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Corundum (ruby-sapphire) is known to have formed in situwithin Archean metamorphic rocks at several
localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occur-
rences: (1) Maniitsoq region (Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and (2)
Nuuk region (Storø), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic
rocks (amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been
transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing
rocks is consistent with significant depletion of SiO2 in combination with addition of Al2O3, MgO, K2O,
Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports
ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal
of SiO2. The juxtaposition of relatively silica- and aluminum-rich metasedimentary rocks with low silica
ultramafic rocks established a chemical potential gradient that leached/mobilized SiO2 allowing
corundum to stabilize in the former rocks. Furthermore, addition of Al2O3 via a metasomatic reaction is
required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting
corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hy-
droxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels.
The three main exploration vectors for corundum within Archean greenstone belts are: (1) amphibolite-
to granulite-facies metamorphic conditions, (2) the juxtaposition of ultramafic rocks and aluminous
metapelite, and (3) mica-rich reactions zones at their interface.

� 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Corundum (Al2O3) is a relatively rare metamorphic mineral that
requires unusual geochemical conditions of low silica activity
combined with high aluminum contents of the host rock.
Corundum in its purest form is colorless, but when trace element
impurities of Cr, Fe or V enter the structure, corundum can become
the colored gem ruby (red) or sapphire (blue), although other colors
are also possible (e.g., Simonet et al., 2008). High quality gem ruby
can be as expensive as diamond (e.g., Shor and Weldon, 2009);
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hence it is of economic interest for mineral exploration companies,
as well as for small-scale miners.

A major concern for gemologists is to identify the origins of gem
quality corundum in order to control the trade of ruby and sapphire
to avoid illegal activities. In recent years, several analytical methods
have been employed with the aim of fingerprinting the origins of
cut gem stones, including oxygen isotope analysis, Raman spec-
troscopic analysis (for inclusions), and in situ trace element analysis
(e.g., Porto and Krishnan, 1967; Giuliani et al., 2005, 2014;
Pornwilard et al., 2011). It has been demonstrated that corundum
from Greenland has a rather unique composition in a global
context, including mantle-like O-isotope compositions and
elevated Cr and Si, which allows for precise fingerprinting of cut
gems originating from the North Atlantic Craton (Thirangoon,
2008; Keulen and Kalvig, 2013). This specific signature reflects
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the unusual geologic conditions in which Greenlandic ruby has
formed, as we will give examples of in this paper.

One of the fundamental issues relevant for corundum pro-
specting is to identify the combination of rock types and meta-
morphic environment that favors its formation. Many of the most
economic ruby occurrences are placer deposits sourced from mar-
bles hosting corundum or alkaline dykes containing corundum
xenocrysts (e.g., Sutherland et al., 1998; Garnier et al., 2008;
Groat et al., 2014). In metamorphic terranes, proposed mecha-
nisms for corundum stabilization include hydrothermal alteration
(e.g., Bottrill, 1998), metasomatic exchange of silica with the ul-
tramafic rocks (e.g., Riesco et al., 2005), and anatexis of aluminous
protoliths accompanied bymelt loss (e.g. Cartwright and Barnicoat,
1986; Palke et al., 2017).

In the present study, we highlight a less common primary
geological environment of corundum formation, namely high-
grade Archean greenstone belts. We present two case studies
from southernWest Greenland, where ruby corundum is hosted by
aluminous Archean metapelite. Thermodynamic modelling is used
to show under which pressure, temperature and geochemical
conditions such rocks can stabilize corundum, and we demonstrate
the critical importance of associated ultramafic rocks, which act as
chemical buffers to maintain a low silica activity in the system. We
summarize our findings by proposing several exploration vectors
for corundum deposits within Archean greenstone belts, which
may have applications for similar geological environments globally.

2. Geologic setting

The main portion of the North Atlantic Craton occurs along the
SW coast of Greenland (Fig. 1). It is dominated by high-grade grey
orthogneiss of the tonalite-trondhjemite-granodiorite (TTG) suite,
although greenstone belts and fragmented anorthosite complexes
also comprise an important component (e.g., Windley and Garde,
Figure 1. Geological map of the Maniitsoq and Nuuk regions of southern West Greenlan
2009). Given that the Archean greenstone belts in this region have
all experienced amphibolite- to granulite-facies metamorphism
(e.g., McGregor and Friend, 1992; Garde, 1997), the neutral term
‘supracrustal belt’ has traditionally been preferred for such rock
associations, and we therefore use this ‘local’ nomenclature here.

The geodynamic environment of formation for Archean crust is
debated and still controversial within the geologic community.
Some researchers argue that uniformitarian principles can be
applied back into the Eoarchean (e.g., Polat et al., 2002; Komiya
et al., 2015) or even the Hadean (Harrison et al., 2005; Watson
and Harrison, 2005; Hopkins et al., 2008), while others argue that
modern-style plate tectonics did not operate until the Mesoarchean
(Smithies et al., 2007; Dhuime et al., 2012) or perhaps even the
Neoproterozoic (Brown, 2008; Stern, 2008; Hamilton, 2011). There
are several Archean cratons which clearly did not form by unifor-
mitarian processes, one such example being the East Pilbara Craton
(Collins et al., 1998; Van Kranendonk et al., 2004). However, the
North Atlantic Craton may represent the opposite case, in which
even the oldest component potentially formed via geologic pro-
cesses resembling those of modern-style subduction zone systems.
The currently favored model for the formation of the Archean
continental crust in Greenland is by subduction (e.g., Nutman et al.,
1996, 2015; Garde, 1997), and it is also the preferred interpretation
for the formation of supracrustal belts (e.g., Garde, 2007; Polat et al.,
2008; Jenner et al., 2009; Szilas et al., 2012, 2013, 2017), as well as
for the associated anorthosite complexes of the North Atlantic
Craton (Polat et al., 2009, 2012; Hoffmann et al., 2012; Huang et al.,
2014). Although the question of the overall geodynamic environ-
ment is not the main topic of the present contribution, it does have
some implications for the interpretation of the metamorphic evo-
lution of the rocks describe and investigated in the present study.

Corundum is a high-grade metamorphic mineral that has been
reported from several localities within Archean rocks in southern
West Greenland. The best-known example is the extensive ruby
d. Based on mapping by the Geological Survey of Denmark and Greenland (GEUS).
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deposits within the Fiskenæsset Anorthosite Complex (Myers,
1985; Polat et al., 2009), where corundum occurs along contacts
between leucogabbro and ultramafic rocks and is interpreted to
have formed during metasomatism at high-grade metamorphic
conditions, although some occurrences also indicate the involve-
ment of late tectonic granitic pegmatites (Keulen et al., 2014).

Minor corundum formation is also documented within the
Eoarchean Itsaq Gneiss Complex (Appel et al., 2002; Lowry et al.,
2003). In this case oxygen isotopes indicate an external fluid
input to the system, where late metamorphic ruby corundum
formed at the interface between amphibole-harzburgite and
intrusive granitoid sheets.

Less well-known corundum occurrences are present on the is-
land of Storø in the Nuuk region (Van Gool, 2006), where the
mineral occurs within mica schist at the contact between meta-
pelites and ultramafic rocks (Fig. 2). The Storø Supracrustal Belt
(SSB) has received much attention due to the presence of gold
mineralization hosted by sheeted quartz veins within amphibolites
(see a summary in Scherstén et al., 2012). The maximum age of the
SSB is constrained at ca. 2800 Ma by U-Pb dating of detrital zircon
in quartzite (Scherstén et al., 2012; Szilas et al., 2014b). Re-Os
isotope data on arsenopyrite demonstrates that the gold precipi-
tated in quartz veins during regional metamorphism, and likely
formed at two distinct events at ca. 2707 Ma and ca. 2640 Ma,
Figure 2. Detailed geological map of a part of the Storø Supracrustal Belt (SSB), Nuuk
respectively (Scherstén et al., 2012). The aluminous garnet-
sillimanite-biotite gneiss that appears to be the precursor for the
corundum-bearing rocks on Storø (see Section 3) has been inves-
tigated intensely, because it was debated if this rock type repre-
sents a hydrothermal alteration product or simply a metapelite
with a mafic source (e.g., Knudsen et al., 2007; Szilas and Garde,
2013; Szilas et al., 2016). Corundum formation in these rocks
likely took place during peak metamorphic conditions at ca.
2635Ma, given by U-Pb ages of zircon rims found consistently in all
felsic rocks of the SSB (Hollis, 2005; Nutman et al., 2007; Van Gool
et al., 2007). The Storø corundum occurrence is the first case study
treated in the present work.

The second case study that we present in this contribution
concerns a corundum occurrence in the Maniitsoq region (Garde
and Marker, 1988), which is also hosted by metapelite juxtaposed
with ultramafic rocks, which are high-grade amphibole-peridotites
(Fig. 3). The Maniitsoq region was first studied extensively by
Ramberg (1948), Sørensen (1954) and Berthelsen (1962), who
documented several occurrences of ultramafic enclaves within
orthogneiss as well as the presence of unusual metamorphic min-
erals such as corundum and sapphirine.

The tonalitic orthogneisses of the Maniitsoq and the Akia
terrane have igneous ages of around 3 Ga (Garde et al., 2000;
Windley and Garde, 2009). Dyck et al. (2015) presented a model
region, showing the corundum occurrence. Modified after Van Gool et al. (2007).



Figure 3. Detailed geological map of the corundum occurrence at Kangerdluarssuk, Maniitsoq region. Mapping based on our own field observations and satellite images.

C. Yakymchuk, K. Szilas / Geoscience Frontiers 9 (2018) 727e749730
for the Maniitsoq region where the area hosting corundum forms
part of the so-called Majorqaq Belt, which was interpreted to
represent lower crustal remnants of a Neoarchean orogen. Mig-
matitic metapelites from the Majorqaq Belt experienced a clock-
wise P-T evolutionwith peak metamorphic conditions of>810 �C at
w9 kbar (Dyck et al., 2015). U-Pb ages of w2.56 Ga from anatectic
zircon were interpreted by Dyck et al. (2015) to reflect the mini-
mum age of the accretion of the Majorqaq Belt to the proto-North
Atlantic Craton.

A controversial claim of a giant meteorite impact structure
hosted by the Maniitsoq region has been proposed by Garde et al.
(2014). However, several rebuttals to that claim have been put
forth (e.g., Reimold et al., 2013, 2014), and given the small-scale
focus of the present study, wewill not discuss the meteorite impact
model further in this work.

3. Field observations and petrography

3.1. Storø field observations

The island of Storø is located in the Nuuk region (Fig. 1) and it
hosts the Storø Supracrustal Belt (SSB), which represents our first
case study. Fig. 2 shows a detailed geologic map of the corundum
occurrence within the SSB. The proximity of ultramafic rocks with
aluminous rocks containing abundant garnet and sillimanite
should be noted as a prospective setting for corundum formation.

A distinct type of schist is the host of the corundum and it oc-
cupies a less than 2-m-wide zone between the ultramafic rock and
the aluminous gneiss. Fig. 4 shows examples of the three main
lithological units in the SSB, namely amphibolite, biotite schist and
aluminous gneiss as also seen on the detailed map in Fig. 2. Panels
b, d and f in Fig. 4 shows the corundum-bearing mica schist found
at the contact between the aluminous gneiss and the ultramafic
rock of Fig. 2. The narrow mica schist that hosts corundum is
generally less than 2 mwide and is thus not mappable even at this
scale. Garnet is presentwithin this rock on the side that is in contact
with the aluminous gneiss, whereas corundum is only present on
the side of the mica schist that is in contact with the ultramafic
rock. It should be noted that although the mica schist is present
along the entire contact between the ultramafic rock and the
aluminous gneiss, it is generally only a thin (<1 m) reaction zone
with no corundum. Only where the mica schist forms a thicker unit
of up to 3 m, does it contain corundum.

3.2. Maniitsoq field observations

The corundum-bearing Kangerdluarssuk locality in the Man-
iitsoq region (Fig. 1) has previously been described by Garde and
Marker (1988) and Dyck et al. (2015). For simplicity, we refer to
the Kangerdluarssuk locality, as the Maniitsoq ruby locality
throughout this work to distinguish it from the Storø ruby locality.
The detailed geologic map presented in Fig. 3 shows that corundum
is only found along the contact between the ultramafic rocks and
the kyanite-bearing metapelite. A few other occurrences are also
reported by Garde and Marker (1988) at this locality, although they
were not located during our own field work and thus not included
in this map. Sapphirine has also been reported in the Maniitsoq
region by Ramberg (1948) and Sørensen (1954). However, this
mineral was not observed by us at any of the localities we visited
during field work in the region.

At Maniitsoq we also sampled several amphibolites, for which
we present geochemical data. These amphibolites are heavily
modified containing calc-silicates and garnet-plagioclase veins and
they are generally strongly sheared (Fig. 5e).

Fig. 5 shows examples of the three main lithological units at the
Maniitsoq ruby locality (Kangerdluarssuk), namely amphibolite,
kyanite gneiss and ultramafic rock as also seen on the detailed map
in Fig. 3. Panels b, d and f in Fig. 5 shows the corundum-mica schist
found at the contact between the aluminous gneiss and the ultra-
mafic rock of Fig. 3. Fig. 5c shows a close-up of the ultramafic rocks
adjacent to the corundum-bearing schist at the Maniitsoq locality.
Note the brown unaltered peridotite patches between massive



Figure 4. Field observations at the Storø corundum occurrence. (a) Amphibolite with foliation defined by elongate hornblende and plagioclase. (b) Ruby mica schist with up to 25%
modal corundum. (c) Biotite schist with abundant sillimanite and garnet. (d) Close-up of an area shown in the upper right-hand corner of (b). Note the euhedral corundum crystals
and the small rounded (corroded?) garnet porphyroblasts, which is present in the lower half of this photo. (e) Aluminous gneiss with distinct layers that are either biotite-rich (dark)
or plagioclase- and sillimanite-rich (light). Garnet is dispersed throughout this rock. (f) Close-up on a cross-section of a large single corundum crystal that displays zoning with blue
core (sapphire) and red-purple (ruby) rim.
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tremolite veins, which are oriented orthogonally to the fracture
orientations. In Table 1 we present geochemical data for both the
unaltered (sample 455) and the amphibole-rich peridotites (sam-
ples 466 and 467).

3.3. Petrographic observations

The petrography of representative examples of the main litho-
logical units relevant for the corundum formation at the Maniitsoq
ruby locality are presented in Fig. 6. The peridotite consists mostly
of olivine, spinel and orthopyroxene (Fig. 6a) with essentially no
hydrous phases present, except for minor amphibole. This rock type
is found at several localities in the Maniitsoq region, and detailed
studies of similar rocks at Fiskefjord demonstrates these rocks to be
represent cumulates related to dismembered layered intrusions
(e.g., Szilas et al., 2015, 2018). The ultramafic rock or amphibole-rich
peridotite s.l. is dominated by fine-grained tremolitic amphibole
(Fig. 6b), and is found as an extensive network of fractures in
proximity to the ruby mica schist.

Kyanite gneiss is comprised mainly of quartz, kyanite (Fig. 6c
and d) and garnet with plagioclase, mica, amphibole and spinel as
minor constituents. Centimeter-scale quartz-rich layers alternate
with blueish fibrolitic kyanite-rich layers (Fig. 6c and d) and kyanite
may comprise up w40 vol.% of this rock type.

Ruby mica schist (Fig. 6e and f) consists mainly of biotite with
corundum and plagioclase being the main other minerals in this
rock type. Locally orthopyroxene, olivine and amphibole are
also present. Corundum contains aligned inclusions of biotite,
indicating a relict foliation that is at a high angle to the main foli-
ation. Mica also wraps around the corundum porphyroblasts,
which suggests some deformation after corundum growth.

4. Methods

4.1. Bulk-rock geochemistry

Bulk-rockmajor and trace element data for the samples from the
Maniitsoq region and the ruby mica schist from Storø were ob-
tained from ALS Global laboratory in Ireland using their ME-MS61
procedure, which includes measurement by Inductively Coupled
Plasma (ICP) methods. Below a brief summary of this method is
given as it appears on ALS’s website (www.alsglobal.com).

A prepared sample (0.25 g) is digested with perchloric, nitric,
hydrofluoric and hydrochloric acids. The residue is topped up with
dilute hydrochloric acid and analyzed by inductively coupled
plasma-atomic emission spectrometry (ICP-AES). Following this
analysis, the results are reviewed for high concentrations of bis-
muth, mercury, molybdenum, silver and tungsten and diluted
accordingly. Samples meeting this criterion are then analyzed by
ICP-MS, and results are corrected for spectral interelement in-
terferences. Four acid digestions are able to dissolvemost minerals;
however, although the term “near-total” is used, depending on the
sample matrix, not all elements are quantitatively extracted.

Bulk-rock geochemical data for the rocks from the SSB are from
Szilas et al. (2016). One exception is sample 11801, which is the
corundum-mica schist from this locality, which was also analyzed

http://www.alsglobal.com


Figure 5. Field observations at the Maniitsoq corundum occurrence. (a) View of the kyanite gneiss with obvious layers defined by high modal contents of kyanite. The main ul-
tramafic body is visible in the right-hand background. (b) Close-up of a corundum crystal in ruby mica schist. (c) Ultramafic rock showing white veins of amphibole, which increase
in abundance towards the contact with the kyanite gneiss. Backpack for scale. (d) Ruby mica schist with obvious white patches of plagioclase, which commonly form around the
corundum crystals and appears to be replacing them. (e) Banded diopside-rich leucocratic amphibolite with abundant plagioclase-garnet veins. (f) Ruby mica schist with about 15%
modal corundum.
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at ALS Global. All the newgeochemical data are presented in Table 1
below and selected plots are shown in Figs. 7e9.

4.2. Computational methods

Phase equilibria modeling is used to (1) assess the pressure (P)
and temperature (T) conditions of metamorphism, (2) explore the
role of silica depletion on the mineral assemblage for the assumed
precursors to the ruby-bearing rocks, (3) quantify the amount of
silica depletion required to stabilize corundum, and (4) determine
the amount and composition of melt expected at various P-T con-
ditions and the composition of the residuum after melt loss. Cal-
culations were conducted using THERMOCALC v.3.40 (Powell and
Holland, 1988) using the internally consistent dataset (ds62) of
Holland and Powell (2011). For the aluminous gneiss and biotite
gneiss, modelling was undertaken in theMnO-Na2O-CaO-K2O-FeO-
MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 (MnNCKFMASHTO) chemical
system using the activity-composition relations in White et al.
(2014a,b). An amphibolite composition was investigated in the
NCKFMASHTO chemical system using the activity-composition
models from Green et al. (2016). Phases modelled as pure end-
members are quartz, rutile, titanite, aqueous fluid (H2O), kyanite,
sillimanite and corundum. In addition, one ultramafic composition
was modelled in the NCFMASCrO chemical system using activity-
composition models from Jennings and Holland (2015). The pha-
ses considered for the ultramafic composition include: liquid,
plagioclase, clinopyroxene, olivine, spinel, chromite, garnet and
orthopyroxene. Currently, models that include H2O are not
developed for ultramafic compositions. All mineral abbreviations
are from Holland and Powell (2011) and are summarized in Table 2.

The phase equilibria modelling presented here considers both
subsolidus and suprasolidus phase assemblages. For subsolidus
assemblages, the system is assumed to be saturated in H2O due to
the prograde breakdown of hydrous minerals and the open-system
behavior of H2O with respect to subsolidus metamorphic systems
(e.g., Guiraud et al., 2001;Webb et al., 2015). For suprasolidus phase
assemblages, the system is not expected to be H2O-saturated
because any free H2O is expected to partition into the melt phase
(Huang and Wyllie, 1973; Thompson, 1982; Clemens and Vielzeuf,
1987; White and Powell, 2002; White et al., 2005). Therefore, for
suprasolidus equilibria, the H2O concentration of each composition
was assigned so that the modelled bulk compositions have no free
H2O in the system (e.g., all H2O in the composition is bound in the
crystal structure of hydrous minerals) at the solidus at a specified
pressure. For the samples from Storø, this pressure was set at
7 kbar, given the minimum estimate of Persson (2007) by garnet-
biotite-plagioclase thermobarometry of rocks in the SSB
recording temperatures of 521e624 �C and pressures of
4.5e6.1 kbar, which likely represent retrograde overprinting
(minimum conditions). For the samples fromManiitsoq, the solidus
was saturated with H2O at 10 kbar, which is similar to the calcu-
lations by Dyck et al. (2015) for amphibole-kyanite-bearing meta-
pelites at Maniitsoq. If the modelled heating path crossed the
solidus at lower or higher pressures, the quantity of melt produced
will be slightly overestimated and underestimated, respectively,
and minor variation in the phase assemblages are expected.



Table 1
Bulk-rock geochemical data for the Maniitsoq rocks and one ultramafic ruby schist from Storø (sample 11801). Major elements are in wt.%, trace elements are in ppm. Blank values are below the limit of detection.

Sample# 454 455 456 457 458 459 460 461 462 463 464 465 466 467 11801

Rock type Amphibolite Peridotite Ruby
mica schist

Calc-silicate
amphibolite

Leuco-amphibolite Ultramafic
rock

Leuco-amphibolite Leuco-amphibolite Kyanite
gneiss

Ruby
mica
schist

Ruby
mica
schist

Ultramafic
rock

Ultramafic
rock

Ultramafic
rock

Ruby
mica
schist

Latitude (�N) 65.56196 65.56846 65.56835 65.56738 65.56753 65.56763 65.56760 65.56726 65.56879 65.56815 65.56813 65.56821 65.56809 65.56831 64.43788
Longitude (�E) �52.4008 �52.3906 �52.3909 �52.3927 �52.3925 �52.3921 �52.3917 �52.3936 �52.3876 �52.3900 �52.3900 �52.3906 �52.3902 �52.3909 �51.0459
SiO2 53.1 40.7 34.4 48.4 56.1 52.7 62.6 57.5 67.0 25.9 37.7 39.9 54.8 46.8 28.04
Al2O3 19.10 2.42 33.2 15.00 15.55 4.05 15.95 18.20 19.05 44.4 24.2 2.02 2.10 18.70 42.49
Fe2O3 7.02 9.38 7.38 10.20 11.70 8.93 10.20 13.35 8.99 9.83 6.96 9.57 5.38 5.64 8.00
CaO 11.90 0.14 1.05 15.20 9.56 2.64 3.12 5.50 2.56 2.99 3.48 0.09 8.60 10.80 3.82
MgO 5.88 44.4 13.05 7.14 5.21 27.3 1.88 3.73 1.94 7.03 16.60 44.0 24.7 12.45 9.09
Na2O 0.62 0.02 0.94 0.68 0.28 0.03 1.84 0.42 0.22 0.30 0.61 <0.01 0.06 0.45 0.55
K2O 0.30 <0.01 3.69 0.24 0.04 <0.01 1.19 1.07 0.35 3.77 6.16 0.03 <0.01 2.28 4.20
Cr2O3 0.14 0.83 0.10 0.06 0.06 0.18 0.12 0.07 0.09 0.20 0.21 0.79 0.41 0.18 0.12
TiO2 0.35 0.05 1.17 0.61 0.67 0.06 0.62 0.68 0.93 1.38 0.90 0.04 0.08 0.05 2.29
MnO 0.21 0.28 0.08 0.21 0.26 0.15 0.21 0.21 0.18 0.05 0.04 0.07 0.07 0.38 0.05
P2O5 0.01 0.01 0.01 0.03 0.05 0.01 0.11 0.05 0.19 <0.01 0.01 <0.01 0.04 <0.01 0.02
LOI 0.46 1.56 3.05 0.84 0.12 3.37 0.29 0.05 0.01 2.61 2.86 1.86 2.82 1.41 1.63
Total 98.25 99.79 98.16 98.61 99.60 99.42 98.16 100.76 101.50 98.59 99.84 98.37 99.06 99.24 100.3
Ag 0.08 0.03 0.17 0.05 0.2 0.1 0.25 0.05 0.08 0.61 0.09 0.04 0.22 0.1
As 15.1 1240 3.8 5.9 18.5 9.8 11.7 26.8 17.1 3.6 0.4 1500 16.1 22.7
Ba 311 2 280 39 15.9 3.7 261 275 126 1010 981 2.3 1.9 821 470
Be 2.11 0.26 0.49 0.48 0.13 0.62 0.2 0.53 0.47 0.73 0.06 0.6
Bi 0.19 0.66 0.07 0.14 0.01 0.45 0.27 0.08 0.1 0.25 0.1 0.76 0.48 0.16 0.07
Cd 0.58 0.11 0.08 0.22 0.23 0.3 0.39 0.29 0.1 0.1 0.32 0.1 1.3 0.61
Ce 29 0.31 12.2 4.41 4.73 1.07 30.5 4.48 44.4 53.4 105 0.45 4.6 0.67 87.1
Co 53.9 134 32.4 46.5 51.4 116 61.1 52.2 32.8 40.4 81.5 134 81.8 49.1 78.0
Cs 52.6 0.23 111 0.85 0.79 0.38 18.85 10.3 3.41 101 181.5 0.23 0.13 67.9 45.3
Cu 2.6 2.1 6.5 16.9 119.5 39.1 101 37.3 37.5 100.5 2.4 2.6 28.3 1 4.00
Dy 1.47 0.89 2.53 2.64 0.29 3.03 3.49 3.39 3.63 4.74 0.13 0.51 0.11 8.50
Er 0.69 0.69 1.47 1.69 0.22 1.84 2.26 1.89 2.24 2.76 0.06 0.47 0.1 5.19
Eu 0.71 0.8 0.55 0.62 0.04 0.91 0.64 0.91 1.04 1 0.36 0.23 1.16
Ga 14.8 3.2 28.1 15.4 17.7 3.8 17.3 17.1 23.8 44.5 23.3 2.6 2.8 8.5 41.3
Gd 1.99 0.05 0.9 2.3 2.24 0.15 2.74 2.91 3.9 4.28 5.03 0.13 0.51 0.13 8.51
Ge 0.13 0.39 0.13 0.27 0.22 0.2 0.12 0.17 0.15 0.17 0.24 0.59 0.07 0.36
Hf 1.1 4.1 0.4 0.7 2.3 0.1 2.2 5.3 5.9 0.1 0.1 8.1
Ho 0.27 0.02 0.21 0.56 0.59 0.05 0.55 0.74 0.7 0.75 0.91 0.02 0.13 0.04 1.88
In 0.032 0.011 0.03 0.055 0.058 0.013 0.029 0.05 0.046 0.024 0.051 0.014 0.022 0.015 0.025
La 17.6 7.6 1.2 1.4 0.6 17.7 2.5 22.6 30.6 58.8 1.9 0.6 46.8
Li 16.8 7.5 119.5 21.7 29.4 3.4 61.9 48.1 18.7 91.4 147.5 95.5 3.7 64 60.0
Lu 0.11 0.16 0.24 0.28 0.03 0.22 0.32 0.38 0.33 0.41 0.07 0.84
Mo 0.72 0.12 0.22 0.09 0.18 0.15 0.98 0.13 0.3 1.29 0.08 0.1 0.14
Nb 2.5 0.2 4.3 1.1 1.1 0.1 2.7 0.2 0.7 2.2 3.8 0.1 0.2 0.1 13.3
Nd 14.1 0.2 7 3.4 4.3 0.6 13.3 4.2 21.5 23.4 38.5 0.2 2.6 0.4 45.0
Ni 337 2640 272 141 141 1450 242 160.5 138 210 815 2570 1270 300 558
Pb 61.3 0.8 54.2 4.6 5.8 1.2 26.8 11.8 7 68.8 58.1 1 1.9 26.5 7.00
Pr 3.99 0.05 1.78 0.75 0.8 0.12 3.33 0.88 5.57 6.38 11.35 0.06 0.65 0.1 10.75
Rb 25.3 0.1 116 7 1.1 0.3 53.2 14 10.8 135.5 254 0.3 0.2 90.7 199
Sb 0.08 2.75 0.11 0.2 0.09 0.06 0.21 0.06 0.06 0.07 3.05 0.08 0.05 63.3
Sc 22.1 11.1 33 43.9 48.6 13.9 32.5 52.1 39.2 56.4 49.4 8.7 13.5 19.3 61.0
Sm 2.65 0.04 1.21 1.31 1.50 0.10 2.81 1.62 3.57 5.3 6.32 0.04 0.54 0.08 8.91
Sn 1.8 0.7 1.1 0.9 0.4 0.4 0.6 0.2 0.2 1.2 2.2 0.5 0.5 1.0
Sr 525 2.7 124.5 82.5 38.6 8 133.5 82.7 60.9 201 114.5 1.2 7.1 94.2 247
Ta 0.2 0.35 0.09 0.1 0.2 0.06 0.24 0.36 0.80
Tb 0.25 0.12 0.41 0.38 0.05 0.44 0.46 0.57 0.61 0.76 0.01 0.08 0.02 1.32
Te 0.23 0.14 0.09 0.05 0.06 0.43 0.08 0.05

(continued on next page)
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The modelled compositions of the aluminous gneiss, biotite
gneiss and amphibolite are median values of the range of bulk-rock
compositions reported in Szilas et al. (2016) with obvious outliers
removed. The compositions used in the modelling are summarized
in Table 3.

The stability of oxide and silicate minerals in high-temperature
metamorphic rocks is sensitive to the amount of ferrous and ferric
iron in the bulk composition (e.g., Diener and Powell, 2010; Boger
et al., 2012). For the samples from Storø, the biotite-schist was
assumed to have 18% of iron as ferric,15% of the ironwas assumed to
be ferric for the aluminous gneiss, and14%of the ironwasassumed to
be ferric for the amphibolite based on titration data from Szilas et al.
(2014b) for the same lithological units in the SSB. For the ruby mica
schists from Storø and Maniitsoq, various proportions of ferric to
ferrous ironare examined. For thekyanite gneiss fromManiitsoq,15%
of the ironwas assumed to be ferric, similar to the value used for the
Storø aluminous gneiss. For the peridotite composition from Man-
iitsoq, 5% of the iron was assumed to be ferric, given that olivine
dominated the rock and only accommodates divalent iron.

The role of silica depletion on the stability of corundum for three
samples from Storø (aluminous gneiss, biotite schist and amphib-
olite) and one sample from Maniitsoq (kyanite gneiss) was evalu-
ated by starting with a relatively silica-rich composition ranging to
a silica-depleted composition. Two sets of diagrams were calcu-
lated to evaluate the temperature and pressure sensitivity of
corundum-bearing assemblages to silica content. The first set of
diagrams was constructed at a fixed pressure of 7 kbar for samples
from Storø (Figs. 10a, 11a and 12a) and 10 kbar for the sample from
Maniitsoq (Fig. 14a), but for a range of temperatures and SiO2
concentrations of the system. This is similar to the approach taken
by Riesco et al. (2004) who evaluated silica-undersaturated rocks
and corundum formation in the Susqueda Aureole in Spain. The
second set of diagrams (Figs.10b,11b,12b and 14b) was constructed
at a fixed temperature of 800 �C at a range of pressure and SiO2
concentrations of the system for samples from Storø andManiitsoq.

The left side of each of the temperatureecomposition and
pressureecomposition phase diagrams in Figs. 10e12 and 14 rep-
resents the silica-rich bulk composition and the right side of each
diagram is the silica-depleted composition. When corundum is
predicted to be stable in the phase assemblage, the amount of
corundum in oxide-molar proportions (approximately equivalent
to volume proportion) is illustrated by dashed contours on the
appropriate diagrams.

The changes in the proportions of the different phases for two
different scenarios are illustrated using mode-temperature and
mode-pressure diagrams in Figs. 10e12 for samples from Storø and
in Fig. 14 for the kyanite gneiss from Maniitsoq. These diagrams
represent two end-member scenarios. The first scenario assumes a
constant pressure and composition, but temperature increases. This
could represent the modification of the SiO2 content of the rock
during interaction with an adjacent ultramafic body followed by
heating during metamorphism or a scenario whereby a silica-
depleted protolith undergoes prograde metamorphism (e.g.,
Goliani, 1989). The second scenario assumes that the systemwas at
a constant pressure and temperature and that SiO2 was removed
from the composition. This is a simplified model that could repre-
sent a rock adjacent to an ultramafic rock that has achieved thermal
equilibrium but SiO2 is diffusing into the neighboring ultramafic
rock (e.g., Riesco et al., 2005).

The effect of the ratio of ferric to ferrous iron in the bulk
composition for the ruby-bearing rocks from Storø and Maniitsoq
are explored with temperature-composition phase diagrams in
Figs. 13a and 16a. The left side of these diagrams reflects only
ferrous iron and the right-hand side of these diagrams represents
50% ferric iron and 50% ferrous iron.



Figure 6. Petrographic microphotographs of the various rock types that are relevant for the corundum formation at the Maniitsoq ruby locality. (a) Unaltered peridotite showing
olivine and orthopyroxene with essentially no hydrous phases present. (b) Hydrous ultramafic rock termed amphibole-rich peridotite in the field, although in detail it consists
mostly of fine-grained amphibole. This rock represents the fracture network within the unaltered peridotite near the contact to the ruby mica schist. (c) Kyanite gneiss consisting of
mostly quartz and kyanite. Locally garnet is also an important mineral and plagioclase, mica and spinel are only minor phases of this rock (d). Same image as in (c), but in plane
polarized light. Fine-grained kyanite comprises up to 40 vol.% of this rock. (e) Example of ruby mica schist with aligned biotite inclusions in the corundum at a high angle to the
main foliation. (f) Large corundum crystal showing characteristics lamellae. XPL: crossed polarized light. PPL: plane polarized light. Scale bars are 1 mm wide.
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5. Results

5.1. Bulk-rock geochemical compositions

The new geochemical data for the Maniitsoq rocks are pre-
sented in Table 1 and Fig. 7 shows selected binary plots with
trends towards the ruby-mica schists. The ultramafic rocks are
generally Mg-rich and very depleted, although it should be noted
that several samples, which are rich in amphibole (tremolite)
also have distinctly elevated SiO2 of up to 55 wt.%. The kyanite
gneiss is rich in SiO2 and Al2O3 with 67 wt.% and 19 wt.%,
respectively. The ruby-mica schists are characterized by having
unusually high Al2O3 of up to 44 wt.% in combination with very
low SiO2 of down to 26 wt.%. There is also strong enrichment in



Figure 7. Bulk-rock geochemical diagrams. Oxides are in wt.% and trace elements are in ppm. (a) CaO vs. SiO2 showing a significant drop in silica content from the precursor rocks to
the corundum-bearing rocks. (b) TiO2 vs. MgO showing a slight increase in MgO during the corundum formation. (c) K2O vs. Cr showing a strong enrichment in potassium during
the corundum formation, which is consistent with the abundant biotite in this rock. (d) Al2O3 vs. Al2O3/TiO2 showing a strong enrichment in alumina for the corundum-bearing
rocks. (e) Th vs. Th/TiO2 showing a strong enrichment in Th for the ruby mica schists. (f) Sr vs. Sr/TiO2 showing a strong enrichment in Sr for the ruby mica schist. The Storø
aluminous gneiss is a median composition from Szilas et al. (2016) (see Table 3) and the rest of the data are from Table 1 of this study.
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components such as Th, Sr and K2O for the corundum-bearing
rocks (Fig. 7).

Primitive mantle-normalized trace element patterns for the
Maniitsoq rocks are shown in Fig. 8. It is seen that, although the
abundances vary significantly, there are common features such as
troughs for Ta-Nb-Ti, as well as both positive and negative anom-
alies for Sr and Eu.

The geochemistry of the Storø rocks have previously been
described in detail by Szilas et al. (2014b, 2016) and will thus not be
repeated here. However, the Storø rocks were interpreted to have
formed in a geologic environment similar to a proximal arc-related
basin, because the amphibolites consistently have negative Nb-Ta-
Ti anomalies (also seen in Fig. 9), and metapelites generally have a
strong mafic component suggesting immature sedimentary pro-
cessing. However, mature quartzites (meta-sandstone) are also
present, which indicates a proximal source with a provenance from
continental crust. The geochemical difference between the biotite
schist and the aluminous gneiss in the SSB were interpreted by
Szilas et al. (2016) to mainly be controlled by the proportion of
felsic versus mafic provenance, with the aluminous gneiss being
derived almost entirely from a basaltic to ultramafic source.

The main geochemical features of the median aluminous gneiss
and the ruby-mica schist at the Storø locality are shown in Fig. 7.
The aluminous gneiss is characterized by having relatively high
SiO2 and Al2O3 of 51 wt.% and 20 wt.%, respectively, similar to the
kyanite gneiss at the Maniitsoq locality. Both the Storø aluminous
gneiss and the Storø ruby-mica schist have higher TiO2 than any of
the Maniitsoq rocks, which is consistent with overall higher
abundances of incompatible trace elements as seen in Fig. 9.
5.2. Phase equilibria models for the Storø rocks

Phase equilibria modelling of the aluminous gneiss and biotite
schist compositions from Storø indicate that quartz and corundum
are not stable together at equilibrium. The depletion of silica is a
requirement for corundum to stabilize in the equilibrium assem-
blage for both compositions. For example, at 7 kbar and 800 �C at
suprasolidus conditions, the aluminous gneiss requires a decrease
of w6 wt.% SiO2 to destabilize quartz and of w7 wt.% SiO2 to sta-
bilize corundum (Fig. 12a and c). The biotite schist requires a more
extreme reduction of SiO2 in the bulk composition to destabilize
quartz (w20 wt.% SiO2) and stabilize corundum (w22 wt.% SiO2) at
the same temperature and pressure (Fig. 11a and d).

The quartz-out and corundum-in phase boundaries are not sen-
sitive to pressure, except at P < 7 kbar in the stability field of
cordierite for the biotite schist (Fig. 11b) and at P < 6 kbar in the
stability field of cordierite or sapphirine for the aluminous gneiss
(Fig.12b). Corundum is not predicted to be stable at P< 6 kbar for the
aluminous gneiss due to the breakdown of corundum to produce
sapphirine. The quartz-out and corundum-in field boundaries are
sensitive to temperature as indicated by the shift of both to lower
SiO2 values at higher temperatures (Figs.11a and 12a). This indicates
that less silica depletion is required to stabilize corundumatelevated
temperatures for both the aluminous gneiss and the biotite schist.

With decreasing SiO2 in both the aluminous gneiss and biotite
schist, corundum modes increase relatively rapidly (e.g., closer
spacing of contours in Figs. 11 and 12) during the concomitant
breakdown of sillimanite (Figs. 11 and 12). Sapphirine is predicted
to be stable at very low SiO2 concentrations (Figs. 11 and 12) and



Figure 8. Maniitsoq rock types plotted on a primitive mantle-normalized (Palme and O’Neill, 2003) element diagram. (a) Amphibolites. (b) Kyanite gneiss. (c) Ruby mica schist. (d)
Ultramafic rocks. The shaded area represents the total range of the Maniitsoq data (Table 1). Note the relative enrichment in Th-Zr-Hf-LREE from the kyanite gneiss to the ruby mica
schists, which may suggest the involvement of melt transfer in the corundum-forming process.

Figure 9. The Storø rocks plotted on a primitive mantle-normalized (Palme and O’Neill, 2003) element diagram. Median compositions of the biotite schist and the aluminous gneiss
are based on data from Szilas et al. (2016) (see Table 3). The shaded area represents the total range of the Maniitsoq data for comparison (Table 1). Note that the Storø median
amphibolite is not plotted, because it is not relevant for the corundum formation at this locality.
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Table 2
Phase abbreviations used in the figures of the present study (from Holland and
Powell, 2011).

aug augite liq liquid
bi biotite ol olivine
cd cordierite opx orthopyroxene
cor corundum pl plagioclase
g garnet q quartz
H2O water ru rutile
hb hornblende sa sapphirine
ilm ilmenite sill sillimanite
ksp K-feldspar sp spinel
ky kyanite
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growth of sapphirine is modelled to occur at the expense of
corundum (Figs. 11c, d and 12c, d). The maximum mode of
corundum occurs at SiO2 values just above those required for
sapphirine stability.

The modelled amphibolite composition does not predict
corundum formation even for extreme SiO2 depletion (Fig. 10). For
this composition, silica depletion results in the disappearance of
quartz at 49e47 wt.% SiO2 over the modelled range of pressure and
temperature except at T > 800 �C and P < 7 kbar, where quartz is
unstable even for the modelled median composition (Fig. 10a and
b). Olivine is predicted to be stable at SiO2 <42 wt.% for relatively
low pressures at 800 �C (�8 kbar; Fig. 10b). In general, the relatively
low Al2O3 values of the amphibolite are expected to prohibit
corundum formation due to SiO2 depletion alone.

The predicted phase assemblage of the ruby mica schist is
sensitive to the amount of ferric to ferrous iron in the bulk
composition (Fig. 13a). For example, cordierite is expected to be
stable in relatively oxidized rocks whereas spinel is stable in more
reducing rocks (Fig. 13a). Corundum is stable over the modelled
compositions but the amount of corundum is predicted to be
Table 3
Compositions used in phase equilibria modelling including the new bulk-rock geochemic
et al. (2016).

Median and measured compositions wt.%

SiO2 TiO2 Al2O3 Fe2O
T
3

Storø area
Amphibolite 49.56 1.80 13.56 15.95
Aluminous gneiss 51.35 2.38 20.22 15.78
Biotite schist 68.72 0.75 14.52 6.79
Ruby mica schist 28.04 2.29 42.49 8.00
Maniitsoq area
Kyanite gneiss 66.19 0.92 18.82 8.88
Ruby mica schist 39.01 0.93 25.04 7.20
Peridotite 41.76 0.05 2.48 9.62

Modelled compositions Figure mol.%

H2O SiO2 Al2O3 CaO

Storø area
Amphibolite x ¼ 0 9 3.20 53.04 7.93 10.96

x ¼ 1 9 3.92 42.48 9.72 13.43
Aluminous gneiss x ¼ 0 11 1.01 60.78 12.00 4.24

x ¼ 1 11 1.41 45.52 16.67 5.89
Biotite schist x ¼ 0 10 2.86 72.65 8.57 1.72

x ¼ 1 10 5.43 48.12 16.27 3.26
Ruby mica schist x ¼ 0 12a þ 34.31 30.64 5.01

x ¼ 1 12a þ 33.10 29.56 4.83
PeT 12b þ 34.25 30.59 5.00

Maniitsoq area
Kyanite gneiss x ¼ 0 13 0.56 74.65 10.95 2.68

x ¼ 1 13 1.61 26.83 31.60 7.72
Ruby mica schist x ¼ 0 15a þ 41.47 15.68 4.10

x ¼ 1 15a þ 40.31 15.25 3.99
PeT 15b þ 41.29 15.62 4.08

Peridotite PeT 14 � 35.16 1.23 0.13

’þ’ in excess, ’�’ not considered.
greatest at relatively oxidizing conditions at 800 �C (Fig. 13c). The
observed mineral assemblage in the ruby mica schist from Storø
includes garnet, biotite, ilmenite, plagioclase, corundum and spinel.
Using the P-T phase diagram in Fig. 13b, this assemblage is
restricted to P > 5.5e8 kbar with increasing temperature. This is
broadly consistent with the previous estimates of the P-T conditions
of metamorphism (Persson, 2007).
5.3. Phase equilibria models for the Maniitsoq rocks

Phase equilibria modelling of the kyanite gneiss from Maniitsoq
also suggests that quartz and corundum are not stable together over
the range of modelled P-T conditions, which is the same as the
aluminous gneiss from Storø. At 800 �C, the first appearance of
corundum is restricted to SiO2 concentrations less than w40 wt.%
over the range of modelled pressures. This requires the extraction of
w15 wt.% SiO2 from the starting kyanite gneiss (Fig. 14a). Note that
the quartz-out and corundum-in field boundaries are not sensitive to
temperature (Fig. 14a) or pressure, except at low pressures in the
stability field of cordierite (P < 6 kbar; Fig. 14b). Corundum is ex-
pected togrowat the expenseof kyanite or sillimanite (Fig.14c andd).

When compared to the Storø composition, the kyanite gneiss
from Maniitsoq requires more SiO2 depletion to stabilize
corundum, but it can potentially produce more. For example, the
Maniitsoq composition is predicted to generate up to 30 mol.%
corundum whereas the maximum amount of corundum in the
Storø composition is w7 mol.% due to the growth of sapphirine at
the expense of corundum at low SiO2 contents (Fig. 12a and b). No
sapphirine is predicted to be stable over the modelled conditions
for the Maniitsoq kyanite gneiss (Fig. 14a and b).

The phase assemblage of the ruby mica schist fromManiitsoq is
sensitive to the amount of ferric to ferrous iron in the bulk
al data for the Maniitsoq rocks, as well as existing data for the Storø rocks from Szilas

MnO MgO CaO Na2O K2O Cr2O3 %Fe3þ

0.25 4.95 10.31 3.48 0.14 e 14
0.23 2.78 3.93 2.39 0.94 e 15
0.06 2.91 1.60 2.08 2.56 e 18
0.05 9.09 3.82 0.55 4.20 0.12 5

0.18 1.92 2.53 0.22 0.35 e 15
0.04 17.18 3.60 0.63 6.37 e 15
0.29 45.55 0.14 0.02 0.01 0.07 5

MgO FeOT K2O Na2O TiO2 MnO O Cr2O3

7.33 11.92 0.09 3.35 1.35 � 0.83 �
8.98 14.60 0.11 4.10 1.65 � 1.02 �
4.18 11.95 0.61 2.33 1.81 0.19 0.90 �
5.81 16.60 0.84 3.24 2.51 0.26 1.25 �
4.34 5.12 1.64 2.02 0.57 0.05 0.46 �
8.24 9.71 3.10 3.83 1.08 0.10 0.87 �
16.58 7.37 3.27 0.65 2.10 0.05 0.01 �
15.99 7.11 3.16 0.63 2.03 0.05 3.55 �
16.55 7.35 3.27 0.65 2.10 0.05 0.19 �

2.82 6.60 0.22 0.21 0.68 0.15 0.49 �
8.14 19.04 0.63 0.60 1.97 0.43 1.43 �
27.22 5.76 4.32 0.65 0.75 0.04 0.01 �
26.46 5.60 4.20 0.63 0.72 0.04 2.80 �
27.11 5.74 4.30 0.65 0.74 0.04 0.43 �
57.19 6.10 � 0.02 � � 0.15 0.02



Figure 10. Storø amphibolite (for median composition see Table 3). (a) Temperature-SiO2 diagram calculated for a fixed pressure of 7 kbar. (b) Pressure-SiO2 diagram for the median amphibolite composition calculated for a fixed
temperature of 800 �C. The median SiO2 content is shown by the arrow on the horizontal axis. No corundum is expected to be stable in this composition across the modelled compositional range.
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composition (Fig.16a). Corundumis predicted tobecomeunstable at
temperatures just below the solidus for relatively reducing com-
positions but is stable at the solidus formore oxidizing composition.
Similar to the composition from Storø, spinel growth at the expense
of corundum occurs at relatively reducing conditions (Fig. 16c).

The observed mineral assemblage in the ruby mica schist from
Maniitsoq includes garnet, biotite, plagioclase, corundum and
spinel. Using the P-T phase diagram in Fig. 16b, this assemblage is
restricted to P> 7.5e10 kbar with increasing temperature from 650
to 800 �C. Sapphirine is predicted to be stable at lower pressures,
but this mineral was not observed in the Maniitsoq sample.

The peridotite from Maniitsoq is predicted to contain a stable
assemblage of plagioclase, olivine, spinel and orthopyroxene (Fig. 15)
over the range P-T conditions predicted for the ruby mica schist
(Fig. 13). The absence of garnet from the peridotite restricts the
pressure to <14e15 kbar with increasing temperature from 700 to
900 �C,which is compatiblewith theP-TestimatesofDycketal. (2015).
6. Discussion

6.1. Mechanism for corundum stabilization

Corundum-bearing rocks in metamorphic terranes can be pro-
duced by (1) hydrothermal alteration (e.g., Bottrill, 1998), (2)
metasomatic exchange with the ultramafic rocks or rodingitization
(e.g., Riesco et al., 2005) and (3) melt loss (e.g., Cartwright and
Barnicoat, 1986). A corollary of these processes is that the chem-
istries of the nearby amphibolites at Maniitsoq are not appropriate
for determining the geotectonic setting of formation. In the trace
element diagram in Fig. 8a, some samples clearly have crustal
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signatures with elevated La, Pb and Th relative to Nb and Ta,
although two samples have flatter patterns. Thus, wewill not make
inferences about the geodynamic environment of formation based
on these data, but will leave that discussion for a future study
targeting Maniitsoq mafic rocks on a regional basis.

The role of hydrothermal alteration in the genesis of the
corundum-bearing rocks can be assessed using the major and
trace element chemistries. In Fig. 7 we show selected bulk-rock
geochemical plot for the Storø and Maniitsoq rocks. Potassium
and Sr are strongly enriched in the corundum-bearing rocks,
which is hardly surprising due to their relatively volatile
behavior during fluid-movement. It should be noted that TiO2 is
not generally much different between the metapelite precursor
rocks and the corundum-bearing metasomatic products.
Aluminum oxide versus TiO2 is a ratio that is usually considered
constant during hydrothermal alteration processes, because both
elements have high field-strength (HFS) and are not easily
mobilized. However, we observe that although TiO2 is not
significantly different for these rocks, they show a large differ-
ence in their Al2O3 contents and the corundum-bearing rocks
even show a slight increase in this ratio despite TiO2 actually
being marginally higher in these. This suggests that Al2O3 was
mobilized in these rocks, which either points to melt mobiliza-
tion, alkaline hydroxide-complexation, or mobilization by alkali-
bearing high-temperature fluids as Na-Al-Si-O polymers (e.g.,
Kerrick, 1988; Oelkers et al., 1994; Manning, 2006). Thorium is
also a HFS element, which is not typically mobilized during hy-
drothermal processes. However, Kessel et al. (2005) demon-
strated that Th can indeed become mobilized in high-
temperature fluids or in a melt phase, as it is an incompatible



Figure 13. Storø corundum mica schist (sample 11801). (a) Temperature-composition diagram for various ratios of ferric to ferrous iron for the ruby mica schist from Storø
calculated at a fixed pressure of 7 kbar. Corundum is stable across the entire diagram. (b) Pressure-temperature phase diagram for the ruby mica schist from Storø. (c) Composition-
mode diagram illustrating the slight increase in the mode of corundum towards more oxidized compositions. (d) Temperature-mode diagram showing the decrease in the predicted
mode of corundum towards higher temperatures.
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trace element, which is also observed for mafic granulites in the
Nuuk region (Szilas et al., 2014a).

An attempt was made to apply the isocon method of Grant
(1986) to make mass-balance calculations for the metasomatic
transformation from the metapelites at Storø and Maniitsoq to the
protoliths of the corundum-bearing schists. However, this
approach was not possible due to significant differences in the
ratios of refractory elements between the metapelitic rocks and the
resulting corundum schists. Thus, despite a close spatial proximity
and a general similarity in trace element patterns between the
sample pairs, the systematics of their high-field-strength elements,
rule out simple hydrothermal alteration as a process to form a
protolith suitable for corundum formation at higher metamorphic
grade. This observation is compatible with three different expla-
nations: either (1) partial melting was involved, which would
fractionate fluid-immobile trace elements, and/or (2) mechanical
mixing of pelite and ultramafic rocks during their juxtaposition
resulted in erratic trace element ratios and differences to the actual
protolith of the corundum-bearing schists making the isocon
method inapplicable. (3) Alternatively, and perhaps the simplest
explanation is that the metapelites were heterogeneous at a scale
that is smaller than the sampling and thus any primary mineral-
ogical heterogeneity would also control the budget of immobile
elements. Nonetheless, hydrothermal alteration is not the domi-
nant process for generating corundum-bearing rocks at Storø and
Maniitsoq.

Metasomatic exchange or diffusion of silica between silica-rich
and silica poor rocks is a common origin for corundum-bearing
rocks in high-grade gneiss terranes (e.g., Riesco et al., 2004,
2005). The driving force for diffusion in metamorphic and meta-
somatic systems is differences in chemical potential gradients of
constituent components (e.g., White et al., 2008). For the ruby-
bearing rocks, the difference in chemical potential of silica be-
tween the relatively silica-poor ultramafic rock and the adjacent
silica-rich aluminous rocks is expected to be the principal factor.
The juxtaposition of these rocks would result in a chemical po-
tential gradient that could be equalized by the transfer of silica from
the rock with the higher chemical potential (aluminous gneiss) to
the rock with lower mSiO2

(ultramafic rock). Values of the chemical
potential of SiO2 for the different rock types were calculated with
THERMOCALC. For Storø, the calculated chemical potential of SiO2
(mSiO2

) at PeT conditions of 800 �C and 7 kbar of the ultramafic
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composition is �981.76 kJ/mol whereas it is a much higher value of
�973.65 kJ/mol for the aluminous gneiss. The calculated value for
the ruby-mica schist is �976.37 kJ/mol, which is in between the
other two values. For Maniitsoq, the mSiO2

value at PeT conditions of
800 �C and 10 kbar for the ultramafic composition is �975.95 kJ/
mol. The kyanite-gneiss has a value of �966.64 kJ/mol and the
ruby-bearing rock has an intermediate value of �972.57 kJ/mol.
Both examples show that there is a strong gradient in chemical
potential that develops at or near the peak of metamorphism be-
tween the ultramafic rock and the adjacent aluminous rocks. The
ruby-bearing rocks are interpreted to represent a snapshot of the
system attempting to equilibrate this gradient by diffusion of silica
from the relatively high� mSiO2

aluminous rocks towards the rela-
tively low� mSiO2

ultramafic rocks. This is supported by the esti-
mated intermediate mSiO2

values of the ruby-bearing rocks
compared with the ultramafic rocks and aluminous gneisses.

Melt loss is an additional mechanism that may form corundum-
bearing assemblages. The composition and proportion of melt for
the Storø aluminous gneiss and Maniitsoq kyanite gneiss were
modeled in THERMOCALC and the results are summarized in Fig. 17.
The composition of themelt are those in equilibriumwith both rock
types at 700, 750, 800, 850 and 900 �C and the melt loss vectors
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represent the residuum composition after the extraction of
10mol.% (roughly equivalent to 10 vol.%) melt from the system. This
amount is considered a maximum because the calculated propor-
tion of melt at the modeled PeT conditions is generally <10 mol.%
(Figs.12c, d and 14c, d). Vectors representing the composition of the
residue after melt loss plot towards the FeO þ MgO apex and away
from the SiO2 apex in Fig. 17 resulting in slightly more residual
compositions but not enough to account for the measured com-
positions of the corundum-bearing rocks. Nonetheless, melt loss
may have made a minor contribution to reducing the silica content
of the inferred protoliths.

The relative importance of melt loss and silica depletion during
metasomatism and corundum formation is evaluated in Fig. 17. For
the Maniitsoq sample, some combination of melt loss and silica
depletion is plausible to explain the composition of the ruby-
bearing rocks. The modelled compositions do not produce the
measured compositions exactly, but it is the correct trajectory and
within the range of the total variability of corundum-bearing mica
schists at Maniitsoq. For the Storø aluminous gneiss, the melt loss
vector is incompatible with the observed trends, and it should also
be noted that the PeT conditions for this sample do not support
extensive partial melting. However, as seen in Fig. 9, the Storø ruby
mica schist also appears to be enriched in Th-Zr-Hf-LREE relative to
the aluminous gneiss precursor rock, which does indicate a role for
melt transfer or alternatively a high-temperature supercritical fluid
in which these elements behaved strongly incompatible. The ruby-
mica schists may require prior Al2O3 enrichment (or FeO þ MgO
depletion) via hydrothermal leaching, however, the very large Al-
enrichment observed in Fig. 7 requires significant mobilization
either as Al-hydroxide complexes or as Na-Al-Si-O polymers
(Oelkers et al., 1994; Manning, 2006).

It is important to note the large enrichment in silica in Fig. 17,
from the most refractory peridotite (sample 455) to the most
amphibole-rich peridotite (sample 466) at theManiitsoq corundum
locality. This clearly demonstrates that the buffering capacity of the
ultramafic rocks with respect to silica is of great importance,
because it is of the same magnitude as would be required for the
depletion of the aluminous precursor to the composition of the
corundummica schist protolith. We consider this observation to be
strong evidence for the direct involvement of the ultramafic rocks
in the metasomatic processes and the stabilization of corundum in
metapelite. One way in which this transfer of silica into the ultra-
mafic rocks could be envisaged to take place would be by fracture
development during deformation associated with the trans-
formation of serpentinite to peridotite. Alternatively, the silica
transfer could have occurred during the formation of tremolite in
the ultramafic rocks at higher temperature conditions. This would
result in a significant volume decrease of the ultramafic rocks and
fracturing of the surrounding metapelite to accommodate this
volume change, which could induce fluid infiltration that would
result in the mobility of primarily silica to form tremolite in the
ultramafic rocks. Support for this model is seen by the extensive
network of amphibole dominated fractures close to the contact
between the ultramafic rocks and the kyanite gneiss (Fig. 5c).

Nevertheless, the loss of silica by itself cannot account for the
strong enrichment in Al2O3 that is needed to stabilize corundum to
the extent that is seen in the sample of the Storø ruby schist, where
Al2O3 comprises up to 30 mol.% of the measured composition. Two
ways of doing this are by either: (1) pre-metamorphic hydrother-
mal leaching of the aluminous gneiss, which would serve to cause
residual enrichment in fluid-immobile components, or (2) by hy-
drothermal addition of Al-hydroxide complexes under highly
alkaline conditions. The former is not supported because TiO2,
which would certainly have remained immobile, is generally
within the same range between the metapelites and the
corundum-bearing rocks at both Maniitsoq and Storø (see Fig. 7).
The second option of introduction of Al-hydroxide complexes
during hydrothermal alteration is rather speculative, but may be
supported by the reducing and alkaline nature of serpentinization
reactions (e.g., Frost, 1985; Klein et al., 2013). This is perhaps sup-
ported by the abundant calc-silicate minerals within the leu-
coamphibolites at Maniitsoq, such as epidote, diopside and garnet,
which is typical of rodingitization, a process which requires
abundant Ca(OH)2 to be present in the fluids (Bach and Klein,
2009). Thus, it appears that there was a long and complex evolu-
tion of the fluids ranging from early seafloor hydration and for-
mation of serpentine in the ultramafic rocks and later dehydration
reactions with the formation of amphibole-peridotite (Fig. 6b),
which was likely associated with the stabilization of corundum in
the silica-depleted aluminous gneisses.
6.2. Limitations of modelling

The phase equilibria modelling presented here suggests that
quartz and corundum do not form a stable assemblage together
in relatively high-temperature metamorphic rocks. This contrasts
with some reports of assemblages that include quartz þ sillimanite
þ corundum (e.g., Guiraud et al., 1996; Shaw and Arima, 1998).
Experimental work by Harlov et al. (2008) demonstrated that these
assemblages are metastable, but may persist in metamorphic
rocks due to sluggish kinetics. However, quartz in direct contact
with corundum is relatively rare in natural samples and
corundumþ quartz assemblages are usually found in granuliteswith
complex microstructures (e.g., White et al., 2008; Kelsey and Hand,
2015) that may not reflect hand-sample scale equilibrium, which is
what we model here.

Phase equilibria modelling is a simplification of natural sys-
tems. Here, we investigate two occurrences of ruby from Storø



Figure 16. Maniitsoq ruby mica schist (sample 464). (a) Temperature-composition diagram for various ratios of ferric to ferrous iron for the ruby mica schist from Maniitsoq calculated at a fixed pressure of 10 kbar. (b) Pressure-
temperature phase diagram for the ruby mica schist from Maniitsoq. (c) Composition-mode diagram illustrating the slight increase in the mode of corundum at the expense of spinel towards more oxidized compositions. (d)
Temperature-mode diagram showing the decrease in the predicted mode of corundum towards higher temperatures due to the growth of spinel and sapphirine. Note that this particular sample is relatively silica-rich and has the lowest
Al2O3 content of any of the studied corundum-bearing rocks. This is clearly reflected by the low corundum mode and the sample likely marks the lower boundary for composition that stabilize corundum. However, the adjacent ruby
mica sample (463) has the highest Al2O3 and lowest SiO2 of any of the studied rocks, and would thus likely have a corundum mode larger than even Storø sample 11801 of 20%.
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Figure 17. Ternary diagram showing (FeO þ MgO) vs. SiO2 vs. Al2O3 (oxides are plotted as molar proportions) for the rocks involved in the corundum formation at Maniitsoq and
Storø. The melt loss vectors (barely visible) are the appropriate length for the extraction of up to 10% melt; the composition and proportion of melt for the Maniitsoq kyanite-schist
and Storø aluminous gneiss were calculated with THERMOCALC at 700, 750, 800, 850 and 900 �C, respectively, although they do not different significantly. Note that the large
enrichment in silica going from the most refractory peridotite (sample 455) to the most amphibole-rich peridotite (sample 466) at the Maniitsoq corundum locality. This
enrichment in silica can easily account for the corresponding loss that is observed going from the kyanite gneiss to the corundum mica schists. Ultramafic rocks are shown in green
symbols, Maniitsoq rocks in red, and Storø rocks in blue.
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and Maniitsoq using median and measured compositions of key
units to evaluate the general framework of corundum and quartz
stability during metamorphism. Therefore, the results here are
not necessarily representative of all bulk compositions that can
host ruby. For example, modelling of the Storø aluminous gneiss
compositions predicts a few volume percent corundum in the
rocks. However, there are occurrences in the Storø region where
corundum modes can locally reach 10%e20% (Fig. 4). Nonetheless,
the general reactions and phase assemblages modelled provide
some important general criteria for ruby exploration in meta-
morphic rocks.

We focus on SiO2 depletion and, to a lesser extent, the ratio of
ferric to ferrous iron in the bulk composition to explore the
stability of corundum. However, it is unlikely that SiO2 is the
only mobile component in metasomatic systems that contain
ruby and the geochemistry of the rocks from Storø and Man-
iitsoq may indicate Al2O3 mobility. Riesco et al. (2004) demon-
strated that SiO2 and Na2O depletion affect the stability of
corundum in metapelites from the Eastern Alps. Furthermore,
we did not investigate the role of fluid composition on the
subsolidus stability of corundum-bearing assemblages, but CO2-
rich fluids may be important in some ruby occurrences in
graphite-rich host rocks, such as those found in southeast Kenya
(e.g., Mercier et al., 1999). Schumacher et al. (2011) suggested
that high pH at low Eh might have played a role in the formation
of the ruby in the Fiskenæsset complex from alkaline fluids
(Keulen et al., 2014).
6.3. Implications for mineral exploration

There are five main implications of the phase equilibria model-
ling for ruby exploration in metamorphic terrains. Firstly, if quartz is
present then corundum is not expected to be stable. Quartz-bearing
rocks should not be prioritized for ruby exploration. Secondly, less
SiO2 depletion of the bulk composition is required at higher tem-
peratures to stabilize corundum (Figs. 11a and 12a). Therefore, in
general, higher-grade metamorphic terrains are potentially better
targets for ruby exploration than low grade ones. However, when
spinel and sapphirine are stabilized at higher temperatures, they
grow at the expense of corundum. The association of sapphirine and
ruby has been documented in deposits at Qeqertarsuatsiaat (Fiske-
næsset) in SW Greenland (e.g., Herd et al., 1969) and in southeast
Kenya (Mercier et al., 1999). Thirdly, the main corundum producing
reaction includes sillimanite or kyanite as a reactant. Sillimanite (or
kyanite) bearing rocks should be targeted because they may have
enough Al2O3 to stabilize corundum if some SiO2 was locally
mobilized out of them. Fourthly, aluminous protoliths should be
targeted becausemoremafic rockswill not produce corundum, even
with extreme SiO2 depletion (Fig. 10). Finally, a geological mecha-
nism to deplete the aluminous protolith in SiO2 is required. At the
Storø and Maniitsoq ruby occurrences, this is accomplished by the
juxtaposition of low silica ultramafic rocks with aluminous gneisses.
The juxtaposition of ultramafic rocks and aluminous rocks has also
been proposed as a model for ruby-formation in the Fiskenæsset
complex (Schumacher et al., 2011; Keulen et al., 2014).
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Ultramafic rocks are relatively common in the region between
Nuuk and Maniitsoq (e.g., Szilas et al., 2015), and as documented
in the present study (see Section 3), such rocks may indeed
become tectonically juxtaposed with aluminous supracrustal
rocks and result in the formation of corundum during subse-
quent high-grade metamorphism. The association between ul-
tramafic rocks and corundum in aluminous supracrustal rocks in
metamorphic terrains has also been observed in Proterozoic and
Phanerozoic metamorphic terrains (Mercier et al., 1999; Riesco
et al., 2005).

We recommend that future work on the Storø and Maniitsoq
corundum localities should investigate the zoning patterns of the
euhedral rubies and examine the occurrence of sapphire vs.
sapphirine in these rocks, which are easily mistaken in the field.
Detailed in situ trace element and oxygen isotope measurements
are also recommended to expand the current data base for
corundum from Greenland.

7. Conclusions

Ruby-bearing rocks at Storø and Maniitsoq are found at the
contact between ultramafic rocks and aluminous gneisses. Trace
element chemical composition of the ruby-bearing rocks indicate
that their protoliths were similar to the adjacent aluminous
gneisses, which are inferred to have a sedimentary origin. Tectonic
juxtaposition of these rock types and metamorphism created a
chemical potential gradient in silica that drove desilicification of
the aluminous gneisses and silicification of the ultramafic rocks.
The ultramafic rocks also appear to be important as a source of trace
elements needed for the coloring of corundum (ruby/sapphire),
such as chromium and titanium.

Phase equilibriamodeling of the aluminousgneisses indicates that
silica depletion during metamorphism can destabilize quartz and
grow corundum at both localities at the estimated PeT conditions.
However, the modeling also predicts that too high temperature
(>750 �C) promotes the stability of sapphirine at the expense of
corundum, and too low pressure (<6 kbar) stabilizes cordierite.
Changes in iron speciation (Fe2þ/Fe3þ) have only aminor effect on the
predicted mode of corundum at the estimated peak metamorphic
conditions.

Aluminum appears to have been enriched in the corundum-
bearing rocks relative to their metasedimentary precursor rocks.
Melt extraction cannot reproduce the measured compositions but
Al-hydroxide complexes or Na-Al-Si-O polymers may have trans-
ported Al by metasomatic reactions in the deep crust. An overall
high prospectivity of corundum in Archean greenstone belts is thus
found in amphibolite-facies terrains hosting sillimanite- or kyanite-
rich aluminous gneisses, which are spatially related to metaper-
idotites as demonstrated by ruby-bearing rocks at Storø and
Maniitsoq.
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