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Abstract

The ability to use our voice occurs through a complex bio-mechanical process known as
phonation. The study of this process is interesting, not only because of the complex phys-
ical phenomena involved, but also because of the presence of phonation disorders that
can make the everyday task of using ones voice difficult. Clinical studies of phonation
aim to help diagnose such disorders using various measurement techniques, such as mi-
crophone recordings, video of the vocal folds, and perceptual sound quality measures. In
contrast, scientific investigations of phonation have focused on understanding the physical
phenomena behind phonation using simplified physical and numerical models constructed
using representative population based parameters. A particularly useful type of model,
reduced-order numerical models, are simplified representations of the vocal folds with low
computational complexity that allow broad parameter changes to be investigated.

To bring the physical understanding of phonation from these models into clinical usage,
it is necessary to have patient specific parameters. Due to the difficulty of measuring vocal
fold parameters and other structures in phonation directly, inverse analysis techniques
must be employed. These techniques estimate the parameters of a model, by finding
model parameters that lead to outputs of the model which compare well with measured
outputs. With the measured outputs being patient specific measurements, these techniques
can produce patient specific model parameters. However, this is complicated by the fact
that measurements are uncertain, which leads to uncertainty in inferred parameters. The
uncertainty in the parameters provides a way to judge how confident clinicians should
be in using them. Large measurements errors could result in high uncertainties (and vice
versa), which should guide clinicians on whether or not to believe the estimated parameters.
Bayesian inference is an inverse analysis technique, that can take into account the inherent
uncertainty in measurements in a probabilistic framework. Applying Bayesian inference to
reduced-order models and clinical measurements allows patient specific model parameters
with associated uncertainties to be inferred.

A promising clinical measurement for use in Bayesian inference is high-speed videoen-
doscopy, in which high-speed video is taken of the vocal folds in motion. This captures the
time varying motion of the vocal folds, which allows many quantitative measurements to
be derived from the resulting video, for example the glottal width (distance between the
vocal folds) or glottal area (area between the vocal folds). High-speed videoendoscopy is
subject to variable imaging parameters, in particular the frame rate, spatial resolution, and
tilted views of the camera can all modify the resulting video of the vocal folds, changing
the uncertainty in the derived measurements. To investigate the effect of these three imag-
ing parameters on Bayesian inference applied to high-speed video endoscopy, a simulated
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high-speed videoendoscopy experiment was conducted.

Using a reduced order model, with known parameters, a set of enlarged, artificial vocal
folds were driven in slow motion. These were imaged by a consumer DSLR camera, where
the slow motion increased the effective frame rate, and the enlarged vocal folds increased
the effective spatial resolution, to a fidelity much greater than typical high-speed videos
of the vocal folds. This allowed investigation of the three parameters; titled views of the
camera were investigated by physically tilting the camera, while variable frame rates and
spatial resolutions were investigated by numerical downsampling of the original recording.
Bayesian inference was conducted on these simulated high-speed videos, by measuring the
distance between the vocal folds (the glottal width), in order to determine the parameters of
the same reduced-order model driving the artificial vocal folds. This provided a reference
to compare the estimated parameters with. The changes in estimated parameters from
Bayesian inference were then investigated as the angle of view, frame rate, and spatial
resolution were modified.

From the experiment, the effects of frame rate, spatial resolution, and angle of view in
high-speed videoendoscopy were found relative to changes from a reference video. Specif-
ically, uncertainty in estimates increased linearly with respect to downsampling factor of
frame rate. A frame rate that is half that of the reference video will have an uncertainty
on estimated parameters that is twice as large. Spatial resolution affects the level of un-
certainty based on the edge detection techniques that are used to extract quantitative
data (i.e.,, the glottal width in this study). As the spatial resolution was downsampled,
the level of error from the edge detection algorithm increased linearly with respect to the
downsampling factor, which subsequently led to the same linear increase in the level of
uncertainty in the estimate. However, different edge detection algorithms will likely have
different accuracies as the resolution of the image decreases. While in this study it is
preferable to decrease spatial resolution instead of frame rate, more general conclusions
would be dependent on the specific edge detection technique used.

The angle of view was found to bias estimates as a result of projecting the vocal folds
(glottis) onto an offset image plane (like viewing a coin from an angle, results in increasingly
narrow ellipses until a single line is formed, rather than a circle). This decreased the glottal
width measured, which biased the estimated parameters. To account for this bias, it is
suggested that the angle of view can be treated as an uncertain parameter, which leads to
increased uncertainty in the quantitative measures from high-speed video. Alternatively,
the angle of view can be estimated as an additional parameter.
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Chapter 1

Introduction

The use of our voice is second nature to nearly everyone. Ask someone how their day was,
spend a night out with friends at karaoke, or talk to your relatives over the phone; all these
activities involve our voice. Our voice is generated through a process known as phonation,
which occurs when the lungs contract, forcing air between a pair of specialized structures
called the vocal folds (VFs) housed in the larynx, located in the throat. Normally the
VFs are separated to enable breathing, but during phonation they are brought together
and air is forced between them, exerting pressure on the VFs. This transfers energy from
the air to the VFs, which when balanced with the elastic properties of the VFs, leads
to self-oscillation (vibration). The oscillation of the VFs leads to a pulsatile flow behind
the glottis, which creates a buzz like tone. The tone subsequently resonates through the
airways, oral, and nasal cavities where the unique shape of these cavities modifies it into
the complex sounds that are what other people ultimately hear.

The study of phonation has long been of interest, not only for the interesting question
of how and why phonation works, but also due to the fact that phonation disorders can
interrupt this delicate process. As a result, the study of phonation can be roughly split into
two classes: clinical studies where medical professionals try to treat phonation related dif-
ficulties, and model based studies where engineers and scientists look into the mechanisms
behind phonation. In the clinic, medical professionals (such as speech language pathol-
ogists or otolaryngologists) take various measurements of a patient’s voice to treat and
diagnose any discomforts (or disorders) the patient may have in speaking. Some of these
measurements include the volume flow rate of air out of the nose and mouth, a recording of
the patient’s voice, or video of the VFs through an endoscope. Using these measurements
as well as perceptual information, medical professionals try to help patients. In contrast
to clinical studies, model based studies aim to study phonation from a physical point of
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view using representative models based on population average estimates of physiological
properties. A wide range of such studies have been conducted. For example, synthetic
rubber VFs with a generic geometry have been used to study how the air interacts with
the VFs to create vibration [69, 17, 52, 51, 49, 48]. Rigid VF models have been used to
investigate the airflow between the VFs and how it is affected by the VF geometry [55,
80, 78, 35, 40, 24, 20]. And numerical studies have also been conducted using both high
fidelity computational fluid dynamics (CFD) and finite element methods (FEM) [66, 96,
64], as well as simplified reduced order models (also called lumped mass models) [23, 41,
82, 63, 77, 87]. Reduced order models are a particularly attractive technique to investigate
phonation due to their simplicity. A reduced order model consists of a collection of masses
connected by springs and dampers that represent the VFs, which is coupled with simplified
models of the air flow between the VFs, and sometimes additional acoustic models for the
tracts above and below the glottis. The computational simplicity allows for broad studies
over large parameter changes.

Model based studies of the VFs have greatly improved our understanding of the physics
of phonation, however, since these studies are based on average population properties
of the VFs, the resulting predictions are likewise restricted to be representative of the
average population. However, phonation is a highly variable process between individuals,
for example, despite the fact that we all use VFs to speak, everyone sounds different. While
clinical studies obviously reflect patient specific differences, they overlook the physics of
phonation. Both approaches are valuable. Model based studies give insight on why and
how phonation occurs, and clinical studies measure what phonation results in on a patient
specific basis.

To reconcile model based studies with clinical studies, and to make this powerful frame-
work useful to clinicians, efforts have been made to produce patient specific models. Pa-
tient specific models require patient specific model parameters, however the viscoelastic
properties of the VFs, and complex organic geometries inside the throat make patient
measurements nearly impossible. Even if measurements could be made, the small size of
the VFs and the invasive nature of measuring inside a patient’s throat makes this approach
unattractive. This has led to the use of indirect approaches through inverse analysis tech-
niques. Inverse analysis techniques aim to estimate the parameters of a model that produce
given measurements. Thus by applying inverse analysis techniques on patient specific mea-
surements, intuitively one should obtain patient specific model parameters. A wealth of
clinical, non-invasive measurements already exist. The volume flow rate of air at the nose
and mouth, or high-speed recordings of the VFs are just a few [4]. These measurements
can technically be applied to any VF model. For example, inverse analysis could be used
to infer the material properties in a finite-element model of the VFs. However, inverse
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techniques incur an additional layer of computational complexity on top of the the com-
plexity of the VF model itself, thus simplified reduced order models are generally used [47,
16, 90, 59, 84, 7, 58, 83, 88].

1.1 Inverse Analysis for Patient Specific Modelling

Early approaches to inverse analysis used optimization techniques to estimate patient spe-
cific parameters [16, 58, 88, 87] on reduced order models. This approach generally produces
a single set of parameters which is considered to be the ‘best’. However, all measurements
are subject to uncertainty, which can make the estimates of optimization approaches mis-
leading; the fact that measurements are uncertain means that multiple combinations of
model parameters could be responsible for a given measurement. In contrast, Bayesian
inverse analysis techniques provide a natural setting to consider this uncertainty. Instead
of a single parameter set, Bayesian techniques characterize the probability of a range of
parameter sets. This approach has already been used to infer parameters from a patient’s
voice, as well as validated from a simulated VF motion [6, 28].

To gain clinical relevance, Bayesian techniques should be applicable to a wide range of
clinical measures. A particularly important measurement is that of high-speed video of the
VFs obtained through high-speed videoendoscopy (HSV). High-speed video is information
rich, as it captures the time varying 2-D contours of the VFs. This allows the extraction
of simple measurements, such as the area between the VFs (the glottal area), or more
complex ones such as trajectories of the glottal contours of the VFs. The conversion
of high-speed video into these quantitative measurements, however, is subject to many
uncertainties. For example the video may not necessarily be centred on the axis of the
VFs due to misplacement of the endoscope or motion during imaging [11]. Furthermore,
for quantitative measures, pixel distances must be calibrated to physical distances, and
edges of the VFs must be detected, which can be made uncertain by improperly focused
videos. These are just a subset and many more factors can all contribute to uncertainty in
measurements derived from high-speed video. To use high-speed video as a measurement
for Bayesian inference techniques, these uncertainties must be characterized, which, to the
author’s knowledge has yet to be done in the context of VFs.
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1.2 Objectives

HSV is subject to a plethora of factors that affect the quantitative measurements that
are derived from it. To characterize all of these would be a gargantuan task. In this
work we characterize what we believe to be three of the most important parameters of
HSV on Bayesian inference applied to reduced order models, namely: the frame rate,
resolution, and angle of view of the video. A reduction in frame rate directly reduces
the number of measurements that can be used in Bayesian inference (where each frame is
considered a measurement), while reduced resolution affects the accuracy of measuring the
glottal contours and offset angles create parallax errors in converting pixel measurements
to physical measurements. Furthermore, frame rate and resolution are two parameters
that can be controlled in high-speed cameras, where higher resolutions can be achieved by
reducing frame rate, and vice-versa. While these parameters are only a subset of the factors
that affect HSV, they are nevertheless an important step in characterizing the feasibility
of using HSV for Bayesian inference.

To characterize the effect of these three parameters on Bayesian inference we aim to
answer the following questions:

1. How do offset-angled views change the estimated parameters?

2. Is there a trade-off between frame rate and resolution?

3. How can one expect uncertainty to vary under multiple sources of error?

1.3 Organization

The remainder of the thesis is organized into four chapters. In Chapter 2, a background
on phonation is given, including the basic anatomy and a more detailed description of
how phonation works. Then clinical measurements and the details of HSV are outlined.
This is followed by details of the general equations behind reduced order models and the
application of these models in the context of inverse analysis techniques. In Chapter 3, the
experiment used in the study is described. Furthermore the methodology for conducting
Bayesian inference is described. In Chapter 4, the results of the inference are shown
and interpreted. In Chapter 5, conclusions and recommendations for future studies are
discussed.
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Chapter 2

Background

The study of phonation is an interdisciplinary field, drawing on a wide range of subjects
from anatomy and biology to fluid mechanics and mathematics. In this section the perti-
nent background knowledge needed to follow the thesis is presented. Section 2.1 discusses
the anatomy of phonation, including the structures involved, the structure of the VFs and
common anatomical terminology. Section 2.2 details the mechanisms of phonation. In
Section 2.3, a discussion of clinical approaches to the study of the phonation process is
provided to familiarize the reader with the different types of clinical measurements. Next
in Section 2.4, approaches to the numerical modelling of phonation are discussed. Finally,
a discussion of inverse analysis in Section 2.5 provides the background knowledge necessary
to understand the application of Bayesian inference to reduced order models of the VFs.

2.1 Anatomy

In this section the major anatomical structures, and specialized terminology are introduced;
for more information the reader is referred to [60], on which much of this section is based.

2.1.1 Anatomical Directions, Planes, and Motions

The study of anatomy has a special set of terms for specification of locations, orientations,
and directions. An overview of the anatomical directions and planes is shown in Figure 2.1.
There are three major planes in the body [64]: the coronal plane splits the body into a
front half and back half, the sagittal plane splits the body into left and right sides, and the
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transverse plane splits the body into top and bottom halves. In addition to these three
major planes of the body, three main directions are used to describe orientation. The
anterior and posterior directions point towards the front and back of the body, respectively;
the superior and inferior directions point towards the head and feet, respectively; and the
medial and lateral directions point towards the middle and left/right sides of the body,
respectively.

Coronal plane Saggital plane

Superior - Inferior

Anterior - Posterior Medial - Lateral

Transverse plane

Figure 2.1: Three sets of anatomical directions create a coordinate system referenced to the
body as well as three corresponding planes. These terms are frequently used to describe
the positions and motions of anatomical structures.

These directional terms are often used to locate structures relative to some reference
point. For example, saying that the VFs are inferior to the nasal and oral cavities, indicates
that they are located below the nasal and oral cavities. Another example is in specifying
a cross-sectional area. One may refer to the cross-sectional area of the vocal tract in the
transverse plane.

In addition to directions and planes, there are also terms used to describe motions of
the body. Of particular importance in phonation are adduction and abduction. Adduction
and abduction refer to the bringing of structures of the body towards and away from the
midline, respectively. This is often used to describe the motion of the VFs. For example
prior to when phonation initiates, the VFs are adducted.
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2.1.2 Anatomical Structures of Phonation

The general anatomical structures of phonation are shown in Figure 2.2 below. The larynx,
which is the primary sound generating structure during many vocal gestures (for example,
vowel sounds), is a collection of cartilages and muscles that house the VFs. Inferior to the
larynx is the subglottal tract (also called the trachea), which is the airway to the lungs.
Superior to the larynx is the supraglottal tract, which consists of the vocal tract, as well
as the nasal and oral cavities.

Lungs

Sub-glottal Tract

Vocal Folds and Larynx

Supra-glottal Tract

Figure 2.2: The key structures in the phonation process include: the lungs, the larynx,
and VFs, as well as the subglottal and supraglottal tracts.

Larynx and Musculature

The larynx consists of 5 pieces of cartilage: the cricoid, epiglottis, thyroid, and the cornic-
ulate, and arytenoid cartilages, both of which are paired; these are shown in Figure 2.3.
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Figure 2.3: The larynx consists of 5 cartilages (signalled by arrows): cricoid, epiglottis,
thyroid, corniculate and arytenoid (the last two are paired). These are articulated relative
to each other through the action of intrinsic muscles (signalled by straight lines). (a)
Coronal cross-sectional view of the larynx. (b) Anterior view of the larynx. (c) Superior
view of the larynx. Adapted from [48].

These cartilages articulate through the action of various muscles. Muscles attached to
the larynx can be classified into two types: intrinsic and extrinsic musculature. Extrinsic
muscles connect the larynx to structures outside of the larynx, and so move the larynx
relative to the body. Intrinsic muscles connect cartilages of the larynx to each other,
and so are responsible for movement of cartilages within the larynx. Intrinsic muscles
are particularly important as the action of many of these intrinsic muscles modify the
geometry and material properties of the VFs, which directly influences phonation. These
intrinsic muscles are named after the cartilages that they attach to. Of primary importance
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are three intrinsic muscles: the cricothyroid (attached between the cricoid and thyroid
cartilages), the lateral-cricoarytenoid, and the thyroarytenoid. In particular, the VFs
are attached between the arytenoid and thyroid cartilages (the thyroarytenoid forms the
innermost layer of the VFs, as seen in Figure 2.3(c)), so articulation of these cartilages
modifies the VF geometry. When the arytenoid cartilages are articulated, the VFs are
either abducted or adducted, that is, pressed together or pulled apart. When the thyroid is
articulated, it is pulled away form the cricoid, and the VFs are stretched. The cricothyroid
is primarily responsible for tensing (stretching) the VFs by articulating the thyroid. The
lateral-cricoarytenoid is responsible for adduction (bringing the VFs together) by rotating
the arytenoids. The thyroarytenoid is responsible for stiffening and relaxing the VFs, since
it forms the body of the VFs [60, Chapter 5]. These three muscles have been used in rules
relating muscle activation to material properties of the folds, which are used in this work
(see Chapter 3 for details). These are only a subset of the muscles in the larynx, refer
to [60, Chapter 5] for a comprehensive review.

Vocal Folds

The VFs are a set of paired whitish coloured layered structures. A sagittal cross-sectional
image of a VF, and its internal layered structure is shown in Figure 2.4. The outermost layer
of the VFs consists of the epithelium which serves to protect them and retain moisture [60,
pg.168]. Underneath the epithelium is the lamina propria. This layer is further split into
three sub-layers: the superficial, intermediate and deep layers [60, pg.168]. The body of
the VF consists of the thyroarytenoid muscle. The combination of the epithelium and
superficial layer of the lamina propria is known as the mucosa, or mucosal lining [60,
pg.168]. The intermediate and deep layers of the lamina propria are known together as the
vocal ligament [60, pg.168].
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Figure 2.4: Coronal cross-sectional view of a VF showing its layered structure. At rest, the
depth, D, of the VFs ranges from 0.6 cm for women to 0.8 cm for men [32]; the thickness
of the VFs, T , ranges from 0.20 cm for women to 0.30 cm for men; the length of the VFs
(in the anterior-posterior direction, or into the page in the figure) ranges from 1.0 cm for
women to 1.6 cm for men [77].

The VFs have viscoelastic properties, meaning that they have both elastic properties
and damping properties [25]. These viscoelastic material properties vary across each of the
VF layers. While the inner thyroarytenoid muscle and deep layer of the lamina propria
are relatively stiff, the intermediate and superficial layer of the lamina propria, along with
the superficial mucosa are loose and elastic. For this reason, a functional classification
into a stiff ‘body’ layer and loose ‘cover’ layer is often made [60, pg.169]. Under this
classification, the body layer consists of the thyroarytenoid muscle and the deep layer of
the lamina propria. The cover layer consists of all the remaining superficial tissues. Lastly,
the area between the VFs is known as the glottis.

2.2 Mechanics of Phonation

The phonation process can roughly be broken down into two mechanisms: how interaction
of the VFs with the glottal flow leads to self-oscillation, which produces a source tone, and
how that source tone is changed by the supraglottal tract to produce the complex sounds
that emanate out of our mouths. The widely accepted myo-elastic aerodynamic theory of
phonation, formalized by Van den Berg [79], proposed that VF self-oscillation is due to
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a balance of the elastic properties of the VFs and the aerodynamic pressures exerted by
the glottal flow. Beginning from an adducted configuration of the VFs, pressure from the
lungs increases, increasing the pressure in the glottis, and eventually exceeding the elastic
forces of the VFs. This forces the VFs apart, opening the glottis. Initially the glottal
entrance (the inferior end) is larger than the glottal exit (the superior end). This is due
to the glottal pressure building from the lungs, and therefore acting on the entrance of
the glottis first. This configuration, commonly referred to as a converging configuration,
acts like a nozzle, causing higher pressures on the inferior surface of the VFs relative to
the superior surface through the Bernoulli effect. This forces the inferior surfaces further
apart, and helps to transfer energy from the glottal flow to the VFs.

As the VFs compress, elastic forces increase and eventually exceed the glottal pressures.
This forces the VFs into a diverging configuration (when the glottal entrance is smaller
than the glottal exit). Such a configuration leads to separation of the flow which reduces
the glottal pressures. This hampers the transfer of energy from the glottal flow to the
VFs, allowing the elastic forces within the VFs to return them to a closed position, thus
starting the oscillation cycle over again. This alternating converging-diverging motion (also
referred to as an inferior-superior phase shift) is called the mucosal wave and is illustrated
in Figure 2.5.

R

L

Flow

(1) (2) (3) (4) (1)

Figure 2.5: Illustration of the key phases in VF vibration. In (1) the VFs are initially
closed. In (2) they are forced apart into a converging configuration by the glottal flow.
In (3) the elastic forces balance the aerodynamic glottal forces. In (4) the elastic forces
exceed aerodynamic forces and bring the VFs back to a close in a diverging configuration.
Adapted from [19].

Since the initial work of Van den Berg, many refinements have been made to the theory
of how the VFs self-oscillate. For example, some studies have shown that acoustic pressures
generated in the subglottal and supraglottal tracts can help to reinforce self-oscillation [72,
71]. Others have elucidated the effect of the false VFs downstream on VF vibration [94].

11



The oscillation of the VFs leads to release of the glottal flow in bursts. These periodic
bursts of air form the primary sound source for phonation. However, taken by itself, this
source tone sounds like a simple buzz, which is far different from the output sound at the
mouth. This difference, is due to the filtering effect of the supraglottal tract, detailed by
Fant [22], who viewed the supraglottal tract as a type of filter that selectively strengthens
and weakens certain frequency bands of the source tone. Specifically, the source tone has
a nominal fundamental frequency in the range of 100 Hz to 200 Hz (for comfortable vowel
intonation for men and women, respectively), with harmonics at varying strengths. The
shape of the supraglottal tract strengthens and weakens different harmonics, producing
local frequency bands with high intensities, known as formants. While the fundamental
frequency of the source sound characterizes the pitch of our voice, the formants of the
sound characterize its qualitative properties.

2.3 Clinical Measurements

There are a wealth of clinical measurements used for classifying patient voices. Some exam-
ple measurements include qualitative voice perception by clinicians from audio recordings
(or by ear), endoscopic video of VFs, the flow rate of air from the mouth and nose [34],
electroglottography [31], and many more [4]. Of particular interest are video based mea-
surements, since they capture the time-varying contours of the VFs. These time varying
contours are directly related to the motion of the VFs, which makes them a valuable mea-
surement for VF model parameters. Types of video-based measurements include videoky-
mography, videostroboscopy, and HSV [12]; video techniques through endoscopy are col-
lectively known as videoendoscopy. To conduct video based measurements, patients are
seated, the tongue is retracted by the clinician, and an endoscope is inserted into the open
mouth. After the camera has been focused, the patient is made to vocalize using the sound
‘ee’ (or other vocal gestures) [50]. An illustration of a videoendoscopy setup is shown in
Figure 2.6.
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(a)

Rigid endoscope

Camera

Endoscope objective lens
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(b)

Figure 2.6: (a) A patient undergoing a HSV procedure in the clinic. The glow in the
patient’s neck is due to the strength of the light source. (b) A schematic of a typical
videoendoscopy recording, using a rigid endoscope. The rigid endoscope (flexible endo-
scopes may also be used) usually contains two fibre optic bundles; one bundle carries a
light source to illuminate the VFs, and another carries the image back to the camera (either
for HSV, videostroboscopy, or videokymography).

Videostroboscopy records the VFs over multiple vibrations. By recording at a slightly
higher frequency than the vibration of the VFs (this is done with a stroboscope that
flashes at the higher frequency, synchronized with microphone readings to detect oscilla-
tions of the glottis [50]), the resulting videos appear to show a smooth vibration of the
VFs through a single oscillation. Each frame however, actually captures the glottis across
different cycles of the VF vibration. Thus, resolving the motion of the glottis inherently
requires the oscillations to be periodic, aliasing the measurements in time [14]. In con-
trast to videostroboscopy, videokymography can record the vibration of the VFs through
a single oscillation, with the trade off that the video be taken only along a single line (a
line scan video). This obviously neglects the 2D shape of the glottal contours; in other
words, videokymography has a poor spatial resolution. With advancements in imaging
technology, recently the ability to capture vibrations of the VFs, without aliasing in time
or decreasing spatial resolution, have been made possible using HSV. HSV is an informa-
tion rich measurement from which many quantitative measurements can be derived, such
as: the time-varying glottal contours, trajectories of the glottal contours, or the glottal
area [12]. This is typically conducted with a rigid endoscope setup, shown schematically
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in Figure 2.6(b).

There are many variable parameters in conducting HSV. Some parameters are con-
trolled by the clinician, these include but are not limited to, the lighting conditions, frame
rate, resolution, and choice of objective lens [13]. Of particular importance are the frame
rate and resolution. Existing high-speed cameras used in endoscopy can record at frame
rates ranging from about 2000 FPS to 20 000 FPS [14]. Typical spatial resolutions range
from about 1000 px by 1000 px down to 100 px by 100 px [14]. Naturally the spatial resolu-
tion is only relevant when the physical size of the object being imaged is present. Without
detailed data available, one can estimate the effective resolution (magnification factor) of
the VFs in a generic high-speed glottal video based on typical VF dimensions. Since the
typical length of a VF is on the order of 10 mm, and HSV aims to record the entire length
of the VFs, we can estimate the ratio of pixels to equivalent physical distances as ranging
from 10 px mm−1 to 100 px mm−1. Other imaging parameters are not easily controlled by
the clinician. For example, the orientation of the camera relative to the VFs. This includes
factors like the distance from the VFs to the objective lens, or tilting of the axis of view,
such that it is not normal to the transverse plane, along which the glottis lies. Tilting of
the axis of view, is a particularly important factor since off axis views of objects decrease
their apparent size in an image (for example viewing a coin from and angle makes it look
like an ellipse rather than a circle).

To use HSV in inverse analysis, quantitative measurements must be derived from the
video. All such measurements are subject to uncertainty, which is influenced by a variety
of imaging factors, such as the ones mentioned previously. In order to utilize HSV in
inverse analysis procedures, the errors involved in any derived measurements should be
known, since large errors on the order of the measured signal, can make inferred parameters
meaningless. These measurement errors arise from a variety of sources. For example,
distances in the video in pixels, must be converted into equivalent physical measurements
through a set of reference points of known dimensions located in the video. This has
been done with a projected grid on the surface of the folds with known dimensions, or
with two laser points separated by a known distance [56, 57]. In tracking the glottal
contours, edge detection algorithms may bias the true location of the glottal edge. This
could be the result of poor lighting in the video, which increases image noise, or motion
artifacts during imaging. Low spatial resolution videos, also increase uncertainty in derived
measurements due to quantization of the glottis into larger pixels. Low frame rates can
can alias measures of glottal width in time, by insufficiently resolving the motion of the
VFs within an oscillation. Furthermore, due to the 2D nature of video, viewing the camera
at non-orthogonal angles to the VFs can bias the apparent size of the glottis.
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2.4 Numerical Phonation Modelling

Clinical approaches to the study of phonation provide a wealth of measurements, allowing
clinicians to study what is happening during phonation. However, clinical measurements
generally can not explain the reason, or mechanisms, behind these different measurements.
In contrast to clinical studies, modelling of phonation takes a physics based approach
to phonation, by modelling the underlying mechanisms, such as the layered viscoelastic
properties of the VFs, the interaction of the glottal flow and VFs, or the propagation of
acoustic waves in the supraglottal tract. Thus models can be used to understand why
phonation behaves the way it does. As mentioned in Chapter 1, models of phonation
include experimental models such as synthetic VFs that vibrate under an applied stream
of air, as well as numerical models. Numerical models of phonation have the benefit
of a computational framework; no manufacturing of new models, or physical sensors are
needed to investigate a numerical model. This allows them to be easily coupled with
inverse analysis techniques. There are numerous approaches to numerically modelling
the phonation process. As mentioned in Chapter 1 these include, high-fidelity numerical
models utilizing CFD and FEM, as well as low-fidelity numerical models using reduced
order models.

Numerical models of phonation typically use representative population based parame-
ters, such as a typical VF stiffness for a male or female. This is typically done due to the
difficulty of directly measuring VF properties (as well as other structures in phonation). To
explain patient specific phonation, model parameters must also be patient specific, which
necessitates the use of inverse analysis techniques. However, not all phonation models can
easily be incorporated into these techniques. While high-fidelity numerical models gener-
ally produce more accurate simulations, this does not make high-fidelity models preferable
for inverse analysis. In general, the increased fidelity comes at the expense of increased
computational cost. When applied in inverse analysis, this is particularly undesirable since
inverse analysis techniques incur an additional computational cost on top of the numerical
model. Furthermore, high-fidelity models are generally governed by numerous parameters
(for example, in a simulation of a continuous VF, the material properties varying through-
out the body would all be parameters). The large number of parameters means that many
different parameter combinations could produce similar phonation behaviours. In turn, this
reduces the certainty with which inverse analysis techniques can infer any particular pa-
rameter set. However, this conversely does not imply that low-fidelity models are optimal.
For example, a low fidelity model may be insufficient in representing observed phonation
behaviour. Parameter estimates for such a model are therefore meaningless. A balance
exists then, in selecting a simplified model with fidelity sufficient to capture pertinent be-
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haviour, yet simple enough to maintain computational tractability, and have meaningful
model parameters. We elaborate on numerical phonation models in the next sections with
a focus on reduced order models, which offer a balance between computational complexity
and model fidelity. This is split into three components of phonation modelling: modelling
of the VFs, the glottal flow, and acoustics.

2.4.1 Vocal Fold Models

Finite Element Methods

As described in Section 2.1.2, the VFs are a viscoelastic layered structure consisting of 3
main layers: an innermost core, consisting of the thyroarytenoid muscle, the lamina pro-
pria (consisting of three sub-layers), and an outermost mucosal layer. High-fidelity models
of the VFs are typically performed with FEM techniques, which can simulate the contin-
uum behaviour of the real VFs. FEM models are based on discretization of the domain
(the VFs in this case) into a computational mesh. The viscoelastic properties of the VFs
can be modelled in the framework directly with viscoelastic material laws. To account for
the layered structure (variation of the viscoelastic properties with depth) of the VFs, the
discretized mesh in FEM studies can incorporate mesh layers with varying material prop-
erties [1, 96]. To simulate phonation, FEM models are coupled with a glottal flow model,
which supplies the driving pressures on the VF surface. While the highest fidelity FEM
models simulate the 3D VFs, the discretization of the VFs can also be performed in 2D to
decrease computational complexity [43]. For the purpose of the large scale studies on mul-
tiple parameter variations however, even 2D simulations are computationally prohibitive.
Thus, reduced order models have been used to model the VFs.

Reduced Order Vocal Fold Models

Reduced order models (also called lumped mass models) simplify the VFs into a collection
of discrete masses that interact with each other through springs and dampers. In these
models, the combination of springs and dampers simulate the viscoelastic properties of the
VFs, while each discrete mass simulates a small portion of the VF. Varying the number of
masses allows the incorporation of varying material properties. For example, in the density
of the material, as well as in the springs and dampers connecting the masses. Varying the
number of degrees of freedom of the reduced order model (which is tied to varying the
number of masses), allows for more complex motions, or mode shapes, to be simulated.
As shown in theoretical studies, the motion of the VFs can be broken down into mode
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shapes with varying amounts of energy [73, 74, 5]. Of primary importance are the mode
shapes correponding bulk lateral motion, and the mucosal wave. Reduced order models are
capable of representing different numbers of these modes based on the number of degrees
of freedom they have. A few configurations of reduced order models of the VFs are shown
in Figure 2.7.

(a) (b) (c)

(d) (e)

Figure 2.7: Illustration of some common lumped mass models with varying degree of
freedoms (DOFs). (a) The one mass model with one DOFs; (b) two mass model with
two DOFs; (c) three mass model with three DOFs; (d) two mass model with three DOFs;
(e) a generic model can have many masses and many DOFs in order to represent 3D VF
behaviour. Figures adapted from [21, 62].

The earliest reduced order models, modelled only a 2D slice of the VFs in the coronal
plane, such as the one mass model (seen in Figure 2.7(a)) proposed by Flanagan [23]. The
one mass model used one mass with one DOF to represent a VF. Such a model requires
acoustic pressure feedback in order to achieve self oscillation due to the fact that it cannot
model the mucosal wave; it can only capture a bulk lateral translation of the VFs. As
mentioned in Section 2.2 however, the primary mechanism behind self-oscillation of the
VFs is the glottal wave phenomenon in which the glottis forms alternating converging-
diverging channels during the opening and closing phases respectively. This has been shown
to create an asymmetry in driving pressures between the opening and closing phases of the
VF oscillation, which is responsible for the net positive energy transfer from the airflow to
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the VFs necessary for self-oscillation [76, 69]. To take into account this inferior-superior
phase shift in the VF motion, the one mass model was extended into a two mass model by
adding an additional mass along the inferior-superior direction (for a total of two DOFs) by
Ishizaka and Flanagan [33] (shown in Figure 2.7(b)). Further fidelity may be achieved by
taking into account the layered structure of the VFs (shown in Figure 2.4). In this case, an
additional mass can be added below any masses in contact with the glottal flow, as in the 3
mass body-cover model (BCM), possessing three DOFs, of the VFs, shown in Figure 2.7(c),
or its 2 mass variant that incorporates an additional rotational degree of freedom for the
cover mass (shown in Figure 2.7(d)) [65]. This accounts for the different material properties
between the body and cover layers (see Section 2.1.2 for details). Further complexity of the
reduced order model can be achieved by extending the number of masses in the anterior-
posterior directions to capture the 3D nature of the VFs as seen in Figure 2.7(e).

The governing equations for all reduced order models can be written in a similar fashion.
In general, all reduced order models consist of a group of discrete masses. These masses
can be spatially arranged to reflect the varying densities within the VFs. The masses
are connected to each other with springs, representing the elastic properties of the VFs,
and dampers, which represent the viscous behaviour of the VFs, together modelling the
viscoelastic material properties. Forces from pressure exerted by the glottal flow, act on
masses in contact with the flow. A generic model is illustrated in Figure 2.8.

superior

(a)

superior

(b)

Figure 2.8: (a) A collection of masses with springs and dampers is used to represent the
VFs, (b), in a reduced order model. The usage of spring and damping elements, k and
d, simulate the viscoelastic damping properties of the VFs. Each mass m, represents a
discrete portion of the VF.

All reduced order models are fundamentally based on Newton’s second law, which
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relates the forces acting on a mass to the rate at which it accelerates. For systems of
discrete masses connected by various spring and damping elements, Newton’s second law
can be extended to represent the behaviour of the combined system’s response to external
forces using notation from linear algebra [46]. For a reduced order model, this is represented
by equation (2.1)

Fpressure = Mẍ+Dẋ+K(x− xrest), (2.1)

where M is a matrix representing the masses in the system, D is a matrix representing the
damping elements, and K is a matrix representing the spring elements. The terms x and
xrest represent the positions of the masses, and the rest lengths of the springs, respectively.
Finally Fpressure is a vector representing the forces due to pressures from the glottal flow.
Coupling equation (2.1) with an equation for Fpressure yields a model for VF self-oscillation.

As mentioned in Section 2.2, the self-oscillation of the VFs involves the VFs moving
apart and then back together, in some cases colliding. Special consideration must be made
to account for this collision in reduced order models. In reality, collision of the continuous
VFs (and objects in general) occurs when their surfaces contact. This causes the remainder
of the body to deform resulting in stresses generated through the continuous body. Reduced
order model are based on discrete rigid masses however, and so cannot model collision
through a deformation of the masses [21]. Thus, modelling of collision in reduced order
models is typically done by allowing the VFs to pass through each other, whereupon
additional collision springs are used to simulate the collision forces. The governing equation
for such a model is given in equation (2.2)

Fpressure = Mẍ+Dẋ+K(x− xrest) +Kcoll(t)(x− xcoll), (2.2)

where Kcoll(t) represents the collision springs, which are turned on only when collision
occurs, and xcoll represents the rest length of the collision springs.

Body-Cover Model

Estimation of model parameters through Bayesian inference requires a model with a balance
of high fidelity and low computational complexity. Since a pair of 2D driven VFs was used
in this study to simulate HSV (see Chapter 3 for details), only 2D reduced order models are
necessary. The BCM [65] is a well-known 2D reduced order model that captures most of
the key aspects of phonation in 2D: the phase shift between the inferior and superior edges
of the VFs (the mucosal wave), and the change in material properties between the stiff
body layer and elastic cover layer of the VFs. Coupled with a 1D quasi-steady potential
flow model (detailed equations for this model are given later in the section) allows for
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self-oscillation to be simulated. Acoustics can be neglected since acoustics add additional
computational complexity not pertinent to characterizing error in HSV. As a result, the
BCM, with a slightly modified flow equation, was chosen to conduct Bayesian inference in
this work. A schematic of the BCM is shown in Figure 2.9 below. Note that the 3 mass
variant is used in this work [65].

Figure 2.9: A schematic of the BCM. The z coordinate increases in the superior direction,
the x coordinate is zero at the midline, and varies in the lateral direction. m represents
the mass. The subscripts u, l, and b indicate properties associated with the upper, lower,
and bottom masses.

The governing equations for the BCM are given in equation (2.3) [65]Fu

Fl

0

 =M
d2

dt2

xu

xl

xb


+D

d

dt

xu − xu,0

xl − xl,0

xb − xb,0

+Dcoll
d

dt

xu − xu,0

xl − xl,0

xb − xb,0
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+ η

ηu(xu − xu,0)
ηl(xl − xl,0)
ηb(xb − xb,0)
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+Kcoll

xu − xu,coll

xl − xl,coll
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3

, (2.3)
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where M , D, and K represent the mass, stiffness, and damping matrices respectively.
The η coefficients are coefficients of non-linearity and are given by η = 100 and ηcoll = 500.
In equation (2.3), each of the matrices are defined in equation (2.4).

M =

mu 0 0
0 ml 0
0 0 mb

 , (2.4)

D =

du + dc −dc −du

−dc dl + dc −dl

−du −dl db + du + dc

 , (2.5)

K =

ku + kc −kc −ku

−kc kl + kc −kl

−ku −kl kb + ku + kc

 , (2.6)

Kcoll =

ku,coll 0 0
0 kl,coll 0
0 0 0

 , (2.7)

where each of the damping terms, d, are computed in terms of spring and mass constants
given in the equations below

du = 2ζl(muku)
1
2 , (2.8)

dl = 2ζu(mlkl)
1
2 , (2.9)

db = 2ζb(mbkb)
1
2 , (2.10)

du,coll = 2(ζl + 1)(mlkl)
1
2 , (2.11)

dl,coll = 2(ζu + 1)(muku)
1
2 . (2.12)

The collision spring constants in equation (2.4) are given in equations (2.13) and (2.14).

ku,coll = 3ku (2.13)

kl,coll = 3kl (2.14)

All undefined values in the previous equations are given by a series of rules developed by
Titze et al. [77] that relate three muscle activation parameters (act, ata, alc) to the missing
material properties above (see Section 2.1.2 for details). These muscle rules are elaborated
on in the next section. In this work, only symmetric VF oscillations were considered, thus
the BCM requires the specification of parameters for just one VF. Combined with the
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muscle rules, the symmetric BCM is thus specified by 9 parameters (an asymmetric simu-
lation would require 18 parameters; duplicating the set of 9 parameters for the other VF):
a set of initial positions (xu,0, xl,0, xb,0), initial velocities (ẋu,0, ẋl,0, ẋb,0), and three muscle
activations (act, ata, alc), representing activations of the cricothyroid, thyroarytenoid, and
lateral-cricoarytenoid (a negative activation exists for this muscle to represent the effect of
the posterior cricoarytenoid) respectively.

Muscle Activation Rules

Titze et al. [77] specified three muscle activation rules for the cricothyroid, thyroarytenoid,
and lateral-cricoarytenoid as control parameters for the material properties of the BCM.
These muscle rules are useful because they allow relating physiological parameters (muscle
activation effort of the intrinsic laryngeal muscles) to primitive parameters of a reduced or-
der VF model, which then influences the outputs of phonation. This has physical meaning,
as muscle activation is how individuals change VF parameters to change pitch, for exam-
ple. Thus control of muscle activation to modify model parameters (rather than direct
specification of material properties), is closer to the physiological mechanism of controlling
phonation [77].

To measure the activation of these three muscles, Titze et al. [77] used a normalized
value of 1 to represent maximum muscle activation, 0 to represent minimum muscle acti-
vation, and −1 to represent the maximum activation of an antagonistic muscle. For the
cricothyroid and thyroarytenoid, the muscle activations range from 0 to 1 (act ∈ [0, 1],
ata ∈ [0, 1]). For the lateral-cricoarytenoid, the activation ranges from −1 to 1, where
the negative activation is used to represent activation of the posterior cricoarytenoid
(alc ∈ [−1, 1]). As mentioned in Section 2.1, the cricothyroid is primarily responsible
for tensing (stretching) the VFs, the lateral-cricoarytenoid for adduction (bringing the
VFs together), and the thyroarytenoid for relaxing the VFs [60, Chapter 5].

In terms of parameters of the BCM, these three muscle activations have different ef-
fects. The activation of the lateral-cricoarytenoid corresponds primarily to influencing the
rest positions of the masses (decreasing x0), since it is related to adduction of the VFs.
Both act and ata are related to tensing of the VFs, although in different ways. Cricothy-
roid activation, act, tenses the entire VFs by pulling the the thyroid cartilage that the
VFs are attached to, away from the cricoid, thus lengthening (or shortening) the VFs.
Thyroarytenoid activation, ata, mainly tenses the body layer of the VFs (the body layer
consists of the thyroarytenoid). As a result, in the BCM, the activation of the cricothyroid
corresponds mainly to a general stiffening of all the BCM springs (increasing ku, kl, kb,
kc); while the activation of the thyroarytenoid corresponds mainly to a stiffening of the
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body spring kb [75, Fig.7, Fig.8]. Activation of the thyroarytenoid has the further effect of
redistributing the masses in the BCM, increasing the body mass and decreasing the cover
mass when the thyroarytenoid is activated [75, Fig.8]. The reader is referred to [77] for
detailed equations on implementing the rules.

2.4.2 Fluid Models

Computational Fluid Dynamics

The highest fidelity models of the glottal flow use CFD to approximately solve the governing
equations of the glottal flow (the Navier-Stokes equations). All CFD simulations begin with
discretization of the glottis, and portions of the supraglottal and subglottal tracts, into a
computational mesh, followed by specification of boundary conditions at the boundaries of
the mesh. Simulation of the glottal is a coupled phenomenon, where the glottal flow forces
the VFs through pressures and stresses exerted at the boundaries, while the VFs in turn
modify the glottal flow by deforming, changing the boundaries of the glottal flow. There
are several levels of fidelity at which the fluid portion of this coupled simulation process
can be done.

One large difference in fidelity of CFD simulations is in dimensionality. As the VFs
are inherently 3D structures (as seen in Figure 2.3), the glottal flow must also be 3D.
High-fidelity CFD models have simulated the glottal flow in 3D [9, 95]. These simulations
have shown agreement with physiologically observed values [96, 95] demonstrating the
validity of 3D CFD glottal flow models (coupled with high-order numerical simulations of
the solid VFs). While closer to the true dimensionality of the VFs, 3D simulations are
computationally complex. As a result, 2D simulations of the glottal flow in the coronal
plane are an attractive alternative [93, 2, 67, 91, 44, 43, 94]. This simplification to 2D
simulations in the coronal plane, can be justified by the fact that many physiologically
observed behaviours of the glottis occur primarily in the coronal plane. For example,
the mucosal wave motion, or the adduction and abduction of the VFs. Furthermore,
examination of the VF geometry has shown that the coronal cross section remains largely
the same along the length of the VFs (in the anterior-posterior direction) [61]. While 2D
simulations do reduce computational complexity, investigation of multiple parameters for
phonation models (such as variable subglottal pressures) is still prohibitive. Thus further
simplifications of the glottal flow have been investigated in simplified fluid models.
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Simplified Fluid Models

Simplified models of the glottal flow use approximations of the Navier-Stokes equations.
Some examples include 2D inviscid flows [38], inviscid flows with modelling of boundary
layer phenomena during formation of the glottal jet [19], or 1D inviscid flow approxima-
tions. One of the simplest, and most common simplified fluid models is to assume a 1D
inviscid flow under a quasi-steady assumption [21]. While such a model neglects much of
the complex 3D effects of the glottal flow, for many flow conditions their results have been
shown to agree reasonably well with CFD and experimental studies [10, 81, 92]. Under
this assumption, the flow and resulting pressure on the VFs is governed by the Bernoulli
equation. This assumption is only valid under specific conditions however. An example
of two glottal flows configurations are illustrated in Figure 2.10, that illustrate when the
inviscid approximation is valid.

(a) (b)

Figure 2.10: Two typical glottal flow channels with a 1D potential flow assumption. (a)
A converging configuration enforces the Bernoulli regime throughout the glottis. (b) A
diverging configuration leads to separation of the flow at some area Asep.

Under the 1D inviscid assumption, the glottal flow varies only along the inferior-superior
direction (the z coordinate in Figure 2.10). Due to the 1D assumption and conservation of
mass, the speed of the glottal flow varies only due to the cross sectional area of the glottis,
A(z). Thus, the cross sectional area of the glottis can be used to determine the flow veloci-
ties and pressures in the glottis through the Bernoulli equation, but only when the inviscid
assumption applies. In converging orientations of the glottis (as seen in Figure 2.10(a)),
flow separation does not occur in the glottis, which allows application of the inviscid as-
sumption; however, in diverging orientations (as seen in Figure 2.10(b)) flow separation
occurs in the glottis [21], which is not naturally modelled in inviscid flows. Thus flow
separation must be accounted for by specification of a separation point, and the Bernoulli
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approach applied only up to the point where the flow separates. The area at separation is
denoted by Asep.

Application of the Bernoulli equation starts with using two known pressures at the sub-
glottal location, and separation location. The Bernoulli equation can be applied between
these two points in order to solve for the volumetric flow rate through the glottis:

Psub +
1

2
ρv2

sub = Psep +
1

2
ρv2

sep (2.15)

Psub +
1

2
ρ(

Q

Asub

)
2

= Psep +
1

2
ρ(

Q

Asep

)
2

(2.16)

Q2(Asep
−2 − Asub

−2) =
2

ρ
(Psub − Psep) (2.17)

Q =

√
2

ρ
(Psub − Psep)(Asep

−2 − Asub
−2)−1, (2.18)

where Q is the volumetric flow rate, Psep is the pressure at separation, Psub is the subglottal
pressure, Asub is the subglottal area, and ρ is the density of air. Past the separation point,
it is assumed that the glottal flow forms a jet and a constant separation pressure (Psep)
acts on the glottis. The pressure in the Bernoulli regime is given in equation (2.19)

Psub +
1

2
ρ

(
Q

Asub

)2

= P (z) +
1

2
ρ

(
Q

A(z)

)2

, (2.19)

where A(z) is the area at the location z, and P (z) is the corresponding pressure.

Rearranging equation (2.19) for the pressure at a location z, and noting that the
pressure after separation is a constant, the intra-glottal pressure is then given by equa-
tion (2.20), where Q is substituted from (2.18)

P (z) =

{
Psub + 1

2
ρQ2

(
Asub

−2 − A(z)−2) if z ≤ zsep

Psep if z > zsep

. (2.20)

Equations (2.18) and (2.20) still require the separation pressure, Psep, and separation
location, zsep, to be solved. There are various approaches to doing this. The simplest is
to assume that the pressure recovery effect (the tendency of the fast moving jet to have a
lower pressure than the slower moving surroundings) in the glottal jet is negligible, thus
pressure in the jet is the same as the surrounding supraglottalpressure, Psup. Another
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approach is to account for the pressure recovery effect with a pressure recovery factor.
Ishizaka et al. [33] determined the pressure at separation to be given by equation (2.21)

Psep = Psup −
1

2
ρke

(
Q

Asep

)2

,

ke =
2Asep

Asup

(
1− Asep

Asup

)
,

(2.21)

where ke is the pressure recovery factor.

The location of separation remains to be determined. When the glottis forms a con-
vergent passage, the pressure gradient is favourable and so separation does not occur. In
contrast, when the glottis forms a divergent passage the glottal flow remains attached to
the glottal walls until a certain critical condition is reached and the flow separates (see
Figure 2.10(b)). For non-aerodynamically smooth models, this is often assumed to occur
at the mass with the minimum area [65, 33]. For aerodynamically smooth models, some
authors have used ad-hoc methods to determine this location, such as by assuming that
separation occurs at a constant ratio of Asep to Amin of 1.3 [41, 75].

Body-Cover Flow Model

The flow model used for the BCM, which is used in this work, is derived from Story et
al. [65], but neglects acoustic pressures. Following similar arguments as discussed previ-
ously, they derived the pressures acting on the upper and lower masses when the glottis is
open, as shown in Equations (2.22) and (2.23)

Pl =

Psub − (Psub − Psup)
(
Au

Al

)2

Au ≤ Al

Psub − (Psub − Psup)
(
Au

Al

)2

Au > Al

, (2.22)

Pu = Psup, (2.23)

where Psup is the supraglottal pressure and Psub is the subglottal pressure. The areas are
given as

Au = 2xuLg, (2.24)

Al = 2xlLg, (2.25)

where the factor of 2 is applied for a symmetric BCM. The term Lg is the length of the
glottis, and comes from the muscle rules specified by Titze et al. [77]. During closure of
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the glottis, the pressures are given by:

Pl =

{
Psub Au > 0 and Al = 0

0 Al = 0
, (2.26)

Pu =

{
Psup Al = 0 and Au > 0

0 Au = 0
. (2.27)

Finally the forces on the upper and lower masses can then be obtained by multiplying by
the surface area of each mass in contact with the flow. This is given in Equations (2.28)
and (2.29)

Fl = PlTlLg, (2.28)

Fu = PuTuLg

{
Psup Al = 0 and Au > 0

0 Au = 0
, (2.29)

where T is the thickness of the mass in the inferior-superior direction. All the remaining
constants can be found using the muscle activation rules provided by Titze [77].

The BCM flow model adds 2 parameters to the BCM’s 9 parameters: Psub and Psup.
In total, the modified BCM used in this study is completely specified by 11 parameters,
given in Table 2.1.

Table 2.1: The list of parameters completely specify the BCM. In this work, the parameters
are assumed to remain constant throughout time.

Parameter Description[
xu,0 xl,0 xb,0

]
Vector of 3 initial positions, one for each of the three
masses in the BCM[

ẋu,0 ẋl,0 ẋb,0

]
Vector of 3 initial velocities, one for each of the three
masses in the BCM

Psub subglottal pressure
Psup supraglottal pressure
act A measure of cricothyroid activation; ranges from 0 to 1
ata A measure of thyroarytenoid activation; ranges from 0 to

1
alc A measure of lateral-cricoarytenoid activation; ranges

from −1 to 1
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Note that for the current model, the glottal flow equations are not needed. This is
due to the neglection of acoustics. For the model considered in this case, acoustics only
add additional computational complexity but have no influence on characterizing the error
inherent in high-speed glottal video.

2.4.3 Acoustic Models

Acoustics can play an important role in phonation due to the fact that acoustics influence
the end result of what others hear (through the filtering effect of the supraglottal tract),
as well as because acoustic pressures can influence the driving pressures on the VFs [72]
(some modes of speech such as resonant speech take advantage of this [72]). Similar to
how FEM and CFD can be used to generate high-order models of the VFs and glottal flow,
Computational Aero-acoustics techniques exist that can be used to simulate acoustics from
a first-principles model, based on simulating the propagation of pressure waves [93]. Such
simulations however, are extremely computationally intensive, due to the small spatial
scales and small time scales required to simulate the propagation of pressure waves travel-
ling through the fluid. As a result, simplified models of the acoustics are preferable.

In general there are two approaches to simplified modelling of acoustics in phonation.
In an ‘electrical analog’ approach, the propagation of acoustic pressure waves is computed
through electrical analogs of acoustic components [21] (also termed the ‘transmission line
model’ [33]). This approach comes from the ladder topology of circuits used for designing
electronic filters, and models the acoustic tract as a series of acoustic tubes represented
by electric elements. The ‘electrical analog’ approach allows the modelling of acoustics in
either the frequency domain or time domain. While the electrical analog approach can
be used with a known source tone to study the filtering effect of the supraglottal tract in
the frequency domain, when coupled with reduced order models a time domain solution is
used. Another approach is the wave-reflection analog approach, developed by Kelly and
Lochbaum [37], which similarly models the acoustic tract as a series of acoustic tubes,
but models the pressure wave propagation through physical principles (rather than an
electrical-analog) and strictly in the time-domain. Due to the usage of discrete acoustic
tubes, this model assumes a 1D planar wave propagation in each section. In contrast to the
the ‘electrical analog’ approach, the time domain formulation makes it difficult to model
frequency-dependent, and other losses [21].

The addition of acoustics adds computational complexity to a reduced order model
due to the need to track acoustic pressures. In the context of Bayesian inference, these
acoustic pressures become additional parameters that must be estimated. Furthermore, in
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this work Bayesian inference is applied on measurements obtained from a simulated HSV
experiment, which is not affected by acoustics. As a result, acoustics are neglected in this
work.

2.5 Inverse Analysis

In many problems associated with modelling real-world phenomena, a set of parameters for
a model are specified, and the resulting behaviour (this could entail any set of quantities of
interest that the model produces) of the model is solved. Such a problem is called a forward
problem. Typically the behaviour of the forward model is well described, meaning that
given a set of parameters, the behaviour of the model can be solved uniquely. Forwards
problems are useful because they allow the prediction of results based on an understanding
of some phenomena. For example, the weather can be predicted using models of fluids.

In contrast to the forward problems, in some cases it is the parameters that generate a
result that are of interest. In this case, it is desired to estimate what parameters created
a certain result. This is known as an inverse problem. Inverse problems frequently arise
when direct measurements of a quantity (a model parameter) cannot be made. In this case,
the value of the measurement can be inferred through indirect measurements. A trivial
example is a model of a spring. There is no measurement tool, that directly measures the
stiffness of a spring. Instead, measurements of forces and displacements of the spring can
be taken. Using the well known Hooke’s law for springs, these forces and displacements
can be related to the stiffness of the spring, through Hooke’s law. In this problem, Hooke’s
law is the forward model. This is a trivial inverse problem, since Hooke’s law is a linear
model. Calculation of the spring stiffness is easily computed given a force and displacement.
Most inverse problems involve more complicated forward models, which typically cannot
be inverted analytically.

An example of such an inverse problem, is in medical imaging through x-ray computed
tomography, which can generate cross-sectional images of the body. This is based on
projecting thin x-ray beams through the body and measuring the x-ray intensity that
passes through to the other side. Based on where the beam passes through the body, the
intensity of the x-ray measured will change, due to the absorption properties of different
tissues. In this problem, physicians do not care about the intensity of the measured x-ray,
but rather what the x-ray was attenuated by, for example a tumor. Thus the parameter
actually desired, is a map of tissues that the x-rays passed through. Since there is no
known way to map the properties of internal tissues without dissecting the patient, indirect
measurements must be made, such as through x-rays. Here, the forward problem gives
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the attenuation of x-rays based on the distribution of tissues inside the body. What is
desired, is the map of tissues in the body, given x-ray measurements, in other words an
inverse problem [36, pg.198]. Similarly in the field of phonation, clinicians can take various
measurements of patients (such as HSV or audio recordings), however measurements of the
actual VF properties (such as asymmetric muscle activations, which indicate VF paralysis)
are more valuable information about patients. Since these properties cannot be directly
measured, a natural approach is to infer their values through inverse analysis applied to
indirect clinical measurements.

There are two general approaches to solving inverse problems. In optimization meth-
ods, a measure of error between the observed behaviour and model behaviour, called the
objective function, is minimized [68]. The solution to the inverse problem is then the pa-
rameter set that minimizes the objective function. While such methods can approximately
account for the effects of measurement errors [68], they are only approximations. In con-
trast, Bayesian inference is an approach to inverse analysis that models the inverse problem
in a probabilistic framework [36]. In contrast to optimization methods, the solution to the
inverse problem in Bayesian inference, is a description of which parameter sets have higher
probability densities. This allows uncertainties in measurements to be naturally accounted
for.

2.5.1 Optimization Methods

Optimization methods in inverse analysis, aim to find the parameter set that reduces a
measure of the amount of error between a model and given measurements. One of the
earliest examples of optimization methods for inferring reduced order model parameters
was conducted by running simulations over a discretized set of parameters and comparing
the difference in glottal width amplitude between a measurement and a model in a manual
fashion [47]. Motivated by this approach, further studies have incorporated more advanced
automatic optimization procedures.

These studies rely on minimizing a measure of error, called the objective function Γ,
between an observed measurement and an equivalent output from a model [68, Chapter
3]. One common objective function is the Euclidean-Norm (also known as the L2 norm),
given in equation (2.30)

Γ(x) = ‖yerror‖2 =

√
(ymodel(x)− ymeasured)T (ymodel(x)− ymeasured), (2.30)

where y are measurements, and x are parameters.
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Döllinger et al. [16] performed one of the earliest inverse analysis studies with automatic
optimization of an objective function, for a two-mass model. They optimized an objective
function in the frequency domain, based on minimizing the sums of norms of the Fourier
transform amplitudes and phase shifts for each of the left and right VF displacements of
a two-mass model. Using this procedure, they were able to estimate three parameters:
subglottal pressure, and left and right asymmetry factors, referred to as Q factors. These
left and right asymmetry factors (Ql and Qr), multiplied the default masses of Ishizaka
and Flangan’s [23] original two mass model, while dividing the spring constants. Thus
if the two Q factors are the same, the reduced order model is symmetric. They applied
this objective function to glottal widths measured from HSV. Minimizing the objective
function, they were able to determine parameters for both healthy and pathological VF
recordings. Interestingly, Döllinger et al. found approximately equal asymmetry factors
for the left and right VFs when they applied the technique to healthy VF recordings, and
different asymmetry factors when they applied the technique to pathological VFs. Other
studies have used different objective functions and also found success estimating different
parameter sets. For example, Wurzbacher et al. [83] based their objective function on
minimizing wavelet decomposition coefficients of glottal trajectories from high-speed video
of the glottis. This was done to estimate 8 time dependent Q factors for a 3D reduced order
model. The model consisted of 12 masses; three rows of masses discretized the anterior-
posterior direction of each VF, while each row consisted of two masses to discretize the
inferior-superior direction [Fig. 2][83]. Three Q factors were used to modify the spring and
mass constants for each of the left and right VFs, respectively. The remaining two Q factors
were used to modify the anterior-posterior masses and springs, for each VF, respectively.
Wurzbacher et al. performed the minimization on a variety of voice recordings, including
recordings of left-side and right-side paralyzed VFs as well as healthy VFs. Their results
were able to differentiate Q factors on the left and right sides, for example, showing that
left-paralyzed VFs corresponded to lower Q factors on the left VF springs and masses.
A number of other optimization approaches have also been conducted, all of them giving
promising results on the estimated parameters [88, 87].

The actual method for optimizing the objective function, can be done with a variety
of algorithms, such as Powell’s optimization algorithm [83], Nelder-Mead [16], or genetic
optimization [59]. Two common classes of algorithms include gradient techniques and di-
rect search methods (Nelder-Mead) [16]. Gradient based techniques, compute the gradient
of the objective function with respect to the optimized parameters in order to compute
the optimal ‘search’ direction so as to minimize the objective function. This means that
gradient based techniques can converge quickly. However, complex objective functions
can make computation of the gradient expensive, furthermore the gradient is typically not
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available analytically, and so must be calculated numerically, thus increasing the computa-
tional complexity. The presence of local minima can also make these methods unstable [16].
Direct search methods do not rely on computing gradients of the objective function, but
rather directly search for the parameter set that minimized the objective functions. This
makes such algorithms more stable, as well as more applicable when gradients cannot be
computed [16].

All these optimization techniques only produce point estimates. However, it is known
that derived measurements inherently have some error. This is not naturally accounted
for in the optimization approach to inverse problems. Furthermore, optimization problems
sometimes have local minima, for example, Döllinger et al. [16] found local minima in their
study (described earlier). The presence of local minima hints that multiple parameter sets
could reproduce an observed measurement within the limits of observation error. Whether
these local minima are significant, or not, depends on the magnitude of the measurement
error. A large measurement error, could mean that a local minimum in the objective func-
tion, is simply the result of a random error. This would make the point estimate of an
optimization approach invalid, since it neglects the significant local minima. Optimization
techniques are unable to naturally account for this. In contrast, Bayesian inference pro-
vides a natural way to represent this uncertainty on the estimated parameter sets with a
probabilistic framework.

2.5.2 Bayesian Inference

Bayesian inference is an approach to inverse analysis utilizing Bayes’ formula, which de-
scribes the probability of an event H, based on knowledge of conditions that might be
related to the event E

Pr(H | E) =
Pr(E | H)

Pr(E)
Pr(H), (2.31)

where Pr(H | E) is the posterior, Pr(H) is the prior, Pr(E | H) is the likelihood, and
Pr(E) is the evidence. For example, consider that H is the probability that a specific
coin is weighted, and E represents the fact that the specific coin has come up heads 10
times, and tails only once. Pr(H | E) is the probability that the coin is weighted given the
observed tosses, called the posterior. Pr(E | H) is the probability of the observed tosses,
given that the coin is weighted, called the likelihood. Finally Pr(E) is the probability
of the given tosses for any coin, and Pr(H) is the probability that any coin is weighted.
Bayes’ formula provides the exact way in which these probabilities combine.

While Bayes’ formula, in equation (2.31) is formulated in terms of probabilities, this is
not the most convenient form. Continuous quantities, such as muscle control parameters
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like act, are typically characterized by continuous probability distributions, which are usu-
ally characterized through probability densities [36]. For a continuous random variable X
with probability density πx the probability that x ranges from [x1, x2] is defined as

Pr(x ∈ [x1, x2]) =

∫ x2

x1

πx(s)ds. (2.32)

Bayes’ formula also applies for probability densities [36, Chapter 3]

πposterior(x | yobs) =
πlikelihood(yobs | x)πprior(x)

πevidence(yobs)
, (2.33)

where π indicates a probability density, x represents a vector of model parameters, and yobs

represents a vector of measurements. Since parameters used in reduced order models are
typically continuous, the continuous form of Bayes’ formula will be used in the remainder
of the thesis.

Prior

The prior density πprior(x) is a probabilistic representation of what is known about the
parameters x ‘prior’ to any measurements. For example, it is known that parameter sets
for VF muscle activation, vary only between 0 to 1 for act and ata, and −1 to 1 for alc. As
a result, the prior for these parameters should have 0 probability density when the muscle
parameter lies outside its range.

Likelihood

As discussed at the beginning of this section, inverse analysis is complicated by the fact
that measurements have inherent uncertainty due to observation noise which is impossible
to eliminate. In a deterministic model of the phonation system this implies that a single
parameter set can produce a range of different measurements within measurement error,
due to the fact that the measurement system will incur some random uncertainty. In other
words, measurements of the model are a random variable, with a distribution dependent
on the parameter set. For a measurement yobs and parameter set x, this distribution is
πlikelihood(yobs | x), and comes from a model of the measurement error and the forward
model that maps model parameters x to model measurements yobs.

The form of the likelihood depends on the forward model (reduced order model), and
the measurement noise model. One common model for measurement noise is additive noise.
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Using an additive noise model, the measurements yobs can be expressed as:

yobs = ymodel + e = F (x) + e, (2.34)

where e is a vector of random variables, ymodel = F (x) is the forward model, and x is a
vector of parameters. Since the noise is treated as independent of x, by integrating over
the measurement error the likelihood is defined as [36]

πlikelihood(yobs | x) = πe(yobs − F (x)). (2.35)

Observation errors can have many different distributions, however, the most common
model (and the model we choose in this work) is to treat e as Gaussian with mean µ and
covariance Σ, i.e.

e ∼ N (µ,Σ) . (2.36)

So the likelihood becomes

πlikelihood(yobs|x) =
1√

(2π)k|Σ|
exp

(
−1

2
(yobs − F (x)− µ)TΣ−1(yobs − F (x)− µ)

)
,

(2.37)
here k is the number of observations in the observation vector, i.e. yobs ∈ Rk. In many cases
the mean of the additive Gaussian noise is 0 (called unbiased noise), and measurements
are independent and identically distributed. As a result the covariance matrix becomes
Σ = σ2I, where I is the identity matrix and σ is the standard deviation of each of the
measurements. In this case, the likelihood for a series of measurements becomes

πlikelihood(yobs | x) =
1√

(2π)k|Σ|
exp

(
−1

2
(yobs − F (x))TΣ−1(yobs − F (x))

)
=

1√
(2π)k|σ2I|

exp

(
−1

2
(yobs − F (x))T(σ2I)

−1
(yobs − F (x))

)
=

1√
(2πσ2)k

exp

(
− 1

2σ2
(yobs − F (x))T(yobs − F (x))

)
=

1√
(2πσ2)k

exp

(
− 1

2σ2
‖yobs − F (x)‖2

)
,

(2.38)

where k is the number of measurements. An additive, unbiased, independent and identi-
cally distributed Gaussian noise model is used in this work, as described in Section 3.3.2.
Note the similarity with equation (2.30) of the objective function. Minimization of the
objective function, corresponds to maximization of the likelihood, known as the maxi-
mum likelihood estimate (MLE). While optimization approaches correspond to the MLE
in Bayesian inference, they do not naturally capture the uncertainty of the parameters.
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Evidence

The final term needed in computing the posterior is the evidence, πevidence(yobs). This term
is simply a normalizing factor which scales the product of the likelihood and the prior
(the unnormalized posterior) to a probability. In other words, the evidence is a scaling
factor that multiplies the unnormalized posterior such that the integral under the resulting
function is 1.

Posterior

Computation of the posterior simply involves multiplication of the prior and likelihood,
followed by normalization of the evidence, as shown by Bayes’ formula in equation (2.33).
While Bayes’ formula is simple, computation of the posterior in practice can be compu-
tationally costly, especially as the number of parameters being estimated increases. For
example, consider inferring a parameter in the range 0 to 1. Direct application of Bayes’
formula could be applied at N discrete points along the range. This involves evaluating
the forward model N times. If an additional parameter is estimated, N2 points must now
be distributed over two dimensions, such that each dimension is discretized by N points.
As the number of dimensions increases, the number of points evaluated increases exponen-
tially [36, Section 3.6]. This exponentially increasing complexity is sometimes referred to
as the curse of dimensionality [8].

There are various numerical approaches to the solution of Bayes’ formula, some of
which are more suited to high-dimensional inference, than the approach of direct applica-
tion of Bayes’ formula. Sample based approaches approximate the posterior with numerous
discrete samples, each sample being a parameter set. This avoids numerical integration
errors in approximating the posterior through direct computation, which require scaling
the number of points exponentially with respect to the dimension [36, Section 3.6]. Vari-
ational approaches approximate the posterior analytically in a local region. This avoids
stability issues that can occur in sample based methods [29]. While directly computing the
discretized posterior over a grid of parameter sets is subject to the curse of dimensionality,
in this work only 2 parameters are inferred as described in Section 3.3.2. Thus a direct
application of Bayes’ formula is used in this work due to its simplicity, and the fact that
it computes the posterior explicitly.

35



Characterizing Posterior Estimates

The posterior obtained from Bayesian inference consists of a probability distribution over
the estimated parameter set. When the distribution applies over one or two parameters,
it can be interpreted easily in a graphical format. However, as the number of dimensions
grows, these distributions can be difficult to visualize. Thus ‘estimators’, are used to
characterize these distributions [36, Section 3.1.1]. Estimators can be used to characterize
point estimates, called point estimators, as well as their associated uncertainties, called
spread (or interval) estimators [36, Section 3.1.1].

There are a number of point estimators, two of the most popular being the mean and
maximum aposteriori (MAP). The mean estimate of a posterior distribution is given by:

xmean =

∫
Ω

xπposterior(x | yobs)dx, (2.39)

where x is a vector of parameters, yobs is a vector of measurements, and Ω is the domain of
the parameter space. The MAP estimate is the parameter set that maximizes the posterior
probability density:

xMAP = arg maxπposterior(x | yobs), (2.40)

where arg max denotes the argument, x, that maximizes the posterior density.

The aforementioned estimators characterize the entire posterior. However in some
cases, only the probability over a subset of the parameters are of interest, independent of
the remaining parameters. For example, in estimating the parameters (act, Psub), one may
be interested only in the act parameter. These are called marginal distributions, which
represent the probability densities of a subset of parameters, independent of the others. A
marginal distribution of xi over x is given by [36, Section 3.1.1]:

πposterior(xi | yobs) =

∫
Ω

πposterior(x1 . . . xi−1xi+1 . . . xn | yobs)dx1 . . . dxi−1dxi+1 . . . dxn,

(2.41)
where Ω is the domain of all parameters except xi. The above discussed estimators can
be identically applied to marginal distributions, and thus give spread or point estimators
over the marginalized parameter xi.

There are a number of spread estimators as well. One primarily used measure is the
covariance given in equation (2.42)

Σx =

∫
Ω

(x− xmean)(x− xmean)Tπposterior(x | yobs)dx, (2.42)
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where Σx is a covariance matrix, and xmean denotes the mean of x. The covariance is
a measure of spread about the mean [36]. Off diagonal entries, (i, j), of the covariance
matrix, measure the relative spread between xi and xj while entries along the diagonal,
measure the spread of the respective element xi with itself.

Computation of the posterior covariance is an integration problem, as seen in equa-
tion (2.42). When x is high-dimensional or the forward model is complex and non-linear,
the integral may become computationally infeasible. The Laplace approximation is a way
to overcome this, by approximating the posterior density with a Gaussian. This involves
approximating the forward model with its Taylor series expansion about the MAP esti-
mate. This is shown in equation (2.43), where J is the Jacobian of yobs with respect to x,
and o((x− xMAP)2) indicates higher-order terms of the Taylor series

F (x) ≈ F (xMAP) + J |xMAP
(x− xMAP) + o((x− xMAP)2). (2.43)

Using this linearization, it can be shown that the posterior can be approximated with
a Gaussian distribution, when the prior is uniform. This is known as the Laplace approx-
imation [70, 30]

πposterior(x | yobs) ∝ πlikelihood(yobs | x)πprior(x)

∝ 1√
(2π)k |Σ|

exp

(
−1

2
(yobs − F (x))TΣ−1(yobs − F (x))

)

≈ 1√
(2π)k |Σ|

exp

−1

2
(yobs − F (xMAP) + J(x− xMAP))TΣ−1

(yobs − F (xMAP) + J(x− xMAP))


∝ exp

(
−1

2
(J(x− xMAP))TΣ−1(J(x− xMAP))

)
= exp

(
−1

2
(x− xMAP)TJTΣ−1J(x− xMAP)

)
,

(2.44)

where Σ is the covariance matrix of yobs.

From equation (2.44), the covariance matrix of the resulting Gaussian is then given by

Σx = (JTΣ−1J)
−1
, (2.45)

where Σx is the covariance matrix of the parameters. For the case of independent, iden-
tically distributed measurements, Σ = σ2I and so the covariance matrix is given by equa-
tion (2.46)

Σx = σ2(JTJ)
−1
. (2.46)
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Chapter 3

Methodology

HSV as a clinical measurement of phonation is useful because many quantitative measure-
ments can be derived from it, from the glottal area to the trajectories of the glottal edges.
Furthermore, these are closely related to the actual motion of the VFs. However, HSV is
subject to many uncertainties, which come from variables in the HSV process. In particu-
lar, off-axis viewing angles, low frame rates, and low spatial resolutions can all contribute
to uncertainty in measurements derived from HSV. To investigate the effect of these three
HSV imaging variables on Bayesian inference applied to measurements derived from HSV,
a simulated HSV experiment was conducted. A consumer digital single lens reflex camera
(DSLR) was used to image a pair of actuated VFs, simulating HSV. The VFs were actuated
according to a reduced order model with known parameters, held constant throughout the
entire motion. Applying Bayesian inference to the glottal width waveform, measured from
the simulated high-speed video, allowed comparison with the known parameters from the
driving model. This setup was used to capture a series of simulated high-speed videos of
the VFs, with varying imaging parameters (spatial resolution, frame rate, and angle of
view) to investigate the effect of these imaging parameters on Bayesian inference applied
to HSV. In the remainder of this chapter, details of the experimental methodology are
presented. Section 3.1 details the experimental setup used, Section 3.2 details the experi-
mental parameters investigated, and Section 3.3 describes the post-processing procedures
conducted to perform Bayesian inference.
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3.1 Experimental Setup

A schematic of the experiment setup is shown in Figure 3.1. The experimental setup
consists of 3 main components: a pair of 2D VFs (extended along the anterior-posterior
direction to form a 3D geometry), an actuation system controlled by 4 stepper motors to
drive the VFs, and an imaging system mounted on a tripod used to record a simulated
superior view of the VFs.

Superior

Medial (right)

Posterior

Rotational stepper motor

Translational stepper motor

Camera

Translation axis

Rotation axis

Calibration plate

Calibration plate
anchor points

Experimental vocal folds

Figure 3.1: A schematic of the experimental setup. A pair of experimental VFs (that can
rotate and translate) are driven with a motion system. A camera is used to image the VFs,
with the position of the folds initially set with a calibration plate. The calibration plate is
also used to set the angle of view of the camera using two dots shown in red and blue. It
was removed during the experiment.

Figure 3.1 shows the overall schematic of the experiment. A camera is focused at the
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midplane of the VFs to simulate HSV. The 2D VFs translate and rotate in a 2D plane (the
coronal plane), actuated by a motion system powered by stepper motors. This motion
is captured from a superior view using the camera to simulate HSV. Varying angles of
view were obtained by aligning the camera’s angle of view through reference points on the
calibration plate. Two points located on the plate, are arranged along the desired angle,
and subsequently aligned within the image obtained from the camera. The initial position
of the VFs was also set with the calibration plate, by moving the VFs against the plate’s
known width (the central prong in Figure 3.1). The calibration process is detailed later in
the section. The anchor points, were two cylindrical rods, attached to the motion system
and are shown in Figure 3.2.

Figure 3.2: A picture of the actual experimental setup used, without the calibration plate.
(1) is a NIKON D3200 camera mounted on a tripod used to simulate HSV of the VFs.
(2) consists of a stepper motor driven motion system, which actuates a pair of rigid VFs,
shown in (3). (4) and (5) are cylindrical rods fixed to the motion system, against which
the calibration plate was secured.
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Figure 3.2 shows the actual components used in the experiment. The simulated high-
speed camera was a Nikon D3200 DSLR. The experimental VFs are constructed from
aluminum, and painted black to contrast with a white background (representing the glot-
tis). These are 7.5× larger than life-size. While the DSLR has a low recording frame
rate (30 FPS), the motion of the simulated VFs are slowed down to effectively increase the
frame rate of the camera. Similarly, the geometry and motions of the VFs are scaled by a
factor of 7.5, which increases the effective spatial resolution of the camera. Details of these
components are presented in the next sections.

3.1.1 Vocal Fold Geometry

Each of the VFs consists of the medial portion of Scherer et al.’s [54] M5 geometry extruded
in the anterior-posterior direction. The M5 geometry is shown in Figure 3.3.

Figure 3.3: The M5 geometry defined by Scherer et al. [54] in physiological coordinates.
Adapted from [54].

As seen in Figure 3.3, the M5 geometry is governed by a set of equations, parameterized
by the glottal angle Ψ. Scherer et al. [54, 53, 40, 39] used this glottal angle to simulate the
glottis at various converging-diverging angles, in other words to simulate the mucosal wave.
This motion is difficult to generate using real actuation systems, since multiple dimensions
adjust dynamically in length (for example RΨ, Q1, Q2. . . ). Implementing this motion
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would require actuators to modify each of these lengths throughout a simulated motion,
which is both costly and complicated. As a result, an alternative approach to capturing
the mucosal wave was used. The M5 geometry was constructed at the glottal angle Ψ = 0◦

and scaled up by 7.5× [62]. Variation of the actual glottal angle, was then accomplished
by rotating the geometry. In addition, a translational degree of freedom allows simulation
of a bulk lateral vibration of the VFs. This is illustrated in Figure 3.4.

R2 2 .2 3
R1 4 .2 9

1 5 .1 1  1 5 .1 1

7
.9

4

(a)

midline
superior / glottal flow

(b)

Figure 3.4: (a) The 7.5× life-size medial plane of the M5 geometry used for the experiment,
and its dimensions in millimetres. The central circle in (a) is a control shaft that translates
and rotates the VFs. (b) Illustration of the translational, s, and rotational, θ, degrees of
freedom of the M5 model can simulate two modes of the VF motion. The 3 configura-
tions correspond to phases of the mucosal wave: an opening converging configuration, a
maximum opening of the glottis, and a closing diverging configuration.

The VFs are given a translational and rotational degree of freedom to simulate the
mucosal wave. Note that the rotation point, shown in Figure 3.4 is located behind the
medial surface of VFs. This means that the mucosal wave will introduce some inferior-
superior motion of the VFs. When imaged by the camera, this has the effect of moving
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the inferior/superior edges closer and further away from the image plane. As a result
of perspective projection, this can make the distance between the inferior and superior
edges appear either smaller or larger. This inferior-superior motion is small relative to
the thickness of the glottis (in the inferior-superior direction) and so has little effect when
compared with the effect of imaging the superior edge of the VFs versus the inferior edge
of VFs.

3.1.2 Body-Cover Model and Control System

Body-Cover Model

The experimental VFs are driven by a BCM. This model consists of 2 portions, a symmet-
ric BCM and a simplified fluid model, which are coupled togther. These two models were
described in Sections 2.4.1, and 2.4.2, respectively. The combination of these two models
results in a system of 3 second order differential equations (one for each position (xu, xl, xb)
given in equation (2.3)), governed by 11 parameters. These parameters are listed in Ta-
ble 2.1. A numerical solution of the BCM using a 4th order Runge-Kutta algorithm, with
a time step of 1/350 ms, was used to drive the experimental VFs. The numerical solution
of the BCM was conducted in a control system, that then moved the experimental VFs
to appropriate positions through an actuation system. These systems are described in the
next section.

Control and Actuation System

The actuation system was numerically controlled through a cRIO-9074 real-time computer,
manufactured by National Instruments. A LabVIEW program, written in LabVIEW’s
graphical programming language with additional libraries from C, was used to solve a BCM,
and move the actuation system appropriately. This was implemented through a control
loop, that solved the BCM and moved the VFs to corresponding positions (based on a
mapping approach detailed later). The loop solved the BCM, and moved the experimental
VFs to corresponding positions, once every 200 ms, until 7 min elapsed. This time was
chosen since it was believed that it would provide a sufficient amount of data (about 17
oscillations of the VFs were simulated). For every 200 ms of wall clock time, the cRIO
simulated 1/14 ms of time for the model. In other words, the motion of the VFs was
slowed down in real time by a factor of 2800, which increases the effective frame rate
of the imaging system. Thus a 30 FPS recording in real time is effectively a 84 000 FPS
recording. At the end of every time step, the calculated positions from the BCM are sent
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to the actuation system to move the VFs to the computed positions. The actuation system
that controlled the position of the VFs, was a black-box system that generated the motion
within each time step based on an undocumented procedure. Thus the exact motion profile
within each time step is unknown.

Each VF is actuated through a control shaft. The control shaft is connected to a stage
system, driven by stepper motors. A close-up of the stage system is shown in Figure 3.5.

Translation
stepper motor

Rotational
stepper motor

Linear stage

Output shaft

Figure 3.5: The actuation system gives the VFs two degrees of freedom: translation and
rotation. Pictured is one of the two identical assemblies. The translation stage is powered
by one stepper motor, and moves a second stage that provides rotation, powered by another
stepper motor.

The actuation system consists of a shaft mounted through a gearbox, with a 10 to 1
reduction ratio (10 rev of the stepper motor results in 1 rev of the VF). The gearbox is
driven by a stepper motor and provides the rotational degree of freedom of the VF. This
gearbox is further mounted to a linear stage, which is driven by another stepper motor.
The linear stage converts rotation of the stepper to translational motion of the VF at a
rate of 5 mm rev−1 (the lead of the screw driving the stage). For further details of the
actuation system, refer to [62].
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Mapping of Body-Cover Model to Experimental Vocal Folds

As mentioned previously, the VFs were controlled through a BCM (specified in Sec-
tion 2.4.1), however, the experimental VFs do not follow a BCM geometry and are scaled by
a factor of 7.5 As a result, an approach to converting BCM displacements into equivalent
displacements of the experimental VFs was required. This was accomplished by first scal-
ing all BCM model displacements by a factor of 7.5 , and then applying a mapping of BCM
displacements to points on the experimental VF geometry, as illustrated in Figure 3.6.

superior

midline midline

Figure 3.6: The s and θ coordinates of the experimental VFs are computed in order to
satisfy xu, and xl from the BCM. The parameters have values as follows: Lu = 17.07 mm,
Ll = 15.11 mm, αu = 27.71◦, Rl = 22.23 mm, and Ru = 14.29 mm.

The equation that converts each of the BCM’s upper and lower mass displacements into
an equivalent translation and rotation of the experimental VFs, is given in equation (3.1).
Actuation of the stage system then involves conversion of the BCM displacements into
equivalent experimental VF coordinates. This conversion is achieved through numerical
solution of equation (3.1) [

xu

xl

]
=

[
s−Rl − Ll sin(θ)

s−Ru − Lu sin(αu − θ)

]
. (3.1)

In this work, the BCM was symmetric, however the mapping procedure can be applied
to individual VF motions. Thus it is also possible to simulate asymmetric VF oscillations.
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Collision Modelling of the Experimental Vocal Folds

As mentioned in Section 2.4.1, reduced order models model collision of the VFs by allowing
them to pass through each other and activating collision springs. However, the experimen-
tal VFs are obviously unable to pass through each other. As a result, the motion system
implements an additional algorithm which prevents collision of the experimental VFs when
the driving BCM experiences collision. This is illustrated in Figure 3.7.

midline

Figure 3.7: To prevent collision of the experimental VFs, a gap of constant width of 1 mm
was maintained between the VFs, while the underlying BCM collided. The angles of the
VFs adjust according to the BCM simulation, so the VFs translate in order to maintain a
constant gap. This ensures that the VFs can smoothly transition out of the collision state.

During collision, the VFs are separated by a constant gap, ∆scoll, however the angle
of VFs continues to adjust according to the BCM mapping equations. This causes the
translational degree of freedom s to adjust in order to maintain the constant gap. When
the VFs transition out of collision, the collision rule ensures that no sudden motions need
to be made to obey the mapping equations.

3.1.3 Imaging System

Camera and Image Information

To simulate a high-speed endoscopic recording of the VFs, a commercial digital camera
(Nikon D3200) was used. This allowed the capture of video at a resolution of 1920 px by
1080 px corresponding to a sensor area of approximately 18.8 mm by 12.5 mm. The frame
rate of the imaging system is much less than those of typical cameras used in HSV (frame
rates of up to 20 000 FPS are possible), however as a result of the slowed motion of the
experimental VFs, the effective frame rate of the system was increased by a factor of 2800.
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Similarly the size of the experimental VFs was scaled to be 7.5 times larger than real life.
This allowed the usage of a relatively inexpensive consumer grade camera, to simulate a
much more expensive high-speed camera.

Distance Calibration and Perspective

Extraction of quantitative measures from high-speed video of the glottis, requires a con-
version from length measures in the images, which are in pixels, into physical distances.
In real HSV recording situations, this has been done with parallel laser beams with a fixed
separation distance, projected onto the VFs [56, 57]. To calibrate pixel distances into
physical distances in the current experiment, a reference scale was placed in the view of
each simulated high-speed video, which provided a reference length. This reference scale
was located at the superior edge of the VFs. For each case the resulting calibration was
approximately 100 px mm−1. However, since the VFs were constructed at 7.5× life size,
the effective resolution is approximately 750 px mm−1.

The above calibration applies only at the plane of the reference scale, at the superior
edge of the VFs. However, the glottal width can be measured not only at the superior edge,
but also at the inferior edge. Due to perspective projection of images from a true 3D scene
onto a 2D plane, the calibration value at the inferior edge will be less than the calibration
value at the superior edge. In other words the ratio of pixels to mm should decrease as
objects are imaged farther away from the image plane. For the present study, the px to mm
conversion at the superior edge of the VFs was chosen to convert pixel measurements into
physical measurements, even at the inferior edge. This is a similar situation in real HSV
recording situations. As mentioned earlier, an approach to calibrating pixel measurements
to physical distances is through projecting parallel laser beams with a fixed separation
distance onto the VFs. These parallel beams can only be projected onto the superior
surfaces of the VFs, or adjacent superior tissues. Thus the calibration provided does not
apply at the inferior edge of the VFs. Since there is no direct depth information in a 2D
image, it is difficult to account for this error.

3.1.4 Angle of View and Position Calibration

To increment the angle of view of the camera in specified angles around the VFs, a cali-
bration plate was used with a point alignment method. Successive dots were placed along
lines of sight corresponding to each angle. These dots were then aligned to the center of
the image plane within the camera’s view in order to obtain the desired angle of view. This
is illustrated in Figure 3.8.
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Figure 3.8: (a) Schematic of the calibration plate used to set the angle of view, and the
initial position of the VFs. The blue and red points are two points in the transverse plane,
along a line with the desired angle of view, α. The red dot moves a long a line 139 mm away
from, and parallel to, the translation axis. The green point is the center of the camera’s
image plane. The anchor points are secured against cylindrical rods, fixed to the motion
system controlling the VFs. These correspond to (4) and (5) from Figure 3.2. (b) Image
of the actual calibration plate (made of medium density fibreboard) used to set the initial
position of the VFs.

The linear stages were not referenced to a home position, so they were placed against
the central prong manually, as shown in Figure 3.8 where the VFs are aligned against the
central prong of the calibration plate. When placed flat against the central prong, the VFs
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have known positions and angles, (s, θ) = (15 mm, 0◦), since the prong is 30 mm wide and
machined with parallel sides. The block with the red dot, shown in Figure 3.8(b), was
positioned along a line (shown in Figure 3.8(a)) according to the desired angle of view.
The calibration plate was constructed of medium density fibreboard. The plate was placed
on a horizontal surface, which the VF apparatus was also placed on, thus making them
parallel. The points (1) and (2), were placed at the same height, coloured on 5 mm grid
paper.

3.2 Experimental Parameters

The experimental parameters investigated can be split into imaging parameters, and pa-
rameters for controlling the experimental VFs. Imaging parameters affect Bayesian infer-
ence by changing the quality of the simulated HSV. The parameters used to control the
BCM driving the experimental VFs, serve as a reference to compare with the parameters
inferred through Bayesian inference. In the next two sections, the imaging parameters,
and BCM parameters investigated are given and justified.

3.2.1 Imaging Parameters

While usage of HSV for measuring glottal area introduces many imaging variables (such as
lighting of the scene, perspective effects of the lens, lens aberrations. . . ) into the inverse
analysis process, it would be impossible to investigate all of them. Thus for this study, only
three factors are investigated. As stated in Chapter 1 these are: frame rate, resolution,
and off-axis viewing angle. The off-axis viewing angle was selected since it was forecast to
be an important effect on quantitative measurements derived from HSV; it is known that
off-axis viewing angles will decrease the apparent size of a surface in the resulting image (in
this case the glottis). Frame rate and spatial resolution were chosen because they have a
direct impact on the resulting video; a low spatial resolution can make the glottis blurry at
every frame of the video, while a low frame rate can make it difficult to resolve the motion
of the glottis through an oscillation. Furthermore frame rate, and spatial resolution impact
the cost of an HSV system. Typically, higher frame rates and higher spatial resolutions
correspond to more costly systems. Additionally, some high speed cameras have the ability
to increase frame rate at the cost of reduced spatial resolution and vice-versa.
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Frame Rate

To provide some guidance on the effects of HSV frame rate, a range of likely frame rates
were simulated. In clinical settings, frame rates range from 2000 FPS to 5000 FPS, while
in research settings, some researchers may record at frame rates up to 20 000 FPS [15].
In order to evaluate this range of frame rates, an effective frame rate of 84 000 FPS was
chosen as the highest temporal resolution. This provides a baseline case that is over 4 times
faster than cameras employed in clinical settings. This corresponds to an actual recording
frame rate of 30 FPS in the experimental facility. To examine the effect of lower frame
rates, the source video at the highest frame rate was downsampled by a factor dtemporal.
To downsample the frame rate by a factor of dtemporal, only every dtemporal’th frame was
used, with all others being dropped. This aliases the resulting video in time. The highest
temporal downsampling chosen was 32, resulting in a worst case frame rate of 2625 FPS.

Spatial Resolution

High-speed cameras are available with varying spatial resolutions, with larger spatial res-
olutions requiring larger storage capacity per image. For the purposes of inference and
glottal width extraction however, it is not the absolute resolution of the camera that mat-
ters but the the number of pixels spanning the glottis during the imaging (magnification
factor). A low resolution camera with the glottis occupying the entire field of view may be
more detailed than a high-resolution camera in which the glottis occupies a small portion
of the image. Thus it is important to vary the ratio of number of pixels spanning a charac-
teristic length of the glottis. In physiological scenarios, this ratio is estimated to vary from
about 50 px mm−1 to 100 px mm−1. This is based on a typical glottal length of 10 mm, and
typical resolutions of high-speed cameras ranging from 1000 square pixels to 200 square
pixels. It is assumed that clinical practitioners aim to direct the camera such that the VFs
occupy the majority of the image, and therefore the glottal length approximately spans the
image. For this study, the ratio of glottal length in pixels to millimetres was approximately
750 px mm−1 in the source video (accounting for the 7.5× scaling on the VF geometry, this
corresponds to an actual scaling of 100 px mm−1 on physical distances in the video). This is
7.5× better than a clinical recording with the best spatial resolution. Note that the exact
value varied slightly depending on the distance of the camera to the VFs, which could only
be controlled approximately.

To investigate this range of spatial resolutions, the reference video was spatially down-
sampled. To downsample the resolution by a factor of dspatial, the image was grouped into
downsampled pixels, each downsampled pixel containing a square of dspatial by dspatial of the
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source image’s pixels. The intensity of the downsampled pixel was the average intensity
of all d2

spatial pixels contained in it. As a result, the spatial resolution of the downsampled
imaged becomes 1920/dspatial by 1080/dspatial pixels. To span the range of clinically en-
countered spatial resolutions, the largest downsampling factor was 16, corresponding to a
spatial resolution of 47 px mm−1.

Viewing Angle

Non-orthogonal viewing angles can lead to under-estimation of the extracted glottal width
due to parallax error. Given the practical issues associated with clinical imaging, including
the arytenoid hooding (which obstructs the view of the glottis), varying vocal tract geome-
tries, and patient tolerance to procedures, to name a few, clinicians are rarely concerned
with obtaining an orthogonal view. As such, we aim to determine the sensitivity of inferred
parameters to off-axis viewing angles. While in real HSV, the angle of view can be offset
in 3D, the experiment in this study used 2D VFs. Thus the angle of view was adjusted
only in one plane (the coronal plane). Specifically, viewing angles ranged from a perfectly
aligned view (angular offset of α = 0◦) to a view offset by α = 10◦, which we forecast to
be an extreme off-axis viewing angle encountered in clinical studies. The angle of view, α,
is shown in Figure 3.9.

Figure 3.9: The angle of view was controlled by rotating the camera about the intersection
of the glottal midline and translational axis of the VFs.

Summarizing the previous discussions, the following parameters were chosen as imaging
parameters for the experiment. A total of 5 angles, 4 effective frame rates, and 4 effective
physiological resolutions were tested. These are given in Table 3.1. Every combination of
these parameters was used to generate simulated HSV videos of the VFs.
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Table 3.1: The angles of view, frame rates, and spatial resolutions tested in the experiment.

Angle of View [◦] 0 2.5 5.0 7.5 10.0
Frame Rate [FPS] 84 000 10 500 5250 2625
Resolution [px mm−1] 750 188 94 47

3.2.2 Body-Cover Model Parameters

For each of the previous video parameters, a simulated video was taken of the experimental
VFs, controlled by a BCM with set parameters. As mentioned in Section 2.4.2, the sym-
metric BCM is governed by a total of 11 parameters (given in Table 2.1). Four different
reference BCM parameter sets were tested. These are specified in Table 3.2.

Table 3.2: Parameters used for the experimental BCM. 11 parameters are needed to com-
pletely specify the symmetric BCM model. The parameters, act, ata, and alc are muscle
activation parameters and were described in Section 2.4.1. The initial velocities were set
to be 0. The initial positions were set at the rest positions of the springs in all cases. The
supraglottal pressure, Psup, was set to be 0 Pa in all cases.

Case Parameters
A Psub = 1800 Pa, act = 0.20, ata = 0, alc = 0.5
B Psub = 1800 Pa, act = 0.15, ata = 0, alc = 0.5
C Psub = 2000 Pa, act = 0.20, ata = 0, alc = 0.5
D Psub = 2000 Pa, act = 0.15, ata = 0, alc = 0.5

These parameters were chosen as a result of their stable oscillations, and relatively
large amplitude of motion. Specifically, it was found that the parameter sets displayed
no cycle to cycle differences in behaviour once a steady state was reached, as seen in Fig-
ure 3.10. Furthermore, the amplitude of motion was on the order of 1 mm in physiological
units. This amplitude is in agreement with physiological observations [48]. As discussed
in Section 2.4.1, the subglottal pressure provides the driving forces on the VFs. Thus in
general, higher subglottal pressures result in larger glottal displacements. Also discussed,
was that act is related to tension of the VFs, which influences the frequency of oscillation.
Thus the combination of parameters tested above were related to different frequencies of
oscillation and amplitudes of vibration. The physiological glottal widths calculated from
the 4 simulations are shown in Figure 3.10.
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Figure 3.10: The glottal widths computed from each of the 4 parameter sets tested are
shown. It is seen that an increased Psub corresponds to an increased amplitude of the
glottal width, while an increased act corresponds to an increased frequency of oscillation.
The black dots illustrate the point at which steady state behaviour was considered to occur.
Only video recorded past this point was used in the inference procedure.

As seen in Figure 3.10, Psub and act tend to increase the amplitude of motion, and
frequency of oscillation respectively. The initial motion is transient, but steady state
oscillations are achieved by approximately the 2nd oscillation, for all models. This can be
further shown by plotting the first mode of oscillation, and amplitude of vibration over a
number of Psub and act values, as shown in Figure 3.11.
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Figure 3.11: Contour plots of (a) the first mode of vibration, and (b) the amplitude of
vibration for the BCM over a grid of act and Psub parameters.

From Figure 3.11 the effects of act and Psub on the glottal width behaviour can be
seen. In terms of the frequency of vibration, shown in Figure 3.11(a), it is seen that
increasing act corresponds to increasing the frequency of oscillation. This makes sense
since the cricothyroid serves to tense the VFs, which increases the spring constants in
the BCM, and thus increases the frequency of oscillation. There is also a slight effect
of Psub on the frequency of oscillation; as Psub increases, the frequency slightly increases.
In terms of the amplitude of vibration, shown in Figure 3.11(b), it is seen that act and
Psub both have an effect on the amplitude of vibration. As act increases, the amplitude
of vibration tends to decrease, and as Psub increases the amplitude of vibration tends to
increase. This makes physiological sense; cricothyroid activation stiffens the VFs so that
they have lower displacements for the same forcing glottal pressures; subglottal pressure
increases the driving forces on the VFs, and as a result the amplitude of vibration increases.

3.3 Post-Processing and Bayesian Inference

For each video, an edge detection procedure was applied in order to find the separation
between the left and right VF edges. After conversion from pixels to physical distances,
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Bayesian inference was used to estimate the act and Psub parameters of the BCM. Details
of this process are given in the next two sections.

3.3.1 Edge Detection

There are many approaches to edge detection, such as through computing maxima of the
intensity gradient of the image, computing 0 crossings of the Laplacian of the image, fitting
of idealized edge intensity curves, or using image moments [27]. Due to the 2D nature of
the artificial VFs in this experiment (and orientation of the camera), the edges of the VFs
formed a single line along the columns of the image. A series of frames showing the VF
edges is illustrated in Figure 3.12.

(a)

(b)

Figure 3.12: Example frames of the driven VFs throughout one cycle of the glottal motion.
(a) A view from α = 0◦; (b) a view from α = 10◦.
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In this work, a zero-crossing Laplacian edge detector was used. This edge detection
method is based on the observation that large intensity changes occur over edges. Thus
the maximum intensity change, which corresponds to the edge, should be located where
the Laplacian (a 2nd order spatial derivative) of the image intensity equals zero [45].

Computation of a glottal width vector, involved finding the glottal width at every frame
of a video. To compute a single estimate for the glottal width for each frame, first the upper
portion of the frame with the ruler in view was cropped, so that only the VFs occupied the
image. In addition, columns of the video were manually cropped to remove any extraneous
objects in the image. This resulted in a frame with 847 rows, for all reference videos. Next,
zero-crossings of the Laplacian at each row of the cropped frame were found. At every row
this results in finding 4 pixel locations, 2 pixel locations are located on each side of an edge
for each of the 2 edges. At these pixel locations, the Laplacian transitions from positive to
negative or vice-versa. To determine a sub-pixel location of the edge, a linear interpolation
was then performed between the two detected pixels. This is illustrated in Figure 3.13.
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Figure 3.13: The Laplacian plotted along a row of the image. The edge is detected by
computing the transition where the Laplacian changes from positive (plotted in red) to
negative (plotted in blue).

Figure 3.13 illustrates the Laplacian plotted along a single row of the image. Where the
Laplacian transitions from positive to negative, an edge is detected. A linear interpolation
of the Laplacian was then performed between the positive and negative Laplacian pixel
locations, to determine the location between these two pixels at which the Laplacian is
equal to 0, and therefore where the edge is located (this has sub-pixel precision). This was
repeated for all rows to produce a sub-pixel accurate glottal width for each row of the frame.
The glottal width for the frame was then taken as the average glottal width measured from
all rows. Finally, a physical width measurement was generated by multiplying the sub-
pixel glottal widths by a calibration constant. This was provided by a ruler in view of each
video (see Figure 3.12 for an example). This results in a detected glottal width for each
frame of the video, in physical units. An example of this is shown in Figure 3.14 for videos
obtained from multiple angles of view.
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Figure 3.14: (a) The glottal width measured through the edge detection method. Points
highlighted in red indicate collision of the BCM driving the VFs occurred. At these points,
the motion of the VFs deviates from the BCM, which has overlapping masses. These points
are not used in the inference procedure. (b) A closeup of the detected glottal widths at
the peak of the oscillation.

In Figure 3.14 the red dots indicate that the collision algorithm stopped the VFs from
following the BCM positions. As described earlier, the collision algorithm maintains a
constant gap between the experimental VFs while the underlying BCM masses are over-
lapping. It can be seen in Figure 3.14 that the red dots do show an approximately constant
glottal width, except for a slight initial drop at the beginning of collision. This could be the
result of a variety of factors, such as extraneous motion commands of the stepper motors.
As mentioned previously, the motion profiles of the stepper motors were implemented using
undocumented procedures from the manufacturer. These points have little effect on the
inference procedure, since they are ignored. At the peak of the oscillation, the measured
and commanded glottal widths seem to agree reasonably well. Deviations could be the
result of motion command errors, or system calibration errors.
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Edge Detection Variance

As the resolution is downsampled, the edge detection algorithm should become less accurate
due to the decreased spatial resolution. To measure this trend of decreasing accuracy with
decreasing spatial resolution, the variance in the glottal width was computed at different
spatial resolutions

σ2 =
Nrow∑
i

(wi − w)2

where wi is the glottal width measured at row i of the image, and w is the mean of wi
computed over all rows. The glottal width variance was computed for each downsam-
pled resolution, then normalized by the glottal width variance at the reference resolution
dspatial = 1. The normalized glottal width variance computed is shown for Case A in
Figure 3.15 for each of the angles of view.
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Figure 3.15: Row-wise variance of the the glottal width (GW) at varying spatial resolutions,
when imaging Case A. There is no discernible trend with the angle of view. Note that the
normalized glottal width variance is 1 at dspatial = 1 by definition of the normalization.

The trends in edge detection variance were used for scaling the measurement error
from the glottal width. However, as seen in Figure 3.15, it was observed that these trends
displayed little consistency over varying imaging parameters. While the variance in the
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detected glottal width does increase as the resolution is downsampled, the increases do not
have any consistent form. Furthermore, increasing angles of view do not appear to have a
consistent effect on the edge detection variance trends with decreasing spatial resolution.
For example, the rate of increase of glottal width variance between the 0.0◦ and 5.0◦ angles
of view are similar, while the 7.5◦ case has the lowest rate of increase of glottal width
variance. These inconsistent trends are likely due to uncontrolled parameters between
videos. In particular, it is known that edge detection depends on the level of noise in
the image, which in turn depends on the illumination of the VFs. While the same light
source was used to illuminate all cases, the actual noise characteristics of the edges are
difficult to control using a single light source. Furthermore, the camera automatically
makes adjustments based on lighting in the scene which changes the noise characteristics
further. This can be seen clearly in Figure 3.12, where the videos obtained at α = 0◦ and
α = 10◦ clearly have different lighting characteristics. This is a limitation of the study.

To determine a characteristic scaling on the increase in glottal width variance with
respect to spatial downsampling, a linear fit through all the trends was used. This fit was
computed to be 1 + 0.094842 · (dspatial − 1), as shown in Figure 3.16.
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Figure 3.16: Row-wise variance of the the glottal width (GW) at varying spatial resolutions,
for all videos. There is no discernible trend with the angle of view, thus a linear fit through
all points was chosen.

Each point in Figure 3.16 represents a normalized glottal width variance computed
from a video of any of the four BCM cases (A, B, C, or D) at any angle of view. This
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corresponds to 20 normalized glottal width variances (5 angles of view for each of 4 BCM
cases) for each spatial downsampling factor, dspatial.

3.3.2 Bayesian Inference

With the glottal width extracted from the edge detection method, the last step is to infer
parameters of the BCM through Bayesian inference. For this study, the inference model
chosen was the same as the model used to generate the motion, the BCM (described in
Section 2.4). This setup in inference problems, in which the model perfectly explains
the observed data, is known as an inverse crime [36, Section 1.2]. Inverse crimes are
problematic because they result in inverse estimates that are over-optimistic. In this study,
there are a number of details that prevent the BCM from perfectly explaining the observed
glottal width. These include: perspective errors between the inferior and superior edges of
the glottis, differing integration time steps between the generating BCM (1/350 ms) and
inference BCM (1/14 000 ms), as well as errors in the motion control system of the VFs.
These errors all contribute to uncertainty in the glottal width measurement. If the absolute
parameter values were desired from the inference, then these errors should be modelled.
However, in this study it was the effect of the imaging system errors that was desired, and
so these errors were not modelled.

For this study, two parameters were inferred from the extracted glottal width (from
a total of 11 parameters): act and Psub. The remaining parameters were considered as
known, and were obtained from the generating BCM. To infer these 2 parameters, first
the generated glottal width waveform was cross-correlated with the observed glottal width
waveform, in order to synchronize the time of the cRIO with the time of the video. Next the
first 2 transient oscillations of the observed glottal width, were cropped until the peak width
of the first steady state oscillation. The starting location for each of Cases A, B, C, and D is
shown in Figure 3.10. At the peak glottal widths, the positions (xu, xl, xb), and velocities
(ẋu, ẋl, ẋb), were taken from the cRIO simulation and were considered as known initial
parameters for the inference BCM. In addition, the muscle activations were considered as
known, ata = 0, alc = 0.5. Finally the supraglottal pressure was also considered known
Psup = 0 Pa. Thus 9 of the 11 parameters specifying the symmetric BCM were considered
known, leaving act and Psub to be inferred.

From the set of initial parameters, it remains to specify the forward model (as mentioned
earlier, this is a BCM). The forward model, ymodel = F (act, Psub), comes from solution of
the BCM, and subsequent calculation of the glottal width from the solution of the BCM,
given the parameters described previously. This starts with a numerical solution of the
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BCM for a given act, and Psub (plus known initial parameters) which produces a series of
displacements at discrete times, as shown in equation (3.2)xu,i

xl,i

xb,i

 =

xu(i · dt)
xl(i · dt)
xb(i · dt)

 . (3.2)

Since only two parameters are estimated, all remaining BCM model parameters were con-
sidered known, and taken from the reference BCM simulation. Solution of the BCM was
performed using an RK4 method and a time step of 1/14 000 ms. It was found that this
time step was a good balance between computational cost and numerical accuracy.

The remaining step in the forward model is computation of the glottal width. This was
taken to be the minimum of xu and xl at each time step. Application of this to the BCM
displacements results in a series of glottal widths at every solution time of the model, as
shown in equation (3.3)

wi = max(0, 2 ·min(xu,i, xl,i)). (3.3)

The fact that the initial conditions of the BCM were considered known, is a restrictive
condition since the positions and velocities of the BCM masses will vary throughout an
oscillation. In a clinical setting, imaging is typically done while the VFs are in steady
state oscillation. Obviously, the positions and velocities of an equivalent reduced order
model cannot be known apriori, based on HSV of real VFs. In this study, the reference
motion generated on the cRIO, made this information available, which reduces the number
of parameters needed to be estimated. This is a limitation of the study; in future studies
the initial positions and velocities of the masses should be inferred.

Prior

The prior is the expected distribution of model parameters apriori, that is before any
information about the system is obtained. In this problem, uninformative priors were
used, since it was assumed that no apriori information about act or Psub exists. Thus the
prior πprior is simply a constant. This makes the likelihood directly proportional to the
posterior.

Note that priors would play little to no role in this problem, due to the uncertainty
extents of the estimated posterior (see Figure 3.17). As seen in Figure 3.17, the range in
likely Psub is on the order of 10 Pa, while the range in likely act is on the order of 0.001.
Unless the prior varies the probability over these differences in parameters, the prior can be
approximated as a constant regardless. A prior would play larger roles if the uncertainty
bounds of the posterior were larger.
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Likelihood

To compute the likelihood, an independent identically distributed additive Gaussian noise
model was considered to model the error in the measured glottal width (see Section 2.5.2
for details of the additive Gaussian noise model). The likelihood can thus be written as

πlikelihood(w | act, Psub) = πlikelihood(w | wmodel)

=
1

(2πσ2
obs)

n
2

exp

(
− 1

2σ2
obs

‖w −wmodel‖2

)
, (3.4)

where the vector y is a vector containing glottal width observations for each frame of the
high-speed video, ymodel(act, Psub), called the forward model, is the set of model predicted
glottal widths at corresponding time instances with frames of the video, and σobs is standard
deviation of the measured glottal width for each frame. The forward model is specified
by equation (3.2) and (3.3), and where equation (3.2), requires numerical solution of the
BCM, as specified in Section 2.4.

For this work, a standard deviation of 0.12 mm was chosen as the uncertainty in mea-
suring a single glottal width. This choice of standard deviation was not based on variance
in the edge detection procedure for each case, rather a uniform value was chosen so that
uncertainty in the posterior could be compared across all cases. This uniform value is about
10 % of the maximum glottal width observed. In the case of resolution downsampling, a
multiplicative factor was applied to the observation noise, based on the increase in glottal
width variance with decreased resolution, σobs = 0.12

√
1 + 0.094842 · (dspatial − 1).

Posterior and Evidence

There are many approaches to compute the posterior. The most straightforward is simply
to directly evaluate the posterior distribution. This involves evaluating Bayes’ formula over
a grid of the parameters (in this case different values of act and Psub). For a low number
of parameters this approach is computationally feasible. Due to the relatively low number
of dimensions in this problem, a direct computation of the posterior was used. First the
unnormalized posterior

πposterior(act, Psub | w) ∝ πlikelihood(w | act, Psub)πprior(act, Psub) (3.5)

∝ 1

(2πσ2
obs)

n
2

exp

(
− 1

2σ2
obs

‖w −wmodel‖2

)
, (3.6)
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is computed over a grid.

Calculation of the evidence then involves normalizing this unnormalized posterior. This
is done by computing the area integral of the likelihood over the parameter grid (since an
uninformative prior was used in this work)

πposterior(act, Psub | w) =
πlikelihood(w | act, Psub)∫

Ω
πlikelihood(w | act, Psub)dactdPsub

, (3.7)

where Ω is the domain of the parameter space. In theory this implies integrating over an
infinite span of Psub, due to the uninformative prior, and from 0 to 1 for act. In practice
however, the posterior uncertainty bounds spanned small ranges of the parameter space,
on the order of 10 Pa in Psub, and on the order of 0.001 for act. Thus the grid, over
which the posterior was computed, was chosen manually for each inference case in order
to capture the posterior probability mass. Furthermore, the prior used for this problem is
an uninformative prior. This means the likelihood is directly proportional to the posterior.
While this makes the posterior and normalized likelihood equivalent, the term posterior will
be used to refer to the probability distribution of the estimated parameters. An example
of some computed posteriors are shown in Figure 3.17.
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Figure 3.17: The posteriors for a 0◦ viewing angle, and the highest spatial resolution
and frame rate are shown. From left to right, they illustrate Cases (Psub, act) = (a)
(1800 Pa, 0.15), (b) (2000 Pa, 0.15), (c) (1800 Pa, 0.20), and (d) (2000 Pa, 0.20). Brighter
colours indicate larger probability densities.

The posteriors shown in Figure 3.17 show the probability densities of different parameter
sets. The dark blue colour, indicates the minimum probability density (very nearly 0), while
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the lightest green colour indicates the maximum probability density. It can be seen that the
range of likely parameter combinations occupies a small region of the parameter space. For
example in Figure 3.17(a), the range of probable Psub spans from approximately 1791 Pa
to 1794 Pa. On first examination of the posterior, the densities appear to be 2D normal
distributions, evidenced by the characteristic elliptical shape. Closer examination reveals
that the iso-contours of probability density are not smooth ellipses, but rather exhibit some
irregularties. This is the product of numerical integration errors. These irregularities and
further details of the posteriors estimates, are discussed in Chapter 4.
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Chapter 4

Results and Discussion

The results of the study consist of inferred parameters from simulated HSV videos for each
of the 4 different numerically driven VF model cases introduced in Chapter 3. Each simu-
lated HSV video is denoted by its spatial downsampling (dspatial), temporal downsampling
(dtemporal), and angle of view (α), relative to a reference case where α = 0◦, dtemporal = 1,
and dspatial = 1 (see Table 3.1 for the tested parameters). The four experimental VF motion
cases have driving BCM model parameters summarized in Table 3.2 and will be referred
to as Cases A, B, C, and D.

This chapter begins with a discussion of effect of the duration of the high-speed video
on the inferred parameters. Using this, an ideal video length is chosen to explore the
effects of changing α, dspatial, and dtemporal independently, on the posterior uncertainty and
MAP estimates for each of the 4 BCM simulations. Next the effect of combined changes
in α, dspatial, and dtemporal on the posterior uncertainty are investigated. Finally some
considerations and guidance for implementing Bayesian inference on reduced order VF
models using HSV are given.

4.1 Effect of Glottal Width Time Series Length

The posterior is dependent on the number of measurements in the glottal width time series.
In general, the more points, the more information, and therefore the less the uncertainty
on the estimated parameters. There are two ways to vary the number of measurements
in HSV: either the frame rate can be varied with a fixed video length, or the video length
can be varied with a fixed frame rate. Here we investigate the effect of reducing the video
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length at a fixed frame rate (dtemporal = 1, dspatial = 1, α = 0◦) on inferred parameters for
Case A. Six different video durations, illustrated in Figure 4.1, are explored. Specifically,
the HSV is divided into 20 ms segments, resulting in a glottal area waveforms comprising
approximately 3, 6, 8, 11, 14, and 17 oscillation cycles.
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Figure 4.1: Glottal width extracted from HSV for Case A with α = 0, dspatial = 1, and
4 dtemporal = 1. Orange dots indicate durations of truncated waveforms used for analysis.
The points correspond to measurement durations of 20 ms, 40 ms, 60 ms, 80 ms, 100 ms,
and 120 ms.

Figure 4.2 illustrates the effect of varying the duration of the time series on the posterior
for three of the video lengths (shown in Figure 4.1, 3, 8, and 17 oscillations). For short time
series comprising a small number of oscillations, the relatively small number of samples
reduces the level of confidence in the estimate in comparison with the longer time series
(given a fixed sampling rate), as indicated by the relatively large contours in Figure 4.2(a).
As the signal duration increases, so does the number of measurements, and so the size of
the posterior shrinks (see Figures 4.2(b) and (c)).

Additionally, it can be seen in Figure 4.2, that the posterior transitions from being
positively correlated to negatively correlated as the observation time increases. The angle
θ, indicating the orientation of the first eigenvector with respect to the positive act axis,
decreases as the number of captured oscillations increases, as shown in Figure 4.2. This is
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due to the increasing importance of the oscillation frequency with longer time series. With
a short time series, any frequency mismatches in the response of the model will not result
in significant errors in the glottal width. Therefore for short time series, the estimated
parameters will have greater certainty when they maintain an approximately constant
amplitude of vibration. This means we expect parameters along the first eigenvector, to
approximately preserve amplitudes of vibration. As seen in Figure 3.11(b), this occurs
when act decreases as Psub decreases; this is what we observe at low observation times.
As the length of the time series increases, small frequency mismatches will result in large
beat errors analogous to the beat-frequency phenomena. These beat-errors will outweigh
any errors in mismatched amplitude. Thus, the inferred parameters with greater certainty
should produce approximately the same frequencies of vibration; in other words parameters
along the first eigenvector correponds to models with similar frequencies of vibration. As
seen in Figure 3.11(a), constant frequencies of oscillation are obtained when act is increased
while Psub is decreased. Correspondingly, this is also the direction of the first eigenvector
at longer observation times.
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Figure 4.2: The effect of the time series duration on the posterior. Figures (a), (b), and
(c) correspond to about 3, 8, and 17 oscillations (or 20, 60 ms, and 120 ms) of the glottis
(see Figure 4.1). The angle, θ, is the angle from the act-axis to the first eigenvector.

As the duration of observation increases, it can also be seen that the location of the
MAP estimate is biased in Figure 4.2. This can be related back to the frequency-amplitude
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behaviour of the model with respect to changes in the act and Psub parameters. Figure 3.11
demonstrated that amplitude is affected by a combination of act and Psub; lower act and
higher Psub tend to produce larger amplitudes of vibration. As discussed previously, lower
observation times correspond to matching amplitude behaviour. At higher observation
times (Figures 3.11(a) and 3.11(b)), the frequency of vibration plays a more important
role. Thus act must increase to match the frequency. Since the amplitude of vibration is
still the same, Psub must also increase to balance the effect of increasing act. Thus we see in
Figure 3.11, that the MAP estimate increases in Psub and act. It can further be seen that
at these longer observation durations (Figures 4.2(b) and (c)), the known parameters that
generated the VF motion are not contained within the certainty bounds of the posterior.
This means that there are errors that have not been accounted for. These modelling errors
are discussed further in the next section.

Figure 4.3 shows that, over the range of signal lengths considered, θ monotonically
decreases. The rate of decrease reduces as more oscillations are considered, however, sug-
gesting that the trend will eventually reach an asymptote. It is noted that during clinical
acquisition, HSV captures hundreds of cycles during a typical sustained vowel phonation.
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Figure 4.3: The angle of the first eigenvector of the covariance matrix, computed from
the posteriors shown in Figure 4.2, for varying numbers of oscillations in the original time
series.

For optimal estimates of stationary behaviour (that is, fixed model parameters, such as
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act and Psub), it is clear that longer time series provide greater certainty on the estimated
parameters. In addition, it is expected that when the direction of the correlation plateaus,
only the size of the posterior will be affected, not its shape. This suggests that the duration
of the video should be chosen to be sufficiently long, such that the direction of correlation
remains constant. While ideally the number of oscillations investigated should exceed 18 or
more (as shown in Figure 4.2), due to the fact that only 7 minutes of video were recorded in
this study (about 17 oscillations of the glottis) larger numbers of oscillations could not be
investigated. This initial duration of 7 minutes was chosen because it was initially believed
that it would be sufficient for inference, as well as for experimental time constraints. For
this reason, a duration of about 17 oscillations of the glottis was chosen.

4.2 Modelling Errors

Bayesian inference accounts for the measurement errors in a model to infer the parameters
that generated a set of observations. Thus, if a model perfectly accounts for a measurement
along with its errors, the Bayesian inference technique should predict the model parameters
within statistical bounds. Closer observation of Figure 4.2(c) shows that the actual param-
eters of the model driving the VF motion in Case A, do not lie within the probable region
of the posterior. This is reproduced in Figure 4.4(a) with the addition of a dot showing
the ground truth values. This disparity means that there are errors in the modelling or in
the measurement that have not been incorporated into the analysis.

70



0.150 0.151 0.152
act

1785

1790

1795

1800

1805

1810

P
su

b
[P

a]

(a)

0.150 0.151 0.152
act

(b)

Figure 4.4: (a) posterior estimates for Case A using the full glottal area time series. The
white dot indicates the ground truth parameter values used to drive the model. (b) modified
posterior obtained by correcting the amplitude bias intrinsic to the experimental system.

Such modelling errors can come from a variety of sources. One source is the difference
between the experimental VF motion and that prescribed by the reduced order model
controlling the system. Specifically, the actual motion of the experimental VFs may not
exactly match that of the governing BCM. This would create a bias between the BCM
generated glottal width and the measured glottal width. Figure 4.5 plots the measured
glottal gap versus the prescribed value over several oscillations, as well as the error between
the two signals. Included as a thick green line is the time averaged error. Evident from the
figure is that there is structure in the error; the error in the glottal width does not vary
randomly about zero, but rather varies in a repeatable manner across oscillations. Specifi-
cally, the error appears to be lower when the glottal width is at a maximum and increases
as the VFs enter or exit a minimum. The hypothesized reason behind this structure is
that the motion control system needs only make small adjustments to the stepper motor
positions to make the positioning accurate when the glottal width is near its maximum.
In contrast, while the VFs are rapidly transitioning between a closed and maximally open
phase, the control system must constantly adjust the stepper motor positions, since the
desired position is, relatively rapidly, changing with time. The details of exactly how the
motion control system generates positions are unknown since they are internal to the cRIO
software.
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Figure 4.5: Plot of the measured (orange line) and prescribed (blue line) glottal width
over several oscillations. The green lines indicate error in the measurement (thin line is
instantaneous, while the thick line is the time average error).

There are further effects that can lead to the errors reported in Figure 4.5, such as how
the image noise is affected by the light source throughout the motion. When the VFs are
wide apart, the white background between the folds (see Figure 3.12) increases the contrast
across the VF edge, which could improve the edge detection. In contrast, when the VFs
are close, they can block the light source from reaching the background, which decreases
the level of contrast. As a result, this should increase the level of error. These errors are
a product of this specific experimental setup. As a result, the structure in the error here
is not considered since it is not a direct product of the imaging system.

To demonstrate the effect of this bias error source on the posterior in Figure 4.4(a), the
measured glottal width can be adjusted to account for the error. The posterior estimated
from this corrected glottal width is shown in Figure 4.4(b). The effect of the bias correction
is to shift the posterior towards higher supraglottal pressures, with minimal change to the
act values. As explained in Section 2.4.1, the Psub and act parameters primarily affect the
amplitude of the glottal width and the frequency of vibration, respectively. Since the bias
is corrected by modifying the amplitude of the glottal width, Psub now appears to lie within
the span of probable Psub values. The fact that the estimated act value still lies far outside
the probability mass, is thus likely a result of a mismatch in frequency behaviour.
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A mismatch in the frequency behaviour between the generating BCM and the fitting
BCM is shown in Figure 4.6. This difference in behaviour was the result of the different
integration times used to numerically solve the experimental BCM (1/350 ms) and the
fitting BCM (1/14 000 ms). Figure 4.6 illustrates that the same set of parameters (act,
and Psub) will result in different frequencies of oscillation, depending on the integration
time step used to numerically solve a BCM. This leads to differences in the frequency
behaviour between the two models. This explains why adjusting for the bias in amplitude
of the glottal width, can ameliorate the error in the estimated Psub, but not act. Since act

primarily affects the frequency of oscillation, correcting the bias in this estimated value
must correct the bias in frequency. Adjusting the glottal width, obviously cannot adjust
the frequency of vibration. As a result, the known experimental act does not lie within the
certainty bounds of the estimated parameters when the glottal width is corrected.
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Figure 4.6: A glottal width time vector is computed at every pixel shown (corresponding
to combinations of act and Psub) and a FFT is then performed on each of these glottal
widths to calculate the first mode of vibration. This first mode (Hz) is then plotted as
contour plot in (a) and (b) for each of the act and Psub parameters. (a) illustrates the first
mode when the BCM is solved with an integration time step of 1/350 ms (corresponding to
the experimental BCM controlling the VF motion). (b) illustrates the first mode when the
BCM is solved with an integration time step of 1/14 000 ms (corresponding to the fitting
BCM used in the inference procedure).
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While accounting for all of the modelling errors causing the true parameter values to
fall outside of the posteriors would correct the biases, this is not of concern in the present
study of how HSV imaging parameters affect Bayesian inference. Furthermore, the bias
in estimated parameters in this case is relatively small (deviations in act are on the order
of 0.001 while deviations in Psub are on the order of 10 Pa). To characterize the effects
of HSV imaging parameters on Bayesian inference, the remainder of this thesis deals only
with relative changes in the estimated posteriors as a function of angle, frame rate, and
spatial resolution relative to the reference video (α, dspatial, dtemporal) = (0◦, 1, 1).

4.3 Parameter Estimates and Uncertainty

The result of Bayesian inference is a posterior distribution, representing the probabil-
ities of different parameter sets explaining the observed data. To characterize these
posteriors, a point estimate of the posterior and a measure of uncertainty are used. For
the point estimate, the MAP estimate is used. As described in Section 2.5.2 the MAP
estimate is the parameter set that maximizes the posterior density, (act, Psub)MAP =
arg max (πposterior(act, Psub | y)). Since the posterior densities have a single peak (see
Figure 3.17 for some example posteriors), the MAP estimates serve as a good point esti-
mate. To characterize the relative uncertainty, the square root of the determinant of the
covariance matrix is used. The determinant gives a ‘volume’ of the posterior, while the
square root then gives the geometrically averaged variance. This is a measure of the entire
posterior uncertainty, rather than just marginal uncertainties. The uncertainty under
given HSV imaging parameters is measured as:

u(α, dspatial, dtemporal) =

√∣∣∣∣ σ2
act,act σ2

act,Psub

σ2
act,Psub

σ2
Psub,Psub

∣∣∣∣, (4.1)

where σ2
act,act is the variance of act, σ

2
act,Psub

is the covariance of act and Psub, and σ2
Psub,Psub

is
the variance in Psub (see Chapter 2.5.2 for details). The relative uncertainty is then given
by

urel(α, dspatial, dtemporal) =
u(α, dspatial, dtemporal)

u(0◦, 1, 1)
. (4.2)

As explained in Section 4.2 we compare the relative changes in uncertainty relative to the
reference case, which is accomplished here by normalizing the uncertainty measure by the
reference case. This measure of uncertainty can be interpreted as a geometric average
of the variances, and thus characterizes the variance of the whole posterior distribution,
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rather than marginal distributions. This is used in place of marginal uncertainty measures,
since it is a measure of uncertainty of both parameters, act and Psub, simultaneously. This
makes it useful for the purpose of illustrating trends in the posterior uncertainty as a
function of HSV imaging parameters. In the remainder of the section, the MAP estimate
and relative uncertainties are used to explore the effects of changing angle of view (α),
frame rate (dtemporal), and spatial resolution (dspatial), relative to the reference video.

4.3.1 Effect of Camera Angle

In this section, the effect of changing the angle of view, α, while keeping other imaging
parameters constant (dtemporal = 1, dspatial = 1) is investigated. Changing the viewing
angle of the camera (see Figure 3.2 for the definition of α) has a pronounced effect on the
estimated act and Psub for each of the measured models. This was shown in Figure 3.14
where it was seen that a non-zero angle of view makes the apparent glottal width smaller.
This apparent decrease in the glottal width at offset angles of view, biases the MAP
estimates. Specifically, the estimated act tends to increase, while Psub tends to decrease
with increased viewing angles. Figure 4.7 illustrates the effect of viewing angle on Psub and
act for the four models.
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Figure 4.7: MAP estimates of Psub (a) and act (b) with a changing angle of view (α) for
the 4 experimental cases.

The reason behind the decrease of Psub, is the parallax effect of the camera at offset
viewing angles, which reduces the measured glottal width as illustrated in Figure 4.19.
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As seen in Section 2.4.2, Psub is related to the the intra-glottal pressure driving the VF
motion. In general, a larger Psub, leads to larger intra-glottal pressures, and therefore larger
amplitudes of the glottal width waveform. To compensate for the decreased measured
glottal width, the estimated Psub also decreases. The increase in act is due to the frequency
of the glottal width time series. While the amplitude of the observed glottal width changes
due to the angle of view, α, the frequency of the waveform does not. As Psub decreases, the
frequency of oscillation tends to decrease while act increases to compensate. This is shown
in Figure 4.8, which illustrates the frequency of the first mode of vibration at different
act and Psub values, along with the MAP estimates from Case A for each angle of view.
Figure 4.8 clearly shows that the MAP estimates tend to lie along contours with constant
frequency. The fact that the MAP estimates do not exactly follow the contours, is likely
due to the fact that only 17 oscillations were used. As seen in Figure 4.3, the correlation
direction has not fully plateaued under this duration.
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Figure 4.8: The first mode of the glottal width for the inference BCM over a range of act

and Psub parameter values. MAP estimates of the parameters of Case A are shown as dots
for varying angles of view, α.

Changing the angle of view also has a large effect on the uncertainty of the estimated
parameters. As the angle of view increases, so does the relative uncertainty, as seen in
Figure 4.9. The reason for the trends in relative uncertainty can be explained through the
Laplace approximation of the posterior. As described in Section 2.5.2, the Laplace approxi-
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mation of the posterior can be used to approximate the posterior as a Gaussian distribution.

This results in the approximate covariance of Σ = σ2
obs

(
JTJ

)−1
, see equation (2.46). Here

the Jacobian, J , represents the changes in glottal width relative to changes in the param-
eters about the MAP estimate. Since the measurement noise (σobs) remains constant, the
uncertainty must be due to changes in model dynamics, represented by J . Furthermore,
since the model dynamics are influenced purely by the governing equations of the BCM,
the changes in uncertainty shown in Figure 4.9 are a product of the BCM model and its
local behaviour about the estimated parameter set. For a general MAP estimate it is not
guaranteed that the relative uncertainty would also increase. To understand how this un-
certainty varies for a general MAP estimate, the Jacobian would have to be computed over
a range of parameters.
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Figure 4.9: Change in relative uncertainty in the posterior with changing angle of view for
the 4 considered cases.

To illustrate the applicability of the Laplace approximation, the approximate posteriors,
were computed through the Laplace approximation, and the actual posteriors, with varying
α, are compared in Figure 4.10. Note that the approximate covariance was computed by
numerically calculating the Jacobian with a 2nd order central difference. The step sizes
were chosen as ∆act = 0.001 and ∆Psub = 10 Pa. These step sizes were found to minimize
numerical error, due to the unsmooth behaviour seen in Figure 4.8, yet preserve linearity
of the forward model over the step size.
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Figure 4.10: A comparison of actual posterior distributions (top row) versus their Laplace
approximations (bottom row). Columns (a), (b), and (c) show the posterior distributions
at α = 0◦, α = 5.0◦, and α = 10.0◦, respectively.

Visually, the two posteriors seem to agree reasonably well for all three angles repre-
sented. One detail to note is that the actual posteriors in Figure 4.10(b) and Figure 4.10(c)
are not smooth. This is a product of the numerical accuracy of solving the inference BCM.
As seen in Figure 4.6, the BCM output is sensitive to the integration time step. Therefore
the accuracy of resolving the posterior is dependent on the integration time step used to
solve the BCM. This decreasing accuracy in computing the actual posterior is shown in
a comparison of the variances (the diagonal elements of the covariance matrix, see Sec-
tion 2.5.2 for details) in Figure 4.11. While the general trends in the variance computed by
the Laplace approximation and the actual posterior are similar, at larger angles of view,
the Laplace approximation becomes less accurate. This is largely due to poor resolution
of the posterior (as seen in Figure 4.10(c)), which is a product of the numerical accuracy
of solving the BCM.
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Figure 4.11: A comparison of the variances for (a) Psub and (b) act between the Laplace
approximation of the posterior and the actual posterior.

The fact that variances computed from the Laplace approximation underestimate those
computed from the actual posterior is reasonable. As shown in the top row of Figure 4.10,
numerical accuracy issues give the actual posterior a spotty appearance. Compared to a
normal distribution, where the probability mass is concentrated in a central ellipse, this
increases the spread of the distribution about the mean, which increases the variance
(a measure of spread about the mean of the distribution). Furthermore, we see that the
posteriors become increasingly spotty at higher angles of view (this is a product of the BCM
requiring finer time steps at the biased estimates). As a result, approximate covariances
should underestimate covariances computed from the actual posterior, especially as the
angle of view increases.

4.3.2 Effect of Frame Rate

In this section we investigate the effect of changing frame rate, dtemporal, while maintaining
other imaging parameters fixed (dspatial = 1, α = 0◦). Frame rate has no significant
effect on the MAP estimates as shown in Figure 4.12 below. This is because frame rate
downsampling was achieved through splicing of frames. This simply removes elements from
the glottal width vector at specific times. For N initial glottal width measurements in the
reference case, only N/dtemporal measurements exist when the frame rate is downsampled
by a factor of dtemporal. While this reduces the number of glottal widths to be compared,
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the glottal width waveform represented remains unchanged. In other words, while each
oscillation will be represented by a fewer number of points, the shape of the oscillations
are still captured. Thus MAP estimates remain the same as shown in Figure 4.12. It is
important to note that this will not hold for arbitrarily large levels of downsampling. At
extreme downsampling factors, the waveform would no longer be represented due to the
temporal aliasing, which would alter the MAP estimates.
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Figure 4.12: MAP estimates of (a) Psub and (b) act with increased levels of downsampling.

In contrast to its effect on the MAP estimates, frame rate has a large effect on the
uncertainty of the estimated parameters, as seen in Figure 4.13. This is due to the reduc-
tion in information from the reduced number of points in the glottal width vector. Most
noticeably in Figure 4.13, there is a linear increase in the magnitude of the uncertainty
with respect to the downsampling factor of the frame rate.
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Figure 4.13: Relative uncertainty in the posterior with increased temporal downsampling
(decreasing frame rate).

Considering again the Laplace approximation of the covariance (see Section 2.5.2 for
details), reduction of the frame rate corresponds to removing rows of the Jacobian. The
Jacobian computed in the reference case (dtemporal = 1) will be denoted as Jref. In the
reference case video, the Jacobian maps the change in the parameters relative to the MAP,
(∆act = act − act, MAP, and ∆Psub = Psub − Psub, MAP) to a change in each of the N
glottal width measurements. Therefore, it is of size N × 2. The Jacobian that is generated
when the frame rate is downsampled, corresponds to using only equally spaced rows of the
original. This Jacobian will be denoted as Jds. The reference Jacobians, and downsampled
Jacobians can thus be related as Jds i = Jref dtemporal·i. We can approximate elements of the
resulting covariance according to the approximate covariance shown earlier.

Σ−1
ref i,j =

1

σ2
obs

N∑
k=1

Jref i,kJref k,j

Σ−1
ds i,j =

1

σ2
obs

N/dtemporal∑
k=1

Jref i,dtemporal·kJref dtemporal·k,j

Since row n of the Jacobian represents the mapping of model parameters to changes
in glottal width at frame n, the Jacobian at row n and row n+ 1 should not vary greatly.
This is a consequence of the smooth behaviour of the BCM in time; over small changes in
time, we expect small changes in behaviour. In fact, for high frame rates, we can extend
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this and say that the Jacobian at frame n is approximately the same as the Jacobian at
frame n + k, provided that the time change over k frames is small. Thus the previous
covariance can be rewritten as:

Σ−1
ref i,j ≈

1

σ2
obs

N/dtemporal∑
k=1

dtemporal · Jref i,dtemporal·kJref dtemporal·k,j

Σ−1
ds i,j =

1

σ2
obs

N/dtemporal∑
k=1

Jref i,dtemporal·kJref dtemporal·k,j

Further simplifying, we obtain:

1

dtemporal

· Σ−1
ref i,j ≈

1

σ2
obs

N/dtemporal∑
k=1

·Jref i,dtemporal·kJref dtemporal·k,j

≈ Σ−1
ds i,j

. (4.3)

Clearly each element of the downsampled covariance is increased by a factor of dtemporal

compared to the reference covariance (the factor is reserved through the inverse operation
when obtaining the covariance). This is the reason for the linear scaling, on the relative
uncertainty. This is only true because the reduction of the number of frames was imple-
mented through reduction of the frame rate, and because the frame rate reduction does
not significantly alias the glottal width. This is in contrast to varying the duration of the
glottal width time series as was done in Section 4.1. A plot of relative uncertainty with
a reduction in video duration (as opposed to frame rate) of the glottal width time series
illustrates this in Figure 4.14. Specifically, in frame rate based downsampling the total
number of frames, N , becomes N/dtemporal by only considering every dtemporal

th frame. In
contrast, video duration based downsampling reduces the total number of frames from N
to N/dtemporal by only considering the first N/dtemporal frames of the video. This reduces
the duration of the video at the original frame rate, rather than maintaining the duration
but decreasing the frame rate.

82



1.0 1.2 1.5 2.0 3.0 6.0

Video Duration Downsampling Factor

0

10

20

30

40

50

60

70

80

u
re

l(
0
°,

1,
d

te
m

p
o
ra

l)

Figure 4.14: Relative uncertainty in the posteriors estimated from Case A (pictured in
Figure 4.2) are shown as the video is downsampled by decreasing the duration of the video
at a constant frame rate.

The large non-linear scaling on uncertainty, seen in Figure 4.14, is due to the fact that
at short observation times, many BCM parameters can produce statistically reasonable
behaviour. For example, it was discussed previously that longer glottal width time series
lead to estimated parameters that produce similar frequencies of vibration. As was seen in
Figure 4.2 however, small observation times relax this constraint, shown in the fact that the
correlation direction changes. In other words, parameters that produce similar amplitudes
of vibration can also produce reasonable behaviour. This leads to the large scaling on the
relative uncertainty.

4.3.3 Effect of Spatial Resolution

Decreasing spatial resolution of the video (see Section 3.2) appears to slightly bias the
estimated parameters, as shown in Figure 4.15. This bias in the estimates was due to a
bias in the estimated glottal width from the edge detection procedure.
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Figure 4.15: MAP estimates of (a) Psub, and (b) act with increased spatial downsampling.

Ideally, downsampling of the resolution should only change the level of uncertainty in
the estimated parameters, since the detected edges should still be centered around the
true edge location. As seen in Figure 4.15 however, the estimated parameters display
a consistent bias. This is the result of the edge detection algorithm used in this study.
At lower resolutions the edge detection procedure leads to underestimation of the glottal
width, which subsequently leads to underestimation of Psub. This is a result of the blurring
effect introduced by the spatially downsampled images. The large levels of blur make
accurate calculation of the Laplacian highly dependent on the convolution kernel size, as
shown in Figure 4.16.
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Figure 4.16: The detected glottal width for a series of frames using different kernel sizes,
for the non-offset view. (a) The glottal width from the reference spatial resolution video
(dspatial = 1). (b) The glottal width from the downsampled spatial resolution video
(dspatial = 16). Note that the glottal width measured in (b) is multiplied by 16 to ac-
count for the spatial downsampling, allowing for direct comparison with (a).

In Figure 4.16(a) the glottal widths calculated with different kernel sizes are nearly
identical. In this case, there is zero spatial downsampling applied to the video. In Fig-
ure 4.16(b) the measured glottal widths generally decrease as the size of the convolution
kernel increases. The most accurate glottal width is obtained using a kernel size of 3,
however, even this kernel size leads to a glottal width that underestimates that shown
in (b). This suggests that the level of spatial downsampling is too great to allow accu-
rate calculation of the Laplacian. The exact reason for why the inaccuracy in calculating
the Laplacian leads to a consistent underestimation of the glottal width, requires further
investigation.

The uncertainty of the estimates increase as the resolution decreases as seen in Fig-
ure 4.17. This increase in uncertainty is due to the increased measurement noise used in
the inference procedure to account for the edge detection (see Figure 3.15).
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Figure 4.17: Relative uncertainty in the posterior with increased spatial downsampling.

Using the Laplace approximation of the covariance, Σ = σobs(J
TJ)

−1
, it is clear

why there is a linear increase in the relative uncertainty. From Figure 3.15 it was seen
that the variance in the edge detection procedure scales approximately linearly with de-

creasing spatial resolution. A linear scaling, relative to the reference case, of
σ2
obs

σ2
ref

=

1 + 0.09484(dspatial − 1) was used (as described in Section 3.3.1). The normalized scal-
ing in the uncertainty, shown in Figure 4.17, reflects this linear trend.

It is interesting to note that if the increased measurement noise had not been accounted
for, there would be no change in the relative uncertainty at different spatial resolutions.
As seen in the approximate covariance, Σ = σ2

obs(J
TJ)

−1
, the posterior covariance de-

pends only on the BCM behaviour through the Jacobian term, and the measurement noise
through the measurement error standard deviation σobs. Since downsampling of the resolu-
tion does not significantly change the MAP estimates (as shown in Figure 4.15), it follows
that the model behaviour does not change, and thus the covariance should not change
with a constant measurement noise. The only case in which this is not true, is if the mea-
surement noise is sufficiently large so that the BCM no longer behaves linearly over the
posterior probability mass.

4.3.4 Combined Effects

When the parameters α, dspatial, and dtemporal are combined, the changes in relative uncer-
tainty follow a multiplicative rule. In Sections 4.3.1, 4.3.2, and 4.3.3, the effects of viewing
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angle, varying frame rate, and spatial resolution, were investigated independently.

When the independent effects are combined over the investigated parameter space, the
total relative uncertainty urel is found to be the product of the relative independent changes
in uncertainty:

urel(α, dspatial, dtemporal, ) =
u(α, dspatialdtemporal, )

uref

= urel(α, 1, 1) · urel(0
◦, 1, dtemporal) · urel(0

◦, dspatial, 1)

. (4.4)

This is illustrated in Figure 4.18 where the relative changes in uncertainty as video param-
eters are simultaneously varied are shown for the posteriors estimated from Case A. The
surface in orange represents the approximation of the relative uncertainty, according to
equation (4.4). The surface in blue shows the actual computed relative uncertainty based
on an calculation of the posterior under the combined video effects.
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Figure 4.18: The combined effects of varying angle of view, spatial resolution, and temporal
resolution on the uncertainty of the estimates compared to the reference case. This is
illustrated for the posteriors estimated from Case A. Each subfigure shows the relative
uncertainty under combined effects of (a) angle of view and temporal downsampling, (b)
angle of view and spatial downsampling, and (c) spatial and temporal downsampling.

From Figure 4.18 it is clear that the combined effects of changes in angle (α), spatial
resolution (dspatial), and frame rate (dtemporal) on the relative uncertainty combine multi-
plicatively. For example, if downsampling the frame rate by a factor of 2 increases relative
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uncertainty by a factor of 2, and increasing the angle increases relative uncertainty by a
factor of 1.2, then applying both effects will increase the relative uncertainty by a factor
of 2× 1.2 = 2.4.

The reason for this becomes apparent when considering the Laplace approximation of
the likelihood. Changing angle changes the uncertainty by biasing the MAP estimate,
which changes the linearized model behaviour, J , by changing the linearization point (the
MAP). Changing frame rate changes the uncertainty by removing rows from J . The
change in uncertainty from this effect comes from the smooth behaviour in time of the
Jacobian. This is independent of the point about which the Jacobian is computed. Thus
if a change in angle changes the uncertainty (by modifying the point about which the
Jacobians computed), further applying a reduction in frame rate will simply apply on top
of this, as can be seen in equation (4.3). Lastly, modification of the spatial resolution
simply modifies the measurement error parameter σobs. Clearly an increase in uncertainty,
due to modifying the spatial resolution, will simply apply multiplicatively on top of the
changes in uncertainty due to frame rate and resolution.

These trends cannot be expected to continue forever. As the size of the posterior be-
comes larger, the linear approximation will no longer hold, and thus neither will the trends.
This linear approximation can be invalidated in a few ways. For example, if the frame rate
is downsampled to the degree that the vibration of the glottis becomes temporally aliased,
it is expected that the posterior estimate will not only be biased, but behave non-linearly
over the mass of the posterior. Similarly if the resolution is downsampled too greatly, the
error in measuring the glottal width may be made so large, as to spatially alias the mea-
sured glottal width. This would increase the size of the probability mass, invalidating the
linear assumption. Larger viewing angles would likely not invalidate the linear assumption,
since the viewing angle does not directly contribute to the uncertainty in the posterior, but
only through modifying the linearized behaviour of the BCM’s glottal width (the Jacobian)
due to biasing the MAP estimate. However, at large viewing angles, biases in the estimate
would also be large, and therefore render the estimates not useful.

4.4 Significance for High-speed Videoendoscopy in

Bayesian Inference

HSV is a useful indirect measurement of the VFs, from which many quantitative measures
of the VFs can be derived. In this work, the glottal width was derived from a simulated
HSV experiment, in which three imaging parameters were controlled: spatial resolution,
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angle of view, and frame rate, and used to estimate two parameters from a BCM (act and
Psub). From this experiment, the changes in the estimated parameter values and their
uncertainties with respect to the imaging parameters were determined. In this section
these results, and their applicability to conducting Bayesian inference on clinical HSV are
discussed.

4.4.1 Optimal Frame Rate and Resolution

Many high-speed cameras are able to improve frame rate at the cost of resolution, by
reading out the charges of binned pixels. This is due to the total bandwidth (the data rate
at which frames of the camera can be read) limitation of high-speed cameras. A reduction
of the spatial resolution allows for a proportional increase in the temporal resolution [14].
From the effects of frame rate and resolution on the estimated posteriors, we can see
that increasing frame rate by a factor of dtemporal reduces uncertainty in the estimated
posteriors far more than increasing spatial resolution by a factor of dspatial. This makes it
clear that for stationary estimates, HSV studies should opt for higher frame rates at lower
resolutions. Alternatively, HSV studies can also record longer time series. Provided that
the duration of the recording is sufficient for the posterior covariance eigenvector directions
to plateau (see Figure 4.3), recording at a higher frame rate or extending the duration of
the video should have the same effect. Recording longer durations of video however, does
have clinical feasibility issues. For stationary estimates, this would require that the patient
maintain the same position and phonation characteristics over the longer duration.

The importance of frame rate over spatial resolution may not always hold, however,
depending on the edge detection algorithm. The reason that spatial resolution did not
have the same effect as frame rate in this study is due to the effect of the sub-pixel precise
edge detection algorithm. For example, when binning groups of 2 by 2 pixels into a single
pixel, measured distances at the pixel level are scaled by a factor of 2. For a pixel-accuracy
edge detection method, errors in pixel measurements are thus also 2× larger. This scaling
on the error is identical to the case where the frame rate is decreased by a factor of 2.

Currently there are numerous edge-detection algorithms used for detecting the glottal
contours [89, 85, 86, 42, 18]. Pixel level edge detection techniques include ‘snake’ based
contour techniques, region growing techniques, and classical edge detection techniques,
such as Canny edge detection. Sub-pixel edge detection methods have used Zernike mo-
ments [85], as well as curve fitting techniques [88, 26]. While sub-pixel edge detection
techniques may be possible, pixel level techniques are generally computationally less inten-
sive and are better established. This makes a clear recommendation on an optimal trade
off between frame rate and spatial resolution less distinct.
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Videostroboscopy is often considered the ‘gold standard’ in clinical studies of phona-
tion and is the most widely used videoendoscopy technique [12]. For perfectly periodic
VF vibrations, videostroboscopy can produce videos of the VFs that appear to be moving
in slow motion with excellent image quality [12], where the apparent slow motion is the
result of temporal aliasing (see Section 2.3 for a review of videoendoscopy techniques). As
a result, when the VF vibrations are periodic, videostroboscopy and HSV should be nearly
identical, and we expect stationary estimates from the two to be the same. Videostro-
boscopy has the advantage of superior image quality, which is relatively difficult to achieve
in HSV [12]. However, videostroboscopy also relies on the assumption of true periodicity
of the VFs, which may not be the case over long recording times, due to patient and cam-
era movement, and is certainly not the case for patients with VF disorders. Nevertheless,
provided these non-periodic effects are small, videostroboscopy provides an alternative to
HSV, that provides higher image quality, and is more popular in the clinic.

4.4.2 Angle of View Errors

It was seen that the angle of view of the camera can have a significant effect on the observed
glottal width, by reducing the apparent glottal width amplitude. For the present study,
the errors induced by this angle of view were not modelled, and as a result it was seen that
estimates of model parameters are biased from their true values due to non-orthogonal
viewing angles. For HSV to be applicable for Bayesian inference, it would be necessary to
account for such errors in the error model for the observed glottal width. These angle of
view errors are mainly the result of two effects: the projection of lengths onto the angled
image plane, and measuring the glottal width between out-of-plane points on the VFs.
These two effects are illustrated in Figure 4.19.
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(a) (b)

Figure 4.19: Two sources of error in the measured glottal width as a result of angles. The
blue lines show the transverse ‘ideal’ glottal width and the red lines show the glottal width
measured from an offset view. (a) Angle of view error due to projection of the ‘true’ area
onto an off-axis plane. (b) Angle of view error due to imaging of different edges.

When relating the glottal width of imaged VFs to the glottal width of a reduced order
model, it is assumed that the glottal width is measured in the transverse plane. When the
angle of view is not aligned with the normal of the transverse plane, this assumption is no
longer valid. In Figure (a), the width in the transverse plane is still measured, however
due to the shifted angle of view, the projected length on the image plane is less than the
true length. In Figure 4.19(b), the width is no longer measured in the transverse plane.
This can significantly reduce the measured glottal width.

Two approaches that could be used to account for such errors include: accounting for
the angle of view as an additional parameter, or alternatively considering the angle of view
as a random parameter which results in additional uncertainty on the glottal width. In
the first approach, the angle of view parameter is inferred as an additional parameter in
the inference procedure. This ‘information’ about derived measures from the glottis could
be contained in the shape of the time varying measurement. Since it is known that offset
angles of view reduce the measured glottal width, there are two types of parameters that
can correspond to a given measurement. Some parameters may produce similar glottal
width waveforms as the measurement, which assumes that the the angle of view is not
offset. Other parameters may produce glottal width waveforms with reduced amplitudes
relative to the measurement; such parameters are also possible if the angle of view was
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offset, so as to reduce the measured glottal width. Thus how well these glottal waveforms
match the shape of the observed glottal waveform, can provide information as to what the
angle of view is.

In the second approach, the angle of view is not estimated as an additional parame-
ter. Instead, one can assume that the angle of view is a random variable. Since the glottal
width measured is a function of the angle of view, the glottal width also becomes a random
variable. The uncertainty in the glottal width would then become part of the likelihood,
which would affect the uncertainty in the posterior, without having to infer another pa-
rameter. Computation of the likelihood then involves marginalizing over this additional
random parameter. The resulting likelihood due to the angle would vary depending on the
particular configuration of the VFs.
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Chapter 5

Conclusions and Recommendations

In this work, the effect of HSV imaging parameters on Bayesian inference applied to HSV
videos was investigated. This was performed using an experiment designed to simulate a
HSV recording procedure. In the experiment, a set of scaled up, artificial, VFs were driven
by a motion system in slow-motion, according to a BCM with known parameters. Imaging
these VFs with a consumer DSLR camera resulted in a simulated high spatial and temporal
fidelity HSV recording due to the increased size, and slow motion movement of the VFs.
Three HSV imaging parameters, angle of view, spatial resolution, and temporal resolution
were then investigated by shifting the physical camera, numerically downsampling the
spatial resolution, and numerically downsampling the temporal resolution (frame rate) of
the videos, respectively. Bayesian inference applied to glottal widths, detected from these
simulated HSV videos, then allowed estimation of two parameters (cricothyroid activation
and subglottal pressure) for a reduced order model; the same reduced order model, a
BCM, was chosen in this work. Comparison of the results showed general agreement
between the known parameters of the BCM on the experimental setup and estimated
parameters through the inference procedure. Bayesian inference applied to video obtained
under different combinations of the imaging parameters, allowed for detection of trends on
the estimated posteriors.

5.1 Conclusions

This work aimed to determine the effect of HSV imaging parameters on Bayesian inference,
in particular, the effect of offset angles of view, tradeoffs between frame rate and resolu-
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tion, and the effects of varying frame rate, resolution, and angles of view simultaneously.
Findings on these three effects are listed:

• Offset angles of view in HSV can greatly influence the parameter estimates. In
comparison to the non-offset view, parameter estimates from offset views are biased,
so that they produce lower amplitudes of vibration. This is due to the effect of
parallax errors, that reduce the apparent size of the glottis. Modifying the angle
of view does not, in itself, change the uncertainty of the estimated parameter sets.
Changes in uncertainty induced by the angle of view (when compared to a non-
offset view) are a result of the modified reduced order model dynamics at the biased
parameter estimates.

• Frame rate (temporal resolution) and spatial resolution both affect the level of un-
certainty in the estimated parameter sets. Frame rate was found to have a linear
scaling on the uncertainty in the estimated parameters with respect to a downsam-
pling factor. Reducing the frame rate by a factor of 2 led to an increase in uncer-
tainty by a factor of 2. In contrast, resolution downsampling influences the level
of uncertainty indirectly, based on the increased uncertainty involved in extracting
quantitative measures from a poorly spatially resolved image. When using sub-pixel
accurate edge detection algorithms, this makes the scaling on uncertainty less than
that of frame rate, meaning downsampling resolution is preferable to downsampling
frame rate. However, this is largely dependent on the edge detection algorithm used.
Pixel accurate edge detection algorithms could introduce scaling on the uncertainty
comparable with frame rate changes. Furthermore, it was seen that edge detec-
tion algorithms can introduce biases into the the estimated parameters, with lower
spatial resolutions having larger biases. In contrast, at a fixed spatial resolution,
varying the frame rate does not introduce biases. This makes a recommendation on
a spatial/temporal resolution trade-off, problem dependent.

• Under the combined effects of downsampling resolution, frame rate, and varying
the angle of view, relative to a reference image case, it was found that changes in
uncertainty simply apply multiplicatively. This was due to the fact that the small size
of the posterior meant that the BCM model behaviour was linear over the probability
mass. With larger probability masses, non-linear behaviour could invalidate this
trend. This could happen for example, if temporal downsampling became so severe
as to cause significant temporal aliasing.
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5.2 Recommendations

As seen from the results, imaging parameters in HSV can have significant effects on the
estimated parameters. Based on the results in this work, the following recommendations
are made:

• The effect of the angle of view in extracting measures of the glottal width should be
taken into account. Typical measures from the glottis assume that the projection
of the glottis is performed onto a transverse plane; in other words, an on-axis view.
To account for the fact that the angle of view of the imaging system can vary, this
uncertainty in the angle of view should be accounted for. This could be done in
two ways: estimate the angle of view as an additional parameter, or consider the
angle of view as an uncertain quantity, which as a result, contributes uncertainty
to the measured glottal width at any glottal configuration. In the first approach an
additional parameter, the angle of view, must be estimated. Such information could
come from the shape of the glottal width waveform. In the second approach the
uncertainty in the angle of view simply increases the uncertainty in the estimate.

• The performance of different edge detection techniques should be investigated. In
this work, only relative changes in uncertainty due to changes in spatial resolution
were reported. This was because the absolute error in the edge detection method
was unknown. To report absolute uncertainties on parameter estimates, it is neces-
sary to know the error inherent in different edge detection techniques. As a result,
the errors inherent in different edge detection techniques (applied to images of the
glottis) should be characterized. These errors could be investigated as function of
spatial resolution of the video, as well as other parameters such as the level of noise
in the image. These errors for different edge detection approaches, would provide re-
searchers with guidelines on what uncertainties to use in quantitative measures of the
glottis, when performing Bayesian inference, and subsequently obtain realistic uncer-
tainty estimates on parameters. Existing edge detection techniques that have been
employed in HSV include pixel level techniques such as ‘snake’ based contour tech-
niques [3], and region growing techniques [42], as well as sub-pixel accurate methods
such as Zernike moments [85].

• Videostroboscopy should be investigated as an alternative to HSV when VF oscil-
lations are periodic. Videostroboscopy is a more mature videoendoscopy technique
with superior image quality compared to HSV, and is widely used in clinical stud-
ies of phonation, however it lacks temporal resolution [12]. Since it is more widely
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available than HSV as a clinical measurement tool, considerations of the quality of
estimates using Bayesian inference should be assessed.

• Numerical inaccuracies in the BCM should be investigated and more accurate solu-
tion techniques developed. In the present study, numerical inaccuracies in solving
the BCM led to non-smooth behaviour of the numerically computed glottal width
over small parameter changes. This subsequently led to posterior distributions that
showed irregularities (a lack of smoothness over small parameter changes). To re-
solve this issue, very fine numerical integration times were used in solving the forward
model, which subsequently made the inference procedure computationally costly. Al-
ternative integration techniques that avoid a fine integration time step would result
in improved resolution of the posterior distributions, as well as reduce the computa-
tional cost of solving the forward model.
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Glossary

abduction Refers to the movement of a body part towards the midline of the body.

adduction Refers to the movement of a body part away from the midline of the body.

anterior Anatomical direction pointing towards the front of the body.

arytenoid A set of paired cartilages of the larynx.

Bayes’ formula A formula relating the conditional probabilities of two events. In
bayesian inference, this formula provides a way to calculate the probability of
two ‘events’: the model parameters given a measurement.

cartilage A type of flexible structural tissue in the human body.

corniculate A set of paired cartilages of the larynx.

coronal plane Anatomical plane splitting the body into front and back halves.

cricoid A cartilage of the larynx.

cricothyroid A muscle attaching the cricoid to the thryoid cartilages of the larynx. Pri-
marily responsible to stretching and loosening the vocal folds by articulating these
two cartilages, since the vocal folds are attached between them.

epiglottis A cartilage of the larynx

evidence The probability of a specific measurement independent of any parameter sets.
This serves to normalize the product of the likelihood and the prior in Bayes’ formula,
to a probability.
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extrinsic With reference to a particular anatomical structure, extrinsic muscles have one
attachment point on the structure itself, and one an external structure.

glottal flow The air flow between the VFs, driven by contraction of the lungs.

glottis The set of two vocal folds and the immediate space between them, although it
often refers to only the immediate space between the folds.

high-speed videoendoscopy A type of videoendoscopy in which high-speed video is
recorded from the endoscope using high-speed cameras. This produces high frame
rate videos, with a 2D video (as opposed to a line-scan video) at variable spatial
resolutions, limited by data transfer rates of high-speed cameras.

inferior Anatomical direction pointing towards the feet.

intrinsic With reference to a particular anatomical structure, intrinsic muscles have at-
tachment points only on the structure itself.

larynx The cartilaginous structure that houses the vocal folds.

lateral Anatomical direction pointing along the sides of the body, to the left and right.

lateral-cricoarytenoid A muscle attaching the cricoid to the arytenoid cartilages of the
larynx. Primarily responsible for adducting the vocal folds.

likelihood A term in Bayes’ formula, being a measure of the relative chances of a param-
eter set to produce a measurement.

medial Denotes the middle of a structure, or the portion of it closest to the midline of
the body.

posterior A term in Bayes’ formula, being the probability of model parameters given a
measurement.

posterior Anatomical direction pointing towards the back of the body.

prior A term in Bayes’ formula, being the probability of model parameters apriori to any
measurements.
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reduced order model A model consisting of multiple discrete units that interact with
each other. Many of these discrete units are used to represent the behaviour of a
more complex system. For vocal fold models, the bulk mass is split into smaller
masses, which are connected by springs and dampers, representing the viscoelastic
properties of the vocal folds.

sagittal plane Anatomical plane splitting the body into left and right halves.

subglottal Below (inferior) to the glottis.

subglottal tract The tube like structure that leads from below the larynx to the lungs.

superior Anatomical direction pointing towards the head.

supraglottal Above (superior) to the glottis.

supraglottal tract The tube like structure that leads from above the larynx and termi-
nates at the mouth and nose.

thyroarytenoid A muscle attaching the thyroid to the arytenoid cartilages of the larynx.
It forms the innermost core portion of the vocal folds.

thyroid A cartilage of the larynx

transverse plane Anatomical plane splitting the body into top and bottom halves.

videoendoscopy A type of endoscopy in which video is recorded of the view obtained
through the endoscope. In imaging the vocal folds, this involves coupling a camera
with an endoscope whose objective lens is directed at the vocal folds.

videokymography A type of videoendoscopy in which a line-scan video across one lateral
line of the glottis is obtained. The low spatial resolution of a line scan video allows
videos to be obtained at a high frame rate, such that the vocal fold motion throughout
an oscillation can be observed.

videostroboscopy A type of videoendoscopy in which video is through an endoscope
in combination with stroboscopic lighting. The stroboscope is synchronized with
microphone recordings of phonation to create a slow motion video of the vocal folds
by recording different phases of their oscillation over multiple cycles.

vocal fold One of the two whitish coloured viscoelastic tissues that vibrate together dur-
ing phonation.
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