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Abstract 

Purpose: When a target is in motion, two thresholds can be measured: dynamic 

visual acuity (DVA, the smallest target size at which an observer can resolve target 

detail) and speed threshold (the fastest target speed at which an observer can 

resolve target detail). Many different factors can influence DVA and speed threshold, 

including target trajectory, velocity, size, contrast, and colour. The limitation with 

research to date is that there is no standardized, validated tool with which to assess 

either DVA or speed thresholds. The Vision & Motor Performance Lab at the 

University of Waterloo School of Optometry has recently developed a distance visual 

acuity chart (moV&, V&MP Vision Suite) that can measure static visual acuity, DVA, 

and speed thresholds. moV& allows for the specifications of target trajectory, speed, 

size, contrast, and colour of both the target and background when measuring DVA. 

The primary objective of this dissertation is to examine the validity and repeatability 

of the high contrast (100% contrast), low contrast (61% and 20% contrast), and 

colour (red target on a white background and white target on a blue background) 

functions of moV&. If reliable, the data will then be used to examine the effect of 

target trajectory, speed, and size on DVA and speed threshold.  

Methods: Three cross-sectional studies were conducted in order to address the 

research objectives. Each experiment required participants to attend 2 study visits 

separated by a minimum of 14 days. All participants completed the static visual 

acuity tests before completing the dynamic tests in a randomized order. Experiment 

1 (n = 25) determined the validity and repeatability of moV& using targets at 100% 
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contrast. At each visit, static and dynamic visual acuity was measured using Snellen, 

ETDRS, and moV& charts. Experiment 2 determined the repeatability of the low 

contrast and coloured functions of moV&. Participants were assigned to either the 

contrast (n=21) or colour (n=21) study block. For the contrast block, low contrast 

(61% and 20% contrast) static and dynamic visual acuities were measured using 

Snellen and moV& charts. For the colour block, coloured optotype and background 

(red target on a white background, white target on a blue background) static and 

dynamic visual acuities were measured using the ETDRS and moV& charts. 

Experiment 3 (n = 67) examined the effect of target trajectory, speed, and size on 

DVA and speed threshold using the targets studied in Experiments 1-2. Data from 

Experiments 1 and 2 was used to determine the effect of target trajectory, speed, 

and size on DVA and speed threshold. A repeated measure ANOVA was used to 

compare static moV& visual acuity to ETDRS and Snellen charts. Test-retest 

reliability was determined via Lin’s correlation coefficient of concordance (CCC). 

Three-way ANOVA was used to determine the effect of trajectory, speed, and size 

on DVA and speed thresholds. 

Results: moV& yielded similar high contrast static visual acuity when compared to 

the EDTRS and Snellen charts. All high contrast static and dynamic visual acuities 

demonstrate good test-retest repeatability (CCCs ranged 0.451 to 0.953). moV& 

static visual acuities were significantly better than Snellen at both 61% and 20% 

contrast (p<0.05) with good repeatability (CCC61% = 0.80 and CCC20% = 0.60). CCCs 

for DVAs ranged from 0.05 to 0.74, but were better at 61% contrast. For the 
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coloured targets, moV& coloured static visual acuities were significantly better than 

ETDRS black and white static visual acuities (p<0.05) and coloured DVA 

demonstrated good test-retest repeatability (CCCs ranged from 0.50 to 0.88, and 

were similar for both colours). Trajectory had a significant effect on dynamic visual 

acuity for all contrast and colour combinations, and a significant effect on speed 

threshold for all optotypes except the white target on a blue background (p = 0.153). 

Target speed had a significant effect on dynamic visual acuity for all contrast and 

colour combinations tested except the red target on a white background (p = 0.112), 

while target size had a significant effect on speed threshold for all optotypes.  

Discussion: moV& high contrast static visual acuity is comparable to both the 

Snellen and ETDRS charts. moV& static visual acuity demonstrated good 

repeatability for all optotypes tested. moV& DVA demonstrated good test-retest 

repeatability for targets at 100% contrast, red targets on a white background, and 

white targets on a blue background. At 61% and 20% contrast, test-retest 

repeatability was worse, especially at 20% contrast. Target trajectory, speed, and 

size have an effect on dynamic visual acuity and speed threshold, with the exception 

of a few optotype colour combinations. Further research is needed to explore the 

role of a wider range of target contrasts and colours on DVA and speed threshold. 
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Chapter 1 – Introduction and Thesis Objectives  

1.1 General Introduction 

In order to easily navigate the visual world, humans must be able to recognize 

objects when relative motion exists between the target and the observer. For 

example, a driver needs to be able to recognize a road sign while travelling at a fast 

speed in order to take the correct exit on a highway. Similarly, grocery shoppers 

quickly scan the shelves while walking in order to correctly identify the items they 

need without having to stop and read the details of every label. Movement while 

playing sports also requires athletes to quickly and accurately recognize a moving 

target in order to perform safely and successfully. In fact, according to a 2007 study, 

87% of American Olympic athletes believe that vision is an important factor for 

success in sports.1 A specific example of a sport requiring specific visual skills is ice 

hockey - research on the visual skills used by ice hockey players has shown that 

peripheral vision, reaction time, and dynamic visual acuity all play an important role 

in successfully passing and shooting a puck.2 A significant number of points scored 

in ice hockey are related to the ability to discriminate between competing visual 

stimuli and inhibit unnecessary responses.3 

 

Much of the literature on dynamic visual acuity (DVA) defines it as the ability to 

recognize a target in the presence of relative motion between the observer and 

target.4–11 This definition, although vague, has allowed for the term “DVA” to be used 

to describe either the smallest size of, or fastest speed at which, a moving target can 



 

 2 

be seen. When considering DVA as a visual acuity measurement, as the term DVA 

is used in this dissertation, it can be more appropriately defined as the smallest 

target size at which an observer can recognize an object in the presence of relative 

motion between the observer and target.  DVA requires the detection of a moving 

target in the observer’s field of view, uses saccades and smooth pursuit eye 

movements to visually acquire the target, and requires resolution of critical detail for 

recognition within a brief exposure time.12 Numerous processes must function 

together in order for an observer to correctly identify a moving target; therefore many 

variables exist which influence DVA. For example, a longer exposure time results in 

better DVA.6 An improvement in DVA has also been shown in targets which move in 

a horizontal trajectory compared to an oblique trajectory.9 Furthermore, DVA 

improves as optotype velocity decreases.13 However, comparison of current 

research on DVA is difficult as there is currently no widely accepted standardized 

method with which to assess DVA. 

 

Additional optotype and background characteristics that influence DVA are contrast 

and colour. Decreasing the contrast between an optotype and the background 

results in worse static visual acuity.12 It has also been found that DVA becomes 

worse with decreasing contrast.14,15 The impact of target colour on visual acuity is 

less well understood. For example, it has been found that a combination of a black 

optotype on a white background yields the same static visual acuity as a yellow 

optotype on a red background, and a 40% higher acuity than a blue optotype on a 
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red background.16 The colour of a luminous target on a white background (grey, 

blue, yellow, and red) has been studied and has been found to effect DVA under 

scotopic and mesopic light levels in dark-adapted viewers, but not under photopic 

conditions – however, this effect may be due to differences in target brightness as 

opposed to any effect of target wavelength.17 Literature on the effect of contrast and 

colour on DVA is limited, likely because a “gold standard” test with which to measure 

low contrast or coloured visual acuity (dynamic or static) does not currently exist. 

 

When a target is in motion, either the speed or the size of the target can be varied to 

determine two different thresholds – DVA and speed threshold. DVA is the smallest 

size at which an observer can resolve target detail at a constant target speed. 

Alternatively, speed threshold is the fastest speed at which an observer can resolve 

target detail when the target size is kept constant. Since both target speed and size 

effect the visualization of a moving target, it is important to determine which 

threshold is most beneficial to measure before beginning testing.5,13  

 

The Vision & Motor Performance (V&MP) Lab at the University of Waterloo School 

of Optometry & Vision Science has recently developed a new computerized test 

(moV&, V&MP Vision Suite) with which to measure static visual acuity, DVA, and 

speed thresholds. moV& allows for 5 different target motion types (random walk, 

horizontal, vertical, oblique, and jitter) as well as options for the random presentation 

of target size and presenting one or five letters at a time. The different targets 
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available include a Landolt C, Tumbling E, or a 10 Sloan18 letter option. moV& has 

the potential to become a useful tool in sports vision and binocular vision 

assessments for measuring DVA and speed threshold at differing contrast and 

colour combinations, if its different features can be validated.  

1.2 Summary of Objectives and Hypotheses 

The primary objective of this thesis was to determine the validity and repeatability of 

the static and dynamic visual acuity functions of the moV& software using high 

contrast targets, low contrast targets, and coloured optotype and background 

combinations. The secondary objective of this thesis was to examine the effect of 

target trajectory, speed, and size on DVA and speed thresholds using high and low 

contrast targets as well as targets with coloured optotypes and backgrounds. These 

objectives were achieved through the completion of three experiments, which are 

summarized in the following sections (1.2.1 to 1.2.3).  

1.2.1 Experiment 1  

The purpose of the first experiment conducted was to determine 1) the validity and 

repeatability of the high contrast static visual acuity functions of moV&, and 2) the 

test-retest repeatability of moV& DVA. Static visual acuity measured using moV& 

was compared to the gold standard ETDRS chart and the clinically used 

computerized Snellen chart as an assessment of validity. Test-retest repeatability of 

moV& static visual acuity was also determined. Since no gold standard test exists for 

DVA testing, the test-retest repeatability of the various moV& DVA tests (predictable 

linear motion, random walking motion, and jitter) was examined. It was hypothesized 
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that moV& static visual acuity would not differ from the static visual acuity measured 

with the ETDRS or Snellen chart and would be repeatable, and that the moV& DVA 

measures would also be repeatable.  

1.2.2 Experiment 2 

The second experiment determined the repeatability of the low contrast and 

coloured static and dynamic visual acuity functions of moV& since no standard 

exists for low contrast or coloured static or dynamic visual acuity testing. The test-

retest repeatability of the static and dynamic visual acuity tests was determined for 

two low contrast (61% and 20% contrast) and two coloured optotype-background 

combinations (red target on a white background and white target on a blue 

background). It was hypothesized that moV& static and dynamic visual acuity would 

be repeatable for all low contrast and coloured optotype-background combinations 

investigated. In addition to measuring test-retest repeatability, construct validity of 

the low contrast features of moV& were also assessed by comparing low contrast 

static visual acuities between moV& and a computerized low contrast Snellen visual 

acuity chart.  

1.2.3 Experiment 3 

The third and final experiment looked at the DVA and speed threshold data collected 

during Experiments 1 and 2, and examined the effect of target trajectory, velocity, 

and size on DVA and speed threshold measures with high contrast, low contrast, 

and coloured optotype and background combinations. It was predicted that 1) the 

dynamic visual acuity measures for all targets would be worse compared to the 



 

 6 

same participant’s static visual acuity, 2) participants would be able to recognize 

smaller optotypes moving in a horizontal trajectory compared to the oblique, vertical, 

and random walk motion trajectories, and 3) DVA would be worse at faster target 

speeds, and speed threshold would be worse (at a slower speed) for targets smaller 

in size.  

1.3 Thesis Overview 

The following thesis is composed of three experiments which have been formatted 

as manuscripts. These manuscripts can be read independently or as a part of the 

larger dissertation. The first experiment determined the validity and repeatability of 

the high contrast static and dynamic visual acuity functions of the moV& software. 

Once the high contrast function was determined to be valid and repeatable, the 

second experiment was done in order to determine the repeatability of the low 

contrast and coloured target and background functions of moV&. The third 

experiment examined the dynamic visual acuity and speed threshold data collected 

during experiments 1 and 2, and explored the possible effects of target trajectory, 

velocity, and size on measures of dynamic visual acuity and speed threshold.  

 

The following sections will outline the objectives of the research, show a review of 

the literature, and present each of the experiments conducted. Chapter 1 included a 

General Introduction (1.1), Summary of Objectives and Hypotheses (1.2) and a 

Thesis Overview (1.3). Chapter 2 is a review of the literature on static visual acuity 

(2.1), dynamic visual acuity (2.2), the factors which can influence dynamic visual 
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acuity (2.3), and how a novel test is validated (2.4). Chapters’ 3 – 5 detail the 

research, and are presented as individual manuscripts. Chapter 6 includes a 

discussion about the overall objectives of the thesis in the context of the 

experimental results as well as direction for future work. 

  



 

 8 

Chapter 2 – Review of Literature 

2.1 Static Visual Acuity  

Visual acuity measurements are commonly done in routine oculovisual assessments 

and traditionally involve patients reading letters, numbers, or pictures from a chart 

presented at a specific distance. The patients begin reading the targets which are 

easy for them to see and the targets gradually decrease in size. The patient 

continues to read the targets until they are no longer able to resolve them or until a 

stopping rule is fulfilled (usually if the patient incorrectly identifies a certain number 

of targets per line). Visual acuity is defined as the smallest size of a target which can 

be resolved by an eye.19 Often, this is measured by determining the smallest target 

size which an observer can correctly recognize more than 50% of the time. Visual 

acuity testing is easy to administer, understood by the majority of patients, requires 

minimal equipment, and provides a quantifiable measure of vision. Often, the targets 

used in visual acuity tests are static and high contrast black-on-white print. Static 

visual acuity measures give clinicians a general idea of the state of the patient’s 

visual system from their macular function to visual pathways in the brain, as the 

patient must resolve, recognize, and state the name of the target they are viewing. 

2.1.1 The Snellen Chart 

The Snellen visual acuity chart (created by Dr. Hermann Snellen in 1862) is the most 

popular static visual acuity chart used in clinical practice.19 The chart consists of 

multiple rows of letters, and is completed at a testing distance of 6 metres in order 

for the letters on the 6/6 Snellen visual acuity line to each subtend a visual angle of 5 
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minutes of arc.19 The letters are large at the top of the chart, and gradually decrease 

in size between each row as the patient continues to read down the chart. Both 

printed and computerized versions of the Snellen chart are available. Printed paper 

charts or projected charts have the disadvantage of being easily memorized, as 

clinicians are unable to present the letters in a random order. With the advancement 

of technology over the past few decades, computerized visual acuity charts have 

become popular among clinicians as they allow for a larger range of visual acuity to 

be tested from a single test distance, single or multiple target presentations, and the 

use of a variety of optotypes.20  

 

Some disadvantages of the Snellen chart include an inconsistent number of letters 

per line, different intervals of increasing/decreasing letter size between lines, the 

difference in legibility of the letters used as targets, and the variable spacing 

between letters and rows.19 Changing the number of letters presented per line 

results in a larger influence on visual acuity measurements if a patient incorrectly 

identifies one letter on a larger sized line (with fewer letters) compared to a smaller 

sized line (with more letters). The fact that the letters do not decrease in size in a 

systematic way from line to line leads to an overestimation of vision at lower acuity 

levels when changing the viewing distance of the chart to less than 6 metres.19 The 

difference in spacing of the letters within and between lines varies the crowding 

effect on visual acuity – letters which are closer to other letters on the chart will be 

harder to read compared to those with more space between letters.19 Additionally, 
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the letters used as targets on the Snellen chart vary in legibility.21 Finally, it is 

important to note that the term “Snellen chart” is not standardized, therefore different 

manufacturers can vary the font, letters, and spacing which they use for their visual 

acuity charts and still label them as a “Snellen visual acuity chart”.19 Even with these 

limitations, the Snellen chart is still the most commonly used method to measure 

static visual acuity in clinical practice.  

2.1.2 The ETDRS Chart 

In order to address some of the issues present with the Snellen chart, the Bailey-

Lovie chart was developed. The Bailey-Lovie chart was designed to standardize the 

measurement of static visual acuity by using letters of equal legibility, the same 

number of letters on each row, uniform between-letter and between-row spacing, 

and a consistent logarithmic decrease in letter size between lines.22 In 1982, the 

Bailey-Lovie chart was modified for use in the Early Treatment Diabetic Retinopathy 

Study (ETDRS) by the Committee on Vision of the National Academy of Sciences 

and since then, the ETDRS chart and its protocol for administration have become 

the “gold standard” for measures of static visual acuity.19 The ETDRS chart is 

administered at a distance of 4 metres, and each row contains 5 of 10 possible 

Sloan letters (non-serifed, uppercase letters with equal legibility, consisting of the 

letters C, D, H, K, N, O, R, S, V, Z).19 The spacing between the letters and rows is 

consistent and proportional to the letter size, and the letters decrease in size in 

equal logarithmic steps (0.1 logMAR decrease in size per line).19 
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Printed and computerized versions of the ETDRS chart are available, although the 

gold standard is the printed high contrast chart administered at 4 metres.19 The 

limitations that exist with all printed charts (clinicians are unable to randomize the 

presentation of the letters, therefore it is easy for patients to memorize charts) are 

present with the printed ETDRS charts, although the ETDRS chart is available with 

different optotype permutations, allowing clinicians to switch charts so letters are not 

as easily memorized.23 Due to the optimization in font, spacing, and decrease in 

letter size, the ETDRS chart provides a measure of static visual acuity with less 

confounding factors compared to the Snellen chart. Still, the Snellen chart is still 

used in most optometric clinics as it is more convenient, easier, and quicker to 

administer.19  

2.1.3 Effect of Contrast on Static Visual Acuity 

Clinical measures of static visual acuity are commonly done using high contrast 

targets (a black target on a white background). However, it is often beneficial to 

measure a patient’s low contrast static visual acuity. Low contrast acuity measures 

one’s ability to identify gray letters on a white background – the letters gradually 

decrease in size, but the contrast level stays the same.24 Low contrast versions of 

Snellen and ETDRS charts (both printed and computerized) exist with targets 

available at a variety of contrast levels, ranging from 1.25% to 100% contrast.25,26 

Low contrast static visual acuity differs from measures of contrast sensitivity where 

the letter size is kept constant and the contrast of the letters decreases, such as in 

the Pelli-Robson chart.24  
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The ETDRS low contrast visual acuity charts provide sensitive measures of 

disability, especially in patients with diseases which impact contrast sensitivity such 

as multiple sclerosis.24 However, the repeatability of visual acuity measures (being 

able to obtain similar measurements for the same subject on two separate 

occasions) has been shown to be poorer with low contrast targets compared to high 

contrast targets in healthy patient populations.26 This is due to increased task 

difficulty when visualizing low contrast targets compared to high contrast targets.26 

Greater intra-subject variability has also been found on low contrast acuity tests, 

likely stemming from the increased difficulty of the task.26 

2.1.4 Effect of Colour on Static Visual Acuity 

In addition to the effect of target contrast, the colour of both the target and 

background can influence visual acuity. There is a limited amount of literature 

available which examines the effect of coloured optotypes on static visual acuity. 

Visual acuity measured using coloured sinusoidal gratings showed that a blue and 

yellow combination of colours results in worse acuity compared to a red and green 

colour combination.27 Research with letter optotypes found participants had better 

static visual acuity (were able to resolve detail from smaller targets) with a black 

letter on a white background compared to a blue letter on a red background, 

however there was no statistically significant difference found in static visual acuity 

measured with a black letter on a white background compared to a yellow letter on a 

red background.16 It is important to note that no standardized, validated test is 

currently available with which to measure the static visual acuity of coloured 
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optotypes. This is likely the reason why limited research is available on this topic, but 

with the advancement of computer-based visual acuity technology it is becoming 

easier to create programs which can change the colour of both the targets and 

background of visual acuity charts. 

2.2 Dynamic Visual Acuity 

Another type of visual acuity measurement is dynamic visual acuity. Dynamic visual 

acuity (DVA) is a measure of object recognition in the presence of relative motion 

between the observer and the target.4 In order for an observer to recognize a target 

that is moving within a single two-dimensional plane, they must detect the target as it 

crosses their field of view, use saccadic and/or smooth pursuit eye movements in 

order to visually acquire the target, and resolve enough critical detail in order to 

make an appropriate judgment on target recognition, all within the brief time that the 

target is within their field of view.12 This differs from the visual strategies used for 

static visual acuity, as DVA requires observers to make the appropriate eye 

movements in order for the target image to fall on their fovea, and target exposure 

time can vary depending on the speed and trajectory of the target.  

 

As stated previously, the term “visual acuity” refers to the smallest size of an object 

which can be visually resolved.19 It follows that dynamic visual acuity would refer to 

the smallest size of a moving object which can be resolved with an eye. This differs 

from measurements of the fastest speed at which a target of a constant size can be 

resolved, which will be termed “speed threshold” for the remainder of this 



 

 14 

dissertation. DVA and speed threshold are both measurements of the ability to 

visualize a moving target, but are different variables. DVA is a measurement of size, 

while speed threshold is a velocity measurement. Therefore, it is important to 

distinguish between these two thresholds when reviewing research on “dynamic 

visual acuity,” as the term has been used interchangeably throughout the literature 

to refer to both DVA and speed thresholds.  

 

A weak correlation exists between static and dynamic visual acuity, although this 

correlation is not seen in studies with strict subject inclusion criteria (such as best 

corrected static visual acuity, age, and athletic background).4,6,28 This weak, but 

significant positive correlation between dynamic and static visual acuity decreases 

as target velocity increases.28 A significant interaction also exists between speed 

threshold and static visual acuity (good static visual acuity is related to good [faster] 

speed thresholds).29 Despite these correlations, measures of static visual acuity are 

consistently better than dynamic visual acuity - subjects are able to resolve smaller 

target detail with a static target compared to a moving target, and the disparity 

between static and dynamic visual acuities increases with increasing target speed.12 

 

One factor which has limited our understanding of DVA is the lack of research done 

exploring the sensory aspect of how we detect target detail when a target is in 

motion. It is known that the magnocellular layers of the lateral geniculate nucleus are 

responsible for motion perception and contrast, while the parvocellular layers are 
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important for visual acuity and colour perception.30,31 Therefore, DVA reflects an 

interaction between these two visual pathways as it involves measuring the visual 

acuity of a moving target. Research still needs to be done in order to determine the 

nature of this interaction, the sensory processes which are required in order for 

someone to successfully resolve target detail when the target is in motion, and how 

these processes may differ based on factors such as target speed, size, trajectory, 

contrast, and colour.    

2.2.1 Eye Movements used to Track Moving Objects  

When a stationary observer views a moving target, they use a combination of eye 

and head movements in order to stabilize the image on the fovea and resolve target 

detail.5 Specific eye movements such as saccades and smooth pursuits are used to 

track moving objects. Saccades are rapid eye movements used to quickly change 

the point of fixation in order to visualize a moving target.32 Smooth pursuits are 

slower, tracking eye movements meant to keep a moving image on the fovea.32  

2.2.1.1 Tracking Moving Targets in Dynamic Visual Acuity 

The above definition of DVA involves a target moving across the visual field in a 

“walking” motion (i.e. following a path or trajectory across the screen). Walking 

motion can be predictable (e.g. horizontal, vertical, or oblique motion) or the 

movement can be random. Better DVA (the ability to resolve smaller moving targets) 

is linked to better image tracking as opposed to image processing in the visual 

pathways of the brain, although both skills play an important part in the visualization 

of a moving target.5  
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Eye movements used to track horizontally moving objects at speeds ranging 

between 0-90 degrees per second showed no consistent trend between participants, 

but large differences in eye movement parameters (increase in number of saccades, 

decrease in saccade latency, and increase in pursuit velocity) existed within the 

same participant based on the target speed.33 Smooth pursuits were shown to be 

faster, smoother, and more accurate when the speed of the target was slower.5 

However, the onset and minimum positional error of smooth pursuits, and reverse 

saccades (saccades made in the opposite direction of target movement in an 

attempt to intercept the target before it reaches the point of fixation) were unaffected 

by optotype speed.5 Smooth pursuit eye movements are typically used to track 

objects moving at speeds up to 50 degrees per second – at faster speeds, catch-up 

saccades are needed in order to accurately foveate the image.5 

2.2.1.2 The Vestibulo-Ocular Reflex 

So far, we have explored the methods used by stationary observers to track a 

moving object. It is important to note that the strategies used to visually acquire a 

moving object vary depending on the method used to measure DVA. However, there 

are actually two common methods used in the literature to measure DVA – they 

involve either target movement across a screen, or a static target viewed while the 

observer makes repetitive rotational head movements (usually along a transverse or 

sagittal plane).5 As previously stated, tracking a moving target requires the use of 

smooth pursuit and saccadic eye movements. Using head rotation to stimulate 

movement invokes the vestibulo-ocular reflex (VOR), which helps to keep a target 
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on the fovea during head movement.5 The vestibuo-ocular reflex responses stabilize 

the eye relative to the target, hence compensating for head movement and 

stabilizing the image on the retina.32 

 

The neural mechanisms used to invoke voluntary eye movements differ from those 

used for the VOR. The VOR is an eye movement initiated by the vestibular system 

and is the body’s way of keeping a stationary object on the fovea during head 

rotation.5 A stable gaze is maintained by the VOR as the body generates 

compensatory eye movement responses in the opposite direction and of equal 

magnitude to the head movement.34 Since the VOR is a reflex, it uses cortical 

vestibular processing as well as integration of the insular and temporo-parietal brain 

regions in order to integrate all available information and give the appropriate motor 

response.34 This differs from the retinogeniculate neural pathways activated when 

performing a smooth pursuit or saccadic eye movement - therefore, it is important to 

specify the method of testing used when describing DVA measurements.13 

2.2.2 Methods of Measuring Dynamic Visual Acuity  

Past research involving measures of DVA use a variety of experimental equipment 

and methods in order to create relative motion between the observer and target. A 

summary of the equipment used in the literature can be found in Table 2.1. 

Traditionally, DVA was measured using a projector and a front surface mirror on a 

turntable, such as the Kowa Dynamic Vision Analyzer HI-10.6,33,35 By using a 

standardized acuity chart and creating a motorized set up, researchers were able to 
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conveniently measure DVA. However, this method had the limitation of restricting 

the movement of the target to a single trajectory. Additionally, unless a specific test 

and protocol were used, the experimental set up was not consistent between 

experiments as the models of projectors, turntables, and fields of view differed 

depending on availability.  

 

Clinically, the Wayne Robot Rotator is often used in vision training and sports vision 

in order to measure DVA.36 This instrument consists of printed letter targets of 

various sizes on a spinning disc, causing the targets to move in a circular motion at 

a fixed speed.37 Patients are asked to read the smallest line of letters which they can 

visualize. However, this limits the available trajectories to predictable circular motion 

in either a clockwise or counter clockwise direction, and makes it difficult to vary the 

optotype size and order. Additionally, it varies the eye movement demand required 

by the patient in order to successfully track the target. Although this device is used in 

vision training clinics, it is not often used for research on dynamic visual acuity; 

therefore it is not mentioned in Table 2.1.  

 

More recently, computer software such as the DinVA 3.0 has been used to measure 

DVA – this allows for the target to move across a screen while the observer remains 

stationary.8,9 The V&MP lab at the University of Waterloo has created computer 

software named moV& which has the capability of creating relative motion between 

the observer and the target by allowing the experimenter to set the trajectory and 
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speed of the target.38 By using computer software to generate target movement it is 

easier to modify tests for different screen sizes and testing distances, as well as 

change target variables such as trajectory, speed, and size. However, limitations 

exist when using computerized DVA systems. The refresh rate of the system used to 

display the test often provides a cut-off for the stimulus speeds available.9 

Additionally, LCD screens hold their luminance until the next refresh cycle, which 

can lead to motion blur when an observer is following a moving object on the 

display.39 In order to reduce motion blur, a refresh rate of 120 Hz or more is 

required.39  
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Table 2.1: Summary of dynamic visual acuity tests that use a moving optotype to create relative movement between the 

target and observer 

Study DVA Test Name Optotype Trajectory Optotype 
Speed 

Optotype 
Size 

Study 
Sample 

DVA in logMAR Speed 
Threshold 
in °/sec 

Brown 
(1971)

33
 

Projected targets 
onto a rotating 
front surface mirror 
mounted on a 
gramophone 
turntable 
 
Free head 
movement 

Landolt C Horizontal 
(left to right) 

20 °/sec Dependent 
Variable 

n = 25 males 
  
Age range 
19-28 
 
Static VA ≤ 
6/6 

0.114 Not 
measured 

30 °/sec 0.146 

40 °/sec 0.301 

50 °/sec 0.380 

60 °/sec 0.380 

80 °/sec 0.462 

90 °/sec 0.518 

Goodson & 
Morrison 
(1980)

12
 

Front surface 
mirror on a variable 
speed motor 
turntable 
 
Free head 
movement 

Landolt C Horizontal 
(right to left) 

20 °/sec Gap sizes 
ranging from 
0.65 to 20.38 
min of arc 

n = 10 males 
 
Age range 
18-22 
 
Static VA ≤ 
6/6, Student 
naval aviators 

0.172 Not 
measured 

50 °/sec 0.131 

80 °/sec 0.217 

110 °/sec 0.606 

Long & May 
(1992)

6
 

Kodak Ektagraphic 
Projector and a 
front-surface mirror 
on a turntable 
 
Free head viewing 

Landolt C Horizontal 
(left to right) 

60 °/sec Dependent 
Variable 

n = 39 
females, 21 
males 
 
Age range 
18-25 
 
Static VA ≤ 
6/12 

0.778 Not 
measured 

90 °/sec 0.903 

120 °/sec 0.954 

150 °/sec 1.204 

2
0
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Demer & 
Amjadi 
(1993)

7
 

Front surface 
mirror mounted on 
a pivoting 
galvanometer  
 
Fixed head rest 

Sloan 
letters 

Vertical 
sinusoidal 
motion 

7.5 °/sec Dependent 
Variable 

n = 13 
(male:female 
not reported) 
 
Age range 
19-40 
 
Static VA ≤ 
6/6 

~0.10  Not 
measured 15 °/sec ~0.20  

30 °/sec ~0.30  

45 °/sec ~0.65  

60 °/sec ~0.75  

75 °/sec ~0.82  

100 °/sec ~0.95  

Miyao et al. 
(1994)

40
 

Target projected 
onto a rotating 
front surface mirror 
controlled by a 
variable speed 
turntable 
 
Fixed head rest 

Landolt C Horizontal 
(left to right) 

Up to 35 
rpm 
(rotations 
per minute) 

8 min of arc n = 12 males, 
6 females 
 
Age range 
18-25 
 
Static VA ≤ 
6/7.5 

Not measured 150 

14 min of arc 162 

28 min of arc 174 

42 min of arc 192 

Ishigaki & 
Miyao 
(1994)

41
 

Target projected 
onto a rotating 
front surface mirror 
controlled by a 
variable speed 
turntable 
 
Fixed head rest 

Landolt C Horizontal 
(left to right) 

Up to 210 
°/sec 

40 min of arc n = 433 
males, 393 
females 
 
Age range 5-
92 
 
No inclusion/ 
exclusion 
criteria stated 

Not measured 140 at 5 
years old 

170 at 10 
years old 

180 at 15 
years old 

110 at 80 
years old 

Nakatsuka 
et al. 
(2006)

29
 

Dynamic Vision 
Analyzer HI-10 
(Kowa) 
 
Rotating mirror on 
a turntable  
 
Free head viewing 

Landolt C Horizontal 
(left to right) 

Up to 240 
°/sec 

10 min of arc n = 13 males, 
8 females 
 
Mean age 
30.8 ± 5.1 
 
Static VA ≤ 
6/6 

Not measured 161.4  

2
1
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Ueda et al. 
(2007)

42
 

Dynamic Vision 
Analyzer HI-10 
(Kowa) 
 
Rotating mirror on 
a turntable  
 
Fixed head rest 

Landolt C Horizontal 
(left to right) 

Up to 300 
°/sec 

15/600 n = 60 males 
 
Mean age 
28.1 ± 3.9 
 
Static VA ≤ 
6/6 

Not measured 203.05 
°/sec 

Quevedo-
Junyent et 
al. (2012)

8
 

DinVA 3.0 
Computer Software 
 
Free head 
movement 

Palomar 
Universal 
Optotype  

Horizontal 
(right to left) 
 

1.14 °/sec 
 

Dependent 
Variable 

n = 16 
females, 17 
males 
 
Mean age 
23.4 ± 3.92 
 
Static VA ≤ 
6/6 

0.220 
for 
horizont
al 
motion 

0.234 
at 1.14 
°/s 

Not 
measured 

Diagonal 
(45°) 
 

8.58 °/sec 0.235 
for 45° 
diagonal 
motion 

0.304 
at 8.58 
°/s 

Diagonal 
(135°) 

14.1 °/sec 0.237 
for 135° 
diagonal 
motion 

0.423 
at 14.1 
°/s 

Hoshina et 
al. (2013)

35
 

Dynamic Vision 
Analyzer HI-10 
(Kowa) 
 
Rotating mirror on 
a turntable 

Landolt C Horizontal 
(right to left) 

Up to 300 
°/sec 

1.0 logMAR n = 102 
males 
 
Age range 
19-40 
 
Japanese 
professional 
baseball 
players 

Not measured 267.6  

Horizontal 
(left to right) 

286.2  

2
2
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Another common method used to create relative motion between an observer and 

target is having the observer view a stationary target while rotating their head 

horizontally or vertically in a back-and-forth manner.7 This head rotation can be 

active or passive. Active rotation refers to having the participant rotate their head 

freely, while passive rotation involves having a trained experimenter rotate the 

participant’s head.34 A more consistent way of accounting for variability in speed of 

head rotations is to use a computerized set up such as the inVision System by 

NeuroCom® - this system consists of a head mounted device which measures the 

direction and speed of the observer’s rotational head motion, and only presents the 

optotype once the desired speed is achieved at a constant rate.43 As previously 

mentioned, the DVA measurements obtained using these methods stimulate the 

VOR, and DVA obtained through target movement with a stationary observer cannot 

be compared to DVA obtained using head rotation and a stationary object as they 

use different neural mechanisms in order to stabilize the target image on the retina.  

2.3 Factors which affect Dynamic Visual Acuity 

DVA and speed thresholds can be influenced by a variety of factors, including 

characteristics of the observer and the target. Age has a significant effect on DVA – 

DVA improves between 5 to 15 years of age, after which it declines at a constant 

rate until 80 years of age.41 In addition, uncorrected refractive error has a significant 

effect of speed thresholds, as an increase in uncorrected refractive error creates 

image blur which can decrease the contrast of the target for the observer and result 

in a slower speed threshold.29 Varying results have been found when exploring the 
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possible effect of biological sex on DVA. Most studies have found that sex does not 

have a significant effect on DVA.9,44 Studies which have found a difference between 

the DVA measured in males and females did not take into account population 

differences or other confounding factors which have the potential to affect DVA.6 In 

addition to these population characteristics, optotype attributes such as velocity, 

target size, trajectory, exposure time, contrast, and colour can also have an effect on 

DVA – these will be explored in the following subsections.  

2.3.1 Velocity 

When introducing relative motion between a target and an observer, target velocity 

must be taken into account as the speed of a target affects DVA. Subjects have 

better DVA (are able to visualize smaller target details) when a target is moving at 

slower speeds (target speeds usually range from 1 – 100 degrees per second in 

order to encompass speeds which can be tracked using both smooth pursuits and 

saccades).6,7,9 The variance of DVA measures also increases at faster target 

velocities, which indicates a larger spread of data.12,33 The relationship between 

DVA and the angular velocity of a moving target has been shown to be 

approximately linear for targets moving between 20-90 degrees per second.33 When 

relative motion between the observer and the target is created using a static target 

and rotational head movements, head rotational velocity does not impact acuity 

measures.7 This highlights a difference in DVA measured using head rotation and a 

static target compared to DVA measured with a moving target, and shows that DVA 

measured using these two techniques should not be considered equivalent. 
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2.3.2 Target Size 

As summarized above, there is a relationship between target speed and target size 

– smaller targets are better visualized at slower speeds. It follows that target size 

has an effect on speed threshold (constant target size with decreasing target speed). 

Speed thresholds are significantly affected by target size – as target size decreases, 

speed thresholds become worse.40 This means that smaller targets need to move at 

slower speeds in order to be recognized by an observer. Therefore, both target 

speed and size have an effect on each other when relative motion is present 

between a target and an observer. It is important to keep one of these variables 

constant when measuring the other, as varying both will not yield a useful DVA or 

speed threshold. Additionally, it is important to specify the target speed when 

reporting DVA and the target size when reporting speed threshold measurements.  

2.3.3 Trajectory  

Trajectory has been shown to have an effect on DVA – objects moving in a 

horizontal (left to right) walking motion result in better DVA compared to objects 

moving in an oblique direction (diagonally from the top right hand corner of a screen 

to the bottom left, or from the top left hand corner of a screen to the bottom right).9 

Trajectory also has a significant effect of speed thresholds. Objects moving in a left-

to-right horizontal motion have faster speed thresholds compared to the same sized 

object moving with a right-to-left horizontal trajectory.35 However, since the majority 

of literature on DVA and speed thresholds uses motorized turntables to create target 

motion, there has been a limitation to the trajectories studied as only horizontal 



 

 26 

motion can be simulated with this method. With computer software, it is easier to 

create target motion in any linear direction as well as random non-linear motion 

patterns since it is not reliant on a motorized, spinning platform. 

 

Another unique type of motion, termed “jitter,” involves the target quickly shifting in 

all directions around a fixed central point in an attempt to mimic the type of image 

motion produced by oculomotor instability.45 In healthy subjects, target orientation 

perception of an “E” target has been shown to be robust to jitter – the separation of 

features on the “E” determines a subject’s tolerance to motion, not the standard 

deviation of jitter.46 Additionally, jitter has been shown to have an insignificant effect 

on separation discrimination tasks (being able to determine if a pair of parallel lines 

are separated by more or less distance compared to another pair of parallel lines 

presented 100ms prior).45,47 Since jitter acuity involves target motion with little to no 

eye movement, it can be used as a control for DVA.  

2.3.4 Exposure Time 

The amount of time which a moving target is viewed by a stationary observer varies 

with target speed unless specifically controlled for – if the target is moving in a linear 

trajectory, faster moving targets will be in the subject’s field of view for a shorter 

amount of time compared to slower moving targets. The exposure time of the target 

has a significant effect on DVA – the longer the exposure time, the smaller the target 

which can be visualized.6,44 Exposure time can be controlled in a variety of ways: by 

having the target repeatedly travel across a screen with the same trajectory and 
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speed, by limiting the presentation time of a slower moving target to match that of 

the fastest moving target, or by having targets move randomly around a screen for a 

set amount of time. However, each of these methods involves different strategies of 

eye tracking to be used in order to visualize the target, which must be considered 

when comparing measures of DVA. 

2.3.5 Contrast 

In addition to features of target motion which can be varied to influence DVA and 

speed thresholds, optotype characteristics can also have an effect on DVA. For 

example, target contrast significantly effects both DVA and speed thresholds. DVA is 

superior (observers are able to resolve smaller targets) when a high contrast target 

is used (100% Weber contrast) compared to a low contrast target.8,9,44 Low contrast 

targets result in slower speed thresholds compared to high contrast targets of the 

same size.8,44 DVA and speed threshold tasks using low contrast optotypes are 

more sensitive to increased target speed (for DVA) and decreased target size (for 

speed threshold) compared to their high contrast counterparts.44 The effect of 

contrast on DVA and speed threshold raises interesting questions about the 

influence of ocular diseases such as multiple sclerosis, which can worsen contrast 

sensitivity, and their effect on real life tasks involving the recognition of moving 

targets, such as sports or driving.  

2.3.6 Colour 

Colour perception is a sensory process in which an observer can discriminate 

between stimuli based on differences in their distribution of spectral energy.48 
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However, research looking at the effect of target colour on visual acuity has focused 

more on the wavelength and brightness properties of the target instead of how the 

colour is perceived by an observer. It has been speculated that target wavelength 

has an effect on DVA due to the difference in temporal processing between the 

different cone types. Research by Long and Garvey showed that target wavelength 

may influence DVA under scotopic and mesopic light levels with dark-adapted 

viewers.17 Under photopic conditions, no effect of target wavelength was found.17 

However, this experiment only had two participants; therefore further investigation is 

required in order to draw solid conclusions on the effect of colour on DVA. No similar 

research has been conducted since. Even with the expansion of computer based 

technology over the past few decades, a standardized, validated test available with 

which to measure static or dynamic visual acuity using a coloured optotype or 

background is not available.  

2.4 Validating a Novel Test 

When a new test is developed and introduced into the research or clinical 

population, users expect proof that the test is valid and repeatable in order to trust 

their results. Often, validation of a novel test is determined by comparing it to the 

current gold standard49,50; however, in cases where a gold standard does not yet 

exist, validity needs to be examined in terms of other aspects. There are different 

features of validity which provide evidence for how well a novel test works. The 

construct validity of a test demonstrates that a test is collecting data or providing 

measurements which correctly and appropriately represent the construct proposed 
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by the creators of the test.8,50,51  Test repeatability, or its ability to yield consistent 

measurements for the same subject over time, is also important in assessing the 

validity of a test,50 and convergent validity describes the ability of a novel test to yield 

data which accurately represents understood relationships among concepts.51 

External validity is the extent by which the test can yield results which agree with 

those found in previous research, and can thus be generalized.50,51 In order to 

validate a novel test, the instrumentation needs to be administered in a standardized 

manner – this ensures that a protocol is developed by which valid results can be 

obtained.49 All of these aspects of test validity are important, as they each provide a 

different kind of evidence which helps in determining the usefulness of a test.  

 

 The Vision & Motor Performance (V&MP) Lab at the University of Waterloo School 

of Optometry & Vision Science has developed a novel test named “moV&.” moV& is 

a computerized test which can measure static visual acuity and DVA. It allows for 5 

motion types (random walk, horizontal, vertical, oblique, and jitter) and has options 

for random target size presentation and the presentation of one or five letters at a 

time. The different targets available include a Landolt C, Tumbling E, and a 10 Sloan 

letter option. Additionally, target contrast and the colour of the optotype and 

background can be varied by inputting the desired target A (alpha) and R, G, B 

values into the software. The validation and reliability of the static and dynamic 

visual acuity functions of moV& would allow for data on the effect of different factors 
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(such as size, speed, trajectory, contrast, and colour) to be collected in a 

standardized and comparable manner.  
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Chapter 3 - Validity and Repeatability of a Novel Dynamic Visual 

Acuity System 

Hirano M, Hutchings, N, Simpson T, Dalton K. Validity and repeatability of a novel 

dynamic visual acuity system. Optom Vis Sci, 2017;94(5):616-625. 

https://journals.lww.com/optvissci/Abstract/2017/05000/Validity_and_Repeatability_o

f_a_Novel_Dynamic.10.aspx.  

3.1 Chapter Summary 

Purpose: In many sports, athletes rely on visual information from the environment to 

perform. Some literature suggests athletes have superior visual abilities to non-

athletes, particularly on tasks representative of the visual demands of their sport, 

such as dynamic acuity, eye movement accuracy and speed, and peripheral vision. 

Other literature suggests there is no difference between athletes and non-athletes, 

at least when standard clinical assessments are employed. A limitation of the 

literature is that almost none of the research has been conducted with standardized, 

validated tools. This is partly due to a lack of readily available tools to measure tasks 

representative of the visual demands of sport, and available tests have typically not 

been validated against current clinical standards. The purpose of this study is to 

examine the validity and repeatability of a novel visual acuity system (moV&, V&MP 

Vision Suite) recently developed in the Vision & Motor Performance Lab 

(V&MP). moV& permits the measurement of many visual function parameters 

including dynamic visual acuity with predictable, random, and jittering target motion. 

Methods: Twenty-five participants attended two study visits, separated by a 

minimum of two weeks. At each visit, static and dynamic visual acuity was measured 

https://journals.lww.com/optvissci/Abstract/2017/05000/Validity_and_Repeatability_of_a_Novel_Dynamic.10.aspx
https://journals.lww.com/optvissci/Abstract/2017/05000/Validity_and_Repeatability_of_a_Novel_Dynamic.10.aspx
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using Snellen, ETDRS, and moV& charts. Static visual acuities were compared to 

determine the validity of moV&, and both static and dynamic visual acuities were 

compared between visits to determine the test-retest repeatability. Results: moV& 

static visual acuities are clinically similar to visual acuities measured with the ETDRS 

chart (mov& -0.09±0.13, ETDRS -0.03±0.11, CCC 0.726). Additionally, all static, 

dynamic and jitter visual acuities demonstrate good test-retest repeatability (Lin’s 

concordance correlation coefficient range 0.451 to 0.953). Conclusions: moV& 

provides good clinical measures of static visual acuity that are comparable to both 

Snellen and ETDRS measures. Dynamic visual acuity measures demonstrate good 

test-retest repeatability. 

3.2 Introduction 

In almost all sports, athletes rely primarily on visual information from the 

environment to perform. For example, in golf putting, golfers rely on visual 

information to be able to accurately read the green, to choose an aim line and a 

target, to line their ball up with the target, and to line their club up with the ball. A 

2007 study of American Olympic athletes conducted by the Johnson & Johnson 

Vision Care Institute found that 87% of athletes believed that vision was important 

for success in sport.1 

 

Several qualitative literature reviews examining the role of vision in sport have been 

conducted.52–54 These have concluded that vision is the ‘signal’ allowing muscles to 

respond in sports activities, and suggest that the visual skills that are important for 
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each sport are unique and sport specific.52–54 For example, the ability of an athlete to 

discriminate the markings on a baseball or tennis ball may provide them with more 

information regarding the speed and rotation of the ball.55 Despite this research, the 

debate as to whether or not athletes have better visual skills than non-athletes is still 

contested. Some literature suggests that highly proficient athlete groups have 

superior visual abilities compared to less proficient athlete groups, and both have 

superior performance in comparison to non-athlete groups, particularly on tasks that 

could be considered to be more representative of the visual demands of sport 

(dynamic acuity, depth perception, eye movement accuracy and speed, peripheral 

vision measurements and visualization).56–61 Other literature suggests that when 

standard (often static) clinical assessments are employed, there is no difference 

between athletes and non-athletes.62,63  

 

The current literature is limited, in that there is not a consistent method of defining 

athletes and control groups, and factors such as refractive error correction, age, 

contrast, and testing criteria are dealt with in a variety of different ways, making 

comparison between studies difficult.55 An additional limitation of the literature is that 

almost none of the research has been conducted with standardized, validated 

tools52; this is partly due to a lack of available tools to measure tasks that are 

representative of the visual demands of sport (e.g. dynamic acuity), and also 

because some of the tests used have not been validated against the current clinical 

standards (e.g. ETDRS visual acuity, Pelli-Robson contrast sensitivity). 



 

 34 

3.2.1 Static Visual Acuity 

Static visual acuity is perhaps the most commonly conducted clinical test. It 

determines the visual status of patient’s eyes, including the need for, or 

effectiveness of refractive corrections and the effects of disease or disease 

treatments on the visual system. The Bailey-Lovie chart22 is widely accepted as the 

current gold standard for measuring distance visual acuity in population studies and 

clinical research, and uses 5 letters of equal size and spacing for each line.22 The 

Early Treatment Diabetic Retinopathy Study (ETDRS) chart64, designed based on 

the principles of the Bailey-Lovie chart, is the current clinical gold standard for 

measuring visual acuity, and uses a logMAR scale of distance visual acuity, which 

allows for a per letter acuity measurement - this improves the repeatability and 

precision of the test.65,66 Printed charts such as the ETDRS chart have the 

disadvantage (among many others) of being easily memorized, as clinicians are 

unable to present the letters or sentences in random order. More recently, 

computerized visual acuity charts have been developed that allow for the 

presentation of letters in a random order to avoid memorization effects.65 Additional 

challenges with computerized visual acuity charts include difficulties controlling the 

displays to ensure that letters have the correct size, spacing, luminance and contrast 

for the measurement of static visual acuity on these systems.65,67 

3.2.2 Dynamic Visual Acuity 

Dynamic visual acuity is a measure of one’s ability to recognize moving optotypes 

during voluntary ocular pursuit.12 Since many real world situations involve the 
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recognition of moving targets, dynamic visual acuity has applications in sports and 

athletic performance, driving, piloting, etc. Dynamic visual acuity requires the 

observer to detect a target as it moves across their field of view, visually acquire and 

stabilize it using saccadic and smooth pursuit eye movements, and resolve the 

necessary critical detail for recognition, often during a relatively brief exposure 

time.12 

 

Although there is currently no widely accepted standardized method with which to 

assess dynamic visual acuity there is a number of technically relevant dynamic 

visual acuity results that are pertinent in the design of a dynamic visual acuity 

system. For example, the exposure time of the target has an effect on the dynamic 

visual acuity results: the longer the exposure time, the better the subject’s dynamic 

visual acuity.6 It has also been demonstrated that dynamic visual acuity becomes 

worse as the velocity of the target increases.13,68 Ludvigh and Miller demonstrated 

that visual acuity decreases as the angular velocity of the test object increased, and 

that the relationship between visual acuity and target velocity is equivalent to 

Y=a+bx.53,68 One of the reasons dynamic visual acuity decreases as target velocity 

increases is that on average humans are unable to make pursuit eye movements 

accurately beyond approximately 50° per second.69–71 At speeds greater than 50° 

per second, the number of saccades used increases and dynamic visual acuity may 

be worse due to a decrease in the accuracy of saccades.13 It may also be due to the 

mechanisms of saccadic suppression (which reduces system sensitivity to stabilize 
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perception) or saccadic omission (reduces amount of time stimulus is perceived to 

eliminate perception of blurred visual images).13 Finally, it has been demonstrated 

that target trajectory can impact dynamic visual acuity. It has been reported that, 

dynamic visual acuity is better when target motion has a horizontal trajectory, 

compared to an oblique trajectory (although this trajectory itself can be systematic 

[unidirectional] or random).9  

 

While it is currently thought that dynamic visual acuity is heavily influenced by 

oculomotor movements, it is possible that dynamic visual acuity may also be 

dependent upon individual’s abilities to interpret retinal smear. Induced retinal-image 

jitter or “jitter,” is another type of target motion that has been used previously to 

measure visual acuity and involves the target quickly shifting in any direction around 

a fixed central point on a screen. In normal and amblyopic eyes, target orientation 

resolution is robust to jitter, and separation of features as opposed to the standard 

deviation of the jitter is responsible for a subject’s tolerance to the motion.46 In 

individuals with vision impairment, jitter has even been shown to improve word and 

facial recognition.72 Therefore, jitter can be used as a control in the study of dynamic 

visual acuity, because it creates a simulated moving target that does not depend on 

eye movements, such as pursuits and saccades for interpretation. Arguably, 

individuals will make some small eye movements when doing a jitter task, but the 

magnitude of these eye movements is much smaller than those made in traditional 

dynamic visual acuity tasks.  
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Previous studies have examined the relationship between static and dynamic visual 

acuity. Some have found a high correlation between the two measures, or a small 

but significant relationship.29,73,74 Other studies show no correlation between static 

and dynamic visual acuity.75–77 It is hypothesized that the correlation between static 

and dynamic visual acuity is influenced by the use of the sustained p-cell pathway 

for static visual acuity while dynamic visual acuity makes use of the transient m-cell 

pathway.13 The difference in foveal fixation methods may also influence dynamic 

visual acuity in comparison to static visual acuity, as dynamic visual acuity is 

influenced by eye movements such as saccades and smooth pursuits, which are 

used to keep the image on the fovea.13 

 

A possible source of discrepancy between the studies is the difference in methods 

used to measure dynamic visual acuity in particular. In these studies, dynamic visual 

acuity has been measured using projected letters and rotating mirrors, rotating discs, 

or by having targets move across a screen.55 Therefore, the development of a 

standardized, validated dynamic visual acuity chart that is comparable to a static 

visual acuity chart is needed. It would be ideal if the dynamic visual acuity chart were 

comparable to current clinical and gold standard visual acuity charts, incorporating 

principles such as uniform logMAR size reduction and presentation of 5 letters of 

equal size and spacing. Furthermore, if both the newly developed dynamic acuity 

chart and the static acuity chart it was being compared with were measured with the 

same system, then one could ensure complete consistency in the testing conditions. 
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3.2.3 Purpose 

The purposes of this study are to validate a newly developed distance static and 

dynamic visual acuity chart (moV&, V&MP Vision Suite) that has recently been 

developed in the Vision & Motor Performance Lab (V&MP), against the standard 

ETDRS chart, and to examine the test-retest relationship of the various dynamic 

visual acuity tests (predictable motion, random walking motion and jitter). 

3.2.4 Hypotheses 

It is hypothesized that moV& distance static visual acuity will not statistically differ 

from the acuity measured with the ETDRS visual acuity chart. It is also hypothesized 

that the dynamic visual acuity obtained with moV& will be repeatable. 

 

It is predicted that the walking motion dynamic visual acuity of the subject will 

become worse relative to the subject’s stationary visual acuity and jitter dynamic 

visual acuity as the velocity of the target increases. The horizontal trajectory will 

provide better dynamic visual acuity compared to vertical, oblique, or random 

walking motion and jitter dynamic visual acuity should be statistically similar to the 

static visual acuity.  

3.3 Methods 

This study followed the tenents of the Declaration of Helsinki and received ethics 

approval from the University of Waterloo Office of Research Ethics. Prior to 

enrollment in the study, all participants signed an informed consent after explanation 

of the nature and possible consequences of the study. Twenty-five adult participants 
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(age range 20-55 years, mean 26.5 ±9.9; 8 males, 17 females) were recruited for 

this study, which used a repeated measures design, whereby participants attended 

two separate one hour study visits separated by a minimum washout period of 14 

days. Participants were asked to wear their habitual distance refractive correction for 

the study and were included if they met the criteria of being a healthy staff or student 

member of the University of Waterloo. Participants were asked about their binocular 

vision and ocular health status before they were enrolled in the study and excluded if 

they had amblyopia or any other binocular vision or ocular health issue that had the 

potential to impact visual acuity in either eye. The same trained clinical investigator 

(MH) took all visual acuity measurements during this study. 

 

At each visit, participant’s static visual acuity was measured using a computerized 

Snellen chart, a printed ETDRS chart and the newly developed moV& software. 

Additionally, participant’s dynamic visual acuity was measured using moV&. moV& is 

a computerized chart capable of measuring static, dynamic (horizontal, vertical, 

oblique and random), and jittered visual acuities (Fig. 3.1). It is a single letter test 

where participants are asked to identify the letter on the screen by selecting one of 

the ten letter options on the keypad. Random walk motion targets continuously 

move, and can exit and re-enter the screen at random locations, whereas the linear 

motion targets only move across the screen once (at a constant speed). The static 

and jitter targets remain in the center of the screen at all times. Snellen and ETDRS 

static visual acuities were measured using standard clinical testing methods. On 
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both charts rows of 5 letters were presented to the participants, and they were asked 

to identify which letters were on the chart. Participants were not given a restricted 

set of letters to choose from on either of these tests. 

 

We endeavored to use the same psychophysical methods and stopping rules 

(similar to what might be used clinically) so that comparisons across tests would not 

be complicated by psychophysical method differences. Essentially, regardless of 

what was measured, a ‘row’ of letters comprised 5 letters of the same size, and 

‘acuity’ was the point at which 3 of the 5 letters were correctly identified. The 

computerized tests were all scaled logarithmically in 0.1 logMAR steps (anchored at 

20/20 or 0.0 logMAR). For the static tests, 5 of 10 Sloan letters (selected randomly) 

were presented in single letter sequences in descending runs (i.e. starting with large 

letters), each letter in the center of the display, until 3 of 5 were correctly read. For 

the dynamic letters, again 5 of 10 randomly selected Sloan letters were selected, 

and these were presented, a letter at a time, initially positioned in the center of the 

display and then moved randomly. If 3 of the 5 letters of the ‘row’ of letters (i.e., a 

sequence of same-sized letters) were correctly identified, the next smaller (in 0.1 

logMAR steps) was chosen, 5 random letters selected and the single letter display 

sequence was re-initiated. The letters were systematically reduced in size until 3 out 

of 5 of the ‘row’ could no longer be correctly identified. For all tests, letter counting 

acuities were then estimated (each letter correctly identified valued at 0.02 logMAR). 
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Using moV&, we measured static, dynamic (horizontal, vertical, oblique and 

random), and jittered visual acuities. As mentioned, single letter were presented and 

participants indicated the letter using a ten-letter-option keypad. Random walk 

motion targets continuously moved in a Brownian particle motion pattern where each 

subsequent position on the screen was randomly determined. Brownian motion was 

chosen for the random walk targets to ensure their motion path was unpredictable. 

The unpredictable motion paths of the Brownian random walk targets, makes these 

targets difficult to track accurately with pursuits or saccades alone and observers 

must use a combination of eye movements, including fixations, pursuits and 

saccades, to successfully complete these tasks. Dynamic visual acuity for horizontal, 

vertical, oblique and random walk motion paths were measured for five target 

speeds (1m/s, 3m/s, 6m/s, 9m/s and 12m/s which are approximately equal to 

constant angular velocities of 14°/s, 37°/s, 56°/s, 66°/s and 72°/s). These speeds 

were chosen based on the limitations of ocular pursuit and the intention was to have 

some speeds that were relatively easy to pursue and some that exceeded the 

capabilities of the ocular pursuit system. It is important to note that the random walk 

target and could exit and re-enter the screen at random locations (for up to a 

maximum of 16s)7 whereas the linear motion targets (horizontal, vertical and oblique) 

moved across the screen only once; this was done to ensure that there were no 

areas on the screen where the letter was present longer than others (i.e. the letter 

could not bounce at the edge of the screen on the random walk motion or be 

anticipated to arrive at a consistent point on the edge of the screen for the linear 
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targets). Jitter visual acuity was also measured using a jitter standard deviation of 

1mm/s (0.01°/s) and the jitter target remained on the center of the screen for up to a 

maximum of 16s. All dynamic visual acuities measured with moV& were size 

thresholds, whereby the letter speed remained fixed and the size of the letter got 

smaller as the task was done. Dynamic visual acuity can also be measured using 

speed thresholds, whereby the target size is fixed and the speed varies, but this was 

assessed in a separate study.78 

 

 

Figure 3.1: Illustrations of random walk, horizontal, and jittered motion produced by 

moV& software.  

 

All visual acuities were measured monocularly, from one randomly selected eye in 

each participant. The same eye was used for all tests on both visits, which were 

separated by a washout period of 14 days.79 Snellen visual acuity was always 

measured first, followed by ETDRS and moV& static visual acuity and then the 

various dynamic visual acuity tests. The order of the ETDRS and moV& static visual 

acuity test were randomized for each subject, as were the orders of the dynamic 
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visual acuity tests. The same method, instrumentation, and clinical investigator was 

used for each of the two visits, in order to best test repeatability.  

3.3.1 Statistical Analysis 

All data analysis was conducted using R (v 3.0.2).80 

 

In order to determine the convergent validity of the static moV& test to the gold 

standard ETDRS chart and the Snellen chart, repeated measures ANOVA was used 

to test whether the mean differences between the 3 visual acuity tests, for each visit, 

significantly differ from zero. Due to intra-subject variation of refractive error and 

visual acuity, the mean difference between tests for each visit was used to 

determine validity and repeatability. A statistical significance level of p≤0.05 was 

defined for the analysis. This quantitatively determined the validity of the static 

moV& test. In the event of statistically significant differences between the tests, the 

visits or their interaction, pairwise post hoc comparisons were conducted using the 

Holm test.81 

 

Tests were considered to be significantly different clinically if there was a three letter 

difference (0.06logMAR) in acuity between them. This difference is consistent with 

our stopping criteria (3 of 5 letters correct on a line to move onto the next line) and 

with common clinical practice. A threshold value could not be obtained for 

participants in some trials at the constant speed testing condition due to a floor effect 

– some participants could not correctly guess any letters at the first speed and size 
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combination presented, hence no threshold could be measured. One data point at 

the 6m/s random motion constant speed trial was missed on visit 2 due to a 

programming error by the clinical investigator. Calculations dealing with comparison 

between visits were done excluding data points that had no comparison data 

available, while calculations involving averages used all data points available. 

 

Agreement between static visual acuity measures by different tests was assessed 

using Lin’s concordance correlation coefficient (CCC). Repeatability, i.e. agreement 

between two measures of the same test, was assessed numerically with Lin’s 

concordance correlation coefficient and graphically with Bland-Altman plots for the 

moV& dynamic visual acuity, static visual acuity, and jitter tests. 

3.4 Results 

All 25 participants successfully completed both study visits. 

3.4.1 Static Visual Acuity 

LogMAR mean (±standard deviation) static visual acuity for each of the tests was as 

follows: Snellen 0.02 ± 0.12; ETDRS -0.03 ± 0.11, and moV& static -0.09 ±0.13 (Fig. 

3.2). 
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Figure 3.2: Boxplots comparing static visual acuity tests, including the newly 

developed moV& software. The median result is displayed and the lower and upper 

hinges correspond to the 1st and 3rd quartiles. Whiskers are 1.5 X IQR.  

 

3.4.2 Validity 

When comparing static visual acuity measures between the Snellen chart, ETDRS 

chart, and novel moV& static chart, there were significant differences (p<0.001) 

between tests, but not between visits (p=0.14) or the test-visit interaction (p=0.94) 

(Fig. 3.3). Visual acuity was poorest when measured using the Snellen chart (0.02 ± 

SE 0.017), followed by the ETDRS chart (-0.03 ± SE 0.016) and the moV& static 

chart (-0.09 ± SE 0.019). Post-hoc analysis revealed that the moV& static acuity was 

different from Snellen acuity (p=0.0002) but not from ETDRS (p=0.086). Snellen and 

ETDRS were not statistically different from each other (p=0.183). Lin’s concordance 

correlation coefficient (CCC) demonstrated that visual acuity on all three tests were 
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statistically correlated with each other and that the Snellen and moV& static tests 

showed similar agreement with the ETDRS chart (ETDRS vs. Snellen CCCV1 = 

0.704, CCCV2 = 0.776 and ETDRS vs. moV& static CCCV1 = 0.712, CCCV2 = 0.737). 

There was lower concordance between Snellen and moV& acuities (CCCV1 = 0.473, 

CCCV2 = 0.673), with moV& recording slightly better acuities across the range of 

acuity measurements (-0.20 to 0.40) than the standard clinical tests. 

 

Bland-Altman analysis was carried out between the ETDRS chart and the moV& 

static acuities (Fig. 3.4). The mean difference between ETDRS and moV& Static at 

the first visit was 0.053 (Upper LOA, 95% CI: 0.217, 0.183 to 0.286; Lower LOA, 

95% CI: -0.111, -0.077 to -0.181). Corresponding data for the second visit was 0.058 

(Upper LOA: 0.211, 0.179 to 0.276; Lower LOA: -0.096, -0.064 to -0.16). 

 

 

Figure 3.3: Concordance plots between moV& software static visual acuity and 

current static visual acuity clinical tests: (A) ETDRS and (B) Snellen.  



 

 47 

3.4.3 Test-Retest Repeatability 

Overall, there was no significant difference in static visual acuity measured on visit 1 

vs. visit 2 on these tests (p=0.077). Post-hoc individual comparisons confirmed that 

visual acuities were no different on each test between visits (visit 1 vs. visit 2: 

Snellen p=1.000, ETDRS p=1.000, moV& Static p=1.000, Jitter p=1.000). Lin’s 

concordance correlation coefficient between visit 1 and visit 2 for each of the static 

visual acuity tests were 0.746, 0.767 and 0.609 (Snellen, ETDRS and moV& 

respectively). 

 

 

Figure 3.4: Bland-Altman plots between visit 1 and visit 2 for (A) ETDRS and (B) 

moV& software static visual acuities.  
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3.4.4 Dynamic Visual Acuity 

Jittered visual acuity (-0.06 ± 0.13) was found to be more similar to static visual 

acuity than to dynamic visual acuity, but all of the dynamic visual acuity measures 

(horizontal, vertical, oblique and random) were worse than the static visual acuity 

measures. 

 

On average, horizontal, vertical and oblique dynamic visual acuities were three lines 

(0.3 logMAR) worse than static visual acuities, except for horizontal dynamic visual 

acuity at 1m/s which was approximately 1.5 lines worse than the static visual 

acuities (Table 3.1). Random dynamic visual acuity was approximately two lines 

worse (0.2 logMAR) than static visual acuities at all speeds (Table 3.1). 

 

Table 3.1: Mean (±SD) dynamic visual acuity (logMAR) for each direction and speed 

on the moV& software, averaged across the two visits (static visual acuities are also 

shown for comparison) 

 SPEED 

 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal 0.15  0.12 0.29  0.15 0.30  0.14 0.33  0.14 0.33  0.12 

Vertical 0.28  0.13 0.25  0.16 0.30  0.14 0.33  0.14 0.33  0.13 

Oblique 0.34  0.14 0.30  0.15 0.35  0.15 0.38  0.15 0.39  0.13 

Random 0.24  0.16 0.23  0.16 0.21  0.14 0.23  0.16 0.20  0.16 

 ETDRS Snellen moV& static moV& jitter  

Static VA -0.03  0.12 0.02  0.12 -0.09  0.13 -0.06  0.13  
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3.4.5 Test-Retest Repeatability 

Mean logMAR jittered acuity ranged from -0.25 to 0.28 and test-retest CCC=0.666, 

and the repeatability is illustrated in Fig. 3.5. The mean difference between moV& 

jittered acuity at the first visit and second visit was 0.03 (Upper LOA, 95% CI: 0.238, 

0.195 to 0.326; Lower LOA, 95% CI: -0.178, -0.135 to -0.267). 

 

Test–retest repeatability was reasonably good for all of the dynamic visual acuity 

tests (with CCC’s ranging from 0.45 to 0.95) and was comparable to test-retest 

repeatability for the static visual acuity tests (Table 3.2). The number of completed 

trials, where the subject was able to correctly respond at the largest letter size or 

smaller, is shown in Table 3.3. It can be seen that, except for random motion of the 

target, the number of completed trials reduces as the speed of the target increases. 

 

Table 3.2: CCC between visits 1 and 2 for dynamic visual acuities at each speed 

 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal 0.613 0.610 0.715 0.557 0.569 

Vertical 0.692 0.678 0.451 0.783 0.725 

Oblique 0.744 0.686 0.697 0.852 0.953 

Random 0.730 0.732 0.617 0.700 0.614 
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Table 3.3: Number of completed trials for dynamic visual acuities at each speed and 

visit 

 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal Visit 1 = 25 
Visit 2 = 25 

Visit 1 = 23 
Visit 2 = 23 

Visit 1 = 21 
Visit 2 = 24 

Visit 1 = 20 
Visit 2 = 20 

Visit 1 = 17 
Visit 2 = 20 

Vertical Visit 1 = 24 
Visit 2 = 24 

Visit 1 = 24 
Visit 2 = 23 

Visit 1 = 18 
Visit 2 = 18 

Visit 1 = 17 
Visit 2 = 15 

Visit 1 = 17 
Visit 2 = 11 

Oblique Visit 1 = 22 
Visit 2 = 22 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 16 
Visit 2 = 18 

Visit 1 = 9 
Visit 2 = 10 

Visit 1 = 10 
Visit 2 = 7 

Random Visit 1 = 24 
Visit 2 = 24 

Visit 1 = 25 
Visit 2 = 25 

Visit 1 = 24 
Visit 2 = 22 

Visit 1 = 24 
Visit 2 = 25 

Visit 1 = 25 
Visit 2 = 25 

 

Fig. 3.6 shows the between visit repeatability for each target direction at a speed of 

6m/s. The mean differences (±LOA) for horizontal, vertical, oblique and random 

motion were 0.024 (±0.186), 0.032 (±0.250), 0.031 (±0.265), and 0.005 (±0.239) 

respectively. 

 

Figure 3.5: Bland-Altman plot for visual acuity (logMAR) between visit 1 and 2 for 

the novel moV& software jittered acuity. 
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Figure 3.6: Bland-Altman plots for visual acuity (logMAR) between visit 1 and 2 for 

(A) horizontal, (B) oblique, (C) random walk, and (D) vertical motion at 6 m/s.  

 

3.5 Discussion 

The development of new tests places some responsibility on the developer to at 

least demonstrate if the new metrics perform as intended. In this paper we 

demonstrated the validity of a suite of computerized static and dynamic acuity 

measures inasmuch as we showed that the newly developed moV& measures 

compared to traditional (Snellen) and “gold standard” ETDRS acuity charts. In 

addition, we demonstrated that the repeatability of the moV& measures were high 
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and were similar to the repeatability of a gold standard. The other aspects of validity 

of dynamic visual acuity and its utility remain to be demonstrated. There is no gold 

standard to which a new device will be compared and so validity will require 

somewhat indirect demonstration, and the utility of tests developed, especially for 

athletes, will require testing on the intended samples.82 

 

The moV& static test appears to produce clinically similar results to the current gold 

standard static visual acuity chart, the ETDRS chart. Additionally the static test 

demonstrates good test-retest repeatability. 

 

Clinically, the differences in acuities measured with the Snellen and ETDRS charts 

was approximately half a line (2.5 letters) and between moV& static and ETDRS 

charts was also approximately half a line (3 letters). Although the difference between 

the moV& static chart and the ETDRS charts was at our level of clinical significance 

(3 letters), the difference between the Snellen chart and the ETDRS chart was also 

very similar (2.5 letters). As both the Snellen and ETDRS charts are accepted as 

measures of static visual acuity clinically, we believe that the moV& static test 

demonstrates equivalent clinical utility. Furthermore, it should be noted that there 

were only 10 letter choices on the moV& keypad, and moV& static is a single letter 

test; both of these features have the potential to make this test slightly easier than 

both the Snellen and ETDRS tests; this may contribute to the higher visual acuities 

measured with moV&. 
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Dynamic visual acuities appeared to be worse than static visual acuities by 

approximately 0.3 logMAR, on average. The random walk dynamic visual acuity was 

approximately two lines worse (0.2 logMAR) than the static acuities on average 

(Table 3.1). It can also be seen that, particularly as the speed of the target 

increased, the average group dynamic visual acuity was better for the random walk 

target than for the horizontal, vertical and oblique trajectories. This may be because 

the randomly moving targets were on the screen longer than the other target 

trajectories, because the random targets could go off the screen and come back 

whereas the linear motion targets only moved across the screen once. This factor 

may be contributing to the difference in the acuity values between these types of 

moving targets, but more investigation is needed to fully understand the difference. 

 

Although this study was not designed to examine the impact of target velocity on 

dynamic visual acuity, it is interesting to note that apart from the horizontal target, all 

dynamic visual acuities (random, vertical and oblique) measured at different 

velocities were relatively consistent. This may be because, humans appear to be 

better at reading targets with horizontal trajectory from left to right than other 

trajectories, as previously demonstrated.9 The presence of a floor effect within the 

participants also supports this idea, as it demonstrates certain conditions are more 

challenging for participants than others. The change in horizontal dynamic visual 

acuity with increasing speed may be related to the limited target presentation time at 
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the higher speeds, as the target only crossed the screen once which limited the 

amount of time available to detect and recognize the target. 

 

Each of the dynamic visual acuity tests demonstrated good test-retest repeatability 

and also, dynamic test-retest repeatability was similar to the test-retest repeatability 

of the static tests. Overall, Lin's concordance correlation coefficients (CCCs) were 

high between the different dynamic visual acuity tests (Table 3.2); the lowest 

correlations appeared to occur between the slowest horizontal visual acuity measure 

(H1) and the highest speeds (12m/s) for the other systematic trajectory visual 

acuities (H12, O12 & V12). The CCC’s for the horizontal visual acuity is likely due to 

horizontal visual acuity at 1m/s being much better than all of the other dynamic 

visual acuity measures. It is likely because this is a task participants were most 

familiar with, in that the targets moved left to right and at 1m/s mimicked tasks that 

are done every day in Canada. Differences between the horizontal 1m/s and the 

other dynamic visual acuities may reflect differences between the task of the 

threshold at which velocity has its greatest impact; however more investigation is 

needed to understand this precisely. 

 

Jittered visual acuity appears to be more similar to static visual acuity than to 

dynamic visual acuities with moving targets, which is consistent with previous 

literature.46 Test-retest repeatability was good for the jittered test as well. 
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The results presented here demonstrate that moV& could be used to measure static 

visual acuity clinically as well as dynamic visual acuities. moV& can also be used to 

compare static and dynamic visual acuity within the same system. Further 

investigation should be done regarding the effect of age on dynamic visual acuity as 

ocular pursuits decline with age, and the age range of the participants (age range 

20-55 years) may be large enough for this effect to be shown.55 The correlation 

between static visual acuity and dynamic visual acuity has been shown to be 

influenced by the velocity of the target, although, more research is needed to 

understand the relationship between dynamic visual acuities and static visual 

acuities.74 

 

Stimulus trajectory has also been shown to be an important factor for dynamic visual 

acuity, especially during linear motion (horizontal, vertical, and oblique).83 moV& 

provides a system where trajectory as well as size, speed, and exposure time can 

be controlled and manipulated to provide different testing conditions as required. 

Additional research is needed to validate the low contrast features of this chart and 

to establish clinical norms for visual acuities measured with chromatic combinations 

of target and background. All of these features can be modified in V&MP Vision 

Suite visual acuity tools. 

3.6 Dissertation Progress I  

The Progress sections at the end of Chapters 3, 4, and 5 will summarize how the 

findings from each experiment contribute to the following Chapter. These 
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contributions will be displayed in a figure, which will expand as each Experiment is 

added. Fig. 3.7 outlines the purpose of Experiment 1.  

 

Figure 3.7: Dissertation Progress I, outlining the purpose of Experiment 1. 

 

The findings of Experiment 1 show that moV& is valid and repeatable for static and 

dynamic visual acuity measurements using 100% contrast black targets on a white 

background. Since we now know that moV& works for a standard target, we must 

show that moV& is also valid and repeatable for its other functions – low contrast 

targets and coloured target/ background combinations (Experiment 2).   
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Chapter 4 – Repeatability of the Low Contrast and Coloured 

Functions of a Novel Dynamic Visual Acuity Chart 

4.1 Chapter Summary 

Purpose: The ability to recognize moving targets, also known as dynamic visual 

acuity, is important for safety and performance during activities such as driving or 

sport. Target contrast and colour have both been shown to effect dynamic visual 

acuity; however, a “gold standard” validated test does not exist with which to 

measure low contrast or coloured dynamic visual acuity. The purpose of this study is 

to determine the test-retest repeatability of the static and dynamic visual acuity 

functions of a novel visual acuity system (moV&, V&MP Vision Suite) using two low 

contrast (61% and 20%) and two coloured optotype-background combinations (red 

target on a white background and white target on a blue background). Methods: 

Forty-two participants were assigned to either the contrast (n=21) or colour (n=21) 

study block. Each block consisted of two visits separated by a minimum of 2 weeks. 

At each visit for the contrast block, low contrast (61% and 20% contrast) static and 

dynamic visual acuity was measured using Snellen and moV& charts. For the colour 

block, coloured optotype and background (red target on a white background, white 

target on a blue background) static and dynamic visual acuity was measured at each 

visit using the moV& chart, as well as black and white high contrast static visual 

acuity using the ETDRS chart. Visual acuity was compared between visits to 

determine repeatability. Results: moV& static visual acuities were significantly better 

than Snellen at both contrast levels (moV&: 20%: -0.01±0.09, 61%; -0.08±0.12; 
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Snellen: 20%: 0.13±0.09, 61%: -0.01±0.09, p<0.05). Repeatability of moV& static 

visual acuity was good (Lin’s concordance correlation coefficient was 0.80 for 61% 

contrast and 0.60 for 20% contrast). Lin’s concordance correlation coefficients for 

dynamic visual acuity ranged from 0.05 to 0.74, but were better at 61% contrast. For 

the coloured targets, moV& static visual acuity was significantly better than ETDRS 

(moV&: red/white: -0.09±0.18, white/blue: -0.11±0.17; ETDRS: -0.02±0.15, p<0.05. 

Dynamic visual acuities demonstrated good test-retest repeatability (Lin’s 

concordance correlation coefficients ranged from 0.50 to 0.88, and were similar for 

both colour combinations). Discussion: moV& low contrast and coloured static visual 

acuities demonstrated good repeatability and were comparable to the Snellen and 

ETDRS charts. moV& coloured dynamic visual acuities showed fair to good 

repeatability, but repeatability with low contrast targets was poor, especially at 20%. 

4.2 Introduction 

The ability to recognize moving targets is an important visual skill required to 

navigate the world, especially in situations where motion occurs at a relatively high 

speed. In many cases, the recognition of moving targets is imperative in order to 

coordinate movements to navigate our environment. Athletes in particular rely 

heavily on visual information from their environment in order to successfully perform. 

Several qualitative literature reviews and studies have concluded that vision plays a 

vital role in guiding motor actions during sports, and that the visual skills used during 

sports are unique and sport specific.52–54 For example, ice hockey players use 

peripheral and dynamic vision with short reaction times in order to successfully pass 
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and shoot the puck.2 It has been shown that a significant number of points scored in 

ice hockey are related to players’ ability to discriminate between competing visual 

stimuli and inhibit non-target motor responses in a decision making task.3  

 

A limitation of the current literature which explores the visual function of athletes is 

the inconsistencies present in the research methods – for example, the definition of 

an athletes’ skill level (e.g. professionals vs. novices) varies, as does the way in 

which different experimental factors (specifically ones which have the potential to 

influence the results of visual testing) are controlled (e.g. refractive correction, 

contrast, and testing criteria).55 Furthermore, most of the research has been 

conducted without standardized, validated tools to measure visual skills common in 

sport, such as dynamic visual acuity or visual speed thresholds.52 This may be due 

to the lack of available tools to assess these functions.  

4.2.1 Dynamic Visual Acuity 

The smallest target size at which an observer is able to resolve critical detail during 

voluntary ocular pursuit (when the target is in motion) is known as dynamic visual 

acuity.12 Dynamic visual acuity has important applications in real-life, such as during 

driving and athletic performance. It requires the detection of a moving target in the 

observer’s field of view, the use of saccades and smooth pursuit eye movements to 

visually acquire the target (ideally ‘stabilising’ the target image close to the fovea on 

the retina), and the resolution of critical detail for recognition within a brief exposure 

time.12 A moving target usually exhibits “walking” motion (i.e. follows a path or 
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trajectory across the screen). Walking motion can be predictable (e.g. horizontal, 

vertical, or oblique motion) or unpredictable (random).  

 

When a target is in motion, either the speed or the size of the target can be varied to 

measure two different dependent variables – dynamic visual acuity and speed 

threshold. Dynamic visual acuity is measured at a constant target speed, and is the 

smallest size which an observer can resolve target detail. Speed threshold is the 

fastest speed at which an observer can resolve detail at a constant target size. Since 

both target speed and size can affect how a moving target is visualized, it is 

important to determine which dependent variable is most beneficial to measure 

before beginning testing.5,13  

 

There are two methods that are commonly used to measure dynamic visual acuity: 

1) the observer’s head is kept stationary while they view a target moving across a 

screen, or 2) a static target is viewed while the observer makes rotational head 

movements.55 Target movement across a screen has been achieved using a 

variable speed turntable and a front surface mirror, or more recently using computer 

programs.9,12,35,44 These methods require the observer to make smooth pursuit eye 

movements and saccades in order to resolve the moving target.5 Alternatively, 

studies which have used head rotations in order to create relative motion between 

the target and the observer have done so by either using a head mounted device in 

order to monitor the frequency of rotations being made by the observer, or by having 



 

 61 

trained personnel rotate the observers head.34,43 This methods invokes the 

vestibulo-ocular reflex, which helps to keep the target on or close to the fovea during 

rotational head movement.5 Due to the differences in the methods used to create 

relative motion between a target and observer in the measurement of dynamic visual 

acuity, comparisons between the different studies are difficult. The use of a similar, 

standardized testing method would make research on dynamic visual acuity and 

speed thresholds more consistent and applicable across a variety of conditions. 

 

The lack of a standardized method with which to assess dynamic visual acuity and 

speed thresholds may be due to the large number of variables which can be 

modified to affect how an observer views a moving object. These variables must be 

considered when designing a test. For example, a longer target exposure time has 

been shown to result in better dynamic visual acuity.6 Velocity also has an effect: as 

the angular velocity of an optotype increases, dynamic visual acuity becomes 

worse.13 Additionally, dynamic visual acuity improves if a target moves in a left-to-

right horizontal trajectory compared to an oblique or right-to-left horizontal 

trajectory.9,35  

4.2.2 Colour and Contrast 

Other optotype and background characteristics that have the potential to influence 

dynamic visual acuity include contrast and colour. It has been shown that decreasing 

the contrast between the optotype and background results in worse static visual 

acuity, dynamic visual acuity, and speed thresholds.9,12,14,15 Low optotype contrast 
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and speed also have an effect on the eye movements used to track moving objects 

– lower contrast levels and faster target speeds result in larger initial deviations of 

the pursuit eye movements.84  

 

Literature exploring the impact of target colour on visual acuity is limited. Static 

visual acuity research using coloured targets have demonstrated that a black 

optotype on a white background yields the same static acuity as a yellow optotype 

on a red background, and a 40% higher static acuity than a blue optotype on a red 

background.16 Target colour may also influence DVA, as it has been shown that 

under scotopic and mesopic conditions target wavelength can affect DVA; however 

this affect was not present in photopic conditions, and this paper only collected data 

from two participants, making it difficult to draw solid conclusions from the findings.17 

At this time, there is no further available literature reporting the investigation of the 

impact of colour on dynamic visual acuity. One of the reasons the literature in this 

area is so limited is likely because a “gold standard” validated test with which to 

measure coloured visual acuity (static or dynamic) does not currently exist. This 

limitation also applies to available research on low contrast visual acuity, as there is 

not a standardized, validated test available to measure low contrast dynamic visual 

acuity.  

 

Measuring low contrast and coloured dynamic visual acuity can have important 

practical and clinical applications. For example, low contrast dynamic visual acuity 
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can be used to assess a patient’s ability to read a sign while driving with ocular 

conditions which impact contrast sensitivity (e.g. nuclear sclerotic cataracts, multiple 

sclerosis, etc.). In the case of athletes, contrast on the field, court, or arena can vary 

based on lighting conditions. This can impact performance as it has been shown that 

performance on a dynamic visual acuity task can be optimized by controlling target 

contrast.15 Additionally, the target and background colours on a dynamic visual 

acuity task can be customized to the colours encountered in an athlete’s specific 

sport. This would allow for the measurement of dynamic visual acuity to be more 

representative of what the athlete would encounter while on the field. Dynamic visual 

acuity improves with vision training, therefore specifying the training to include 

specific colour combinations encountered in sport may aid in the translation to on-

field performance.85 

 

The Vision & Motor Performance (V&MP) Lab at the University of Waterloo School 

of Optometry & Vision Science has recently developed and validated the high 

contrast functions of a new computerized test (moV&, V&MP Vision Suite) with 

which to measure static and dynamic visual acuity.38 It allows for random walk, 

horizontal, vertical, or oblique motion of targets, as well as options for the random 

presentation of target size and presenting one or five letters at a time. The different 

optotypes available include a Landolt C, Tumbling E, and a 10 letter Sloan optotype 

option. In addition to the various target presentations described above, both target 

contrast and the colour of both the target and the background can be varied.  
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4.2.3 Purpose 

The purpose of this study is to determine the test-retest repeatability of the static and 

various dynamic visual acuity tests of moV& using two low contrast (61% and 20% 

contrast) and two coloured optotype-background combinations (red target on a white 

background and white target on a blue background). The two low contrast levels 

were chosen to reflect a low and middle level contrast value similar to those studied 

in previous literature on low contrast dynamic visual acuity.9,10,12,14 The two colour 

combinations were selected to reflect those commonly encountered in sport – the 

red and white detailing of a cricket ball or baseball, and a white ball against a blue 

sky.   

4.2.4 Hypotheses 

It is hypothesized that moV& distance static and dynamic visual acuity tests will be 

repeatable for both low contrast values and colour combinations measured. 

4.3 Methods 

This study followed the tenets of the Declaration of Helsinki and has been reviewed 

and received ethics clearance though a University of Waterloo Research Ethics 

Committee. Prior to study enrollment all participants signed an informed consent 

form after explanation of the nature and possible consequences of the study. Adult 

participants from the University of Waterloo were recruited for both the contrast 

(n=21, age range 20-28 years, mean age 22.0±1.97; 7 males, 14 females) and 

colour (n=21, age range 20-24 years, mean age 22.2±1.18; 8 males, 13 females) 

blocks of this study. This study used a repeated measures design – participants 
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attended two separate 1.5 hour study visits separated by a minimum washout period 

of 14 days. Participants wore their habitual distance refractive correction for both 

visits. Exclusion criteria for this study included a self-reported binocular vision defect, 

amblyopia, or an ocular disease with the potential to impact the visual acuity of 

either eye. The same trained clinical investigator (M.H.) took all visual acuity 

measurements during this study, using the same psychophysical methods and 

stopping rules for all participants in order to best determine repeatability. Visual 

acuity testing was stopped when the participant incorrectly identified at least three of 

five letters presented with the same combination of contrast, colour, speed, size, and 

motion type. All measures of acuity were scaled logarithmically into 0.1 logMAR 

steps (anchored at 20/20 or 0.00 logMAR).  

 

This experiment used moV& for all measurements of low contrast and coloured 

static and dynamic visual acuities. In addition, a low contrast Snellen chart was used 

to measure static visual acuity for the contrast block, and a standard, high contrast 

(black and white) paper ETDRS chart was used to measure static visual acuity for 

the colour block. moV& is a computerized visual acuity chart capable of measuring 

both static and dynamic visual acuity as well as speed thresholds. moV& can display 

optotype motion in four directions: horizontal (left to right), vertical (top to bottom), 

oblique (top left to bottom right corner), and random walk motion. Linear motion 

targets (horizontal, vertical, and oblique) only moved across the screen once, while 

random walk motion targets could exit and re-enter the screen at random locations 
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for up to a maximum of 16 seconds.7 This ensured that there were no areas of the 

screen where the letter was present for a predictably longer amount of time (as 

would be the case if the letter bounced off the edge of the screen) and kept the 

target exposure time constant for random walk motion. Random walk motion 

consisted of the targets continuously moving in a Brownian particle motion pattern, 

with each subsequent direction of movement being randomly determined. This 

ensured that the motion path of the target was unpredictable, making the targets 

more difficult to accurately track with only pursuits or saccades – a combination of 

fixations, pursuits, and saccades are needed to successfully track the target during 

random walk motion. 

 

For the low contrast block of this study, participants’ static visual acuity was 

measured at both 61% and 20% contrast using a computerized low contrast Snellen 

chart (Innova Systems, Burr Ridge, Illinois) and the moV& software (V&MP Vision 

Suite, Waterloo, Ontario). The Weber contrast of the displays of both units was 

determined using a spotmeter (Konica Minolta Sensing Americas, Inc, Ramsey, New 

Jersey). Low contrast Snellen static visual acuities were measured using standard 

clinical testing methods – 5 lines of 5 letters were presented to participants on the 

same screen at a given contrast level, and they were asked to identify the letters on 

the chart. For low contrast moV& static visual acuity measures, single letters were 

randomly presented in a descending run sequence (in 0.1 logMAR steps) – 5 Sloan 

letters of each logMAR size were presented. Each letter was presented at the centre 
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of the screen, and participants answered by selecting their response on a 10-letter-

option keypad. Testing stopped when three of the five letters of a given size were 

not correctly identified. Per-letter acuities were determined for both tests. Since 

moV& presents letter size in logMAR notation, each correctly identified letter had a 

value of 0.02 logMAR. For visual acuities obtained using the Snellen chart, the 

logMAR acuity was calculated by taking the log of the reciprocal of the threshold 

value in 20/20 notation, and attributing a value of -0.02 logMAR for each additional 

letter guessed, or +0.02 logMAR for each incorrectly identified letter. For example, if 

a participant had a Snellen acuity of 20/25 -2, their logMAR acuity would be 

log(25/20) = 0.10 + 0.04 (as they incorrectly identified 2 letters on the 20/25 line) = 

0.14 logMAR.  

 

For the colour block of this study, participants’ static visual acuity was measured 

using a standard black and white printed ETDRS chart, and two target and 

background colour combinations on moV&: a red target (R=160, G=34, B=34, 

A=210) on a white background (R=255, G=255, B=255), and a white target (R=255, 

G=255, B=255) on a blue background (R=54, G=109, B=181). The two coloured 

target and background combinations had equal contrast between the target and the 

background (83% Weber contrast). The colour combinations were chosen due to 

their prevalence in popular sports – the red and white is representative of the 

detailing and colour of a cricket ball, and the white and blue is similar to detecting a 

white ball against a blue sky on a sunny day. ETDRS static visual acuities were 
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measured using standard clinical testing methods (multiple rows of 5 letters were 

presented, participants were asked to identify the letters with no restricted set of 

letters to choose from, a per-letter logMAR acuity was determined by assigning each 

letter a value of 0.02 logMAR). For the coloured moV& targets, the same protocol as 

the low contrast targets was used (5 of 10 possible Sloan letters randomly presented 

in a single-letter descending run sequence), and per-letter acuity was again 

determined.  

 

Dynamic visual acuity was measured at 61% and 20% contrast as well as with the 

red target on a white background and the white target on a blue background using 

moV& software. Similar to the static visual acuities measures, 5 of 10 possible Sloan 

letters were randomly presented one at a time and participants indicated their letter 

guess using a 10-letter-option keypad. Letters were presented in a descending run 

sequence, starting with large targets (+1.0 logMAR above their static visual acuity 

measured on the corresponding low contrast Snellen chart or the ETDRS chart) and 

decreasing after every 5 letter presentations in 0.1 logMAR steps. Dynamic visual 

acuity was determined for horizontal, vertical, oblique, and random walk motion and 

was measured at five target speeds (1, 3, 6, 9, and 12 m/s, which are approximately 

equal to constant angular velocities of 14, 37, 56, 66, and 72 °/s). These speeds 

were chosen with the intention to include speeds which were both relatively easy to 

pursue and some that exceeded the typical capabilities of the ocular pursuit system. 

These tests are summarized in Fig. 4.1.  
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Figure 4.1: Summary of tests completed by each participant for the low contrast and 

colour study blocks. 

 

All visual acuities were measured monocularly, with the viewing eye randomly 

selected for each participant. The same eye was used for all tests on both visits. 

Static visual acuity measures were always measured before dynamic visual acuity. 

The orders of the dynamic visual acuity tests (trajectory and target speed) were 

randomized for each subject at each visit.  

4.3.1 Statistical Analysis 

All data analysis was conducted using R (v 3.0.2).80  

 

Although no gold standard test currently exists for low contrast or coloured static 

visual acuity, the convergent validity of the low contrast static moV& test can be 
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determined by comparison with the low contrast Snellen chart, and the coloured 

moV& targets can be compared with the standard ETDRS chart.  

 

Preliminary descriptive statistics looked at the central tendencies and distribution of 

the data obtained from each optotype. The mean difference in static visual acuity 

between visits 1 and 2 was used when determining repeatability in order to account 

for the intra-subject variation of visual acuity and refractive error. Repeated 

measures ANOVA was used to determine if the mean differences in static visual 

acuity between visits 1 and 2 significantly differed from zero. Statistical significance 

was defined as p≤0.05. Pairwise post hoc comparisons were conducted using the 

Bonferroni correction if there was a significant difference between static visual acuity 

tests, or if there was a significant difference between visits 1 and 2 for the same test. 

Clinically, tests were considered significantly different if there was a three-letter 

difference in acuity (0.06 logMAR) as this is the stopping criteria of acuity tests in 

common clinical practice.  

 

For participants in some trials, a dynamic visual acuity value could not be obtained 

due to a floor effect – the participants could not correctly guess any letters at the first 

speed and size presented, therefore an acuity measure could not be determined. 

Due to a programming error by the clinical investigator, one data point is missing in 

the coloured block (red optotype on a white background, random motion at 12m/s for 

visit 1). Calculations comparing data between visits excluded those trials which had 
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no comparison data available, and calculations involving averages used all available 

data points.  

 

Agreement between static visual acuity tests as well as the repeatability (agreement 

between two measures of the same test) of both the static and dynamic visual acuity 

tests was determined using Lin’s concordance correlation coefficient (CCC). 

Agreement between visits was also represented graphically using Bland-Altman 

plots.  

4.4 Results 

All 21 participants in each of the contrast and colour blocks of the experiment 

completed both study visits.  

4.4.1 Static Visual Acuity 

LogMAR mean (±standard deviation) static visual acuities for the low contrast 

targets are as follows: 20% contrast Snellen=0.13 ± 0.09; 20% contrast moV&=-0.01 

± 0.14; 61% contrast Snellen=-0.01 ± 0.09; 61% contrast moV&=-0.08 ± 0.12 (Fig. 

4.2). The difference between the low contrast Snellen and moV& static visual acuity 

tests was statistically (p≤0.001) and clinically (>0.06 logMAR) significant at both 20% 

and 61%. Lin’s CCC showed a poor concordance between the low contrast Snellen 

and moV& static visual acuity tests, with 20% contrast having a worse CCC value 

compared to 61% contrast (20% contrast CCCSnellen vs moV&=0.294, 61% contrast 

CCCSnellen vs moV&=0.490).  
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Figure 4.2: Boxplots comparing low contrast static visual acuity tests. The median 

result is shown, with the lower and upper hinges corresponding to the 1st and 3rd 

quartiles and whiskers being 1.5 x IQR.  

 

For the coloured optotype and background combinations, the logMAR mean 

(±standard deviation) static visual acuities were as follows: black optotype on a white 

background ETDRS=-0.02 ± 0.15; red optotype on a white background moV&=-0.09 

± 0.18; white optotype on a blue background moV&=-0.11 ± 0.17 (Fig. 4.3). The 

difference in static acuity between the ETDRS chart and both coloured optotype/ 

background combinations in moV& was both clinically (>0.06 logMAR) and 

statistically (p≤0.001) significant. The two colour combinations in moV& (red 

optotype/ white background and white optotype/ blue background) were not 
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significantly different from each other (p=0.210). Lin’s CCC showed good 

concordance between the ETDRS chart and both colour combinations (CCCETDRS vs 

Red/White=0.792; CCCETDRS vs White/Blue=0.747).  

 

 

Figure 4.3: Boxplots comparing the ETDRS with the moV& coloured static visual 

acuity test combinations. The median result is shown, with the lower and upper 

hinges corresponding to the 1st and 3rd quartiles and whiskers being 1.5 x IQR.  

 

4.4.2 Static Visual Acuity Test-Retest Repeatability 

moV& showed fair to good test-retest repeatability between visits 1 and 2 for both 

low contrast values tested, and had better repeatability than the low contrast Snellen 
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chart. At 20% contrast, Lin’s CCCmoV&=0.60, and CCCSnellen=0.51. For the 61% 

contrast targets, CCCmoV&=0.80 and CCCSnellen=0.71. 

For both of the coloured optotype and background combinations, moV& showed 

good test-retest repeatability between visits comparable to that of the standard 

ETDRS chart. Lin’s CCCETDRS=0.88, which is similar to that of the red target on a 

white background (CCC=0.85) and the white target on a blue background 

(CCC=0.88) using moV&.  

 

There was no significant difference in low contrast static visual acuities measured 

using moV& on visit 1 compared to visit 2 at either 20% contrast (p=0.105) or 61% 

contrast (p=0.912). Similarly, there was not a significant difference between visits for 

moV& static visual acuities measured using a red target on a white background 

(p=0.932) or a white target on a blue background (p=0.760).  

4.4.3 Dynamic Visual Acuity 

All measures of dynamic visual acuity were worse than static visual acuities 

measured under the same conditions (i.e. all moV& dynamic visual acuities at 20% 

contrast were worse than moV& static visual acuities at 20% contrast; this was also 

true for the 61% contrast target and the red target/white background and white 

target/ blue background colour combinations). The mean dynamic visual acuities for 

both the static and dynamic visual acuity tests are summarized in Table 4.1. 
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Table 4.1: Mean (±SD) dynamic visual acuity (logMAR) for each direction and speed 

on the moV& software measured, averaged across two visits (static visual acuities 

are shown for comparison). 

Speed 

 1m/s 3m/s 6m/s 9m/s 12m/s 

20% contrast 
 

Horizontal  0.407 ± 
0.097 

0.789 ± 
0.181 

0.780 ± 
0.154 

0.800 ± 
0.173 

0.820 ± 
0.170 

Vertical 0.541 ± 
0.102 

0.780 ± 
0.175 

0.800 ± 
0.147 

0.800 ± 
0.169 

0.880 ± 
0.141 

Oblique 0.770 ± 
0.128 

0.790 ± 
0.148 

0.840 ± 
0.160 

0.820 ± 
0.123 

0.928 ± 
0.135 

Random 0.652 ± 
0.088 

0.745 ± 
0.168 

0.690 ± 
0.154 

0.707 ± 
0.162 

0.687 ± 
0.150 

 Snellen  moV&    
Static VA  0.133 ± 

0.091 
-0.01 ± 
0.136 

   

      

61% contrast 
 

Horizontal  0.224 ± 
0.118 

0.461 ± 
0.163 

0.435 ± 
0.155 

0.453 ± 
0.169 

0.480 ± 
0.149 

Vertical 0.459 ± 
0.105 

0.465 ± 
0.196  

0.429 ± 
0.139 

0.470 ± 
0.136 

0.525 ± 
0.143 

Oblique 0.518 ± 
0.145 

0.427 ± 
0.143 

0.486 ± 
0.146 

0.553 ± 
0.153 

0.583 ± 
0.106 

Random 0.418 ± 
0.124 

0.376 ± 
0.181 

0.340 ± 
0.154 

0.369 ± 
0.140 

0.341 ± 
0.150 

 Snellen moV&    
Static VA  -0.01 ± 

0.087 
-0.08 ± 
0.122 
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Red target/ White background 
 

Horizontal  0.209 ± 
0.138 

0.363 ± 
0.217 

0.350 ± 
0.201 

0.370 ± 
0.188 

0.400 ± 
0.180 

Vertical 0.418 ± 
0.168 

0.360 ± 
0.187 

0.380 ± 
0.199 

0.400 ± 
0.166 

0.430 ± 
0.163 

Oblique 0.460 ± 
0.201 

0.388 ± 
0.191 

0.430 ± 
0.174  

0.486 ± 
0.176 

0.514 ± 
0.181 

Random 0.330 ± 
0.149 

0.324 ± 
0.142 

0.300 ± 
0.139 

0.267 ± 
0.163 

0.271 ± 
0.161 

 ETDRS moV&    
Static VA -0.02 ± 

0.151 
-0.09 ± 
0.181 

   

      

White target/ Blue background 
 

Horizontal  0.197 ± 
0.159 

0.329 ± 
0.204  

0.280 ± 
0.182 

0.310 ± 
0.186 

0.360 ± 
0.180 

Vertical 0.376 ± 
0.162 

0.280 ± 
0.205 

0.320 ± 
0.187 

0.380 ± 
0.167 

0.410 ± 
0.160 

Oblique 0.390 ± 
0.178 

0.337 ± 
0.198 

0.400 ± 
0.164 

0.444 ± 
0.171 

0.521 ± 
0.179 

Random 0.287 ± 
0.138 

0.281 ± 
0.176 

0.260 ± 
0.148 

0.240 ± 
0.143 

0.243 ± 
0.147 

 ETDRS moV&    
Static VA -0.02 ± 

0.151 
-0.11 ± 
0.166 

   

 

4.4.4 Test-Retest Repeatability 

Low contrast dynamic visual acuity had poor test-retest repeatability (Table 4.2), 

especially at 20% contrast (Lin’s CCCs ranging from 0.056 to 0.65) compared to 

61% contrast (Lin’s CCCs range from 0.25 to 0.75). Both coloured target/ 

background combinations had good test-retest repeatability, with Lin’s CCCs for the 

red target/ white background ranging from 0.60 to 0.88, and Lin’s CCCs for the white 

target/ blue background ranging between 0.50 and 0.85 (Table 4.3).  
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Table 4.2: Lin’s CCCs between visits 1 and 2 for low contrast dynamic visual 

acuities at each speed for 20% and 61% contrast.  

 1m/s 3m/s 6m/s 9m/s 12m/s 

20% Contrast 
Horizontal 0.46  0.34  0.39  0.61  0.60  
Vertical 0.28  0.32  0.38  0.30  0.26  
Oblique 0.48  0.56  0.33  0.53  0.056  
Random 0.33  0.64 0.65  0.56  0.43  
 
61% Contrast 
Horizontal 0.51  0.65  0.72  0.68  0.60  
Vertical 0.27  0.63  0.67  0.25  0.29  
Oblique 0.40  0.57  0.71 0.41  0.39  
Random 0.38  0.73  0.50  0.70  0.74  

 

Table 4.3: Lin’s CCCs between visits 1 and 2 for coloured dynamic visual acuities at 

each speed for red target/ white background and white target/ blue background. 

 1m/s 3m/s 6m/s 9m/s 12m/s 

Red target on a white background 
Horizontal 0.73  0.74  0.88  0.87  0.71  
Vertical 0.61  0.76  0.83  0.82  0.60  
Oblique 0.71  0.70  0.82  0.72  0.78  
Random 0.66  0.76  0.62  0.81  0.77  
 
White target on a blue background 
Horizontal 0.71  0.80  0.84  0.79  0.81  
Vertical 0.73  0.78  0.85  0.80  0.50  
Oblique 0.68  0.67  0.80  0.72  0.67  
Random 0.55  0.58  0.59  0.80  0.73  

 

The number of completed trials (trials in which the subject was able to correctly 

respond at the largest letter size or smaller) is outlined in Table 4.4. For horizontal, 

vertical, and oblique motion, the number of successfully completed trials decreases 
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as optotype speed increases, especially for the low contrast trials. Although the 

coloured target combinations also show this trend, it is to a much smaller extent 

compared to the low contrast trials. Almost all participants were able to complete the 

random motion trials regardless of optotype speed, contrast, or colour. This may be 

due to the fact that for random motion, optotypes were presented for 16 seconds. 

This gave participants more time to identify each random motion target compared to 

the one-pass presentation of horizontal, vertical, and oblique motion.  

 

Table 4.4: Number of completed trials for dynamic visual acuities at each speed and 

visit for (a) 20% contrast, (b) 61% contrast, (c) red target, white background and (d) 

white target, blue background. 

(a) 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 19 
Visit 2 = 21 

Visit 1 = 19 
Visit 2 = 21 

Visit 1 = 17 
Visit 2 =18 

Visit 1 = 17 
Visit 2 = 18 

Vertical Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 18 
Visit 2 = 19 

Visit 1 = 16 
Visit 2 = 19 

Visit 1 = 13 
Visit 2 = 16 

Visit 1 = 13 
Visit 2 = 12 

Oblique Visit 1 = 20 
Visit 2 = 21 

Visit 1 = 18 
Visit 2 = 19 

Visit 1 = 15 
Visit 2 = 17 

Visit 1 = 15 
Visit 2 = 14 

Visit 1 = 11 
Visit 2 = 12 

Random Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 20 
Visit 2 = 21 

Visit 1 = 20 
Visit 2 = 21 

Visit 1 = 20 
Visit 2 = 20 

 

(b) 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 20 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Vertical Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 20 
Visit 2 = 21 

Visit 1 = 18 
Visit 2 = 18 

Oblique Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 19 
Visit 2 = 20 

Visit 1 = 20 
Visit 2 = 21 

Random Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 
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(c) 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 19 
Visit 2 = 20 

Visit 1 = 21 
Visit 2 = 21 

Vertical Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 20 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Oblique Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 17 
Visit 2 = 20 

Random Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 20 
Visit 2 = 21 

 

(d) 1m/s 3m/s 6m/s 9m/s 12m/s 

Horizontal Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 20 

Visit 1 = 21 
Visit 2 = 21 

Vertical Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 19 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 19 

Oblique Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 20 

Visit 1 = 15 
Visit 2 = 18 

Random Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

Visit 1 = 21 
Visit 2 = 21 

 

The between-visit repeatability for each of the low contrast and colour combinations 

tests with horizontal motion at 6m/s is outlined in Fig. 4.4. The mean differences 

(±SD) for horizontal motion at 6m/s with a 20% contrast target, 61% contrast target, 

red target on a white background, and white target on a blue background are 0.109 

(±0.146), -0.002 (±0.118), 0.0209 (±0.0954), and 0.0486 (±0.0935) respectively. 
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Figure 4.4: Bland-Altman plots for visual acuity (logMAR) between visits 1 and 2 for horizontal motion at 6m/s for (a) 20% 

contrast, (b) 61% contrast, (c) a red target on a white background and (d) a white target on a blue background. 

8
0
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4.5 Discussion 

In this paper, we determined the repeatability of two low contrast (20% and 61% 

contrast) and two coloured optotype and background combinations (red target on a 

white background and white target on a blue background) of the moV& software’s static 

and dynamic visual acuity capabilities. As there is not currently a “gold standard” test 

with which to compare low contrast and coloured visual acuity, the test-retest 

repeatability was determined. The low contrast Snellen chart is not a standardized chart 

for the measurement of low contrast visual acuity, but was used for comparison with the 

low contrast moV& software due to its prevalence in clinical practice and easy 

accessibility. Similarly, the black and white high-contrast ETDRS chart was compared to 

the coloured moV& software since there are no standardized coloured visual acuity 

tests available. Although the ETDRS chart is the “gold standard” test for static visual 

acuity, it differs from the coloured moV& targets in optotype and background colour as 

well as contrast. The contrast between the target and background of the ETDRS chart 

was 100%, while both colour combinations for the moV& software had a contrast of 

83%.  

 

Low contrast static visual acuity was better when measured using moV& compared to 

the Snellen chart. At 20% contrast, moV& static visual acuity was approximately 1 line 

(0.10 logMAR) better than Snellen acuity. The difference was less at 61% contrast, with 

moV& acuity being approximately 3 letters (0.06 logMAR) better than Snellen acuity. 

Since the clinical endpoint for visual acuity is incorrectly identifying three out of five 

letters of a given size, the difference in acuity between low contrast moV& and low 
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contrast Snellen is clinically significant for both low contrast values. This difference was 

also shown to be statistically significant (p≤0.001) at both 20% and 61% contrasts.  

 

The difference between low contrast Snellen and low contrast moV& static visual acuity 

may be due to the variation in targets and testing methods – moV& acuity was 

determined by identifying one letter on the screen at a time, and selecting the letter from 

a keypad containing 10 choices. Snellen acuity was determined by presenting the 

participants with a chart of five lines of letters decreasing in size, and asking the 

participant to read as much of the chart as possible, starting with the largest line which 

they could easily read all 5 letters. This means that moV& did not have the crowding 

effects which were present in the Snellen task, and participants may have had an easier 

time guessing letters on moV& as they had 10 letter options compared to the 

unrestricted 26 letter options available when completing the Snellen task. It has been 

demonstrated that crowded visual acuity is approximately 1.2x worse compared to non-

crowded visual acuity in adults with high contrast targets, although more research on 

this effect in adults is needed as most of the work regarding crowded visual acuity has 

been done in children.86 The crowding effect has also been shown to be more 

prominent with high contrast targets compared to low contrast targets, therefore the 

effect of crowding on visual acuity measures may vary between the 20% and 61% 

contrast targets.87 In order to make the static visual acuity tasks in this experiment more 

comparable, a single letter presentation Snellen visual acuity should be used with the 

same letter choices between the two tasks. Additional research may benefit from 

comparing the low contrast static visual acuity capabilities of moV& with the low contrast 
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Sloan letter chart, which is a grey-on-white version of the gold standard ETDRS chart 

and allows for the measurement of low contrast visual acuity at 1.25%, 2.5%, 5%, 10%, 

and 25% contrast.24,25 The low contrast Sloan letter chart uses the same font as the 

moV& software and has been shown to be both valid and reliable, although the 

crowding problem would still remain, making task comparison difficult.24,25 

 

The static visual acuity measures for both of the low contrast (20% and 61% contrast) 

and coloured optotype and background combinations (red on white and white on blue) 

of moV& demonstrated good repeatability. Repeated measures ANOVA revealed no 

significant difference between static visual acuity measured at visit 1 compared to visit 2 

for the 20% contrast, 61% contrast, red optotype on a white background or the white 

optotype on a blue background conditions. The 20% contrast task had a lower CCC 

values between visits 1 and 2 (0.60) compared to the 61% contrast (0.80), red optotype 

on a white background (0.85), and white optotype on a blue background (0.88) static 

visual acuities. This is consistent with literature which has shown that repeatability of 

low contrast acuity is poorer than high contrast measures.26 This also holds true for the 

low contrast Snellen chart, which had a lower CCC value between visits 1 and 2 for 

20% contrast (CCC=0.51) compared to 61% contrast (CCC=0.71). Both moV& low 

contrast static visual acuity tests had better repeatability compared to the same contrast 

values measured on the low contrast Snellen chart, and the 61% contrast task had a 

repeatability that resembled the repeatability of the gold standard ETDRS chart 

(CCC=0.88). The coloured static visual acuities also had repeatability similar to that of 

the ETDRS chart. Although they are not comparable in the colour or contrast of the 
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targets, the similarity in test-retest repeatability between the ETDRS chart and the 61% 

contrast and the coloured optotype and background moV& charts demonstrate good 

reliability of the moV& software.  

 

All low contrast and coloured optotype and background measures of dynamic visual 

acuity yielded worse results compared to the static visual acuity measured under similar 

conditions using moV&. At 20% contrast, dynamic visual acuity was approximately 7.5 

lines (0.75 logMAR) worse than static visual acuity. This difference decreased with the 

other conditions – 61% contrast dynamic visual acuity was ~5 lines (0.5 logMAR) worse, 

dynamic visual acuity with a red target on a white background was ~4.5 lines (0.45 

logMAR) worse, and dynamic visual acuity with a white target on a blue background 

was ~4 lines (0.4 logMAR) worse. Due to the increased number of factors required in 

order to recognize a moving object (eye movements, shorter exposure time, fixation and 

tracking), dynamic visual acuity tasks are more difficult than static visual acuity, hence 

leading to worse visual acuity. In agreement with our results, previous research has 

found low to no correlation between high contrast static visual acuity and dynamic visual 

acuity, which worsens as target velocity increases.4,6 

 

Test-retest repeatability for low contrast moV& dynamic visual acuity was poor, with 

20% contrast having worse repeatability ranges compared to 61% contrast. The 

difference in Lin’s CCC values may be because low contrast targets yielded a worse 

dynamic visual acuity compared to high contrast targets, and measurements were more 

variable. This shows that it was more difficult for the observers to track and visualize the 
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low contrast targets. Due to the large range of Lin’s CCC values seen at both 61% 

contrast and 20% contrast moV& dynamic visual acuity, low contrast dynamic visual 

acuity can be measured with different levels of confidence in repeatability for specific 

speed and trajectory combinations. For example, at 61% contrast, horizontal motion at 

6m/s had a CCC of 0.72 which indicated good repeatability. The same contrast with 

oblique motion at 1m/s had a CCC of 0.40, resulting in less repeatable measures. 

Assessing the repeatability of moV& with a larger range of target contrast, especially at 

contrasts higher than 61%, would be beneficial in both assessing the reliability of the 

low contrast dynamic visual acuity of moV& as well as looking at the effect of contrast 

on dynamic visual acuity.  

 

The coloured optotype and background combinations had good Lin’s CCC for their 

dynamic visual acuity measures at all speed and trajectory combinations. They also had 

much higher CCC values and a smaller range compared to either of the low contrast 

settings. Both colour combinations tested had a contrast of 83%, which was higher than 

either of the low contrast targets (20% and 61%). This made the coloured acuity task 

easier due to the higher target contrast, although this explanation does not take into 

account the possible effects of colour on visual acuity (for example, longitudinal 

chromatic aberrations, although this effect would likely be small with the colour 

combinations tested). Future research is required to determine the effect of colour on 

both static and dynamic visual acuity.  
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Although a gold standard test does not exist with which to test low contrast or coloured 

static and dynamic visual acuity, the low contrast and coloured visual acuity functions of 

moV& could be validated against the standard black target on a white background as 

that is the current gold standard for visual acuity. As contrast has been shown to have a 

significant effect on both static and dynamic visual acuity, comparing the visual acuity of 

targets with different contrasts will not allow for additional assessment of the test 

accuracy of moV&.10,12,14 Since the contrast of the low contrast targets (20% and 61%) 

as well as the coloured targets (83%) are not the same as a standard black target on a 

white background (100%), we are not able to compare these optotypes in order to 

determine accuracy, but these comparisons are still helpful in determining the construct 

and convergent validity of moV&. Future research comparing the dynamic visual acuity 

of a grey-on-white 83% contrast target with the coloured optotypes used in this study 

may allow for an additional assessment of convergent validity, and provide interesting 

data exploring the effect of colour on dynamic visual acuity.  

 

The results of this study demonstrates that moV& has good repeatability for low contrast 

and coloured targets, which suggests that moV& has clinical utility for static visual acuity 

measures at 61% contrast, 20% contrast, with a red optotype on a white background, 

and with a white optotype on a blue background. Clinically, moV& could also be used to 

determine coloured dynamic visual acuity with other colour combinations, although 

further research is needed to determine the effect of other colours on test repeatability 

as well as to assess the possible effects of different colour combinations on dynamic 

visual acuity. The two colour combinations used in this study were selected to represent 
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common colours seen in sports – the red target was similar to the RGB value of a 

cricket ball, and the blue background was similar to the RGB value of a blue sky on a 

sunny day. The validation of these two colour combinations would allow for moV& to be 

used in specific sports vision scenarios.  

4.6 Dissertation Progress II 

Fig. 3.7 from Chapter 3 has been expanded to include the findings of Experiment 2 (Fig. 

4.5). Experiment 2 demonstrates that moV& is repeatable for low contrast and coloured 

targets when measuring static visual acuity. The repeatability of moV& for DVA 

measures vary based on contrast – the low contrast targets have worse repeatability 

compared to both the high contrast and the coloured targets; repeatability of DVA varied 

with both target speed and trajectory, with the greatest variability demonstrated in the 

low contrast targets.  
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Figure 4.5: Dissertation Progress II, outlining the purpose of Experiments 1 and 2. 

 

The data collected during Experiments 1 and 2 allow for us to analyze the effect of 

optotype characteristics such as size, speed, and trajectory on the targets validated in 

Experiments 1 and 2 (20%, 61%, and 100% contrast black targets on a white 

background, 83% contrast red targets on a white background, 83% contrast white 

targets on a blue background). This was done in Experiment 3. 
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Chapter 5 – The Effect of Optotype Trajectory, Velocity, and Size on 

Dynamic Visual Acuity and Speed Thresholds in High Contrast, Low 

Contrast, and Coloured Targets 

5.1 Chapter Summary 

Purpose: To successfully navigate the visual world, humans must be able to resolve 

targets in motion. Dynamic visual acuity or speed threshold can be determined when 

relative motion exists between a target and observer. Many different factors can 

influence dynamic visual acuity and speed threshold, including target trajectory, velocity, 

size, contrast, and colour. A novel test has recently been developed (moV&, V&MP 

Vision Suite) with which to measure dynamic visual acuity and speed thresholds using 

different motion trajectories, speeds, and sizes. The purpose of this study is to examine 

the effect of optotype trajectory, velocity, and size on dynamic visual acuity and speed 

thresholds using five optotypes: 100%, 61%, and 20% contrast black targets on a white 

background, and 83% contrast red targets on a white background, and white targets on 

a blue background. Methods: Participants were separated into three study blocks: 1) 

High Contrast (n=25, 100% contrast targets), 2) Low Contrast (n=21, 61% and 20% 

contrast targets), 3) Colour (n=21, red on white and white on blue targets). Each block 

consisted of 2 study visits a minimum of 2 weeks apart. At each visit, DVA was 

measured using moV&. Dynamic visual acuity was measured at five target speeds (1, 3, 

6, 9, and 12m/s), and speed threshold was measured at three target sizes (+0.2, +0.4, 

and +0.6 logMAR above static VA for High Contrast block; +0.4, +0.6, and +0.8 logMAR 

above static VA for Low Contrast and Colour blocks). Horizontal, vertical, oblique, and 

random walk motion trajectories were used, and the effects of trajectory, speed, and 

size on dynamic visual acuity and speed threshold were determined. Results: Trajectory 
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had a significant effect on dynamic visual acuity for all contrast and colour 

combinations, and a significant effect on speed threshold for all optotypes except the 

white target on a blue background (p=0.153). Target speed had a significant effect on 

dynamic visual acuity for all contrast and colour combinations tested except the red 

target on a white background (p=0.112), while target size had a significant effect on 

speed threshold for all optotypes. Discussion: Target trajectory, speed, and size have 

effects on dynamic visual acuity and speed threshold, with the exception of a few 

optotype colour combinations. Further research is needed to explore the role of target 

colour on dynamic visual acuity and speed threshold.  

5.2 Introduction 

In order to successfully navigate the visual world, humans must be able to resolve 

targets while either they or the targets are in motion. For example, a driver must be able 

to read a street sign while travelling at a fast speed in order to successfully navigate to 

their destination. Athletes also depend on vision to quickly move and respond during 

sport. Recognition of moving targets is crucial in these situations, as motion occurs at 

relatively high speeds and target recognition is imperative to safety and performance.  

 

Research on visual skills used by ice hockey players has shown that dynamic visual 

acuity plays an important role in successfully passing and shooting a puck.2 Dynamic 

visual acuity is the smallest size at which one can recognize a target when relative 

motion exists between the target and observer.4 It requires an observer to detect a 

target in their field of view, use saccadic and smooth pursuit eye movements to visually 

acquire it, and be able to resolve critical detail for recognition in a relatively brief 
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exposure time.12 Dynamic visual acuity differs from traditional measures of static visual 

acuity (such as those conducted at routine oculovisual assessments) as target 

movement requires the observer to make continuous eye movements in order for the 

target to remain on the fovea. The added challenge of tracking a moving target results 

in dynamic visual acuity measures being more variable compared to static visual acuity, 

even at speeds as slow as 20°/s.12 In larger heterogeneous populations, a significant 

correlation has been shown between static and dynamic visual acuity which decreases 

as target velocity increases.4 However, in more homogeneous populations (such as the 

population of healthy young adults used by Long & May, 1992) the correlation between 

static and dynamic visual acuity is not significant.6 In all cases, static targets yield better 

visual acuity (observers are able to resolve detail of smaller sized targets) compared to 

dynamic targets.12 Dynamic visual acuity can significantly improve with training and is 

more indicative of performance on everyday tasks compared to static acuity; therefore, 

clinical applications for dynamic vision training exist for patients who rely on good 

dynamic visual acuity in their daily activities.11,55,88–90 

5.2.1 Dynamic Visual Acuity and Speed Thresholds 

When a target is in motion, one of two different thresholds can be measured – dynamic 

visual acuity or speed threshold. Dynamic visual acuity is measured at a constant target 

speed, and is the smallest size which an observer can resolve target detail. Speed 

threshold is the fastest speed at which an observer can resolve detail of a constant 

target size. It is important to distinguish between these two threshold measures as they 

are different variables. Dynamic visual acuity is reported as a measurement in size, 

while speed threshold is a velocity. The term “dynamic visual acuity” has been used to 
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refer to both thresholds in past research, although it has always been defined 

appropriately for its use in each instance.35,40,41  

5.2.2 Methods of Measuring Dynamic Visual Acuity 

In dynamic visual acuity research, relative motion between the observer and optotype 

has been achieved two ways – by having an optotype move across a screen (either 

using a motorized turntable and a front surface mirror or a computer program) or by 

having the observer’s head rotate while viewing a static target.7 These methods require 

the observer to use different oculomotor mechanisms in order to visualize the target. 

When a target is in motion, smooth pursuits can be used to accurately track up to a 

speed of approximately 50°/s, above which catch-up saccades are required.5 The 

observer’s head can be fixed (the moving target is tracked by eye movements only) or 

free (the observer can use both eye and head movements to track the target) 

depending on the experimental set up and purpose.8,42 When viewing a static target 

during head rotation the vestibular system activates the vestibulo-ocular reflex, which 

maintains the target on the fovea during head movement.5 Since the vestibulo-ocular 

reflex is a reflex, it uses different neural processing in order to generate the appropriate 

motor response compared to voluntary ocular tracking.34 This results in each 

assessment method measuring a different aspect of dynamic visual acuity. This study 

uses a dynamic object task, whereby the object moves across the screen, with free 

head movement in order to measure dynamic visual acuity and speed threshold. This 

allows the observers to use a combination of eye and head movements reflective of 

real-world tracking strategies. 
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5.2.3 Factors Which Effect Dynamic Visual Acuity 

Many different physiological and neural processes must function together for an 

observer to resolve detail of a moving target; therefore there are many different 

optotype characteristics with the potential to influence dynamic visual acuity. These 

include exposure time, velocity and target size, trajectory, contrast, and colour.  

5.2.3.1 Exposure Time 

Exposure time is the amount of time a target is presented to an observer. When a target 

is in motion, exposure time can vary depending on experimental set up. For example, if 

a target is moving in a linear trajectory, faster moving targets will have a shorter 

exposure time compared to slower moving targets. Additionally, exposure time will vary 

for targets presented at the same speed but on different screen sizes or moving in 

different trajectories on a rectangular screen. It has been shown that longer target 

exposure results in better dynamic visual acuity.6,44 Exposure time can be controlled in 

an experimental set up by having the target repeatedly travel across a screen or by 

limiting the presentation time of slower moving targets to match that of the fastest 

speed. However, both of these methods do not reflect the conditions of dynamic visual 

acuity in real-life scenarios and vary the visual tracking strategies used by the observer.  

5.2.3.2 Velocity and Target Size 

Target speed and the size influence an observer’s ability to visualize a moving target. 

Dynamic visual acuity improves as target velocity decreases, allowing smaller targets to 

be visualized at slower speeds (speeds ranging between 1 – 100 °/s).4,6,9,13,33 This 

relationship has been shown to be approximately linear.14 The variance and standard 
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deviation of dynamic visual acuity measures also increase linearly at faster target 

speeds.12,14 

 

This relationship between target speed and target size is also seen in research on 

speed thresholds. Speed thresholds are affected by target size – as size decreases, 

speed thresholds are worse (i.e. performance is poor at a slower speeds).40 Therefore, 

target speed and size affect the visualization of a moving target. It is important to keep 

either the speed or the size of the target constant when the other is the dependent 

variable, as varying both will not provide a useful measure of either dynamic visual 

acuity or speed threshold. The target speed should be specified when reporting 

dynamic visual acuity measures and the target size should be specified when reporting 

speed thresholds, as they play an important factor in the experimental results.  

5.2.3.3 Trajectory  

The above definitions of dynamic visual acuity and speed threshold describe a target 

moving across the visual field in a “walking” motion (i.e. the target moves along a path 

across a screen). Walking motion can be applied to a number of trajectories – 

predictable horizontal, vertical, and oblique motion, or random motion. Trajectory 

influences dynamic visual acuity, as dynamic visual acuity improves when a target is 

moving in a left-to-right horizontal trajectory compared to right-to-left horizontal motion 

or an oblique trajectory.9,35 Since the majority of the literature on dynamic visual acuity 

and speed thresholds creates target motion using a mirror mounted on a variable speed 

turntable, there has been limited trajectory research conducted. Computer software has 

made it easier to vary target trajectory, and allows for both linear and non-linear motion 
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patterns to be examined, which will expand our understanding of this stimulus 

characteristic.  

5.2.3.4 Contrast 

In addition to features of target motion, characteristics of the targets themselves can 

influence dynamic visual acuity and speed thresholds. Static visual acuity, dynamic 

visual acuity, and speed thresholds have all been shown to worsen with low contrast 

between the target and background.8,12,14,15 Dynamic visual acuity and speed threshold 

are also more sensitive to changes in target speed and size with low contrast targets 

compared to high contrast.44 Furthermore, target contrast has been found to influence 

the eye movements used to track moving targets – low target contrast results in a larger 

initial deviation of pursuit eye movements.84  

5.2.3.5 Target and Background Colour 

Due to the difference in temporal processing between the different retinal cone types, it 

has been hypothesized that target wavelength may affect dynamic visual acuity and 

speed threshold. Research exploring the impact of target colour on static visual acuity 

has shown that acuity measured using coloured sinusoidal gratings is worse with a blue 

and yellow combination compared to a red and green combination.27 Colour can also 

affect static acuity when letter optotypes are used – black letters on a white background 

yield similar static visual acuities to a yellow letter on a red background, while both yield 

a 40% higher acuity than a blue letter on a red background.16 At this time, one study 

(Long and Garvey, 1988) has been published which looks at the impact of target 

wavelength on dynamic visual acuity – it found that target wavelength significantly 

effects dynamic visual acuity under scotopic and mesopic light levels in dark-adapted 



 

 96 

viewers, but not under photopic conditions.17 However, Long and Garvey’s experiment 

only had two participants; therefore further investigation is required before any solid 

conclusions can be drawn. It is likely that no further research has been done on this 

topic because a validated, standardized test with which to measure coloured static or 

dynamic visual acuity does not currently exist. Once again, computer software has 

opened up new avenues of research, especially for coloured visual acuity as computer 

software and displays make it simple to change the colour of both the target and 

background.  

5.2.4 moV&, A Novel Dynamic Visual Acuity Test 

When examining research on dynamic visual acuity and speed thresholds, a common 

limitation is that there is no widely accepted, validated, standardized method with which 

to assess either measure. The Vision & Motor Performance (V&MP) Lab at the 

University of Waterloo School of Optometry & Vision Science has recently developed 

and validated a new test (moV&, V&MP Vision Suite) with which to measure distance 

static visual acuity, dynamic visual acuity, and speed thresholds using different motion 

trajectories, speeds, and sizes.38 moV& also allows for the contrast and colour of the 

target and background to be varied by specifying the Alpha (target contrast), and R, G, 

and B values of the target and background. The moV& software allows for the influence 

of different dynamic visual acuity and speed threshold characteristics to be explored. 

5.2.5 Purpose 

The purpose of this study is to examine the relationship between optotype velocity, 

trajectory, and size on dynamic visual acuity and speed thresholds using the high 

contrast (100% Weber contrast), low contrast (61% and 20% Weber contrast), and 
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coloured target-background (red target on a white background, white target on a blue 

background) functions of the moV& software. 

5.2.6 Hypothesis 

It is predicted that for all targets (high contrast, low contrast, and coloured optotype-

background combinations) dynamic visual acuity will become worse as the velocity of 

the target increases, and speed thresholds will become worse as optotype size 

decreases. The horizontal walking motion is hypothesized to result in better dynamic 

visual acuity and speed thresholds compared to vertical, oblique, or random walking 

trajectories.  

5.3 Methods 

This study followed the tenants of the Declaration of Helsinki and has been reviewed 

and received ethics approval through a University of Waterloo Research Ethics 

Committee. Prior to study enrollment all participants were given an explanation of the 

nature and possible consequences of the study and signed an informed consent form.  

 

This study was conducted in 3 blocks: a high contrast target block, a low contrast target 

block, and a coloured target block. For the high contrast block, twenty-five adult 

participants (age range 20-55 years, mean 26.5 ± 9.9 years; 8 males, 17 females) were 

recruited and attended two separate 1-hour study visits. Both the low contrast and the 

coloured blocks had twenty-one adult participants. The low contrast block participants 

were between 20-28 years old, mean 22.0 ± 1.97 years, with 7 males and 14 females. 

The coloured block participants had an age range of 20-25 years, with a mean of 22.3 ± 

1.18 years and 8 males, 13 females. Participants in the low contrast and coloured target 
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blocks attended two separate 1.5-hour study visits; study visits for all three blocks were 

separated by a minimum washout period of 14 days.79 Participants consisted of adults 

at the University of Waterloo who self-reported no binocular vision defects or ocular 

issues with the potential to impact visual acuity in either eye. The participant’s habitual 

distance refractive correction was worn for all testing at both visits. The same trained 

clinical investigator (M.H.) took all visual acuity and speed threshold measurements, 

and to the best of her abilities used the same psychophysical methods and stopping 

rules for each trial and participant. All measures of acuity were scaled logarithmically 

into 0.1 logMAR steps (anchored at 0.0 logMAR) and speed threshold was measured in 

m/s. Testing was stopped when at least three of the five letters presented at the same 

contrast, colour, speed, size, and motion type were incorrectly identified.  

 

Each subject was randomly assigned to complete all tests for both visits using either 

their left or right eye, with the non-tested eye occluded with an opaque eye patch. For 

the high contrast and low contrast blocks, static visual acuity was measured at each 

visit using a computerized Snellen chart with targets set to the same contrast as that 

being tested on the moV& software (100%, 61%, and 20% Weber contrast). The 

participant’s Snellen static visual acuity was used as a reference to determine the 

starting letter size for dynamic visual acuity measurements. The participant’s Snellen 

acuity was converted into logMAR by taking the log of the reciprocal of the threshold 

value in 20/20 notation and attributing a value of -0.02 logMAR for each additional 

correctly identified letter, and +0.02 logMAR for each incorrectly identified letters. The 

starting size for high contrast dynamic visual acuity measures was determined by 
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adding 0.3 logMAR to the Snellen acuity at 100% contrast (in logMAR) unless otherwise 

specified. For low contrast dynamic visual acuity, the starting size was set by adding 1.0 

logMAR to the low contrast Snellen static acuity (in logMAR) unless otherwise specified. 

For the coloured block, static visual acuity was assessed using a standard (high 

contrast black target on a white background) ETDRS paper chart, and the starting size 

for dynamic visual acuity measurements was obtained by adding 1.0 logMAR to their 

static visual acuity.  

 

moV& (V&MP Vision Suite, Waterloo, Ontario), a computerized distance static and 

dynamic visual acuity chart, was used to measure all dynamic visual acuities and speed 

thresholds. moV& is a single-letter test in which participants identify a letter on a screen 

and indicate their response by selecting one of 10 possible Sloan letters from a key pad. 

For each optotype size and speed combination, 5 of the 10 possible letters were 

randomly presented in descending (for dynamic visual acuity, starting with the largest 

size) or ascending (for speed threshold, starting with the slowest speed) order. If three 

or more of the five letters were correctly identified, the next smallest size or the next 

fastest speed was presented until three of the five letters could not be correctly 

identified. Dynamic visual acuities were measured using a per letter scoring system in 

logMAR by assigning each letter a value of 0.02 logMAR, and speed thresholds were 

measured in m/s rounding to the nearest 1m/s. moV& has the option to specify the 

optotype contrast (target A value) as well as the colour of both the optotype and the 

background (target and background RGB values). The Weber contrast of the displays 

for both the moV& and the Snellen tests were determined using a spotmeter (Konica 



 

 100 

Minolta Sensing Americas, Inc, Ramsey, New Jersey). For the low contrast block, the 

target A values tested were 30 (20% Weber contrast) and 81 (61% Weber contrast). For 

the coloured block, two optotype-background colour combinations were tested – a red 

target on a white background (target RGB values 160, 34, 34; target A value 210; 

background RGB values 255, 255, 255) and a white target on a blue background (target 

RGB values 255, 255, 255; target A value 255; background RGB values 54, 109, 181). 

These colour combinations were chosen to reflect common colours observed in sports – 

a white ball against a blue sky on a sunny day, and the red and white detailing of a 

cricket ball or baseball. Both colour combinations had a Weber contrast of 83% between 

the target and background.  

 

The following tests were randomized at each visit for all study blocks: dynamic visual 

acuity for horizontal, vertical, oblique, and random walk motion at five target speeds (1, 

3, 6, 9, and 12m/s, which are approximately equal to constant angular velocities of 14, 

37, 56, 66, and 72°/s) and speed thresholds for horizontal, vertical, oblique, and random 

walk motion at three target sizes (+0.2 logMAR, +0.4 logMAR, and +0.6 logMAR above 

static visual acuity for the high [100%] contrast block, +0.4 logMAR, +0.6 logMAR and 

+0.8 logMAR above static visual acuity for the low contrast and coloured blocks). These 

values were chosen with the goal of incorporating speeds that were relatively easy to 

track as well as speeds that exceeded the capacity of the ocular pursuit system. Larger 

sizes were required for testing speed threshold in the low contrast and coloured target 

blocks as pilot testing showed that the decrease in contrast in both these conditions 

made the task too difficult to complete at a size of +0.2 logMAR above static visual 
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acuity. The +0.8 logMAR above static visual acuity size was not tested for the speed 

threshold of high contrast targets as most participants reached the maximum speed of 

10m/s at the +0.6 logMAR above static visual acuity size. This testing procedure is 

summarized in Fig. 5.1.  

 

 

Figure 5.1: Summary of tests completed by each participant in all study blocks. 

 

Predictable linear motion targets (horizontal, vertical, and oblique) only moved across 

the screen once at a constant speed. Random walk motion involved the target moving 

continuously in a Brownian particle motion pattern, with each subsequent position being 

randomly determined. If the letter exited the screen during random motion, it would re-

enter at a random location and continue its motion for up to 16 seconds. Due to the 

unpredictable nature of the random walk motion, observers must use a combination of 
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eye movements such as fixations, pursuits, and saccades in order to successfully track 

and identify these letters.  

 

Data analysis was conducted using R (v 3.0.2).80 The relationship between visit, 

optotype speed and optotype size was estimated using a three-way ANOVA, with 

significance defined as p≤0.05. The influence of the variability across subjects (subjects 

as a random factor) was explored by determining the effect of visit, speed, size, and 

trajectory as fixed effects through linear mixed modeling.  

 

For some trials, a threshold value could not be obtained as the participant was unable to 

correctly identify any letters at the first speed and size combination presented. Three 

data points (high contrast random walk dynamic visual acuity at 6m/s in visit 2, 20% 

contrast oblique speed threshold at +0.6 logMAR above static visual acuity in visit 1, 

and red target/ white background random walk dynamic visual acuity at 12m/s in visit 1) 

were missed for three different participants due to a programming error by the clinical 

investigator. Calculations requiring comparison between two visits (ANOVAs) excluded 

data points where no comparison data was available, while calculations involving 

averages used all available data points.  

5.4 Results 

All participants successfully completed both study visits for each block. 

5.4.1 Mean Dynamic Visual Acuity 

The logMAR mean dynamic visual acuities (±standard deviation) for all target contrast 

and colour combinations are summarized in Table 5.1, and the mean dynamic visual 
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acuity is plotted for all trajectories, target contrasts, and colour combinations in Figure 

5.2. Linear predictable dynamic visual acuity (horizontal, oblique, and vertical motion) 

displayed similar trends as target speed increased, while random walk motion did not 

significantly change. 

 

Table 5.1: Mean (±SD) dynamic visual acuity (logMAR) for each direction and speed on 

the moV& software measured, averaged across two visits. 

Speed 

 1m/s 3m/s 6m/s 9m/s 12m/s 

100% contrast 

Horizontal  0.15 ± 0.12 0.29 ± 0.15 0.30 ± 0.14 0.33 ± 0.14 0.33 ± 0.12 

Vertical 0.28 ± 0.13 0.25 ± 0.16 0.30 ± 0.14 0.33 ± 0.14 0.33 ± 0.13 

Oblique 0.34 ± 0.14 0.30 ± 0.15 0.35 ± 0.15 0.38 ± 0.15 0.39 ± 0.13 

Random 0.24 ± 0.16 0.23 ± 0.16 0.21 ± 0.14 0.23 ± 0.16 0.20 ± 0.16 

61% contrast 

Horizontal  0.22 ± 0.12 0.46 ± 0.16 0.43 ± 0.15 0.45 ± 0.17 0.48 ± 0.15 

Vertical 0.46 ± 0.10 0.46 ± 0.20  0.43 ± 0.14 0.47 ± 0.14 0.52 ± 0.14 

Oblique 0.52 ± 0.14 0.43 ± 0.14 0.49 ± 0.15 0.55 ± 0.15 0.58 ± 0.11 

Random 0.42 ± 0.12 0.38 ± 0.18 0.34 ± 0.15 0.37 ± 0.14 0.34 ± 0.15 

      

20% contrast 

Horizontal  0.41 ± 0.10 0.79 ± 0.18 0.78 ± 0.15 0.80 ± 0.17 0.82 ± 0.17 

Vertical 0.54 ± 0.10 0.78 ± 0.17 0.80 ± 0.15 0.80 ± 0.17 0.88 ± 0.14 

Oblique 0.77 ± 0.13 0.79 ± 0.15 0.84 ± 0.16 0.82 ± 0.12 0.93 ± 0.13 

Random 0.65 ± 0.09 0.74 ± 0.17 0.69 ± 0.15 0.71 ± 0.16 0.69 ± 0.15 
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Red target/ White background 

Horizontal  0.21 ± 0.14 0.36 ± 0.22 0.35 ± 0.20 0.37 ± 0.19 0.40 ± 0.18 

Vertical 0.42 ± 0.17 0.36 ± 0.19 0.38 ± 0.20 0.40 ± 0.17 0.43 ± 0.16 

Oblique 0.46 ± 0.20 0.39 ± 0.19 0.43 ± 0.17  0.49 ± 0.18 0.51 ± 0.18 

Random 0.33 ± 0.15 0.32 ± 0.14 0.30 ± 0.14 0.27 ± 0.16 0.27 ± 0.16 

      

White target/ Blue background 

Horizontal  0.20 ± 0.16 0.33 ± 0.20  0.28 ± 0.18 0.31 ± 0.19 0.36 ± 0.18 

Vertical 0.38 ± 0.16 0.28 ± 0.20 0.32 ± 0.19 0.38 ± 0.17 0.41 ± 0.16 

Oblique 0.39 ± 0.18 0.34 ± 0.20 0.40 ± 0.16 0.44 ± 0.17 0.52 ± 0.18 

Random 0.29 ± 0.14 0.28 ± 0.18 0.26 ± 0.15 0.24 ± 0.14 0.24 ± 0.15 

  



 

 105 

 

Figure 5.2: Mean (±SD) dynamic visual acuity (logMAR) for each optotype in (a) horizontal (b) vertical (c) oblique and (d) 

random walk motion. 
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At 100% contrast, horizontal dynamic visual acuity was 1.5 lines worse (p<0.0001) 

when speed increased from 1m/s to 3m/s, but was only 1-2 letters worse as speed 

increased stepwise from 3m/s to 6m/s to 9m/s and to 12m/s (p>0.05). Vertical dynamic 

visual acuity at 1m/s was approximately one line worse than 12m/s (p=0.004); however, 

there was not a significant difference in dynamic visual acuity as speed increased 

(p>0.05), except between 1m/s and 3m/s (p=0.008). Oblique dynamic visual acuity was 

3 letters worse from 1m/s to 12m/s, which was clinically significant (a 3 letter difference 

is the stopping rule generally used by clinicians for visual acuity measurements) but not 

statistically significant (p=0.377). The difference in oblique dynamic visual acuity as 

speed increased was neither statistically nor clinically significant. Random walk dynamic 

visual acuity varied by 1-2 letters between speeds, but there was not a significant 

difference in dynamic visual acuity as speed increased. 

 

At 61% contrast there was a significant difference in horizontal dynamic visual acuity 

between 1m/s and all other speeds (p<0.0001), but not between 3, 6, 9, and 12m/s. 

Vertical motion showed no significant difference in dynamic visual acuity for speeds 

between 1m/s and 9m/s, but did clinically significantly increase (worsening of dynamic 

visual acuity by ≥3 letters) between all speeds and 12m/s. This difference was only 

statistically significant between 6m/s and 12m/s (p=0.001). Oblique dynamic visual 

acuity improved from 1m/s to 3m/s (p=0.020), then a worsened as the speed increased 

up to 12m/s. However, the only significant difference was between 6m/s and 9m/s 

(p=0.035). Random walk dynamic visual acuity was not significantly different between 

speeds except 1m/s and 6m/s (p=0.001) and 1m/s and 12m/s (p<0.0001). 
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Horizontal dynamic visual acuity at 20% contrast significantly worsened as speed 

increased, except from 3m/s to 6m/s (p=0.999) and 6m/s to 9m/s (p=0.893). Vertical 

dynamic visual acuity worsened as speed increased, but this was only significant 

between 1m/s and 3m/s (p=0.003), and 9m/s and 12m/s (p=0.029). Oblique dynamic 

visual acuity worsened when comparing 1m/s to 12m/s (p<0.0001), but there were no 

significant differences as speed increased by step (from 1m/s to 3m/s, 3m/s to 6m/s, 

6m/s to 9m/s, and 9m/s to 12m/s, p>0.05). Random walk dynamic visual acuity 

worsened as speed increased from 1m/s and 3m/s (p=0.001), and improved as speed 

increased from 3m/s to 6m/s (p=0.001); however, no statistically or clinically significant 

difference was found between 6, 9, and 12m/s nor between 1m/s and 12m/s. 

 

The red target on a white background horizontal dynamic visual acuity worsened 

between 1m/s and 3m/s (p<0.0001), after which acuity changes were not clinically or 

statistically significant (less than a 3 letter difference, p>0.05). Vertical motion showed a 

clinically significant improvement in dynamic visual acuity as speed increased from 1m/s 

to 3m/s, although it was not statistically significant (3 letter improvement, p=0.99). As 

speed increased from 3m/s to 12m/s dynamic visual acuity became worse, although not 

significantly (p>0.05). Oblique motion showed a similar trend as vertical motion, 

although the improvement in dynamic visual acuity as speed increased from 1m/s to 

3m/s was both statistically and clinically significant (1 line improvement, p=0.002). As 

speed increased from 3m/s to 12m/s acuity became worse, although not significantly 

(p>0.05). Random walk dynamic visual acuity improved when comparing 1m/s to 9m/s 
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(p=0.019), and 1m/s and 12m/s (p=0.044); however, there was no significant change 

between 1m/s, 3m/s, and 6m/s (p>0.05). 

 

Horizontal dynamic visual acuity for the white target on a blue background was better at 

1m/s compared to all other speeds (p≤0.001). There was no significant difference 

between the other speeds tested except between 9m/s to 12m/s (p=0.038) and 6m/s to 

12m/s (p<0.0001), with 12m/s yielding the worse dynamic visual acuity in both cases. 

Vertical motion showed a 1 line improvement in dynamic visual acuity from 1m/s to 3m/s 

(p=0.004), and a 2-3 letter worsening of dynamic visual acuity at each step increase in 

speed from 3m/s to 12m/s (only statistically significant from 6m/s to 9m/s, p=0.003). 

Oblique dynamic visual acuity was significantly worse at 12m/s compared to all other 

speeds except 9m/s (p=0.060), but there was not a significant difference between each 

step increase of speed (p>0.05). Mean random walk dynamic visual acuity did not 

significantly differ with speed (<3 letter difference, p > 0.05). 

5.4.2 Mean Speed Thresholds 

The mean speed thresholds in m/s (±standard deviation) are shown in Table 5.2. As 

target size increased, speed threshold increased for all trajectories and optotypes; that 

is to say that as target size got larger, participants were able to complete the tasks at 

faster speeds. This increase was statistically significant for all trajectories at 100% 

contrast, 61% contrast, 20% contrast, red targets on a white background, and white 

targets on a blue background with one exception: it was not statistically significant 

between +0.6 logMAR and +0.8 logMAR above static visual acuity for a white target on 

a blue background in a random walk motion. Similar to the mean dynamic visual acuity 
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results, mean speed thresholds are displayed graphically in Figure 5.3. The increase in 

speed threshold as target size increases follows a similar trend for horizontal, oblique, 

vertical, and random walk motion. For all optotypes, many participants reached the 

maximum speed (10m/s) at the largest target sizes. 

 

Table 5.2: Mean (±SD) speed thresholds (m/s) for each direction and size on the moV& 

software measured, averaged across two visits. 

 

Size above static visual acuity 

 +0.2 logMAR +0.4 logMAR +0.6 logMAR +0.8 logMAR 

100% contrast 

Horizontal  1.50 ± 1.50 6.88 ± 3.84 9.84 ± 1.00 - 

Vertical 1.92 ± 3.28 6.76 ± 4.30 9.88 ± 0.85 - 

Oblique 1.14 ± 2.17 5.54 ± 3.90 9.66 ± 1.27 - 

Random 2.90 ± 3.85 8.78 ± 2.93 9.82 ± 1.27 - 

     

61% contrast 

Horizontal  - 3.05 ± 3.39 6.93 ± 3.85 9.52 ± 1.74 

Vertical - 1.71 ± 3.16 6.12 ± 4.19 9.12 ± 2.09 

Oblique - 1.14 ± 2.31 5.81 ± 4.32 9.24 ± 2.46 

Random - 3.19 ± 3.93 8.12 ± 3.73 9.57 ± 1.61 

     

20% contrast 

Horizontal  - 0.91 ± 1.30 2.57 ± 2.80 5.24 ± 3.91 

Vertical - 0.48 ± 1.15 1.83 ± 2.52 5.43 ± 3.72 

Oblique - 0.14 ± 0.52 0.95 ± 2.08 3.26 ± 3.76 

Random - 0.35 ± 1.57 2.04±3.38 6.57 ± 4.13 
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Red target/ White background 

Horizontal  - 4.26 ± 4.17 7.40 ± 3.63 9.43 ± 2.08 

Vertical - 3.26 ± 4.02 7.21 ± 4.07 9.33 ± 2.08 

Oblique - 2.38 ± 3.04 7.38 ± 3.63 9.00 ± 2.42 

Random - 4.50 ± 4.49 8.43 ± 3.30 9.81 ± 0.74  

     

White target/ Blue background 

Horizontal  - 3.88 ± 3.87 8.05 ± 3.55 9.74 ± 0.94 

Vertical - 4.02 ± 3.76 8.33 ± 3.31 9.50 ± 1.80 

Oblique - 3.14 ± 3.64 7.79 ± 3.76 9.52 ± 2.15 

Random - 5.17 ± 4.38 8.57 ± 3.02 9.48 ± 1.92 
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Figure 5.3: Mean (±SD) speed threshold (m/s) for each optotype in (a) horizontal (b) vertical motion (c) oblique and (d) 

random walk.
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At 100% contrast, the mean speed threshold for all sizes at random motion was 

significantly better (faster) than for any of the predictable linear trajectories (p<0.05). 

Although the speed thresholds for predictable linear motion was best for vertical 

motion, followed by horizontal and oblique motion respectively, there was no 

significant difference between any of the predictable linear trajectories (p>0.05).  

 

At 61% contrast, the mean speed threshold for random motion was best, followed by 

horizontal, vertical, and oblique motion in that order. However, random motion was 

not significantly better than horizontal motion (p=0.550), and vertical motion was not 

significantly better than oblique motion (p=0.999). Horizontal motion was also 

significantly better than vertical motion (p=0.016). At 10% contrast, the same trend in 

mean speed threshold was found – random motion had the best speed threshold, 

followed by horizontal, vertical, and oblique. However, there was not a significant 

difference between random and horizontal motion (p=0.999), or horizontal and 

vertical motion (p=0.846). There was a significant difference between vertical and 

oblique motion (p<0.0001).  

 

This same trend was seen with red targets on a white background – the speed 

threshold was best for random motion followed by horizontal, vertical and oblique 

motion. There was not a significant difference between random and horizontal 

motion (p=0.587), horizontal and vertical motion (p=0.999) or vertical and oblique 

motion (p=0.999). For white targets on a blue background, random motion had better 

speed thresholds than vertical, followed by horizontal and oblique motion. However, 
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the difference was not significant between any of the trajectories except random and 

oblique motion (p=0.036).  

5.4.3 Effect of Visit  

The mean dynamic visual acuity measured at visit 2 was significantly better than the 

mean dynamic visual acuity measured at visit 1 for all optotype contrasts (p≤0.05 for 

100%, 61%, and 20% contrast); however, this difference was not clinically significant 

(was less than a 3 letter difference) except at 20% contrast (difference in mean 

dynamic visual acuity of 4 letters, p<0.0001). At 100% contrast, visit had a main 

effect on dynamic visual acuity [F(1, 768)=4.971, p=0.026], although it did not 

interact with target trajectory [F(3, 768)=0.075, p=0.973], speed [F(4, 768)=0.341, 

p=0.850], or both trajectory and speed [F(12, 768)=0.270, p=0.993]. At 61% 

contrast, visit also had a main effect on dynamic visual acuity [F(1, 685)=11.546, 

p=0.001], but did not interact with trajectory [F(3, 685)=0.439, p=0.725], speed [F(4, 

685)=0.229, p=0.922], or both [F(12, 685)=0.213, p=0.998]. Visit had a main effect at 

20% contrast [F(1, 682)=54.33, p<0.0001], but did not interact with trajectory [F(3, 

682)=0.536, p=0.658], speed [F(4, 682)=1.071, p=0.370], or trajectory and speed 

[F(12, 682)=0.198, p=0.999].  

 

The mean dynamic visual acuity on visit 2 was better than visit 1 for both the red 

target on a white background (p=0.004) and the white target on a blue background 

(p=0.006); however, this difference was not clinically significant for either colour 

combination (less than a 3 letter difference between mean dynamic visual acuities). 
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However, unlike with the contrast targets, visit did not have a main effect on dynamic 

visual acuity for either colour combination tested. For the red target on a white 

background, the main effect of visit was F(1, 777)=1.270, p=0.260, and visit did not 

interact with trajectory [F(3, 777)=0.089, p=0.966], speed [F(4, 777)=0.164, p=0.956] 

or trajectory and speed [F(12, 777)=0.205, p=0.998]. For the white target on a blue 

background, the main effect of visit was F(1, 777)=0.629, p=0.428, and visit did not 

interact with trajectory [F(3, 777)=0.033 p=0.992], speed [F(4, 777)=0.137, p=0.969], 

or both [F(12, 777)=0.258, p=0.995].  

 

Visit did not have a main effect on speed threshold at 100% contrast [F(1, 

576)=0.937, p=0.333], nor did it interact with trajectory [F(3, 576)=0.560, p=0.641], 

target size [F(2, 576)=0.052, p=0.950], or trajectory and size [F(6, 576)=0.294, 

p=0.940]. At 61% contrast, visit had a main effect on speed threshold [F(1, 

479)=14.375, p<0.0001], but did not interact with trajectory [F(3, 479)=0.120, 

p=0.948], size [F(2, 479)=0.807, p=0.447], or trajectory and size [F(6, 479)=0.140, 

p=0.991]. Visit had a main effect on speed threshold at 20% target contrast, F(1, 

479)=30.281, p<0.0001. Although visit did not interact with trajectory [F(3, 

479)=0.393, p=0.758] or trajectory and size [F(6, 479)=0.801, p=0.569], it did 

interact with target size [F(2, 479)=6.499, p=0.002]. There was no significant 

difference in mean speed threshold between visit 1 and 2 for targets at 100% 

contrast (speed threshold at visit 1 was 0.2 m/s faster than visit 2, p=0.234). The 

mean speed threshold at visit 2 was better than that at visit 1 at 61% contrast (speed 
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threshold at visit 2 was 1.1 m/s faster than visit 1, p<0.0001), and 20% contrast 

(speed threshold at visit 2 was 1.4 m/s faster than visit 1, p<0.0001).  

 

Analysis of the red target on a white background data showed that visit did not have 

a main effect on speed threshold [F(1, 480)=0.397, p=0.529] and did not interact 

with trajectory [F(3, 480)=1.437, p=0.231], target size [F(2, 480)=0.935, p=0.393], or 

trajectory and size [F(6, 480)=0.661, p=0.681]. The white targets on a blue 

background demonstrated a similar trend – visit did not have a main effect on speed 

threshold [F(1, 480)=3.304, p=0.070], nor did it interact with trajectory [F(3, 

480)=0.772, p=0.510], target size [F(2, 480)=0.201, p=0.818], or trajectory and size 

[F(6, 480)=0.328, p=0.922]. There was no significant difference in speed threshold 

between visits 1 and 2 for red targets on a white background (mean speed threshold 

at visit 1 was 0.2 m/s faster than at visit 2, p=0.443). For white targets on a blue 

background, mean speed threshold at visit 1 was significantly faster than at visit 2 

(speed threshold at visit 1 was 0.5 m/s faster than at visit 2, p=0.018).  

5.4.4 Effect of Trajectory 

At 100% contrast, trajectory had a main effect on dynamic visual acuity [F(3, 

768)=22.985, p<0.0001] and interacted with target speed [F(12, 768)=3.868, 

p<0.0001]. Trajectory also had a main effect at 61% contrast [trajectory had a main 

effect, F(3, 685)=32.369, p<0.0001, and interacted with speed, F(12, 685)=8.806, 

p<0.0001]. The same was seen at 20% target contrast [F(3, 682)=33.23, p<0.0001]; 

interaction with speed [F(12, 682)=11.30, p<0.001]; and for both colour combinations 
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[red target on a white background main effect F(3, 777)=30.553, p<0.0001, 

interaction with speed, F(12, 777)=3.550, p<0.0001; white target on blue background 

main effect F(3, 777)=29.830, p<0.0001, interaction with speed, F(12, 777)=3.243, 

p<0.0001]. When trajectory was compared across all speeds, the same trend was 

found for all optotype contrasts and colours tested: horizontal and random motion 

did not significantly differ from each other (p>0.05) and had the best mean dynamic 

visual acuity scores, vertical motion had the next best scores and oblique motion 

had the worst scores. Vertical and oblique motions were significantly different from 

both horizontal and random motion as well as each other (p<0.05).  

 

Trajectory had a main effect on speed threshold at 100% contrast [F(3, 576)=9.499, 

p<0.0001], and interacted with target size [F(6, 576)=2.695, p=0.014]. Although 

trajectory had a main effect at 61% contrast [F(3, 479)=6.363, p<0.0001], it did not 

interact with target size [F(6, 479)=1.067, p=0.382]. At 20% contrast, trajectory had a 

main effect [F(3, 479)=8.507, p<0.0001] and interacted with size [F(6, 479)=2.642, 

p=0.016]. For the red target on a white background, trajectory had a main effect, F(3, 

480)=3.732, p=0.011; however, trajectory and target size did not interact [F(6, 

480)=0.738, p=0.619]. Trajectory did not have a main effect on speed threshold for 

the white target on a blue background [F(3, 480)=1.764, p=0.153], nor did it interact 

with target size [F(6, 480)=0.328, p=0.542]. When trajectory was compared across 

all target sizes, it was found that random motion yielded the best (fastest) speed 

thresholds, followed by horizontal, vertical, and oblique motion in that order. 



 

 117 

However, the significance of the difference in speed threshold varied based on the 

optotype contrast and colour and those optotypes which did not follow the 

aforementioned trend are as follows: At 100% contrast, horizontal and vertical 

motion speed thresholds were not significantly different (p=0.999), nor were vertical 

and oblique (p=0.076) or horizontal and oblique (p=0.090). At 61% contrast, there 

was no significant difference between random and horizontal motion (p=0.550) or 

between vertical and oblique motion (p=0.999). At 20% contrast, random, horizontal, 

and vertical motion did not significantly differ from each other (p>0.05), but all were 

significantly better than oblique motion (p<0.0001). For the coloured optotypes, the 

only significant difference in speed thresholds was between oblique and random 

motion (p>0.0001 for the red target on a white background, p=0.036 for the white 

target on a blue background) and between random and vertical motion for the red 

target on a white background (p=0.011).  

5.4.5 Effect of Target Velocity on Dynamic Visual Acuity  

Speed had a main effect on dynamic visual acuity at 100% contrast [F(4, 

768)=5.613, p<0.0001], 61% contrast [F(4, 685)=5.680, p<0.0001], 20% contrast 

[F(4, 682)=62.635, p<0.0001], and with the white target on a blue background [F(4, 

777)=4.453, p=0.001]. Speed did not have a significant main effect on dynamic 

visual acuity when the red target on a white background colour combination was 

used, F(4, 777)=1.882, p=0.112. Significant interactions between target speed, 

trajectory, and visit are stated in the previous two sections.  
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5.4.6 Effect of Target Size on Speed Thresholds  

Target size had a main effect on speed threshold for targets at 100% contrast [F(2, 

576)=405.494, p<0.0001], 61% contrast [F(2, 479)=213.535, p<0.0001], 20% 

contrast [F(2, 479)=128.861, p<0.0001], with the red target on a white background 

[F(2, 480)=133.998, p<0.0001], and with the white target on a blue background [F(2, 

480)=135.936, p<0.0001]. Any interactions between target size, trajectory, and visit 

are stated in the previous sections addressing the effects of target trajectory and 

visit on speed thresholds. 

5.4.7 Variability across Subjects 

Using an ANOVA to analyze the data for this experiment does not take into account 

inter-subject variability. This is a limitation, as dynamic visual acuity and speed 

threshold may vary between subjects, but display similar trends. Therefore, a linear 

mixed-effects model was used to determine the effect of variability across subjects 

and the possible influence of this variability on how visit, trajectory, speed, and size 

affect dynamic visual acuity and speed threshold. The linear mixed-effects model 

was analyzed using the lmer package in R.80  

 

In the models for both dynamic visual acuity and speed threshold, subjects were 

included as a random factor in order to control for variability between subjects. A 

random intercept model was used. The model for dynamic visual acuity (DVA) was 

“DVA ~ Trajectory*Speed + Visit + (1|Subject),” and the model for speed threshold 

was “Speed Threshold ~ Trajectory*Size + Visit + (1|Subject).” When the linear 
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mixed model for dynamic visual acuity was applied to the 100% contrast data, the 

null hypothesis (H0-1 = the variable had no effect on dynamic visual acuity) could be 

rejected for visit, trajectory, and speed (Table 5.3). Therefore, all three of the 

variables can be said to have an effect on dynamic visual acuity. Additionally, the 

model was determined to be the best fit for the data as removing any of the variables 

significantly decreased the goodness of fit as shown by the AIC values: when visit 

was removed, Χ2(1, n=25)=17.236, p<0.0001; when trajectory was removed, Χ2(6, 

n=25)=292.46, p<0.0001; when speed was removed, Χ2(4, n=25)=147.49, p<0.0001. 

The speed threshold model showed that speed threshold was significantly affected 

by target size, horizontal motion, and random walk motion; however, the null 

hypothesis could not be rejected for visit, oblique motion, or vertical motion as their 

confidence intervals contained zero (Table 5.4). When looking at how these 

variables affected the goodness of fit of the model, the following AIC values were 

found – when visit was removed, Χ2(1, n=25)=1.0808, p=0.298; when trajectory was 

removed, Χ2(6, n=25)=37.223, p<0.0001; when size was removed, Χ2(4, 

n=25)=547.86, p<0.0001. Therefore, visit did not have a significant effect on the 

goodness of fit when removed as a variable, but the goodness of fit became worse 

when trajectory and target size were removed.  

 

This process was repeated for all optotype contrasts and colours tested. At 61% 

contrast, visit, trajectory, and speed all had an effect on dynamic visual acuity (Table 

5.3) and significantly decreased the goodness of fit of the model when removed. 
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When visit was removed, Χ2(1, n=21)=23.083, p<0.0001; when trajectory was 

removed, Χ2(6, n=21)=261.95, p<0.0001; and when speed was removed, Χ2(4, 

n=21)=120.07, p<0.0001. The speed threshold model showed speed threshold was 

affected by visit, target size, horizontal and oblique motion; however, the null 

hypothesis (H0-2 = the variable has no effect on speed threshold) could not be 

rejected for random walk and vertical motion as their confidence intervals contain 

zero, meaning that it is possible that these trajectories have an effect on speed 

threshold (Table 5.4). Visit, target trajectory, and size all reduced the goodness of fit 

of the model when removed – when visit was removed, Χ2(1, n=21)=20.553, 

p<0.0001; when trajectory was removed, Χ2(6, n=21)=32.572, p<0.0001; when size 

was removed, Χ2(4, n=21)=386.55, p<0.0001.  

 

At 20% contrast, the linear mixed model showed that visit, trajectory, and speed all 

had an effect on dynamic visual acuity (Table 5.3). The goodness of fit of the model 

worsened if any of the variables were excluded – when visit was removed, Χ2(1, 

n=21)=70.496, p<0.0001; when trajectory was removed, Χ2(6, n=21)=236.73, 

p<0.0001; and when speed was removed, Χ2(4, n=21)=280.4, p<0.0001. The speed 

threshold model showed that speed threshold was not affected by oblique and 

vertical optotype motion, but was affected by visit, target size, horizontal, and 

random walk motion (Table 5.4). Visit, trajectory, and size all significantly decreased 

the goodness of fit when removed from the model – when visit was removed, Χ2(1, 
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n=21)=39.192, p<0.0001; when trajectory was removed, Χ2(6, n=21)=50.656, 

p<0.0001; when size was removed, Χ2(4, n=21)=260.51, p<0.0001.  

 

Dynamic visual acuity for the red target on a white background was affected by visit, 

trajectory, and speed (Table 5.3). All three variables reduced the goodness of fit of 

the linear mixed model when removed – when visit was removed, Χ2(1, 

n=21)=4.807, p=0.0283; when trajectory was removed, Χ2(6, n=21)=315.76, 

p<0.0001; when speed was removed, Χ2(4, n=21)=96.328, p<0.0001. Target size 

and oblique motion were the only two variables which had a significant effect on 

speed threshold (Table 5.4). When excluded, trajectory and target size significantly 

reduced the goodness of fit of the model; however, visit did not. When visit was 

excluded, Χ2(1, n=21)=0.5538, p=0.4568; when trajectory was excluded, Χ2(6, 

n=21)=18.916, p=0.00431; and when size was excluded, Χ2(4, n=21)=268.96, 

p<0.0001.  

 

For the white target on a blue background, speed and trajectory had an effect on 

dynamic visual acuity, but not visit (Table 5.3). This was reflected in the variables’ 

significance in being included in the model – when trajectory was removed, Χ2(6, 

n=21)=294.71, p<0.0001; when speed was removed, Χ2(4, n=21)=111.9, p<0.0001; 

but when visit was removed, Χ2(1, n=21)=3.0522, p=0.0806. Speed threshold was 

significantly affected by visit, target size, and random motion; however, the null 

hypothesis could not be rejected for the effect of horizontal, oblique, and vertical 
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motion (Table 5.4). Visit, target trajectory, and size all significantly reduced the 

model’s goodness of fit when removed – when visit was removed, Χ2(1, 

n=21)=4.3928, p=0.0261; when trajectory was removed, Χ2(6, n=21)=13.3, 

p=0.0385; when size was removed, Χ2(4, n=21)=258.31, p<0.0001.  

 

Table 5.3: Linear mixed modeling results for dynamic visual acuity (* = cannot reject 

null hypothesis). 

 Slope  Standard 

Error 

2.5% confidence 

interval 

97.5% confidence 

interval 

100% Contrast 

Visit -0.023 0.00544 -0.0332 -0.0120 

Speed 0.015 0.00133 0.0121 0.0173 

Horizontal  0.225 0.0278 0.170 0.280 

Vertical  0.070 0.0134 0.0437 0.0958 

Oblique  0.121 0.0139 0.0941 0.148 

Random  0.050 0.0131 0.0249 0.0759 

 

20% Contrast 

Visit -0.074 0.00871 -0.0915 -0.0575 

Speed 0.029 0.00214 0.0251 0.0335 

Horizontal  0.652 0.0309 0.591 0.712 

Vertical  0.067 0.0219 0.0249 0.110 

Oblique  0.218 0.0220 0.175 0.261 

Random  0.151 0.0214 0.110 0.193 

 

 



 

 123 

61% Contrast 

Visit -0.035 0.00727 -0.0492 -0.0208 

Speed 0.017 0.00182 0.0132 0.0203 

Horizontal  0.360 0.0298 0.301 0.418 

Vertical  0.132 0.0190 0.0948 0.169 

Oblique  0.146 0.0189 0.109 0.183 

Random  0.095 0.0189 0.0586 0.132 

 

White target on a blue background 

Visit* -0.012 0.00685 -0.0253 0.00146 

Speed 0.011 0.00171 0.00725 0.0139 

Horizontal  0.247 0.0360 0.176 0.318 

Vertical  0.082 0.0178 0.0471 0.117 

Oblique  0.104 0.0179 0.0686 0.138 

Random  0.060 0.0178 0.0255 0.0951 

 

Red target on a white background 

Visit -0.015 0.00681 -0.0282 -0.00158 

Speed 0.014 0.00171 0.0104 0.0171 

Horizontal  0.277 0.0363 0.205 0.349 

Vertical  0.129 0.0178 0.0944 0.164 

Oblique  0.152 0.0178 0.117 0.187 

Random  0.082 0.0178 0.0471 0.116 
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Table 5.4: Linear mixed modeling results for speed threshold (* = cannot reject null 

hypothesis). 

 Slope  Standard 

Error 

2.5% confidence 

interval 

97.5% confidence 

interval 

100% Contrast 

Visit* -0.223 0.216 -0.645 0.198 

Size 20.85 1.32 18.26 23.43 

Horizontal  -1.93 0.696 -3.29 -0.576 

Vertical* 0.493 0.809 -1.08 2.07 

Oblique* -0.807 0.809 -2.38 0.771 

Random  2.51 0.809 0.936 4.09 

 

20% Contrast 

Visit 1.34 0.212 0.932 1.76 

Size 10.8 1.30 8.30 13.4 

Horizontal  -5.61 0.925 -7.41 -3.81 

Vertical* -1.25 1.14 -3.48 0.970 

Oblique* 0.354 1.14 -1.87 2.58 

Random  -2.73 1.14 -4.96 -0.51 

 

61% Contrast 

Visit 1.09 0.241 0.626 1.56 

Size 16.2 1.48 13.3 19.1 

Horizontal  -4.86 1.05 -6.91 -2.81 

Vertical* -2.24 1.30 -4.77 0.286 

Oblique  -3.53 1.30 -6.06 -1.00 

Random * 0.603 1.30 -1.92 3.13 
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White target on a blue background 

Visit -0.516 0.248 -0.998 -0.0336 

Size 14.6 1.52 11.7 17.6 

Horizontal* -0.790 1.08 -2.88 1.30 

Vertical* 0.635 1.33 -1.96 3.23 

Oblique* -1.19 1.33 -3.79 1.41 

Random  2.84 1.33 0.240 5.43 

 

Red target on a white background 

Visit* -0.186 0.253 -0.678 0.305 

Size 12.9 1.55 9.90 15.9 

Horizontal* -0.438 1.11 -2.59 1.71 

Vertical* -1.79 1.36 -4.43 0.864 

Oblique  -2.96 1.36 -5.61 -0.307 

Random* 0.333 1.36 -2.32 2.98 

 

 

Finally, the random intercept linear mixed model was compared to a linear model in 

which all variables were fixed effects (assuming the intercept is the same for all 

subjects) to determine which model was a better fit for the data (Table 5.5). Since 

the goodness of fit significantly worsened (X2) when subject was removed as a 

random factor for all optotype contrast and colour combinations tested (p<0.0001), 

the random intercept model was determined to be a better fit for the data as 

variability exists between subjects.  
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Table 5.5: Results of random intercept and fixed slope linear mixed model 

compared to a general linear model (i.e. not accounting for subject variability). 

Target 

Type 

Threshold Degrees 

of 

freedom 

Sample 

size  

Log 

Likelihood 

for GLM 

Log 

Likelihood 

for Mixed 

Model 

Χ2 p-value 

100% 

contrast 

Dynamic 

visual acuity 

1 25 418 875 913 <0.0001 

 Speed 

Threshold 

1 25 -1481 -1452 57 <0.0001 

61% 

contrast 

Dynamic 

visual acuity 

1 21 394 659 531 <0.0001 

 Speed 

Threshold 

1 21 -1295 -1237 115 <0.0001 

20% 

contrast 

Dynamic 

visual acuity 

1 21 315 499 369 <0.0001 

 Speed 

Threshold 

1 21 -1224 -1170 109 <0.0001 

Red and 

White 

Dynamic 

visual acuity 

1 21 267 706 878 <0.0001 

 Speed 

Threshold 

1 21 -1320 -1261 118 <0.0001 

White 

and 

Blue 

Dynamic 

visual acuity 

1 21 275 700 849 <0.0001 

 Speed 

Threshold 

1 21 -1300 -1249 101 <0.0001 

 



 

 127 

5.5 Discussion 

In this paper, we explored the effect of target trajectory, speed, and size on dynamic 

visual acuity and speed thresholds using five different optotypes: 100%, 61%, and 

20% contrast black targets on a white background, and two colour combinations at 

83% contrast (red target on a white background, and white target on a blue 

background). The results of these explorations will be discussed below.  

5.5.1 Mean Dynamic Visual Acuity and Speed Threshold 

Previous research has shown that target size and speed effect dynamic visual acuity 

and speed thresholds – larger target sizes can be viewed at faster target 

speeds.4,6,7,9,13 This study confirms this finding for a number of different optotype 

contrasts and colour combinations, as well as different target trajectories. Target 

size had a significant effect on speed threshold for all contrast and colour 

combinations tested – as target size increased, speed thresholds improved. 

Likewise, target speed had an effect on dynamic visual acuity (as target speed 

increased, dynamic visual acuity became worse) for all contrast and colour 

combinations tested except the red target on a white background, where dynamic 

visual acuity did not significantly change as target speed increased. This was most 

likely due to the improvement in vertical and oblique dynamic visual acuity as speed 

increased from 1m/s to 3m/s for the red target on a white background optotype. 

Possible explanations for this phenomenon will be discussed in the Effect of 

Trajectory section which follows. Further research on the visual tracking of coloured 

optotypes is needed in order to determine why speed did not have a significant main 
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effect on dynamic visual acuity for the red target on a white background optotype 

only. 

5.5.2 Effect of Visit 

Dynamic visual acuity measured at visit 2 was better than that measured at visit 1 for 

targets at 100% contrast, 61% contrast, and 20% contrast, but not for red targets on 

a white background or white targets on a blue background. This indicates that there 

may be a learning effect with the dynamic visual acuity task. Previous research has 

shown good test-retest repeatability of moV& for targets at 100% contrast, however 

this does not exclude the possibility that a learning effect is present.38 Additionally, at 

20% contrast moV& test-retest repeatability was poor compared to 61% contrast, 

and both low contrast levels had worse repeatability than the colour combinations at 

83% contrast (see Chapter 4). The red target on a white background and white 

target on a blue background used in this study showed good test-retest repeatability 

for dynamic visual acuity measured using moV& (see Chapter 4). Good test-retest 

repeatability is not necessarily indicative of the effect of visit on dynamic visual 

acuity measures, as is demonstrated with the 100% contrast target.  

 

Visit only had a main effect on speed thresholds for targets at 61% and 20% 

contrast, with the speed threshold measured at visit 2 being better (faster) than 

those measured at visit 1. It is logical that the effect of visit would be present for both 

dynamic visual acuity and speed thresholds measurements, as the tasks are similar 

in that they both require the visualization of moving targets and only differ in the 
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variable measured. However, there was no main effect of visit present for targets at 

100% contrast, while visit did have a main effect on dynamic visual acuity at this 

target contrast. Visit also did not have a main effect on red targets on a white 

background or white targets on a blue background. The presence of this effect at 

certain target contrast levels may be indicative that a learning effect is only present 

when the task is more difficult, as it can be hypothesized that it is more difficult to 

visualize a low contrast moving target compared to a higher contrast. However, this 

hypothesis requires further investigation.  

5.5.3 Effect of Trajectory 

Target trajectory had an effect on dynamic visual acuity, and trajectory interacted 

with target speed for all contrast and colour combinations. This supports previous 

literature which shows that trajectory has a significant effect on dynamic visual 

acuity.9,35 However, past literature only explored horizontal and oblique motion due 

to limitations of the instrumentation. This experiment used horizontal, vertical, 

oblique and random walk motion, and showed that all trajectories have a significant 

effect on dynamic visual acuity. Similarly, trajectory had an effect on speed 

thresholds for all contrast and colours except the white target on a blue background. 

Trajectory and size interacted for targets at 20% and 100% contrast only. 

 

Overall, random and horizontal motion had better dynamic visual acuity and speed 

threshold measurements compared to vertical and oblique motion. Past literature 

has shown that horizontal dynamic visual acuity is superior to oblique, possibly due 
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to the increased prevalence of horizontal motion in daily life.9 When comparing the 

predicable linear trajectories to random motion, it is important to remember that a 

difference in exposure time was present – random walk motion targets could enter 

and exit the screen for up to 16s, while predictable linear motion targets only 

travelled across the screen once. Longer exposure times result in better dynamic 

visual acuity measurements, therefore it can be hypothesized that exposure time is a 

contributing factor towards random walk dynamic visual acuity and speed threshold 

being superior to most linear trajectories.6  

5.5.4 Effect of Velocity on Dynamic Visual Acuity 

Dynamic visual acuity became worse as velocity increased for most optotypes and 

trajectories with the exception of random walk motion, which remained relatively 

consistent for all of the contrasts and colours tested. Some exceptions to this trend 

were present for specific optotype, speed, and trajectory combinations. For example, 

vertical dynamic visual acuity improved from 1m/s to 3m/s for targets at 100% 

contrast, white targets on a blue background, and red targets on a white 

background. Additionally, there was a significant improvement in oblique dynamic 

visual acuity at 3m/s for targets at 61% contrast and with the red target on a white 

background, and random walk dynamic visual acuity improved at 61% contrast and 

with the red target on a white background between 1m/s and 12m/s. 

 

This improvement in visual acuity from 1m/s to 3m/s for predictable linear 

trajectories may be due to a change in visual tracking strategy. Smooth pursuit eye 
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movements are typically used to track objects moving at speeds up to 50°/s – at 

faster speeds, catch-up saccades are needed in order to keep the image on the 

fovea,5 and there is a brief moment of low position error and low retinal slip at the 

end of an accurate catch-up saccade, during which a target may be perceived with 

high acuity.5 Given that 1, 3, 6, 9, and 12m/s are approximately equal to constant 

angular velocities of 14, 37, 56, 66, and 72°/s, it would be expected that a significant 

change in visual acuity would be present between 3m/s and 6m/s as a result of a 

change in visual tracking strategies, however in this study, we noticed that dynamic 

visual acuity improved from 1m/s to 3m/s in this study instead of from 3m/s to 6m/s 

as would be expected and further investigation is needed to determine why this the 

change in dynamic visual acuity between 1m/s and 3m/s occurred.  

 

Random walk dynamic visual acuity did not significantly change as target speed 

increased for all optotypes tested. This may be due to the fact that, as previously 

mentioned, random motion targets were presented for a longer amount of time 

compared to targets moving in a predictable linear trajectory. Additionally, since 

subjects are unable to predict the path of the target in random walk motion, they 

must use a combination of fixations, pursuits, and saccades to visualize the target. 

These factors may contribute to the lack of effect that speed has on random walk 

dynamic visual acuity, but further investigation of tracking strategies is needed in 

order to fully understand these differences. 
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5.5.5 Effect of Target Size on Speed Thresholds  

Target size had a significant effect on speed thresholds. Speed thresholds were 

worse for smaller target sizes in all optotypes (100% contrast, 61% contrast, 20% 

contrast, red targets on a white background, and white targets on a blue 

background). At the largest target size for all optotypes, the majority of participants 

reached the maximum speed of 10m/s. Additionally, some participants were unable 

to view 3 out of 5 of the letters at the first speed presented (1m/s) for the smallest 

target size, especially at 20% contrast, resulting in a speed threshold of 0 m/s. The 

presence of a floor and ceiling effect for speed threshold demonstrates that certain 

target sizes, trajectories, contrasts, and colours were more difficult or easy to 

visualize.  

5.5.6 Variability across Subjects 

It is important to determine if the change in dynamic visual acuity with target speed 

(and the change in speed threshold with target size) is influenced by variability 

between subjects, since an ANOVA does not take into account inter-subject 

variability. The random intercept (fixed slope) linear mixed model was a better fit for 

the data compared to a general linear model which excluded subject as a random 

variable; therefore the dynamic visual acuity of all subjects worsened at a similar 

rate as speed increased, regardless of their dynamic visual acuity at the slowest 

speed (which varied between subjects). A similar trend was found for speed 

thresholds – since the random intercept (fixed slope) linear mixed model was the 

better fit for the data, it was shown that the speed thresholds of all subjects improved 
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as target size increased. However, only linear mixed models were explored in this 

analysis – it is possible that a non-linear model may be a better fit for the data, 

therefore further analysis is needed exploring non-linear mixed models.  

5.5.7 Reverse-Contrast  

Although the contrast between the target and the background for both colour 

combinations was equal, the white letter on a blue background was reversed-

contrast from the red letter on a white background. Reverse-contrast static acuity 

(white letters on a black background) is better when compared to normal static 

acuity (black letters on a white background) due to the effect of aberrations and light 

scatter.91,92 It can therefore be hypothesized that reverse-contrast dynamic visual 

acuity would show a similar effect, and preliminary comparisons of the two colour 

combinations used in this study show that the white targets on a blue background 

had a significantly better overall mean dynamic visual acuity compared to red targets 

on a white background (0.32 logMAR for white targets on a blue background 

compared to 0.37 logMAR for red targets on a white background, p<0.0001). Mean 

speed threshold was also significantly better for white targets on a blue background 

(7.26 m/s) compared to red targets on a white background (6.87m/s, p=0.015). 

However, further investigation is needed in order to draw any solid conclusions 

regarding the effect of reverse-contrast on dynamic visual acuity and speed 

threshold.  
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5.6 Conclusion 

This study explored the effect of different factors on dynamic visual acuity and speed 

threshold for targets at 100%, 61%, and 20% contrast as well as two colour 

combinations (red target on a white background and a white target on a blue 

background). It was shown that dynamic visual acuity measured at visit 2 was 

significantly better than that measured at visit 1 for targets at 100%, 61%, and 20% 

contrast, but not for either of the coloured targets. Visit number only had a significant 

effect on speed threshold for the low contrast targets (61% and 20% contrast). 

Target trajectory had a significant effect on dynamic visual acuity and speed 

thresholds for all optotypes except the speed thresholds of the white target on a blue 

background, and target size had a significant effect on speed thresholds for all 

optotypes. Target speed had a significant effect on dynamic visual acuity for targets 

at 100%, 61%, and 20% contrast as well as white targets on a blue background, but 

not for red targets on a white background. Further research looking at the effect of a 

wider range of contrast and colour combinations would allow for the influence of 

contrast and colour on dynamic visual acuity and speed thresholds to be 

determined. As we continue to expand our understanding of how we visualize 

moving targets and the different factors which can affect this ability, dynamic visual 

acuity and speed threshold measurements will become more clinically useful in 

areas such as binocular vision, low vision, contact lens, sports vision, and traumatic 

and acquired brain injury. 
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5.7 Dissertation Progress III 

Figure 4.4 from Chapter 4 has been expanded to include the findings of Experiment 

3. This final figure (Fig.5.4) illustrates how each experiment built off of the 

conclusions drawn from the previous one. For example, it had to be demonstrated 

that moV& was valid and/ or repeatable for the targets used in Experiment 3 in order 

for useful conclusions to be drawn.  

 

Figure 5.4: Dissertation Progress III, outlining the purposes of Experiments 1-3. 
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Chapter 6 – Summary, Conclusions, and Future Directions 

6.1 Summary of Findings  

In order to visualize a moving target for measurements of DVA or speed threshold, 

an observer must visually acquire the target and resolve critical detail for recognition 

while the target is within their field of view.12 There are many variables of both target 

motion and the target itself which can affect an observer’s ability to visualize a 

moving target. Previous DVA research has shown that DVA improves when a target 

is moving in a horizontal trajectory compared to oblique, and that DVA improves as 

optotype velocity decreases.9,13 Similarly, speed threshold improves when target 

size increases.40  

 

A problem with literature is that there is not a standardized, validated, readily 

available tool with which to measure DVA or speed thresholds. This makes direct 

comparisons of results between experiments difficult. Tools that have been used to 

measure DVA and speed threshold in the past were limited in their available 

trajectories, speeds, or optotypes. With the development of computerized software 

for visual acuity measurements, a need arose for a test with the capacity to measure 

both static and dynamic visual acuity as well as the ability to customize features 

such as optotype and background colour and contrast. Therefore, the Vision & Motor 

Performance Lab at the University of Waterloo School of Optometry & Vision 

Science developed the moV& software – a computerized test with the capability to 
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measure distance static visual acuity, DVA, and speed thresholds while allowing the 

specification of optotype contrast, colour, speed, size, and trajectory.  

 

As with any novel test, moV& had to demonstrate that it can yield repeatable and 

valid measures of both static and dynamic visual acuity before it could be accepted 

as a useful tool in research and clinical practice. The primary objective of this 

dissertation, through multiple experiments, was to determine a measure of 

repeatability and validity for all of the features available in moV&. Once the reliability 

and validity of the targets was established, the data could be analyzed to determine 

the effect of trajectory, size, and speed on dynamic visual acuity and speed 

threshold (the secondary objective of the dissertation). Both the primary and 

secondary objectives were achieved, the details of which are explained in 

subsections 6.1.1 to 6.1.3.  

6.1.1 Validity and Repeatability of High Contrast Optotypes 

The purpose of Experiment 1 was to determine the validity and repeatability of the 

static and dynamic visual acuity features of moV& using high (100%) contrast black 

letter targets on a white background. moV& static visual acuity was compared to 

static visual acuity measured with the clinical standard high contrast Snellen chart 

and the gold standard ETDRS chart. The test-retest repeatability was also 

determined for both static and dynamic visual acuity through Lin’s correlation 

coefficients of concordance. The results of Experiment 1 show that static high 
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contrast moV& visual acuity is valid and repeatable, comparable to the Snellen and 

ETDRS chart.  

 

As there is no gold standard DVA test, it was not possible to compare the accuracy 

of the moV& DVA tests to an existing standard. However, the repeatability of the 

moV& DVA test was determined for all moV& trajectories (horizontal, vertical, 

oblique, and random walk) at five target speeds (1, 3, 6, 9, and 12m/s). The DVA for 

all trajectories and speeds tested demonstrated good test-retest repeatability 

comparable with that of the static tests. Additionally, jitter visual acuity was shown to 

be repeatable and comparable to static visual acuity, and moV& high contrast DVA 

demonstrated good construct validity in that DVA measurements became worse as 

target speeds got faster.  

 

These results show that moV& can be used to measure static and dynamic visual 

acuity for high contrast black targets on a white background. Therefore, the validity 

and repeatability of other functions of moV& (such as low contrast and coloured 

target and background optotypes) can be determined. The repeatability of the low 

contrast and coloured optotype and background functions of moV& was determined 

in Experiment 2. Additionally, the results of Experiment 1 allow for moV& to be used 

in order to determine the effect of optotype trajectory, speed, and size on DVA and 

speed thresholds – this was done in Experiment 3.  
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6.1.2 Repeatability of Low Contrast Targets and Coloured Optotypes and Background 

Combinations 

Once the validity and repeatability of moV& was determined for high contrast 

targets, the repeatability of the low contrast and coloured functions of moV& could 

be explored. Two contrast values for black targets on a white background (61% and 

20% Weber contrast) and two target and background colour combinations at 83% 

Weber contrast (red target on a white background and white target on a blue 

background) were chosen. The contrast values were chosen so as to pick a low and 

mid contrast level compared to the 100% contrast targets used in Experiment 1. 

Additionally, low contrast levels ranging from 19%-23% Weber contrast, and 

intermediate contrast levels ranging from 51% to 70% contrast commonly appear in 

previous literature on low contrast visual acuity.12,26,93 The colour combinations of 

red on white and white on blue were chosen based on their prevalence in sports – 

the colours mimic the red and white detailing on a cricket ball or baseball, and a 

white ball against a blue sky. The low contrast and coloured functions of moV& could 

not be compared to another standardized chart, as no such chart exists for low 

contrast or coloured static or dynamic visual acuity. However, the reliability of moV& 

could be demonstrated through the assessment of test-retest repeatability, and 

convergence validity could be evaluated through the examination of the impact of 

different contrast levels on test-retest repeatability.  

 

The results of Experiment 2 showed that both contrast levels and colour 

combinations tested had good repeatability for static visual acuity measures using 
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moV&. There was no significant difference in static visual acuity for any of the target 

contrasts or colours between visit 1 and visit 2, although Lin’s correlation coefficient 

of concordance was higher (better) for 61% contrast and both colour combinations 

than it was for 20% contrast targets. 

 

The same target trajectories and speeds used in Experiment 1 were also tested in 

Experiment 2 (horizontal, vertical, and oblique linear predictable motion; random 

walk motion; 1, 3, 6, 9, and 12m/s (all trajectories)). Jitter visual acuity was only 

tested in Experiment 1 as it was found to be comparable to static visual acuity, and 

the effects of dynamic visual acuity were the focus of Experiments 2 and 3. The 

repeatability of moV& DVA for targets at 61% contrast targets was fair, but the 

repeatability was poor for targets at 20% contrast. Both 61% and 20% contrast 

DVAs had a large range of repeatability values for the different trajectory and speed 

combinations tested. Both red targets on a white background and white targets on a 

blue background had good repeatability. Lin’s coefficient of correlation for each 

speed, size, and optotype contrast or colour combination is specified in the Results 

sections of Chapters 3 – 5. Based on these results, moV& DVA can be measured 

with varying degrees of confidence depending on the repeatability of moV& found 

with the target contrast, trajectory, and speed combination to be tested. It is 

speculated that the poor repeatability for the low contrast DVA measures is due to 

an increased difficulty in task, thereby demonstrating convergent validity; however, 

further research is needed to assess the impact of task difficulty on DVA.  
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The results of this experiment demonstrate that moV& can be used to measure 

static visual acuity using targets at 61% and 20% contrast, red targets on a white 

background, and white targets on a blue background. moV& can also be used to 

measure low contrast and coloured DVA with varying amounts of confidence 

depending on target trajectory and speed. Therefore, the effect of optotype 

trajectory, speed, and size on DVA and speed thresholds with low contrast and 

coloured optotypes can be determined using moV&. This was done in Experiment 3, 

although conclusions were drawn with the awareness that the repeatability of some 

DVA measurements were poor, especially at the 20% contrast.  

6.1.3 The Effect of Trajectory, Speed, and Size on Dynamic Visual Acuity and Speed 

Thresholds 

Experiment 3 determined the effect of target trajectory, speed, and size on DVA and 

speed threshold using the different moV& optotypes shown to be repeatable in 

Experiments 1 and 2 (i.e. targets at 100%, 61%, and 20% contrast, red targets on a 

white background, and white targets on a blue background). The same four 

trajectories (horizontal, vertical, oblique, and random walk) and five speeds (1, 3, 6, 

9, and 12m/s) were used, as well as three target sizes for speed thresholds (+0.2, 

+0.4, and +0.6 logMAR above static visual acuity for 100% contrast targets; +0.4, 

+0.6, and +0.8 logMAR above static visual acuity for 61% contrast targets, 20% 

contrast targets, red targets on a white background, and white targets on a blue 

background).  
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It was shown that, in agreement with previous literature, target speed had a 

significant effect on DVA for targets at 100%.6,7,9,14 Additionally, speed had a 

significant effect on DVA for targets at 61% contrast, 20% contrast, and white targets 

on a blue background. Target speed did not have a significant effect on DVA for red 

targets on a white background. Also in agreement with previous research, trajectory 

had a significant effect on DVA and speed thresholds for all contrast and colours 

tested, with the exception of speed thresholds measured with white targets on a blue 

background.9,35 Target size had a significant effect on speed thresholds for all 

contrast and colour combinations tested. 

 

When looking at the interaction between target trajectory and speed, horizontal 

motion for all target contrast levels and colour combinations tested showed a 

significant worsening of DVA as speed increased from 1m/s to 3m/s, after which 

smaller non-significant changes in DVA were present from 3m/s to 12m/s. Vertical 

motion showed a significant worsening of DVA as speed increased from 1m/s to 

12m/s at 20% contrast, but no significant change for either colour combination or 

61% contrast. Oblique motion showed a worsening of DVA as speed increased from 

1m/s to 12m/s for all target contrast and colour combinations, although it was not 

statistically significant at 100% contrast. Interestingly, there was an improvement in 

DVA from 1m/s to 3m/s (after which DVA worsened) for certain optotypes at the 

oblique (61% contrast and red targets on a white background) and vertical (100% 

contrast, white targets on a blue background, and red targets on a white 
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background) trajectories. Unlike the linear motion trajectories, random walk motion 

did not demonstrate a significant worsening of DVA as speed increased for any of 

the contrast or colour combinations tested. At 61% contrast and with the red target 

on a white background, random walk DVA improved as speed increased from 1m/s 

to 12m/s. This may be due to a difference in tracking strategies used for medium 

contrast targets (61% and 83% contrast) compared to the low and high contrast 

targets (20% and 100% contrast respectively), but further investigation is needed.  

 

The interaction between target size and trajectory had a similar relationship to target 

speed and trajectory. Speed thresholds were significantly worse at smaller target 

sizes for all optotypes and trajectories with one exception – speed threshold was not 

significantly worse for white targets on a blue background between +0.6 and +0.8 

logMAR above static visual acuity when the target was moving in a random walk 

motion. This may be due to the reverse-contrast of white targets on a blue 

background compared to all other optotypes used, as it has been found that white 

letters on a black background yield better static visual acuity compared to visual 

acuity of black letters on a white background.91,92 However, further research is 

needed to determine the effect of reverse-contrast and coloured optotypes on 

dynamic visual acuity. 

 

Linear mixed modeling showed that threshold variability existed between subjects, 

but all subjects showed a similar trend of DVA worsening as target speed increased 
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and speed threshold improving as target size increased. Therefore, the results of 

this experiment show that target trajectory, speed, and size have a significant effect 

on DVA and speed threshold. A few exceptions to this statement exist within specific 

optotype trajectory, speed, and size combinations and future research looking at 

visual tracking strategies are required to determine why these exceptions exist. It is 

also important to remember that the repeatability of some DVA measures using 

moV& were poor, especially at 20% contrast. Additional research focusing on the 

effect of optotype contrast and colour on DVA and speed thresholds is needed in 

order to determine if the results found in this dissertation are applicable across a 

wider range of optotypes.  

6.2 Dissertation Conclusions 

The findings from Experiments 1 and 2 show the repeatability of the static and 

dynamic visual acuity components of moV& for a variety of high contrast, low 

contrast, and coloured optotypes. Additionally, the static visual acuity for moV& with 

100% contrast black targets on a white background was validated against the clinical 

standard Snellen and gold standard ETDRS static visual acuity charts. These 

findings allowed for moV& to be reliably used in order to determine the effects of 

different factors on DVA and speed thresholds in Experiment 3.  

 

The results of Experiment 3 agree with previous literature looking at the effect of 

trajectory, speed, and size on DVA and speed thresholds. However, this dissertation 

looks at a wider variety of trajectories and the use of low contrast and coloured 
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optotypes which has not been extensively explored in past literature, and never with 

a proven reliable test. It was concluded that DVA became worse as target speed 

increased for all trajectories except random walk motion, where DVA was either not 

affected or improved depending on the optotype contrast and colour used. Speed 

threshold improved as target size increased for all optotype contrasts and colours 

tested. Trajectory influenced DVA (with horizontal and random motion yielding the 

best DVA values, followed by vertical and oblique motion) and speed thresholds 

(random motion yields the best speed threshold values, followed by horizontal, 

vertical, and oblique motion respectively). Therefore, target trajectory, speed, and 

size all have an effect on DVA and speed threshold for all target contrast and 

colours tested.  

 

The findings of Experiment 3 replicates those found in previous research, but do so 

using a novel system. This provides some additional proof of concept indications of 

validity, in that moV& appropriately measures DVA and speed thresholds. Although 

the validity of moV& as a tool with which to measure low contrast and coloured static 

and dynamic visual acuity for high contrast, low contrast, and coloured targets still 

needs to be demonstrated through comparison with another validated test, the fact 

that DVA and speed thresholds measured with moV& replicate data trends shown in 

previous research gives a strong indication that moV& is a valid test. It is possible 

that a systematic error is present which equally effects all measurements, resulting 

in similar trends in the data with all measurements skewed by the same margin of 
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error. In order to rule out this type of error, comparison with a validated test is 

required, but unfortunately not possible at this time. However, moV& can be 

effectively used to determine trends in DVA and speed thresholds. This is useful 

clinically, as changes in DVA can aid in demonstrating visual improvement with a 

refractive correction in place or after completing a vision training program. Also, 

moV& high contrast static visual acuity is validated and can be used to determine if 

any deterioration in static visual acuity is present.  

6.3 Limitations and Future Work 

In the Discussion sections of Chapters 3 – 5, limitations of the research completed in 

this dissertation were discussed in detail, and suggestions for future areas of 

investigation required in order to fill these knowledge gaps were given. This section 

will summarize the major limitations of our research, and address possible future 

uses for moV& as a system with which to reliably measure DVA and speed 

thresholds.  

 

In Experiment 1, the validity of moV& was determined for static high contrast targets 

through comparison with the gold standard and clinical standard for measures of 

high contrast static visual acuity (the ETDRS and Snellen chart, respectively). 

However, no such standard exists for DVA – therefore, repeatability was chosen as 

an indicator that moV& yielded useful measures. The external validity of moV& was 

also shown, as the results of the study demonstrated that DVA worsens as target 

speed increases, and that the horizontal trajectory yielded better DVA compared to 
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vertical and oblique motion; both of these findings are in agreement with previous 

DVA research. The lack of a standard test with which to measure low contrast and 

coloured static visual acuity as well as high contrast, low contrast, and coloured DVA 

is a limitation to determining the accuracy of moV& in Experiments 1 and 2. 

However, this dissertation focused on aspects of test validity which could be 

demonstrated in a novel test, such as convergent validity, construct validity, and 

external validity. 

 

The results of Experiment 2 suggest that the repeatability for a larger variety of 

target contrasts should be explored, especially contrasts higher than 61%. This 

would allow for the reliability of low contrast DVA to be determined and the utility of 

moV& to be confirmed for a larger range of contrast levels, making moV& more 

clinically useful. Determining the repeatability of moV& DVA for more colour 

combinations would also be beneficial, especially considering the large variety of 

colours seen in dynamic environments such as sport and driving. Additional 

research on contrast and colour combinations would allow for the effect of colour 

and contrast on static visual acuity, DVA, and speed thresholds to be explored in 

more detail than what could be done with analysis comparing two contrast and two 

colour values.  

 

Experiment 1 showed that jittered visual acuity is more comparable to static visual 

acuity than DVA for 100% contrast targets. However, the effect of jittered acuity was 
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not determined for the low contrast or coloured optotypes used in Experiment 2. It 

would be interesting to explore if contrast or colour affects the relationship between 

jittered and static visual acuity, as well as the effects of contrast and colour on 

jittered visual acuity in comparison to their effects on static and dynamic visual 

acuity.  

 

The results of Experiments 1 and 2 allowed for the measurements taken using 

moV& to be used for Experiment 3. However, conclusions drawn from the results of 

Experiment 3 should be done with caution as the repeatability of moV& DVA varied 

depending on the target, trajectory and speed tested. For example, DVA for 20% 

contrast targets had low repeatability; therefore the effect of speed, size, and 

trajectory determined using moV& may not reflect the true relationship on DVA and 

speed thresholds for targets at this contrast. Determining the effect of DVA on a 

wider variety of low contrast levels and colour combinations would give us a better 

idea of the true nature of the relationship between target speed, size, and trajectory 

with DVA and speed thresholds. The results of Experiment 3 demonstrate the added 

value of examining the eye tracking strategies used by subjects when performing 

DVA tests and assessing how they differ at different target speeds and trajectories. 

This would show the effect of eye movements and visual tracking strategies on DVA 

and speed thresholds. Additional research exploring the sensory processes used to 

view fine detail of moving targets with varying contrast and colour properties would 

also be interesting to explore, as it would provide an objective method of validating 
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the moV& software as well as give insight as to the link between the motor and 

sensory processing involved in DVA tasks.  

 

Future uses of the moV& software are numerous, and DVA measurements can be 

useful in many different fields of optometry. moV& has been used to collect data for 

research on vision strategies used for DVA in video game players and athletes.94 

moV& has also been used to show the relationship between DVA and skiing 

performance in a population of low vision athletes.95 Clinically, DVA measurements 

have possible applications in vision training, binocular vision issues, low vision 

issues, contact lens and sports vision, as well as traumatic and acquired brain injury, 

and assessing fitness to drive. DVA and speed threshold measurements have 

applications across many areas of research, and as the vision science and 

optometric community continues to expand their understanding of how the visual 

system resolves moving targets, further innovative uses for moV& will be created.  
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