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The application of frequency distribution statistics to data provides objective means to assess the nature
of the data distribution and viability of numerical models that are used to visualize and interpret data.
Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in
combination with a weighted mean. Due to the wide applicability of these tools, we present a Java-based
computer application called KDX to facilitate the visualization of data and the utilization of these nu-
merical tools.

� 2017, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The calculation of weighted means along with its accompanied
reduced chi-squared statistic and visualisation of univariate data
density provide important insight into the nature and usability of
said data. Many numerical tools have been developed for this
purpose, but few are available across multiple operating systems,
and are generally restricted to antiquated programming languages.
We provide a new cross-platform application called KDX (kay-dee-
kai; a combined initialism of kernel density estimation and reduced
chi-squared). This application is designed to perform the afore-
mentioned functions in the robust Java platform. In addition to
providing the ability to export the visualisations in a variety of file
formats, it provides an extensive customization for production of
publication-quality figures not requiring additional editing in vec-
tor image editing software. This application and source code is
available free of charge from the author’s websites.
ph@gmail.com (C.J. Spencer).
of Geosciences (Beijing).

eijing) and Peking University. Produ
c-nd/4.0/).
2. Weighted mean and reduced chi-squared

The weighted mean simply calculates a mean value based on a
particular weighting (in this case weighted by the uncertainty of
each datum). It is calculated using:
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where xi and si are the analyses and uncertainties, respectively. The
weighted uncertainty is calculated with:
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The reduced chi-squared statistic (X2
n ) is used extensively as a

goodness of fit test between a model and set of data. It is often
referred to as the mean square weighted deviation (MSWD) and is
defined by the chi-squared per degree of freedom (Bevington,1969;
Wendt and Carl, 1991). In this case the model that is being tested is
the weighted mean described above and the reduced chi-squared
statistic provides a goodness of fit assessment. It is calculated us-
ing the following equation:
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X2
n ¼ 1

n� 1
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ðxi � xÞ2
s2xi

(3)

where n is the number of analyses, xi is the individual analyses, x is
the weighted mean, and sxi is the corresponding uncertainty of xi.

Where the reduced chi-squared statistic equals 1, it indicates the
observed values conform to a statistically univariate normal dis-
tribution, and the corresponding weighted average and uncertainty
are an appropriate representation of those data. If the reduced chi-
squared statistic is greater than one, the observed scatter of the
data exceeds that predicted by the datapoint uncertainties. This
‘overdispersion’ is either due to an underestimation of the un-
certainties or the presence of ‘natural’ or ‘geologic’ scatter. If the
reduced chi-squared statistic is less than one, the data display
‘underdispersion’ and the analytical uncertainties are over-
estimated (Horstwood, 2008; Horstwood et al., 2016).

‘Real-world’ examples rarely provide a reduced chi-squared
statistic of exactly 1. However, one can assess the statistical prob-
ability that the reduced chi-squared represent a single population
using the maximum of reduced chi-squared frequency distribu-
tions (Wendt and Carl, 1991; Horstwood, 2008; Spencer et al.,
2016). The distribution functions for both values less than and
greater than one approach one asymptotically with increasing n
and the reduced chi-squared distribution approaches a normal
distribution (Wendt and Carl, 1991). Therefore the acceptable
reduced chi-squared statistics can be calculated within �2s using
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=n� 1

p
. If the reduced chi-squared falls within the 2s en-

velope there is a>95% probability the data form a single population
and the weighted average is appropriate. On the other hand, if the
reduced chi-squared does not fall within this envelope then the
data do not conform to a single population and the reduced chi-
squared should only be used with this caveat, i.e. there is less
Figure 1. KDX application, inset showing suppo
than 5% probability that the data form a statistical single
population.

3. Kernel density estimation

As discussed at length by Vermeesch (2012), the kernel density
estimation (KDE) (Silverman, 1986) provides a more robust alter-
native to the commonly used ‘Probability Density Plot’ (PDP) when
visualizing frequency data. The kernel density estimation estimates
data frequency by summing a set of Gaussian distributions, but in
contrast to the ‘Probability Density Plot’, does not take into account
the analytical uncertainty. This is particularly useful in looking for a
cluster of analyses in spectra of data. It is calculated using:

_fhðxÞ ¼ 1
n

Xn
i¼1

Khðx� xiÞ or _fhðxÞ ¼ 1
nh

Xn
i¼1

K
�
x� xi
h

�
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where Kð�Þ is the kernelda non-negative function that integrates
to one and has a mean of 0 and h (always > 0) is a smoothing
parameter called the bandwidth. A kernel with subscript h is called
the scaled kernel and defined as:

KhðxÞ ¼ 1=h Kðx=hÞ (5)

Various kernels have been devised including:

Epanechnickov : KðtÞ ¼ max
�
0;

3
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4 5

Gaussian : KðtÞ ¼ 1ffiffiffiffiffiffi
2p

p e�t2=2 (7)
rting file save options (png, jpg, svg, pdf).
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Vermeesch (2012) noted that the choice of the kernel only de-
termines the smoothness characteristics of the density estimation
and does not broadly affect the resulting KDE. However, the choice
of bandwidth will dramatically change the KDE, as a bandwidth
that is too high or low will result in over- or undersmoothing,
respectively. We suggest the choice of bandwidth should be
assigned based the fundamental limitations of the instrument
producing the data. Otherwise, a bandwidth significantly smaller
than typical uncertainties expected by a particular instrument is
likely to produce unrealistic structure in the density estimation.

Lastly, in addition to passing the reduced chi-squared test, data
that conforms to a single population should also display a skewness
approaching 1. As discussed by Spencer et al. (2016), it is possible
for a set of data to pass the chi-squared test, but displays a nega-
tively skewed tail. Defining the skewness can provide further
support for or against the reduced chi-squared test.

4. The application KDX

The application presented is called KDX (kay-dee-kai), which
combines kernel density estimation with the reduced chi-squared
Figure 2. (a) Data settings, (b) gen
statistic (also known as the mean square weighted deviation or
MSWD). The KDX interface is designed using HTML, CSS, and
Javascript and its core is developed using Javascript and Java.

KDX consists of the data and chart modules (Fig. 1). The data
module provides the functionality of the spreadsheet supporting
the comma separated values (CSV) format. The data loaded in the
spreadsheet is used to plot the charts. The chart module provides
the plotting functionality. This module allows a user to modify the
chart appearance using the plotting preferences and save the plot in
4 different file formats (png, jpg, svg, pdf).

4.1. Data module

Users can manually enter or import the data from a CSV file into
the program’s spreadsheet. The spreadsheet provides the func-
tionality to copy, cut, paste, edit, add, and remove cells, columns,
and rows. Up to 15 columns and 10,000 rows of data can be
accommodated. This module can also export the spreadsheet data
into a CSV file. Two columns of input are required in the data
module: (1) the values of the data and (2) the corresponding un-
certainty (at the 1s or 2s level) for each value in the same row.
eral settings, (c) axis settings.



Figure 3. Three examples of data displaying over-dispersion (a), a single population
(b), and underdispersion (c), respectively.
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4.2. Chart module

The chart module plots values from the data module. KDX plots
the weighted mean and kernel density estimation charts based on
the columns that a user selects as values and uncertainties. This
module provides extensive settings to customize the charts. These
settings are arranged into three categories: the data settings, the
general chart settings, and the axis settings.

4.3. Data settings

The Data settings tab includes Input Data, Output Uncertainty,
Kernel Density Estimation, and Reset to Defaults (Fig. 2a). The same
as for the equations above, s represents the standard deviation, x is
the weighted mean, and sx is weighted uncertainty.

Input Data settings allow users to specify that if the un-
certainties for the values are at the 1s or 2s level. There is an option
to choose if values should be rejected from the calculations. The
options for rejection are ‘No Rejection’, ‘Outside 1s’, and ‘Outside 2s’
meaning that no value will be rejected, and values are rejected if
they resides outside of x� sx or x� 2sx, respectively.

The Output Uncertainty settings control how the values and
weighted mean are plotted in the Chart Module. The ‘Data’ setting
controls if uncertainties of values are plotted at s or 2s. The ‘Wtd
Avg’ setting controls if the weighted average is calculated and
plotted at sx or 2sx, respectively.

The Kernel Density Estimation settings provide three controls.
KDX divides the range of Y-axis in the weighted mean chart into a
number of analyses that the ‘Variables Count’ option specifies. Re-
sults are a set of xi values that are used to compute the kernel
density estimation. The kernel function, either Gaussian (Eq. 6) or
Epanechnikov (Eq. 7), and the bandwidth are selected using ‘Func-
tion’ and ‘Bandwidth’ controls. Finally, using the button ‘Reset and
Plot’ in the ‘Reset to Defaults’ section, all settings are reset and the
charts are replotted.

4.4. General settings

The General Settings tab (Fig. 2b) is used to adjust various visual
aspects of theWeighted Mean Chart and the KDE chart. The title can
be assigned (the default is ‘Weighted Mean’) as well as the font,
point size of the title and other text. Various information can be
included or excluded from the plots, including: the errors, rejected
points, mean and the MSWD.

The height of both charts is adjusted using the height control of
the weighted mean chart. Various visual aspects of the charts can
be modified, including colors, point size of lines and the nature of
data points, error bars and caps. For the KDE chart, the line section
controls the style of the KDE line.

The axis settings (Fig. 2c) controls the appearance of X and Y
axes for both charts. ‘Grid Lines’, ‘Axis Labels’, and ‘Axis Scales’
sections control the style of gridline, labels, and the scale of the
selected axis in the selected chart. The scales of Y axes in both
charts are controlled using the ‘Axis Scales’ section of the weighted
mean chart.

5. Comparison with other software

Within the Earth Science community, there are a number of
software programs that are used for statistical treatment and
visualization of frequency data. For the calculation of weighted
averages and plotting of probability density plots, the most popular
and widely used is the Visual Basic for Applications (VBA) Microsoft
Excel-Add-in Isoplot/Ex (Ludwig, 2001). Although Isoplot has
proven itself a staple in isotope chemistry and geochronology, it is
only compatible with Microsoft Excel with VBA (only on MS Win-
dows). Furthermore, Isoplot is no longer being updated by the
author and is unlikely to remain viable in its current state. Another
program called Geodate (Eglington and Harmer, 1999) has similar
functionality to Isoplot, but is only available for computers running
MS Windows.



Figure 4. A large n example (n ¼ 4000) of detrital zircon U-Pb ages.
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For plotting KDE and PDP diagrams, densityplotter (Vermeesch,
2012) is a useful program, but does not assess the weighted
average, reduced chi-squared, or skewness.

6. System requirements and application distribution

KDX is cross-platform. This application with full capabilities
runs on any Apple computer under Mac OS X El Capitan (OS version
10.11) or later and runswith limited capabilities (no copy and paste)
on Mac OS X 10.3 to 10.10. It will not run on earlier versions of the
Mac OS. The application will also run on MS Windows running the
Windows Vista operating system and later. The application is
freeware and can be obtained as gzipped tar archive following the
links from http://KDX.travelinggeologist.com.

7. Applications

The main application of the reduced chi-squared statistic in the
geosciences is evaluating the robustness of ages obtained through
geochronology. The statistic can be applied to isochron calculations
in Rb-Sr, Sm-Nd, Lu-Hf, and Re-Os geochronology as well as dis-
cordia calculations of U-Pb geochronology (see Rink and
Thompson, 2015). Unlike current software available for evaluating
geochronology results, with KDX, the user can evaluate the reduced
chi-squared statistic (also known as MSWD) as well as the skew-
ness of the distribution, which is essential for a robust interpreta-
tion (Fig. 3). For example, it is possible for a set of U-Pb age data to
pass the chi-squared test, but displays a negatively skewed tail
caused by lead loss (e.g. Spencer et al., 2016).

In addition to geochronology, the reduced chi-squared statistic
has been applied to other geoscience disciplines, including: neo-
tectonics and seismology (Aloisi et al., 2013), seawater geochem-
istry (e.g. Stoll et al., 1999) andmetamorphic thermobarometry (e.g.
Applegate and Hodges, 1994). Other scientific fields also use this
statistic, including chemistry (e.g. Enyedy and Kovach, 2004), as-
tronomy (e.g. Xu et al., 2013; Kay et al., 2015) and medicine (Al-Issa
et al., 2015).

In the geosciences, kernel density estimation is used to assess
the different populations in provenance studies using datable
detrital minerals (e.g. Vermeesch, 2012; Gehrels, 2014) as well as to
evaluate the global record of supercontinents and large igneous
provinces (e.g. Condie et al., 2015) and seismic risk analysis (Danese
et al., 2008). KDX is able to handle large datasets (n < 10,000)
allowing for unprecedented evaluation and visualisation of large
amounts of data (Fig. 4).

Outside of the geosciences, KDE is used in ecological studies (e.g.
Worton,1989; Fleming and Calabrese, 2016), astronomy (Helmi and
De Zeeuw, 2000; Ferdosi et al., 2011; Trapero, 2016), economics
(Bolancé et al., 2003; Ruppert, 2011), Archaeology (e.g. Baxter et al.,
1997), medicine (Rossiter, 1991) and chemistry (Unke and Meuwly,
2015).
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