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Abstract

Combining text and mathematics when searching in a corpus with extensive mathematical
notation remains an open problem. Recent results for math information retrieval systems
on the math and text retrieval task at NTCIR-12, for example, show room for improvement,
even though formula retrieval appears to be fairly successful.

This thesis explores how to adapt the state-of-the-art BM25 text ranking method to
work well when searching for math and text together. Symbol layout trees are used to
represent math formulas, and features are extracted from the trees, which are then used
as search terms for BM25. This thesis explores various features of symbol layout trees and
explores their effects on retrieval performance. Based on the results, a set of features are
recommended that can be used effectively in a conventional text-based retrieval engine.
The feature set is validated using various NTCIR math only benchmarks.

Various proximity measures show math and text are closer in documents deemed rel-
evant than documents deemed non-relevant for NTCIR queries. Therefore it would seem
that proximity could improve ranking for math information retrieval systems when search-
ing for both math and text. Nevertheless, two attempts to include proximity when scoring
matches were unsuccessful in improving retrieval effectiveness.

Finally, the BM25 ranking of both math and text using the feature set designed for
formula retrieval is validated by various NTCIR math and text benchmarks.
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Chapter 1

Introduction

1.1 Motivation

An important part of any research is understanding the literature. Finding relevant pa-
pers to one’s own research is a problem of filtering a large amount of information. This
process usually involves searching for keywords to help narrow the list of candidate pa-
pers. Sometimes when researchers are unable to find relevant results, they spend excessive
time on problems that were already answered. This problem is referred to as rediscovery
and results in wasted time and resources. Michiel Hazewinkel outlined this problem with
respect to mathematics [19] and gives an example in integrable system theory where work
was invested only to discover the question was settled in 1928. Ironically, Hazewinkel notes
“that for moderately difficult problems it is often less effort to solve them again than to
try to find them in the published literature” but then in a footnote admits he cannot find
the source for such a quote.

Most search interfaces such as those for Google Scholar or arXiv are limited to text.
However, arXiv has a large collection of papers that contain a lot of mathematics. The
lack of ability to search with mathematics can lead to researchers being unable to find
relevant papers. Researchers could improve their queries if they were able to query using
mathematics and potentially reduce occurrences of rediscovery.



1.2 Problem

Language is used to express ideas and allows humans to communicate with each other.
Language is denoted by symbols that form words and those words are structured to form
sentences. Similarly, mathematics uses symbols that are structured to form mathematical
expressions.

Traditional text retrieval systems do not focus on mathematics as searching units and
have limited support for mathematics. Mathematical Information Retrieval (MathIR)
focuses on searching and retrieving documents that include mathematics. This thesis
focuses on MathlIR, its current challenges and how to apply traditional information retrieval
methods to mathematics.

The first challenge is defining what is a relevant match to a math query. For a
presentation-based approach relevancy depends on equations being structurally similar.
For example, a? + 72 is structurally similar to 22 4+ y? and would be deemed a relevant
match using a presentation-based approach. For a meaning-based approach, relevancy de-
pends on whether two equations have the same mathematical meaning. For example, 7
and % would be relevant in a meaning-based approach but not for a presentation-based
approach.

The second challenge is that mathematics is polysemic: symbols’ meanings are usually
derived from the context of the document. A symbol such as m can be a mathematical
constant or it can be used to denote the adjustment factor 7(Q, D), as seen in the paper
by Tao and Zhai [15].

The third challenge is how one represents mathematics to capture information given by
the structure contained in an expression. Formulas containing all the same symbols can be
quite different depending on where those symbols appear. For example, 22 +y3 +4 is quite
different from z* + 2Y*3 even though all the symbols are the same. The order in which
symbols appear and the relationship between symbols are important pieces of information
contained in a math expression.

MathIR systems have been able to deal with the above challenges with some level
of success, using a wide range of approaches, which are discussed in Section 2.4. How-
ever, state-of-the-art MathIR systems recently experienced poor results for the NTCIR-12
MathIR arXiv Main task, which used both keywords and math expressions in its search
queries. These results suggest that improvements could be made when ranking both text
and math. Most MathIR systems adopt separate approaches for mathematic expressions
and text, only to combine each approach using some weighting to create a final score. It



Figure 1.1: Symbol Layout Tree for yf =1+2%

seems most could benefit from a more holistic approach. This thesis focuses on how to rank
matches to queries that include both math expressions and text using a single approach.

1.3 Proposed Solution

This thesis examines using pairs of symbols in a math expression, along with their spatial
relationships, as tokens that are treated as if they were words. The proposed solution
is to take a mathematical expression, convert it into a Symbol Layout Tree (SLT) [11],
and capture features from the SLT that are then used for searching. An example of a
mathematical expression and its corresponding SLT is shown in Figure 1.1. Features of
the SLT are then encoded into tokens that form search units similar to words. We follow an
approach similar to the existing Tangent-3 [19] MathIR system that uses pairs of symbols
and their relative position, but the proposed solution expands the features of SLT used as
search units. Finally, traditional text information retrieval methods are applied to both
math tokens and text.

Tangent-3 creates separate indexes for math tokens and text. The proposed solution,
called Tangent-L, uses one combined index for both math tokens and text. Tangent-L uses
the Lucene framework for indexing and searching in its implementation and scores queries
using a traditional text-based IR ranking method called BM25. In this thesis, variations
of BM25 that include proximity are explored as well.



1.4 Contributions

This thesis expands on the previous work on Tangent [19]. The result of this work has pro-
duced Tangent-L and provides application developers with an example of how to support
mathematics retrieval. The development of this system provides the following contribu-
tions:

e How to index mathematical tokens
e How to deal with mathematical wild cards

e What features of an SLT to use for mathematical tokens

Tangent-L performance results are comparable to state-of-the-art MathIR systems. The
source code of Tangent-L is publicly available.!

1.5 Outline

Chapter 2 provides a background on traditional information retrieval, Lucene, current
MathIR systems, and the development of Tangent. This chapter highlights the differences
between Tangent-L. and previous versions of Tangent. Chapter 2 also gives a background
on how experiments can be designed to measure the importance of proximity. Additionally,
this chapter outlines the various sets of test data used to evaluate Tangent-L.

Chapter 3 provides the details of how Tangent-L. works and its implementation in
Lucene. It also outlines some of the design decisions and how wild cards can be handled
in Lucene. Chapter 4 describes a variety of features derivable from math expressions and
the experiments used to test the value of such features for ranking math combined with
text. Chapter 5 examines various ways to rank returned documents. An experiment on the
value of proximity is discussed, along with various ranking functions that try to leverage
proximity. Chapter 6 closes with a discussion about what conclusions can be drawn and
what future work should be pursued.

Thttps://github.com/fras2560/Tangent-L
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Chapter 2

Background

2.1 Traditional Text Information Retrieval

Traditional text information retrieval (IR) focuses on presenting relevant information from
a collection of information based upon a query.

2.1.1 Introduction

Text IR is usually broken into two major functions. The first is the indexing process, which
entails building the data structures that enables one to search through the collection. The
major components of the indexing process are seen in Figure 2.1. Text acquisition involves
acquiring the collection of documents and converting them to a standard format. Text
transformation involves parsing the document into a stream of tokens and then applying a
set of filters to each token, such as stemming and stopping. Index creation takes the stream
of transformed tokens to create the index or data structures that enable searching. Index
creation must be efficient with respect to space while still allowing for efficient querying.

The second major function is the querying process, which entails taking a user’s query
and transforming it to terms that are used to query the index. The major components of
the querying process are seen in Figure 2.2. User interaction provides an interface between
the person and the IR system. It allows the user to enter a query that then is transformed
into query terms. A ranking component compares the query terms to the index terms and
generates a ranked list of documents. The ranking is based upon a retrieval model such
as the standard boolean model that supports conjunction, disjunction, and negation. The



4

I
— Text Acquisition
—

Document Data Store

Index Creatior

Y &

Text Transformation

=

Figure 2.1: The indexing process [1 1]

evaluation component inspects query logs and updates the ranking component to improve

its effectiveness and efficiency.

2.1.2 Performance Measurements

Index

Information retrieval uses heuristics for its ranking and retrieval models.

There are two underlying ways to measure a system: recall and precision.

Recall is the fraction of relevant documents returned:

number of relevant items retrieved

recall =

number of relevant items in collection

Precision is the fraction of documents returned that are relevant:

number of relevant items retrieved

precision =

In general recall is a measure of how well a system presents all relevant documents,
whereas precision is a measure of how well a system focusses on relevant documents. One

6

total numbers of items retrieved

The “right”
answer is not completely defined for information retrieval, but rather some results are
deemed to be more acceptable than others. Information retrieval performance is usually
evaluated by benchmarks that include a collection of documents, a set of queries, and a
set of judgments for each query. This allows researchers and developers to compare their
systems directly and not require user studies each time one wants to evaluate a system.
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can increase recall by simpling returning more documents but this would result in a lower
precision. In general, as recall increases, precision tends to decrease. Alternative measures
(as summarized below) have been created to incorporate both recall and precision.

Precision and recall are both evaluated using the whole list of matched documents
returned by the system and do not take the list’s order into consideration. One way to
incorporate order is to calculate precision based on only the first n documents retrieved,

denoted by P@n. An alternative way to consider order is to compute average precision
(AP) by:

iy (POR) - rei(h))
number of relevant documents
where k is the rank in the sequence of retrieved documents; n is the number of retrieved
documents; P(k) is the precision at cut-off k; rel(k) is 1 if a document at rank k is
relevant and 0 otherwise. AP is computed on a per query basis and the mean average
precision(MAP) is then calculated for all queries by the following:

Map - 2 AP0

Q

MAP is a commonly used measurement in information retrieval.

AP =

7



Returned documents may not have a judgment for a query since the set of judgments
available is often a subset of the collection. This shortfall becomes more problematic as
the size of the collection increases. The MAP score will decrease as the size of not judged
documents grows and a measurement called bpref was created to deal with this problem [6].
For a query with R documents judged to be relevant, where r is a document judged to
be relevant, n is a document judged to be irrelevant, and N is the number of documents
judged to be irrelevant, bpref is calculated as:

1 |n ranked higher than r|
bpref = — 1—
PR ; min(R, N)

One additional measurement that is used is mean reciprocal rank (MRR), calculated

as:
Q| 1

1
MRR = —
RR Q 121 rank;

where rank; is the position of the first relevant document.

The above are so commonly used that the National Institute of Standards and Technol-
ogy (NIST) has produced an evaluation tool, called trec_eval', which is used to calculate
all measurements in this thesis. The trec_eval output for all experimental runs reported in
this thesis are available.?

2.1.3 Ranking

One of the most well known ranking functions for IR is term frequency-inverse document
frequency (tf-idf). The first idea of tf-idf is that the more frequent a term appears in a
document the more likely it is to be relevant [21]. The second idea is that the rarer a term is
in the collection of documents, the more weight that term should have [28]. The simplest
formulation of tf-idf for a given collection of documents D, a query ¢, and a document

d € D is given by
tf w D

weq

where tf,, is the number of occurrences of term w in document d; |d| is the total number
of terms in document d; |D,,| is the number of documents in D containing term w.

Thttps://github.com /usnistgov /trec_eval
Zhttps://github.com/fras2560/ Tangent-L_Runs
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Okapi BM25 is a state-of-the-art text ranking function that is the variant of tf-idf used
by many search engines [31]. Given a collection of documents D containing | D| documents
and a query ¢ consisting of a set of query terms, the score for a document d € D is given

by
k+1)tf D| —|Dy| + 0.5

weq

where K =k (1.0 —b+ b%); k and b are constants (following common practice, chosen

to be 1.2 and 0.75 respectively); tf,, is the number of occurrences of term w in document
d; |d| is the total number of terms in document d; avdl is the average document length;
and |D,,| is the number of documents in D containing term w.

A variation of BM25, called BM25+, has been defined to reduce the penalty that BM25
imposes on long documents [29].

B (k+1)tf, Dl+1
BM25(q,d) = ) | (mﬂi) log< Dy )

weq

where § is a constant (following common practice, chosen to be 1.0).

2.1.4 Proximity

Researchers have investigated other information that could be used when ranking doc-
uments besides term frequency and inverse document frequency. One of the common
information measures that can also be considered is proximity.

Proximity is how close the matched terms appear in a document. One measure of
proximity, span, is the smallest distance to cover all matched terms [9]. Various other
measurements have been developed, and research has been conducted to evaluate the ef-
fectiveness with respect to document ranking for the following measures when using text-
based search [45]:

e Span [13] is defined as the length of the shortest document segment that covers all
query term occurrences in a document, including repeated occurrences.

e MinCover [15], minimum coverage, is defined as the length of the shortest document
segment that covers each query term at least once in a document.



e MinDist [15], the minimum pair distance, is defined as the smallest distance value
of all pairs of unique matched query terms.

e AveDist [15], average pair distance, is defined as the average distance value of all
pairs of unique matched query terms

e MaxDist [15]. maximum pair distance, is defined as the largest value of all pairs of
unique matched query terms.

These proximity measures were used against various datasets to quantify how well they
distinguish between relevant and non-relevant documents. Span and MinCover had neg-
ative results, the non-relevant documents having smaller measurements than the relevant
documents. The reason for the negative results is that documents with more matched
terms typically have longer spans. This leads to normalizing both Span and MinCover.
Spanyorm divides by the total number of occurrences of query terms in the span segment
and MinCover, ., divides by the number of unique terms. These normalized measures
lead to better results but for some datasets are still negative.

MinDist was the only measure of the five that is always positive: relevant documents
have a smaller minimum pair distance than non-relevant documents. In Section 5.2, the
same experiment of measuring various proximity definitions for both relevant and non-
relevant documents is performed to check whether proximity might be beneficial when
ranking both math and text.

These various proximity measures can be used for ranking using a simple adjustment
to BM25. For a query g, a document d, and a proximity measurement function ¢, the
following adjustment factor has been defined [15]:

m(q,d) = log(a + exp(—d(q,d)))
and this can be added to BM25 to produce the ranking function
BM25Dist(q, d) = BM25(q, d) + 7(q,d)

Another variation of BM25, BM25TP [33], incorporates proximity with BM25. BM25TP
calculates the sum of each term pair weight by multiplying it by an idf of the term pair.
For each pairs of terms (¢;,¢;), BM25TP calculates a weight of the pair:

1.0

iy by

where d(t;,t;) is the distance between the two terms.

10



However each pair of terms may appear more than once so the weight attached to each
term pair is evaluated by summing all the tp: by:

occ(ts,tj)

occ(ts,t;)

’wd<ti,t]‘) = (k?l + ].)

where k1, k and b are constants (following the original paper, chosen to be 1.2, 2.0 and 0.9
respectively);

BM25TP uses a slightly adjusted idf weight and is calculated by the following:

qu; = wa -log |Dw|_tfw
‘ k3+wa tfw

where ¢ f,, is the frequency of term w in the query; and ks is a constant (set to 1000).
The term pair weight and the idf weight are then summed as follows:

TPRSV(d,q) = Z wq(t;, t;) - min(quw;, qu;)
(ti7tj)€S

Finally, this score is then combined with BM25 to produce a final score:

BM25TP(d, ¢) = BM25(d, q) + TPRSV(d, q)

BM25TP and BM25Dist are used in Section 5.2 to explore the effect of proximity on
ranking documents for queries that include both math and text. Other proximity-aware
ranking functions [30] that are based upon different ranking models have not been explored
in this thesis.

2.2 Lucene

Lucene is an open source search library that has Application Programming Interfaces (API)
for common IR tasks [5]. Lucene was created in 1997 and donated to the Apache Software
Foundation in 2001.

Lucene provides APIs for common tasks in indexing, querying, and searching. Fig-
ure 2.3 depicts an overview of Lucene’s architecture. Only the relevant parts to Tangent-L
are described here, since Lucene is fairly complex.

11
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Language analysis (implemented as a text analysis chain) transforms text content into
a representation that can be used either for indexing or for querying. Language analysis
has three main parts:

e Character Filtering and Normalization
e Tokenization

e Token Filtering

Language analysis in Lucene is applied by tokenizing a stream of characters and then
running a series of filters. The tokenizer and chain of filters is referred to as an Analyzer.

Lucene includes an IndexWriter that is used for creating indexes. After an Analyzer
processes text from a document, the results are then passed to IndexWriter and added to
an index.

Lucene also includes an IndexSearcher that executes queries against an index. It uses
an Analyzer to process the query input text and produces a Query. A Query can then be
executed against the index to return a ranked list of matched documents.

12



Lucene was used to implement Tangent-L. It was selected since it is a common library
used by IR researchers and is the basis of many commonly used systems such as Elastic-
search and Apache Solr. Importantly, it allows one to experiment with alternative ranking
functions by making small changes to the code.

2.3 NTCIR MathIR

The development of a new system requires one to be able to evaluate it in an objective
way. For IR, this requires a set of queries on a collection of documents along with a list
of judged documents. This entails creating a collection of documents, queries, and user
studies to evaluate the returned documents for each query. This approach has been used
by some researchers, such as Zhang and Youssef [51], but has a few downsides. First, it
requires a significant amount of time to create a new collection of documents. Second, the
creation of the queries may not reflect users’ actual queries, and thus the judgments may
not reflect the documents’ relevance to actual user needs. Third, the results of various
systems are not comparable.

For many IR tasks, the annual Text REtrieval Conference (TREC) has created a com-
monly accepted dataset together with queries and collections of judged documents. TREC
then publishes the dataset, queries, and judged documents, packaged together as a task,
so new systems can compare their performance against previous results. TREC tasks re-
lieve researchers from spending time creating user studies and allow them to evaluate their
systems with less effort.

The lack of a TREC task for MathIR systems prevented researchers from comparing and
improving their results. However, at the 10th NII Testbeds and Community for Informa-
tion access Research (NTCIR), a MathlR focused task was created: NTCIR-MathIR [1].
Since then, two other NTCIR-MathIR tracks have included MathIR-related tasks [2] [18].
NTCIR-MathIR tasks are used to evaluate the results in this thesis.

2.3.1 Formula Representation

When mathematical expressions are included in a document, they are typically linearized
and then encoded as text, using a language such as IXTEX. One benefit of this represen-
tation is that math formulas can be tokenized and then indexed along with the text in a
conventional search engine.
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Name Size(GB) Tasks
NTCIR-10 Math dataset 63 NTCIR-10 Math Pilot Task
NTCIR-11 arXiv dataset 174 NTCIR-11 Math-2
NTCIR-12 arXiv Main Task
NTCIR-12 arXiv Simto Task
NTCIR-11 Wikipedia dataset 2.5 NTCIR-11 Wikipedia Open Subtask
NTCIR-12 Wikipedia dataset 5.2 NTCIR-12 MathWiki Task
NTCIR-12 MathWikiFormula Task

Table 2.1: Overview of the various NTCIR-MathIR datasets

An alternative text encoding is MathML, a W3C recommendation [7] proposed for
exchanging mathematics between software tools. MathML is supported by the Firefox
browser, and the MathML Association is working to improve support in browsers. Be-

cause most scientific authors write mathematics in KWTEX, MathML is often produced by
converting KTEX into MathML using tools such as MathJax [8] or LaTeXML [17].

Even though MathML is a text representation, it reflects the structure of a mathemati-
cal formula as a tree: the structure can be encoded in Presentation MathML, representing
how symbols are placed relative to each other on a printed page; alternatively the structure
can be encoded in Content MathML, representing how mathematical expressions are built
from operators and subexpressions. Some work has been done on whether Content or Pre-
sentation MathML is better for search with the results indicating that search could benefit
from semantic enrichments [32]. NTCIR-MathIR provides both Content and Presentation
MathML for its formula representation.

2.3.2 MathIR Datasets

The documents used for the various NTCIR-MathIR tasks come from two main sources:
arXiv and Wikipedia. The documents are in an HTML or XHTML format and the embed-
ded math formulas are all encoded in three different representations: Content MathML,
Presentation MathML, and original IXTEX source. Four main datasets have been created
as summarized in Table 2.1.

The NTCIR-10 Math dataset is a collection of arXiv documents obtained from the
KWARC research group [11]. KWARC used LaTeXML? [13] to convert KTEX sources into
MathML and converted over 105,120 scientific articles from mathematics, physics, and

3https://github.com /brucemiller /LaTeXML/
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computer science. LaTeXML was able to convert 60% of all the documents in the collection
successfully but 30% had unsupported macros or conversion errors and the remaining 10%
could not be converted at all.

After creating the pilot task, LaTeXML had improved enough that the organizers of
NTCIR-11 used it on the same documents as the NTCIR-10 Math dataset. Because the
assessors of the NTCIR-10 Math Pilot Task had difficulty in assessing 15-page scientific
articles, the articles were segmented into a total of 8 301,578 paragraph-sized search units.
In addition, the NTCIR-11 Wikipedia dataset was created for the NTCIR-11 Wikipedia
Open Subtask. This second dataset has a total of 30,000 articles with a total size of 2.5
GB.

The NTCIR-11 arXiv dataset was re-used at NTCIR-12 for two tasks. In addition, the
NTCIR-12 Wikipedia dataset was created with a total of 319,689 articles. This dataset,
unlike the NTCIR-11 arXiv dataset, includes full articles. Only 10% of the dataset contain
an explicit <math> tag with the other articles sampled from across Wikipedia. The
NTCIR-12 Wikipedia dataset used the same process as the datasets before it, but with
the additional step to convert mediawiki templates for mathematics in to IXTEX, and thus
into MathML as well.

2.3.3 MathIR Queries and Judgements

NTCIR-MathIR tasks are used as benchmarks for this thesis. The NTCIR-MathIR tasks
include queries along with relevance judgments for each query. The queries consist of a
name, a list of keywords and a list of formulas. The formulas are embedded in the same
way as formulas are embedded in a document. The relevance judgments are in a text file
with the query name, document name, and a score. For the NTCIR-11 Wikipedia Open
Subtask the document name includes the formula id.

Formulas in a query may include a wild card variable. The wild card variable can match
any arbitrary symbol or subexpression on a candidate formulae. The wild cards symbols
are denoted by 7v for this thesis.

Four of the NTCIR-MathIR tasks, summarized in Table 2.2, are used for training
and testing. The NTCIR-11 Wikipedia Open Subtask is used to select various math
features, and the NTCIR-12 MathWikiFormula Task is used to test those selected features.
The NTCIR-12 MathWiki Task is selected for exploring proximity measures and different
ranking functions due to its smaller size. Finally, the NTCIR arXiv Main Task is used as
a final test for Tangent-L due to its large size and being able to compare results to other
MathIR systems.
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# of Queries Includes

Task # of Queries with a Wild card Text Keywords
NTCIR-11 Wikipedia Open Subtask 100 43 No
NTCIR-~12 MathWiki Task 30 10 Yes
NTCIR-12 arXiv Main Task 29 25 Yes
NTCIR-12 MathWikiFormula Task 40 20 No

Table 2.2: Overview of the various NTCIR-MathIR tasks

The competing systems at NTCIR-12 had their runs evaluated using PQK for K €
5,10, 15,20 for the MathWiki, MathWikiFormula and the arXiv Main Tasks [18], and the
original runs are available from NTCIR.* It should be noted that some of the original
submissions had incorrectly assumed that trec_eval evaluated by rank and not score. This
resulted in some of the systems have substantially lower precision. Eventually, two different
tables were used: one using ranking by score and the other by using the provided ranking.
For simplicity, all comparisons of Tangent-L to previous results are evaluated by trec_eval
using the provided ranks.

The NTCIR-~11 Wikipedia Open Subtask was not evaluated using trec_eval but rather
with a different approach [38]. The task has 100 queries, where each query has exactly
one target document and in that document one target formula id that is deemed to be
relevant. Systems are required to return a list of (documentld, formulald) pairs for the
top 10,000 hits. Two types of evaluations are performed: document-centric and formula-
centric. Document-centric results are computed using a list of document identifiers in order
of appearance after projecting on documentld and removing duplicates. Formula-centric
results are computed using the ranked list with both document and formula identifiers.
Using those ranked lists, recall is measured by mean Recall@10000, and precision is mea-
sured by MRR, with zero used if the target is not found within the 10,000 results returned
for a query.

2.4 Math Systems

This section provides a brief overview of the state-of-the-art MathIR systems. Zanibbi et

al. [19] describe three main approaches used for MathIR: text-based, tree-based, and spectral.
As described in Section 2.3.1, the text-based approach involves taking a math expression
4http:/ /research.nii.ac.jp/ntcir/permission /ntcir-12/perm-en-MathIR.html
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tree and linearizing it, using the resulting sequence of characters for indexing and searching.
The process of linearizing the math expression tree may include normalization with the
following main steps:

e canonical orderings - ordering operands of commutative operations (e.g., z + y and
y+ )

e enumerating variables - substituting variables for unified symbols (e.g., x replaced by
vary)

e symbol substitution - replacing symbols with mathematical type (e.g., 2 replaced by
const)

These steps aim to allow MathIR systems to match formulas to similar subexpressions.
Sometimes multiple text representations of the same formula are used with different weights
assigned to each representation.

The tree-based approach usually involves storing a math expression as a tree. Subtrees
are indexed as well to allow for partial matching. The trees are then used when searching
by exact matching to other trees or using tree-edit distance [22].

The spectral approach uses paths in a tree rather than the whole tree. The paths are
then used as retrieval units. The number of paths in a tree can be large so that limiting
paths to fall within a certain window size is sometimes appropriate.

A total of five systems participated in the NTCIR-12 Main ArXiv Task [18]. Table 2.3
outlines the various system configurations used.

2.4.1 SMSG5H

SMSG5 [16] is a math search engine developed by a group from Samsung R&D Institute
India. The system uses Elasticsearch and a text-based approach, and three fields are used
to store different levels of information. The first field holds exact MathML expressions
with unnecessary information, such as formula id, being removed. The second field holds
MathML expressions that are generalized by replacing symbols with “*”. The third field
stores keywords with stopwords removed. Two rules were developed to map a mathematical
equation with its definition that then are indexed into their own field. A query on the
normalized fields is then expanded to include the mathematical definition of mathematical
equations.
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Presentation — Content Tree
System Math ML MathML  Structure  Search Platform  General Approach

MCAT Yes Yes Yes Solr Tree-based
MIaS" Yes/No Yes/No Yes Lucene Text-based
SMSGH Yes No No Elasticsearch Text-based
Tangent-3 Yes No Yes Lucene & Custom™  Spectral-based
WikiMIR Yes No Yes Custom Tree-based

* Had multiple configurations with some using both Presentation MathML and Content MathML
and some using just one MathML form.
T Lucene used for text and custom search engine used for math

Table 2.3: Participant System Configurations for NTCIR-12 arXiv Main Task [1§]

Each of the above fields is queried in Elasticsearch and each one produces a ranked list
of size c. These ranked lists are combined using Borda Count, an algorithm that is used to
combine preferences of many experts [1]. Each ranked list is a voter where its first ranked
documents gets ¢ votes, its second ranked documents gets ¢ — 1 votes and its nth ranked
documents gets ¢ — n votes. Borda Count outputs a ranked list by sorting the documents
by the number of votes received from all the voters. The Elasticsearch ranked list, along
with a LDA model ranked list, a Doc2Vec model ranked list and pattern based rules ranked
list are combined using Borda Count to produced a final.

Just using FElasticsearch ranked list produces the best results for partially relevant
results. Combining the ranked lists of Elasticsearch, Doc2Vec model and pattern-based
rules produces slightly better results for relevant results. Nevertheless, SMSG5 had the
worst results for relevant documents on the NTCIR-12 arXiv Main Task.

2.4.2 MIRMU

Math Indexer and Searcher (MIaS) [10] is a system developed by the Masaryk University
Math Information Retrieval (MIRMU) team. MIaS is a text-based system that uses Pre-
sentation MathML for each formula, encoding it in a compact string representation. MIaS
generalizes math expressions structurally or at the operator level. MIaS results for the
NTCIR-11 tasks led to a structural generalization strategy to enable substitution of query
formula structures for different structures. For example [35], a® + \/?E should unify with
a? + % The matching is done by generalizing at different levels and producing multiple

strings that could match. The formula a? + ‘/75 would have the following generalization
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L Original = Generalized
I (z+y)x§ (x+*)x2
2 (r+y) (*)
2 :

3 r+y * + %

Table 2.4: WikiMirs extracted terms for (z +y) x § [27]

levels:
1. a? —I—‘/;
2. " + =

3. %+ %

MIaS generalizes at the operator level by tree ordering the formula, replacing variables
with a unified symbol, replacing constants with a unified symbol and finally assigning
weights to math expressions and all of their logical subparts. MIaS uses Lucene for indexing
and querying. Structural generalization does increase recall, but at the cost of decreasing
precision and the NTCIR-12 MathIR results are disappointing when compared to the
NTCIR-11 results [35].

24.3 ICST

Researchers at the Institute of Computer Science & Technology (ICST) of Peking Univer-
sity [16] developed a system called WikiMirs, which is a hybrid MathIR using a tree-based
approach for formulas. WikiMirs converts Presentation MathML into an operator tree
(OT) using the semantic enrichment technique [27]. The trees are then traversed recur-
sively at various levels to extract both original and generalized subexpressions, as illustrated
in Table 2.4. The subexpressions are linearized into MathML, and the resulting formulas
are indexed.

WikiMirs uses a ranking model that is trained using the RankBoost algorithm, which
works by having a collection of weak learners that are used to produce a score for a learner-
specific feature [15]. Each weak learner has a weight that is adjusted while training the
model. A final score is produced by summing the scores from each weak learner multiplied
times by their weights. WikiMirs uses 12 different features for its weak learners with three
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<math>
<mrow>
<msubsup>
<mo>&Sigma ;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0< /mn>
</mrow>
<mi>n</mi>
</msubsup>
</mrow>
<msub>
<mi>a</mi>
<mi>i</mi>
</msub>
</math>

Figure 2.4: Presentation MathML encoding for » 7 ,a; [25]

categories: formula-based, relevance-based, and document-based. Formula-based features
include features such as the number of layers in the OT, formula frequency, the number of
variables, and the number of constants.

WikiMir is trained on a data set that has 224 queries each with 100 relevance judgments
assigned by 12 evaluators at either the undergraduate or postgraduate level. The ranking
model produces a ranked list, but the ranked list is then re-ranked using regular expression
matching so that documents with many small sub-terms matching could be considered
relevant.

2.4.4 MCAT

MCAT is a MathIR system that uses Presentation MathML to extract path features of a
tree [21]. MCAT stores vertical paths from the root of the MathML expression to each
element in the formula. MCAT normalizes MathML using SnuggleTex® and removes tags
such as mrow and mfenced. Vertical paths are encoded in two different ways: ordered paths,

Shttps://www2.ph.ed.ac.uk /snuggletex/documentation /overview-and-features.html
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and unordered paths. Using Figure 2.4 as an example, 2#1#mi#a is an ordered path from
the root to the element a where the # is used to delimit different levels, the 2 indicates
that <msub> is the second child of the root and 1 indicates that the <mi> is the first
child of <msub>. The unordered path, for the same example, would be ##mi#a. Each
subexpression of a math expression has its vertical paths stored to allow subexpressions
to match, with an example being 2#mi#i. In addition to vertical paths, MCAT stores a
collection of elements, called sisters, that share a common parent element. For example,
mifa and mi#i would both be stored. Finally, MCAT also uses hash-based encoding as
signatures that capture several tree properties . Three different signatures are combined
to produce a single string representation of a math expression.

For each math formula, MCAT associates a set of words to it. Twenty words surround-
ing a formula are considered the context words. MCAT uses a support vector machine
(SVM) model to extract a list of words, called descriptions, to denote the math expression.
The SVM is trained using previous NTCIR datasets but has no description words for some
formulas. So a math dependency graph is used where a directed edge between ezpression-1
to expression-2 indicates that expression-1 contains expression-2. This dependency graph
is used so that math expressions can utilize descriptions from its children’s descriptions.
Nouns that appear in the same sentence of the math expression are stored as well.

All keywords, math encodings, and math textual information are stored in their own
fields. The fields are queried and each field’s score is normalized by

rawScore
finalScore = _ TAwHeore
1 + rawScore

After each score is normalized, it is summed up to produce a document score.

MCAT also has a unification step that doubles the score of math expressions that can
be instantiated from the query. Each math expression is transformed into prefix notation
and checked by the unification feature of Prolog.

MCAT [18] was the best performing search engine submitted for NTCIR-12 MathIR
tasks except for the MathWiki Task. However, MCAT has large index sizes: the index for
the NTCIR-12 arXiv Main Task is 426 GB [21]
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2.5 Tangent

2.5.1 Formula Structure Model

Tangent-3 is a two-stage formula retrieval system [19]. First Presentation MathML is
transformed into a simpler representation of a SLT (as in Figure 1.1). Nodes represent
operators, variables, constants, fractions, matrices, function arguments, and parenthesized
expressions, and each node label reflects its type and its value:

e numbers (N!n)

e variables names (V!v)

o text fragments (T!t)

e fractions (F!)

e radicals (R!)

e matrices, tabular structures and parenthesized expressions (M!frzc)
e wildcard symbols (*w)

e mathematical operators

Each directed edge has a label that reflects the spatial relationship from the source node
to the target node:

1. next (—)

2. within (5)

3. element (€)
4. above ()

5. below (\,)

6. pre-above (\)
7. pre-below ()
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S 5 R
Viy Vi v
Viy Vi N
Vg = —
= Nl —
N1+ —
= Vix —
Viz NI2 v
Vly NIl ——
= + ——

N1 Viz ——
+ NI2 -
Vliy  + ———
= Vix ———
N1 NI2 ——
Vly Vi —s———
= N2 —S5—--7
Vly N2 5o 7

Table 2.5: A list of symbol pairs for 3/ = 1 4 22

8. over (1)
9. under ({)

Given a SLT representing a math formula, Tangent-3 extracts so-called symbol pairs,
which are features in the form of triples (si,ss, R), where s; and sy are two symbols
appearing on a path in the SLT and R is the sequence of labels on the directed path
between the nodes labelled by those symbols. The symbol pairs corresponding to the SLT
in Figure 1.1 are shown in Table 2.5.

Search Strategy

Symbol pairs form the search units used by Tangent-3’s core engine, which contains an
inverted index mapping triples to formulas within documents. The core engine assigns
a score to each formula within each document based on the similarity of a query and
formula, as reflected by Dice’s coefficient. After the core engine retrieves a large ranked
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list of formulas, they are re-ranked using Maximum Subtree Similarity (MSS) [19] to select
the final top-k to be returned to the user. The MSS metric examines SLTs so as to account
for symbol unification and to rank subexpressions based on structural similarity. This
evaluation is far more costly than using conventional scoring functions for text retrieval,
thus limiting the number of results that can be re-ranked.

Beyond Formula Retrieval

Tangent-3 produced state-of-the-art results for the NTCIR-11 Wikipedia formula retrieval
task, which focuses solely on formula retrieval [19]. However, mathematical information
retrieval more generally must support queries that include both math expressions and
keywords. To this end, Tangent-3 supplements the two-stage engine for retrieving math
formula with a Lucene index for the remainder of the text, combining the results from each
using a linear weighted combination of their scores [12]. However, the disappointing results
for the NTCIR-12 arXiv Main task indicate that separate retrieval models for math and
text may be the wrong approach to adopt [15].
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Chapter 3

Applying Traditional Text
Information Retrieval to Math
Features

Tangent-3 produced adequate results for just math formula retrieval, as seen by its per-
formance on the NTCIR-11 Wikipedia benchmark [19]. However, Tangent-3 results for
the NTCIR-12 MathIR arXiv Main Task has room for improvement [18]. One difficulty
of Tangent-3 was combining the text retrieval system’s ranking with the math retrieval
system’s ranking. This difficulty leads to exploring how to incorporate Tangent’s math
features into a traditional text retrieval ranking function, with the result being Tangent-L.
Tangent-L uses traditional text retrieval approaches for formula retrieval so that it can be
integrated with keyword retrieval.

This chapter outlines the general approach of Tangent-L, its implementation in Lucene,
and some experiments to test the effectiveness.

3.1 Approach

This section introduces the general approach of Tangent-L and how to extract features from
an SLT to form a stream of math tokens that can be indexed by traditional information
retrieval systems. Additionally, this section discusses how to handle wild cards and how
to rank math features.

25



The first step of Tangent-L is to convert MathML expressions into an SLT. SLTs are
created by parsing Presentation MathML, and Tangent-L uses the same parser as Tangent-
3 [19] and uses the same node labels, node types, and spatial relationships.

The second step of Tangent-L is to extract features of the SLT. This can be done by
recursively traversing the tree and adding features it encounters to a list. Tangent-L uses
symbol pairs as one of its features, but additional features are explored in Chapter 4.

The final step is to create a stream of tokens, where each token represents a single SLT
feature. The encoding of a token must meet a certain set of requirements. How to create
a stream of tokens is discussed next.

3.1.1 Tokenization of Math Features

The stream of tokens created by Tangent-L needs to be able to be parsed by an IR system
parser. The following properties are required of math tokens for them to be properly
parsed:

e distinguishable
e unambiguous

e recognizable

Math tokens need to be distinguishable from text tokens. The encoding of math to-
kens should not allow for a text token to appear to be a math token. For example,
encoding the symbol pair (>, N!0, -———) as gt-nnnn0 makes it indistinguishable after
case-folding from GT-Nnnn0O, which is a Samsung Galaxy model number. Like a shift
character, Tangent-L uses a start and end symbol for each math token to distinguish it
from all text tokens.

Math tokens need to be unambiguous with respect to other math tokens. Two math
tokens should be equal only when they both encode the same feature. For example, one
must distinguish between x+ and +x. Tangent-L orders the two symbols in a pair by their
distance to the root, where the first symbol is closer to the root.

Tokens need to be recognizable and allow for a tokenizer to recognize the start and
end of each token. Tangent-L separates tokens by whitespace and no token contains any
whitespace.
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3.1.2 Wild cards

Wild card symbols are used in queries to denote something that can match any other
subexpression. This requires Tangent-L to be able to handle math expressions such as
?v + y where 7v represents any possible symbol or subexpression. Such an expression
produces the symbol pair (?v,+, —) that should match symbol pairs such as (Vlx,+, —)
and (N!3,+, —). There are two possible approaches to handling wild card symbols.

The first approach is to expand math features at query time to include all possible
matches. This approach works by searching the postings lists that correspond to a set of
features that match a wild card. For example (?v, N5, —) would map to both (4, N5, —)
and (—, N5, —), and therefore those two postings lists (among others) would be included
in processing a query that generates the wild card token.. Tangent-3 uses this approach
and restricts expansion to include only one wild card.

Tangent-L’s approach is to expand math features at indexing time. This approach
involves taking all math features and expanding them to include possible wild card matches.
For example, a symbol pair such as (V!z, 4+, —) would expand to include (?v,+,—) and
(Vlx,7v,—). All three possibilities are then indexed. To avoid excessive computation and
to save index space, symbols pairs are limited to having at most one wild card symbol.
Hence (7v,?v,—) is not indexed. Now a symbol pair with a wild card will have its idf
computed based on the number of other symbol pairs that also match the wild card symbol.
This allows one to combine the scores of symbols pairs with symbols pairs that contain
a wild card in a intuitive way and without changing the underlying ranking function. A
disadvantage, however, is that this approach cannot distinguish a match for ?v from a
match for ?w. Thus ensuring that two occurrences of the wild card 7w in an expression
match the same symbol in a document cannot be supported.

3.1.3 Ranking Math Features

Formula features may appear more than once within a query. BM25 is normally defined as
accepting a set of query terms but can be applied to a bag of query terms by accumulating
repeated terms multiple times. However, is this the best way to adopt BM25 for formula
retrieval? Two variations of BM25 are explored: BM25Math and BM25+.

Text documents with many instances of a term ¢ are more likely to be relevant than
text documents with fewer instances of a term t. However, the question arises whether this
holds for formula features. If searching for x + 1, it is not obvious that more occurrences of
+1 make a document more relevant. It seems more likely that documents with the same
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number of occurrences of a math feature as are presented in the query are more likely
to be relevant. A new variation of BM25 called BM25Math can be defined to reflect this
observation. It adjusts BM25 so that no document’s rank is improved for having extraneous
occurrences of a math feature when compared to the number of occurrences of that math
feature in the query.

Given a collection of documents D containing |D| documents and a query ¢ consisting
of a set of query terms, the score for a document d € D is calculated as follows:

k4 1)tf, D| — |Dw| +0.5
weq m w ’

where K = k (1.0 —b+ b%); k, and b are constants (following common practice, chosen

to be 1.2, and 0.75); |d| is the total number of terms in document d; |D,,| is the number
of documents in D containing term w; tf,, is the number of occurrences of term w in
document d; qf,, is the number of occurrences of term w in query ¢; avdl is the average
document length and

o= man(tf,,, qf ,), if math term
" tf ws otherwise

Formula features will increase the document length and large formulas will have many

more features than shorter formulas. This may negatively impact documents with long
formulas. BM25+ addresses this issues by introducing a larger lower bound.

3.2 Implementation

This section provides technical details of the implementation of Tangent-L. Full descrip-
tions of how to index, query and search with formula features using Lucene are provided.
Tangent-L was developed using Lucene 6.4.0 APIs.!

3.2.1 Tokens Encoding

Symbol pairs are encoded with the following form #(s, 2, p)# where p is the relative path
between symbol nodes s; and s,. Table 3.1 lists the encoded tokens for Figure 1.1.

Thttps:/ /lucene.apache.org/core/6_4_0/index.html
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Tokens
(Vg VG, O F
#(Vly, Vi, b)#
#(Vly,=,n)#
#(=, N1, n)#
#(NI, +,n)#
#(Zv Vlz, n)#
#(Vx, N2, a)#
#(Vy, N1, nn)#
(=, +,nn)#
#(NI1, Ve, nn)#
#(+, N2, na)#
#(Vly, 4+, nnn
#(=,Vlx,nnn)#
#(N'1, N2, nna)#
#(Vly, Ve, nnnn)#
#(=, N2, nnna)#
#(Vy, N2, nnnna)#

Table 3.1: A list of encoded symbol pairs for yg =1+a?
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Tangent-L. meets the properties described in Section 3.1.1 for its encoding of math
tokens and can be parsed by a traditional text IR parser. These math tokens are then
treated in the exact same way as words for the rest of the indexing process with the one
exception being symbol pairs that contain a wild card.

3.2.2 Converting MathML into tokens

A Python program called Convert takes a document and converts all MathML expressions
into math features. Conwvert is built on Tangent-3 code that was written in Python.
Convert strips all the html tags from a file and converts any MathML expression to a SLT.
The SLT is then traversed recursively to extract a list of features. This list of features
are then encoded into the document in place of the MathML expression. The result of
the conversion can be saved to a file, which can then be used when indexing or searching.
Currently, Convert only supports MathML, but a tool such as LaTexML can be used for
converting IXTEX to MathML.

3.2.3 Indexing

The indexing process begins by giving the Indexer a directory of documents and a con-
figuration file. The Indezxer loops through each document and passes each document to
Convert. The result of the conversion is read by Java’s Reader class.

The Indexer then passes a Reader object to Lucene’s IndexWriter with a MathAna-
lyzer, which is a custom Analyzer. The MathAnalyzer uses a custom Tokenizer, called
MathTokenizer, which splits upon a whitespace, hyphen or apostrophe for all text words.
MathTokenizer recognizes math tokens since they start and end with a #. Upon recog-
nizing #, MathTokenizer starts to process it as a math token and does not break upon
hyphens or apostrophes but still breaks upon whitespace. All math tokens are encoded in
such a way that they do not have any whitespace.

Tokens are then filtered in a chain process that is outlined in Figure 3.1.

ClassicFilter: strips periods from acronyms and ’s from possessives

EnglishPossessiveFilter: deals with all situations of possessive nouns such as s’

LowerCaseFilter: converts tokens to lower case

StopFilter: removes all tokens that are stop words
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English

. Classic | _ D |l owerCase _ - Math [ _ Porter
tokens | 4 Fiter *Pams;we > Filter | stop Fiter| - I Fitter » Filtar

Figure 3.1: MathAnalzyer: A series of filters applied to a list tokens.

e MathFilter: expands math features to include wild cards matches and position math
features

e PorterFilter: filters tokens based upon the Porter stemming algorithm

All the above filters are common to Lucene’s EnglishAnalyzer except for the addition
of the MathFilter. MathFilter performs two main operations. The first operation positions
a math token in the document and is explored in Section 5.2. The second operation deals
with wild cards as discussed above in Section 3.1.2.

After indexing a collection of documents, Lucene creates files that are referred to as an
index. This Lucene index can then be used for querying the collection of documents.

3.2.4 Searching

To search using Lucene one has to create a Query object. Normally, Query objects are
built using Lucene’s QueryParser. However, Lucene’s QueryParser would not handle math
tokens correctly. MathQuery is used to build a Lucene Query object that can be used by
Lucene’s IndexSearcher.

First an XML file is parsed by ParseQueries that first converts all MathML expressions
appearing in the queries using Convert (Figure 3.2). After that each query is used to
construct a MathQuery object. Additionally, MathQuery takes the text from the queries
and filters it with the above MathAnalyzer. Each query holds information about the query
name, keywords and math formulas. A list of MathQuery objects is then returned to be
used for searching.

Now each MathQuery can be used to to construct a Lucene Query object. An example of
a query appears in Figure 3.3. MathQuery constructs a TermQuery for each math token or
keyword. Then it uses Lucene’s BooleanQuery Builder to combine each TermQuery to form
a BooleanQuery. This resulting BooleanQuery is then passed to MathScoreQuery, which
extends Lucene’s CustomScoreQuery. Lucene’s CustomScoreQuery is used to adjust the
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Figure 3.2: Tangent-L: Executing a Search.

score of each document from Lucene. See Chapter 5 for a description of which adjustments
were explored. The search is performed by Lucene’s IndexSearcher on a MathScoreQuery.
Lucene’s IndexSearcher allows for each query to be limited to the top N results.

3.2.5 Configuration

Tangent-L. has a few options for indexing and searching. These options include which
ranking function to use, the positioning of math tokens, the type of math features to use,
and whether Lucene should store the positioning information. The effects of each option
are discussed in Chapter 4 and 5. A configuration file is created when indexing to record all
the options and then are loaded back when searching. A Configuration can be changed after
loading the index for searching, but invalid changes will raise an ConvertConfigFException.
For example, if proximity is to be considered when ranking, then the index needs to have
stored positions when indexing.

3.2.6 Wild cards

Because wild card symbols are handled by expanding math tokens to include their wild
card token matches, there is no adjustment needed for Lucene except that all features
that contain a wild card are indexed at the same position as their corresponding feature.
To accomplish this, MathFilter changes the position increment of all math tokens that
contain a wild card to 0. Expanding symbol pairs for wild cards mean that symbol pairs
that contain a wild card can now be used as a TermQuery to match symbol pairs that
are equivalent when considering wild cards. Additionally, idf will automatically be based
upon the total number of possible math features that match when considering the wild
card symbol.

32



<topic>
<num>NTCIR12—MathIR —15</num>
<query>
<formula id="f.07">
<m:math>
<m:semantics>
<m:apply>
<m:plus />
<m:apply>
<m:times />
<m:cn type="integer”>3</m:cn>
<mws:qvar xmlns:mws="http://search.mathweb.org/ns” name="n”" />
</m:apply>
<m:cn type="integer”>1</m:cn>
</m:apply>
<m:annotation—xml encoding="MathML—Presentation”>
<m:mrow xml:id="m23.1.5.pmml” xref="m23.1.5”>
<m:mrow>
<m:mn>3</m:mn>
<m:mo> </m:mo>
<mws:qvar xmlns:mws="http://search.mathweb.org/ns” name="n" />
</m:mrow>
<m:mo>+4</m:mo>
<m:mn>1</m:mn>
</m:mrow>
</m:annotation —xml>
<m:annotation encoding="application/x—tex”>
3\gqvar@construct{n}+1
</m:annotation>
</m:semantics>
</m:math>
</formula>
<keyword id="w.0”>collatz</keyword>
<keyword id="w.l1”>conjecture</keyword>
</query>
</topic>

Figure 3.3: A query example for the NTCIR-12 arXiv Main Task
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3.2.7 Ranking Implementation

Lucene supports various ranking functions such as BM25 and tf-idf. Additionally, Lucene
supports new ranking functions by allowing one to create them through the Similarity
interface. All ranking functions are scored using the following approach:

score(q, d) = coord(q, d) - queryNorm(q) - Z (tf(tind) -idf(t)? - t.getBoost() - norm(t, d))

ting

where ¢ is the query; t is the term; d is the document; coord is a score factor based on
how many query terms are found in a document; queryNorm is a normalizing factor used
to make different scores comparable across queries; tf is a score factor based on term
frequency; udf is a score factor based upon inverse document frequency; t.getBoost is a
search time boost of term ¢; and norm encapsulates length factors.

New ranking functions in Lucene are created by changing the above functions to fit a
specific need. The norm is calculated at index time by the Similarity. The Similarity can be
changed at index time or at query time. However, two different Similarity implementations
may not calculate length factors in the same way, so it is generally advised to use the same
Similarity as the one used while indexing. Lucene’s default ranking function is BM25.

Lucene’s BM25Similarity uses the norm to encode length normalization information and
boost

18 Computed as m.

BM25Math was implemented by changing the frequency parameter passed to the Simi-
larity class. Instead of just using term frequency, the minimum of term frequency and query
frequency is used. BM25+ has two main changes from Lucene’s BM25 implementation.
The first is to alter the idf function to

log((docCount + 1.0)/(docFreq))
The second main change is to alter the score function to
weight Value * ((freq * (k1 4 1))/(freq + norm) + ¢)

The same length factor as BM25 is used for BM25+ and BM25Dist, allowing for the ranking
function to be changed at query time.
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Partially

Relevant Relevant
Ranking Function =~ MAP bpref MAP bpref
BM25 0.1038  0.3419 0.1466  0.4904
BM25" 0.1309 0.3648 0.1763 0.5189
BM25Math 0.0582  0.2885 0.0893  0.4055

Table 3.2: A comparison of BM25 Variations on NTCIR-12 MathWiki Task. All results
were evaluated by trec_eval with each query returning 1000 results

3.3 Experiment

The NTCIR-12 MathWiki Task was run against the Wikipedia Collection for each ranking
function. The Wikipedia collection was indexed using only symbol pairs as features. The
various ranking functions were then run against the queries, and the top 1000 results for
each query were recorded. The results were evaluated using trec_eval for both partially
relevant hits and relevant hits. The results in Table 3.2 show there is no gain from limiting
BM25 to just the number of query occurrences for each math feature. Additionally, it
shows that BM25 can be improved by using a better lower bound for ¢f normalization.
Therefore, moving forward, BM25+ is used for all experiments.
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Chapter 4

Math Features

4.1 Types of Features

Tangent-3 uses symbol pairs as the primary feature of a ST and uses MSS to increase the
rank formulas that are structurally similar to the query formula. This chapter examines
what other features of a SL'T might have useful information when using BM25+ for ranking.
All new features should expand the information captured to increase the rank of a math
formula that is structurally similar to the query formula. This section outlines the math
features examined, and these are evaluated in Section 4.2. Figure 4.1 serves as the example
to illustrate what information is captured by each new feature.

Figure 4.1: Symbol Layout Tree for 3/ = 1 + 2?3 + x5.
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Table 4.1: Comparing end of line symbols and terminal symbols

4.1.1 Terminal Symbols

Tangent-3 includes End-of-Line (EOL) symbols with the form (s, !0, —), where s is a symbol
on a node that has no out-edge labeled —, and !0 denotes an end-of-line. Table 4.2a depicts
the EOL symbols for the SLT in Figure 4.1. The wild card expansion for EOL symbols is
large and this increases retrieval times with no improvement to effectiveness [19]. Tangent-
3 limits the EOL symbols to formulas with a SLT height less than 3 to improve retrieval
time and effectiveness.

The new math feature proposed is called terminal symbols, with the form (s,!0), where
s is the label on a leaf in the SLT (i.e. a node labelled containing s and having no outgoing
edges). Terminal symbols is applied to all math formulas regardless of size, but they are
expected to be particularly helpful for small math formulas. Table 4.2b depicts a list of
terminal symbols for the SLT in Figure 4.1. Terminal symbols are not expanded to include
a wild card terminal symbol such as (7v,!0) since such a terminal symbol would match all
other terminal symbols.

As can be seen in Table 4.1 there are two main differences between terminal and EOL
symbols. The first difference is terminal symbols do not include V!z since it contains an
outgoing edge to N!2, but it is included in Table 4.1 since EOL symbols include any node
with no outgoing — edge. The second difference is the encoding for terminal symbols is
using pairs rather than the triples used for EOL symbols.
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Table 4.3: A list of compound symbols for yf =1+2+

4.1.2 Compound Symbols

Symbol pairs only capture path information and for some instances may lack structural
information about branching. For example, suppose one is searching for z%; then just using
symbols pairs would not distinguish between y = x + 2? and y = z; + 2%. To deal with
such a situation, a feature called compound symbols is introduced. Compound symbols
have the form (s, [e1, e€s...€x]) where s is a symbol of a node with more than one outgoing
edge and edges eq, €, ..., e,. This distinguishes the two formulae by including the feature
(Vlx, [/, —,\]) for the former and the features (Vlz,[—,\]) and (V!z, [—,]) for the
latter. Table 4.3 depicts the compound symbols for the SLT in Figure 4.1. Compound
symbols are expanded to include (7v, [e1, €a...€k]).

4.1.3 Symbol pairs with Location

In traditional text information retrieval systems a longer document is ranked lower than a
shorter one if they both match the same keywords at the same frequency. Now applying a
similar reason to math formulas, one should rank whole matched expressions higher than
partially matched subexpressions assuming both match the same keywords at the same
frequency. When querying for x; + 22, one should rank z; + 22 higher than the formula
in Figure 4.1. However, BM25 would see no difference between these two formulas since it
does not penalize features that occur in the indexed formula but do not occur in the query
(other than a small penalty of an increased document length).

Symbol pairs only include the path between the two symbols, but the path from the
root of the SLT to the first symbol, its location, provides additional information that could
be used to distinguish subexpressions from a whole expression. For example, the symbol
pair (V!z, N'1,%\,) would have a location of —— and would not match the query z; + x?
when considering location. However, any expression that had (V!z, N!1,\) in a similar
location would result in a higher rank.

One problem with including location for all math feature is that no query formula could
match a subexpressions unless it was located at the start of the expression. Tangent-L
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Table 4.4: Expanded Symbol Pairs with Location for y/ = 1 + 22 4+ 2, and a window size
of 1

therefore uses location as supplementary information to consider when ranking. Tangent-
L expands all math features to both include location and exclude location. Symbol pairs
with location are encoded with the form (si, s9,r, 1) where [ is the path from the root to
symbol node s; and r is the relative path between symbol nodes s; and s,. Table 4.4
depicts the expanded symbol pairs for the SLT in Figure 4.1. This expands the size of the
index but avoids the trade-off between capturing location information and not matching
subexpressions.

4.1.4 Edge Pairs

Symbol pairs capture information about a pair of symbols and the relative path between
them. An alternative approach is to capture information about a pair of edges along each
path. Edge pairs is a math feature with the form (eq, e, s) where e; and e, are edge labels
on a path that share a common symbol s. Table 4.5 shows a list of edge pairs for the SLT
in Figure 4.1. Edge pairs are expanded to include (e, es, 7v) at indexing time.

4.1.5 Long Paths

Experiments with Tangent-3 explored the effectiveness of various window sizes and con-
cluded that it had little effect on performance [19]. An unbounded window size, a window
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Table 4.5: A list of edge pairs for y* = 1 + 2% + x

size that includes all possible symbol pairs, slightly decreased Tangent-3’s recall in the pres-
ence of wild cards. The increased window size provides more information about a formula,
but it may be matching frivolously with poorly matching candidate formulas. Tangent-3
uses Dice’s coefficient for the first stage of matching and treats all symbol pairs as equally
important, whereas the ranking function for Tangent-L uses idf to give less weight to com-
monly used terms. BM25 may benefit from including symbol pairs separated by a longer
path.

A long path contains a lot of information but may be too restrictive when matching
subexpressions. Additionally, any time a wild card symbol appears, matching exactly to
a long path is problematic. For example, a query with yf = 70 + x5 should match an
expression such as the one in Figure 4.1 regardless of how many terms appear between yf
and 5. However, this query would include the symbol pair (Vly, Vlz, —+———) but the
corresponding symbol pair in Figure 4.1 is (Vy, Vlz, - —————) causing a mismatch.
This mismatch could be avoided by storing less information about a path.

The above situation is accommodated by setting a window size within which paths
must be matched exactly but beyond which only part of the path has to match. In
our experiments a window size of one is used and symbol pairs outside the window size
are included as “long path symbols pairs”, but their paths are adjusted. Two different
approaches are explored for how much of the long path to preserve. The first approach,
long paths empty, does not include any path information and only stores the pairs of
symbols. The second approach, long paths abbreviated, only preserves the one-edge prefix
and one-edge suffix of the long path between symbol pairs. Table 4.6 provides a list of
abbreviated symbol pairs for the SLT in Figure 4.1. Long paths that are empty are not
expanded to include any wild card symbols. Long paths that are abbreviated are expanded
to include one wild card.
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Table 4.6: Additional Symbol Pairs with Abbreviated Paths for yf =1+2?+ 29 and a
window size of 1
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4.2 Experiments

All of the above features were tested using the NTCIR-11 Wikipedia benchmark. The
benchmark includes 100 queries, where each query has a specified target formula that
appears within the specified document. The target formula and document are the only
ones considered “relevant” when judging performance.

The benchmark requires a system to rank each individual formula and return a ranked
list of (documentld, formulald) pairs. The ranked list is then evaluated at either the
document level or the formula level. When evaluating at the document level, all duplicates
of the documentld are removed from the ranked list, leaving the first match for that
documentID only, and all results just have to match the documentld of the target formula.
When evaluating at the formula level, no changes is made to the ranked list, but all
results have to match both the documentID and formulalD of the target formula. Recall
is measured by mean Recall@10000 and precision is measured by MRR. A MRR of 0 is

assumed for any target formula that is not returned.

All the formulas were indexed in Tangent-L as their own document with information
about the source document stored separately. Two indexes were created: Index-Emp
includes all the features in Section 4.1, but longs paths are empty, and Index-Abb has
all the features in Section 4.1, but long paths are abbreviated.

4.2.1 Feature Effectiveness

An experiment was conducted to test the average effectiveness of all the features in Sec-
tion 4.1 with respect to both recall and precision. The baseline was to only use symbols
pairs with a window size of 1 when querying. All possible query configurations of the
additional features for querying were tested. Thus, query configurations cover the inclu-
sion or omission of terminal symbols, the inclusion or omission of compound symbols, the
inclusion or omission of symbol pairs with location, the inclusion or omission of edge pairs,
and the inclusion or omission of long paths. Queries against the two indexes provide two
possibilities for paths outside the window size: querying with empty paths and querying
with abbreviated path information.

The NTCIR-11 Wikipedia benchmark was run for all possible configurations against
both indexes. For each index, there are 32 configurations since each index contains a total
of five features. For each feature 16 configurations include that feature and 16 configura-
tions exclude that feature. The average difference in performance between a configuration
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avg(A Recall@10000) avg(A MRR)

Feature Documents Formula Documents Formula
Terminal Symbols 2.00 2.00 1.23 0.92
Compound Symbols 0.00 0.50 0.25 0.28
Symbol Pairs with Location 1.00 0.50 0.84 0.48
Edge Pairs 0.00 0.00 -0.04 -0.14
Long Paths Empty 0.00 0.00 0.01 -0.76

(a) Tangent-L with Index-Emp (all features indexed; long paths empty)

avg(A Recall@10000) avg(A MRR)
Feature Documents Formula Documents Formula
Terminal Symbols 2.00 2.00 1.12 0.98
Compound Symbols 0.00 0.50 0.32 0.33
Symbol Pairs with Location 1.00 0.50 0.89 1.21
Edge Pairs 0.00 0.00 0.00 0.00
Long Paths Abbreviated 0.00 0.00 -0.33 -0.32

(b) Tangent-L with Index-Abb (all features indexed; long paths abbreviated)

Table 4.7: Comparison of Tangent-L feature configurations measured against NTCIR-11
Wikipedia Retrieval benchmark. avg(A Recall@10000) is the average percentage change
for recall; avg(A MRR) is the average percentage change for MRR.

including a feature and a configuration excluding a feature is shown in Table 4.7 for each
index.

Tangent-L with just symbols pairs has a recall of 97%: there are three formulas that
are not matched. Two of the missing targeted formulas are so small that no symbol pair
feature is present in the SLT, therefore they cannot be found. Querying with terminal
symbols introduces a feature for those two small formulas that enables them to be recalled.
The third formula is recalled only when both compound symbols and location are used
for querying. Using a combination of terminal symbols, compound symbols, and location
results in a recall of 100%.

Tangent-L with just symbol pairs has an average MRR of 75% at the document level and
72% at the formula level. As seen in Table 4.7, terminal symbols, compound symbols, and
symbol pairs with location all on average increased the MRR when used for querying versus
omitting them. Edge pairs has a small negative effect on MRR when used for querying.
The match to two successive edges might not capture enough additional information to
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Recall@10000 (%)  Mean Reciprocal Rank (%)

System” Documents Formula Documents Formula
TUW Vienna 97 93 80 82
NII Japan 97 94 74 72
Tangent-3 Core (w=1, EOL) 98 98 81 7
Tangent-3 Re-rank (w=1, EOL) 98 98 82 79
Tangent-L (symbol pairs) 97 97 75 72
Tangent-L (recommended features) 100 100 80 7

* Previous results from Zanibbi et al. [19].

Table 4.8: Comparison of MathIR systems measured against NTCIR-11 Wikipedia Re-
trieval benchmark.

help when ranking. Finally, long paths, whether abbreviated or empty, do not seem to
improve MRR. Long paths empty has a slight increase in MRR at the document level but
the decrease in MRR at the formula level outweighs the slight increase.

4.2.2 Testing Features

The NTCIR-12 MathWikiFormula Task is used as a final test for the new math features
and the effectiveness of Tangent-L for formula retrieval. An index was created with a
window size of 1, compound symbols, terminal symbols and expanded symbol pairs to
include location. BM25" was the ranking function used. The 40 queries were run against
the index and the top 1000 results were recorded. Bpref and MAP were both calculated
for the run using trec_eval. The results are shown in Table 4.9 along with the results of
the other systems from NTCIR-12.

Table 4.10 gives the number of relevant, partially relevant, not relevant and not judged
documents at various levels of precision. Tangent-L has a large number of documents that
have no judgments on their relevancy, and, due to this, bpref is a better precision measure.

Tangent-L has a 11.5% increase in bref over Tangent-3’s best run for partially relevant
formulas. Tangent-L has a similar bpref for relevant documents when compared to Tangent-
3’s best run, with the difference being around 1%. Tangent-L has the highest bpref for
partially relevant formulas. Overall, Tangent-L. has comparable precision to Tangent-3,
which demonstrates that the effectiveness of the math features is as effective as MSS.
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Partially

Relevant Relevant

Ranking Function = MAP bpref MAP bpref

Tangent-L 0.3869  0.4737 0.2742 0.6040
Tangent-3;_1 0.4360  0.4294 0.4204 0.5163
Tangent-3;_ 0.4485  0.4568 0.4456  0.5499
Tangent-3;_s3 0.4650  0.4574 0.4534 0.5416
Tangent-3;_4 0.4726  0.4793 0.4533  0.5370
MCAT a1 0.4189  0.4306 0.3654  0.4301
MCAT_ a1 0.4557  0.4706 0.3774  0.4397

MCAT;_f—pw—u 0.5131 0.5202 0.4463  0.5356

Table 4.9: A comparing Tangent-L. to various systems performance on the NTCIR-12
MathWikiFormula Task. All results were evaluated by trec_eval with each query returning
1000 results

Precision Partially Not Not

Level Relevant Relevant Relevant Judged Total
pPab 65 48 2 85 200
PaQlo 93 92 15 200 400
pais 129 138 24 309 600
Pa@20 156 175 34 435 800
P@1000 459 920 399 37367  39145¢
PQoo 557 1282 848

Table 4.10: Breakdown of judgements made on documents returned at various levels of
precision for Tangent-L on NTCIR-12 MathWikiFormula Task.

®This does not add up to 40000 since query 22 only has 145 results
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4.3 Conclusion

Additional features of a SLT can be helpful for formula retrieval. As shown in Table 4.8,
terminal symbols, compound symbols, and location can increase MRR by 7% and recall
by 3%. These three features are recommended to be used when querying for formulas
and are used in the rest of the thesis when indexing and searching. Long paths seem to
have a negative effect on precision regardless of how the path information is used. This
re-confirms that window size has little effect on performance, similar to the conclusions
drawn for Tangent-3 [19]. A window size of 1 is used for the rest of this thesis, and all
symbol pairs outside the window are not considered.

The above results for the NTCIR-11 Wikipedia Retrieval benchmark show that BM25
can have comparable results to the Tangent-3 core engine and MSS re-ranking by using
additional features. Tangent-L has better recall of 2% than Tangent-3 and worse MRR of
2% than Tangent-3’s optimal configuration. The loss of precision in formula retrieval may
be suitable if offset by an increase in precision for both math and text combined. The
thesis now focuses on the performance of Tangent-I. when querying with both math and
text.
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Chapter 5

Text and Math

This chapter explores the performance of Tangent-L. when queries include both text and
math formulas. It looks at applying various adjustments to ranking and its effect on
performance. The first is to examine how weighting the math and text differently affects
precision. The second looks at how to include proximity when ranking both math and
text.

5.1 Weighting Math and Text

Chapter 4 introduced several math features to use, which results in math features con-
tributing heavily to scoring. However, the increase in the weight assigned to math in
general when ranking may cause Tangent-L to place too much importance on math and
not enough on text. This section examines the effect of changing the relative weights of
math and text. For this purpose, we adapt BM25 to assign weights to query terms as
follows:

BM25! (q; U ¢, d) = BM25" (g4, d) + o - BM25% (qy,, d)

where ¢; is the set of keywords in a query, ¢,, is the set of math features in that query, and
« is a parameter to adjust the relative weight applied to math features.

The NTCIR-12 MathWiki Task benchmark is used. The Wikipedia collections is in-
dexed with the optimal configuration (terminal symbols, compound symbols, symbols pairs
with location) determined by the experiments reported in Section 4.2.1. The task is then
run for o € [0.01,2.00] at intervals of 0.01. The MAP and bpref are calculated for all 200
runs using trec_eval.
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Figure 5.1: The effect of @« on MAP for the NTCIR-12 MathWiki Task benchmark.
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Figure 5.2: The effect of o on bpref for the NTCIR-12 MathWiki Task benchmark.
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Measure Relevancy Measure(aw = Optimal) Measure(a = 1.0)  Gain

MAP Relevant 0.1938 0.1907 0.0031
MAP  Partially Relevant 0.2504 0.2338 0.0166
Bpref Relevant 0.4306 0.4276 0.0030
Bpref  Partially Relevant 0.5603 0.5501 0.0102

Table 5.1: The optimal weight gain versus using same weight

Figure 5.1 shows the effect of @« on MAP for both relevant and partially relevant results
on the NTCIR-12 MathWiki Task benchmark. There is a gain in MAP as « increases in
the range 0.05 < a < 0.60 for relevant assessments. The maximum for relevant assessments
occurs at a = 0.63. For larger values of o there is a gradual decline. When considering
partially relevant documents as well , there is an increase in MAP for a < 0.20 and the
maximum occurs at a = 0.19. However, both have modest gains in precision by increasing
a when a < 0.20.

Figure 5.2 shows the effect of a on bpref for both relevant and partially relevant results
against the NTCIR-12 MathWiki Task benchmark. As « increases in the range 0.05 <
a < 0.50, there is a gain in bpref for relevant and partially relevant assessments. The
maximum for relevant assessments occurs at o = 0.57 and the maximum for partially
relevant assessment occurs at o = 0.46. For larger values of «, there is a slight gradual
decline.

Thus, both MAP and bpref can be increased by choosing an appropriate value for a.
However, as shown in Table 5.1 the increase can be quite small when compared to using
a = 1.0 (default math weight). The largest gain is for partially relevant results, which may
be due to evaluators assessing documents with approximately matching keywords more
often as partially relevant.

Perhaps the nature of the queries can provide insights into how to weight math versus
text. Figure 5.3 illustrates the results of running « € [0.01,2.00] at intervals of 0.01, but
precision is separated for each query. Any query with no keywords is in black and is a flat
line since changing a does not affect these queries. The other queries are colored based
upon #;’: Z}a,iz / e“t;”’es. Some of the queries include words that are considered stop words

:Q.I'LUO’I“ S . . .
and were not involved in the ratio calculation.

For this figure, the ratio ranges from 1 to 46 and is broken into five different colors
groups: 1-9 is colored blue, 10-18 is colored cyan, 19-27 is colored green, 28-36 is color
magenta, and 37-46 is color red. The smallest queries (in blue) generally have precision
increase for a < 0.60. However, the small to mid-size queries (in cyan) do not exhibit a
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Figure 5.3: The effect of & on MAP for each query of the NTCIR-12 MathWiki Task
benchmark.

noticeable pattern. There are some that have precision decrease for a > 0.20, whereas
others have precision increase for a > 0.20. Most of the other queries have a flat curve and
changing « has little effect on precision. Hence there is not a clear relationship between
math to keywords ratio and «.

Nevertheless, there are some queries that peak with a small o and decline as « increases.
The difference with respect to bpref for « = 1 and a = optimal is shown in Table 5.2.
Three main queries (numbers 8, 20, and 24) have the largest gain for an o < 0.50. An
examination of these queries demonstrates that they all have keywords that are related to
their math formula. Query 8 has the keyword light and an equation with light constant
c. Query 20 has the keyword polynomial and a math formula that is a polynomial. Query
24 has the keyword gamma and the math formula is the gamma function with a wild card
symbol. Overall, math weight does not seem to be dependent on the number of math
features, but rather some other properties.

Overall, weighting the math and the text differently can improve precision by a small
factor. Using an a = 0.46 results in a 0.70% increase for relevant results and a 1.55%
increase with respect to bpref. Bpref would increase by only 3.8% if the optimal o were used
for each query, which is the upper bound on possible improvements achieved from varying
«. Since changing o does not result in a large increase of precision, it is recommended to
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Query # # of Math Features # of Keywords aoptima  bpref — Abpref(aoptimar, @1)
1 2 2 1.94 0.6962 0.0147
2 8 1 0.63 0.6039 0.0139
3 6 1 1.53 0.4027 0.0041
4 10 1 1.24 0.4406 0.0026
5 32 2 1.77 0.5381 0.0069
6 56 2 0.62 0.4036 0.0000
7 8 0 - 0.00 0.0000
8 14 1 0.07 0.6564 0.2590
9 34 2 1.16 0.4740 0.0069
10 30 0 — 0.2268 0.000
11 8 0 - 0.8408 0.0000
12 12 1 0.44 0.7485 0.0059
13 38 0 - 0.4554 0.0000
14 22 2 0.52 0.3894 0.01070
15 6 2 0.36 0.5017 0.06230
16 46 1 0.40 0.3429 0.0068
17 50 3 0.05 0.4898 0.1962
18 46 2 0.15 0.4187 0.0165
19 42 2 0.01 0.0000 0.0000
20 48 3 0.12 0.4952 0.1315
21 8 2 0.59 0.2804 0.0278
22 24 2 1.30 0.7669 0.0073
23 8 1 0.69 0.2002 0.0049
24 26 2 0.06 0.6005 0.1549
25 42 1 0.23 0.5185 0.0247
26 24 1 0.25 0.5306 0.0127
27 24 1 0.02 0.3359 0.0664
28 138 3 0.48 0.5407 0.0005
29 42 4 0.12 0.4913 0.0677
30 66 2 0.07 0.5894 0.0457

Table 5.2: The optimal weight gain versus using same weight for each query
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Figure 5.4: The effect of a on bpref for each query of the NTCIR-12 MathWiki Task
benchmark.

just use a = 1.0.

5.2 Proximity

Queries contain keywords and math expressions that are related to each other. As discussed
above, query 8 has both light and ¢ with it being likely that the keyword and the math
expression are close to each other in relevant documents. A measure of proximity may be
helpful when ranking.

One question that arises when indexing math formulas is how to assign math tokens to
positions in a document. The question will impact scoring when considering proximity, and
two possibilities are considered for positioning math tokens. The first approach is for each
math token to be assigned to its own position. The second approach is for all math tokens
extracted from a single formula to share a position. Lucene allows for tokens to share a
position for words, and this feature is commonly used when indexing multiple terms that
are synonyms of each other.

By default, Lucene and the MathAnalyzer will position each math token in its own
position. To be able to support the second approach, one needs to change the MathFilter
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Features different position Features same position
Measurement  %A(R,PR) %A(PR,N) %A(RN) %A(R,PR) %A(PR,N) %A(R,N)

SPalorm -0.3354 -0.05152 -0.3869 -0.3361 0.0917 -0.2136
MinCoverorm 0.5231 -0.2718 0.2514 0.2041 0.0410 0.2368
MinDist 0.5839 -0.7144 -0.1306 0.2379 -0.3172 -0.0039
AveDist 0.4238 -0.4148 0.0090 0.1087 -0.2278 -0.0943
MaxDist 0.4486 -0.4695 -0.0209 0.1016 -0.2991 -0.1671

Table 5.3: The percent difference between Relevant (R), Partially Relevant (PR), and
Non-Relevant (NR) documents for the various measures of proximity.

to assign all math tokens arising for a formula to the same position. To accomplish this,
a start and end tag are added to all formulas when converting MathML expressions by
Convert. Now when the MathFilter encounters a start tag it increments the position length
for the first math token, but all subsequent math tokens consume a position length of zero
until a end tag is encountered. Finally, start and ends tags are removed from the token
stream.

5.2.1 Importance of Proximity

As explained in Section 2.1.4, five measures of proximity can be used to quantify the
proximity of each query on the judged documents. Following the experiment conducted by
Tao and Zhao [15], these measures were used in experiments on the NTCIR-12 MathWiki
task, choosing the variants Span,om, and MinCover,om, rather than Span and MinCover.
All thirty queries were used, and the average of each measurement was taken for relevant,
partially relevant, and non-relevant documents. Table 5.3 shows the percent difference
between each type of relevancy judgment.

Relevant documents have query terms that are closer together than partially relevant
documents, but relevant documents have query terms farther apart than non-relevant doc-
uments. Also, partially relevant documents have query terms that are farther apart than
non-relevant documents. This implies that proximity may not be a benefit to use when
ranking. The one exception is when proximity is measured by MinCover,o.,, which is
the only measurement where relevant and partially relevant have closer query terms than
non-relevant documents.

The average values and standard deviations for each measurement are shown in Ta-
ble 5.4. No measurement can be less than zero and there are large standard deviations
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Features different position Features same position

Measurement i median o i median o
Span, g, 53 19 126 22 7 59

MinCoverpom 98 29 206 31 8 83
MinDist 22 0 203 8 0 80
AveDist 1024 525 1460 292 155 409
MaxDist 2974 1530 4206 915 489 1247

Table 5.4: The percent difference between Relevant (R), Partially Relevant (PR), and
Non-Relevant (NR) documents for the various measures of proximity.

Formula features different position Formula features same position
Measurement  %A(R,PR) %A(PR,N)  %A(R,N)  %A(R,PR) %A(PR,N) %A(R,N)

Span,,., -0.37 0.46 0.26 -0.43 0.57 0.39
MinCoverorm 0.15 0.30 0.40 -0.11 0.53 0.48
MinDist -0.34 0.54 0.38 -0.36 0.72 0.61
AveDist 0.11 0.06 0.16 -0.09 0.29 0.23
MaxDist 0.11 -0.03 0.08 -0.11 0.18 0.09

Table 5.5: The percent difference between Relevant (R), Partially Relevant (PR), and Non-
Relevant (NR) documents for the various measures of proximity normalized by document
length.

for each of the measurements. Additionally, the median is significantly smaller than the
mean, which may indicate that the mean is skewed by larger values on the right tail. Re-
running the same experiment with each measurement normalized by document length gives
all measurements between 0 and 1. The percent difference between each type of judgment
for various measurements are shown in Table 5.5.

The proximity of relevant and partially relevant documents becomes smaller than not-
relevant documents, as seen in Table 5.5, after normalizing measurements by document
length. Additionally, having math tokens of the same formula in the same position increases
the difference in proximity between relevant and not relevant documents. The results
indicate that proximity may help improve ranking after all, if each math token of the same
formula is stored at the same location. Both MinCover,.,, and MinDist appear to be the
best proximity measurements to use.
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Partially

Relevant Relevant
Ranking Function MAP bpref MAP  bpref
BM25 0.1907  0.4276 0.2338  0.5501
BM25Dist MinDist 0.1908  0.4276 0.2340 0.5501
BM25Dist MinCover,or,  0.1910  0.4276 0.2342 0.5501
BM25TP 0.1909 0.4278 0.2339  0.5501

Table 5.6: A comparison of BM25 Variations on NTCIR-12 MathWiki Task. All results
were evaluated by trec_eval with each query returning 1000 results

5.2.2 Ranking Function with Proximity

The NTCIR-12 MathWiki Task is run to test the value of using proximity on precision
using three different ranking functions: BM25, BM25Dist and BM25TP. Table 5.6 shows
small differences between the various ranking functions. However, using proximity always
results in a small increase and never results in decreasing precision. The overhead to store
the positional information that is needed to rank with proximity outweighs the small gain
in precision. Although proximity may be useful when ranking, BM25Dist and BM25TP
were unable to improve precision significantly for this task.

5.3 NTCIR-12 arXiv

The NTCIR-12 arXiv Main Task is the task for evaluating the final design decisions for
Tangent-L on an index with a window size of 1, compound symbols, terminal symbols, and
expanded symbol pairs to include location. BM257 is the ranking function, and proximity
is not considered. The 29 queries is run against the index, and the top 1000 results are
recorded. Bpref and MAP are both calculated with trec_eval. The results are shown in
Table 5.7, along with the results of the other systems from NTCIR-12.

Table 5.8 gives the number of relevant, partially relevant, not relevant, and not judged
documents at various levels of precision. Tangent-L has a large number of documents that
have no judgments on their relevancy, making bpref a more reliable precision measure for
this experiment.

Tangent-L has a 55% increase in bpref over Tangent-3’s best run for relevant documents.
Tangent-L has similar bpref for partially relevant documents when compared to Tangent-
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Partially

Relevant Relevant

Ranking Function =~ MAP bpref MAP bpref

MCAT ¢y 0.2072  0.2232 0.2629  0.3669
MCAT —p—u 0.2080  0.2281 0.2633  0.3699
MCAT —w—u 0.2659 0.2906 0.2866 0.4025
MCAT ,q—r—u 0.2001  0.2157 0.2550  0.3629
MIaS.,,_»_10 0.0976  0.1150 0.1563  0.2622
MIaS,,—r—10 0.0816  0.0927 0.1281  0.2347
MIaS,cm—1-10 0.0868  0.0986 0.1435  0.2276
MIaS,,—1-10 0.0581  0.0640 0.1147  0.2070
SMSG5y fiqr 0.0550  0.0695 0.1357  0.2434
Tangent-3; 0.1837 0.1768 0.2088  0.2967
Tangent-3 0.1844  0.1811 0.2091  0.2980
Tangent-33 0.1376  0.1433 0.2489  0.3500
Tangent-34 0.1399  0.1447 0.2509  0.3522
WikiMir 0.1626  0.1717 0.1856  0.2474
Tangent-L 0.1926  0.2813 0.1469  0.3438

Table 5.7: A comparison of various systems on the NTCIR-12 arXiv Main Task. All results
evaluated by trec_eval, with each query returning 1000 results

3’s best run, with the loss being just over 2%. Overall, Tangent-L has better bpref than
Tangent-3, and demonstrates the effectiveness of the approach. In fact, Tangent-L’s bpref
for relevant documents puts it within 2% of MCAT’s best result.

The increase in precision does not come with an excessive increase in memory used.
Table 5.9 shows various index sizes for both Tangent-3 and Tangent-L for the Wikipedia
benchmarks. The lower bound and upper bound of both systems are quite comparable.
However, the optimal configuration index, (EOL,w=1) for Tangent-3, is 40% smaller than
Tangent-L’s recommended features index. The Tangent-L index created for the NTCIR-12
arXiv Main Task is 6.2 GB, which is 25% smaller than Tangent-3’s reported math index
size of 8.3 GB [12] for a window size of 2, to which the size of its text index must be added.

Additionally, Tangent-L is more efficient in retrieval time. The NTCIR-12 Main arXiv
Task are run 10 times for its 29 queries on a Ubuntu Linux 14.04.5 LTS machine with
AMD FX-8370E Eight-Core Processor (3.3GHz) and 16 GB RAM. The average time for
each query requires 0.69 seconds, the fastest query requiring 0.02 seconds on average and
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Precision Partially Not Not

Level Relevant Relevant Relevant Judged Total
pPaj 38 13 21 73 145
P@10 60 33 36 161 290
Pails 71 53 46 265 435
P@20 80 67 65 368 580
P@1000 258 267 323 28152 29000
PQoo 413 876 2962

Table 5.8: Breakdown of judgements made on documents returned at various levels of
precision for Tangent-L on NTCIR-12 arXiv Main Task across all 29 queries.

Index Size
Configuration” (MB)
Tangent-3 (No-EOL,w=1) 64.2
Tangent-3 (EOL,w=1) 73.7
Tangent-3 (EOL,w=unbounded) 503.1
Tangent-L (symbol pairs) 32.3
Tangent-L (recommended features) 124.2
Tangent-L (all features; long paths empty) 261.3
Tangent-L (all features; long paths abbreviated) 575.5

* Tangent-3 sizes reported by Zanibbi et al. [49].

Table 5.9: Comparing Tangent-3 and Tangent-L index sizes for NTCIR-11 Wikipedia col-
lection.

the slowest query requiring 2.56 seconds. This outperforms the reported times for Tangent-
3 (mean=27.54, minimum=2.77, maximum=178.51) [12]. The two systems’ times are
measured with incomparable machine architectures, but the difference in magnitude shows
it is unlikely that Tangent-L is slower than Tangent-3.
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Chapter 6

Conclusion

This work presents a new math information retrieval system called Tangent-L, which en-
codes math features of a symbol layout tree as tokens that are indexed in the same manner
as traditional words. Tangent-L uses BM25 as its ranking function, which is used to rank
both math and text.

Tangent-L increases bpref on the NTCIR-12 MathWikiFormula task by 9.8% for par-
tially relevant formulas compared to Tangent-3. The results indicate that Tangent-L per-
forms approximately as well as Tangent-3 for formula retrieval. This implies that standard
information retrieval techniques can have similar performance to customized techniques on
formula retrieval if appropriate math features are used.

Tangent-L increases bpref on the NTCIR-12 arXiv Main task by 55% for relevant
documents. The results indicated that using a single ranking function for math formulas
and text can outperform using separate ranking functions and combining results.

6.1 Contributions

Chapter 3 describes how to encode math features of a symbol layout tree and index them
using a text information retrieval system. Additionally, it demonstrates a way to index
simple wild cards so that they can be retrieved without having to change the underlying
search execution or scoring system.

Chapter 4 introduces new math features of a symbol layout tree. The new math fea-
tures increase the mean reciprocal rank by 7%. Ranking math features with BM25 has
comparable results to Maximum Subtree Similarity.
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The results from Chapter 5 demonstrate that using MinCover,,.m, as a measure of
proximity results in relevant documents being closer than non-relevant documents. In
spite of this potential for improving retrieval performance, the ranking functions explored
did not improve precision by any significant amount.

6.2 Future Work

The thesis does make improvements to the previous system of Tangent-3, but there still
exist opportunities for improvement. The first area to examine is alternative text ranking
functions and their performance on formula retrieval. Lucene supports a several other
ranking functions, including:

e DFISimilarity [23]

DFRSimilarity [3]

IBSimilarity [10]

LM JelinekMercerSimilarity [50]

LMDirichletSimilarity [50]

Set of Axiomatic Similarities [13]

A second area to examine is how to better incorporate proximity into the ranking
function. Markov random fields have been used to model term dependency and show

improvements especially for larger collections [30]. BM25P uses Survival Analysis over
an exponential distribution and has results where the term proximity enhances retrieval
effectiveness [20]. These alternatives should be examined to determine whether proximity

can improve ranking performance.

Section 5.1 examines weighting the math and text differently when ranking. There
was no relationship between the number of math features and the weight applied to math.
However, the queries with largest gain all had keywords that were closely related to the
math formulas. Math expressions likely appear near common words. For example, ¢
most likely appears near the keyword “light”. A math information retrieval system could
improve precision by including keywords that commonly appear near a math formula.
The MCAT system extracted a set of terms that denote a math expression with a support
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vector machine model [21], and a similar approach was recently suggested by Krstovski and
Blei [26]. Adopting such a strategy may help Tangent-L in weighting math and keywords.

The long term work for math information retrieval requires creating more queries and
evaluating relevant documents. There is a general trend in information retrieval to incorpo-
rating machine learning, such as convolutional neural networks [39]. The advantage of such
an approach is that it eliminates the need to create features but instead relies on have the
model learn the features to use. This thesis introduces math features to use, but there may
exist better features. However, convolutional neural networks usually use Word2Vec [31]
and require a large amount of training data. The creation of more benchmarks that include
extensive training data will further the field of math information retrieval.
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Appendix A

Experiment Results

A.1 Precision on the NTCIR-12 arXiv Main Task for
each Query

Partially
Relevant Relevant
Query # # of Relevant Documents MAP bpref # of Partially Relevant Documents MAP bpref
1 18 0.0262 0.0988 40 0.0637 0.1731
2 2 0.0000 0.0000 24 0.0000 0.0000
3 24 0.4857 0.4931 69 0.2267 0.3461
4 6 0.3659 0.6111 52 0.1325 0.2445
5 17 0.0269 0.2249 76 0.0369 0.3265
6 2 0.0000 0.0000 57 0.0540 0.3509
7 0 0.0000 0.0000 30 0.0531 0.2644
8 10 0.5876 0.6600 27 0.2606 0.2949
9 3 0.0185 0.3333 90 0.0060 0.1438
10 10 0.0000 0.0000 34 0.0000 0.0000
11 5 0.7600 0.7600 8 0.4750 0.4844
12 0 0.0000 0.0000 31 0.0276 0.6119
13 0 0.0000 0.0000 10 0.0000 0.0000
14 9 0.1205 0.1481 63 0.4088 0.6732
15 10 0.7426 0.6400 31 0.6305 0.6753
16 3 0.1643 0.4444 29 0.0853 0.6516
17 0 0.0000 0.0000 12 0.0031 0.0000
18 4 0.0000 0.0000 16 0.0003 0.1016
19 0 0.0000 0.0000 0 0.0000 0.0000
20 52 0.0017 0.0318 115 0.0008 0.0207
21 34 0.0689 0.4092 47 0.0569 0.3291
22 4 0.0000 0.0000 9 0.0038 0.0000
23 29 0.3938 0.8205 51 0.2605 0.6767
24 2 0.0029 0.0000 21 0.2052 0.5873
25 4 0.5000 0.5000 87 0.0262 0.0678
26 23 0.1847 0.3346 80 0.1514 0.5469
27 6 0.8417 0.8333 22 0.5210 0.7645
28 134 0.2180 0.8138 141 0.2294 0.8865
29 2 0.0747 0.0000 17 0.3399 0.7474
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