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Abstract

An exciting frontier in quantum information science is the creation and manipulation of
bottom-up quantum systems that are built and controlled one by one. For the past 30
years, we have witnessed significant progresses in harnessing strong atom-field interactions
for critical applications in quantum computation, communication, simulation, and metrol-
ogy. By extension, we can envisage a quantum network consisting of material nodes cou-
pled together with infinite-dimensional bosonic quantum channels. In this context, there
has been active research worldwide to achieve quantum optical circuits, for which single
atoms are wired by freely-propagating single photons through the circuit elements. For all
these systems, the system-size expansion with atoms and photons results in a fundamental
pathologic scaling that linearizes the very atom-field interaction, and significantly limits
the degree of non-classicality and entanglement in analog atom-field quantum systems for
atom number N > 1.

The long-term motivation of this MSc thesis is (i) to discover new physical mech-
anisms that extend the inherent scaling behavior of atom-field interactions and (ii) to
develop quantum optics toolkits that design dynamical gauge structures for the realization
of lattice-gauge-theoretic quantum network and the synthesis of novel quantum optically
gauged materials. The basic premise is to achieve the strong coupling regime for a quantum
many-body material system interacting with the quantized fields of an optical cavity. Our
laboratory effort can be described as the march towards “many-body QED,” where optical
fields acquire some properties of the material interactions that constrain their dynamical
processes, as with quantum field theories. While such an effort currently do not exist else-
where, we are convicted that our work will become an essential endeavor to enable cavity
quantum electrodynamics (QED) in the bona-fide regime of quantum many-body physics
in this entanglement frontier.

In this context, I describe an example in Chapter 2 that utilizes strong Rydberg-
Rydberg interactions to design dynamical gauge structures for the quantum square ice
models. Quantum fluctuations driven by cavity-mediated infinite-range interaction stabi-
lize the quantum-gauged system into a long-range entangled quantum spin liquid that may
be detected through the time-ordered photoelectric statistics for photons leaking out of the
cavity. Fractionalized “spinon” and “vison” excitations can be manipulated for topological
quantum computation, and the emergent photons of artificial QED in our lattice gauge
theoretic system can be directly measured and studied.

The laboratory challenge towards strongly coupled cavity Rydberg polaritons encom-
passes three daunting research milestones that push the technological boundaries beyond
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of the state-of-the-arts. In Chapter 3, I discuss our extreme-high-vacuum chamber (XHV)
cluster system that allows the world’s lowest operating vacuum environment P ~ 10713
Torr for an ultracold AMO experiment with long background-limited trap lifetimes. In
Chapter 4, I discuss our ultrastable laser systems stabilized to the ultra-low-expansion
optical cavities. Coupled with a scalable field-programmable-gate-array (FPGA) digital-
analog control system, we can manipulate arbitrarily the phase-amplitude relationship of
several dozens of laser fields across 300 nm to 1550 nm at mHz precision. In Chapter 5,
we discuss the quantum trajectory simulations for manipulating the external degrees of
freedom of ultracold atoms with external laser fields. Electrically tunable liquid crystal
lens creates a dynamically tunable optical trap to move the ultracold atomic gases over
long distance within the ultra-high-vacuum (UHV) chamber system.

In Chapter 6, I discuss our collaborative development of two science cavity platforms
— the “Rydberg” quantum dot and the many-body QED platforms. An important devel-
opment was the research into new high-index IBS materials, where we have utilized our
low-loss optical mirrors for extending the world’s highest cavity finesse F' ~ 500k! We dis-
cuss the unique challenges of implementing optical cavity QED for Rydberg atoms, which
required tremendous degrees of electromagnetic shielding and field control. Single-crystal
Sapphire structure, along with Angstrom-level diamond-turned Ti blade electrodes, is uti-
lized for the field compensation and extinction by > 60 dB. Single-crystal PZTs on silica
V-grooves are utilized for the stabilization of the optical cavity with length uncertainty less
than 1/100 of a single nucleon, along with extreme level of vibration isolation in a XHV
environment. The capability to perform in-situ RF plasma cleaning allows the regeneration
of optical mirrors when coated with a few Cs atoms. Lastly but not the least, we combine
single-atom resolution quantum gas microscopy technique with superpixel holographic al-
gorithm to project arbitrary real-time reconfigurable diffraction-limited optical potential
landscapes for the preparation of low-entropy atom arrays.
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Chapter 1

Introduction

1.1 Towards quantum many-body network

The capability to create and manipulate entanglement and quantum states between light
and matter provides crucial resources for critical applications in quantum information sci-
ence [1, 2, 3, 4, 5, 6, 7]. Indeed, a major challenge in the experimental approaches with
atomic, molecular, optical (AMO) systems in the past decades has been the scaling of
laboratory complexities associated with the weak physical strengths of the controlled in-
teractions between the atoms that encode some quantum information in their ground states
[2]. Compared to solid-state quantum systems [7], the dynamical timescales for coherent
atom-atom interactions is very weak (e.g., ~ 1 kHz for state-of-art ion trap quantum gates
[8] and ~ 100 Hz for the tunneling term in the Bose-Hubbard model for ultracold quantum
gases [9]), pushing much of the interest to equilibrium phenomena and mean-field theories
[10]. Furthermore, leading quantum architectures have physical bottlenecks in their scal-
ing in terms of the physical constraints (e.g., 2D surface code for superconducting qubits
[11] and micromotion heating in ion traps with large numbers of atoms [12]) that limit
the quantum connectivity of the qubits and the system size [0]. For any physical system,
one could argue that there will always be a physical limitation in the system size Ny (e.g.,
number of atoms), in which a monolithic system is expected to practically scale, due to
error correlation effects that inevitably spread across the macroscopic numbers of qubits

[13].

In contrast, light-matter quantum interfaces, enabled by quantum optics toolboxes with
cavity quantum electrodynamics (QED) [14, 15], provide a method to create distributed
quantum systems beyond of the characteristic system-size scale Ny by way of quantum con-



nectivities of the optical channels [0]. The strong coupling regime in cavity QED provides a
method to coherently transfer quantum states of a single atom to and from optical photons
[10], and single-quanta-level optical nonlinearity for quantum gate operations that gener-
ate atom-photon and photon-photon entanglement. By extension of the strong coupling
physics, we could envision a quantum network [0] consisting of matter quantum nodes,
which coherently interact each other through the distribution and dissemination of quan-
tum states in the optical quantum channels. Such a quantum network could be utilized for
performing distributed quantum information processing by teleporting quantum resources
and quantum gates [17], for creating effective Hamiltonian dynamics of the atomic quantum
nodes for quantum simulation [18], and for transporting and teleporting quantum states
across the nodes for quantum communication [19, 20, 21]. In Chapter 2, I will review the
technical languages that describe the theory of atom-light interactions in the new regime
of many-body QED. Here, I'd like to provide the overarching physical motivations and my
perspectives of the experimental program developed throughout this MSc thesis in relation
to the broader scope of quantum information science.

From a more physical point of view of a quantum network, it is tempting to think
about the spin dynamics for the nodes of a network as some sort of renormalization of
the material system mediated by their respective interactions with the infinite-dimensional
bosonic channels as with quantum field theories [22]. If then, we could provide clearer low-
energy theories of the many-body network with a more natural mapping to how particles
interact with each other from the viewpoint of gauge field theories. More importantly, this
may imply the existence of complex quantum behaviors of atom-field quantum systems
that can be designed quanta-by-quanta to mimic the emergent physics of other physical
systems possibly well beyond of condensed matter and atomic molecular physics.

In the next section, I will describe the limitations of cavity QED in regards to the
extensions to quantum many-body physics and to the inadequacy to gauge field theories,
as speculated here. We are instead interested in introducing strong atom-atom interaction
in the form of Rydberg excitation [23, 24] in the presence of non-perturbative atom-field
coupling. Besides the fundamental interest in understanding the nature of the strong
coupling physics for many-body quantum system interacting with the cavity field, the
resulting system in the Purcell regime reveals unusual characteristics that cannot be simply
attributed to the atom-atom dynamics mediated by virtual non-interacting excitations of
the quantum harmonic oscillators of the quantum channels, but rather strongly coupled
systems with gauge bosons that impose particular energy constraints.

The creation of quantum optics building blocks to examine this unchartered territory
requires the development and integration of novel experimental AMO gadgets (optical
clocks, cavity QED, and quantum gases) and addressing the key challenges in cavity QED
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that inhibited the progress to this direction over the past 20 years [25], namely achieving
strong coupling regime in the optical domain for interacting atomic quantum systems (e.g.,
Rydberg atoms and trapped ions in optical cavities). The resulting laboratory infrastruc-
ture is thereby not a simple extension or combination of the standard AMO laboratory
toolboxes used throughout the world. The central theme of my thesis is thus addressing
these outstanding technical challenges to bring our vision to fruition, beginning with the
developments of our own laser and electronic systems, but I’d like to present these questions
as the high-level motivations for my experimental work described in the thesis:

1. Is it possible to create analog quantum systems whose emergent physics is related to
high-energy physics and quantum gravity (holographic correspondence)?

2. Can we create, control and measure new topological orders (quantum spin liquids)
in many-body atomic quantum systems by way of the quantum optics toolboxes?

3. What is the nature of atom-light interaction for strongly correlated quantum mate-
rials?

I hope that future experiments with the apparatus I helped to develop in this thesis would
be able to contribute to these directions in physics.

1.2 Cavity QED in the optical domain: From Jaynes-
Cummings models to Tavis-Cummings Hamilto-
nians

In this section, I will introduce the physics of strong coupling from the perspective of
(Markov and non-Markov) open quantum systems, and associate the single-atom single-
photon level cooperativity parameter C' with the breakdown of statistical mechanics. That
is, conventional equilibrium physics has no role to play even for describing a seemingly
simple situation of a single atom strongly to a high-finesse optical cavity. I will then
discuss a concrete example of the Jaynes-Cummings (JC) model [26], a reduced model of
a quantum Rabi model [27], that describe the energy-conserving processes of the dipole
of the atom interacting with the excitations in a single-mode cavity. By extension, I will
connect the physics of JC model to that of the Tavis-Cummings (TC) model [28, 29],
which describe the interaction of a single-mode field with a collection of atoms. I will then
describe the inherent limitations associated with the traditional cavity QED approach in
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Figure 1.1: Strong coupling parameter in open quantum dynamics. The charac-
teristic coupling strength y to a particular reservoir mode (e.g., cavity mode) is compared
to other dissipative rates ;. Sustaining quantum dynamics of the system, represented by
the Hamiltonian HS, at the single quanta level in the face of decoherence requires y > ~;
for reservoir channels Vi with system-reservoir interaction H sr. External time-dependent
driving fields are represented by é(t) that populate select reservoir modes.

the strong coupling regime in terms of the scaling of the “non-classicality” or “quantum
optical nonlinearity” with the characteristic system size (the atom number and the photon
number).

1.2.1 Strong coupling parameter and breakdown of statistical
mechanics

Quantum optics deals with dynamical processes, in which light fields are generated from the
interaction with the material systems. For a realistic quantum system, we need to consider
the coupling of the “system” to an infinite-dimensional environment (in our case, vacuum
reservoir). For any “exotic” quantum optical state to emerge [30, 31], we are basically
looking at non-equilibrium open quantum dynamics, as the equilibrium physics would be
contained in the thermalized state of the reservoir at finite temperature [32, 33, 34]. The
conceptual umbrella is thereby to examine the dynamics of open quantum system, for which
a relatively “simple” quantum system (single atoms and photons, or many-body quantum
system) is embedded in a complex environment (e.g., infinite QHO modes decomposing the
free-space vacuum, or external driving fields and measurement apparatus) that constantly
perturbs the system’s otherwise reversible quantum evolution.

As shown in Fig. 1.1, we could consider the system Hamiltonian Hg interacting with
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reservoir modes Hp by a system-reservoir Hamiltonian Hgp. The reservoir modes can
take the form of the untamed free-space vacuum or inhomogeneous interactions of some
fluctuating dipoles bound on the dielectric surface of a mirror, which lead to dissipation.
Loss of the information and entropy of the system to the infinite continuum necessarily
introduces perturbation of the system in terms of quantum noise being injected back into
the system variables. This quantum fluctuation-dissipation theorem manifests the theory
of Markov master equation and open quantum systems [35]. But reservoir modes can also
be utilized to populate driving fields £ (t) that bring the system out of equilibrium, and
we could design particular system-reservoir interaction into desired modes (e.g., single and
multimode cavities) to mediate effective interactions between the trapped atoms. For in-
stance, let me just concentrate on one of the reservoir modes with the largest characteristic
coupling constant x in Hgp (we take ~y; for all other weaker dissipative channels), in which
the driving fields are utilized to populate the excitations in this mode.

In the steady-state, we could then conceive of the characteristic quanta ng in which
the system could be brought out of equilibrium as the ratio of the dissipation to all other
channels v and the coherent coupling rate xy with this driving mode. From laser theory,
the characteristic quanta

ng =1 (1.1)

X

corresponds to the intracavity threshold photon number for population inversion and stimu-
lated emission. That is, by populating this driving channel with excitation number n > nq,
the system can be brought out of equilibrium to exert dynamical unitary processes in the
face of the dissipative “damping” and “drift” terms of the environment, as with the Fokker-
Planck equation for brownian motion. In generic terms, we could separate the open quan-
tum system dynamics into “strong” and “weak” coupling with respect to the characteristic
quanta. This also provides the natural scaling parameter for the system evolution.

For lasers and optical parametric oscillators [30], you typically find \/ng ~ 10* — 10°
in the weak coupling regime Y < v (ns, > 1). Internal timescale x~! for the coherent
dynamics are much longer than the dissipative timescales v, and the dynamics is well
approximated by classical evolution of the c-number mean field a plus some small quantum
fluctuation da of some operator @ — « + da (mode operator in this case). Any exotic
quantum state (e.g., EPR entanglement, single photon, etc) is thereby contained within
this small component da of the field around which it is fluctuating. In fact, there is a
beautiful connection to the equilibrium physics in statistical mechanics in terms of system-
size expansion with 1/ng, which dictates the overall size of the fluctuation and effective
temperature [32]. That is, for large n,, the thermal equilibrium description and mean-field
theory adequately describe the response of the system variables. In fact, the vast majority



of quantum optics experiments is contained within this parameter space (e.g., nonclassical
and entangled light beams from parametric downconversion crystal), yet providing a great
utility for quantum information science.

An important frontier in quantum optics is to push the boundary of ng, in which out-
of-equilibrium phenomena could occur at the single quanta and vacuum levels. In the
“strong coupling” regime of y > v with n, < 1, dynamical processes could be completely
stimulated even by a single quanta pumping the system [37, 38, 39, 10]. More importantly,
the generic dynamical feature could be potentially highly dependent on the excitation of
a single quanta even in the presence of a large number of background quanta. In this
regime, reversible quantum dynamics compete non-perturbatively with the irreversible
Lindblad evolution, generally resulting in non-Markov features (bound states and localized
excitations). The first physical system to explore this parameter regime is in the setting
of the cavity QED, where a heroic effort by Jeff Kimble’s group at Caltech in the 80s led
to the landmark observation of the normal mode splitting (vacuum Rabi splitting) in 1992
[37] that demonstrated the strong coupling regime of cavity QED in the optical domain,
followed by the work of Serge Haroche in 1996 in the microwave domain [38]. From the
perspective of the theory of a laser, this constitutes a laser operating at the single-photon
level, where a gain medium of a single atom is completely saturated by a photon number
much smaller than 1 [11]. From the viewpoint of nonlinear optics, this regime is where
optical nonlinearity and bistability could persist down to the level of one photon [12]. From
statistical mechanics, it is not possible to find an effective thermal equilibrium picture of
the atom-field evolution, even when the field is populated by a quanta much less than 1.

1.2.2 Jaynes-Cummings and Dicke models

The goal of this section is to provide a basic theoretical description of cavity QED in the
strong coupling regime, so that we could begin the discussion of the scaling and phys-
ical mapping to certain many-body spin models. I will begin by describing the Jaynes-
Cummings Hamiltonian for atom-field interactions [20, 13], and by extension a Dicke model
(also known as the Tavis-Cummings model) [28, 29]. Along the way, we will discover that
cavity QED as a many-body platform has a pathology to access physics beyond of the
mean-field, thereby providing the foundation of my research thesis.

Jaynes-Cummings model

We begin by discussing a closed dipole interaction between a two-level atom and a single-
mode of the electromagnetic field. The atom has two internal states (ground and excited
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states |g), |e)) with the energy difference hw,. The fields populating the designated spatio-
temporal modes have the corresponding single-photon energy Ey = hwy. In the dipole
approximation, the Hamiltonian governing this interaction is given by

N 1 1 505
Ho/h = Swad- + wy (a*a+§) —d-E, (1.2)

where we take the dipole operator d = do, with the scalar dipole matrix element d, the
field’s annihilation (creation) operator a (af), and the two-level system represented by the
Pauli’s spin operator . Similarly, we can express the electric field operator in the second

quantization theory

hwf R At
2eovmw(f') (a+al), (1.3)

where V,, is the physical volume of the mode, as defined by the boundary conditions
imposed on the quantization procedure, ¥ (7) describing the variation of the zero-point
fluctuation as a function of the atomic position 7, and ¢y the vacuum’s electric permittivity.

E=

More generally, the dipole approximation may break down for nanoscopic optical fields
and cavities, where the zero-point motion of the atomic position operator is comparable
to that of the vacuum fluctuation. In addition, the fully vectorial treatment of the dipole
operator for realistic atoms, where the electron’s spin S and angular momentum L, and
the nuclear spin [ are all coupled, give rise to not only scalar, but also vector and ten-
sorial decomposition of the electric dipole Hamiltonian in terms of the spherical tensor
form. Furthermore, for realistic optical cavities, the electromagnetic field penetrates into
the dielectric by a few wavelengths, so that it may be critical to consider the impact of
the casual structure of the Krammers-Kronig-like dispersion of the dielectric medium (e.g.,
fields inside a photonic crystal defect cavity), as the standard Lagrangian second quan-
tization method does not work and we need to include the Green’s function formalism
to appropriately include the input-output relationship [14]. For the sake of revealing the
essential physics, I will not include these important effects into the formalism.

Importantly, the dipole interaction Hamiltonian

~ hd2wf
H; = ﬁl 5, (a+ at 1.4
d 2€0Vmw<m0x (a—i—a ) ( )

is known as the quantum Rabi model, with recent resurgence of interests, especially in
the context of superconducting circuit QED in the microwave domain. Thanks to the low
energy of the microwave photons and large electric dipole moments in superconducting
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junctions and Rydberg atoms, it is possible to have the atom-field coupling constant

o d*wy
o) =\ gu)

= goy(7) (1.5)
comparable to the qubit or the single-photon energies gy ~ wy, wy. This allows a pathway

to have non-negligible energy-non-conserving counter-rotating processes ~ é.al + h.c.,
which generates two-mode squeezing and EPR entanglement.

However, in the optical domain, due to the large wy and wy, counter-rotating terms
rapidly oscillate with ~ e*(®0tws)t Therefore, we can apply the rotating-wave approxima-
tion and integrate out the short-time correlations to arrive at

Hy = hg(7) (614 +6-a'), (1.6)
with the total Hamiltonian
. 1 o1 L
Hy/h = FWa0= +wy @la+ 3 + g(F) (64a+o_a'). (1.7)

This is also known as the Jaynes-Cummings Hamiltonian for describing the atom-field
interactions in the setting of cavity QED and Wigner-Weisskopf spontaneous emission (for
multimode fields) [15].

To obtain the eigensystem of H,, we take a convenient basis

B = B,®B;
= Alg)le)} @110}, 11),12),- -}
= {|g70>7|6’0>7|g71>7|671>’|ga2>7|€72>7"'}' (18)

In this basis, we can express the block-diagonal Hamiltonian

Th(wy — w,) o 0 - 0
0 H, 0 0

Hy = 0 0 H, 0 , (1.9)
0 0 0 H,



with the elements

o < h(nws + 1wy — w,)) hg(7)y/n > (1.10)

hg(7)v/n hnwy — 5(wy — w,))

over the basis B. We can independently diagonalize H, over each total excitation-number
subspace n, arriving at the eigenstates and eigenenergies

[ )0 = cos(0nt)lg, n) + sin(bnz)le,n — 1) (1.11)

1
E,i/h = nwfi§\/4ng(F)2+A2, (1.12)

where we have used the atom-field detuning A = w, — wy, and cavity-polariton’s mixing
angles

cos(fs) = (—A £ /Ang(r)* + A?) (1.13)

\/\(—A + /4ng(7)? + A?)2 + 4ng(r)?|

sin(f,1) = 2v/ng(7) (1.14)

V(=2 £ /Ing(? + 57 + 4ng(7)?|

These are the “dressed” states of the system, a coherently superposed “molecule” of atom-
cavity excitations, caused by the interaction with the quantized field in the cavity. Impor-
tantly, in the limit of large detuning A > gy, the normal modes |£), become separated
into atom-like |+), — |e,n — 1) and photon-like |—=),, — |g,n) branches. Likewise, for
negative detuning, the cavity-polaritons are mapped in the opposite way.

It is instructive to consider the case when the system is brought into resonance w =
wy = w, with A = 0, and examine the scaling of the excitation spectrum. In this case,
the cavity-polaritonic state reduces to |£), = \/ii(]e, n — 1) £ |g,n) with energy splitting
AE, +/h = 2y/ng(7). For a weakly-driven system, in the excitation subspace n = 1, this
implies a non-trivial temporal dynamics, in which a single atom in the excited state |e, 0)
stimulates a photon into the cavity |g, 1), after which the same photon can be reabsorbed
by the same atom, making a Rabi oscillation between the atom and the cavity. In terms
of the excitation spectrum over n, as shown in Fig. 1.2, the direct interaction between
one atom and one photon yields a “vacuum” Rabi splitting 2¢(7) between the two energy
eigenstates |£) [37]. The Jaynes-Cummings interaction maximally entangles the field and
the atom via these normal modes |£+). More interestingly, when probing through the
excitation subspace, one finds an optical nonlinearity in the form of excitation spectra
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Figure 1.2: Jaynes-Cummings spectra for a weakly-driven system. Due the atom-
cavity interaction, the cavity resonances are split by the vacuum Rabi frequency 2¢(7) for
the single-excitation manifold n = 1. Two normal modes arise from the atom-cavity inter-
action, and cavity transmission is suppressed on resonance. The Jaynes-Cummings model
displays the nonlinear excitation spectra for higher n. The strong coupling parameters are
(g9,k,7v1) = 2m x (10,1,1) MHz, for transverse atomic decay rate v, and cavity decay rate
K.

over n. The coupled atom-cavity system will be able to transmit an incoming photon, if
the driving field is resonant with |+). Because of the anharmonicity in E, + = 2/ng(7),
with sufficiently small dissipation, it is possible to select a particular excitation subspace
through the phenomena of photon blockade effect.

Quantum master equation for the Jaynes-Cummings model

In order to better evaluate the open nature of the coupled atom-cavity system, it is im-
perative to include the effect of reservoir. In fact, at some level, one could argue that the
cavity mode that the atom was interacting in the previous section was only one of the
reservoir modes. More generally, we need to include the dissipative evolution of both the
atom, relaxing its optical polarization into free-space (transverse decay rate v, ), and of
the cavity photons (cavity decay rate k), damping the field excitation through the guided
mode, to which the measurement apparatus is sensitive. Understanding these dissipative
mechanics gives a natural description of cavity QED and the strong coupling regime in
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terms of open quantum system formalism.

In our open system approach, we will thereby need to consider two distinct reservoirs —
a single spatial mode in which the cavity field couples to, and the other continuum mode
in which the excited atom can decay into

H® = " hwg il (1.15)
HY = > hwjitliy, (1.16)

where the operators 7 are the mode operators associated with the energy hw. We used
the subscript l;,l to indicate that the atom can transversely decay into an infinite set
of transversal modes of free-space. At room-temperature, the thermal excitations of the
reservoir modes are extremely small around the optical frequencies of wy, wy, so that we
simply attribute a zero-temperature bath. The corresponding system-bath couplings are
given by

HY = > heg,6475, + hee, (1.17)
k|l
HY = > hwjila+he (1.18)

J

The total atom-field-reservoir Hamiltonian is now given by Htotal = Ho + H (@) + Hﬁ) +
oo+ HS(T), with the original JC Hamiltonian H,. For the global system-reservoir state
Protal, We would like to obtain the effective system dynamics of the atom-cavity system
ps(t) = Try[protar(t)]. With the standard approach of input-output formalism, we can then
relate the response of the system, when it is weakly driven, in terms of the transmission
or reflection of the cavity.

To proceed further, we assume that these reservoirs are Markovian, in that the exci-
tations in the reservoir decohere over a time scale (memory time) much shorter than any
observable dynamics of the system. We will also assume that the response of the reservoir
is narrowed near the transition frequency of interest, upon the introduction of density of
states to transform the mode indices in an integral form. Indeed, excitations that mi-
grate over to the field will have a characteristic lifetime of 1/wp, and the system-reservoir
coupling x’s or the internal system dynamics ~ gy will clearly not have comparable dy-
namical timescales in the optical domain. I would like to comment that, in the microwave
domain, it is not clear if this approximation is quite valid, especially in the ultrastrong
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coupling regime, and extra care must be taken in order to interpret the resulting “sys-
tem”’s dynamics. Using these approximations and separation of timescales, we can arrive
at the coarse-grained Schrodinger equation for the reduced system of motion p4(t) in the
interaction picture, where we integrate out the reservoirs, and obtain the quantum master
equation for the atom-field system

. 1

ps = =5 Ho, ) + Lups+ Lo, pr, (1.19)
with the action of the Lindblad superoperator
LrO = 20O — {&lép, O} (1.20)

In writing the equations above, we have defined the photonic and atomic quantum jump
operators ¢, = \/ka, ¢, = V/YL0_ with transverse spontaneous emission rate v, = %.
In order to see the excitation spectrum and dynamics, we also need to consider a drive to
bring the system out of equilibrium. For instance, we could assume that one mode of the
reservoir modes in Eq. 1.16 is populated by a driving field with strength e, and include
back into the system, so that the system Hamiltonian is

Ho/h= Du6. + Agata + g(7) (610 +6-a") + (e"a + edl) (1.21)

where we now introduced the atomic and cavity detunings A, = w, — wp, Ay = wy — w,.

Before we move onto the mapping into the spin models, it is instructive to look at the
dynamics in the single excitation subspace p1(t) = |11 (¢)) (1 (t)] with |11 (t)) = a(t)|g, 1) +
B(t)]e,0). From the master equation with (a'a) = Tr[alap,] = |a|? and (6.) = Tr[(6.ps] =
|3]?, we arrive at the following coupled differential equation

Q(t) = —(k+idpalt) - ig(F)B(t) - ie (1.22)
Bt) = —(v1L+iA)B(1) — ig(F)alt). (1.23)

In the absence of the drive e = 0, Egs. 1.22-1.23 yield coherent Rabi oscillations between
lg, 1) and |e, 0), as predicted in the closed formalism before. Specifically, one finds that the
intracavity photon number coherently oscillates with

_ 2 _ |g|267('€+ﬁ)2 . 2 D) 2
n(t) = |a(t)| 2715 [V1gl? = (5 —~1)?/4] (1.24)

N |9|2 — (k=L

for g(7) > |k — 7|/2. In the frequency domain, we can obtain the analytic solution to the
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Figure 1.3: Photon-like amplitude for a weakly-driven dissipative JC model. The
photon-like amplitudes of the dressed states are shown for various detunings A, A, for
vacuum Rabi frequency gy = 1, cavity and atomic decay rates k = v = 0.1. The strong
coupling regime is manifested by the well-resolved vacuum Rabi splitting at A, = 0. By
comparison, the red line shows the characteristic energy spectrum for an empty cavity with
g=0.

steady-state spectra of Eqs. 1.22-1.23, such that

P2 +22)
() + ik — AP+ A2+ 1)

ns(A) = Jag|* = (1.25)

where we assumed Ay = A, = A for simplicity. As shown in Fig. 1.3, the atom-cavity
system reveals the same eigenvalue spectrum in Fig. 1.2. In contrast, in the absence of
atom-field coupling g = 0,

| 6’2 AQ

K2 A2 + r2
which is the classical Lorentzian response of the intracavity photon number for an empty
Fabry-Perot cavity driven by a coherent field e. The inclusion of dissipation is that the
two resonances are broadened by the damping forces of the interaction with the external
reservoirs. The implication of the strong coupling regime, where one expects unitary

ns(A) = (1.26)
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Figure 1.4: Vacuum Rabi oscillation in cavity QED. The cavity population is shown
for the coherent exchange of excitation between the cavity mode and the single atom. The
strong coupling parameters are (g, k,7v, ) = 2w x (10,1, 1) MHz, where g is the atom-cavity
coupling rate, k is the cavity decay rate, v, is the transverse atomic decay rate.

evolution for the atom-field interaction, is that the transmission of the cavity on resonance
is reduced by placing just one atom into the cavity with the creation of two dressed states
of the system. Likewise, by putting just one photon in the system, we should expect
non-trivial quantum dynamics to persist with a real photon being absorbed and revived in
a coherent manner over the dissipative timescales 1/k,1/v,, where the atomic quantum
emitter is completely saturated by the intensity of one photon.

There are several key rates that determine the driven-dissipative dynamics of the sys-
tem:

1. Vacuum Rabi splitting g(7) = %1/1(77).

2. Transit (interaction) time 7" of atoms in the cavity

e
L.F

3. Cavity damping rate k = (for lossless mirrors)

4. Transverse spontaneous emission rate vy, = % (for D2-line transition [6S;/2) <
‘6P3/2>a, YDy, = 2m X 2.6 MHZ)

2We use the spectroscopic notation |nL ), where n is the principal quantum number, L is the angular
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The strong coupling regime of cavity QED is given by the parameter space
g > max(k,v,,1/T). (1.27)

In terms of considering the atom-like excitations, one may consider the “critical” atom
number Ny to completely switch off the optical response of the cavity

_ 2P

Ny .
g2

(1.28)
This is the minimal number of atoms required to observe a bistable output. Qualitatively,
placing Ny atoms in the cavity produces an output cavity field resonant with one of the
dressed states. Cavity response on resonance is terminated, because of the strong atom-
light interaction. Likewise, one could consider the “critical” photon number ny to populate
the cavity to observe nonlinear excitation dynamics
62

where § = max(vy,,1/T). This intracavity photon number ng gives precisely the saturation
intensity Iy ~ 1 mW /em? (for Cs D2-line), where the atom scatters photons at the maximal
rate I'/2 and the dipole response is saturated. This is the domain of quantum nonlinear

optics at the ng photon and Ny atom level, with modern optical cavities achieving ng, Ny <
105!

We can introduce the cooperativety parameter C' to quantify the overall ratio of coher-
ence to dissipation in the driven-dissipative dynamics

42
c=-2.

1.30
R7Y1 ( )

Using the cavity mode volume V,, = A.L. and the expression for the resonant cross-section
o9 = 67/kZ, we obtain the scaling of the cooperativity parameter

_ A o
A2 T 3m AL

(1.31)

where A, is the effective mode area, L. is the cavity length, ky = 27 /) is the wave-vector,
and F is the optical finesse of the cavity.

momentum, and .J is the total spin-orbital momentum.
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There is a very natural interpretation of the cooperativity parameter in terms of the
laser theory. In the presence of the atom, we expect the loss of the photon given by the
ratio of the resonant absorption cross-section og to the mode area A.. When the atom
is in the cavity, the optical depth of the atom-cavity system is enhanced by the number
of round trips ~ F that the photons take, before being lost into the environment. The
cooperativity parameter C, hence, plays the role of the “optical depth” of a single atom.
Furthermore, with this classical mapping, there is one important lesson to be learned in
direct relevance to our experiment. That is, for an ideal Fabry-Perot cavity with no optical
loss, where the effective mode area is A. ~ mwg, we find that a short length cavity is not a
pre-requisite for C' > 1. For realistic cavities with losses, it is still desirable to have small
mode volumes V,,,. Nonetheless, it may be possible to achieve the strong coupling in C' > 1
with long distance optical cavity L. >~ 1 mm with beam waist wy ~ 30um by improving
the optical finesse F ~ 500,000 by a factor of two relative to the state-of-the art.

Dicke model

Here, I will first describe the open system dynamics of the Dicke model, where an array
of atoms with spacing aq interacts with the quantized fields of free space. There is a
very elegant mapping to a quantum spin model and quantum-correlated jumps for sub-
wavelength lattices £ = kega0 < 1. 1 will then describe an extension of this model in
terms of the Tavis-Cummings physics, where virtual excitations in an optical cavity induce
infinite-range interaction between the trapped atoms.

Dicke model in free space When a quantized field interacts with a collection of atoms
in free-space, the atoms radiate new source fields, which then interact collectively with the
other atoms. A semiclassical model was developed in 1970 by Lehmberg [16, 17]. Here,
I'd like to write a fully quantum model, incorporating the quantum fluctuations of the
reservoir fields. Using the powerful tool of quantum stochastic calculus, we will rigorously
derive the many-body master equation. To the best of my knowledge, we are not aware
of other methods that extend the quantum stochastic calculus to the multi-atom case for
deriving the quantum master equation.

In particular, we will find that the explicit inclusion of the reservoirs creates renor-
malizations to the transition frequency we, in the form of photonic “Lamb” shift with the
vacuum modified by the surrounding dielectric environment (the presence of other atoms).
The Casimir-Polder shift, which arises from this formalism, is tightly coupled to the emis-
sion probability of correlated photons into the reservoir, in terms of the casual-structure
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of the Kramers-Kronig relationship. A more modern framework, utilizing Green’s function
quantization method [11], is well beyond the scope of my thesis, and is more relevant to
my colleagues work in the waveguide QED lab in the UQML.

To set up the problem, we consider the set of atoms at positions 7; with transition
frequency we, collectively interacting with the vacuum fields. In the interaction picture,
the system-reservoir interaction can be modeled as

Osp)/h = Y Y i(kpblelwrmwet=bRai60 4 o) (1.32)
B,k |wp—weg <dw|
= i [filt)ol) + hec, (1.33)

where we take the quantum noise operator f;(t) = Dk g —weg <6l Kpbpe i Wh—we)tHiRE g
ow is the system’s response bandwidth that we will later integrate over in the Born-Markov
approximation. The noise operators have particular commutator relationship that reflects
the physical characteristics of the reservoir fields (in our case, vacuum state),

@), fI)) = st =), (1.34)
Yig(T) = > |1 | 2k weq) TR (Fi =), (1.35)

k,|wi —weg <ow|

In particular, we assume an initial vacuum state for the reservoir system |x,0) = |1))s ®
[1x [0k) -

In order to first formulate the quantum stochastic Schrodinger equation (QSSE), we
would like to solve

d i

for the overall system-reservoir state |x,¢). By formally integrating twice, we obtain

i) = 30 (1 [ an (7w - Fwag) ) o) (1.37)

%

t 4 ) | ) |
+ Z/O dtq (fJ(tl)&é;) — fi(t1)(3éze)> /0 dty <ng(t2)0'£Jg) — fj(t2>05(]é)) X, L)
1/7‘7

In the Born approximation, the system-reservoir interaction is weak, and we could define
a time step ¢t = At, where |x,t2) = [x,0) = [¢)s @ []; [0x)r for 0 <t < At. Within this
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assumption and utilizing Eq. 1.34, the time-evolution of Eq. 1.37 reduces to

At
ALY = 2(1 6060 / dt, / dtmtl—%) G0 (L38)
. t A,
Y60 / a7 (1)1 0),
i 0

to the order O(At?).
Let’s first inspect the integral

At t
! 1
0 0

To proceed with the evaluation of the collective decay I';; and Lamb shift A;;, we are re-
minded that the coupling constant x; is defined with respect to the electric dipole Hamil-

tonian, where we perform the summation over the polarization states A of the radiation
field

Z |I‘fk:|2 —i(wg—weg)T+k-(Fi—T;) _ Z 2h6 - Z |CZ;g 6>\’2 —i(wy—weg)T+k-(Fi—T;)

Wz Ao Ao ) 7o
= Z E_|d [2(Po(k - duy) — Po(k - doyg))eiws—wea)T+R:(E:

— 3hegV

where Pj(x) are the Legendre polynomials. In order to compute the sum over all lg, we
convert & Y p — ﬁ [ widw [ dQ; for solid-angle Q. With these, we find

J; 2 Weg+Oow w3 . ‘ o
() = esl / dw (jo(2) + Pa(F - deg)ja(2) ) €070, (1.40)

6m2c3 _sw Deo

where j; are the spherical Bessel functions. Using the relationship

At t1 ) 'LP
/ dtl/ dtye~{(Ww—weg(ti—t2)) (ﬁd(w — Wey) — —) At (1.41)
0 0

W — Wegq

18

—Z;j)

Y



107 107 10° 10"
rij /Ao

Figure 1.5: Coherence to dissipation ratio for free-space Dicke model. We com-
pute the dissipative rate I';; for correlated photon emission and the coherent spin-exchange
coefficient A;; as a function of interatomic distance r;;/\g in the units of transition wave-
length A\g. At distance scales r;;/\g < 1/10, the spin chain coherently evolves with the
XX Hamiltonian with the exchange coefficient A;;, while being damped by the collective
radiation at the rate I';;.

for the Cauchy’s principal P, we integrate over Eq. 1.39, and find the decay and level shift

Fz‘j =T (jo(k?eg’f‘) + .PQ(?2 . CZeg) * jg(kegT)> (142)
1 o
By = 5T (nolkegr) + Pol - deg)na(keyr) ) (1.43)
with ke, = wey/c, T' = ld;;figg, and spherical Bessel function of the second kind n;.

Within these definitions, we could write the difference equation for Eq. 1.38 for the
time-evolution with step At

st = (~pttast s S8R0 o (49

where we have introduced the correlated quantum Tto increments (QII) for stochastic dif-
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ferential equations AF;(t) = ftAt fi(t")dt'. The QII follow the Ito commutation algebra:

1
~(Ty; +Tya)AL (1.45)

AF(1), AF(1)] = 5

The multi-atom quantum stochastic differential equation can thereby be derived with in-
finitesimal time step At — 0, so that

d|x, t) = (-- eﬁdt+20 DAFT(t) )|X,t). (1.46)

The non-Hermitian effective Hamiltonian is expressed as
Hoe = Hg + hz ( — —F ) 560, (1.47)

Finally, in order to obtain the quantum master equation, we perform a partial trace of
the total system-reservoir state |y, t) over the reservoir variables to obtain the evolution of
the system density matrix pg(t) = Trg[|x, t) (X, t|]. Using the commutation of the quantum
Ito increments in Eq. 1.45, we obtain the multi-atom master equation driven by a classical
coherent field €2

a0 = T A <ax>o;”+a;>o§”>,ps] (1.48)
4,
YT (259060 — (696, ps3).
i,
Hs/h = Zw;%g@—ﬂoﬁgﬂ. (1.49)

In order to extract the essential “many-body” physics of the renormalization effect, we
redefine the system Hamiltonian into XX spin model

Hg/h=> (h.69 +n,60) +> Ay (6060 + 600600 , (1.50)

/L‘?j

by absorbing the hopping terms of Eq. 1.48 into the system Hamiltonian Hg, with h, =

—Qy and h, = =2. The physical manifestation of atoms closely packed each other with

20



ag < g is that the radiative decay and level shift caused by the vacuum fluctuation can
no longer be treated by investigating atoms coupled to independent resesrvoirs. Indeed,
the atoms within a sphere of £ < 1 are “collectively” coupled to the reservoir, as it is
impossible for the reservoir modes to distinguish the radiation from the individual atoms.
In fact, we are forced to treat these processes coherently, as shown in the second line
of Eq. 1.48, which describe the collective processes of superradiance and subradiance well
known in the quantum optics community [18, 19]. Furthermore, accompanied by correlated
photon decay, we find that the atomic system is renormalized into a (short-ranged) XX
spin model. Atom ¢ in excited state |e;) may virtually create a photon within a volume
smaller than ¥V ~ A3, and another atom j within this volume can coherently absorb this
photon to cause the coherent spin-exchange interaction between atoms ¢ and j in the form
of correlated Lamb shift for the quantum vacuum modified by “mirror” atoms [50].

On the other hand, it is important to realize that this type of XX spin model is hardly
coherent for a wide range of experimental parameters in AMO physics, and is thereby more

or less a conceptual playground for engineered system [51], as described in the next section.
For favorable ratio between coherent and dissipative dynamics, we require
A
Cy~—2—>1. 1.51

Hence, for large A;; > I'y, we would must consider internuclear spacing of r;; < 0.1\ =~
100 nm, as shown in Fig. 1.5.

Furthermore, when the atoms are so densily packed, the radiative decay is collectively
enhanced by Fg\l,)v =5 jev I';; = NyI'y, where Ny is the number of atoms within the coher-
ence volume V), leading to unfavorable scaling C % In addition, for all known atomic
species compatible with laser cooling and trapping, at distance ranges 7;; less than 300 nm,
it is reasonable to be concerned about photoassociation processes and excited molecular
formations. All these fundamental challenges, apart from the paramount technological dif-
ficulty of developing low-noise XUV light sources below A ~ 100 nm, provide a formidable
barrier for doing many-body physics experiments with photon-mediated interactions in
free-space. Even with ap = 300 nm (to avoid photomolecular formation [52]), we expect
Cy~1073 < 1.

Dicke model in a cavity By transitioning from the free-space into the cavity model,
we expect significant modification of the density of states into a particular single mode
constrained by the boundary condition of the cavity mirrors. The qualitative implication
is that this cavity mode can act as an effective reservoir for the trapped atoms, and that the
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interatomic spacing within this condition is no longer constrained by the sub-wavelength
condition ¢ < 1, as described before. I will first extend the Jaynes-Cummings model of Eq.
1.7 to the multi-atom case known as the Tavis-Cummings Hamiltonian, where a collection
of atoms is interacting with the single-mode quantized cavity field. Instead of utilizing
the multiatom master equation derived before, we are allowed to use the original master
equation in Eq. 1.19 as the foundation for arriving at the effective low-energy driven-
dissipative theory of the reduced atomic system, as our dominant reservoir is much simpler
in its Hilbert space (just a single-mode quantum harmonic oscillator) than the free-space
Teservoirs.

We begin by writing the master equation for the N atom-cavity system
: N) .
5, = h[H( ) 4] +£,€pS+ZEM,OS, (1.52)

where I have included the cavity mode as part of the system Hamiltonian. As before we
have the photonic and atomic quantum jump operators ¢, = y/ka and é((l v 0 ) for
the Lindblad dissipative superoperators,

L£.0 = 2¢.0¢ —{&te., OV (1.53)
NA _  9xd) A A1 A>0) A
Egj@ = 26DOIT — {10 Oy, (1.54)

The Hamiltonian H ) for the N atom- cavity system is

N N
N)/h = ZAaﬁii)jLAdecH—Z q(7%) (&S:)d + 6@&T>+ €.0 + €0 —i—Z <€ O’+ + €,0 ()) .
(1.55)

If we assume that the positions of the atoms are aligned with respect to the antinodes
of the cavity field, we can introduce the mean field in terms of the collective spin variables

Sy = > 60 (1.56)
2 1 NG
Sy = — o 1.57
+ \/N ; + ( )
and rewrite the system Hamiltonian in terms of these collective variables
H™ 1l = A8, + Agata +VNgy (S;a + S_af) +en(a+al) + eaSs. (1.58)
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This is known as the Tavis-Cummings Hamiltonian, and provides the basis for a wide range
of quantum optical and quantum memory phenomena for collective light-matter interaction

with go — vV Ngo with very favorable C' = i—i‘% > 1 for moderate single-atom coupling gp.

In order to arrive at the reduced spin model [53], we need to be able to treat the
cavity field as an effective reservoir bath that collectively dissipates the trapped atoms.
For this, we consider the large detuning limit Ay > k,I"; with ¢, = 0 and adiabatically
eliminate the weakly-populated cavity degrees of freedom. Let us begin by writing the
Heisenberg-Langevin equation of motion for the cavity field

- (eﬁa—i—Z\/_goS +Afa) —g + (1.59)

where F), is the delta-correlated quantum-Langevin noise force. In the steady-state, the
cavity field is effectively mapped to the spin operator with

A 2V Ngo
ss — — 1.
“ AN —mS (1.60)

leading to an effective quantum master equation for the spin-degrees of freedom

d i Tt /o p
aps(t) i |:H(§1£fV)7pS:| +Z (20()p G) —{o Sr)a_ ,pg}) (1.61)
A N A~ Jeﬁ‘ ~ ’L ~ . ~ 'L ~ . ~

He(ff ho= h.S.+ N Z (6960 + al(/)ag)) + h, Sy (1.62)

i3

= h.S.+ (§2 - 52) + hy Sy,

with the transverse and longitudinal magnetic fields h,(h,) = €,(A,), the collective spin-
4Ng(2)Af 2Ng(2)/4

4A?+/{2 4A;+n2 :
the above equations, I have neglected the on-site decay terms I'y. Importantly, we find that
the decay of cavity field causes a collective fluctuation onto the atomic variables by way of
the effective dampmg term I'eg. The key benchmark for any coherent spin dynamics is to
attain Cy = Tog — f > 1. For Ay > k, we can in principle obtain unitary spin dynamics

governed by Eq. 1. 62 only limited by the independent damping term I'.

exchange rate Jog = and the correlated dissipative rate ['eg = In writing
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Motivation for my thesis: Limitations of atom-field quantum systems for non-
interacting matter

In terms of my quest to extend quantum optical toolboxes to quantum many-body systems,
a major drawback with collective atom-field systems is that, while the coupling rate v/N go
has been collectively enhanced, it has necessarily transformed the original “nonlinear”
matter-light interaction of the spin-boson model to that of a boson-boson model (i.e.,
coupled quantum harmonic oscillator). Indeed, in the atom-field coupling term of fféN),
the atomic term can be written in terms of the quasi-bosonic mean field S , where, for small
number of collective excitation (SJ@ ) < N, the atomic system is described by a bosonic
field

(S, 5] =14 O(1/N?) (1.63)

for large N [541, 55]. Hence, from the dynamical point of view, we should not expect any
deviation from the classical model of coherent energy exchange between two oscillators
[55]. Indeed, when carrying out similar calculations for the avoided crossings for cavity
QED, we find that the collective excitation S is linearly coupled to the cavity field in the
excitation spectrum. Indeed, by way of Sudarshan’s optical equivalence theorem [30], it
is straightforward to prove that any classical state under the evolution of linear coupling
(e.g., ]:[(()N)) remains classical at all times.

Phenomenologically, we could consider the original Jaynes-Cummings spectrum in Fig.
1.2 and then try to scale the system size in terms of photon number n and atom number
N (transforming into Tavis-Cummings model). For the scaling of n, if we simply take a
|n) photon Fock state generated from the higher-order excitation subspace n by photon
blockade, the degree of non-classicality measured by the auto-correlation function is given
by ¢(0) ~ 1 — 1/n, so that ¢ (0) — 1 for n > 1. Likewise, when scaling N, the
excitation spectrum becomes increasingly harmonic, so that when driven by a coherent
field, we expect g (0) — 1 for n > 1. More quantitatively, as examined in Ref. [50], we
could define a quantum anharmonicity parameter

Jov 4N — 2
(=" =
290\/N

for cavity QED with harmonicity ¢ = 1. In fact, we find that the maximal single-quanta
level optical nonlinearity is achieved for N = 1 atom with ¢, = 0.71, with ¢, — 1 for
N > 1 (Tavis-Cummings limit).

(1.64)

Indeed, the “spin” Hamiltonian in Eq. 1.63 has been utilized for generation of collec-
tive spin squeezed states [57] and superradiant states in a cavity [58] (and “supersolid”
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phase by its extension [79]), and the non-trivial partition of the individual spins is com-
pletely masked by the overall mean field dynamics S(¢). While it is exciting to investigate
long-range interacting system, an infinite-range system is well described by very few pa-
rameters that make the overall system exactly soluble and trivial from the point of view of
many-body physics. Indeed, the Hamiltonian in Eq. 1.62 demonstrates a small quantum
fluctuation around the macroscopic spin vector S(t). While the sub-system comprising this
macroscopic spin vector may be multipartite entangled, this is not so physically exciting
(or surprising) as we could understand its entirety from an effective mean field picture.
The motivation of my thesis is to expand the physical mechanisms of atom-field coupling
and atom-atom interactions to restore the single-quanta quantum optical nonlinearity for
large numbers of photons and atoms, and enable a new frontier of non-trivial quantum
many-body systems controlled by atom-gauge-field interfaces, as envisioned in the begin-
ning of this chapter. Considerable degrees of technological and theoretical challenges surely
exist in this frontier, but I think that this is an exciting long-term avenue to understand
the low-energy physics of atomic and photonic quantum systems in terms of gauge-field
theories.

1.3 A new regime for many-body QED with Rydberg-
dressed cavity polaritons

In Chapter 2, I will provide the theroetical primer that attempts to describe the essential
physics of the regime of “many-body QED,” an ambitious new regime of light-matter
interaction that Prof. Choi has articulated with the beginning of his group. Here, I will
provide the heuristic conviction why optical physics shall advance into this regime to be of
any relevance for the exploration of non-trivial many-body physics with light.

Let’s begin with an extension of infinite-range Dicke model by the inclusion of multiple
cavity modes [ and pump fields €, €, to mediate the spin-spin interactions,

N N
Y/ = 3 A6+ Agafa+ Y ) (60 + 6Va)) (1.65)
i il

N
(et +ewid]) + 3 (ol +es?).

Multiple cavity modes [ can act as the quantum channels, and internal states of the atoms
can behave as quantum nodes of the quantum network model, described earlier in this

25



chapter. Let us imagine some Raman coupling schemes through the cavity that allow the
coupling, not only to the ground and electronically excited states of the atoms, but also be-
tween the well-protected hyperfine clock states of a frequency-standard atom (e.g., Cesium
atom) with virtually infinite coherence time. Time-dependent control lasers ¢;; selectively
couple the cavity photons in particular mode [ to a single atom, and the quantum-state of
the atom can be individually imaged by a high-resolution quantum-gas microscope at the
shot-noise level, and the long-range coherence can be accessed by photons leaking out of
the cavity. With these toolboxes, we can in principle realize universal gate sets for cavity
QED-based quantum computation, as pursued by circuit QED platforms [39]. Indeed, a
major milestone in quantum information science is to utilize these atom-field interactions
to digitally or continuously assemble interesting quantum spin models.

However, one major problem that even a quantum computer would have difficulty is
finding the ground state of some complex Hamiltonian (technically, QMA-complete Hamil-
tonians) [60]. Quantum algorithms for finding a ground state are quite costly. However,
if one could devise a QMA-complete Hamiltonian with a synthetic quantum system, while
the quantum machine is only a single-purpose, it would be able to reach ground states
of time-independent gapped Hamiltonians by dissipatively coupling to a zero-temperature
bath perhaps with acceptable level of errors. For example, in an ideal case of Raman side-
band cooling, the atom-light interaction transfers the system’s thermal energy coherently
to the entropy of the laser fields, which act as reservoir fields (zero-temperature bath) of
the many-body master equation.

Upon the elimination of the cavity fields, the system as outlined above, however, can
only at best simulate the translationally-invariant XX spin model of the class

N N
Fox = 3 (1o + heo0) + 3 Jy (60680 + 60610, (160
i,J

. y %y
with arbitrary phase-amplitude controls of the spin-exchange coefficients J;;. For h, = 0,
this model is just a textbook problem, where it is possible to map the model in a diagonal
form with non-interacting free fermions f; through Jordan-Wigner transformation. In
fact, for h, # 0, the problem is straightforward and can be solved numerically. In fact,

this problem could be solved by mean-field approaches.

More generally, to create k-local Hamiltonians with & > 2 (e.g., &;(cl)&;E;Q)&g(Cg)), one re-

quires nonlinearity in the cavity photons. For instance, one atom may be “constrained”
to generate two virtual photons, where the second and third atoms may coherently absorb
them to realize 3-body interaction. That is, there must be an energy benefit for creating
two photons than just one photon for the first atom, in order to realize such an exotic
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spin-interaction term. From the point of view of lattice gauge theory, you would like to
have some gauge constraints on the bosons mediating the spin-spin interaction [61]. The
problem is that the cavity fields and atoms by themselves are not really interacting, and
they only talk with each other through the atom-field coupling.

We can introduce a new ingredient in the form of interacting quantum matter strongly
coupled to quantized electromagnetic fields, thereby many-body QED. In this setting, we
have a quantum many-body system that on its own has interesting many-body effects. We
would then like to hybridize the cavity fields with the matter to retain some of the material’s
property to cause strong interaction. In addition, when viewed from the photons, we can
equivalently consider the interacting atoms are the finite-dimensioanl “gauge bosons” (as in
the quantum link models of lattice gauge theories [62]) that mediate long-range interaction
between the photons. This would be a really exciting playground for new physics to emerge!

In Chapter 2, I will discuss a driven-dissipative cavity QED system for strongly inter-
acting Rydberg atoms, where we can create tunable-range spin XXZ spin model

N

Hxxz =Y (hao{) + +ZJXX W60) 4 6060) +ZJZZ D60 (1.67)

)

In the limiting case of J%Z > JXX, the low-energy physics of this model can be con-
strained to give rise pure many—body interactions ~ 696960 In fact, this form of
Hamiltonian is QMA-complete [63]. We will apply this model for a proposal of synthe-
sizing quantum square spin ice model in our Rydberg cavity QED platform, to discover
the illusive “U(1) quantum spin liquid” phase of lattice QED with long-range quantum
entanglement [(4, 65, 66]. Surprisingly, the output cavity field can be utilized to mea-
sure time-ordered correlators can be used to construct the dynamical spin structural fac-
tors S(k,w) = w5 2,5, e F0ie k=D [ greivr(51(0)6Y (1)61 (r)69(0)) to un-
ambiguously detect this topological phase. In this direction of retaining the atomic degrees
of freedom, we have also devised a method that may create string-net condensed phases of
the Levin-Wen as well as Kitaev honeycomb models. On the other hand, the mapping into
the pure photon model shows that, unlike the Dicke model, photons acquire the interact-
ing character of the material, so that it is possible to create flexible bosonic platform that
exhibit new phases of matter (e.g., supersolid and strip phase). More generally, it is also
possible to create contact interaction for photons to make them behave fermionic, enabling
the possibility to extend into extended Fermi-Hubbard model.

More generally, the most exciting physics would occur in the strong coupling regime
with zero-detuning, where it is not possible to separate out neither the atomic or the
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photonic degrees of freedom, both of which are undergoing many-body interactions with
strengths comparable to the vacuum Rabi frequency go. Currently, we lack the theoretical
framework to understand the necessary physics of this new regime, but in an open-ended
fashion, I believe that it would be an essential endeavor to create complex systems interact-
ing with light at extremal theoretical and technological parameter spaces to discover new
physics, as it was for the discoveries of Lamb shift, laser, cavity QED, and Bose-Einstein
condensates.

Figure 1.6: Empty lab photo in 2015. The vacant laboratory in QNC1302 with two
Newport optical tables.
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1.4 My history in the UQML and notable omitted
work

1.4.1 Timeline

In 2015, I joined the UQML as the first student of Prof. Kyung Choi, initially working on
the laboratory renovation and construction, installing furnitures, and putting two optical
tables. These experiences were one of the most memorable experience of my life, as I am
winding down my master program. In 2015, I was joined by another group member, Dr.
Chang Liu, and with the two of us, we were responsible for the majority of the laboratory
construction. In the middle of 2016, Dr. Mahmood Sabooni joined and he took charge
of the quantum gas microscopy system, and Sainath Motlakunta joined our group, where
he made some contributions to the photodiode circuit designs before his departure. More
lately, Youn Seok Lee has helped our laboratory capabilities in its final building stage.
Little did I know in 2015 that we would end up installing two more optical tables and
fill the entire four optical tables with optical and electronic, and vacuum components to
push forward with the experimental program in this thesis. It was a great run and a
collaboration with these group mates. As the only student in the group, my thesis will
describe some work that was a strong collaboration with Dr. Liu and Dr. Sabooni, and I
will emphasize the credits in the upcoming sections, as appropriate.

In the previous sections, I have only discussed the physical motivation of the work and
omitted much of the real technological challenges associated with this project. The main
challenge is to integrate strong coupling cavity QED in the optical domain with Rydberg
atoms. Because the strong coupling requires small mode volumes for g > (k,7y.), we
require methods for electromagnetic shielding of the bound adatoms that create strong
stray inhomogeneous electric fields for the Rydberg levels. In fact, this requirement is so
stringent that, for a mirror located 100um away, it is possible to unambiguously detect
one Cs atom deposited on the dielectric surface, by Rydberg level shift caused by the stray
electric field of the imbalanced work functions. Hence, we are enforced to use larger mirror
spacings, and create a new optical thin film material to improve the cavity parameter k
beyond of what has been done in the past 30 years to maintain the strong coupling regime
g > (k,7v1). The result is a new generation of optical cavities with ion-beam sputtered thin
films made of proprietory stack and materials on a superpolished curved glass substrate
(surface roughness < O.ZA) and an optical finesse F > 500, 000 highest in the world. Hence,
our work would have an important application for the developments in optical clocks and
frequency metrology as well as ion-trap cavity QED, as the key challenge in these fields is
the very development of high-finesse optical reference cavities.
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Figure 1.7: Laboratory photo in 2017. The four optical tables in QNC1302 filled with
optical, electronical, and vacuum components.

The cavity QED platform design discussed in Chapter 6 is really a piece of art that
crystalized the days and nights of Dr. Liu and myself in the laboratory. It is made of
a 3-dimensional macroscopic superpolished single-crystal Sapphire, made of single-point
diamond turning machines and diamond CNCs, with extreme sub-pum precision. The
length stability of a single crystal material allowed us to install diamond-turned titanium
blade electrodes with surface roughness ~ 84 for Faraday shielding and bias electric field
controls. The single-crystal shear-mode piezo stabilizes the mean distance of the two

1

mirrors with length instability less than 155 of a single nucleon. The surrounding chamber

is pumped down to base pressure less than 107! Torr.

The large part of my work over the years has been the technological development
of infrastructures to run a cutting-edge AMO laboratory. Dr. Liu and I have devel-
oepd two kinds of external cavity diode lasers (ECDL) with FPGA computer-controlled
phase-amplitude controls, efficient second-harmonic generation module, and our ultra-low-
expansion (ULE) Fabry-Perot (FP) cavities for sub-Hz linewidth laser stabilization. The
result is that we can now control several dozens of lasers in terms of the relative phase-
frequency relationship down to the sub-Hz level, allowing us to rapidly progress in terms of
laser cooling and trapping, as well as for performing novel cavity-sideband cooling mecha-
nisms for the many-body system. These advances are described in Chapter 4.

One of the inital work that I have done was the development of our ultra-high-vacuum
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(UHV) cluster system, where the ultracold atoms are produced and manipulated. The
design of the chamber was optimized by the quantum-trajectory calculations (Chapter 5)
for ultracold atom transport, both from the source chamber to the science chamber, and
also for the coherent atom transport within the science chamber. The surface quality was
optimized for ultra-low outgassing in order to reach extreme-high-vacuum (XHV) level at
101 Torr, a unique method that we develoepd for our UHV chambers. The surface was
passivated with a thick oxide barrier that prohibits the permeation of Hy gasses trapped
inside the 316 stainless steel walls of the chamber. The AR coatings on the viewports
were designed by ourselves with RF-magnetron sputtered coating stack that spans nearly
100pm in thickness to prevent the permeation of He atoms in the atmosphere through the
quartz glass, which at the same time achieves remarkably low scatter and reflectance across
300—1500 nm. Special chemical treatments were applied to reduce the surface roughnesses
of the pieces that go within the UHV chamber.

Unfortunately, out of length concerns and proprietority, I have omitted some of the
work, which were nonetheless integral to the developments of this thesis:

1. Quantum-gas microscopy and single-atom spectroscopy and imaging (led by Dr. Sa-
booni)

2. Diffraction-limited holography (led by Dr. Sabooni)

3. Design of custom DC and RF-magnetron sputter machine and chamber for thin film
growth (led by me)

4. Actively-quenched ultrafast single photon detector system (led by me)

5. Development of TiZrV non-evaporative getter (NEG) pump coating (led by Sainath
Motlakunta)

6. Electronic design and optimization of laser systems and other optoelectronics (led by
me and Dr. Liu, other contributors: Sainath Motlakunta and Youn Seok Lee)

1.4.2 Contribution statements

For clarity, I provide a list of my contributions to the core activities described in this MSc
thesis:

1. Theoretical activities (Chapter 2 and Chapter 5):
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(a) Quantum defect theories: Estimation of Rydberg atom properties (Primary
contributor: Hyeran Kong): I have led all aspects of the work.

(b) Quantum Monte-Carlo wavefunction toolboxes for numerically simulating quan-
tum optics experiments with home-built numerical packages (Primary contrib-
utor: Hyeran Kong): I have led all aspects of the work.

2. UHV-XHV Chamber (Chapter 3, Primary contributor: Hyeran Kong): I made the
initial design and led the assembly processes. During the repeated bake-out processes
and assembly stages over several months, Dr. Mahmood Sabooni and Dr. Chang
Liu have assisted the physical assembly of the first-generation chambers. Sainath
Motlakunta assisted the second-generation chamber.

3. Optimization of atom transport process (Chapter 5) - Pushing beam and electrically-
tunable optical tweezer (Primary contributor: Hyeran Kong): I have led the analyt-
ical and numerical analysis.

4. Laser systems (Chapter 3):

(a) Littrow-based external cavity diode lasers (Primary contributor: Prof. Choi
and Hyeran Kong): I have led the mechanical analysis of the external cavity
geometry and the CAD design, based on the initial work by Prof. Choi at KIST.
During the implementation (mass production), I have assembled 10 external
cavity diode lasers, while the remaining lasers have been assembled by other
group members (Dr. Chang Liu, Dr. Mahmood Sabooni, Youn Seok Lee).

(b) Cat-eye interference filter laser (Primary contributors: Prof. Choi and Dr.
Chang Liu): The initial mechanical/CAD design was done by Prof. Choi, and
was further optimized by Dr. Liu. My role has been the ray-trace optimization
of the optical feedback loop and development of the assembly and alignment
procedure for maximizing the mode-hop-free-tuning range of the system. Dur-
ing the implementation (mass production), I have assembled two interference
filter lasers, while the initial laser has been assembled by Prof. Choi.

(c) Master Oscillator Power Amplifier (Primary contributor: Claire Warner, Hyeran
Kong): T have supervised the undergraduate researcher, Claire Warner, and was
involved in the design processes. I have assembled and implemented the first
MOPA with the help of Sainath Motlakunta.

(d) Cavity-enhanced second-harmonic generation module (Primary contributor: Prof.
Choi, Hyeran Kong): Prof. Choi has optimized the cavity parameters, and I
have led the CAD designs and its realization.
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(e) Ultrastable ULE reference cavities (Primary contributor: Hyeran Kong): I have
designed and optimized the parameters of the ULE reference cavities.

(f) Thermally-compensated medium finesse cavities (Primary contributor: Dr. Chang
Liu): Dr. Liu has designed and assembled the medium-finesse cavities. I have
implemented one cavity, and realized the sub-kHz linewidth clock laser in UQML
with this cavity.

5. Many-body QED platform (Chapter 6, Primary contributor: Prof. Choi and Dr.
Liu): Prof. Choi led the initial concept and design of the many-body QED platform.
Dr. Liu implemented the CAD design and the Faraday shield systems. 1 have
theoretically computed the modified cooperativity parameter, taking into account
the Rydberg decoherence to optimize the design.

6. Rydberg quantum-dot platform (Chapter 6, Primary contributor: Prof. Choi and
Hyeran Kong): Prof. Choi led the initial concept and design of the Rydberg quantum-
dot platform. I have led the theoretical simulation to optimize the cavity parameters.
I led the CAD design stages and field-compensation schemes.

1.4.3 Summary of remaining chapters: Addressing the experi-
mental challenges towards many-body QED

The main challenge of realizing bonafide many-body QED spans three distinct research
areas in AMO physics, namely quantum gas (Chapter 3 and Chapter 5), optical clock
(Chapter 4), and cavity QED (Chapter 6). The main workhorse of our experiment is the
ultracold quantum matter machine, where we reliably produce and transport ultracold
atoms near its quantum-degeneracy in a ultra-high-vacuum environment (Chapter 3 and
Chapter 5) to the interaction region of the experiment platforms (many-body QED plat-
form and the Rydberg quantum-dot platform). Once the laser-cooled atoms are trapped
in the 2D holographic optical potential landscape, we apply a set of ultrastable phase-
synchronized laser fields across octave-spanning bands (Chapter 4) to excite and dress the
hyperfine ground states with high-lying Rydberg levels, and to stabilize the vacuum fields
of the cavity. Finally, the cavity vacuum renormalizes the Rydberg ice system by injecting
quantum fluctuations to melt the spin ice into a quantum spin liquid in a many-body QED
platform (Chapter 6).

In the following, I provide the summary of the individual chapters.
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Chapter 2

I provide a theoretical description of many-body QED and introduce a range of realizable
physical models with the quantum optics toolkits available to our experimental platform.
I will first discuss my theoretical work on evaluating the Rydberg properties by way of the
quantum defect theory. I will introduce a new regime of Rydberg quantum-dot, wherein
Rydberg-dressed atomic ensemble represents a single SU(2)-spin with collectively enhanced
atom-cavity coupling rate v/ Ngo. Due to the Rydberg blockade mechanism, we restore the
original nonlinear Jaynes-Cummings physics of the strong coupling regime. I will then
discuss the proposal developed by Dr. Dong and Prof. Choi, along with my numerical
simulations, of creating quantum spin ice models with Rydberg-dressed atomic lattices in
an optical cavity. We describe a new method of enforcing local conservation rules (Gauss
laws) with system-reservoir engineering, and of injecting quantum fluctuations with cavity-
mediated spin-spin interactions. I will then conclude with the experimental feasibility of
the proposal.

Chapter 3

In our experiment, we must satisfy two competing requirements. On the one hand, we
require a relatively large vapor pressure in the UHV regime to load and laser-cool highly
dense Cs atoms. On the other hand, we require the base pressure at the XHV domain
to avoid collisional losses, thereby trapping and cooling the Cs atoms to its quantum
degeneracy. In this chapter, I describe the considerations for designing such an UHV
chamber system, and introduce special vacuum techniques to reach XHV level optimized for
AMO experiments. A cluster UHV-XHV chamber system is realized with a base pressure
~ 107! Torr, the lowest operating pressure for an AMO experiment. I describe the
rationale behind our design and the detailed methods for cleaning, passivation, assembly,
and bake-out.

Chapter 4

In this chapter, I describe our laser infrastructure and technologies. First, I describe
the scientific objective of the diverse lasers and a high-level overview of the optical and
microwave clock distribution network. I then describe the experimental procedure and
laser sequences. I describe our home-made laser systems: Grating-based Littrow external
cavity diode laser and the cat-eye interference-filter laser. Our Science lasers need to be
stabilized with absolute linewidth below 1 kHz with instantaneous stability of less than 1
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Hz to operate with high-lying Rydberg states and phase synchronized with other octave-
spanning laser fields. I discuss my work on developing an ULE Fabry-Perot cavity as the
local temporary optical clock, and the SHG module to frequency convert optical fields for
Rydberg excitations.

Chapter 5

In this chapter, I develop the open-system formalism that takes into account the internal
and external dynamics of neutral atoms. I apply this formalism for the two atom-transport
processes used in our experiments: Pushing beam and electrically-tunable optical tweezer
techniques. I then account for the quantized motion of the atoms to self-consistently treat
the case of Raman sideband cooling, and project the connection of the Rydberg-dressed
nonlinearity in quantum motion to self-organized quantum spin models as future work.

Chapter 6

In this chapter, I describe our experimental platforms for reaching the strong coupling
regime of many-body QED. In the first platform (Rydberg quantum-dot platform), we
utilize the collective encoding of atomic ensembles and Rydberg-blockade effect to realize
a Jaynes-Cummings model with unprecedented cooperativity C ~ 10*. In the second plat-
form (many-body QED platform), we developed a new generation of IBS thin film mirrors
that allow the state-of-art optical finesse ~ 500k. I also discuss the field compensation
method based on the 8-point electrode model.

Chapter 7

Finally, I provide a vision for future experiments in many-body QED with the apparatus
that I have developed, and conclude the MSc thesis.
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Chapter 2

Rydberg-dressed cavity polaritons

In spite of the advances over the last decades with the manipulation of microscopic quan-
tum optical systems, much of the underlying physics of atom-light interactions has not
changed fundamentally in that the atomic and field degrees of freedom (DOFs) were larg-
ley non-interacting and were independent of each other. For a large scale system, the
ranges of “quantum many-body” models are thereby limited by the absence of interactions
that cannot be understood in terms of the mean fields, and the dynamical processes of
photons dressed by the non-interacting matter are well-understood in terms of their nearly
linear optical response (Chapter 1). In fact, we could understand much of the physics of
macroscopic light-matter interactions simply in terms of the largely non-interacting polari-
tons with a negligible amount of quantum fluctuations in their density-density correlations,
similar to sub-threshold optical parametric oscillators.

On the other hand, as an analog quantum simulator, we would like to map the DOFs
of the simulated system to those of the simulating one. The latter can be controlled in
the laboratory and its dynamics can be tailored (in particular, the corresponding Hamil-
tonian) to be equivalent to those of the system we are trying to observe. This allows us
to extract the information about systems that can not be accessed easily, by investigating
some non-trivial quantum systems where state preparation and measurements are much
easier tasks. Since an analog quantum system not only emulates the real-time unitary
dynamics but also directly map the target Hamiltonian into the real physical object, it
would be exciting if we can create quantum models beyond the scope of the condensed
matter physics, as the physical system would be of an interest by its own virtue for in-
vestigation. Using these ideas, there have been tremendous success with natural AMO
systems in simulating condensed matter counterparts, such as the Bosonic and Fermionic
Hubbard models, and the transverse Ising model. Typically, the ranges and the localities of
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Figure 2.1: Atom-field interactions for many-body QED. a, Cavity QED with a
quantum many-body system, represented by a spin network (with characteristic interaction
strength A). The intrinsic coupling g to the optical cavity dominates over the dissipative
rates k; to other reservoirs Hp. b, The parameter space for atom-field interactions g for
non-perturbative Rydberg interactions g >~ \. The red line depicts the boundary for which
the strong coupling regime g > k; persists. Above the curve, the optical cavity can be
utilized as a driven-dissipation channel for the transverse Ising model for Rydberg atoms
for cooling and steady-state preparation. In the strong coupling regime (g*/kvy, > 1),
the atomic degrees of freedoms (DOFs) are removed with v, > k (photon regime) to
induce many-body interactions among the cavity photons (for degenerate optical cavities),
enabling the novel optical interactions (e.g., n-photon Effimov bound states and Fermion-
ization of “contact” photons in 1D). For £ > v, (Purcell regime), the optical cavity is
adiabatically eliminated to create quantum gauged materials (e.g., quantum square ice and
string-net models) for the underlying atomic DOFs. In the “spaghetti” regime, it is not
possible to separate out the timescales of different DOFSs, cavity polaritons are expected
to behave with a completely different effective quantum model within each of the gauge
sectors, which are separated and excited by a single characteristic quanta. Due to the
atom-photon entanglement, the dynamical phenomena in the spaghetti regime must be
understood holistically by incorporating both atomic and photonic DOFs, opening a new
physical domain for light-matter interactions.
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atomic interactions are limited to translationally-invariant nearest-neighbor and two-body
(2-local) terms, reducing the applicability of these models.

In this Chapter, I discuss the ranges of physical models available to our new hybrid light-
matter toolkits in the new regime of many-body QED and the atomic physics of Rydberg
states for computing the dipole and van der Waals interactions between Rydberg atoms.
I will begin with the restoration of the Jaynes-Cummings physics in the strong blockade
regime, and the favorable scaling with respect to the collective strong coupling. I will then
discuss the proposal, developed by Dr. Dong and Prof. Choi, for the creation of quantum
square ice models with Rydberg-dressed atomic lattices in an optical cavity, as an example
of U(1) lattice gauge theory, and the detection of dynamical spin structure factors, a
particular nonlocal time-ordered correlator for witnessing & > 2-body interactions, through
cavity relaxations. Such a model is expected to support a quantum spin liquid phase with
long-range topological entropy, and is well within reach with our experimental capabilities.

2.1 Coupling strongly interacting quantum matter to
optical cavities

The general framework of my thesis is to examine the nature of atom-light interaction for
long-range interacting quantum matter, described by some atomic Hamiltonian H,. In the
rotating frame, we can try to couple some properties of the material system (represented

by the operator é((la)) to some excitations in the quantized electromagnetic field. In the

strong coupling regime go > (K 'y L) with the photon Hamiltonian H,/h = }_;ds¢ cp ,

denoted by the jump operator ¢, ) of transverse mode [. We can describe the atom-field
interaction .
Hi/h =" gap(@®el?) 4 eePi). (2.1)

Let us consider a general atomic Hamiltonian with arbitrary k-body density-density inter-

actions
(a) (a)
H,/h= ZA Al + 3 A (2.2)
{a} {a}
with the number density 7\ = ¢®T&® from atom a.

If we consider the fields as part of the cascade atomic quantum system, we can adiabat-
icaly eliminate the fields altogether and derive the effective model of the reduced atomic
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system
@ /h = Z A + Z o (7T 4 o)+ > AW Tl (2.3)
{a} {o}

In a complementary fashion, we can also consider the underlying virtual excitations (ééa), éé‘m)

of the trapped atoms as the mediator between the optical photons with a photonic many-
body Hamiltonian

H®P /B = 25 A+ 3" Ta g (60T + he) + 3 A T A% (2.4)

8.5’ {8} {8}

For both cases, the tunneling terms J, Jg s and k-body terms )\{ b )\gﬁ} are of inde-

pendent origins (derived from the atom-field coupling and the internal atomic many-body
Hamiltonian), and is not a simple perturbation of the atom-field interaction. It is thereby
possible to dynamically tune the system from J > X to J < A. In particular, for the later
case, we may design dynamlcal gauge constraints Gy = >R Og over some plaquette X
with an energy penalty )\GIz with A > 0 into the density-density term, where we assume
Og is the system operator that represents some gauge fields. Surprisingly, the lowest order
dynamical process for such a constrained system would give rise to many-body interactions
> S; for the k- body string operator S;. For instance, for commutative S;, we will obtain
a general stabilizer Hamiltonian for self-correcting quantum memories.

Perhaps, the most exciting situation would arise when it is not possible to eliminate
the field nor the atomic DOFs (See the caption of Fig. 2.1). In this case, we are left with
the full Hamiltonian

H/h= Zégc(ﬁ” +ZAan(a)+Zgaﬁ (a) 5)+c —1—2)\{&} al (2.5)

{a} {a}

where an already highly complex atomic many-body system is strongly coupled to infinite-
dimensional bosonic quantum fields, with little pathway for further understanding. Unlike
the case of cavity QED (the first three terms), the total atom-field state of such a system
cannot be understood simply from the cavity polaritons, dressed quasiparticle excitations
between light and matter, or even some perturbatlve expansmn of interacting cavity polari-
tons, due to the many-body term (o} ?2} IT fe) Al Because of the absence of generic
theoretical tool sets, we denote this regime the ’ Spaghetti” regime.

In the simpler case with a large gauge constraint A > ¢, the atom-field system may

develop different effective quantum many-body models f[ég) of cavity polaritons within
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Figure 2.2: Comparison of “strong” atom-atom interactions. We compare the level
shift of atom-atom interactions across distance scales currently available in our experimen-
tal platform for prominent architectures for “long-ranged” AMO systems — Rydberg atoms
(Cs atom with |100S;/2)), polar molecules (KRb molecule with permanent electric dipole
moment ~ 1 Debye), and magnetic neutral atoms (Dy with permanent magnetic dipole mo-
ment 10pp). By comparison, two Cesium atoms in the Rydberg state |100S;/2) separated
by a modest distance 10um experiences a level shift 8-order of magnitude larger than that
of KRbP. The Coulomb interaction between two singly-charged ions is also shown (gray
line). Unlike the other dipolar interactions, the ionic interactions do not directly couple to
the spin states due the decoupling between the internal and external atomic DOFs, and is
not relevant for the discussion. State-of-art ion trap architecture can only mediate Ising
term with characteristic strength 10 kHz [67].

each of the gauge-invariant subspaces, whose energy scales are separated by the single-
quanta gauge-field excitation (e.g., analogous to a creation of a single electrical charge
Q = (@2>, pumped by a single photon). Indeed, in such a strong coupling regime, the
dynamical processes governed by the unitary atom-field evolution ]fle(fc’f?) would produce
remarkably different physical behaviors for each of the subspaces (). In the general case
without an effective gauge symmetry, we would be left with many-body QED with atoms
and photons and possibly a pathway for the discovery of new ultracold quantum “optical”
systems that cannot be anticipated theoretically.
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So begins our bumpy road!

2.2 Rydberg states

In my thesis, we use Rydberg-dressing techniques to mediate and design the parent atom-
atom interaction in the form of a transverse Ising model. To see the advantages of Ryd-
berg states, it is instructive to compare the characteristic energy shifts for two proximal
atoms among prominent “long-ranged interacting” AMO platforms [68, 69, 70]. In Fig.
2.2, I compare the atom-atom interactions across distance scales currently available with
our quantum-gas microscope of our platform. All other existing methods for inducing
long-range interactions U between atomic and ionic internal states do not have sufficient
strengths relative to the vacuum Rabi splitting 2¢g > 100 MHz in the strong coupling regime
of cavity QED. On the other hand, Rydberg excitation to |[100S;/2) in Cs offers Ising ex-
change coefficient 10® times larger than those of ultracold KRb molecules [71, 72] (with the
largest permanent electric dipole moment in the periodic table)! Here, we use the spectro-
scopic notation |nL;). The shaded region illustrates the minimal requirement U > ¢ for
the spaghetti domain of many-body QED. The interaction coefficients for Rydberg states
can be readily tuned across a wide dynamic range, and the shape function of the interatomic
potential can be designed through Rydberg-dressing techniques, enabling switchable, long-
range atom-atom interactions with the capability to explore complex phase diagrams. The
coherence of the system can be dramatically enhanced by dressing the ground-state hyper-
fine clock states to Rydberg states [73, 71, 75].

The large orbital radius ((r) ~ n?) of the Rydberg electron implies a macroscopic
electric dipole moment d ~ e(r) that induces the transitions between proximal Rydberg
states where n is the principal quantum number. Indeed, the dipole-dipole interaction
between Rydberg atoms has an extremely favorable scaling relative to its coherence time,
as depicted in Table 2.1.If the dipole-dipole shift for two atoms separated by distance rg is
larger than the power-broadened linewidth, the excitation probability for multiple Rydberg
atoms in ultracold atomic gas is highly suppressed by the phenomena of Rydberg blockade
[76, 77, 78, 79]. Indeed, a driven Rydberg gas obeys an Ising-like Hamiltonian

ZA ¢ 4+ Q6 (Z + h.c) —|—ZA cWsl), (2.6)
ij

where A, and 2 are the detuning and Rabi frequency of the driving field for the transi-
tion |g) — |r), and A(?’) Ca (A@ = Ia»’(iélﬁ) depicts the dipole-dipole (van der Waals)

EZIR v
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Binding energy W, n
Energy gap A, n
Electric dipole moment d | n
Atomic polarizability «a n
Radiative lifetime 7 n
Cs-coeflicient n
Ces-coeflicient n

Table 2.1: Scaling laws for Rydberg states [24].

interactions between the Rydberg atoms for p = 3 (p = 6). Utilizing Rydberg states for
applications in quantum information science has several advantages over using other sys-
tems in that ultracold atoms offer a large degree of control with laser cooling and trapping
techniques readily available to cool the systems. Moreover, the strong atom-atom interac-
tions can be switched on and off over a dynamic range of 8 orders of magnitude. Large n
principal quantum number Rydberg states have remarkably large coherence times, which
could be extended over a few seconds [77].

Rydberg states were originally conceived for the understanding of spectral lines of
atomic Hydrogen within the framework of Bohr’s model of the atom [30]. Namely, the
binding energy for the outer electron was found to be W,, = —Ry/n? for principal quantum
number n, where the Rydberg constant is Ry = % = 109737.315685 cm~!. Low
angular momentum Rydberg states can be readily excited by optical transitions from the
ground states [241, 81]. For Alkali metal atoms, a single valence electron orbits around
a positively ionic core with long-range Coulombic potential ~ —1/r °. For low angular
momentum states with [ < 3, the electronic wavefunction is highly elliptical, penetrating
the inner electronic shells. In addition to the screening effect, the exposure of the inner
nuclear charge as well as the induced polarization of the inner electron gas by the outer

electron need to be properly accounted.

In the subsections that follow, I will describe a semi-empirical model for Rydberg
atoms based on the quantum defect theory. Many properties of Rydberg states can be
predicted by using experimentally determined quantum defects and model potentials to a
reasonable accuracy [31], without the need for first-principle relativistic many-body field
theory [33, 81]. With these computational toolboxes, we compute the Ising Rydberg-
Rydberg interactions and their radiative atomic properties [2].

“There has been recent interest with the utilization of Rydberg states in Alkali-earth metal atoms [32].
Because of the presence of two valence electrons, it is possible to localize the atomic wavefunction using one
of the ground-state valence electron, while inducing Rydberg-Rydberg interactions with the other electron.
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2.2.1 Quantum defect theory

Quantum defect theory (QDT) [24] attempts to capture the interactions between the va-
lence electron and the core by introducing a slowly-varying state-dependent quantum defect
0n; with a modified binding energy

_fy
(n = 6n;)?

where I define the effective principal quantum number n* = n — d,;;, the angular mo-
mentum dependent quantum defect d,,;;, and the mass-dependent Rydberg constant Ry =
Roo Mion /(Mion + M) with the mass of the ionic core (electron) Mo, (M.). QDT generally
accurately predicts most properties of high-lying Rydberg states |nS;), [nD;) as well as
their higher order cousins. For the remainder of the discussion, I will use atomic unit with

mezh:ﬁzl[ ]

Wnlj - — (27)

The quantum defect d,,;; depends on the angular momentum state, with |n.S;) having the
largest 0,;; due to its deep core-penetration. The Coulombic interaction of Rydberg electron
with the core shell gives rise to a modified principal quantum number n*. Empirically, we
can set 0, from the Rydberg-Ritz formula d,,;; = do+d2/(n—00)*+ 04/ (n—d)* + O(1/nb),
associated with the phase shift for low-energy Fano scattering processes between the elec-
tron and the ions [36]. For [ > 3, the overlap between the electronic wavefunction and the
core is negligible, and, thereby, the quantum defects are zero with a purely Coulombic core
potential. These states are known as Hydrogenic states, and, in the absence of spin-orbit
coupling, they are degenerate for a given n. Because the dependence on j is typically weak,
it is relevant for high-resolution spectroscopy. By fitting the quantum defect to previous

measurements (based on optical and microwave spectroscopy), we then obtain the defects
50,4.

Model potentials

In order to take into account the core penetration and polarization, I use the parametric

model potential by Marinescu et al. [387], with the core potential given by
Z l « 6
Vo= - 21—l 2.8
! (2.9
where Z,;(r) accounts for the core penetration with radial charge Z,(r) = 1+ (Z —

e~ ™" — r(ag + aqr)e” ", and «, accounts for the long-range core polarization induced
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Figure 2.3: Angular momentum dependent quantum defects of Cs atom. We plot
the fitted Rydberg-Ritz formula of the quantum defect d,,;; based on previous measurements
available in the NIST database. As expected, d,;; is most significant for |n.S).

by the valence electron. The core polarizability . increases with the number of inner
electrons. The values a;_g4, ¢, @, are taken from Ref. [$7], with the optimal parameters for
Rb and Cs provided in Tables 2.2-2.3.

In order to include the fine structure, I include the spin-orbit interaction

2

Vio=—L-S (2.9)

ﬁw| Q

where LS = j(jﬂ)*l(l;l)*s(s“) and o = 5= is the fine structure constant. The total model
potential is thereby V (r) = V. + V,,. Hyperfine splitting scales with ~ 1/n*3 [33, 89, 90],

and is negligible [91], where n* = n — §,;; is the effective principal quantum number.
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ai a2 as Q4 Te

[ =01 3.69628474 1.64915255 —9.86069196 0.19579987  1.66242117
[=1|4.44088978 1.92828831 —16.79597770 —0.81633314 1.50195124
=2 |3.78717363 1.57027864 —11.65588970 0.52942835  4.86851938
[ >3] 239848933 1.76810544 —12.07106780  0.77256589  4.79831327

Table 2.2: Summary of state-dependent parameters a;_4, r. for Marinescu model potential
[87] of Rb with the core polarizability . = 9.0760.

aq a9 as ay Te
=0 | 3.49546309 1.47533800 —9.72143084  0.02629242  1.92046930
=114.69366096 1.71398344 —24.65624280 —0.09543125 2.13383095
[ =21]4.32466196 1.61365288 —6.70128850 —0.74095193 0.93007296
[ >31]3.01048361 1.40000001 —3.20036138  0.00034538  1.99969677

Table 2.3: Summary of state-dependent parameters a;_y4, r. for Marinescu model potential
[87] of Cs with the core polarizability «. = 15.6440.

Rydberg wavefunctions

The valence electron wavefunction is described by the Schrédinger equation

57V 000,6) = Wab(r.6.0) (2.10)
The wavefunction ¢ (r, 6, ¢) can be divided into radial ¥,,,(r) and angular part Y(6,¢) by
separation of variables. The angular part can be solved analytically, and the the selection
rules can be derived. Compared to the Hydrogen atom case, the radial part W(r) of
wavefunction is modified by the corrections of the quantum defects d,;; and the model
potentials. In Fig. 2.4, I compute the radial Rydberg wavefunction by integrating over
the radial part of Eq. 2.10 with the model potential (Eq. 2.8) using the 1D Numerov
algorithm.

Matrix elements

With the numerically obtained wavefunction (r,0,¢), we can also obtain the electric
dipole matrix element (n, 1, j, my[ry|n',l', j', m’) with the inclusion of the fine-structure ba-

sis j = [+s. We work in the spherical basis r, = r 4%YIQ(Q, ¢) for ¢ = +1, 0 corresponding
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Figure 2.4: Radial wavefunctions of Cs atom. We perform the Numerov integration
of the Schrodinger equation to obtain the radial wavefunction ¥, ,;(r) [92]. We use the
spectroscopic notation |nL;), where n is the principal quantum number, L is the orbital
angular momentum and J is the electron’s total angular momentum.

to oF, 7 transitions, which can be decomposed to rank-2 spherical tensorial components of
the atomic dynamical and static polarizabilities (See Ref. [93] for the detailed expressions).
Using the Wigner-Eckart theorem, we write the matrix element

' s 1

1 [ 10 , _
J

where I numerically evaluate the overlap integral

(n, 1, jymylrgn U ' mly - = (—1)j‘mf+s+j'+1\/(2j+1)(2j’+1)(21+1)(2l’+1){ g1 }

(n, 1, jlrin, ', j') = / r2drW, (1) Yo p g (r). (2.12)

I can then determine important parameters to understand the radiative interactions with
Rydberg atoms, such as the transition probabilities, radiative (partial) lifetimes, and black-
body ionization rates, as well as the light-shift potentials.(Appendix A)
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2.2.2 Rydberg-Rydberg interaction
Dicke’s QED

For highly excited Rydberg states |nL;), we can perturbatively derive the coefficients of

the spin-exchange interaction Ag’) in the Ising Hamiltonian in Eq. 2.6. In the limiting
case of large n > ¢§;, with Eq. 2.7, we can express the n-scaling of the energy defect
AW,y 11,5717 between the Rydberg angular momentum states as

A(SL,L’

n3

AW 1 i1 X = : (2.13)
where Ady, 1 = 0, — 01 is the difference between the quantum defects for the two closest
Rydberg states [nL;) and [nL',) (i.e., the fine structure of the Rydberg levels).

For these two Rydberg levels, we can formulate a QED for a Dicke model as with
Section 1.2.2. Here, a collection of neutral atoms at sites 7, ¥; in the Rydberg levels |nL )
and |nL’,,) with energy defect AW,y 1y 1.7 is coupled to a fluctuating vacuum field of the
free space. The physics of this Dicke interaction essentially describes the driven-dissipative
spin-exchange Hamiltonian between the two vacuum-induced Rydberg dipole moments
fi;, ftj. As I formally derive in Section 1.2.2, the vacuum-mediated XX term gives rise to
the characteristic scaling ~ 1/|z;;]* scaling (Eq. 1.50). For highly excited Rydberg states
InLj) with a large orbital radius ~ n?, two neutral atoms would then experience a non-
resonant dipole-dipole interaction between the energetically neighboring Rydberg states
|nLy) and |n'L’,) with

A () = A fy 30 By) (i - Ty) (2.14)
SO |75

for the electric dipole transitions fi; = (n'L’,|er;|nL J>5-£LZ/) 1 ynL.y With projection operators

(77(5,)7“ sy = W L)i(nLy|. For the S-orbitals, we expect an isotropic, non-resonant
: : . o dd) s N L Gy A() ~(5) : :
dipole-dipole interaction H;;™(7;;) =~ TP On L L3Ot 10 i g T P-C, With the dipole-

dipole coefficient C3 = [(n'L’,|ef|nL;)|? o< n*, where the dipole-dipole interaction causes

a coherent spin flips in the form of XX Hamiltonian in the manifold of |[nL;) and |n'L’,).

For atoms with interatomic distance |z;;| > r. beyond the crossover distance r.din the
van der Waals regime, the energy defect AW is much larger than the spin-exchange inter-

dp is the crossover distance at which the atom-atom interaction transitions from the van der Waals

to the dipole-dipole regimes, with the crossover at AW = %
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|J§Jf"’|3. The atoms thereby do not directly experience spin-flip interaction between
Rydberg states |nL,) and |n'L’,,) due to the non-degeneracy AW, but rather non-local
renormalization akin to the Lamb shifts, caused by the modified QED vacuum in proxim-
ity to the dielectric materials (i.e., the two atoms themselves). We apply a non-degenerate

second-order perturbation theory to obtain an effective Ising Hamiltonian

action

WY Cs iy
AW (7 ) oc -8 50050) (2.15)

1] v fz‘j|6 rrorr )
for the renormalization of the levels for the Rydberg state |r) = |[nL;) with &) =
c}ff,)L’J;n?L,J, and the van der Waals (vdW) coefficient Cg ~ |C3|>/AW o n'l.

Pair-state basis

While our above description of Rydberg-Rydberg interaction bears its physical founda-
tion of quantum electrodynamics (QED) of Chapter 1, a semi-classical model has been
developed in the languages of pair-state basis for the AMO community. While this model
is incomplete for short-ranged interactions (below the crossover distance r.), this dressed
state treatment is applicable for most experimental parameters, and connects our concep-
tual understanding of QED with the terminologies developed in the Rydberg community

[24].

In this picture, I only consider the dynamics of the two-atom subspace spanned by
ri, ;) and |rirl). e non-resonant dipole-dipole interaction (Eq. 2.14) coherently ad-
j d |}, r"). Th t dipole-dipole interacti Eq. 2.14) coherently ad

0]
mixes the initial Rydberg states |r;, ;) with |r},7”) with “Rabi” frequency

'y
C 3(E, - :)(€: - T
T (G- %) (€ - Tyy) | (2.16)
| 73513 | T3]

where €; is the unit vector for the orientation of the electric dipole. Because of the total
energy defects A;; = AWy 1 yrinn,.g + AWyn pi g 1y for the two atoms, we have the
Hamiltonian subspace in the pair-state basis expressed as

ppain) _ | 0 €2
AP — {QZ‘ AJ, (2.17)

with eigenenergies A;; = (Azj + /A2 + 4|Qij|2> /2 associated with the dressed states
A5).
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Figure 2.5: Atom-atom interaction between two Cs atoms. a, Interatomic potential

between two atoms in the state [60S;/2). b, Interatomic potential between two atoms in

the state |60P5/5). The red contour depicts the population of the target Rydberg state in
the dressed states \Ali])

In this dressed state picture, I can compute Aiij as well as the population of |r;, r;) of the
dressed state |A;§) as a function of the interatomic distance Z;; with the matrix elements
('L’ |er;|nLy) obtained from Section 2.2.1. I numerically include other dipole-allowed
matrix elements (typically ~ 10 other levels) across different Rydberg admixtures |n'L’;,)
to accurately predict the van der Waals (vdW) level shifts with the ARC package [92].
With our MATLAB-Python translator, I integrated the Python ARC packages with our
open system treatments for driven-dissipative dynamics, written and pre-compiled in the
mpicc of MATLAB that can extend to our lab’s Andromeda cluster compute server (Rocks
Cluster Server with Infiniband interconnected with all-to-all topologies over 128 physical
cores, and 1 TB of RAM) developed by Youn Seok Lee on our group for electromagnetic
FDTD and quantum Monte-Carlo wavefunction methods.

As an example, in Fig. 2.5, I numerically determine the Born-Oppenheimer potential of
two Cs atoms in Rydberg states [60.5;/2) and [60P;3/5) by block-diagonalizing the Hamilto-
nian subspaces of other 50 Rydberg admixtures. The red contour depicts the population of
16051 /2) and |60P5/,) in the dressed states \Af§>, as the admixtures of other Rydberg levels
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Figure 2.6: Cavity QED with Rydberg quantum-dot. a, Experimental platform
for cavity QED with a Rydberg-dot. b, The progressive transformation of atom-field
interaction from resonance fluorescence, to cavity QED with single atoms, to the Dicke
model in an optical cavity, and to the revival of Jaynes-Cummings physics of collectively
enhanced cavity QED with Rydberg blockade.

enter through the spin-exchange inteaction. We emphasize that the quantum defect theory
does not provide an accurate result below the LeRoy radius r; ~ 1um, at which the two
orbital wavefunctions of the Rydberg atoms significantly overlaps with each other to form a
Rydberg molecule. In Appendix A, [ summarize our simulation results in the tabular form
for the transition frequency (THz), radiative lifetime (s), blackbody-limited photoioniza-
tion lifetime (s), reduced matrix element (J'||e?||J) (eay), LeRoy radius rp (um), and van
der Waals coefficient Cs (GHz -pm©) for transitions |6S1/2) — [nPijs), |6S12) = [nPs2),
|6P3/2> — |n51/2>, |6P3/2> — |nD3/2>, and |6P3/2> — |nD5/2>.

2.3 Rydberg quantum-dot media coupled to an opti-
cal cavity: Revival of the Jaynes-Cummings physics!

As a prelude to our proposal to lattice gauge-theoretic models, I would like to discuss a
conceptually simple physical mechanism to realize the Jaynes-Cummings (JC) model with
Rydberg-blockaded atomic ensembles coupled to a quantized field in a single-mode optical
cavity [94].
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2.3.1 Physical motivation

I consider an ultracold gas of neutral atoms in a moderate Finesse optical cavity in the weak
coupling regime gy < (k, 7). As discussed in the Dicke model of Chapter 1, the vacuum Rabi
freqeucny gy = v/ Ny is collectively enhanced by v/ N, where N is the number of trapped
atoms at the antinodes of the cavity. As illustrated in Fig. 2.6, the Tavis-Cummings (TC)
model exhibits a largely linear coupling between the collective atomic spin excitation and
the quantized electromagnetic field,

Hi = V/Ngo(a'S + aSth) (2.18)

and much of its physics is encapsulated by the classical mean field

. 1 ‘
S=—3"6", 2.19
N0 (2.19)

in the form of the quasi-bosonic collective spin operator. The TC model do not possess
the requisite structural nonlinearity in the excitation manifolds for the photon blockade to
inhibit the propagation of higher-order photons (See Fig. 2.6 for the illustration). Hence,
there is no quantum optical nonlinearity in such a collective atom-field system, besides the
highly perturbative optical nonlinearities in the parametric domain®.

With the strong Rydberg-Rydberg interactions A > go, it is possible to design an
energy penalty in excitation spectrum of the collective atomic variables to constrain the
atomic dynamics into a particular subspace. Within this subspace, we show that the result-
ing atom-field system is effectively reduced to the original JC Hamiltonian with collective
coupling v/ Ngo. At a phenomological level, the collective physics behind this 2-level re-
duction is analogous to that of a quantum dot, where multiexcitation of electron-hole pairs
(excitons) in a semiconductor host defect is suppressed by the Coulomb and exchange
interactions (Coulomb and Pauli spin exchange blockades) [15].

The technological merit of our Rydberg-dot approach is quite significant, because the
coupling parameter v/ Ngo of the effective JC model is not limited by the optical physics
that governs light propagation and diffraction limit (See Eq. 1.31), with the collectively-
enhanced cooperativity factor

_ 4Ngg 2N g

C ~ 2
Ky 3m A,

(2.20)

¢Counter-rotating counterparts of Eq. 2.18 depict the generation of two-mode squeezed states and
EPR entanglement.
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as the critical scaling parameter for coherent light-matter operations. Indeed, our con-
servative estimates point an unprecedented value for the cooperativity factor C' > 10°.
As a reference, our expected C is 10* times larger than those reported in the state-of-art
experiments with W1-defect photonic crystal cavities by the groups of Mikhail Lukin and
Vladan Vuletic’s group [95, 96] for quantum-state transfer and quantum logic operation
(e.g., photonic controlled phase gate) with high entanglement fidelity F =1 — O(1/C) .

2.3.2 Atom-field Hamiltonian in the regime of strong blockade

As a physically realizable model, we consider a two-step process in a typical ladder con-
figuration investigated for Rydberg atoms. We consider the ground-state |g) = |65 /2)
coupled to the intermediate excited state |e) = |6P3/,) through the vacuum mode of the
optical cavity with vacuum Rabi spliting g and detuning A, which is coherently coupled
by a strong laser field to the Rydberg levels |r) = [nS;/2) with Rabi frequency €2.. We adi-
abatically eliminate the intermediate state |e) for A, > (go,(2.), and obtain the effective
atom-field Hamiltonian

Hi% = V/Ngeg(a'S + aSh, (2.21)
with the effective coupling constant geg = 9&—? for |g) <> |r). If we neglect the radiative
decay rate v, of the Rydberg states, we derive the effective Lindblad atomic superoperator

|92

with decoherence rate yer =~ 7.x3-, given by the displacement of the intermediate state

2 2
le) — |e) + % r). The resulting strong coupling parameter C' = iif; ~ % is equivalent in

this effective dressed state picture.

In the high n limit of Rydberg states, the dipole-dipole interactions can be treated as
an uniform energy shift A within a blockade radius 7, as long as Ising interaction A is the
dominant energy scale of the problem across rg. As further justified in Ref. [97], this is
a reasonable statement because the particular value of the level shift is not important as
long as it can effectively act as a Rydberg blockade mechanism. Furthermore, it is possible
to engineer the spatial profiles of A (Eq. 2.17) as step functions through Rydberg
mixing techniques [98]. Within these approximations, we can simplify the all-to-all Ising
Hamiltonian in Eq. 2.15 to on-site interaction

Higng = Aig(ig — 1), (2.22)

fBy comparison, it would have been necessary to reduce cavity mode volume V,, ~ 1074\? in the
nanophotonic experiments [95, 96] to match our purported C, a physically impossible task due to the
hybridization of the atomic wavefunctions with the surrounding dielectric.
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where the magnon number operator
. @ N 5 &
s =0l = 5 (1-[5,57). (2.23)

Since [S‘ , gT] = %S’Z ~ 1 for a small number (ng) < N of magnon population, ng indicates

the degree of the “violation” of the bosonized magnon operators S, ST defined within the

~ 4m,.3
blockade volume V., >~ ry.

The total atom-field Hamiltonian is then given by

A’I‘T
2

Haor = =28, + Ai'a + VNgeg(a'S + aST) + Ang(ng — 1). (2.24)
From the perspective of the quasi-bosonic operators a, S in the limit of small excitation and
large N, the atom-field Hamiltonian is equivalent to a two-site Bose-Hubbard model, where
the “phase” diagram is dictated by the competition between the tunneling rate t = v/ N gegt
(related to the phase coherence of the polaritonic superfluid and the fluctuation of (Ang)?)
and the on-site interaction Uy/2 = A (projecting the fluid into the number state ng of the
collective spin excitation, and destroying the long-range phase coherence). The detunings
A, A, are related to the chemical potentials of the two sites.

We recognize that the fully Rydberg blockade regime is formally equivalent to that of
the hard-core boson mapping in the Mott regime with large on-site interaction Uy > t
(e, A > 2v'N gefr)- We can capture the low-energy physics of Eq. 2.24 by mapping the
SU(N) collective operators to the SU(2) operators with S(ST) — 6_(5.), and deriving the
effective Hamiltonian within the spin subspaces (fg) = 0,1 ({(Higng) = 0) while leaving the
photonic Hilbert space intact,

Ky Arr ~ RN N N
Hfg = TUZ + AcaTa + \/Ngeﬁ((ﬂa, +acy). (2.25)

As depicted in Fig. 2.6b, this is precisely the Jaynes-Cummings model that we have

departed from by adding a large number of atoms into the optical cavity! To proceed
further, we introduce the cavity polariton operators

(cos A + sin 05) (2.26)

S-Sl

(sin a — cos 65) (2.27)
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Figure 2.7: Transformation of the atom-field Hamiltonian under strong Rydberg
blockade to the Jaynes-Cummings model. a, Excitation spectrum FE, for the n = 2
subspace. b, Excitation spectrum FEj3 for the n = 3 subspace. The dashed lines depict
the two cavity polaritonic branches expected for the ideal Jaynes-Cummings model with
vacuum Rabi splitting 24/ngo.

and diagonalize the effective JC Hamiltonian into two-component polaritonic branches
HSE = V/Ngegr (R — ) (2.28)

with polariton number n4 = chcZi, as expected for the original JC model (Chapter 1) but
with collectively-enhanced vacuum-Rabi frequency v N geg!

2.3.3 Transition of the low-energy excitation spectrum from the
Tavis-Cummings model to the Jaynes-Cummings model

The effective Hamiltonian in Eq. 2.28 is only accurate under the strong Rydberg blockade
VN Jof < A across the entire atomic ensemble. Instead, for Vv N ot > A, the dynami-
cal processes are well-described by the linearized Tavis-Cummings Hamiltonian. At the
intermediate regime, the polaritonic picture breaks down and there is no immediate de-
scription in terms of simple normal modes. In this section, I will numerically evaluate this
crossover as to how the normal modes of the original atom-cavity system emerge again as
the atom-cavity system is swept from A/gy = 0 to A/gy > 1 with gy = V/Nges-

In the Tavis-Cummings limit, the polaritonic operators analogous to Eqs. 2.26-2.27
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describe the normal modes of the two bosonic modes (atomic and cavity modes). Hence, it
is possible to create arbitrary polaritonic branches dy to populate a particular excitation
subspace n without any constraint on the spin excitation number ng. For instance, for
n = 2 subspace, it is possible to create polaritonic branches |+)s = dZ]g- - - g) ® |0) and
|0)o = cﬁicﬂﬂg .-+ g) ®0), associated with eigenenergies € = +2¢o, 0, as shown in Fig. 2.7a
for A/go — 0. Likewise, for the n = 3 and higher order subspaces, the polaritonic modes
spread over the spectrum of {ngo, (n —2)go, -+, —(n — 2)go, —ngo }-

However, in the Jaynes-Cummings limit with A > go, the on-site interaction term A
drives the Bose-Hubbard model (Eq. 2.24) to the atomic limit, where the collective spin
operators are no longer energetically high-dimensional and become effectively hard-core
bosons. Hence, the polaritonic excitations cannot be described by the bosonic counter-
parts of the TC model. Remarkably, the spin nature of i only permits a single collec-
tive excitation in the atomic medium (due to the Rydberg blockade), effectively reducing
low-energy dynamics into the atomic subspace of |g---g) and a single symmetrized exci-
tation |W) = f >oilg- --g). Creating two Rydberg atoms would be prohibitively
expensive from the perspectlve of the energy penalty of O(A), thereby constraining the
original SU(N) spin subspace (in reality, it is a hard-core boson). In Fig. 2.7, I numer-
ically investigate this crossover transition from the TC to the JC regimes for large N of
atoms, by performing exact diagonalization (ED) of the block Hamiltonians within each
of subspaces. Fully open system description of this model is beyond the scope of my the-
sis. But I would like to mention in passing that, with the collective cavity relaxation,
Prof.Choi has constructed the input-output formalism for the antibunching parameter
g (1) Zijklﬁsrl)(O)&Sf)(T)&(_k) (T)C}g) (0)) as the nonlinear witness for genuine multipar-
tite entanglement of the symmetrized massive W states of the trapped atoms within each
excitation manifold [99]. Further details will be discussed elsewhere.

2.3.4 Physical implementation and the ultrastrong coupling regime

As discussed further in Chapter 6, in our Rydberg quantum dot platform, we intentionally
relax the atom-cavity parameters (go, %,v1) = (0.4 MHz,0.5 MHz, 2.5 MHz) in the weak
coupling regime. With the adiabatic elimination of the intermediate state with detuning
A. ~ 100 MHz and coupling laser 2. = 1 MHz, I obtain the effective coupling rate
Joft = gOAQC ~ 27 x 4 kHz and the radiative decay g = |A |*v1 +7, ~ 27 x 500 Hz (including
the blackbody limited decay rate of the Rydberg state [100S5)/2) in the Appendix). The

single-atom cooperativity parameter is given by C} = iizz ~0.25 < 1.

For Rydberg state |[100S /2), I numerically obtain the vad der Waals coefficient Cs = 4.6
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THz-pum® from the quantum defect theory (Appendix A). Given the effective coupling rate
gefi =~ 2m %X 4 kHz, it is possible to achieve a blockade radius rp ~ V/Cgs/ger =~ 30um.
As a conservative estimation, I consider a trap volume of 20um?, and evaluate a practical
atom number N = 10? (typical atom density in a dipole trap is given by p > 10'?/cm?).
Remarkably, the collective cooperativity parameter is given by C'y — 250 > 1 deep in the
strong coupling regime with A/gy ~ 20 > 1 (Jaynes-Cummings limit)! In Chapter 6, I
further provide the technical description of our experimental platform.

The benefit of our collective encoding with Rydberg blockade is evident in that the

nonlinear spectrum of cavity QED is maintained with ¢, = Q—V;;szg — \% by adding more

atoms due to the growth of the coupling rate v/N gy, without compromising the structural
behavior of the anharmonicity parameter ¢, = —‘24\]\%5090 — 1 of the TC model. Because
of the scaling Cy o« N, with a smaller radius of curvature 5 ¢m of the mirrors, if we
load ~ 1000 atoms in a single plane (~ 60 x 60um?) of the antinode of the cavity field
across 1000 sites, we would be able to obtain an unprecedented value for the cooperativity
Cn ~ 5 x 10° > 1 of cavity QED, enabling ultra-high-fidelity (F' ~ 1 — 1/Cy) quantum
logic operations. Furthermore, in this regime, because the broadband nature of the atom-
field coupling v Ngy ~ FSR = ¢/2L ~ 1 GHz, it would be possible to access the extremely
difficult ultrastrong coupling regime in the optical domain®. The simultaneous atom-field
coupling to the longitudinal cavity modes allows the capability to design arbitrary pairwise
spin-exchange interactions J(z;, z;) for the creation of synthetic quantum matter, similar
to the photonic bandgap physics of the waveguide QED [100, !

2.4 Quantum spin ice models

For most materials, when a system is cooled to near absolute zero, the constituents of
the many-body system typically condense into a short-range ordered phase consistent with
their symmetries or acquire the long-range coherence of superfluids within the paradigm
of Landau’s symmetry breaking. Apart from the finite-size effect, much of the physics
in these conventional systems can be well understood by local observables (specific heat,
magnetization) that monitor the components of the many-body system. Instead, for a
quantum spin liquid (QSL), the quantum fluctuations prevent the spins from being driven
into a long-range ordered phase even at zero temperature. Similar to fractional quantum

&Unlike the microwave domain of circuit QED, the ultrastrong coupling regime in the optical domain
is defined as the enhancement of the vacuum Rabi splitting relative to the free-spectral range of the optical
cavity (instead of the qubit energy).
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Hall states, QSLs appear as being completely disordered from any measurement that locally
probes the sub-system, but rather the underlying topological order is non-locally spread
across the entire quantum spin system by long-range quantum entanglement. Furthermore,
the excitations in QSLs fractionalize with the microscopic DOF's separated by the strong
quantum correlations. Spin ices are the natural host of the “vacuum” field, subject to local
energy constraints by a background gauge structure, over which dynamical spin excitations
caused by quantum fluctuations can drive the spin system into a QSL. Remarkably, the
long-range entangled states of “quantum” spin ices are associated with the “deconfined”
phases of an emergent lattice gauge theory! Here, ”deconfined” implies that emergent
fractional gauge charges can be spatially separated with a finite amount of energy. Such a
QSL remains to be discovered in experimentally.

In this section, we describe an experimental proposal of creating, manipulating, and
detecting topologically ordered quantum spin ice models. By significantly departing from
our free fermionic cavity QED models, local dynamical gauge structures are designed by
the Rydberg-Rydberg interaction and the quantum fluctuations are introduced by dressing
the spins with quantized cavity fields. This idea was largely developed by Dr. Dong
in our group. Similar ideas laid out in this proposal can be applied to other esoteric
models (string-net condensates, Kitaev honeycomb, and AdS,-CFT holographic Sachdev-
Ye models) in a fully gauge-constrained and analog manner, as investigated theoretically
by Dr. Dong and Prof. Choi. Some of these ideas are beyond the scope of the technical
capabilities developed in my MSc thesis, but would be accessible in the near future with
better controls. Instead, I focus on the currently feasible quantum square ice models, to
which T have contributed by way of my modeling of Rydberg states. Remarkably, for this
model, we have identified a powerful method to unambiguously validate the existences of
the illusive U(1) QSL and gapless artificial photons of emergent QED within the low-energy
sector via the measurement of time-ordered correlation functions of optical photons leaking
out through cavity-relaxation.

Before I move on, let me briefly discuss the physics of classical Ising spin ice of frus-
trated quantum magnetism, as originally conceived by P. W. Anderson [102, |. The
classical spin ice states form the (frustrated) quantum vacuum, in which XX-like quan-
tum fluctuations drive tunneling between degenerate ice states that support a U(1)-QSL
phase with emergent gapless photon-like excitations. Whereas the elementary excitations
of classical spin ice are the electrostatic charges (or magnetic monopoles), in a quantum
spin liquid, gauge charges interact via dynamical quantum electromagnetic fields with an
underlying compact QED.
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2.4.1 What is a spin ice?

Highly frustrated magnets, epitomized by the geometric frustration of an anti-ferromagnetic
(AF) Ising model on a triangular lattice, are characterized by an extensive ground-state
degeneracy. At temperature scale much smaller than the characteristic interaction, ther-
mal excitations have strong local correlations without spatial ordering (e.g., Neel’s or-
dering), behaving similar to disordered and fluctuating liquid phase. Interestingly, these
thermally activated liquid phase of spin magnet has a characteristic dipolar (power-law)
decay of correlation functions despite the nearest-neighbor nature of the interaction. To
distinguish with the QSL driven by genuine quantum fluctuations, these magnetically dis-
ordered phases are known colloquially as (classical) spin liquids [61]. The semi-classical

Q= +1

Figure 2.8: Emergent ice rules in dipolar spin ice systems on Pyrochlore lattice.
a, [11] plane of a Pyrochlore lattice. Local crystal fields [111] transform local Ising spins
with ferromagnetic coupling into a global AF (anti-ferromagnetic) coupling equivalent to
that of the Anderson’s Pyrochlore AF Ising model [102, |. The flippable plaquettes of
quantum spin ices are shown as a red hexagon, whereas the effective spin field is introduced
on the links of a diamond lattice (indicated as blue dashed line). b, Effective ice rules within
tetrahedral crystals. Geometric frustrations within each of the tetrahedrals at vertices of
the diamond sublattice locally constrains the spins to the ice rule (namely, two ins/two
outs towards to the center of each the tetrahedrals). Within the ice constraints, there
is an exponential ground-state degeneracy of these ice states with the system size NNV,
akin to Pauling’s analysis for water “ice.” ¢, Spinon excitations and magnetic monopoles.
Breaking the ice constraint by local spin flip at the red site is equivalent to the creation
of magnetic monopole and anti-monopole pairs with the charge located in each of the
tetrahedrals. These thermal excitations are highly suppressed by the gauge symmetry, and
these effective “gauge charge” interact each other through a screened effective magnetic
Coulomb potential, similar to magnetostatic interactions and the magnetic version of the
Gauss law.
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ground states of these geometrically frustrated magnets and thermal excitations are de-
scribed by an emergent gauge invariance symmetry of local energetic constraints, and is
the basis for further discussion of QSLs.

In this section, I describe a maximally frustrated quantum magnetism on a 3D lattice,
a Pyrochlore lattice, consisting of sublattice of corner-sharing tetrahedrals on a diamond
lattice. From an experimental point of view, Pyrochlore lattice represents magnetic lattices
found in insulating rare-earth materials RoM>O+7 and one of the first experimental platforms
that have indirectly demonstrated the pinching effects in the reciprocal Bragg scattering,
a signature of extensive degeneracy of classical spin ices [104]. Notably, in addition to
the nearest-neighbor exchange interactions, the magnetic sites of the rare-earth (“R”)
atoms have a large static magnetic moment (u ~ 10up for R =Dy atoms) with long-range
dipolar interactions. The elementary excitations of these constrained magnets, known as
the dipolar spin ices (See Refs. [105, 106, 107] and references therein), are well described
by quasiparticles that mimick the magnetic monopoles on a discretized lattice, and by an
exponential ground-state degeneracy of the ice states with respect to the number N, of
spins.

Extensive degeneracy and ice rules

As shown in Fig. 2.8a, due to the cubic symmetry of the Pyrochlore lattice, a strong
crystal field polarizes the magnetic sites to polarize with an Ising axis Z; orientied towards
or outwards the center [111] of the tetrahedrals. Local ferromagnetic interactions on the
tetrahedral Hi. = —Ap Zi,je&(g(i) < Z)(% 6@) with Ay > 0 is then globally equivalent
to that of the Anderson’s AF all-to-all Ising Hamiltonian

[:[ice = AAF Z Z &S)&EJ) (229)
K (i,5)ex

with a global AF exchange term A p = ATF summed over the tetrahedrals X. It is instruc-

tive to redefine Eq. 2.29 with energetic constraint Gx = ), & — @ with @ = 0, such
that

F]ice = AAF Z G%g (230)
X

up to a constant. For AF coupling Aar > 0, this is a highly underconstrained system
that energetically follow the ice rule (two-in and two-out), as shown in Fig. 2.8b for
a single tetrahedral. In fact, for N magnetic sites, the ground-state subspace is pop-
ulated by exponentially large degenerate spin ice configurations. There are ~ (3/ Z)N/ 2
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possible configurations in a pyrochlore lattice, consistent with Pauling’s estimate of en-
tropy So = Nkp/2log(3/2) for water ice. Early measurements of the specific heat in
HoyTisO7 showed the linear scaling of the magnetic entropy Sy, revealing the spin ice’s
extensive ground-state degeneracy [104]. In terms of correlation functions, the exponen-
tial ground-state degeneracy in the spin ice manifold is also manifested by the bowtie-like
pinch point singularities (i.e. increased density of states) in the spin structural factor

S(@) = 3 22, €76 [108]

Magnetostatics of classical (dipolar) spin ice and elementary excitations

I emphasize that we have artificially put a gauge charge () by hand, which we show in the
next section. More generally, for () # 0, the ground-state subspace is populated by spin
ice states that follow different ice rules (e.g., three in and one out), and can give rise to
constrained subspace with an effective SU(N)-representation (See the paper by Dr. Dong
and Prof. Choi in Ref. [101]). Although I do not articulate this possibility in this thesis,
it is straightforward to create all-to-all quasi-random Heisenberg model for SU(NV) spins
for any N with our platform in connection to the physics of holographic strange metals.

For the current purpose, it suffices to mention that all spin sites 4, j on a pyrochlore
lattice connect two tetrahedral crystals. Hence, if you consider a single spin flip for a
ground-state spin ice state as the left-hand configuration of Fig. 2.8c, the action of a local
spin flip simultaneously breaks the ice rules for both tetrahedrals sharing the target spin.
Remarkably, this local excitation can be understood as a fractionalization of the flipped
spin into two gauge charges +1 (the creation of a magnetic monopole and anti-monopole
pair) at the centers of the tetrahedrals, which interact each other with an effective potential.

To further understand the nature of the quasiparticle excitations ) for magnetostati-
cally dipolar-interacting R atoms in the background of spin ice, it is instructive to consider
the local spin & as a vector field with the proper magnetic response p. Hence, we repre-
sent the Ising spin moment as an effective field generated by the source and sink charges
at the end of a “dumbbell” in the form of a magnetic dipole moment u = Qag with the
charge located at the centers of the tetrahedrals and the length consistent with the lattice

constant ag [109]. The magnetic dipole-dipole interaction across all lattice sites can then be
reduced into Coulombic interaction between the magnetic charges @), of the tetrahedrals
with 0.0
2 Ho ay s Vo 2
Hy = — — 4+ — , 2.31
db 471 Zﬁ TaB + 9 ; Qa ( )
a?

with the ice rules of Eq. 2.30 obtained in the limit of on-site interaction vy — oo [110].
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gapless artificial photon

0

Figure 2.9: Emergent excitations in a quantum spin ice system. At the high
energy scale ~ A, it is possible for an initial ice state with ¢ = 0 to create a spin excita-
tion that creates magnetic monopole-anti-monopole pairs by breaking the ice rule in two
tetrahedrals. For a quantum spin ice, quantum fluctuation inserted by an transverse X X
Hamiltonian drives an effective plaquette interaction around an “empty” plaquette (the
hexagonal sublattice of Fig. 2.8a for a Pyrochlore lattice). Similar to the Toric code, a
gapped topological defect known as vison can be excited at energy scales ~ Jyng of the
ring exchange interaction. Vison plays the role of an electric charge in the formulation
of the “compact” U(1) lattice gauge theory. At the lowest energy scales, photon-like lin-
ear dispersing modes emerge as gapless topological excitations with S, = 0 in frustrated
quantum electrodynamics.

To see the correspondence to the Hamiltonian lattice gauge theory, we introduce a
coarse-grained vector field B?m,/ = 63) on the diamond lattice. For infinite vy, the later
term of Eq. 2.31 gives (), so that the total spin field summed over the tetrahedral is zero,
or equivalently the source-free zero-divergence condition of the Gauss law V-B=Gg=0
of electromagnetism. For finite vy, the gauge charges are excited and create a source
magnetic field g, and this “spinon” excitation remarkably fractionalizes into particle-
antiparticle pairs with opposite charges that interact attractively each other through an
effective Coulomb potential (first term of Eq. 2.30). Because of the microscopic magnetic
response of the spin flips, the particle pairs created in this manner are magnetic monopoles
that interact through the Coulomb potential, as with the electron charge of the conven-
tional electromagnetism. Thus, the low-energy physics of classical dipolar spin ice systems
is equivalent to a magnetostatic version of a Coulomb gas with an underlying formula-
tion of a local conservation rule, the Gauss law. Because the effective Coulomb potential
decays with a power law ~ 1/r [110], the underlying physics for the particle-antiparticle
creation is consistent with a deconfined gauge theory. That is, it is possible to pull apart
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the monopoles with finite energies, each carrying charges that are fractions of those allowed
in a finite-size system.

2.4.2 Quantum square ice model

Quantum spin ice is a long-ranged entangled topological quantum matter, where quantum
fluctuations and a geometrical frustration (spin ice constraints) of magnetic interactions
prevent the spins from showing any spontaneous symmetry-breaking at zero temperature.
By adding quantum fluctuations to the ice states, in addition to the fractional spinon ex-
citations, we expect emergent particles associated with deconfined Z, gauge fields. Within
this low-energy topological sector, gapped vison excitations are formed through a magnetic
vortex. Furthermore, we have an emergent U(1) lattice gauge structure that gives rise to
the remarkable possibility of a gapless artificial photon, in addition to the gapped vison
and spinon excitations, as well as their effective Coulomb potentials [64, 66]. From the
perspective of compact QED, we have a physical model that supports stable U(1) quan-
tum spin liquid on a frustrated spin-ice vacuum, corresponding to a deconfined Coulomb
phase.

Quantum spin liquids

Because of the difficulty of realizing a Pyrochlore lattice with current AMO technologies,
we consider a two-dimensional projected model of the Pyrochlore quantum spin ice, known
as the quantum square ice model [I11]. This reduced model shares all the necessary
ingredients of the original model to support a stable (order-by-disorder) quantum spin
liquid and to formulate a Hamiltonian lattice gauge theory [112]. As shown by Fig. 2.10,
we are concerned with atoms arranged on a checker board lattice with all spins residing on
the checked squares (equivalent to the tetrahedrals) subject to the AF Ising Hamiltonian
(second term of Eq. 2.32). Like the Pyrochlore dipolar spin ices, the local conservation
rules (i.e., the Gauss law for spinon charges) are energetically enforced on the checked
squares. That is, the ice rules are obeyed, because breaking those rules would give rise of
a large energetic penalty of the order of Ising energy A. Magnetic fields associated with
the gauge charges can be assigned for spins on the links of a diamond lattice shown as the
yellow dashed lines.

As a minimal model of a quantum spin ice system, we add quantum fluctuation to
the background of the aforementioned Ising spin ice to “melt” the spin ice states into a
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Figure 2.10: Ring-exchange interaction mediated by gauge constraints in a quan-
tum square ice. Within the spin ice subspace, an effective 4-body ring-exchange interac-
tion arises for the four spins around the empty plaquette (indicated by the black arrows).
Spin exchange coupling indicated by the red arrow must virtually break the ice rules of two
filled plaquettes (with a virtual magnetic charge pairs), mandating a 6-body interaction to
move the spin around the plaquettes to recover the local conservation rules.

quantum liquid by a perturbative XX spin-exchange Hamiltonian

Hosi = J1 Y (6969 + 6060 + Aap Y > 606D, (2.32)
X

(3,5) (i,5)€X

with J; < Asp. This fluctuation lifts the extensive degeneracy of the original ground-state
manifold of the spin ice. The XX term does not need to be nearest-neighbor interacting
as written for Eq. 2.32, because the long-range spin exchange is highly suppressed by the
Ising energy A p. In fact, our physical platform enables a cavity-mediated infinite-range
XX interaction with the locality of the effective spin-spin interaction constrained by the
ice rules.

With a large anisotropic exchange coupling Aqrp > J,, the spectrum of ﬁQSI can be
separated into nearly degenerate spin-ice manifolds with a large spinon gap ~ O(Aar). By
projecting Eq. 2.32 to the the low-energy manifold, we can derive the effective Hamiltonian
governing the dynamics within this spin-ice manifold using degenerate perturbation theory
[L11]. The lowest-order term that give rise to a non-trivial dynamics (apart from constant
level shifts) is at the second order, and we arrive at the effective Hamiltonian within the
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gauge-invariant ice manifold

Ha = Jing Y (06V6960960 4 hc)+ Aapd DG, (2.33)
X

Ji|?
Aar

with the 4-body ring-exchange interaction Jying =
tte (Fig. 2.10).

for spins around a flippable plaque-

To proceed further, we map the effective Hamiltonian into a quantum dimer model
(QDM) by considering a diamond lattice ¢ (yellow dashed lines of Fig. 2.10). In this
picture, the spins on the filled squares (under the ice constraints) are the link variables
of QDM, with the effective 4-body ring-exchange Hamiltonian playing the role of kinetic
term for the dimers

Hdimer = _Jdimer Z((}_(:l7r2)692’7“3)5—5:377”4)(}947“) + h‘C.), (234)
O

with Jgimer = —Jring. In 2003, Hermele, Balents, and Fisher have argued the possibility of

a stable quantum spin liquid phase for this effective dimer model [111], by analyzing the
ground-state of a pseudo model with an adhoc on-site dimer interaction term Ugjper to put
the QDM at the Rokhsar-Kivelson (RK) point Ugimer/ Jdimer = 1 [1 13]. At the RK point, the

ground-state is exactly soluble as a symmetric entangled state (resonating valence bond
state) of all dimer configurations within the ice manifold, hence a quantum spin liquid.
From a technical point of view, because RK point is a divergent quantum-critical point,
it is more appropriate to call this a quantum spin liquid state not a phase. However, due
to the stability of the QDM in the vicinity of the RK point [113], Hermele et al. argued
the persistence of a quantum spin liquid phase over a finite extent Ugimer/ Jgimer < 1, With
extensive literature (numerically solving the original spin model through quantum Monte-
Carlo methods) supporting the quantum spin liquid phase persisting down to Ugimer = 0
(Ref. [66] and references therein, and Ref. [112] for the direct case of 2D model concerned
here).

Formulating a lattice gauge theory: Matter fields (spinons, visons) coupled to
a compact (frustrated) gauge field

A quantum link model is a reduction of a lattice gauge theory [114] that attempts to
capture the qualitative features of the full continuum gauge model by restraining the
infinite-dimensional Hilbert space of the gauge bosons into a finite-dimensional subspace
[62]. In the dumbbell model in Section 2.4.1, we have seen that gauge non-invariant spinon

64



excitations out of the ice subspace are the magnetic monopole pairs at the centers of the
filled squares (tetrahedrals for Pyrochlore lattice) that experience Coulomb interactions
as if they are the gauge charges. In the spirit of the link models, by proceeding with our
notation on the diamond lattice, we can now consider the spins on the vertices of the square
lattices as the quantum link variables (gauge fields) of the diamond lattice, which mediate
interactions between the emergent matter fields (electric or magnetic charges). Hence, it
is natural to formulate a quantum link model for quantum spin ice systems.

Let us first formulate a pure gauge model to understand the behavior of quantum spin
ice model in the ground-state sector. We introduce the following quantum rotor variables

[111]
1

o) = . — 5 (2.35)
gl = e, (2.36)
which follow the canonical commutation relationship [ggnq,ﬁw,q/] = 10,910qq. In order to

recover our original model, we can confine ourselves to the hard-core boson limit #,,» = 0, 1,
which we imposed with a soft constraint QY = > rweo M = 2. By substituting Egs. 2.35-
2.36 to the dimer model of Eq. 2.34, we obtain the quantum rotor Hamiltonian

Hrotor = Jdlmer ZCOS ( E (brr > + AAF Z (nr v 1) -+ VZ QI’ (237)

r,r'ed

which is valid for A r, V > Jgimer > 0.

We have identified the second term of Eq. 2.37 as the Gauss law for the magnetic
field BT o j:(nw 1/2)!. Because of the canonical commutator relationship, we find
that the phases ¢,, roare conjugate of 7, ', and we can correspond ¢,, ~ with the vector
potential Aw/ — iqzﬁw/ of QED. Hence, the first term Em,eo gbm/ of Eq. 2.37 corresponds

to (curl) x A, the electric “flux” variable £° (magnetic flux in the conventional QED). We
can thereby map the rotor Hamiltonian to the pure gauge QED model

[:[gauge = —Jdimer COS (Z EO) + AAF Z Brr JdiQmer Z(EO)2 + AAF Z Brﬂn/, (238)

r,r! % r,r!

h Again, our notation for electric and magnetic fields are reversed compared to conventional QED. We
have a magnetic monopole that creates a Coulomb potential with a physical magnetic field response.

ieti®rr raises (+) or lowers (—) the dimeroccupation numbers on links.
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with the later mapping only valid for the ground-state sector with small electric field
fluctuations.

At this point, it is instructive to compare the key differences between our formulation
of QED with the elementary one. The ground state of the conventional QED Hamiltonian
is a trivial vacuum state with no photon occupation. However, for a quantum spin ice, in
the limit of Asr > Jgimer, we actually have a frustrated quantum vacuum with an/ —
+(n,,» — 1/2) instead of Bwf — +n,,» (conventional QED). Indeed, for a spin-ice QED,
the ground state is populated by a gapless artificial photon that propagates and spreads
across the spin system with a linear dispersion w(q) ~ ¢|¢] and speed of “light” ¢/ay =
/A arJaimer/2. Gapless photon-like modes near zero-temperature is thereby the signature
of the illusive deconfined Coulomb phase of QED!

In comparison to conventional electromagnetism, another key difference of our link
model is that the vector potential is defined over a modulo 27. The low-energy excitations
of this model are thereby manifested by the constrained electric flux. In fact, the low
energy spectrum of the model shows gapped topological point defects with Zy gauge fluxes
with energy scales on the order of the ring-exchange energy |Jgimer| [|11]. Because of this
“compactness,” these point defects are associated with the creation of electric monopoles,
called the visons.

In order to incorporate the matter fields (spinons and visons) to the pure gauge model
above, there has been recent developments using gauge mean field theory (gMFT) to assess
the stability of the U(1) quantum spin liquids for finite Agp [I15]. The full formalism is
beyond the scope of my thesis, and I only provide the heuristic results here. gMFT includes
a soft Lagrange multiplier to allow the breaking of the ice rule with the spinon charge
QT =+ Zm,em &) at the vertices of the diamond lattice. In an analogous fashion on
how we derived the conjugate variables that create and destroy the artificial photons, we
can define the phase operator U, = e~ for the spinon fields. Under this constraint, we
introduce the spinons explicitly to Eq. 2.32 with the mappings

A(ry’)y 7 fat 3

oy = Us, Uy
/ A~ A

~ (7,7 A

g = 0,8,

') — &2

o, = Sr,r’?

Hos =Y 018l 00,8, + Aup Y (U1T,)?, (2.39)
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Figure 2.11: Quantum spin ice models with Rydberg-dressed cavity polaritons.
a, Experimental platform. The full Hilbert space is constrained to degenerate spin ice
manifolds by Rydberg-mediated Ising interactions on the hyperfine ground-state subspace.
Quantum fluctuation is added to the spin ice vacuum through cavity mediated Dicke in-
teraction. Artificial photons and deconfined Coulomb phase of the quantum spin ice are
monitored by collective radiation through the optical cavity. b, Enforcing the Gauss law
with system-reservoir interactions. We partition the atoms into Rydberg-dressed system
atoms and Rydberg-driven-dissipative reservoir atoms. The full open system dynamics
yields an effective formulation of a master equation with reservoir mediated Ising inter-
actions and suppressed correlated spin flips for the hyperfine ground states of the system
atoms. c, Ising interactions among system atoms are mediated by the reservoir atom. This
mediated interaction allows careful adjustments to allow all-to-all connection within the
filled plaquettes.

where we included the locality of the XX interaction J? on the diamond lattice.

2.5 Physical implementation with Rydberg-dressed cav-
ity polaritons

The main challenge in simulating any quantum link model with analog quantum systems
is the realization of the local dynamical gauge symmetries — The Gauss law which gave rise
to the interpretation of the spinon excitations as magnetic gauge charges. This is in stark
difference to other spin-boson models, where the bosonic excitations (e.g., cavity mode)
have no constraint on its own. We thereby require the interacting nature of matter to be
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used to possibly create the requisite gauge constraints on the gauge bosons in many-body
QED. Short of many-body QED, we require the following laboratory capabilities:

1. Real-time rearrangement of single atoms to low-entropic 2D atom arrays on 2D
checkerboard lattice with holographic projection: Hungarian collision-path evading
algorithms and GPU-accelerated superpixel DMD mapping (Chapter 6),

2. Capability to address and resolve single atoms with a quantum-gas microscope (Chap-
ter 6),

3. Strong local Ising interaction with Rydberg atoms (Chapters 4, 6),

4. Tunable injection of quantum fluctuation to the ice manifolds with cavity-mediated
all-to-all XX interaction (Chapter 6),

5. Measurement of time-resolved auto-correlation function g (7) for cavity photons
(Chapter 6),

6. Engineering connectivity of Ising interaction within the local plaquettes to create
gauge constraints,

all of which are in principle possible favorable with our platform. In the first sight, the last
requirement (i.e., energetic constraints on the Gauss law) may seem physically impossible
for cold atoms in two-dimensions, because of the locality of typical atom-atom interactions
(i.e., two atoms at the farthest vertices on a square lattice have weaker interaction strengths
than those in nearest-neighbors). Let me first discuss our unique approach for enforcing
the dynamical gauge constraints through system-reservoir engineering (Fig. 2.11b).

2.5.1 Local conservation laws with Rydberg-dressed system-reservoir
engineering

Natural interactions between atoms usually display a power-law decay. While we would
require locality in our Ising interactions, we also need to ensure that we have a faithful 2D
mapping of the tetrahedrals of the Pyrochlore lattice. One approach is to use Rydberg-
dressing methods to engineer the shape potential to an approximate box-like shape. Due
to the limited degrees of freedom, it is not possible to achieve the exact mapping of the
Gauss law for the ground-state spin ice configurations, as the nearest-neighbor bonds are
~ 20% stronger than those at the next-nearest-neighbors [116]. We believe that this level
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of disorder would be more than sufficient to break the degenerate ice subspace at energy
scales even comparable to the vison. Furthermore, because the U(1) quantum spin liquid
is a gapless phase with an emergent photon mode, the deconfined Coulomb phase would be
very sensitive to small disorder on the order of the ring-exchange energy, thereby breaking
the ice degeneracy for large system size even before quantum fluctuation is considered.

As shown in Fig. 2.11, our general approach is to separate the physical atoms into
system ¢ and bath A. For consistency, we label i for the spins in the system space, and A
for the reservoir spins. From this open-system description, we use the local Ising interaction
~ A, between the system and bath atoms, and attempt to integrate out the reservoir atoms
from the picture (as if it is a cavity). Furthermore, we aim to adiabatically eliminate the
Rydberg-degrees of freedom to arrive at an Ising constraint for the hyperfine ground-state
(Cs clock state transition). Specifically, the reservoir atoms are placed at the centers of
the filled plaquettes to mediate the Gauss law.

The system-reservoir interaction for the transition arranged in Fig. 2.11c is given by

Hep =Y > 0604060 +6)] 060 +[(0+A,)68+Q(6 0 +610) +w,6 0 @60 (2.40)
A ieX

with 6,5 = |a) (B8] and Rydberg-Rydberg van der Waals (vdW) shift A,. In the limit of
large detuning § > ,Q — A,, we adiabatically eliminate the Rydberg state |r;) of the
system atoms, leading to an effective system-reservoir Ising coupling between the system
atoms in the ground-state subspace (computational basis |g), |s)) and the reservoir atoms
still in the electronic subspace (computational basis |g), |r)),

SR—ZZ A)+J Am &Y w6 + w6 ) (2.41)

A el

with J, = QQ and J, = 35 A . We now use the spin notations for the system and reservoir

atoms as follows O’é) =50+ g(,ig), 6[()’4) &l 4 f{;), &) =6l — Ug(fq), e =6l - &_((,‘;),

with the effective system-reservoir Ising Hamlltonlan

(i) ()
A5 =303 06l 4 Mo+ a5, (2.42)
A el
where w(()i) = Ws — #a w(()A) = w, + Jr;ng Jia = JQ4JT.

In order to obtain the reduced dynamics of the system atoms, we add a perturbation
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Rabi oscillation Q,(G,4e~"*"+ h.c) to the reservoir atoms in the rotating frame of v, = w(()A)

ag =33 “;0 + Ja6D6W + Q6. (2.43)

We then eliminate the reservoir atomic DOF's with J;4 < €2, to obtain the spin ice con-

straint Hamiltonian w
2 0 A(s ~ (i) ~ (]
Hice = E 709 + Aur g Mgl (2.44)

) 1,j€X

with an Ising energy Aap = ”gj > 0 that is now equal among all bonds within the filled

plaquette X. We emphasize that our mapping to H... with a reservoir-mediated interac-
tion is inherently a driven-dissipative process, as spontaneous emission of the reservoir’s
Rydberg state (which is directly driven, unlike the system atoms) is also coupled to the
system’s DOFs. Hence, we derive the effective Master equation for the system atoms

l

po = e, ] +/~'s[ﬁs] + L[5, (2.45)
Lo = Y 3a6p6 =606 p, — pu6 V6l (2.46)
i,j€X
. s A a(B) A A oA (i
Lilps) = D25 (2600.60 = 60p. - poy), (2.47)
with effective dissipation 74 = Jia Sl = Q =T',. Interestingly, the second line describes

the correlated dephasing for the Ismg spins around the filled plaquettes, which nonetheless
do not break the ice rules!

2.5.2 Cavity-mediated interactions

Now that I have established the Ising spin ice constraints on the filled plaquettes, we now
turn our attention to the quantum fluctuations of the XX Hamiltonian. For this, we utilize
an infinite-range cavity-mediated interactions (See Section 1.2.2 for the Dicke model in an
optical cavity)

Hean = Aar Z W60 + Aata + Z 2pg. 69 +aWah, (2.48)

i,jeX
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where I have eliminated the excited state |e) and set the cavity detuning to A, = w, —
2
Vp —Wo — i—z.

Further eliminating the cavity field, we recover the effective quantum spin ice model as
well as its dissipative Lindlad terms

ﬁQSI = JJ_Z(&(Z‘)&() ' j —i—AAFZ Z O’ J (2.49)

i’j < ,j>€&
R (S R offf off f ~ R
Ps = _ﬁ[Hicmﬂs] + Ls[ps] + L] + L3ps] + Lelps], (2.50)
~ ’71{ ~ j 3 ~
LAp,] = Z Opet) —606Dp, — peed), (2.51)
R Ve A i
Lelps) = 25(2 50,6\ — 6D p, — puo), (2.52)
with effective dissipative rates 7, = 252625 Ve = 3 AQF and the infinite-range XX term
QQ
JJ_ = Ag ch

2.5.3 Experimental parameters

In order to see the feasibility of this experiment, we would qualitatively like to have Fng >
10, where o

o = 160, ((Z0) (9 (9 (2.53)
ring — T QAe Ac Av .
Ftotal = 5/14 + 5’5 + :Yn + :Ye- (254>

For the adiabatic elimination approximation, Dr. Dong have numerically compared the
dynamics of the 4-body ring-exchange interaction (Eq. 2.34) within the gauge-invariant
sector with the full model in Eq. 2.49 for the minimal quantum spin ice arrangements that
give rise to a single 4-body plaquette (N = 12 system atoms and N = 4 reservoir atoms).
With g./A; ~ g./A, ~ Q)6 ~ Q,/A, >~ 0.1, Dr. Dong has found that there is less than
1% deviation from the effective Hamiltonian over time scales T' ~ Jing Roughly speaking,

for direct [nPs/) Rydberg excitation with our high-power 317 nm laser fields (Chapter
4), I can maximally estimate Q, ~ 27 x 10 MHz due to the low diffraction efficiencies
of the superpixel method, compared to the grating-based projections. The resulting ring-
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‘ Parameter ‘ Formula ‘ Result ‘ Comments

A, N/A —800 MHz | [60P;/2,60P; /o) with interatomic distance 3pum
0 N/A 300 MHz N/A
Q 3mW over m X 1um? | ~ 10 MHz Approximation: Q < |5+ A,

J; : (%2 — 3 fi) ~ (0.3 MHz System-reservoir coupling
Q. N/A ~ 6 MHz Approximation: €, > J;4

2

Aar ‘5]2’:‘ ~ 15 kHz Approximation: £, > J;4

Adivect ~ % (%)4 % ~ 12.5 Hz Direct interactions between system atoms.
Joft ~ K-ZC ~ 150 kHz Effective cavity coupling rate.
J ~ gAC; ~ 1.5 kHz XX spin-exchange coupling.

Jring A{A%F ~ 150 Hz 4-body ring-exchange coupling rate.
~y ~ AJ%F ~ 150 Hz 4-body ring-exchange coupling rate.
A ~ ()T, ~ 1Hz Effective dissipative rate by |r) (T, ~ 1kHz)

2
He ~1 (i—) r. ~ 3Hz Effective dissipative rate by |e) (I ~ 30MHz)
2
o ~ <§:A°C> K ~ 1Hz Effective cavity induced spin decay (x ~ 10kHz)
2

Aa ~ <},2A> T, ~ 2.5Hz Effective decay by reservoir atom (I', ~ 1kHz)

Table 2.4: Experimental parameters for realizing quantum spin ice models.

exchange coupling rate is then Jyne ~ 16 kHz. On the other hand, I estimate the total decay
rate I'iora ~ 10 Hz in our system. More conservatively, if we assumes 30% sum-frequency

and second-harmonic-generation, I expect the coherence-to-dissipation ratio

Jring 1 I
— X~ . in
Ciotal 5

Table 2.4, T provide the laboratory parameters for our platform to realize a quantum spin

ice model.

72




Chapter 3

UHYV chamber system

In our experiment, we require a complex cluster ultra-high-vacuum (UHV) chamber system
to meet two competing requirements. On the one hand, we require large background Cs
vapor density and thereby an UHV environment with P ~ 10~ Torr limited by background
Cs atoms. This Cs-rich vacuum environment provides a means to create high-density
Doppler-limited cold atomic gases in a standard magneto-optical trap (MOT). On the
other hand, the lifetime of the atomic gas would be significantly limited by the surrounding
room-temperature atoms. We thereby also require an XHV (extreme-ultra-high-vacuum)
environment with P < 107!° Torr, in order to trap and further cool Cs atoms to its
quantum-degeneracy and eventually to perform serious quantum optics experiment for
elongated durations.

Our solution to this problem is to divide the UHV chamber systems into two subsystems,
and to establish extreme pressure difference via a conductance-limited differential pumping
tube. The differential pumping tube is designed to achieve the target pressure differential
in the molecular flow limit, and also to allow the continuous transport of cold atoms. The
basic experimental sequence is to collect and laser-cool a large number N ~ 101 ~ 10! of
Cs atoms in the background-limited “Source” chamber (P ~ 107'° Torr), and then optically
transport a large fraction of these atoms continuously through a “pushing” field €,(7) to
create a cold atom fountain in the “Science” chamber for further cooling and deterministic
transport operations to our science cavity platform with high-density p ~ 10 ~ 10'¢ /cm?
at extreme X-ray limited pressures P ~ 107!3 Torr (Chapter 6). To the best of my
knowledge in the literature, this is the lowest operating vacuum pressure for any ultracold
atoms/ions experiment by a factor of 10, and is on par with cutting-edge surface physics
and particle accelerator experiments (the Intersecting Storage Ring in CERN), reaching
close to the pressure of interstellar void.
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Figure 3.1: 3D CAD rendering of the UHV-XHYV system. The detailed descriptions
of the sub-systems are provided in the main text.

In designing such a complex chamber, we need detailed considerations of the surface
quality and material properties, vacuum passivation techniques, as well as new methods to
reduce the outgassing and permeations of atmospheric noble gases to reach the XHV level
pressure. I have devised a few novel techniques to achieve these extreme levels of pressure
with chemical activation and surface polishing at the molecular level, as well as with
“rainbow” anti-reflection coatings on the quartz viewports.With these technical advances,
I was able to install a relatively complex experimental station (Chapter 6) into the main
Science chamber. In collaboration with VMT, I have developed a relatively reliable recipe
of controlled thick oxide layer growth on the interior of the UHV chamber as passivation
layer. In collaboration with Gamma Vacuum, I have utilized a specialized XHV ion-pump,
which can read out XHV-level pressures with reduced X-ray limit of the cathode wire.

Before I jump into further description of our chamber, I will first describe some cau-
tionary design “rules” when composing a UHV chamber from scratch.
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3.1 Vacuum chamber design rules

3.1.1 Vacuum-compatible materials

Components that are assembled to the chamber setup should be vacuum-compatible. In
case that you also have mechanical and optical structures going inside of chamber, so do
each part and as well as the adhesives shall be well-prepared for UHV environment. At
pressure levels 10713 Torr, we are sensitive to a monolayer of atoms coating the walls of
the chamber (monolayer time in our system is approximately 1 year and mean-free path
A =~ 8 x 10° km), so that we must reduce the overall surface area by creating extremely
smooth surfaces or by modifying its chemical properties so that the binding energy is
less than the room-temperature thermal energy to release atoms from the chamber walls.
Other important parameters of these low-outgassing materials include whether the parts are
affine to abrasive chemical and electromechanical cleaning (hopefully with little chemical
hazards), as well as whether the parts could be baked at a high-temperature only limited
by the Con-Flat (CF) joints. Furthermore, we also need to consider the electromagnetic
properties of the materials, as a small amount of ferromagnetism and static bound charges
can significantly affect the ground state Zeeman and the excited Rydberg coherences.
Generally, we can categorize the vacuum materials to annealed metals, ceramics, glass
dielectric, and ultra-low-outgassing polymers.

Fully annealed metals

Due to its high machinability and durability, metals are generally the preferred choice
of materials for vacuum applications. Moreover, metals can be vacuum-melt at high-
temperature T ~ 3500°C to completely degas the atmospheric gases in the reforming
process.

Austenitic stainless steels (SS) contain a high level of chromium so that at atmospheric
pressure it naturally forms a dense Chromium Oxide C'r,O layer. In fact, this thin dielectric
layer is the main reason why SS does not corrode in contact with water. It is important
to know that, even with vacuum melting (7" ~ 3500°C') and vacuum firing (7" ~ 950°C'),
the background pressure is insufficient to avoid H, gases that get trapped into the bulk of
most metal *. The outgassing from the SS walls of the chamber is generally what limits

2As a cautionary note, when performing vacuum firing, it is important to notify the vendor of the
annealing schedule used in our group to prevent accidental depletion of Nickel atoms. This depletion is
reported to reduce the tensile strengths of SS chambers, possibly causing permanent damages to the knife
edges of the CF flanges, in addition to creating weak magnetization.
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the pressure of a UHV system to ~ 107! Torr level. The standard method is to perform
a UHV baking at T' > 350°C', so that Hy atoms can migrate towards the surface, which in
turn would be depleted through the UHV turbo pump system. In addition to performing a
UHYV baking at elevated temperature 7' ~ 400°C' with a home-made vacuum oven, we have
developed a method to controllably enrich the CroO layer on the interiors of SS304 and
SS316LN through vacuum passivation in collaboration with VMT corp in South Korea. I
describe this procedure in Section 3.2.3. We utilize SS304 for UHV components in large
distance from the atomic cloud, as it is known to have stress-induced magnetization effect.
For the Science and Source chambers, we strictly confine the materials to SS 316L(N),
with (N) indicated for vacuum-remelting procedure for desorbing N gases. For vacuum-
welded SS parts (e.g., Tungsten Inert Gas welding), we ensure that the piece undergoes an
electropolishing procedure to avoid virtual leaks and remove oxide layers.

Aluminum alloy is another great vacuum material, although most Al alloys are in-
compatible with the stringent outgassing requirements of our experiments. I confine our
considerations only to Al 6061-T4 and Al6061-T6 (Mg and Si enriched), both of which
are popular materials you could find in stock in most machine shops. The critical chal-
lenge with machined Al 6061 is the surface finish. Unlike SS, the oxidization of Al in
room temperature is quite aggressive, and the surface Aluminum Oxide layers are usually
porous, creating virtual leaks and increasing the overall surface area by a few orders of
magnitudes. We prevent this from occurring by performing a new electropolishing recipe
which we optimize for Al 6061 (Section 3.2.2). This recipe removes both the porous oxide
structure and recreates an optically smooth surface valley (reducing the effective surface
area). In addition to SS and Al alloys, we also use Ti 6AL4V alloy for the blade electrodes

Material | Outgassing rate (Torr-L/s/cm?) Notes
AT 6061-T4 I x 107 [117] 24-hr UHV-bake @ 200°C.
Al 6061-T6 2.8 x 10710 [115] 10-hr UHV-bake @ 200°C' & nitric dip
OFHC 4 x 1071 [119] nitric-sulfuric dip.
SS 304 1 x 1072 [120] commercial finish (Varian).
SS 304 4% 10712 [120] 20-hr UHV-bake @ 500°C.
SS 304 2.5 x 10710 [119] electropolishing.
SS 304 2 % 107 [121] Air-baked @ 400°C
SS 316L 1.6 x 1074 [121] Air-baked @ 400°C
Ti 6AL4V 1.8 x 1072 [122] N/A
Mg alloy 3 x 1077 [122] 4-hr vacuum fire @ 800°C

Table 3.1: Outgassing rates of fully annealed metals.

76



and the V-grooves of the Science cavity platform. Titanium has similar characteristics to
Al 6061-T4, except that the oxide layer is generally much thinner 3—5 nm and non-porous.
In addition, Ti atoms can act as a sublimation vacuum pumping mechanism to absorb sur-
rounding non-Noble gases! Lastly, we use Oxygen-Free-High-Conductivity (OFHC) copper
for the CF gaskets for the sealants between the SS304 and SS316L. UHV components. We
also use OFHC as radiation shields to damp out the blackbody radiation shifts in our ULE
reference cavity design (Chapter 4). Gildcop, a trademark for OFHC mixed with Alumina
particles, and Copper-Beryllium alloy are both good vacuum materials with excellent ten-
sile strengths, and are now used for the host materials of UHV chambers. The cost for
these chambers were prohibitively expensive for us to implement.

UHYV ceramics & polymers

Though ceramics and glass are not as easy to machine as metals, but it is still beneficial
for uses in thermal and electrical insulations. We use macor, a machinable glass-ceramic
by Corning, for electric breaks and ceramic components in the UHV chamber (particularly,
macor 9658). Care must be made upon CNC machining to avoid brittling by stress reliefs
on the macor piece. Zircon porcelain and Pyroceram 9696 are both similar to Macor.
We also use fully vitrified Aluminum Oxide Al,O3 (known as Alumina) for the interface
between Kimball Physics groove-grabber and the Science cavity platform, because of its
strength and low CTE. Alumina is stable at temperatures up to 1,900°C® and has very
high dielectric breakdown voltage, making them suitable for the insulation stack of our
high-voltage feedthroughs that drive the single-crystal shear-mode piezoelectric transduc-
ers (PZT). It is widely known that most piezoelectric ceramics are UHV compatible, but
care must be given to the metallization procedures of the electrodes®, as some PZT vendors
typically use epoxy for stack PZT. We use the PZTs from APC international Inc. In addi-
tion, one must choose PZT materials with high Curie temperature 7, to avoid depolarizing
the PZT ceramic upon high-temperature bake-out. Finally, when combining two different
ceramic materials, it is critical to closely match the CTE between the components. In this
way, we could ensure that the ceramic piece would not break down when the UHV system
is under high bake-out temperature.

In terms of elastomers and polymers, we frequently use Teflon (PTFE) as the insulation
layer of UHV magnet wires. Kapton tape consists of multlayer PTFE films attached by
UHV adhesives. We also use PEEK for low-temperature insulation layer, as it has lower

Phttp://accuratus.com /alumox.html.
¢Silver-frit-firing is a fine way to create the electrodes on PZT ceramics in terms of the UHV compat-
ibility.
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outgassing rate than PTFE and better formability. For vibration isolation platforms, we use
Viton and Kalrez. For polymer, quantizing the rate of gas desorption is quite tricky, as the
polymer material is quite porous and gas can penetrate through (permeability). As a rule of
thumb, we never use polymer for situations where there is a large pressure differential. This
would usually limit the application to high-vacuum regime P ~ 107¢ Torr. For lubricants,
we use UHV-compatible electroplated silver, MoS,, and PVD-grown WS,. A standard
way to quantify the outgassing rate is the total mass loss (TML) and the collective volatile
condensable material (CVCM), which you look up from NASA Outgassing Database?.

Material Outgassing (Torr-L/s/cm?) | Temperature (°C') | Young’s Modulus
Macor ~1x1071 @ 800°C 66.9 GPa
Alumina 1 x 1071 [122] @ 1,650°C 300 GPa
PTFE 1% 1078 [127] 204°C 575 MPa
Viton E60C 6 x 10710 | 225°C N/A
Kapton 1x107H 400°C' 4.0 GPa
Kalrez 1 x 10710 [122] 200°C N/A

Table 3.2: Outgassing rates of fully annealed metals.

When we assemble the UHV components, the sealants and adhesives should be vacuum-
compatible as well. The vacuum properties of most UHV adhesives are like black magic.
In choosing the UHV epoxies, we need to choose epoxies with the lowest TML to avoid
coating our high-finesse mirrors. In addition, we must ensure that the cure condition is
as high as possible and that the glass temperature 7} is sufficiently high to ensure that
the parts do not move during the bake-out. One anecdotal story is that a Vacseal, the
usual suspect for those trying to find a UHV sealant, can actually evaporate and coat your
UHV chamber, even though the outgassing rate (in terms of gas release) is actually very
low. The epoxy should be close in its CTE with the host material, to avoid cracks during
bake-out and stress-induced birefringence. Given the significant development cost of our
system (~ $1M for the Science cavity platform), it was critical that we understand the
vacuum behaviors of the UHV epoxies.

Permeability of glasses

An important difference of UHV chambers used in AMO experiments and and in surface
science is the presence of wide-viewing angle UHV glass viewports. In the limiting case

dhttps://outgassing.nasa.gov/help/og_help.html

78



of introducing Hydrogen diffusion oxide layer on SS chamber walls, the next limiting case
would be the diffusion of light atoms through the amorphous network structure of the glass.
These structures are relatively large and provide an effective channel for Helium to diffuse
through the viewport. Much of the research on He permeability of different glasses has been
carried out in the 60s and 70s [123, 124]. In Ref. [123], the author does an extensive survey
to determine the glass permeability constant K (unit: cc/s/area (cm?)/thickness (mm)/Hg
pressure difference (cm)). Not all glasses are created equal, and modifier molecules doped
to the SiOy glass material can fill these holes, resulting into very low permeation rates.
Unfortunately, most dopants to glass materials are optically active, and thereby have a
very strong solarization effect (the optical loss is dramatically increased, when exposed to
light with wavelength below 300 nm). Since we must use near 300 nm high-power laser, we
were restricted to fused silica and quartz materials viewports. However, if we were able to
use other glass materials, we would have looked into aluminosilicate glass, a composite of
Sapphire and silica, where it is predicted to have 5-order of magnitudes smaller K [124]. In
order to prevent the permeation of Helium atoms, we instead grow thick films of atomically
dense anti-reflection coatings. As we will see in the next section, these Anti-reflection (AR)
coatings also play the roles of He diffusion layer.

3.1.2 Vacuum conductance

Before we move forward with the design, it is instructive to consider the two regimes of

aerodynamic flows relevant for vacuum physics. The first is the viscous (continuous) flow

regime in the low pressure spectrum. Here, the motion of gas particle is very much similar

to what we experience at atmospheric pressure. As shown in Fig. 3.2, in this regime, the

gas flows through the aperture due to the frequent intermolecular collisions that guide the

flow. This occurs when the mean free path [y of the gas molecules is significantly shorter
than the aperture size

kgT
lo=—F7=—,
V2mpd?,

where T is the temperature (in K), p is the pressure (Pa), d,, is the molecular diameter
(m), and m is the mass of the molecule.

(3.1)

As the system is being pumped down to high-vacuum (HV) and to ultra-high-vacuum
(UHV), the mean free path [ eventually becomes larger than the aperture size. This is the
other regime of molecular flow limit. In this regime, if a system is connected to a pump
through a small tube, the molecules would have a small line of sight (solid angle) to reach
the target position, and it would take multiple reflections from the walls of the chamber
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until the molecule could reach the vacuum pump. Hence, the pumping speed of the gas at
a particular location in the UHV chamber is also a function of the overall geometry to the
vacuum pump system. That is, even with a UHV pump with infinite pumping speed, the
effective pumping at the outgassing source within the chamber may be limited significantly
by the “conductance” C' of the system (unit of L/s)

L
Ctube = 124 [L/S] X ﬁ, (32)
L
Copow = 12.4 [L/s] x D—ef, (3.3)
D 2
Caperture = 11.87 [L/S] X (5) s (34)

where L is the length (cm) of the tube, D is the diameter (cm) and Leg = 182E x £
is the effective length (cm) of the elbow (enlarged by the #-bend). The coefficients that
relate the geometry to the conductance is given by finite-element analysis for different gas
species. In the molecular flow regime, the conductance C' can also be utilized to isolate

the pressure differentials between two UHV chamber by designing a conductance-limited

W

Continuous Flow Molecular Flow
Figure 3.2: Vacuum flow regimes. Left Continuous flow. This happens in low vacuum

which is also called viscous flow. Right Molecular flow. Gas molecules flow is suppressed
by collision with the wall. Transition between two flow regimes happens around 1Pa.
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UHYV tube or aperture.

At an UHV pressure of 1071° Torr, mean free path [ > 1 km so that the overall system
is safely in the molecular flow regime. In order to estimate the final background pressure
with our design, we can readily use the concept of vacuum conductance to understand
the effective pumping speed at the location, where outgassing is expected to occur. As
conductance is a measure of flow, C' follows the same rule as the capacitor rule, when the
vacuum components are connected in series or parallel. With these toolboxes, it is possible
to compute the overall conductance from the center of the UHV chamber to the UHV
pump. For instance, if you find that the total conductance is only 10 L/s, you would need
to choose a vacuum pump at least 10 L/s. On the other hand, installing a 100 L /s ion pump
would not improve your base pressure significantly, as the pumping speed would still be
conductance-limited to 10 L/s. Indeed, a large part of the UHV design effort is dedicated
to optimizing the overall C' to the vacuum pump, while limiting the conductance between
parts with large pressure gradients. As we will see in the next section, it is important to
remember that, at the XHV level, almost everything would be outgassing, including the
pumps themselves. For instance, it was important for our experiment to make sure that
the ion and the NEG pumps were directed away from the Science cavity platform. For the
ion pump, the local plasma sputters Titanium to the walls of the ion pump that acts as a
distributed sublimation pump for active gas loads, and these Ti atoms may migrate over
to the Science chamber. For the NEG, there is a large degree of active gas loads during
activation process, which may increase the outgassing rates on the surfaces of the mirrors.
The conductance of these UHV pumps were thereby limited to the Science chamber to
avoid a direct line of sight.

In a similar fashion, upon installing mechanical components within the UHV chamber,
it is important to ensure that the mating of the parts has sufficient conductance for the
gases to conduct away. That is, it is crucial to use vented and slotted UHV screws, and
to mark venting traces on surfaces for gas removal. These sources of outgassing with
significantly limited conductances (e.g., trapped air in a screw hole) are known as virtual
leaks, and are one of the common mistakes in designing UHV chambers. The simple rule
of thumb is to create through holes on every mating surface and create slotted lines on the
screw marks.

3.1.3 Vacuum pumps

Once the UHV chamber has been designed with optimal conductance, it is now the time
to choose the right UHV pump with the right pumping speed L/s. For most pumps, the
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Figure 3.3: Venting holes on the OFHC radiation shields. A venting hole is machined
through the center of the SS screw to remove virtual leaks.

pumping speed is actually a function of the type of gas, but generally the pumping speed
is quoted for Ny gas. The dominant gas loads for SS UHV chambers are Hy molecules and
He atoms, yet the pumping speeds for most pumps are very inefficient in extracting out
these gas loads (and noble gas). Hence, the main challenge for XHV is to first reduce the
outgassing rates for these gas loads and then to find pumping mechanisms that are effective
for small atoms and noble gases. In terms of the pumping sequence, we can separate the
vacuum pumps largely into two categories - extraction pumps and storage pumps. We
begin with extraction pumps (scroll pump — turbo-molecular pump) to bring down the
base pressure close to UHV for the storage pumps to operate. After a few baking cycles, we
transition over to the storage pumps (ion pump, Ti-sublimation pump, non-evaporative-
getter pump, and cryopump) and isolate the UHV system from the environment with a
all-metal-gate-valve. In the following, I will describe the rationales behind our specific
choices of the pumps.

Sealed Compressed

Gas
IN

Figure 3.4: Working principle of scroll pump. Two Teflon scrolls enables gases to
enter and be compressed. This compressed gases will be ejected with high speed. The
black scroll is fixated, while the red orbits around eccentrically for gas compression.
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Extraction pumps

Scroll pump In our pumping cycle, we begin a 5-minute pump down of the Agilent
TwisTorr 304 FS turbo-molecular pump chamber with the IDP-3 scroll pump to the base
pressure 5 x 1072 Torr. The choice of the backing pump was made for scroll pump,
because other atmospherical mechanical pumps were either not dry® or had the possibility
of catastrophic failure (diaphragm pump’). Indeed, when the turbo system is turned on,
we will require steady and reliable backing over many months to complete the baking
and cleaning cycles. The working principle of scroll pump relies on the compression of
trapped air molecules (with a scroll compressor). At the outlet of scroll pump, there are
two archimedean sprials. One is fixed structure and the other is orbiting eccentrically in
order to trap and compress trapped gas. As shown in Fig. 3.4, compressed gases is pushed
out of scroll pump.

Turbomolecular pump After pressure reaches below 1072 Torr, the next step is to turn
on TwisTorr 304 FS turbopump with 6-in CF flange. Like the scroll pump, turbomolecular
pump makes use of compression to establish the flow of gas in the desirable direction. The
turbo fans consist of stationary and rotating blades. The injected gas is accelerated through
the supersonic rotating blades to the backing scroll pump. To avoid the heating of the fans
and inadverted oxidization, the turbo fan speed is controlled by a microcontroller that
continuously monitors the torque of the fans and the local pressure of the turbo chamber
with the Piranni gauge. After 30 minutes, our turbo system reaches a pumping speed of
300L/S (N gas) and we have frequently observed the base pressure of 107 Torr of our
main chambers through the inverted magnetron-Piranni gauge. The other technical detail
is that our turbo pump has magnetically levitated ball bearings, so that it is compatible
with moderate bake-out process to dry out water or small spills of acetones and IPA.

Storage pumps

Ion pump From around 107% Torr, we could start the ion pump. Instead of extracting
the gas to the atmosphere, the ion pump operates by creating gas plasma with high voltage

°Some manufacturers may advertise that their mechanical pump is oil-free or oil-less. But even a
rotary-vane pump should ideally not have oil in the pumping section because of the cold trap. In reality
for UHV systems, this is inadequate as the oil can still migrate through the cold trap and coat a few
monolayers on the UHV chamber walls. Some oil-less pumps are indeed oil-free, but these pumps may
actually be water-soluble based fluids, which are still undesirable.

fDiaphragm failure involves the fracture of the diaphragm and sudden loss of vacuum.
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3 ~ 7 kV through a cathode-anode assembly. The strong bar magnet (~ 0.1 T) on the
exterior of the ion pump localizes the plasma that eventually reacts with the Titanium/-
Tantalum cathode, producing metal alloys that sputters onto the wall of the ion pump
chamber. Because of this sputtering process, it is possible to inadvertedly coat the anode
pin with metal, thereby giving a ghost current (limited our base-pressure reading). For
this reason, we usually blurp with a high voltage 10 kV repeatedly to discharge the anode
pin at 107% Torr. Because the Ti sputtering rate is proportional to the pressure, we limit
ourselves from continuous operation until the base pressure reaches 1076 Torr. In this way,
we are able to increase the lifetime of the pump and also reduce the Ti contamination in
the main chamber.

In fact, for the Science chamber, the concerns with Ti contamination were serious
because of our science cavity mirrors. In addition to limiting the conductance®, we use a
special diode-based XHV ion pump 45S-DIX-2V-SC-110-N (50% of Titanium and 50% of
Tantalum cathode) from Gamma Vacuum with an SEM shielding that further blocks the
emission path of the sputtered diode materials. With this configuration, pumping speed
for Ny gas is lower than other configurations (e.g., Starcell designs used in our Source
chamber) but the chemistry of the cathode allows for noble gas pumping. We install p-
metal containers around our ion pumps to reduce the stray magnetic fields that would
generally affect the internal Zeeman sublevels of our Cs atoms. Building upon Gamma
Vacuum'’s expertise through Jefferson Laboratory, we have modified this particular batch
of ion pump for an extremely thin Ti ground collector (30um diameter) to reduce the
X-ray limit". With this change, we were able to monitor the vacuum pressure down to
101 Torr, better than all commercially available UHV gauges. In addition to the XHV
reading of the local pressure within the ion pump chamber, we installed a nude ion gauge
(X-ray limit ~ 107! Torr). Because of the availability of low-outgassing XHV reading on
our ion pump, we only used the ion gauges during the bake-out and the initial pumping
cycles 1077 ~ 107! Torr, as we found them to be outgassing when turned on (possibly
due to internal sputter actions on the ion gauge’s macor ceramic breaks).

€Simply avoiding a direct line of sight turned out to be more than effective, as sputtered Ti alloys
have very large stiction coeflicients with the SS walls. Unlike the conductance rules described above,
which applies to non-interacting gases, Ti atoms could only reflect from the surface if it has already been
enriched with many Ti monolayers.

hX_ray limit is the fundamental limit of cathode ion gauges, where small but non-negligible X-ray
photons in the blackbody spectrum at room temperature cause photoionization on the ground collector
that generates stray current fluctuation, thereby limiting our capability to read the background pressure.
Since the X-ray limit is a function of the effective cross-section of the collector wire, a thin collector wire
allows the reading at the XHV level pressure.
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NEG pump In order to further improve the base pressure of the Science chamber, we
utilized two kinds of non-evaporative-getter (NEG) pumps from Gamma Vacuum (N100)
and SAES group (D100). The purpose of this passive pump was to improve the pumping
speeds of Hy gas (the dominant gas load in a UHV environment, except for He). Unlike
other gettering pumps (e.g., Ti sublimation pump), the NEG pump, in principle, only emits
the desorbed gases and do not rely on the evaporation of highly active metals. This has a
particular advantage for the Science chamber, as the NEG pump would not only pump H,
gas but also pump out any Ti atom that tries to reach the Science chamber. NEG pumps
are made of sintered metal alloys (ZrVFe in this case) to increase the surface area, in which
gas molecules are bombarded and absorbed deep into the alloy materials. The NEG pump
is activated by desorbing the saturated NEG alloys at an elevated temperature (~ 500°C')
with an UHV oven, while being backed by the turbo pumping station. Our recipe for the
activation is closely related with our baking cycle, and we will describe our protocol in the
next chapter.

For next generation of UHV chambers, we have investigated the possibility of coating
the inner surface of chambers with TiZrV material through our home-made DC-magnetron
sputter. TiZrV is a new NEG material with very low activation temperature 200 ~ 300°C,
and is currently being used in the CERN interstorage rings. The benefit of this method
is that the NEG coating could be readily activated from the high-temperature bake, while
providing a penetration barrier for Hy gases within the SS chamber.

3.1.4 Atomic source

Instead of using Cs getter oven sources (SAES), we decided to use Cs ampoules (traced
with 99.99% from Sigma Aldrich) for our atomic source. The rationale was that Cs getters
use reagent materials to inhibit the oxidation rate in atmosphere, and these contaminants
may limit the background (non-Cs) pressure in the Source chamber. In addition, a typical
Cs getter would only contain a few mg of 33Cs atoms, thereby limiting its lifetime to only
a few years. Given the effort and resources put into this project, we decided for a longer
term solution by using a Cs ampoule. Unlike Rb counterparts, the partial vapor pressure
at room temperature is sufficient to fill the source chamber. In fact, as shown in Fig. 3.5,
we control conductance with the aperture size with an all-metal angled gate-valve. We
chose not to put a glass viewport, because the glass-to-metal transition' is known to be
reactive with Cs atoms. Because Cs itself is an evaporative gettering material, when the

"Usually glass frits are fused to Kovar sleaves to avoid CTE mismatch.
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Figure 3.5: Conductance control of Cs ampoule with all-metal gate-valves. The
flow of Cs atoms in the ampoule (Sigma Aldrich, 99.99% trace) is controlled by the opening
of the UHV gate valve. The UHV gate valve assembly is attached to the Source chamber.

Cs source is isolated, the local pressure near the ampoule could be maintained at ~ 1077
Torr in the molecular flow regime.

In order to load the Cs atoms from the ampoule (1g) into the UHV chamber, I have
constructed the gate-valve assembly in a No-filled dry glovebox in UQML by pumping out
O, and water vapors to < 1 Torr. I was able to transfer approximately > 300 mg of Cs
atoms to the source chamber. Because of the explosive reaction of Cs with atmospheric
moisture, extreme care was taken to avoid chemical hazards by the exposure of the glovebox
with Cs. The remaining Cs atoms were transferred to a portable vacuum box for chemical
disposal. We store the unopened Cs ampoules and getter sources in a high-vacuum storage
chamber to avoid oxidization.
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Figure 3.6: Rainbow AR coating. The black solid line depicts the theoretical reflectivity
of our Rainbow anti-reflection coatings applied on the MPF UHV viewports based on
the transfer matrix formalism. The red dots are the result of the spectrophotometric
measurements (450 nm to 1200 nm) performed. The gray areas depict the functionals that
compose the objective function for numerical optimization.

3.1.5 Differential pumping tube

We use a differential pumping tube to isolate the Science and Source chambers. The aper-
ture and length of the tube are optimized both from the simulation of atomic trajectories
in Chapter 5 (transfer efficiency), constrained by the conductance ratio go—“n < 2(1)—0. This
conductance ratio was determined by the expected equilibrium pressure of ~ 1071° Torr in
the Source chamber. The differential pumping section was formed by a SS316L. microtube
(Swagelok, diameter 1/8 inch, length 2 inch), and was TIG welded onto a double-sided
blank CF flange. In order to reduce the possibility of forming a virtual leak, Sainath Mot-
lakunta and Prof. Choi electropolished the part in a sulfuric-phosphorous acid recipe with
V =13 V. The tube was aligned at the normal of the CF flange with angular uncertainty
of 0.3° on a lathe. Because the differential pumping tube connects two heavy UHV cham-
bers, it is important to install a 1.33-in bellow as a pressure relief. We have had some bad
experiences with improper pressure reliefs, which caused vacuum leaks during or after the
high-temperature bake (possible due to the thermal expansion of the entire chamber).

87



3.1.6 UHYV viewports

Although diffusion bonding methods in viewports are popular due to their strengths and
high-temperature compatibilities, I have decided to go with a vacuum-brazing method
developed by MPF products. Vacuum brazing works by adding a (somewhat magnetic)
filler element (usually, lead alloy) to the glass-to-metal transition sleeves. The sleeve is
subsequently fusion bonded to the SS316L: CF flange. Because the glass-to-metal bonding is
achieved with minimal heat ( 300°C' at most) to melt the filler, we do not expect significant
wavefront distortion ~ \/10 from the brazing process itself’. Because of the low glass
temperature of the filler, this process inhibits the high-temperature bakes to ~ 200°C.
Because we are limited to this temperature range anyway (e.g., Science cavity), I decided
to install the UHV viewports after the high-temperature pre-baking cycles.

In order to reduce the scatter losses and to avoid local heating from high-power dipole
trap beams, we have requested MPF to use Corning HPFS (DUV synthetic silica) glass for
the viewport materials. The viewports on our Science chamber used a very unique anti-
reflection (AR) coating stack technique developed within UQML for thin-film deposition,
which we nickname the “Rainbow” AR coating. The name says it all. In qualitative terms,
our Rainbow viewports are basically macroscopic interference filterslt achieves remarkly
low loss and scatter across a wide target wavelength region with a macroscopic coating
thickness (nearly 100um)! In fact, our Rainbow viewports are basically macroscopic in-
terference filters. Prof. Choi adopted numerical techniques developed for narrow-band
multi-cavity filter designs to create a complex coating stack. This design optimizes the
transmission coefficients for bilayer fused silica (SiOs) - Scandium Oxide (ScyO3) films
on a fused silica substrate for the following wavelength ranges: 300 — 330 nm (for direct
Rydberg |nP;) excitation lasers, 455 nm for direct |7P;) imaging lasers, 500 — 550 nm
for |6Ps)5) <+ [nS;), |[nP;) second-stage lasers, 685 nm for blue-detuned magic wavelength
lasers, 852 nm or [6S;/2) <> [6P32) first-stage lasers, 892 nm for [6S;,2) < [6P/2) lasers,
935 nm for red-detuned magic wavelength lasers, and 1000 — 1100 nm for low-noise far-
off-resonant trapping (FORT) beams. I will revisit the coating techniques and the transfer
matrix formalism in Chapter 6. We use a planetary reactive-ion RF-magnetron sputter
optimized for large surfaces, with the availability of their sputter guns for Sc,O3 film depo-
sition. The RF magnetron sputter techniques can grow atomically dense thin films with no
porosity, and the thick films of ScyO3 can act as He diffusion barrier. Because the reactive-
ion RF-magnetron sputtering procedure involves high-momentum atomic deposition, there
is one drawback in terms of the clear aperture attainable in such systems. The metal flanges

IThe surface flatness will be distorted due to the mechanical stress after vacuum brazing. In the future,
we may consider performing magnetic fluid polishing after the brazing.
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Figure 3.7: Rainbow AR coating on 6-in UHV viewport. The color gradient visible
near the glass-to-metal sealing shows the shadowing effect due to the nearly collimated
sputtered atomic beams.

also create local field lines that distort the pathways for the atomic trajectories. Hence,
for our recessed UHV viewport used for the quantum-gas microscopy, MPF applied the
BAAR coating between 500 — 1000 nm (R < 1%) through a low-temperature ion-assistant
deposition (IAD) process. To avoid the shadowing effect, MPF sent the vacuum-brazed
glass-sleeve parts to their coating supplier, before performing the fusion bonding to the
recessed tube of the CF flange.
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Figure 3.8: 2D layout of recessed viewport. As our quantum gas microscope (QGM)
has numerical aperture of 0.45, it should be located near optical cavity. Therefore recessed
viewport is used and QGM is inserted. The sequence of optics represents our QGM object.

3.2 UHY baking procedures and preparation

3.2.1 UHYV cleaning procedure

After the parts are machined®, oil-residues must be removed with detergents (dish washer)
with the UQML “dirty” sonicator for 30 minutes. After this, we ultrasonic the parts with
reagent-grade (99%) or recycled spectroscopic grade alcohols (acetone) for 15 minutes'.
Once the oil-residues are removed, we perform ultrasonication with industrial detergents
with deionized water at an elevated temperature, depending on the component materials.
For instance, for stainless steel parts, we use the recipe from Kimball Physics, where we
repeatedly ultrasonic with 5% Micro99 for 60 minutes at 7' = 50°C until all the organic and
oil-marks are removed from the surface. When using the industrial detergents, extra care
must be taken for Aluminum and their alloys (Al 6061 series), because some detergents
have base pH that rapidly form porous oxide layers. I had good experience with Alconox
(15 min ultrasonic at 7" = 60°C). For OFHC copper, I use a special formula, Citranox,

kTt is highly desirable to request the machine shop to use water-soluble coolants.
IPlease follow the UQML SOP, which describes the necessity of the portable carbon-filtered fume hood
for ventilation.
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which descales and etches away the oxygen-rich Cu surface. Cu, Al, and Ti pieces are
all stored either in the oxygen-free glovebox or in the vacuum storage area to prevent
the natural oxidization. For Al and some SS pieces, Sainath Motlakunta and Prof. Choi
perform the electropolishing procedure, outlined in the next section. Only then, the UHV
cleaning procedure could begin!

After the early stage of cleaning, the vacuum components are cleaned with UQML’s
“clean” ultrasonic cleaner (Read the SOP) under a local cleanroom environment™. Because
we were aiming for XHV chamber assembly, it was necessary to maintain the laboratory’s
air quality on par with the QNC’s nanofab. Because of the size of the UHV chambers
upon assembly, it was deemed impossible to clean and assemble the vacuum components
elsewhere and transport into the laboratory (some parts were sensitive to oxygen). We first
install the portable chemical fume hood and check the lifetime of active carbon filters. It is
critical to clean the surrounding of the benchtops and wrap with UHV aluminum foils on
the surfaces nearby (with the shiny surface pointing upwards to avoid dust accumulation).
The day before the actual UHV cleaning, we turn on all the Ultra Low Penetration Air
(ULPA)/ High Efficiency Particulate Air (HEPA) filters that locally create class-10 clean-
rooms under the optical tables. Over 24 hours, we find that the overall laboratory space
can be maintained at a class-1000 cleanroom environment. We wear cleanroom clothes
with hair mesh and face masks near the entrance of the laboratory, as well as lint-free class
10 latex gloves to prevent any introduction of organic. Lint-free kimwipes are used for the
cloths, and ULPA-filtered 99.999%-purity Ny cleanroom airguns are used throughout for
immediately drying out the parts after immersion into spectroscopic grade (99.9%) alcohols
in class-1000, so that the dried vacuum parts could be quickly transported within UHV Al
foils to the safer class-10 spaces within the laboratories.

Procedures for stainless steel, aluminum (alloy), and titanium (alloy)

1. Rinse the parts with spec. grade methanol and prepare them on top of the UHV Al
foil.

2. Perform ultrasonic cleaning with spec. grade methanol for 15 minutes without heat-
ing. Please remember to double check if the portable fume hood is on with maximal
extraction speed.

3. Quickly rinse with spec. grade isopropanol (IPA) to remove salt residues that outgas
at XHV environment.

MThis is located next to the distilled water pipeline and drain.
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4. Use Kimwipes with IPA for the inner side of the vacuum components, and clean the
knife edges carefully with Thorlabs lens paper with teflon tip tweezer with 1 minute.

5. Perform ultrasonic cleaning with spec. grade IPA for 15 minutes without heating.

6. Use cleanroom Ny-gun to blow away residual IPA and place the cleaned components
under the ULPA filter.

7. Once the parts are completely dried, cover them fully with UHV Al foil for storage.
Be cautious not to touch the knife edge.

8. Store them in the class-10 area.

After the air baking, the parts should be cleaned with the same procedure as above, but
by replacing the methanol with acetone. This allows the solvents to preserve the delicate
Chromium Oxide barrier formed in the airbaking process.

Procedures for UHV viewports

Once all the metal components are ready to be assembled, we can now clean the delicate
UHYV viewports underneath of laminar flow. The key concern with the viewports is to avoid
thermal shock when the parts are exposed to alcohols, as they tend to evaporatively cool
the viewport. Large thermal shocks can cause damages to the glass-to-metal sealing. We
do not use the ultrasonic agitation, as trapped air bubbles may damage the AR coatings.
The work space of the ULPA laminar flow workstation is covered with the UHV Al foils.

1. Blow with compressed Ny gas for dust removal and rinse with spec. grade methanol
before placing the viewport to the laminar flow workstation. Please remember to
double check if the portable fume hood is on with maximal extraction speed.

2. Rinse wit IPA and dry under the laminar flow workstation.
3. Soeak lens paper with IPA and swipe gently across the viewport window.

4. Store them in the class-10 area.

Procedures for screws and tools

To clean vacuum screws and tools that we use for assembly, we recycle the acetone and
IPA wastes produced from cleaning the vacuum components above, and clean the parts
with the ultrasonic agitation. Store them in the class-10 area.
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3.2.2 Surface treatment

As T discussed in section 3.1.1, the outgassing rate is proportional to the effective surface
area. Microstructures created during the CNC mills generally give an effective area several
orders of magnitude larger than the surface area for an atomically smooth surface. Hence,
one of the greatest challenges in vacuum technologies is to find methods to get smooth
surfaces on the interior of the stainless steel UHV chamber. We begin this process during
the manufacturing by requesting a mirror finish and electropolishing on the interior of
the SS316L Science and Source chambers (Nor-Cal, Kimball Physics, and VMT corp.).
Unfortunately, because of the complexity of the process and abundance of alloying atoms
(notably Si), electropolishing is not commercially available for most Al 6000 alloys. Hence,
we developed our own recipe here.

Likewise, all custom metal parts that go into the Science chamber are CNC machined
and polished down at least to a mirror finish (surface roughness < 50 nm) from the machine
shops". After the mechanical components are cleaned through the preliminary stages®,
Sainath Motlakunta and Prof. Choi developed our own electropolishing (EP) recipes for
stainless steel and AA 6061 T6 alloys to further reduce the surface roughness and to
recreate non-porous oxide barriers?. EP removes metal debris from a workpiece by passing
an electric current, while the workpiece is submerged in an electrolyte (usually acid baths).
In an opposite fashion to electroplating, the workpiece is eroded to release metal ions to
the surrounding solution. Because the rough “bumps” have larger surface area exposed to
the solution, these are smoothen by the larger etching rate, to eventually create a smooth
surface. Particularly, our EP recipe for AA 6061 T6 alloys was quite challenging because
of the lack of literature, and due to the challenges of alloying Si atoms in the AA 6061
T6. When the usual EP procedures for SS parts are applied to AA 6061 T6, we observed
significant amount of Si atoms deposited on the surface of the piece, leaving the object
covered with semiconductor thin films and making it impossible to act as proper Faraday
shields with high electric conductivity. On the other hand, pure aluminum and other AA
alloy variants were either not compatible with the XHV environment and with the high-
temperature bake-out necessary for driving out the Hy atoms out of the bulk. All work
was strictly performed in the IQC chemistry laboratory with proper ventilation in the acid
fume hood.

"We have worked with a specific recipe for manufacturing vacuum parts with Mindrum precision,
RJB, Seaborne, and the Science machine shops. So they now understand the particular procedures and
restrictions on their coolants.

°See the first two paragraphs of Section 3.2.1.

PPlease note that we put kapton tape on the knife edges to protect from the abrasive EP process.
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Figure 3.9: Electropolishing procedure. The workpiece is connected to the anodic
terminal, and the separate cathode electrode is lowered into the electrolyte solution. The
electric circuit, formed by the anode-cathode terminals, creates electropolishing to release
metal ions, forming Hy vapors.

EP procedures for SS parts
e Descaling and picking —
(a) Removal of any alkaline film created by detergents with sulfuric acid dip for 1

minute.

(b) Rinse with deionized water.
e Electropolish —
(a) The workpiece is connected to the positive terminal of a switching power supply,

and act as the anode of the EP solution.

(b) The workpiece is submerged to the electrolyte solution, consisting of 1:1 ratio
of 90% sulfuric acid and 50% phosphoric acid, at temperature T' = 60°C', and
left for 30 seconds for descaling.

(c) Magnetic bar stirring action removes any Hy bubble formed on the surface of
the SS piece.

(d) A separate copper cathode is lowered into the beaker and is connected to the
negative terminal of the power supply, forming an electric circuit through the
anode.
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(e) Current density is varied between 3A/dm? — 20A/dm? for 5 minutes.

** After the electropolishing, the electrolyte solution transferred to the chemical
waste, and the beaker is diluted by deionized water and caustic soda for neutraliza-
tion.

e Post-treatment (removal of heavy atoms on the surface) —
(a) 60% Nitric acid dip for 30 seconds.
(b) 20% Nitric acid dip for 10 seconds.
(c) Rinse with deionized water.

)

(d) Rinse with spec. grade acetone.

EP procedures for AA 6061-T6 parts
e Descaling and picking —

(a) Ultrasonication with 3% Alconox detergents at 7' = 60°C' for 10 minutes.
(b) Rinse with deionized water.

(c¢) Immerse the workpiece into acid cleaner solution (70 mL phosphoric acid, 20 g
chromic acid, 3 L deionized water) for 5 minutes.

(d) Because the continuous exposure to air creates an oxide layer, the AA workpiece
is submerged in a cold 70% nitric acid until proceeding to the EP step?.
e Electropolish —
(a) The workpiece is connected to the positive terminal of a switching power supply,
and act as the anode of the EP solution.

(b) The workpiece is submerged to the electrolyte solution, consisting of equal
weight 15% phosphoric acid, 70% sulfuric acid, 1% nitric acid, and 14% deion-
ized water at temperature T = 80°C, and left for 30 seconds for descaling.

(c) Magnetic bar stirring action removes any Hy bubble formed on the surface of
the SS piece.

4 The EP step should happen within 1 minute to avoid surface corrosion.
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Figure 3.10: Example of EP finishing on Al 6061-T6. The shiny surface on AA 6061-
T6 reflects the absence of porous microstructures after the EP process. The macroscopic
dents are caused by the presence of Hy bubbles in the initial recipe without magnetic
stirring action.

(d) A separate stainless steel cathode is lowered into the beaker and is connected to
the negative terminal of the power supply, forming an electric circuit through
the anode.

(e) Current density is varied between 104/dm? — 15A/dm? for 2 minutes.
** After the electropolishing, the electrolyte solution transferred to the chemical

waste, and the beaker is diluted by deionized water and caustic soda for neutraliza-
tion.

e Post-treatment (removal of Si atoms on the surface) —

(a) 60% Nitric acid dip for 3 minutes.

(b) Rinse with deionized water.
) Rinse with spec. grade acetone and IPA.
)

(c

(d) Immediately store into the vacuum container to prevent further oxidization.
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rature stabilization unit

Figure 3.11: Home-made air bake oven. The oven is made of low-outgassing firebricks
and Omega heat tapes. The temperature of the even is stabilized by auto-tunable PID
circuits that regulates the solid-state relays by monitoring the thermocoupler sensors.

3.2.3 Air baking and vacuum passivation

Before the workpiece goes through the passivation process to recreate thick and dense
oxide diffusion barriers, we ensure that all SS316LN pieces are vacuum fired at 950°C'.
This drives away most of the bulk Hy atoms. Vacuum firing other SS pieces without Ny
enrichment is reported to have Ni depletion from the alloy, thereby significantly reducing
the tensile strength and non-magnetic properties.

SS 304 and SS316L(N) contain 16 ~ 26% of Chromium (e.g., SS 18-8 has about 18% of
Cr atoms in number density). For most UHV workpieces, we perform a high-temperature
air bake at 400°C'. The O, gas in atmosphere can then react with the SS surface to create
dense Chromium Oxide layers. I began by constructing a home-built oven that could
enclose large UHV chambers in a cleanroom environment’. The oven was made with low-
outgassing firebricks as thermal insulation. Using high-temperature heat tapes (Omega
engineering), I initially degassed the firebricks and the heat tapes at 400°C' for 10 hours,
and wrapped the bricks with several layers of UHV Al foils. The heat tapes turned from
the original gold hue to a pure white color, exposing the fiberglass insulation layer.

The oven is constructed with the UHV Al foil covered firebricks, and many layers of
UHV Al foils to seal the gaps between the bricks (Fig. 3.11). With this crude oven, we
were able to raise the temperature to above 400°C'. The UHV workpieces are covered with

"See the cleaning section.
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3-layer UHV Al foils, but extra care should be taken to avoid the foil touching sensitive
parts (e.g. knife edges), as the Al foil softens at high temperature and may bond to a clean
and smooth metal surface®. The K-series thermocoupler is taped with a Kapton tape on
the outer layer. After wrapping around the work pieces with the degassed heat tapes, we
insulate these pieces with addition 5-layer UHV Al foil®.

With the K-thermocoupler, Dr. Liu used HTS/Amptek AT-BBA220-SSR PID control
modules and JDA-33400-060 SSRs to create a servo loop to lock the temperature between
25 — 450°C with stability of 100 mK. We use this controller also to perform the UHV pre-
baking at 350°C' and UHV baking at 200°C' (with the viewports and internal components
installed). With this controller, we can maintain our baking schedules over a few weeks.
Our air-baking schedule is as follows:

1. Ramp up with speed 60°C' per hour to 400°C.
2. Maintain the temperature at 400°C' for 3 hours.

3. Ramp up with speed 60°C per hour to room-temperature.

An example of an air-baked UHV workpiece is shown in Fig. 3.12. If the steps are carefully
followed, you will find a reflective metal surface with orange or brown hues depending on

the CryO3 thickness.

For the second-generation science chamber, I shared our atmospheric passivation pro-
cess to VMT to apply a modified vacuum passivation process. Since VMT manufactures
our XHV Science chamber, the rationale was that, if they could learn the tricks of vacuum
passivation, we would be able to avoid the air-baking process that elevated the entire lab-
oratory temperature by a few °C'; which inhibited us from working with our laser systems
at the same time. Fig. 3.13 shows the fabrication procedure of XHV vacuum chamber to
meet our certification standard. For the vacuum passivation, the chamber is placed inside
of a larger vacuum furnace pumped with turbo and cryopumps at P = 10~ Torr. The
Science chamber was enclosed with black CF flanges, and one of the flanges was replaced
with a metal feedthrough to flow pure oxygen at a controlled rate. The interior of the
Science chamber was stabilized at P = 10~* Torr with an O, gas pneumatic controller.
Our Science chamber was vacuum-passivated at 450°C' for 24 hrs to form the oxide layers
only on the interior surface.

SWe have found that oven cleaning acids for kitchen applications are effective at dissolving Al foils.
tThe Al foils are made intentionally with a large amount of air gaps, so that the trapped air can act
as insulation layers.
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Figure 3.12: Chromium oxide layer on SS316LN Source and Science chamber.
The brown hue on the SS316LN chamber was formed without affecting the surface rough-
ness.

| Machining/Polishing |
I

| Cleaning/EP |
[

| Welding |

UHYV Cleaning/Outgassing
I

Ultimate Pressure Test

| |
[ o]
| |
| |

Thermal Heating
|

Passivation/Cool-down

I Final Pump-down Test |

Figure 3.13: Fabrication sequence of XHV chamber. The diagram demonstrates the
machining and surface treatment steps of XHV chamber.
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3.2.4 UHYV pre-baking & final UHV baking

The work function for releasing water molecules grows inversely with the number of mono-
layers, and it takes a large amount of thermal energy well beyond its boiling temperature to
degas the last few molecular layers, with the “magic” temperature around 7;,, = 180—190°C'
for stainless steel surface. Hence, after all the UHV components are vacuum-passivated
and UHV cleaned again, we have applied a pre-baking step at T, = 350°C" well above T,,.
We assembled the UHV chamber with the ion pump assemblies and the getter pump on
our non-magnetic SS316LN optical table, with the UHV viewports replaced with SS304
blank CF flanges. We removed the ion pumps magnetic assemblies, as the Curie temper-
ature was lower than T,. We wrapped the entire chamber with a few layers of UHV Al
foils for distributing the heat uniformity", and installed degassed Omega heat tapes and
K-type thermocoupler sensors for the PID controllers. We then covered the chamber with
3 additional layers of UHV Al foils to insulate the optical table from excess heat", as shown

Figure 3.14: Photo of UHV-XHYV system under prebake condition at 7' = 350°C.
The UHV chamber is covered in UHV Al foils and Omega heater tape. Viewports are
replaced with CF blanks.

YAny “cold” spot left on the UHV chamber would be a condensing region for the water molecules to
accumulate, instead of being pumped out to the atmosphere through the turbo pump.

YThe damping constant is reduced by a factor of two for Newport non-magnetic optical tables at
T > 80°C.
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Figure 3.15: Prebaking schedule. We illustrate the chamber pressure as a function of
time.

in Fig. 3.14.

After the system reaches 10~° Torr with the turbo pumping station at room temper-
ature, we elevate the temperature at the rate of 20°C /hour until we reach the target
temperature. We have installed extra thermocoupler sensors throughout the chamber to
ensure uniformity, and installed shim heat tapes on cold spots with external Variacs. Fig.
3.15 shows our pre-baking cycle with the pressure over a week, as monitored by an inte-
grated Piranni-inverted magnetron sensor. At T' =~ 300°C', we activate our NEG pump by
running current of 4.5A until the base pressure reaches P < 10~7 Torr"¥. This pre-activation
process removes any water molecules from the surface of NEG*, which may condense onto
the chamber walls. The subsequent high-temperature bake will then drive away the water
molecules from the entire chamber. Once the target temperature is reached, we wait until
the system is pumped down to ~ 10~® Torr level for several days. At the end of the
baking cycle, we perform a reconditioning cycle by retraining the NEG pump. The inset

“We ramp up the current over 5 hours to avoid overshooting the equilibrium pressure above 1076 Torr.
*The effective surface area of the NEG pump is much larger than the entire chamber
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of Fig. 3.15 shows our final regeneration procedure to sublime any Hy molecule from the
NEG bulk. We then lower the temperature of the UHV chamber to room temperature
with ramp-down speed 20°C/hour. Our experience is that for every 80°C, the ultimate
pressure is reduced by 1 decade. For ~ 10~® Torr at 350°C, we thereby expect the ulti-
mate pressure P, ~ 107!2 Torr at room temperature’. As our ion and NEG pumps are
not as conductance limited as the turbo system by a factor of 20, we would then expect
another reduction in the pressure decade, resulting into P, < 10~!3 Torr. Our reading of
the pressure (via Gamma Vacuum ion pump) was limited by the X-ray limit of 1 x 10713
Torr.

After confirming the conservative value of the ultimate pressure 1 x 10~ Torr, we
then installed the UHV viewports and other assemblies to the main chambers in late 2016.
We follow through the same procedure as with the pre-bake schedule, but with reduced
ramp speed 10°C'/hour and target temperature 7' = 185°C' to marginally hit the magic
temperature. After 2 weeks of the final UHV baking and subsequent ramp-down, we were
able to measure XHV-level pressure 1 x 10~ Torr in the Science chamber and 3 x 10~
Torr in the Source chamber (with the Cs ampoule isolated). When we open the Cs gate-
valve, the Cs-limited pressure in the Source chamber was raised to P ~ 6 x 1071° Torr, and
we were able to readily form cold atoms in a magneto-optical trap (MOT) with radiation-
pressure limited number density ~ 10'° atoms/cm?® at ~ 100pK. Remarkably, the Science
chamber pressure remained the same at 1 x 107! Torr with a theoretical collision-limited
trap lifetime of 4 hours (two orders of magnitudes larger lifetime than any other neutral
atom experiment)!

3.3 Electromagnets

The design of external electromagnetic field control requires special mounts and mechanical
parts nearby (or on) the chambers, and these thermoelectrical considerations may affect the
geometry of the UHV chambers. Often times, having a better electromagnet coil holder in
AMO physics means that you can apply a larger bias field to modify the atomic collisional
cross-sections at ultracold temperature and stay at a particular detuning with respect to
a molecular Feshbach resonance. In fact, it is a widely known anecdote that one of the
advantages that Debbie Jin had over everyone in the field in 2000 was the magnetic field
stability of her Feshbach coil in her pioneering work on Fermi quantum-degenerate gases.

¥This pressure would of course never be met only with the turbo pumps, as they have finite compression
ratios.
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This seemingly “boring” problem turns its head on to an important technical mastery for
doing AMO experiments.

Our electromagnet in the Science chamber plays two roles — Magneto-optical trap
(MOT) and control over the ratio o;/o, of inelastic to elastic collision rates for coherent Fes-
hbach molecules Csy. Magneto-optical trap (MOT) requires a field-gradient % ~ 10 G/cm
at the center of chamber for sufficiently large capture velocity v. for room-temperature
background Cs atoms. In addition, we need to consider the linearity of % over a few
cm to increase the capture volume of the atoms. For Cesium, it is also known that, at
ultracold temperatures < 1pK and high-densities, inelastic cold collision dominates over
elastic s-wave scattering used for evaporative cooling. Feshbach resonance can be utilized
to control the s-wave scattering rate for run-away evaporation of Cs atoms in an optical
dipole trap down to its quantum-degeneracy [125], requiring us to stabilize the magnetic
field at ~ 20.8 G with long-term stability of 1 mG. In addition, we would like to have field
gradients ~ 50 G/cm to support the ultracold atoms against the gravitational potential
when loading into dipole traps.

Fig. 3.16 illustrates an anti-Helmholtz configuration that allows a linear field gradient
at the center of the two coils over 5 cm. In addition, it is crucial to have as little winding as
possible to reduce the inductance and back-EMF upon switching large currents. Improper
consideration of the magnetic field switching times (induced by fluctuating Eddy currents)
will negatively affect our capabilities for efficient polarization-gradient cooling and the
atomic Zeeman coherences. On the other hand, larger currents would may result with a
resistive heating that mechanically drift the center position of the magnetic trap. In terms
of material properties, we require the holders to be non-magnetic (to reduce stray field
hysteresis), electrically insulating, and thermally highly conductive.

3.3.1 Science MOT coil geometry

To build a fast MOT coil controller with power MOSFET current switching capabilities
(sub-100us), I have limited the current to I = 10 A with a target field gradient ddB;z ~ 10
G/cm. To determine the coil geometry constrained by the UHV chamber, I simulated the

magnetic field in the cylindrical coordinates (p, z) as follows [120]

pol 1 o R2—p*—(2—D)? )
B, 7 SET D) [K(kz )+ = (Z_D)QE(/@ )} (3.5)
_ Mol1 z—D B 2 R*+p* + (2 — D)? 2
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Figure 3.16: Coil configuration in the cylindrical coordinate (p,z). The current
I flows counter-clockwise through the coil of radius R. For an ideal anti-Helmholtz, the

current direction in the other coil at Z = — D flows clockwise and the half-distance between
the coils is D = R/2.

where k? = % and K (k?) and E(k?) are the complete elliptic integrals for
the first and second kinds. The field lines were simulated by taking into account the
wire thicknesses of various cross-section geometries (square, rectangular and round magnet
wires). Fig.3.18 shows our result of the magnetic field for our electromagnet coils by
optimizing over the parameters nq,ns, ns, 0z, 0y for a rectangular magnet wire. I have
constrained the design variations so that the optical view of the experimental platforms is
not hindered by the coil holders. T obtain a B-field gradient of 10 G/cm for the parameters

of Table 3.3.

Because I plan to use these coils also for inducing the Feshbach resonance at currents >
50A (See the Helmholtz configuration in Fig. 3.18), we need to consider an efficient method

ny | ne | ng | Ox oy do Ry
1 (11110 3mm | 2mm | 2.7 inch | 2.4 inch

Table 3.3: Optimized MOT coil parameters for Science chamber for /, = 10 A and target
axial gradient 10 G/cm.

104



Axial direction DETAIL C

—

Radial direction

Figure 3.17: Science MOT coil holder. The structural parameters ny, ny, n3 are numeri-
cally optimized in Fig. 3.18 when ny, ny, ns are the winding number given in the figure. The
coil holder is made of Delrin-Acetal with the possibility of full potting for water cooling.

to dissipate a large amount of resistive heat generated by the ohmic loss r(A), which is a
function of the wire’s cross-section A = dxdy. I have concluded to optimize the geometry
for a rectangular magnet coil with polyamide-insulation coating with critical temperature
400°C'. Design of coil holder is shown in Fig. 3.17. The coil holder and the cover are made
of Delrin-Acetal, a ceramic composite with thermal conductivity (~ 0.4 W/m-K) and
temperature rating (~ 180°C'). In addition, with a complete dielectric construction, this
construction would avoid any Eddy current around the coil holder altogether. We have also
considered Polyetherimide (PEI) Ultem as the material of choice for the coil holders. Ultem
has a higher tensile strength than Delrin-Acetal with similar thermoelectric properties.
More recently, my colleague, Youn Seok Lee found a very promising thermoceramic, known
as Corian, with an order of magnitude larger thermal conductivity and tensile strength.

3.3.2 Heat transfer

We considered the heat transfer for the thermal energy generated by the ohmic loss. Our
magnet wire (oxygen-free copper for higher electrical conductivity) has a total resistance
of ~ 0.09€). The change in resistance would be around 3mf2 with the thermal coefficient
of resistivity of copper a of ~ 4 x 1073 Q/C° from the relation,

% QAT (3.7)
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Figure 3.18: Axial and radial magnetic fields for optimized geometry. We simulate
the magnetic field profiles along the axial and radial directions for both Helmholtz and
Anti-Helmholtz configurations. For the former, we are interested in inducing a large bias
field for accessing magnetic Feshbach resonances of Cs. For the later, we would like an
axial field gradient 10 G/cm and radial gradient 5 G/cm to obtain a wide capture range
for the Science MO'T.

where AT is temperature change in K. By comparison, our feedback circuit measures
the current by measuring the voltage drop across an ultrastable sense resistor R with
temperature coefficient of v = 20 ppm/C° (Chapter 4). Hence, the ohmic heat, by way of
its impact on « of the Cu wires, can cause a long-term drift over the steady-state values
of the current.

To faciliate the heat transfer, we decided to pot the empty space of Fig. 3.17 with ther-
mal epoxy. As the thermal conductivity of a typical thermal epoxy is ~ 40 times larger
than air (Table 3.4), we expect an improvement in the heat transfer relative to free-space
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Material Air Water Epoxy 128 Solder Copper
a[W/m- K] Air 0.1 0.6 4 36 385

Table 3.4: Comparison of thermal conductivities a.

convection cooling. Generally, a good thermal conductivity of an adhesive usually origi-
nates from the metallic filler particles in the epoxy (e.g., silver epoxy). In addition, for
current fast switching on the inductive load of the magnet coils, we require high dielectric
strength to avoid breakdown voltages. Among the electrically insulating thermal epoxies,
I identified a ceramic potting compound (Contronics Epoxy 128) with the relevant specifi-
cation in Table 3.5. Epoxy 128 has a maximum operating temperature up to 260°C with
a viscosity similar to ketchup, allowing us to fill the holder with the thermal epoxy after
coil winding.

3.3.3 Coil winding procedures

It is also critical to increase the surface area that connects the layers of the rectangular
magnet wires. This allows efficient heat transfer from the interior of the coil to the outer
thermal potting. With the increased surface area of the potting material, the heat is
dissipated through natural convection. One practical challenge is to “transfer” the spools
from the original coil holder to our Delrin holder with the Cu surfaces mating to the inner
Cu layer. Indeed, rectangular Copper wires generally tend to twist around its axis if the
spool is taken out without a guide that straightens out the wire. From the beginning,
it was obvious that we had to construct some sort of a machine to wind the coils. Fig.
3.19 shows our manual coil winding machine, which mimics some of the functionalities
of winding machines for electromagnets in hydroelectric waterfall generators. As Youn
seok and I wind each layer, we constantly apply 5-min epoxies on on the outer layer
to avoid air bubbles in the epoxy that become local heating sites. While we have not
performed this idea, Markus Greiner group has applied a mixture of glass nanospheres and
high-temperature pots between the “bare” OFHC magnet wire layers to improve the heat
transfer (glass has a thermal conductivity 1W/m-K). The absence of polyamide protection
layer means that the Copper provides larger thermal contact between the layers with the

Material | Max. temperature [F] | Viscosity (cps)
Epoxy 128 500 (260 C) 86,000

Table 3.5: Properties of epoxy 128
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glass beads forming an electrically insulation spacer. This may be an interesting idea to
revisit in the future for high-field experiments.

3.4 XHV-UHYV chamber system

Fig. 3.20 shows the top and side CAD views of our custom XHV-UHV cluster system
(See Fig. 3.1 for the tilted 3D view to gauge the overall design). The source chamber is
pumped by Agilent starcell ion pump (45 L/s for Ns). Cesium ampoule is installed within
an all-metal-gate valve under a tee, which makes up 2 of the 6 laser beams for the source
MOT. The background Cs pressure is controlled both by the temperature of the ampoule
and by the conductance of the gate valve. The differential pumping tube is installed on the
conical reducer (which was later replaced to a 1.33-in bellow for stress relief between the

Figure 3.19: Manual coil winding machine. Our coil winding machine consists for
3 parts. The spool holder secures the heavy magnet wires (~ 30 kg), and the rotation
is controlled by two small handles, which provide a backing force against the winding
direction of the MOT coil holder. The Teflon block and silicone rubber clamp provide a
breaking force to stop the winding action, if needed. The Delrin roller gives the tension for
the magnet wire that is guided through the Aluminum wire guide block. The wire guide
pushes against the rectangular wire with a gentle pressure, and it protected by multiple
layers of Kapton tapes to protect the magnet wire from scratches.
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Figure 3.20: Top and side CAD rendering of the UHV-XHYV cluster system. The
top and side views of the UHV-XHYV clustered system are displayed. The Source chamber is
pumped by Agilent Starcell ion pump, and temperature-controlled Cs ampoule is connected
with conductance-tunable valve. Magneto-optical trap (MOT) traps and cools Cs atoms
to density ~ 10'/cm3, before a pushing beam transports cold atoms through radiation
pressure and dipole guiding. The geometry of the differential pumping tube is numerically
optimized with the quantum trajectory simulation (Chapter 5). The Science chamber is
pumped both by a modified Gamma Vacuum XHV pump, SAES non-evaporative-getter
(NEG) and home-built TZV getter pumps. The cold atom fountain from the Source
chamber is trapped at the center of the Science chamber by a secondary MOT. Electrically
tunable lens moves the focus of a dipole trap to either the Science cavity platform or the
“Rydberg-dot” cavity QED platform for further experimentation.
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two chambers). The position, aperture size, and length of the differential pumping tube was
optimized by the numerical simulation of the trajectories. Additionally, we installed an in-
line all-metal gate valve to isolate the Science and Source chambers for vacuum diagnosis.
The Science chamber is pumped by a modified Gamma Vacuum ion pump, together with
SAES NEG pump. The main chamber has an angled tee that connects to a multiport
feedthrough for controlling the blade electrodes and the PZTs for the many-body cavity
QED and Rydberg quantum dot platforms (See Chapter 6), as well as to a home-made
TZV getter pump to reach XHV level.

As a high-level description of the laser pulses and experimental sequences (further
discussed in Chapter 4), we begin the experimental cycle by collecting cold Cs atoms in
the Source chamber with a 6-beam magneto-optical trap (MOT) from the background
to the Doppler-temperature Tp =~ 150K and MOT density n ~ 10'° atoms/cm? in the
multiple scattering regime. We call this MOT, the Source MOT. The pushing beam exerts
a dissipative radiation-pressure force on the cold atoms that create an atomic beam. As
the atoms escape the Source MOT subsequently polarizes the atoms to the hyperfine
F = 3 dark state through hyperfine optical pumping in the absence of repumping beams,
which is then guided through a conservative optical potential created by the pushing laser
itself. The geometry of Gaussian beam propagation of the pushing field as well as the
laser parameters (detuning and strength) are determined with a quantum Monte-Carlo
simulation of the open-system atomic trajectories in Chapter 5. This procedure allows us
to have a continuous flux of a collimated transversely cold atomic fountain, which can be
conveniently trapped in the XHV Science chamber for further manipulation.

In the Science chamber, the atomic beams are reconfined and laser-cooled in a secondary
MOT (called the Science MOT). The trapped atoms are cooled through the standard sub-
Doppler polarization-gradient (PG) cooling mechanism, and then spin-polarized to F' = 4
state at T ~ 30uK. As the PG cooling takes place, an optical dipole trap (called the
transport trap) is adiabatically switched on to localize the atoms to a movable optical
trap with electrically-tunable liquid crystal lens. Depending on the type of experiment in
Chapter 6, we move the focus of the transport trap either to the many-body cavity QED or
the Rydberg quantum-dot platforms. The heating due to the recoil photons and parametric
motional excitation is compensated by a tetrahedral MOT (called the t-MOT) that recools
the atoms, followed by a sub-Doppler cooling with grey molasses to T ~ 3uK. The crossed
FORT beams form an image plane for quantum-gas microscopy (QGM) and create a few 2D
pancakes containing ultracold atoms, which we select the single plane through a microwave
knife-edge evaporation. Ultracold atoms within this single layer can be cooled through a
combination of degenerate Raman sideband cooling and run-away evaporation in an optical
potential to reach Bose-Einstein condensate (BEC) phase. Holographic image projection
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through the QGM assembly creates an arbitrary potential landscape on the image plane
at the magic wavelength condition for the experiment under consideration (e.g., quantum
square lattice as in Chapter 2). Non-degenerate Raman sideband cooling will be employed
for achieving the motional ground states along all three directions. Once all of these steps
are achieved, only then the experiment could be carried out. For the actual experiment,
we will require a dozen of additional ultrastable lasers spanning from 300 nm to 1100 nm
(See Chapter 2 as an example and Chapter 4 for our laser systems).

In the following subsections, I provide the descriptions of the Source and Science cham-
ber designs that achieve the objectives and optical access requirements stated above.

3.4.1 Source chamber

For the Source chamber, we have six trapping (red-detuned to the |F' = 4) — |F' = 5)
transition) and repumping (|F' = 3) — |F’ = 4)) beams at 852 nm for the Source MOT,
two probe beams (|F' = 4) — |F’ = 5) imaging excitation and |F' = 4) — |F’ = 4) pumping
beams), and one pushing beam (blue-detuned to the |F' = 4) — |F” = 5) transition). I
used a spherical octagon chamber” with six 1.33-in CF and two 2.75-in CF UV viewports.
For the pushing beam, I installed a 2.75-in CF viewports. All UHV viewports were custom-
made from MPF products with BAAR ranges 600 — 1000 nm (IAD coating).

For the Source MOT, I 3D-printed a coil holder out of a high-temperature resin from a
Formlabs UV stereolithography system. This system produced 3D printed coil holders with
smooth surfaces for heat dissipation and transfer. Because we only require 7 A to generate
10 G/cm, I used a circular AWG 14 magnet wire (winding number (ny,ny) = (10,6)) for
constructing the anti-Helmholtz coils. The MOT coil holder was directly secured onto the
2.75-in UHV viewports. Since we do need magnetic field control in the source chamber,
we did not install external shim coils for field compensation. However, we have made a
custom p-metal shield enclosure (3-layer of Co-NETIC AA perfection annealed sheet from
Magnetic Shield Corp.) for our Agilent ion pump (Engineering drawing can be found in
the UQML cloudstation database).

As discussed in Section 3.1.4, we can control the background Cs pressure through
the control of the conductance, due to the gettering characteristics of Cs atoms. For an
equilibrium pressure of Pry = 3 x 1078 Torr in the ampoule region at room temperature,
we require a differential conductance of ~ 100 in order to bring down the pressure in the

“We made two kinds of UHV Source chambers. The first was the stock Kimball Physics MCF275-
SphOct-C2A8, and the second one was custom made from IVT Korea with identical dimensions.
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Source chamber in the 107°-Torr range. In our chamber, I found that the pumping speed
(N2) of Agilent ion pump is limited to Ci,, = 8 L/s at the center of the Source chamber.
A fully opened 1.33-inch gate valve would have a full conductance of Cupp, = 4.7 L/s,
resulting into an estimated pressure of Piurce = (Camp/Clion) Pos ~ 1 x 107% Torr. On the
other hand, if we throttle the aperture of the gate-valve to be only 20% opened, we can
dramatically reduce Cymp = 0.05 L/s, so that the Source chamber pressure will be 1 x 10710
Torr. I have found experimentally that our method can consistently maintain the Source
chamber pressure at the 1 x 1071 Torr level, simply from conductance control.

3.4.2 Science chamber
Optical requirements

As illustrated in Fig. 3.21, at the center of the Science chamber, we illuminate collimated
atomic beam with six Science MOT trapping (red-detuned to the |F = 4) — |[F' = 5)
transition) and repumping (|F = 3) — |F’ = 4)) beams for laser cooling and trapping, as
well as two probe beams (|F' = 4) — |F' = 5) imaging excitation and |F = 4) — |F' = 4)
pumping beams) at 852 nm for running the daily diagnosis of the atomic density and
temperature. These atoms are further cooled down by a built-in polarization-gradient
cooling mechanism, following the termination of the local magnetic field. In order to
compensate for the eddy currents around the Science chamber, Dr. Liu used an algorithm
developed in Refs. [127, | with a home-built power MOSFET compensation circuitry
(Engineering drawing can be found in the UQML cloudstation database) for field control
beyond the damping constant 7 = L/R given by an inductive load L. An 854 nm Optotune
laser for the deterministic atom transport within the Science chamber (Chapter 5). These
are largely low to medium power (< 500 mW) lasers with relatively low power density.

Near the location of the cavity platforms, however, we use high-power FORT beams
(10W at 1071 nm), which are focused down to ~ 100um, in addition to several medium
powered Science lasers between 685 nm to 935 nm (Chapter 4). For the main experiment,
we also use ~ 1W sub-Hz 507-nm second-step excitation lasers and 3W 319-nm direct
P-excitation UV lasers. Since I was concerned about the damage threshold and stray
reflections for safety hazards, we were constrained to DUV fused silica viewports. The RF-
magnetron sputter coatings resulted in very low scatter loss and porosity that addressed
both the UHV concerns of atmospheric He diffusion as well as the optical concerns. In
particular, when using UV lasers on optical viewports over prolonged periods, there are
concerns for solarization effect, where the oxygen in the metal oxide layers of the AR
coating can effectively be photodissociated below of bandgap frequency. Since Sc,O3 has a
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Figure 3.21: Front CAD rendering of the UHV-XHYV cluster system. The front
view of the UHV-XHV clustered system is displayed. After the secondary MOT traps
and subsequently cools the Cs atoms in the Science chamber to sub-Doppler temperature
~ 30uK, an electrically tunable liquid crystal lens moves the focus of a dipole trap beam
at A = 854 nm to deterministically transport ultracold atoms to either the Science cavity
platform or the Rydberg-dot cavity QED platform. Tetrahedral MOT beams recool the
atoms for the parametric and recoil heatings during the conservative transport processes,
followed by a grey molasses for sub-Doppler cooling to a few puK. Depending on the
type of experiment, the atoms are further cooled in a FORT with non-degenerate sideband
cooling to the 3D motional ground states or with dipole-based evaporative cooling runaway
sequence for reaching the quantum degeneracy of superfluidity.

bandgap below 300 nm, we do not anticipate such long-term oxygen depletion on our AR
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Figure 3.22: Bias field along the Science cavity axis. For a 1-G magnetic field
generated by a shim coil at the center of the Science chamber, we numerically simulate the
local vector components of the magnetic field at the Science cavity.

coating (Section 3.1.6).

As further discussed in Chapter 6, all the materials for the Science cavity platforms were
carefully examined by their optical properties when exposed to UV light under vacuum.
Besides the concerns of their oxide dielectric layers, both Aluminum and Titanium are gen-
erally good conductive materials in UHV, but we do expect some photoelectrons generated
by our 300 nm light for the Ti blade electrodes. These photoelectrons are by themselves
not of concern, but they may be trapped on the surface oxides. We have considered the
possibility of DC sputtering gold on the Ti electrodes, but we dropped this idea, due to the
low adhesivity to Ti, where gold may sublime and redeposit to our pristine Science cavity
mirrors during the bake out. Instead, I discuss a possible method of removal through a
novel in-situ plasma cleaning procedure (See the next subsections). The single-crystal Sap-
phire holder is also a very good optical material with large bandgap suitable down to the
X-ray frequencies, as they are common X-ray UHV viewports. However, we were not able
to identify if our mirrors would survive the prolonged exposure to UV light. For IBS mir-
rors (SiOy/Tay 05 bilayers) commonly used in cavity QED and optical clock experiments,
there is a known oxygen depletion effect for the Tantalum that reduces the optical finesse
for UV mirrors. Fortunately, our metal oxide (not disclosed for proprietority) has a larger
bandgap than that of Tantalum Oxide, but it remains to be seen in terms of its long-term
impact. Utmost care is thereby taken during alignment stages not to scatter UV light onto
the mirrors (again, considering the $1M development cost just for these mirrors!)
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Bias coils

As shown in Figs. 3.20-3.21, we installed three pairs of bias coils centered around the
Science chamber. We require 1% field homogeneity over dx = 1 cm both at the center of
the chamber and at the cavity (approx. 3.5 cm). For a given coil dimension L, since the
field homogeneity scales fractionally with (§z/L)?, we made the square bias and shim coils
of L ~ 1m-scale length dimensions. The coil holders are made from non-magnetic 80-20
struts (Al6061-T6) with dimensions in Table 3.6. The numerically simulated magnetic field
at the center of the Science cavity is shown in Fig. 3.22, where we assume a local field
1 G at the center of the Science chamber. We are not sensitive to the x-direction, as the
atoms are localized by a cross-dipole trap to a 2D quantum gas, with atomic wavefunction
localized to a few 10 nm. However, in the x- and z-directions, the atomic sites are localized
within the field of view (~ 100um) of our quantum gas microscope system. The local
magnetic field can be measured from an off-resonant stimulated Raman process with Hz
level. If T assume a characteristic 2D atom cloud size of A, ~ (30um)?, we find that the field
homogeneity is less than AB = 10uG and Zeeman coherence time of 7 ~ 1/(grAB) = 300
ms (without NMR-style dynamical decoupling), in addition to the precession timescales
out of Zeeman clock states |F, mp = 0).

We used a prototype satellite flux-gate magnetic field sensor (kindly donated from
Sensorpia) for space navigation with pG' sensitivity to record the stray magnetic field fluc-
tuation. For direct measurements, we can perform co-propagating Raman spectroscopy on
the trapped atoms that drives transform-limited two-photon resonant transitions between
the Zeeman sublevels with one-photon detuning 10 GHz (Chapter 4). With ultra-narrow-
line two-photon transition spectroscopy, I can identify the vectorial components of the
local Zeeman fields with sub-Hz linewidth [129]. I refer to Appendix A of John Stockton’s
thesis for the practices of magnetic field nulling and the sources of magnetic field noise
[130]. In addition, Prof. Choi designed the lasershelves with the particular attention to
EMI shielding with Alucobond composite panels and full Aluminum construction which
shield high-frequency >MHz magnetic fields generated by the electronics above the laser

Coil axis | Length | Height | Turns
X-axis 70 cm | 45 cm 70
Y-axis 70 cm | 45 cm 70
Z-axis 70cm | 70 cm 42

Table 3.6: Dimensions of the bias coil holder. The winding number was determined to
provide ~ 1 G bias for 1 A.
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shelves by 80 dB.

Cavity built-in RF plasma cleaning

The optical power densities for some of our Science lasers are sufficiently large to worry
about laser-induced ionization and solarization effects (particularly for the 300-nm lasers)
for the glasses that face the vacuum side of the chamber. These bound electrons will
stay forever with no pathway for neutralization in an UHV environment, and may give
rise to electric field inhomogeneity. These static stray fields, in addition to the time-
dependent fields from the PZTs, are largely compensated by Ti blade electrodes (Chapter
6). However, it is known that thin oxide layers on Titanium may also be a source for
bound photoelectrons that cannot simply conduct away to the ground. Furthermore, when
a single Cs atom is deposited onto a glass dielectric, the modified workfunction of the
adatom generates a sufficient large amount of artificial electric dipole moment that can
be detected by BEC Bloch oscillation for the quantum reflection [131]. Surely, removing
these local field homogeneities down to the single adatom level would be required in the
long term.

I have developed a RF plasma cleaning method to etch away the oxide layers and to
remove the Cs adatoms on the mirror surface. I only discuss the high-level description
of our method. We use the Ti blade electrodes as the anode-cathode assembly in a RF
sputter system, where we can localize the Argon plasma with our external anti-Helmholtz
coils. As discussed in Chapter 6, we can arbitrarily control the full vectorial components
of the local electric field pattern at the center of the cavity upto the second order 72, and
it is possible for us to engineer the spatial gradients of the RF plasma with differential
plasma etching rates between our Science cavity mirrors and the Titanium electrodes. The
removal of metal oxides obviously requires much more ion momentum than the removal of
bound Alkaline atom from the dielectric. We plan to use the auto-tuned matching circuit
for our home-made RF/DC-magnetron sputter system to impedance match to the Ti blade
electrodes. The gas feedthrough lines on the Science chamber in Fig. 3.20 are connect to
a precision mass-flow-controller (MFC) through a differential leak valve, and the Science
chamber system would backed by a turbo station to maintain P ~ 10~ Torr to reduce the
etching rates.

TZV NEG coating

Because of the home-built sputter system, we could do some crazy things incompatible
with production system in a shared facility (like the RAC2 deposition systems). Using
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alloyed target is usually forbidden in production sputter sputter systems, as the sputtering
process contaminates the main chamber. Sainath Motlakunta obtained a sputter target
1:1:1 TiZrV (TZV) alloy [132] bonded onto Cu backing plate (Matsurf Technologies), which
mounts to our hybrid RF/DC AJA sputter guns. For the next UHV systems in UQML, I
am considering to sputter coat the interior of the UHV chamber with TZV NEG materials.
I refer to the thesis of Barcellini [133] and references therein for details of this coating recipe.
I expect that these TZV NEG coatings would have large pumping speeds for Hy atoms, low
activation temperature (190°C'), and strong passivation pumping layer to virtually limits
the gas diffusion from the SS bulk.

Estimation and measurement of the ultimate pressure

In our Science chamber, we have one XHV Gamma Vacuum ion pump, and two NEG
pumps. The combined conductance-limited pumping speed is P ~ 60 L /s with an adjusted
pumping speed (for Hy and He atoms) Pg ~ 6 L/s. Using the outgassing rates for the
materials in Table 3.1-3.2 and the estimated surface area from SolidWorks, we obtain
the outgassing rate Q, = 2 x 1072 Torr-L/s and the viewport He permability rate Qu. =
4x 1071 Torr-L/s [134]. The resulting ultimate pressure is P, = (Q,+Que)/Pog >~ 3x 10713
Torr, in line with our measured result 1 x 10~*? Torr.

Fig. 3.23 shows the final assembled UHV chamber that reached the target XHV pressure
in 2016, after 6 months following the extensive procedures of UHV cleaning and passivation,
pre-baking, activations, and baking cycles. Fig. 3.24 shows the second generation setup
with a largely similar specification as the original system, and will be used for Rydberg
atom experiments beyond the scope of this thesis. For the second generation system, we
use the frit-fused UHV all-glass Science chamber, developed by Prof. Choi during his PhD
at Caltech. Much of the laser systems in Chapter 4 will be shared with this new system
in the future, but I will focus my work mainly on the first generation chamber.
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Figure 3.23: Photo of the UHV-XHV chamber system in May 2016. The first-
generation chamber consists of non-magnetic SS components with vacuum passivation tech-
niques detailed in the main text. We apply a Rainbow AR coating of UV-grade UHV
viewports.
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Figure 3.24: Photo of the second generation UHV-XHV chamber system in
November 2017. The second-generation chamber uses an all-glass quartz UHV cell as
the Science chamber. All glass cell has a wider viewing angle and optical access, as well as
lower Eddy current current Zeeman inhomogeneous broadening.
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Chapter 4

Laser and optical systems

In this chapter, I discuss a laser infrastructure, which consists of 1 Ti:S laser system,
20 phase-locked external cavity diode lasers (ECDL), 2 CW fiber lasers, and 3 stages
of nonlinear wavelength conversions, with the most systems being home-made. Apart
from the lasers responsible for cooling and trapping, because of the difference in energy
scales, we developed highly specialized lasers that attempt to bridge the fields of optical
cavity QED and Rydberg atoms. High-finesse low-loss optical cavities developed for cavity
QED and optical clocks usually operate in the near-infra-red (NIR) regime, because of the
reduced scatter oc 1/A* and absorption losses. On the other hand, Rydberg states usually
require short-wavelength laser fields. In our laboratory, we currently have the capability to
perform a direct Rydberg-|nP;) excitation with a high-power laser at 319 nm (e.g., to create
local spin ice rules (Chapter 2) or to perform a mesoscopic Rydberg quantum gate [135])
and to drive two-photon excitations to Rydberg [nSi/s), [nD;) states (507 nm frequency-
doubled system), where we use the spectroscopic notation |nL;) where n is the principal
quantum number, L is the orbital angular momentum and .J is the electron’s total angular
momentum. Because the transition matrix element is highly suppressed for Rydberg states,
these high-power laser systems also need to be low-noise and narrow-linewidth (< 1 kHz).
In addition, we would like to maintain the phase-stability of laser fields that are 100 THz
apart over the dissipative lifetimes of the cavity polaritons (67 ~ 100 kHz in the photon
regime, ~ 1 kHz/10 Hz in the Rydberg/ground-state atom regime). For instance, the
cavity laser (852 nm) that probes the trapped atoms through the cavity should have a
specific phase-amplitude relationship with respect to a high-power coupling field €. (507
nm) that dresses the cavity polaritons with Rydberg states. Absent the access to optical
frequency combs, my solution is to deploy a high-finesse optical reference cavity as a short-
term clock over the relevant timescales 07, and to make use of transfer cavities and optical
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phase-lock loops to transfer the optical coherences across the spectrum. In the short term
future, I plan to deploy a portable lodine optical molecular clock at 507 nm as our absolute
frequency standard, where it is routine to achieve Alan variances ~ 10714

These challenges and others have driven us to develop our own home-built systems, from
passive mechanical design, active optoelectronic components (resonant electro-optic modu-
lator (EOM), low-noise avalanche photodiode (APD) and photodetectors) to the laser con-
trol electronics (high-bandwidth Proportional, Integral, Derivative (PID) circuitries with
auto-relock capabilities, computer-controlled digital phase-locked loop for phase-amplitude
control of over dozens of lasers down to 0.1 Hz level), and to high-finesse optical cavities.
While many of these systems interface with dedicated laboratory control systems and soft-
wares, [ will not discuss the work on the Field-Programmable gate array (FPGA) control
systems responsible for the real-time control of the phase-amplitudes of our laser systems
and for image processing techniques out of proprietority.

4.1 Scientific objective

Before I delve onto the specific technical projects, let me take a brief moment to describe
how our thought process evolved with the goal of measuring a gapless photon in a quantum
spin ice system. In the beginning, there were a lot of confusion in the laboratory as to the
technical requirement of the laser systems. While we do not directly involve the kinetics
of the atoms, the interaction energies and the linear-like dispersion of the artificial photon
extends close to Jying ~ 10 kHz, and our temperature requirement is still quite stringent. In
addition, since the dynamical spin structural factor is measured by mapping the emergent
photons into real cavity photons, the laser pump fields that stimulate this process would
need to be narrow linewidth. Furthermore, because the U(1) spin liquids are gapless, it
may require us to build quantum systems that are sufficiently large enough to display a
macroscopic phase in a low entropy lattice. Indeed, a single site missing would cause the
breaking of the spin ice symmetry, thereby requiring lower noise lasers for the optical traps
and sideband cooling.

In this regards, my work with Dr. Chang Liu on the design and fabrication of laser
systems was quite related from the beginning to the atom assembly and quantum-gas
imaging projects that have been led by Dr. Mahmood Sabooni and Youn Seok Lee in
our group. There, they have been working on new methods with holographic superpixel
algorithm and GPU accelerated algorithms to create real-time rearrangeable 2D optical
potentials and feedback through a quantum-gas microscope. Yet, it was also a challenge
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Figure 4.1: Laser systems for the main experiment. Details are given in the main
text.

to select wavelengths for these traps, as our experiment is inherently an optically driven-
dissipative one. At the magic wavelengths of Do-line of Cs at 687 nm and 935 nm, not
only could we avoid line broadening effect that dilutes the cavity coupling rate gy, but
also prevent trap fluctuations as the atoms are radiatively cooled (e.g., optical molasses or
polarization-gradient cooling). While the linewidth of the laser for most cooling processes
(except for non-degenerate Raman sideband cooling) is hardly a variable that would matter,
the choice of the wavelength for the far-off-resonant trap (FORT) is more complex for our
experiment, because photon scattering is a necessary ingredient of our experiment. Hence,
Prof. Choi, Dr. Liu and I have made an extensive survey in the beginning of the laboratory
to conclude with a set of wavelengths by considering not only noise-induced parametric
and recoil heating effects, and optical power, but also considering the hybrid nature of our
experiment, where the atoms are intrinsically coupled to the cavity fields. I will return to
this issue in Chapter 6 again, as the choice of our intracavity and DMD FORT beams is
related to the cavity design.
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4.1.1 Reference clocks

In our laboratory, we have three main reference clocks — One in the microwave domain,
and the other two in the optical domain. First, all of the RF and microwave pulses are
phase-reference respect to a Rb microwave master clock. For the microwave, we have a
secondary 10 GHz clock with precision dual dielectric resonating oscillator (phase lock to
the main master clock).For the RF domain, we take the frequency summed outputs of
the Rb clock with a phase-lock loop voltage controlled oscillator (PLL VCO). Most of
these outputs are controlled through an FPGA laboratory system, and some are directly
generated from digital direct synthesizer (DDS) arrays with the input oscillator locked to
the 10 GHz clock. In the optical domain, we use a home-built cay-eye interference-filter
(IF) feedback laser (called the IF laser 1) and stabilize to a 100 kHz reference cavity, which
is then subsequently referenced to the |F' = 4) — |F = 5') cycling transition of Cs in a
modulation-transfer spectroscopy setup. This clock is used for the phase stabilization of
all the external cavity diode lasers (ECDL) for Ds-line laser cooling and trapping, but not
for the much more sensitive main experimental beams.

The main clock that drives the main experiment, described in Fig. 4.1, is currently
a triple-coated ATF-6010-4 ultra-low-expansion (ULE) cavity (called ULE cavity) with
finesse F' ~ 100k at ~ 1071 nm, ~ 400k at 1015 nm, ~ 100k at 935 nm, housed in a
UHV chamber system. IF lasers stabilized to this ULE cavity are the “optical” clocks
that transfer the phase coherence to other lasers in the same wavelength range (called
IF-) laser). Due to the ULE aging effect, this serves as the short-term optical clock that
references its optical coherence to the other science lasers operating in 852 nm with a
secondary tunable ULE cavity (called the ULE transfer cavity) with Finesse F' ~ 100k at
935 nm and F ~ 300k at 852 nm. We have some short-term future plans to deploy a room-
temperature lodine molecular optical clock near the ionization threshold at 507 nm, where
there are ultranarrow lines that could be probed to achieve optical @ ~ 10 [136]. This
would provide an absolute frequency standard, easing the hassles of realigning the PLL
lock frequency of the master laser. Several other thermally-compensated optical cavities
are used throughout the laboratory for stabilization of FORT lasers and ASE filtering. The
design of this cavity, originally based on J. Barry’s thesis, will be discussed later [137].

4.1.2 Experimental sequence
As shown in Fig. 4.3, we begin our experiment by collecting ~ 10 cold Cs atoms in our
source chamber with a magneto-optical trap (MOT) for 3 s in the multiple scattering regime

at the Doppler temperature ~ 150uK. The MOT trapping beams (P = 20 mW, detuned by

123



Figure 4.2: Laser systems for cooling and trapping. We illustrate our home-built
laser systems currently installed on optical table A. IF master laser acts as the reference
clock laser for all other lasers on table A through optical phase-lock loops and frequency-
phase detectors with arbitrary offset frequencies upto £600 MHz. Lasers on this table are
used for: Source/Science MOTs, tetrahedral molasses (MOPA pumped by a trapping laser
near |F' = 4) — |F = 5') transition and a repumping laser near |F' = 3) — |F' = 4')
transition), probing and imaging laser (|F' = 4) — |F = 5') transition), pushing beam
(1 GHz red detuned from |F' = 4) — |F = §') transition), two hyperfine pumping lasers
(|IF =4) —» |F = 3) and |F = 3) — |F = 4) transitions, respectively), clock-state
pumping (m-polarized |F = 4) — |F' = 4')), degenerate Raman sideband cooling (10 GHz
detuned from |6P5/,) transition), non-degenerate Raman pairs (50 GHz |6P3/5) transition,
and phase-locked each other), and transport laser (854 nm).

Ay from |65 /2, F = 4) <+ |6P3)9, F' = 5) cycling transition) were derived from a Moglabs
Tapered Amplifier, which is seeded by a trapping ECDL. The repumper (detuned by A,
from |651/2, F' = 3) <> |6P5/2, F' = 4) ) is injected into the same fiber distribution network.
The intensities and frequencies of these laser and all subsequent laser systems discussed
are all computer-controlled with our FPGA laboratory control systems that interface with
the OPLL feedback loops and the AOMs over a wide range (covering 30 dB dynamic range
for intensity, and 600 MHz for the phase-frequency lock of the lasers). The output of the
TA is terminated at the beginning of the experimental cycle by a home-made shutter [135].
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Figure 4.3: Laser cooling and trapping beams. a. Level diagram for the cooling
and atom transport lasers. The MOT lasers consist of the trapping Q&)OT and repumper
beams QI(\Z)OT. The laser Q&) (%), is used for the atom transfer from the Source MOT
(the center of the Science chamber) to the Science MOT (to the center of the experimental
platform in the Science chamber). b. Zeeman pumping to the clock state |F' = 4, mp = 0).

c. Optical pumping between the hyperfine levels of 65 /5.

As further discussed in Chapter 5, a pushing laser Q) with red detuning is turned on
through the MOT loading process to form a continuous flux of cold atoms. The combined
force of radiation pressure from MOT beams and the pushing laser accelerates the Cs
atoms with initial velocities 7 m/s. Upon ejection from the MOT region, the atoms only
see the pushing laser and is subsequently optically pumped to F' = 3 state. Because of the
larger detuning ~ 9 GHz, the moving atoms experience largely a conservative potential of
the pushing beam. By designing the appropriate geometry in Chapter 5, the atomic flux
is collimated and pass through the differential pumping tube.

In the Science chamber, the atomic beams are captured and laser-cooled in a secondary
6-beam MOT (called the Science MOT) in the multiple scattering regime with trapping
beam (P = 30 mW, detuned by A, from |65} /2, F' = 4) <+ |6P;/2, F' = 5) cycling transition)
and a repumper (P =3 mW at |65/, F' = 3) <> |6P5)5, F' = 4) transition). The trapped
atoms are first compressed in a compressed MOT by increasing the magnetic field gradient
to 30G/em and reducing the repumper intensity to densities n ~ 10'2/cm3, and it is
subsequently cooled through the standard sub-Doppler polarization-gradient (PG) cooling
mechanism, where I achieved ~ 30uK. The intensity control is performed by a magneto-
optical filter, allowing for smooth power control from a current loop generated by the FPGA
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Figure 4.4: Transport dipole trap with electrically tunable lens. Moving optical
trap is deployed to determinstically transport the Cs atoms from the center of the Science
chamber to the cavity platforms. With an electrically tunable lens, the focal point of the
optical trap can be dynamically tuned over > 10 ¢m. From our estimation, the primary
source of heating with the recoil scattering. The transproted atoms are then re-cooled
down to 1uK from the grey molasses at the cavity center and further cooled in a crossed
FORT through sideband cooling techniques.

control system. In terms of atom-transport, I have only proceeded up to this step, but have
completed all the remaining laser systems to move cold atoms to the main experimental
station.

At the end of the PG cooling step, I plan to adiabatically turn on the optical dipole trap
(854 nm ECDL with resonant portion of ASE filtered by a 100-kHz thermally-compensated
filter cavity with F' ~ 6k). With the electrically tunable Optotune lens, I will move the
focus of the conservative trap to the either experimental stations. The heating due to
the recoil scattering and parametric motional excitation is compensated by a tetrahedral
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MOT (called the t-MOT) with same level configuration as Fig. 4.3 that recools the atoms
within the station and prepares the atoms to F' = 4 state. In addition, because of the
geometry of the transport trap beam, the atoms will be elongated transverse to the cavity
axis. According to our quantum-trajectory simulations, recooling atoms to the Doppler
temperature would restore the cloud size ~ (100um) x (20um)?* (Chapter 5) .

The tetrahedral beams are then switched from the red-MOT to the grey molasses
configuration [139]. Because of the wide tunability with our OPLL, the change of the roles
between the trapping and repumping lasers are smoothly possible within the same optical
setup in 10 ms. Unlike conventional polarization-gradient cooling mechanism in a MOT, in
grey molasses, the cooling laser is surprisingly blue-detuned,d, between J — J = J or J—1
where one or more internal ground state manifold is in dark state. Atoms accumulates in
dark states where atomic potential is not changing along propagation direction. With
the motional coupling with bright state, at 6 = Aw, where Aw, is a potential difference
between the dark state and nearby bright state, atoms are optically pumped to bright state
and is decayed back to dark state with a low momenta of a few hk. Through this dark state
cooling mechanism, it is possible to realize higher number density of atom from low photon
scattering rate and suppressed interaction between atoms such as photon re-absorption and
short ranage resonant dipole-dipole interaction. For instance, in Ref. [I10], the authors
have achieved 7"~ 1uK only with a grey molasses.

We use a crossed dipole trap to form an image plane for the quantum-gas microscope
(QGM) with the 2D pancake aligned at the focus of the objective. Because of the small
angle 20° between the two beams, the position of the pancakes are largely insensitive and it
is possible to select a single lattice plane through microwave knife-edge techniques. For the
dipole trap, we have split a small portion ~ 300 mW from the 10 W NKT Photonics fiber
laser system at 1071 nm used for synthesizing the 309-nm UV beam (more on this point
in the next section). We will then perform a non-degenerate sideband cooling with Raman
pairs detuned by 50 GHz from the |65} /2) ¢+ [6P3/2) transition. At this point, it is possible
for us to implement a runaway evaporation near Feshbach resonance at 20.8 G that controls
the ratio of elastic-to-inelastic collision rates of Cs. A runaway evaporation enables a fast
and efficient form of atom cooling without a severe decrease in the elastic collision rates.
Different from typical evaporative cooling which reduces the optical trapping potential,
external magnetic field gradient tilts and levitate the optical trap in order to cool and gather
cold atoms. The merit of runaway evaporation is that trap frequency is not significantly
affected by the reduced trap potential and it results in the same or larger elastic collisional

2As the main experimental platforms are displaced from the center of the Science chamber by only 3.5
cm, we have decided with this transport method (due to the absence of optical access from the other side,
it was impossible for us to consider an optical conveyor belt).
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Figure 4.5: Sub-Doppler mechanism of grey molasses in a tetrahedral MOT. a.
Four-beam configuration of grey molasses. It is called a tetrahedron molasses when all lasers
have same angle. From theoretical calculation, it has been shown that cooling performance
is insensitive to angle between lasers except for a certain critical angle. b. Laser diagram
of grey molasses. A repump laser Qg\ZIOT prepares the atoms to |F' = 3). A blue-detuned

cooling laser Qg\)mT drives the transition |F' = 3) — |F” = 2). The two lowest Zeeman
levels of the ground state are nearly in the dark state |D) and atoms accumulates in |D)
with low momentum =~ hk after a few cooling cycles. In a grey molasses, these dark states
can be effectively turned bright, so that the atoms continue to experience efficient cooling.
c. A polarization gradient (PG) cooling with nearly dark states. When the detuning § of
QS\)AOT matches with optical potential difference AU between the bright |B) and dark |D)
states, the trapped atoms are optically pumped to the bright state |B) and PG cooling
continues to occur. At last, atoms are collapsed to |D) and the number density of atom
N is enhanced compared to the standard bright (red-detuned) molasses. d. Analytic
calculation displaying the polarization-gradients caused by the four-beam configuration for
our specific geometry.

rate, thereby shortening the cooling time. For Cs, in Ref. [125], the number density of
atom after a runaway evaporation can be nearly n ~ 1.5 x 10 cm~3 within 5 s of entire
cooling time by linearly increasing the magnetic field. During the process, the absolute
value of the magnetic field is kept at 20.8 G where three body collision rate is suppressed
to 1/40 Hz without affecting the trap confinement. Our electromagnet and controller
supports such adiabatic processes at the center of the Science cavity. Examining few-body
physics in a coupled atom-field system as in cavity QED system may be of interest in the
future. As further discussed in Chapter 6, Dr. Sabooni will use superpixel algorithm to
holographically project the potential landscape through the QGM, thereby pinning down
the atoms on the lattice plane of the crossed dipole trap. For the Rydberg dot experiment,
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Figure 4.6: Laser diagram of Raman sideband cooling. a. Degenerate Raman
sideband cooling. Two Zeeman sublevels of |F' = 3) state have degenerate motional states
with an external B field. A single laser €2, drives a degenerate Raman coupling between
13,3,n) < [3,2,n — 1). The laser 2, (resonant with 6515|F = 3,mp = 2) < [F' = 2))
optically pumps the atoms to the dark state |3,3,n = 0). b. Non-degenerate Raman
sideband cooling. Far-detuned Raman fields Q, drive |F = 3, mp = 3) > |F =4, mp = 4)
transition with two phase-coherent fields. €2, drives atoms to the |F' = 3,mp = 3) state,
where the trap lifetime is significantly longer than F' =4 [111].

we will trap the atoms using the intracavity field at the red magic wavelength 935 nm, as
it is not necessary for us to confine the atoms in a 2D plane.

4.1.3 Science lasers

Once the atoms are pinned down on the 2D DMD lattice potential, we can perform a wide
range of experiments. An important theme of my thesis is to go after the quantum spin
liquid phase of the quantum spin ice models. So what follows here are the descriptions
(and names) of the laser systems for this experiment in mind. As our infrastructure is
pretty much a “machine”, we could readily devise the experimental parameters (e.g., laser
frequencies) over a wide range and dynamically switch the roles of some lasers without
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Figure 4.7: Science lasers. We illustrate our home-built laser system on optical table
B. Unlike table A, where a single IF-master laser is used for the reference clock, the
ULE cavity and the ULE transfer cavity are used to realize the phase coherence across
the broad spectrum of ~ 2407 Hz on table B. IF-935 master laser is locked to ULE and
the ULE transfer cavity in tandem and transfers the optical phase coherence from IF-1017
master to [F-852 master laser. With the OPLL and frequency-doubling module, the static
phase relationship is imposed between the green laser (508 nm) and cavity field (852 nm),
enabling two-photon Rydberg transition.

much physical modifications.
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Lasers for Cavity QED and low-energy states of Cs atoms

As shown in Fig. 4.1, Cs atoms are localized in the Science cavity by a combination of a
300 mW crossed dipole trap and a DMD potential (Chapter 6). The crossed dipole trap
originates from a low-noise NKT Photonics Y10-NWR master oscillator (Yb-doped CW
fiber laser, 100-kHz PZT bandwidth, tunability: 10 nm) at 1071 nm, which saturates a
10W Keopsys fiber amplifier (CYFA-PB-BW1-PM-40) ?. The FORT laser illuminating
the DMD can be either 935 nm red-detuned laser, or 687-nm blue-detuned laser with
an inverted mask on the Fourier plane of the DMD. Both of these wavelengths are the
magic wavelengths for Cs Dy transitions, where we expect residual shift less than 1 kHz
(differential shift between the hyperfine clock states is minimal well below 1 Hz in both
cases). Because of the photoionization effects of Rydberg atoms, we will likely utilize
the 687-nm blue-detuned laser, where the ground-state atoms are localized in the dark
(intensity minima of the DMD potential). We also have the option to trap atoms using the
intracavity field, as our Science cavity is also coated for 687 nm and 935 nm with an optical
finesse F' ~ bk. The advantage of this approach is that the intracavity field fluctuation
is suppressed by the response function of the optical cavity, exhibiting remarkably low
intensity noise and cavity-enhanced trap depths.

It is instructive to note that the optical dipole potentials of Rydberg states are almost
always repulsive, because of the unavailability of higher optical states. Yet, it is surpris-
ingly possible to capture the Cs Rydberg atoms at 687 nm. Rydberg atoms have large
orbital radius, and cannot be well described by a point dipole. The breakdown of the
dipole approximation implies that the Rydberg levels are perturbed not only by the dipole
potential from the ground states but also by the ponderomotive potential of the scattering
modes of free-electrons, dressed by the optical fields. By combining these two perturbation
effects, we can actually optically trap Rydberg states at 687 nm [142]! Further reduction
of the loss rate can then be achieved with time-periodic intensity modulation of the optical
trap at frequencies well beyond the trap frequency w; ~ 50 kHz.

As briefly mentioned in section 4.1.1, our master IF-852 laser is used as a reference
laser for the read (|F = 3) — |F = 4) transition) and write lasers (|F' = 4) — |F = 4)
transition). These ECDLs are eventually phase-locked to the main master IF-852 with
relative linewidth below 0.1 Hz (not accounting for the Doppler shifts) with computer-
controllable OPLL with the phase parked at a 100mrad precision. The read laser is used
as the coupling field €2, in the quantum spin ice model (Chapter 2), while the write laser is
used for the probing field that converts dynamical spin correlators into correlated stream of

PThe overall system has a linewidth 1 kHz and residual intensity noise ~ 40 dB with our intensity
stabilization circuit.
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cavity photons. For both lasers, we use EOspace 20 Gbs LN high-ER intensity modulators.
We also have a 455-nm imaging laser, which we use for exciting atoms to |7P5/;). We plan
to use this system for future experiments requiring high-resolution microscopy (most likely
experiments that only involve ground-state Cs atoms). The Science cavity is stabilized to
a 935-nm slave laser, which is phase-locked to the master 1F-935.

Rydberg lasers

A high-power 319-nm UV laser. For the spin ice experiment, we require a high-power
direct Rydberg P excitation to Ising-gauge the spin system with A > ¢ where A is the
Ising energy and ¢ is the atom-cavity coupling rate. Because of the difficulty of dealing
with high-power UV laser and the challenge of UV diode laser systems, we use commercial
telecommunication fiber laser systems as the master lasers. The basic idea is to combnie two
high-power telecommunication fiber lasers at 1071 nm and 1573 nm in a sum-frequency gen-
eration (SuFG) process, followed by a cavity-enhanced second-harmonic generation (SHG).
We use the same 10-W 1071-nm laser system (NKT Photonics Y10-NWR master oscillator,
10W Keopsys fiber amplifier), and split a portion to be stabilized to our main master cavity
(F = 100k) with a sub-Hz linewidth. For the 1573-nm laser, we use the NKT EI5NWR
CW Erbium fiber master oscillator (Yb-doped CW fiber laser, 100-kHz PZT bandwidth,
tunability: 10 nm), which seeds a 10-W Er fiber amplifier (Keopsys CEFA-C-PB-HP-PM-
40) optimized for narrow-linewidth CW lasers. For the sum frequency generation, we use
a MgO:PPLN crystal waveguide from Covesion (MSFG647-0.5-20 with PV20 oven), opti-
mized for high-power operation with reduced photorefractive damages (with MgO doping)
with a theoretical output power 3 W for our seed powers. The resulting SuFG provides
a single-frequency output at 638 nm, whose output is split for frequency stabilization to
a medium Finesse cavity with the feedback returning to the 1573-nm laser. Finally, the
SHG system uses a Castech BBO nonlinear crystal in an external power-build-up cavity
to frequency double to 319 nm. We present the result for a similarly configured system in
the later section.

A high-power 508-nm green laser. In order to access dress cavity photons with high-
lying Rydberg S-states, we may also use a two-photon transition from 65/, — 6P/, at
852 nm (cavity photon) and 6P3;» — nSi, at 508 nm, which we colloquially call the
green laser. Importantly, because cavity polaritons are coherent superposition states of
the atomic spins and cavity photons, we require phase coherence between the cavity field
and the green laser. As discussed in section 4.1.1, this is achieved by a transfer cavity
that brings the optical coherence of an ultranarrow 1015-nm laser to 852-nm range. In
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order to realize an ultrastable and highly intense field at 508 nm, we constructed an ECDL
(Eagleyard, EYP-RWE-1060-10020-0750-SOT01-0000°) at 1017 nm phase locked to the
[F-1017 master laser. While the diode gain is maximized at 1030nm, the gain-bandwidth
spans down to 980nm due to the AR coating, thereby allowing for a highly tunable laser.
We have observed a mode-hop-free tuning range ~ 5 GHz and maximal tuning range over
50 nm. The output of this laser is then amplified by our in-house cavity-enhanced MOPA
(M2K/DILAS, TA-1010-2000-CM) to ~ 1 W to produce a high-power narrow-linewidth
frequency-doubled light at 508 nm.

4.2 High-performance external cavity diode laser sys-
tems

In this section, I describe several types of external cavity diode laser (ECDL) systems that
I have developed as part of the MSc thesis. In our laboratory, we extensive use Littrow-
based grating feedback lasers for common AMO applications throughout the laboratory.
For the most stringent applications with the narrowest linewidth and widest tunability,
we use the cat-eye configured interference-filter (IF) feedback laser [113, 144]. The main
reason for this development, well ... besides the great fun, was that it was simply impossible
to find commercial alternatives that could match the performance levels required for our
experiment.

ECDL is a reasonable starting point to realize sub-Hz stable laser. For most home-built
systems, the main limitation in terms of the instantaneous stability is the amatuer control
electronics. But long-term drift depends primarily on the optomechanical stability to
maintain the optical feedback to the gain medium. A single-mode (single transverse mode)
laser diode (LD) consists of a ridge waveguide of a semiconductor gain medium of length
L. Upon injection of carrier electrons, excitations in the diode bandgap convert the energy
into spontaneously emitted photons under population inversion. Usually, in a Fabry-Perot
(FP) cavity diode laser, one end of the waveguide is coated with high-reflectivity r1, while
the other end is simply terminated to air, forming a laser cavity with the Fresnel reflection
ro. On the other hand, in a gain chip (AR-coated diode), ro ~ 0 with the application of
AR coating or with Brewster exits. We can calculate the round trip gain Grr by

VGrr =r1m2exp (9 — ai)Le’j%:eHQL, (4.1)

“Richardson holographic grating, 33025FL01-239H / 12.5x12.5x6 1500G 600nm Holo Grating, alu-
minum coated.
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Figure 4.8: Gain spectrum of a semiconductor diode laser. a, Effective gain profile
for a grating-feedback laser with the grating function (black solid line) and the internal
mode (red solid line). b, ASE measurement of an FP cavity 1017 nm LD. We measured
the internal FSR of laser diode ~ 0.1 nm.

where ¢ is the gain of the diode medium, «; are the internal losses (e.g., reabsorption),
and neg is the effective index of the semiconductor waveguide. Namely, I find that the
threshold condition Ggrr = 1 is given by g; = a; + oy, with the scattering loss «a,,, oc 1/L
of the laser mirror (e.g., imperfect polishing). For an industry standard internal mode of
750pm long gain medium, there is a free-spectral-range (FSR) of ~ 0.5 nm, and the gain
function g is intrinsically sinusoidal (unless AR coating is applied).

The output lasing mode of an ECDL is selected by a competition between the periodic
internal gain and the frequency-selective (e.g., grating or interference-filter) functions of
the external cavity. Obviously, the best scenario occurs when the internal gain and grating
agree to each other, as I calculate in Fig. 4.8. In all other cases, the output mode may not be
stable and develop mode-hopping behaviors between the internal cavity mOQdes. From Eq.

AThAv; (aitam)am

4.1, I can derive the celebrated Shawlow-Townes equation Avj e, = P X jomra—

which relates the output laser linewidth to the length of the laser resonator.

4.2.1 Littrow-based grating ECDL

Due to its simplicity and high-output power, I have designed a Littrow-configured ECDL
instead of the Littman-Metcalf designs. In a Littrow cavity, the first-order diffraction of
the holographic grating is fed back to the gain medium to select the primary wavelength.
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Now, the longitudinal mode is determined by the competition between modes of the laser
gain medium, the grating function and now the external cavity formed by grating’s surface
and the reflective surface of LD. Since a bare semiconductor laser diode typically has a
bandgap gain medium over ~ 10 nm, it is possible to tune the output frequency over similar
ranges by tilting the grating with the Bragg condition sin(6,y) + sin(6;,) = m x A/d. The
internal and external modes’ FSR should not be an integer multiple. Otherwise, you would
experience a bistable output of the longitudinal modes of the cavity.

As shown in Fig. 4.10, we can categorize the stability criteria into 5 classes by the
amount of optical feedback [115, |. In region I, the amount of feedback is just too
low that it cannot exert a phase shift on the intracavity field of the gain medium. On
the other hand, in region V' with the largest amount of optical feedback, the output laser
is stable with respect to the cavity length. However, with infinitesimal reflection from
other surfaces, the output may experience severe oscillation of the external cavity modes,
requiring AR coating. I would like to note that this feedback regime is also extremely
difficult to achieve, because it requires that we couple nearly ~ 10& of the output power
back into the gain medium, which has a slit width ~ 1um. For the utmost stability, we try
to stay in the feedback regime I11. As the feedback threshold is lowered for longer cavity
length, the diode laser will preferentially follow the external mode of the cavity, instead of
its own internal mode. For typical diffraction efficiencies 10-20%, it is possible to maintain
the ECDL in this regime with large output powers.

In stability III, the output mode of the laser is selected over a mode-hop-tuning-range
(MHTR), limited by the differential response of the grating function and the external
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Figure 4.9: Working principles of Littrow external cavity diode laser (ECDL).
The first-order of diffracted light is fedback the active ridge waveguide, whereas the un-
diffracted beam reflects off the grating to form the laser output.
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Figure 4.10: Stability diagram of various feedback regimes and reduced linewidth
with external feedback. a, The stability regimes are classified into I-V classes by the
amount of the optical feedback as a function of cavity distance. b, Beat note spectroscopy
between two identical ECDL systems. We demonstrate a passive linewidth of 3 kHz be-
tween two independent ECDLs.

cavity modes, as the PZT tunes the grating mount. Ideally, we would like to match the
differential changes of the external cavity modes vex and the grating mode v,. By placing
the virtual pivot point (See Fig. 4.11a) on the line of sight to the laser reflection facet at
the Litrrow angle, we can match the variation dvey = dv,, so that the external mode can
sit close to the top of the grating function as the mount is rotated. By adding another
piezo stack at the pivot point, you can translate the grating position to tune the cavity
length without affecting the grating angle. Likewise, the grating could be rotating without
changing the cavity length to the first order.

In order to enhance the mechanical stability of the laser resonator, I designed the
grating enclosure to be monolithic, so that the grating and the laser diodes are fixed on
the stainless steel (SS)18-8 component. As shown in Fig. 4.11b, we mount a diffraction
grating onto to a proprietary mount that sits on the monolithic enclosure (borrowed from
a similar design by Jun Ye’s group) with precision springs (similar to a mirror mount).
Using a precision spring-based mount has one advantage compared to passively stable
flexure mounts: By reducing the mechanical load on the piezoelectric tube (PZT), we can
readily achieve high PZT bandwidth. The shape of the mount and the enclosure has been
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Figure 4.11: Littrow external cavity diode laser. a, Location of the pivotal point of
the grating mount for enhanced MHFT range. b, Monolithic grating cavity design. The
geometry of the grating enclosure is based on the designs from Jun Ye’s group at JILA. The
structural stability was optimized on COMSOL by varying the parameters of the structure.
¢, CAD design of Littrow ECDL. In section view B-B, I have shown that elements enabling
temperature control and precise tunability on the incident angle of grating. A stack piezo
is inserted in a deep hole at the back side of grating mount. Thermistor is located near
to laser diode and glued inside of the external cavity with thermally conductive epoxy.
Thermoelectric cooler plate (TEC) is sandwiched between the external cavity and the
bottom heat sink. d, External cavity diode laser mass production! One more typical day
with Chang and me in 2016.
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Figure 4.12: Schematic of cat-eye geometry. The first aspheric lens collimates laser
diode’s output. Cat-eye configuration is formed by the second aspheric lens and the output
coupler. Independent of the displacements of the components, a ray backtracking from the
output coupler would couple back to the ridge waveguide. For optimal feedback, the output
coupler is glued at the effective focal point of the lens. With the ring PZT actuator, we
can tune the laser over 1.5 GHz and the last aspheric lens recollimates the output.

numerically simulated and tested for its structural stability on COMSOL software.

Fig. 4.11c is a CAD rending of our Littrow ECDL. The monolithic laser cavity is
hermetically sealed with Viton dampers and custom AR coated windows (Foctek). Under-
neath the cavity is a TEC plate mounted on an Aluminum heatsink block, which stabilizes
the laser diode temperature within ~ 100uK resolution with a thermistor sensor. The AR
coated window prevents air fluctuation from causing undersirable instability and humidty.
For laser diodes requiring a large degree of electric cooling, we have the option of fill the
cavity chamber with a Ny gas. With these laser systems (See Fig. 4.11d for a small subset
of lasers being built), we routinely achieve mode-hop-free-tuning ranges of 4 GHz and laser
linewidth 1 MHz over 10 s integration time (~ 300 kHz for 100us integration time with
the instantaneous linewidth similar to those from Toptica).
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4.2.2 Cat-eyed interference filter laser

Our interference filter (IF) lasers have typical cavity lengths L. = 7.5 cm? and a free-
running linewidth ~ 100 kHz over integration time 10s ©. Long-time integrated linewidth

1st aspheric lens

Laser diode Interference Filter

Collimation package .
2nd aspheric lens

Ring actuator

3rd aspheric lens

Output coupler

Thermoelectric cooler LBl e e
plate

Rotation Stage

Figure 4.13: Rendering of Interference filter laser. The cat-eye configured interference
filter laser is illustrated. The first aspheric lens collimates the laser output. Extended cavity
is formed by the transmissive interference filter (0.3 nm) and output coupler (20—30%
reflectivity). The second aspheric lens is used to form a cat-eye configuration for passive
stability.

dThe free spectrum range (FSR) of the cavity is ~ 1.5 GHz.
¢QOur instantaneous linewidth is much smaller than the long-time integrated linewidth, as limited by
the Shallow-Townes limit.
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is a good measure to quantify the mechanical stability of the laser over relatively long-term
drift (apart from the thermal drift). That is, our laser drifts less than 100 kHz over a 10s
period, with the instantaneous linewidth being much smaller. In fact, on a typical day,
when we drop a screwdriver onto the optical table, we typically do not see any visible
change on the real-time scopes displaying our Cs Lamb dips, as if it is a still picture!
Furthermore, without any active intervention, when the laser beam is blocked in a typical
feedback (letting the system to freely drift), we do not see any measurable difference in the
error signal when the beam is unblocked. The working principle of this passive stability is
the the confocal geometry, which has a number of benefits for its mechanical stability in a
Fabry-Perot cavity. As discussed in Ref. [144], the differential optical path round-tripping
the laser resonator is canceled up to the first-order of ray tracing (with thin lenses). As
shown in Fig. 4.12, the external cavity is formed by a rear facet of LD and the output
coupler.

Narrow-linewidth interference filter (linewidth ~ 0.1 nm and transmission efficiency
~ 95%) is inserted in the collimated region of the cat-eye cavity to select the desired
longitudinal modes (~ 0.3 nm). To maintain the narrow linewidth and high transmission,
Prof. Choi worked out a single-cavity design with our partner, which is basically a dielectric
microcavity with Bragg bandgaps. The tuning range of our lasers is routinely over the
entire gain spectrum (100 nm for our 1015-nm gain chip). A cat-eye reflector maximizes
the mechanical stability of the optical feedback and lowers the susceptibility to optical
misalignment of the cavity.

In our laboratory, the cat-eye IF lasers are mainly used as the master lasers. Other
grating-based ECDLs can then be readily phase-locked to these master lasers with sub-Hz
relatively linewidth at arbitrary phase-frequency relationship with our dedicated controller.
By pre-stabilizing these cat-eye IF laser to a medium-Finesse cavity F' =~ 5k, I routinely
achieve sub 100 Hz linewidth. One design flaw is that the laser collimation package PAL-9B
contains a short focal length f = 2.7 mm that exaggerates the beam astigmatism’. For the
next-generation design, it would be good to increase the focal length of the first aspheric
lens.
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Figure 4.14: 3D rendering of thermally-compensated Fabry-perot cavity. Com-
posite materials, consisting of Brass, quartz, Aluminum and piezoelectric ceramic are used
to compensate the overall CTE at 300 K.

4.3 Optical Fabry-Perot cavities

4.3.1 Thermally-compensated FP cavity

In our lab, we use an affordable home-built medium-finesse (F < 10,000) Fabry-Perot
cavity designed by Dr. Liu for two purposes. First, we use these cavities to prestabilize
a fluctuating laser to achieve a relatively good linewidth ~ kHz and comparable to the
linewidth of our ultra-high-finesse reference cavities. This stabilized laser can then used to
probe the high-finesse cavity with sufficient transmitted power for the active feedback loops
to recover enough P-gain to drive the loop above unity. Second, we also use these cavities
for frequency and intensity filters. Since the bandwidth of the cavity is ~ 100 kHz, it is
suitable for filtering small signals such as the resonance fluorescence of the trapped atoms

fTypical single TE-mode ridge waveguides has astigmatism on the order 3 — 10um.
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from the scattered light of the dipole beams. We can also use the cavity as an integrator to
filter out the high-freugency intensity noise, relevant for achieving low-noise optical traps.
Since we use RF reactive magnetron-sputtered optical mirrors, our cavity may find good
use for cases where low loss is necessary®, but with an economy compared to IBS mirrors.

The long-term drift of a FP cavity is caused by thermal expansion of the metal spacer.
I discuss the construction of high-finesse cavities out of Corning ultra-low-expansion (ULE)
gasses with zero CTE" in the next section. Here, I focus on an economic solution devel-
oped by John Barry’s thesis in Yale [137], which uses composite materials holding each
mirror so that the global CTE is cancelled. With some modifications, Dr. Liu and I
have realized an optical cavity that could tune the zero-crossing temperature near room-
temperature without accurate knowledge of the alloying materials, while maintaining the
confocal geometry.

If we only consider the effective CTE associated with the length of the cavity, we find
that aeg = ZE—QOLLL x Cl+ (a1 —ag) x C2 where a; 2 are CTE of each endcap materials.
The tunability of “deﬁ‘ heavily depends on the CTE mismatch Aa = a; — ag, and we can
use this to our benefit to turn the effective CTE to be functions of Ly, L. For this, we
use Brass and Aluminum endcaps with a 15% CTE mismatch. Unlike the original design
in Ref. [137], both endcaps are movable in our system with precision-mated threads. As
shown by Fig. 4.14, ring PZT ceramics are inserted between the mirrors and endcaps’. We
use a HV chamber to shield the external environmental noise and thermally stabilize the
chamber at room-temperature. ECDLs are locked through a standard Pound-Drever-Hall
(PDH) method with a home-made EOM with optimized resonant frequency to achieve
the widest capture range and steepest error signal. With a clock-referenced direct digital
synthesizer (DDS), I was able to routinely achieve the absolute laser linewidth below 100

Hz for most of our lasers.

4.3.2 High-finesse ULE FP cavity

Apart from our commercial Ultra-low expansion (ULE) cavity from Stable Laser System
(SLS) which acts as the master clock, I have designed and implemented high-finesse tunable
cavities with notched ULE geometry for improved mechanical stability. As the STS ULE

&The scatter-absorption loss is less than 100 ppm for our magnetron-sputtered mirrors.

hOther promising candidates are Zerodur and CeramZ, all of which has zero-crossing temperature near
20°.

"Materials, including the quartz spacer, PZT, and mirror themselves are included in the CTE analysis,
in addition to the endcaps.
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Figure 4.15: UHV chamber for the notched ULE transfer cavity. Notched style
ULE cavity is placed in a custom UHV chamber with Viton spheres located at the Airy
points for vibration-isolation. The UHV chamber is pumped by a 2 L/s ion pump.

cavity was centered around 1016 nm, we required a separate transfer cavity with the coating
curve optimized at 850 nm and 935 nm. As a transfer cavity, we required PZT ceramics
(usually with large CTE) to tune the cavity length but yet would like to cancel the added
CTE effectively.

In terms of mechanical construction, as shown in Fig. 4.15, our notched shape ULE
spacer (ULE Corning 7972) is used for cancellation of acoustic vibration and sits on a
3-stage vibration damper with Viton spheres at the Airy points to maximally damp out
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the mechanical excitations of our UHV chamber. The Airy points are numerically opti-
mized with a FEM simulation to avoid the bent by gravity. The vacuum-compatible TEC
and thermistor are integrated in the UHV chamber for temperature stabilization at the
zero-crossing temperature. Venting holes and optical clearance are identical to the ATF
reference cavity. The 2 L/s ion pump is positioned out of the line of sight. There are
reported evidence that Ti sputtering and plasma generated in ion pumps can negatively
affect the TayO5/Si0, bilayer mirrors. While the entire cavity assembly is installed on the
optical table, we use a commercial minus-K vibration platform to achieve vibration block
< 0.5H z through a negative-stiffness mechanism.

[ — ﬁﬁ

Fused silica

Small ring
actuator
L[|

Macor spacer

Large ring
actuator

SECTION A-A

Figure 4.16: Rendering of notched shape ULE spacer. We illustrate the notched ULE
cavity. Bilayer piezoelectric transducers are used with a fused silica mirror to compensate
its CTE expansion.

Fig. 4.16 demonstrates detail of notched ULE cavity assembly. We machined a ULE
glass as the spacer with surface flatness less than 3 arc minutes and surface roughness below
0.5 A. The surface flatness and roughness are crucial to optically contact the mirrors on
the spacer and form a monolithic cavity. I have designed and used a special mechanical
rig to maintain parallelism of the two glass surfaces by measuring the Newtonian rings
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Figure 4.17: Temperature stabilization with two layers of radiation shield. Grey
solid line depicts the temperature change of the ULE spacer for a quench 10°C' on the

exterior of the first Copper layer. Black solid line shows the temperature change of the
outmost layer of the Copper shield, when the laboratory temperature is suddenly quenched.

formed during the optical bonding. For the low-loss mirrors, REO inc. has provided us
concave ion beam sputtering (IBS) mirrors with a target absorption-scatter loss < 2 ppm,
and optical Finesse F' ~ 1.1 x 107 (6 x 10*) at 852 nm (935 nm). The edges of the mirrors
were masked during IBS coating and left as the bare superpolished surfaces for the optical
bonding. There is a pair of ring actuators at each end of the ULE spacer - NAC2125 and
NAC2122 from Noliac Piezo, compensating for their CTEs. We use fused silica adaptor to
hold the PZTs together to compensate for the CTE of the mirror substrates themselves.
From machining tolerances, I do not expect a full cancellation of the thermal expansion,
but this is largely fine as it is a tunable cavity design.

Since our ULE cavity is “levitated” by thermally insulating vibration isolation polymers
in a UHV environment, the only method of heat transfer to the cavity is by blackbody
radiation. Suppose that there an inner layer P and outer layer P, at thermal equilibrium
state. A sudden temperature change on P; from 7; to T radiates the heat and surface of
P; layer will absorb the heat by a rate

dQ _ o(Ty —Ty)
At 1/A(1)e — 1) +1/As1 /ey’

(4.2)

where o is a Stefan-Boltzmann constant, A;(Aj;) is surface area of Pj(FP2), and € is the
material-dependent emissivity of the surface. Accordingly, we can compute the tempera-
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ture change on the inner layer as

Ty o(Ty —T3)
dt N Cgmgl/Al(l/El — 1) + 1/A21/€2

= B12(TF — T3)). (4.3)

With two layers of copper shields and Viton O-rings, I simulated the temperature
fluctuation on spacer. In simulation, I considered sudden temperature change from 300
K to 310 K on environment. As shown in Fig. 4.17, for a sudden temperature quench
10 K on the surface of the UHV chamber, it takes 50 hours for the most outer layer
equilibrate, significantly damping out the original step-like thermal excitation. As we
stabilize the temperature with TEC on the surface of the UHV chamber, we expect to
cancel such a long-term temperature change on the surface of the chamber. In our design,
the metal surfaces in the vacuum chamber are contacted through Viton O-rings, and heat
may conduct through these small elastomers. However, for the Viton O-ring, it would
still take more than 200 hours to respond fully under the same quench. Hence, I installed
the OFHC Copper radiation shields. With the heat shields, I hope to reduce the thermal
variation on the ULE spacer with homogeneous temperature distribution.

4.4 Efficient SHG module

In this section, I briefly discuss the design principles behind the cavity-enhanced SHG
modules for frequency-doubling a stabilized 1017nm external cavity diode laser for Rydberg
excitation 63/ — nSi/ at ~ 508 nm. Based on the optimized Boyd-Kleinman factor for
Gaussian beam, I found a set of optimal parameters for coupling the fundamental to the
nonlinear LBO crystal with a single-pass efficiency nspe = 4.9 x 1073 /W limited by the
walk-off angle at the critical phase matching condition. External enhancement bow-tie
(ring) cavity is used to build up intracavity field for efficient SHG conversion up to 80%
for input power 1 W.

4.4.1 Theory for single-pass SHG conversion

I would like to refer to the Refs. [147, , , | for the basic theory for SHG. In
summary, if we consider the dynamics of the induced electric dipole moments in a nonlinear
optical crystal [151], a new field emerges from the polarization P of the underlying medium,
in which we consider the expansion P = ex® - E + ¢ox® : EE + O(|E[?), with the
electric susceptibility tensor y® of rank k + 1. To the second order, we consider (X(Q) :
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EE)Z = ngiﬁjﬁk with birefrintent crystals of uniaxial symmetry. For a plane-wave, the

emitted field out of the crystal corresponds to the classic sinc function for superradiance
in extended sample regime with intensity [ ~ Sizg% 2| with Ak = 2kp — ksug. In order
to increase the coherence length for the effective SHG interaction, one needs to achieve
a phase-matching where the phase velocities of the fundamental and the harmonic are

matched n(2wg) = n(wsug) for cooperative emission in the forward direction.

In a bulk uniaxial birefringent nonlinear crystal, there are two ways that the phase
matching condition could be achieved.

4.4.2 Critical phase matching

In critical phase matching (CPM), the angle 6 with respect to the c-axis is tailored to
tune the indices n, (0, w), n.(0,w) of the ordinary and extraordinary beams. For a positive
uniaxial crystal as LBO (LiB305, n,(0,w) > n.(0,w)), with a proper choice, both fields are
phase matched with n,(6,2wr) = n.(0, wr), as designated Type I (labelled commonly as
(e,e,0)). Type II phase matching is also available for LBO crystals with (e,o0,e) or (e,0,0),
which are amenable for the case of Sum Frequency Generation. This may be of more
relevance to the work on direct Rydberg P excitation, which requires frequency-mixing
for the 317 nm laser. One disadvantage is the presence of walk-off angle between the
fundamental and harmonic beams, which reduces the cooperative effect for long crystals.
Furthermore, the walk-off can cause astimagtism for the SHG field, thereby requiring
compensation optics at the output. We will investigate below the feasibility for CPM for
LBO crystal in an enhancement cavity.

4.4.3 Non-critical phase matching

In non-critical phase matching (NCPM), one relies on the thermal tunability of the bire-
fringence with # = 90° to achieve phase matching at an elevated or cooled temperature.
NCPM can be conveniently achieved for wavelengths around 1100 nm and 1500 nm. While
NCPM permits maximum conversion efficiency in a single pass with no walk-off angle,
thermal stability is an issue, especially if the intracavity field is extremely powerful leading
to thermal lensing effect. In particular, for doubling 1016 nm, we would need to heat the
crystal above 100 °C.
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4.4.4 Quasi phase matching

It is possible to prescribe distributed Bragg structures in nonlinear crystal by way of pe-
riodic poling for dispersion engineering with a method known as quasi-phase matching
(QPM). With conductive masks, permanent change in the refractive index can be made by
localized electric fields. There are several advantages of QPM, ranging from higher nonlin-
ear coefficients deg, non-critical phase matching close to room temperature, and tunability
to wavelengths not accessible by conventional CPM. Furthermore, because the process is
lithographic, it is possible to build waveguide structures to enhance the interaction re-
gion beyond of what is possible in free-space (as we will discuss below). Realistic QPM
materials, however, do not permit high power operation and have lower optical damage
loss compared to pure bulk crystals. We will explore MgO dopped C PPLN waveguides
from HCPhotonics, Covesion, and Commax as possible routes (MgO dopping allows higher
damage threshold, and may allow close to unity single-pass conversion efficiency for a few
100mW). For these crystals, I am expecting cavity-enhanced conversion efficiency upto 95
% in chip-scale PPLN, and 30 % for single-pass conversion in a ridge-waveguide PPLN.
We use QPM for the commercial MgO:PPLN waveguide for the UV light.

Conversion efficiency

In the case of a Gaussian field, the single-pass conversion efficiency [152, ] is given by
PSHG 2w2dzﬁLk‘ _al

~ = “ *““h(B 4.4

TISHG P2 Teoctnd € (B.§), (4.4)

where w = 2mwc/ g is the angular frequency of the fundamental, deg is the effective nonlinear
coefficient, L is the crystal length, and k = 27ng/Ar is the fundamental wave-vector.
a = aF + agag/2 accounts for the absorption of the fundamental ap and harmonic agpg.
The Boyd-Kleinman parameter h(B, &) [153] accounts for the Guoy phases of the wavefront

for Gaussian beams (via the focusing parameter { = L/2zg with Rayleigh distance zg =
mwd /Ar), walk-off angle p (via B = py/mLnp/2\r) and the intensity variation across the
crystal in a manner similar to the original sinc function for plane waves [154, |. T can
calculate the Boyd-Kleinman factor with the numerical integration [153]

1 &f cexp(—a(t + 7' +2f) —io(r — 1) — B2(r — 1)?)
h(o,B,a,&, ) = 2—5//_f drdr T+ 1)

’

(4.5)
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Figure 4.18: Boyd-Kleinmann factor h(B,§) as a function of focusing parameter £ for
different walk-off parameter B.

where 0 = Akzg is the phase mismatch parameter, 8 = By/2/¢ is the double refraction,
a = azg, and f = f./zg is the focal length.

One interesting manifestation of the Boyd-Kleinman theory is that optimal conversion
occurs not exactly at the phase matching o = 0. I have plotted the various Boyd-Kleinman
factors for different walk-off angle in Fig. 4.18. As I discuss below, our experimental
parameter with type I CPM for LBO corresponds to a walk-off parameter B = 1.34, which
thereby gives single-pass conversion efficiency of nsyg = 5.94 x 1075 ! for beam-waist
wo = 3lum and crystal length L = 10 mm. You can find the MATLAB codes in the
UQML folder.

4.4.5 Numerical computation of single-pass conversion efficiency

Here, I provide the numerical result of the Boyd-Kleinmann factor h(B, £) for our geometry.
I have chosen LBO as the target crystal because of the high damage threshold. Although
the effective nonlinearity is not as high as other materials (KTP, BBO), the possibility
to build large intracavity power P. provides a motivation to use LBO for high-power
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application as ours. Because NCPM requires temperature > 100°C, we will use CPM
for 1015 nm — 507 nm in type I configuration.

I have used a useful software package, SNLO v2, which contains all the crystal param-
eters for all sort of nonlinear crystals to obtain the correct cut angles (6, ¢) to achieve
CPM. The relevant parameters are the crystal axes (0, ¢) = (90°,14.2°), (phase-matched)
refractive indices n = 1.606, group indices ng4(wr) = 1.626, n,(wspc) = 1.643, effective non-
linearity dg = 0.827 pm/V, the loss parameters ar = 3.5 x 1072 /m, aggg = 3.3 X 107! /m,
and the walk-off angle p = 8.5 mrad (Please refer to SHG CPM.txt file in the UQML folder
for more data). For Gaussian beam-waist of wg = 31pum and crystal length L = 10 mm,
we obtain a single-pass efficiency of nsgg = 5.94 x 107°W ™1, which is about a factor of 3
smaller than the maximum efficiency if B = 0 (e.g., via QPM process). In order to reduce
the damage threshold of the coatings and the reflectance from the crystal, we may choose
a brewster-cut LBO crystal.

4.4.6 Bow-tie ring resonator

Due to the low single-pass conversion efficiency, I need to build an enhancement cavity
around the crystal. I will describe the bow-tie resonator in Fig. 4.19 to achieve the required
beam-waist wy = 31um, and the choice of the mirror coatings for optimal impedance
matching. An alternative method would be to put a reflective coating on one side of the
crystal and put a curved mirror on the other, forming a FP cavity. The main disadvantage
of this approach is that it forms a standing wave pattern, which in turn may cause damage
to the crystal due to the large thermal gradient and poor M2 quality for the output SHG
beam.

Bow-tie resonator can be easily modeled by ABCD matrices, so I will not provide de-
scription below, except to mention that we could compensate for the astigmatism caused
by brewster-cut LBO crystals with choosing the angle of incidence 6; to the curved mir-
rors via the relationship R, tan6;sin6; = L(n? —1)/n3 [155]. For R, = 50 mm mirrors,
astigmatism is corrected for § = 15.7° for a brewster-cut LBO. For optimal impedance
matching in the presence of losses, let us consider the ratio of the reflected power P, to the

incident fundamental Pp

Pe (L= /rrm)?
where 7 is the reflectivity of the input coupler M1, and r,, is the cavity reflectance pa-
rameter r,, = Ttsyars. Here, T is the single-pass transmission coefficient (e.g., optical loss
by the crystal), tsyc = 1 — nsuc P. is the transmission of the crystal, P. is the intracavity

150



M: - = M

M. . Ms
L Lo

(R:Carvature of M3 and M4 mirror)

Figure 4.19: Bow-tie ring cavity. M;_, represents the mirrors. M3 and M, are spherical
mirrors. L is the length of the nonlinear crystal.

power of the fundamental, 5 is the reflectivity of M2-M4. By choosing r; = 7,,, perfect
impedance matching can be achieved (i.e., perfect destructive interference between the field
reflected by the first mirror and the field transmitted in a single-pass.

In order to determine the intracavity power by input-output relation, we find

P. 1—r
—_— = 4.7
PF (1 — N/T1Tm>2 ( )

We can thereby obtain the intracavity power for different values of r; and optimize the
impedance matching condition for a target value of P.. The output SHG power is then
given by Psyg = P.tanh(nspgP.), which accounts for the pump depletion effect for high
SHG conversion.

Utilizing the dispersive phase shift on resonance, we will lock the cavity via Haensch-
Couillaud method by monitoring the polarization rotation through M1 (input coupler)

[149].

In Fig. 4.20, I provide the numerical result for the impedance matching condition for
the cavity parameters with Pr = 1 W, single-pass coefficient (AR coating & loss of LBO)
T = 0.999, mirror reflectivities M2-M4 ro = 0.999, and single-pass conversion efficiency
nsuc = 5.94 x 107°W 1. We can thereby choose the mirror reflectivity for M1 to be 99 %
for optimal impedance matching, if all other mirrors can have reflectivity > 99.9 % (and
the AR coating for LBO can give transmission > 99.9 %). We thereby require IBS thin film
coatings on these mirrors. Figs. 4.21 provide the expected conversion efficiency upto 85 %
and output SHG power as a function of the power of the fundamental beam for our cavity
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Figure 4.20: Output SHG power vs. input mirror reflectivity for the parameters: Pr = 1
W, single-pass coefficient (AR coating & loss of LBO) T' = 0.999, mirror reflectivities
M2-M4 7, = 0.999, and single-pass conversion efficiency nspg = 5.94 x 107°W 1. The
conversion is maximized at r; ~ 99 % with 850 mW of light at 507 nm.

geometry. Fig. 4.22 displays the mechanical construction of our SHG module design.
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power for our geometry. In the simulation, we account for the pump depletion effect.
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Figure 4.22: Rendering of second harmonic generation module. Our cavity en-
hanced SHG module is displayed. For mechanical stability, the mirror mounts are installed
on a 2”—inch thick Al platform. The mounts are custom-designed with SS pieces. The
high-speed mirror utilizes a conical copper holder that impedance-matches the PZT re-
sponse to the thin mirror. OFHC copper is used for the nonlinear crystal holder, where we
temperature-stabilize the copper mount with TEC. The crystal is wrapped with Indium
foil to maximize the thermal contact with the copper piece.
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Chapter 5

Open-system treatment of internal
and external atomic DOF's

The physics of light scattering is intrinsically an “open” quantum mechanical process. For
most radiative process with mean photon number (n) > 1, a semi-classical treatment
accurately describes the dressed states of the atomic internal DOFs and classical electro-
magnetic fields. However, for laser-cooling processes involving only a few cycles of photons
(e.g., single-photon cooling [156]), there is an intrinsic form of an optomechanical coupling
as the photons leaving the system exerts a fluctuating momentum transfer in the form of
photon recoil. In this Chapter, I would first like to formulate a simple open system model,
treating the external degrees of freedom also quantum mechanically, and then apply this
method to the atom transports (reducing the motion semi-classically), the non-degenerate
Raman sideband cooling, but also to the concept of single-photon cooling (involving both
quantum DOFs). With this numerical package, I can optimize the experimental param-
eters for atom transports both for the pushing beam (from Source to Science chambers)
and moving dipole traps (within the Science chamber) where the motion can be treated
classically, but also readily apply to future experiments involving the quantum motion.
More generally, the case of Rydberg-dressed atoms in an optical cavity is a complex spin-
optomechanical system, and it would be of interest to examine the self-organization and
textures of such many-body quantum systems for photons, motions, and spins.
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5.1 Open system treatment

5.1.1 Quantum motion

Light scattering is an open system problem, where dissipation (spontaneous emitted pho-
tons) generates a fluctuation to the quantum motion (photon recoil) of the center of mass
with [XZ, PZ] = 1. In this case, we must explicitly include the external degrees of freedom
(kinetic term) into the description of the Hamiltonian, and formulate a Lindblad dissipa-
tion [157]. Here the atomic center of mass motion is a dynamical component of the system

Hy = ZZ 57 —|— V}(n) where V(7 ) is the external trapping potential.

In order to formulate the dissipator, I consider the system-reservoir interaction H SR =
i dk > (f@k(n)aée) ay, + h.c), where we now explicitly track the position operator 7; into the

mode function r(7;). For the free-space coupling, we take the plane-wave basis k(7)) =

K exp(ilg . 7?,) The dissipative jump operator ¢;, derived from the quantum stochastic

calculus [34], is then given by ¢; = aée) eXp(—iEO : f_’;), with the dissipative atomic dynamics

described by the Liouvillian superoperators L,[p] =}, j(%zﬁé; —é&le;p— péle;). Similar
argument can be made as in Section 1.2.2 for interatomic spacing 75; > A and neglect the
correlated photon emission (accompanied by correlated mechanical excitations) with i # j

La[p] =~ (Z 26(!) exp(—ikoX;)p exp(ikoX:)6%) — 610p — ﬁfré?) : (5.1)

For simplicity, I have neglected the anisotropy in the dipole emission pattern in writing the
above equation and suppressed to an effective one-dimensional model. This is a relevant
case for trapped atoms in an optical cavity (sideband cooling), where Purcell enhancement
(stimulated emission) gives rise to preferential dissipation into the cavity mode (to the laser
beams). From the Lindblad term, we can see the internal degree of freedom is coupled to
the external one, where damping of the internal states produces fluctuation of the external
states.

For some internal Hamiltonian H. s (which may also couple the external DOFs with the
spatial geometries of the laser fields), both the internal and the external wavefunctions are
described by the density matrix p, which follows the quantum master equation

p=ilH, g+ Y Lilp] + Lalp), (5.2)
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where H = Hg + H v, and L; are the dissipative superoperators for the other DOFs not
directly involving motion (e.g., cavity decay).

5.1.2 Classical motion

We can return to the case of classical motion by dropping the hats from the position and
momentum. In this semi-classical picture, we treat the internal DOFs quantum mechani-
cally, while the e-number position 7;(t) and momentum p;(t) = M 7; separately follow the
Newtonian differential equation as point particles. However, I would still like to include the
intrinsic fluctuation of the quantum jumps, as part of the classical trajectory 7;(t), p;(t).

The first requirement is straightforward. For a short time evolution dt (e.g., for quantum
Monte-Carlo wavefunction method),

p; (t
ri(t+6t) = 7i(t) + Tfl)ét (5.3)
Bilt+0t) = pi(t) + Fi(t)st, (5.4)
with the instantaneous conservative force Fy(t) = —(1h(t)|V H|o(t)) evaluated with the

internal state [¢(¢)). In order to understand the effect of the jumps onto the center of mass
motion 75(t), p;(t), we recall # = iV in continuous quantum mechanics. The exponential
factor exp(:l:%ko -7) in the quantum jump operator is then the raising and lowering trans-

lational operators in the momentum space |¢(E)> That is, when a quantum jump occurs
within the internal spin state, I can include this fluctuation to 7, p; by adding a random
momentum shift hky (i.e., the photon recoil).

In what follows, I begin with the semiclassical regime by treating the motion as classical
c-number, but account for the internal DOFs. I use this semiclassical approximation to
compute and optimize the atom transport process. I then move onto the full formalism by
putting the external DOFs on equal footing with the internal one. I can second quantize
the motion around its center of mass, and simulate the motional ground-state occupation
for the trapped atoms with non-degenerate Raman and cavity-enhanced sideband cooling.
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5.2 A long distance atom transport with push beam
technique

A push beam technique offers a simple and efficient method for atom transport over a
relatively long distance. We use this method to create a continuous cold atom flux from
the Source MOT to the Science MOT. The atomic beam is collimated and guided by the
dipole force of the pushing beam, enabling cold atoms to pass through the small differential
pumping tube (Chapter 3). Unlike traditional Zeeman slower and magnetic transport, a
push beam technique requires only a single slightly diverging beam that extracts continu-
ously cold atoms from the Source MOT to the Science MOT. By optimizing the geometry
of the pushing beam, it is possible to focus the atomic beam through small slits, such as
the differential pumping tube.

5.2.1 Analytical estimation of the push-beam transport efficiency

Fig. 5.1 illustrates the schematic of the pushing beam technique. In our laboratory, we
follow the particular implementation of Ref. [158], instead of forming 2D MOT in the
Source chamber. The atoms in the Source MOT experience the radiation pressure of the
pushing laser (detuned by 0 from |F = 4) — |F = 5') with Rabi frequency ,) and
accelerate towards the Science chamber. As soon as the atoms escapes the repumping
region of the Source MOT, they are optically pumped to the dark state |F' = 3) by
the pushing field. During the transport, as the atoms are prepared in the dark state,
there is minimal recoil heating with the pushing beam supporting a conservative dipole
potential to confine the radial width of the atomic flux and keep them collimated over
the transport distance. Dipole guiding implies that we can install differential pumping
tube with a smaller conductance (and thereby better UHV environment in the Science
chamber) and better transfer efficiencies, compared to other purely dissipative pushing
beam methods [159, , ]. The 3D MOT allows higher atomic density and cooler
transversal temperature, while the small cloud size implies the slower ejection velocity and
thereby relaxes the capture range v, requirement for the Science MOT.

Unlike the original reference [158], our chamber axis is oriented perpendicular to the
gravity. We thereby require a shorter transport time for the atoms to not fall below the
capture position range r. ~ 10 mm (e.g., collision with the differential pumping tube) ?,

preferring a larger scattering rate of the pushing laser to accelerate the atoms. On the

aThe capture range is determined by the molasses volume of our MOT beams ~ 25 mm with the field
gradient 10 G/cm.
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Figure 5.1: A collimated pushing laser along chamber axis. A push laser is col-
limated along the chamber axis, perpendicular to gravity. The beam waist ~ 200um is
located backward to the Source chamber by 23cm. Cesium atoms in the Source MOT
escapes and pushed towards the Science MOT by the radiation pressure and guided by the
conservative potential generated by the pushing beam.

contrary, excessive scattering rate would cause heating and delocalization in the transverse
directions, thereby reducing the transfer efficiency. In addition, we require that the atoms
at the final destination to be well within the capture velocity v. ~ 50 m/s of the Science

MOT.

To see the detailed balances, I note that the detuning ¢ of the pushing laser determines
the scattering rate
T 20)?
24824202 4T
where I and €2 are the atomic decay rate and the Rabi frequency, respectively. The diame-
ter of the Source MOT, Lyior, regulates the escape velocity with vyor = V21 sectrec LvoT,
where v, is the recoil velocity. With the distance between UHV chambers L ~ 30 cm, I
conservatively assume the pushing beam power 10 mW. Once the atoms escape the Source
MOT, they rapidly get pumped to the dark state due to off-resonant Raman scattering
from |F = 4’). Because of the finite J, the atomic steady-state still contains a finite
population in the bright state |F' = 4).

Ty (5.5)

Larger 0 results in smaller scattering rate and thereby a smaller initial velocity. Because
of the longer transport duration, there is a significant degree of photon recoil heating
with larger kinetic energy, reducing the transfer efficiency. On the other hand, closer to
resonance, the atoms are ejected with an excess initial velocity with larger kinetic energy
than the capture energy of the Science MOT. The radial deviation of the atomic beam can
be calculated both from the effective force of the gravity and the dipole guiding, as well
as the random walk of the recoils. For the later, the RMS transverse velocity distribution
of the beam is & v/Nv,, where Nj is the number of scattered photons and v, is the recoil
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Figure 5.2: A push-beam configuration for atom transport between two UHV
chambers. Because of the horizontal transport, for better capture efficiency, we require a
larger initial velocity compared to Ref. [158].

velocity.
Fig. 5.3 shows the transport efficiency for this simple analytical pseudo model with the
weighting function (ﬁ) <ﬁ> (Ref. [158]), where 27 = simal and 1y = gt
1 2 reca; ,science

The dotted line shows the transfer efficiency for a large Source MOT Lyor = 10 mm.
Because of the larger acceleration distance, the atoms ejected from the face of the Source
MOT have larger initial velocity, which needs to be compensated by a larger detuning
to limit the scattering rate I'y.. For the pushing beam near resonant § ~ 0, the initial
velocity is too large to be efficiently captured by the Science MOT, signified by the drop
of transport efficiency. For a smaller cloud size Lyior ~ 3 mm, the initial velocity is < 20
m/s at 6 = 10 MHz. Accordingly, the transfer efficiency is peaked near § = 0, where a
significant fraction of the steady-state population is in the dark state.

While this analytical model has good agreement with the experiment of Ref. [158], the
weighting function may not be appropriate for obtaining quantitative agreement with our
experiment, due to the additional requirement to support the atoms against gravity and
the lack of concrete understanding of radiation pressure for a MOT operating in the regime
of multiple scattering. Nonetheless, I used this analytical model to obtain some insight
and the simple scaling behavior for simulating the computationally-intensive quantum
trajectory.
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Figure 5.3: Level diagram and transport efficiency of the pushing beam method
with an analytical model. a, Level diagram for MOT and pushing-beam atom trans-
port. The MOT trapping laser Q{2 drives the cycling transition (|[F = 4) <+ [F' = 5))
with detuning —10 MHz. A repumper laser Ql(\z)OT pumps the atoms back to the trapping
state |F' = 4) for efficient cooling. A pushing laser QP is at the |F' = 4) <> |F') transition
with detuning J (defined with respect to the |F' = 4) «<» |F' = 5') transition). b, Analyt-
ically evaluated transport efficiency as a function of the pushing laser detuning  for the
two different sizes of the Source MOTs (Lyjor = 3 mm for solid line, Lyjor = 10 mm for
dashed line) for pushing beam laser power 10mW.

5.2.2 Quantum Monte-Carlo wavefunction method with classical
motion

Here, I provide the full 3D quantum trajectories of Cs atoms, as they are transported by
the pushing beam. In order to solve the master equation, I carry out the computation with
the self-consistent quantum stochastic wavefunction method for the internal states, while
we numerically solve for the classical Brownian trajectory of the center of mass motion
73, Py (diffusion caused by recoil kicks). In the simulation, I include the full Gaussian beam
geometry of the pushing beam 2,(7), parametrized by the beam waist wy ~ 200 pm and its
position zy = —23 cm from the center of the Source chamber. The rationale behind putting
the focal point of €,(7) before the Source chamber was that €,(r) would be sufficiently
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Figure 5.4: Short-time evolution of pushing-beam atom transport in the MOT
for a single trajectory. a, As the pushing beam is oriented along z-direction, the
atoms are accelerated by the photon recoils with acceleration o I'y.7,.. b, As spontaneous
emission occurs, they exert random recoil kicks that diffuse the motion in the transverse
directions g, 2. ¢, Due to the repumping beam that restores the ground state to |g), the
atoms experience constant scattering processes given by the quantum jumps that project
the internal state. These events are uniquely associated with the sudden change in the
atomic trajectory.

small to perturb the Science MOTP. In this way, we would be able to continuously operate
the two MOTs during the loading.

We write the Hamiltonian governing this system in the rotating frame of the lasers

- O (7 Oy (7 . 0, (7
H, = 5&ee+”T<)(€rge+h.c)+pTw(&spe’(‘”Ags)Urh.c)+¥(&Sp+h.c)+5,ﬂa—pp, (5.6)
for the ground states |g) = (6512, F = 4),[s) = |651/2,F = 3) and the electronically
excited states |e) = |6Ps, F' = 5'),|p) = [6P3)2, F = 3',4’). The Rabi frequency €, (7)
accounts for the spatial profile of the repumping laser in the Source MOT. We perform
the finite-element analysis of the external motion 7, under the conservative potential

~ (s)
U(r) = (Y(t)|H(r)|v(t)) ~ %, with the later relationship valid for the atoms outside

the repumping region. As shown in Fig. 5.4, the quantum jumps stochastically interrupt
both the classical potential U(7) as well as add the recoil kicks to 7, p’'in random directions®.

Fig. 5.5 shows the long-time evolution of the atomic trajectories, demonstrating that
we could create a cold atom flux collimated over 30 cm with beam waist ~ 100um. Due to

PThe saturation parameter of the pushing beam is S ~ 0.1 at the Science MOT.
“We have three kinds of jump operators 4. (for the cycling transition |g) < |e)), G4 (for the dipole
allowed |g) <> |p)), and 6,5 (for the dipole allowed |s) <> |p)).
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Figure 5.5: Long-time evolution of pushing-beam atom transport. a, Atomic tra-
jectory along z-direction (dashed lines indicating the FWHM of the distribution function).
b, Atomic trajectory along y-direction with gravity direction —¢ (dashed lines indicating
the FWHM of the distribution function). In the presence of repumping mechanism, the
cold atoms in the MOT are accelerated from the initial Doppler velocity distribution. As
soon as the atoms leave the MOT region, they are optically pumped by an off-resonant
Raman process over timescales 7, ~ 1 ms, preparing the atoms in the dark state. Being
in the dark state, the atoms experience the largely conservative dipole potentials of the
pushing beam with little dissipation. The average number of quantum jumps during this
free-space period is < 10 recoils. ¢, The internal population during the atom transport.
After 1 ms, the atoms escape the Source MOT region and are optically pumped to the
dark state |F' = 3). Atomic populations for the states |g), |e), and |s) are given by the
green, black, and red curves.

the gravitational sag, the atomic beam is tilted downward, displaced from the center of the
pushing beam axis by 100um. This level of collimation is more than sufficient for cold atoms
to pass through the differential pumping tube. With these trajectory calculations, we were
able to optimize the differential conductance. The success probability for recapturing the
atoms in the Science MOT is 95 + 10%, with the final atomic velocity vy ~ 3 m/s, well
within the capture range of the Science MOT v, = 30 m/s.

5.3 Atom transport with a moving optical dipole trap

Once the cold atoms are captured and cooled in the secondary MOT of the Science chamber,
we need to transport the atoms to the target platforms. Our Science cavity platform is
off-centered by ~ 3.5 cm from the center of the Science chamber. I use a tunable optical
dipole trap to deterministically transport the trapped atoms to the interaction region of
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the Science cavity platform [162]. Critically, to prevent the two-body losses, we require
that the density of the atoms to be < 10'?/cm?, thereby a large trap volume. With a near-
resonant dipole trap at 854 nm, we can use low-power ECDLs at ~ 50 mW at the cost
of the increased recoil heating. Because of the tight axial trap frequency, it is possible to
reduce the heating rate during the atom transport with faster tuning of the focal point of
the dipole trap. Unlike the optical conveyor belt [163], we are not constrained by the filling
factor of the lattice sites. However, any non-adiabatic correction to our trap movement
translates over to the larger RMS cloud size in the axial direction, and we thereby perform
additional laser cooling to reconfine the cloud size. According to my ray-trace simulation,
our optical system realizes a focal length shift ~ 15 ¢cm while maintaining the beam waist.
I can position the atomic cloud with RMS size ~ 30um at the final destination, compatible
with the fundamental mode of the cavity.

5.3.1 Electrically tunable lens

We use an electrically tunable Optotune lens (EL-10-30) in the optical configuration of Fig.
5.6. Current applied on the voice coil actuator presses the fluid membrane, distorting the
surface of the fluid lens. The exerted pressure on the membrane linearly determines the
thickness of the lens. Using the analog outputs of our laboratory control system, we plan
to control the focal length of the Optotune lens. T. Esslinger’s group has demonstrated
that, with a similarly configured Optotune lens, it is possible to transport cold atoms over
a large distance with minimal heating (maintaining the Bose-Einstein condensed phase) by
using a far-off-resonant trap (FORT) with a high-power 1064 nm. While we also have the
capability to use the high-power low-noise fiber lasers at 1071 nm, we were concerned with
the long-term focal length shift reported in Ref. [162]. Low-power operation for our trap
geometry causes significant recoil heating, but the thermal spreading in the axial direction
can be overcome by recooling the atom.

With the optical configuration in Fig. 5.6, we can move the focal point of the dipole
beam over 11.5 cm while maintaining the same beam wait ~ 34um. The basic idea is to
consider the composite system of the last two lenses as a thick lens. By tuning one of its
focal length, we can displace both the principal plane x, and the effective focal length feg
of the thick lens, and the point spread function of the focused Gaussian beam before the
Optotune lens is re-imaged over at a distance given by the magnification power of the thick
lens. With the positions indicated in Fig. 5.6, the displacements of x,, fos are canceled
and give rise to a constant transverse magnification ratio over a small range of f.g. This
effect can be utilized to transport cold atoms over some distance (15 — 26.5 cm) without
affecting the transverse confining optical potential (beam waist wy ~ 34um).
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Figure 5.6: Optical configuration for electrically tunable dipole trap. We have
three lenses in optics setup. With two lenses having f; = 50mm and f3 = 100 mm focal
length respectively, we achieve Af ~ 11.5cm while maintaining a beam waist of 34um
when electrically tunable lens f; is fully tuned from 50 — 120mm.

5.3.2 Quantum Monte-Carlo wavefunction method with classical
motion

The modeling of the atom transport is largely similar to previous section, except for the fact
that the optical potential is now time-dependent.Because of the non-adiabatic corrections
to the trap movement, I need to also model the 3D laser cooling process at the final
destination for trapped atoms with a significant broadening caused by near-resonant trap.
I consider a straightforward Doppler cooling with an optical molasses. While we can also
engineer the sub-Doppler Sisyphus cooling by using polarization-gradient optical traps,
we only confine our attention to the case of Doppler cooling for now. In the laboratory,
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we use the tetrahedral optical molasses geometry (Chapter 6) with red-detuning (without
polarization-gradient lattice structure), which we later switch over to the blue-detuned
grey molasses to add sub-Doppler cooling.

In order to include the damping force, I mimic the Zeeman sublevels of the excited (|F' =
5, mp)) and ground state manifolds (|F' = 4, mp)). The inclusion of the Zeeman sublevels
is necessary, laser fields with polarization ¢ in its local basis (defined by its Poynting
vector) is transformed to others upon its decomposition to the rank-2 spherical tensor. For
convenience, we choose the quantization axis along z, although the resulting physics should
not depend on this definition. The internal states follow the basis-independent interaction
Hamiltonian [93]

Hy =AY AlA, — % > <Aq9_q(mei‘5m>@ql%_q + h.c.> , (5.7)
q

q

where flq, /Alj] are the jump operators associated with spontaneous emission and excitation
for polarization ¢ = +1,0. We absorb the decomposition of the fields and the associated
dipole matrix elements into the expression (2, for fields propagating in arbitrary directions
and polarizations. We do not include the repumping process into this reduced model, as
we do not include the hyperfine ground state |F' = 3, mp).

Fig. 5.7 shows the result of our Monte-Carlo simulation for the atom transport with
electrically tunable lens. The focus of the dipole trap is assumed to be translated with
velocity Vgpap o sin(wy,t) with w,, < wy, where w; = 50 Hz is the axial trap frequency, in
order to minimize parametric heating. In addition, we adiabatically increase the trap depth
as we load the free-space atoms in 10 ms?. From our numerical simulation, we predict the
transport efficiency of 90% over time scale 150 ms. The residual oscillation at 1 mm can
be suppressed by the laser cooling in the tetrahedral molasses®. Fig. 5.8 displays the result
of laser cooling the transported atoms in the Optotune dipole trap’. With this additional
step, we were able to find the parameter regime that achieves localized atomic sample
20pm (150pum) along radial (axial) direction, which is sufficiently small for the subsequent
grey-molasses cooling and loading into the crossed dipole trap.

dWe have separately computed the loading efficiency by simulating the optical molasses in the dipole
trap. We assumed the RMS gas size of 200 um after MOT compression and polarization-gradient cooling
steps, and temperature T ~ 30uK.

*We use the tetrahedral geometry, due to the limited optical access.

fUnlike the 6-beam counterpart, tetrahedral configured beams do not have a natural red-detuning
polarization-gradient structure. For sub-Doppler cooling, in our experiment, we plan to utilized a dark-
state cooling with blue-detuned grey molasses.
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Figure 5.7: Atom transport with a moving dipole trap. The resulting atomic trajec-
tories translate the cold atoms to the center of cavity in 150 ms. The residual oscillation
Az ~ 1 mm at the final destination is caused by non-adiabatic movement of the trap.

Trapping (MOT) Optotune Laser
Wavelength 852.3 nm Wavelength 854.73 nm
Detuning(4) 0.3 I'(red) Detuning(d) | 3 x 10* T'(red)

Q 05x V2T Q 800 x T
Beam waist(wg) | 9.5 mm | Beam waist(wy) 34 um

Table 5.1: Parameters for electrically-tunable optical transport of cold atoms.

5.4 Non-degenerate Raman sideband cooling

In this section, I consider the external DOF's of the trapped atoms as quantum variables.
Laser-cooling processes approach the recoil temperature should include the quantum fluctu-
ations associated with the non-commutativity of the position Z; and momentum operators
p; for this DOF. Hence, we derive the open system dynamics of Raman cooling with the
focus on the parameter space realizable for single atom traps in DMD optical potentials.

As shown in Fig. 4.6b, in a traditional setting, non-degenerate sideband cooling occurs

167



.............. wdiracton 300

———— ydirscton | 200

100

7 (g
(=]

-100
-200

Temperature,/Tp

-300 .
200

0 0.5 1 1.5 2 2.5 3
Time (ms)

¥ [ﬂ_n]) 400 =400

x (prn)

Figure 5.8: Simulation of 3-dimensional molasses cooling. a. Temperature of atom
cloud in 3-dimension axis after molasses cooling. Within 3 ms, the atoms are cooled from
< ImK to Doppler temperature. b. Loading atoms into a narrow dipole trap. Molasses
cooling and additional dipole trap are used to load atoms within 20um.

by stroboscopically interleaving two Hamiltonians HOY H® . The system evolves with a
Master equation in a coarse-grained fashion, leaving the motional ground-state |D) = |s, 0)
as the unique dark-state of the Lindblad dissipator. The resulting steady-state is thereby
the pure motional ground state |s,0). In the first step, H® couples the internal spin state
to the external motion with an off-resonant Raman transition Qug(d;) = Qge’2¥12% with
Qeor = QAQQ, with the two-photon detuning ¢ nearly resonant with the trap frequency wy
of the atoms with the evolution |s,n) — |g,n —1). The entropy is extracted through the
optical pumping process with |g,n — 1) — |s,n — 1) (in the Lamb-Dicke limit).

In the rotating frame of the laser, we can write the sideband Hamiltonian

g — Zwtézi)i i Qeﬁ<eiAklgiiei6t&§i) + efmklzaeiefiatﬁgz)% (5.8)
(3

and second quantize the center of mass motion at its equilibrium position with z; —

xO(IA)Z- + l;;r), where xg is the zero-point motion. Here, we assume some form of an external

optical trap (in our case, the DMD potential) with trap frequency w;. We can then Taylor

expand the exponentials in the powers of the Lamb-Dicke parameter ng = Akxg < 1, and

make integrate out the oscillatory terms with 6 ~ w;. We thereby obtain the sideband
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Figure 5.9: Non-degenerate Raman sideband cooling. a, Internal dynamics and
optical pumping. b, Ground-state preparation with Raman sideband cooling. Optical
pumping beam nearly resonant with |g) — |e) initializes the atomic system into |s). In the
Lamb-Dicke regime, the radiative process suppresses Raman processes which change the
phonon number. The sideband Hamiltonian couples the internal and external DOFs with
~ 0450 + h.c. The only dark state in this system is given by |s) ® |0).

Hamiltonian

1Y sg

AD = 3 wlh, + Quann(b:68) + 6160) + 668, (5.9)

with the local phonons b;.

The optical pumping step can be modeled with the master equation

po= —ilH®, pl + L]p], (5.10)
r

L) = -5 (2el — pele— cleip). (5.11)

H® = " wblb; + 2,69 + (68 + hoo), (5.12)

with the quantum jump operator égg) = &é?eim(i)ﬁi’j ) and él(s) = 6Wem®i+b) where 1y =

kxo < 1 is the Lamb-Dicke parameter. With 7y < 1, the quantum jump projection does
not alter the motional state, and Raman transitions are highly suppressed.
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Fig. 5.9 demonstrates the Raman sideband cooling for the parameter achievable with
the DMD potential. We use the following Cs energy levels: |g) = (6512, F' = 4, mp = 4),
|s) = 6512, F = 3,mp = 3), and |e) = |65/, F' = 4'). In addition, we assume the
effective Rabi frequency for the Raman fields Q¢ ~ 10 kHz with single-photon detuning
A, ~ 10 GHz, the trap frequency w; ~ 100 kHz, and optical pumping Rabi frequency
2, = 10 MHz and detuning —30 MHz. For this parameter set, we predict motional ground
state preparation with > 90%.

5.5 Conclusion

Here, I have developed a flexible toolbox to study the impact of atom-field interactions to
classical and quantum motion. In the semiclassical domain, I used this numerical platform
to optimize the parameters for the two atom transport techniques in our laboratory. I have
also examined the case of Raman sideband cooling by explicitly quantizing the motion, the
relevant cooling mechanism for atoms in the DMD potentials with large trap frequencies.
More generally, I can also deal with quantized electromagnetic fields of the cavity. Here,
cavity relaxation acts as the entropy channel for the collective motion of the atoms. I
have deliberately not included this analysis in the thesis for length concerns. Furthermore,
similar to our formulation of the Dicke Hamiltonian in Chapter 1, I have derived the
effective low-energy Hamiltonian for the quantum motions and spins, where we bring local
Rydberg-mediated mechanical interactions into the story. I leave the detailed analysis
of this exciting possibility as future work in relation to Section 1.1 with complex phase
diagrams beyond of self-organization effects.
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Chapter 6

Science cavity platform:
Development of new generation of
optical mirrors

In this chapter, I first describe our experimental platform for achieving strong collective
coupling in the regime of strong Rydberg blockade, which we call the Rydberg quantum dot
platform. The analogy of our platform to quantum dots refers to the case of semiconductor
(bosonic) excitons, where strong exchange and Coulombic interactions between electrons
and holes play the role of the blockade physics to constrain the excitation dynamics between
vacuum (no electron-hole pair) and single exciton. In a similar fashion, we can create a
significant energy cost for multiple Rydberg collective excitations, so that the atom-cavity
dynamics governed by the cooperative coupling of a macroscopic atomic ensemble can be
constrained in the lowest two atomic excitation manifolds, effectively inducing the quantum
optical nonlinearity of the Jaynes-Cummings ladder (Chapter 2.3). The benefit of our
collective encoding with Rydberg excitation is that the figure of merit, Cy = 4;:51%7 is the
function of the atom number N and can be arbitrarily enhanced without the stringent
requirements of diffraction effects that limit the cavity volume of macroscopic mirrors.
Conservatively, we estimate an enhanced C'y that improves the state-of-the-art by a factor
10 [95] (Chapter 2.3).

I then discuss a new regime of many-body QED, in which cavity polaritons are dressed
by Rydberg excitations and proximally interact each other to give rise to a series of emer-
gent spaghetti physics, as discussed in Section 2.1. In the strong coupling regime with
go > K, I, cavity photon acquires the short-ranged properties of the Rydberg atom and
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Figure 6.1: Single-atom cooperativity for Rydberg-dot experimental platform.
We plot the cooperativity parameter C' for our Layertec mirrors (radius of curvature R, =
20 cm and mirror transmission 7 = 400 ppm at 852 nm) as a function of cavity length
L. for different absorption-scatter losses (100 ppm, 200 ppm, 400 ppm, and 800 ppm).
The blue solid line depicts the ratio 7/ to determine the dissipative branching ratio. At
L.=10 mm, v/k ~ 1.

the cavity polaritons begin to strongly interact each other. In the limit of Ising constraint
A > g, the cavity polaritons develop complex effective Hamiltonians within each of the
gauge-invariant subspaces. For instance, we can examine emergent quantum spin ice be-
havior, where cavity polaritons are constrained by the energy cost of gauge-boson quanta
(magnetic monopole). Matter field of spin and vison excitations is coupled to an artificial
gauge photon of compact QED in the Hamiltonian formulation of lattice gauge theories.

6.1 Rydberg quantum-dot platform

In the Rydberg quantum dot platform, we aim to attain cavity QED parameters with
go < v and g ~ k with a large mode volume V. = A gL.. The combination of the
collectively enhanced coupling gy — v/ Ngo and the strong Rydberg blockade recovers the
strong coupling regime v Ngy > (k,7) of cavity QED with the Jaynes-Cummings-like
quantum optical nonlinearity. In order to preserve the Rydberg physics and use larger
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collective encoding v/ N, we require the mirror spacing L. to be relatively large. On the
other hand, in order to map back to the Jaynes-Cummings model (hard-core boson limit
of the collective operators), we must also ensure that the size L, of the atomic ensemble
is smaller than the Rydberg blockade radius r.. For a high-lying Rydberg state [100S}2),
we estimate r. ~ 30um. In this section, I discuss the target cavtiy QED parameters
and provide our design of the Rydbert-dot platform that allows Faraday shielding and
high-resolution microscopy.

6.1.1 Cavity QED parameters

We define a set of parameters that characterize our cavity QED platform with spherical
mirrors. For a dipole matrix element pg. ~ 3.8 X 1072°C' - m for the transition |g) <> |e)
HgeWe
2heq Vi
the cavity mode volume V,, = Ww%Lc, where wy and L. are the waist and the length of the
fundamental mode of the cavity, respectively. For spherical mirrors, we can additionally
define the Rayleigh ranges of each mirror (M; and My mirrors with ROCs Ry, Rs), 21 =

—Lg2(1—91) Lgi(1—go) : .
Ti0—g2) 192 (1—g1) g aa(igy- We can then obtain the beam waist of the

fundamental mode as wy = 4/ %,4/ % for the g-factor g; = 1 — L./R; of the

cavity stability diagram. I estimate the cavity decay rate s from the cavity finesse F with
%SR, where F'SR = 31, 1s the free-spectral-range of the cavity and F = m,
where T; and ¢; are the transmission and absorption-scatter loss of the respective mirror
M;. I can then express the cavity QED parameters (g., k,7), with the transverse decay

rate v ~ 2.6 MHz for |g) <> |e) of Cesium.

(lg) = |6S1/2) and |e) = |6P5/2)), I estimate the vacuum Rabi splitting go = from

and zy =

K =

Fig. 6.1 illustrates the scaling behavior of the cooperativity factor

4 2
C="D s (6.1)
YK

for our cavity QED parameter with our Layertec mirrors (7" = 400 ppm at 852 nm and
R, =20 cm). We aim to set for gy < (k,7y) with kK ~ . We require the later requirement,
as we would like to stay in the regime where both the cavity and atomic dissipation play
a similar role. When gy = v Ngo > (k,7), we would not be able to eliminate either of

the degrees of freedoms DOFs. At L. = 10 mm, I obtain the cavity QED parameters with
absorption-scatter loss 6 = 100 ppm

(g0, K,7) = 21 x (0.57,1.2,2.5) MHz, (6.2)
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Figure 6.2: Cavity Rydberg-dot platform. The experimental cage is Computer-
Numerical-Control (CNC) machined out of heat-treated Aluminum (Al) 6061-T6. In col-
laboration with our partner, we fabricate the Aluminum mirror with a single-point diamond
machine with surface roughness ~ 8A. The full Aluminum construction allows for the
Faraday shielding of high-voltage electrodes of the piezoelectric transducer (PZT) ceram-
ics. Titanium wires act as impedance-matched external RF coils with Forster resonance
between the Rydberg states. Medium-finesse cavity is formed by two Layertec mirrors,
supported by UHV Noliac NAC2123 PZT ceramic with Teflon-coated wires. For high-
resolution imaging, we use a diffraction-limited asphere with theoretical optical resolution
2pum. The atoms are transported by the electrically tunable dipole trap, and sub-Doppler
cooled by the tetrahedral grey molasses.

in the weak coupling regime (C' = 0.43). With a very conservative estimate N = 1000
atoms within the blockade radius ~ 30um, I obtain the collectively-enhanced cooperativity
parameter Cy ~ 500 > 1 deep into the strong coupling regime of cavity QED.
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I used the Layertec spherical mirrors with reactive RF-magnetron sputtered thin films
(TiO4 /SiOq bilayer stacks) on superpolished mirror substrates, instead of the more pristine
IBS processes. The radius of curvature r, ~ 20 cm is measured with the Zygo interfero-
metric surface profiler. Before the shipment, Layertec also characterized the transmission
with an in-situ laser photometer during the magnetron deposition process. The absorption-
scatter loss is estimated from the ring-down spectroscopy, where they measured the total
loss 150 ppm. Upon arrival, I perform dark-field microscopy to examine any surface defect,
followed by a ring-down measurement at the target wavelength. For mirror cleaning, we
use the recipe developed in Ref. [164], as well as the optimized Argon-based plasma clean-
ing for organic removals (e.g., PMMA photoresist films), and proprietary organic removal
polymers.

6.1.2 Experimental station

Due to the lower finesse and our confidence with the Science cavities (Section 6.2), we
have approached the cavity construction with no moving part for manual alignment. We
machine a single-block of Al 6061-T6 alloy to fabricate the experimental cage system at
the Science machine shop. The entire structure is constructed with a length tolerance
~ 25pum and an angular deviation 9 arc-min for the cavity axis. Without any moving
part, the cavity alignment and mode matching are passively achieved. We use an UHV
multi-stack ring actuator (Noliac NAC2123) with vacuum-fired silver electrodes. The Al
cage acts as an effective Faraday cage for shielding the electric fields of the high-voltage
electrodes. The mechanical stability is ensured with Kalrez elastometric dampers (Section
6.2), which mount to the Kimball Physics groove-grabbers. For XHV operation, we reduce
the effective surface area by diamond lapping the Al6061-T6 cage and perform vacuum
heat treatments.

The Layertec mirrors are attached to the Noliac PZT with Epotek 353ND, and the
UHV shielded cables are wire-bonded with H60D silver compounds. We do the cable
management with Macor ceramics and Ti groove-grabbers. Ultra-thin Ti wires (thickness
125pum) are bonded to the surface of the Al cage to shield high-frequency noise. At the
bottom of the cage system, the lens holder is precision-cut to passively align the diffraction-
limited aspherical lens to the center of the cavity mode. This simple single large asphere
system can achieve diffraction-limited performance with optical resolution 2um without
spherical aberration-correction of the 6-mm UHV viewports. The numerical aperture is
0.2 with a working-distance 22.4 mm. Our OSLO ray-tracing modeling estimates a field
of view (50pum)? with diffraction-limited modulation-transfer function (MTF) up to the
cutoff spatial frequency.
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Figure 6.3: Cavity QED parameters for many-body QED platform. In order to
include the impact of the intrinsic dephasing by the Rydberg atom-surface interaction,
we modify the cooperativity parameter C' with the atomic decoherence rate, given by
the Casimir shift for a Rydberg atom to a metal surface. The cooperativity parameter is
plotted for different levels of mirror transmission 7" = 4 —1000 ppm with absorption-scatter
loss 1.5 ppm. For short cavity lengths L. < 100um, the Rydberg levels are significantly
modified by the Casimir shift of the mirrors, resulting in larger atomic decoherence rate
and reduced C'. We choose the cavity length L. ~ 1 mm with minimal Casimir decoherence
of the Rydberg levels.

6.2 Many-body QED experimental platform

For the many-body QED experiments, we require both the strong coupling regime of cavity
QED as well as the strong Rydberg blockade effect, namely

gOaA > ’%7]?7 (63)

where we further demand A > go for the quantum spin ice models (Chapter 2). In order
to stay in this very challenging regime, we have developed several proprietary technologies,
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including a new thin-film coating stack that pushes the mirror losses to the new limits of
ion-beam sputtered (IBS) thin films with Finesse F ~ 5 x 10°.

For the single-atom single-photon strong coupling, we are constrained by the relatively
small mode-volume of the optical cavities, in which the surface forces significantly broaden
and shift the narrow-line Rydberg transition. More importantly, Rydberg atoms are well-
known surface force and electromagnetic field quantum sensors at frequency ranges below
the microwave domain. In fact, when scaled by its physical footprints, one could argue
that Rydberg states possess the largest static and dynamic electric dipole moment with the
absolute electrometry sensitivity better than the X-band antennas. While this exaggerated
property may be of great utility for applied research of developing atomic quantum sensors,
it presents a unique challenge of integrating Rydberg atoms to small-mode volume optical
cavities. The situation is somewhat different from the “modestly easier task” of coupling
trapped ions to small mode-volume optical cavities [165], a major milestone of the trapped
ion community. This is because, for ions, the internal states are largely decoupled from
the external forces of the Coulomb interaction. For Rydberg states, the stray electric fields
directly couple to the stark shift of the internal Rydberg levels, so that it affects not only
the external DOFs but also causes decoherence. We have developed a set of methods to
tackle this technological challenge with 8-point diamond-turned electrodes, as I describe
in the following sections.

Finally, we would like to perform high-resolution quantum-gas microscopy to image
single atoms, and carve optical potential landscapes with the digital mirror device. We
shamelessly take advantage of the spectacular advances made by the groups of Markus
Greiner and Immanuel Bloch [166, 167]. Unlike Ref. [168], we use the superpixel algorithm
[169] to logically encode the phase-amplitude onto the binary digital mirror device (DMD)
pattern with DLP technolgoy, and use GPU computing for the real-time rearrangement
and preparation of low-entropic states of single atoms on the 2D image plane. As the later
part is the work by Youn Seok Lee and Dr. Mahmood Sabooni in our group, I will only
briefly describe the high-level ideas without delving into the details.

6.2.1 Cavity QED parameters: Casimir modification

To properly account for the perturbation of the Rydberg states by the proximal surface,
we modify the cooperativity parameter

~ 4q?
=D (6.4)
W
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where we add other sources of atomic decoherence to 4 =~y + ). vg) associated with the
Rydberg atom physics. While the cooperativity parameter as the figure of merit favors
smaller mode-volume and smaller L, for traditional cavity QED, our QED platform needs
to balance the two competing requirements. On the one hand, we require g > (k,7),
where 7 is the bare decay rate of the atoms. On the other hand, we also demand that the
level shift §r and spontaneous emission noise v caused by the excited Rydberg state are
negligible, compared to the cavity coupling rate go. As shown in Fig. 6.3, the reduced V,,
enhances the vacuum Rabi splitting go, while the surface perturbation is manifested by the
increased atomic dissipation rate 7, effectively diminishing C' — 0 for L. < 20um.

At the fundamental level, the enhanced atomic decoherence rate of the Rydberg atoms
is caused by the Casimir-Polder surface potentials Acp of a Rydberg atom interacting
with the dielectric surface. Conservatively, I considered a Rydberg-atom metal surface
interaction in the van der Waals regime [170]. While external charges (e.g., bound charges
and adatom deposits on the mirror surfaces) can in principle be shielded by the Faraday
effect, the Casimir shift of the mirror cannot be eliminated without extreme nanophotonic
engineering, because Acp has to do with the modification in the vacuum density of states
p(v) for an atom in proximity to the surface (i.e., it is a genuine QED effect!).

In Fig. 6.3, I calculated the cavity QED parameters with the modified cooperativity
parameter for a range of mirror transmitivities 7" with a fixed absorption-scatter loss 6 = 1.5
ppm. For 4, we calculate the van der Waals (vdW) level shift for a single Rydberg atom
in the state [10051/,) with a distance L./2 away from a perfectly conducting metallic
planar surface [170]*. In addition, I included the blackbody-limited decoherence rate of the
Rydberg levels (Appendix A), as we use room-temperature UHV chambers. We find that,
for L. < 20um, there is a significant reduction of the effective cooperativity parameter,
due to the inhomogeneous broadening of the Rydberg-surface interaction, with the optimal
C peaked at L. = 20pm. For a larger cavity length, there is a modest reduction of C.

As our model does not include other practical challenges of the surface forces (e.g.,
photoionized bound charges on dielectric surfaces and photoelectric effect on metals from
the UV excitation beam, as well as surface adatom deposition [131]), we have intentionally
chosen L. = 1 mm and set the cavity transmission 7" = 4 ppm, with single-atom coop-
erativity of C' ~ 300. COMSOL simulation shows that the surface patch charges at this
cavity length do not cause significant the decoherence to our Rydberg atoms, and that the
stray field from the PZTs is the primary source of dephasing mechanism. The cavity QED

aThe assumption of metal surface is conservative, because the surface force of the dielectric is reduced
by the finite Fresnel reflectivity and the reduced image dipole.
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Figure 6.4: Transmission of a quarter-wave stack Bragg mirror. a, Resonant trans-
mission with the number N of layers for a bilayer structure at the design wavelength
Mg = 852 nm. We assume the bilayer coating materials SiOs and TayO5. b, Transmission
curve as a function of probe wavelength X\ at coating stack N = 18.

parameters are given by
(g0, k,7) = 2w x (4,0.1,2.5) MHz. (6.5)

The longer L. permits the use of long-working distance high-NA microscope objectives for
single-atom imaging and trapping. In our platform, we plan to shield and compensate the
fields generated by the surface patch charges and the stray sources with precision-machined
8-point electrodes.

6.2.2 High-finesse optical cavity

While we cannot identify the proprietary thin-film structures of our optical cavity developed
by Prof. Choi, I am allowed to describe the overriding principle for our new IBS thin-film
materials and optical cavities. To this end, let me revisit the conventional supermirrors
used in the cavity QED and optical clock communities around the world. State-of-the-art
optical cavities consist of a quarter-wave stack on mirror substrates in the NIR range.
Because of the limited technologies to make good UV mirrors, we concentrate here on the
Ion-Beam-Sputtered (IBS) TayO5/SiO9 bilayer thin films (with low bandgap near the UV
range) on superpolished glass substrates with record optical finesse in the NIR range.

Superpolishing is a method for creating atomically smooth and curved optical sub-
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strates. To see the importance of the surface roughness, we note that, for sub-wavelength
refractive defects, radiative loss is mainly caused by coherent Rayleigh scattering, where
the scattering loss S = (4md,./A\)? is a quadratic function of the surface roughness d,.. We
use the superpolished fused silica substrates from REO. All of our mirror substrates are
postselected through AFM measurements and surface profilers within a single superpolish-
ing batch with the surface roughness d,. < 0.34 and the theoretical scatter loss S ~ 0.2
ppm. With the atom-by-atom IBS thin films, it is possible to create ultra-low-scatter
optical mirror with the same Jd,. as the host substrate.

The second challenge to low-loss mirror is to reduce the absorption coefficient A of the
IBS thin films (metal oxides). Amorphous films are required to reduce spontaneous Raman
scattering of the intracavity field into the thin-film’s lattice vibrations (as found in semi-
conductor micro-cavities). In a reactive ion-beam sputtering, high-energy ions hit a metal
target to create a nearly collimated high-momentum Tantalum atomic beam, accelerated
towards the substrate. At the location of the substrate, a secondary ion beam is assisted
to stimulate the chemical reaction with O, atoms near the substrate and deposit highly
dense non-porous high-index TayO5 thin films with excellent stoichiometry. After the IBS
coating, it is a standard procedure to anneal the reflective coatings in oxygen-dense en-
vironment at ~ 400°C' to improve the oxygen homogeneity, to reduce the scattering loss,
and to improve the stoichiemetry. Imperfect oxygen surface chemistry causes the absorp-
tion losses with state-of-the-art IBS process from REO and ATF, pushing the absorption
loss to A ~ 1.5 — 10 ppm [171, |. We thereby partition the loss of an optical mirror
Liot =T+ A+ S with Ly + R = 1, where T'(R) is the mirror transmittivity (reflectivity).

Our general strategy is to improve the absorption loss A by optimizing the IBS process
for a higher index metal oxide film to replace the absorptive TayOs layers. To see this,
let me introduce the transfer matrix formalism of light propagation with the notations in
Ref. [161]. We consider a simple bilayer alternating quarter-wave stack structure with the
layer thickness h; = Ag/4 for the refractive index n; € {np,ng}, where ny (ng) is the
refractive index for the low-index SiO, (high-index TayOs5) at the design wavelength A,.
Each coating layer ¢ is represented by a transfer matrix

Y;

Mi -
iY; sin(kh;) cos(kh;)

|: COS(khi) LA :| (6 6)

where Y; =, / %nl and k = 27 /A. We can also model the absorption-scatter loss 6 € {A, S}

with the transfer matrix

L g
Mloss: ) 1| (67)
4
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Figure 6.5: Cavity QED parameters. a, Cavity mirror transmission is simulated with
the transfer matrices. The data points are the result of the spectrophotometry transmission
measurement with significant errors at the 10 ppm level. T"= 3 ppm is determined at 830
nm by laser-based photometric measurements. b, Comparison of cavity QED parameters
(Cooperativity and Finesse) with the state of art. Our result is shown as the solid line,
whereas the parameter of Hood et al. [164] is shown as dashed line.

Generally, the absorption loss A is distributed across the metal oxide layers, but we at-
tribute the coating absorption loss with a single transfer matrix M.s on the surface layer.

The overall N-layered structure of the IBS mirror can then be represented by M; o =
(Ma,05 X Msio, )™ M1a,0, Migss. At the design wavelength Ay, we find that the transmission

2N
of the mirror T" = % (1%) is exponentially suppressed by the number of layers N,

with the exponent being the refractive index contrast & =~ L (for SiOy/Tay05), as

=~ 155
shown in Fig. 6.4a. Our result is numerically consistent with the ATF optical cavities
of Refs. [164, |. The immediate benefit of using higher-index IBS thin films is that

it exponentially suppresses the absorption loss A ~ Agexp(—L,,/Lo) with the distributed
thickness L,, of the metal oxides.

In our laboratory, we use a high-index metal oxide with ~ 30 % larger index contrast
than the traditional TayO5/SiOy mirrors, with excellent thin-film stoichiometry in a re-
active sputtering. Combining our numerical recipe to complex chirped stacks (See the
Rainbow UHV viewport in Chapter 3), we have designed and fabricated the cavity mirrors
with our partners shown in Fig. 6.5a. Precise laser-based spectrophotometer confirmed
the mirror transmission 7" = 3.5 ppm at 830 nm with loss  ~ 1 ppm. A careful cavity-
ring down spectroscopy was performed by our partners at 830 nm with the loss partition
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method in Ref. [164], and measured the total cavity loss ~ 1.5 ppm. With the chirped
design, our coating stack also supports other wavelengths as well. Prof. Choi designed the
mirror coating to be compatible with the red-detuned (blue-detuned) magic wavelength
condition of Cesium at A.(\,) = 935(687) nm for precision-spectroscopy. In addition, our
cavity also supports the direct Rydberg-P excitation at 319 nm, although it remains to be
seen whether the metal oxides would experience oxygen depletion effects and solarizations
[173]. With L. = 1 mm, we achieve the cavity QED parameters of Eq. 6.5 with optical
Finesse F ~ 500, 000!

The process tree of the fabrication is as follows:

1. REO fabricates the 7.75-mm diameter superpolished fused silica substrates with sur-
face roughness d,. < 0.34 (AFM measurements) for R, = 5,10 cm (surface profiled).
Microscope image is taken and sent to our partner for IBS coating. The entrance
surface is tilted by 3° to avoid cavity back-reflection.

2. IBS coating (Partner A)

(a) Upon the receipt of the substrates, perform dark-field microscopy and confirm
the cleaniness of the mirror substrates.

(b) Apply PMMA photoresist masks on the entrance surface

(c) Perform the IBS deposition with optimized process over 20 hours (after 10 hours
of UHV baking), followed by thermal annealing

(d) Apply PMMA photoresist masks on the reflective surfaces, and perform the AR
coating on the entrance surface

(e) A small subset (one pair of mirrors in each coating run) undergoes quality check
with ring-down and laser-based photometric spectroscopy

3. Glass machining (Partner B)

(a) Upon the receipt of the mirrors, confirm the conditions of the PMMA masks.

(b) Diamond CNC machining to cone down the original REO mirror substrates
down to the Caltech 1 mm-by-3 mm chamferred design

4. UQML/IQC

(a) Upon the receipt of the mirrors, perform PMMA removal in spectroscopic grade
acetone, followed by spin-coating cleaning and polymer-based liftoff
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Titanium electrodes Sapphire holder

Figure 6.6: Many-body QED platform. a, CAD rendering of the experimental plat-
form. b, High-resolution microscopy of 8-point electrodes. ¢, Dark-field microscopy for
characterization and mirror cleaning. d, Top-view microscope image illustrating the high-
finesse cavity with coned geometry and the diamond-machined Titanium electrodes. e,
Photo of the many-body QED platform integrated to the superpolished Al mirrors, and
single-crystal Sapphire electrode holder.

183



(b) High-resolution dark and bright-field microscopy for surface inspection (Fig.
6.6¢)

(c) Cavity assembly for ring-down spectroscopy at various wavelengths in the UHV
chambers and final assembly for many-body QED station

6.2.3 Single-crystal Al,O3 platform and piezoelectric motion con-
trol

In order to optimally couple external laser fields to the science cavity and to mode-match
the cavity quantum fields to the detection system, we need an extreme form of passive and
active mechanical engineering. As shown in Fig. 6.6a, our experimental station consists of
the Sapphire cage, Science cavity, and the 8-point field-compensation systems.

There were a few design considerations that went into the choice of material for the
cage system, besides the UHV /XHV requirements. First, we need a strong dielectric with a
large enough band gap for the experimental platform to prevent charge buildup from high-
power lasers. Second, we require extremely mechanical rigidity and tensile strength. Third,
the CTE of the material shall match the expansion rate of Titanium 8-point electodes.
The only UHV/XHYV dielectric material, which satisifed all these conditions, was a single-
crystal Sapphire AlyO3. Al;O3 has band gap at ~ 250 nm, and our high-power 319-nm laser
beam cannot create patch charges. Sapphire is also one of the strongest materials (second
to diamond!), and very good thermal conductivity comparable to that of most metals. In
addition, the CTE matches that of Ti within 20% so that the cage system can be integrated
and mated with Ti components, with the length tolerances maintained throughout the UHV
baking cycles. As shown in Fig. 6.6e, with partner B, we machine the entire experimental
platform out of a nearly defect-free single piece of single-crystal Sapphire, a highly non-
trivial and costly fabrication procedure given its complex 3D structure. As a vibration
isolation stage, we use passive dampers with a custom-molded Kalrez elastomers similar
in shape to the NewDamp elastometric isolator, where the shape function was optimized
by COMSOL structural mechanics module. All initial design and idea were given by Prof.
Choi, and Dr. Liu performed the CAD drawing and implemented the field compensation
simulation.

As shown in Fig. 6.7, our Science cavity is mounted on fused silica V-groove blocks
(with Epotek 353ND) to relieve the stress-induced birefringence on the IBS thin films. The
V-groove were machined with 20um tolerances to ensure that the mirror axis is aligned
with respect to each other. A single-crystal shear-mode PZT ceramic (custom-ordered from
APC International without any electrode) is mounted on top of a 100um thick macor piece
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Figure 6.7: Detailed view of the Science cavity construction and Faraday shield-
ing of high-voltage PZT electrodes. Cavity mirrors are glued on fused silica v-block
by UHV comaptible glue. Shear mode piezo is implied for fine tuning of cavity length and
high voltage side is insulated by macor spacer below. Titanium box is to shield electric
field from high voltage around 400V on shear mode piezo.

with Epotek H21D silver compounds. We use a single-crystal PZT, instead of the multilayer
stack, as we need to stabilize the mirrors position uncertainty dx ~ ﬁ X ﬁ ~ ﬁ X 25
fm (~ 1/40 of the charge radius of a single proton®). The ground-plane is aligned towards

the Science cavity, as the ground-plane acts as a distributed Faraday shield.

Because the single-crystal shear-mode PZT requires a 400 V for 0.5um displacement,
our numerical simulation suggests that it is critical to further shield the stray fields gen-
erated from the PZTs by at least 60 dB (with Rydberg Stark shift 3 kHz for 400 V). As
shown in Fig. 6.7, 50um-thick Titanium plates surround the shear-mode PZTs as an effec-
tive faraday cage to attenuate the electric field generated by the high-voltage electrodes.
We will describe the efficacies of our Faraday shields and external field control systems in
the next section, as supported by analytic and computational multiphysics models. Alu-
minum mirrors (Al 6061-T6) are installed at the rear-ends of the cavity mirrors. In this
way, we can couple external fields to the fundamental cavity mode through the vertical
UHV viewport (Fig. 6.8). The Aluminum mirrors were single-point diamond turned to

PWe developed a proprietary high-voltage amplifier with reduced noise to meet this stringent require-
ment of S/N ratio of 70 dB. Indeed, our home-made high-voltage source has a RMS noise level of 100V
over 1kV at 1 — 10H z with a SNR ~ 70dB
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yield surface roughness 8A.

The optical cavity was aligned using a stabilized He:Ne laser at 633 nm with 1 MHz
linewidth. The Science cavity has a moderate finesse F ~ (O(10%) at this wavelength,
and we use this laser beam to align the respective mirrors for mode matching. 5-axis
translational tilt-roll stages are used together with a PZT actuator for precision alignments.
Table 6.1 includes the material properties of all the components used in the cavity assembly.

6.2.4 Faraday shielding and external field control with 8-point
electrodes

Highly-excited Rydberg states are extremely sensitive to stray electric fields. They cause
inhomogeneous Stark-shift broadening of the Rydberg levels for small fields. For large
fields, the static electric field can ionize the Rydberg atoms with the ponderomotive force.
However, for cavity QED, we require single-crystal shear-mode PZTs with voltages ~ 400
V. Indeed, our COMSOL simulation shows that the charges generated by the high-voltage
electrodes of the PZT stacks give rise an electric field £ ~ 5 kV/m at the center of the
cavity. On the other hand, we demand that the stray fields have electric field strengths
< 0.05V/m, so that the Stark shift is on the order of the natural linewidth of the Rydberg
state |100S;/2) from our quantum-defect theory calculation. Hence, we require a minimum
Faraday shielding factor of 50 dB.

Dr. Liu employed two countermeasures for stray field compensation. First, she has
surrounded the high-voltage PZT electrodes with a single layer of Titanium plates. From
her COMSOL simulation, this cage itself can alone attenuate the PZT fields by 45 dB.

Material CTE(107°m/(mK)) | Temp. rating(°C') Outgassing rate
Titanium (pure) 85—9 600 1.8 x107°
Sapphire 5.3 2030 NA
Fused silica 0.55 200 NA
Aluminum (AL6061 T6) 23.6 160 2.8 x 10710
Piezoceramic 850 NA 360 NA
Kalrez(Dupont) NA 300 1x1071° -6 x 10710
Alumina(Al,O3) 8.1 1x107%—-1x10"8
Epotek 353ND 54 NA 1.8 x 107?
Epotek H21D 42 NA 1x107°

Table 6.1: Table of component properties
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Figure 6.8: Rendering of the many-body QED platform installed in the Science
chamber. The many-body QED platform consists of Sapphire cage, Science cavity, and
8-point field-compensation systems. Precision-polished Aluminum mirrors are integrated
to the platform to provide optical access to the cavity fundamental mode, and the entire
mechanical platform is vibration-isolated by passive Kalrez dampers, custom-molded into
a numerically optimized geometry.

Second, we have fabricated an 8-point electrode system, made of single-point diamond-
turned Titanium blades with surface roughness ~ 10A. These electrodes not only shield
the stray fields from the PZTs but also from the unavoidable patch charges on the mirror
surfaces. Fig. 6.9 illustrates the finite-element method (FEM) electromagnetic simulation
of our many-body QED platform. Prof. Choi has measured the absolute positions of
the fabricated electrodes with imaging uncertainty ~ 10um, where d = 2v/2mm and
S1234 = 750/719/725/712pm. Dr. Liu found that we could reduce the Stark shift of the
high-lying Rydberg state |[100S7/2) state by less than 1 kHz, even when the PZT electrode
is charged to 1 kV! The unbalanced compensated field lines in Fig. 6.9d are due to the
spatial misalignments of the Ti electrodes.

Mechanically, smooth and well-defined geometries of these electrodes were necessary,
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Figure 6.9: FEM simulation of stray-field compensation with Faraday enclosure
and 8-point electrode systems. a, Vector components of the electric field generated
by the PZT actuators. b, Magnitude of the electric field with the Titanium Faraday
shield enclosure. c, The electric field magnitude along the cavity axis without any passive
shielding. d, Demonstration of a shielding factor 60 dB with the combination of Titanium
Faraday shields and external 8-point electrodes. The asymmetry in the field lines is caused
by the misalignment of the Ti electrodes.

as any sharp edge can seed electric charges as point sources, where fluctuating charges be
pinned down by the local potentials of the surface defects. In fact, we have engineered the
tip of the electrodes to be nearly atomically smooth in a sphere of 100um diameter, which
was achieved through laser ablation technique, where the surface tension of laser ablated
Ti collapses into smooth spheres. These points can then act as external charging tips as
effective Faraday shielding (when the electrodes are grounded), but also as external field
control system for polarizing and preparing the dipole orientations of anisotropic Rydberg
states (e.g., higher angular momentum states).

Prof. Choi and Dr. Liu have designed the electrode blades based on an analytical
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8-point charge model [171]. Namely, we assume that the electric field can be computed by
the charges at the locations of the 8 tips, as supported by the expensive COMSOL FEM
simulation. As shown in Fig. 6.10, by tuning the relative geometries of the electrodes,
we have optimized the 8-point model to create any static electric field E (7) up to the
quadratic form by individually charging the electrodes. With the 8-point electrodes, we
can thereby cancel out inhomogeneous field broadening within the Science cavity up to the
first order. In addition, as shown in Fig. 6.10c, we can create sharp zero fields for single-
site Rydberg addressing, as well as ion-trap style electrodynamical trapping of Rydberg
states (Fig. 6.10d). For [100S5;/2) state, the resolution of the single-site addressability
with field control is given by ~ 100 nm with residual Stark shift of 2 kHz, well below
the optical resolution of our quantum-gas microscope as well as the characteristic lattice
constants ag >~ 400 nm. In Fig. 6.11, we have investigated the field fluctuation caused by
the mechanical tolerances of the 8-point electrodes.

6.2.5 Real-time manipulation with holographic projection of op-
tical potential landscapes

While I was not directly involved in much of this work, I have helped designed the many-
body QED platform to be compatible with the Special Optics high-NA microscope objec-
tive. Early work was carried out by Prof. Choi and Dr. Liu, followed by Dr. Sabooni’s work
on the superpixel and Hungarian algorithms. For these reasons, I only provide minimal
materials for the description.

For the quantum spin ice experiment, a single missing atom can completely break the
ice rule. A single defect can, thereby, collapse the quantum spin liquid in the ground-state
manifold. On the other hand, the loading efficiencies in microscopic optical traps are limited
by the collisional blockade mechanism. Namely, photo-assisted two-body collision rates can
dominate over all other rates, opening up a channel to photo-associate Css molecules with
50% probability. While this effect can be used as an efficient way for parity measurements,
it presents a challenge to prepare a many-body system into its low-entropic Mott insulating

state with success probability P ~ (%)N — 0 for N atoms.

One powerful method has been the utilization of the superfluid-to-Mott insulator tran-
sition in the Bose-Hubbard model, where it is possible to create a microscopic atom array
with almost no defect [166]. Another method is to modify the Lenner-Johns potentials of
the molecular transitions by dressing the Cs atoms with a weak blue-detuned field during
loading. This causes a light shift to the excited molecular transition, thereby shielding the
Cs atoms from colliding each other. However, both of these methods are not applicable
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Figure 6.10: Electric field configurations with the 8-point charge model. Each
circles represent the positions of electrode tips in a 8-point charge model. Red (blue) color
represents the positive (negative) charge, while white color is the electric ground.

for N ~ 100 atomic systems, where we require very large N to observe the illusive gapless
excitations of artificial photons!

Here, Dr. Sabooni used a Ti DLP3000 digital mirror device (DMD) to form a dynamical
optical trap that is holographically projected onto the image plane. Unlike other existing
methods [168] with quantum-gas microscopy, we use the superpixel algorithm in Ref. [169]
in order to logically map the phase-amplitudes onto the physically binary sub-pixels of
MEMS mirror arrays on the DMD device. In addition, we use GPU-accelerated CUDA
framework to compute the holographic images and parallelize the lookup tables to create
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Figure 6.11: Uncertainty analysis of the electrode positions with the 8-point
charge model. Each curve shows the electric field offset caused by the position uncertainty
of the electrodes. Black solid line is electric field along cavity axis with position uncertainty
of 1um with 3% DC offset. Grey line is the result for position uncertainty 25um with 8%
of DC offset.

a real-time streaming to reconfigure the trapped atoms. In this way, it is possible for us to
rearrange a macroscopic atom array. Currently, he can compute the optimal reconfiguration
for 100 atoms within 100 ms.

Our quantum-gas microscope is based on a custom objective from Special Optics. It
is a custom-built microscope objective based on our UHV viewport information (namely,
with glass thickness compensation). The numerical aperture of the objective is 0.5 over
700 — 1000 nm, with a working distance 23.4 mm. With the OSLO simulation, we have
confirmed that it is possible to operate this objective for sub-wavelength imagine with
|651/2) — |7P3/9) transition at 455 nm, albeit with a focal length shift —100zm, which can
be compensated with finite-correction at the input pupils. The peak-to-valley wavefront
error is set less than 1/10\ at 850 — 940nm, and the field of view is 150um.
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Microscope object

Figure 6.12: Many-body QED platform integrated with a quantum-gas micro-
scope. High-resolution custom microscope objective is used with viewport aberration
correction with NA= 0.45. Optical potential landscape is projected to the quantum gas,
creating arbitrary 2D atomic arrays.
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Chapter 7

Conclusion

In my MSc thesis, I have mainly discussed a set of technological advances that addressed
major challenges in three distinct research areas — Quantum gas (Chapter 3 and Chapter
5), optical clock (Chapter 4), and cavity QED (Chapter 6).

Our effort towards many-body QED began with the development of extreme-high-
vacuum (XHV) chamber system, tailored for state-of-art AMO experiments (Chapter 3).
I have explored and developed new vacuum passivation techniques, as well as Rainbow
anti-reflection (AR) coating methods to address the unique challenges of utilizing UV-
wavelength high-power laser fields and electrically sensitive Rydberg states, and of requiring
the ultra-low base pressure for achieving long-lived atomic quantum matter. The result of
our effort is the lowest operating base pressure of P ~ 10712 Torr for an AMO experiment.

In Chapter 4, I discussed our laser infrastructure with wavelength ranges spanning
over an octave, from 317 nm to 1571 nm, and our method of phase-synchronizing these
laser fields. I also discussed our work on efficiently frequency-converting high-power ultra-
narrow-band optical fields for high-lying Rydberg excitations, and Science cavity stabiliza-
tion. In Chapter 5, I provided the driven-dissipative framework of self-consistently treating
both the internal and external states of neutral atoms. Using quantum Monte-Carlo wave-
function method, I have optimized the cold atom transport processes, both between the
Source and Science chambers, and within the Science chamber. 1 discussed the case of
fully quantizing the external motion and applied the formalism for non-degenerate Raman
sideband cooling for atoms in a high-finesse cavity. Finally, I provided potential pathways
to utilize the nonlinear phonon spectrum as quantum spin system, and speculated as future
work on how such phonon-phonon interactions may be utilized for simulating self-organized
many-body models, such as Lieb-Liniger model and 1D Tonks-Girardeau Bose gas.
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In Chapter 6, I have discussed the critical challenges of combining strongly coupled
cavity QED system with Rydberg states, and how we mitigate the extraordinary surface
potentials and charging effects with Faraday shielding system. I described our Science
cavity, which required the development of new thin-film IBS coating stack for record-
level optical finesse F ~ 5 x 10°. At the moment, we currently possess the laboratory
capabilities to perform proof-of-concept experiments that demonstrate essential features of
many-body QED. In this chapter, I describe the present experiments (Rydberg quantum-
dot and quantum spin ice) that we are working on, and provide a short-term vision of
potential experiments for the next 3-4 years. The experimental platform that I have
helped to develop is, in some sense, a laboratory platform that could be applied to a
wide variety of research areas with minor modifications, from quantum communication
and computation, to quantum sensing and simulation.

7.1 Rydberg quantum-dot

7.1.1 Present work

We are trying to perform the first experimental demonstration of the Rydberg quantum-
dot and to observe collectively-enhanced cooperativity factor Cy ~ 10% in the regime of
full Rydberg blockade. Within the low-energy sector of each of the excitation subspace, the
optical nonlinearity in our system is identical to that of the Jaynes-Cummings (JC) model
(Chapter 2). The structural nonlinearity of the effective JC spectrum can be inferred from
the measured autocorrelation function ¢ (7) < 1, as the two-photon suppression is caused
by the phenomena of photon blockade. By modifying the dressing strength of the Rydberg
states, we can continuously map the crossover from the Tavis-Cummings (TC) model with
non-interacting atoms to the effective JC model, caused by the Rydberg blockade, as shown
in Fig. 2.7.

From the viewpoint of many-body physics, both the TC and JC models are interest-
ing spin-boson Hamiltonians with close relationship with the Kondo problem. The auto-
correlation function for photons measured through the optical cavity can be understood
as a string order ¢ 7 > ikl (a ¥ &' Y a(k)a(l)> with the input-output formalism. The
resulting ¢® can utlhzed as an order-parameter for examining whether this transition is
simply a cross-over or a quantum phase transition. We are currently capable of transport-
ing ultracold atoms to the interaction region with little recoil heating, and have recently
installed the new quantum-dot platform into the UHV chamber. We expect to complete

this experiment in the next few months, where we hope to observe unprecedented vacuum
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Rabi splitting go ~ 1 GHz with the cavity QED parameters (v Ngo, &,7) = (10%,0.5,2.5)
MHz.

7.1.2 Future direction
Cavity-based quantum network and computation

The enhanced single-quanta-level optical nonlinearity can be utilized for demonstrating the
early proposals for quantum networks and quantum computing with conventional cavity
QED setups [175, 16, , , 11]. Many of these proposals have been translated over to
circuit QED experiments, and have been understood by the AMO community too far ahead
of its time with the parameter space that typical neutral and ionic atoms can occupy. With
neutral atoms, since we can easily manipulate 10° atoms with inherent indistinguishability,
there is a room for optical cavity QED to contribute and compete with superconducting
counterparts.

In our experiment, we can take advantage of the collectively enhanced cooperativity
factor Cy ~ 10% in the effective JC model. Our quantum-dot platform further allows
single-site addressability with optical resolution ~ 2um. We can easily envision to couple
our real-time rearrangement capabilities to shelve atoms spatially to the anti-node of the
cavity to protect these storage atoms from the cavity-mediated quantum gates. By virtue
of single-site addressing and collective enhancement, we have the capability to perform
arbitrary ultrafast two-qubit gates [170, ] through cavity-mediated interactions with
gate rates J;; ~ NgZ/A ~ 10 MHz between the long-lived hyperfine clock states of any
two Cs atoms with second-long coherence times. In the short term, the total number
of atoms with single-site addressability would likely be limited to N ~ 100 atoms, due
to the technical limitation of our DMD device. We believe that it is possible for us to
make rudimentary progress in this direction, without significantly developing new laser
addressing technologies, for N ~ 30 — 40 atoms with fully programmable connectivity
Jij. It remains to be seen if we could take advantage of the theoretical scaling of the
entanglement fidelity F' ~ 1 — 1/Cy with respect to the cooperativity C ~ 103.

Superradiant laser and optical-to-microwave converter

In a typical laser, the characteristic bandwidth of the gain medium is many order of
magnitude wider than that of the cavity mode. Hence, the laser output is narrowed by the
effective optical feedback of the cavity modes. In our experiment, we can access the so-
called superradiant laser regime [178, ], where the laser operates in the bad cavity limit.
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Here, the gain medium is ultra-narrow-band compared to the transmission bandwidth
of the cavity, and the laser stability is decoupled from the mechanical vibrations of the
cavities. Such a laser can be utilized for optical clock applications by putting an ensemble
of atomic species (e.g., Yb atoms) typically used for optical lattice clocks. In this sense,
the superradiant laser is an active optical clock, where the lasing feedback occurs on a
clock transition of the trapped atoms.

Rydberg states are long-lived and require narrow-linewidth laser to access high-lying
Rydberg states. In the limit of strong Rydberg blockade, the doubly excitations are highly
suppressed in the ultracold atomic sample, thereby realizing an effective spin—1/2 system
that is coupled to the resonator mode. Cavity QED in such a regime can be considered as a

“single-atom” laser operating with threshold intracavity photon number ng = 27\;9 7 108!
Utilizing the narrow-linewidth transition with optical @ ~ 10'3, we can realize an UV
superradiant laser with Allen variance ~ 10'° for a single-atom gain C ~ 10* — 103.
The main challenge with this direction is whether it is possible to achieve high-degree
of electromagnetic shielding, which may cause Stark inhomogeneous broadening of the
Rydberg states. We also have some ideas with the DRDC, where we plan to combine
superradiant lasing with Rydberg-enhanced microwave transitions between the Rydberg’s
angular momentum states. In this scheme, we estimate single-photon-level conversion of
microwave photons to and from optical photons in the NIR range. The primary limitation
in this direction would be the background microwave photons at room temperature.

Quantum Ising annealing machines with single-site addressability

Absent any cavity-mediated spin-spin interaction, the Rydberg lattice system in our hand
is a natural long-range transverse Ising model. We can utilize direct Rydberg-Rydberg
interaction with single-site addressability of our high-resolution imaging system for quan-
tum annealing application. We could program the spin-exchange coefficients by projecting
arbitrary 2D potential landscapes, where the interaction coefficients J;; encode the opti-
mization problem. With Rydberg-dressing techniques, we can adiabatically turn on the
J;;(t) by the laser power, which dresses the hyperfine qubits, to evolve the trivial ground
state of ferromagnetically phased atoms into that of the target Hamiltonian. Without
cavity coupling, the range of the connectivity (locality of the interaction) would likely be
limited to 3 — 4 sites for N ~ 100 atoms, without further improving the resolution of our
DMD device. Nonetheless, this would represent a considerable advance in the field.
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Multimode cavity QED with ultrastrong coupling: Transversal waveguide QED

An exciting direction with our Rydberg quantum-dot platform is to utilize the collectively-
enhanced atom-cavity coupling rate v Ngo ~ 1 GHz for multimode cavity QED. In this
domain, the non-degenerate transversal modes of the spherical cavity can all couple to the
Rydberg-blockaded atomic ensemble, where the discrete modes represent the dispersion of
the resonator. In the limiting case of infinite transverse modes, we can consider this as
a 2D version of waveguide QED in photonic slab. Here, the 2D photonic bandgap of the
photonic crystal is occupied by the non-degenerate transversal modes of an empty cavity.
Similar to the conventional waveguide QED regime, we expect to observe atom-field bound
states and renormalized spin-spin interactions in the bandgaps. The main question in this
direction is the sphericality of the mirrors that defines the energies of the higher-order
Hermite-Gauss modes of the resonator. Nonetheless, we may be able to perform proof-of-
principle experiments with a few transversal modes.

Quantum chemistry: The assembly of Rydberg optical Feshbach molecules

Our experimental platform has the capability to image and manipulate individual atoms,
and to excite them to high-lying Rydberg states. In fact, we believe that we are the only
group capable of achieving both the single-site addressability and direct Rydberg excitation
at the moment. Combining these two powerful methods enables us to do basic molecular
spectroscopy of long-ranged Rydberg molecules. Previous work in this area indirectly
measured the bond lengths of the Rydberg molecules, absent the spatial resolution to
observe the molecules themselves. In our experiment, we can controllably place two Cs
atoms in proximity ~ 2 —3um, and cause quantum-chemical reactions by exciting them to
high-lying Rydberg states. The Born-Oppenheimer potential of the Rydberg molecules can
further dress the ground-state potential to cause optical Feshbach resonance, allowing long-
ranged ground-state Csy molecules. We can further detect these molecules and simulate the
reaction rates that depend on the initial spin states of the atoms at ultracold temperature.
For this experiment, it would be useful to integrate an UHV-compatible multi-channel-
plate (MCP) detector with unit quantum efficiency for single charge detection. In this
way, we can utilize the MCP signal to discriminate the Rydberg ions from the Rydberg
molecules.
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7.2 Many-body QED

7.2.1 Present work

Currently, we have assembled the many-body QED platform with the high-finesse optical
cavity and 8-point electrodes. We are currently in the stage of integrating this platform
into the XHV Science chamber, along with the Rydberg quantum-dot platform. Since we
share the UHV chamber for both platforms, we can readily also start the many-body QED
experiment, upon completing the Rydberg quantum-dot experiment. In fact, this is the
present goal.

Here, we are trying to utilize single-atom-level strong coupling go > k, 7, for inject-
ing quantum fluctuation into the spin ice background. In the first experiment, we are
first planning to detect the emergent spinon (magnetic monopoles) in the thermal spin
ice model by arranging atoms into the checkerboard pattern, as described in Chapter 2.
These magnetic monopoles can be optically imaged through a high-resolution quantum-gas
microscope, and we may observe the dipolar interaction between these fractionalized gauge
charges. The extensive ground-state degeneracy can be detected by reconstructing the 2D
band structure with optical Bragg spectroscopy with ultracold atoms.

In the second experiment, we plan to utilize the cavity vacuum to introduce the quan-
tum fluctuation to melt the extensively degenerate ice configuration states [180]. Certainly,
the most exciting would be the discovery of a quantum spin liquid phase through the mea-
surement of dynamical spin structural factor S(k,w). S(k,w) measures the dispersion of
the quantum liquid by creating a gapless artificial photon, and we hope to observe the lin-
ear cone-like dispersion of these topological excitations. Absent achieving this paramount
goal, we believe that it is certainly possible to detect the emergent electric charge (vison
excitation), as these are gapped topological defects of the order Ji,,. We may observe
Abelian braiding statistics by implementing string operation on the empty plaquettes with
controlled ring-exchange interactions. We hope to begin these experiments next year.

7.2.2 Future direction
Kitaev honeycomb and 2D Levin-Wen string-net models
Recently, Dr. Dong and Prof. Choi have developed an analog method to synthesize

the Kitaev honeycomb model with Rydberg atoms with our many-body QED platform
[181]. Similar to the localized Rydberg-mediated spin-spin interaction (Section 2.5.1), we
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can create the anisotropic coupling that depends on the bond direction of the honeycomb
model. In this setting, we can also apply the topological braiding operation by encoding the
string operations with the cavity photons [101], where homodyne detection of the cavity-
relaxed field can be utilized to measure the braiding matrices of the non-Abelian anyonic
vortices. The main challenge with this direction is the cavity photon lifetime 1/, which
may be too short for the reasonably long string operator to the complete its evolution.

Dr. Dong and Prof. Choi have developed a method to create an effective 3-body
interaction by using a generalized Rydberg Forster resonance. These interactions can be
utilized to create 3-body Ising terms in a honeycomb lattice, known as the Levin-Wen
string-net model. It remains to be seen whether the reduced 3-body interaction coefficient
is sufficiently large, compared to the realistic decoherence rate, caused by photoionization
of the strong Rydberg excitation fields. Beyond the standard quantum defect theories, we
would need to estimate the impact of the ponderomotive force on the Rydberg electron in
the background of a strong laser field.

Many-body QED: Spaghetti regime

We currently have the capability to move A < gy to and from A > gy, and explore
the entire parameter space of Fig. 1.5. When we set the detunings A,, A, of the cav-
ity and laser fields near resonance of the transition frequency, it is no longer possible to
adiabatically eliminate the atomic and photonic degrees of freedom. We have called this
domain, “Spaghetti regime,” because we currently lack the theoretical capability to clearly
understand the essential physics. The good news is that we certainly have the laboratory
capability to access the physics of this regime. One unknown is the mirror degradation
upon exposure to ultracold atoms. Our backup plan is to use the RF plasma cleaning
through the 8-point electrodes. Hopefully, this method would allow us to reduce the ab-
sorption losses caused by the metallic monolayer of Cs atoms deposited onto the super
mirrors.
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Appendix A

Atom-atom interaction coeflicients
and radiative characteristics of
Rydberg states

In this Appendix, we present the numerical results of the quantum defect theory described
in Chapter 2, for the van der Waals interaction coefficients and radiative characteristics.
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n n* 7(s) | 7w (8) | f(THz) | (J'|ler||]) | rr (um) | C¢(GHz - um®)
6.0000 | 2.3292 | 0.0000 | -0.0000 | 335.1200 4.4890 0.0017 0.0000
7.0000 | 3.3737 | 0.0000 | -0.0000 | 652.5100 0.2790 0.0037 0.0000
8.0000 | 4.3886 | 0.0000 | -0.0000 | 770.7300 0.0810 0.0063 -0.0000
9.0000 | 5.3956 | 0.0000 | -0.0000 | 828.5400 0.0822 0.0096 0.0000
10.0000 | 6.3994 | 0.0000 | -0.0000 | 861.2100 | -0.0541 0.0136 0.0000
11.0000 | 7.4017 | 0.0000 | -0.0000 | 881.4900 0.0393 0.0182 0.0000
12.0000 | 8.4032 | 0.0000 | -0.0000 | 894.9500 | -0.0303 0.0235 -0.0000
13.0000 | 9.4043 | 0.0000 | -0.0000 | 904.3400 0.0244 0.0295 0.0000
14.0000 | 10.4050 | 0.0000 | -0.0000 | 911.1600 | -0.0202 0.0361 0.0000
15.0000 | 11.4060 | 0.0000 | -0.0000 | 916.2500 0.0172 0.0434 0.0000
16.0000 | 12.4060 | 0.0000 | -0.0000 | 920.1700 | -0.0148 0.0514 -0.0000
17.0000 | 13.4060 | 0.0000 | -0.0000 | 923.2400 0.0130 0.0600 0.0000
18.0000 | 14.4070 | 0.0000 | -0.0000 | 925.6900 | -0.0115 0.0693 0.0000
19.0000 | 15.4070 | 0.0000 | -0.0000 | 927.6800 0.0103 0.0793 0.0000
20.0000 | 16.4070 | 0.0000 | -0.0000 | 929.3200 | -0.0093 0.0899 0.0000
21.0000 | 17.4070 | 0.0000 | -0.0000 | 930.6900 0.0084 0.1013 0.0000
22.0000 | 18.4070 | 0.0000 | -0.0000 | 931.8300 | -0.0077 0.1133 0.0000
23.0000 | 19.4070 | 0.0000 | -0.0000 | 932.8100 0.0071 0.1259 0.0000
24.0000 | 20.4080 | 0.0000 | -0.0000 | 933.6400 | -0.0065 0.1392 0.0000
25.0000 | 21.4080 | 0.0000 | -0.0000 | 934.3600 0.0061 0.1532 -0.0000
26.0000 | 22.4080 | 0.0000 | -0.0000 | 934.9900 | -0.0056 0.1679 0.0000
27.0000 | 23.4080 | 0.0001 | -0.0000 | 935.5400 0.0053 0.1832 0.0000
28.0000 | 24.4080 | 0.0001 | -0.0000 | 936.0200 | -0.0049 0.1992 0.0007
29.0000 | 25.4080 | 0.0001 | -0.0000 | 936.4500 0.0046 0.2159 0.0011
30.0000 | 26.4080 | 0.0001 | -0.0000 | 936.8200 | -0.0044 0.2333 0.0016

Table A.1: Van der Waals interaction coefficients Cs(GHz - pm®) and radiative character-
istics of |651/2) — [nPijg) for n € {6 —30}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6Sl/2> — |TZP1/2>
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n n' | 7(s) | () | f(THz) | (Sller]|]) | rp (pm) | Co(GHz - pm?®)
31.0000 | 27.4080 | 0.0001 | -0.0000 | 937.1600 0.0041 0.2513 0.0024
32.0000 | 28.4080 | 0.0001 | -0.0001 | 937.4700 | -0.0039 0.2699 0.0035
33.0000 | 29.4080 | 0.0001 | -0.0001 | 937.7400 0.0037 0.2893 0.0051
34.0000 | 30.4080 | 0.0001 | -0.0001 | 937.9800 | -0.0035 0.3093 0.0072
35.0000 | 31.4080 | 0.0001 | -0.0001 | 938.2100 0.0033 0.3300 0.0102
36.0000 | 32.4080 | 0.0001 | -0.0001 | 938.4100 | -0.0032 0.3514 0.0142
37.0000 | 33.4080 | 0.0001 | -0.0001 | 938.5900 0.0030 0.3734 0.0196
38.0000 | 34.4080 | 0.0002 | -0.0001 | 938.7600 | -0.0029 0.3961 0.0272
39.0000 | 35.4080 | 0.0002 | -0.0001 | 938.9200 0.0028 0.4194 0.0369
40.0000 | 36.4080 | 0.0002 | -0.0001 | 939.0600 | -0.0027 0.4435 0.0497
41.0000 | 37.4080 | 0.0002 | -0.0001 | 939.1900 0.0026 0.4682 0.0664
42.0000 | 38.4080 | 0.0002 | -0.0001 | 939.3100 | -0.0024 0.4936 0.0880
43.0000 | 39.4080 | 0.0002 | -0.0002 | 939.4200 0.0024 0.5196 0.4103
44.0000 | 40.4080 | 0.0003 | -0.0002 | 939.5300 | -0.0023 0.5463 0.5392
45.0000 | 41.4080 | 0.0003 | -0.0002 | 939.6200 0.0022 0.5737 0.7040
46.0000 | 42.4080 | 0.0003 | -0.0002 | 939.7100 | -0.0021 0.6018 0.9133
47.0000 | 43.4080 | 0.0003 | -0.0002 | 939.8000 0.0020 0.6305 1.1778
48.0000 | 44.4080 | 0.0003 | -0.0002 | 939.8700 | -0.0020 0.6599 1.5102
49.0000 | 45.4080 | 0.0004 | -0.0003 | 939.9500 0.0019 0.6899 1.2028
50.0000 | 46.4080 | 0.0004 | -0.0003 | 940.0100 | -0.0018 0.7207 1.4550
51.0000 | 47.4080 | 0.0004 | -0.0003 | 940.0800 0.0018 0.7521 1.8334
52.0000 | 48.4080 | 0.0004 | -0.0003 | 940.1400 | -0.0017 0.7841 2.2990
53.0000 | 49.4080 | 0.0005 | -0.0003 | 940.1900 0.0017 0.8169 2.8688
54.0000 | 50.4080 | 0.0005 | -0.0004 | 940.2500 | -0.0016 0.8503 3.5612
55.0000 | 51.4080 | 0.0005 | -0.0004 | 940.3000 0.0016 0.8843 4.0590
56.0000 | 52.4080 | 0.0006 | -0.0004 | 940.3400 | -0.0015 0.9191 5.4664
57.0000 | 53.4080 | 0.0006 | -0.0004 | 940.3900 0.0015 0.9545 6.7078
58.0000 | 54.4080 | 0.0006 | -0.0005 | 940.4300 | -0.0014 0.9906 8.2023
59.0000 | 55.4080 | 0.0007 | -0.0005 | 940.4700 0.0014 1.0273 10.0530
60.0000 | 56.4080 | 0.0007 | -0.0005 | 940.5100 | -0.0014 1.0648 15.6090

Table A.2: Van der Waals interaction coefficients Cg(GHz - um?®) and radiative character-
istics of |651/2) — |nPyye) for n € {31 —60}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eaqy) and the transition frequency (Hz) for
the transition |651/2) — [nPi/2).
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
61.0000 | 57.4080 | 0.0007 | -0.0006 | 940.5400 0.0013 1.1029 18.9030
62.0000 | 58.4080 | 0.0008 | -0.0006 | 940.5800 | -0.0013 1.1416 22.8170
63.0000 | 59.4080 | 0.0008 | -0.0006 | 940.6100 0.0013 1.1811 25.8360
64.0000 | 60.4080 | 0.0008 | -0.0007 | 940.6400 | -0.0012 1.2212 30.9850
65.0000 | 61.4080 | 0.0009 | -0.0007 | 940.6700 0.0012 1.2619 37.0520
66.0000 | 62.4080 | 0.0009 | -0.0007 | 940.7000 | -0.0012 1.3034 441770
67.0000 | 63.4080 | 0.0010 | -0.0008 | 940.7200 0.0011 1.3455 51.5890
68.0000 | 64.4080 | 0.0010 | -0.0008 | 940.7500 | -0.0011 1.3883 61.1570
69.0000 | 65.4080 | 0.0011 | -0.0008 | 940.7700 0.0011 1.4317 72.3810
70.0000 | 66.4080 | 0.0011 | -0.0009 | 940.8000 | -0.0011 1.4758 86.2750
71.0000 | 67.4080 | 0.0012 | -0.0009 | 940.8200 0.0010 1.5206 101.5500
72.0000 | 68.4080 | 0.0012 | -0.0010 | 940.8400 | -0.0010 1.5661 119.9600
73.0000 | 69.4080 | 0.0013 | -0.0010 | 940.8600 0.0010 1.6122 140.5200
74.0000 | 70.4080 | 0.0013 | -0.0011 | 940.8800 | -0.0010 1.6590 164.2300
75.0000 | 71.4080 | 0.0014 | -0.0011 | 940.9000 0.0010 1.7064 188.7000
76.0000 | 72.4080 | 0.0014 | -0.0012 | 940.9100 | -0.0009 1.7546 219.0100
77.0000 | 73.4080 | 0.0015 | -0.0012 | 940.9300 0.0009 1.8034 254.3100
78.0000 | 74.4080 | 0.0016 | -0.0013 | 940.9500 | -0.0009 1.8528 294.7100
79.0000 | 75.4080 | 0.0016 | -0.0013 | 940.9600 0.0009 1.9030 342.2000
80.0000 | 76.4080 | 0.0017 | -0.0014 | 940.9800 | -0.0009 1.9538 394.9100
81.0000 | 77.4080 | 0.0018 | -0.0015 | 940.9900 0.0008 2.0053 454.7100
82.0000 | 78.4080 | 0.0018 | -0.0015 | 941.0100 | -0.0008 2.0574 521.1700
83.0000 | 79.4080 | 0.0019 | -0.0016 | 941.0200 0.0008 2.1102 589.6300
84.0000 | 80.4080 | 0.0020 | -0.0016 | 941.0300 | -0.0008 2.1637 695.9700
85.0000 | 81.4080 | 0.0021 | -0.0017 | 941.0500 0.0008 2.2179 790.7300
86.0000 | 82.4080 | 0.0021 | -0.0018 | 941.0600 | -0.0008 2.2727 901.9000
87.0000 | 83.4080 | 0.0022 | -0.0018 | 941.0700 0.0008 2.3282 1028.6000
88.0000 | 84.4080 | 0.0023 | -0.0019 | 941.0800 | -0.0007 2.3844 1171.1000
89.0000 | 85.4080 | 0.0024 | -0.0020 | 941.0900 0.0007 2.4412 1331.4000
90.0000 | 86.4080 | 0.0025 | -0.0021 | 941.1000 | -0.0007 2.4987 1510.1000

Table A.3: Van der Waals interaction coefficients Cs(GHz - um?®) and radiative character-
istics of |65 /2) — |nPyye) for n € {61 —90}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eaqy) and the transition frequency (Hz) for
the transition |651/2) — [nPi/2).
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n n* 7(s) | T (s) | f(THz) | (J'|le?||]) | rr. (um) | Cs(GHz - um®)

91.0000 | 87.4080 | 0.0025 | -0.0021 | 941.1100 0.0007 2.5569 1712.1000

92.0000 | 88.4080 | 0.0026 | -0.0022 | 941.1200 | -0.0007 2.6157 1939.2000

93.0000 | 89.4080 | 0.0027 | -0.0023 | 941.1300 0.0007 2.6752 2192.5000

94.0000 | 90.4080 | 0.0028 | -0.0024 | 941.1400 | -0.0007 2.7354 2475.5000

95.0000 | 91.4080 | 0.0029 | -0.0025 | 941.1500 0.0007 2.7963 2790.9000

96.0000 | 92.4080 | 0.0030 | -0.0026 | 941.1600 | -0.0006 2.8578 3143.1000

97.0000 | 93.4080 | 0.0031 | -0.0026 | 941.1700 | 0.0006 2.9200 3535.6000

98.0000 | 94.4080 | 0.0032 | -0.0027 | 941.1700 | -0.0006 2.9828 3971.7000

99.0000 | 95.4080 | 0.0033 | -0.0028 | 941.1800 0.0006 3.0464 4456.1000

100.0000 | 96.4080 | 0.0034 | -0.0029 | 941.1900 | -0.0006 3.1106 4993.7000

Table A.4: Van der Waals interaction coefficients Cs(GHz - pm®) and radiative character-
istics of |651/2) — |nPyj2) for n € {91 — 100}. (n*) n is the (effective) principal quantum
number, 7 (73) is the (blackbody-limited) radiative lifetime (s), r, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |651/2) — [nP)2).
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n n* 7(s) | 7w (8) | f(THz) | (J'|ler||]) | rr (um) | C¢(GHz - um®)
6.0000 | 2.3617 | 0.0000 | -0.0000 | 351.7300 6.3238 0.0018 0.0000
7.0000 | 3.4039 | 0.0000 | -0.0000 | 657.9400 0.5760 0.0038 0.0000
8.0000 | 4.4206 | 0.0000 | -0.0000 | 773.2100 0.2180 0.0064 0.0000
9.0000 | 5.4278 | 0.0000 | -0.0000 | 829.8800 0.1883 0.0097 0.0000
10.0000 | 6.4317 | 0.0000 | -0.0000 | 862.0100 | -0.1298 0.0137 0.0000
11.0000 | 7.4340 | 0.0000 | -0.0000 | 882.0100 0.0972 0.0184 0.0000
12.0000 | 8.4356 | 0.0000 | -0.0000 | 895.3100 | -0.0767 0.0237 0.0000
13.0000 | 9.4367 | 0.0000 | -0.0000 | 904.6000 0.0628 0.0297 0.0000
14.0000 | 10.4370 | 0.0000 | -0.0000 | 911.3400 | -0.0527 0.0363 0.0000
15.0000 | 11.4380 | 0.0000 | -0.0000 | 916.4000 0.0451 0.0436 0.0000
16.0000 | 12.4390 | 0.0000 | -0.0000 | 920.2800 | -0.0393 0.0516 0.0000
17.0000 | 13.4390 | 0.0000 | -0.0000 | 923.3300 0.0346 0.0603 0.0000
18.0000 | 14.4390 | 0.0000 | -0.0000 | 925.7600 | -0.0308 0.0696 0.0000
19.0000 | 15.4390 | 0.0000 | -0.0000 | 927.7400 0.0277 0.0796 -0.0000
20.0000 | 16.4400 | 0.0000 | -0.0000 | 929.3700 | -0.0250 0.0903 -0.0000
21.0000 | 17.4400 | 0.0000 | -0.0000 | 930.7300 0.0228 0.1016 0.0000
22.0000 | 18.4400 | 0.0000 | -0.0000 | 931.8700 | -0.0209 0.1137 0.0000
23.0000 | 19.4400 | 0.0000 | -0.0000 | 932.8400 0.0192 0.1263 0.0000
24.0000 | 20.4400 | 0.0000 | -0.0000 | 933.6700 | -0.0178 0.1397 0.0000
25.0000 | 21.4400 | 0.0000 | -0.0000 | 934.3900 0.0165 0.1537 0.0000
26.0000 | 22.4400 | 0.0000 | -0.0000 | 935.0100 | -0.0154 0.1684 0.0000
27.0000 | 23.4400 | 0.0000 | -0.0000 | 935.5500 0.0144 0.1837 0.0000
28.0000 | 24.4400 | 0.0000 | -0.0000 | 936.0300 | -0.0135 0.1998 0.0000
29.0000 | 25.4400 | 0.0001 | -0.0000 | 936.4600 0.0127 0.2165 0.0000
30.0000 | 26.4400 | 0.0001 | -0.0000 | 936.8400 | -0.0120 0.2338 0.0000

Table A.5: Van der Waals interaction coefficients Cs(GHz - pm®) and radiative character-
istics of |651/2) — [nP3e) for n € {6 —30}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6Sl/2> — |TZP3/2>
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
31.0000 | 27.4410 | 0.0001 | -0.0000 | 937.1700 0.0113 0.2519 0.0001
32.0000 | 28.4410 | 0.0001 | -0.0000 | 937.4800 | -0.0107 0.2706 0.0001
33.0000 | 29.4410 | 0.0001 | -0.0000 | 937.7500 0.0101 0.2899 0.0001
34.0000 | 30.4410 | 0.0001 | -0.0001 | 937.9900 | -0.0096 0.3100 0.0001
35.0000 | 31.4410 | 0.0001 | -0.0001 | 938.2100 0.0092 0.3307 0.0002
36.0000 | 32.4410 | 0.0001 | -0.0001 | 938.4200 | -0.0087 0.3521 0.0003
37.0000 | 33.4410 | 0.0001 | -0.0001 | 938.6000 0.0083 0.3741 0.0004
38.0000 | 34.4410 | 0.0001 | -0.0001 | 938.7700 | -0.0080 0.3968 0.0005
39.0000 | 35.4410 | 0.0001 | -0.0001 | 938.9200 0.0076 0.4202 0.0037
40.0000 | 36.4410 | 0.0002 | -0.0001 | 939.0600 | -0.0073 0.4443 0.0496
41.0000 | 37.4410 | 0.0002 | -0.0001 | 939.2000 0.0070 0.4690 0.1724
42.0000 | 38.4410 | 0.0002 | -0.0001 | 939.3200 | -0.0068 0.4944 0.2303
43.0000 | 39.4410 | 0.0002 | -0.0001 | 939.4300 0.0065 0.5205 0.3053
44.0000 | 40.4410 | 0.0002 | -0.0001 | 939.5300 | -0.0063 0.5472 0.4019
45.0000 | 41.4410 | 0.0002 | -0.0002 | 939.6300 0.0060 0.5746 0.5256
46.0000 | 42.4410 | 0.0003 | -0.0002 | 939.7200 | -0.0058 0.6027 0.6829
47.0000 | 43.4410 | 0.0003 | -0.0002 | 939.8000 0.0056 0.6314 0.8820
48.0000 | 44.4410 | 0.0003 | -0.0002 | 939.8800 | -0.0054 0.6608 1.1324
49.0000 | 45.4410 | 0.0003 | -0.0002 | 939.9500 0.0052 0.6909 1.4460
50.0000 | 46.4410 | 0.0003 | -0.0002 | 940.0200 | -0.0051 0.7217 1.8365
51.0000 | 47.4410 | 0.0004 | -0.0002 | 940.0800 0.0049 0.7531 1.5964
52.0000 | 48.4410 | 0.0004 | -0.0003 | 940.1400 | -0.0048 0.7852 1.9372
53.0000 | 49.4410 | 0.0004 | -0.0003 | 940.2000 0.0046 0.8179 2.4236
54.0000 | 50.4410 | 0.0004 | -0.0003 | 940.2500 | -0.0045 0.8514 3.0185
55.0000 | 51.4410 | 0.0005 | -0.0003 | 940.3000 0.0043 0.8855 3.7450
56.0000 | 52.4410 | 0.0005 | -0.0003 | 940.3500 | -0.0042 0.9202 4.6251
57.0000 | 53.4410 | 0.0005 | -0.0004 | 940.3900 0.0041 0.9557 5.7300
58.0000 | 54.4410 | 0.0005 | -0.0004 | 940.4300 | -0.0040 0.9918 9.1623
59.0000 | 55.4410 | 0.0006 | -0.0004 | 940.4700 0.0039 1.0286 11.1860
60.0000 | 56.4410 | 0.0006 | -0.0004 | 940.5100 | -0.0038 1.0660 13.6090

Table A.6: Van der Waals interaction coefficients Cg(GHz - um?®) and radiative character-
istics of |65 /2) — |nPse) for n € {31 —60}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eaqy) and the transition frequency (Hz) for
the transition |651/2) — [nPs)2).
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
61.0000 | 57.4410 | 0.0006 | -0.0005 | 940.5500 0.0037 1.1041 16.4990
62.0000 | 58.4410 | 0.0007 | -0.0005 | 940.5800 | -0.0036 1.1429 19.9370
63.0000 | 59.4410 | 0.0007 | -0.0005 | 940.6100 0.0035 1.1824 24.0130
64.0000 | 60.4410 | 0.0007 | -0.0006 | 940.6400 | -0.0034 1.2225 28.0430
65.0000 | 61.4410 | 0.0008 | -0.0006 | 940.6700 0.0033 1.2633 33.0320
66.0000 | 62.4410 | 0.0008 | -0.0006 | 940.7000 | -0.0032 1.3047 39.4120
67.0000 | 63.4410 | 0.0008 | -0.0006 | 940.7200 0.0032 1.3469 46.8580
68.0000 | 64.4410 | 0.0009 | -0.0007 | 940.7500 | -0.0031 1.3897 54.6840
69.0000 | 65.4410 | 0.0009 | -0.0007 | 940.7700 0.0030 1.4331 66.1710
70.0000 | 66.4410 | 0.0010 | -0.0007 | 940.8000 | -0.0029 1.4773 77.9960
71.0000 | 67.4410 | 0.0010 | -0.0008 | 940.8200 0.0029 1.5221 92.1840
72.0000 | 68.4410 | 0.0011 | -0.0008 | 940.8400 | -0.0028 1.5676 109.3700
73.0000 | 69.4410 | 0.0011 | -0.0009 | 940.8600 0.0028 1.6137 127.7400
74.0000 | 70.4410 | 0.0012 | -0.0009 | 940.8800 | -0.0027 1.6605 149.3500
75.0000 | 71.4410 | 0.0012 | -0.0009 | 940.9000 0.0026 1.7080 174.1900
76.0000 | 72.4410 | 0.0013 | -0.0010 | 940.9200 | -0.0026 1.7562 201.0700
77.0000 | 73.4410 | 0.0013 | -0.0010 | 940.9300 0.0025 1.8050 233.0900
78.0000 | 74.4410 | 0.0014 | -0.0011 | 940.9500 | -0.0025 1.8545 270.9000
79.0000 | 75.4410 | 0.0014 | -0.0011 | 940.9600 0.0024 1.9046 314.1600
80.0000 | 76.4410 | 0.0015 | -0.0012 | 940.9800 | -0.0024 1.9555 362.9500
81.0000 | 77.4410 | 0.0015 | -0.0012 | 940.9900 0.0023 2.0070 418.5400
82.0000 | 78.4410 | 0.0016 | -0.0013 | 941.0100 | -0.0023 2.0591 481.7700
83.0000 | 79.4410 | 0.0017 | -0.0013 | 941.0200 0.0023 2.1120 552.0100
84.0000 | 80.4410 | 0.0017 | -0.0014 | 941.0300 | -0.0022 2.1655 633.1700
85.0000 | 81.4410 | 0.0018 | -0.0014 | 941.0500 0.0022 2.2197 725.0500
86.0000 | 82.4410 | 0.0019 | -0.0015 | 941.0600 | -0.0021 2.2745 829.4300
87.0000 | 83.4410 | 0.0019 | -0.0016 | 941.0700 0.0021 2.3300 946.7300
88.0000 | 84.4410 | 0.0020 | -0.0016 | 941.0800 | -0.0021 2.3862 1078.9000
89.0000 | 85.4410 | 0.0021 | -0.0017 | 941.0900 0.0020 2.4431 1227.6000
90.0000 | 86.4410 | 0.0021 | -0.0017 | 941.1000 | -0.0020 2.5006 1394.7000

Table A.7: Van der Waals interaction coefficients Cs(GHz - um?®) and radiative character-
istics of |65 /2) — |nPse) for n € {61 —90}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eaqy) and the transition frequency (Hz) for
the transition |651/2) — [nPs)2).
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n n* 7(s) | T (s) | f(THz) | (J'|le?||]) | rr. (um) | Cs(GHz - um®)

91.0000 | 87.4410 | 0.0022 | -0.0018 | 941.1100 0.0019 2.5588 1581.7000

92.0000 | 88.4410 | 0.0023 | -0.0019 | 941.1200 | -0.0019 2.6177 1791.9000

93.0000 | 89.4410 | 0.0024 | -0.0020 | 941.1300 0.0019 2.6772 2027.1000

94.0000 | 90.4410 | 0.0024 | -0.0020 | 941.1400 | -0.0019 2.7374 2290.0000

95.0000 | 91.4410 | 0.0025 | -0.0021 | 941.1500 0.0018 2.7983 2583.4000

96.0000 | 92.4410 | 0.0026 | -0.0022 | 941.1600 | -0.0018 2.8598 2910.7000

97.0000 | 93.4410 | 0.0027 | -0.0022 | 941.1700 0.0018 2.9220 3275.9000

98.0000 | 94.4410 | 0.0028 | -0.0023 | 941.1700 | -0.0017 2.9849 3681.7000

99.0000 | 95.4410 | 0.0029 | -0.0024 | 941.1800 0.0017 3.0485 4132.7000

100.0000 | 96.4410 | 0.0030 | -0.0025 | 941.1900 | -0.0017 3.1127 4633.5000

Table A.8: Van der Waals interaction coefficients Cs(GHz - pm?®) and radiative character-
istics of |651/2) — |nPsjs) for n € {91 — 100}. (n*) n is the (effective) principal quantum
number, 7 (73) is the (blackbody-limited) radiative lifetime (s), r, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |651/2) — [nPs)2).
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n n* 7(s) | 7w (8) | f(THz) | (J'|ler||]) | rr (um) | C¢(GHz - um®)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0013 0.0000
7.0000 | 2.9199 | 0.0000 | -0.0000 | 203.9600 6.4790 0.0029 0.0000
8.0000 | 3.9344 | 0.0000 | -0.0000 | 377.2800 | -1.4915 0.0052 0.0000
9.0000 | 4.9405 | 0.0000 | -0.0000 | 455.0400 0.7853 0.0082 0.0000
10.0000 | 5.9437 | 0.0000 | -0.0000 | 496.6900 | -0.5185 0.0119 0.0000
11.0000 | 6.9456 | 0.0000 | -0.0000 | 521.6200 0.3804 0.0162 0.0000
12.0000 | 7.9468 | 0.0000 | -0.0000 | 537.7200 | -0.2965 0.0212 0.0000
13.0000 | 8.9476 | 0.0000 | -0.0000 | 548.7200 0.2405 0.0268 0.0000
14.0000 | 9.9482 | 0.0000 | -0.0000 | 556.5700 | -0.2007 0.0332 0.0000
15.0000 | 10.9490 | 0.0000 | -0.0000 | 562.3700 0.1711 0.0402 0.0000
16.0000 | 11.9490 | 0.0000 | -0.0000 | 566.7700 | -0.1483 0.0478 0.0000
17.0000 | 12.9490 | 0.0000 | -0.0000 | 570.2000 0.1303 0.0562 0.0000
18.0000 | 13.9490 | 0.0000 | -0.0000 | 572.9100 | -0.1157 0.0652 0.0000
19.0000 | 14.9500 | 0.0000 | -0.0000 | 575.1000 0.1036 0.0748 0.0000
20.0000 | 15.9500 | 0.0000 | -0.0000 | 576.8800 | -0.0936 0.0852 0.0000
21.0000 | 16.9500 | 0.0000 | -0.0000 | 578.3700 0.0851 0.0962 0.0000
22.0000 | 17.9500 | 0.0000 | -0.0000 | 579.6100 | -0.0778 0.1079 0.0000
23.0000 | 18.9500 | 0.0000 | -0.0000 | 580.6600 0.0716 0.1202 0.0000
24.0000 | 19.9500 | 0.0000 | -0.0000 | 581.5500 | -0.0661 0.1333 0.0000
25.0000 | 20.9500 | 0.0000 | -0.0000 | 582.3200 0.0613 0.1469 0.0000
26.0000 | 21.9500 | 0.0000 | -0.0000 | 582.9900 | -0.0570 0.1613 0.0000
27.0000 | 22.9500 | 0.0000 | -0.0000 | 583.5700 0.0533 0.1763 0.0000
28.0000 | 23.9500 | 0.0000 | -0.0000 | 584.0800 | -0.0499 0.1920 -0.0034
29.0000 | 24.9500 | 0.0000 | -0.0000 | 584.5300 0.0469 0.2084 -0.0055
30.0000 | 25.9500 | 0.0000 | -0.0000 | 584.9300 | -0.0442 0.2254 -0.0086

Table A.9: Van der Waals interaction coefficients Cs(GHz - pm®) and radiative character-
istics of |6P3/2) — [nS1/2) for n € {6 —30}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), r7, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6P3/2> — ‘n51/2>
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
31.0000 | 27.4410 | 0.0001 | -0.0000 | 937.1700 0.0113 0.2519 0.0001
32.0000 | 28.4410 | 0.0001 | -0.0000 | 937.4800 | -0.0107 0.2706 0.0001
33.0000 | 29.4410 | 0.0001 | -0.0000 | 937.7500 0.0101 0.2899 0.0001
34.0000 | 30.4410 | 0.0001 | -0.0001 | 937.9900 | -0.0096 0.3100 0.0001
35.0000 | 31.4410 | 0.0001 | -0.0001 | 938.2100 0.0092 0.3307 0.0002
36.0000 | 32.4410 | 0.0001 | -0.0001 | 938.4200 | -0.0087 0.3521 0.0003
37.0000 | 33.4410 | 0.0001 | -0.0001 | 938.6000 0.0083 0.3741 0.0004
38.0000 | 34.4410 | 0.0001 | -0.0001 | 938.7700 | -0.0080 0.3968 0.0005
39.0000 | 35.4410 | 0.0001 | -0.0001 | 938.9200 0.0076 0.4202 0.0037
40.0000 | 36.4410 | 0.0002 | -0.0001 | 939.0600 | -0.0073 0.4443 0.0496
41.0000 | 37.4410 | 0.0002 | -0.0001 | 939.2000 0.0070 0.4690 0.1724
42.0000 | 38.4410 | 0.0002 | -0.0001 | 939.3200 | -0.0068 0.4944 0.2303
43.0000 | 39.4410 | 0.0002 | -0.0001 | 939.4300 0.0065 0.5205 0.3053
44.0000 | 40.4410 | 0.0002 | -0.0001 | 939.5300 | -0.0063 0.5472 0.4019
45.0000 | 41.4410 | 0.0002 | -0.0002 | 939.6300 0.0060 0.5746 0.5256
46.0000 | 42.4410 | 0.0003 | -0.0002 | 939.7200 | -0.0058 0.6027 0.6829
47.0000 | 43.4410 | 0.0003 | -0.0002 | 939.8000 0.0056 0.6314 0.8820
48.0000 | 44.4410 | 0.0003 | -0.0002 | 939.8800 | -0.0054 0.6608 1.1324
49.0000 | 45.4410 | 0.0003 | -0.0002 | 939.9500 0.0052 0.6909 1.4460
50.0000 | 46.4410 | 0.0003 | -0.0002 | 940.0200 | -0.0051 0.7217 1.8365
51.0000 | 47.4410 | 0.0004 | -0.0002 | 940.0800 0.0049 0.7531 1.5964
52.0000 | 48.4410 | 0.0004 | -0.0003 | 940.1400 | -0.0048 0.7852 1.9372
53.0000 | 49.4410 | 0.0004 | -0.0003 | 940.2000 0.0046 0.8179 2.4236
54.0000 | 50.4410 | 0.0004 | -0.0003 | 940.2500 | -0.0045 0.8514 3.0185
55.0000 | 51.4410 | 0.0005 | -0.0003 | 940.3000 0.0043 0.8855 3.7450
56.0000 | 52.4410 | 0.0005 | -0.0003 | 940.3500 | -0.0042 0.9202 4.6251
57.0000 | 53.4410 | 0.0005 | -0.0004 | 940.3900 0.0041 0.9557 5.7300
58.0000 | 54.4410 | 0.0005 | -0.0004 | 940.4300 | -0.0040 0.9918 9.1623
59.0000 | 55.4410 | 0.0006 | -0.0004 | 940.4700 0.0039 1.0286 11.1860
60.0000 | 56.4410 | 0.0006 | -0.0004 | 940.5100 | -0.0038 1.0660 13.6090

Table A.10: Van der Waals interaction coefficients C(GHz - um®) and radiative character-
istics of |6P5/2) — |nSyy2) for n € {31 —60}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eaqy) and the transition frequency (Hz) for
the transition |6P5/2) — [n.571/2).
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
61.0000 | 57.4410 | 0.0006 | -0.0005 | 940.5500 0.0037 1.1041 16.4990
62.0000 | 58.4410 | 0.0007 | -0.0005 | 940.5800 | -0.0036 1.1429 19.9370
63.0000 | 59.4410 | 0.0007 | -0.0005 | 940.6100 0.0035 1.1824 24.0130
64.0000 | 60.4410 | 0.0007 | -0.0006 | 940.6400 | -0.0034 1.2225 28.0430
65.0000 | 61.4410 | 0.0008 | -0.0006 | 940.6700 0.0033 1.2633 33.0320
66.0000 | 62.4410 | 0.0008 | -0.0006 | 940.7000 | -0.0032 1.3047 39.4120
67.0000 | 63.4410 | 0.0008 | -0.0006 | 940.7200 0.0032 1.3469 46.8580
68.0000 | 64.4410 | 0.0009 | -0.0007 | 940.7500 | -0.0031 1.3897 54.6840
69.0000 | 65.4410 | 0.0009 | -0.0007 | 940.7700 0.0030 1.4331 66.1710
70.0000 | 66.4410 | 0.0010 | -0.0007 | 940.8000 | -0.0029 1.4773 77.9960
71.0000 | 67.4410 | 0.0010 | -0.0008 | 940.8200 0.0029 1.5221 92.1840
72.0000 | 68.4410 | 0.0011 | -0.0008 | 940.8400 | -0.0028 1.5676 109.3700
73.0000 | 69.4410 | 0.0011 | -0.0009 | 940.8600 0.0028 1.6137 127.7400
74.0000 | 70.4410 | 0.0012 | -0.0009 | 940.8800 | -0.0027 1.6605 149.3500
75.0000 | 71.4410 | 0.0012 | -0.0009 | 940.9000 0.0026 1.7080 174.1900
76.0000 | 72.4410 | 0.0013 | -0.0010 | 940.9200 | -0.0026 1.7562 201.0700
77.0000 | 73.4410 | 0.0013 | -0.0010 | 940.9300 0.0025 1.8050 233.0900
78.0000 | 74.4410 | 0.0014 | -0.0011 | 940.9500 | -0.0025 1.8545 270.9000
79.0000 | 75.4410 | 0.0014 | -0.0011 | 940.9600 0.0024 1.9046 314.1600
80.0000 | 76.4410 | 0.0015 | -0.0012 | 940.9800 | -0.0024 1.9555 362.9500
81.0000 | 77.4410 | 0.0015 | -0.0012 | 940.9900 0.0023 2.0070 418.5400
82.0000 | 78.4410 | 0.0016 | -0.0013 | 941.0100 | -0.0023 2.0591 481.7700
83.0000 | 79.4410 | 0.0017 | -0.0013 | 941.0200 0.0023 2.1120 552.0100
84.0000 | 80.4410 | 0.0017 | -0.0014 | 941.0300 | -0.0022 2.1655 633.1700
85.0000 | 81.4410 | 0.0018 | -0.0014 | 941.0500 0.0022 2.2197 725.0500
86.0000 | 82.4410 | 0.0019 | -0.0015 | 941.0600 | -0.0021 2.2745 829.4300
87.0000 | 83.4410 | 0.0019 | -0.0016 | 941.0700 0.0021 2.3300 946.7300
88.0000 | 84.4410 | 0.0020 | -0.0016 | 941.0800 | -0.0021 2.3862 1078.9000
89.0000 | 85.4410 | 0.0021 | -0.0017 | 941.0900 0.0020 2.4431 1227.6000
90.0000 | 86.4410 | 0.0021 | -0.0017 | 941.1000 | -0.0020 2.5006 1394.7000

Table A.11: Van der Waals interaction coefficients C(GHz - um®) and radiative character-
istics of |6Ps2) — |nSyy2) for n € {61 —90}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eaqy) and the transition frequency (Hz) for
the transition |6P5/2) — [n.571/2).
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n n* 7(s) | T (s) | f(THz) | (J'|le?||]) | rr. (um) | Cs(GHz - um®)

91.0000 | 87.4410 | 0.0022 | -0.0018 | 941.1100 0.0019 2.5588 1581.7000

92.0000 | 88.4410 | 0.0023 | -0.0019 | 941.1200 | -0.0019 2.6177 1791.9000

93.0000 | 89.4410 | 0.0024 | -0.0020 | 941.1300 0.0019 2.6772 2027.1000

94.0000 | 90.4410 | 0.0024 | -0.0020 | 941.1400 | -0.0019 2.7374 2290.0000

95.0000 | 91.4410 | 0.0025 | -0.0021 | 941.1500 0.0018 2.7983 2583.4000

96.0000 | 92.4410 | 0.0026 | -0.0022 | 941.1600 | -0.0018 2.8598 2910.7000

97.0000 | 93.4410 | 0.0027 | -0.0022 | 941.1700 0.0018 2.9220 3275.9000

98.0000 | 94.4410 | 0.0028 | -0.0023 | 941.1700 | -0.0017 2.9849 3681.7000

99.0000 | 95.4410 | 0.0029 | -0.0024 | 941.1800 0.0017 3.0485 4132.7000

100.0000 | 96.4410 | 0.0030 | -0.0025 | 941.1900 | -0.0017 3.1127 4633.5000

Table A.12: Van der Waals interaction coefficients Cg(GHz - um®) and radiative character-
istics of |6P3/2) — [nS1/2) for n € {91 — 100}. (n*) n is the (effective) principal quantum
number, 7 (73) is the (blackbody-limited) radiative lifetime (s), r, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6P3/2> — ‘TLSUQ)
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n n* 7(s) | 7w (8) | f(THz) | (J'|ler||]) | rr (um) | C¢(GHz - um®)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 325.4700 | -2.1152 0.0000 0.0000
7.0000 | 4.5253 | 0.0000 | -0.0000 | 429.1700 0.9939 0.0063 0.0000
8.0000 | 5.5248 | 0.0000 | -0.0000 | 482.0300 | -0.6186 0.0097 0.0000
9.0000 | 6.5246 | 0.0000 | -0.0000 | 512.5400 0.4382 0.0137 0.0000
10.0000 | 7.5245 | 0.0000 | -0.0000 | 531.7100 | -0.3339 0.0184 0.0000
11.0000 | 8.5245 | 0.0000 | -0.0000 | 544.5400 0.2666 0.0238 0.0000
12.0000 | 9.5245 | 0.0000 | -0.0000 | 553.5500 | -0.2199 0.0298 0.0000
13.0000 | 10.5240 | 0.0000 | -0.0000 | 560.1200 0.1858 0.0365 0.0000
14.0000 | 11.5240 | 0.0000 | -0.0000 | 565.0500 | -0.1598 0.0439 0.0000
15.0000 | 12.5250 | 0.0000 | -0.0000 | 568.8400 0.1396 0.0519 0.0000
16.0000 | 13.5250 | 0.0000 | -0.0000 | 571.8300 | -0.1233 0.0607 0.0000
17.0000 | 14.5250 | 0.0000 | -0.0000 | 574.2200 0.1101 0.0701 -0.0000
18.0000 | 15.5250 | 0.0000 | -0.0000 | 576.1700 | -0.0991 0.0801 0.0000
19.0000 | 16.5250 | 0.0000 | -0.0000 | 577.7700 0.0898 0.0908 -0.0000
20.0000 | 17.5250 | 0.0000 | -0.0000 | 579.1000 | -0.0819 0.1022 0.0000
21.0000 | 18.5250 | 0.0000 | -0.0000 | 580.2300 0.0751 0.1143 0.0000
22.0000 | 19.5250 | 0.0000 | -0.0000 | 581.1900 | -0.0693 0.1270 0.0000
23.0000 | 20.5250 | 0.0000 | -0.0000 | 582.0100 0.0641 0.1404 0.0000
24.0000 | 21.5250 | 0.0000 | -0.0000 | 582.7200 | -0.0596 0.1545 0.0000
25.0000 | 22.5250 | 0.0000 | -0.0000 | 583.3300 0.0556 0.1693 0.0000
26.0000 | 23.5250 | 0.0000 | -0.0000 | 583.8700 | -0.0520 0.1847 0.0000
27.0000 | 24.5250 | 0.0000 | -0.0000 | 584.3500 0.0488 0.2007 0.0000
28.0000 | 25.5250 | 0.0000 | -0.0000 | 584.7700 | -0.0459 0.2175 0.0000
29.0000 | 26.5250 | 0.0000 | -0.0000 | 585.1400 0.0433 0.2349 0.0000
30.0000 | 27.5250 | 0.0000 | -0.0000 | 585.4700 | -0.0409 0.2530 0.0000

Table A.13: Van der Waals interaction coefficients Cg(GHz - um®) and radiative character-
istics of |6P5/2) — |nDs3js) for n € {6 — 30}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6P3/2> — \nD3/2>
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
31.0000 | 27.4410 | 0.0001 | -0.0000 | 937.1700 0.0113 0.2519 0.0001
32.0000 | 28.4410 | 0.0001 | -0.0000 | 937.4800 | -0.0107 0.2706 0.0001
33.0000 | 29.4410 | 0.0001 | -0.0000 | 937.7500 0.0101 0.2899 0.0001
34.0000 | 30.4410 | 0.0001 | -0.0001 | 937.9900 | -0.0096 0.3100 0.0001
35.0000 | 31.4410 | 0.0001 | -0.0001 | 938.2100 0.0092 0.3307 0.0002
36.0000 | 32.4410 | 0.0001 | -0.0001 | 938.4200 | -0.0087 0.3521 0.0003
37.0000 | 33.4410 | 0.0001 | -0.0001 | 938.6000 0.0083 0.3741 0.0004
38.0000 | 34.4410 | 0.0001 | -0.0001 | 938.7700 | -0.0080 0.3968 0.0005
39.0000 | 35.4410 | 0.0001 | -0.0001 | 938.9200 0.0076 0.4202 0.0037
40.0000 | 36.4410 | 0.0002 | -0.0001 | 939.0600 | -0.0073 0.4443 0.0496
41.0000 | 37.4410 | 0.0002 | -0.0001 | 939.2000 0.0070 0.4690 0.1724
42.0000 | 38.4410 | 0.0002 | -0.0001 | 939.3200 | -0.0068 0.4944 0.2303
43.0000 | 39.4410 | 0.0002 | -0.0001 | 939.4300 0.0065 0.5205 0.3053
44.0000 | 40.4410 | 0.0002 | -0.0001 | 939.5300 | -0.0063 0.5472 0.4019
45.0000 | 41.4410 | 0.0002 | -0.0002 | 939.6300 0.0060 0.5746 0.5256
46.0000 | 42.4410 | 0.0003 | -0.0002 | 939.7200 | -0.0058 0.6027 0.6829
47.0000 | 43.4410 | 0.0003 | -0.0002 | 939.8000 0.0056 0.6314 0.8820
48.0000 | 44.4410 | 0.0003 | -0.0002 | 939.8800 | -0.0054 0.6608 1.1324
49.0000 | 45.4410 | 0.0003 | -0.0002 | 939.9500 0.0052 0.6909 1.4460
50.0000 | 46.4410 | 0.0003 | -0.0002 | 940.0200 | -0.0051 0.7217 1.8365
51.0000 | 47.4410 | 0.0004 | -0.0002 | 940.0800 0.0049 0.7531 1.5964
52.0000 | 48.4410 | 0.0004 | -0.0003 | 940.1400 | -0.0048 0.7852 1.9372
53.0000 | 49.4410 | 0.0004 | -0.0003 | 940.2000 0.0046 0.8179 2.4236
54.0000 | 50.4410 | 0.0004 | -0.0003 | 940.2500 | -0.0045 0.8514 3.0185
55.0000 | 51.4410 | 0.0005 | -0.0003 | 940.3000 0.0043 0.8855 3.7450
56.0000 | 52.4410 | 0.0005 | -0.0003 | 940.3500 | -0.0042 0.9202 4.6251
57.0000 | 53.4410 | 0.0005 | -0.0004 | 940.3900 0.0041 0.9557 5.7300
58.0000 | 54.4410 | 0.0005 | -0.0004 | 940.4300 | -0.0040 0.9918 9.1623
59.0000 | 55.4410 | 0.0006 | -0.0004 | 940.4700 0.0039 1.0286 11.1860
60.0000 | 56.4410 | 0.0006 | -0.0004 | 940.5100 | -0.0038 1.0660 13.6090

Table A.14: Van der Waals interaction coefficients C(GHz - um?®) and radiative character-
istics of |6P5/2) — [nDsjs) for n € {31 —60}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eay) and the transition frequency (Hz) for
the transition |6Ps/2) — [nD3/2).
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n n* 7(s) | 7w () | f (THz) | (J'||e?||]) | rr (um) | Cse(GHz - um®)
61.0000 | 57.4410 | 0.0006 | -0.0005 | 940.5500 0.0037 1.1041 16.4990
62.0000 | 58.4410 | 0.0007 | -0.0005 | 940.5800 | -0.0036 1.1429 19.9370
63.0000 | 59.4410 | 0.0007 | -0.0005 | 940.6100 0.0035 1.1824 24.0130
64.0000 | 60.4410 | 0.0007 | -0.0006 | 940.6400 | -0.0034 1.2225 28.0430
65.0000 | 61.4410 | 0.0008 | -0.0006 | 940.6700 0.0033 1.2633 33.0320
66.0000 | 62.4410 | 0.0008 | -0.0006 | 940.7000 | -0.0032 1.3047 39.4120
67.0000 | 63.4410 | 0.0008 | -0.0006 | 940.7200 0.0032 1.3469 46.8580
68.0000 | 64.4410 | 0.0009 | -0.0007 | 940.7500 | -0.0031 1.3897 54.6840
69.0000 | 65.4410 | 0.0009 | -0.0007 | 940.7700 0.0030 1.4331 66.1710
70.0000 | 66.4410 | 0.0010 | -0.0007 | 940.8000 | -0.0029 1.4773 77.9960
71.0000 | 67.4410 | 0.0010 | -0.0008 | 940.8200 0.0029 1.5221 92.1840
72.0000 | 68.4410 | 0.0011 | -0.0008 | 940.8400 | -0.0028 1.5676 109.3700
73.0000 | 69.4410 | 0.0011 | -0.0009 | 940.8600 0.0028 1.6137 127.7400
74.0000 | 70.4410 | 0.0012 | -0.0009 | 940.8800 | -0.0027 1.6605 149.3500
75.0000 | 71.4410 | 0.0012 | -0.0009 | 940.9000 0.0026 1.7080 174.1900
76.0000 | 72.4410 | 0.0013 | -0.0010 | 940.9200 | -0.0026 1.7562 201.0700
77.0000 | 73.4410 | 0.0013 | -0.0010 | 940.9300 0.0025 1.8050 233.0900
78.0000 | 74.4410 | 0.0014 | -0.0011 | 940.9500 | -0.0025 1.8545 270.9000
79.0000 | 75.4410 | 0.0014 | -0.0011 | 940.9600 0.0024 1.9046 314.1600
80.0000 | 76.4410 | 0.0015 | -0.0012 | 940.9800 | -0.0024 1.9555 362.9500
81.0000 | 77.4410 | 0.0015 | -0.0012 | 940.9900 0.0023 2.0070 418.5400
82.0000 | 78.4410 | 0.0016 | -0.0013 | 941.0100 | -0.0023 2.0591 481.7700
83.0000 | 79.4410 | 0.0017 | -0.0013 | 941.0200 0.0023 2.1120 552.0100
84.0000 | 80.4410 | 0.0017 | -0.0014 | 941.0300 | -0.0022 2.1655 633.1700
85.0000 | 81.4410 | 0.0018 | -0.0014 | 941.0500 0.0022 2.2197 725.0500
86.0000 | 82.4410 | 0.0019 | -0.0015 | 941.0600 | -0.0021 2.2745 829.4300
87.0000 | 83.4410 | 0.0019 | -0.0016 | 941.0700 0.0021 2.3300 946.7300
88.0000 | 84.4410 | 0.0020 | -0.0016 | 941.0800 | -0.0021 2.3862 1078.9000
89.0000 | 85.4410 | 0.0021 | -0.0017 | 941.0900 0.0020 2.4431 1227.6000
90.0000 | 86.4410 | 0.0021 | -0.0017 | 941.1000 | -0.0020 2.5006 1394.7000

Table A.15: Van der Waals interaction coefficients C(GHz - um®) and radiative character-
istics of |6P5/2) — [nDsjs) for n € {61 —90}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eay) and the transition frequency (Hz) for
the transition |6Ps/2) — [nD3/2).
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n n* 7(s) | T (s) | f(THz) | (J'|le?||]) | rr. (um) | Cs(GHz - um®)

91.0000 | 87.4410 | 0.0022 | -0.0018 | 941.1100 0.0019 2.5588 1581.7000

92.0000 | 88.4410 | 0.0023 | -0.0019 | 941.1200 | -0.0019 2.6177 1791.9000

93.0000 | 89.4410 | 0.0024 | -0.0020 | 941.1300 0.0019 2.6772 2027.1000

94.0000 | 90.4410 | 0.0024 | -0.0020 | 941.1400 | -0.0019 2.7374 2290.0000

95.0000 | 91.4410 | 0.0025 | -0.0021 | 941.1500 0.0018 2.7983 2583.4000

96.0000 | 92.4410 | 0.0026 | -0.0022 | 941.1600 | -0.0018 2.8598 2910.7000

97.0000 | 93.4410 | 0.0027 | -0.0022 | 941.1700 0.0018 2.9220 3275.9000

98.0000 | 94.4410 | 0.0028 | -0.0023 | 941.1700 | -0.0017 2.9849 3681.7000

99.0000 | 95.4410 | 0.0029 | -0.0024 | 941.1800 0.0017 3.0485 4132.7000

100.0000 | 96.4410 | 0.0030 | -0.0025 | 941.1900 | -0.0017 3.1127 4633.5000

Table A.16: Van der Waals interaction coefficients Cg(GHz - um®) and radiative character-
istics of |6P52) — [nD3/9) for n € {91 —100}. (n*) n is the (effective) principal quantum
number, 7 (73) is the (blackbody-limited) radiative lifetime (s), r, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6P3/2> — ‘HD3/2>
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n n* 7(s) | 7w (8) | f(THz) | (J'|ler||]) | rr (um) | C¢(GHz - um®)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 326.7600 | -6.1860 0.0000 0.0000
7.0000 | 4.5342 | 0.0000 | -0.0000 | 429.8000 2.9403 0.0063 0.0000
8.0000 | 5.5337 | 0.0000 | -0.0000 | 482.3800 | -1.8381 0.0097 0.0000
9.0000 | 6.5336 | 0.0000 | -0.0000 | 512.7500 1.3050 0.0137 0.0000
10.0000 | 7.5336 | 0.0000 | -0.0000 | 531.8500 | -0.9958 0.0184 0.0000
11.0000 | 8.5336 | 0.0000 | -0.0000 | 544.6400 0.7958 0.0238 0.0000
12.0000 | 9.5336 | 0.0000 | -0.0000 | 553.6200 | -0.6568 0.0299 0.0000
13.0000 | 10.5340 | 0.0000 | -0.0000 | 560.1700 0.5551 0.0366 0.0000
14.0000 | 11.5340 | 0.0000 | -0.0000 | 565.0900 | -0.4778 0.0440 0.0000
15.0000 | 12.5340 | 0.0000 | -0.0000 | 568.8700 0.4173 0.0520 0.0000
16.0000 | 13.5340 | 0.0000 | -0.0000 | 571.8500 | -0.3689 0.0607 0.0000
17.0000 | 14.5340 | 0.0000 | -0.0000 | 574.2400 0.3293 0.0701 0.0000
18.0000 | 15.5340 | 0.0000 | -0.0000 | 576.1800 | -0.2964 0.0802 0.0000
19.0000 | 16.5340 | 0.0000 | -0.0000 | 577.7800 0.2687 0.0909 0.0000
20.0000 | 17.5340 | 0.0000 | -0.0000 | 579.1200 | -0.2452 0.1023 0.0000
21.0000 | 18.5340 | 0.0000 | -0.0000 | 580.2400 0.2249 0.1144 0.0000
22.0000 | 19.5340 | 0.0000 | -0.0000 | 581.1900 | -0.2073 0.1272 0.0000
23.0000 | 20.5340 | 0.0000 | -0.0000 | 582.0100 0.1919 0.1406 0.0000
24.0000 | 21.5340 | 0.0000 | -0.0000 | 582.7200 | -0.1784 0.1546 -0.0000
25.0000 | 22.5340 | 0.0000 | -0.0000 | 583.3400 0.1663 0.1694 0.0000
26.0000 | 23.5340 | 0.0000 | -0.0000 | 583.8800 | -0.1556 0.1848 0.0000
27.0000 | 24.5340 | 0.0000 | -0.0000 | 584.3500 0.1460 0.2009 0.0000
28.0000 | 25.5340 | 0.0000 | -0.0000 | 584.7700 | -0.1374 0.2177 0.0000
29.0000 | 26.5340 | 0.0000 | -0.0000 | 585.1400 0.1295 0.2351 0.0000
30.0000 | 27.5340 | 0.0000 | -0.0000 | 585.4800 | -0.1224 0.2532 0.0000

Table A.17: Van der Waals interaction coefficients Cg(GHz - pm®) and radiative character-
istics of |6P5/2) — |nDsjs) for n € {6 — 30}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6P3/2> — ‘TLD5/2>
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n n' | 7(s) | () | f(THz) | (Sller][]) | rp (pm) | Cs(GHz - pm?®)
31.0000 | 28.5340 | 0.0000 | -0.0000 | 585.7800 0.1160 0.2719 0.0000
32.0000 | 29.5340 | 0.0000 | -0.0000 | 586.0400 | -0.1100 0.2914 -0.0000
33.0000 | 30.5340 | 0.0000 | -0.0000 | 586.2900 0.1046 0.3115 -0.0000
34.0000 | 31.5340 | 0.0000 | -0.0000 | 586.5100 | -0.0996 0.3322 0.0000
35.0000 | 32.5340 | 0.0000 | -0.0000 | 586.7100 0.0950 0.3537 -0.0000
36.0000 | 33.5340 | 0.0000 | -0.0000 | 586.8900 | -0.0907 0.3758 -0.0000
37.0000 | 34.5340 | 0.0000 | -0.0000 | 587.0600 0.0868 0.3986 -0.0227
38.0000 | 35.5340 | 0.0000 | -0.0000 | 587.2100 | -0.0831 0.4220 -0.0313
39.0000 | 36.5340 | 0.0000 | -0.0000 | 587.3500 0.0797 0.4461 -0.0426
40.0000 | 37.5340 | 0.0000 | -0.0000 | 587.4800 | -0.0765 0.4709 -0.0577
41.0000 | 38.5340 | 0.0000 | -0.0000 | 587.6000 0.0735 0.4964 -0.0774
42.0000 | 39.5340 | 0.0000 | -0.0000 | 587.7100 | -0.0707 0.5225 -0.1030
43.0000 | 40.5340 | 0.0000 | -0.0000 | 587.8100 0.0681 0.5493 -0.1362
44.0000 | 41.5340 | 0.0000 | -0.0000 | 587.9100 | -0.0656 0.5768 -0.1788
45.0000 | 42.5340 | 0.0001 | -0.0000 | 588.0000 0.0633 0.6049 -0.2332
46.0000 | 43.5340 | 0.0001 | -0.0000 | 588.0800 | -0.0611 0.6337 -0.2697
47.0000 | 44.5340 | 0.0001 | -0.0000 | 588.1600 0.0591 0.6632 0.3381
48.0000 | 45.5340 | 0.0001 | -0.0000 | 588.2300 | -0.0571 0.6934 0.4289
49.0000 | 46.5340 | 0.0001 | -0.0000 | 588.3000 0.0553 0.7242 0.5407
50.0000 | 47.5340 | 0.0001 | -0.0000 | 588.3600 | -0.0536 0.7556 0.6783
51.0000 | 48.5340 | 0.0001 | -0.0000 | 588.4200 0.0519 0.7878 0.8472
52.0000 | 49.5340 | 0.0001 | -0.0000 | 588.4800 | -0.0503 0.8206 1.0534
53.0000 | 50.5340 | 0.0001 | -0.0000 | 588.5300 0.0488 0.8541 1.3041
54.0000 | 51.5340 | 0.0001 | -0.0000 | 588.5800 | -0.0474 0.8883 1.6080
55.0000 | 52.5340 | 0.0001 | -0.0000 | 588.6200 0.0461 0.9231 1.9748
56.0000 | 53.5340 | 0.0001 | -0.0000 | 588.6700 | -0.0448 0.9586 2.4160
57.0000 | 54.5340 | 0.0001 | -0.0000 | 588.7100 0.0435 0.9948 2.9451
58.0000 | 55.5340 | 0.0001 | -0.0000 | 588.7500 | -0.0424 1.0316 3.5773
59.0000 | 56.5340 | 0.0001 | -0.0000 | 588.7900 0.0412 1.0691 1.4366
60.0000 | 57.5340 | 0.0001 | -0.0000 | 588.8200 | -0.0402 1.1073 1.6034

Table A.18: Van der Waals interaction coefficients C(GHz - um®) and radiative character-
istics of |6P5/2) — [nDs/s) for n € {31 —60}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eay) and the transition frequency (Hz) for
the transition |6Ps/2) — [nDs/2).
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n n' | 7(s) | () | f(THz) | (Sller]|]) | rp (pm) | Cs(GHz - pm?®)
61.0000 | 58.5340 | 0.0001 | -0.0001 | 588.8600 0.0391 1.1461 1.9002
62.0000 | 59.5340 | 0.0001 | -0.0001 | 588.8900 | -0.0382 1.1856 2.2454
63.0000 | 60.5340 | 0.0001 | -0.0001 | 588.9200 0.0372 1.2258 2.6635
64.0000 | 61.5340 | 0.0002 | -0.0001 | 588.9500 | -0.0363 1.2667 5.0719
65.0000 | 62.5340 | 0.0002 | -0.0001 | 588.9800 0.0354 1.3082 5.9834
66.0000 | 63.5340 | 0.0002 | -0.0001 | 589.0000 | -0.0346 1.3504 7.0405
67.0000 | 64.5340 | 0.0002 | -0.0001 | 589.0300 0.0338 1.3933 8.2636
68.0000 | 65.5340 | 0.0002 | -0.0001 | 589.0500 | -0.0330 1.4368 9.6757
69.0000 | 66.5340 | 0.0002 | -0.0001 | 589.0700 0.0323 1.4810 11.3020
70.0000 | 67.5340 | 0.0002 | -0.0001 | 589.1000 | -0.0316 1.5259 11.5640
71.0000 | 68.5340 | 0.0002 | -0.0001 | 589.1200 0.0309 1.5714 13.4230
72.0000 | 69.5340 | 0.0002 | -0.0001 | 589.1400 | -0.0302 1.6176 15.6860
73.0000 | 70.5340 | 0.0002 | -0.0001 | 589.1600 0.0296 1.6645 20.8740
74.0000 | 71.5340 | 0.0002 | -0.0001 | 589.1700 | -0.0289 1.7120 24.1190
75.0000 | 72.5340 | 0.0003 | -0.0001 | 589.1900 0.0283 1.7603 27.8130
76.0000 | 73.5340 | 0.0003 | -0.0001 | 589.2100 | -0.0278 1.8091 32.0120
77.0000 | 74.5340 | 0.0003 | -0.0001 | 589.2200 0.0272 1.8587 36.7750
78.0000 | 75.5340 | 0.0003 | -0.0001 | 589.2400 | -0.0267 1.9089 42.1710
79.0000 | 76.5340 | 0.0003 | -0.0001 | 589.2500 0.0262 1.9598 47.6450
80.0000 | 77.5340 | 0.0003 | -0.0001 | 589.2700 | -0.0256 2.0114 54.2940
81.0000 | 78.5340 | 0.0003 | -0.0002 | 589.2800 0.0252 2.0636 62.1520
82.0000 | 79.5340 | 0.0003 | -0.0002 | 589.3000 | -0.0247 2.1165 70.7780
83.0000 | 80.5340 | 0.0003 | -0.0002 | 589.3100 0.0242 2.1701 80.4730
84.0000 | 81.5340 | 0.0004 | -0.0002 | 589.3200 | -0.0238 2.2243 91.3530
85.0000 | 82.5340 | 0.0004 | -0.0002 | 589.3300 0.0233 2.2792 103.5500
86.0000 | 83.5340 | 0.0004 | -0.0002 | 589.3500 | -0.0229 2.3348 117.1900
87.0000 | 84.5340 | 0.0004 | -0.0002 | 589.3600 0.0225 2.3911 133.6900
88.0000 | 85.5340 | 0.0004 | -0.0002 | 589.3700 | -0.0221 2.4480 150.8900
89.0000 | 86.5340 | 0.0004 | -0.0002 | 589.3800 0.0217 2.5056 170.0700
90.0000 | 87.5340 | 0.0004 | -0.0002 | 589.3900 | -0.0214 2.5638 191.4200

Table A.19: Van der Waals interaction coefficients C(GHz - um®) and radiative character-
istics of |6P5/2) — [nDs/s) for n € {61 —90}. (n*) n is the (effective) principal quantum
number, 7 (1) is the (blackbody-limited) radiative lifetime (s), rz, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eay) and the transition frequency (Hz) for
the transition |6P5/2) — [nDs/2).
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n n* 7(s) | T (s) | f(THz) | (J'|le?||]) | rr. (um) | Cs(GHz - um®)

91.0000 | 88.5340 | 0.0005 | -0.0002 | 589.4000 0.0210 2.6227 215.1700

92.0000 | 89.5340 | 0.0005 | -0.0002 | 589.4100 | -0.0207 2.6823 241.5700
93.0000 | 90.5340 | 0.0005 | -0.0002 | 589.4200 0.0203 2.7426 270.5800
94.0000 | 91.5340 | 0.0005 | -0.0003 | 589.4200 | -0.0200 2.8035 302.8100
95.0000 | 92.5340 | 0.0005 | -0.0003 | 589.4300 0.0197 2.8651 338.6600

96.0000 | 93.5340 | 0.0005 | -0.0003 | 589.4400 | -0.0193 2.9274 377.7900

97.0000 | 94.5340 | 0.0006 | -0.0003 | 589.4500 | 0.0190 2.9904 422.3900

98.0000 | 95.5340 | 0.0006 | -0.0003 | 589.4600 | -0.0187 3.0540 470.8100
99.0000 | 96.5340 | 0.0006 | -0.0003 | 589.4600 0.0185 3.1183 524.1600
100.0000 | 97.5340 | 0.0006 | -0.0003 | 589.4700 | -0.0182 3.1832 582.9300

Table A.20: Van der Waals interaction coefficients Cg(GHz - um®) and radiative character-
istics of |6P5/2) — [nD5/9) for n € {91 —100}. (n*) n is the (effective) principal quantum
number, 7 (73) is the (blackbody-limited) radiative lifetime (s), r, is the LeRoy’s radius,
(J'||er||J) and f is the reduced matrix element (eag) and the transition frequency (Hz) for
the transition |6Ps2) — [nDs)2).

234



	List of Tables
	List of Figures
	Introduction
	Towards quantum many-body network
	Cavity QED in the optical domain: From Jaynes-Cummings models to Tavis-Cummings Hamiltonians
	Strong coupling parameter and breakdown of statistical mechanics
	Jaynes-Cummings and Dicke models

	A new regime for many-body QED with Rydberg-dressed cavity polaritons
	My history in the UQML and notable omitted work
	Timeline
	Contribution statements
	Summary of remaining chapters: Addressing the experimental challenges towards many-body QED


	Rydberg-dressed cavity polaritons
	Coupling strongly interacting quantum matter to optical cavities
	Rydberg states
	Quantum defect theory
	Rydberg-Rydberg interaction

	Rydberg quantum-dot media coupled to an optical cavity: Revival of the Jaynes-Cummings physics!
	Physical motivation
	Atom-field Hamiltonian in the regime of strong blockade
	Transition of the low-energy excitation spectrum from the Tavis-Cummings model to the Jaynes-Cummings model
	Physical implementation and the ultrastrong coupling regime

	Quantum spin ice models
	What is a spin ice?
	Quantum square ice model

	Physical implementation with Rydberg-dressed cavity polaritons
	Local conservation laws with Rydberg-dressed system-reservoir engineering
	Cavity-mediated interactions
	Experimental parameters


	UHV chamber system
	Vacuum chamber design rules
	Vacuum-compatible materials
	Vacuum conductance
	Vacuum pumps
	Atomic source
	Differential pumping tube
	UHV viewports

	UHV baking procedures and preparation
	UHV cleaning procedure
	Surface treatment
	Air baking and vacuum passivation
	UHV pre-baking & final UHV baking

	Electromagnets
	Science MOT coil geometry
	Heat transfer
	Coil winding procedures

	XHV-UHV chamber system
	Source chamber
	Science chamber


	Laser and optical systems 
	Scientific objective
	Reference clocks
	Experimental sequence
	Science lasers

	High-performance external cavity diode laser systems
	Littrow-based grating ECDL
	Cat-eyed interference filter laser

	Optical Fabry-Perot cavities
	Thermally-compensated FP cavity
	High-finesse ULE FP cavity

	Efficient SHG module
	Theory for single-pass SHG conversion
	Critical phase matching
	Non-critical phase matching
	Quasi phase matching
	Numerical computation of single-pass conversion efficiency
	Bow-tie ring resonator


	Open-system treatment of internal and external atomic DOFs
	Open system treatment
	Quantum motion
	Classical motion

	A long distance atom transport with push beam technique
	Analytical estimation of the push-beam transport efficiency
	Quantum Monte-Carlo wavefunction method with classical motion

	Atom transport with a moving optical dipole trap
	Electrically tunable lens
	Quantum Monte-Carlo wavefunction method with classical motion

	Non-degenerate Raman sideband cooling
	Conclusion

	Science cavity platform: Development of new generation of optical mirrors 
	Rydberg quantum-dot platform
	Cavity QED parameters
	Experimental station

	Many-body QED experimental platform
	Cavity QED parameters: Casimir modification
	High-finesse optical cavity
	Single-crystal Al2O3 platform and piezoelectric motion control
	Faraday shielding and external field control with 8-point electrodes
	Real-time manipulation with holographic projection of optical potential landscapes


	Conclusion 
	Rydberg quantum-dot
	Present work
	Future direction

	Many-body QED
	Present work
	Future direction


	Bibliography
	Atom-atom interaction coefficients and radiative characteristics of Rydberg states

