

recalled, and subsequently re-encoded back into memory. Combined with an implementation of

the hippocampal network (e.g. [Trujillo, 2014]), the physical rehearsal mechanism may provide

Spaun the ability to reproduce memory effects that the current model cannot reproduce (e.g., the

suppression of the primacy effect when the rehearsal process is interrupted).

6.2.4 Transformation Module

Spaun’s transformation module forms the heart of its “cognitive” ability, as it contains all of

the networks (e.g., binding network, associative memory networks, etc.) necessary to perform

the SPA computations needed to generate the correct answers to Spaun’s tasks. However, the

design of the transformation module (in particular, the projections to the selector networks) is

currently determined by the computations necessary to complete Spaun’s tasks. As an example,

in Figures 3.33 and 3.34, “Input Selector 2” only receives inputs from “∼mem1”, “mem2”, and

“ave mem”. With the addition of the instruction processing module, the limited connectivity
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constrains the types of computation that can be performed (e.g., computing “mem2~∼mem1”

is not possible).

To address this issue, additional projections need to be added to the transformation module’s

network. However, projections must not be added frivolously, and the configuration of the projec-

tions should maximize the general use capability of the network while minimizing the additional

resources (i.e., neuron count) required.46

Additionally, there are currently no projections from the output of the transformation module

to the inputs of the memory network. This means that computational products produced by the

transformation module (e.g., computing the result of applying an induction transform to a value

stored in memory) cannot be transferred back into memory for future use. Implementing these

projections (along with the necessary additions to the action selection hierarchy) will provide

Spaun with the ability to perform more interesting tasks (e.g., performing the question answering

task on the products of an induction task).

6.2.5 Instruction Processing Module

As stated in Section 5.3, the instruction processing system is still very much a work-in-progress,

and several improvements can be made to the network. First and foremost, the method by which

the instruction semantic pointer is constructed and provided to Spaun is somewhat artificial,

as it requires the entity constructing the instruction representation to have in-depth knowledge

of the implementation details of Spaun’s action selection hierarchy. Additionally, it requires

Spaun to receive an input that is already processed as a semantic pointer, deviating from Spaun’s

original goal of having the semantic pointers be internally generated. The proposed solution

to this problem is two-fold: the inclusion of a sentence parsing system (e.g., [Stewart et al.,

2014], [Blouw and Eliasmith, 2015]), and the use of a hierarchical associative mapping.

Assuming that the Spaun is given the ability to process words as individual concepts – either

through upgrading the visual system (see Section 6.2.1), or by some other form of stimulus input

processing (e.g., audition [Bekolay, 2016]) – a sentence parsing system would provide Spaun

with the necessary mechanism to convert input stimuli into semantic pointer representations,

thus achieving the goal of having only internally generated semantic pointer representations.

However, having just the sentence parsing system is probably insufficient as it is highly unlikely

that the syntax and semantics of the sentence conform to the representations required by the

encoding schema of the instruction processing system (e.g., “Perform the working memory task”

46Assuming the selector networks use ensemble arrays to gate the semantic pointer representations, each addi-
tional projection to a selector network adds an additional D × n neurons. In Spaun, D is 512, while n is typically
50, totalling to a not insignificant 25, 600 neurons.
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does not logically parse as the semantic pointer “(TASK ~WM)Pcons”). As such, some sort of

associative memory network – perhaps even requiring a hierarchy of associative memory networks

– is needed to convert the output of the sentence parsing network into a form the instruction

processing system can decode. It should be noted that the proposed solution is purely speculative,

and other solutions may be more feasible.

In addition to the issue regarding the construction of the instruction semantic pointer, the

instruction processing system itself has limitations. As demonstrated in Figure 5.26, one of these

limitations is its sensitivity to the amount of information encoded in the instruction semantic

pointer. Another limitation is the inconsistent support of compound conditionals. In the ac-

tion selection hierarchy, compound conditionals are implemented using a weighted sum of the

conditions. However, in the instruction processing system, using a weighted sum would involve

adjusting the cleanup threshold of the list position memory, which may adversely impact its abil-

ity to accurately extract information from the instruction semantic pointer. It may be possible

to address these limitations using a different encoding schema, or a different design to the in-

struction processing network. However, these conclusions are difficult to reach without further

investigation and testing of these implementations.

6.2.6 Reward Evaluation Module

The reward evaluation system in Spaun is currently limited to modifying only the condition-

consequence pairs used by Spaun’s learning task (n-arm bandit task). A possible area of future

work would be to integrate the reward evaluation module with the instruction processing system to

provide Spaun with the ability to learn new tasks (i.e., converting the actions generated by the out-

put of the instruction processing system into physical changes in the condition-consequence pairs

implemented in the action selection hierarchy). Using the counting task as an example, Aubin

et al. [2016] demonstrate that task learning is possible in models built using the SPA and NEF.

6.2.7 Action Selection Module

As detailed in Section 3.3.8, the design and implementation of Spaun’s action selection module

was determined by the logical flow of Spaun’s original tasks. However, with the addition of the

instruction processing system, several improvements can be made to the action selection module.

With regards to the types of instructions that can be processed by the instruction processing

system (see Section 5.3.7), it was noted that the tasks contained in an instruction must already

exist as a condition-consequence pair in the action selection hierarchy. This limits the scope of

the instruction processing system, as some tasks cannot be accomplished. As an example, in the
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current Spaun 2.0 model, it is not possible to instruct it to use the product of an induction task as

the input to another task. This is because none of Spaun’s original tasks require this function, and

thus, the condition-consequence pair (and the necessary projections) have not been implemented.

A potential solution to this issue is to construct a set of general use condition-consequence pairs,

specifically to allow the routing of information between Spaun’s different modules. Examples of

these condition-consequence pairs include:

� task stage •MEM1 MEM2 7−→ mem1⇒ mem2

� task stage • TRFM MEM3 7−→ transform out⇒ mem3

It should be noted that while it is straightforward to enumerate the different combinations of

routes that can be implemented, the difficulty lies in structuring the condition-consequence pairs

in order to minimize the number and complexity of additional pairs required – so as to reduce

the potential for conflicts with existing condition-consequence pairs.

Another proposed modification to the action selection hierarchy involves the division of the

cortico-basal ganglia-thalamus loop into (semi-)independent loops. In the current Spaun archi-

tecture, the action selection hierarchy is constructed as a monolithic loop, where the basal ganglia

network computes an approximate “winner-take-all” function for all of the condition-consequence

pairs. However, with the proposed addition of functionality it may be beneficial to have multiple

independent basal ganglia networks, each dedicated to processing functionally independent tasks.

As an example, in addition to the “main” loop, an independent loop can be constructed to handle

vision related processing (e.g., direction of the attention routing circuit), while another loop can

be used to handle working memory related processing (e.g., the rehearsal mechanism). It should

be noted that while multiple cortico-basal ganglia-thalamus loops seem like a logical improvement

of the action selection hierarchy, there is some evidence to suggest that functional segregation of

the cortico-basal ganglia-thalamus loop also exists in the primate brain (e.g., [Alexander et al.,

1986; Haber, 2003]).

6.2.8 Code Base

Compared to its predecessor, Spaun 2.0’s code base has been re-organized with the focus on cre-

ating clear delineations between the different functional components of Spaun. This has reduced

the overhead required to allow implementation variants of functional Spaun modules (e.g., the

ImageNet vision system described in Section 5.2, and the adaptive motor system described in

Section 5.1). However, the necessary changes to the code base to allow these modules to be easily

interchanged have only been applied to the vision and motor system. To fulfill Spaun’s goal of

being a test bed for various system implementations, these changes have to be propagated to the

remainder of Spaun’s systems.
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6.3 Closing Remarks

In Choo [2010] it was noted that with the OSE model, the purely mathematical implementation of

the model failed to reproduce the list recall curves observed in the human data. Rather, it was the

dynamics of the neural implementation (hypothesized to be the saturation effect of the neurons)

that were, for the most part, responsible for the model’s ability to reproduce the characteristic

U-shape curve observed in human recall data. This remains the case in Spaun, whereby a purely

mathematical implementation would not be able to reproduce the variety of effects seen in the

model’s behaviour.

Figure 6.5 illustrates one such example, whereby the reduction of the presentation interval of

each list digit from 0.571s (which matches the experimental setup of the results in Figure 4.24)

to 0.150s (which is the “default” Spaun presentation interval – see Section 4.3) results in the

suppression of the recency effect in the recall data. It is hypothesized that between the two

experimental configurations, this is due to the differing amount of time the representations have

had to decay. A purely mathematical implementation (i.e., using just the SPA operators) of

Spaun would not have been able to produce such an effect, once again illustrating the importance

of the neural implementation of the model. It remains to be seen if such an effect is reproduced

in human experiments and serves as a prediction proposed by the Spaun 2.0 model.
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Figure 6.5: Forward recall accuracy for the working memory task with a digit presentation interval
of 150ms. The data is plotted both with (left) and without (right) the 95% confidence intervals.

In addition to the importance of neural dynamics, Spaun also illustrates the importance that

the network dynamics have to play in reproducing behavioural data observed in human experi-
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ments. This is evident in the results obtained for the stimulus-response tasks, where the overall

response time of the Spaun 2.0 model only matched human performance when the processing

time for both the visual and motor systems are taken into account (see Figure 5.17 and 5.20).

Additionally, in Figure 5.20, the difference in reaction times between the non-instructed and in-

structed variants of the stimulus-response times can be attributed to the additional processing

time introduced by the propagation of information through the instruction processing system.

Large-scale integrated neural models present an effective way of studying how neural dynamics

and network dynamics affect behaviour on cognitive tasks. Importantly, these large-scale models

also permit the exploration of the complex interplay between the low-level neural and high-level

network dynamics. The Spaun architecture and model provides ample opportunity to characterize

these dynamics in more detail, and the work presented in this thesis lays the foundation for

continued extensions to the world’s largest functional brain model.
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Appendix A

Mathematical Illustrations and

Derivations

A.1 Convolution vs. Circular Convolution

For two N -dimensional vectors X and Y, each vector element zn of the result of the convolution

of the two vectors (Z = X ∗Y) is computed by:

zn =
N∑

k=−N
xkyn−k

Likewise, each vector element cn of the result of the circular convolution of the two vectors

(C = X~Y) is computed by:

cn =

N∑
k=−N

xkyn−k, where the subscripts are modulo-N

Given the similarity of convolution operations, both follow similar steps to perform the com-

putation. First, the second vector operand (Y) is flipped. Next, the flipped vector is “slid” past

the first vector operand, and each vector element of the convolution product is calculated as the

summation of the element-wise products of the vectors. The only difference between the circular

and non-circular variant of the convolution is that in the circular convolution, the elements in

the second vector operand (i.e., the flipped vector) wraps around.47

47In the circular convolution operation, the elements of the second vector operand can also be thought of as
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Figure A.1 shows a visual representation of the difference between the non-circular and circular

variants of the convolution operation.
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Figure A.1: A visual illustration of the difference between the convolution and circular convolution
operators. For both convolution computations, two 3-dimensional vectors ([5, 3, 2] and [1, 4, 2])
are convolved. Refer to text for additional details. (Figure adapted from [Choo, 2010] with
permission)

repeating with a period of N .
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A.2 HRR-SPA Approximate Inverse Operator

The HRR-SPA approximate inverse operator (∼) for a semantic pointer A is:

∼A = F−1
(
F(A)

)
, (A.1)

where F is the Fourier transform operator, F−1 is the inverse Fourier transform operator, and z

is the complex conjugate of the complex number z.

For vector representations, the Fourier transform is computed using the discrete Fourier trans-

form (DFT ). Performing the DFT on an N -dimensional vector x = [x0, x1, . . . , xN−1], results

in the vector of complex numbers X = [X0, X1, . . . , XN−1]. Each vector element Xk in X is

computed as:

Xk =
N−1∑
n=0

xne
− 2πikn

N

Performing the complex conjugate on Xk results in:

Xk =
N−1∑
n=0

xne
2πikn
N

Thus, computing the complex conjugate of the result of the DFT of x is the complex vector

Y, where each vector element Yk is equal to the vector element X−k. I.e.,

Y = DFT (x), where,

Yk =

N−1∑
n=0

xne
2πikn
N

=
N−1∑
n=0

xne
− 2πi(−k)n

N

= X−k

This means that the complex vector Y can be computed by permuting the complex vector X

using the permutation matrix L:

Y = XL,
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where L is the matrix:

L =



1 0 0 . . . 0 0

0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
... . .

. ...
...

0 0 1 . . . 0 0

0 1 0 . . . 0 0


(A.2)

With Eq. (A.2), Eq. (A.1) can be re-written as:

∼A = IDFT
(
DFT (A)

)
= IDFT (DFT (A)L) (A.3)

Because the discrete Fourier transform operations are linear matrix transformations, Eq. (A.3)

can be re-arranged into this form:

∼A = IDFT (DFT (A)) L

= AL,

which is the result of applying the permutation matrix L to the HRR-SPA semantic pointer A.

A.3 Compound NOT Conditional Statements

For the truth table discussed in this section, several assumptions are made:

� Only “full” (e.g., full: “A” versus partial: “0.5 × A”) semantic pointers are used for the

“state” representations.

� The semantic pointers used are roughly orthogonal to each other. I.e., A • B ≈ 0.

� The semantic pointer X is used to represent a state representation that is not part of the

conditional statement.

� The result of the conditional computation is only considered “active” if it evaluates to a

value greater than 0.5. Active conditional evaluations will be indicated with a (∗).

Conditional statements that compound multiple conditions are usually constructed by equally

weighting the contributions of each condition. As an example, the conditional statement for

“state1 is A AND state2 is B” is:

(0.5× state1 • A + 0.5× state2 • B)
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For this conditional statement, the only situation in which it is desired to be active is when both

state1 is A and state2 is B. Completing the truth table for the four combinations of values that

state1 and state2 reveals that this is the case:

state1 state2 (0.5× state1 • A + 0.5× state2 • B)

X X 0 + 0 = 0

A X 0.5 + 0 = 0.5

X B 0 + 0.5 = 0.5

A B 0.5 + 0.5 = 1∗

Conditional statements for the singular NOT condition are constructed by using a subtraction

from 1. As an example, the conditional statement for “state1 is NOT A” is:

(1− state1 • A)

Once again, completing the truth table for this conditional statement reveals that it is only

“active” when the state1 representation is any other value but A:

state1 (1− state1 • A)

X 1− 0 = 1∗

A 1− 1 = 0

Constructing compound conditional statements using the NOT condition may be unintuitive.

Intuitively, the conditional statement for “state1 is A AND state2 is NOT B” is assembled by

combining the weighting used for the AND condition, and the subtraction from 1 for the NOT

condition, resulting in:

(0.5× state1 • A + 0.5× (1− state2 • B))

Completing the truth table reveals that this conditional statement is only active for the desired

state representations (only when state1 is A and state2 is X):

state1 state2 (0.5× state1 • A + 0.5× (1− state2 • B))

X X 0 + 0.5 = 0.5

A X 0.5 + 0.5 = 1∗

X B 0 + 0 = 0

A B 0.5 + 0 = 0.5

295



While the conditional statement above does perform the intended computation, it is possible

to construct a conditional statement that only produces a positive output when state1 is A and

state2 is X. This may be a desired property to reduce the amount of potential competition within

the basal ganglia network. The conditional statement for this scenario is:

(state1 • A− (state2 • B))

Completing the truth table for this conditional statement demonstrates that the statement is

only active when desired and, importantly, produces a positive value only in this active state.

state1 state2 (state1 • A− (state2 • B))

X X 0− 0 = 0

A X 1− 0 = 1∗

X B 0− 1 = −1

A B 1− 1 = 0
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Appendix B

Spaun Implementation Details

B.1 Source Code

The source code for the original Spaun model is available online at

http://models.nengo.ca/spaun.

The source code for the Spaun 2.0 model is available online at

https://github.com/xchoo/spaun2.0.

B.2 List of the Condition-consequence Pairs in Spaun 2.0

This appendix lists all of the condition-consequence pairs used in the Spaun2.0 model to handle

the task processing logic for each one of Spaun’s tasks (including the Spaun2.0 extensions). For

brevity, the following nomenclature substitutions have been made:

Task State Name (see Section 3.3.8.1) Substituted Name

task task

task stage stage

task decode dec

vision vis

instr data (Section 5.3.3) ins data

instr task (Section 5.3.5) ins task

instr task stage (Section 5.3.5) ins stage

instr task decode (Section 5.3.5) ins dec
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Task Semantic Pointer (see Table 3.5) Substituted Semantic Pointer

INIT X

COPY DRAW W

RECOG R

LEARN L

WM M

COUNT C

QA Q

RVC V

FLUID IND F

DEC DEC

COMPARE (Section 5.2.2) CMP

RESPONSE (Section 5.3.2) RESP

INSTR RESP (Section 5.3.3) INSTR

INSTRUCT (Section 5.3.4) INSTR48

Task Stage Semantic Pointer (see Table 3.6) Substituted Semantic Pointer

STORE STORE

TRANSFORM1 TRANS1

TRANSFORM2 TRANS2

QAP QAP

QAK QAK

COUNT1 CNT1

COUNT2 CNT2

LEARN LEARN

TRANSFORMC (Section 5.2.2) TRANSC

DIRECT (Section 5.3.2) DIRECT

INSTRUCT POS (Section 5.3.6) INSTRP

Task Decode Semantic Pointer (see Table 3.7) Substituted Semantic Pointer

FORWARD FWD

COUNT CNT

DRAW DECW

INDUCTION DECI

48Both the INSTR RESP and INSTR task representations configure the action selection hierarchy to use infor-
mation extracted using the instruction processing system. Thus, they have been merged.
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The condition-consequence pairs for each of Spaun’s tasks are as follows:

Copy Drawing Task:

0.5(task • X) + 0.5(vis • 1) 7−→W⇒ task,STORE⇒ stage,FWD⇒ dec

(task • (W −DEC))− (vis • ?) 7−→ stage⇒ stage

0.5(vis • ?) + 0.5(task • (W −DEC)) 7−→ (W + DEC)⇒ task, stage⇒ stage,DECW⇒ dec

Digit Recognition Task:

0.5(task • X) + 0.5(vis • 0) 7−→ R⇒ task,STORE⇒ stage,FWD⇒ dec

(task • (R−DEC))− (vis • ?) 7−→ stage⇒ stage

Note that the digit recognition task shares a common “decode step” condition-consequence pair

with the working memory, question answering, stimulus matching, stimulus-response, and in-

struction processing tasks. This condition-consequence pair is:

(vis • ?)− 0.6(task • (W + L + C + V + F + RESP)) 7−→ (task + DEC)⇒ task,

(stage+ 0.5× STORE)⇒ stage,

(dec+ 0.5× FWD)⇒ dec

N-arm Bandit Task:

0.5(task • X) + 0.5(vis • 2)− (vis • ?) 7−→ L⇒ task,LEARN⇒ stage,FWD⇒ dec

0.7(vis • ?) + 0.3(task • L) 7−→ (L + DEC)⇒ task,LEARN⇒ stage,FWD⇒ dec

For each of the n arms of the bandit task, Spaun’s action selection hierarchy also contain the

following condition-consequence pair:

0.5(task • L)− (vis • ?) 7−→ ACTn⇒ action,LEARN⇒ stage,∅⇒ dec

Working Memory Task:

0.5(task • X) + 0.5(vis • 3) 7−→M⇒ task,STORE⇒ stage,FWD⇒ dec

(task • (M−DEC))− (vis • (F + R + ?)) 7−→ stage⇒ stage
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The working memory task also supports switching between forward and backwards recall using

the following condition-consequence pairs:

0.5(task •M)− (task •DEC) + 0.5(vis • F)− (vis • ?) 7−→ FWD⇒ dec

0.5(task •M)− (task •DEC) + 0.5(vis • R)− (vis • ?) 7−→ REV⇒ dec

Counting Task:

0.5(task • X) + 0.5(vis • 4) 7−→ C⇒ task,STORE⇒ stage,

FWD⇒ dec

0.5(task • C)− (task •DEC) + 0.5(stage • STORE)− (vis • ?) 7−→ CNT1⇒ stage

0.5(task • C)− (task •DEC) + 0.5(stage • CNT1)− (vis • ?) 7−→ CNT2⇒ stage

0.5(task • (C−DEC)) + 0.5(vis • ?) 7−→ (C + DEC)⇒ task,

stage⇒ stage,CNT⇒ dec[
0.25(task •DEC) + 0.25(stage • CNT2) + ((dec • CNT)− 1) +

0.5(trfm compare •NO MATCH)

]
7−→ CNT2⇒ stage,CNT⇒ dec[

0.25(task •DEC) + 0.25(stage • CNT2) + ((dec • CNT)− 1) +

0.5(trfm compare •MATCH)

]
7−→ STORE⇒ stage,FWD⇒ dec

Question Answering Task:

0.5(task • X) + 0.5(vis • 5) 7−→ Q⇒ task,STORE⇒ stage,FWD⇒ dec

(task • (Q−DEC))− (vis • (K + P + ?)) 7−→ stage⇒ stage

0.5(task •Q)− (task •DEC) + 0.5(vis •K)− (vis • ?) 7−→ QAK⇒ stage

0.5(task •Q)− (task •DEC) + 0.5(vis • P)− (vis • ?) 7−→ QAP⇒ stage

Rapid Variable Creation (RVC) Task:

0.5(task • X) + 0.5(vis • 6) 7−→ V⇒ task,STORE⇒ stage,

FWD⇒ dec

0.5(task • V)− (task •DEC) + 0.5(stage • STORE)− (vis • ?) 7−→ TRANS1⇒ stage

0.5(task • V)− (task •DEC) + 0.5(stage • TRANS1)− (vis • ?) 7−→ STORE⇒ stage
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Both the RVC task and the fluid induction task share the following common “decode step”

condition-consequence pair:

0.5(vis • ?) + 0.5(task • (V + F−DEC)) 7−→ (task + DEC)⇒ task, stage⇒ stage,

DECI⇒ dec

Fluid Induction Task:

0.5(task • X) + 0.5(vis • 7) 7−→ F⇒ task,STORE⇒ stage,

FWD⇒ dec

0.5(task • F)− (task •DEC) + 0.5(stage • STORE)− (vis • ?) 7−→ TRANS1⇒ stage

0.5(task • F)− (task •DEC) + 0.5(stage • TRANS1)− (vis • ?) 7−→ TRANS2⇒ stage

0.5(task • F)− (task •DEC) + 0.5(stage • TRANS2)− (vis • ?) 7−→ STORE⇒ stage

Stimulus Matching Task:

0.5(task • X) + 0.5(vis • C) 7−→ CMP⇒ task,

TRANS1⇒ stage,

FWD⇒ dec

0.5(task • CMP)− (task •DEC) + 0.5(stage • STORE)− (vis • ?) 7−→ TRANS2⇒ stage

0.5(task • CMP)− (task •DEC) + 0.5(stage • TRANS1)− (vis • ?) 7−→ TRANSC⇒ stage

Stimulus-response Task:

0.5(task • X) + 0.5(vis • 8) 7−→ RESP⇒ task,DIRECT⇒ stage,FWD⇒ dec

For each stimulus-response pairing (STIM N → RESP N), the following condition-consequence

pair is used:

0.5(task • RESP) + 0.5(vis mem • STIM N) 7−→ RESP N ⇒ transform

Instructed Stimulus-response Task:

0.5(task • X) + 0.5(vis • 9) 7−→ INSTR⇒ task,DIRECT⇒ stage,FWD⇒ dec
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Instructed Tasks (Stages 3 – 5):

1.5(vis • (M + V)) 7−→ INSTR⇒ task,STORE⇒ stage,FWD⇒ dec[
(task • INSTR)− (stage • INSTRP)−
(vis • (? + A + M + P+ J))

]
7−→

ins task ⇒ task, ins stage⇒ stage,

ins dec⇒ dec, ins data⇒ transform

0.5(task • INSTR) + 0.5(vis • P) 7−→ INSTR⇒ task, INSTRP⇒ stage

0.5(task • INSTR) + 0.5(stage • INSTRP) 7−→ INSTR⇒ task,STORE⇒ stage

B.3 Bounded Error Value Computation

The reward evaluation system in the Spaun2.0 model introduced the additional requirement of

factoring the basal ganglia utility values into the computation of the error values. This is done

to limit the learned basal ganglia utility within the range of [0, 1]. Table 4.1 (reproduced below)

shows the updated Spaun2.0 mapping between the action chosen, the reward stimulus received,

and the basal ganglia utility value for Spaun’s 3-arm bandit task.

Error Values

Action Chosen Reward Digit E1 E2 E3

A1
0 U1 U2 − 1 U3 − 1

1 U1 − 1 U2 U3

A2
0 U1 − 1 U2 U3 − 1

1 U1 U2 − 1 U3

A3
0 U1 − 1 U2 − 1 U3

1 U1 U2 U3 − 1

From the table above, the computed error values take the form Un − x, where x is either 0

or 1. Error values for matching actions (i.e., E1 for A1), x = 1 when a reward is provided, and

x = 0 otherwise. This is reversed for error values for non-matching actions. For Spaun’s 3-arm

bandit task, this can be summarized as:
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x Values

Action Chosen Reward Digit E1 E2 E3

A1
0 0 1 1

1 1 0 0

A2
0 1 0 1

1 0 1 0

A3
0 1 1 0

1 0 0 1

To generalize the behaviour of x, for a given action An, and a given error value Em, four

outcomes are possible:

� If n 6= m, and the reward digit is 0, then x = 1.

� If n 6= m, and the reward digit is 1, then x = 0.

� If n ≡ m, and the reward digit is 0, then x = 0.

� If n ≡ m, and the reward digit is 1, then x = 1.

To formalize a binary computation, the value a is assigned a value of 1 when n ≡ m, and a value

of 0 when n 6= m. Likewise, the value r is assigned a value 1 when the reward digit is 1, and

0 otherwise. With these assignments, and given the four possible combinations of a and r, the

truth table for the binary computation is:

a r x

0 0 1

0 1 0

1 0 0

1 1 1

From the truth table, it can be deduced that the value of x can be computed using the XNOR

binary operator (↔):

x = a↔ r

The XNOR operator can be further decomposed into the following binary computation using

the NOT (¬), AND (∧), and OR (∨) operators:

x = (a ∧ r) ∨ (¬a ∧ ¬r)
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Each of the binary operators has an algebraic form. As an example the algebraic form of the

NOT operator is:

¬x = 1− x
Likewise, the AND operator can be written as:

x ∧ y = x× y,

and finally, the OR operator has the form:

x ∨ y = x+ y,

Using the algebraic forms of the binary operators, the value of x can then be computed as:

x = (a ∧ r) ∨ (¬a ∧ ¬r)
= (ar) + ((1− a)(1− r)) (B.1)

Substituting Eq. (B.1) back into (Un−r) and applying it to Spaun’s 3-arm bandit task yields

the results in Table 4.2 (reproduced below for convenience).

Action a Values Reward Error Values (Un − [(anr) + (1− an)(1− r)])
Chosen a1 a2 a3 Digit r E1 E2 E3

A1
1 0 0 0 0 U1 U2 − 1 U3 − 1

1 0 0 1 1 U1 − 1 U2 U3

A2
0 1 0 0 0 U1 − 1 U2 U3 − 1

0 1 0 1 1 U1 U2 − 1 U3

A3
0 0 1 0 0 U1 − 1 U2 − 1 U3

0 0 1 1 1 U1 U2 U3 − 1
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