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A path integral methodology for obtaining thermodynamic properties
of nonadiabatic systems using Gaussian mixture distributions
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We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in
thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general
path integral expression for the partition function in a product basis of continuous nuclear and discrete
electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian
into a harmonic portion and a coupling portion; the partition function can then be calculated as the
product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a
normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate
the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we
demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We
show that the selection of the harmonic oscillators comprising the sampling distribution directly affects
the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method’s
deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By
improving the sampling distribution, we can drastically reduce the stochastic error leading to lower
computational cost. Published by AIP Publishing. https://doi.org/10.1063/1.5025058

I. INTRODUCTION

The Born–Oppenheimer approximation (BOA) is ubiq-
uitous in computational quantum chemistry. In systems with
well-spaced potential energy surfaces (PESs) (on the order
of a few eV), the BOA is appropriate and a single PES can
accurately describe the atomic motion.1 In such cases, ther-
mal properties for sizeable gas phase molecules are typically
calculated using the harmonic oscillator (HO), rigid rotor, and
ideal gas approximations.2,3 The electronic structure calcula-
tions used to obtain the electronic energy and force constant
matrix are computationally expensive, but subsequent eval-
uation of thermal properties is trivial. However, in systems
where two or more PESs approach each other energetically,
off-diagonal terms in the Hamiltonian increase in magnitude
and the BOA is no longer a valid approximation.4 These sys-
tems or regions are referred to as nonadiabatic. Nonadiabatic
dynamics describe many important chemical reactions such
as photo-induced biological processes and charge transfer in
materials.5–9

As the aforementioned approximations break down in
nonadiabatic regions, new approaches are necessary to com-
pute properties for these systems. In the present work, we focus
on developing a path integral (PI) framework to obtain the
time-independent properties at thermal equilibrium, includ-
ing the partition function Z, internal energy U, heat capacity
Cv , and Gibbs energy G. We ultimately aim to obtain thermal
properties for nonadiabatic systems with a similar accuracy to
what is possible in the current single-surface methods and with
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modest computational effort. If we could, for example, accu-
rately and efficiently determine the change in Gibbs energy for
nonadiabatic catalytic routes, this would assist in improving
the product yield and selectivity and contribute to the design
of improved catalysts.10

Typical PI approaches used to investigate quantum
mechanical systems require modification to accurately
describe electronically nonadiabatic systems. Recently, there
has been much interest in obtaining canonical quantum
time-correlation functions for electronically nonadiabatic sys-
tems, using approaches such as initial value representa-
tion (IVR),11–14 quantum-classical path integral (QCPI),15

centroid molecular dynamics (CMD),16,17 and ring poly-
mer molecular dynamics (RPMD).18 Numerous extensions
of RPMD have been developed, such as coherent-state map-
ping (CS)-RPMD,19 mean field (MF)-RPMD,20 kinetically
constrained (KC)-RPMD,21 and mapping-variable (MV)-
RPMD.22 Many of these methods use the Meyer–Miller–
Stock–Thoss (MMST) representation13,23–26 or a variation of
the MMST. These methods focus on obtaining properties such
as transport properties, rates of molecular processes, and spec-
tra. By contrast, our goal is to obtain thermal equilibrium
properties for nonadiabatic systems in a computationally effi-
cient manner, and this motivates the development of a new PI
method.

Two common approaches for describing nonadiabatic sys-
tems are the adiabatic and the diabatic representations. In
the adiabatic representation, the electronic wavefunctions are
eigenfunctions of the electronic Hamiltonian,27 whereas in
the diabatic representation, they are approximated28 as geo-
metrically dependent linear combinations of specific adiabatic
wavefunctions.29–32 The diabatic representation is commonly
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chosen because the nuclear kinetic energy can be assumed
to be diagonal,29 while the elements of the potential energy
matrix are smooth functions of nuclear geometry. In this work,
we are interested in the potential energy matrix in a limited
low-energy region of nuclear configurations, where a low-
order Taylor series expansion can be used to describe the
nonadiabatic coupling terms (NACTs).29,33

Our approach focuses solely on the investigation of
electronically nonadiabatic systems that are described by a
vibronic Hamiltonian which is a Hamiltonian in the dia-
batic representation. Vibronic models are commonly used
to describe nonadiabatic effects and dynamics in spec-
troscopy.34–39 Our implementation makes use of the common
adiabatic-to-diabatic transformation (ADT)33 to obtain the
Hamiltonian we use in our path integral Monte Carlo (PIMC)
calculations. We work directly with continuous nuclear co-
ordinates and discrete electronic states without employing
any mapping schemes such as the MMST representation.
We employ an exact (in the appropriate limit) PI discretiza-
tion, comparable to the state-space-based path integral (SS-PI)
discretization recently proposed in Ref. 40.

A key step in our approach is to separate the full vibronic
Hamiltonian into a harmonic operator ĥ and a coupling opera-
tor V̂ . Prior studies have employed various partitionings of the
Hamiltonian, primarily focusing on explicitly evaluating the
kinetic energy component.41–45 Here we choose a partition-
ing that will allow the full partition function to be expressed
as a product of two factors: the normalization factor of a dis-
tribution % (that is evaluated analytically) and a Monte Carlo
estimator (of the coupling contribution to the partition func-
tion). We stochastically evaluate the Monte Carlo estimator
using a Gaussian mixture model (GMM), where the Gaussian
mixture distribution (GMD) of the model is %. Monte Carlo
methods have previously been applied to the calculation of Z;46

however, the use of a GMM, which allows for sampling with-
out rejection, is novel. A powerful property of GMMs is the
ability to form smooth approximations to arbitrarily shaped
densities. GMMs maintain many of the computational and
theoretical benefits of Gaussian models, making them prac-
tical for efficiently modeling higher dimensional data sets for
applications such as feature extraction from speech data47 and
tracking multiple objects in digital videos.48 Our partitioning
of the Hamiltonian is therefore motivated by the computational
benefits provided by GMMs.

This paper is organized as follows. Our expression for
the partition function is derived in Sec. II. The method of
evaluating this expression is explained in Sec. III. Section IV
outlines the current implementation of this method. Results
of our method are presented in Sec. V, and we discuss the
conclusions in Sec. VI.

II. PATH INTEGRAL FORMULATION

We begin by explaining the separation of our vibronic
Hamiltonian

Ĥ = T̂ + Û. (1)

We define the harmonic operator ĥ, where

ĥ = T̂ + Ûho, (2)

to be diagonal in the diabatic basis with A discrete electronic
surfaces and d nuclear co-ordinates. With this representation,
we assume a vibrational kinetic energy term T̂ that has a normal
mode form. A subset of the harmonic terms on the diagonal
of Û in the diabatic basis form the operator Ûho. The exact
composition of ĥ is flexible, based on the elements of the sub-
set, allowing for optimizations to specific applications. We
define the coupling operator V̂ as the remaining components
of Û,

V̂ = Û � Ûho, (3)

allowing us to separate Ĥ into ĥ and V̂ ,

Ĥ = ĥ + V̂ . (4)

The canonical partition function is obtained from the trace
of the Boltzmann operator,

Z = Tr

e��Ĥ

�
, (5)

where � = (kBT )�1 is the reciprocal temperature. We represent
the nuclear configurations using the vector

R = [R1, R2, . . . , Rd] (6)

and the electronic surfaces using a, where

a 2 {1, 2, . . . , A}. (7)

The resolution of the identity for this space can be expressed
as

⌅
dR

AX

a=1

|R, aihR, a|. (8)

By construction, ĥ is diagonal in the electronic surfaces a,

hR, a|ĥ|R0, a0i = hR |ĥa |R0i�aa0 , (9)

and V̂ is diagonal in the nuclear configurations R,

hR, a|V̂ |R0, a0i = ha|V̂ (R)|a0i�(R � R0). (10)

Applying the symmetric Trotter factorization49 where P is the
number of imaginary time-slices, also known as “beads,” and
⌧ = �

P results in

e��Ĥ = lim
P!1

✓
e�⌧ĥe�⌧V̂

◆P
. (11)

Repeated insertion of the resolution of the identity yields a PI
discretization of the partition function

Z = lim
P!1

⌅
dRP

AX

a

PY

i=1

hRi, ai |e�⌧ĥ |Ri+1, aii

⇥ hRi+1, ai |e�⌧V̂ |Ri+1, ai+1i. (12)

We make use of the compact notations

AX

a

=

AX

a1=1

AX

a2=1

· · ·
AX

aP=1

(13)

and ⌅
dRP =

⌅
dR1

⌅
dR2 · · ·

⌅
dRP. (14)
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The general expression for Z in Eq. (12) allows us to evaluate
e�⌧ĥ independently of e�⌧V̂ . We will show later that e�⌧ĥ can
be evaluated analytically.

A finite choice of P results in a systematic error in the
Trotter factorization. For readability, we suppress this approx-
imation for the remainder of this paper. As our calculations
use finite values for P, this error is present in all of the work
that follows, but we systematically reduce it by increasing P.

Additionally we define

g(R) =
AX

a

PY

i=1

hRi, ai |e�⌧ĥ |Ri+1, aiihRi+1, ai |e�⌧V̂ |Ri+1, ai+1i

(15)
which can be treated as a probability density function (PDF)50

with the normalization factor

Z =
⌅

dRP g(R). (16)

For brevity, we use the convention that %(R) = %(R1, R2,
. . . , RP) and g(R) = g(R1, R2, . . . , RP). In this usage, R is
purely a shorthand notation and should not be confused with
the R of Eq. (6).

III. OBTAINING THE PARTITION FUNCTION

We have demonstrated how to derive a general PI expres-
sion for Z in nuclear coordinates R and electronic surfaces a.
Next, we show how we evaluate Z as a product of a Monte Carlo
estimator and a normalization factor. We apply two stochastic
methods: Monte Carlo integration, to avoid directly evaluating
the integrals over R due to the computational cost; and impor-
tance sampling, to reduce the variance by sampling from a new
distribution %. We use the following convention: for a PDF
f (x), we treat the corresponding symbol f as the distribution
defined by f (x).

Sampling from %with weight g
% is equivalent to sampling

from the original distribution g, biasing the sample obtained
toward %.51 If % represents the dominant contributions to g,
this results in a reduction of variance, which leads to more
efficient calculation of parameters of interest, since fewer sam-
ples are needed for convergence. For an arbitrary PDF %(R),
from

Z

s dRP%(R)
=
s dRP%(R) g(R)

%(R)

s dRP%(R)
, (17)

it follows that

Z =
*

g(R)
%(R)

+

%

 ⌅
dRP %(R)

!
. (18)

We define the normalization of the PDF %(R) to be

Z% =

⌅
dRP %(R) (19)

which will take on the role of a partition function in the fol-
lowing due to our choice of %. We define ZMC as the estimate
of the coupling contribution to Z,

ZMC =

*
g(R)
%(R)

+

%

, (20)

resulting in a compact representation for the partition function
of our Hamiltonian

Z = ZMCZ% . (21)

We choose a distribution % that can be sampled without rejec-
tion and whose normalization can be analytically evaluated.
The partition function is therefore the product of an esti-
mate ZMC, obtained using Monte Carlo integration, and a
normalization factor Z% .

A. Matrix representations of propagators

We introduce the following notation for the matrix repre-
sentation of the harmonic and coupling propagators. We define
the matrices O and M through their matrix elements,

O
�
R, R0

�
aa0 = hR |e�⌧ĥa |R0i�aa0 (22)

and
M(R)aa0 = ha|e�⌧V̂ (R) |a0i. (23)

This allows us to express Eq. (15) in terms of the matrices O
and M,

g(R) = Tr
266664

PY

i=1

O(Ri, Ri+1)M(Ri+1)
377775 , (24)

where the trace is over the electronic degrees of freedom
(DoFs). The matrix M is evaluated through diagonalization
of the matrix V (R)aa0 at a given configuration R. The matrix
O is evaluated analytically which will be shown in Sec. IV.

The PDF g(R) describes a system with intersurface cou-
pling. For most systems, this PDF is computationally dif-
ficult to evaluate and infeasible to sample directly. There-
fore, we consider a PDF %(R) that omits the intersurface
coupling,

%(R) = Tr
266664

PY

i=1

O(Ri, Ri+1)
377775 . (25)

%(R) is defined by the diagonal matrix O of order A and
therefore by the harmonic portion ĥ of the system’s Hamil-
tonian. The corresponding distribution % is a sum of multi-
dimensional Gaussian distributions and thus has the important
property of being a Gaussian mixture distribution (GMD).52

This property of %(R) is key to our PIMC method. A GMD is
less complex than g(R) and is computationally efficient to eval-
uate. In Sec. IV C, we will consider a more general PDF whose
corresponding distribution is also a GMD but whose parame-
ters are independent of the system’s Hamiltonian which allows
for greater statistical accuracy.

IV. IMPLEMENTATION

Our current algorithm operates on a vibronic Hamiltonian
in normal mode co-ordinates,

Ĥaa0 = Eaa0 + *.
,

1
2

NX

j

!j

⇣
p̂2

j + q̂2
j

⌘+/
-
�aa0

+
NX

j

gaa0
j q̂j +

1
2

NX

jj0
Gaa0

jj0 q̂jq̂j0 , (26)

where the dimensionless nuclear configuration representations
are labeled q instead of R and all parameters have units of
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energy (~ = 1). Recall that the composition of ĥ was dependent
on the choice of Ûho. In our implementation, we have selected
Ûho such that the surface-dependent harmonic operator is
defined to be

ĥa = Eaa +
1
2

NX

j

!j

⇣
p̂2

j + q̂2
j

⌘
+

NX

j

gaa
j q̂j. (27)

This is analogous to the shifted bath Hamiltonian in the
quasi-adiabatic propagator path integral (QuAPI) method,43–45

described by Eq. (9c) in Ref. 43. The harmonic operator
has the same frequencies for each surface but can differ in
energy and in displacement of the normal modes. Within our
framework, this restriction is made for computational effi-
ciency and can be lifted in principle. However, in Ref. 43,
this restriction is inherent to the system-bath Hamiltonian.
For systems where the quadratic terms on the diagonal of
Ĥ are significant, the operator ĥa may also be extended to
include them, but this incurs a computational penalty due
to the need for a different co-ordinate rotation for each
surface.

A. Analytical representation of �

We begin by deriving the analytical form of the diagonal
matrix O and the PDF %(q). Consider the propagator

hx |e�⌧ĥo |x0i, (28)

where ĥo has the form of a one-dimensional quantum har-
monic oscillator (QHO) in natural length co-ordinates and

frequency !j. The analytical expression for this propagator

is53

K(x, x0; ⌧!j) = Fj exp
 
Sjxx0 � Cj

1
2

⇣
x2 +

�
x0

�2
⌘!

, (29)

where

Cj = coth
⇣
⌧!j

⌘
, (30)

Sj = csch
⇣
⌧!j

⌘
, (31)

Fj =

r
Sj

2⇡
. (32)

The surface-dependent harmonic operator for multiple normal
modes is expressed by completing the square as

ĥa =
f
Eaa + �a

g
+
"

1
2

NX

j=1

!j

⇣
p̂2

j + (x̂a
j )2

⌘#
(33a)

= Ẽa + ĥa
o, (33b)

where

xa
j = qj � da

j , (34)

da
j =
�gaa

j

!j
, (35)

�a = �1
2

NX

j=1

(gaa
j )2

!j
. (36)

Expressing the matrix elements of O in terms of K as

O
�
qi, qi+1

�
aa = hq1,i q2,i · · · qN ,i |e�⌧ĥa |q1,i+1 q2,i+1 · · · qN ,i+1i (37a)

=
⇣
e�⌧Ẽa ⌘hxa

1,i xa
2,i · · · xa

N ,i |e�⌧ĥa
o |xa

1,i+1 xa
2,i+1 · · · xa

N ,i+1i (37b)

=
⇣
e�⌧Ẽa ⌘ NY

j=1

K
⇣
xa

j,i, xa
j,i+1; ⌧!j

⌘
, (37c)

we can analytically evaluate %(q) as follows:

%(q) =
AX

a=1

⇣
e��Ẽa ⌘ NY

j=1

⇣
Fj

⌘P
⇡j(xa

j ), (38)

where

⇡j(xa
j ) = exp

266664Sj

PX

i=1

xa
j,i xa

j,i+1 � Cj

PX

i=1

⇣
xa

j,i

⌘2
377775 (39)

and

x
a
j =

f
xa

j,1, xa
j,2, . . . , xa

j,P

g
. (40)

Note that we employ the same convention for %(q) and g(q)
as we do for %(R) and g(R) that %(q) = %

�
q1, q2, . . . , qP

�
and

g(q) = g
�
q1, q2, . . . , qP

�
.

B. Derivation of sampling distribution �

The general form of the PDF of a mixture distribution is
a convex combination of PDFs pi(x),

f (x) =
X

i

wipi(x), (41)

where
P

i wi = 1 and wi � 0 for all i. Using the analytical
expression of %(q), we will show that it is a PDF of a GMD
which is a mixture distribution where each pi(x) represents a
Gaussian distribution.

We start by re-expressing ⇡ in quadratic form,

⇡j(xa
j ) = exp

f
� 1

2
(xa

j )|
⇣
2Cj1 � SjB

⌘
x

a
j

g
, (42)

where B is a circulant matrix of dimension P ⇥ P defined by
the row vector

[0 1 0 0 · · · 0 0 1]. (43)
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Then, we define the PDFs of A multivariate Gaussians

%a(q) =
1

Z%a

NY

j=1

⇣
Fj

⌘P
⇡j(xa

j ), (44)

where

Z%a =

NY

j=1

1
2

csch
 
�!j

2

!
. (45)

We express %(q) as

%(q) =
AX

a=1

wa%a(q), (46)

with weights

wa =
e��Ẽa

Z%a

Z%
, (47)

where

Z% =

AX

a=1

e��Ẽa
Z%a . (48)

We can see from Eqs. (41) and (46) that % satisfies the definition
of a GMD with means d

a and covariance matrices

⌃
j
=

⇣
2Cj1 � SjB

⌘�1
. (49)

To sample from this GMD efficiently, we must decouple
the bead DoFs. To do this, we diagonalize B by the unitary
transformation V so that

Bii0 =

PX

�=1

Vi�b��V⇤i0�. (50)

This allows us to define collective bead co-ordinates,

ya
j� =

PX

i=1

xa
jiVi�, (51)

which are uncoupled, leading to straightforward sampling
from one-dimensional Gaussians.

C. Generalization of �

We will now refer to the previously discussed sampling
distribution as %0 and use % to indicate a generalized distri-
bution. We have defined the distribution %0 in terms of the
diagonal matrix O of order A and therefore the harmonic por-
tion ĥ of the system’s Hamiltonian. The distribution %0 is fully
specified by the system’s parameters !j, Eaa, and gaa

j . This
definition can be generalized to a distribution

%(q) = Tr
266664

PY

i=1

Õ(qi, qi+1)
377775 , (52)

defined in terms of a diagonal matrix Õ of order Ã expressed
in terms of an operator ĥ of the form in Eq. (27), whose param-
eters are independent of the system’s Hamiltonian. In Sec. V,
we use a subscript index to differentiate between different dis-
tributions: %1 and %2, for example. We reserve the index 0 to
refer to the distribution defined by the harmonic portion of the
system’s Hamiltonian. Of particular importance is the distinc-
tion that the number of multivariate Gaussians Ã comprising
% may differ from the number of electronic states A present

in the system’s Hamiltonian. In fact, the value of Ã may be
chosen arbitrarily for each calculation, and appropriate values
will in general be system-dependent.

The first implication of this generalization arises in the
evaluation of ZMC. If one chooses a distribution % , %0 as
their sampling distribution, then the ratio in Eq. (20) con-
tains Õ matrices in the denominator rather than O matrices.
This roughly doubles the computational cost of evaluating
these matrices over sampled points compared to the case
with %0, where the same matrices are present in both the
numerator and denominator. Note that the evaluation of the
O matrices constitutes roughly 10%–20% of the total com-
putational cost in the present implementation, and as evi-
dent in Sec. V, the improved statistical accuracy provided
by different choices of % vastly outweighs the additional
computation required. The second implication is that the
selection of % reduces to a distribution fitting or parame-
ter estimation problem, which is commonly addressed using
statistical methods such as maximum likelihood estimation
(MLE).54

D. Evaluation algorithm

The general algorithm used to calculate Z is presented.
Consider a system described by a vibronic Hamiltonian of the
form in Eq. (26) which has N normal modes and A electronic
states. This system is evaluated at a specific temperature �,
the number of Monte Carlo samples L, the number of beads
P, and the sampling distribution %. We will explain the sam-
pling and evaluation processes for the L = 2 case. Because
all samples are independent, the generalization to L > 2 is
trivial.

First, we draw two random values ã1, ã2 from a dis-
crete distribution from 1 to Ã with weights [w1, w2, . . ., wÃ].
These variables ã` determine from which of the Ã multi-
variate Gaussians %ã (that comprise the sampling distribution
%) each individual sample is drawn. Next, we generate sam-
ples y

1, y
2 of dimension N ⇥ P from the normal distributions

NN ,P(dã1 ,⌃), and NN ,P(dã2 ,⌃). We transform from collec-
tive bead co-ordinates y`j� to bead dependent co-ordinates
x`ji,

x
` = y

`(V)†, (53)

where V is defined in Eq. (50). To evaluate the matrices O and
M, we shift each sample to all A electronic states,

x`,a
ji = x`ji + dã`

j � da
j , (54)

resulting in a tensor x of dimension 2 ⇥ A ⇥N ⇥ P. To evaluate
the matrices Õ, we shift each sample to all Ã fictitious states,

x̃`,ã
ji = x`ji + dã`

j � dã
j , (55)

resulting in a tensor x̃ of dimension 2⇥ Ã⇥N ⇥P. In this man-
ner, we evaluate %(q) and g(q) for each sample using Eqs. (24)
and (52). Finally, Z [Eq. (21)] is the product of ZMC [Eq. (20)],

ZMC =
1
L

LX

`=1

g(q`)
%(q`)

, (56)
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and Z% [Eqs. (45) and (48)],

Z% =

ÃX

ã=1

⇣
e��Ẽã ⌘ NY

j=1

1
2

csch
 
�!j

2

!
. (57)

Note that in our current implementation we draw and
evaluate samples y in blocks of size L0 < L which is depen-

dent on the dimensionality of the system. This is to exploit
specific hardware architecture (spatial and temporal local-
ity) of general purpose central processing units (CPUs) for
increased computational performance.55–57 Preliminary test-
ing has shown that this block-based sampling approach can
provide a computational runtime improvement of two orders
of magnitude.

E. Systematic Trotter error for vibronic Hamiltonian

The following is our approach for calculating the partition
function with the inclusion of systematic Trotter error. The
approach is in the spirit of the iterative scheme presented in
Ref. 58 but is for a Hamiltonian in the diabatic representation
that contains multiple discrete electronic states.

The Trotter-factorized partition function is

ZTrotter(P) = Tr
✓
e�⌧ĥe�⌧V̂

◆P
. (58)

We may express the operators ĥ and V̂ in matrix form in a HO
basis set augmented with an electronic state label. This basis
has the states

|vi = |n1, n2, . . . , nN , ai, (59)

where ni denotes the number of quanta in mode i and a labels
the electronic state. Because in practice the basis will always
be truncated with respect to the number of quanta of vibration,
the resulting matrices h and V are technically approximate
representations of the respective operators. However, we take
care to ensure that the basis is large enough for satisfactory
convergence.

We construct the matrix

M = e�⌧he�⌧V (60)

by first taking the matrix exponential of each matrix. It is then
possible to efficiently obtain

ZTrotter(P) = TrMP (61)

without performing any matrix multiplications by diagonaliz-
ing M to obtain its eigenvalues ↵u and then computing

ZTrotter(P) =
X

u

(↵u)P. (62)

Having access to this value allows us to gauge the correctness
and accuracy of our PIMC implementation.

Since we have the matrices h and V , we may also generate
the Hamiltonian matrix

H = h + V . (63)

Direct diagonalization of this matrix produces the exact energy
eigenvalues En of the full coupled system which we may use
in the sum-over-states (SOS)

ZSOS =
X

n

e��En (64)

to calculate the exact value of the partition function. This
quantity does not include any Trotter error and is used as
the reference value for the ⌧ ! 0 limit in the model system
results.

F. Computational libraries

Two computational libraries, Pibronic59 and Vibronic-
Toolkit,60 were developed alongside the research that is pre-
sented in this paper. Pibronic contains the full implementation
of our method. VibronicToolkit is a proof of concept imple-
mentation of our method and was used to verify the results from
Pibronic. Both of these libraries are open-source and available
on GitHub.59,60

V. RESULTS

To investigate the effectiveness of our PIMC method, the
results for two systems are presented: “Displaced” and “Jahn–
Teller.” The Displaced system highlights the effect of % on
the accuracy and efficiency of sampling when there are multi-
modal displacements. The Jahn–Teller system is representa-
tive of magnetic systems and systems containing radicals.61,62

These systems are described by vibronic Hamiltonians with
the same form as Eq. (26), but without any quadratic cou-
pling terms (Gaa0

jj0 = 0). To allow for numerical analysis such
as SOS, the systems were restricted to two normal modes
and two electronic surfaces. Both systems have a single tun-
able parameter and were evaluated over a range of six values.
All graphics are labeled with the associated tunable parame-
ter in the upper right-hand corner and the associated choice
of % in the top left-hand corner. All PIMC results were cal-
culated with one million samples (L = 106) and at 300 K.
The two properties of interest are ⌧ convergence of our PIMC
results and the suitability of % as a sampling distribution
for g.

For both systems, we present the Hamiltonian, the sys-
tem’s parameters, and two plots: an elevation map of the lower
PES and a ⌧ convergence plot of Z. In the elevation maps
(Figs. 1 and 3), the minima of the diabatic surfaces comprising
% are represented by crosses (+).

We wish to obtain a visual representation of the distribu-
tion % in normal mode co-ordinates q so that it can be displayed
in Figs. 1 and 3. Using such a representation, we can reason
about the suitability of % as a model of g. Since % is composed
of Gaussian distributions, it would be natural to use their stan-
dard deviations for this representation. However, within our
formalism, the notion of variance for independent DoFs only
exists in collective bead co-ordinates which cannot be readily
visualized.

The distribution of the mean of the path

x̄a
j =

1
P

PX

i=1

xa
ji (65)

provides a measure of the spread of the samples in normal
mode co-ordinates. Conveniently, the centroid collective bead
co-ordinate

ya
j1 =

PX

i=1

xa
jiVi1 (66)
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FIG. 1. Three elevation maps of the lower adiabatic PES of the Displaced
system at �2 = 0.04 eV (top panel) and �5 = 0.16 eV (middle and bottom
panels). The colormap for the elevation is presented at the top of the figure.
For each panel, the sampling distribution %i is listed in the upper left-hand
corner, and an ellipse is centered on the minimum, indicated by the cross (+),
of each HO comprising %i as described in Sec. V.

is directly related to x̄a
j because the entries of the eigenvector

Vi1 are all equal,

ya
j1 =

1p
P

PX

i=1

xa
ji. (67)

We know from Eqs. (49) and (50) that the standard deviation
of ya

j1 is given by

�j =
⇣
2Cj � Sjb11

⌘� 1
2 , (68)

where b11 is the largest eigenvalue of B, and therefore, the
standard deviation of x̄a

j is

�̃j =
�jp

P
. (69)

Note that �̃j does not appear to be sensitive to changes in the
number of beads P. We therefore choose to visually represent
the distribution % with an ellipse centered at the minimum of
each HO in Figs. 1 and 3. The diameters of each ellipse are
2�̃1 in the q1 mode and 2�̃2 in the q2 mode.

In the ⌧ convergence plots (Figs. 2 and 4), the y axis is
defined as

�Z =
 

Z � ZSOS

ZSOS

!
(100%), (70)

where we calculate ZSOS by SOS with eighty HO basis func-
tions for each normal mode. The sum-over-states calculation
is shown in Sec. IV E. It is important to realize that the sign
in these plots is only representative of which parameter (Z or
ZSOS) is larger.

Our PIMC method has three sources of error, not including
the inevitable floating-point error associated with carrying out
real-number calculations on a computer:

(i) the choice of a finite P introduces systematic error due
to the Trotter factorization, Eq. (12);

(ii) drawing a finite number L of samples y from % with

which we evaluate our estimators; and
(iii) the choice of a sampling distribution % that is different

from the true distribution g.
The most accurate estimate of a property that we can cal-

culate for a fixed choice of P includes error (i) from the Trotter
factorization. This is a formal error that is present in all PI
methods and cannot be eliminated. Consequently, our goal is
to reduce the difference between our PIMC results and the Trot-
ter results. Additionally, in practice, all Monte Carlo methods
are restricted to a finite number of samples leading to error (ii)
and a non-zero variance. Therefore, we attempt to reduce error
(iii) which is introduced by our use of importance sampling.
We differentiate between these sources of error by comparing
our PIMC results to SOS calculations that include the Trot-
ter error, represented by black curves in the ⌧ convergence
plots.

A. Displaced system

This system is described by the Hamiltonian

Ĥ = ĥ + V̂ (71a)

=

266664
Ea + ĥo + �q̂1 0

0 Eb + ĥo � �q̂1

377775 + �i

266664
0 q̂2

q̂2 0

377775 ,

(71b)

with the parameters given in Table I.
Results are analyzed as a function of �, the strength of

the coupling. At �1, the two PESs are displaced along the q1
axis. Increasing � introduces a displacement along the q2 axis
as seen in Fig. 1.

We begin with the simple distribution %0, derived from
ĥ. The top panel of Fig. 1 demonstrates that the HOs com-
prising %0 are a very good model of the system for a low
value (�2) of the coupling. However, the middle panel of
Fig. 1 shows that %0 is less reasonable for a high value (�5).
As we increase the coupling �, the contribution from the
q2 mode increases and we push the system farther into a
nonadiabatic regime. A better choice of the distribution % is
necessary.
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FIG. 2. Three ⌧ convergence plots of
the �Z deviation of our PIMC method
(blue) and the exact Trotter (black)
from ZSOS (magenta). The upper panel
demonstrates that the simple distribu-
tion %0 is a reasonable description of
the Displaced system when it is mostly
harmonic (�2). When the system is in
a nonadiabatic regime (�5), %0 is no
longer appropriate as seen in the middle
panel. Comparing the middle panel to
the bottom panel, it is clear that chang-
ing the sampling distribution from %0 to
%1 has a significantly positive impact on
our results.

The obvious modification to % is to include a q2 term.
If the system is in a nonadiabatic regime, then the q2 mode
should be the most important contribution. However, because
of the mixing of the modes, just adding a q2 term is subop-
timal. By looking at Fig. 1, we can see that a q1 displace-
ment similar to that in ĥ would not be appropriate in the �5
regime. In addition, to reduce the variance we want to bias %
toward the minima along the q2 mode. We therefore choose
a new distribution %1, replacing the q1 term in ĥ with a q2

TABLE I. Displaced system parameters (eV).

Parameter

Ea 0.0996
Eb 0.1996
!1 0.02
!2 0.04
� 0.072
�1 0.00
�2 0.04
�3 0.08
�4 0.12
�5 0.16
�6 0.20

term, 266664
Ea + ĥo + �iq̂2 0

0 Eb + ĥo � �iq̂2

377775 . (72)

Due to the importance of the q2 mode, the reduced accu-
racy in the description of the q1 mode should not have a
noticeable effect on our results. As this is a direct applica-
tion of importance sampling, we expect that ⌧ convergence of
Z will be improved by using sampling distribution %1 instead
of %0.

The results using %1 show a large reduction of the stochas-
tic error compared to the results using %0, shown in Fig. 2. With
the improved distribution %1, the deviation has been reduced
from nearly 100% to 1%. This shows that the choice of the
sampling distribution dominates our PIMC method’s devia-
tion from the exact Trotter. This choice of %1 is analogous to
identifying the local minima of the ground state PES.

B. Jahn–Teller system

This system is described by the Hamiltonian

Ĥ = ĥ + V̂ (73a)

=

266664
Ei + ĥo + �iq̂1 0

0 Ei + ĥo � �iq̂1

377775 + �i

266664
0 q̂2

q̂2 0

377775 , (73b)

with the parameters given in Table II.
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TABLE II. Jahn–Teller system parameters (eV).

Parameter

E1 0.029 99
E2 0.003 33
E3 0.076 66
E4 0.209 99
E5 0.396 67
E6 0.631 35
!1 0.03
!2 0.03
�1 0.00
�2 0.04
�3 0.08
�4 0.12
�5 0.16
�6 0.20

Results are analyzed as a function of �, the strength of
the linear terms. For �i where i > 1, this system’s ground state
PES has the form of a champagne bottle. As we increase �,
the curvature of the well increases. For �2 in the top panel of
Fig. 3, there appears to be no well because it is too small to be
resolved at that scale. The energies Ei were chosen so that the
ground state energy ⇡0 eV.

The top panel of Fig. 3 demonstrates that the HOs com-
prising %0 are again a very good model of the system for a
low value (�2) of the linear term. As with the previous system,
the second panel of Fig. 3 shows that %0 is less reasonable
for a high value (�5). Contrary to the Displaced system, relo-
cating the HOs will not reduce the stochastic error due to
the symmetry of the Jahn–Teller system. Instead, we employ
additional HOs. Recall that in Sec. IV C we stated that the
number of multivariate Gaussians Ã comprising % may differ
from the number of electronic states A present in the system’s
Hamiltonian. The Jahn–Teller system has two electronic states,
A = 2, and the initial choice of sampling distribution, %0, was
composed of two multivariate Gaussians Ã = 2. We present
two possible alternate choices of %, using two additional oscil-
lators (%1), where Ã = 4, and six additional oscillators (%2),
where Ã = 8.

We derive %1 from
⇣
Ei + ĥo

⌘
1 + �i diag

⇣
+q̂1,�q̂1, +q̂2,�q̂2

⌘
(74)

and %2 from
⇣
Ei + ĥo

⌘
1 + �i diag

⇣
+q̂1,�q̂1, +q̂2,�q̂2,

+ ˆ̀1,� ˆ̀1, + ˆ̀2,� ˆ̀2
⌘
,

(75)

where
ˆ̀1 =

q̂1 + q̂2p
2

, ˆ̀2 =
q̂1 � q̂2p

2
. (76)

All E, !, and � values are the same as in Table II. We expect
that the increased coverage of the well in %1 and %2 should
increase the accuracy of our results. In the bottom two panels
of Fig. 4, we see that %1 only has a deviation of ⇡5%, much
better than %0’s deviation of ⇡50%. Similarly %2’s deviation
appears to be 1%. This shows that changing the placement
of a fixed number of distributions %a is not always sufficient.

FIG. 3. Four elevation maps of the lower adiabatic PES of the Jahn–Teller
system at �2 = 0.04 eV (top panel) and �5 = 0.16 eV (bottom three panels).
The colormap for the elevation is presented at the top of the figure. For each
panel, the sampling distribution %i is listed in the upper left-hand corner and
an ellipse is centered on the minimum, indicated by the cross (+), of each HO
comprising %i as described in Sec. V.
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FIG. 4. Four ⌧ convergence plots of
the �Z deviation of our PIMC method
(blue) and the exact Trotter (black) from
the ZSOS (magenta). The first panel
(from the top) demonstrates that the
simple distribution %0 is a reasonable
description of the Jahn–Teller system
when the curvature of the well is quite
small (�2). In the (�5) case, %0 is no
longer appropriate as seen in the sec-
ond panel. Comparing the bottom three
panels, it is clear that changing the sam-
pling distribution (%0 to %1 and %1 to
%2) has a significantly positive impact
on our results.

The number of distributions Ã must also be considered when
choosing % in order to ensure dense coverage of the energy
minimum.

VI. CONCLUDING REMARKS

In this work, we introduced a PIMC method for inves-
tigating electronically nonadiabatic systems in thermal equi-
librium. Starting from a vibronic Hamiltonian expressed in a
product basis of continuous and discrete DoFs, we showed
how to arrive at a PI formulation of the canonical partition
function Z. We derived an expression for Z as the product of a
Monte Carlo estimator, which is evaluated stochastically, and a
normalization factor, which is evaluated analytically. We also
obtained the analytical form of the normalization factor and the
distribution % that our algorithm draws samples from. Finally,
we presented our algorithm for calculating Z.

The importance of choosing an appropriate distribution
% was demonstrated. In the testing of model systems, we
observed that the accuracy of % as a model of g has a drastic
effect on the accuracy of our method. Indeed, we showed that
our PIMC method’s deviation from exact Trotter calculations
is dominated by the choice of %.

In the case of our small model systems, obtaining the PESs
was computationally feasible and one’s intuition was sufficient

to guide the selection of the parameters which define %. In gen-
eral, this approach is not feasible and would need to be replaced
with a distribution fitting scheme in order to obtain a compu-
tationally favourable distribution %. As mentioned previously,
choosing the GMM is a distribution fitting or parameter esti-
mation problem, for which we can employ common statistical
methods such as MLE.54 The fitting of GMMs is an estab-
lished area of research in the machine learning community,
used in a variety of applications.63–65 It has been demon-
strated that very large mixtures of Gaussians are efficiently
learnable in high dimension.66 We hope to take advantage of
these recent advances when applying our PIMC method to
more complex systems where the PES cannot be so thoroughly
examined. Reasonable convergence in these systems should be
attainable with sufficiently well designed GMMs and fitting
schemes.

We have built a theoretical and computational framework
for obtaining the vibrational-electronic partition function Z
for a single molecule described by a vibronic Hamiltonian
as illustrated by the applications to our two model systems.
This framework can be combined with the usual ideal gas
treatment and an approximate rigid rotor model to obtain the
molar Helmholtz energy and Gibbs energy G. In the future,
we aim to develop stable estimators for energetic properties
and their fluctuations such as U and Cv . Our ultimate goal
would be to calculate the �G for chemical reactions where
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both reactants and products can be described by a vibronic
model.
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