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Abstract

This thesis is concerned with the mechanism underlying the above bandgap illumination Dy-
namic Nuclear Polarization (DNP) of phosphorus donors in isotopically purified silicon-28.
Two proposed DNP models are introduced and compared. A series of NMR saturation exper-
iments are performed in which modified buildup dynamics are observed when the saturation
tone is applied at the bare phosphorus resonance. This effect is attributed to the phosphorus
donor being ionized via the Auger process resulting in dynamics which are modelled as a set
of coupled Bloch equations. The donor bound exciton capture and neutralization rates are
extracted, and a paramagnetic shift of the bare phosphorus resonance is observed. These
observed dynamics strongly imply the DNP mechanism is due to phononic modulation of the
donor electron spatial wavefunction inducing cross-relaxation between the hyperfine coupled
electron and nuclear spins.

The framework of Bayesian parameter estimation and its Sequential Monte Carlo(SMC)
numerical implementation for continuous outcome probability distributions are introduced.
Next, an introduction to Bayesian experiment design and its incorporation within the SMC
framework is provided. A discussion of the computational challenges for continuous out-
come distributions is given. To resolve these difficulties Monte Carlo Maximum Importance
Sampling(MIS) numerical methods are developed which allow the evaluation of Bayesian
experimental design heuristics such as the Bayes risk. These design strategies are applied
to the problem of T1 relaxation rate estimation with inversion recovery experiments. Ex-
periments are optimized both respect to per-experiment performance and total experiment
time. These techniques are shown to have substantial improvements over baseline methods.
Furthermore, they compare favourably with previous frequentist experimental designs for IR
experiments and demonstrate significant improvements.
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Chapter 1

Introduction

Over the last six decades silicon has been the primary enabler of the unprecedented techno-
logical revolution that has transformed the world in a short period of time. Silicon based
devices have changed the way, directly or indirectly, that nearly every activity takes place.
Examples include communication, electricity generation, and computation [10, 32, 7].

Much of the utility in silicon comes from its position in group 14 of the periodic table.
Pure crystal silicon is an intrinsic semiconductor, the presence of impurity donors from neigh-
bouring periodic groups will modify the conductive properties of the crystal [95]. Doping
has enabled the manufacturing of sophisticated and compact nonlinear electrical elements
such as the diode, rectifier, and transistor [7]. Continual process refinement has reduced
the CMOS element densities at an astonishing rate, approximately following Moore’s law
[60]. The current state of the art node size is approaching 10nm, with further improvements
expected in the near future [76]. However, it is expected that Moore’s law cannot continue
indefinitely, as device dimensions start approaching the size of the silicon lattice constant.
On these length scales, they will no longer behave as semi-classical semiconductors, and
quantum mechanical effects will hinder device operation [69]. It has been predicted that
the rules of quantum mechanics may be harnessed to solve specific problems such as prime-
factorization exponentially faster than within the classical computing paradigm [73], which
has spurred a dramatic increase in research towards the implementation and applications of
quantum computing. It was quickly recognized that if quantum computing could be inte-
grated into a CMOS architecture, the silicon industry’s fabrication techniques could be used
to accelerate the development of large-scale quantum computers [84]. Silicon has previously
proven itself to be the element that keeps giving, and naturally, it has become a significant
avenue in which quantum devices may be pursued. This thesis focuses on the substitutional
phosphorus defect in silicon, which is a promising qubit system for sensing and computing.
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1.1 Donors in Silicon

Donors in silicon are dopant atoms with five or more valence electrons and are substitutional
defects in the silicon lattice [95]. As silicon has four valence electrons, donors with five or more
valence electrons will donate the extra electrons to the conduction band. It is also possible
to dope silicon with atoms with fewer than four valence electrons; such defects will leave a
hole in the valence band. If there are an excess of conduction(valence) band electrons(holes)
the silicon will behave as an N(P)-type semiconductor [95]. While the properties above are
seen at room temperature, where thermal energies are large compared to the binding energy
of the donor potential when the temperature is lowered the donor electrons(holes) will no
longer have sufficient thermal energy to escape the attractive potentials of defect nuclei. The
electrons will become spatially localized around the defect nuclei inside the silicon lattice
and form neutral donor systems [49].

If the defect nuclei have nonzero spin the bound electrons(holes) will couple to the nuclei
via the hyperfine interaction [75]. A splitting of the resonance will be seen when electrons
localize around the spin. Such systems are of interest in electron spin resonance (ESR) as they
provide a localized donor electron, which also interacts with nearby nuclei within the lattice.
Examples of neutral donors in silicon that have been resolved include phosphorus, arsenic,
antimony and bismuth [22]. These donor nuclei have been observed to have relatively long
dephasing times, on the order of several milliseconds. It has been demonstrated that these
coherence times may be increased dramatically with a combination of isotopic purification,
refocusing techniques and ionization of the nucleus [68].

Due to the localization of the electron-nuclear system, its long coherence times, and
controllability the Si:P system was one of the first candidates proposed for the construction
of a scalable quantum computer [45]. Much work has been devoted towards making this a
reality with precise single donor implantation [28] and control [85] having been demonstrated.
A vital component of any quantum computer is the ability to reliably and rapidly initialize the
system in a pure state. Which requires that the system be thermalized at mK temperatures
in a moderately high magnetic field such that it approaches a pure nuclear state as its
equilibrium distribution[75]. The characteristic time over which this process occurs is the
spin-lattice relaxation time, T1 and can be on the order of hours at low temperatures [33].

A possible solution to circumvent the long relaxation times for low-temperature solid-
state nuclei is to use DNP to pump the system into its ground state [75]. A variety of DNP
methods have been demonstrated for the Si:P system including resonant bound exciton
transitions and a microwave (MW) induced Overhauser effect [94, 43]. Perhaps the least
understood hyperpolarization mechanism is due to the illumination of the silicon crystal
by above band-gap light [58]. The polarization technique is easy to use and consists of
shining above-bandgap light directly onto a doped silicon crystal at low temperatures, and
high magnetic field. The mechanism behind the above band-gap polarization is not well
understood. There have been multiple conflicting proposals in the literature such as phonon
induced oscillations of the electron-nuclear hyperfine interaction[67, 58] and bound exciton
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angular momentum conservation via spin-orbit coupling [72]. A reliable understanding of
this mechanism might open the door to its use as an initialization technique in quantum
devices such as qubits, magnetometers, and gyroscopes.

1.2 Outline and Results

This thesis will focus on a series of NMR experiments performed on the Si:P system in iso-
topically purified silicon. These experiments were performed in collaboration with graduate
students Holger Haas and Rahul Deshpande.

Here the Si:P system is introduced and a brief introduction to the NMR theory required
for interpreting the results of this thesis. In chapter 2 the phononic cross-relaxation mech-
anism of Pines, Bardeen, and Slichter which is the critical component of McCamey’s above
bandgap phosphorus hyperpolarization process [58] is introduced. This mechanism and an
alternative spin exchange mechanism proposed by Sekiguchi et al., which is a consequence
of angular momentum conservation during the free exciton capture event [72] are compared
and contrasted. The bound exciton process and resultant Auger ionization of the Si:P donor
electron is introduced, and the detectable consequences of the hyperpolarization being a
result of angular momentum conservation are noted. In chapter 3 the experimental setup
and its capabilities are given, and a series of experiments and their accompanying results
are described in chapter 4. These provide the first direct observation of the auger ionization
process with NMR, the rates of ionization and recombination processes are extracted and
provide evidence supporting the phononic hyper-polarization model. Finally, in chapter 5
conclusions are given, and a discussion of future work is presented.

1.3 Description of the Si:P System

Due to the isolated nature of the Si:P system for the isotopically purified silicon sampled
studied which has a phosphorus concentration of 1.5 × 1015cm−3 and 99.9954% silicon-28
composition, the description of the system is relatively simple consisting of two coupled spin
1/2 particles. At high fields, the Hamiltonian is a sum of three terms: two Zeeman terms Ĥe

Z

and Ĥn
Z describing the donor electron and phosphorus nuclei, respectively, and an isotropic

hyperfine component ĤHF coupling the two spins

Ĥ = Ĥe
Z + Ĥn

Z + ĤHF . (1.1)

The Zeeman Hamiltonian term describes the coupling of spins’ magnetic moment to an
external magnetic field

Ĥ i
Z = −µ̂i ·B0, (1.2)

where µ̂i is the magnetic dipole moment of the respective spin and B0 is the externally
applied static magnetic field. The effect of the Zeeman component is to induce an energy
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splitting between the spin-up |↑〉 and spin-down |↓〉 eigenstates. The electron spin is rep-
resented with single-barred arrows |↑〉(|↓〉) and the nuclear spin with double-barred arrows
|⇑〉(|⇓〉). Product states may be conjugated into a single ket |↑〉 ⊗ |⇑〉 = |↑⇑〉. In practice it
is easier to work with the spin angular momentum operators which obey the relation

µi = γiŜ, (1.3)

where γi is the gyromagnetic ratio and describes the relationship between the spins magnetic
moment and angular momentum. For convenience all Hamiltonians will be written with
~ = 1. The applied quantizing static field B is assumed to be aligned along the z-axis giving
the Hamiltonian

Ĥ i
Z = −γiB0Ŝz. (1.4)

The Larmor frequency is defined as ωi = γiBz, this corresponds to the angular frequency
at which a spin vector placed in the transverse plane will circumnavigate the Bloch sphere.
This thesis will differentiate between electron and nuclear spins by using the Ŝ and Î an-
gular momentum operators, respectively. The gyromagnetic strengths for the electron and
phosphorus nuclei are γe/2π=-28.024 GHz/T and γn/2π=17.23 MHz/T, respectively [33].

The Si:P system approximately corresponds to that of a hydrogenic atom [95] with a
screened central potential. Consequently the donor electron spatial wavefunction is well
described by effective mass theory and is approximately an s-orbital state with a modulating
envelope composed of the six silicon Bloch function minima imposed by the crystalline C3v

symmetry [95]. The electron wavefunction’s ground state is nonzero at the phosphorus
nucleus due its s-character. The coupling between the electron and phosphorus spins consists
entirely of a Fermi contact interaction [75, 62]

Ĥhf =
8π

3
~γeγnŜ · Î|Ψ(0)|2, (1.5)

where |Ψ(0)|2 is the magnitude squared of the electron wavefunction at the location of the
phosphorus nucleus. Similar to the Zeeman terms, a frequency associated with the hyperfine
interaction strength may be defined

Ĥhf =
2π

~
AŜ · Î. (1.6)

where A = 8π
3
~γeγn|Ψ(0)|2. In the Si:P system A =117.54 MHz [33].

The full system Hamiltonian may be written as

Ĥ = −ωeŜz + ωnÎz − 2πAŜ · Î. (1.7)

The experiments described in this thesis were performed at a field of B0 =6.69 T. At this
field the Larmor frequencies of the donor electron and phosphorus nuclei are ωe/2π=187.5
GHz and ωn/2π=115.30 MHz, respectively. Due to the electron’s large Larmor frequency
the components of the hyperfine interaction ŜxÎx and Ŝy Îy, which do not commute with Ĥe

Z ,
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Temperature (K) e− Polarization 31P Polarization
4 79% 0.09%

1.25 99.8% 0.33%

Table 1.1: Electron and nuclear spin polarizations at experimental temperatures where the
hyperfine interaction has been accounted for.

will effectively be averaged to zero and have negligible effect on the system dynamics [75].
The system Hamiltonian may be written as

Ĥ = −γeBzŜz + γnBz Îz − 2πAŜz Îz. (1.8)

In high fields the eigenstates of the system are approximately described by the product
state basis of {|1〉 ≈ |↓⇑〉 , |2〉 = |↓⇓〉 , |3〉 ≈ |↑⇑〉 , |4〉 = |↑⇓〉}. The effect of the hyperfine
interaction is to modify the nuclear Zeeman splitting between the lower and upper electron
manifolds, which may be seen by rewriting the Hamiltonian in the form

Ĥ = −ωeŜz + (ωn − πA) |↑〉 〈↑| ⊗ Îz + (ωn + πA) |↓〉 〈↓| ⊗ Îz. (1.9)

From (1.9) one can see that in the spin down manifold where at low temperatures the vast
majority of electron polarization resides, the nuclear spin energy levels splitting acquires
an additional amount of A/2. Define ωn+ = ωn + πA/2, and ωn− = ωn − πA/2 to denote
the spin down, and spin up electron manifold hyperfine shifted nuclear Larmor frequencies.
Rewriting the system Hamiltonian in this parametrization

Ĥ = −ωeŜz − ωn− |⇑〉 〈⇑| ⊗ Îz − ωn+ |⇓〉 〈⇓| ⊗ Îz. (1.10)

The thermal equilibrium system state is given by the Boltzmann distribution [75]

ρ̂eq = e
− Ĥ
kbT /Z, (1.11)

where kb is Boltzmann’s constant, T is the temperature of the system, and Z = Tr[e
− Ĥ
kbT ]

is the partition function. The polarizations at a field of B0 =6.71 T have been calculated in
table 1.1. As the electron is nearly fully polarized at 1.25 K, experiments are performed in the
|⇓〉 manifold in order to maximize the observed signal. It is important to note that even at
1.25 K the nuclear polarization is practically negligible. As experiments are performed with
a low 31P concentration silicon sample nuclear thermal populations would not be observable.
As a result DNP mechanisms are absolutely critical to performing inductively detected NMR
with 31P defect nuclei in silicon. The T1 of the 31P nuclei has previously been observed to
be on the order of minutes at 4.2 K extending to many hours at 1.7 K such that it has not
been possible to observe magnetization decay with the experimental setup [33].
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1.4 Dynamics

The unitary dynamics of the Si:P system evolution may be determined from the Liouville-von
Neumann equation [75]

dρ̂(t)

dt
= −i[H, ρ̂(t)]. (1.12)

Note that any identity component in ρ̂ will commute with Ĥ at all times and they need
not be considered. Since the 31P nuclei exist within a silicon crystal lattice, a variety of
environmentally induced non-unitary dynamics are introduced, which may be included into
the Lindblad master equation provided they are Markovian [53].

dρ̂(t)

dt
= L̂ ρ̂(t), (1.13)

here L is the Lindbladian and may be separated into its unitary and dissipative dynamics

L ρ̂ = −i
[
Ĥ, ρ̂

]
+ D̂(ρ̂). (1.14)

The dissipator D̂(ρ̂) has the form

D̂(ρ̂) =
1

2

d2−1∑
l=0

αl

(
Âlρ̂Â

†
l +
{
Â†l Âl, ρ̂

})
. (1.15)

The Si:P system experiences two kinds of dissipative dynamics. The first being thermal
relaxation towards the equilibrium state, which is represented as an T1 process with a rate
Γ1 = 1/T1 and a dissipator

Â0 = (1− p↑)
√

Γ1σ̂− + p↑
√

Γ1σ̂+. (1.16)

Where p↑ is the thermal occupation probability of the excited state. The T1 process physi-
cally corresponds to the system exchanging energy with a connected environment in a non-
reversible manner. In the Si:P system T1 relaxation time (T1) relaxation primarily affects
the donor electron. The primary relaxation mechanism for the 31P nuclei is due to electron-
nuclear cross relaxation and at low temperatures is on the order of hours [74, 33]. As a
consequence of the 31P relaxation occurring over durations much greater than experiment
lengths it may be neglected.

The second dissipative mechanism that plays a role in the dynamics is pure dephasing
or phase damping. Phase damping may be associated solely with a decay of the off-diagonal
density matrix terms, as opposed to amplitude damping, which may also affect diagonal
terms. The phase damping dissipator has the form

Â1 =

√
Γ2

2
σ̂z. (1.17)
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It should be noted that amplitude damping will introduce an effective dephasing process
with a rate Γeq2 = Γ1/2. In the case where multiple phase damping processes are present,
they may be combined into an effective dephasing time constant

T
(eff)
2 =

(
n∑
i=0

Γ
(i)
2

)−1

. (1.18)

The dephasing rate T2 is a measure for the lifetime of superposition states of energy eigen-
states, and is the primary parameter of interest for both error rates in quantum computing
[63] and sensitivities of quantum sensors [14].

For Si:P a major source of donor electron dephasing has been shown to be from nearby
donor electrons and nearby silicon-29 nuclei. The impact of donor electron dephasing may be
easily controlled by reducing the doping concentrations. The downside is that this will also
reduce the number of nuclei available for detection, resulting in the need for DNP techniques
to enhance the net nuclear magnetization [5]. An additional source of line broadening for
the phosphorus nuclei is due to lattice strain resulting from local silicon isotopic mismatch.
Reducing concentrations of silicon-29 (29Si) from its 4.7% natural abundance to ultra-high
purity levels of (99.99% > silicon-28 (28Si))[13] provides an immense reduction in dephasing
and has opened a pathway towards ultra-long lifetime Si:P devices. Coherence times may
be further increased by utilizing decoupling sequences to remove the effect of the remaining
29Si [68].

In the regime of low doping concentrations and isotopically purified samples, the re-
maining principal dephasing mechanism for the 31P nucleus is the induced T2 caused by its
donor-bound electron. The effect will occur due to an accumulation of random phase by the
31P nucleus as the electron rapidly fluctuates between its spin manifolds as a consequence
of its short T1e [33]. The electron induced T2 may be removed entirely by ionizing the 31P
and ejecting the donor electron into the conduction band. Extraordinary coherence times of
several hours have been measured for ionized 31P in conjunction with decoupling sequences
at low temperatures, and up to 39 minutes at room temperature [68]. The ionized state of
the Si:P system in isotopically purified lowly doped silicon crystals is noise free to such a
degree that it is often colloquially described as existing in a semiconductor vacuum.

1.5 Resonant Control

Nuclei are controlled with the application of resonant radio frequency (RF) pulses applied
perpendicular to the static field direction [75] with Hamiltonian of the form

Ĥrf = −γnBx(t) cos(ωrf t+ φ)Îx = −Ω(t) cos(ωrf t+ φ)Îx, (1.19)

where Bx(t) is the amplitude modulation function (dBx(t)/dt � ωn) of the RF field and
Ω(t) = γnBx(t). Taking the static Hamiltonian (1.1) and entering a doubly rotating frame
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Hrot = −ωeŜz − ωrf Îz, (1.20)

and applying the rotating wave approximation (RWA) to discard the double frequency terms
[75] arriving at

Ĥ(rf) = −δωn− |⇑〉 〈⇑| ⊗ Ŝz − δωn+ |⇓〉 〈⇓| ⊗ Ŝz + Ω(t)(cos(φ)Îx + sin(φ)Îy), (1.21)

where δωn± = ωn± − ωrf . Note that the static field dynamics of the electron are no longer
present in this frame. There is no coupling matrix element between the electron spin
up(down) manifolds. The action of the applied RF field on the 31P nuclei in the rotat-
ing frame is to cause the nuclear spin to precess around a new effective field with Larmor

frequency ω
(±)
eff =

√
δω2

n± + Ω2, and tipping angle θ = atan
(

Ω
δωn±

)
. If the pulse is applied

directly on resonance with the electron spin down nuclear transition (δωn+ = 0) the 31P
spin will undergo Rabi oscillations along the axis defined by the control field phase. In the
opposing electron spin manifold the effect will be negligible provided Ω

δωn−
� 0. The addition

of the control Hamiltonian (1.19) introduces the ability to coherently drive the 31P nuclear
spin to any position on the Bloch sphere.

1.6 Signal Detection

31P spins in silicon have been previously detected in a variety of manners, with the vast
majority using the bound donor electron to indirectly detect the 31P polarization at the
surface, and in the bulk. Initial observations in the bulk were performed using continuous
wave (CW) ESR measurements [22]. More recently electrically detected magnetic resonance
(EDMR)[61] and auger electron detected magnetic resonance (AEDMR) [94] techniques have
been used to readout the spin state near the crystal surface.

Direct inductive detection of the 31P nuclei is performed which allows the spin state in
bulk to be observed. Inductive detection has the additional benefit that the 31P spin may
still be observed when the nucleus is ionized; ESR, EDMR, and AEDMR require the donor
electron be bound to the 31P nucleus in order to read out the nuclear spin state.

Precessing spins in the transverse plane induces an electromotive force (EMF) across
the NMR probe coil [40]. The induced EMF is observed by first mixing down the signal
with a reference frequency near the Larmor frequency of the sample, filtering the doubly
rotating terms, and then detecting the resulting signal in quadrature [29]. The observed
spin measurement operator is Î+ = Îx + iÎy. It should be noted that all measurements
performed in this work are ensemble, and not projective measurements, consequently all
measurements give expectation values.
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1.7 Bloch Equation Description

Provided there is no coherent exchange between the lower and upper electron manifolds the
31P system dynamics in the lower manifold may be traced over, allowing a simple description
of the Si:P system in terms of a single-spin Hamiltonian with an effective T ∗2 due to the elec-
tron. The dynamics in the rotating frame is described by athe Bloch equation representation
[75].

dmx(t)

dt
= +δωn+ my(t) + Ωmz(t)−

mx(t)

T2

, (1.22a)

dmy(t)

dt
= −δωn+ mx(t)−

my(t)

T2

, (1.22b)

dmz(t)

dt
= −Ω mx(t) +

(m(∞)−mz(t))

T1

. (1.22c)

Where mx, my and mz correspond to the expectation values of measurement operators Îx,

Îy and Îz respectively. The steady state polarization is determined by the parameter m(∞).
In ensemble systems these expectation values correspond to the total nuclear magnetizations
of the sample under study Mx, My and Mz. In practice, the T1 of the 31P nucleus at low
temperatures is effectively infinite with respect to experiment times and is neglected. The
DNP process may be modeled as an effective T1 process with time constant TDNP

1 .

1.8 Si:P Hyperfine Interaction

The hyperfine interaction between the phosphorus nucleus and the donor electron is domi-
nated by the Fermi contact interaction, [67] and its strength is proportional to electron and
nuclear wavefunction overlap

A ∝ |ψe(0)|2. (1.23)

When modelling the Si:P hyperfine interaction care must be taken to account for the silicon
lattice in which the system resides. The donor electron wavefunction may be modelled within
the framework of effective mass theory [48], in which the electron wavefunction is assumed
to be a linear combination of the silicon conduction band Bloch functions with an effective
mass due to the silicon band structure. Symmetry analysis of the system allows the existence
of A1 singlet, E doublet and T2 triplet wavefunction states. Only the A1 singlet state, which
is an equal superposition of the six band minima, has a nonzero wavefunction amplitude at
the position of the phosphorus nucleus, and consequently a nonzero Fermi contact hyperfine
interaction. Many experiments have confirmed this singlet state to be the ground state of
the orbital electron wavefunction [95].

Wilson and Ferher demonstrated that crystal strain will result in a quadratic reduction
in the hyperfine interaction strength when a uniaxial stress along the [100] crystal direction
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is applied [90]. Hasegawa used perturbation theory to calculate that under the valley re-
combination model (VRM) model the effect of crystal strain on the hyperfine interaction
strength is to shift it by

δA = −A
(

Ξu

3E12

)2(
3

2
(εxx − εyy)2 +

1

2
(εxx + εyy − 2εzz)

2

)
, (1.24)

where Ξu = 8.6 eV is the deformation of pure shears, E12 = 12.95 eV the energy separation
of the electron ground and excited states, {εii} the axial crystal strains and {εij} the shear
strains in the crystallographic coordinate system [37]. The reduced hyperfine interaction is
attributed to the mixing of the singlet ground state with the excited doublet state under
crystal strain. As the doublet component has no overlap with the nucleus it will have no
Fermi contact interaction. Furthermore, they demonstrated how a time dependent modu-
lation of strain (phonons) may lead to a flip-flop interaction between the electron and the
phosphorous spin degrees of freedom. Pines, Bardeen and Slichter showed how the flip-flop
interaction in conjunction with a rapid electron relaxation rate, non-thermal equilibrium
nuclear populations may be achieved [67].

Figure 1.1: Spatial donor electron wavefunction energy levels.
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1.9 Phononic Hyperpolarization Process

Phonon induced electron-nuclear cross relaxation of the Si:P system has long been considered
as a potential mechanism for achieving non-thermal nuclear polarizations outside of the tradi-
tional Overhauser effect [64]. The original proposal dates back to Pines, Bardeen and Slichter
[67] with further exploration by Nakayama [62] which suggested that an electron-nuclear

cross-relaxation mechanism T
(en)
x in conjunction with an electron relaxation mechanism T

(e)
1

will drive the nuclear polarization towards the steady state electron thermal polarization as
visualized in figure 1.2. Feher experimentally confirmed the ability to achieve such spin-spin

Figure 1.2: Nuclear non-thermal polarization is induced by the combination of an electron-
nuclear cross-relaxation process in combination with simultaneous electron relaxation.

cross relaxation with the injection of hot conduction electrons [23]. More recently McCamey
et. al attribute their observations of non-thermal nuclear polarizations, achieved with the
illumination of above bandgap light, to this mechanism [58]. An approximate semiclassical
treatment of this process is given in [39] which is followed closely, with a focus on providing
a clear exploration of the mechanism and therefore do not consider the full symmetries of
the crystal strain on the hyperfine interaction as described in section 1.8.

The process considered is the result of above bandgap photons being absorbed by the
silicon crystal, which generates free electron-hole pairs in the conduction and valence bands.
As silicon is an indirect bandgap material the absorption process will involve the emission
or absorption of a phonon(s) such that energy and crystal momentum is conserved [95]. The
electrons and holes will eventually recombine and give up their kinetic energy through a
series of cascading one-phonon scattering events with attractive lattice impurities generating
predominantly acoustic phonons at low temperatures [49]. The phonon bath corresponds
to a spectrum of periodic crystal strains which will modify the Si:P hyperfine coupling.
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Considering second order strain perturbations of the Si:P hyperfine interaction of the form

A→ A(1− νε2)Ŝ · Î, (1.25)

where ε =
n∑
i=1

√
Iεi cos(ωi + φi) is the resultant strain field at the site of the phosphorus donor,

I is the illumination intensity, εi the photon to phonon conversion ratio for a phonon mode ωi,
and φi the uniformly distributed random phase. The root dependence on intensity is a result
of the net strain being the sum of many individual phononic modes with uniform random
phase. Finally, ν is the strain-hyperfine dependent modulation strength. By writing the
interaction in this way, several assumptions are made including the adiabatic approximation,
that the motion of the electron wavefunction under the strain field is instantaneous [1]. Only
the secular portion of the hyperfine interaction equation (1.25) is considered which can be
written as

AŜz Îz +
IAν

4

 ∑
ωi+ωj=
ωe+ωn

+
∑

ωi−ωj=
ωe+ωn

 εiεj

(
ŜxÎx + Ŝy Îy

)
. (1.26)

Importantly, the second term in equation (1.26) is capable of transferring polarization be-
tween the electron and 31P nucleus. Note that although presented as a coherent process, in
reality this process will be averaged over the random photon absorption and electron-hole
recombination processes removing any phase coherence at given donor sites. The surviving
terms correspond to two phonon absorption and Raman scattering with the energy conserva-
tion conditions being ωi +ωj = ωe +ωn and ωi−ωj = ωe +ωn, respectively [62]. It is known
that modulation of the spin-orbit coupling at frequency ωi ≈ ωe is responsible for the electron
relaxation rate T

(e)
1 due to the electron g-factor’s linear dependence on crystal strain fields

[91]. Under these conditions the interaction with rapidly thermalized free carrier conduction
band electrons is likely to be a much stronger contributor to the electron thermalization rate
[24]. The net result is an electron-nuclear cross-relaxation rate T

(en)
x in conjunction with the

electron relaxation rate T
(e)
1 . For the Si:P system T

(e)
1 � T

(n)
1 and consequently the nuclear

relaxation rate is disregarded. Assuming effective bath temperatures Θ1 and Θx for T
(e)
1 and

T
(en)
x respectively, the steady state electron and nuclear polarizations are ρe = (2q−1)Ŝz and

ρn = p−q
p(2q−1)−q Îz, where p =

(
1 + e~(ωe+ωn)/(kBΘx)

)−1
and q =

(
1 + e~(ωe/(kBΘx)

)−1
are thermal

occupation probabilities for the T
(e)
1 and T

(en)
x process Hamiltonians. If Θ = Θx = Θ1 the

expected thermal polarization of the separable electron-nuclear system of tanh[~ωe/(2kBΘ)]
and tanh[~ωn/(2kBΘ)] is obtained. However, when Θx 6= Θ1 it is possible to achieve nuclear

polarizations approaching that of the thermal electron polarization. In the limit T
(e)
1 � T

(en)
x

the steady state polarization is approached with a time constant

TDNP =
T

(en)
x

p+ q − 2pq
. (1.27)
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For large illumination intensity I it is expected that p > q, which drives the nuclear polar-
ization towards the |↓〉 state which is anti-aligned with its T

(n)
1 driven thermal polarization.
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Chapter 2

Auger Ionization and Phononic
Hyperpolarization

As outlined in chapter 1 a key component of interest for the Si:P system is the hyperpolariza-
tion mechanism under above bandgap illumination. A study of the mechanism is performed
making use of the observation of modified buildup dynamics which are a consequence of
the periodic ionization of the phosphorus donor. During polarization buildup, a low power
(Hz-KHz) saturation Rabi drive is applied at the bare Phosphorus Larmor frequency as de-
termined from liquid state measurements. Modified build up dynamics are observed, which
depend strongly on the applied saturation power and frequency. The dynamics are attributed
to the phosphorus being ionized and neutralized during the hyperpolarization process. If the
saturation drive is sufficiently strong and close to resonance, it will tilt the phosphorus spin
into the x-y plane, at which point the defect will be subsequently re-neutralized after some
random period effectively destroying its coherence. The ionization process is attributed to
bound exciton induced Auger ionization [70], which has been observed previously in Si:P
under above bandgap illumination [94].

A more detailed explanation of the modelled mechanism follows, a semi-classical approach
primarily utilizing modified Bloch Equations is given. The initial state is assumed to be a
thermally polarized (to a good approximation 0%) phosphorus nuclear ensemble with a

hyperpolarization rate T
D0
h

1 due to the applied above bandgap illumination. It is important
to note that the thermal and hyperpolarization T1 processes steady state magnetizations
have opposite signs, as the hyperpolarization mechanism effectively exchanges polarization
with the thermally polarized electrons which have an inverted alignment with respect to the
phosphorus nuclei. The system also experiences Larmor oscillations with rate ω31P , and there
is a strong effective T2 process as discussed in 1.4 system. The reduced D0 Hamiltonian in
the frame rotating at the saturation frequency ωΩ is given by

HD0

2π
= ΩÎx +

(
Ae
2
−∆v

)
Îz, (2.1)
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where Ω is the applied Rabi drive, Ae is the electron hyperfine shift, and 2π∆v = ω31P − ωΩ

is the difference between the drive and the bare phosphorus resonance frequencies. Note that
as Ω�

(
Ae
2
−∆v

)
the Hamiltonian is well approximated by

HD0

2π
≈
(
Ae
2
−∆v

)
Îz. (2.2)

Define the free exciton capture rate κD0→D0X . Due to the Pauli exclusion principle, it is
required that the donor-bound electron and free exciton electron form a singlet state. Such
a state will display no hyperfine splitting. However, it is possible that the hyperfine shift
due to the hole could be observed. There has yet to be a direct measurement of such a
shift, although the expected strength has been estimated to be in the range 2-20 MHz [93].
A refined technique could be used to measure the hole hyperfine splitting by sweeping the
saturation tone over the expected hole Fermi contact interaction strength range and looking
for a signature of reduced observed magnetizations. Assuming that the capture process
occurs on a much quicker time scale than the spin evolution timescale ω31P , that there is
negligible relaxation TD0X

1 in the bound exciton state, and that the bound exciton dephasing
rate TD

0X
2 is negligible, the Hamiltonian dynamics in this manifold are modelled as

HD0X

2π
= ΩÎx +

(
Ah
2
−∆v

)
Îz, (2.3)

where Ah is the hole hyperfine strength. The bound exciton will decay, with a recombination
of the hole and electron at a rate κD0X→D+ . There are two primary decay channels: the
energy may be released as a photon, or approximately 10000 times more frequently it will
ionize the phosphorus donor electron through the Auger ionization process [70]. As the Auger
process is four orders of magnitude more likely, only this decay channel is considered. After
ionization, the phosphorus spin is left in an effective semiconductor vacuum and therefore
all T2 processes are disregarded in its ionized state. In the ionized state, the 31P nuclei are
no longer hyperfine shifted and remain at their bare Larmor frequency ω31P , perhaps shifted
by some small paramagnetic shift δ due to shielding from nearby silicon atoms. A saturation
Rabi drive of strength Ω at frequency ωΣ will induce Rabi oscillations on the D+ nuclei. The
Hamiltonian in this frame is

HD+

2π
= ΩÎx + (δ −∆v) Îz. (2.4)

At a rate κD+→D0 , the D+ state will be neutralized via the acquisition of a free electron
from the conduction band [80], thus reverting to the initial Hamiltonian, equation (2.1) and
dissipative processes. As the recapture event is a telegraph process, provided κD+→D0 � Ae

2

an individual 31P will acquire a uniform random phase upon returning to the D0 state.
Averaging over this uniform phase for all donor nuclei will effectively destroy all transverse
magnetization. This results in modified build up dynamics under applied saturation near
the ionized phosphorus resonance frequency, with an observed reduction in the steady-state
magnetization.
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As noted in Chapter 1, one can equivalently model the system utilizing the Lindblad
master equation, or the Bloch equations. For simplicity, the dynamics are described as a
chemical exchange process using a series of coupled Bloch equations, otherwise known as the
Bloch-McConnel equations [6]. These equations are given below

dmD0

x

dt
= −

(
Ae
2
−∆v

)
mD0

y −
(
κD0→D0X +

1

TD
0

2

)
mD0

x , (2.4a)

dmD0

y

dt
= +

(
Ae
2
−∆v

)
mD0

x −
(
κD0→D0X +

1

TD
0

2

)
mD0

y , (2.4b)

dmD0

z

dt
= −(m(∞)−mD0

z )

T1

− κD0→D0Xm
D0

z + κD+→D0mD+

z , (2.4c)

dmD0X
x

dt
= −

(
Ah
2
−∆v

)
mD0X
y −

(
κD0X→D+ +

1

TD
0X

2

)
mDX

x + κD0→D0Xm
D0

x , (2.5a)

dmD0X
y

dt
=

(
Ah
2
−∆v

)
mD0X
x + ΩmD0X

z ,

−
(
κD0X→D+ +

1

TD
0X

2

)
mD0X
y + κD0→D0Xm

D0

y , (2.5b)

dmD0X
z

dt
= −ΩmD0X

y − κD0X→D+mD0X
z + κD0→D0Xm

D0

z , (2.5c)

dmD+

x

dt
= − (δ −∆v)mD+

y − κD+→D0mD+

x + κD0X→D+mD0X
x , (2.6a)

dmD+

y

dt
= + (δ −∆v)mD+

x + ΩmD+

z − κD+→D0mD+

y + κD0X→D+mD0X
y , (2.6b)

dmD+

z

dt
= −ΩmD+

y − κD+→D0mD+

z + κD0X→D+mD0X
z , (2.6c)

where equations (2.4a-2.6c) describe the D0, D0X, and D+ spin dynamics for the magne-
tizations of each state mx, my, and mz. Note that in the D0X equations equation (2.4a)
and in equation (2.4b) it is not possible to create magnetization in the transverse plane, as
a result if the system is initialized without transverse components their dynamics may be
dropped from the model. The entire process is visualized in figure 2.1.

As the modeled equations are a series of coupled linear first order differential, equations
rewritten as a matrix equation they have the form

∂

∂t
~m = A~m, (2.7)

where ~m is the total magnetization vector combining the D0,D0X and D+ magnetization
components

~m =
(
mD0

I ,mD0

z ,mD0X
x ,mD0X

y ,mD0X
z ,mD+

x ,mD+

y ,mD+

z

)T
. (2.8)
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2×e-
s=0

h+
s=3/2
mh=-3/2

31P+31P+

e-
s=1/2

me=-1/2

31P+

D0 D0X D+

Figure 2.1: Visualization of the D0 ionization process. D0 captures a free exciton becoming
D0X. After some time the free exciton will decay via Auger ionization into the ionized
D+ state, where a resonant saturation drive will rotate the 31P on the Bloch sphere. The
31P nucleus will then capture a free electron from the conduction band returning to the
neutralized D0 state. Any created coherences will now rapidly be destroyed due to the
electron mediated T2 process. Image used with permission [39].

A is the transition matrix with elements

A =

0 0 0 0 0 0 0 0 0 0
m(∞)

TD
0

1

0 0 − 1

TD
0

1

−κD0→D0X 0 0 0 0 0 κD+→D0

0 0 0 0 −κD0X→D+ −Ah
2

+∆v 0 0 0 0

0 0 0 0
Ah
2

+∆v −κD0X→D+ Ω 0 0 0

0 0 0 κD0→D0X 0 −Ω −κD+→D0 0 0 0

0 0 0 0 κD0X→D+ 0 0 −κD0X→D+ −δ+∆v 0

0 0 0 0 0 κD0X→D+ 0 +δ−∆v −κD+→D0 Ω
0 0 0 0 0 0 κD0X→D+ 0 −Ω −κD+→D0


.

(2.9)

Since the rate equation description found in equation (2.7) can easily be solved numer-
ically, all data analysis is performed with the numerical solutions for the sake of accuracy.
However, additional insight may be gained by solving the equations under further simplifying
assumptions. In the limit where the bound exciton lifetime is short compared to the free
exciton capture and donor neutralization rate κD0X→D+ � κD0→D0X , κD+→D0 , the steady
state magnetization has a Lorentzian dependence on both the saturation strength Ω and
detuning from the paramagnetic shifted bare resonance frequency ζ = δ −∆v given by
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lim
t→∞

mD0

z (t) = µD
0

z =
κ2
D+→D0 + ζ2 + Ω2

κ2
D+→D0 + ζ2 +

(
1 + κD0→D0XT

D0

1

)
Ω2
. (2.10)

In equation (2.10) the observed signal has been normalized by m(∞) removing the explicit
dependence on the absolute nuclear polarization. As expected, in the limit of a very weak
saturation drive Ω → 0, free exciton capture κD0→D0X → 0, and large detuning ζ → ∞
a magnetization of unity is recovered. Under these conditions the time dependent buildup
process is exponential

mD0

z (t) ≈ µD
0

z

(
1− e

− t

µD
0

z TD
0

1

)
. (2.11)

It is observed that the approximate effect of the ionization process is to increase the effec-
tive hyperpolarization rate by a factor µD

0

z . Evaluating the time derivative at the start of
polarization (t = 0)

∂MD0

z

∂t

∣∣∣∣
t=0

=
1

TD
0

1

, (2.12)

it is apparent that their is no dependence on parameters relating to saturation, Ω, ∆, and
κD+→D0 .

2.1 Alternative Hyperpolarization Process

In section 1.9, the phononic hyperpolarization process is introduced. Sekiguchi et al. have
proposed an alternative process that predicts that the observed hyperpolarization is due
to the conservation of net angular momentum during bound exciton formation[72]. The
proposed polarization process is sketched below.

For a bound exciton 31P system the electron spins in their ground state will be in an
antiparallel singlet configuration due to the Pauli exclusion principle [79]. Conduction, free
exciton, and phosphorus donor electrons will have thermal polarizations near unity at the
magnetic field and temperature of study, while the nuclear thermal polarization is near zero.
Consequently, system eigenstates |1〉 and |2〉 will have near equal thermal populations. While
|2〉 = |⇓↓〉 is a pure Zeeman state, |1〉 will be predominantly |⇓↑〉 with a small admixture of
|⇑↓〉 due to the hyperfine mixing. To form a bound exciton D0X state, an electron must flip
its spin. While instances of |0〉 may only have their electron spin flip via spin-orbit coupling,
Sekiguchi et. al argue that systems in state |1〉 may use the admixture component |⇑↓〉
to flip the bound exciton electron and form the D0X state, which would also result in the
flip of the nuclear spin for a net zero total spin change. After Auger ionization, the nuclei
will recapture a new thermally polarized electron. Consequently, this process will drive the
phosphorus polarization towards the thermal electron polarization and the system as a whole
towards |1〉.
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Crucially, this model has testable consequences. For bound exciton formation to pro-
ceed, the nuclear state must be anti-aligned with the electron. As the hyperpolarization
process proceeds, the nuclear state will become increasingly polarized reducing the rate of
exciton capture. While direct calculation of the free exciton-neutral impurity cross section
by variational methods is possible [57, 71, 56], they are both complicated and agree poorly
with experimental results. Of primary interest is discerning between the two polarizations
mechanisms. As the formation of D0X during the polarization process is directly observed,
the polarization dependence of D0X formation may be incorporated by letting the rate of
D0X formation linearly depend on the nuclear magnetization as in spin-exchange scattering
[56]

κD0→D0X → κD0→D0X

(
1−mD0X

z

)
. (2.13)

The hyperpolarization process is shifted to the D0X state, but the dependence on mD0

z is
kept, as both the capture and the polarization processes occur simultaneously. The full set
of coupled nonlinear differential equations are found in equations (2.13a-2.15c).

dmD0

x

dt
= −

(
Ae
2
−∆v

)
mD0

y −
(
κD0→D0X

(
1−mD0X

z

)
+

1

TD
0

2

)
mD0

x , (2.13a)

dmD0

y

dt
= +

(
Ae
2
−∆v

)
mD0

x −
(
κD0→D0X

(
1−mD0X

z

)
+

1

TD
0

2

)
mD0

y , (2.13b)

dmD0

z

dt
= −κD0→D0X

(
1−mD0X

z

)
mD0

z + κD+→D0mD+

z , (2.13c)

dmD0X
x

dt
= −

(
Ah
2
−∆v

)
mD0X
y −

(
κD0X→D+ +

1

TD
0X

2

)
mDX

x

+ κD0→D0X

(
1−mD0X

z

)
mD0

x , (2.14a)

dmD0X
y

dt
=

(
Ah
2
−∆v

)
mD0X
x + ΩmD0X

z −
(
κD0X→D+ +

1

TD
0X

2

)
mD0X
y

+ κD0→D0X

(
1−mD0X

z

)
mD0

y , (2.14b)

dmD0X
z

dt
= −(m(∞)−mD0

z )

T1

− ΩmD0X
y − κD0X→D+mD0X

z

+ κD0→D0X

(
1−mD0X

z

)
mD0

z , (2.14c)

dmD+

x

dt
= − (δ −∆v)mD+

y − κD+→D0mD+

x + κD0X→D+mD0X
x , (2.15a)

dmD+

y

dt
= + (δ −∆v)mD+

x + ΩmD+

z − κD+→D0mD+

y + κD0X→D+mD0X
y , (2.15b)

dmD+

z

dt
= −ΩmD+

y − κD+→D0mD+

z + κD0X→D+mD0X
z . (2.15c)
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Importantly, equation (2.10) holds for the bound exciton polarization model, which means
that saturation swept resonance experiments will yield identical rate predictions for both
models. To discern between the models, the buildup dynamics under saturation must be
studied. This must be done numerically as the equations are nonlinear and do not present
an analytic solution.

2.2 Light Distribution Dependence

The dynamics of the proposed model are strongly dependent on local light distribution vari-
ations over the silicon crystal. The free electron and exciton have been measured to have
mean free paths of 10 um and 24 um respectively for similar temperatures and doping concen-
trations as used within the experiments described within this thesis [24, 19]. An additional
factor to consider is that their respective production rates have different dependencies on
applied light intensity. In silicon, free electrons are formed via photon absorption and then
primarily recombine with holes, which is a bimolecular decay process. As a result, the satu-
rated free electron density displays a

√
I laser power dependence. Free excitons, on the other

hand, are produced, via a bimolecular process and decay spontaneously with a constant rate,
and therefore display a linear I laser power dependence [66, 86]. Consequently, the locally
applied laser intensity must be accounted for in given model rates, which is accomplished by
redefining the corresponding rate parameters to include explicit power dependence

κD0→D0X(I) =
√
IαD0→D0X , (2.16a)

κD+→D0(I) = IαD+→D0 . (2.16b)

Note that αD0→D0X and αD+→D0 have units of Hz/
√
W and Hz/W , respectively. Reparam-

eterizing equation (2.10) the intensity-dependent build up is given by

µD
0

z (I) =
(IαD+→D0)2 + ∆2 + Ω2

(IαD+→D0)2 + ζ2 +
(

1 +
√
IαD0→D0XT

D0

1

)
Ω2
. (2.17)

Assuming there is some light distribution over the sample ρ(I), the saturated magnetization
is now given by

µD
0

z =

∫ ∞
0

ρ(I)µD
0

z (I)dI (2.18)

and the approximate buildup

µD
0

z (t) =

∫ ∞
0

ρ(I)µD
0

z (I)

(
1− e

− t

µD
0

z (I)TD
0

1

)
dI (2.19)

It is clear that the observed magnetization buildup will be the sum of many exponentials
with the form of equation (2.10), with build up rates and final intensities determined by µD

0

z .
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The incident Gaussian beam from the laser is reflected from the NMR coil and forms
a grating pattern, it is then focused by the insulating sapphire tube and finally enters the
sample. The effect of reflections must also be taken into account. To determine the light
distribution over the sample, the optical system was simulated with COMSOL ray tracing
using 200000 rays. The laser power deposited in each 100 µm × 100 µm × 100 µm mesh
element is extracted, and then bin and normalize the simulated intensities to generate an
intensity distribution ρ(I). Meshing dimensions were selected to be such that the element
size was much larger than the exciton mean free path [19], while still being significantly
smaller than the subterahertz phonon mean free path [35]. The simulated intensity pattern
with accompanying intensity distribution is shown in figure 2.2. From simulations, the laser
power absorbed per mesh element is calculated assuming a penetration depth of λ = 26.9 cm
at 4.2 K as measured by Macfarlane et. al for 1047 nm light in silicon [55]. The estimated
aggregate laser power deposited over the same at full laser power has been simulated to be
0.232 mW, this is equivalent to an input uniform intensity of 166 mW cm−2. A diagram of
the sample with surface incident laser intensity outside the sapphire isolation tube is depicted
in figure 2.2, the grating pattern induced by the coil is observable.

2.2.1 Stark Ionization of the Phosphorus Defect

The D+ ionized phosphorus defect in isotopically purified silicon is an extraordinarily noise
free system. It has often been described as existing within a semiconductor “vacuum”, with
coherence times of up to hours being reached at low temperatures [68]. In the past ionization
has been achieved with the use of narrow-band lasers tuned to the bound exciton transition.
Such lasers are expensive and bulky, therefore, the technique is not well suited for ionization
in microscopic devices such as gyroscopes or magnetometers.

An alternative mechanism to ionize the phosphorus defect is the application of a strong
electric field across the silicon crystal. An electric field applied over a defect will shift the
electron wavefunction density away from the defect nuclei through the Stark effect. As the
field magnitude becomes large the ground 1s-like electron state will anticross with the excited
2p state effectively allowing the electron to tunnel into the bulk and ionizing the donor past
this threshold field. Although not explicitly measured for bulk phosphorus defects in silicon
the ionization threshold has been estimated to be on the order of 1.55V/µm [65]. Achieving
ionization in this way could yield devices that are simpler to fabricate and operate, as
traditional lithography processes can be used to place electrodes rather than requiring a
complex optical setup such as is required for Auger ionization.

Occurring in parallel with the bulk of the work within this thesis an effort has been
ongoing to ionize the phosphorus donors within the experiment setup. Two capacitor plates
have been added on either side of the silicon sample within the detection coil. It has been
estimated with Comsol simulations that a voltage in excess of 4kV must be established across
the two capacitor plates within the helium bath. This has proven to be a large experimental
challenge as hinted at in section 3.0.2. The major difficulty is due to ionization of the helium
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bath. This is believed to be due to impurities within the helium and an effort is underway to
engineer a superleak so as to purify the helium. It is important to note that if a method other
than direct inductive detection of the phosphorus defect were to be used, a much smaller
sample and consequently ionization field would be required.
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Figure 2.2: (a) Diagram of the NMR probe-head. COMSOL ray tracing simulations were
used to map the hyperpolarization laser light distribution over the sample volume. (b)
Simulated absorbed light intensities per mesh element binned to demonstrate their effective
distribution.
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Chapter 3

Experimental Sample, Apparatus and
Methods

3.0.1 Sample

The sample used in this study is a 2.1×2.2×8 mm 29Si crystal initially grown from charge
10 material as part of the Avogadro project [8]. The sample was cut from crystal 28Si-
10Pr10.6.1PeFZ3, which was grown along the [100] crystalline plane [33]. The sample has
been isotopically enriched to a concentration of 99.9954% silicon-28. The residual 0.0046% is
assumed to consist primarily of silicon-29 [33]. The sample has a phosphorus concentration
of 1.5 × 1015 cm−3, which was introduced in the form of phosphine gas during the final
float-zone crystal growth run. The sample also has a concentration of 1 × 1014 cm−3 of
boron.

The sample was extracted with a diamond saw cutting which results in a rough surface
finish and may induce strain in the crystal, which would lead to signal line broadening and
increased surface recombination rates which results in reduced hyperpolarization rates for
donors near the crystal surface [90]. The sample was chemically etched in 10:1 solution of
HNO3:HF to remove surface damage.

Characterized coherence times may be found for the sample in table 3.1.

Temperature(K) T2 (ms) Sequence
4.2 52 Hahn echo
1.7 421 Hahn echo
1.7 1200 CPMG

Table 3.1: Sample’s 31P coherence times [33].
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Figure 3.1: Diagram of the experimental setup with the cryostat inserted in the magnet and
the probe in the cryostat. The optical table is aligned such that the beam may be guided
through the cryostat window and incident onto the sample.

3.0.2 Probe

The probe is constructed around a central stainless steel tube. This tube provides a central
supporting structure and is also used for filling the LHe cryostat. Copper baffles are spaced
at uniform intervals along the probe and provide mounting locations. The last 15 cm of the
probe is threaded to allow the Teflon sample holder to be positioned such that the sample
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is in the magnet sweet spot. The probe has a number of vacuum feedthroughs, four of
which are used for fibreglass tuning rods, one for the circuit electronics. There are three
additional ports at the top of the probe: one SHV connector for high voltage electronics,
one thermometer connection, and a port connected to the central rod for LHe fills.

Probe Circuit

The magnetic resonance signal is observed with a home built cryogenic NMR probe. The
probe is designed to be inserted at the top of the cryostat as seen in figure 3.1 and to have
the sample sit in the sweet spot of the magnet. The probe circuit is a tunable split resonance
circuit, which allows its two electrical resonances to be excited with a single input line [34].
The circuit diagram is shown in figure 3.2. The circuit coil is wound of 0.7 mm diameter
rhodium flashed silver plated copper wire and has seven turns with a pitch of 1.2 mm. The
lower resonance may be tuned over a range of 110-122 MHz, and the upper resonance of 165-
190MHz using tunable capacitors, that are connected to fibreglass rods that pass through
vacuum feedthroughs at the top of the probe and may be rotated to vary their capacitance.
The lower resonance is used for the application of low power saturation pulses, and the
upper resonance is used for the application of rotation and readout pulses, as well as signal
detection.
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Figure 3.2: Circuit diagram for tunable split resonance probe circuit. The circuit has two
resonances that are both tuned and matched via the tuning capacitors Cm, Cc, Ct1 and Ct2.
Both resonances are excited with a single circuit input. The sample sits within the central
sample coil in the circuit.

As there is no directly observable signal at the lower resonance for use in calibrating the
Rabi strength, calibration is done with the aid of a pickup coil. The coil is positioned near
the sample coil so that it is weakly coupled. For each probe tuning the lower resonance
Rabi strength is calibrated by first characterizing the S14 parameter of the pickup coil at
the upper electrical resonance and then the lower resonance. By observing the hyperfine
shifted 31P signal the probe input power is calibrated for a given Rabi strength Ω174 with
a Rabi sequence. The peak to peak voltage induced on the pickup coil by the Rabi drive
is then measured with an oscilloscope. Using the measured pickup coil S14 parameter the
peak to peak voltage necessary for the lower electrical resonance to have an equivalent drive
strength is calculated. The spectrometer output power is then adjusted until the required
oscilloscope peak to peak voltage is achieved. When calibrating for a specific Rabi strength,
it is important to account for the ENDOR enhancement which is a result of the electron
spin remaining adiabatically in the instantaneous ground state determined by the applied
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RF field, [16]

Ω
(en)
174 = γenΩ174 =

(
1 +

A

2γnB0

)
Ω174 (3.1)

=

(
1 +

117.52MHz

2× 115.3 MHz

)
Ω = 1.5096× Ω174. (3.2)

The bare phosphorus resonance will not have such a Rabi enhancement and must have its
magnitude rescaled by the factor 1/γen.

High Voltage Wiring

One of the main design goals of designing the probe was to deliver both AC and DC electric
field signals of up to 10 kV to the sample, which was a significant challenge as there are no
off the shelf high voltage components that are rated to be reliable at cryogenic temperatures,
high voltages, and frequencies up to 200 MHz. Due to the dangers inherent in working with
such high voltages at currents up to 20 mA all efforts were made to conform to the IEEE 400-
2012 safety standards [4]; including protective equipment, low resistance grounding, and an
exclusion zone. In the design of the high voltage control chain, the three crucial components
were cabling, connectors, and the vacuum feedthrough. While no compatible microwave
cabling is rated to these voltages, dielectric strength calculations show that Teflon insulated
RG-58 and SHV-5 connectors are capable of tolerating voltages of 20 kV and are routinely
used for this purpose at Fermilab [2]. Teflon also has the benefit of being relatively well be-
haved at cryogenic temperatures. Extensive low-temperature high voltage insulation testing
of the cabling and connectors was performed to verify that they were capable of handling
voltages of up to 10 kV without excessive leakage currents or arcing. SHV-5 connectors
supplied by Pasternack and SHV-5 vacuum feedthrough supplied by Allectra GmbH were
used for cable mating. The vacuum feedthrough grounds the probe with the cryostat which
is itself directly connected to the building ground. Care was taken to introduce no additional
ground loops. Room temperature cabling utilized standard Teflon insulated RG-58 coaxial
cable and low-temperature cabling utilized semi-rigid stainless steel Microcoax UT-141-SS-
SS which transitions to UT-141 copper semi-rigid close to the sample as stainless steel is
slightly ferromagnetic. It is crucial that coaxial cable with low-density PTFE insulation not
be used as it will crack at low temperatures, which will lead to arcing at high voltages. There
are no SHV connectors available for purchase designed to be mounted with semi-rigid coax.
A modified connector mounting procedure for 0.141” semi-rigid coaxial cable which has the
same inner conductor diameter as RG-58 was developed. The procedure is as follows:

A. Strip the semi-rigid cable outer-shield insulation as indicated in connector mounting
instructions.

B. From an RG-58 cable strip a 10-15cm long portion of the braided outer conductor.

28



C. Align the stripped outer conductor on the semi-rigid cable such that the stripped
RG-58 conductor extends past the semi-rigid stripped outer conductor by the amount
indicated in the connector mounting instructions for the RG-58 outer insulation.

D. Heat shrink the stripped outer conductor in place on the semi-rigid cable such that
the diameter of the heat shrunk semi-rigid component is comparable to the OD of an
RG-58 cable (5 mm). Multiple layers of heat shrink may be necessary.

E. The component of the semi-rigid cable with the heat shrunk outer conductor now
emulates a traditional RG-58 cable, mount the connector as instructed.

An image of a resulting set of connectors attached with this technique is shown in fig-
ure 3.3. The above connection procedure has been tested and have found it capable of making
robust and repeatable matings that function both at room and cryogenic temperatures.

Figure 3.3: Demonstration of two SHV connectors that have been attached to the semi-rigid
coaxial cable using the method outlined in section 3.0.2 and then mounted to the probe.
The connector mating has survived many cryogenic and high voltage cycles.

DC high voltages are supplied by a Glassman FJ10R12 high voltage reversible polarity
supply which can be triggered by the spectrometer.

Purified LHe Cell

Commercial LHe have many impurities that can reduce its dielectric strength well below the
30 kV/mm of pure LHe [12]. The reduced dielectric strength has caused unwanted arcing
in high-voltage experiments. To increase the purity of the LHe a purified LHe cell has been
engineered to surround the sample. The sample is inserted in a custom manufactured sap-
phire tube which is then inserted in the probe detection coil, which can be seen in figure 3.4.
The tube provides high voltage isolation of the detection circuitry and spectrometer while
allowing 90% of the applied infrared laser intensity to reach the sample. The ends of the
tube are closed with leak-tight Teflon caps with vacuum grease applied. At cryogenic tem-
peratures the caps contract around the tube forming a tight seal. One cap is fitted with a
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capillary which serves as both a purified LHe delivery capillary and a high voltage cathode
while a copper wire provides the anode in the other cap. The LHe delivery capillary leads
to a brass LHe cell.

Figure 3.4: Sapphire tube inserted inside the detection coil. Tube is capped on both ends
with Teflon and capillaries are inserted into the caps to supply both high voltage and purified
LHe.

Two methods for delivering purified LHe to the cell are currently being tested. The cell
has a window made of Vycor 7930 which has micropore channels that allow only purified
superfluid helium to pass through [92]. Additionally, the cell is attached to a capillary that
is connected to a gas handling system at the top of the probe. This capillary is used to
condense helium into the cell. It has yet to be established which method is more reliable for
obtaining pure LHe.

A ferroelectric disk composed of cesium nitrate mixed with Stycast epoxy is inserted in
the interior of the cell [11, 15], which is used to attract and contain any charged impurities
that may enter the cell.

3.0.3 Cryostat

Experiments were performed in a customized Janis CNDT8 LHe cryostat which is inserted
in a 286 MHz (B0 =6.7 T) wide-bore Bruker superconducting magnet. The cryostat has an
exterior liquid nitrogen (LN2) jacket and an interior LHe bucket dewar. The two cryogen
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reservoirs are separated from each other and the exterior walls by a shared vacuum space.
The cryostat has a removable 2.5” OD tail that is designed to slide in the bore of the magnet.
At the base of the tail, there is a series of three sapphire windows that are transparent to
the DNP laser. The NMR probe described in 3.0.2 is inserted directly into the Helium
bucket, and the inductive coil rests near the third sapphire window in the sweet spot of
the magnet. Experiments may be performed helium temperature of 4.2 K at atmospheric
pressure. However, all experiments in this thesis were performed at 1.3 ± 0.1 K which is
reached by pumping on the helium bath through a series arrangement of a TRIVAC B D
65 B rotary vane vacuum pump in conjunction with a RUVAC WS1001 roots pump. The
pressure of the helium dewar is measured while pumping with a Granville-Phillips 275 Mini-
Convectron pressure sensor.

3.0.4 Electronics

A Bruker Avance 300 spectrometer provides probe tuning, pulse signal generation, and
quadrature detection. Control signals applied to the upper 31P hyperfine shifted resonance
signal of 174 MHz are routed through a 300 W Bruker BLAX300RS X-channel amplifier.
The signal is then routed through a Werlatone C5964 30dB dual directional coupler. The
174 MHz tone is applied to the input (J1) path of the coupler. Saturation pulses applied to
the ionized 31P (non-hyperfine shifted) resonance at 115 MHz are optionally routed through
one of two possible channels

A. In the case where amplifier noise will not provide significant levels of experimental error
the signal from the spectrometer is routed through the same amplifier, preamplifier,
and directional coupler channels as the 174 MHz signal.

B. When amplifier noise is important, the signal is routed directly from the spectrometer
signal generation unit (SGU) through a Mini Circuits ZHL-32A low noise amplifier
into a K&L Bandpass filter tuned to the desired signal frequency. The signal is then
coupled to the probe through the reverse (J4) port of the dual directional coupler. The
coupled signal will be reduced by 30 dB.

The transmitted signal was monitored via the forward (J3) port with a Tektronix DPO
4104 oscilloscope. The electrical signal in the coil was directly observed via the probe pickup
coil and may be compared to the transmitted signal with the oscilloscope.

3.0.5 Optics

A schematic of the optical setup is found in figure 3.5. Illumination of the sample for the DNP
is provided by LaserGlow LRS-1047-CFM-0030-05 laser. The laser has a continuous wave
output of 500 mW at 1047±1 nm. This wavelength was chosen as it is slightly greater than
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the silicon bandgap [95], such that it may excite free carriers, yet still be able to penetrate
the silicon crystal to uniformly illuminate the sample given its long penetration constant of
26.9 cm [55]. During experiments, the laser is triggered via TTL by the spectrometer. The
1/e2 width of the laser beam is 2mm. The beam is optionally routed through an attenuator
wheel with its values ranging from 0-1.0 optical density (OD). To uniformly illuminate the
sample the beam is passed through a 4× beam expander which provides a spot size of
approximately 8 mm at the sample. The beam is reflected into the Janis cryostat through
the sapphire windows and onto the sample via a silvered mirror. The input power transmitted
to the internal LHe bath space was measured to be 218 mW. The beam must be aligned
onto the sample to illuminate the crystal uniformly. As the 1047 nm beam is part of the
infrared spectrum and is invisible, a 532 nm Laserglow LBS-532 alignment laser was installed
and may be coupled to the beam path with a flippable alignment mirror. The alignment
procedure is as follows

Periscope Alignment laser

1047 nm laser

Flip mirror Iris 1 Iris 2

Attenuator wheel

Beam expander Mirror

Silicon sample

Sapphire 
window

Figure 3.5: Schematic of DNP illumination optics. An alignment laser may be optionally
coupled into the beam path to make alignment easier.

A. Configure the two irises such that they are effectively two pinholes.

B. Place a 1047 nm detector card behind the second iris.

C. Align the 1047 nm beam so that it passes through both irises and is visible on the
detector card.

D. Disable the 1047nm laser and power on the alignment laser.

E. Flip alignment mirror into its upright orientation such that it redirects the alignment
beam into the 1047 nm beam path.

F. Adjust the alignment laser’s optical periscope and the flip mirror such that the align-
ment laser is visible on the viewing card behind both irises. At this point, the 1047
nm and the alignment laser are aligned to be co-linear.

G. Open both irises completely and remove the viewing card.
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H. Adjust angled mirror under magnet bore such that the alignment laser is incident onto
the sample.

I. Flip alignment laser mirror into down position and re-enable 1047nm laser.

J. The last two steps may be cycled in combination with a DNP experiment tuning step
with the aim of maximizing the hyperpolarization rate, and consequently the laser
intensity incident on the sample.

The entire optical setup is mounted to an optical breadboard which is, in turn, attached
to the laboratory floor underneath the magnet bore-hole.
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Chapter 4

Experiments and Results

4.0.1 Experimental Procedures

A typical experimental sequence is composed of an initial saturation train being applied at
the D0, 31P resonance frequency to reset the phosphorus spins to an unpolarized state. The
1047 nm laser is then turned on, and the hyperpolarization commences. Simultaneously with
the laser illumination, a saturation pulse is applied near the D+ resonance frequency with
detuning ∆ and amplitude Ω. Hyperpolarization is allowed to proceed for some time τ , after
which a readout π/2 pulse is applied at the D0X resonance and free induction decay (FID)
signal is acquired. This pulse sequence is visualized in figure 4.1

Figure 4.1: A typical hyperpolarization experiment with D+ saturation pulse sequence.

Final net magnetizations are obtained by Fourier transforming the FID and then integrat-
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ing the obtained spectrum over the signal region. The number of scans per point are chosen
so as to have approximately the same SNR for each experiment point. For an exponential

growth curve M(t) =

(
1− e

− t

T
((DNP)
1

)
the SNR is defined as s(t, n) = M(t)

√
n/σ, where σ2

is the variance of the experimental noise assuming additive white noise that is constant over
the entire experimental run and n is the number of experiment repetitions performed. For
a desired SNR s and experiment buildup time t the number of experiments that must be
performed to achieve the SNR is

n =

(
sσ

M(t)

)2

. (4.1)

Initially, the polarization buildup as a function of applied laser power under no satura-
tion was obtained. For the model to be true, the hyperpolarization rate 1/TD

0

1 should be
inversely proportional to the applied laser power. A series of hyperpolarization experiments
at varying laser powers are performed with results shown in figure 4.2. A simple exponential
function very well approximates the buildup, this is a strong indicator that the buildup is
not dependent on local light intensity variations, which would create localized free exciton
concentration imbalances, but rather long range phenomena within the crystal-like phonons
as hypothesized in 1.9. The inset figure demonstrates that the buildup rate is linearly de-
pendent on the applied lasing power, correctly predicting that the hyperpolarization should
stop as the applied laser power becomes nil.
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Figure 4.2: Polarization buildup time constant dependence on the laser power with no applied
saturation (Ω = 0). Importantly, the final buildup polarization is the same to within noise
levels for all lasing power levels. (inset) The buildup curves are fit to an exponential buildup
function and their polarization rates TDNP

1 (I) are extracted. The extracted buildup rate as a
function of laser power are fit to a linear model. The error bars are extracted from the TDNP

1

exponential growth model fit and are derived from a linearization of the model function.
This demonstrates that the polarization buildup rate is a linear function of power.

Equation (2.10) predicts that fixing the magnetization buildup time and applying a sat-
urating drive the magnetization should sweep out a Lorentzian as a function of the detuning
from the D+ 31P resonance. Saturated (Ω=206 Hz) buildup experiments are performed
with the maximum laser power and hyperpolarize for τ=160 s, which provides a good bal-
ance between experiment time, and single scan SNR. The datasets are normalized against
an unsaturated (Ω=0 Hz) buildup and plotted with error bars in figure 4.3. Weighted
least squared fits are made to the numerical model, both with and without the light dis-
tribution. The light distribution fit is marginally better. For this set of experiments the
hyperpolarization rate is TDNP

1 = 53.7 ± 2.0 s. From these fits the extracted rates are
κD0→D0X = 731 ± 63 Hz and κD+→D0 = 400 ± 20 kHZ. Normalizing by the average input
laser intensity E[I] the intensity dependent rates αD0→D0X = 4.40 ± 0.38 kHz/ (mW cm−2)
and αD+→D0 = 981± 49 kHz/

√
mW cm−2 are calculated. A small paramagnetic shift of the

ionized phosphorus resonance frequency of δ/(2π) = −10±1 kHz with respect to a trisodium
phosphate reference sample is observed. In all future experiments the central saturation fre-
quency is shifted to account for this paramagnetic shift. It must be stressed that these rates
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are temperature, field, doping concentration, and wavelength dependent, and it may be of
interest to map out as a function of these parameters in the future.
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Figure 4.3: A saturation drive of Ω=207 Hz is applied while varying the frequency (∆v)
and hyperpolarize for sufficiently long (160 s) to observe the steady state polarization. The
observed magnetizations are normalized to Ω=0 reference experiment and plotted centered
at ζ = 0. The data is fit to the model found in equations (2.4a-2.6c), both accounting for
the simulated light distribution (blue, solid) or assuming a uniform light distribution (blue,
dashed). A D+ paramagnetic shift of δ/(2π) = −10kHz is observed which is included in the
plot (red, dot dashed).
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Figure 4.4: Buildup curves taken under different applied saturation strengths Ω= 0 (circles),
Ω= 120 Hz (diamonds) and Ω= 240 Hz (squares).

4.1 Nuclear Polarization Dependent D0X Formation

In section 2.1 an overview of the competing hyperpolarization model proposed by Sekiguchi
et al. was given. In this section a series of experiments that provide strong evidence against
this alternative model is reported. The alternative model predicts the rate of D0X formation
to be polarization dependent. The phosphorus ensemble is hyperpolarized and then option-
ally a π pulse is applied, these are then followed by a strong saturation drive of Ω = 3975Hz
as depicted in figure 4.5a. The excitonic polarization model predicts an asymmetry in the
saturation dynamics dependent on whether the magnetization is aligned or anti-aligned with
the electron magnetization provided that the nuclear polarization is sufficiently high. Pre-
viously, the nuclear polarization was estimated to be higher than 64%, which is used for
comparison of the two models [33]. Note that larger polarizations will only serve to deviate
the predictions of the two models further.

Experiment results are shown in figure 4.5b. It is clear that the saturation dynamics do
not display a strong polarization dependent asymmetry. The phononic hyperpolarization
fits the data relatively well, while the excitonic model fits the electron aligned polarization
poorly, which is strong evidence against the excitonic model. This behaviour is more easily
seen in the summed signal m(t) = m↓(t) + m↑(t) as in figure 4.6. It is clear that for the
hyperpolarization and bound exciton processes to depend linearly on the nuclear state, the
absolute polarization must be much less (< 10%) than the previously lower bounded absolute
polarization of 64%.
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Figure 4.5: (a) Pulse sequence for phosphorus polarization dependent Auger ionization ex-
periment. The experiment begins with a polarization laser pulse of length τp, followed by an
optional π pulse (dotted), which will invert the phosphorus polarization. A saturation tone
is then applied with Rabi strength Ω for time τs. Finally, the signal is finally observed with a
π/2 pulse. By varying the saturation time τs polarization dependent saturation rate may be
extracted. (b) Experiment results for Ω = 3975 Hz. The plotted lines are predictions from
the process models, where the solid line corresponds to the saturation rate independent of
nuclear polarization and the dashed line is a numerical simulation of the coupled Bloch equa-
tions when the rate of exciton capture κD0→D0X is dependent on the nuclear polarization,
as described in section 2.1, for an initial polarization of 64%. Higher initial polarizations
will further enhance the asymmetry between the two curves. No saturation dependence on
the spin state of the phosphorus nuclei is observed. Furthermore, the data agrees with the
prediction of the independent polarization model relatively well.
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Figure 4.6: The same data as shown in figure 4.5b, but displayed as the sum of the two initial
magnetization data points so as to enhance the visualization of the signal saturation asym-
metry. (solid) Nuclear state independent hyperpolarization simulation. (dashed) A range of
nuclear spin-state dependent simulations for varying levels of absolute nuclear polarization.

For further evidence in favour of the phononic model recall the initial observation that
the phosphorus hyperpolarization process is well fit by a single exponential. Recalling that
the mean free path of excitons is on the order of 10 µm the hyperpolarization rate under
the excitonic would be strongly dependent on the local light intensity. The observed buildup
would be integrated over the sample light distribution∫

dIp(I)(1− e−χIt) (4.2)

Where p(I) is the laser intensity distribution over the sample, and χ is the proportionality
constant between the input laser intensity and the hyperpolarization rate. In figure 4.7 the
observed hyperpolarization dynamics are compared with both a fit two a single exponential
and a sum of exponentials proportional to the laser intensity as described by equation (4.2).
It is clear that the hyperpolarization rate is not intensity dependent, which is consistent with
a phononic hyperpolarization process which at sub-terahertz, phonons have mean free paths
of several mm[35], which is on the order of the sample size.
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Figure 4.7: Comparison of a single exponential buildup fit (dashed) to a simulated polariza-
tion buildup assuming that the polarization rate is proportional to the local incident laser
intensity (solid). It is clear that the hyperpolarization rate fits the dashed curved better and
is therefore not a dependent on the local laser intensity.
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Chapter 5

Future Work and Conclusion

5.0.1 Stark Ionization of the Phosphorus Donor

The examination of the bound exciton Auger ionization process in the previous section has
proceeded in parallel with an effort to demonstrate Stark ionization of the phosphorus donor
electrons. In section 3.0.2 an overview of the probe’s ability to deliver high voltages directly
to the sample in the cryostat and current efforts to design a purified LHe cell for the sample
to reside within are given. By placing a set of conductive plates around the sample, the DC
Stark effect may be used to manipulate the donor electron’s wavefunction and at sufficiently
high voltages (4̃.5 kV for the sample geometry) ionize the system. Saeedi et. al demonstrated
that ionized phosphorus defects in isotopically purified silicon have coherence times up to
hours [68]. Their work utilized AEDMR to observe the nuclear spin state and thus requires
the donor electron to be present to measure the nuclear spin state. Additionally, they relied
on narrowband lasers to excite bound exciton transitions to hyperpolarize and ionize the
system. Our proposed protocol requires only the capability to illuminate the sample with
above bandgap light and apply an electric field across the sample. The nuclear spin state may
be observed inductively, and the dynamics of the ionized phosphorus nuclei may be studied
directly. The ultra long coherence times of the system would be ideal for the construction
of high sensitivity nuclear spin magnetometers [41] and gyroscopes [50, 9] as spin phase
detection sensitivity is proportional to 1/T2.

5.0.2 Conclusion

The two competing models for the Si:P above bandgap hyperpolarization mechanism have
been compared and contrasted. The first which predicts that the hyperpolarization is due to
time-dependent strain fields modulating the electron spatial wavefunction, and the second
model predicts hyperpolarization as a consequence of angular momentum conservation during
the process of bound exciton capture. Crucially, these models predict different buildup
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dynamics as the former model’s buildup rate should be independent of the nuclear state
while the rate of the latter will be dependent.

A novel experimental procedure for studying the Auger ionization process of phosphorus
donors in isotopically purified silicon with saturation experiment procedure given in sec-
tion 4.0.1 has been demonstrated. The dynamics were modelled with three coupled sets of
Bloch equations, and it was shown that the observed dynamics fit the model well. This
technique could potentially be used for measuring the hyperfine shift of bound exciton hole
as noted in section 2. The light distribution over the silicon sample is nonuniform and such
effects were accounted for within the model with the aid of ray tracing simulations, which
allows for the Auger ionization and photo-neutralization rates to be extracted for the spe-
cific experimental conditions. A small paramagnetic shift of the ionized phosphorus Larmor
frequency of -10 kHz is observed.

Noting that the two hyperpolarization models predict different rates for bound exciton
capture conditional on the polarization of the phosphorus nuclei, an experiment contrast-
ing the saturation dynamics of phosphorus initially polarized aligned/anti-aligned with the
electron thermal population is performed. The experiment results demonstrate that the sat-
uration rate does not depend on the polarization of the phosphorus nuclei. This strongly sug-
gests that the phononic hyperpolarization model underlies the hyperpolarization mechanism.
This is also strongly implied by the observation that a single exponential well models the
observed hyperpolarization buildup. If the hyperpolarization process is excitonic, it would
depend on the local exciton, and free carrier densities, which would be strongly dependent
on the local illumination intensity. Consequently, the observed buildup would be a sum over
many exponentials due to varying light distribution over the sample. As the phonon mean
free path is on the order of mm, the observation of a single exponential buildup is consistent
with the first hyperpolarization model. This still leaves open the question of what exchanges
angular momentum with the bound exciton electron to allow the capture process to proceed
and is an avenue for future work.
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Chapter 6

Bayesian Parameter Estimation of T1
Relaxation Time

The relaxation time or T1 of a spin ensemble contains information about spins’ and their
environment [75]. The T1 relaxation time is a key parameter of interest in applications such
as magnetic resonance imaging (MRI), and NMR logging [96, 46]. Depending on the system
and experimental conditions the value of T1 can vary from microseconds to hours or even days
[33]. Therefore, parameter estimation of the relaxation time can be a very costly experiment.
Numerous techniques for the optimization of T1 relaxation measurements have been explored
in the literature [27, 36, 89, 78, 96]. These works have focused on frequentist classical designs
due to the numerical intractability of Bayesian parameter estimation. The development
of numerical computational methods and computing power have made possible the use of
Bayesian methods, which have traditionally been intractable. The objective of the following
chapters is to explore the application of Bayesian parameter estimation and experimental
design to optimally select experiments to minimize the variance of the posterior distribution
over T1. The implementation of such techniques could drastically reduce experiment times.

The T1 is typically measured with an inversion recovery (IR), saturation recovery (SR)
or faster inversion recovery (FIR) experiment [89]. The system is assumed to be initialized
with thermal polarization M(τ < 0) = M(∞), along the principle axis of the applied
Zeeman field Bz = B0. Applied pulses are assumed to be perfect with duration τp � T1,
although imperfections may be accounted for [88]. As noted by Weiss et. al. the resultant
magnetization may be ideally parameterized as

M(τ) = M(∞)
(

1− ae−
τ
T1

)
, (6.1)

where τ is the experiment relaxation delay and T1 is the relaxation rate to be estimated.
The inversion recovery (IR), saturation recovery (SR) and faster inversion recovery (FIR)
experiments are defined by the choice of a as shown in table 6.1. When experimental imper-
fections are included, the model may be extended to five parameters for a more robust fit
[51].
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Table 6.1: Parameterizations of a for various relaxation experiments and their associated
pulse sequence.

Experiment a Pulse Sequence
SR 1 π/2− τ − π/2
IR 2 π − τ − π/2 assuming(τth � T̂1)
FIR 2− e−τth π − τ − π/2− τth

For clarity the magnetization through an IR experiment in figure 6.1, where τth is
the system thermalization time. A π pulse is applied which inverts the magnetization
M(τ = 0) = −M0. The magnetization is then allowed to recover for some time τ under
the dissipative action of T1, and finally a readout π/2 pulse is applied and the signal ob-
served. The magnetization is allowed to return to its thermal polarization by waiting for
τth � T1 before repeating the cycle and recording another data point.

Figure 6.1: Inversion Recovery pulse sequence and magnetization. For the IR experiment
the recovery time is set such that τth � T̂1, whereas, in the FIR experiment the recovery
time is set in an online manner.

Note that the thermalization step is troublesome for two reasons, first T1 is not known,
which is compensated for by waiting much longer than what the maximum possible T1

value is “believed” to be thus increasing the interval between experiments which is natural
within the Bayesian framework, and second this recovery step contains information about
the value of T1 which may be included by incorporating the recovery step into the model (see
section 8.2.1). The detected FID is typically Fourier transformed and the peak of interest
integrated to obtain the magnetization M(τ).

In practice the observed signal will have noise, which is assumed to be additive, normally
distributed and time independent. The measurement thus consists of a signal M(M0, T1; τi)
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and noise εi.
Mi = M(M(∞), T1; τi) + εi εi ∼ N (0, σ2). (6.2)

The variance of the noise σ2 is assumed known and stationary. Note that it is simple to
account for these noise variations with techniques described in the following chapters. The
SNR is the ratio of the magnetization M(∞) to the noise standard deviation σ,

SNR =
M(∞)

σ
. (6.3)

Figure 6.2 demonstrates the effect of noise on the observed data, for unity SNR it is difficult
to observe the signal with the eye. It is within this region that classical experimental design
techniques based on model linearizations fail [88].

Figure 6.2: Simulated inversion recovery experiment data for varying SNR levels. Data
points have been connected to guide the eye.

Under the above assumptions the model parameters M(∞) and T1 are related to the
observed datum Mi through the likelihood function

 L(Mi;T1,M(∞)) = Pr(Mi|T1,M(∞)) =
1√

2πσ2
e−

(Mi−M(M(∞),T1;τi))

2σ2 . (6.4)

Given prior distribution πX(x) for the parameters x = {M(∞), T1} and applying Bayes’
theorem to obtain the posterior probability distribution

πX|Mi(x) =
 L(Mi;M(∞), T1)πX(x)

Pr(Mi)
. (6.5)

Where Pr(Mi) =
∫
X
dx L(Mi|M(∞), T1)πX(x) is a normalization constant for the posterior

distribution, and in general not analytically solvable. It is not possible to calculate analytical
expectation values with respect to the above likelihood function and, much of this chapter
concerns itself with solving this problem for application to parameter estimation and optimal
experiment design.
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6.1 Bayesian Sequential Monte Carlo Parameter Esti-

mation

The two numerical algorithms typically employed for posterior evaluations are variants of the
Markov chain Monte Carlo (MCMC) methods. The first, random walk Markov chain Monte
Carlo (RWMCMC), attempts to walk through the parameter space, with a sampling density
proportional to the underlying probability distribution. This guarantees convergence in the
limit of many sampling steps. Popular variants include the Metropolis-Hastings algorithm,
and the more recent No-U-Turn Sampler [59, 38]. The second approach, which we will
focus on in this thesis is the sequential Monte Carlo (SMC) algorithm, often known as the
particle filter [54]. The SMC algorithm approximates distributions as a discrete sum of delta
functions with particle locations X = {x1, . . . ,xnpar}, and weights W = {w1, . . . , wnpar},

πX(x) ≡
npar∑
i=1

wiδ(x− xi). (6.6)

To ensure that equation (6.6) represents a probability distribution we require that the
weights be non-negative and sum to unity,

wi ≥ 0, (6.7a)
npar∑
i=1

wi = 1. (6.7b)

In the limit of large particle numbers the true underlying distribution will be well approxi-
mated. Employing the particle approximation it is straightforward to apply the Bayes update
rule to update particle weights wi|O

wi|O = N−1
O  LOiwi, (6.8)

and calculate the normalization factor

NO =

npar∑
i=1

LOiwi = Pr(O). (6.9)

Where the LOi = Pr(O|xi) is the likelihood of observing datum O for a given particle with
location xi. Note that the normalization factor NO is equivalent to the likelihood of the
observed data, marginalized with respect to the prior distribution. An important feature of
the SMC update is that it is a sequential update procedure, allowing the algorithm to proceed
iteratively, unlike RWMCMC methods that require a full walk sampling process at each step.
SMC is particularly well suited to experimental parameter estimation in which experiments
observe one datum on+1 at a time allowing the prior distribution πn to be updated to find
the posterior πn+1. Figure 6.3 demonstrates the ability of the SMC algorithm to iteratively
learn the model parameters M(∞) and T1 for an IR experiment.
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Figure 6.3: Demonstration of the ability of the SMC particle filter to estimate the parameters
of an IR experiment for increasing number of particles for an SNR of 1. The translucent
curves are IR curves with model parameters sampled from the current posterior distribution.
Note that the updater is able to provide an estimate for N = 0 and 1 samples which is
possible due to the incorporation of prior information for M(∞) and T1 within the Bayesian
framework.
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In practice after many updates, all weights except one will tend to zero, resulting in nu-
merical instabilities [3]. To rectify this resampling techniques such as Liu-West resampling
are applied [54], which redistribute the particles within the parameter space and reset their
weights to unity. Resampling allows the SMC particles to move toward the true parame-
ter values and explore the high dimensional parameter space efficiently as demonstrated in
figure 6.4.
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Figure 6.4: Simulation of a single linear spaced design (see equation (8.2)) with τ0 = 0 and
τmax=10, demonstrating the particle filter behaviour as additional data is acquired with an
SNR of 10. (left) Marginalized posterior distributions for M(∞) = 1 and T1 = 2 with the
true values given by the vertical dashed line. The dash-dotted curve is a traditional least
squares fit for the dataset. (right) Posterior distribution particles with their radius being
proportional to the respective particle weight. The red ellipse is a 95% confidence interval
for the particle filter distribution. Note that as data acquisition proceeds the particles
redistribute themselves through resampling.
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The expectation value of an operator F (x) is calculated under the SMC approximation

Ex|πX [F (x)] =

npar∑
i=1

wiF (xi). (6.10)

The Python SMC package QInfer is used for all simulations in this thesis [31].

6.2 Sequential Bayesian Experiment Design

For an experiment there is a set of knobs (experimental control parameters) that may be
varied. How to optimally set these to maximize how much may be learned about the ex-
perimental system is often not considered. An interesting question is whether the “best
experiment” which extracts the most information about a set of parameters can be chosen.
In a Bayesian framework using information theory this question may be posed as “Find the
experiment that will maximize the information gain in our posterior probability distribution
relative to the prior distribution?”

Figure 6.5: Diagram of the sequential online experiment design procedure we advocate. At
every step the optimal experiment given the current prior distribution over model parameters
is chosen. Figure used and modified with permission [42].

6.2.1 Loss Functions

This question is approached by attempting to minimize some appropriately chosen loss func-
tion. The naive (read “often best”) way of doing this is to minimize the distance between
the “true” value of the unknown parameters x to be estimated, and the current estimate
which is a function of the data already observed. Put more formally the mean squared error
(MSE) loss function will be minimized

LQ(x, x̂(O;C)) = (x− x̂(O;C))TQ(x− x̂(O;C)). (6.11)
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Where x is a vector of true parameter values to be estimated, and x̂(O;C) is an estimate
of these parameter values given the set of all observed datum O = {o1, · · · , on}, and ex-
perimental parameters for each observation C = {c1, · · · , cn}. The matrix Q is a positive
semidefinite scaling matrix with inverse units that weights the relative importance of in-
dividual model parameters and their covariances to the loss. Typically Q is chosen to be
diagonal, which has the effect of disregarding parameter covariances in the loss function.
However, there is no such requirement in general. Note that equivalently the utility function
defined as the negative loss

U(x, x̂) = −L(x, x̂), (6.12)

may be maximized, rather than minimizing the loss function. In section A.3 it is shown
how often it is useful to rescale the weighting matrix by the initial prior, to properly weight
model parameter with different magnitudes.

In optimal experiment design it is desired to select the parameters cn+1 that minimize
the loss considering all possible observations. With each experiment trial, the observed data
is independent of prior experiments and sampled from a noise distribution which itself is
a function of the unknown model parameters. The best guess for the model parameters
given the observed data is given by the current prior distribution πn. For every experiment
outcome oi there is an associated likelihood for this outcome under the settings ci, l(oi|x, ci),
which depends on the true values of the parameters to be estimated. Define the risk of
the experiment to be the expected loss over all possible experiment outcomes given the
“true” knowledge (which from a pure Bayesian perspective is not obtainable) of the unknown
parameters

R(x, x̂; ci) = Eoi|x;ci [LQ(x, x̂(oi; ci))]. (6.13)

Of course, the parameters x are not known precisely (except within simulations), and there-
fore the next best thing, the prior information, must be used. The prior is a probability
distribution Pr(x|I) = π(x), where I denotes the prior information. In the case of experi-
mental design, previous experiments will be contained within the set of prior information I,
and the prior information πn(x) = Pr(x|On, I; Cn). The Bayes risk is, therefore, the average
risk value over the prior distribution π(x)

r(π;C) = Ex[R(x, x̂;C)] =

∫
π(x)R(x, x̂;C)dx. (6.14)

The Bayes risk is also referred as Bayesian A-optimality [18]. When the MSE is the loss
function of interest the unique unbiased estimator that minimizes the loss function is the
mean of the posterior distribution x̂(O;C) = Ex|O;C [x].

6.3 Sequential Experimental Design

The goal of experimental design is to choose experimental parameters copt to gain the most
information adaptively (minimize the loss function) about the unknown parameters x with
each experiment.
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copt = arg min
c

L(πX, c). (6.15)

By greedily optimizing sequential experiments each experiment is chosen with the best cur-
rent knowledge.

6.3.1 Fisher Information and the Cramér-Rao lower bound

The inverse fisher information (FI) of a probability distribution lower bounds the variance
of any unbiased estimator, which is known as the Cramér-Rao lower bound (CRB) [21]. The
Fisher information is the second moment of the score

I(x) = EO|x;C

[
∇x log(Pr(O|x; C)) · ∇T

x log(Pr(O|x;C))
]
. (6.16)

The score is a measure of how sensitive a given distribution is to parameter variations.
The FI can be seen as a measure of the curvature around the maximum of the probability
distribution and is additive for independent experiments,

ICn+1(x) = Icn+1,C(x) = Icn+1(x) + IC(x).

It is, therefore, possible to compute the FI for experiments performed both in parallel and
sequentially.

The Cramér-Rao lower bound (CRB), which states that given an unbiased estimator θ̂
the lower bound of the variance for the estimator is given by the inverse of the FI matrix.

covx̂ ≥ I(θ)−1. (6.17)

This bound will be used extensivly and it is important to explore some aspects of it in detail.
The CRB is defined for fixed known model parameters x0, i.e. a Dirac delta prior distri-
bution. Importantly it is agnostic towards the choice of estimator provided the estimator
is unbiased. The CRB allows the question “Let x0 be the true value of x, how small can
the variance of the estimator x̂ be made?” to be asked. The Bayesian generalization of
the CRB is the Van-Tree’s inequality and has the form of the expectation of the FI ma-
trix over the distribution π(x) [83]. This weights the FI evaluation at a specific value of x
proportionally to the belief it is the true value x0 according to the prior information. The
Van-Trees inequality is otherwise known as the Bayesian Cramér-Rao lower bound (BCRB).
The weighted FI matrix is known as the Bayesian information matrix (BIM)

JD(π;C) = Ex [I(x;C)] . (6.18)

The FI of the prior π(x) is given by

JP(π) = EO
[
∇x log(π(x)) · ∇T

x log(log(π(x)))
]

(6.19)

The Van Tree’s inequality bounds the variance

covx̂|π ≥ (JD + JP)−1 . (6.20)
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Fisher Information of the Inversion Recovery Model

Under the assumption of normal additive noise, and a continuously differentiable model
function f(x), the fisher information matrix (FIM) has the simple form

Iij(x) =
fi(x)fj(x)

σ2
, (6.21)

where

fi(x) =
∂f(x)

∂xi
, (6.22)

is the derivative of the model function with respect to the jth model parameter. The FIM
for the IR model given in equation (6.1) with a = 2 is

Iir(M(∞), T1|τ ;σ) =
1

σ2

 (
1−2e

− τ
T1

)2

−
(

1−2e
− τ
T1

)(
2M(∞)τ

T12
e
− τ
T1

)
−
(

1−2e
− τ
T1

)(
2M(∞)τ

T12
e
− τ
T1

) (
2M(∞)τ

T12
e
− τ
T1

)2

 (6.23)

Assuming perfect knowledge of the equilibrium magnetization only the inverse of the second
diagonal index is examined. The CRB for estimation of the T1 is

Var [T1] ≥
(

σT12

2M(∞)τ
e
τ
T1

)2

(6.24)

Note that the CRB of T1 is non-linear and blows up at both τ → 0 and τ → ∞ which
demonstrates that measuring at these limits will give no information about the T1. The
variance grows quadratically with respect to the ratio of σ/M(∞), which agrees with the
definition of the effective SNR in section 6.
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Chapter 7

Numerical Techniques for Online
Experimental Design

Here our goal for experiment design is to find optimal experiments given prior knowledge
and an unbiased estimator. Consider the observation of a dataset with n datum On, and
corresponding experimental settings Cn. Take the initial prior to be π(x)n = Pr(x|I) and
apply Bayes’ update rule to obtain the posterior π(x)n = Pr(x|On; Cn)π(x)/Pr(On). The
objective is to choose a set of experimental parameters for the next experiment cn+1 that
minimizes the expected loss. This is a greedy or sequential experiment design protocol.
Alternatively the question “what are the M next best experiments to be performed?” could
be posed. This is a simple generalization and is explored in section 7.3.

Let the set of all experimental parameters including the hypothetical next experiment be
Cn+1 = cn+1 ∪ Cn. Recalling that the goal of experiment design is to find the experiment
copt that minimizes the Bayes’ risk

copt = arg min
cn+1

r(π; Cn+1). (7.1)

The Bayes’ risk has the form

r(π; cn+1 ∪Cn) =

∫
π(x|On, I; Cn)R(x, x̂; Cn+1)dx

=

∫
π(x|On, I; Cn) Eon+1|x;cn+1 [LQ(x, x̂(On+1; Cn+1))]dx

=

∫
π(x|On, I; Cn) Eon+1|x;cn+1 [LQ(x,Ex|On+1;Cn+1 [x])]dx. (7.2)

Where Ex|On+1;Cn+1 [x] is the posterior mean given the observation on+1 and is given by

Ex|On+1;Cn+1 [x] =

∫
x

Pr(on+1|cn+1,x)π(x|On, I; Cn)

Pr(x)
dx. (7.3)
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The Bayes’ risk may be bounded using the BCRB from equation (6.20) as discussed in
section 6.3.1

r(π;C) ≥ Tr
[
Q(JD(π;C) + JP(π;C))−1

]
. (7.4)

7.0.1 Information Gain

A downside to the use of loss functions is their dependence on the choice of estimator and
the relative magnitudes of model parameters. It may be desirable to consider only the
structure of the posterior distributions. Information theory may be used to compare the
relative information content of two distributions using the Kullback–Leibler divergence (KL
divergence)

OKL[P (x)||Q(x)] = Ex|P

[
log

(
P (x)

Q(x)

)]
. (7.5)

Where P (x) and Q(x) are the distributions of interest. Use of the KL divergence allows
optimal experiments to be selected without having to define an estimator explicitly. The
objective is to choose the experiment (cn+1) that maximizes the negative KL divergence
between the expected posterior distribution over all possible outcomes (weighted by the
outcomes respective likelihood of occurring) and the posterior distribution from the first n
experiments [44]. The risk predicts the mean information that will be gained by performing
the measurement cn+1 given the current state of knowledge and is known as the expected
information gain (IG). When applied to experimental design this is often referred to as
Bayesian D-optimality [18]. The IG is given by

IG(cn+1) = Eon+1 [IGOn;Cn(cn+1)] (7.6)

= −
∫
O

∫
x

OKL[Pr(x|on+1, On; cn+1,Cn)||Pr(x|On; Cn)]dxdon+1. (7.7)

The maximal cn+1 is optimal in the sense that it is the experiment that has the“tightest”
expected posterior distribution. However, as discussed in the following sections, maximizing
the information gain has several implementation issues. Choosing the experiment parameter
that optimizes the information gain of the posterior distribution does not necessarily select
the experiment that will minimize the covariance of the estimator. The Bayes’ risk is upper
bounded by the BCRB, whereas it is difficult to derive useful upper bounds for the expected
information gain.
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7.1 Evaluating the Bayes’ Risk with Continuous Out-

come Probability Distributions

The Bayes’ risk, equation (7.2), provides a quantity for adaptively choosing experimental
parameters. For most likelihood model functions the integrals in the equation are impossible
to solve analytically. It is therefore necessary to use numerical algorithms to approximate
the integrals over posterior distributions. The Bayes’ risk (7.2) may be evaluated under the
SMC approximation, equation (6.6). Assuming the previous execution of experiments cn+1

and corresponding observed data on+1 the mean estimator is defined as

x̂(πX, on+1; cn+1) := Ex|πX,on+1;cn+1 [x]

=

npar∑
i=1

wi|on+1xi. (7.8)

Applying the particle filtering approximation to the rest of (7.2)

r(π; cn+1) =

npar∑
i=1

wi

∫
O

don+1 Pr(on+1|xi; cn+1)[LQ(xi, x̂(πX, on+1; cn+1))]

=

npar∑
i=1

wi

∫
O

don+1 Pr(on+1|xi; cn+1)(xi − x̂(πX, on+1; cn+1))TQ(xi − x̂(πX, on+1; cn+1)).

(7.9)

The integral in equation (7.9) is generally not analytically solvable. In the case where the
possible outcomes are discrete and drawn from a known set of possible outcomes O, the
Bayes’ risk is calculable under the SMC approximation as

r(π; cn+1) =

npar∑
i=1

wi
∑
j∈O

Pr(oj|xi; cn+1)(xi − x̂(πX, oj; cn+1))TQ(xi − x̂(πX, o; cn+1)). (7.10)

Even the normal distribution, which is a well behaved continuous outcome distribution,
is not analytically solvable apart from the case of a linear model function. This difficulty
is bypassed by approximating the integral in equation (7.2) using Monte Carlo integration
with importance sampling.

The first step is to draw a set of nsam particles (model parameter vectors) Xsam =
{x1, . . . ,xnsam} from the prior distribution

xj ∼ πX(x) =

npar∑
i

ωiδ(x− xi). (7.11)
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Given the outcome distribution Pr(o|xi), for each particle xj, sample a single outcome from
the likelihood function

oj ∼ Pr(on+1|xj; cn+1) ∀xj ∈ Xsam, (7.12)

to generate the set of outcomes Osam = {o1, . . . , onsam}. The set of sampled outcomes values
may be used to approximate Pr(on+1) as a sum of delta functions with uniform weighting

Pr(on+1) ≈ 1

nsam

∑
oj∈Osam

δ(on+1 − oj). (7.13)

Recalling the second line of equation (7.9) the integral-sum may be rewritten as∫
O

don+1

(
npar∑
i=1

πX(xi) Pr(on+1|xi; cn+1)

)
=

∫
O

don+1 Pr(on+1), (7.14)

therefore the Monte Carlo integrated risk is

r(π; cn+1) =
1

nsam

nsam∑
i=1

(xi − x̂(πX, oi; cn+1))TQ(xi − x̂(πX, oi; cn+1)). (7.15)

Selecting a larger nsam will increase the accuracy of the Bayes’ risk evaluation. In the limit
of large samples, convergence is guaranteed [81], although a variety of issues arise in practice
such as floating point rounding errors and excessive memory costs.

7.1.1 Bayes’ Risk Evaluation: Maximum Importance Sampling

It is important to note that in the above description each sampled particle (model parameter)
is associated with a single outcome, which is computationally inefficient. If an outcome is
drawn under model parameter xi it is likely a valid outcome for model parameter xj, just
with a different likelihood. To calculate the risk with a single set of sampled outcomes
integrated for all model parameters in the prior distribution, each outcome oi is weighted by
its likelihood under model parameter xj, which is known as maximum importance sampling
(MIS) and allows exploration of a greater portion of the outcome domain for each particle
[81]. Consider the Monte Carlo Integration example below,

Eπ(x)[f(x)] =

∫
X

f(x)π(x)dx ≈ 1

n

n∑
i=1

f(xi). (7.16)

A set of points sampled from another distribution g(x) may be used by multiplying the above

integral with the unity factor g(x)
g(x)

, where the numerator is approximated by a set of samples
and the denominator is an analytic weighting for each sample

Eπ(x)[f(x)] = Eg(x)[
f(x)π(x)

g(x)
] =

∫
X

f(x)π(x)
g(x)

g(x)
dx ≈ 1

n

n∑
i=1

f(xi)π(xi)

g(xi)
. (7.17)
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Applying this technique to the Bayes’ risk equation (7.15) for the sampling distribution
Pr(on+1), and the prior particle distribution πX(x), the MIS approximation

r(π; cn+1) =

∫
X

dxπ(x|On, I; Cn)

∫
O

don+1 Pr(on+1|x; cn+1)LQ(x, x̂(πX, on+1; cn+1))


≈

npar∑
i=1

wi

∫
O

don+1 Pr(on+1|xi; cn+1)LQ(xi, x̂(πX, on+1; cn+1))

 , (7.18)

is obtained. Recall that the sampled set of outcomes Osam approximates the distribu-
tion Pr(on+1). Using MIS Monte Carlo integration with equation (7.18) and applying the
marginalized probability SMC identity equation (6.9) the MIS approximation for the Bayes
risk

rmis(π; cn+1) =

npar∑
i=1

wi

(
1

nsam

nsam∑
j=1

Pr(oj|xi; cn+1)

Pr(oj; cn+1)
LQ(xi, x̂j)

)

=
1

nsam

npar∑
i=1

nsam∑
j=1

wi Pr(oj|xi; cn+1)

No

LQ(xi, x̂j)

=
1

nsam

npar∑
i=1

nsam∑
j=1

wi Pr(oj|xi; cn+1)

No

LQ(xi, x̂j)

=
1

nsam

nsam∑
j=1

nm∑
k=1

Qkk

npar∑
i=1

wi|oj(xik − x̂jk)
2 (7.19)

=
1

nsam

nsam∑
j=1

nm∑
k=1

Qkk

(
x̂2

jk − x̂jk
2
)
, (7.20)

is obtained. Where x̂jk =
npar∑
i=1

wi|ojxik and x̂jk =
np∑
i=1

wi|ojx
2
ik are the first and second posterior

moments of model parameter xk after observation oj. The MIS Bayes risk (7.20) is the mean
posterior variance with respect to the sampled data values oj. It should be noted that when
the mean is much larger then the variance, evaluating the sample variance in the form of
equation (7.20) is known to be numerically unstable. In this case equation (7.19) may be used
which comes at the cost of numerical efficiency. A better single pass algorithm is Welford’s
method [47]. The computational complexity of the MIS Bayes risk is O(nparnsam) and is
linear in the number of outcome samples. The number of samples may be increased until
sufficient convergence is obtained. The MIS Bayes risk is a random variable dependent on
draws from the model likelihood posterior distribution, consequently it can be difficult to
find the numerical minimum with traditional optimization methods. A method to resolve
this for additive normal noise is provided in section A.1.

59



7.1.2 Bayes Risk Evaluation: Effective Strong Measurements

At its core, Monte Carlo integration functions by discretizing the outcome distribution for
the model under study, such that the Bayes risk may be efficiently calculated. An alternative
proposed heuristic has its roots in the microscopic nature of the macroscopic magnetization.
The measurement of normal additive noise is discretized to N effective strong measurements
of a binomial distribution such that the information content of a measurement from this
distribution will on average be equal to that of the additive noise measurement. The outcome
of the binomial distribution will have N discrete possibilities and allow a simple numerical
evaluation of the Bayes risk with the discrete risk from equation (7.10).

Recalling the observed magnetization

M |M(∞), σ,m ∼ N (M(∞)m(t), σ2). (7.21)

Where m(t) is the expectation value of σz

Tr[m(t)σz]. (7.22)

This may be rewritten in the form of a projection to the system ground state for a single
spin

Tr[m(t)σz] = Tr[ρ(t)(2 |0〉 〈0| − 1)] = 2 Tr[ρ(t) |0〉 〈0|]− 1 = 2p(t)− 1, (7.23)

where p(t) is the probability of obtaining a ground state measurement. The explicit time
dependence is now dropped for notational simplicity. Equation (7.21) may be rewritten as

M |M(∞), σ,m ∼ N (M(∞)(2p(t)− 1), σ2). (7.24)

The likelihood of having k ground state outcomes assuming N strong measurements, where
k,N ∈ Z≥0 is given by the binomial distribution

Pr(k;N, p) =

(
N

k

)
pk(1− p)N−k, (7.25)

which has variance equal to the CRB

Var[p̂] = I−1(p) = p(1− p)/N. (7.26)

As the binomial variance is dependent on the value of p which is not known, the average
variance assuming a uniform prior for p

Var[p̂] =
1

6N
, (7.27)

is used. The CRB provides a lower bound for the variance of equation (7.23)

Var[p̂] ≥ I−1(p) =
σ2

4M(∞)2
. (7.28)
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Note that the above bound is not dependent on p. The two Fisher Informations are set equal
and solved for N to obtain an estimate for the information content equivalent number of
effective strong measurements

N =

⌊
2M(∞)2

3σ2

⌋
=

⌊
2

3
SNR2

⌋
. (7.29)

Note that N has been rounded down to be conservative. In the regime where SNR ≤
√

3/2
the number of effective measurements will be N = 0 and evaluation of the Bayes risk will
provide no information. Therefore N ≥ 1 is enforced.

Note that the number of effective measurements scales quadratically in the SNR. In the
regime where SNR� 1 the effective strong measurement heuristic will become inefficient to
calculate, and a new experiment optimization technique is needed.

7.1.3 Bayes Risk Evaluation: High-SNR Limit

The fisher information matrix (FIM) may be used to estimate instrument sensitivity. In
the Bayesian setting for additive normal noise in the high SNR limit, the inverse FIM is
equivalent to the covariance of the inferred true parameters x(0) [82]. From this a high SNR
closed form expression for the Bayes risk may be derived.

Ferrie et. al have observed that particle filtering distributions tend toward a normal
posterior rapidly [25]. Assume the prior distribution after obtaining sufficient data O with
experiments C over n experiments to be normal

πX(x) = Pr(x|O; C) =
P√
2π
e−P(x−x̂)(x−x̂)T . (7.30)

The matrix P = Σ−1 = cov[x]−1 is the inverse covariance matrix and x̂ the parameter means
of the prior distribution, which is obtained from the particle distribution.

The likelihood of an observation on+1 assuming the generic model f(x; cn+1) is

1√
2πσ2

exp

(
−(o− f(x; cn+1))2

2σ2

)
. (7.31)

Under the assumption of Gaussian prior and noise, in the high SNR limit (|f |2/σ2 → ∞)
Vallisneri [82] has shown that the posterior mean is given by

x̂i(πX, o; cn+1) ≈ Σ
(p)
ki

(
(o− f(x(0))f ′i + Σ−1

ik x
(0)
i

)
. (7.32)

Where Σ(p) = (I + P)−1 is the posterior’s approximate covariance matrix with all FI com-
ponents evaluated at the parameter mean x(0) ie. Iki = Iki(x

(0); cn+1). Recall that

f ′k =
∂f(x)

∂xk

∣∣∣∣
x=x(0)

, (7.33)
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and that for the case of a normal distribution the FI matrix elements are

Iij = f ′if
′
j. (7.34)

The intuition underlying this approximation is that if the SNR is sufficiently high, only a
small region around the mean of the posterior distribution will have non negligible probability
mass. The linearization of the model function may be used as it often will allow the posterior
to be solved for analytically to give a linearized posterior mean. This is used to give an
approximate expression for the Bayes risk in the high SNR limit gives

R(x, x̂, cn+1) ≈
N∑
i=1

Qii Eo|x(0);cn+1

[(
xi −Σ

(p)
ki

(
(o− f(x(0))f ′i + Σ−1

ik x
(0)
i

))2
]

=
N∑
i=1

QiiΣ
(p)
ki

2
(
Σ−2
ik ((xi − x̂i))2 + f ′k

2
)
. (7.35)

Under the assumption of a normal prior distribution equation (7.30), equation (7.35) reduces
to

r(π; cn+1) =
N∑
i=1

QiiΣ
(p)
ij Σ

(p)−1

jk Σ
(p)
ki =

N∑
i=1

QiiΣ
(p)
ii . (7.36)

As an important sanity check observe that in the limit of vanishing signal strength the
risk simplifies to

r(π; cn+1)
P=0−−→ Tr [QI] , (7.37)

which shows that the CRB is saturated in the limit of high SNR and an uninformative
prior. This result has been derived and utilized many times within the context of Bayesian
A-optimality for nonlinear model functions [18]. Equation (7.36) provides an analytical
function that may be optimized to determine most informative experiments in the high signal
limit. What constitutes high SNR is model dependent and must be determined numerically.
Note that if the expectation of the inverse high SNR approximation over the entire prior
distribution inversion is taken∫

(I(x) + P) Pr(x)dx =

∫
I(x) Pr(x)dx + P = JD + JP, (7.38)

is obtained. This is exactly the Van Tree’s inequality for the normal distribution. This
may be used as an alternative risk metric, although performance is typically not much im-
proved over the simple maximum likelihood estimate (MLE) approximation for the increased
computational cost.

Note that when designing batched experiments with the high SNR Bayes risk the high
SNR posterior variance is simply

Σ(p) = (
n∑
i=1

I(ci) + P)−1, (7.39)
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due to the additivity of the FI. Which may then be used to evaluate the Bayes risk with
equation (7.36).

7.2 Comparing Bayes Risk Methods Numerical Per-

formance

Three well motivated methods for numerically evaluating the Bayes risk have been provided
in sections 7.1.1-7.1.3. These methods are complementary as they each operate in a specific
regime.

The strong measurement risk is useful for evaluating the risk in the low SNR regime as
it requires the sampling of very few outcomes; however, the number of the outcomes grows
quadratically in the SNR. It also provides a valuable conceptual link to the discrete nature
of the underlying projective measurements that are made.

As the strong measurement risk becomes inefficient to evaluate, the Bayes risk enters a
middling regime where it becomes sensible to use the maximum importance sampling risk as
it scales linearly with the number of samples. Provided the SNR is relatively high and the
prior is not too wide, it is efficient to evaluate the risk in this manner. Note that this method
makes no assumptions about the form of the likelihood or prior distributions. It may also
be used to approximate the Bayes risk for finite or multi-outcome distributions such as the
Poisson or multinomial distributions.

Finally, in the high SNR regime the Bayes risk becomes a functional of the FI and
may be evaluated analytically after approximating the prior distribution as normal, and is,
therefore, a constant time operation to evaluate. Although the high SNR risk was derived for
a uniform or Gaussian prior, and a Gaussian likelihood function, in practice it can be a useful
experimental design tool for more complex priors and likelihood distributions. The former
due to the tendency for particle filters to approach normal posteriors due to resampling, and
the latter as a result of the central limit theorem (CLT).

Studying the validity of the above regimes is necessary. While in the majority of cases
the Bayes risk is not analytically solvable, it is for a linear model. Consider a scalar linear
model f(λ; t) = λt, with additive normally distributed noise of variance σ ie. an observation
has the form

fi = λti + εi εi ∼ N (0, σ2).

The experiment setting t is effectively a knob that may be turned to increase the SNR of the
measurement and gives an effective variance σeff(t) = σ/t. Assuming a normally distributed
prior with mean λ0 and variance σ0 the Bayes risk is

r(t) =
σ2

effσ
2
0

σ2
eff + t2σ2

0

. (7.40)
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Which as expected is the variance of the product normal distribution resultant from the
likelihood and prior distribution’s convolution. This simple form is a result of the linear
model, and is much more complicated in general.

Evaluating the high-SNR approximate risk, the FI is simply the inverse effective variance
FI = 1/σ2

eff. The high-SNR risk is equal to the exact Bayes risk rsnr = r which is not sur-
prising as the high-SNR risk relies on the linearization of the model function to approximate
the posterior variance, which in this case is linear.

The number of effective strong measurements is

N =

⌊
2

3

1

σ2
eff

⌋
The strong measurement and MIS risks must be evaluated using particle filtering. The
numerical performance of the MCMC methods for risk and information gain evaluation with
the linear model are displayed in figures 7.1 and 7.2.
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Figure 7.1: Bayes risk evaluated for the linear model with varying number of outcome sam-
ples. Same number of outcome samples and particles were used. Sampling based strategies
quickly converge to the true risk.

The strong effective measurement model is discontinuous with the variation of the SNR,
which is an effect of discretizing the number of effective measurements with the application
of the floor function. Observe that while the ESM model follows the true Bayes risk, it is
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much less accurate than the sampling based risk. The poor performance of the ESM risk
for the linear model is attributed to the assumption that the magnetization model function
is constrained between −M(∞) ≥ M ≤ M(∞) which was made in the derivation. This
constraint is not satisfied for the linear model but is for the magnetization model.
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Figure 7.2: Information gain evaluated for the linear model with varying number of out-
come samples. Same number of outcome samples and particles were used. Sampling based
strategies quickly converge to the true risk.

The analytical infomation gain of the linear model is

ig(t) =
1

2
log
(
σ2
eff + t2σ2

0

)
− log

(
σ2
eff

)
. (7.41)

In figure 7.1 observe that the MIS algorithm does a good job approximating the information
gain.

7.2.1 Restricting the number of particles for Risk Evaluation

Typically when performing parameter estimation with a particle filter, the number of par-
ticles used will be on the order of thousands. As the computational complexity of the MIS
sampling algorithm is O(nsamnpar), if npar is on the order of thousands in practice nsam must
be kept small to keep evaluation sufficiently fast for online experimental design. A small nsam
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will lead to inaccuracy in the integration procedure as it will explore only a small outcome
space. The effect of downsampling the particle filter is examined by heuristically keeping
only the nsam most likely particles in the prior distribution πX(x). The performance of the

Figure 7.3: (left) Heat map of the standard deviation of the MIS Bayes risk evaluated with
the linear model for a varying number of outcome samples and 5000 particles in the particle
distribution. (right) Identical to (left) except with the same number of particles as outcomes
samples used in the integration procedure.

full particle distribution in comparison to the above heuristic is demonstrated in figure 7.3,
it is clear the performance of the full distribution is superior to that of the downsampled dis-
tribution. However, as both a greater number of samples are used and the SNR is increased
the standard deviation of the heuristic becomes comparable to that of the full distribution.
In practice, it is necessary to keep the evaluation time of the integration procedure small to
perform online experiment design. In figure 7.4, the computational time-weighted Bayes risk
standard deviation is shown. When the function evaluation time is of concern, it is useful
to reduce the number of particles in the distribution and increase the number of sampled
outcomes. In figure 7.5, the same behaviour holds for the evaluation of the information gain.
In practice, nsam = n′par = 300− 400 is sufficient to reduce the variation of the Bayes risk to
a sufficiently low level.

7.3 Batched Experiment Design

An extension to the task of designing the best experiment given the current state of knowl-
edge, is designing the next n experiments. This may be required depending on the capabil-
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Figure 7.4: (left) Evaluation time-weighted heat map of the standard deviation of the MIS
Bayes risk evaluated with the linear model with varying number of outcome samples and
5000 particles in the particle distribution. (right) Identical to (left) except with the same
number of particles as outcomes samples used in the integration procedure. Performance of
the downsampling heuristic is superior to that of the full distribution when evaluation time
is taken into account.

ities of the experimental setup such as in the case where experiments are to be evaluated
in batches due to limited device bandwidth. This question is simple to formulate within
the Bayesian framework. Consider the evaluation of the Bayes risk for n experiments with
experimental settings C = {c1, · · · , cn} and associated outcomes O = {o1, · · · , on}. To eval-
uate the MIS Bayes risk we require the ability to calculate the likelihood distribution for
a given set of experiments and the ability to draw outcomes Pr(O). The likelihood of the
batched experiment is simply the product of the likelihoods of the individual experiments

LOj = Pr(O|xj; C) =
n∏
i=1

Pr(oi|xj; ci), (7.42)

and modifying equation (7.43) to sample outcomes from Pr(O)

oji ∼ Pr(o|xj; ci) ∀xj ∈ Xsam, ∀ci ∈ C. (7.43)

With these two substitutions the MIS Bayes risk may be evaluated using equation (7.20).
The computational complexity of evaluating the MIS Bayes risk for a batch of nexps is
O(nexpsnpns) and is therefore tractable to evaluate.
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Figure 7.5: (left) Evaluation time-weighted heat map of the standard deviation of the MIS
information gain evaluated with the linear model for varying number of outcome samples
and 5000 particles in the particle distribution. (right) Identical to (left) except with the
same number of particles as outcomes samples used in the integration procedure. Just as
demonstrated in figure 7.4 for the Bayes risk the time-weighted performance is superior for
the information gain when using the downsampling heuristic.
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Chapter 8

Online Experimental Design applied
to Inversion Recovery Experiments

In this chapter the improved estimation efficiency that may be obtained in a typical inversion
recovery experiment by utilizing the experiment design heuristics described in chapter 7 is
explored. From figure 8.1 the complexity of the Bayes’ risk and its dependence on both
the prior distribution and current SNR is clear. Observe that the full numerical Bayes’ risk
converges given a sufficient number of samples particles and outcomes. It is also clear that
for various priors and SNR levels it diverges from the high SNR approximate Bayes risk.
The reason for this is an open question; possible factors for this behavior are explored in
chapter 9.

Prior to performing simulations, what constitutes a reasonable number of particle filter
and outcome samples for the Bayes’ risk must be determined. This is a necessary balancing
act between accuracy and evaluation time. In figure 8.2 a grid search over these parameters
is performed. Within this chapter 300 outcome and particle samples are used for all simu-
lations, as the Bayes’ risk varies less than 10−3 with respect to a 3000 outcome and particle
reference Bayes’ risk, while keeping the evaluation time around half a second for 300 different
experiment settings on a desktop CPU.

8.1 Per Experiment Performance Enhancement of Op-

timal Inversion Recovery Experiments

Experiments are simulated with SNRs of 1 and 10. In any form of Bayesian analysis often
the point of contention is what prior to use. When exploring the behavior of T1 parameter
estimation in inversion recovery experiments, simulations are initialized with a tight uniform
prior over M(∞) (essentially perfect knowledge of the magnetization), and a broad uniform
prior in the range of 0.1− 3.0s for the T1 value

π(M(∞), T1) = U(M(∞), 0.999, 1.001) ∪ U(τ, 0.1, 3.0), (8.1)
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Figure 8.1: IR Bayes’ risk evaluated for various prior distributions at different levels of SNR.

with 5000 particles. For a given simulation run, a set of true model parameters xi =
{M(∞)i, T1i} ∼ π(M(∞), T1) is sampled from the prior. This set of parameters is used
for all experiment parameter selection techniques in a given iteration so that experiment de-
signs may be consistently compared. Experiment times are selected from within the domain
τi ∈ T = (0, 5× 3.0)s. Experiment optimization is then performed with the expected Bayes’
risk over 300 linearly spaced values of τ in the range (0, 5×3.0) and selecting the experiment
setting cn+1 = τn+1 that minimizes the respective loss function. An experiment outcome
on+1 is simulated for each experiment design heuristic and input into the respective particle
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Figure 8.2: (left)Heatmap depicting the Bayes’ risk variation as a function of the number of
particle and outcome samples. (right)Heatmap depicting the Bayes’ risk evaluation time as
a function of the number of particle and outcome samples.

filter implementation to perform a Bayes’ update. As outcomes are stochastically sampled
it is unlikely that any two simulations will have the same results. Simulation results are

then averaged over many values of xi to obtain the average mean squared error MSE(T1, T̂1)
between the estimated T̂1, and the true value T1, and the average variance of the posterior
distributions.

For a baseline experiment design heuristic two methods are used. The first is a traditional
sweep of τ where for n uniformly spaced increasing values of τ from the domain T = [τ1, τn],

τi =
i− 1

n− 1
(τn − τ1) + τ1. (8.2)

The second method is a uniformly random selection of N time values from τi ∼ U(0,T). Note
that in the limit of a large number of simulation runs and experiments per simulation the two
methods should produce equivalent results as Bayes’ rule is commutative for independent
experiments. In practice this does not hold as resampling is used within the particle filtering
algorithm which can cause experiment ordering to matter [54].

25 simulation runs, each consisting of 200 experiments are performed. The random,
uniform linear sweep, MIS Bayes risk, ESM Bayes risk, high SNR Baye’s risk and MIS
Information gain experiment design heuristics are simulated. The ESM strategy is limited
to Nmeas ≤ 100 to prevent excessive computational time in high SNR simulations. Note that
this will introduce further error in this already approximate Bayes risk.

In figure 8.3 and figure 8.4 the average log MSE and posterior variance of T1 are plotted
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respectively for varying SNRs with their 95% confidence intervals. It is immediately clear
that certain strategies perform better than others.
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Figure 8.3: Simulated mean squared error plots for the estimated relaxation time compared
to the true value for varying SNRs and fixed magnetization. Shaded regions give 95%
confidence intervals. It is clear that online experimental design strategies perform better
than both the swept and random baseline strategies.

The random experiment selection is clearly the worst performing design technique for
learning the true T1 value. Recalling the magnetization model function equation (6.1) this
should be expected. Poor performance is attributed to the small derivative of the model
function with respect to T1 for large values of τ . For additive normal noise the result is
an exponentially suppressed sensitivity of the model likelihood function to variations in
T1. Consequently the particle likelihood function at an incorrect T1ε = T1 + ε satisfies
the relationship limτ→∞ L(T1ε) = L(T1) and consequently the updater learns nothing about
the T1 value in the limit of large τ � T1. Since both the uniform random sampling and
linear sweep heuristics performs many experiments at values greater than T1, and in this
particular simulation a tight prior is placed on the magnetization, these experiments are
wasted. For this reason the random experiment design also performs poorly compared to
sequential Bayesian heuristics.

A quick survey of the online experimental design algorithms shows that, with exception
of the ESM, they provide approximately a half order of magnitude improvement in mean
squared error and variance of the T1 posterior for a given number of experiments. In figure 8.5
it is observed that the ESM Bayes risk performs worse for all SNR values, and drastically
worse performance at low SNR (although still better than baseline strategies), which is
where it was hoped for the heuristic to be most accurate. As this metric is also the most
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Figure 8.4: Simulated variance plots of the posterior relaxation time estimate for varying
SNRs. Shaded regions give 95% confidence intervals. As in figure 8.3 it is clear that online
experimental design strategies perform significantly better.

Figure 8.5: Comparison of the MIS Bayes risk with the ESM Bayes risk. The ESM approach
is worse for all SNR values, with increasingly worse performance at low SNR.

expensive to compute at large SNR where it is most accurate, and the high SNR risk exists
for this regime it is concluded that the ESM Bayes risk that is not useful for T1 estimation
with additive normal noise and omitted from future simulations. Examining only the online
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design strategies in figure 8.6, the MIS Bayes risk, information gain and high SNR Bayes
risk all have comparable performance within their confidence intervals.
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Figure 8.6: Simulated online experimental design variance plots. We note that all strategies
have comparable performance regardless of SNR.

In figure 8.7 the selected experiment is plotted against the prior T1 value at the current
step. It is clear that the Bayes risk finds its minimum approximately at τ = T1, which as
expected is the maximum value of the T1 index of the FI. Similarly the same simulation as
above is performed swapping the uniform prior bounds for T1 and M(∞), ie. strong belief
in the value of T1 but not magnetization with results shown in figure 8.8 Observe that τ ≈ 0
is consistently selected, which is the maximal value for the magnetization index of the FIM.

8.1.1 Unknown Magnetization and Relaxation Time Simulations

The previous section was primarily concerned with learning T1 when the magnetization is
known. In practice typically both M(∞), and T1 will have some initial non point-like prior.
In figure 8.9 the average covariance of both the magnetization and relaxation time as a
function of experiment number is depicted. An interesting feature is the early priority the
Bayesian heuristics place on learning the magnetization. These in a sense are the ‘easiest’
experiments which the algorithm can choose to reduce the weighted risk quickly. After which
it will focus on reducing the variance of T1.
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Figure 8.7: Comparison of selected experiment τ values chosen at the minimum Bayes risk
compared to the mean T̂1 at each step for a simulation with M(∞) = 1, T1 = 1 true model
parameters and a very tight prior over the magnetization. Observe that for low SNRs the
MIS minimum risk roughly follows the current posterior belief of the T1 model parameter,
however in the higher SNR regime of 10, and 100 the minimum MIS Bayes risk is exactly
the estimated T1 value as is predicted by the high SNR Bayes risk of section 7.1.3.
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Figure 8.9: Variance plots when learning both M(∞)(dashed) and T1(solid).
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Figure 8.8: Comparison of selected experiment τ values chosen at the minimum Bayes risk
compared to the mean ˆM(∞) at each step for a simulation with M(∞) = 1, T1 = 1 true
model parameters and a very tight prior over the magnetization. Observe that in all SNR
regimes the chosen experiment is τ = 0 and is the optimal measurement point for learning
of the magnetization irrespective of SNR. This the experiment that maximizes the signal
regardless of the true value of T1.

Plotting the mean squared variances compared with the BCRB value in figure 8.10 ob-
serve that the algorithm still approaches the optimal estimation strategy after a sufficient
number of experiments.

8.2 Optimizing Experiments with Respect to Wall Time

Thus far minimizing the per experiment utility has been explored. This is fine for situations
where the “cost” of an experiment is the same regardless of what experiment is run. For
example this may correspond to cases where each experiment costs a fixed amount of currency
or time, in which case there is a simple mapping between the cost and corresponding number
of experiments. However in general this mapping need not, and will not be trivial. Redefining
the cost weighted utility function as

U(c)w =
U(c)

cost(c)
. (8.3)

For T1 measurements it is generally desired to generate the best estimate for T1 in the shortest
period of time. Take the cost of an experiment to be the sum of the initialization time τi,
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Figure 8.10: Mean squared variance plots compared to the BCRB values for both the MIS
Bayes risk and random experiment design strategies when learning both M(∞)(dashed) and
T1(solid). The particle filtering strategy rapidly approaches the BCRB in the high-SNR
regime.

the recovery time τ and the thermalization time τth to be

cost(τ) = τtot = τi + τ + τth. (8.4)

The new cost weighted utility function becomes

Uτtot(τ) =
U(τ)

τi + τ + τth
(8.5)

This is almost the utility function that must be optimized to perform a cost-weighted online
experimental design of the IR experiment. However, if this is design heuristic is implemented
as described above, it will be found that while the IG performs exactly as expected the Bayes
risk does not.

To understand why, consider that the question the information gain utility asks is “How
much more information will be contained in the average posterior distribution than the
prior?”. When the experiment cost is accounted for this is now “What is the rate of infor-
mation gain with respect to the experiment cost?”. This is a very intuitive question to ask
and is equivalent to the rate of information gain. On the other hand, if the Bayes risk in
the single model parameter case is considered the question becomes “What is the expected
variance of the posterior distribution weighted by the cost of the experiment?”, which is not
in the form of a rate. It is necessary to redefine the cost weighted Bayes risk in the form of

77



a rate, in a similar manner to the IG. Define the risk improvement

ri(πX, c) = Tr[QCovπX(x)]− r(πX, c). (8.6)

The risk improvement asks “How much less will the Q weighted variance of the expected
posterior distribution be than the weighted variance of the prior distribution?”. Adding
the experiment cost to the risk improvement this becomes “What is the expected rate of
variance reduction per experiment cost?”. This is in the same rate form as the IG and will
perform comparably. Note that in the case where the experiment cost does not depend on
the experimental setting c then

arg min
c

r(πX, c)

cost
= arg max

c

ri(πX, c)

cost
,

is satisfied. The Bayes risk is often a satisfactory utility because the experiment cost has
been implicitly taken to satisfy the above condition.

Cost weighted optimal design strategies with a τth = 5×max(T1) = 15s thermalization
time are explored. In practice this corresponds to each experiment starting with a minimum
of 99% of the total magnetization. The interval time is set to τi = 0.5s. Simulation results
are shown in figure 8.11. The MIS and high SNR risks have near identical performance. Note
that the Bayes risk strategies beat the information gain strategies for estimating relaxation
time, but are edged out by the information gain strategy when learning the magnetization.
Recall that the risk strategies optimize the weighted posterior variance and observe that in
figure 8.13 the risk strategies as expected outperform the information gain.

When optimizing the amount learned per unit time, not experiment, it is expected that
these strategies will perform poorly per experiment compared to the baseline strategies, as
demonstrated in figure 8.12.

8.2.1 Faster Inversion Recovery Experiment

In the previous section the concept of minimizing the utility of an experiment not with respect
to the experiment number, but instead the cost of a given experiment was introduced. For
the case of a typical T1 learning experiment the cost is the total length of an experiment,
including the fixed minimum experiment interval time τi, and the tunable thermalization
time τth. For samples with long T1 times τth+τi � τ is usually satisfied. In order to increase
the rate of information gain or risk improvement per unit time it is easiest to decrease τth.

Assuming a perfect inversion (π) and readout (π/2) pulses with the condition T1 � T2

satisfied, after an inversion recovery pulse sequence, the net magnetization is zero. The mag-
netization will then proceed to recover to its thermal equilibrium following the thermalization
model function

Mth(M(∞), T1) = M(∞)(1− e−
τth+τi
T1 ). (8.7)
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Figure 8.11: Variance plots when learning both M(∞)(dashed) and T1(solid) with cost
weighted experimental design strategies.
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Figure 8.12: Identity weighted sum total variance plot using cost weighted experimental
design strategies. Observe that the Bayes risk strategies outperform the information gain as
expected.

At this point the experimentalist might realize that rather than allow the full magneti-
zation to recover by waiting τth � T̂1, one could let the magnetization recover only to some
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Figure 8.13: Variance plots when learning both M(∞)(dashed) and T1(solid) with cost
weighted experimental design strategies as a function of experiment number. Note that as
expected baseline strategies outperform the online strategies which are focused on maximiz-
ing how much can be learned in a period of time, and not per experiment.

given fraction of the total Mth ≤M(∞) and compensate for the decreased experiment SNR
by averaging more measurements in a given period of time. This is known as the faster
inversion recovery experiment. To gain an intuition for the benefit of this approach the
effective SNR of the two thermalization strategies is compared.

If both the experiment noise and total experiment time is fixed the SNR is proportional
to the product of the thermal magnetization and the root number of experiments performed.
The ratio of the two approaches to thermalization demonstrates the improvement in the
SNR one can achieve by selecting the optimal thermalization time

α =

√
τexp

τtot(τopt)
Mth(τopt)√

τexp
τtot(τtr)

Mth(τtr)

=

√
τi + τ + τopt
τi + τ + τth

1− e−τopt
1− e−τth

, (8.8)

for a fixed measurement τ . Maximizing equation (8.8) for the thermalization time ˆτopt that
will result in the maximum SNR gain gives

ˆτopt = arg min
τopt

α = −τi − τ −
1

2
T1 − T1W−1

(
−1

2
e
− 1

2
− τ
T1

)
. (8.9)
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Where W is the Lambert W Function [20].

In practice an experimentalist might wait anywhere from 3-5 times maximum expected
T1 to reset to the thermal state. Assuming the τi and τ are zero, the improvement in SNR
the experimentalist can expect in a given period of time if the optimal thermalization time
τopt is used compared to the previous thermalization time τth is shown in figure 8.14. For the
simulations in question the the improvement is generally a factor of 1.2− 1.4 in the effective
SNR.
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Figure 8.14: Improvement in SNR with variation of thermalization time. The optimal
thermalization time ˆτopt plotted (dashed) to guide the eye. Figures were evaluated with
T1 = 1.0 s, τtr = 5× T1 and τi = 0 s.

Reducing the thermalization time is a very useful technique and can be further improved
by incorporating the thermalization time as an experimental setting in the experiment model
function, consequently gaining information about the T1 value in the thermalization step of
the experiment. Let a = 2− e−τth in equation (6.1) to obtain the FIR model function

Mfir(M(∞), T1; τ, τth) = M(∞)
(

1− e−
τth
T1

)(
1− 2e

− τ
T1

)
. (8.10)

This allows the online experimental design algorithm to effectively choose the SNR of each
observation and to incorporate estimation of the T1 parameter into the thermalization reset
step, in which traditionally no information is gained. Of course the cost (time) of an exper-
iment is not of interest, the answer is to always let τth � T1, ie. to perform the maximum
SNR experiment. However, when time is of concern significant improvements may be ob-
tained using the FIR experiment, with variable thermalization time, over the IR experiment
and its fixed thermalization time.
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In figure 8.15 the performance of the cost weighted rapid reset T1 learning under a tight
magnetization prior is compared with the Bayes risk with the same τth and τi settings as in
the previous section. It is observed that a large improvement in the variance with respect
to total experiment time for the FIR Bayes risk design strategy over the IR experiment is
even obtained for the baseline random strategy. Note that although not plotted, a large
improvement was shown for the information gain. However, the Bayes risk was superior in
all cases. Once again it is found that the high SNR Bayes risk has superior performance to
the MIS Bayes risk, which does not align with expectations.
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Figure 8.15: Variance plots for learning T1 under a tight M(∞) prior comparing FIR and
IR experiments against total experiment time, with selected time weighted online design
heuristics.

Examining the performance of the FIR and IR experiments when optimizing per exper-
iment and not experiment time in figure 8.16 it is seen that the rapid reset and traditional
experiments converge in performance as the rapid reset optimal design will choose to let the
thermalization time τth be as large as possible to maximize the SNR of the single measure-
ment. This is expected as the model function equations (6.1) and (8.10) become identical in
the limit τth →∞.

As expected, looking at the per experiment performance of the time weighted online
design strategies in figure 8.17, the FIR experiments are much less effective per experiment
as they choose to sacrifice SNR in order to improve time efficiency.

Now the behavior when estimating both M(∞) and T1 under identical priors is studied,
as in the previous section. In figure 8.20 var(M(∞)) and var(T1) as a function of total
experiment time are shown. Interestingly it is only for the low SNR plot that the FIR
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Figure 8.16: Variance plots for learning T1 under a tight M(∞) prior comparing FIR and
IR experiments against total experiment time, with selected online design strategies without
cost-weighted experiment design.

experiment significantly outperforms the traditional IR experiment when only the variance
of T1 is considered. However, the FIR experiment’s online strategies perform significantly
better when considering the variance ofM(∞). In figure 8.18 the combined weighted variance
for M(∞) and T1 is plotted. The performance of the FIR experiment while still superior is
not as drastic compared with the IR experiment when learning the magnetization as well as
the relaxation time in the high-SNR regime.
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Figure 8.17: Variance plots for learning T1 under a tight M(∞) prior comparing FIR and IR
experiments per experiment, with selected time weighted online design strategies. The FIR
experiments perform worse with respect to IR experiments when evaluated on a per experi-
ment basis as they have had their recovery times selected to optimized for total experiment
time.
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Figure 8.18: Variance plots for learning both M(∞) and T1, comparing FIR and IR experi-
ments against total time, with selected time weighted online design strategies.
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Figure 8.19: Combined weighted variance for M(∞) and T1, comparing FIR and IR experi-
ments against total time, with selected time weighted online design strategies.

The FIR experiment also approaches the BCRB in figure 8.19 for the combined weighted
variance of M(∞) and T1, verifying that the estimation strategy is still near optimal for the
FIR experiment.
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Figure 8.20: Combined weighted variance for M(∞) and T1 for the FIR experiment with
the BCRB plotted. Verifying that the weighted variance approaches the lower bound set by
the BCRB for the FIR experiment.

8.2.2 FI Experiment Selection Heuristic

Previously it was noted that the mean maximal values of the FIM are the most likely
experiment to be selected in most cases. The performance of the particle filtering techniques
have been shown to approach the BCRB, and the high SNR Bayes risk is a functional of the
FIM. It seems reasonable that the maximal diagonal values of the FIM will be the optimal
measurement locations to reduce the variance of the respective model parameter. As the FIM
for additive normal noise is a function of the model function’s first derivatives, these optimal
measurement locations may be solved for the inversion recovery experiments analytically.

Consequently the following heuristic online experiment design protocol is proposed. For
a given prior π(M(∞), T1) with means ˆM(∞), T̂1 and covariance Cov(M(∞), T1|π) define
the maximal FIM τ values as τT1 and τM(∞). The maximal FI values may be used to compute
the cost weighted high-SNR risk improvement for τT1 and τM(∞) yielding risk improvements
ri(τM(∞)) and ri(τT1). The selected heuristic experiment τ is

arg max
τ∈{τM(∞),τT1}

ri(τ). (8.11)

This online experimental design heuristic will alternate between the optimal measure-
ments for learning the magnetization, and relaxation time proportionally to the weighted
variance of the respective parameter. Note that it will still typically perform experiments

86



at many different values of τ as the optimal τ will vary as data is collected and the prior
is updated. This heuristic requires no numerical optimization over experimental parameters
and greatly reduces the computational resource requirements for online experiment design,
while producing comparable performance enhancements over baseline design strategies.

It is only when both the magnetization and relaxation time have same order of magnitude
uncertain priors (or a weighting matrix Q that induces a near equal contribution to the Bayes
risk for both parameters) that a strong deviation of the Bayes risk selected values compared
to the heuristic values will be observed, as seen in the case of wide prior for both M(∞) and
T1 in figure 8.21 compared to figure 8.22 where the FI heuristic is used.
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Figure 8.21: Comparison of selected experiment τ values chosen at the minimum MIS Bayes
risk compared to the means ˆM(∞) and T̂1 at each step for a simulation with true model
parameters M(∞) = 1, T1 = 1, and a wide prior over both the magnetization and relaxation
time. The selected experiment values are not the optimal values of the FI heuristic discussed
above, because the online design attempts to minimize the weighted posterior variance of
both model parameters, and therefore samples experiments that are less easy to interpret.
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Figure 8.22: Comparison of selected experiment τ values chosen at each step using the FI
heuristic for a simulation with true model parameters M(∞) = 1, T1 = 1, and a wide prior
over both the magnetization and relaxation time. The heuristic alternates between sampling
to improve the magnetization and relaxation time estimates, and samples at the optimal
heuristic times. Its performance is expected to be worse on average than the Bayes risk, but
to require fewer computational resources.

The simplest heuristic case is the IR experiment with a constant experiment cost. The
Fisher information of the IR model function has maximal values τM0 = 0 and τT1 = T1.
Results of heuristic simulation performance in figure 8.23 demonstrate that the heuristic is
near optimal when M(∞) is initially known. In figure 8.24 simulations where M(∞) has an
identical unknown prior to the relaxation time are plotted. Observed performance is slightly
worse than the Bayes risk techniques, as the heuristic focuses on reducing the variance of a
single model parameter at a time, whereas the Bayes risk optimization is capable of selecting
experiments that reduce the total weighted variance.

The heuristic becomes slightly more complicated when experiment time(cost) is ac-
counted for. The maximum FIM T1 element is

τT1 =
1

4

(
T̂1 − 2(τi + τth) +

√
T̂1

2
+ 12T̂1τi + 4(τi + τth)2

)
. (8.12)

From equation (8.12) observe that the maximal CRB value when accounting for cost varies
from T̂1 in the limit of a very long experiment interval/thermalization time, and T̂1/2 in
the limit of no interval/thermalization time. The CRB optimal value for learning the mag-
netization is still τM(∞) = 0. The heuristic is extended to the FIR experiment by defining
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Figure 8.23: Covariance plot of T1 estimate for heuristic online experimental design when
M(∞) is assumed known and cost is constant. As expected the heuristic performance is
equivalent to the Bayes risk.
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Figure 8.24: Covariance plot of M(∞)(dashed) and T1(solid) estimates for heuristic online
experimental design under uninformative identical priors for M(∞) and T1 when experiment
cost is constant.
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the optimal reset time to be the thermalization time that maximizes the SNR found in
equation (8.9).

The performance of the experiment time weighted heuristic with unknown magnetization
and relaxation time for the IR and FIR experiments are simulated in figure 8.25. Observed
performance is equivalent to the high-SNR Bayes risk for both magnetization and relaxation
time estimates.
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Figure 8.25: Covariance plot of M(∞)(dashed) and T1(solid) estimates for heuristic online
experimental design under uninformative identical priors for M(∞) and T1 when optimized
with respect to total experiment time. Performance is equivalent to high SNR Bayes risk.

8.3 Learning the SNR Simultaneously

Thus far the value of the variance σ2 has been assumed known. For a given experi-
mental system, conditions and sample the noise is an i.i.d. fixed value of the instru-
mentation and is characterized before an experiment. Alternatively, the noise σ2 may
be treated as an unknown model parameter in the particle filter and assigned a prior.
Now σ2 will be estimated simultaneously with M(∞) and T1. As noted by Chaloner and
Verdinelli, D-optimal(information gain) designs are highly sensitive to the variance whereas
A-optimal(Bayes risk) have an innate robustness for linear model functions [18]. Unfortu-
nately, this does not hold true for nonlinear models in which case both the Bayes risk and
information gain will depend on the observed data.

Simulations are performed with fixed magnetization of M(∞) = 1.0 and varying σ to
obtain SNRs of 1 and 10. The same priors for T1 and M(∞) as in the previous section are
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used, while assigning a uniform prior for π(σ) = U(10−6, 10). For brevity, only simulations
where both M(∞) and T1 are estimated with time-weighted experiment design heuristics are
performed. Results are shown in figure 8.26. The MIS Bayes risk significantly outperforms
the high-SNR risk in the low-SNR regime. This enhanced performance is attributed to the
increased nonlinearity of the posterior distribution as a consequence of estimating σ2.
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Figure 8.26: Simulations comparing total covariance with identity matrix Q with prior over
σ2.

8.4 Q Matrix Selection

For all design heuristics in the previous sections an identity weighting matrix Q. In practice
when estimating the T1 the magnetization M(∞) is not of interest and it is not desired to
design experiments that account for this parameter. In this case choose Q′ = diag([0, 1]).
The performance of estimating M(∞) and T1 with the two different weighting matrices is
compared in figure 8.27. The performance of T1 estimation with Q′ is slightly enhanced,
while for M(∞) it performs significantly worse. From an implementation perspective it has
been found that it is often better to include some weighting for all parameters to aid the
particle filter in convergence to realistic particle locations.
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Figure 8.27: Covariance plot of M(∞)(dashed) and T1(solid) estimates for heuristic online
experimental design under uninformative identical priors for M(∞) and T1 when optimized
with respect to total experiment time for different weighting matrices.

8.5 Optimal Batched Experiment Design

Optimal designs of relaxation estimates have been considered in detail by Weiss et. al.
within a frequentist least-squares estimate framework for batched fixed interval experiment
design [89]. They consider polynomial designs of the form

τi = τ1 + (τn − τ1)

(
i− 1

n− 1

)r
i = 1, 2, 3, · · · , n (8.13)

Where n is the number of predetermined experiments and the experiments τi are determined
by the initial experiment τ1, final experiment τn, and power law spacing r > 0. They design
experiments to minimizes the estimated least squares standard deviation σT̂1

σT̂1
T1

=
σ

M(∞)
G

(
τ1

T1

, · · · , τ1

T1

)
, (8.14)

Where

G =

√
β1

β1β3 − β2
2

. (8.15)
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With dimensionless β’s and experiment times ti = τi/T̂1 and w = τth/T̂1.

β1 =
∑
i

(
1−

(
2− e−w

)
e−tI

)2
, (8.16a)

β2 =
∑
i

(
1−

(
2− e−w

)
e−ti
) (
−2ti + (w + ti)e

−w) e−ti , (8.16b)

β3 =
∑
i

(
−2ti + (w + ti)e

−w)2
e−2ti . (8.16c)

The error estimates are based on a linearized error propagation of the expected variance
of a least squares fit. It is important to consider how their methods differ from the methods
presented here. First note that the predicted standard deviation of the relaxation parameter
σT̂1
T1

found in equation (8.14) has a simple linear dependence on the SNR. The methods of
Weiss are based on high SNR approximations and do not hold in the low SNR regime where
the MIS Bayes risk should hold.

Another significant difference is found in the quantity G which depends on a point es-
timate of T1. Their method is not naturally able to account for a distribution of prior
knowledge over the T1 parameter. Weiss et. al attempt to correct for this by taking the
most conservative set of experiments

max
T1∈[T1A ,T2B ]

σT̂1
T1

(τ1, τn, T1), (8.17)

over some interval determined by their prior knowledge [T1A , T1B ]. This method of incor-
porating prior knowledge is unable to incorporate nonuniform priors, and the heuristic of
selecting the most conservative experiment settings will on average waste experimental re-
sources. The argument for the most conservative experiment is that it provides a bound on
the maximum expected error given an interval knowledge for T1. One can easily see how this
interpretation becomes problematic if a gamma distributed prior over T1 is considered. Such
a prior’s tails will extend unbounded, and consequently, the most conservative experiment
heuristic would select times that are also unbounded even though the probability of such a
value occurring is asymptotically small. A more natural formalism might choose the most
conservative experiment over some credible region. If worrying about significant deviation of
outliers from the Bayes risk, fewer consecutive experiments should be performed with more
frequent experiment using the current state of knowledge. Due to the nonlinearity of the IR
and FIR model functions sequential design is expected to result in improved performance
[18]. This is not possible within the framework of Weiss, which is unable to accurately
incorporate previous experiments into the experimental design process. Taitelbaum et al.
attempt to incorporate this by performing a two stage design. Where the first stage of the
design is used to determine an estimate of T1 and the second stage is designed with this
estimate under a credible region assumption. The reliance on batched experimental designs
precludes the design of arbitrary unstructured experiments and forces the use of structured
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experiments such as equation (8.13) due to the computational complexity of optimizing such
an experiment. The framework outlined in chapter 7 incorporates all of these features nat-
urally and allows the design of the optimal experiment given the current state of knowledge
within a consistent framework.

Comparing the performance of the Bayesian experimental designs over those listed by
Taitelbaum [78] for a FIR experiment with τth = 2T1B and varying priors defined for the
interval T1 ∈ U (T1A , T1B) which are parameterized by the unitless α = T1B/T1A , and designed
with the equation (8.13) using r = 1. Bayesian experiment design is performed as described
in section 7.3 for SNRs of 1 and 10, and M(∞) ∈ U(0.5, 3.0) with QM(∞) = 0 and QT1 = 1
using the Bayes risk, high SNR Bayes risk and the greatest risk. The greatest risk is an adhoc
SMC form of equation (8.17) which recalling equation (7.19) selects the batch of experiments
that minimizes the risk over the maximum risk model parameter’s particle

GR = max
i

nsam∑
j=1

nm∑
k=1

Qkk

∑
(xik − x̂jk)

2. (8.18)

The designed parameters are found in table 8.1, it is clear that there are significant differ-
ences between the Bayesian designs and Taitelbaum’s and that there is a strong dependence
on the SNR as depicted in figure 8.28. In the low SNR regime the Bayes risk prefers to
perform a very narrow sweep, whereas in the high SNR regime it performs an experiment
sweep more similar to that predicted by Taitelbaum et. al. This is believed to be due to
increasing sensitivity to optimal measurements at high SNR as shown in figure 8.1. The
effect of a true T1 far from the mean T1 would be significant in the high SNR regime and
would induce poor experimental performance. The optimal experiment is therefore to per-
form a larger sweep to account for these outliers relaxation times, whereas in the low SNR
regime the outliers have a much less drastic effect on performance and it is therefore best to
optimize the experimental design for the expected T1 value.

For reference, designs are also provided for the IR experiment under the same priors as in
table 8.2. Figure 8.29 depicts the calculated Bayes risk for the designed optimal experiments.
It is clear that the Bayes risk is expected to outperform the design of Taitelbaum with the
high SNR and MIS risk converging at high SNR.
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Taitelbaum Bayes Risk High SNR Bayes Risk Greatest Risk

SNR α T1A T1B 〈σ2
T1
〉 T1A T1B 〈σ2

T1
〉 T1A T1B 〈σ2

T1
〉 T1A T1B 〈σ2

T1
〉

1.0 1.10 0.50 0.87 0.0009 0.76 0.76 0.0009 0.76 0.79 0.0009 0.70 0.72 0.0024
1.20 0.48 1.01 0.0033 1.09 1.09 0.0033 1.09 1.11 0.0033 0.61 1.16 0.0085
1.30 0.46 1.16 0.0074 1.18 1.18 0.0071 1.13 1.15 0.0070 0.76 1.28 0.0174
1.40 0.46 1.27 0.0118 1.16 1.16 0.0112 1.13 1.16 0.0111 0.52 1.78 0.0291
1.50 0.45 1.40 0.0183 1.15 1.15 0.0173 1.12 1.17 0.0170 1.01 1.07 0.0401
1.60 0.45 1.51 0.0266 1.17 1.17 0.0248 1.14 1.17 0.0244 1.00 1.06 0.0499
1.70 0.44 1.66 0.0333 1.22 1.22 0.0307 1.19 1.25 0.0306 0.87 1.39 0.0631
1.80 0.45 1.73 0.0423 1.20 1.20 0.0388 1.20 1.23 0.0387 0.93 1.82 0.0797
2.00 0.43 2.01 0.0640 1.31 1.31 0.0568 1.31 1.34 0.0558 1.18 1.21 0.1087
5.00 0.38 4.41 0.6076 2.40 2.40 0.4572 1.81 4.47 0.5286 1.56 4.28 0.9689

10.00 0.55 7.22 2.6868 4.31 4.43 1.9402 2.91 8.04 2.3248 3.03 8.04 4.0662
15.00 0.68 9.72 5.8562 6.13 6.30 4.1512 3.75 11.75 5.1474 5.11 11.75 10.4060
20.00 0.77 12.09 10.2384 7.97 7.97 7.2412 4.65 15.28 9.1022 5.76 15.28 17.9300

10.0 1.10 0.50 0.87 0.0006 0.72 0.76 0.0005 0.63 0.94 0.0004 0.67 0.83 0.0015
1.20 0.48 1.01 0.0012 0.71 0.87 0.0010 0.59 1.13 0.0009 0.68 0.90 0.0030
1.30 0.46 1.16 0.0016 0.69 1.01 0.0013 0.59 1.26 0.0013 0.66 1.11 0.0038
1.40 0.46 1.27 0.0018 0.64 1.26 0.0015 0.59 1.42 0.0015 0.64 1.39 0.0038
1.50 0.45 1.40 0.0019 0.64 1.42 0.0016 0.59 1.55 0.0017 0.72 1.47 0.0041
1.60 0.45 1.51 0.0023 0.64 1.57 0.0020 0.59 1.71 0.0020 0.67 1.68 0.0044
1.70 0.44 1.66 0.0028 0.70 1.66 0.0024 0.61 1.83 0.0022 0.67 2.01 0.0073
1.80 0.45 1.73 0.0026 0.70 1.79 0.0022 0.64 1.97 0.0024 0.82 2.09 0.0074
2.00 0.43 2.01 0.0032 0.71 2.17 0.0028 0.65 2.24 0.0029 0.91 1.91 0.0083
5.00 0.38 4.41 0.0200 1.66 4.41 0.0158 1.47 4.41 0.0158 2.05 4.41 0.0515

10.00 0.55 7.22 0.0970 3.49 8.31 0.0660 2.89 8.31 0.0661 3.61 8.31 0.3024
15.00 0.68 9.72 0.2630 5.20 11.95 0.1719 3.98 11.95 0.1523 6.58 11.95 0.8237
20.00 0.77 12.09 0.5125 7.07 15.74 0.2896 4.79 15.74 0.2853 7.76 15.74 1.0925

Table 8.1: Computed optimal parameters for FIR experimental initial (τ1) and final (τN) relaxation delays for N = 8,
τth = 2T1B for varying α. 〈σ2

T1
〉 is the expected posterior covariance of T1 for the given experiment parameters. The

optimal parameters designed by Taitelbaum et. al. [77] are independent of SNR.
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Bayes Risk High SNR Bayes Risk Greatest Risk

SNR α T1A T1B 〈σ2
T1
〉 T1A T1B 〈σ2

T1
〉 T1A T1B 〈σ2

T1
〉

1.0 1.10 0.81 0.83 0.0008 0.79 0.81 0.0008 0.63 0.99 0.0025
1.20 0.97 0.97 0.0032 0.94 0.97 0.0032 0.80 0.85 0.0084
1.30 1.03 1.03 0.0069 0.98 1.01 0.0068 0.59 1.23 0.0171
1.40 0.92 0.95 0.0114 0.90 0.92 0.0112 0.64 1.33 0.0285
1.50 1.02 1.02 0.0176 0.99 1.02 0.0172 0.72 1.40 0.0350
1.60 0.98 1.00 0.0237 0.98 1.00 0.0233 0.81 1.51 0.0516
1.70 1.10 1.10 0.0298 1.07 1.13 0.0296 0.99 0.99 0.0629
1.80 1.07 1.07 0.0379 1.04 1.07 0.0372 1.07 1.31 0.0761
2.00 1.16 1.19 0.0523 1.16 1.19 0.0519 1.06 1.12 0.1042
5.00 2.24 2.24 0.4547 1.73 3.72 0.5063 1.60 4.36 0.9193

10.00 4.07 4.18 1.7826 2.79 8.02 2.0613 3.02 8.02 4.2336
15.00 6.15 6.15 4.0134 3.87 12.13 4.8453 4.57 12.13 9.6652
20.00 8.07 8.07 7.2786 4.61 15.91 8.8911 5.07 15.91 17.3395

10.0 1.10 0.72 0.74 0.0005 0.61 0.97 0.0004 0.67 0.85 0.0013
1.20 0.75 0.78 0.0008 0.59 1.13 0.0008 0.66 1.01 0.0024
1.30 0.69 1.02 0.0011 0.57 1.31 0.0011 0.67 1.24 0.0031
1.40 0.64 1.26 0.0013 0.57 1.44 0.0012 0.59 1.44 0.0032
1.50 0.68 1.36 0.0016 0.60 1.57 0.0015 0.65 1.57 0.0039
1.60 0.61 1.59 0.0017 0.58 1.70 0.0016 0.56 1.86 0.0044
1.70 0.66 1.64 0.0019 0.60 1.79 0.0018 0.72 1.73 0.0058
1.80 0.67 1.85 0.0021 0.64 1.97 0.0021 0.67 1.82 0.0049
2.00 0.74 2.00 0.0026 0.64 2.22 0.0025 0.80 2.12 0.0094
5.00 1.68 4.46 0.0154 1.42 4.46 0.0142 2.26 4.46 0.0503

10.00 3.54 8.15 0.0579 2.72 8.15 0.0532 4.72 8.15 0.2824
15.00 4.67 11.50 0.1399 3.50 11.50 0.1307 6.00 11.50 0.5544
20.00 6.21 15.30 0.2412 4.44 15.30 0.2182 8.43 15.30 1.9555

Table 8.2: Computed optimal parameters for IR experimental initial (τ1) and final (τN) relaxation delays for N = 8 and
varying α. 〈σ2

T1
〉 is the expected posterior covariance of T1 for the given experiment parameters.
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The average performance for an experiment batch of n = 8 is simulated and the ratio
of the final to initial variance for α from [77] is plotted in figure 8.30. For simulations true
T1 values were randomly sampled from the uniform interval defined by α, while a fixed
prior of πM(∞) = U(0.5, 3.0) is used for the magnetization. For comparison results are also
included for sequential design procedure. It is clear that the Bayes risk outperforms the
design of Taitelbaum for both batched and sequential designs. Performance is especially
enhanced for low SNR measurements, where the designs of Taitelbaum are expected to
perform poorly. The conservative risk performs worse than the Bayes risk as expected. The
superior performance of the Bayes risk is attributed to its ability to properly account for the
full prior distribution over all parameters, rather then incorporating it in an ad-hoc manner
as in the frequentist experiment design formalism.
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Figure 8.30: Ratio of initial to final σT1 for varying α and n = 8 experiments.

The performance of the batched designs for fixed α and varying true relaxation rate T1

are considered in order to study the experiment design performance when the true parameter
value is near the prior boundaries. Simulation results are shown for α = 10 in figure 8.31.
Performance is enhanced for Bayesian heuristics compared to the Taitelbaum strategy when
the true T1 is close to the maximum of the prior. The adaptive strategies significantly
outperform the Taitelbaum design for all true relaxation values, while the fixed Bayes risk
design is less consistent.
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Chapter 9

Future Work and Conclusion

Bayesian parameter estimation provides an intuitive formalism for interpreting the results
of scientific data analysis, allowing one to apply prior knowledge to data modelling [30].
While analytically intractable outside of trivial cases, the development of modern numeri-
cal methods has allowed the resurgence of Bayesian parameter estimation and placed it in
contention with “traditional” frequentist fitting methods. Particle filtering is particularly
suited for analyzing experimental results as it is a sequential process that does not require a
full resampling step with the acquisition of new data as is the case with RWMCMC meth-
ods. In chapter 6 the problem of T1 estimation that we consider throughout this thesis is
introduced. This estimation problem is crucial to industries such as NMR oil logging and
medical imaging.

It has been demonstrated how these methods allow questions such as “given the data
we currently have, where should an experiment be performed next to maximize the future
knowledge?” to be formalized. By asking this question at each experiment step a sequential
online experiment design may be performed with the aim of minimizing the time or some
other experiment cost. Within the framework of particle filtering, this question is expensive
for any continuous outcome likelihood function. In chapter 7 Monte Carlo integration tech-
niques exploiting the inherent distributions available to the particle filter were developed.
For the specific case of additive white noise several heuristic methods that achieve equivalent
performance to the MIS Bayes risk on the problem of interest were given.

In chapter 8 sequential experiment design algorithms were applied to T1 inversion. When
compared with traditional linear and random experiment strategies, the greedy sequential
experiment design strategies achieve near a half order of magnitude improvement in the
per experiment estimation of T1, improving to near a full order of magnitude in the experi-
ment total time domain when the FIR experiment procedure is applied in conjunction with
estimation of the magnetization. As the computational cost of such methods is large the
high SNR Bayes risk and FI heuristic have been provided as alternative design strategies.
These approximate(heuristic) strategies have equivalent performance to the MIS Bayes risk
but only apply to the experiment models we have considered here, whereas the MIS Bayes
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risk applies to any model with a likelihood function, albeit at enhanced computational cost.
Finally, it is shown that by including the noise variance as a parameter to be estimated the
sequential design strategies have a further improvement over traditional strategies.

The developed Bayesian experimental design strategies are then compared with the ear-
lier works of Weiss and Taitelbaum which apply frequentist design strategies to the task
of designing batched optimal inversion recovery experiments [89, 78]. For fixed priors it
is demonstrated that the Bayesian methods have superior performance and that sequen-
tial strategies outperform batched designs. Furthermore, it is noted that the advantage
of sequential estimation strategies is the ability to terminate experiments after a specified
certainty has been obtained.

Throughout our analysis the counterintuitive result that the high SNR risk typically
equal or better than the MIS Bayes risk even in the low SNR regime has been observed.
The only case in which the MIS Bayes risk had superior performance was when a prior was
placed over σ2, which is not expected for nonlinear models. In figure 8.1 large discrepancies
between the MIS and high SNR Bayes risk in the high SNR regime for wide priors on both
the T1 and M0 were observed which is counterintuitive. This may be attributed to the
normality assumptions failing for the high SNR Bayes risk. It is also possible that there is
a nuanced bug somewhere in the code that remains to be found. Unfortunately only the
linear model may be evaluated exactly and it agrees well with the MIS result. Note that
this cause may be too simple to bring out the software error (if it exists). In our experience,
the MIS code has displayed surprising robustness to implementation errors as the averaging
performed tends to reduce the impact of bugs. On the other hand, it could just be that
the inversion recovery model with normal additive noise is simply not ‘nonlinear enough’ to
display enhanced performance over the high SNR risk.

The next step in verifying the performance of these online experiment design strategies
is to study them experimentally. One candidate is the T1 of the phosphorus donor in silicon
at low temperatures which was studied in the first half of this thesis. It should be possible to
realize a significant improvement in total calibration time of the system TDNP

1 which must be
calibrated upon every cooldown, cutting into our limited cold time (10-12 hours). Another
aspect of the system that has eluded estimation is relaxation time T1 of the phosphorus
donor which has historically been very difficult to measure; no signal decay was observed
after a relaxation τ of 4.5 hours [33]. The current experiment setup has an improved SNR
and hyperpolarization rates. It is conceivable that it may now be possible to measure this
rate with enhanced estimation strategies.

Another avenue to explore is the application of online experiment design strategies to
model selection. In conjunction with a prior defined over model parameters when several
competing models are available it is possible to set a prior over the models themselves [30].
The question “What experiment should be performed to discern the true model optimally?”
may be asked. Thus allowing experimental design steps to be incorporated with model selec-
tion. It should even be possible to strike a balance between model selection and parameter
estimation with a set of Q weighting matrices.
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The initial motivation for these design strategies was their application to commercial
NMR oil logging [46]. The primary time constraint in such systems is the estimation of
T1 rates. The algorithms described here provide methods which may be used to expedite
relaxation rate estimation.
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Appendix A

Practical T1 Estimation

The implementation of Bayesian parameter estimation and online experimental design relies
on small tricks and optimizations to be made practical. This appendix tries to summarize
these techniques.

A.1 Removing Stochastic Noise from MIS Bayes Risk

The MIS Bayes risk as described in section 7.1.1 to select the minimal risk experiment
i.e. best experiment, which is necessarily an optimization problem, which may be solved
with ones flavour of the month optimization algorithm. The MIS Bayes risk as described
above is stochastic due to the requisite sampling of the outcome distribution and results in
a noisy Bayes Risk utility function as seen in figure 8.1(a). As the majority of optimization
algorithms assume a smooth objective function optimization of the MIS Bayes Risk will be
made more difficult.

Two solutions present themselves. The naive approach is simply to increase the number
of outcome particles to reduce the variance of the Bayes risk evaluation to an acceptable level
for optimization algorithms. However, this solution can require many thousands of outcomes
to be sampled making it very expensive to implement.

Rather this problem is approached by exploiting the fact that the noise model of interest is
additive and independent of experiment choice. Recalling that in equation (7.12) a sampling
step is performed to draw outcomes from the distribution for the jth particle. Rewriting this
step, now accounting for the evaluated experiment parameters c

oj;c ∼ Pr(o|xj; c) ∀xj ∈ Xsam. (A.1)

Now the additive normal noise model is exploited to rewrite this step as

Pr(o|xj; c) = N (xj, σ(xj)
2) (A.2)

= N (f(xj; c), σ2
j ) (A.3)

= f(xj; c) + N (0, σ(xj)
2) = f(xj; c) + εj. (A.4)
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Outcome sampling corresponds to evaluating the model function and adding some sampled
noise value εj, which may depend on the sampled particle xj but not the experiment to be
performed c. We define the set of sampled noise values ε = {ε1, · · · , εj}. Now assume there
is a set of possible experiments C with which the Bayes risk must be evaluated with, in order
to determine the optimal experiment. As before, draw an initial set of model parameters
Xsam and set of noise values

εj ∼ N (0, σ(xj)
2) ∀xj ∈ Xsam, (A.5)

at which point r(π; cl) ∀cl ∈ C may be evaluated. Provided the model function f(x; c) is
a continuous function of c, the Bayes risk will now be continuous allowing the Bayes risk to
be used as an input function for most numerical optimization algorithms.

Note that the above caching based solution may be used for any model distribution
where the model noise is independent of the experimental settings. In situations where this
condition does not hold, the MIS Bayes risk may still be optimized with a combination
of a large number of outcome samples to reduce risk variance and stochastic optimization
routines [52].

A.2 Bayes Risk Optimization Algorithms

Online experimental design exploration within the thesis was performed with a naive grid
search minimization algorithm. As the computational complexity of grid search is polynomial
with the degree being proportional to the number of unknown model parameters it rapidly
becomes infeasible with complex models. In practice quasi-Newton minimization methods
such as Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [26] and L-BFGS [17] may be
used to find the minimum of the Bayes risk with fewer function calls, while also allowing the
parameter search spacing to be bounded. As these methods are typically susceptible to search
initialization conditions and local minima they may be incorporated into a basin-hopping
algorithm which attempts to find the global minimum of a function [87]. A comparison of
performance and evaluation times shown in figure A.1 demonstrates the benefit of utilizing
more sophisticated optimization strategies.

A.3 Rescaled Weighting (Q) Matrix

The Bayes risk evaluates the expected posterior variance weighted by the diagonal matrix Q.
This is sufficient if all estimated model parameters x̂ have similar values, which is not true
in general. Consider the two parameter case x = {x, y} with true values xt = {xt, yt} with
Bayes risk r(c|π) = Q11rx +Q22ry. If Q is just the identity we have Q11rx +Q22ry = rx + ry.
Consider now the change of units for only x with the transformation x′ = αx. The risk will
transform as r(c|π)α = Q11α

2rx + Q22ryS. It is easy to see that if α is large experiments
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Figure A.1: Comparing the performance of grid search (300 points) to L-BFGS risk function
optimization (left) Log variance plot for Bayes risk, and FIR Bayes risk online experiment
design. No difference in performance is observed. (right) The average wall clock optimization
time between the two optimization algorithms. Note that L-BFGS is significantly quicker.

will disproportionately be designed to minimize the variance of x and vice versa for small
α, when in truth the variance of both model parameters is of equal concern. In practice
parameters are often rescaled by some factor αi, or have their mean shifted by some amount
βi

Λ(xi) = αi(xi + βi). (A.6)

The ideal experiment design heuristic would be invariant to these mappings. The mean,
variance and posterior variance transform under this mapping as

x̂i
Λ−→ αi(x̂i + βi) Cov [x]ij

Λ−→ αiαjCov [x]ij

Eon+1 [Cov [x|on+1, O; c]]ij
Λ−→ αiαj Eon+1 [Cov [x|on+1, O; c]]ij .

Recalling that the Bayes risk is

ri(c) =
N∑
i=1

Qiiα
2
i Eon+1 [Cov [x|on+1, O; c]]ii

Λ−→
N∑
i=1

Qiiα
2
i Eon+1 [Cov [x|on+1, O; c]]ii . (A.7)

Let Qii → Qii/Covx∼π(x|I) [x]ii
Λ−→ Qii/α

2
iiCovx∼π(x|I) [x]ii , and obtain the new quantity

rr(c) =
N∑
i=1

Qii Eon+1 [Cov [x|on+1, O; c]]ii
Covx∼π(x|I) [x]ii

, (A.8)
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and title this the the risk ratio. Where Covx∼π(x|I) [x]ii is the initial prior distribution before
any observations have been made. Importantly the risk ratio is invariant under both shifting
and rescaling of model parameters. It has the simple interpretation as the weighted sum of
ratios between the expected posterior variance of the current prior distribution and variance
of the initial prior distribution. Note that the rr is also unitless which has up until now been
ignored when defining the Bayes risk and the matrix Q. If the current prior rather than
the initial prior is used poor performance may be experienced as parameters with negligible
variance may contribute significant weighting to the rr if their ratios of improvement are
large, and the result will be a further reduction of variance for an already negligible quantity.
Note that when using the initial prior weighted quality matrix the risk improvement has the
interpretation as the expected reduction in the percent variance with respect to the initial
prior.

The rr makes explicit the importance of the experimentalist in selecting a proper risk
weighting matrix Q matrix just as it is essential to choose an appropriate prior. The setting
of Qii weighs the importance of improving the variance of a model parameter over the
experimentalists initial state of knowledge, and the selection of a poor prior for a model
parameter will result in the selection of experiments that reflect this prior.
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