
Preserving Measured Structure During Generation and

Reduction of Multivariate Point Configurations

by

Adam Rahman

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2018

© Adam Rahman 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Exam-
ining Committee is by majority vote.

External Examiner Daniel B. Carr
Professor
Department of Statistics
George Mason University

Supervisor R. Wayne Oldford
Professor
Department of Statistics and Actuarial Science
University of Waterloo

Internal Members Greg Bennett
Professor Emeritus
Department of Statistics and Actuarial Science
University of Waterloo

Marius Hofert
Assistant Professor
Department of Statistics and Actuarial Science
University of Waterloo

Matthias Schonlau
Professor
Department of Statistics and Actuarial Science
University of Waterloo

Internal-external Member Grant Weddell
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in this thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Chapters 4 - 6 include work that was published in the paper Euclidean Distance Ma-
trix Completion and Point Configurations from the Minimal Spanning Tree by Adam
Rahman and R. Wayne Oldford [89].

iv

Abstract

Inherent in any multivariate data is structure, which describes the general shape and distribu-
tion of the underlying point configuration. While there are potentially many types of structure
that could be of interest, consider restricting interest to two general types: geometric structure,
the general shape of a point configuration, and probabilistic structure, the general distribution of
points within the configuration.

The ability to quantify geometric structure is an important step in many common statistical
analyses. For instance, general neighbourhood structure is captured using a k-nearest neighbour
graph in dimension reduction techniques such as isomap [103] and locally-linear embedding [93].
Neighbourhood graphs are also used in sensor network localization, which has applications in fields
such as environmental habitat monitoring [72] and wildlife monitoring [101]. Another geometric
graph, the convex hull, is also used in wildlife monitoring as a rough estimate of an animal’s home
range [65].

The identification of areas of high and low density is one example of measuring the probability
structure of a configuration, which can be done using a wide variety of methods. One such method
is using kernel density estimation, which can be viewed as a weighted sum of nearby points. Kernel
density estimation has widely varying applications, including in regression analysis [80][116], and
is used in general to assess certain features of the data (modality, skewness, etc.).

Related to the idea of measuring structure is the concept of “Cognostics” [110], which has been
formalized as scatterplot diagnostics (or scagnostics) [119][120]. Scagnostics provides a framework
through which interesting structure can be measured in a configuration. The central idea is to
numerically summarize the structure of a large number of two-dimensional point configurations
via measures calculated on geometric graphs. This allows the interesting views to be quickly
identified, and ultimately examined visually, while the views deemed to be uninteresting are
simply discarded. While a good starting point, several issues in the current framework need
to be addressed. For instance, while each measure is designed to be in [0, 1], there are some
that, when measured over tens of thousands of configurations, fail to achieve this range. In
addition, there is a lot of structure that could be considered interesting that is not captured by
the current framework. These issues, among others, will be addressed and rectified so that the
current scagnostic framework can continue to be built upon.

With tools to measure structure, attention is turned to making use of the structural information
contained in the configuration. Consider the problem of preserving measured structure during the
task of data aggregation, more commonly known as binning. Existing methods of data aggregation
tend to exist on two ends of the structure retention spectrum. Through experimentation, methods
such as equal width [121] and hexagonal binning [18] will be shown to tend to retain the shape
of the configuration, at the expense of the density, while methods such as equal frequency [121]
and random sampling tend to retain relative density at the expense of overall shape. Tree-based
binning, a general binning framework inspired by classification and regression trees, is proposed
to bridge the gap between these sets of specialist algorithms. GapBin, a specially designed tree-

v

based binning algorithm, will be shown through experimentation to provide a trade-off in low
dimensional space between geometric structure retention and probabilistic structure retention. In
higher dimensions, it will be shown to be the superior algorithm in terms of structure retention
among those considered.

Next, the general problem of constructing a configuration with a given underlying structure is
considered. For example, the minimal spanning tree is known to carry important clustering infor-
mation [47]. Of interest then, is the generation of configurations with a given minimal spanning
tree structure. The problem of generating a configuration with a known minimal spanning tree
is equivalent to completing a Euclidean distance matrix where the only known entries are those
in the minimal spanning tree. For this problem, there are several solutions, including those of
Alfakih et. al. [2], Fang & O’Leary [34], and Trosset [107]. None of these algorithms, however,
are designed to retain the structure of the minimal spanning tree. In addition, the sparsity of
the Euclidean distance matrix containing only the minimal spanning tree results in completions
that are not accurate as compared to the known completion. This leads to issues in the point
configurations of the resulting completions. To resolve these, two new algorithms are proposed
which are designed to retain the structure of the minimal spanning tree, leading to more accurate
completions of these sparse matrices.

To complement the algorithms presented, implementation of these algorithms in the statistical
programming language R will also be discussed. In particular, the R package treebinr for tree-
based binning, and edmcr for Euclidean distance matrix completions will be presented.

vi

Acknowledgments

I would like to thank my supervisor Wayne Oldford for all of his guidance, advice, probing
questions, and thoughtful insight. His expertise and knowledge in statistics, visualization, data
analysis, and teaching have had a profound impact on my academic development, and for that I
am very grateful.

Second, to the giants upon whose shoulders I stand, thank you.

Most importantly, I would like to thank my mother and father, Sue and Ziad, and my grand-
mother Nancy. Without their constant love, support, and generosity I would not be where I am
today. For that, I am forever in your debt.

vii

Table of Contents

List of Figures xv

List of Tables xxvii

1 Introduction 1

1.1 Probabilistic Structure . 1

1.2 Geometric Structure . 3

1.3 Data Aggregation . 9

1.4 Thesis Structure . 12

2 Background 13

2.1 Probability Structure . 13

2.2 Geometric Structure . 16

2.2.1 Voronoi Diagrams & Delaunay Triangulations 17

2.2.2 Minimal Spanning Tree . 18

2.2.3 Nearest Neighbour Graphs . 19

2.2.4 Alpha and Convex Hulls . 20

2.3 Scagnostics . 21

2.3.1 Pre-processing . 21

viii

2.3.2 Measures . 23

2.4 Additional Work on Scagnostics . 25

2.4.1 Transforming Scagnostics . 26

2.4.2 Pargnostics . 28

2.4.3 Density-based Cognostics . 31

2.5 Concluding Remarks . 32

3 On Scagnostics 33

3.1 On the Distribution of Scagnostic Measures . 33

3.2 On Extreme Index Values . 50

3.3 On Missing Structure . 52

3.4 On Higher Dimensional Views . 53

4 On Euclidean Distance Matrix Completion 55

4.1 Motivating Examples . 55

4.2 The Euclidean Distance Matrix Completion Problem 57

4.2.1 Background Mathematics . 57

4.2.2 The General Completion Problem . 60

4.2.3 The Semidefinite Programming Algorithm 61

4.2.4 The Non-convex Position Formulation . 62

4.2.5 The Dissimilarity Parameterization Formulation 64

4.3 Completions from the Minimal Spanning Tree . 66

4.3.1 Judicious Choice of Bounds . 68

4.3.2 A Constructive Solution . 70

4.4 Generating More Constrained Configurations . 70

ix

5 edmcr - An R Package for Euclidean Distance Matrix Completion Problems 73

5.1 Euclidean Distance Matrix Completion in R . 74

5.1.1 edmc . 74

5.2 Unconstrained EDMCP . 79

5.3 A Completion from the Minimal Spanning Tree 83

5.4 Dimension Reduction using the Guided Random Search 85

5.5 Concluding Remarks . 87

6 EDMCP: Experimental Analysis 88

6.1 Reconstructing the Iris data . 88

6.1.1 Completions as a Function of Percentage Missing 89

6.1.2 Distances as a Function of Percentage Missing 91

6.1.3 Reproducing the Minimal Spanning Tree 93

6.1.4 Reproducing the Point Configurations . 94

6.2 Reconstructing Data ∼ U [0, 1]p . 98

6.2.1 Completions as a Function of Dimension 98

6.2.2 Distances as a Function of Dimension . 100

6.2.3 Reproducing the Minimal Spanning Tree 102

6.2.4 Reproducing the Point Configurations . 102

6.3 Concluding Remarks . 103

7 Binning: For More Than the Birds 106

7.1 Existing Binning Techniques . 107

7.1.1 Supervised . 108

7.1.2 Unsupervised . 110

x

7.1.3 Issues with Existing Methods . 115

7.2 Tree-based Binning Framework . 116

7.2.1 GapBin . 118

7.3 Additional Tree-based Binning Algorithms . 120

7.4 Concluding Remarks . 122

8 treebinr - An R Package for Binning 123

8.1 The General Structure of treebinr . 123

8.1.1 The Main Function - treebin . 124

8.1.2 stopCriteria . 125

8.1.3 binMeasure . 125

8.1.4 boundaryTest . 127

8.1.5 makePoint . 127

8.1.6 selectBin . 128

8.1.7 splitBin . 129

8.1.8 binInfo and inputs . 130

8.2 Other Built-in Algorithms . 131

8.2.1 Clustered Binning . 131

8.2.2 Equal Width Binning . 134

8.3 A Simple Example . 136

8.4 Additional Functionality . 138

8.4.1 Add a Point . 139

8.4.2 Perform the Next Split in Sequence . 140

8.4.3 Undo the Last Split in Sequence . 141

8.4.4 Split a Chosen Bin . 143

xi

8.4.5 Prune a Bin . 144

8.5 Concluding Remarks . 145

9 Binning: Experimental Results 146

9.1 Two Dimensions . 147

9.1.1 Measures on a Real Data Set - Diamonds 149

9.2 Three Dimensions . 152

9.2.1 Cats . 154

9.2.2 Centaur . 155

9.2.3 David . 156

9.2.4 Gorilla . 159

9.3 Higher Dimensions . 161

9.3.1 Statue Manifold . 165

9.3.2 Olivetti Faces . 168

9.3.3 Frey Faces . 171

9.3.4 UMIST Faces . 174

9.3.5 USPS Handwritten Digits . 177

9.4 Concluding Remarks . 179

10 Modifying the Scagnostic Framework 181

10.1 Changes to Existing Scagnostics . 181

10.1.1 Convex and Skewed - The Issue with Weighting 181

10.1.2 Proposing a New Alpha Value . 186

10.1.3 Tree-based Binning as a Pre-Processing Step 189

10.2 New Measures . 193

xii

10.2.1 The Grid Scagnostic . 193

10.2.2 The Symmetry Scagnostic . 195

10.3 Configurations from MST Edge Length Distributions 198

10.3.1 Generating a General Minimal Spanning Tree 199

10.3.2 Controlling Skewness . 199

10.3.3 Controlling Outlying . 202

10.3.4 Controlling Stringy . 202

10.3.5 Configurations using Restricted Angle Subsets 204

10.4 Future Work . 206

10.4.1 A Modular Framework . 206

10.4.2 Scagnostics in Higher Dimensions . 207

References 209

Appendices 219

A Mathematical Proofs 220

A.1 Proof of Inverse Relationship between T and K 220

B Scagnostic Universe Data Sets 222

C Semidefinite Quadratic Linear Programming in R - sdpt3r 225

C.1 Conic Linear Optimization . 226

C.2 A Separable Set of Variables . 228

C.2.1 The Nearest Correlation Matrix . 229

C.3 Semidefinite Quadratic Linear Programming . 230

C.3.1 The Primal Problem . 231

xiii

C.3.2 The Dual Problem . 232

C.3.3 Optimal Design of Experiments . 232

C.4 Solving a Conic Linear Optimization Problem in R 234

C.4.1 Input Variables . 235

C.4.2 The Max-Cut Problem . 237

C.4.3 A Numerical Example and the maxcut Function 239

C.4.4 Nearest Correlation Matrix . 240

C.4.5 A Numerical Example and the nearcorr Function 243

C.4.6 D-Optimal Experimental Design . 245

C.4.7 A Numerical Example and the doptimal Function 247

C.5 Additional Problems . 248

C.5.1 Minimum Volume Ellipsoids . 248

C.5.2 Distance Weighted Discrimination . 249

C.5.3 Max-kCut . 250

C.5.4 The Graph Partitioning Problem . 251

C.5.5 The Lovasz Number . 252

C.5.6 The Educational Testing Problem . 253

C.5.7 Logarithmic Chebyshev Approximation . 254

C.5.8 Linear Matrix Inequality Problems . 255

C.5.9 OPTIONS . 257

xiv

List of Figures

1.1 (a) A histogram of a 500 point sample from a univariate standard normal distri-
bution. (b) A kernel density estimate of a 500 point sample from a univariate
standard normal distribution. (c) A two dimensional kernel density estimate of
a 500 point sample from a standard bivariate normal distribution. Lighter areas
represent areas of high density. 2

1.2 (a) A sample of 500 points from a 50/50 mixture of two bivariate normal distribu-
tions. Points emanating from N (µ1,Σ) are red circles, and points from N (µ2,Σ)
are blue triangles. (b) DBSCAN is able to identify both clusters quite clearly (using
a value of ε = 1.25, and m = 5), with a few points labelled as “noise” (grey squares).
It should be noted that varying either ε or m results in varying outcomes. 3

1.3 From [90], a map of the 200 known access point locations (blue open circles). Also
shown are access points sampled by a single user (red closed circles) at a certain
moment in time, along with the strength of the received signal strength. 4

1.4 From [90] (a) The proposed positions (red triangles) of four access points (of known
location) whose locations were hidden from the algorithm. Actual locations are
shown as blue circles. (b) The proposed positions of some of the unknown access
points (red triangles), and the positions of the 200 known access points (blue circles). 5

1.5 The general sensor network localization problem of [90]. Blue circles represent
access points with known positions, red triangles access points with unknown po-
sitions, and grey squares emitters with unknown positions. Solid lines represent
known distances, while dotted lines represent unknown distances. The goal is to
find the positions of the emitters and access points with unknown locations. 6

1.6 A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This ex-
ample shows a protein reconstruction with the most known structure of all protein
reconstruction attempts in [51]. 7

xv

1.7 A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This ex-
ample shows a protein reconstruction with the least known structure of all protein
reconstruction attempts in [51]. 7

1.8 (a) A 2-nearest neighbour graph that could be used in isomap, since the minimum
requirement of connectedness is achieved. (b) An example of the shortest path
between two points along the graph. This distance is used as an estimate of the
geodesic distance between two points along the manifold, and is used in place of the
Euclidean distance between the points. 8

1.9 Two dimensional views of each pair of principal directions for the three dimensional
manifold of the statue data produced by isomap. From left to right: (Dimension 1,
Dimension 2), (Dimension 1, Dimension 3), (Dimension 2, Dimension 3). 8

1.10 Examples of simulated configurations on which geometric and probabilistic structure
will be evaluated before and after binning. 9

1.11 An example of a three dimensional structure which contains both a general shape
and fine detail that would ideally be preserved during data aggregation. 10

1.12 Views of the first two dimensions of the three dimensional manifold produced by
multidimensional scaling of an image data set. The data was originally of dimen-
sion 4096. 11

2.1 Kernel density estimates using five different kernel functions for a sample of size
500 from a univariate standard normal distribution. 15

2.2 (a) The original point configuration. (b) The Voronoi diagram of the configuration.
(c) The Delaunay triangulation of the configuration. 17

2.3 (a) The original point configuration. (b) The associated minimal spanning tree. . . 19

2.4 (a) The original point configuration. (b) The nearest neighbour graph. (c) The
3-nearest neighbour graph. 20

2.5 Three examples of an alpha shape computed with varying levels of α. The limiting
case (α → ∞), known as the convex hull, is also provided. 21

2.6 From [27]: The result of computing striation on the 64 different data configurations
produced by transforming the 41st and 48th variables in the Madelon data set. Grey
level indicates the level of measured striation, with darker grey representing higher
striation. High levels of striation can be observed when the sigmoid function is
applied to the x axis variable. 27

xvi

2.7 From [28]: The result of sorting the axes of the wine data set in a parallel coordinate
plot by minimizing the angle of crossing and maximizing parallelism. On left the
original plot, and on right the optimally ordered plot. 30

2.8 From [17]: On left, the original data after applying hexagonal binning. On right,
the result of thinning the configuration. Darker cells were retained during thinning,
while the large central mass was not considered during the thinning process. The
measure of interest is computed to be 0.3. 32

3.1 A visualization of the point configurations to be used to perform a numerical analysis
of the distribution of the various scagnostic measures. 34

3.2 The original scagnostic consistency experiment of [120]: “Boxplots of scagnostics measures for

different samples from a wide variety of distributions. The horizontal axis represents sample size.

The vertical axis is stratified by type of scagnostic. Scagnostic values vary between 0 and 1. The

general lack of an overall trend across sample size indicates the scagnostic measures are consistent.” 35

3.3 The reproduced scagnostic consistency experiment. Despite the inability to repro-
duce the original configurations exactly, the observed results are very similar to the
original experiment. 36

3.4 The empirical distributions of the outlying scagnostic measured over the ten config-
urations listed in [120]. 38

3.5 The empirical distributions of the skewed scagnostic measured over the ten config-
urations listed in [120]. 39

3.6 The empirical distributions of the clumpy scagnostic measured over the ten config-
urations listed in [120]. 40

3.7 The empirical distributions of the sparse scagnostic measured over the ten configu-
rations listed in [120]. 41

3.8 The empirical distributions of the striated scagnostic measured over the ten config-
urations listed in [120]. 42

3.9 The empirical distributions of the convex scagnostic measured over the ten config-
urations listed in [120]. 43

3.10 The empirical distributions of the skinny scagnostic measured over the ten config-
urations listed in [120]. 44

3.11 The empirical distributions of the stringy scagnostic measured over the ten config-
urations listed in [120]. 45

xvii

3.12 The empirical distributions of the monotonic scagnostic measured over the ten con-
figurations listed in [120]. 46

3.13 From [120]: “Scatterplots from a variety of real data sets aligned on scagnostics
scale for each scagnostic. The scatterplots were selected for having a relatively low,
medium, or high value on each scagnostic. This figure shows that high-value scat-
terplots are reasonable exemplars for the descriptive names (Monotonic, Stringy,
etc.) and low-value scatterplots correspondingly lack the feature described by each
scatterplot name.” . 47

3.14 Three examples of letter value boxplots for 1000 observations from Exponential(1),
Normal(0,1), and Uniform(-5,5). Boxes of similar size and colour represent the
same quantile range of the data. 49

3.15 The letter-value boxplots for each scagnostic measure computed on the “scagnostic
universe” data. Ideally, each scagnostic would be able to achieve a full range of
values from [0,1], however, that appears to not be the case for the skewed and
convex scagnostics. 50

3.16 Four configurations with measured skewness below 0.25 in the scagnostic universe
experiment. 51

3.17 Six configurations with measured convexity above 0.75 in the scagnostic universe
experiment. 52

3.18 In examining symmetry about the line Y=X, interest lies in identifying two cases,
(a) perfect symmetry and (b) perfect asymmetry. (c) The scagnostic summaries
for these two configurations, which seems to indicate that apart from monotonicity,
these configurations are very similar. 53

4.1 On right, a minimal spanning tree arranged as a graph object. On left, the corre-
sponding weighted adjacency matrix with weights equivalent to the Euclidean dis-
tances between nodes in the minimal spanning tree. 56

5.1 A visualization of the first two dimensions in the three dimensional configuration
produced by the Guided Random Search algorithm using the minimal spanning tree
of the 4096 dimensional statue manifold data set. 86

xviii

6.1 Effect of increasing the percentage of missing distances on each method. Methods
are coded by colour and symbol shape. For each percentage, several different matri-
ces with different patterns of randomly selected missing data were used. In the top
plot, each point symbol represents the result of one such matrix with one method;
alpha blending of colour is used so that places where the values are essentially the
same will appear more saturated due to over-plotting and the blending of the colours.
In the bottom plot, only the average values are shown. 90

6.2 Relative dissimilarity difference when completing the Iris data from its minimal
spanning tree distances. C has 39,935 completions, SDP one, NPF 466 identical
completions, DPF 124 completions, and DPFLB 114 – each set was completed in the
time taken for a single SDP completion (> 7 hours) 91

6.3 Plots of the pairs of (dij, d̂ij) for all i < j for a single reconstruction of the Iris
distance matrix; red values are the original minimal spanning tree distances. Perfect
reconstruction would be all points on the y = x line; the box in each plot is the range
of the original distances and is identical in size across all plots; scales are identical
for the same percentage of missing distances. 92

6.4 Plots of (dij, d̂ij) for all i < j for a single reconstruction when the matrix to be
completed contained only minimal spanning tree distances (shown in red); the y = x
line indicates perfect matching; the box in each plot shows the extent of the original
distances. 93

6.5 Square of the total difference in minimal spanning tree distances as a multiple of
the total squared minimal spanning tree distances versus the proportion of minimal
spanning tree edges that were retained. All completions of all five methods are
shown. The three points at the right have identical values but have been given
different vertical positions to better distinguish the points in the plot. 94

6.6 Procrustes analysis (via procrustes() from the R package vegan [82]) of the Iris
data point configurations reconstructed in the original four dimensions given by each
method. The error is measured by “Procrustes Sum of Squares” which is the squared
Frobenius norm of the difference between the original point configuration and each
one constructed by the various methods (and optimally rotated and translated to
best match the original). Each of C, DPF, and DPFLB are shown as density estimates
based on their many reproduced configurations; each of NPF (dashed) and SDP (dot-
dashed) produce a single reconstructed point configuration and so are shown as
vertical lines. 95

6.7 Iris data point configurations reconstructed in the four dimensions given by each
configuration’s principal coordinates. The three species of flower are distinguished
both by colour and by shape of the point symbols. 97

xix

6.8 Performance of the five completion matrices. Top plot shows base 10 logarithms
of the average times to complete (n = 1 for SDP, n = 466 for NPF, n = 124 for
DPF, n = 114 for DPFLB, n = 39, 935 for C) from a single matrix (“matrix 1”). The
bottom plot shows log10 of the average RDDs for these completions from all five
matrices (marked 1 to 5). 99

6.9 Plots of (dij, d̂ij) for all i < j for a single reconstruction when the matrix to be
completed contained only minimal spanning tree distances (shown in red); the y = x
line indicates perfect matching; the box in each plot shows the extent of the original
distances. Results for all five methods are shown in each column; rows, from bottom
to top, show increasing dimensionality of p = 2, 6, 10. 100

6.10 Uniform two dimensional data: the original and those reconstructed by the five
methods. Coordinates are the principal coordinates for each configuration. The red
circle has the same centre and diameter in all plots. 101

6.11 Each of C, DPF, and DPFLB are shown as density estimates based on their many
reproduced configurations; each of NPF (dashed) and SDP (dot-dashed) produce a
single reconstructed point configuration and so are shown as vertical lines. 102

6.12 Uniform within a six-dimensional hypercube. Data point configurations reconstructed
in six dimensions using each reconstruction’s (including the original data) principal
coordinates. 105

7.1 An example of the equal width binning method reducing a bivariate normal config-
uration from 100 points to 47. 111

7.2 An example of the equal frequency binning method reducing a bivariate normal
configuration from 100 points to 46. 112

7.3 An example of the fixed frequency binning method reducing a bivariate normal con-
figuration from 100 points to 42. 113

7.4 An example of the hexagonal binning method reducing a bivariate normal configu-
ration from 100 points to 45. 114

7.5 An example of the random sampling method reducing a bivariate normal configura-
tion from 100 points to 50. 115

7.6 The general idea of a classification and regression tree [40] which serves as the
motivation for tree-based binning. 116

7.7 An example of the GapBin method reducing a bivariate normal configuration from
100 points to 50. 121

xx

8.1 An example of the structure of a simple tree from the tree-based binning framework.
Here, node 1 is the parent to nodes 2 and 3. Nodes 2 and 3 are not parent nodes
to any other bin. 125

8.2 Binning a (a) normal point configuration using each of (b) GapBin, (c) Equal Width
Binning, (d) and Clustered Binning. All are done in the framework of tree-based
binning. 138

8.3 Binning a bivariate normal point configuration from 100 points to 50 using GapBin.139

8.4 Adding a point to the previously binned bivariate normal configuration. The affected
point(s) are highlighted as red triangles. 140

8.5 Executing the next split in sequence for the previously binned bivariate normal con-
figuration. The affected point(s) are highlighted as red triangles 141

8.6 Undoing the last split in the sequence for the previously binned bivariate normal
configuration. The affected point(s) are highlighted as red triangles. 142

8.7 Splitting the bin with the largest count in the previously binned bivariate normal
configuration. The affected point(s) are highlighted as red triangles. 143

8.8 Pruning the bin previously split in the binned bivariate normal configuration. The
affected point(s) are highlighted as red triangles. 144

9.1 Two dimensional examples of the six point configurations to be used to evaluate the
effectiveness of the binning algorithms. In order from top left to bottom right by
row: uniform, normal, clustered normals, student-t, donut, and chi-square. 147

9.2 The measures for each of the six binning algorithms on data in two dimensions. . 148

9.3 The variables depth (x-axis) and price (y-axis) of the diamonds data set scaled to
be in [0, 1]× [0, 1]. Two levels of alpha blending are used to emphasize the density
of the configuration (on left), and the shape of the configuration (on right). 150

9.4 The variables depth (x-axis) and price (y-axis) of the diamonds data set binned
to 5000 points using six binning algorithms. From top left (by-row): equal width,
hexagonal binning, equal frequency, fixed frequency, random sampling, and tree-
based binning. 151

9.5 Measure scores for each of the six binning algorithms on the diamonds data set. . 152

9.6 The measures for each of the five binning algorithms on data in three dimensions. 153

9.7 A three dimensional rendering of a cat. 154

xxi

9.8 The result of binning Figure 9.7 with (from left to right) GapBin, equal width, equal
frequency, and random sampling. 154

9.9 A three dimensional rendering of a centaur. 155

9.10 The result of binning Figure 9.9 with (from left to right) GapBin, equal width, equal
frequency, and random sampling. 155

9.11 Three different views of the David structure. The top left image will be used to
asses the ability of the algorithms to retain a general shape, while the top right and
bottom images will be used to assess the ability of the algorithms to retain finer detail.156

9.12 Binning of the David configuration using each of GapBin, equal width, equal fre-
quency, and random sampling. 157

9.13 Images of the hands of the binned data configurations using each of GapBin, equal
width, equal frequency, and random sampling. 158

9.14 Images of the head of the binned data configurations using each of GapBin, equal
width, equal frequency, and random sampling. 158

9.15 Images of binning only the head of David configuration using each of GapBin, equal
width, equal frequency, and random sampling. 159

9.16 An image of the Gorilla that illustrate its overall shape, and an example of the fine
detail in the structure of its hand. 160

9.17 Binning of the gorilla configuration using (from left to right) GapBin, equal width,
equal frequency, and random sampling. 160

9.18 Binning of the hand of the Gorilla configurations using (from left to right) GapBin,
equal width, equal frequency, and random sampling. 161

9.19 The measures for each of the five binning algorithms on data in four dimensions. . 162

9.20 The measures for each of the five binning algorithms on data in five dimensions. . 163

9.21 The measures for each of the five binning algorithms on data in six dimensions. . 164

9.22 A view of the first two dimensions of the three dimensional manifold produced by
multidimensional scaling of the statue data. The left image is the original data,
and the right image is the binned data. 165

9.23 A view of the first two dimensions of the three dimensional manifold produced by
multidimensional scaling of the statue data. The top image is the original data,
and the bottom image is the binned data. 166

xxii

9.24 Four different bins (one in each row) produced by GapBin. Each bin contains eight
very similar images of the statue manifold data. 167

9.25 Three different “bad” bins (of size 3, 3, and 2) produced by GapBin. Each of the
“bad” bins is relatively small as compared to the larger bins considered in Figure 9.24.167

9.26 A view of the first two dimensions in the dimension reduction of the Olivetti data
to four dimensions total. The left image is the original data, and the right image
is the binned data. 168

9.27 A view of the first two dimensions in the dimension reduction of the Olivetti data
to four dimensions total. The top image is the original data, and the bottom the
binned data. 169

9.28 Four different bins produced by GapBin (one in each row) demonstrating the ef-
fectiveness of the GapBin algorithm in high dimensions. Each bin contains very
similar faces. 170

9.29 An issue with binning the Olivetti data set due to its high dimensionality and low
observation count. Even a modest compression results in one large bin containing
the 32 “leftover” images in the center of the configuration. This can be avoided by
increasing the number of bins. 171

9.30 A view of the first two dimensions in the dimension reduction of the Frey data to
four dimensions total. The image on the left is the original data, and the image on
the right the binned data. 172

9.31 A view of the first two dimensions in the dimension reduction of the Frey data
to four dimensions total. The top image is the original data, and the bottom the
binned data. 173

9.32 Three bins (one in each row) produced by GapBin containing remarkably similar
faces. This is is indicative of the ability of the GapBin algorithm to continue to
work well in dimension as high as 560. 174

9.33 Two bins (of size 2 and 4 respectively) in the binned configuration that contain
objectively different faces. Note that, similar to the statue manifold data, the bins
with differing faces tend to be quite small. 174

9.34 A view of the first two dimensions in the dimension reduction of the UMIST data to
four dimensions total. The left image is the original data, and the right the binned
data. 175

xxiii

9.35 A view of the first two dimensions in the dimension reduction of the UMIST data
to four dimensions total. The top image is the original data, and the bottom the
binned data. 176

9.36 Four different bins (one in each row), containing remarkably similar faces. Each
bin contains ten faces which demonstrates the ability of the GapBin algorithm to
continue to work in exceptionally high dimensions. 177

9.37 Two bins (of size 3 and 7) in the binned configuration that contain objectively
different faces. 177

9.38 A view of the first two dimensions in the dimension reduction of the USPS binary
digits data to four dimensions total. The left image is the original data, and the
right the binned data. 178

9.39 Seven bins (one in each row) produced by GapBin containing different digits. . . . 179

9.40 The largest bin (of size 20) produced by GapBin containing the digit 1. 179

10.1 The effect of binning on each of the nine scagnostic measures for point configura-
tions of increasing size. Note that no correction has been applied to these measures. 184

10.2 The effect of binning on each of the nine scagnostic measures for point configu-
rations of increasing size. Here, a correction has been applied to these measures
where appropriate, as in [119]. 185

10.3 The average difference over several configurations. (a) the value of α, (b) the area
of the resulting alpha hull, (c) the perimeter of the resulting alpha hull. The alpha
hull is in red, and the convex hull is in blue. 186

10.4 Four quadratic configurations of size 500, 1000, 1500, and 2000. On top, the
alpha hull on the original configuration, and on bottom, the alpha hulls on the
configuration binned using the hexagonal binning approach of scagnostics. 187

10.5 The same configurations as in Figure 10.4, but with the alpha hull computed using
the newly proposed alpha value. The resulting alpha hulls contain fewer holes and
discontinuities, and represent a marked improvement over the previous proposal. . 188

10.6 The average difference using the newly proposed value of α over several configura-
tions. (a) the value of α, (b) the area of the resulting alpha hull, (c) the perimeter
of the resulting alpha hull. Note that these images have been paced on the same
scale as Figure 10.3 so they can be compared directly. The alpha hull is in red, and
the convex hull is in blue. 188

xxiv

10.7 The effect of binning on each of the nine scagnostic measures for point configura-
tions of increasing size. Here, the newly proposed value of α is used. 190

10.8 (a) The distribution of the skinny scagnostic over 1000 simulated bivariate uniform
configurations of size 500 using the existing α value in the computation of the alpha
hull. (b) The distribution of the skinny scagnostic over the same configurations
using the newly proposed α value. 191

10.9 The effect of tree-based binning on each of the nine scagnostic measures for point
configurations of increasing size. Note that no correction has been applied to these
measures, and the newly proposed value of α has been used. 192

10.10An example of what would be considered a perfect grid - the measured angle between
adjacent (and nearest neighbour) points being either 90 or 180 degrees. Scagnostics
are computed on 5x5, 10x10, and 20x20 grids. 193

10.11The grid scagnostic computed on a series of grids that are increasingly jittered from
a perfect grid. 195

10.12Configurations from the scagnostic universe data set that score highly on the grid
scagnostic. Unsurprisingly, these data represent categorical data. 195

10.13An example of a perfectly symmetric and perfectly asymmetric configuration (along
the main diagonal). 196

10.14(a) Illustration of main diagonal symmetry. (b) Illustration of off diagonal sym-
metry. (c) An example showing how triangles are compared when main diagonal
symmetry is of interest. 196

10.15Four examples of bivariate stock data representing varying levels of the newly pro-
posed symmetry scagnostic. The calculated value of the newly proposed symmetry
scagnostic is shown underneath each image. 198

10.16A minimal spanning tree edge length distribution and the corresponding configura-
tion created using the modified guided random search algorithm. 199

10.17A minimal spanning tree edge length distribution and the corresponding configura-
tion for a high skew configuration created using the modified guided random search
algorithm. 200

10.18A minimal spanning tree edge length distribution and the corresponding configu-
ration created for a low skew edge length distribution using the modified guided
random search algorithm. 200

xxv

10.19(a) & (b) The two parent distributions mixed to achieve varying values of the skewed
scagnostic. (c) The varying levels of skewness achieved by mixing the two parent
distributions. 201

10.20A minimal spanning tree edge length distribution and configuration produced using
the modified guided random search algorithm for a configuration with an outlying
value of 1. 202

10.21A minimal spanning tree edge length distribution and configuration produced using
the modified guided random search algorithm for a configuration with an outlying
value of 0.00. 203

10.22Three configurations created with the guided random search algorithm with increas-
ing levels of stringiness. 204

10.23Three configurations created with the guided random search algorithm with an angle
set restricted to [0, π

2
]. Note that varying the underlying edge length distribution

results in varying ranges in the configurations. 204

10.24Three configurations created with the guided random search algorithm with angle
sets restricted to [π

4
, π

3
] 67% of the time, and [0, 2π] 33% of the time. Note that

varying the underlying edge length distribution results in varying ranges in the con-
figurations. 205

10.25The effect of restricting the subset of available angles in the guided random search
algorithm. The more restricted the subset of angles, the more straight lines (and
hence striation) is present in the configuration produced by the guided random search
algorithm. The line in the image has been fit using LOESS. 205

C.1 A graph object and associated adjacency matrix for which we would like to find the
maximum cut. 238

xxvi

List of Tables

2.1 The functional form, range, and visualization for five kernels. 14

5.1 (a) The first 5 rows of a sequence (seq) file. (b) The first five rows of an angle
constraint (aco) file. (c) The first 5 rows of a distance constraint (upl) file. 79

7.1 A list of some of the discretization algorithms used in the experiments of [42]. . . 107

10.1 A comparison of the steps needed to produce the outlying scagnostic in the original
implementation of scagnostics (left) and the newly proposed modular scagnostic
implementation. 207

C.1 Structure of blk. 235

C.2 Size of At and C for each block type. 235

C.3 Required size for initial iterates X0, y0, and Z0. 236

xxvii

Chapter 1

Introduction

Consider a set of observations X = [x1, ...,xn] ∈ Rn×d, which creates a Cartesian point configura-
tion in a d-dimensional Euclidean space. Inherent in this configuration is structure - measurable
characteristics of the point configuration. Two examples of measurable structure include

1. Probabilistic Structure - the structure of a point configuration that can be measured via
density estimation.

2. Geometric Structure - the structure of a point configuration that can be measured using a
geometric graph.

Measuring probabilistic and geometric structure in a point configuration, retaining it during
standard statistical analyses, and generating configurations containing this structure will be the
major subject of this thesis.

1.1 Probabilistic Structure

Probabilistic structure refers to the structure in a point configuration that can be measured using
density estimation techniques. The histogram [85] is a classic density estimation tool, which
first partitions the domain of the data into equally sized bins, and then counts the number of
occurrences in each bin. The computed density in each partition is then

Density over Domain of Partition =
Number of Observations in Partition

Total Number of Observations×Width of the Partition

1

This approach leads to a “rough” estimate of the density of the observed data. A smoother
estimate of the density can be achieved using kernel density estimation [84][91]. Using a kernel
function K, the estimate of density at a point x is computed as

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)

where h is a smoothing parameter to be chosen. In addition to being a smoothed estimate of the
density, kernel density estimation is not limited to univariate observations, and can be computed
for arbitrary dimension d. Figure 1.1 illustrates the differences between a histogram and kernel
density estimate, and provides an example of a two dimensional kernel density estimate.

(a) (b) (c)

Figure 1.1: (a) A histogram of a 500 point sample from a univariate standard normal distribution.
(b) A kernel density estimate of a 500 point sample from a univariate standard normal distribution.
(c) A two dimensional kernel density estimate of a 500 point sample from a standard bivariate
normal distribution. Lighter areas represent areas of high density.

In addition to numerical identification, probabilistic structure can also be captured by applying
graph objects to the point configuration. For instance, identifying areas of high density via nearest
neighbours is a key component in the density-based spatial clustering of applications with noise
(DBSCAN) algorithm [33]. DBSCAN identifies points that are in the same high density region,
and places them in a cluster. Beginning with a measure of distance ε and a minimum count m,
DBSCAN proceeds as follows for each point p

1. Identify all other points that are within a distance ε of p.

2. If p has at least m points within a distance ε of it (including itself), then label it a core
point.

2

A cluster is formed by beginning with a core point, and including all other points that are
reachable from it (including all other core points). It should be noted that every point that is
labelled as a core point will belong to a cluster, but not all non-core points in the configuration are
necessarily part of a cluster. Points not placed in a cluster are considered to be noise. An example
of using DBSCAN to identify two bivariate normal clusters is shown in Figure 1.2. The bivariate
normal clusters are drawn from N (µ1,Σ), and N (µ1,Σ) distributions, where µ1 = [−3,−3],

µ2 = [3, 3], and Σ =

[
1.5 0
0 1.5

]
.

(a) (b)

Figure 1.2: (a) A sample of 500 points from a 50/50 mixture of two bivariate normal distributions.
Points emanating from N (µ1,Σ) are red circles, and points from N (µ2,Σ) are blue triangles. (b)
DBSCAN is able to identify both clusters quite clearly (using a value of ε = 1.25, and m = 5),
with a few points labelled as “noise” (grey squares). It should be noted that varying either ε or m
results in varying outcomes.

1.2 Geometric Structure

In addition to probabilistic structure, the identification and preservation of geometric structure,
defined to be the shape information which can be captured by a geometric graph on a point
configuration, is also of interest. For example, in sensor network localization, the goal is to
determine the positions of a set of sensors, based only on the position of a few known anchors.
Distances between sensors, as well as between sensors and anchors, are known only if they are
within some (Euclidean) distance of one another, known as the radio range, denoted by R. The
resulting partial distance matrix can be viewed as a weighted neighbourhood graph on the sensors
and anchors.

An example of such a problem is described in [90], where access points (i.e. anchors) use
received signal strength from wireless users (emitters, i.e. sensors) to attempt to locate the
positions of access points with unknown locations. Figure 1.3 illustrates the problem.

3

Figure 1.3: From [90], a map of the 200 known access point locations (blue open circles). Also
shown are access points sampled by a single user (red closed circles) at a certain moment in time,
along with the strength of the received signal strength.

To model this problem as a sensor network localization problem, the received signal strength
is first converted to a distance. For emitter i and access point j, let sij represent the received
signal strength at the access point. Then,

dij = d0 ∗ 10(s0−sij)/(10np)

where s0 is the received signal strength at the access point at a reference distance of d0. The
variable np is known as the “path-loss exponent”, and is environment dependent. It can be viewed
as a noise term, as it is generally unknown.

With these individual distances, the distance matrix D has the following form

D =

Dkk Dke Dku

Dek Dee Deu

Duk Due Duu


where subscript k denotes the known access points, u the unknown access points, and e the
emitters. Dkk represents the distance matrix containing the distances between the known access
points, Dke the distance matrix between the known access points and the emitters, etc.

Since each emitter will only be within range of a subset of the known and unknown access
points, both Dek and Duk will be a partial distance matrix (denoted with a superscript ?). Also,
since there are access points with unknown locations, the distance matrices Duu and Duk are both

4

completely unknown. The result is the following partial distance matrix D? to be completed, with
the end goal being to reconstruct the complete matrix D from D?.

D? =

Dkk D?
ke ?

D?
ek ? D?

eu

? D?
ue ?


As a practical application, [90] consider data collected at the University of California, San

Diego [76]. The data represents received signal strength data for personal data assistants (PDAs)
given to 275 freshman students. Over the course of the experiment, 300 unique access points were
sensed, however only 200 had known locations.

The goal of the analysis was to locate the approximately 100 access points with unknown
locations. Figure 1.4(a) demonstrates the accuracy of the algorithm by first finding the position
of four access points whose positions were hidden from the algorithm. Figure 1.4(b) shows the
200 known access points (blue circles), as well as the estimated positions of some of the unknown
access points (red triangles).

(a) (b)

Figure 1.4: From [90] (a) The proposed positions (red triangles) of four access points (of known
location) whose locations were hidden from the algorithm. Actual locations are shown as blue
circles. (b) The proposed positions of some of the unknown access points (red triangles), and the
positions of the 200 known access points (blue circles).

Figure 1.5 illustrates the general problem. Here, blue circles represent access points with known
positions, red triangles access points with unknown positions, and grey squares emitters with
unknown positions. Solid lines represent known distances, while dotted lines represent unknown
distances, forming a partial distance matrix. The goal of the analysis is to find the positions of
the emitters and access points with unknown locations.

5

Figure 1.5: The general sensor network localization problem of [90]. Blue circles represent access
points with known positions, red triangles access points with unknown positions, and grey squares
emitters with unknown positions. Solid lines represent known distances, while dotted lines repre-
sent unknown distances. The goal is to find the positions of the emitters and access points with
unknown locations.

In addition to geo-tracking problems such as this, sensor networks have a large range of ap-
plications, such as military/security applications [69], environmental habitat monitoring [72], and
wildlife monitoring [101], amongst others. There are many proposed methods for solving sensor
network localization problems, ranging from relaxations of semi-definite programming algorithms
to iterative multidimensional scaling (see for example [32], [67], or [90]).

A much more constrained problem in this same space is the reconstruction of a protein molecule
based on incomplete inter-atomic distances. Specifically, the molecule problem looks to reconstruct
a three-dimensional molecule (most often a protein structure) using incomplete interatomic dis-
tances measured via nuclear magnetic resonance (nmr) spectroscopy. While some interatomic
distances may be unknown, there is a vast amount of structure that exists in a molecule that
can be exploited, as nature gives insights into the angles and distances at which certain atoms
must bond. Having a priori knowledge of the atomic structure of a molecule will allow for the
determination of bounds on the possible distances that can theoretically exist between atoms.
Other phenomena such as natural repulsion/attraction forces, and known atomic structure en-
force natural bounds on the possible distances that can exist between pairs of atoms.

Given all these restrictions, the problem is to then (as accurately as possible) propose a series
of plausible configurations for the molecule - as a set of bounds rarely can completely specify a
distance matrix, there are likely many valid solutions to a single conformation problem. There is
a large volume of research done in this area, including [44], [51], [53], [78], [106], [122].

One of the first attempts to solve this problem was presented in [51]. Using nuclear magnetic
resonance imaging, they extracted intramolecular, interproton distances from the molecular back-
bone of various protein structures. As they had the exact measurements (in Ångströms, Å), the
data were modified such that each known distance was placed in an appropriate range. For exam-
ple, distances shorter than 2Å were instead treated as unknown distances in the range [0,2)Å. In
total, 10 data sets were considered, each with varying levels of restrictions on bonding angles and
distances placed on them. Figures 1.6 and 1.7 illustrate the results from two of the experiments.

6

Figure 1.6: A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This example shows a
protein reconstruction with the most known structure of all protein reconstruction attempts in
[51].

Figure 1.7: A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This example shows a
protein reconstruction with the least known structure of all protein reconstruction attempts in
[51].

The importance of preserving geometric structure is also present in fields such as dimension
reduction, where, as the name implies, the goal is to reduce the dimension of a configuration,
but to do so in such a way as to minimize the damage done to the underlying manifold. For
instance, the isomap algorithm [103] first produces a (connected) neighbourhood graph in the
native dimension of the data, thus preserving local distances between points. Remaining distances

7

are calculated as the shortest path along the neighbourhood graph, approximating the geodesic
distance between points. Figure 1.8 illustrates the construction of this distance matrix using a
simple two dimensional point configuration.

(a) (b)

Figure 1.8: (a) A 2-nearest neighbour graph that could be used in isomap, since the minimum
requirement of connectedness is achieved. (b) An example of the shortest path between two points
along the graph. This distance is used as an estimate of the geodesic distance between two points
along the manifold, and is used in place of the Euclidean distance between the points.

With an (approximate) distance matrix for the data in its original dimension, multidimensional
scaling is used to decrease the dimension of the data to that desired. Figure 1.9 provides an
example of a three dimensional manifold produced by isomap. The original data exists in 4096
dimensions.

Figure 1.9: Two dimensional views of each pair of principal directions for the three dimensional
manifold of the statue data produced by isomap. From left to right: (Dimension 1, Dimension 2),
(Dimension 1, Dimension 3), (Dimension 2, Dimension 3).

Isomap is just one example of a dimension reduction algorithm that seeks to preserve geometric

8

structure. Other examples include Laplacian Eigenmaps [9] and locally linear embedding [93],
among many others.

1.3 Data Aggregation

In dealing with data that has not only a large number of dimensions, but also a large number of
observations, it may first be beneficial to decrease the number of observations (a task typically
referred to as binning) before undertaking statistical analyses, as simple tasks such as the con-
struction of the distance matrix have computational complexity that scale exponentially with the
number of observations. Much of the recent work in the field of binning has been centred around
its use in classification and kernel density estimation, and not necessarily in its more general use
of simply decreasing the number of observations in a configuration.

In classification, the goal of binning is to discretize a continuous attribute into a finite number
of discrete subsets. This is done to accommodate continuous attributes in classification algorithms
that require strictly discrete attributes. Of the large number of algorithms that exist (see [42] for
a survey), some of the better overall performers include Multivariate Discretization [8], MODL
[10], and ChiMerge [64]. The issue with these algorithms (and the vast majority of the algorithms
developed for these classification problems) is that they are supervised algorithms - they require
a class variable y. In many data sets, such a class variable is not present, so a more general
algorithm is required to decrease the number of observations in a general configuration.

Figure 1.10: Examples of simulated configurations on which geometric and probabilistic structure
will be evaluated before and after binning.

Unlike in classification, in kernel density estimation the goal of binning is to reduce the number
of observations in the configuration before computing the density estimates. The effects of various
binning algorithms on the accuracy of the density estimate has been studied (see [50] & [58]), and
the method found to be best in terms of accuracy is linear binning [50], which aims to replace each
point by its nearest grid point - essentially turning a point scatter into a weighted grid, decreasing
the number of points at which the kernel density estimate must be computed. While this method
may be appropriate as an approximation in the context of kernel density estimation, seeing use
in algorithms such as the local polynomial regression algorithm RODEO [95], it is not a generally

9

appropriate method to reduce the number of observations in a large data set, as data tend to not
lie on a perfect grid.

What is left for use in the general case of decreasing the observation count is a narrow selection
of unsupervised binning algorithms. Some of the more well known include equal width [121], equal
frequency [121] (and the closely related fixed frequency [123]), and hexagonal binning [18]. While
not a binning algorithm per se, random sampling can also be used to efficiently reduce the number
of observations in a point configuration.

With multiple algorithms to choose from, of practical importance is to choose one that mini-
mally damages the underlying probability and geometric structure of the data, limiting the impact
of binning on any analyses undertaken. This can be explored empirically by first simulating data
sets (such as those in Figure 1.10), decreasing the number of observations using various binning
algorithms, and measuring the effect of binning on the structure. By including configurations
with various types of underlying structure, such as configurations with high and low density ar-
eas, configurations that have potential outlying points, etc., the strengths and weaknesses of each
of the algorithms can be examined.

Figure 1.11: An example of a three dimensional structure which contains both a general shape and
fine detail that would ideally be preserved during data aggregation.

In addition to the simulated data sets, having real data configurations with clear structure,
such as those in the TOSCA high resolution data set [14], are very useful for visually confirming
the results of the simulation. Using images such as those in Figure 1.11, the ability of various
binning algorithms to retain the overall structure of the shape of each image can be visually
assessed. The retention of fine detail, such as in the face and fingers of the images, can also be
examined.

An algorithm’s ability to bin in low dimensional space does not necessarily imply it will continue

10

to be viable as dimension increases. For example, the number of bins under consideration in the
equal width algorithm scales exponentially with the dimension of the data. To place k bins in
each of d dimensions, the equal width algorithm must place kd bins, increasing the computational
complexity of the algorithm significantly. In turn, this likely impacts the accuracy of the algorithm
as fewer bins can reasonably be considered in each dimension. Tukey, in the context of capturing
density, takes a much more blunt stance on binning in high dimensions [112]

The number of potential combinations and subdivisions of the coordinates rises so fast
with the number of dimensions that we cannot stick to “counts in bin.” In fact, it is
difficult to do well with bins in so few as two dimensions. Clearly, bins are for the
birds!

To see if bins are truly for the birds, an analysis of high dimensional data can be undertaken.
The algorithms capable of binning in high dimensional space can be used to bin data in their
native dimension, and then, using a method such as as isomap, the differences between the non-
binned data and the binned data sets can be visually assessed. For this, image data sets in varying
high dimensional space, such as that in Figure 1.12, could be considered.

Figure 1.12: Views of the first two dimensions of the three dimensional manifold produced by
multidimensional scaling of an image data set. The data was originally of dimension 4096.

11

1.4 Thesis Structure

The main theme of this thesis will revolve around the identification of structure, as well as the
preservation of structure during both the reduction and generation of point configurations. The
thesis will be structured as follows.

Chapter 2 introduces probabilistic and geometric structure by reviewing some of the ways in
which each type of structure is measured. Also introduced is the concept of scatterplot diagnos-
tics, or scagnostics [119], which are designed to summarize these types of structure in a point
configuration. Some of the experiments in [120] are also reproduced. Chapter 3 discusses some
of the issues with the current implementation of scagnostics, and offers some suggestions as to
potential solutions.

Chapter 4 introduces Euclidean distance matrix completion by reviewing the underlying math-
ematics and some of the existing methods in this field. Examples of generating configurations with
desired structure (such as those with extreme values of a chosen scagnostic) are presented both
as a motivating example and as an additional application of a newly proposed Euclidean distance
matrix completion method. Chapter 5 will discuss the novel implementation of these algorithms
in the statistical software R, which is used to facilitate the experiments conducted in Chapter 6.

Chapter 7 explores existing techniques for data aggregation, including both supervised and
unsupervised techniques and their role in data analysis. In addition, tree-based binning, a new
binning framework, is proposed. Chapter 8 discusses the implementation of tree-based binning in
R. Chapter 9 examines the strengths and weaknesses of the binning methods introduced in Chapter
7, specifically analyzing their ability to preserve both probabilistic and geometric structure over
configurations with varying numbers of observations and dimension.

Finally, Chapter 10 introduces solutions to the problems identified in the scagnostic framework
in Chapter 3. In addition, new scagnostics that capture additional interesting structure are
proposed, and, building off of the work done in Chapter 4, methods for generating configurations
with a given scagnostic level are introduced. As a future work project, a proposal for a new
scagnostic framework is made, with a theoretical layout in R.

12

Chapter 2

Background

This chapter introduces the necessary background material to understand the concepts of prob-
ability and geometric structure, and the tools used to capture them. Section 2.1 introduces the
tools that will be used to measure the probability structure of a point configuration. Section 2.2
introduces a wide range of geometric graph objects that can be used to measure geometric struc-
ture. Finally, Section 2.3 introduces scagnostics [119], a framework for numerically quantifying
“interesting” structure in two-dimensional point configurations.

2.1 Probability Structure

Probability structure is measured by identifying points of interest that exist in the probability
density of a point configuration. For example, identifying areas of high and low point density
and transition points between these areas could lead to interesting structural discoveries in a
configuration. Also, density comparisons between configurations allows for the structure of a
“non-interesting”configuration, such as a uniform or normal point scatter, to be contrasted against
configurations of unknown structure to test for deviations (and hence “interestingness”).

A popular method for computing smoothed density estimates of a point configuration is kernel
density estimation, computed at a point x using the traditional estimate

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)

where h is the bandwidth, and the function K is the kernel function, which can be viewed as a
weighting function for the xi. Table 2.1 lists some univariate kernel functions. A formal treat-
ment of the subject is given in [84][91], and [97] provides a comprehensive introduction to the

13

methodology, and introduces a number of applications.

Kernel Functional Form Support Visualization

Uniform K(x) = 1
2

−1 ≤ x ≤ 1

Triangular K(x) = 1− |x| −1 ≤ x ≤ 1

Epanechnikov K(x) = 3
4
(1− x2) −1 ≤ x ≤ 1

Gaussian K(x) = 1√
2π
e−0.5x2 −∞ < x < ∞

Biweight K(x) = 15
16

(1−|u|2)2 −1 ≤ x ≤ 1

Table 2.1: The functional form, range, and visualization for five kernels.

Using different kernel functions results in slightly different estimates of the density. Figure 2.1
illustrates the effect of estimating the density of a sample from a standard normal distribution
using each of the kernels listed Table 2.1.

14

Uniform Triangular Epanechnikov Gaussian Biweight

Figure 2.1: Kernel density estimates using five different kernel functions for a sample of size 500
from a univariate standard normal distribution.

Kernel density estimation can be easily generalized to include estimation in higher dimensions

f̂(x) =
1

n

n∑
i=1

KH(x− xi)

where the matrix H is a symmetric, positive definite smoothing matrix, and

KH(x) = |H|−0.5K(H−0.5x)

In higher dimensions, the multivariate Gaussian kernel is a common choice for the kernel
function

KH(x) = (2π)−
d
2 |H|−0.5 e−0.5xTH−1x

With the ability to compute estimates of the density for a given configuration of points, com-
paring the density of multiple configurations is a natural method to attempt to uncover interesting
structure, as it allows uninteresting configurations, such as a uniform or normal configuration, to
be compared to a configuration of unknown structure.

A very simple method to compare the densities of two configurations is to consider the absolute
difference between their kernel density estimates. For two configurations P and Q, let f̂P and f̂Q
be the kernel density estimates of P and Q respectively. Then, for randomly chosen points xi, the
absolute difference between the estimated densities is simply

n∑
i=1

|f̂P (xi)− f̂Q(xi)|

A more sophisticated method of comparison between two probability distributions is Kullback-

15

Leibler divergence [68]. For two (discrete) probability distributions P and Q, the Kullback-Leibler
divergence from P to Q is defined to be

DKL(P ||Q) =
n∑
i=1

pi log

(
pi
qi

)

An analogous definition exists for two continuous probability distributions. Note that this
definition is an expectation with respect to the probability distribution P , resulting in a non-
symmetric measure (i.e. DKL(P ||Q) 6= DKL(Q||P)) . The original definition of Kullback-Leibler
divergence was in fact

DKL(P ||Q) +DKL(Q||P) =
∑n

i=1 pi log
(
pi
qi

)
+
∑n

i=1 qi log
(
qi
pi

)
=
∑n

i=1(pi − qi)(log(pi)− log(qi))

which symmetrizes the expectation. A related measure known as Jensen-Shannon divergence
measures the similarity between two probability distributions by comparing each distribution to
the average of both [73]

DJS =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

where M is defined to be the average of the two distributions, M = 1
2
(P +Q).

Both Kullback-Leibler and Jensen-Shannon divergence methods have been used in various
applications in the literature such as support vector machine classification [79], signal processing
[4], and genome comparison [98].

2.2 Geometric Structure

Consider a point configuration of size n in arbitrary dimension d given by the n × d matrix
X = [xij], with associated squared Euclidean distances given by D = [dij]. For each pair of points

xi, xj i, j = 1, ...n, i 6= j, dij = ||xi − xj||2 =
∑d

k=1(xik − xjk)2. If we consider xi ∈ X to be
a node vi ∈ V, with weighted edge length eij ∈ E such that eij = dij, we can treat this
configuration as a weighted graph object, which allows for the computation of many important
geometric graph objects.

16

2.2.1 Voronoi Diagrams & Delaunay Triangulations

Voronoi diagrams and Delaunay triangulations are the building blocks of many geometric graph
objects. The Voronoi diagram provides nearest neighbour information for a set of nodes by
creating a cell around each node in the set. The Voronoi cell surrounding the node vi indicates
that any point placed in the cell will be closer (by Euclidean distance) to vi than any other node
in the configuration vj, j 6= i. More formally, the Voronoi diagram is defined as

Definition 1. Given a set of points X = [xTi] ∈ Rd, the Voronoi cell of the point xi is the set of
points in Rd which are closer to xi than to the other points in X

Vi = {x ∈ Rd : d(x,xi) < min
j 6=i
||x− xj||}

The Voronoi diagram is the collection of all such cells [74].

The Delaunay triangulation is closely related to the Voronoi diagram

Definition 2. The Delaunay triangulation is the graph with node set V = X, where vi and vj
share an edge if and only if the Voronoi cells for xi and xj share an edge.

Figure 2.2 provides an example of the Voronoi diagram and Delaunay triangulation for a
sample point configuration. Many graph objects, such as the minimal spanning tree, alpha hull,
and convex hull, are all subsets of the Delaunay triangulation, allowing for each of these graph
objects to be computed more efficiently.

(a) (b) (c)

Figure 2.2: (a) The original point configuration. (b) The Voronoi diagram of the configuration.
(c) The Delaunay triangulation of the configuration.

17

2.2.2 Minimal Spanning Tree

A spanning tree of a set of nodes V is a set of edges E such that

1. no closed loops occur

2. each point is visited at least once

3. the tree is connected

The minimal spanning tree is then defined as

Definition 3. The minimal spanning tree (MST) of a set of nodes V is the spanning tree with
minimum edge weight. In the case of a point configuration X, these weights correspond to the
Euclidean distances [47].

It should be noted that the minimal spanning tree is not necessarily unique. Uniqueness is
only guaranteed in the case of all edge lengths being unique. Algorithm 1, proposed in [87], is a
well-known minimal spanning tree algorithm that has a worst-case complexity of O(|V |2). Figure
2.3 provides an example of the minimal spanning tree of a set of points.

Algorithm 1 Prim’s Algorithm

Structures
V - Node set containing vi, i = 1, ..., n;
E - Edge set containing the edge weights, eij , of the nodes. If two nodes do not share an edge, then eij =∞.
U = ∅ - Nodes currently in the minimal spanning tree
F = ∅ - Edges currently in the minimal spanning tree

procedure Prim’s Algorithm(V, E)
Without loss of generality, initialize the tree by choosing a node at random, vi

U← U ∪ {vi} . Add the node to the tree
V← V \ {vi} . Remove the node from the node set
while V 6= ∅ do . While all nodes are not in the tree
{k, j} = {(k, j) : min(ekj),vk ∈ U,vj ∈ V} . Find node in V with smallest edge to any node in U
U← U ∪ {vj} . Add the node to the tree
V← V \ {vj} . Remove the node from the base set
F← F ∪ ekj . Add the edge to the tree edge set

end while
return {U,F} . Return the Node and Edge sets for the MST

end procedure

An application of the minimal spanning tree comes from its use in cluster analysis. Single-
linkage clustering [47] is a simple algorithm in which nodes are clustered at level dk if there exists
an edge in the minimal spanning tree between the node and any other node in the cluster with
weight eij ≤ dk. As the level increases, larger clusters are formed until all nodes belong to the same

18

cluster. Clustering at any level dk can be determined by breaking the minimal spanning tree at
any edge eij > dk [47]. As the clustering level dk increases, the clusters at previous levels remain,
but some may combine with other clusters to form larger clusters. This allows the evolution of
the clustering to be observed at each successive step dk.

(a) (b)

Figure 2.3: (a) The original point configuration. (b) The associated minimal spanning tree.

2.2.3 Nearest Neighbour Graphs

Formally, the nearest neighbour of a node vi is defined in [74]

Definition 4. Given a node set V and a corresponding edge set E, define nn(vi) to be the nearest
neighbour of vi ∈ V

nn(vi) = arg min
vj∈V\vi

{eij}

The nearest neighbour graph is then defined as

Definition 5. A nearest neighbour graph can be defined by an edge set E and a node set V such
that:

epq ∈ E =⇒ vq = nn(vp)

There are two distinct differences between the nearest neighbour graph and the minimal span-
ning tree:

1. The nearest neighbour graph is not necessarily connected.

2. The nearest neighbour graph is a directed graph.

19

The second point comes from the realization that vq = nn(vp) 6=⇒ vp = nn(vq). Figure 2.4
provides an example of a nearest neighbour graph.

The nearest neighbour graph can be easily extended to include edges between a point and its
k-nearest neighbours, resulting in a similarly directed graph known as the k-nearest neighbour
graph. A k-nearest neighbour graph with k = 3 is shown in Figure 2.4.

(a) (b) (c)

Figure 2.4: (a) The original point configuration. (b) The nearest neighbour graph. (c) The 3-
nearest neighbour graph.

The k-nearest neighbour graph has many applications, including in the field of dimension
reduction. In particular, it is used in the well known dimension reduction technique isomap
[103]. At a high level, isomap looks to preserve relative neighbourhoods by first constructing
a neighbourhood graph using k-nearest neighbours. This is done on the configuration in high
dimension, and then the lower dimensional embedding is computed by multidimensional scaling,
which aims to preserve these neighbourhoods in the low dimensional realization.

2.2.4 Alpha and Convex Hulls

The alpha hull is defined formally in [74]

Definition 6. For α > 0, the alpha hull of a set of points X = {x1, ...,xn} is the graph with
vertices V = X and edge set E = {vi,vj : ∃Dα with vi,vj ε ∂Dα and X ∩Dα = ∅}, where Dα

is an open disk of radius α, and ∂Dα denotes the boundary of the disk.

In simpler terms, to construct the alpha hull, place an edge between any two nodes that are
on the boundary of a disk of radius α which contains no other points. The value of α used to
create the alpha hull greatly affects the resulting graph, which is illustrated in Figure 2.5.

The convex hull is a special case of the alpha hull, and can be computed in the same way by
letting α approach infinity, resulting in a structure such as that in Figure 2.5.

20

α = .15 α = .2 α = .3 α→∞

Figure 2.5: Three examples of an alpha shape computed with varying levels of α. The limiting
case (α → ∞), known as the convex hull, is also provided.

2.3 Scagnostics

Proposed originally by John and Paul Tukey [111], and formalized by Wilkinson, Wills, Anand,
and Grossman [119][120], scagnostics numerically summarize structure inherent in a point con-
figuration using measures computed on various geometric graphs. The current two-dimensional
implementation of [120] is now presented.

2.3.1 Pre-processing

Before the scagnostic measures are computed, a number of pre-processing steps are taken to ensure
comparability of the measures between configurations.

Scaling

The configuration is first scaled to lie in the unit square, which is accomplished using min-max
scaling. Let x(1), ..., x(n) and y(1), ..., y(n) represent the original data sorted from smallest to largest.
Then, the data are scaled as follows

x∗i =
xi − x(1)

x(n) − x(1)

y∗i =
yi − y(1)

y(n) − y(1)

Scaling in this fashion ensures two things

� All computed scagnostics on a given configuration will be constrained to lie in [0,1], giving
a common scale for each scagnostic measure to be compared to one another.

21

� Every configuration will be constrained to lie in the unit cube. This ensures that scagnostics
computed on different configurations are directly comparable.

Binning

Hexagonal binning [18] is used to reduce the size of the configuration, reducing the overall
run-time of the scagnostic algorithm. Beginning with a 50 × 50 hexagonal grid, the individual
data points are binned into their corresponding hexagons, with the resulting center of mass of each
hexagon, (x̄, ȳ), being the representative point of all points in that bin. If more than 1000 cells are
nonempty, the grid size is reduced by two thirds and re-binning occurs. This process continues
until there are no more than 1000 nonempty cells. Note that this is how the implementation of
scagnostics in R executes binning [118]. In the literature, a 40× 40 grid is used, with a reduction
of one half of the grid size and rebinning if there are more than 250 nonempty cells.

The hexagonal binning algorithm is more thoroughly discussed in Section 7.1.2.

Removal of Outliers

To improve the robustness of the scagnostic measures, outliers are removed from the con-
figuration. While there are many existing results that flag potential outliers, many rely on a
distributional assumption of the data. To avoid this, outliers are detected by peeling the minimal
spanning tree. A node is considered an outlier if all minimal spanning tree edges attached to the
node exceed a value w

w = q75 + 1.5(q75 − q25)

where q75 and q25 are the 75th and 25th percentiles of the minimal spanning tree edge weight
distribution.

The peeling of the minimal spanning tree is an iterative process. Beginning with the minimal
spanning tree, {V,E}, on the entire configuration, the value of w is determined. Any node vi
with all edges eij > w are removed from the configuration. This process is repeated by calculating
the minimal spanning tree on the remaining nodes and recalculating w until no node is identified
as an outlier.

This definition of outlying avoids the need to assume the data come from any particular
distribution, allowing for more robust outlier detection if the assumptions are not met. Any
vertex that meets the above criteria is removed from the data set after the outlying scagnostic
has been computed, and the final minimal spanning tree produced is used in the computation of
all but the outlying scagnostic.

22

2.3.2 Measures

Once the data has been pre-processed, geometric graphs are computed on the configuration. The
geometric graphs used in the current implementation of scagnostics include the minimal spanning
tree, alpha hull, and convex hull. The α value for computing the alpha hull is chosen to be the
90th percentile of the minimal spanning tree edge lengths. From these geometric graphs, nine
measures are computed which numerically summarize some of the structure in the configuration.

Outlying

The outlying scagnostic is defined as the total edge length contributed by those points that
are identified as outliers to the total edge length of the minimal spanning tree

coutlying =

∑
Toutliers∑
T

where the notation T denotes the edge lengths of the edges in the minimal spanning tree and
Toutliers denotes the edge lengths of the outlying nodes.

Skewed

The measure of skewness utilized depends on the non-parametric distribution of the edge
lengths of the minimal spanning tree. This provides a relatively robust measure when compared
to the parametric measures that could have been used in their place, while avoiding the need to
impose a distribution on the data. The skewed scagnostic is given by

qskew =
q90 − q50

q90 − q10

where qp is the pth percentile of the minimal spanning tree edge length distribution. This measure
is then scaled to combat the fact that it decreases in n after binning

cskew = 1− ω(1− qskew)

where ω = .7 + .3
1+t2

, t = n/500, is the weight function defined by [120].

Sparse

The measure for sparse is given as the 90th percentile of the minimal spanning tree edge length
distribution, again scaled to combat bias in n

23

csparse = ωq90

Striated

The striated scagnostic seeks to capture “smooth” paths through the minimal spanning tree -
such as a curve with a high signal-to-noise ratio. A non-parametric measure is again used, defining
striation to be the proportion of adjacent edges in the minimal spanning tree with cosine less than
-0.75 (equivalently, the angle between adjacent edges exceeds approximately 138◦).

cstriated =
1

|V |
∑
v∈V 2

I(cos(θe(v,a)e(v,b)) < −0.75)

where V 2 is the set of all vertices of degree two.

Clumpy

The clumpy scagnostic seeks to capture whether the points in the configuration are clustered,
and is based on the RUNT statistic.

cclumpy = maxj(1−
maxk(length(ek))

length(ej)
)

where ej corresponds to a specific edge length in the minimal spanning tree, j runs over all edges
in the minimal spanning tree, and k runs over all edges in Rj, which is defined to be the RUNT
graph, the smaller of the two subsets of edges that are still connected to each of the two vertices
in ej after deleting edges in the minimal spanning tree with lengths greater than ej.

Convex

The convex scagnostic is simply the ratio of the area of the alpha hull to the convex hull.
Again, the weight factor is included to combat bias after binning.

cconvex = ω
(area(A)

area(H)

)
where A represents the alpha hull, and H represents the convex hull.

Skinny

The skinny scagnostic is based on the ratio of the area of the alpha hull to its perimeter. Skinny
shapes will tend to have a larger perimeter than area. This measure has been standardized so
that a circle yields a value of 0 and a perfect square a value of 0.12.

24

cskinny = 1−
√

4π · area(A)

perimeter(A)

Stringy

A stringy shape is defined as a skinny shape with no branches in the MST. As such, the number
of vertices of degree 2 are counted and compared to the number of other vertices, less those of
degree one:

cstringy =
|V 2|

|V | − |V 1|

This measure is cubed to adjust for negative skew in its conditional distribution on n [120].

Monotonic

The monotonic scagnostic is the square of Spearman’s rank correlation, as the direction of
correlation is not of interest.

cmonotonic = ρ2

Straight

The straight scagnostic was proposed in [119] but later replaced with the stringy scagnostic.
It aimed to measure the linearity of the configuration by considering a modified form of graph
dilation. The straight scagnostic is defined as the ratio between the Euclidean distance of the two
end nodes of the longest shortest path of the minimal spanning tree to the actual distance of the
same longest shortest path, known as the diameter of the minimal spanning tree

cstraight =
||tj − tk||

diameter(T)

where tj and tk are the aforementioned end nodes on the longest shortest path. Note that this
scagnostic is no longer included, but may be of interest in a future work project.

2.4 Additional Work on Scagnostics

The results presented above constitute the scagnostic framework that will be considered through-
out this thesis. There are however a number of published works that look to expand on this

25

framework. They are presented here for completeness.

2.4.1 Transforming Scagnostics

While scagnostics are designed to capture interesting structure in a configuration, if the structure
is obscured by high density regions, scagnostics will fail to capture it. This problem is addressed
in [27] by first using a set of nonlinear transformations on the data, and then applying scagnostics.
The following transformations are considered

� None: x∗ = x (leaves the points unchanged)

� Half: x∗ = x/2 (squeezes points together)

� Square: x∗ = x2 (pulls points towards the left of the frame)

� Square Root: x∗ =
√
x (mildly pulls points towards the right of the frame)

� Log: x∗ = log(x) (strongly pulls points towards the right of the frame)

� Inverse: x∗ = 1/x (reverses scale and squeezes points towards the left of the frame)

� Logit: x∗ = (log(x/(1− x)) + 10)/20 (squeezes points towards the middle of the frame)

� Sigmoid: x∗ = 1/(1 + exp(−20x+ 10)) (expands points away from the middle of the frame)

Note that the parameters of the logit and sigmoid transformations are designed to make them
symmetric about y = x. Each transformation is applied independently to the x and y axes,
resulting in 64 total possibilities to consider.

To illustrate their methods, the Madelon data set [31] is used, and more specifically the point
configuration obtained by plotting variable 41 versus variable 48 [27]. They apply each data
transformation independently to the x and y axes, and compute the striation scagnostic on the
data. They note that clear striation becomes visible in the data only when the sigmoid function
is applied to the x axis. Figure 2.6 illustrates the experiment.

In choosing a transformation, a scagnostic of interest is chosen and then used as a measure
of goodness in selecting a transformation to be used. The transformation resulting in the most
significant gain over the original configuration as measured by the scagnostic of interest is the
transformation that is chosen for the data.

26

Figure 2.6: From [27]: The result of computing striation on the 64 different data configurations
produced by transforming the 41st and 48th variables in the Madelon data set. Grey level indicates
the level of measured striation, with darker grey representing higher striation. High levels of
striation can be observed when the sigmoid function is applied to the x axis variable.

27

2.4.2 Pargnostics

While scagnostics compute measures on data arranged as a scatterplot, pargnostics [28] attempt
to measure interesting structure in the data when the data are arranged as parallel coordinate
plots. In addition, pargnostics can be used to order the axes in the parallel coordinate plot to
decrease clutter and improve readability.

Like scagnostics, pargnostics begin by binning the data, separating each axis into h equally
sized bins. With h bins (or pixel coordinates) on each axis, the number of points in bin i on the
left axis and bin j on the right axis can be counted as

bij = |{k | blkc = i ∩ brkc = j}|

where lk is the pixel coordinate of the left axis, and rk is the pixel coordinate of the right axis.
With these counts, a number of measures of interest can be computed.

Number of Line Crossings

Crossing lines in a parallel coordinate plot typically indicate inverse relationships between the
axes. Giving the binning done above, the number of crossing lines in a parallel coordinate plot
can be calculated as

L =
h−1∑
i=1

h−1∑
j=1

h∑
k=i+1

h∑
l=j+1

bijbkl

Since each line can intersect every other line at most one time, the number of crossings is
bounded above by n(n−1)

2
, where n is the number of lines in the plot. The normalized measure is

then

Lnorm =
2L

n(n− 1)

Angles of Crossing

The angle of crossing in a parallel coordinate plot is of interest for two reasons. First, lines
that cross at shallow angles can be hard to track, leading to visual cluttering in the plot. Second,
lines that may be part of the same cluster tend to cross at shallower angles [28].

Each pair of crossing lines forms two angles that add to 180◦, and the smaller of the two is
taken, creating a distribution of angles. The measure of interest is taken to be

28

A = q50

where qp represents the pth percentile of the crossing angle distribution.

Parallelism

A parallel coordinate plot that has many parallel (or near parallel) lines could be indicative
of a high degree of correlation between the dimensions. To measure the degree of parallelism, the
vertical distance between any two connecting points on adjacent axes are measured, with positive
values indicating that the line is going up, and negative values indicating the line is going down.

Axis pairs with high levels of parallelism will have narrow distance distributions, while wide
distributions indicate little to no parallelism. The measure is therefore taken to be the interquar-
tile range of the distance distribution (normalized by dividing through by the largest measured
distance)

Pnorm = 1− |q75 − q50|

where qp is the pth percentile of the distance distribution.

Mutual Information

Mutual information measures the general level of dependency between variables. Letting X
and Y be random variables, mutual information is calculated as

I(X;Y) =
h∑
i=1

p(xi, yj)log
(p(xi, yj)

p(xi)p(yj)

)
For pargnostics, these probabilities are simply equal to the proportion of the data in each

bin. For the joint probability p(xi, yj) =
bij
n

, and for the marginal probability, p(xi) = bi
n

, where
bi = |{k | blkc = i}|.

Convergence and Divergence

A parallel coordinate plot is said to be convergent if many lines from the left axis converge on
a few points on the right axis. This can be measured as

C =
h∑
i=1

h∑
j=1

I(bji > 0)

29

Conversely, a parallel coordinate plot is said to be divergent if the plot has only a few points
on the left axis and spreads out to several on the right. This can be measured as

D =
h∑
i=1

h∑
j=1

I(bij > 0)

Over-Plotting

Over-plotting leads to visual cluttering, and can therefore be used as a measure of the quality of
the visualization. Every bin that has more than one entry contributes to over-plotting. Therefore,
an appropriate measure is

O =
h∑
i=1

h∑
j=1

bijI(bij > 1)

This measure is normalized by the total number of points n

Onorm =
O

n

An Example using Real Data

Pargnostics are computed on wine data [31], and are used to optimally organize it by mini-
mizing the angle of crossing and maximizing parallelism between adjacent axes [28]. This is done
using a branch-and-bound algorithm, and using the pargnostic measures as a cost. The results
are shown in Figure 2.7 [28].

Figure 2.7: From [28]: The result of sorting the axes of the wine data set in a parallel coordinate
plot by minimizing the angle of crossing and maximizing parallelism. On left the original plot,
and on right the optimally ordered plot.

30

2.4.3 Density-based Cognostics

A very different approach to cognostics is taken in [17]. Instead of considering measures based
on subgraphs of the Delaunay triangulation (which was the approach of [119]), density-based
scagnostics consider computing cognostics by ignoring portions of the data using erosion and
thinning techniques. Using erosion techniques, low density patterns can be produced by ignoring
high density regions, which can call attention to infrequent events that are of interest [17].

Erosion and thinning are closely related. After being hexagonally binned, a configuration
erodes as follows:

1. Begin with all cells under consideration.

2. For each cell, remove a number of counts from the cell in proportion to the number of
exposed faces on the cell (0 - 6).

3. Cells with non-positive counts are removed from the configuration.

4. The number of exposed faces are updated each time a cell is removed.

Steps 2-4 are repeated until one cell remains. The last remaining cell in the configuration is
deemed to be the center of the configuration.

Thinning [92] is very similar to erosion, with two key differences:

1. Cells are not eroded if they have only one neighbour.

2. Cells are not eroded if their removal would result in a set of disconnected cells.

Using thinning and erosion techniques, one pattern that draws attention is low density arms
radiating out of high density regions [17]. The following cognostic is proposed to capture this type
of behaviour

1. Identify areas of high density (i.e. high count cells) and exclude them from thinning.

2. Apply thinning to the remaining configuration, resulting in a skeletal structure.

3. Compute the measure of interest as

M =
Number of Cells in the Skeleton Structure

Number of Cells under Consideration for Erosion

31

Figure 2.8 illustrates the type of structure being pursued. The image on the left is the original
data, after applying hexagonal binning. Dark areas represent areas of high density. The picture
on the right is the result of thinning the data. The dark center of the image (making up 96% of
the data) was excluded from thinning. The measure of interest for this data was found to be 0.3.

Figure 2.8: From [17]: On left, the original data after applying hexagonal binning. On right, the
result of thinning the configuration. Darker cells were retained during thinning, while the large
central mass was not considered during the thinning process. The measure of interest is computed
to be 0.3.

2.5 Concluding Remarks

This chapter presented the background required to understand the methods used to capture both
geometric and probabilistic structure. These methods were formalized in the scagnostic framework
of [119], which was also presented in detail. This framework allows for a large number of two-
dimensional point configurations to be assessed numerically in a short period of time, in turn
allowing for more time to be spent on visually assessing those configurations which might be
considered interesting.

The current scagnostic framework provides a rich environment to explore the structure present
in many point configurations. The experiments performed in [119] & [120] provide more detail
surrounding the types of structure that each scagnostic measure looks to capture, as well as a
number of properties that are shared by all measures. The experiments also give insight into
potential issues with the current implementation that warrant further exploration. These experi-
ments will be discussed in detail and replicated in Chapter 3, and additional experiments will be
conducted. Additionally, possible extensions of the scagnostic framework will be discussed.

32

Chapter 3

On Scagnostics

This chapter explores in more detail the current scagnostic framework. Section 3.1 repeats some
of the experiments of [119][120], and also presents some new experiments which give important
insight into the current scagnostic framework. Section 3.2 examines the inability to achieve the
full range of [0,1] values that some scagnostic measures experience. Section 3.3 explores point
configurations with interesting structure that is not captured by the current implementation of
scagnostics. Finally, Section 3.4 explores the two-dimensional limitation of the current scagnostic
framework, and briefly discusses some of the challenges associated with computing scagnostics in
a higher dimensional space and why these measures may be of interest.

3.1 On the Distribution of Scagnostic Measures

As part of the discussion presented in [120], scagnostic measures on ten point configurations of
varying sample size are computed to gauge the effect of sample size on the scagnostic measures.
A similar analysis is undertaken here. From [120], the ten configurations under consideration will
be

1. Bivariate Uniform

2. Spherical (Spherical Normal)

3. Binormal (bivariate normal with ρ = 0.6)

4. Funnel (bivariate log-normal with ρ = 0.6)

5. Exponential (exponential function plus random error)

6. Quadratic (negative quadratic function plus random error)

33

7. Clustered (three separated spherical normals at the vertices of an equilateral triangle)

8. Doughnut (two polar uniform separated by a moat of white space)

9. Stripe (product of Uniform and integer [1,5])

10. Sparse (product of integer [1,3] with itself)

Figure 3.1 provides a 500 point example of each of the ten configurations. Note that the scaling
applied during the pre-processing step of the scagnostic framework has also been applied to each
configuration, confining each to the unit square.

Figure 3.1: A visualization of the point configurations to be used to perform a numerical analysis
of the distribution of the various scagnostic measures.

The first experiment presented in [120] creates 100 samples of size 100, 200, 300, 400, 500, 600,
700, 800, and 900 of each of the ten configurations. The aim is to observe the effect of sample
size on the scagnostic measures, with the intention of showing that the measures don’t tend to
change with sample size. The original results are shown in Figure 3.2, and the reproduced results
in Figure 3.3.

While mostly similarities are observed between the two images, some differences are evident.
Difference are due in part to the inability to exactly replicate each point configuration in the orig-
inal experiment. For instance, the exponential distribution used in the original experiment reads
“Exponential function with random error”. This leads to two questions - how was the exponential
function produced, and how is the random error produced. For the reproduction in Figure 3.3, the
exponential plot was created by simulating 500 x-axis values from a Uniform[0,3] configuration,
and producing the y-axis values as ex + N (0, 3). Using a simple exponential function seemed
reasonable, and the choice of simulating from Uniform[0,3] was to accentuate the exponential
relationship between x and y. Normal(0,3) noise was chosen to tone down the monotonicity of

34

Figure 3.2: The original scagnostic consistency experiment of [120]: “Boxplots of scagnostics measures for dif-

ferent samples from a wide variety of distributions. The horizontal axis represents sample size. The vertical axis

is stratified by type of scagnostic. Scagnostic values vary between 0 and 1. The general lack of an overall trend

across sample size indicates the scagnostic measures are consistent.”

35

Figure 3.3: The reproduced scagnostic consistency experiment. Despite the inability to reproduce
the original configurations exactly, the observed results are very similar to the original experiment.

36

the configuration - from the original image, there were very few (if any) configurations with a
monotonicity above 0.8, and using Normal(0,1) noise (for example) resulted in almost every expo-
nential plot having monotonicity above 0.8. It is for reasons like this that small differences between
plots are observed, but overall, the two plots are fairly similar, indicating that the configurations
considered are reasonably close to the original.

Despite these small differences, both plots tell a similar story. Varying the number of points
between 100 and 900 has very little effect on the scagnostic measures computed. This can be seen
by the relatively unchanged boxplots as the sample size increases. Another observation here is
that, overall, the adjustments made to combat biases due to binning seem to have been effective -
there is no apparent bias in any of the box plots that would indicate binning is adversely affecting
the measures as sample size increases.

While observing the change in scagnostic measures as sample size increases is certainly a
worthwhile experiment, the methodology used leads to two additional experiments that could
give insight into the strengths and weaknesses of the current scagnostic framework.

First, recall that each boxplot computed in Figure 3.2 for any given sample size contains
scagnostic measures from ten very different configurations. An interesting extension to this ex-
periment is to view the empirical distribution of the scagnostics on each configuration individually,
which allows the range of each scagnostic to be observed. This in turn gives insight into the type
of structure that each scagnostic is designed to capture. For example, one would expect the dis-
tribution of the monotonic scagnostic measure to be clustered at high value for distributions such
as the exponential distribution, and low values for distributions such as the normal or uniform.
Observing similar trends for the other scagnostics could be quite informative.

To execute such an experiment, 100 samples of size 500 for each of the ten configurations are
produced randomly and the nine scagnostic measures are computed on each. To compare the
value of the scagnostics between configurations, histograms of each scagnostic measure separated
by point configuration are produced. Figures 3.4 - 3.12 illustrate the results.

The histograms of the individual scagnostics lead to some interesting insights about the various
scagnostic measures. In particular, they allow for a more clear indication of what type of structure
each is chasing. A similar idea is presented in [120], who present Figure 3.13 to demonstrate the
types of structure each of the scagnostics are designed to capture.

The most obvious, of course, is the measure of monotonicity. It is highest for the exponential
distribution, moderate for the log-normal and bivariate normal, and low for every other configura-
tion. This fits perfectly with what it’s trying to capture. The stringy and striated scagnostics are
also ones that emerge clearly in this experiment. They are both high for only one configuration
- the stripe configuration. This helps solidify what the names imply - the striated scagnostic is
searching for straight lines, while the stringy scagnostic is searching for lines in general.

While these images provide clarity for some of the scagnostics, there are others for which it
provides more questions than answers. The most obvious issue, perhaps, lies with the skewed

37

Figure 3.4: The empirical distributions of the outlying scagnostic measured over the ten configu-
rations listed in [120].

38

Figure 3.5: The empirical distributions of the skewed scagnostic measured over the ten configura-
tions listed in [120].

39

Figure 3.6: The empirical distributions of the clumpy scagnostic measured over the ten configura-
tions listed in [120].

40

Figure 3.7: The empirical distributions of the sparse scagnostic measured over the ten configura-
tions listed in [120].

41

Figure 3.8: The empirical distributions of the striated scagnostic measured over the ten configu-
rations listed in [120].

42

Figure 3.9: The empirical distributions of the convex scagnostic measured over the ten configura-
tions listed in [120].

43

Figure 3.10: The empirical distributions of the skinny scagnostic measured over the ten configu-
rations listed in [120].

44

Figure 3.11: The empirical distributions of the stringy scagnostic measured over the ten configu-
rations listed in [120].

45

Figure 3.12: The empirical distributions of the monotonic scagnostic measured over the ten con-
figurations listed in [120].

46

Figure 3.13: From [120]: “Scatterplots from a variety of real data sets aligned on scagnostics scale
for each scagnostic. The scatterplots were selected for having a relatively low, medium, or high
value on each scagnostic. This figure shows that high-value scatterplots are reasonable exemplars
for the descriptive names (Monotonic, Stringy, etc.) and low-value scatterplots correspondingly
lack the feature described by each scatterplot name.”

47

scagnostic. From Figure 3.5, the skewed scagnostic does not have a single value (across any con-
figuration) that is below 0.5. This is a problem if the scagnostic is to be used - if “low” skewness
configurations are never encountered, what then is the significance of “high” skewness? Examining
Figure 3.13, the configuration representing a low skewed value is quite underwhelming, as it con-
tains only four unique points. Combined, these observations bring in to question the legitimacy of
the skewed scagnostic. It also raises an interesting question - what does a configuration containing
100 unique points (or more) with a low value of skewed look like?

Another problematic scagnostic, although not as blatant perhaps as the skewed scagnostic,
is the skinny scagnostic. The skinny scagnostic measures the ratio of the perimeter of the con-
figuration to its area, and states that a square should yield a value near 0.12, while a skinny
polygon should yield a value near 1.0. Counter-intuitively then, referring to Figure 3.10, the
skinny scagnostic of the uniform distribution is in the [0.6, 0.8] range - clearly not all that close to
0.12, despite the configuration being very similar to a square. Similar issues are clear in both the
donut and stripe data sets - neither would be categorized as skinny, yet they have exceptionally
high values of the skinny scagnostic. Like the skewed scagnostic, this brings the legitimacy of the
skinny scagnostic into question, and further investigation is warranted. This will be undertaken
in Chapter 10.

The second experiment looks to simply broaden the range of the original experiment performed
in [120], where the chosen point configurations are designed to portray a wide range of important
structure - representing, in effect, the “universe” of potential structure that could be encountered.
Instead of artificially simulating data sets, instead consider the possibility of retrieving real data,
and observing the range of scagnostics computed on them. This would, in effect, gauge the overall
ability of each scagnostic measure to achieve its entire range of values. Given a sufficient“universe”
of data, one would expect each scagnostic to be able to achieve values close to 0 and 1, indicating
that the measure has identified configurations that both lack and have the structure they are
designed to capture. Also of interest would be to see where the majority of the data lie for any
given scagnostic, giving insight into when a rare event occurs for each scagnostic. For example,
if the majority of the data in the “universe” have measured convexity in [0.5, 0.75], observing a
value of 0.33 may be of interest, while observing a value of 0.66 may not.

The data which makes up the universe under consideration were retrieved from the UCI Ma-
chine Learning Repository [31], based on a very simple criteria

1. The data be in file format directly compatible with R (.csv/xls or .txt).

2. The data contains minimal missing values.

Using this criteria, 50 data sets were chosen and are listed in Appendix B. The data sets range
in terms of dimension, the smallest data set has dimension 5, while the largest has dimension 281,
and also in terms of size, the smallest data set has 100 observations, while the largest has 928,991.
For each data set, scagnostics are computed on every pair of dimensions, resulting in a total of

48

91,331 observations for each scagnostic measure. The letter-value boxplot [57] for each scagnostic
is shown in Figure 3.15.

Traditional boxplots create a display by visually displaying the median and upper and lower
quartiles of the data as a box. Data that fall outside of this range are represented using a“whisker”,
which stretches from the first and third quartiles to q25 − 1.5(q75 − q25) and q75 + 1.5(q75 − q25)
respectively. All data that fall outside of the range of the whiskers are considered to be outliers,
and are plotted individually. For large data sets, this results in a disproportionately large number
of outliers, making an accurate analysis of the boxplot difficult.

Figure 3.14: Three examples of letter value boxplots for 1000 observations from Exponential(1),
Normal(0,1), and Uniform(-5,5). Boxes of similar size and colour represent the same quantile
range of the data.

Letter value boxplots [57] are one proposed solution. In a traditional boxplot, a single box
is created with boundaries at q25 and q75. In letter value boxplots, several boxes are created,
with boundaries at the letter values of the data. Letter values are the order statistics of the data
at a given depth. The median, d1, is defined as d1 = (1 + n)/2. Successive depths are defined
recursively, di = (1+bdi−1c)/2, and the lower and upper letter values are then defined as Li = Xdi

and Ui = Xn−di+1. Figure 3.14 provides examples of letter value boxplots for a few well known
distributions. Note that in each, boxes that are the same size and colour represent the same range
of data .

The results of the scagnostic universe experiment provide some interesting insight into the
distribution of the scagnostics. The outlying, clumpy, sparse, striated, stringy, and monotonic
scagnostics follow very closely to what might be expected - the entire range from [0,1] is mostly
covered, with fewer occurrences in (at least) one of the two tails. The letter-value boxplots for
skewed, convex, and (to a lesser extent) skinny seem to indicate potential issues with their respec-
tive scagnostics, as they don’t come near the extreme value at one of the tails. For the skewed

49

Figure 3.15: The letter-value boxplots for each scagnostic measure computed on the “scagnostic
universe” data. Ideally, each scagnostic would be able to achieve a full range of values from [0,1],
however, that appears to not be the case for the skewed and convex scagnostics.

scagnostic, there are only 15 observations in the range of [0, .25]. If, in close to 100,000 point con-
figurations, only 15 have been identified as having skewness below 0.25, this is an indication that
these low values of skewness are either incredibly rare and something that should be considered
interesting, or the way in which the scagnostic is computed is not actually capturing this end of
the range. In either case, further investigation is certainly necessary, as at current it’s not clear of
what interest the skewed scagnostic is - 64,410 configurations had a value of skewed above 0.75,
so clearly the upper range of the scagnostic does not represent a rare occurrence. Similar issues
arise with both the convex scagnostic (only 6 values above 0.75), and to a lesser extent, the skinny
scagnostic (the smallest value observed is 0.057, and there are only 67 observations below 0.125).
Each of these scagnostics need to be examined to ensure they are capturing interesting structure.
This is undertaken in Chapter 10.

3.2 On Extreme Index Values

The core concept of scagnostics revolves around identifying interesting structure in a configuration
via extreme indices in the observed scagnostic measures. These extreme indices indicate supposed
structure in the configurations that the scagnostics are designed to capture [120]. Each scagnostic,
then, should be able to achieve values at these extremes. Figure 3.15 indicates that this may not
be the case.

The two clear offenders in this case are the skewed and convex scagnostics. Examining Figure

50

3.15, in over 90,000 data configurations, only 15 have skewed values below 0.25, with the minimum
observed value being 0.043. This is indicative of one of two things - either the low skewed
distributions are incredibly rare and thus interesting, or the skewed scagnostic is inherently flawed.
Viewing four configurations that have low values of skewness (Figure 3.16) should give some insight
into the structure (or lack thereof) of the low skew configurations.

Figure 3.16: Four configurations with measured skewness below 0.25 in the scagnostic universe
experiment.

From Figure 3.13, each low skewness configuration should lack the feature the skewed scagnos-
tic is designed to capture. Examining the third image in figure 3.16 however, the third image looks
very similar to the example of high skewness given in Figure 3.13. If both low skewed configura-
tion exhibit the same type of structure has high skewed configurations, what type of structure is
skewness attempting to capture?

The other scagnostic where extreme index values are not observed is the convex scagnostic,
where only six configurations are observed to have a value above 0.75. Figure 3.17 illustrates the
six configurations.

None of the configurations identified as having high levels of convexity appear to be particu-
larly interesting. It appears as though the interesting structure in these configurations is better
categorized by other scagnostics - for the first four, outlying appears to better define the interesting
structure, while for the last two, striation and stringiness appear to be more accurate descriptions.
In any case, it appears as though having a high level of convexity isn’t particularly interesting.

In the case of either the skewed or convex scagnostics, the inability to identify interesting
structure in the extremes of their bounds is problematic, as it is unclear then exactly what type
of structure either is trying to capture. This leads to two potential avenues to explore

1. The scagnostic does not capture interesting structure that is not better summarized by
another scagnostic measure.

2. The current mathematical definition of the scagnostic prevents adequate coverage of the
range of the scagnostic.

51

Figure 3.17: Six configurations with measured convexity above 0.75 in the scagnostic universe
experiment.

Further exploration into the distribution of these scagnostics, as well as potential adjustments
made to them, will be discussed in Chapter 10.

3.3 On Missing Structure

The current implementation of scagnostics computes nine measures designed to capture a wide
variety of interesting structure. Naturally, however, some structure will not be captured. Con-
sider the configurations and corresponding scagnostic summaries in Figure 3.18. Figure 3.18(a)
represents a configuration that is perfectly symmetric about the line y = x, while Figure 3.18(b)
represents perfect asymmetry about the same line.

Of the nine scagnostics in Figure 3.18(c), only monotonicity differs significantly between the
two configurations. While monotonicity does differentiate the two configurations, it obviously
does not distinguish between these two end cases of symmetry.

The distinction between these configurations is relevant, as in many applications the symmetry
of the point configuration is very important. For instance, identification of symmetry in a configu-
ration is a problem that occurs in fitting symmetric copulas, such as the t-copula [30]. Symmetric
copulas are commonly used in fields such as portfolio theory when evaluating the relationships
between the return of stocks.

Of course, symmetry isn’t the only type of undiagnosed structure that may be of interest.

52

Scagnostic 3.18(a) 3.18(b)
Outlying 0.005 0.033
Skewed 0.648 0.624
Clumpy 0.014 0.015
Sparse 0.027 0.022

Striated 0.095 0.057
Convex 0.562 0.496
Skinny 0.781 0.752
Stringy 0.370 0.375

Monotonic 0.003 0.427

(a) (b) (c)

Figure 3.18: In examining symmetry about the line Y=X, interest lies in identifying two cases,
(a) perfect symmetry and (b) perfect asymmetry. (c) The scagnostic summaries for these two
configurations, which seems to indicate that apart from monotonicity, these configurations are
very similar.

There is a wide variety of additional structure that could be pursued. Scagnostics to potentially
capture this previously uncaptured structure are discussed in Chapter 10.

3.4 On Higher Dimensional Views

The original concept of cognostics [111] was to have a computer compute diagnostic measures
on the

(
d
2

)
pairs of a d-dimensional data set, allowing the user to choose to view only those two

dimensional scatterplots that they would consider interesting. An equally valid interpretation is
to use scagnostics as a tool to identify interesting configurations regardless of their dimension.
That is, instead of choosing between two-dimensional views, scagnostics could be used to choose
between three (or higher) dimensional views.

A natural extension then of the current scagnostic framework is to extend the concept to
higher dimensional space. Many of the core concepts of scagnostics generalize quite naturally. For
example, the minimal spanning tree, convex hull, and alpha hull all have higher dimensional ana-
logues. There are, however, a number of issues that must be addressed for an effective scagnostic
framework to exist in higher dimensional space.

Recall that before the geometric graphs are computed, the data are first pre-processed via
scaling, binning, and removing outliers. The methods used to scale and remove outliers both
generalize naturally to higher dimensional space. The ability to generalize the hexagonal binning
algorithm is not as straight forward. With simple tasks such as the computation of the distance
matrix having computational complexity dependent exponentially on the number of observations

53

(and linearly on dimension), having an effective binning algorithm is crucial to the viability of
scagnostics in higher dimensional space. A proposal for a binning algorithm that easily scales to
higher dimensions will be made in Chapter 7.

Since each of the geometric graph objects used generalize to higher dimensions, once pre-
processing has been accomplished, the next task is to generalize the scagnostic measures them-
selves. Many generalize quite easily - for instance, the measures of outlying, skewed, clumpy,
sparse, convex, and stringy are already completely generalized, as they rely only on the com-
putation of the underlying geometric graphs. Some of the measures require only slight tweaks
to generalize easily to high dimensions. For example, the skinny scagnostic is scaled so that a
two-dimensional circle yields a value of 0. As dimension increases, this scaling factor would need
to be adjusted accordingly, if an n-sphere was to continue to have a value of 0.

Other measures, such as monotonicity (which uses Spearman’s rank correlation) require thought-
ful generalization to higher dimensions. Three dimensional scagnostics were explored in [41], who
defined three dimensional monotonicity as the maximum of the associated two dimensional partial
correlations - the correlation between two variables, while controlling for the effects of the third

ρXY ·Z =
ρXY − ρXZρY Z√
1− ρ2

XZ

√
1− ρ2

Y Z

This interpretation of three dimensional monotonicity, while potentially valid, is perhaps not
ideal. Even though it controls for the effect of the third variable, it considers only the relationship
between two variables at a time. This implies that if (for instance) (X, Y) are highly correlated,
while (X,Z) and (Y, Z) are not, the monotonicity of the configuration would be considered to be
high. A more desirable interpretation of monotonicity in high dimensions would be to consider
the entire configuration at once.

While some scagnostics can be easily generalized to higher dimensions, perhaps a more impor-
tant question to consider is if each scagnostic will continue to be relevant in higher dimensional
spaces. For instance, is measuring the angle between branches in the minimal spanning tree still
a relevant measure of striation in dimension larger than two? Is the RUNT dendrogram still an
appropriate way to measure clumpiness? Is the upper fence of a boxplot an appropriate measure
to determine if a point should be considered an outlier? Are there more interesting measures in
higher dimensional space that could be considered? These are only some of the questions that
will need to be addressed before an adequate generalization of scagnostics can exist in higher
dimensional space. These questions will be explored as a future work project in Chapter 10.

54

Chapter 4

On Euclidean Distance Matrix
Completion

This chapter begins by introducing the problem of Euclidean distance matrix completion via
motivating example in Section 4.1. Section 4.2 introduces the background mathematics of the
Euclidean distance matrix completion problem, as well as three solution methods found in the
literature. Section 4.3 considers completions when the underlying Euclidean distance matrix is
sparse, and more specifically, when the underlying Euclidean distance matrix represents a minimal
spanning tree. Two new solutions are proposed to solve this problem.

4.1 Motivating Examples

Two applications of Euclidean distance matrix completion - sensor network localization and molec-
ular conformation - were introduced in Chapter 2. Additionally, Figure 3.15 in Chapter 3 illus-
trated the difficulty of finding a point configuration that had a low value of the skewed scagnostic.
Unable to find many such configurations, instead consider the possibility of generating a configu-
ration with low skewness.

Recall that the skewed scagnostic is defined as

cskewed = 1 − ω (1 − q90 − q50

q90 − q10

)

Then, the problem of generating a configuration with a given level of skewness is equivalent
to a problem with the following steps

1. Generate minimal spanning tree edge lengths with a given level of skewness.

55

2. Generate a minimal spanning tree preserving configuration from the minimal spanning tree
edge lengths.

The first problem will be addressed in Section 4.4. Assuming it can be done, the second
problem can be addressed by arranging the minimal spanning tree edge lengths as an undirected
graph object. From the graph object, a partial distance matrix, such as that in Figure 4.1, can be
created. A partial distance matrix is one in which all entries are either specified or unspecified,
every diagonal element is zero, all specified entries are non-negative, and every complete principal
submatrix is also a Euclidean distance matrix [67].



0 0.56 0.98 ? ? ? ? ? ? ?
0.56 0 ? ? ? 0.82 ? ? ? ?
0.98 ? 0 ? 0.66 ? ? 0.87 ? ?

? ? ? 0 ? ? ? 0.81 0.23 ?
? ? 0.66 ? 0 ? ? ? ? ?
? 0.82 ? ? ? 0 1.08 ? ? ?
? ? ? ? ? 1.08 0 ? ? ?
? ? 0.87 0.81 ? ? ? 0 ? 0.68
? ? ? 0.23 ? ? ? ? 0 ?
? ? ? ? ? ? ? 0.68 ? 0



Figure 4.1: On right, a minimal spanning tree arranged as a graph object. On left, the correspond-
ing weighted adjacency matrix with weights equivalent to the Euclidean distances between nodes in
the minimal spanning tree.

With a partial distance matrix constructed, the problem becomes one of completion. That is,
given the partial distance matrix ∆?, with known values δ?ij, can a Euclidean distance matrix D
be found such that dij = δ?ij for all known values in ∆?. The problem of completing a partial
distance matrix is known as the Euclidean distance matrix completion problem (edmcp). Once
such a matrix D can be found, creating a point configuration is then trivial. As was mentioned in
Chapter 1, a point configuration can be created from a distance matrix D via eigendecomposition.
Section 4.2 introduces the general Euclidean distance matrix completion problem, and presents
three solutions from the literature. Section 4.3 discusses the problem of Euclidean distance matrix
completion when only the minimal spanning tree is known, and introduces two new completion
algorithms to solve this problem. One is a modification of an existing algorithm, and the second
is a novel solution. Finally, Section 4.4 briefly introduces the problem of generating configurations
with a set structure.

56

4.2 The Euclidean Distance Matrix Completion Problem

This section will introduce the underlying mathematics and relevant existing methods for the
Euclidean distance matrix completion problem. Section 4.2.1 introduces the mathematics of the
Euclidean distance matrix and its relationship to the Gram matrix, and also introduces four matrix
sets of interest as well as four linear functions to move between them. Section 4.2.2 introduces
the general Euclidean distance matrix completion problem and Sections 4.2.3 - 4.2.5 introduce
three solutions - the semidefinite programming completion algorithm [2], the non-convex position
formulation algorithm [34], and the dissimilarity parameterization formulation algorithm [107].

4.2.1 Background Mathematics

Suppose there are n points in arbitrary dimension p, denoted X = [x1, ...,xn] ∈ Rn×p, centred
such that

∑n
i=1 xi = 0. The n× n squared distance matrix is given by D = [dij], where

dij = ||xi − xj||2

and ||x|| =
√
x2

1 + ...+ x2
p. Let G = [gij] = XXT be the Gram matrix. The squared distances dij

can be written in terms of entries in the Gram matrix as

dij = ||xi − xj||2

= xT
i xi + xT

j xj − 2xT
i xj

= gii + gjj − 2gij

Thus, given a Gram matrix G, the squared distance matrix D can be written as

D = K(G) = 1gT + g1T − 2G (4.1)

where g = diag(G) = [g11, ..., gnn]T. Rearranging Equation (4.1), the Gram matrix G can be
written in terms of the squared distance matrix D as

G =
1

2
(1gT + g1T −D) (4.2)

To write G fully in terms of D, the vector g must be written as a function of D. Recall that
the xi are centred, so the average over the column index of D is

57

d̄i· =
1

n

n∑
j=1

dij

=
1

n

n∑
j=1

(xT
i xi + xT

j xj − 2xT
i xj)

= xT
i xi +

1

n

n∑
j=1

xT
j xj − 2xT

i

n∑
j=1

xj

= xT
i xi +

1

n

n∑
j=1

xT
j xj

Similarly, the overall average can be determined

d̄·· =
1

n

n∑
i=1

d̄i·

=
1

n

n∑
i=1

xT
i xi +

1

n

n∑
j=1

xT
j xj

=
2

n

n∑
i=1

xT
i xi

Using these, gii can be written as a function of the dij

gii = ||xi||2

= xT
i xi

= xT
i xi +

1

n

n∑
j=1

xT
j xj −

1

n

n∑
j=1

xT
j xj

= d̄i· −
1

2
d̄··

which is generalized to the vector g as

58

g1T =
1

n
D11T − 1

2
1d̄··1

T

=
1

n
D11T − 1

2
1(

1

n
1TD1

1

n
)1T

= DH− 1

2
HDH

where H = 1
n
11T. With g now defined as a function of the dij, the Gram matrix G can be written

as a function of the squared distance matrix D

G =
1

2
(1gT −D + g1T)

=
1

2
[(DH− 1

2
HDH)

T

−D + (DH− 1

2
HDH)]

=
1

2
(2DH−D−HDH)

= −1

2
(D−DH−HD + HDH)

= −1

2
(I−H)D(I−H)

Letting P = I−H, define the function T (D) as the function that converts a squared distance
matrix to a Gram matrix

T (D) = −1

2
PDP (4.3)

Using Equations (4.1) and (4.3), given a squared distance matrix D, a point configuration can
be determined by finding the associated Gram matrix G, and applying a simple eigendecomposi-
tion,

G = UΛUT

= (UΛ
1
2)(UΛ

1
2)

T

= XXT

where U is the matrix containing the eigenvectors of G, and Λ is a diagonal matrix containing
the corresponding eigenvalues.

59

The functions T and K play an important role in not only moving between a Gram matrix and
squared Euclidean distance matrix, but more generally between two distinct spaces of matrices.
Let Sn denote the set of n×n real symmetric matrices, and define a subset of this space to be all
those matrices that are both symmetric and positive semidefinite

S+
n = {S ∈ Sn : S � 0}

Similarly, define the subsets of symmetric and centred, and symmetric and hollow matrices as

Gn = {G ∈ Sn : G1 = 0}
Dn = {D ∈ Sn : diag(D) = 0}

respectively. Finally, define

G+
n = {G ∈ Gn : G � 0}
D−n = {D ∈ Dn : zTDz ≤ 0 when zT1 = 0}

to be the set of symmetric, centred, and positive semidefinite matrices, and the set set of symmetric
and hollow matrices that are negative semidefinite on the space spanned by zT1 = 0 respectively.
Each of these spaces are positive cones of some intrinsic interest, and provide a means of moving
back and forth through different representation of the same problem. For instance, [34] and [62]
show that G+

n = T (D−n) and D−n = K(G+
n), implying these functions have an inverse relationship

on these spaces (proof in Appendix A.1). This means that any problem written in terms of a
matrix D ∈ D−n could be re-written in terms of a matrix G ∈ G+

n .

With the underlying mathematics now defined, the general Euclidean distance matrix problem
can be stated.

4.2.2 The General Completion Problem

For a partial squared Euclidean distance matrix ∆?, define a matrix A = [aij] such that aij = 1 if
δ?ij is known, and 0 otherwise. The known entries of ∆? can then be determined through a simple
element-wise multiplication of A and ∆?, known as a Hadamard product, written as A ◦ ∆?.
The general Euclidean distance matrix completion problem can then be stated in terms of the
following minimization problem

60

∆0 = arg min
∆ ∈ D−n

||A ◦ (∆? − ∆)||2F (4.4)

where the norm || · ||F is the Frobenius norm, computed as ||M||F =
√
trace(MTM). The

resulting squared Euclidean distance matrix ∆0 is a completion of the partial distance matrix
∆?. In words, the problem seeks to find the squared Euclidean distance matrix ∆ = [δij] which
minimizes the difference between δij and δ?ij for all i, j such that aij = 1 (i.e. for all known
entries in ∆?).

Since ∆ ∈ D−n , the general completion problem can also be written in terms of the Gram
matrix

G0 = arg min
S ∈ G+n

||A ◦ (∆? − K(S))||2F

= arg min
S ∈ G+n

||A ◦ K(∆? − S)||2F
(4.5)

with the second line following due to the linearity of the K operator.

The problem of Euclidean distance matrix completion has been approached using many dif-
ferent techniques by re-stating the general completion problem in Equation (4.4) or (4.5). In
subsections 4.2.3-4.2.5, three such solutions are discussed.

4.2.3 The Semidefinite Programming Algorithm

One method to solve Equation (4.4) is to first convert it to a semidefinite programming problem
[2]. A semidefinite program is a convex optimization problem with a linear objective function
to be maximized over the cone of positive semidefinite matrices. Note that the cone of positive
semidefinite matrices is the set of all positive semidefinite matrices such that if A is in the set,
αA, α > 0 is also in the set. Further, define the convex cone of positive semidefinite matrices to
have the additional constraint that if A,B are in the set, then so to is αA + βB, α, β > 0.

To transform Equation (4.4), first recall the linear operator T (D) = −1
2
PDP. Letting P =

VVT, where V is an n× (n− 1) matrix which satisfies

VTV = In−1

VT1 = 0

61

define the linear operators

Tv(D) = VTT (D)V = − 1

2
VTDV

Kv(S) = K(VSVT)

Then, for any matrix D ∈ D−n , Tv(D) ∈ S+
n−1 where S+

n−1 is the space of (n − 1) × (n − 1)
symmetric positive semidefinite matrices. Further, for any matrix S ∈ S+

n−1, Kv(S) ∈ D−n . That
is, Tv and Kv are inverse operators on these spaces [2].

With the ability to move between D−n and S+
n−1, [2] write the general Euclidean distance matrix

completion problem of Equation (4.4) as

S0 = arg min
S ∈ S+n−1

||A ◦ (∆? − Kv(S))||2F (4.6)

The search space S+
n−1 can be broadened so that the problem can be formulated as a semidef-

inite programming algorithm. The operators Tv and Kv relate the set of Euclidean distance
matrices D−n to the less restrictive set P+

n−1 of real (n− 1)× (n− 1) positive semidefinite matrices
[2], which allows the problem to be cast as one of semidefinite programming

Minimize f(S) = ||A ◦ (∆? − Kv(S))||2F
subject to

a(S) = c
S � 0

(4.7)

Here, the equality constraint a(S) = c enforces the constraints on the known squared distances
- K(S)ij = δ?ij for all known distances in ∆?.

While this problem is convex, an attribute of semidefinite programming that is not shared
by the other completion algorithms under consideration, it has two flaws. First, the embedding
dimension of the solution cannot be fixed, potentially resulting in the Gram matrix G (and
corresponding point configuration X) residing in high dimension. In addition, the algorithm has
complexity O(n2), since it works directly with the distance matrix. Due to this, the time needed
to find a solution increases drastically as the size of the distance matrix increases.

4.2.4 The Non-convex Position Formulation

Unlike the semidefinite programming algorithm, the non-convex position formulation [34] allows
the Euclidean distance matrix problem to be solved with a fixed embedding dimension by re-

62

formulating Equation (4.4) in terms of a Gram matrix G with constrained rank

Minimize
G ∈ G+n

||A ◦ (∆? − K(G))||2F
subject to

rank(G) = p

(4.8)

For a fixed embedding dimension p, Equation (4.8) can be re-formulated in terms of the point
configuration matrix X as

Minimize
X ∈ Rn×p

f(X) = ||A ◦ (∆? − K(XXT))||2F

which can be minimized using standard numerical optimization techniques [34]. A major advan-
tage of formulating the problem in this way is the size of the search space, which is O(np) as
opposed to the O(n2) of the semidefinite programming algorithm.

The ability to specify the rank of the Gram matrix comes at the cost of the convexity of the
objective function [34], meaning that the algorithm may converge on a local minimum during
optimization. The non-convex position formulation algorithm uses three methods to avoid local
minima during optimization.

First, a random start algorithm is implemented as follows. For a partial distance matrix ∆?,
define the matrix B such that bij = δ?ij for all known entries in ∆?. Since the matrix ∆? must
form a connected graph, the remaining unknown entries in B can be determined as the shortest
path distances along the connected graph. For convenience, call these distances fij. In practice,
these fij tend to be much larger than the actual distances [34]. To correct for this, each bij is
scaled by a random realization, sij, from a N (1.5, 0.3) distribution, truncated between 1 and the
number of segments along the shortest path in computing fij [34]

b̂ij =
fij
sij

Since the b̂ij are computed with a random component, several instances of the matrix B̂ are
created. Using a spectral decomposition on the resulting matrix, a p-dimensional point configu-
ration X̂ is created (much like in isomap), and the one resulting in the smallest value of Equation
(4.8) is used as the initial guess in the optimization.

The second method used to avoid local minima is referred to as stretching, numerical scaling
of the point configuration X generated from the spectral decomposition of B̂. For some α > 0,
stretching would result in the matrix αX̂. While it is noted that there is no theoretical basis for
stretching in this context, through empirical observation it was observed that an increased chance
of landing on the global minimum occurred when stretching was employed [34].

63

Finally, and perhaps most importantly, is the implementation of dimension relaxation. By
artificially inflating the dimension of the point configuration during the spectral decomposition of
B̂, the non-convex position formulation algorithm may be able to reach the global minimum with
a higher probability [34]. For instance, in the higher dimensional space, there may be a way to
pass between local minima that would have been converged on in lower dimensional space on the
way to the global minimum.

Once a solution is found in the higher dimensional space, it must be brought down to the
desired dimension p. This is done in one of two ways [34]

� Principal Component Analysis

� Nonlinear Dimension Reduction

Under the second technique, reduction of the dimension of the optimal configuration from d
to p is done through solving the optimization problem

Minimize
W

||W2||2F
subject to f(W) = 0

where W = [W1, W2] ∈ Rn×d is a point configuration matrix in d-dimensional space, and W1 is a
point configuration matrix in dimension p, where p < d. Requiring f(W) = 0 ensures the resulting
p dimensional point configuration matrix W1 is a global minimum of the original minimization.

4.2.5 The Dissimilarity Parameterization Formulation

The final Euclidean distance matrix completion algorithm is the dissimilarity parameterization
formulation [107]. Recall that the matrix A is an indicator matrix with aij = 1 if δ?ij is known,
and 0 otherwise. Let Cn be the set of all n × n dissimilarity matrices, and further define the set
Cn(A◦∆?) as the set of all completions of the partial dissimilarity matrix A◦∆?. Mathematically,
Cn(A ◦∆?) is defined as

Cn(A ◦∆?) = {∆ ∈ Cn : A ◦∆ = A ◦∆?} (4.9)

Recall that D−n is the set of all n×n Euclidean distance matrices, and define D−n (p) as the set
of n× n Euclidean distance matrices from p dimensional point configurations.

Then, a solution to the p dimensional embedding problem exists only if ∆ ∈ Cn(A ◦∆?) and
∆ ∈ D−n (p). That is, a solution to the problem exists only if Cn(A ◦∆?) ∩ D−n (p) 6= ∅. This

64

intersection is non-empty if and only if the following minimization has a global minimum of zero
[107]

Minimize
G,∆

||G− T (∆))||2F (4.10)

subject to: G ∈ S+
n and rank(G) ≤ p

∆ ∈ Cn(A ◦∆?)

Note that while this formulation is similar to both the semidefinite programming formulation
and the nonconvex position formulation, there is a large distinction in that the masking matrix A
and the known distances A ◦∆? now appear as part of the constraints given by the set of allowed
dissimilarity matrices Cn(A ◦∆?). This allows restrictions to be imposed on the unknown values.

Letting

Cn(∆L,∆U) = {∆ ∈ Cn : δLij ≤ δij ≤ δUij}

where ∆L = [δLij] and ∆U = [δUij] are both in Cn, formulation (4.10) is a special case of

Minimize
G,∆

||G− T (∆))||2F (4.11)

subject to: G ∈ S+
n and rank(G) ≤ p

∆ ∈ Cn(∆L,∆U)

where ∆L and ∆U are fixed matrices chosen such that A ◦∆L = A ◦∆U . That is, when δ?ij is
known, the upper and lower bounds are set equal to δ?ij. Whenever aij = 0, then the default value
of the bounds are δLij = 0 and δUij = +∞. An advantage of this formulation is that tighter bounds
can be imposed on the unknown δ?ij, restricting the space of possible solutions. For example using
the structure of the graph given by A, upper bounds δUij can be determined for all unknown δij
by simply invoking the triangle inequality.

Equation (4.11) is a standard optimization problem, which can be solved efficiently using the
L-BFG-S optimization algorithm [129][107]. Like the non-convex position formulation algorithm,
the dissimilarity parameterization algorithm is not convex, meaning that it may converge on a
local minimum, instead of the global minimum. A random start algorithm is again implemented
in the dissimilarity parameterization formulation.

65

4.3 Completions from the Minimal Spanning Tree

For any Euclidean distance matrix completion problem, a minimum requirement is that the graph
underlying the partial distance matrix be connected. Otherwise, the problem separates into two
disconnected groups with no information to locate the relationship between them. For an n × n
distance matrix, the spanning tree creates a connected graph object with only n − 1 edges (or
known distances), the minimum number possible. Interest lies in completions of a Euclidean
distance matrix when the graph given by A determines a spanning tree on its n nodes and the
known distances given by A ◦∆? are also the minimal spanning tree distances of the completion.

All methods in Section 4.2 can be applied when only minimal spanning tree is known, though
there may be computational challenges given that 1 − 2

n
of the distances are missing. None,

however, are specifically designed to ensure that the minimal spanning tree remains unchanged
in the completion. Since the minimal spanning tree is known to contain important clustering
information [33][47][100], the goal here is to find minimal spanning tree preserving completions.

More formally, let An ⊂ Dn denote the set of symmetric n× n adjacency matrices, A?n ⊂ An
the subset corresponding to spanning trees, and A?n(A) ⊂ A?n the set of spanning tree adjacency
matrices restricted to a subgraph of A (i.e. A − A? ∈ An whenever A? ∈ A?n). Further let
amst(A,∆) = {A1, . . . ,Ak} denote the set of adjacency matrices Ai ∈ A?n(A) which produce a
minimal spanning tree for the graph given by A and ∆ ∈ Cn. This set will typically be a singleton,
but could be larger whenever there are tied values within a dissimilarity matrix ∆. The product
Ai ◦∆ will determine a minimal spanning tree for any Ai ∈ amst(A,∆).

Now let

Mn(A,A?,∆?) = {∆ ∈ Cn : amst(A,∆) = amst(A?,∆?)}

denote all those dissimilarity matrices ∆ which with a given adjacency matrix A will have
the same minimal spanning tree adjacency matrix set as that for the target ∆? and A?. When
non-empty, the set Mn(A,A?,∆?) ⊂ Cn is a convex cone.

Theorem 1. The set Mn := Mn(A,A?,∆?) = {∆ ∈ Cn : amst(A,∆) = amst(A?,∆?)} is a
convex cone.

Proof. Two things need to be shown:

1. if ∆ ∈Mn then α∆ ∈Mn for any real α > 0, and

2. if ∆ ∈Mn and Λ ∈Mn then Γ = α∆ + βΛ ∈Mn for any reals α, β > 0.

66

First, note that Cn is clearly a convex cone from its definition, so the requirement that members
of Mn also be members of Cn is trivially satisfied for both items above, so we need only check
that the minimal spanning tree requirements are met.

Item 1 is also trivially true. If amst(A,∆) = amst(A?,∆?) then a common rescaling of all
elements in ∆ will make no change to the adjacency of any minimal spanning tree.

Item 2 is proved by showing that amst(A,∆) ⊆ amst(A,Γ), then that
amst(A,Γ) ⊆ amst(A,∆), implying amst(A,Γ) = amst(A,∆).

To show amst(A,∆) ⊆ amst(A,Γ), let M ∈ amst(A,∆) and B ∈ A?n be any spanning tree
of both A and A?. We write (twice) the sum of dissimilarities of M ◦ Γ as

1T(M ◦ Γ)1 = 1T(M ◦ (α∆))1 + 1T(M ◦ (βΛ))1

≤ 1T(B ◦ (α∆))1 + 1T(B ◦ (βΛ))1

= 1T(B ◦ Γ)1

which implies that M ∈ amst(A,Γ) and so amst(A,∆) ⊆ amst(A,Γ).

To show amst(A,Γ) ⊆ amst(A,∆), let M ∈ amst(A,∆) and B ∈ amst(A,Γ). The result is
proved by contradiction. Suppose B 6∈ amst(A,∆). Then we have both that 1T(B ◦ (α∆))1 >
1T(M ◦ (α∆))1 and that 1T(B ◦ (βΛ))1 > 1T(M ◦ (βΛ))1.

Together these imply that

1T(B ◦ Γ)1 = 1T(B ◦ (α∆))1 + 1T(B ◦ (βΛ))1

> 1T(M ◦ (α∆))1 + 1T(M ◦ (βΛ))1

= 1T(M ◦ Γ)1

which means that M has a shorter spanning tree and hence B 6∈ amst(A,Γ), a contradiction.
Therefore B ∈ amst(A,∆) and hence amst(A,Γ) ⊆ amst(A,∆).

The set of mst-preserving completions of A?◦∆? is now simply the intersection of Cn(A?◦∆?)
and Mn(A,A?,∆?) when A = K = 11T − diag(1) is the adjacency matrix for a complete graph
on n nodes.

Analogous to Equation (4.9), define this set to be

Mn(A ◦∆?) = {∆ ∈ Cn(A ◦∆?) : amst(K,∆) = amst(A,∆?)}

67

and note now that mst-preserving completions with embedding dimension p exist if and only if
Mn(A ◦D) ∩ D−n (p) 6= ∅. Note also that the minimal spanning tree fixes only n− 1 dissimilar-
ities/distances and leaves (n − 1)(n − 2)/2 to be determined. Moreover, the fixed distances are
the smallest that produce a spanning tree. The set Mn(A ◦∆?) is very large.

As in the dissimilarity parameterization formulation [107], an mst-preserving completion prob-
lem in p dimensions can now be expressed as

Minimize
G,∆

||G− T (∆))||2F (4.12)

subject to: G ∈ S+
n and rank(G) ≤ p

∆ ∈Mn(A ◦∆?)

achieving a zero global minimum. This differs from the Equation (4.10) only in restricting ∆ to
Mn(A ◦∆?), a subset of Cn(A ◦∆?), which suggests that the methods used in the dissimilarity
parameterization formulation could be adapted to find an mst-preserving completion by solving
a minimization problem. That is, Equation (4.12) could be reduced to Equation (4.11) exactly as
before, provided that ∆L and ∆U are chosen so as to ensure the other constraints hold.

4.3.1 Judicious Choice of Bounds

In the dissimilarity parameterization formulation, solving Equation (4.11) only specified δLij = 0;
no greater lower bound is used. If lower bounds can be determined so that the minimal spanning
tree is maintained then solving Equation (4.11) will also solve Equation (4.12). This observation
suggests that an adaptation of the dissimilarity parameterization formulation algorithm [107] using
the correct non-zero lower bounds will produce an mst-preserving completion.

Algorithm 2 is used in conjunction with the dissimilarity parameterization formulation algo-
rithm to construct lower bounds for all distances that will preserve the minimal spanning tree in
the completion. The insight in constructing the lower bound is drawn from single-linkage cluster-
ing. Every edge in a spanning tree separates the vertices into two different groups, depending on
which points remain connected to either one vertex or the other of that edge. Because the tree
is a minimal spanning tree, if we select the largest edge, then the distance between any vertex of
one group and any vertex of the other group must be at least as large as that of the largest edge.
This gives a lower bound for these distances that will preserve that edge in the minimal spanning
tree. The same reasoning is applied recursively to each separate group, thus producing a lower
bound on all edges.

With these lower bounds computed in advance, we need only use these in the dissimilarity
parameterization formulation algorithm to find a solution to Equation (4.12). This algorithm will
be denoted as the dissimilarity parameterization formulation with lower bound algorithm so as

68

Algorithm 2 MST lower bounds algorithm

Structures
tree: T = (V,E) is a spanning tree with vertex set V = {v} and edge set E = {e};
edges: e will be a set of two indices {i, j} = nodes(e) and have a weight wt(e) = δij ≥ 0;
∆L = [δLij] is the matrix of dissimilarity lower bounds to be determined;

procedure splitTree(T, splitEdge) . T is a spanning tree
restEdges← edges(T)− {splitEdge} . Remove splitEdge from the edge set of T
(v1, v2)← nodes(splitEdge)
V1 ← {v1}; E1 ← {e ∈ restEdges : v1 ∈ nodes(e)} . E1 could be empty
V2 ← {v2}; E2 ← {e ∈ restEdges : v2 ∈ nodes(e)} . E2 could be empty
while restEdges 6= ∅ do

e← restEdges[1]
restEdges← restEdges− {e}
if nodes(e) ∩ nodes(E1) then

E1 ← E1 ∪ {e}
else

E2 ← E2 ∪ {e}
end if

end while
V1 ← V1 ∪ nodes(E1); V2 ← V2 ∪ nodes(E2)
return {T1 := (V1, E1), T2 := (V2, E2)} . Return the two trees

end procedure

procedure MSTLowerBounds(T,∆L) . Recursively determines the lower bounds
if edges(T) 6= ∅ then . Ensure there are edges left in T

maxEdge← arg maxe∈edges(T) wt(e) . Split on the biggest edge
Trees← splitTree(T,maxEdge)
for v1 ∈ nodes(Trees[T1]) do

for v2 ∈ nodes(Trees[T2]) do
∆L[v1, v2]←∆L[v2, v1]← wt(maxEdge) . Set the lower bound

end for
end for
for Tree ∈ Trees do

∆L ← MSTLowerBounds(Tree,∆L) . Recursively get lower bounds
end for

end if
return ∆L . Return the matrix of lower bounds

end procedure

69

to note its dependence on the dissimilarity parameterization formulation algorithms, but with a
specified minimal spanning tree preserving lower bound.

4.3.2 A Constructive Solution

For any A and ∆?, the set ∆ ∈Mn(A◦∆?) is large; for a connected graph it is at its largest when
A specifies a minimal spanning tree. In this case, it should be possible to find a completion in
∆ ∈Mn(A ◦∆?). Consider simply constructing such a completion by locating points xi ∈ Rp (p
being the embedding dimension) one at a time, while checking that the (partial) minimal spanning
tree is preserved as each point is added.

More formally, define Xk = [x1, . . . ,xk]
T to be a k × p matrix whose rows are point locations

x1, . . . ,xk ∈ Rp. The locations are chosen so that the minimal spanning tree from the Euclidean
distances of these k locations in Rp is identical to that of k connected nodes from the minimal
spanning tree A ◦∆?. The matrices X1,X2, . . . ,Xn are constricted by growing (and preserving)
the minimal spanning tree one node at a time. The distance matrix from Xn provides an mst-
preserving completion.

The construction begins by choosing the node of maximal degree from the minimal spanning
tree of A ◦∆? and locating it at x1 = 0. The second node to locate will be that of maximal
degree amongst those connected to the first. If the dissimilarity between these two nodes is, say,
δ12, then the location of x2 is chosen at random from a uniform distribution on the surface of a
sphere Sp−1 in Rp of radius

√
δ12 centred at x1 (assuming squared distances for the completion

matrix). The two points x1 and x2 are trivially a subtree of the minimal spanning tree. The
remaining nodes with connections to x1 are then added in similar fashion.

As each location is proposed, its (squared) distance to all other placed points is calculated
and the resulting distance matrix checked to see whether the minimal spanning tree (so far) is
preserved. If it is, the point is accepted; if not, points are generated until one is acceptable. When
new nodes are added, they are chosen amongst those without locations that share an edge in
the minimal spanning tree with nodes already located. At each step, available nodes of highest
degrees are added before nodes of low degree in A ◦∆?; since these are harder to place, they
appear earlier. Algorithm 3 describes the method in detail.

4.4 Generating More Constrained Configurations

The original motivation of exploring Euclidean distance matrix completions from the minimal
spanning tree was to be able to generate a configuration with a given level of the skewed scagnostic.
Incidentally, the minimal spanning tree also controls several other scagnostic measures, as it
determines the degree of each node (controlling the stringy scagnostic), the size of the largest edges

70

Algorithm 3 Guided Random Search Algorithm
Structures

TV = (V,E) is a tree spanning the vertex set V = {1, . . . , n} with edge set E;
A = [aij] and A∗ = [a∗ij] are n× n symmetric adjacency matrices;

∆ = [δij], is an n× n symmetric squared dissimilarity matrix;
X is an n× p point configuration matrix to be constructed.

procedure mstConfigure(A,∆, maxIn = 100, maxOut = 100)
nTries← 0; Converged?← FALSE; TV ← (V,E)← tree(A);
repeat

nTries← nTries + 1
X← 0; A← 0; . Initialization
i← arg maxj∈V degree(node(j)) . Start at any maximal degree node i in TV
P ← {i} . Initial vertex set
TP ← (P,∅) . Root the tree
Grow?← TRUE . Keep growing flag

while Grow? do
(g,B)← getBuds(TP , TV) . grow B ⊂ V , B ∩ P = ∅ from g ∈ TP
for b ∈ B do

(TP ,∆,A,X, Converged?, Grow?)← growTree(g, b, TP , TV ,∆,A,X, maxIn)
end for

end while
until nTries > maxOut or Converged? == TRUE

return (X, Converged?) . Return the point configuration
end procedure

procedure growTree(i, j, TP , TV ,∆,A,X, maxTries = 100)
Placed?← Converged?← FALSE; nTries← 0; A∗ ← A; ∆∗ ←∆; . Initialization
repeat

nTries← nTries + 1
z ∼ Uniform(Sp−1) . Generate a random direction vector
xj ← xi + z×

√
δij . Propose the point

for k ∈ P do . Try values for all placed nodes
δ∗jk ← δ∗kj ← ||xk − xj ||2
a∗jk ← a∗kj ← 1

end for
if mst(A∗ ◦∆∗) ⊂ TV then Placed?← TRUE . Preserves the MST?
end if

until Placed? or nTries > maxTries

if Placed? then . Accept the point
X[j,]← xj

T; A← A∗; ∆←∆∗;
nodes(TP)← P ∪ {j}; edges(TP)← edges(TP) ∪ {(i, j), (j, i)}
if TP = TV then Converged?← TRUE

end if
end if
return (TP ,∆,A,X, Converged?, Placed?)

end procedure

procedure getBuds(TP , TV)
B ← V − P
E∗ = {(i, j) : i ∈ P, j ∈ B, (i, j) ∈ edges(TV)} . edges in TV connecting P and B
g ← arg maxi∈P #{e : e ∈ E∗ and i ∈ e} . g ∈ P having most connections to B
B ← {b : (g, b) ∈ E∗} . reduce B to nodes connected to g
return (g,B)

end procedure

71

(controlling both the outlying and sparse scagnostics), and the RUNT dendrogram (controlling
the clumpy scagnostic).

In addition to the ability to control the edge length distribution of the minimal spanning tree,
the angles between the proposed points can also be controlled. Since each new point is placed by
first proposing an angle from the unit circle, the striated scagnostic can be controlled by proposing
angles from a restricted subset of the unit circle or from a desired angle distribution.

The question remaining then, is what do these configurations look like, and are they of any
interest? This question will be thoroughly discussed in Chapter 10.

72

Chapter 5

edmcr - An R Package for Euclidean
Distance Matrix Completion Problems

As both the newly proposed dissimilarity parameterization formulation and guided random search
algorithms are designed to create completions from the minimal spanning tree, examining the
relationship between the sparsity of the partial distance matrix and the accuracy of the completed
Euclidean distance matrix for all of the algorithms considered is certainly of interest. Interest lies
in the relationship between sparsity and the accuracy of the resulting point configuration for the
various methods. These experiments (and others) will be conducted in Chapter 6.

To execute these types of experiments, each of the algorithms discussed in Chapter 4 need to
be programmed in a common language so they can be compared directly. For this purpose, edmcr
is introduced, an R package in which each of the algorithms of interest are implemented. The
purpose of this chapter is to introduce this package and validate each of the implementations via
example.

In addition to the algorithms needed for the experiments in Chapter 6, two additional al-
gorithms have also been implemented in edmcr. First, to perform sensor network localiza-
tion, the algorithm of [66] is implemented. To execute molecular conformation, the semidefi-
nite programming-based protein structure determination (SPROS) algorithm of [3] is also imple-
mented. The details of these two algorithms will also be discussed in this chapter (although they
will not be used further).

A large portion of the implementation of the SPROS algorithm was the underlying optimization
solver. The solver implemented was the semidefinite quadratic linear optimization solver of [105],
and was implemented in the R package sdpt3r. While implementation of the solver does not
represent new, novel research (and hence has been included as an appendix), it does allow for a
large number of new problems to be solved in R that were previously unavailable. The details of
sdpt3r can be found in Appendix C.

73

5.1 Euclidean Distance Matrix Completion in R

The edmcr package is a novel addition to the R library in the form of Euclidean distance matrix
completion. There are currently five methods available to complete a partial distance matrix in
the edmcr package.

1. Semidefinite programming algorithm [2]

2. Non-convex position formulation [34]

3. Dissimilarity parameterization formulation [107]

4. Dissimilarity parameterization formulation with minimal spanning tree preserving lower
bounds [89]

5. Guided random search [89]

In addition, the sensor network localization algorithm of [66] and the SPROS algorithm [3] for
molecular conformation are also available in edmcr.

5.1.1 edmc

To streamline the implementation of the Euclidean distance matrix completion algorithms, the
main function of the edmcr package, edmc allows any of the Euclidean distance matrix completion
algorithm above to be called. The edmc function takes the following input variables

D An n× n Euclidean distance matrix to be completed, with unknown entries set to
NA.

method The completion algorithm to be used. One of sdp, npf, dpf, snl, grs.
... Additional input variables specific to the method used.

Of practical importance in the implementation of edmc is to note that only two inputs are
specified by name in the definition of the function - a partial Euclidean distance matrix D, and
the desired completion algorithm method. All other input variables are specific to the algorithm
specified in method, and are therefore not specified in the edmc input list. The user must specify
the required input variables (outlined for each method below) by naming them directly during the
call to edmc.

The output of edmc is also specific to the method used, and will be discussed individually with
each method.

74

method = “sdp”

The semidefinite programming algorithm [2], denoted sdp, and coded in the internal function sdp,
requires the following input variables to be specified in edmc

D An n× n Euclidean distance matrix to be completed, with unknown entries set to
NA.

A A weight matrix, with aij = 0 implying dij is unknown. Generally, if dij is known,
aij = 1 although any non-negative weight is allowed.

toler The convergence tolerance for the algorithm. The default is set to 1e− 8.

Successful completion of the routine results in the following list of output variables

D The completed n× n Euclidean distance matrix.
optval The minimum value of the objective function in Equation (4.7) achieved during

minimization.

The sdp algorithm is appropriate for smaller completion problems, as it is computationally
quite expensive (O(n2)).

method = “npf”

The non-convex position formulation algorithm [34], denoted npf, and coded in the internal func-
tion npf, requires the following input variables to be specified in edmc

D An n × n Euclidean distance matrix to be completed, with unknown entries
set to NA.

A A weight matrix, with aij = 0 implying dij is unknown. Generally, if dij is
known, aij = 1, although any non-negative weight is allowed.

d The dimension of the resulting completion.
dmax The maximum dimension to consider during dimension relaxation. The default

is set to be n− 1, where n is the number of rows in D.
decreaseDim During dimension reduction, the number of dimensions to decrease by at each

step. The default is set to 1.
stretch The stretching factor applied to the distance matrix (see Section 4.2.4). The

default is set to 1 (i.e. no stretching is applied).
dimMethod One of Linear (principal components) or NLP (nonlinear dimension reduction)

corresponding to the desired method of dimension reduction (see Section 4.2.4).
The default is set to Linear.

toler The convergence tolerance for the algorithm. The default is set to 1e− 8.

In most cases, the default values of the input variables dmax, decreaseDim, stretch, dim-
Method, and toler are sufficient to find a solution. As such, these input values need not be

75

specified during the call to edmc - only D, A, and d are required. An advanced user may be in-
terested in changing these defaults in the event that the algorithm fails to converge on a global
solution. Section 4.2.4 outlines the technical background required to understand how these op-
tional input variables can be used.

In the case of utilizing the npf internal function, edmc produces the following list of outputs

D The completed n× n Euclidean distance matrix.
optval The minimum value of the objective function in Equation (4.8) achieved during

minimization.

The npf algorithm is appropriate for any completion problem, as it is substantially faster than
sdp. This increase in speed unfortunately comes at the cost of convexity, so care must be taken
to ensure that algorithm arrives on a global solution, and not a local solution. A global solution
is achieved if the value returned by optval is sufficiently close to 0.

method = “dpf”

The dissimilarity parameterization formulation algorithm [107], denoted dpf, and coded in the
internal function dpf, requires the following input variables to be specified in edmc

D An n× n Euclidean distance matrix to be completed, with unknown entries set
to NA.

d The dimension for the resulting completion.
lower An n × n matrix containing the lower bounds for the unknown entries in D. If

NULL (default), lower is set to be a matrix of zeros.
upper An n × n matrix containing the upper bounds of the unknown entries in D. If

NULL, upper[i,j] is set to be the shortest path between node i and node j.
retainMST A logical input indicating if the current minimal spanning tree structure in D

should be retained. If TRUE, an mst-preserving lower bound is calculated.

For dpf, both D and d must be specified by the user. The remaining inputs are optional and
have set defaults. Their use will be described via example in Section 5.2. The dpf subroutine
produces the following list of outputs

D An n× n Euclidean distance matrix with embedding dimension d.
optval The minimum value of the objective function in Equation (4.11) achieved during

minimization.

By setting the retainMST input variable to true, the dissimilarity parameterization formulation
with minimal spanning tree lower bounds algorithm [89] is executed. In this case, if lower has
been specified by the user, it is overwritten using the minimal spanning tree preserving lower
bounds computed using Algorithm 2.

76

method = “grs”

When the method variable is set to "grs", edmc executes the guided random search algorithm
[89] by calling the internal function grs. The grs algorithm is used to solve Euclidean distance
matrix completion problems where only the minimal spanning tree is known. When grs is the
specified method, two input variables are required

D An n × n partial Euclidean distance matrix to be completed containing only the
distances in the desired minimal spanning tree.

d The dimension of the resulting completion.

Completion of the matrix D results in two output variables

P An n× d matrix containing the positions of the n nodes in d dimensions.
D An n× n Euclidean distance matrix with embedding dimension d.

In Section 5.4, the ability of this algorithm to create point configurations in a lower embedding
dimension than the original partial Euclidean distance matrix is explored.

method = “snl”

Up to this point, only algorithms explicitly designed for Euclidean distance matrix completion have
been explored. While the sensor network localization algorithm of [66] is capable of performing
vanilla Euclidean distance matrix completion, it is designed for the purpose of sensor network
localization. Given a set of anchors with known positions and a number of sensors for which
some distances to the anchors are known, the problem of sensor network localization is to find the
positions of as many of the unknown sensors as possible.

The sensor network localization algorithm of [66], denoted snl, and coded in the internal
function snl, requires the following input variables to be specified in edmc

D The partial distance matrix specifying the known distances between nodes. If
anchors is specified (and is a p × d matrix), the p final columns and p final rows
of D specify the distances between the anchors.

d The dimension for the resulting completion.
anchors A p × d matrix specifying the d dimensional locations of the p anchors. If the

anchorless problem (i.e. a general edmcp) is to be solved, anchors = NULL.

The snl algorithm requires that both D and d be specified as input variables, and an additional
argument anchors, which specifies d-dimensional positions of the anchors is optional. When
anchors is specified, the algorithm seeks to locate (in d-dimensional space) as many of the sensors
as possible. Unlike the other algorithms considered thus far, the main purpose of the snl algorithm

77

is to solve the sensor network localization problem, however, it can also solve the Euclidean
distance matrix completion problem by specifying the anchors input as NULL. Executing the snl

algorithm results in the following output

X the d-dimensional positions of the localized sensors.

The m × d matrix X contains the positions of the localized sensors. It is not necessarily the
case that all sensors can be localized, in which case they are not included in X, and therefore we
have m ≤ n, where n is the total number of sensors.

sprosr

Determining the structure of a molecule requires a specialized algorithm that can handle the
additional angle constraints often found in molecular conformation problems. In edmcr, the
protein problem can be solved using the sprosr function, an R implementation of the semidefinite
programming-based protein structure determination algorithm [3]. sprosr has three required and
one optional input variable

seq A table containing the amino acid sequence of the protein in CYANA
.seq format.

aco A table containing the angle constraint information in CYANA .aco
format

upl A table containing the distance constraint information in CYANA
.upl format.

hydrogen_omission Should side-chain hydrogen atoms be omitted? TRUE/FALSE. De-
fault is FALSE.

Each of seq, aco, and upl require a table following the form set out by CYANA [49]. For
seq, the sequence file (following the format of the .seq CYANA file) is a table of two columns
- column one is the abbreviated name of the amino acid, and column two is the corresponding
residue number. The aco input table contains angular constraints on the phi and psi angles for
the amino acid residues, and follows the format of the .aco CYANA file. It contains five columns
- the residue number of the amino acid corresponding to the seq input variable, the name of the
amino acid residue, the name of the angle being constrained (either PHI or PSI), the lower limit
of the angle, and the upper limit of the angle, in degrees. Finally, the upl input table contains the
distance constraints (in Ångströms) between amino acid residues. It contains seven columns - the
residue number, amino acid name, and atom name of the first (columns 1-3) and second (columns
4-6) residues, and the constrained distance between them. Table 5.1 provides an example of each
input type.

78

MET 1
GLN 2
ILE 3
PHE 4
VAL 5

2 GLN PHI -95.0 -85.0
3 ILE PHI -149.0 -139.0
4 PHE PHI -129.0 -119.0
6 LYS PHI -117.0 -107.0
7 THR PHI -110.0 -100.0

1 MET HA 2 GLN H 2.93
1 MET HB2 2 GLN H 3.86
1 MET HB2 63 LYS HA 5.50
1 MET HB3 2 GLN H 3.86
1 MET HB3 63 LYS HA 5.50

(a) (b) (c)

Table 5.1: (a) The first 5 rows of a sequence (seq) file. (b) The first five rows of an angle constraint
(aco) file. (c) The first 5 rows of a distance constraint (upl) file.

sprosr provides two output variables upon completion

X The three dimensional point configuration of the completed protein molecule
report A list detailing the total violations in the protein molecule

The X output is straight forward, it contains the three dimensional positions of the amino
acid residues in the completed protein molecule. The report output is a list detailing the total
violations in the protein, including the number (and total size) of the violations in the equality
constraints ($eq_err), the number of violations in both the lower ($lo_err) and upper bounds
($up_err), the number of chiral violations ($chiral), the number of angle violations in both phi
($phi) and psi ($psi), and the number of dihedral ($dihed) and hydrogen bonds ($hbond) that
violate their upper bounds.

5.2 Unconstrained EDMCP

This section serves as a quick validation of the implementation of the five Euclidean distance ma-
trix algorithms that will be used to perform the experiments of Chapter 6. Consider the following
partial Euclidean distance matrix (from [107]), and its known completion in three dimensional
space.


0 3 4 3 4 3
3 0 1 ? 5 ?
4 1 0 5 ? 5
3 ? 5 0 1 ?
4 5 ? 1 0 5
3 ? 5 ? 5 0





0 3 4 3 4 3

3 0 1
√

18 5
√

18

4 1 0 5
√

32 5

3
√

18 5 0 1
√

18

4 5
√

32 1 0 5

3
√

18 5
√

18 5 0


For comparative purposes, note that

√
18 ≈ 4.243 and

√
32 ≈ 5.657. To solve the problem

using edmcr, first define the Euclidean distance matrix in R as follows

79

R> #Define the partial distance matrix

R> D <- matrix(c(0,3,4,3,4,3,

3,0,1,NA,5,NA,

4,1,0,5,NA,5,

3,NA,5,0,1,NA,

4,5,NA,1,0,5,

3,NA,5,NA,5,0), byrow=TRUE, nrow=6)

For solving standard Euclidean distance matrix completion problems such as this, the sdp,
npf, and dpf algorithms should be considered. Beginning with the sdp algorithm

R> #Define the adjacency matrix A

R> A <- matrix(c(1,1,1,1,1,1,

1,1,1,0,1,0,

1,1,1,1,0,1,

1,0,1,1,1,0,

1,1,0,1,1,1,

1,0,1,0,1,1), byrow=TRUE, nrow=6)

R> edmc(D=D, method = "sdp", A=A, toler=1e-8)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000000 3.000020 3.999993 3.000020 3.999993 3.000011

[2,] 3.000020 0.000000 1.000051 4.321144 5.000003 4.453067

[3,] 3.999993 1.000051 0.000000 5.000003 5.656642 5.000002

[4,] 3.000020 4.321144 5.000003 0.000000 1.000051 4.453067

[5,] 3.999993 5.000003 5.656642 1.000051 0.000000 5.000002

[6,] 3.000011 4.453067 5.000002 4.453067 5.000002 0.000000

$optval

[1] 5.406998e-10

Note that while a solution to the problem was found (since the optimal function value is near
zero), this matrix differs slightly from the known completion. The main reason for this difference
is the rank of the completed distance matrix. The corresponding Gram matrix has five non-zero
eigenvalues, meaning the completed squared distance matrix has rank five, where the original
solution had an embedding dimension of three.

Next, consider the solution given by the npf algorithm, with default settings used where
appropriate

80

R> set.seed(48)

R> #Define the adjacency matrix A

R> A <- matrix(c(1,1,1,1,1,1,

1,1,1,0,1,0,

1,1,1,1,0,1,

1,0,1,1,1,0,

1,1,0,1,1,1,

1,0,1,0,1,1), byrow=TRUE, nrow=6)

R> #Default settings for some inputs (not required as input to edmc())

R> dmax = n - 1

R> decreaseDim = 1

R> stretch = 1

R> method = "Linear"

R> toler = 1e-8

R> edmc(D=D, method="npf", A=A, d=3)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 3.000000 4.000000 3.000000 4.000000 3.000000

[2,] 3 0.000000 1.000001 4.242615 5.000000 4.241516

[3,] 4 1.000001 0.000000 5.000000 5.656888 5.000000

[4,] 3 4.242615 5.000000 0.000000 1.000001 4.241561

[5,] 4 5.000000 5.656888 1.000001 0.000000 5.000000

[6,] 3 4.241516 5.000000 4.241561 5.000000 0.000000

$optval

[1] 3.894878e-11

The resulting solution, unlike in the sdp subroutine, converges very nearly to the known
solution. This is due to the ability to specify the embedding dimension. This, however, comes
with its own set of difficulties. Suppose the embedding dimension of the example matrix is
unknown, and is instead specified as d = 2, resulting in the following completion

81

R> set.seed(48)

R> edmc(D=D, method="npf", A=A, d=2)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000000 2.957321 3.711975 2.957320 3.711976 2.104172

[2,] 2.957321 0.000000 1.423176 3.660281 5.036896 4.790540

[3,] 3.711975 1.423176 0.000000 5.036896 6.377897 5.118735

[4,] 2.957320 3.660281 5.036896 0.000000 1.423176 4.790539

[5,] 3.711976 5.036896 6.377897 1.423176 0.000000 5.118735

[6,] 2.104172 4.790540 5.118735 4.790539 5.118735 0.000000

$optval

[1] 72.33753

No solution achieving a global minimum of zero is found in two dimensions, so the algorithm
is forced to settle on a local solution, reaching an optimal value of 72.34. If it is believed a
solution actually exists in two dimensions, it may be worthwhile to attempt stretching, or possibly
increasing the number of dimensions considered during relaxation. However, a more likely solution
is to change the completion dimension.

Finally, consider the solution provided using the dpf algorithm

R> set.seed(98)

R> edmc(D=D, method="dpf", d=3)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 3.000000 4.000000 3.000000 4.000000 3.000000

[2,] 3 0.000000 1.000000 4.240979 5.000000 4.245210

[3,] 4 1.000000 0.000000 5.000000 5.659058 5.000000

[4,] 3 4.240979 5.000000 0.000000 1.000000 4.248187

[5,] 4 5.000000 5.659058 1.000000 0.000000 5.000000

[6,] 3 4.245210 5.000000 4.248187 5.000000 0.000000

$optval

[1] 1.878904e-09

Again, with the ability to specify a an embedding dimension, the dpf algorithm is able to

82

converge very nearly to the global minimum. However, similar to the npf algorithm, consider
what happens if the embedding dimension is unknown, and an attempt is made to complete the
matrix with an embedding dimension of d = 2

R> set.seed(98)

R> edmc(D=D, method="dpf", d=2)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 3.000000 4 3.000000 4 3.000000

[2,] 3 0.000000 1 3.967597 5 4.349922

[3,] 4 1.000000 0 5.000000 6 5.000000

[4,] 3 3.967597 5 0.000000 1 4.349923

[5,] 4 5.000000 6 1.000000 0 5.000000

[6,] 3 4.349922 5 4.349923 5 0.000000

$optval

[1] 8.456663

With an achieved minimum value of 8.46, the algorithm has again failed to converge near the
required global minimum of 0, indicating that the proposed solution is not a distance matrix.

5.3 A Completion from the Minimal Spanning Tree

To demonstrate the guided random search algorithm and the dissimilarity parameterization for-
mulation with minimal spanning tree lower bounds algorithm, consider the same matrix as above
with only the minimal spanning tree known



0 3 4 3 4 3

3 0 1
√

18 5
√

18

4 1 0 5
√

32 5

3
√

18 5 0 1
√

18

4 5
√

32 1 0 5

3
√

18 5
√

18 5 0




0 3 ? 3 ? 3
3 0 1 ? ? ?
? 1 0 ? ? ?
3 ? ? 0 1 ?
? ? ? 1 0 ?
3 ? ? ? ? 0


While this can be completed by any of the Euclidean distance matrix completion algorithms,

only the guided random search and dissimilarity parameterization with minimal spanning tree
lower bounds algorithms are guaranteed to preserve the minimal spanning tree in the completion.
Both of these algorithms are used to complete the matrix below.

83

R> set.seed(690)

R> D <- matrix(c(0,3,NA,3,NA,3,

3,0,1,NA,NA,NA,

NA,1,0,NA,NA,NA,

3,NA,NA,0,1,NA,

NA,NA,NA,1,0,NA,

3,NA,NA,NA,NA,0), byrow=6, byrow=TRUE)

R> dpflb <- edmc(D = D, d = 3, method = "dpf", retain.MST = TRUE)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000000 3.000000 3.062128 3.000000 3.759797 3.000000

[2,] 3.000000 0.000000 1.000000 4.290205 4.932488 5.786480

[3,] 3.062128 1.000000 0.000000 4.607175 5.136999 5.548418

[4,] 3.000000 4.290205 4.607175 0.000000 1.000000 4.024081

[5,] 3.759797 4.932488 5.136999 1.000000 0.000000 4.261201

[6,] 3.000000 5.786480 5.548418 4.024081 4.261201 0.000000

R> guided.random <- edmc(D = D, d = 3, method = "grs")

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000000 3.000000 3.793104 3.000000 3.200879 3.000000

[2,] 3.000000 0.000000 1.000000 3.444424 3.913602 5.482522

[3,] 3.793104 1.000000 0.000000 4.279306 4.640279 6.007068

[4,] 3.000000 3.444424 4.279306 0.000000 1.000000 4.721678

[5,] 3.200879 3.913602 4.640279 1.000000 0.000000 4.243435

[6,] 3.000000 5.482522 6.007068 4.721678 4.243435 0.000000

The minimal spanning tree can be shown to have been retained using the spantree function
in the vegan package [82]. The spantree function characterizes the minimal spanning tree by
identifying (in order) the child nodes of the minimal spanning tree, and the distance between the
child node and its respective parent node. Note that the parent node is simply the index (+1) of
the child node.

84

R> #minimal spanning tree for the original matrix

R> spantree(D)$kid

[1] 1 2 1 4 1

R> spantree(D)$dist

[1] 3 1 3 1 3

R> #minimal spanning tree for the completion using dpf w/ lower bounds

R> spantree(dpflb$D)$kid

[1] 1 2 1 4 1

R> spantree(dpflb$D)$dist

[1] 3 1 3 1 3

R> #minimal spanning tree for the completion using the guided random search

R> spantree(guided.random$D)$kid

[1] 1 2 1 4 1

R> spantree(guided.random$D)$dist

[1] 3 1 3 1 3

Since each minimal spanning tree is identical, both the guided random search algorithm and the
dissimilarity parameterization formulation with minimal spanning tree preserving lower bounds
algorithm were successful in both completing the distance matrix and preserving the underlying
minimal spanning tree.

5.4 Dimension Reduction using the Guided Random Search

The statue data set is a well known data set in dimension reduction due to the belief that it repre-
sents a three dimensional manifold, gaining popularity due to its use in the original publication of
isomap [103]. It consists of 698 images in 64x64 greyscale of a bust at various angles and lighting
conditions. Viewing each pixel as a point in a given dimension, this data set can be viewed as 698
points in 4096 dimensional space.

Consider using the grs algorithm to reduce the dimension of the statue data set from 4096
dimensions to three using only the minimal spanning tree. The statue data is available in edmcr.
Figure 5.1, created using Loon [115], illustrates the results.

85

R> library(vegan)

R> data(statue)

R>

R> #Create partial distance matrix

R> out <- spantree(statue.dist)

R>

R> statue.mst <- matrix(NA,nrow(statue),nrow(statue))

R> diag(statue.mst) <- 0

R.

R> for(i in 2:nrow(statue)){

R> statue.mst[i,out$kid[i-1]] <- out$dist[i-1]

R> statue.mst[out$kid[i-1],i] <- out$dist[i-1]

R> }

R>

R> #Dimension Reduction by grs

R> out.grs <- grs(statue.mst,3)

Figure 5.1: A visualization of the first two dimensions in the three dimensional configuration
produced by the Guided Random Search algorithm using the minimal spanning tree of the 4096
dimensional statue manifold data set.

Despite using only the information in the minimal spanning tree in 4096 dimension space,
there are some clear groupings that appear in the first two principal components of the dimension
reduced data. First, note that the darker faces tend to be grouped together in the centre of the
image. There is also a fade from these dark faces to lighter faces, from the centre of the image in
both the right and left directions. There is also clear grouping in the orientation of the bust.

This example shows that, with minimal information, the guided random search algorithm is

86

able to create sensible groupings of a high dimensional configuration in low dimensional space.

5.5 Concluding Remarks

The edmcr package implements each of the semidefinite programming algorithm, the non-convex
position formulation, the dissimilarity parameterization formulation (plus the minimal spanning
tree preserving lower bounds modification), and the guided random search algorithm. This package
represents a novel addition to the R library, as previously, Euclidean distance matrix completions
problems could not be solved in R.

With the exception of the semidefinite programming algorithm (where the original Matlab
implementation will be used), each of these algorithms will be used in Chapter 6 to analyze the
effect of sparsity in the partial Euclidean distance matrix on the resulting completion and point
configuration. In particular, the limiting case of knowing (and wanting to preserve) the minimal
spanning tree will be of interest.

87

Chapter 6

EDMCP: Experimental Analysis

In Chapter 4 three existing methods of completing Euclidean distance matrices were described.
These were the semidefinite programming algorithm, nonconvex position formulation, and dis-
similarity parameterization formulation. To these two new methods were added, the dissimilarity
parameterization formulation with minimal spanning tree preserving lower bounds, and the guided
random search algorithm. In this chapter, the results of these methods will be assessed experi-
mentally in a variety of ways.

Each experiment begins with a known point configuration X and its Euclidean distance matrix
D. Elements of D will be removed and each method will be expected to find a completion D̂ and
a corresponding point configuration X̂. The quality of each method is then based on the nearness
of X̂ and D̂ to the original X and D, respectively. For each, the time taken to arrive at a solution
is measured or, equivalently, the number of solutions produced in the same time.

In the experiments that follow, two different point configurations are considered. The first is
the well known Anderson Iris data as collected by [5] and recorded in [37]. The data consists of
four measurements (sepal width and length, petal width and length) on each of 150 flowers, 50
from each of three different Iris species (Versicolor, Virginica, and Setosa). The second will be a
family of synthetic configurations drawn randomly from uniform distributions on unit hypercubes
of varying dimensionality. That is each row location of X is randomly generated as xi ∼ U [0, 1]p

for i = 1, . . . , n.

6.1 Reconstructing the Iris data

For the three existing methods from Chapter 4, Euclidean distance matrix completions can be
generated for any pattern of missing dissimilarities provided the corresponding graph spans all
points. To investigate the relative performance of these methods we take D to be constructed

88

from the distances between flowers in the Iris data. Distances are removed at random and the
percentage of distances removed varied. Each completion method produces D̂ for several randomly
selected patterns of missing distances for each percentage missing.

6.1.1 Completions as a Function of Percentage Missing

For each completion of the iris data, two metrics will initially be of interest. First, the time taken
(in seconds) for each method to complete the distance matrix is recorded. Second, to measure the
accuracy of each completion the relative difference in dissimilarities

RDD =
||D− D̂||2F
||D||2F

(6.1)

is calculated as well.

The top plot of Figure 6.1 shows the effect percentage missing has on the computational
time. For each percentage missing, every method but SDP was applied to the same five different
incomplete missing at random matrices; the SDP method took so long that it was applied to only
the first of the five matrices. Not surprisingly computational time increases with the percentage
missing. Comparing methods, we see that the DPF method is consistently faster than the NPF

method, which in turn is consistently faster than the SDP method. Computational times are given
on a logarithmic scale so these differences are substantial. Some variation in the times taken can
also be seen, especially for the larger percentages.

The minimal spanning tree case has the greatest percentage missing possible and appears at
the far right of each plot. All times to completion here appear to have dropped, with NPF and
DPF switching positions to make it the fastest of the three methods. Since this is the minimal
spanning tree case, the two new methods proposed in Chapter 4 can be added. Not surprisingly,
DPFLB which differs from DPF only in having precomputed non-zero lower bounds for every missing
distance takes essentially the same time to complete as does DPF. More interestingly, the guided
random search method C is orders of magnitude faster than all other methods.

The lower plot of Figure 6.1 shows the average accuracy with which the various methods
reconstruct D. On this logarithmic scale lower values indicate greater accuracy so the accuracy
of every method decreases as the percentage missing increases – largely because the numerator in
Equation (6.1) has more non-zero entries while the denominator remains unchanged. For every
percentage up to and including 85% missing, each method was applied to 50 different missing at
random matrices, the exception being SDP which, because of the time required, was only applied
to a single matrix each time. Beyond 85% only 10 different random matrices were used for each
of NPF and DPF. Again the methods can be ordered: NPF is consistently most accurate and SDP

consistently least accurate across all percentages missing.

89

Figure 6.1: Effect of increasing the percentage of missing distances on each method. Methods are
coded by colour and symbol shape. For each percentage, several different matrices with different
patterns of randomly selected missing data were used. In the top plot, each point symbol represents
the result of one such matrix with one method; alpha blending of colour is used so that places where
the values are essentially the same will appear more saturated due to over-plotting and the blending
of the colours. In the bottom plot, only the average values are shown.

For the minimal spanning tree case, there is only one matrix to complete but all methods
(with the exception of SDP) have a random step (only if necessary for NPF) and so could produce
many potentially different solutions. Each method was allowed to complete as many completions
as possible in the same time taken for SDP to construct one completion – NPF was able to make
466 completions (all identical since the random step never needed to be invoked), DPF made 124
completions, DPFLB 114, and the guided random search produced a remarkable 39,935 completions!

Figure 6.2 displays boxplots of the log10RDD for the five methods. Clearly, the guided random
search C nearly always outperforms all of the others. From most to least accurate there is the
guided random search C as most accurate, then DPF closely followed by DPFLB, then NPF, and
finally SDP.

As was the case with the time to completion, note that again the DPFLB and NPF switched
order in the minimal spanning tree case.

90

Figure 6.2: Relative dissimilarity difference when completing the Iris data from its minimal span-
ning tree distances. C has 39,935 completions, SDP one, NPF 466 identical completions, DPF 124
completions, and DPFLB 114 – each set was completed in the time taken for a single SDP completion
(> 7 hours)

It would seem that SDP performed poorest on both measures, whatever the percentage missing.
For DPF and NPF one performed better than the other on each measure and neither dominated the
other on both. When we consider beginning only with the minimal spanning tree distances, the
guided random search C performed best on both measures with the improvement in time being
considerable.

6.1.2 Distances as a Function of Percentage Missing

Further insight into the three completion algorithms can be had by comparing the reconstructed
distances D̂ = [d̂ij] with the actual distances D = [dij].

Figure 6.3 plots the pairs (dij, d̂ij) for all i < j for a few of the missing percentages. Perfect
reconstruction would be all points on the y = x line; the box in each plot is the range of the original
distances and is identical in size across all plots; scales are identical for the same percentage of
missing distances.

For each case, NPF outperforms the other two – all distances appear within the box, appear
on either side of the y = x line and is nearer to this line in all cases. As the percentage missing
increases, the reconstruction of all three methods degrades. Both DPF and SDP tend to produce
ever larger distances in their reconstructions as the percentage increases. DPF does produce some
distances that are smaller than the original too. In contrast, SDP has a tendency to consistently
produce distances that are too large for every percentage, and produces much larger distances
than does DPF. Overall NPF provides the best reconstructed distances and SDP the worst.

91

85% removed

90% removed

92% removed

94% removed
SDP NPF DPF

Figure 6.3: Plots of the pairs of (dij, d̂ij) for all i < j for a single reconstruction of the Iris distance
matrix; red values are the original minimal spanning tree distances. Perfect reconstruction would
be all points on the y = x line; the box in each plot is the range of the original distances and is
identical in size across all plots; scales are identical for the same percentage of missing distances.

Turning to minimal spanning tree completions, Figure 6.4 shows the pairs (dij, d̂ij) for all
i < j for a single reconstruction for all five methods. The shapes of the first four (SDP, NPF, DPF,

92

and DPFLB) are surprisingly similar, each showing three different branches. All four have almost

all distances d̂ij > dij and many larger than maxij dij, with SDP producing the largest distances,
followed by NPF, then DPFLB. The last of these has larger distances than those of DPF likely because
of the lower bounds which ensure that DPFLB is mst-preserving.

SDP NPF DPF DPFLB C

Figure 6.4: Plots of (dij, d̂ij) for all i < j for a single reconstruction when the matrix to be
completed contained only minimal spanning tree distances (shown in red); the y = x line indicates
perfect matching; the box in each plot shows the extent of the original distances.

In marked contrast, the guided random search C produces a completion whose distances d̂ij are
all within the range of the true distances dij and are much more nearly concentrated around the
y = x line. If anything, C seems more inclined to produce smaller distances than are necessary.
This might be corrected by having the vectors generated in Algorithm 3 not be generated on a
sphere uniformly but to favour directions that would increase distances to other points already in
the tree.

6.1.3 Reproducing the Minimal Spanning Tree

To see how well the various methods reproduced the minimal spanning tree, the spanning tree
distances d̂i for i = 1, . . . , n−1, and adjacency matrix Â were determined from each completion D̂.
Figure 6.5 shows all completions by all methods where each horizontal location is the proportion
of edges in A which also appear in Â and each vertical location is

(
∑n−1

i=1 di −
∑n−1

i=1 d̂i)
2∑n−1

i=1 d
2
i

where di for i = 1, . . . , n− 1 are the original minimal spanning tree distances of A ◦D and d̂i for
i = 1, . . . , n− 1 are those from Â ◦ D̂ for that completion.

The mst-preserving completions are those in the bottom right of Figure 6.5 – DPFLB, C ,
and SDP (all values on both measures but have been separated vertically to better distinguish
their shapes from the others methods). Of these, two were designed to be mst-preserving and
so should appear here; each of these two points actually represent hundreds or tens of thousands
of completions which must return the same minimal spanning tree. In contrast, the point for

93

Figure 6.5: Square of the total difference in minimal spanning tree distances as a multiple of the
total squared minimal spanning tree distances versus the proportion of minimal spanning tree edges
that were retained. All completions of all five methods are shown. The three points at the right
have identical values but have been given different vertical positions to better distinguish the points
in the plot.

SDP is a singleton point representing the one completion actually constructed for SDP. This SDP

completion has turned out to be mst-preserving, though not by design. As seen in Figures 6.3 and
6.4, SDP tends to produce very large distances in its completions, and these distances increase as
the percentage missing increases. This would explain why SDP is mst-preserving here.

The 466 identical completions of NPF all appear in the top left corner of Figure 6.5 and show
NPF to be the poorest performer in terms of preservation of the minimal spanning tree. The 124
completions by DPF are spread across the bottom, retaining about 55-75% of the edges in the
minimal spanning tree and matching the distances fairly closely (at least compared to NPF).

6.1.4 Reproducing the Point Configurations

We now examine the point configurations produced by all five methods for a single reconstruction
from the minimal spanning trees.

Procrustes analysis [46] finds the best rotation (and possibly translation; no rescaling here) of
the constructed point configuration to best match that of the target original point configuration.
The quality of the reproduction is measured by the total sum of squares of the differences between
the original and the optimally rotated and translated constructed point configuration (i.e. the
squared Frobenius norm of the matrix difference).

The results for each method are shown in Figure 6.6; smaller values indicate closer reproduc-

94

tions of the original point configuration. Each of NPF and SDP produced a single solution and
their respective Procrustes squared errors are given by the dashed and dot-dashed vertical lines.
Clearly SDP produces a point configuration least like the original and NPF the next worst at a
little more than half the squared error. Each of the remaining three methods produced multiple
solutions whose Procrustes squared error values are shown as density estimates. The bottom two
panels of Figure 6.6 show the densities of the DPF and the DPFLB methods. These two densities
overlap considerably with DPF producing slightly better point configurations but at the cost of
not necessarily preserving the MST. The guided random search C appears in the top panel. It
preserves the MST and with high probability produces a closer point configuration than either of
DPF or DPFLB. Still, there is small but nonzero probability that the method C will produce a point
configuration farther from the original than does its nearest competitor DPFLB.

Figure 6.6: Procrustes analysis (via procrustes() from the R package vegan [82]) of the Iris data
point configurations reconstructed in the original four dimensions given by each method. The error
is measured by “Procrustes Sum of Squares” which is the squared Frobenius norm of the difference
between the original point configuration and each one constructed by the various methods (and
optimally rotated and translated to best match the original). Each of C, DPF, and DPFLB are shown
as density estimates based on their many reproduced configurations; each of NPF (dashed) and SDP

(dot-dashed) produce a single reconstructed point configuration and so are shown as vertical lines.

To standardize the comparisons, the Iris data is transformed to its principal directions from
a singular value decomposition of X = UΛVT as XV. This projects each point xi onto a new
coordinate system given by the new variates V 1, V 2, V 3, and V 4.

Figure 6.7(a) shows the original Iris data in a scatterplot matrix for this new coordinate system.
Each scatterplot shows the transformed data for the pair of variates given by the diagonal entries
from the same row and column as the scatterplot. The three different point colours and shapes
identify the three different species of Iris. There are 150 points.

For each completion method, a single completion D̂ is taken with embedding dimension p = 4,

95

(a) Original (b) SDP

(c) NPF (d) DPF

96

(e) DPFLB (f) C

Figure 6.7: Iris data point configurations reconstructed in the four dimensions given by each
configuration’s principal coordinates. The three species of flower are distinguished both by colour
and by shape of the point symbols.

the singular value decomposition of its estimated point configuration X̂ = ÛΛ̂V̂T determined,
and the transformed point configuration X̂V̂ plotted in a scatterplot matrix with the same point
symbols. The transformed point configurations for the five completion methods are shown as
Figures 6.7(b–f).

As can be seen, SDP and NPF produce star-shaped configurations of straight lines. So too does
DPF although the shapes are slightly noisier. DPFLB is very much like DPF but may be slightly
noisier again. Most striking is the configuration produced by the guided random search C; of the
five methods considered, C produces a configuration most like that of the original data. We note
also that the axis ranges in these scatterplots reflect the size of the corresponding singular values
from the configurations. These are consistent with the remarks made earlier about the comparative
size of the distances produced by each method in Figure 6.4. Again, the configuration of C appears
to be closest to the original in this respect as well. Finally, all completions appear to preserve
much of the group separation seen in the original data between the three species of flower. This
is not too surprising since the distances from the minimal spanning tree were given. The minimal
spanning tree is the basis for many hierarchical clustering methods. The two methods designed
to preserve the minimal spanning tree should fare best in maintaining separation of clusters.

97

6.2 Reconstructing Data ∼ U [0, 1]p

Here n locations xi are simulated independently from U [0, 1]p for varying values of p to give an
n × p point configuration X within the unit hypercube in Rp. For each p, five different matrices
of point configurations X1, . . . ,X5 are generated allowing for variability in results to be observed.

As with the Iris data, the performance of the five methods will be compared but only com-
pletions from the distances of the minimal spanning tree of each configuration are considered. Of
interest then is how this performance might depend on varying dimensionality p rather than the
percentage of distances missing.

In what follows, p ∈ {2, 3, 4, . . . , 10} will be used. The ith configuration matrix of dimension
q ≤ p will be constructed as the first q columns of Xi where Xi is the n × p matrix whose rows
were independently generated from a U [0, 1]10 distribution. Throughout, we take n = 100.

6.2.1 Completions as a Function of Dimension

Figure 6.8 shows the effect of varying dimension p on the time to completion (top plot) and on
the accuracy, as measured by RDD of Equation (6.1) using all distances, for the three algorithms.
The completion times are from a single matrix (“matrix 1”) for each dimension; the accuracies
are shown for each of the five different simulated matrices (marked 1 through 5) with methods
distinguished by line type and colour. Recall that a lower dimensional matrix shares its columns
with all higher dimensional ones.

For time to completion, there is a clear ordering of methods from the least efficient SDP to the
several orders of magnitude more efficient C. Both DPF and DPFLB take about the same time and
NPF is second fasted though still two orders of magnitude slower than C. The only exception to
this ordering occurs for p = 2. There the two mst-preserving methods are slower than both DPF

and NPF; this is likely due to the increased difficulty in finding completions which preserve the
minimal spanning tree for uniformly generated data in only two dimensions. As p increases, SDP
stays relatively constant in computation time, NPF decreases slightly, both DPF and DPFLB tend
to increase, and C drops quickly as it becomes easier in larger dimensional spaces to find random
directions that work.

In terms of accuracy, all methods degrade as dimensionality increases with the notable excep-
tion of NPF whose accuracy improves. Unfortunately, NPF does not preserve the minimal spanning
tree. The others in order from least to most accurate over all dimensions are SDP, DPF and DPFLB

(about the same), and C. Note again that the logarithm has been taken of the average RDDs so
these differences can be substantial.

98

Figure 6.8: Performance of the five completion matrices. Top plot shows base 10 logarithms of the
average times to complete (n = 1 for SDP, n = 466 for NPF, n = 124 for DPF, n = 114 for DPFLB,
n = 39, 935 for C) from a single matrix (“matrix 1”). The bottom plot shows log10 of the average
RDDs for these completions from all five matrices (marked 1 to 5).

99

6.2.2 Distances as a Function of Dimension

Figure 6.9 shows the completed distances d̂ij of each of the five methods paired with the actual
distances dij for one completion of matrix 1 having dimension p = 2, 6, 10. The box within each
plot shows the extent of the distances dij and is identical in absolute magnitude across all plots.
The five methods appear as columns; the three rows show increasing dimensionality p = 2, 6, 10
from bottom to top.

(a) SDP (b) NPF (c) DPF (d) DPFLB (e) C

Figure 6.9: Plots of (dij, d̂ij) for all i < j for a single reconstruction when the matrix to be
completed contained only minimal spanning tree distances (shown in red); the y = x line indicates
perfect matching; the box in each plot shows the extent of the original distances. Results for all
five methods are shown in each column; rows, from bottom to top, show increasing dimensionality
of p = 2, 6, 10.

Consider the bottom row where p = 2. Here four of the five methods produce most, if not all,
distances within the box given by the range of the original distances dij. Of the two mst-preserving
completions, C gives distances that are roughly symmetric about the y = x line and clustered near
it; a relatively few large distance appear outside the box at the top right. In contrast, DPFLB

produces distances that are more often above the y = x line than below and are outside the box
at top all along the range of the original distances. The completion DPF is similar to DPFLB but
will not necessarily reproduce the minimal spanning tree.

Most unusual in the bottom row are SDP and NPF. Already for p = 2, SDP produces huge

100

distances d̂ij, far outside the box. Moving up column (a) as the dimensionality increases, SDP
produces larger and larger distances, much larger than the original distances and larger than those
produced by any other completion method. In contrast, NPF produces small distances, essentially
all lying below the y = x line. This continues to be the case as the dimension increases; distances
produced by NPF ever smaller as p increases with many becoming much smaller than any of the
original distances dij. This is the opposite of each of the other four methods whose distances
become larger and larger as p increases. This contrast explains why in Figure 6.8 NPF showed
little variation in RDD compared to the other methods. Because NPF produces small distances
bounded below by 0, RDD is bounded for NPF but not for the others.

For all dimensions the guided random search method C produces distances that are closer to
the original distances than any of the other four methods.

(a) Original (b) SDP (c) NPF

(d) DPF (e) DPFLB (f) C

Figure 6.10: Uniform two dimensional data: the original and those reconstructed by the five
methods. Coordinates are the principal coordinates for each configuration. The red circle has the
same centre and diameter in all plots.

101

6.2.3 Reproducing the Minimal Spanning Tree

Both C and DPFLB reproduce the minimal spanning tree by design, as does SDP, except in this
case largely by accident. As Figure 6.9 shows, the distances produced by SDP are typically so
large that they do not change the minimal spanning tree. The same effect can be seen with DPF

where, because ever larger distances are produced as p increases, the proportion of the minimal
spanning tree retained by DPF completions increases with p. Completions by NPF on the other
hand do not preserve the minimal spanning tree. The small distances produced by NPF interfere
with the minimal spanning tree.

6.2.4 Reproducing the Point Configurations

To compare point configurations, consider a completion from each of the five methods for matrix
1 when p = 2 and p = 6. The data were first rotated to their principal coordinates as described
in Section 6.1.4.

Figure 6.10 shows the original data in (a) and the reconstructed configurations in (b)–(f); each
red circle has the same centre and radius in each plot. Figure 6.10 reproduces the findings from
the bottom row of Figure 6.9 in that SDP produces unusually large distances, NPF unusually small
distances, and the mst-preserving methods DPFLB and C produce distances closer to those of the
original data, with C being the closest.

Figure 6.11: Each of C, DPF, and DPFLB are shown as density estimates based on their many re-
produced configurations; each of NPF (dashed) and SDP (dot-dashed) produce a single reconstructed
point configuration and so are shown as vertical lines.

As was the case with the Iris data, Figure 6.10 shows again that the completion methods tend
to concentrate points near lines. The mst-preserving DPFLB spreads the configuration out more

102

than does DFP but not nearly as much as does C. For p = 2 C produces a point configuration that
is more like the original data than any of the others.

As with the Iris data, consider a Procrustes analysis on the constructed point configurations
in two dimensions for each method. The results are given in Figure 6.11.

Again, SDP produces the worst configurations following its tendency to have large distances
in its completions; conversely, NPF performs very well in this example possibly because of its
tendency to have small distances which works in its favour when the points are confined to a unit
hypercube. The methods DPF and DPFLB perform equally well though not as good as NPF. The
constructive method C clearly outperforms all other methods.

Figure 6.12 shows the point configurations produced when p = 6. Much the same patterns
prevail as were seen earlier with p = 2 and also when p = 4 for the Iris data. SDP has large distances
and strongly linear configurations; NPF has small distances but also exhibits star-shaped linear
structure; DPF and DPFLB also show linear structure and some star shape; C shows a dispersed
configuration most like the original data but also has outlying points in the V 1 direction.

6.3 Concluding Remarks

Each of the experiments performed in this chapter were designed to measure the relationship
between the sparsity of the Euclidean distance matrix to be completed and the accuracy of both
the completed Euclidean distance matrix and the corresponding point configuration. The limiting
case of knowing only the distances in the minimal spanning tree was also considered, where
additional interest lay in preserving the minimal spanning tree in the completed distance matrix.

Using the Anderson Iris data and a simulated uniform configuration, it was shown that as the
sparsity of the partial Euclidean distance matrix increased, the time taken by the various algo-
rithms to complete the distance matrix increased for all algorithms, and the accuracy of the re-
sulting distances (as compared to the original matrix) decreased. In terms of relative performance,
the semidefinite programming algorithm performed the worst, the dissimilarity parameterization
formulation second, and non-convex position formulation was the best performing.

In analyzing the preservation of the minimal spanning tree in the completion of a Euclidean dis-
tance matrix, two new algorithms were introduced, the dissimilarity parameterization formulation
with minimal spanning tree preserving lowers bounds, and the guided random search algorithm.
In terms of minimal spanning tree retention, and overall accuracy of the resulting completed dis-
tance matrix and point configuration when knowing only the minimal spanning tree, these two
algorithms were the best performing. This was particularly evident when viewing the configura-
tions from the resulting completions, where the guided random search in particular most closely
resembled the original configurations. This was confirmed using a procrustes analysis, which
showed that the guided random search algorithm most often produced a configuration with the

103

(a) Original (b) SDP

(c) NPF (d) DPF

104

(e) DPFLB (f) C

Figure 6.12: Uniform within a six-dimensional hypercube. Data point configurations reconstructed
in six dimensions using each reconstruction’s (including the original data) principal coordinates.

lowest procrustes sum of squares, indicating it most closely matched the original configuration.

Unexplored in this chapter is the generality of the guided random search algorithm, and its
ability to create configurations with a known minimal spanning tree structure. Also to be examined
is the effect of restricting the proposed angle when a new point is added to the configuration. Both
of these will be explored in Chapter 10.

105

Chapter 7

Binning: For More Than the Birds

Big Data, the often used buzz word referring to data with both a large number of observations (n)
and a large number of dimensions (p), has given rise to a large volume of research in reducing the
inherent size of the data before analysis is undertaken. Much of this work has been in reducing the
dimension of the data - that is, for a data set of dimension p, reduce the dimension to some d < p,
while preserving as much of the underlying structure of the data as possible. There are several
well known algorithms for dimension reduction, including isomap [103], local linear embedding
[93], and Laplacian eigenmaps [9], among others.

Of equal importance is the idea of reducing the number of observations in a data set - decreas-
ing n to some m < n, while again preserving as much of the underlying structure as possible.
Decreasing the size of n in a meaningful way is attractive due to the complexity of many statis-
tical analyses, which are often dependent on the size of n non-linearly. By decreasing n, while
preserving the underlying structure of the data, these analyses could be executed in less time, and
with similar accuracy as compared to the original. Typically, this is done through binning, which
generally entails grouping nearby points, and representing each group as a single representative
point.

In Chapter 1, it was noted that recent advancements in binning were mostly centred around
the fields of classification and kernel density estimation, and that the algorithms developed in
these fields were not appropriate for binning a general point configuration. This left only a small
subset of the available binning algorithms for consideration, including equal width [121], equal
frequency [121], fixed frequency [123], hexagonal binning [18], and random sampling. Each of
these methods are discussed in Section 7.1.

In addition to these methods, a new method, tree-based binning, is proposed in Section 7.2.
The concept of tree-based binning was inspired by classification and regression trees [40], which
seek to partition the domain (or feature space in the machine learning literature) of a point
configuration into a set of rectangular subspaces. The goal is to then fit a model in each rectangle
to accurately predict some response variable y from a set of explanatory variables x1, ...,xn. While

106

not immediately applicable to general data as the optimal splitting criteria depends on a response
or class label y, the concept of tiling the domain of the data using rectangles based on data-drive
measures is attractive. This non-supervised data driven partitioning process forms the basis of
tree-based binning.

What remains to be explored then is which (if any) of these algorithms are capable of reducing
the size of a configuration with minimal damage to both the underlying probabilistic and geometric
structure of the data. Also of importance is to explore the effect of increasing dimension on each
of the binning algorithms, to see if their performance degrades as dimension increases. These
questions will be addressed via experimentation in Chapter 9.

7.1 Existing Binning Techniques

One application of binning has been in machine learning, where it is specifically used to discretize
continuous attributes for use in classification. A sample of the algorithms used in the experiments
of [42] are given in Table 7.1. For a more complete taxonomy of current binning techniques, see
[42].

Method Reference
Multivariate Discretization [8]
MODL [10]
Distance-based Discretizer [19]
Class Attribute Interdependent Maximization [20]
Zeta [55]
Minimum Description Length Principle [35]
ChiMerge [64]
Unsupervised Correlation Preserving Discretizer [77]
Modified Chi2 [102]
Equal Frequency [121]
Equal Width [121]
Fixed Frequency Discretizer [123]
Proportional Discretizer [123]
FUSINTER [131]

Table 7.1: A list of some of the discretization algorithms used in the experiments of [42].

In general, binning techniques can be subdivided into two major categories, supervised and
unsupervised, and subdivided further into top-down and bottom-up discretizers. Algorithms from
each of these subdivisions will be discussed in this section. Also considered is a special case of a
two-dimensional binning algorithm, hexagonal binning [18].

107

7.1.1 Supervised

Supervised binning is most often used during the discretization of continuous attributes that will
be used as input into a machine learning or data mining algorithm [64]. As the term suggests,
these supervised methods require data in the form (y, x), where y is a class tag or label, and
x is the variable to be discretized. Two of the best performing of these supervised algorithms
(as measured by the analysis of [42]) are the ChiMerge algorithm [64], and the Zeta algorithm
[55]. These discretizers are also examples of bottom-up and top-down discretization methodologies
respectively.

ChiMerge

The ChiMerge algorithm [64] is a simple two-step discretization algorithm, consisting of an ini-
tialization step, and a bottom-up merging step. A bottom-up merging algorithm is a process that
arrives at a final discretization by merging bins, as opposed to splitting bins.

Consider data of the form (y, x), where x is the (one dimensional) attribute to be discretized
and y is the corresponding class label. During the initialization step, the data are sorted on their
attribute level, so that x(1) ≤ x(2) ≤ ... ≤ x(n). The attribute is then initially discretized such

that each x(i) is placed in its own interval. This is achieved by placing a cutpoint at
x(i)+x(i+1)

2
, for

i = 1, ..., n− 1.

Once the initial discretization is completed, the merging process begins, which is a two step
process, repeated continuously

1. Compute the value of χ2 for each pair of adjacent cells

2. Merge the pair of adjacent cells with the lowest value of χ2

The value of χ2 for each adjacent cell is computed as follows:

χ2 =
2∑
i=1

k∑
j=1

(Oij − Eij)2

Eij

108

where:

i = Intervals being compared

k = Number of classes

Oij = Number of points in the ith interval and jth class

Ri =
k∑
j=1

Oij = Number of points in the ith interval

Cj =
∑
i

Oij = Number of points in the jth class

N =
k∑
j=1

Cj =
∑
i

Ri =
2∑
i=1

n∑
j=1

Aij = Total number of points

Eij =
RiCj
N

= Expected Number of points in ith interval, jth class

The steps above are repeated until all the calculated values of χ2 are above a pre-determined
threshold, or until the maximum number of intervals have been created. In determining the
threshold, a desired level of significance is chosen based on a chi-square distribution with degrees
of freedom of k− 1. Typically, the recommended significance level is set to .9, .95, or .99, and the
maximum number of intervals is set to 15 [64].

Zeta

Unlike ChiMerge, the Zeta algorithm [55] is a top-down discretization algorithm, meaning it begins
with the data in one large bin and then splits it into k smaller bins according to some criteria.

The Zeta discretization process is based on a measure ζ designed to capture the strength of
association between nominal variables. As pointed out in [55], the easiest way to understand what
Zeta is designed to capture is to consider a simple case of two dichotomous variables A & B, whose
sample distribution is given as follows:

A1 A2

B1 n11 n12

B2 n21 n22

Now, consider using the variable A to predict the variable B. There are two possible cases to
consider if each value of A is used to predict a different value of B. Either we associate B1 with
A1 and B2 with A2, or we associate B1 with A2 and B2 with A1. If the first association is used,
then the number of correct predictions is n11 + n22. If the second association is used, then the

109

number of correct predictions is n12 + n21. The association that results in the largest number of
correct predictions is chosen, so define ζ as

ζ =
max(n11 + n22, n12 + n21)

N

where N = n11 + n12 + n21 + n22. In general, ζ is defined as

ζ =

∑k
i=1 nf(i)i

N

where f(i) is defined to be the pairing assignment, associating Ai with Bf(i), that results in the
highest number of correct predictions.

In practice, given a classification variable of size k, Zeta seeks the k − 1 cutpoints on a
continuous random variable x that result in the largest value of ζ. It is impractical to determine
the optimal k − 1 cutpoints, as the number of possibilities is very large, so a simple heuristic is
employed, described in detail in [55], where the x variable is continuously divided assuming each
partition is dichotomous.

7.1.2 Unsupervised

Unlike the supervised algorithms considered above, unsupervised discretization methods do not
require a class tag, allowing for application to a wide range of data. Classic unsupervised dis-
cretization techniques include equal width and equal frequency binning [121], and fixed frequency
binning [123]. Also considered is a special case of a related two-dimensional binning technique
known as hexagonal binning [18]. Finally, while not a binning technique, random sampling is a
very simple way to reduce the number of observations in a configuration.

Equal Width

Under equal width binning, the (one-dimensional) attribute which is being discretized, x, is split
into k intervals (using k − 1 cutpoints) of equal width. Consider the minimum and maximum
value of the attribute x, (x(1), x(n)). The width of each interval is calculated as

W =
x(n) − x(1)

k

The cutpoints are then calculated as

110

cuti = x(1) + i ∗W, i = 1, ..., k − 1

This results in the discretization intervals [x(1), cut1), [cut1, cut2),..., [cutk−1, x(n)]. In each
bin, the representative point (i.e. the observation that replaces all the observations in the bin) is
generally taken to be the by-dimension mean of the observations in each bin. This process can be
repeated in each dimension for multivariate data. Figure 7.1 illustrates the equal width binning
algorithm applied to a bivariate normal point configuration.

Figure 7.1: An example of the equal width binning method reducing a bivariate normal configura-
tion from 100 points to 47.

Equal Frequency

Under equal frequency binning, the (one-dimensional) attribute being discretized, x, is split into k
intervals (using k− 1 cutpoints), such that each bin contains the same number of points. Assume
x has n points, sorted in ascending order such that x = {x(1), ..., x(n)}, and for simplicity, assume
n
k

is an integer. Then, to place k − 1 cutpoints such that each bin contains the same number of
points, define pi = i · n

k
. The cutpoints are then computed as

cuti =
x(pi) + x(pi+1)

2
, i = 1, ..., k − 1

This results in the discretization [x(1), cut1), [cut1, cut2),..., [cutk−1, x(n)], where again the
representative point is taken to be the by-dimension mean of each bin. Like the equal width
algorithm, this process can be repeated in each dimension for multivariate data. Figure 7.2
illustrates the equal frequency binning algorithm applied to a bivariate normal point configuration.

Note that if n
k

is a non-integer (which is a frequent occurrence), pi = i · bn
k
c, and the remaining

points can be assigned to a bin in any number of ways. For instance, if there are 102 points which

111

are to be divided into 10 bins (meaning 10 points per bin), two potential solutions for assigning
the remaining points are

1. Assign the two extra points to each of the first two bins. This would yield bins of size
[11, 11, 10, 10, 10, 10, 10, 10, 10, 10].

2. Assign the two extra points to bins at random. For instance, they could be assigned to bins
4 and 7, yielding bins of size [10, 10, 10, 11, 10, 10, 11, 10, 10, 10]

In either case, the cutpoints for these bins would need to be adjusted accordingly.

Figure 7.2: An example of the equal frequency binning method reducing a bivariate normal config-
uration from 100 points to 46.

Fixed Frequency

Under equal frequency discretization, the number of bins desired in the final discretization is
the quantity chosen during the discretization process. Using the desired number of bins k, the
number of points in each bin is computed as n

k
. Instead of choosing k, consider instead choosing

the number of points in each bin and then deriving k from it [123].

For instance, if it was decided that b observations per bin was desired, then that would result
in there being n

b
bins, each containing b observations, again assuming n

b
is an integer. In the case

where n
b

is not an integer, the number of bins is taken to be bn
b
c, and the remaining points are

again placed in bins according to any number of techniques as in equal frequency binning.

With the number of bins derived, cut points are computed as in equal frequency. Again the
representative point is taken to be the by-dimension mean of each bin. Figure 7.3 illustrates the
equal frequency binning algorithm applied to a bivariate normal point configuration.

112

Figure 7.3: An example of the fixed frequency binning method reducing a bivariate normal config-
uration from 100 points to 42.

Hexagonal Binning

In two dimensions, each of equal width, equal frequency, and fixed frequency can be viewed as
a rectangular tessellation of the plane. Instead of rectangles, hexagonal binning uses regular
hexagons (where each side of the hexagon is the same size) to tessellate the plane [18].

The advantages of hexagonal binning over those methods that use rectangular bins is well
documented. Using hexagonal bins instead of rectangular bins leads to a reduction in the bias
of the density estimate performed on the binned configuration [96]. In addition, due to the
staggering of the vertical and horizontal bin centers, [18] assert that the human visual system
prefers hexagonal binning to other methods (such as equal width) as it de-emphasizes vertical
and horizontal lines in the binned configuration. It should be noted that while hexagonal binning
may be preferred to equal width binning in two dimensions, it is (marginally) more expensive to
compute [18].

Figure 7.4 illustrates hexagonal binning on a bivariate normal point configuration. Of particu-
lar importance when considering the hexagonal binning algorithm is that, unlike the equal width,
equal frequency, and fixed frequency algorithms, hexagonal binning does not generalize easily to
dimension higher than two (e.g. different polytopes must to be used in higher dimensions and
substantial algorithmic changes must be made to accommodate, for instance, three dimensional
data).

There are of course higher dimensional analogues of hexagonal binning. The accuracy of the
resulting quantization using various polytopes in terms of the mean squared error is discussed in
[23]. The error measured results from replacing the xi in the polytope with its centroid measured
over a uniformly distributed set of points.

While discussion in [23] included a wide range of polytopes, for the purposes of binning, only

113

space-filling polytopes (i.e. polytopes that tessellate the space) are of interest. Of all space-filling
polytopes in two dimensions, the hexagonal lattice is shown to be optimal in terms of minimizing
mean-squared error [23]. In three dimensions, the set of space-filling polytopes includes the cube,
hexagonal prism, rhombic dodecahedron, and truncated octahedron. The analysis of [23] shows
that the truncated octahedron has the lowest mean-squared error of these, and so could be used as
the three dimensional analogue of the hexagon. Similarly in four dimensions, the 24-cell polytope
is shown to be the optimal space-filling polytope.

Algorithms using lattice points (for which fast quantization algorithms already exist [22]) could
be developed for higher dimensional analogues of hexagonal binning. In the experiments that will
follow, however, hexagonal binning is limited to two dimensional space.

Figure 7.4: An example of the hexagonal binning method reducing a bivariate normal configuration
from 100 points to 45.

Random Sampling

A final way to decrease the number of observations in a configuration is to simply perform simple
random sampling on the configuration. Given a configuration with n observations, a random
sample of size m is taken from the set [1, .., n] without replacement, and with each element given
an equal probability of being chosen. Denoting the (ordered) set of chosen observations j, the
reduced configuration is

xbinned = [x(j1), ..., x(jm)]

Unlike the previous algorithms, random sampling does not partition the domain of the data.
Instead, it chooses sampled points that are themselves representative of the configuration (on
average). Figure 7.5 illustrates the random sampling algorithm applied to a bivariate normal
point configuration.

114

Figure 7.5: An example of the random sampling method reducing a bivariate normal configuration
from 100 points to 50.

7.1.3 Issues with Existing Methods

There are two issues worth considering with the current unsupervised binning algorithms. First,
consider Figures 7.1 - 7.5, where issues with the binned configurations are visible. Beginning with
the equal width and hexagonal binning algorithms, the binned configurations lack areas of high
density that were evident in the original. This is due to the identical tiles used in both areas of high
and low density. In high density areas, many points will be placed in the same bin, eliminating
relative density in the configuration. Also evident in the equal width algorithm is the presence
of straight lines in the binned configuration. While this is lessened in the hexagonal binning
configuration (as noted in [18]), the artificial structure imposed through binning is problematic in
ensuring the binned configuration is representative of the original.

Issues also arise with the equal frequency, fixed frequency, and random sampling algorithms.
Instead of eliminating density however, these algorithms seem to negatively impact the shape of
the configuration, by placing points at the extremes of the configuration in the same bin. This
leads to binned configurations that tend to retain the relative density of the configuration, at the
expense of the overall shape.

The second issue with each of these algorithms (with the exception of random sampling)
is their ability to generalize to higher dimensions. As was discussed, hexagonal binning is a
specialized algorithm for two dimensions, and generalizing to higher dimensional space requires
new algorithms to be developed. Algorithms like equal width and equal frequency do generalize
in a straight-forward fashion (i.e. the algorithms are capable of binning in any dimensional
space with minimal change), but the issue with these algorithms becomes one of computational
feasibility. Consider placing k − 1 cutpoints (i.e. k bins) in each dimension. Under this scheme,
the number of bins that must be considered in a d dimensional point configuration is kd. For a
configuration of dimension ten, for example, placing only five bins in each dimension means there
are 510 = 9, 765, 625 bins that must be considered. The number of bins in each dimension can of

115

course be decreased, but this negatively effects the accuracy of the binned configuration. Overall,
even in a relatively small number of dimensions with a small number of bins, methods such as
equal width, equal frequency, and fixed frequency quickly become computationally infeasible.

These issues necessitate the need for a new algorithm that can not only be easily generalized to
high dimensions, but also preserves more of the density and shape of the underlying configuration.
This task will be undertaken in Section 7.2.

7.2 Tree-based Binning Framework

To motivate a new binning framework, first consider the results of classification and regression
using tree-based models (commonly referred to as CART). For data of the form {y; x1, ...,xp},
where y is a class (or response) variable, classification and regression trees are a supervised set
of algorithms that seek to first partition the data into a set of rectangles before fitting a separate
model in each. Figure 7.6 illustrates the general result of the CART partitioning step.

Figure 7.6: The general idea of a classification and regression tree [40] which serves as the moti-
vation for tree-based binning.

The resulting partitioned feature space from classification and regression trees looks very
similar to the binned partitions that were presented in Figures 7.1-7.3. The question that needs
to be addressed then, is if CART methods can be adapted to fit into a non-supervised binning
framework.

Consider how the partitions are created in classification and regression trees. As a supervised
learning method, the optimal splitting point at each step is found by solving the optimization

116

arg min
j,s

arg min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + arg min
c2

∑
xi∈R2(j,s)

(yi − c2)2


where R1(j, s) = {x | xj ≤ s}, R2(j, s) = {x | xj > s}, j is the variable (or dimension) on which
the split will occur, and s is the point (in dimension j) where the split will occur [40].

The main idea of CART is to find a dimension and two points between which a cut point will
be placed. This same idea can perhaps be used in a non-supervised algorithm, where the optimal
split is found using the vector of explanatory variables x instead of the vector of responses y.

Beginning with all of the data in one bin, consider an algorithm that seeks to find partitions
of the data subject to some criteria. In the absence of a class label (or response variate), an
alternative way to determine where the split will occur is required. Consider computing a data-
driven bin score, which will be used to choose the bin in which a cut point will be placed, for each
bin using the xi variables. Examples of possible bin scores include (but are not limited to)

� The observation count in the bin

� The largest difference between adjacent observations (i.e. max(x(i) − x(i−1)), i = 2, ..., n)

� The range of the observations in the bin, x(n) − x(1)

Using the bin score (i.e. finding the maximum/minimum/some other measure), a bin is chosen
in which a cut point will be placed. Once a bin has been chosen, a splitting function is defined to
place a cutpoint. Like the bin score, the splitting function can be defined to meet any number of
criteria, including

� The cutpoint is placed at the midpoint of the bin

� The cutpoint is placed between adjacent points with the largest difference

� The cutpoint is placed such that the two resulting bins contain the same number of points

These two steps are repeated until a stopping criteria is met. The stopping criteria can be
defined in many different ways, including

� The binned configuration reaches a desired size

� The maximum density reaches a certain threshold

� The largest bin reaches a certain threshold

117

Once all of the bins have been defined, a representative point must be chosen or computed.
Typically, this will be the mean of the points in the bin, but again could be computed in a number
of ways.

These steps encompass the general framework of tree-based binning. Algorithm 4 illustrates
the entire algorithm.

Algorithm 4 Tree-based Binning

Structures
X - an n× p configuration matrix;
B - A list containing all of the current bins
nbins - the number of bins desired;

procedure Tree-based Binning(X, nbins)
B← X . Initialize the original bin
cbins = 1 . Current number of bins
while !stopCriteria(B) do

s← binScores(B) . Compute a score for each bin
i← which.max(s) . Find the bin with the largest bin score
Bnew ← split(Bi) . split the bin with the largest score
B← {B−i,Bnew} . Combine the list of previous bins with the new bins
cbins← cbins+ number of new bins

end while
Z← getPoints(B) . Compute the representative point of each bin
return Z . Return the binned configuration

end procedure

The function binScores takes each current bin, and computes some data-driven measure on
it. Here, the bin with the highest measure will be chosen for splitting, although this need not
necessarily be the case. The function split takes the bin with maximum bin score, and splits it
into two (or more) bins. The getPoints function computes the representative point in each bin.
The stopCriteria function decides if the algorithm should stop by seeing if the stopping criteria
has been met. As discussed, each function is completely general, and can be tailored to the
specific needs of a given data analysis. An example of such an algorithm is the GapBin algorithm,
presented in Section 7.2.1.

7.2.1 GapBin

The framework for tree-based binning is completely general, and so can be tailored to meet the
needs of any given data analysis. GapBin is but one possible proposal that fits in the tree-based
binning framework. The main idea behind GapBin is to separate points when a large gap, viewed
as a discontinuity in the data set, exists between them. This concept is somewhat inspired by the
gap statistic [104].

Formally, define a data set of arbitrary size n and arbitrary dimension p. For a given bin

118

i, i = 1, ...,m, where m is the current number of bins, let ni denote the number of data points in
the bin, such that

∑m
i=1 ni = n.

For bin i, define the sorted data in dimension k by xi,k,(1),, xi,k,(ni). That is, each bin is
defined by a vector containing individual entries of the form xBin,Dim,Entry such that xi,k,(1) ≤
xi,k,(2) ≤ ≤ xi,k,(ni) for any k. Define the centre of bin i by the by-dimension mean of the data,
bi = (x̄i,1, x̄i,2, ..., x̄i,p), where x̄i,l =

∑ni

k=1 xi,l,k.

GapBin seeks to find the largest gap in a bin, that is, the largest difference between two sorted
values in any dimension, which may be representative of a discontinuity in the data at that point.
Define the maximum gap for bin i, dimension l as

gi,l = maxj(xi,l,(j+1) − xi,l,(j))

where j = 1, ..., ni− 1 and xi,l,(j) is the jth largest value in bin i dimension l. Then, define the bin
score for bin i as

si = maxl

(
(gi,l)(ni)

x·,l,(n) − x·,l,(1)

)
= maxl(gi,lfl)

(7.1)

where l = 1, ..., p, and fl = n
x·,l,(n)−x·,l,(1)

. By using a score such as this, GapBin tends to favour

splitting bins with a large gap relative to the spread of the points (which helps to retain the
shape of the configuration), or bins with large counts, ensuring that binning occurs in more dense
areas of the configuration, preserving the density of the configuration. Binning continues until
the configuration reaches the desired size. The GapBin algorithm is presented Algorithm 5.

Figure 7.7 illustrates the GapBin algorithm applied to a simple bivariate normal configuration.
What is interesting to note about the GapBin algorithm is that, like the equal width and hexagonal
binning algorithms, the general shape of the bivariate normal configuration seems to be preserved
- the majority of the outlying points in the original configuration are in the binned configuration
as well. This is in contrast to both the equal frequency and fixed frequency algorithms, which
instead chooses to place some of the outlying points in the same bin, distorting the overall shape.

Also of interest is the seemingly retained relative density of the binned configuration - high
density areas in the original configuration still appear to be high density areas in the binned
configuration (relatively speaking). This retention of density is also shown in configurations pro-
duced by equal frequency, fixed frequency, and random sampling, while equal width and hexagonal
binning tend to make the overall density of the configuration very uniform.

A significant advantage that GapBin offers over competing algorithms is in the number of
points in the reduced configuration that can be achieved. For each of the other algorithms consid-

119

Algorithm 5 GapBin

Structures
X - an n× p matrix containing the points identified by xi,l,j ;
cbins = the current number of bins;

procedure gapScores(X, cbins)
gi,l ← maxj(xi,l,(j+1) − xi,l,(j)) ∀ l = 1, ..., p, i = 1, ..., cbins
si ← maxl(

gi,l ni

x·,l,(n)−x·,l,(1)
), i = 1, ..., cbins

S← {s1, ..., scbins}
return S

end procedure

procedure gapSplit(X, S, cbins)
for i∗ ∈ arg max{i : si} do

l∗ = arg max{l : maxl(
gi∗,lni∗

xi∗,·,(n)−xi∗,·,(1)
)}

j∗ = arg max{j : maxj(xi∗,l∗,(j+1) − xi∗,l∗,(j))}
for k > j∗ do

xi∗+1,·,(k−j∗) ← xi∗,·,(k) . Create a new bin by splitting bin i∗ for ALL dimensions
xi∗,·,(k) ← ∅ . Remove this element from bin i∗

end for
cbins← cbins+ 1

end for
return X . Return the newly formed bin list

end procedure

ered (other than random sampling), the exact number of points in the binned configuration cannot
be directly controlled. Only the number of bins in each dimension can be directly controlled, so
only an approximate number of points can be achieved. Conversely, in GapBin an additional split
(creating one additional point in the binned configuration) is always possible to perform. As such,
the number of points is controlled directly, allowing for a more accurate binned configuration.

A second advantage offered by GapBin, and tree-based binning in general, is the ease with
which it generalizes to higher dimensional space. Since it seeks to place a partition in only the
dimension(s) with the largest relative gaps, it is quite possible some dimensions will not be binned
at all. This decreases the total number of bins that must be considered, significantly decreasing
the run time of the algorithm. This is in contrast to algorithms such as equal width or equal
frequency, where each dimension is binned, regardless of the spread of the data.

7.3 Additional Tree-based Binning Algorithms

In addition to the GapBin algorithm, the tree-based binning framework encompasses a wide
variety of binning algorithms, including equal width binning. Also, any clustering algorithm
that works in one dimension falls into the tree-based binning framework. For example, l1-fusion
clustering algorithm proposed in [56] (and studied further in [88]) can be modified to work on one

120

Figure 7.7: An example of the GapBin method reducing a bivariate normal configuration from 100
points to 50.

dimension at a time, and can thus be used as a tree-based binning technique. In a one-dimension,
the algorithm seeks to minimize the criterion in Equation (7.2).

arg min
α1,...,αn

n∑
i=1

||xi − αi||22 + λ
∑

1≤i<j≤n

|αi − αj| (7.2)

for some penalty parameter 0 ≤ λ ≤ ∞. Instead of choosing a value of λ, an algorithm is
proposed where each successive iteration is equivalent to increasing λ [88]. The pseudo-code
for the algorithm is shown in Algorithm 6. Algorithm 7 illustrates how this can be cast in the
tree-based binning framework.

Algorithm 6 Clustered Splitting Algorithm

Structures
C - A cluster of points;

procedure clusteredSplit(xn)
Sort data in ascending order and store them as xn = {x1, ..., xn}
Set the current partition of xn to xn

while Any cluster contains more than one point do
Select one cluster C, with |C| > 1, from a current cluster partition of xn

Find a split partition C = C1 ∪ C2 that maximizes the distance x̄C2 − x̄C1
Store the split C = C1 ∪ C2 and the corresponding value λ =

x̄C2−x̄C1
|C|

Replace C with C1 ∪ C2 in the current partition of xn

end while
end procedure

While the l1-clustering algorithm does fit into the tree-based binning framework, it was not
designed specifically for use in the context of binning. For this reason, only the GapBin algorithm,

121

Algorithm 7 Clustered Binning

Structures
X - an n× p matrix containing the points identified by xi,l,j ;
cbins - the current number of bins;

procedure clusterScores(X, cbins)

gi,l ← maxj(
1

n−j
∑n

k=j+1 xi,l,(k) − 1
j

∑j
k=1 xi,l,(k)) ∀ l = 1, ..., p, i = 1, ..., cbins

si ← maxl(gi,l), i = 1, ..., cbins
S← {s1, ..., scbins}
return S

end procedure

procedure clusterSplit(X, S, cbins)
for i∗ ∈ arg max{i : si} do

l∗ = arg max{l : maxl(gi∗,l)}
j∗ = arg max{j : maxj(

1
n−j

∑n
k=j+1 xi∗,l∗,(k) − 1

j

∑j
k=1 xi∗,l∗,(k))}

for k > j∗ do
xi∗+1,·,(k−j∗) ← xi∗,·,(k) . Create a new bin by splitting bin i∗ for ALL dimensions
xi∗,·,(k) ← ∅ . Remove this element from bin i∗

end for
cbins← cbins+ 1

end for
return X . Return the newly formed bin list

end procedure

which has been explicitly designed for use in the context of tree-based binning, will be used in
future experiments.

7.4 Concluding Remarks

The tree-based binning algorithm represents a completely general framework from which a large
number of specific binning algorithms could be created, and tailored specifically to the type of
analysis being undertaken. One such algorithm, GapBin, has been proposed with the aim of
simultaneously retaining the shape and density of the original configuration during binning, while
also generalizing easily to high dimensional space.

For any of these claims to be validated, the general tree-based binning algorithm must first be
implemented as a software package. Chapter 8 details the implementation of tree-based binning
in R. Using this implementation, the claims of GapBin are tested in a series of experiments in
Chapter 9.

122

Chapter 8

treebinr - An R Package for Binning

The tree-based binning framework presented in Chapter 7 is implemented in R in the package
treebinr. The implementation is completely general - a prospective user can create their own
tree-based binning algorithm, or choose from pre-built options such as GapBin or the clustered
binning algorithm discussed in Algorithm 7.

8.1 The General Structure of treebinr

A fully specified tree-based binning algorithm requires the following functions to be defined

1. A method by which a score is computed for each bin.

2. A method by which a bin is chosen.

3. A method by which a chosen bin is split into multiple bins.

4. A method by which a stopping criteria is computed.

5. A method by which a representative point is computed for each bin to create a binned
configuration.

In addition, if a user wishes to add out-of-sample points to an already binned configuration, a
method for determining which bin a point would fall in is also required.

123

8.1.1 The Main Function - treebin

The treebinr package was created to be completely customizable, a prospective user could cus-
tomize any tree-based binning algorithm to fit the needs of their analysis. For instance, if a
prospective user wanted the representative point of each bin to be the by-dimension median of
the points instead of the by-dimension mean, that would be within their control. This is accom-
plished by passing custom (or built-in) options to the main function treebin. The input variables
required for treebin are

X The point configuration to be binned.
stopCriteria A function to compute the stopping criteria for the algorithm.
binMeasure A function to compute the measure associated with each bin.
boundaryTest A function to test if a given point is contained in a given bin.
makePoint A function to turn the contents of a bin into a single point.
selectBin A function for choosing between bins to be split.
splitBin A function for splitting a bin.
binInfo Additional information to be supplied to the first bin.
inputs A list containing additional input parameters required by user supplied functions.

The default algorithm (and therefore the default input for each of the variables above) is the
GapBin algorithm. The specific requirements for each of the input variables above are discussed
in Sections 8.1.3 - 8.1.8.

The function treebin returns an (S4) object of class treebinr, which contains the following
slots

points An m× d matrix containing the representative points of the binned configuration.
counts A vector of lengthm containing the number of points from the original configuration

in each bin.
bins Information about each bin in the configuration, returned as an m-element list

containing objects of class bin.
tree A directed graph matrix representing the binning tree underlying the algorithm.

Each item in the bins list is an S4 object of class bin, which contains the slots

boundary The defined boundary of the bin. The only requirement here is that this slot is
compatible with the user defined function to test the inclusion of out-of-sample
points.

contents An m× p matrix containing the points in the bin.
measure The bin score associated with this bin.
index An internal tracker indicating where the bin is located in the binning tree.
info Any additional information that should be associated with the bin.

The tree output variable is a directed graph object which maps the path of the binning tree.
This allows the algorithm (or user) to lookup which bins share a common parent (i.e. were created

124

as part of the same split). For example, a tree such as that below would indicate that bin 1 is
the parent node of bins 2 and 3. Further, bin 2 and 3 are not the parent nodes to any other bin.

tree =

 0 1 1
0 0 0
0 0 0


Figure 8.1: An example of the structure of a simple tree from the tree-based binning framework.
Here, node 1 is the parent to nodes 2 and 3. Nodes 2 and 3 are not parent nodes to any other bin.

8.1.2 stopCriteria

The stopCriteria function checks if the current set of bins meets the stopping criteria for the
algorithm. In the case of GapBin, the stopping criteria is simply the number of bins in the
current iteration being larger than some desired amount. The function takes as input the following
variables

bins A list containing objects of class bin.
inputs A named list-object containing additional input parameters.

and returns TRUE if the stopping criteria has been met, and FALSE otherwise. As an example, the
stopCriteria function for GapBin is presented below.

gapStop <- function(bins, inputs){

n <- length(bins)

return((n >= inputs$numbins))

}

8.1.3 binMeasure

The binMeasure function computes the score associated with each bin, from which a bin will
later be chosen for splitting. In the case of GapBin, the binMeasure function computes si from
Equation (7.1). The function takes as input the following variables

bin An object of class bin.
inputs A named list containing additional input parameters.

and returns a score compatible with the selectBin function. This could be a single number, a
vector, a matrix, or any other output required by selectBin. The only requirement is that the
output be compatible with the selectBin function. As an example, the binMeasure function for
GapBin is presented below.

125

gapMeasure <- function(bin, inputs){

if(nrow(bin@contents) == 1){

return(matrix(NA, 1, ncol(bin@contents)))

}

#For Each Dimension, compute the gap statistic

gaps <- apply(bin@contents, 2, getGap)

#Scale the gaps by the number of points in the bin and by tau

n <- nrow(bin@contents)

tau <- inputs$tau

gaps <- gaps * n^tau

#Scale the gaps by the dimension range

dimRange <- matrix(inputs$dimRange,

nrow=(n-1),

ncol=ncol(bin@contents),

byrow=TRUE)

gaps <- gaps/dimRange

#Any dimension that has no variability should not be split.

gaps[is.nan(gaps)] <- -Inf

return(gaps)

}

getGap <- function(binDim){

sortedBin <- sort(binDim)

axis <- sortedBin[-length(sortedBin)]

axis2 <- sortedBin[-1]

gaps <- abs(axis - axis2)

return(gaps)

}

126

8.1.4 boundaryTest

The boundaryTest function is designed to test if a point belongs to a given bin. This is to support
out-of-sample additions to the configuration after binning is complete. boundaryTest takes the
following input variables

point A vector containing the point to be tested.
bin An object of class bin.
inputs A named list containing additional input parameters.

and returns a logical variable indicating if the point belongs to the particular bin or not. For
example, if a rectangular bin is defined by the points {(-1,-1), (-1,1), (1,1), (1,-1)}, the tested
point (0,0) would return TRUE, while the tested point (2,2) would return FALSE. As an example,
the GapBin boundaryTest function is shown below.

gapBoundaryTest <- function(point, bin, inputs){

point <- matrix(point,nrow=1)

boundary <- bin@info$binRange

indicator <- c()

for(i in 1:ncol(point)){

indicator <- c(indicator,

(point[i] < boundary[2,i] & point[i] > boundary[1,i]))

}

if(all(indicator)){

return(TRUE)

}else{

return(FALSE)

}

}

8.1.5 makePoint

The makePoint function computes the representative point of each bin. That is, given a bin with
m points, makePoint computes a single point that represents (and replaces) these points in the
binned configuration. It takes as input the following variables

bin An object of class bin.
inputs A named list-object containing additional input parameters.

127

The function must return a vector containing the representative point of the bin. As an
example, the makePoint function for GapBin is shown below.

gapPoints <- function(bin, inputs){

point <- apply(bin@contents, 2, mean)

return(point)

}

8.1.6 selectBin

The selectBin function evaluates the scores computed by the binMeasures function, and chooses
a bin to be passed to the splitBin function, where it will be split into two (or more) new bins.
The selectBin function takes the following input variables

bins A list containing bin objects.
inputs A named list-object containing additional input parameters.

and must return the corresponding index of the bin to be split. For example, suppose four bins are
passed to the selectBin function with scores of 2.7, 3.4, 0, and 9.8 respectively. If the selectBin
function is designed to identify the largest such score, then the function would return the index of
the largest score, which is bin 4 in this case. As an example, the selectBin function for GapBin
is shown below.

gapSelect <- function(bins, inputs){

#Find the maximum gap in each bin

findMax <- function(bin){

max <- max(bin@measure)

return(max)

}

gapMax <- sapply(bins, findMax)

#Find the bin with the largest of all gaps

binIndex <- which.max(gapMax)

return(binIndex)

}

128

8.1.7 splitBin

The splitBin function takes the bin chosen by selectBin, and splits it into two (or more) new
bins. It takes as input the following

bin An object of class bin.
binMeasure A function to compute the measure associated with each bin.
inputs A named list containing additional input parameters.

The function takes the bin chosen by selectBin, and creates new bin objects from it. In the
case of GapBin, the chosen bin is split at the two points that resulted in the largest bin score.
For example, suppose points (j) and (j + 1) in dimension k of bin i resulted in the largest bin
score. Then, the splitBin function creates two new bin objects, one containing xi,k,(1), ..., xi,k,(j)
and the other containing xi,k,(j+1), ..., xi,k,(n). As an example, the splitBin function for GapBin
is shown below.

gapSplit <- function(bin, binMeasure, inputs){

#Extract the bin information

currentMeasure <- bin@measure

currentBin <- bin@contents

currentBoundary <- bin@info$binRange

#Find the maximum measure in each dimension,

#Take the overall maximum as the dimension to be split

whichAxis <- which.max(apply(currentMeasure,2,max))

#sort the bin along the chosen axis

sortedBin <- currentBin[order(currentBin[,whichAxis]),,drop=FALSE]

#Split the sorted bin at the maximum gap

gapIndex <- which.max(currentMeasure[,whichAxis])

leftContents <- sortedBin[seq(1, gapIndex, 1),,drop=FALSE]

rightContents <- sortedBin[seq(gapIndex + 1, nrow(currentBin), 1),,drop=FALSE]

#Define the new bin boundaries

newBoundary <- (max(leftContents[,whichAxis]) + min(rightContents[,whichAxis]))/2

leftBoundary <- currentBoundary

leftBoundary[2,whichAxis] <- newBoundary

rightBoundary <- currentBoundary

129

rightBoundary[1,whichAxis] <- newBoundary

#Put together the new bins in a binfo object

leftBin <- bin(boundary = bin@boundary,

contents = leftContents,

measure = NULL,

info = list(binRange = leftBoundary))

rightBin <- bin(boundary = bin@boundary,

contents = rightContents,

measure = NULL,

info = list(binRange = rightBoundary))

#Compute the new bin measures

leftBin@measure <- binMeasure(leftBin, inputs)

rightBin@measure <- binMeasure(rightBin, inputs)

#Return the new bins in a list

return(list(leftBin, rightBin))

}

8.1.8 binInfo and inputs

Since treebin aims to be a completely general function, it may require additional input variables
supplied by the user. This is facilitated using two input variables - binInfo and inputs.

The binInfo variable is used to store information specific to each bin, for use in any of the
functions considered above. For instance, the GapBin implementation requires the bin boundaries
for each bin. The bin boundaries are used to check for bin inclusion in gapBoundaryTest. binInfo
is used to pass the initial bin dimension to the initial bin object created in treebin, and is updated
as new bins are created.

Other input variables may be required for certain computations within treebin that do not
depend on individual bins (i.e. the variable does not change from bin to bin). To pass these
types of variables into treebin, the named-list inputs variable is used. In GapBin for instance,
the stopping criterion is based on achieving a certain number of bins in the configuration. This
information is passed to treebin through the inputs variable.

130

8.2 Other Built-in Algorithms

GapBin is not the only algorithm that fits into the tree-based binning framework. Both the 1-
dimensional clustering algorithm discussed in Section 7.3 [56], as well as equal width binning [121]
fall into the tree-based binning framework.

8.2.1 Clustered Binning

The first task to incorporating the 1-dimensional clustering algorithm into the tree-based binning
framework is to define how individual bins will be scored. For that, consider the criteria by which
a partition was created in Algorithm 6. A cluster point was placed at the point that maximizes
X̄C2−X̄C1 . This value was computed for every dimension in a given bin, and the overall maximum
is taken as the score for that bin. This is encapsulated in the clusterMeasure algorithm.

clusterMeasure <- function(bin, inputs){

#Find the cluster that results in the biggest difference in cluster mean

if(nrow(bin@contents) == 1){

measure <- 0

return(measure)

}

maxDiff <- apply(bin@contents,2,getBiggestClusterDiff)

return(maxDiff)

}

getBiggestClusterDiff <- function(bin){

bin <- sort(bin)

n <- length(bin)

C1 <- bin[1]

C2 <- bin[2:n]

meanC1 <- mean(C1)

meanC2 <- mean(C2)

maxDiff <- meanC2 - meanC1

for(i in 2:(n-1)){

C1 <- bin[1:i]

131

C2 <- bin[(i+1):n]

meanC1 <- mean(C1)

meanC2 <- mean(C2)

maxDiff <- c(maxDiff, (meanC2-meanC1))

}

return(maxDiff)

}

Since the goal is to maximize this difference, choosing the next bin in the sequence to be split
is done by choosing the bin with the largest score.

clusterSelect <- function(bins, inputs){

#Find the maximum gap in each bin

gapMax <- sapply(bins, findMax)

#Find the bin with the largest of all gaps

binIndex <- which.max(gapMax)

return(binIndex)

}

findMax <- function(bin){

max <- max(bin@measure)

return(max)

}

Once a bin is selected, splitting it into two bins is straightforward. Computing the bin score
required the points to be separated into two clusters, so all that remains in splitting the bin is to
place a partition at the halfway point between the clusters, creating two new bins containing the
respective points in each cluster.

clusterSplit <- function(bin, binMeasure, inputs){

#Extract the bin information

currentMeasure <- bin@measure

currentBin <- bin@contents

currentBoundary <- bin@info$binRange

132

#Find the maximum measure in each dimension

#take the overall maximum as the dimension to be split

whichAxis <- which.max(apply(currentMeasure,2,max))

#sort the bin along the chosen axis

sortedBin <- currentBin[order(currentBin[,whichAxis]),,drop=FALSE]

#Split the sorted bin at the maximum gap

gapIndex <- which.max(currentMeasure[,whichAxis])

leftContents <- sortedBin[seq(1, gapIndex, 1),,drop=FALSE]

rightContents <- sortedBin[seq(gapIndex + 1, nrow(currentBin), 1),,drop=FALSE]

#Define the new bin boundaries

newBoundary <- (max(leftContents[,whichAxis]) + min(rightContents[,whichAxis]))/2

leftBoundary <- currentBoundary

leftBoundary[2,whichAxis] <- newBoundary

rightBoundary <- currentBoundary

rightBoundary[1,whichAxis] <- newBoundary

#Put together the new bins in a binfo object

leftBin <- bin(boundary = bin@boundary,

contents = leftContents,

measure = NULL,

info = list(binRange = leftBoundary))

rightBin <- bin(boundary = bin@boundary,

contents = rightContents,

measure = NULL,

info = list(binRange = rightBoundary))

#Compute the new bin measures

leftBin@measure <- binMeasure(leftBin, inputs)

rightBin@measure <- binMeasure(rightBin, inputs)

#Return the new bins in a list

return(list(leftBin, rightBin))

}

Once binning is complete, representative points are taken to be the by-dimension means of
each bin

133

clusterPoints <- function(bin, inputs){

point <- apply(bin@contents, 2, mean)

return(point)

}

The algorithm is stopped by achieving a certain number of bins in the configuration, just as
in GapBin.

clusterStop <- function(bins, inputs){

n <- length(bins)

return((n >= inputs$numbins))

}

Finally, like GapBin, the resulting bins are rectangular. As such, performing a test of inclusion
for an out-of-sample point is as simple as comparing the position of the point relative to the
boundaries of the bin under consideration.

clusterBoundaryTest <- function(point, bin, inputs){

point <- matrix(point,nrow=1)

boundary <- bin@info$binRange

indicator <- c()

for(i in 1:ncol(point)){

indicator <- c(indicator,

(point[i] < boundary[2,i] & point[i] > boundary[1,i]))

}

if(all(indicator)){

return(TRUE)

}else{

return(FALSE)

}

}

Examples of the clustered binning algorithm will be considered in Section 8.3.

8.2.2 Equal Width Binning

The equal width binning algorithm can also be fit into the tree-based binning framework. First,
an arbitrary dimension of the data is chosen, and is split into b bins of equal size, where b is a user

134

supplied variable indicating how many bins should be created in each dimension. This is executed
by the ewSplit function

ewSplit <- function(bin, binMeasure, inputs){

#Extract the bin information

currentMeasure <- bin@measure

currentBin <- bin@contents

currentBoundary <- bin@info$binRange

#Find the maximum measure

whichAxis <- which.max(currentMeasure)

#sort the bin along the chosen axis

sortedBin <- currentBin[order(currentBin[,whichAxis]),]

#Split bin

splits <- seq(inputs$oRange[1,whichAxis],

inputs$oRange[2,whichAxis],

length.out = inputs$binsperdim+1)

#make new bins

newBins <- list()

for(i in 2:(inputs$binsperdim+1)){

#Define new boundary

newBoundary <- currentBoundary

newBoundary[1,whichAxis] <- splits[i-1]

newBoundary[2,whichAxis] <- splits[i]

#Find the points below the split

index <- which(currentBin[,whichAxis] <= splits[i])

if(length(index) > 0){

newBin <- bin(boundary = bin@boundary,

contents = currentBin[index,,drop=FALSE],

info=list(binRange = newBoundary))

newBin@measure <- ewMeasure(newBin, inputs)

currentBin <- currentBin[-index,,drop=FALSE]

}else{

newBin <- bin(boundary = bin@boundary,

135

contents = matrix(,0,ncol(currentBin)),

info=list(binRange = newBoundary))

newBin@measure <- ewMeasure(newBin, inputs)

}

newBins <- unlist(list(newBins, newBin), recursive=FALSE)

}

return(newBins)

}

Each of these b bins are then chosen in sequence, and one of the remaining d − 1 dimensions
that were not previously binned are chosen arbitrarily (where d is the dimension of the original
configuration), and is split using ewSplit. The way in which a dimension is chosen for binning
is quite simple - the range of each dimension in the bin is compared to the range of the original
configuration as a ratio. Any dimension that has not been binned will have a ratio of 1, while any
dimension that has already been binned will have a ratio of 1

b
- these ratios are computed as the

bin score for each bin, using ewMeasure.

ewMeasure <- function(bin, inputs){

#The measure is the bin with largest range (as a percentage of original range)

unscaledMeasure <- bin@info$binRange[2,] - bin@info$binRange[1,]

#Scale by original range

oRange <- inputs$oRange[2,] - inputs$oRange[1,]

scaledMeasure <- unscaledMeasure/oRange

return(scaledMeasure)

}

The other functions which choose the bin to be split, compute the representative point, com-
pute the stopping criterion, and test for the inclusion of out-of-sample points are all identical to
GapBin. Binning continues until every bin has a bin score of 1

b
. Examples of equal width binning

in the tree-based binning framework are shown in Section 8.3.

8.3 A Simple Example

As a simple example of each of the three built in algorithms available in treebinr, consider the
bivariate normal point cloud in Figure 8.2. Using each of the three algorithms, consider decreasing

136

the size of the configuration from one thousand points to five hundred (or as close as possible).
The result of each algorithm is shown with the original configuration in Figure 8.2.

library(treebinr)

set.seed(23456)

norm.original <- matrix(rnorm(2000,0,1),ncol=2)

oRange <- sapply(1:2, FUN = function(j){range(norm.original[,j])})

dimRange <- sapply(1:ncol(X), FUN = function(j){diff(range(X[,j]))})

binRange <- binRange = sapply(1:2, FUN = function(j){range(norm.original[,j])}))

norm.gap <- treebin(norm.original,

inputs = list(tau = 1,

dimRange = dimRange,

numbins = 500)

norm.ew <- treebin(norm.original,

stopCriteria = ewStop,

binMeasure = ewMeasure,

selectBin = ewSelect,

splitBin = ewSplit,

boundaryTest = ewBoundaryTest,

makePoint = ewPoints,

inputs = list(oRange = oRange,

binsperdim = 39,

numbins = 1521),

binInfo = list(binRange = binRange))

norm.cluster <- treebin(norm.original,

stopCriteria = clusterStop,

binMeasure = clusterMeasure,

selectBin = clusterSelect,

splitBin = clusterSplit,

boundaryTest = clusterBoundaryTest,

makePoint = clusterPoints,

inputs = list(oRange = oRange,

numbins = 500),

binInfo = list(binRange = binRange))

137

(a) (b) (c) (d)

Figure 8.2: Binning a (a) normal point configuration using each of (b) GapBin, (c) Equal Width
Binning, (d) and Clustered Binning. All are done in the framework of tree-based binning.

8.4 Additional Functionality

In addition to the ability to decrease the size of a configuration, there is other functionality avail-
able in treebinr that takes advantage of the tree structure of the resulting binned configuration.
Once a configuration is binned, it can be modified in a number of ways by passing the treebinr

object to a number of built in function. Each of the following modifications can be executed

1. Out of sample point(s) can be added to the configuration.

2. The next split in the sequence can be performed (as if the user asked for b+ 1 bins instead
of b bins).

3. The last split in the sequence can be undone (as if the user asked for b− 1 bins instead of b
bins).

4. Any bin in the configuration can be chosen to be split.

5. Any bin in the configuration can be chosen to be pruned.

To explore the additional functionality available in treebinr, consider binning a point configu-
ration from size 100 to 50.

library(treebinr)

set.seed(23456)

norm.original <- matrix(rnorm(200,0,1),ncol=2)

dimRange <- sapply(1:ncol(norm.original),

FUN = function(j){diff(range(norm.original[,j]))})

138

norm.gap <- treebin(norm.original, inputs = list(tau = 1,

dimRange =dimRange,

numbins = 50))

Figure 8.3: Binning a bivariate normal point configuration from 100 points to 50 using GapBin.

8.4.1 Add a Point

Once a configuration has been binned, a user may want to add out of sample points to the
configuration. For instance, as new data is collected, a user may simply want to add it to the
already binned configuration, without re-binning. For this purpose, the addPoint function is
available. This function finds the bin to which the out-of-sample point belongs, and recomputes
the representative point of that bin. addPoint takes as input

point A vector containing the point to be added.
treebinr.obj An object of class treebinr.
binMeasure A function to compute the measure associated with each bin.
makePoint A function to turn the contents of a bin into a single point.
inputs A list containing additional input parameters required by user supplied functions.

and returns the modified treebinr object with the newly added point. As an example, consider
adding a point at (-2,-2) to the bivariate normal configuration binned previously. The affected
point in the binned configuration is highlighted in red.

dimRange <- sapply(1:2, FUN = function(j) {range(norm.original[,j])})

norm.gap2 <- addPoint(point = c(-2,-2),

treebinr.obj = norm.gap,

binMeasure = gapMeasure,

makePoint = gapPoints,

inputs = list(dimRange = dimRange, tau=1))

139

Figure 8.4: Adding a point to the previously binned bivariate normal configuration. The affected
point(s) are highlighted as red triangles.

8.4.2 Perform the Next Split in Sequence

Since the tree-based binning algorithm creates bins in sequence, performing the next split in the
sequence is a simple task. This is akin to wondering what the configuration would look like if
the user asked for b+ 1 bins as opposed to b bins. This is done using the doNextSplit function,
which takes as input

treebinr.obj An object of class treebinr.
selectBin A function for choosing between bins to be split.
splitBin A function for splitting a bin.
binMeasure A function to compute the measure associated with each bin.
makePoint A function to turn the contents of a bin into a single point.
inputs A list containing additional input parameters required by user supplied functions.

The function returns a treebinr object with the newly formed bin(s). Figure 8.5 illustrates
the doNextSplit function by performing the next split in the sequence of the bivariate normal
point configuration. The affected bin in the original configuration and the two newly formed bins
in the resulting configuration are shown as red triangles.

norm.gap3 <- doNextSplit(treebinr.obj = norm.gap,

selectBin = gapSelect,

splitBin = gapSplit,

binMeasure = gapMeasure,

makePoint = gapPoints,

inputs = list(dimRange = dimRange, tau=1))

140

Figure 8.5: Executing the next split in sequence for the previously binned bivariate normal config-
uration. The affected point(s) are highlighted as red triangles

8.4.3 Undo the Last Split in Sequence

Similar to the doNextSplit function, the undoLastSplit function allows a user to go backwards
along the binning tree, and undo the last split in the sequence. This is equivalent to the user
asking for b− 1 bins instead of b bins. The function takes the following input variables

treebinr.obj An object of class treebinr.
binMeasure A function to compute the measure associated with each bin.
makePoint A function to turn the contents of a bin into a single point.
updateBin A function to combine several bin objects into a single bin object.
inputs A list containing additional input parameters required by user supplied functions.

The function returns an object of class treebinr, with the last split in the sequence undone.

The undoLastSplit function requires the input function updateBin which has yet to be
discussed. This function takes two (or more) bin objects, and converts them into a single bin
object. It must take as input the following

bins A list of bin objects to be combined.
binMeasure A function to compute the measure associated with each bin.
inputs A list containing additional input parameters required by user supplied functions.

A valid updateBin function must return a single bin object. As an example, consider the one
for GapBin

gapUpdate <- function(bins, binMeasure, inputs){

#Using pruned nodes, update information

141

newContents <- c()

newLowerBounds <- c()

newUpperBounds <- c()

for(i in 1:length(bins)){

newContents <- rbind(newContents, bins[[i]]@contents)

newLowerBounds <- rbind(newLowerBounds, bins[[i]]@info$binRange[1,])

newUpperBounds <- rbind(newUpperBounds, bins[[i]]@info$binRange[2,])

}

newBoundary <- rbind(apply(newLowerBounds, 2, min), apply(newUpperBounds, 2, max))

newBin <- bin(boundary = bins[[1]]@boundary,

measure=NULL,

contents = newContents,

index = inputs$node,

info=list(binRange = newBoundary))

newBin@measure <- binMeasure(newBin, inputs)

return(newBin)

}

To demonstrate the undoLastSplit function, again consider the bivariate normal configura-
tion. With the doNextSplit function, the number of bins was increased from 500 to 501. Using
undoLastSplit, this split is undone, yielding the original configuration of size 500. Affected
points are highlighted as red triangles.

Figure 8.6: Undoing the last split in the sequence for the previously binned bivariate normal
configuration. The affected point(s) are highlighted as red triangles.

142

8.4.4 Split a Chosen Bin

While doNextSplit will perform the next split in the sequence, it may be the case that the user
wants to split a bin of their choosing. For that purpose, the treeSplit function is used, taking
the following input variables

bin An object of class bin to be split.
treebinr.obj An object of class treebinr.
binMeasure A function to compute the measure associated with each bin.
splitBin A function for splitting a bin.
makePoint A function to turn the contents of a bin into a single point.
inputs A list containing additional input parameters required by user supplied functions.

A logical choice for a bin to be chosen for splitting would be the bin with the largest count.
The following example splits the “max count” bin in the bivariate normal configuration. Affected
bins are highlighted as red triangles.

max.count <- which.max(norm.gap@counts)

biggest.bin <- norm.gap@bins[[max.count]]

norm.gap5 <- treeSplit(bin = biggest.bin,

treebinr.obj = norm.gap,

binMeasure = gapMeasure,

splitBin = gapSplit,

makePoint = gapPoints,

inputs = list(dimRange = dimRange, tau=1))

Figure 8.7: Splitting the bin with the largest count in the previously binned bivariate normal
configuration. The affected point(s) are highlighted as red triangles.

143

8.4.5 Prune a Bin

The treePrune function performs the inverse operation of the treeSplit function. Given a bin

object, the treePrune function merges it with the other bins created with it (i.e. the bins created
when the parent bin was split). It takes as input the following

bin An object of class bin to be pruned.
treebinr.obj An object of class treebinr.
binMeasure A function to compute the measure associated with each bin.
makePoint A function to turn the contents of a bin into a single point.
updateBin A function to combine several bin objects into a single bin object.
inputs A list containing additional input parameters required by user supplied functions.

and returns a treebinr object with the newly pruned bins. A prudent example would be to
prune the bins created using the treeSplit function. Again, affected bins are highlighted as red
triangles.

target.bin <- norm.gap5@bins[[501]]

norm.gap6 <- treePrune(bin = target.bin,

treebinr.obj = norm.gap5,

binMeasure = gapMeasure,

makePoint = gapPoints,

updateBin = gapUpdate,

inputs = list(dimRange = dimRange, tau=1))

Figure 8.8: Pruning the bin previously split in the binned bivariate normal configuration. The
affected point(s) are highlighted as red triangles.

144

8.5 Concluding Remarks

The treebinr package implements the general tree-based binning framework in R, allowing for
a user to create a custom binning algorithm to meet the needs of their analysis. Three built-in
algorithms were also implemented - the novel GapBin algorithm, the classic equal width binning
algorithm, and the l1-clustering method of [56].

Additional functionality that takes advantage of the tree structure of the binning algorithm was
also implemented. The doNextSplit function computed the next split in the tree-based binning
sequence, which is equivalent to asking for b + 1 bins in the original call as opposed to b bins.
The inverse operation, undoLastSplit, merged the last bins created in the tree-binning sequence,
which is equivalent to asking for b− 1 bins as opposed to b bins. Similar to these functions were
the treeSplit and treePrune functions, which split and pruned a chosen bin, as opposed to the
next one in the binning sequence. These functions are again inverse operators. Other additional
functionality included the addPoint function, which adds an out-of-sample point to a the binned
configuration.

With a software implementation of tree-based binning in place, the claims made in Chapter 7
can now be explored through experimentation. This will be the focus of Chapter 9.

145

Chapter 9

Binning: Experimental Results

To measure the effectiveness of the unsupervised binning algorithms considered in Chapter 7 in
their ability to retain both geometric and probabilistic structure, six configurations are chosen that
provide varying levels of structure to capture, including varying levels of density, varying levels
of extremeness in the tails of the parent distribution, and varying shapes in the configuration.
For each configuration, samples of size 1000 in dimension varying from two to six are considered.
Figure 9.1 provides a two dimensional example of each of the configurations that will be considered.

Once simulated, each configuration is scaled to lie in a unit hypercube and randomly rotated to
avoid any bias. Each of the binning configurations - equal width, equal frequency, fixed frequency,
hexagonal binning (in two dimensions), random sampling, and GapBin - are used to reduce each
configuration from 1000 points to at most 500 points.

To assess the retention of geometric structure in the binned configurations, the convex and
alpha hulls are used. For each, the area and perimeter are computed. The absolute difference
between the original and the binned configurations are taken as measures of difference in geometric
structure.

To assess the retention of probabilistic structure in the binned configurations, 250 points are
first sampled uniformly from the unit hypercube in the dimension of the original configuration. For
each binned configuration (and the original configuration) the density is computed at each of the
sampled points using the standard kernel density estimate (with a Gaussian kernel) as discussed
in Chapter 2. Using these estimates, three measures are computed - the sum of the absolute
difference, Kullback-Leibler divergence, and Jensen-Shannon divergence, all of which were also
discussed in Chapter 2. This is repeated fifty times, and the average over all repetitions is taken
to be the final measure.

This chapter will be structured as follows. Section 9.1 will introduce the simulation experiment
in two dimensions. In addition, the diamonds data set will be used as a real data example to
assess the ability of the various binning algorithms under consideration. Section 9.2 will continue

146

Figure 9.1: Two dimensional examples of the six point configurations to be used to evaluate the
effectiveness of the binning algorithms. In order from top left to bottom right by row: uniform,
normal, clustered normals, student-t, donut, and chi-square.

the simulation experiment in three dimensions, and also introduce the TOSCA high-resolution
image data set [14], which will be used to visually assess the ability of each algorithm to retain
three dimensional structure and detail. Finally, Section 9.3 will finish the simulation experiment
in four dimensions and above. The ability of GapBin to bin in very large dimensions will be also
be explored using image data sets.

9.1 Two Dimensions

In two dimensions, each of the six binning algorithms can be used. Each configuration from Figure
9.1 is simulated 25 times, and the measures discussed above computed on each. The average over
these 25 repetitions for each measure is then computed. Each measure is scaled by its respective
maximum (over the algorithms), so that each measure is scaled to be in [0,1]. For each measure,
lower values represent better performance. The results of this experiment are summarized in
Figure 9.2.

147

Figure 9.2: The measures for each of the six binning algorithms on data in two dimensions.

148

The two dimensional experiment leads to some very interesting conclusions. The measures have
been chosen to capture two distinct types of structure, probabilistic and geometric. Specifically,
the absolute difference, Kullback-Leibler, and Jensen Shannon measures on the kernel density
estimate capture probabilistic structure, and the area and perimeter of the convex and alpha hulls
capture geometric structure. With this in mind, there seems to be a very clear separation of the
algorithms - the equal frequency, fixed frequency, and random sampling algorithms perform very
well on the three measures designed to capture probabilistic structure, and perform poorly on the
those designed to capture geometric structure. Vice versa for both equal width and hexagonal
binning. Interestingly, GapBin seems to fall somewhere in between. It is highly competitive with
equal width and hexagonal binning in the retention of geometric structure, while out-performing
both in terms of retention of probabilistic structure. While not as competitive with the equal
frequency, fixed frequency, and random sampling algorithms in terms of retention of probabilistic
structure, GapBin also vastly out performs these algorithms in terms of retention of geometric
structure.

What emerges from this experiment is essentially two classes of specialist algorithms: those
that retain geometric structure (equal width, hexagonal binning), and those that retain proba-
bilistic structure (equal frequency, fixed frequency, and random sampling). GapBin seems to fall
in between these two sets of “specialist algorithms”.

9.1.1 Measures on a Real Data Set - Diamonds

Having a real data set to corroborate the results of the simulation experiment is helpful to ensure
the observed results of the simulation study are not the result of using artificial data. For that
purpose, consider the diamonds data (provided in the R package ggplot2 [117]), a seven dimen-
sional data set containing 53940 entries. For this two dimensional experiment, only the dimensions
depth and price are considered. The data is also scaled to the unit cube so that it is consistent
with the simulated data. The original configuration (scaled to the unit cube) is shown in Figure
9.3.

Each of tree-based binning, equal frequency, fixed frequency, equal width, hexagonal binning,
and random sampling are used to reduce the size of the two dimensional diamonds data set from
53940 observations to as close to 5000 as can be achieved. The effectiveness of each of the methods
is displayed in Figure 9.4.

As was observed in the simulation experiment, a number of interesting issues arise in attempt-
ing to bin this data. First, we can see that, due to the distribution of points ranging from very
dense to very sparse along the y-axis, the equal frequency and fixed frequency binning methods fail
in retaining the shape of the configuration - they instead rely too heavily on retaining the relative
density of the distribution, resulting in heavy striation in the more sparse areas. The random
sampling approach does not have the same obvious striation, but retains density by eliminating
points in the sparse areas, drastically changing the shape of the configuration. In contrast, the

149

Figure 9.3: The variables depth (x-axis) and price (y-axis) of the diamonds data set scaled to be in
[0, 1]× [0, 1]. Two levels of alpha blending are used to emphasize the density of the configuration
(on left), and the shape of the configuration (on right).

equal width and hexagonal binning algorithms retain the shape of the configuration almost per-
fectly, but completely wash away any semblance of varying density - the reduced configuration is
almost uniformly dense across the entire configuration. Again, GapBin appears to fall somewhere
in the middle of these algorithms. It retains many of the outlying points, as well as the (relative)
density of the configuration.

Consider computing the measures used in the simulation experiment on the diamonds data. To
do so, a sample of 20000 observations from the diamonds data set were chosen at random, and then
binned using each algorithm to as close to 5000 points (without exceeding) as possible. Note that
20000 points are chosen since computing kernel densities on nearly 60000 points requires a very
large amount of computational power. Sampling a subset of the data also allows the experiment
to be repeated. Each of the measures are then computed, and the results summarized in Figure
9.5.

Again, GapBin seems to fall in between two distinct sets of algorithms. In evaluating the
kernel density estimation, GapBin outperforms equal width and hexagonal binning, while being
slightly worse than equal frequency, fixed frequency, and random sampling. In terms of general
shape retention, it is outperformed by equal width and hexagonal binning, but outperforms (sig-
nificantly) each of equal frequency, fixed frequency, and random sampling. This result illustrates
that GapBin seems to represent a trade-off between density retention and overall shape reten-
tion. Each of the other algorithms can be seen as specialists in a sense, focusing on one of shape
retention or density retention. This corroborates the results of the simulation story.

150

Figure 9.4: The variables depth (x-axis) and price (y-axis) of the diamonds data set binned to
5000 points using six binning algorithms. From top left (by-row): equal width, hexagonal binning,
equal frequency, fixed frequency, random sampling, and tree-based binning.

151

Figure 9.5: Measure scores for each of the six binning algorithms on the diamonds data set.

9.2 Three Dimensions

The simulation experiment continues with equal width, equal frequency, fixed frequency, random
sampling, and GapBin. Each of the point configurations are easily generalized to three (and
higher) dimensions. The results of computing the measures on the three dimensional configura-
tions are shown in Figure 9.6.

In three dimensions the same dichotomous behaviour among the four classic algorithms that
was observed in two dimensions continues. Of interest, however, is GapBin’s improved perfor-
mance. It continues to be incredibly competitive against equal width binning in terms of geometric
structure retention (with very little distinguishable difference in most cases), while also improving
its performance against the algorithms who specialize in the retention of probabilistic structure. In
fact, we can see that GapBin actually outperforms equal frequency and fixed frequency in three of
the six configurations. Only random sampling is consistently better in terms of probability reten-
tion. This observation signals a potentially important trend in the algorithms under consideration
- GapBin scales to higher dimensions better than the most popular binning algorithms.

To demonstrate the effect of binning on real data sets, the three dimensional TOSCA high
resolution images [14] are used. For each image, each of equal width, equal frequency, random
sampling, and GapBin are used to reduce the size of the structure from its original size (anywhere
from 20000 to 60000 points), to size 5000.

152

Figure 9.6: The measures for each of the five binning algorithms on data in three dimensions.

153

9.2.1 Cats

In total, there are eleven cat structures, each in a unique pose. Each cat structure contains 27894
individual points. Figure 9.7 illustrates the structure that will be used. The results of binning
this configuration using the various algorithms under consideration are shown in Figure 9.8.

Figure 9.7: A three dimensional rendering of a cat.

Figure 9.8: The result of binning Figure 9.7 with (from left to right) GapBin, equal width, equal
frequency, and random sampling.

As expected, the equal width and GapBin algorithms best retain the overall shape of the cat.
The equal frequency and random sampling algorithms tend to over-represent the high density
areas of the cat - its face and paws - at the expense of the overall shape of the cat - its tail and
body. An example of shape distortion is in the tail of the cat, which is essentially erased in equal
frequency.

154

The face of the cat is very detailed, and each of the algorithms vary in the way in which that
detail is preserved. Equal frequency and random sampling both do a good job in preserving the
structure of the face. GapBin preserves a lot of the structure, such as the nose and eyes, but it
is overall less visible than either of equal frequency or random sampling. GapBin seems to be
effective in preserving the paws of the cat, however. In the case of equal width, the face of the cat
has been essentially erased. This is consistent with what has been seen in previous experiments.

9.2.2 Centaur

The Centaur structure is much smaller than the Cat structure, containing only 15768 points. The
original image is shown in Figure 9.9. Similar to the cat structure, interest lies in how well each
of the binning algorithms retain the structure of the centaur. The results of binning the Centaur
data set to 5000 points using each of equal width, equal frequency, random sampling, and GapBin
are shown Figure 9.10.

Figure 9.9: A three dimensional rendering of a centaur.

Figure 9.10: The result of binning Figure 9.9 with (from left to right) GapBin, equal width, equal
frequency, and random sampling.

Much like the Cat structure, the results of binning the Centaur structure with either equal
frequency or random sampling results in a high level retention in the facial features at the expense
of the overall shape of the centaur - the legs being the most prominent feature missing, as well
as the body of the centaur. Using equal width, the overall shape of the centaur is preserved, but
features such as the centaurs hands and face are washed away. As has been observed to this point,
GapBin bridges the gap between these algorithms. The overall shape of the centaur is relatively
well preserved, there is no clear distortion in the body or legs, and many of the features of the

155

hands and face are also preserved. For instance, the ear of the centaur is clearly visible in the
GapBin configuration, while in the equal width configuration, it has been mostly washed away.
Similarly, the visible hand of the centaur has clear distinction between the thumb and remaining
fingers in GapBin, which is not the case in the equal width algorithm.

9.2.3 David

The David data set is the largest under consideration, being 52565 points. Like the Cat and
Centaur data, interest lies in the overall shape of the configuration, but in this data set, more
attention is paid to the finer detail, specifically in the hands and face. Figure 9.11 illustrates the
three images of David that will be under consideration.

Figure 9.11: Three different views of the David structure. The top left image will be used to asses
the ability of the algorithms to retain a general shape, while the top right and bottom images will
be used to assess the ability of the algorithms to retain finer detail.

Beginning with the entire body, Figure 9.12 illustrates the results of binning the configuration
from 52565 to 5000 points using each of the four algorithms.

Looking at the entire data set, the same story that was observed in the Cats and Centaur
data sets holds here - equal frequency and random sampling sacrifice shape for detail, equal width

156

Figure 9.12: Binning of the David configuration using each of GapBin, equal width, equal fre-
quency, and random sampling.

sacrifices detail (heavily in this case) to retain shape, and GapBin finds itself somewhere in the
middle.

Also visible is how much shape is lost by using random sampling and equal frequency, especially

157

in the body, where several holes are visible. Comparably, how much detail is lost using equal width
or GapBin? For this, examine David’s hands, as well as his head. Figure 9.13 provides an overhead
view of of David’s hands. In particular, notice how the fingers of each hand are formed and defined.
From this view, a view of David’s feet are also visible. Note how for the equal width algorithm,
the hands and feet appear “webbed”, while in each of the other algorithms they are recognizable
as hands and feet.

Figure 9.13: Images of the hands of the binned data configurations using each of GapBin, equal
width, equal frequency, and random sampling.

Next, consider the head of the David configuration. Note that the head alone contains 21505
points, corresponding to 40.9% of the total points in the configuration. This would correspond to
approximately 2046 points in the binned configuration were it to retain the same percentage of
points. Figure 9.14 shows the detail retained in the face of the configuration.

Figure 9.14: Images of the head of the binned data configurations using each of GapBin, equal
width, equal frequency, and random sampling.

There is large variation in how well the algorithms perform. The equal width algorithm
places only 587 points in the head of the configuration (11.74% of the total number of points in

158

the binned configuration), and clearly fares the worst. Comparable are the GapBin and equal
frequency algorithms, which place 26.02% and 30.56% of the total points in the configuration
in the head - still significantly lower than the original, but both are recognizable as compared
to the original configuration. Unsurprisingly, the winner is random sampling, which places 2032
(40.64%) of the binned configurations points in the head. This leads to improved detail in the
face over the other algorithms, but at the expense the shape of the head (the forehead is almost
nonexistent), as well as the overall shape of the entire configuration.

With as much fine detail as exists in the face, it may be more appropriate to bin it directly.
Beginning with the original head image shown in Figure 9.11 containing 21505 points, consider a
similar compression to what was considered on the entire configuration - the head data is binned
to no more than 2500 points. The results for each of the algorithms are shown in Figure 9.15.

Figure 9.15: Images of binning only the head of David configuration using each of GapBin, equal
width, equal frequency, and random sampling.

An interesting development emerges in these images. Equal width binning performs the worst
by a large margin - the shape of the head is present, but all of the detail (eyes, lips, nose, etc.) have
been washed away. Equal frequency does a good job preserving the lips and nose, but seems to
eliminate the ears of the head - failing to preserve all of the shape detail in this case. GapBin does
a relatively good job preserving both the shape and detail of the head. The lips, eyes, nose, and
ears are all clearly distinguishable. As was the case previously, random sampling best preserves
the detail of the head. As usual, this comes at the cost of the shape - the top of the head and
shoulders are not well defined in the random sampling configuration.

9.2.4 Gorilla

The final structure under consideration is the Gorilla structure, which contains 41395 points.
Similar to the David structure, the Gorilla structure has some fine detail that can be explored.
Of interest is how the algorithms do in total on the entire configuration, and also how well they
do in retention of the fine detail of the structure - in the case of the Gorilla,the right hand will be
used to assess this. Figure 9.16 illustrates these.

159

Figure 9.16: An image of the Gorilla that illustrate its overall shape, and an example of the fine
detail in the structure of its hand.

As with the other structures, first consider how the algorithms fare in binning the entire
configuration. Figure 9.17 illustrates the results.

Figure 9.17: Binning of the gorilla configuration using (from left to right) GapBin, equal width,
equal frequency, and random sampling.

As was observed previously, the algorithms continue to perform in line with expectations. The
equal width algorithm washes away all visible detail in the Gorilla, but preserves the overall shape.
Equal frequency and random sampling preserve detail in the face and hands, but sacrifice shape
in the form of the body of the Gorilla. GapBin again is somewhere in-between. The overall shape
of the Gorilla is clearly visible, and there is visible density present in the face and hands.

Of greater interest in this configuration is in the the hands of the Gorilla, which can be seen
in Figure 9.18. Immediately observable is that, like the head and hands of the David structure,
the equal width algorithm does a poor job in retaining the structure of the hands in the Gorilla
configuration. The equal frequency algorithm also does quite poorly - the hand of the Gorilla is
barely there. This is because the head of the Gorilla is so dense - there is little density in the
hand, so the equal frequency algorithm fails to capture it. In this case, GapBin does quite well
- the hand, and all the individual digits are easily recognizable. As was the case with the David
structure, random sampling does perform the best (with the exception of the wrist, which is not
well defined), with GapBin being a very close second here.

160

Figure 9.18: Binning of the hand of the Gorilla configurations using (from left to right) GapBin,
equal width, equal frequency, and random sampling.

9.3 Higher Dimensions

The final step in the simulation experiment is to continue to higher dimensions, up to six dimen-
sions total. The results of these experiments are shown in Figure 9.19 - 9.21

Remarkably notable from this experiment is the improved performance of GapBin relative
to the other algorithms as dimension increases. GapBin continues to be competitive with equal
width binning in terms of shape retention (outperforming it on some configurations). Importantly,
however, is GapBin’s improved performance in terms of density retention, where it begins to
outperform both the equal frequency and fixed frequency algorithms. The relative performance
of GapBin only improves as dimension increases, and in fact as dimension hits six, the GapBin
algorithm is the best performing algorithm in terms of density retention of all the algorithms
under consideration. This makes GapBin overall the best performing of the binning algorithms
in dimension as low as six.

Building on this success, the next step is to consider the ability of GapBin to bin in dimensions
much larger than six. Six image data sets will be used to assess GapBin’s ability to bin data in
very high dimension

1. Statue manifold data (shown in [103])

2. Frey faces data set

3. Olivetti faces data set (from AT&T Laboratories at Cambridge)

4. UMIST faces data set [48]

5. USPS handwritten digits data set [40]

Each of these data sets will be binned in their original dimensional space, and then reduced
to (at most) four dimensions using simple multidimensional scaling. Loon [115] will be used to

161

Figure 9.19: The measures for each of the five binning algorithms on data in four dimensions.

162

Figure 9.20: The measures for each of the five binning algorithms on data in five dimensions.

163

Figure 9.21: The measures for each of the five binning algorithms on data in six dimensions.

164

view the first two principal components of the data sets to observe the differences between the
original and binned configurations. In particular, the overall shape of the two dimensional view
will be of interest, including the retention of outlying points in the configuration. Also of interest
will be the observable pattern of the images in the two dimensional view. For instance, comparing
the transition of lighting in the images from light to dark as compared to the original, or the
transition of the facial images across the two dimensional view will be observed.

Individual bins created by GapBin will also be observed, with the goal being to visualize bins
where GapBin has performed exceptionally well, and also where it has not.

9.3.1 Statue Manifold

The statue manifold data consists of 698 images of a bust in various positions and lighting con-
ditions. The images are 64 × 64 grey scale images, meaning the data are in 4096 dimensional
space. Using GapBin, the data are reduced to 349 images from 698 in the original 4096 dimen-
sional space. The data is then reduced to three dimensions using multidimensional scaling (three
dimensions is chosen as the prevailing belief in the dimension reduction community is that this
data set adequately represents a three-dimensional manifold). Figure 9.22 shows the original and
binned data on its first two principal components, illustrating the density using alpha blending.
Figure 9.23 shows the same data, but replaces the data points with the images they represent to
give a sense of shape and pattern retention.

Figure 9.22: A view of the first two dimensions of the three dimensional manifold produced by
multidimensional scaling of the statue data. The left image is the original data, and the right
image is the binned data.

165

Figure 9.23: A view of the first two dimensions of the three dimensional manifold produced by
multidimensional scaling of the statue data. The top image is the original data, and the bottom
image is the binned data.

166

The similarities between the two configurations are striking. First note that the overall shape
of the two configurations is very similar, and the binned configuration appears as a thinned out
version of the original. Looking from left to right in Figure 9.23, a clear change in colour from
dark to light among the busts is present in both images.

Next, consider some of the individual bins formed by GapBin. Figure 9.24 illustrates some of
the best (and largest) bins, while Figure 9.25 illustrates some of the worst.

Figure 9.24: Four different bins (one in each row) produced by GapBin. Each bin contains eight
very similar images of the statue manifold data.

Figure 9.25: Three different “bad” bins (of size 3, 3, and 2) produced by GapBin. Each of the
“bad” bins is relatively small as compared to the larger bins considered in Figure 9.24.

Interestingly, the four largest bins produced by GapBin (shown in Figure 9.24) all contain
very similar images, while the poor bins shown in Figure 9.25 are all small by comparison. Also
interesting is that the bad bins which contain three images in this case seem to have one “outlier”
- two of the images are quite similar, and one is markedly different.

167

9.3.2 Olivetti Faces

The Olivetti data set compiled by AT&T Laboratories Cambridge consists of ten facial images
from forty individuals at varying times, yielding 400 images total. The images are 64 × 64 grey
scale resulting in a 4096 dimensional data set. The data are binned to 250 points using GapBin,
with multidimensional scaling used to decrease the dimension to four. Note that the Olivetti data
set is not that large (only 400 points) and exists in very high dimension, so a 50% compression
results in a very poor representation of the original - the resulting binned configuration contains
one very large bin, containing over 100 points. For that reason, a much smaller compression ratio
is used here.

Figure 9.26 illustrates the density of both the original and binned configurations by showing the
first two principal components with alpha blending. Figure 9.27 illustrates the shape and pattern
of each configuration by showing the representative image of each point in the configuration - in
the case of the binned configuration, this image is taken to be the average face in each bin.

Figure 9.26: A view of the first two dimensions in the dimension reduction of the Olivetti data to
four dimensions total. The left image is the original data, and the right image is the binned data.

Again, note the similarity between the two configurations. Figure 9.26 shows that overall
density is retained. This can be seen in the center of the configuration, as well as the on the right
side. Also visible in this figure is the retention of outliers - for instance at the top of the image.

168

Figure 9.27: A view of the first two dimensions in the dimension reduction of the Olivetti data to
four dimensions total. The top image is the original data, and the bottom the binned data.

169

Figure 9.27 illustrates the overall shape and pattern retention of the GapBin algorithm. The
images move from light to dark when moving left to right, very similar groupings of faces such as
the grouping of dark images on the far right of the image can be seen, and the outlying points in
the top of the image are also preserved. Note that some some key faces have been lost, especially
in the dark clustering of points on the right. Overall though, the similarity between the two
images is visible.

As was done with the statue manifold data, consider the individual bins produced by the
GapBin algorithm. Figure 9.28 illustrates some of the larger bins produced by GapBin. Each
bin contains five observations of the same person. This is indicative of GapBin’s ability to group
similar faces together.

Figure 9.29 illustrates the difficulty of binning such a small configuration. It contains 32 images
in total, and contains several different people. This can be remedied by asking for more bins in
the final binned configuration.

Figure 9.28: Four different bins produced by GapBin (one in each row) demonstrating the effec-
tiveness of the GapBin algorithm in high dimensions. Each bin contains very similar faces.

170

Figure 9.29: An issue with binning the Olivetti data set due to its high dimensionality and low
observation count. Even a modest compression results in one large bin containing the 32 “leftover”
images in the center of the configuration. This can be avoided by increasing the number of bins.

9.3.3 Frey Faces

The Frey faces data set consists of 1964 images of Brandon Frey’s face in various poses. The data
are 28 × 20 grey scale images, meaning they have a dimensionality of 560. Using GapBin, the
data set is reduced to 982 images (a 50% compression). The data is reduced to four dimensions
using multidimensional scaling. Figure 9.30 illustrates the retention of both shape and density
using alpha blending, and Figure 9.31 illustrates the retention of structure using the representative
images of each point.

Again, note the similarity between the two manifolds. With there being a large number of
points in this data set, the retention of density is much more evident in this image than it was
in previous manifolds. The high density regions at the top of the image are still (relatively) high
density regions in the top of the binned image. Even some of the high density regions at the lower
right corner of the image have been preserved.

171

Figure 9.30: A view of the first two dimensions in the dimension reduction of the Frey data to
four dimensions total. The image on the left is the original data, and the image on the right the
binned data.

The overall retention of the shape of the manifold is also very clear. The pattern of the images
is also clearly retained, with the faces ranging from frowning to smiling moving up Figure 9.31,
and from right looking to left looking moving left to right across the image.

Due to the size and general structure of the Frey faces data set, the GapBin algorithm creates
several bins (some very large) that contain many similar faces. Figure 9.32 displays three such
examples, containing ten images each.

As was the case with the statue manifold data, there are also some bins containing objectively
different images. These bins, as was the case with the statue data, tend to be quite small. Figure
9.33 illustrates two such bins. Notable is that, even within these “bad” bins is some similarity
between the faces.

172

Figure 9.31: A view of the first two dimensions in the dimension reduction of the Frey data to
four dimensions total. The top image is the original data, and the bottom the binned data.

173

Figure 9.32: Three bins (one in each row) produced by GapBin containing remarkably similar
faces. This is is indicative of the ability of the GapBin algorithm to continue to work well in
dimension as high as 560.

Figure 9.33: Two bins (of size 2 and 4 respectively) in the binned configuration that contain
objectively different faces. Note that, similar to the statue manifold data, the bins with differing
faces tend to be quite small.

9.3.4 UMIST Faces

The UMIST faces data set consists of facial images of 20 individuals. Each image is 112 × 92
pixels, meaning the data reside in 10304 dimensional space - the highest dimensional space under
consideration. In total, there are 575 images, reduced to 288 images using GapBin - a 50%
compression. Figure 9.34 illustrates the ability of the algorithm to both retain the shape and
relative density of the configuration, and Figure 9.35 illustrates the pattern of the images using
representative faces.

174

Figure 9.34: A view of the first two dimensions in the dimension reduction of the UMIST data to
four dimensions total. The left image is the original data, and the right the binned data.

The UMIST faces data set has a very distinct pattern in the point configuration. The lines in
the lower right of the image provide a clear point of comparison for the binning method. GapBin
has managed to preserve large portions of these lines, as they are still visible in the binned
configuration. This retained shape does come at a slight cost of density - some of the more dense
areas in the image do not appear to have been kept relatively dense in the binned configuration.
For example, the dense region beginning around (−1000, 0) does not seem to have been preserved
in the binned configuration. This is indicative of the priority placed on preserving the shape of
the configuration in this data set - the visible lines in the configuration tended to dominate during
binning.

Looking at the representative faces, a very similar story is evident. The pattern of faces along
the lines in the lower right portion of the image seem to be very well preserved, while some of
the areas of higher density are perhaps more washed away than has been observed previously.
Overall, however, the pattern of the two manifolds are still very similar, given the exceptionally
high dimension in which this data originally existed.

175

Figure 9.35: A view of the first two dimensions in the dimension reduction of the UMIST data to
four dimensions total. The top image is the original data, and the bottom the binned data.

176

As was the case with the Frey data set, running GapBin on the UMIST data results in several
large bins containing remarkably similar faces, as shown in Figure 9.36. There are also some bins
which don’t fare as well, such as those in Figure 9.37.

Figure 9.36: Four different bins (one in each row), containing remarkably similar faces. Each bin
contains ten faces which demonstrates the ability of the GapBin algorithm to continue to work in
exceptionally high dimensions.

Figure 9.37: Two bins (of size 3 and 7) in the binned configuration that contain objectively different
faces.

9.3.5 USPS Handwritten Digits

Finally, consider the USPS handwritten digits data set, which contains one thousand handwritten
samples of the digits 0 - 9, resulting in a data set containing 11000 images. Each image is 16× 16
greyscale, resulting in a dimensionality of 256. Using GapBin, the data is reduced to size 5500
(a 50% compression) in its native dimension, and is then reduced to four using multidimensional
scaling.

Due to the sheer size of this data set, it’s not feasible to look at the entire configuration
with each representative image. So, only the alpha blended points are considered, and the bins
created by GapBin. Figure 9.38 illustrates the original and binned configurations. As was the
case in previous experiments, it is again clear that GapBin adequately decreases the size of the
configuration in its native dimension while preserving much of the inherent structure. The binned

177

configuration retains the characteristic shape of the original configuration, and simply thins out
the areas of high density.

In some cases, this thinning out may be to severe. For example, the area around (−1000, 250)
seems to have been almost eliminated as compared to the original configuration. This, however, is
consistent with what GapBin is designed to do - trade-off shape preservation for greater density
retention.

Figure 9.38: A view of the first two dimensions in the dimension reduction of the USPS binary
digits data to four dimensions total. The left image is the original data, and the right the binned
data.

Due to the structure of the USPS data, using GapBin results in many bins containing very
similar images. Figure 9.39 illustrates bins for various digits, and Figure 9.40 the largest bin
produced by GapBin.

The USPS handwritten data set is a great indication that GapBin is simultaneously capable
of binning large data sets and binning in high dimensional space. This is something that none of
the other algorithms considered thus far are capable of doing in a reasonable time.

178

Figure 9.39: Seven bins (one in each row) produced by GapBin containing different digits.

Figure 9.40: The largest bin (of size 20) produced by GapBin containing the digit 1.

9.4 Concluding Remarks

This chapter studied the viability of binning with various well known binning algorithms (equal
width, equal frequency, fixed frequency, hexagonal binning, and random sampling), as well as
the newly proposed GapBin algorithm, which falls into the tree-based binning framework. A

179

simulation study was undertaken in which configurations of varying dimension were binned down
to 500 points from 1000, and then measured for various types of geometric and probabilistic
structure. These measures were compared to those taken on the original configuration so the best
performing algorithms could be identified.

Overall, the following trend was observed throughout the simulation experiment. The equal
width and hexagonal binning algorithms performed very well on the measures designed to capture
geometric structure, and poorly on those designed to capture probabilistic structure. The oppo-
site was true for the equal frequency, fixed frequency, and random sampling algorithms. They
performed well on the measures designed to capture probabilistic structure, and poorly on those
designed to capture geometric structure.

The GapBin algorithm seemed to bridge the gap between these sets of “specialist” algorithms.
It performed well on all measures, outperforming the “shape” specialists on the density measures,
as well as the“density”specialists on the shape measures. As dimension increased, GapBin quickly
became the best performing algorithm on all probabilistic measures, while often outperforming
the equal width algorithm on the geometric measures. This led to the conclusion that, overall,
GapBin was the best performing of the algorithms considered.

These results were corroborated using real data sets, including the diamonds and TOSCA high
resolution data sets. The GapBin algorithm was also used exclusively to bin a number of image
data sets, which exist in high dimensional space. Here, the goal was to bin the data in its original
dimension, and compare it to the original manifold when brought down to three or four dimensions
using multidimensional scaling. What was observed was that, even in very high dimensions,
GapBin was able to accurately reduce the number of observations in the configurations, creating
comparable manifolds as compared to the original.

Overall, the effectiveness of the GapBin algorithm was shown in multiple ways. It performed
well in both the simulation study, and in real data sets, regardless of dimension. This is a positive
result moving forward, as, for instance, it could potentially be used as the binning algorithm in a
generalized scagnostic framework.

180

Chapter 10

Modifying the Scagnostic Framework

This chapter will look at various aspects of the current scagnostic framework, and propose solutions
and improvements to some of the identified problems. Section 10.1 will propose solutions to the
problems identified in the skewed and convex scagnostics. Specifically, it will look at the cause of
the inability of these measures to obtain a full range of values in the [0, 1], and propose a potential
solution. Section 10.2 will propose two new scagnostics that identify interesting structure in a
point configuration that is not currently captured. Finally, Section 10.3 will explore the generation
of configurations with a given structure of interest.

10.1 Changes to Existing Scagnostics

In Section 3.1, issues with both the skewed and convex scagnostics were identified during the
reproduction of the experiments of [120], and during the scagnostic universe experiment. This
section will further explore the issues present with these scagnostics.

10.1.1 Convex and Skewed - The Issue with Weighting

The scagnostic universe experiment of Section 3.1 illustrated the inability of both the convex and
skewed scagnostic measures to achieve the entire range of [0, 1]. This is problematic as it affects
how these scagnostics are interpreted - if one end of the range is not achievable, are configurations
that fall on the other end of interest, or not?

Focusing first on the skewed scagnostic, recall that the identified issue centred around the
difficulty of finding configurations which score a low value on the scagnostic. The types of distri-
butions needed to achieve certain values of the skewed scagnostic can be explored mathematically
by writing the skewed formula as

181

qskew =
q90 − q50

q90 − q10

=
q90 − q50

(q90 − q50) + (q50 − q10)

=
R

R + L

=
1

1 + L
R

The fraction L
R

represents the relative tail weight of the left tail (q50− q10) as compared to the
right tail (q90 − q50). Recall that cskew is written as

cskew = 1− w (1− qskew)

= 1− w

(
1− 1

1 + L
R

)

= 1− w

(
L
R

1 + L
R

)

where w = 0.7 + 0.3
1+(n/500)2

. Analyzing the limit of cskew as L
R
→ 0, the value of cskew → 1, the

upper limit of the scagnostic measure (which is a desirable trait). Looking at the limit as L
R
→∞,

cskew → 1 − w. The skewed scagnostic can not possibly approach 0 for any sample size (indeed,
w = 1 only if n = 0), which is of course not desirable - the lower range of the skewed scagnostic
cannot be obtained, regardless of the relative weight of the left tail to the right tail. This is
concerning, as the left and right tail of the configuration are not treated symmetrically, which
affects the way in which the scagnostic is interpreted. This also explains why so few low skewness
configurations were observed in the scagnostics universe experiment in Section 3.1.

The weighting function w causes similar problems in the convex scagnostic. Recall that the
convex scagnostic is given by

cconvex = w

(
area(A)

area(H)

)

where A and H are the alpha and convex hull respectively. By definition, area(A) ≤ area(H),
implying that the convex scagnostic falls in the range [0, w], not [0,1]. This range was clearly visible
in the scagnostics universe experiment performed in Section 3.1, where only six configurations had
observed values of convex above 0.75. Again, the weighting function is not allowing the convex

182

scagnostic to achieve a full range of values in [0, 1], which hampers the ability of a user to accurately
interpret the values emerging from a scagnostic analysis.

The question worth exploring then is if the perceived bias in the scagnostics which are weighted
by w is worth the inability of the scagnostics to achieve the entire range of values available to the
scagnostic measures. A simple analysis to examine the effects of binning on a configuration is to use
the same configurations that were used in Section 3.1 for increasing sample size, and observing the
difference between scagnostics computed on the original configuration and the binned configuration
without adjusting any of the scagnostics for binning. Figure 10.1 presents the results.

As expected, many of the scagnostics do not exhibit any effect when the configuration is
binned. The two that were expected to be problematic, skewed and convex, certainly do. The
skewed scagnostic exhibits an upward trend, indicating that the observed skew in the binned
configuration is smaller than in the original configuration. Starting at 1000 points, there are no
observed differences less than 0, indicating that the binned configuration always has a skewed
scagnostic value lower than the original, which is consistent with how the skewed scagnostic is
weighted.

A similar issue arises in the analysis of the convex scagnostic - as n increases, the difference
between the original and binned scagnostic values increases and eventually no difference exceeds
0, indicating that the convex scagnostic in the binned configuration is larger than in the original
configuration. This is again consistent with the scaling applied to the convex scagnostic.

The next question to address then is if the scaling remedies the observed issues. Figure 10.2
illustrates the results of running the same experiment, but also applying the scaling function of
[119].

The weighting function does appear to compensate for the issues observed in both the skewed
scagnostic (with perhaps a slight over-compensation for higher values of n) and convex scagnostic.
The boxplots no longer have a downward or upward trend as sample size increases. However,
balanced against the downside of being unable to achieve the entire range of the scagnostic, it
may be prudent to examine a different solution for these scagnostic values.

183

Figure 10.1: The effect of binning on each of the nine scagnostic measures for point configurations
of increasing size. Note that no correction has been applied to these measures.

184

Figure 10.2: The effect of binning on each of the nine scagnostic measures for point configurations
of increasing size. Here, a correction has been applied to these measures where appropriate, as in
[119].

185

10.1.2 Proposing a New Alpha Value

First, consider the effect of sample size on the value of α used in the alpha hull. Recall that the
α value is computed as the 90th percentile of the minimal spanning tree edge length distribution
in the current scagnostic framework. The value of α itself is not necessarily important, but its
effect on the area and perimeter of the resulting alpha hull is. Figure 10.3 illustrates the difference
between the α values used in the computation of the alpha hull in the unbinned configuration and
the binned configuration as sample size increases, over various configuration types.

(a) (b) (c)

Figure 10.3: The average difference over several configurations. (a) the value of α, (b) the area
of the resulting alpha hull, (c) the perimeter of the resulting alpha hull. The alpha hull is in red,
and the convex hull is in blue.

As expected, as sample size increases, the difference between the α in the binned configuration
and the unbinned configuration increases as well. This isn’t necessarily problematic, nor is it
particularly surprising, since binning tends to group nearby points together, eliminating small
edges in the minimal spanning tree, while preserving most of the large edges. This leads to a
larger 90th percentile in the binned configuration as opposed to the unbinned configuration.

The difference in area and perimeter of the alpha and convex hulls between the original and
binned configurations is ultimately what is important. Beginning with the convex hull, from
Figure 10.3, the area and perimeter to not appear to be overly sensitive to binning. Indeed, the
change in area and perimeter are due mostly to the removal of outliers, not necessarily binning.
Next, from Figure 10.3 the difference in both the area and perimeter of the alpha hull increases
significantly as sample size increases - although in opposite directions. The area of the binned
configurations becomes larger as compared to the original, but the perimeter of the original
configuration increases compared to the binned configuration. The cause of this is illustrated in
Figure 10.4. Here, the alpha hull of the original configuration becomes increasingly overfit, with
more interior holes. This results in the decreased area that is observed, as well as the increased
perimeter.

186

Figure 10.4: Four quadratic configurations of size 500, 1000, 1500, and 2000. On top, the alpha
hull on the original configuration, and on bottom, the alpha hulls on the configuration binned using
the hexagonal binning approach of scagnostics.

For any sample size, the current α seems to overfit the alpha hull to the configuration. This
is especially evident in the original configuration, but also holds true for the binned configuration
as well. Consider the following value of α, which is similar to the one proposed in [74]

α =

√∑
i∈Ω

ei
n

where n is the number of points in the configuration, and the sum is over all those minimal
spanning tree edges in the set Ω = {e : q25 ≤ e ≤ q75}. That is, the sum is over all those edges
that are in the middle 50% of the minimal spanning tree edge length distribution. Due to the
square root, this α will tend to be larger than than the current value of α, but still decreases in n.
Figure 10.5 illustrates the same configurations as in Figure 10.4, but with an alpha hull computed
with the new proposal.

Over each of the sample sizes, the alpha hull between the two configurations is very similar
- and is actually comparable to a hull (i.e. very few, if any, interior holes) unlike the result of
the previous value of α. While it does include some extraneous points in the configuration, the
resulting shape is (in this case) still clearly a parabola, thus the new value of α continues to
capture the shape of the point configuration.

To confirm the the visual results of the experiment in Figure 10.5, consider repeating the
experiment of Figure 10.3. Figure 10.6 presents the difference in α, alpha hull and convex hull

187

Figure 10.5: The same configurations as in Figure 10.4, but with the alpha hull computed using
the newly proposed alpha value. The resulting alpha hulls contain fewer holes and discontinuities,
and represent a marked improvement over the previous proposal.

area, and alpha hull and convex hull perimeter between the original and binned configurations as
sample size increases, over varying configurations.

(a) (b) (c)

Figure 10.6: The average difference using the newly proposed value of α over several configurations.
(a) the value of α, (b) the area of the resulting alpha hull, (c) the perimeter of the resulting alpha
hull. Note that these images have been paced on the same scale as Figure 10.3 so they can be
compared directly. The alpha hull is in red, and the convex hull is in blue.

Noting that each of the images in Figure 10.6 is on the same scale as those in Figure 10.3,
the difference between the original and binned configurations has been greatly reduced using the

188

newly proposed α. In fact, the convex hull and alpha hull seem to be effected in a similar fashion,
decreasing at the same rate as the sample size increases.

The final step in confirming this result then, is to repeat the experiment of Figure 10.1, to
see if the newly proposed α value eliminates the need for scaling in the convex scagnostic. The
results are shown in Figure 10.7.

The newly proposed value of α appears to work as intended. Without scaling, the convex
scagnostic varies much less with sample size. This eliminates the need for scaling, which allows
the convex scagnostic to now achieve a full range of values in [0, 1].

An Additional Benefit - Improving Skinny

While it has not been explicitly addressed thus far, the skinny scagnostic is one which provides
some puzzling issues. In [120], the skinny scagnostic is introduced with the following description -
“the ratio of perimeter to area of a polygon measures, roughly, how skinny it is. We use a corrected
and normalized ratio so that a circle yields a value of 0, a square yields 0.12, and a skinny polygon
yields a value near one.” In contrast to this statement, however, is the performance of the skinny
scagnostic on some “near square” configurations. Consider Figure 10.8(a), which illustrates the
distribution of the skinny scagnostic over bivariate uniform distributions of size 500.

Using the current value of α, the skinny scagnostic does not seem to be working as described
in [120]. A bivariate uniform distribution, which bears a striking resemblance to a “square”, yields
unexpectedly high values of skinny. All of the observed skinny values are above 0.5, and the
average value over the experiment was 0.715. This is much too high for a configuration that
surely should not be considered skinny.

Instead, consider using the newly proposed value of α. The distribution of the skinny scagnostic
can be found in Figure 10.8(b). Using the newly proposed value of α, the skinny scagnostic now
identifies the bivariate uniform appropriately - it is, in fact, not skinny. All of the observed values
are below 0.25, and the average value of skinny over the experiment using the newly proposed
α was 0.122 - almost exactly what should be expected given the definition of skinny provided in
[120].

While the new value of α was not proposed with skinny in mind, it does help shore up one
additional issue with the underlying scagnostic framework.

10.1.3 Tree-based Binning as a Pre-Processing Step

As an aside to the analysis presented in Figure 10.1, recall that one of the goals of Chapter 3
was to establish a solid framework for scagnostics in more than two dimensions. As was shown in
Chapter 9, GapBin quickly became the best performing binning algorithm as dimension increased

189

Figure 10.7: The effect of binning on each of the nine scagnostic measures for point configurations
of increasing size. Here, the newly proposed value of α is used.

190

(a) (b)

Figure 10.8: (a) The distribution of the skinny scagnostic over 1000 simulated bivariate uniform
configurations of size 500 using the existing α value in the computation of the alpha hull. (b)
The distribution of the skinny scagnostic over the same configurations using the newly proposed
α value.

among those considered in terms of retention of probabilistic and geometric structure. It would
be beneficial then to explore the effects of this algorithm on the current scagnostic framework.

The exact same experiment from Figure 10.1 is performed using tree-based binning in place
of hexagonal binning. To ensure the two methods can be compared, the data are binned to the
exact same number of points using tree-based binning as were achieved during hexagonal binning.
The results are shown in Figure 10.9.

Of note is the similarity between Figure 10.9 as compared to Figure 10.7. Many of the scagnos-
tics are similar, regardless of binning method used - for instance, sparse, outlying, striated, stringy,
and monotonic seem to have similar distributions regardless of binning method used.

Next, consider the two problematic scagnostic measures, convex and skewed. Using tree-based
binning with the newly proposed value of α appears to have had the same effect on the convex
scagnostic as using hexagonal binning - namely that binning now has minimal affect on the convex
scagnostic as n increases.

The skewed scagnostic however, tells a slightly different story. While there is a clear upward
trend in the skewed scagnostic as n increases using hexagonal binning, the same trend is much more
subtle when tree-based binning is used. In fact, under tree based binning, the median difference
between the binned and non-binned configurations is only 0.014 (under hexagonal binning, the
same difference is 0.09!).

This result is actually corroborated by what was observed in the experiments of Chapter 9.
Recall that the tree-based binning algorithm better preserved the density of the point configuration
- keeping dense areas relatively dense in the binned configuration. This in turn preserves small

191

Figure 10.9: The effect of tree-based binning on each of the nine scagnostic measures for point
configurations of increasing size. Note that no correction has been applied to these measures, and
the newly proposed value of α has been used.

192

edge lengths in the minimal spanning tree, which increases the weight of the left tail to the right,
increasing the skewed scagnostic of the binned configuration.

In total then, nothing is lost by converting from hexagonal binning to tree-based binning in
the scagnostic framework, and in fact the performance of the skewed scagnostic is significantly
improved, essentially eliminating the need to scale the skewed scagnostic. This switch to tree-
based binning further progresses the underlying scagnostic framework to supporting scagnostics
in higher dimensions.

10.2 New Measures

While the original nine scagnostics do capture a wide array of interesting structure, there is plenty
of other interesting structure that they do not distinguish between. This section will propose two
new scagnostics, grid and symmetry, and also discuss why these scagnostics are of interest by
examining common data configurations that exhibit the qualities measured.

10.2.1 The Grid Scagnostic

Consider a set of points lying on a perfect grid, such as the one in Figure 10.10. The scagnostics
computed on various grid sizes are also shown in Figure 10.10.

Scagnostic 5x5 10x10 20x20
Outlying 0.000 0.000 0.003
Skewed 0.499 0.280 0.534
Clumpy 0.002 0.003 0.002
Sparse 0.201 0.100 0.043

Striated 0.029 0.008 0.011
Convex 0.000 0.098 0.086
Skinny 1.000 0.115 0.110
Stringy 0.356 0.327 0.289

Monotonic 0.000 0.000 0.000

Figure 10.10: An example of what would be considered a perfect grid - the measured angle between
adjacent (and nearest neighbour) points being either 90 or 180 degrees. Scagnostics are computed
on 5x5, 10x10, and 20x20 grids.

Looking at the scagnostic measures, none of them appear to be indicative of a point configura-
tion that contains any type of structure - let alone the rigid structure of a perfect grid. Consider
then, a new scagnostic aimed to identify grid and near-grid structures in a point configuration.

193

A key structure of a grid is the presence of right angles and straight lines. As such, consider a
scagnostic that measures the number of 90 and 180 degree angles formed by a point and its two
nearest neighbours.

cgrid =

∑n
i=1 I(θeijeik = {90, 180})

n

where j and k are the nearest neighbours to node i, eij, eik are the node length between them, and
n is the number of points in the configuration. Note that this formulation will allow for a grid like
structure to be identified even if it is not orthogonal to the x-y axis. Clearly, simply considering
perfectly formed 90 and 180 degree angles will only capture perfect grids. It is not unreasonable
to want to capture grid-like structures as well. As such, the scagnostic above is modified to count
all angles that are within some range (call it α) of 90 and 180 degrees

cgrid =

∑n
i=1 I(θeijeik ∈ {90± α, 180− α})

n

To test the grid scagnostic, consider computing it on a series of plots beginning with a perfect
grid and jittering it by noise of increasing variability. For the next example, consider jittering the
perfect grid by Uniform[-a,a] random variable, where the variable a will take on the values

a = (.01, .02, .03, .04, .05, .06, .07, .08, .09, .1)

To conduct the experiment, each configuration is computed 100 times, and the grid scagnostic
is calculated with α = 20 for each. As a point of comparison, a uniform sample from the unit
square is also provided. Figure 10.11 illustrates the result of this experiment.

As the perfect grid is jittered by more variable noise, the grid scagnostic tends towards the
uniform distribution, which exhibits a low value of the scagnostic. Note that the value of α = 20
used in this experiment is relatively generous. Using a more conservative α value may lead to a
grid scagnostic that tends to zero faster than what was observed.

In real world data, what types of data conform to a grid, or grid like structure, that would be
considered interesting (or not!)? Running the grid scagnostic over the “scagnostic universe” data
used in Chapter 2, Figure 10.12 illustrates some of the images that score highest on the scagnostic.

The data are all, in fact, categorical data. In many applications, identifying data that are
categorical could be of interest. Alternatively, it may beneficial to be able to ignore categorical
data in the search of more interesting configurations. In either case, the grid scagnostic provides
flexibility to the researcher in their analysis.

194

Figure 10.11: The grid scagnostic computed on a series of grids that are increasingly jittered from
a perfect grid.

Figure 10.12: Configurations from the scagnostic universe data set that score highly on the grid
scagnostic. Unsurprisingly, these data represent categorical data.

10.2.2 The Symmetry Scagnostic

In Section 3.3, the inability of the current scagnostic framework to detect the difference between
perfectly symmetric and perfectly asymmetric point configurations was briefly explored. For
reference, both the perfectly symmetric and asymmetric configurations are reproduced in Figure
10.13. Note that the data are scaled to be in the unit square.

The symmetry scagnostic differs from the typical scagnostic measures seen thus far as it does
not rely on a geometric graph object. Instead, it takes the form of a formal test of hypothesis

195

Figure 10.13: An example of a perfectly symmetric and perfectly asymmetric configuration (along
the main diagonal).

H0 : The data are symmetric

HA : The data are not symmetric

Note that symmetry can be tested both on the main diagonal (along the line y = x), as well
as along the off diagonal (along the line y = 1− x), illustrated in Figure 10.14.

(a) (b) (c)

Figure 10.14: (a) Illustration of main diagonal symmetry. (b) Illustration of off diagonal sym-
metry. (c) An example showing how triangles are compared when main diagonal symmetry is of
interest.

For the sake of clarity, the symmetry scagnostic will be discussed in terms of the main diagonal
only, with the off diagonal being completely analogous. The hypothesis of symmetry is tested by
first subdividing the data into equal sized triangles, and then comparing triangles that would

196

overlap if the data were “folded” over the main diagonal. Figure 10.14 illustrates these concepts.
Here, the main diagonal is highlighted red, and the two highlighted triangles would be compared
during the computation of the scagnostic.

A Chi-square test can be performed to test the proposed hypothesis. Under the null hypothesis
(being the data are perfectly symmetric), the expectation is that the lower half of the main diagonal
would contain the same number of points as the upper half. Then, the Chi-square test statistic
can be written as:

x =

p∑
i=1

(Observed− Expected)2

Expected

=

p∑
i=1

((ui + li)− (2ui))
2

2ui

=

p∑
i=1

(ui + li − 2ui)
2

2ui

=

p∑
i=1

(li − ui)2

2ui

where p is the number of triangles in the upper half of the configuration, and ui and li are the
number of points in the ith upper triangle and the corresponding lower triangle. Considering only
the triangles that actively contain points (so as to not inflate the test statistic), the degrees of
freedom for this test can be computed as

q = d.f. under full model− d.f. under reduced model− number of empty triangle pairs

= (Total Number of Triangles− 1)− (Number of Triangles above main diagonal - 1)

− number of empty triangle pairs

The test statistic, and therefore the symmetry measure, is then

csymmetry = 1− P (X 2
q ≤ x)

As a proof of concept, consider computing the newly proposed symmetry scagnostic on both
the perfectly symmetric and asymmetric configurations in Figure 10.13. Computed along the
main diagonal, the symmetry measure for the perfectly symmetric configuration is 1.00, while for

197

the asymmetric configuration it is 0.00. Along the off-diagonal, the symmetry measures are 0.898
and 0.000 respectively, which is to be expected given the configurations.

As a simple application, consider evaluating the symmetry of a pair of (standardized) stock
returns along the main diagonal. As mentioned previously, this is important in applications such
as fitting a symmetric copula to the data [30]. Figure 10.15 illustrates four examples that illustrate
varying levels of symmetry in the data.

0.266 0.483 0.875 1.00

Figure 10.15: Four examples of bivariate stock data representing varying levels of the newly pro-
posed symmetry scagnostic. The calculated value of the newly proposed symmetry scagnostic is
shown underneath each image.

The symmetry scagnostic performs well overall, correctly capturing increasing symmetry in
the configurations. The measure seems to be sensitive to clusters of points, so symmetry close to
the main diagonal seems to play a pivotal role (in these examples) in labeling the configurations
as being symmetric.

10.3 Configurations from MST Edge Length Distributions

In Section 4.4, the idea of generating a configuration from a simulated minimal spanning tree
was proposed. Recall that the minimal spanning tree controls several scagnostic measures, as it
determines the degree of each node (controlling the stringy scagnostic), the size of the largest
edges (controlling both the outlying and sparse scagnostics), the RUNT dendrogram (controlling
the clumpy scagnostic), and the distribution of the edge lengths in the minimal spanning tree can
be simulated directly (controlling skewness). In addition, the guided random search algorithm
proposed in Section 4.3 directly controls the angles between minimal spanning tree nodes, which
indirectly controls the striated scagnostic.

The guided random search algorithm generates a point configuration via the edges of a minimal
spanning tree. To create a configuration with a given scagnostic value then, a minimal spanning
tree with the desired edge length distribution must first be simulated. This will be the topic
of Section 10.3.2-10.3.4, where simulation of the required minimal spanning tree edge length

198

distribution is discussed.

10.3.1 Generating a General Minimal Spanning Tree

The generality of the guided random search algorithm allows a configuration to be computed for
any randomly simulated minimal spanning tree, with one slight adjustment. Once the distances
of a minimal spanning tree have been simulated, in addition to proposing the angle at which the
point will be placed from the parent node, the parent node also needs to be proposed. This is done
easily by simply choosing the parent node from the nodes already placed in the configuration.

The only restriction to simulating a minimal spanning tree is to ensure that all distances are
non-negative. To generate a configuration containing n observations, one need only simulate n−1
non-negative distances. For instance, consider generating 99 minimal spanning tree edges (result-
ing in a configuration with 100 points), from an Exponential(1) distribution (histogram of edge
lengths can be found in Figure 10.16). Using these edge lengths and the slightly modified guided
random search algorithm, Figure 10.16 illustrates a configuration with the simulated minimal
spanning tree.

Figure 10.16: A minimal spanning tree edge length distribution and the corresponding configuration
created using the modified guided random search algorithm.

10.3.2 Controlling Skewness

Recall that the (raw) skewed scagnostic is computed as

qskew =
q90 − q50

q90 − q10

199

implying that edge length distributions with heavy right tails (i.e. q90 >> q50 and q90 >>> q10)
will have a large value of the skewed scagnostic. For example, Figure 10.17 illustrates a heavily
right skewed edge length distribution (with a skewed value of 0.85), and a configuration created
using the guided random search algorithm. As has been noted previously, these configurations
don’t appear to be particularly interesting.

Figure 10.17: A minimal spanning tree edge length distribution and the corresponding configuration
for a high skew configuration created using the modified guided random search algorithm.

The original motivation for the guided random search algorithm was to produce configurations
with a low value of the skewed scagnostic. This would equate to minimal spanning tree edge length
distributions that are heavily left skewed (i.e. q90 ≈ q50). Figure 10.18 provides an example of
such an edge length distribution (with a raw skewed value 0.15), as well as a configuration created
using the guided random search algorithm.

Figure 10.18: A minimal spanning tree edge length distribution and the corresponding configuration
created for a low skew edge length distribution using the modified guided random search algorithm.

This low skewness configuration looks quite regular, in that the points seem to be very evenly
spread. That is, there is very little overstriking occurring in the configuration. If it is compared

200

to a uniform configuration, the regularity of the configuration may be worth noting should it
occur in a data set - implying that low values of skewness may indeed be interesting and worth
investigating should they occur.

Using a mixture of probability distributions, an edge length distribution with a specific (raw)
skewed value can be simulated. Beginning with the two parent distributions in Figure 10.19, with
skewed values of 0.84 and 0.15 respectively, configurations with a raw skewed value in [.05,.93] can
be achieved by creating minimal spanning tree edge length distributions as a mixture of the two
parent distributions, as illustrated in Figure 10.19. This is, of course, just one example of a mixture
distribution that could be used to create edge length distributions with varying levels of skewness
- more extreme distributions would lead to more extreme ranges of the skewed distribution.

(a) (b)

(c)

Figure 10.19: (a) & (b) The two parent distributions mixed to achieve varying values of the skewed
scagnostic. (c) The varying levels of skewness achieved by mixing the two parent distributions.

201

10.3.3 Controlling Outlying

The outlying scagnostic is computed as a percentage of those minimal spanning tree edge lengths
flagged as outliers. Recall that an outlier is any edge length greater than

q75 + 1.5 ∗ (q75 − q25)

Figure 10.20 illustrates the edge length distribution and configuration produced using the
guided random search algorithm for a configuration with a high value of outlying. As was pointed
out earlier, configurations with a high outlying scagnostic tend to be interesting - points that
deviate significantly from the overall trend in a configuration tend to warrant closer inspection.

Figure 10.20: A minimal spanning tree edge length distribution and configuration produced using
the modified guided random search algorithm for a configuration with an outlying value of 1.

Conversely, a low value of outlying can be easily achieved by having a relatively flat edge length
distribution. For instance, the distribution in Figure 10.21 (and corresponding configuration)
yields an outlying value of 0.

10.3.4 Controlling Stringy

Stringy is one of the few scagnostics that can be controlled that does not depend on the distances
in the minimal spanning tree. Instead, it is based on the degree of the nodes in the minimal
spanning tree

cstringy =
|V 2|

|V | − |V 1|

202

Figure 10.21: A minimal spanning tree edge length distribution and configuration produced using
the modified guided random search algorithm for a configuration with an outlying value of 0.00.

The way in which a configuration is created to have a specific level of stringy is by measuring the
current stringy value based on the points already placed in the configuration, and then executing
the following simple decision when placing the next point

IF Current Stringy - Desired Stringy > tolerance

Decrease stringy by choosing new parent from nodes with degree = 2

ELSE IF Current Stringy > Desired Stringy

Choose new parent randomly from placed nodes

ELSE

Increase stringy by choosing new parent from nodes with degree = 1

END

The only way to actively increase the stringy scagnostic is by turning a node of degree one into
a node of degree two (which simultaneously increases both the numerator and denominator of the
stringy scagnostic). This is done if the current measure of stringy is below the desired level of
stringy. Stringy decreases if a node of degree two or more is increased to a node of higher degree.
This is done if the difference between current stringy and desired stringy is beyond a certain
threshold. Finally, by randomly choosing a node if the current stringiness of the configuration
is close to that desired, the configuration is allowed to evolve naturally, while only curating the
configuration if stringiness gets two far away from the desired target.

The configurations in Figure 10.22 show randomly generated configurations with varying levels
of stringy.

203

Figure 10.22: Three configurations created with the guided random search algorithm with increasing
levels of stringiness.

10.3.5 Configurations using Restricted Angle Subsets

Recall that when placing a new point in the configuration, the modified guided random search
algorithm proposes a parent node, and then proposes an angle (i.e. a direction on the unit n-
sphere) for the position of this point. A simple way to create interesting structure then, is to
restrict the subset of angles that can be proposed.

For instance, instead of proposing angles in [0, 2π], one could restrict the proposed angles to
be in [0, π

2
], which would lead to configurations such as those in Figure 10.23.

Figure 10.23: Three configurations created with the guided random search algorithm with an angle
set restricted to [0, π

2
]. Note that varying the underlying edge length distribution results in varying

ranges in the configurations.

Instead of fully restricting the subset, instead consider a mixture of distributions. As an
example, consider generating angles uniformly over [π

4
, π

3
] 67% of the time, and from uniformly

204

over [0, 2π] 33% of the time. Figure 10.24 illustrates three examples.

Figure 10.24: Three configurations created with the guided random search algorithm with angle sets
restricted to [π

4
, π

3
] 67% of the time, and [0, 2π] 33% of the time. Note that varying the underlying

edge length distribution results in varying ranges in the configurations.

This could be easily extended to any distribution of angles. The interest in controlling angles
is that it indirectly controls certain scagnostic measures. Consider the simple experiment of
increasingly restricting the angle available for the guided random search algorithm by increasing
a value of α such that the angles available include [α, 3π

4
− α]. That is, the subset of angles is

continually restricted to a smaller and smaller subset, forcing the guided random search algorithm
to create straight lines in the data set, theoretically increasing the amount of measured striation.
The results of such an experiment are shown in Figure 10.25.

Figure 10.25: The effect of restricting the subset of available angles in the guided random search
algorithm. The more restricted the subset of angles, the more straight lines (and hence striation)
is present in the configuration produced by the guided random search algorithm. The line in the
image has been fit using LOESS.

205

10.4 Future Work

The concept of summarizing a configuration numerically using inherent structure is quite an
appealing concept. The current implementation serves as a great base from which to build. This
section will briefly discuss some future work projects that would greatly improve the scagnostics
framework.

10.4.1 A Modular Framework

The current iteration of scagnostics forces the user to compute every scagnostic measure on their
configuration. This means that, regardless of what they may be most interested in, they are
forced to compute every geometric graph object, and all of the scagnostic measures every time. A
preferable approach is to allow a prospective user to specify which scagnostics they are interested
in calculating, which would in turn mean computing only the graph objects required to compute
those scagnostics. For instance, if a user is only interested in the outlying scagnostic, only the
minimal spanning tree would be computed, as neither the alpha hull or convex hull are required
in the computation.

A theoretical call to compute only the outlying scagnostic could be

p <- scagnostics(X) +

outlying()

which is very similar to the type of call scene in ggplot [117]. The two approaches to computing
the outlying scagnostic are compared in Table 10.1.

In the modular framework, any work done would be stored in an R object (p in this case).
This way, if other scagnostic measures are of interest at a later time, the pre-processing steps and
geometric graphs already computed would not need to be repeated - the implementation would
simply compute the graphs and scagnostics required that have not been already computed. For
example,

p + convex()

would need to compute only the convex and alpha hulls, and return the convex scagnostic.

Computing scagnostics modularly has two additional benefits. First, it allows the implementa-
tion to be made more general, allowing for custom scagnostics to be added. For instance, suppose
a user was interested in the mean edge length of the minimal spanning tree. Defining a function
such as

206

Operation Current Implementation Modular Implementation
1 Scale Scale
2 Hexagonal Binning Hexagonal Binning
3 Compute Distance Matrix Compute Distance Matrix
4 Compute MST Compute MST
5 Identify and Remove Outliers Identify and Remove Outliers
6 Compute Outlying Compute Outlying
7 Re-compute MST
8 Compute Alpha and Convex Hulls
9 Compute RUNT Graph
10 Compute Remaining Scagnostics
11 Return Scagnostics Return Outlying

Table 10.1: A comparison of the steps needed to produce the outlying scagnostic in the original
implementation of scagnostics (left) and the newly proposed modular scagnostic implementation.

mst.mean <- function(...){

mean(mst@edges)

}

which takes the minimal spanning tree object stored in p, and returns the mean edge length of
the minimal spanning tree with the following call

p + mst.mean()

This new functionality is greatly beneficial to those users who have a specific structure they
are chasing that is not currently captured by the scagnostic measures.

Additionally, computing scagnostics individually also opens the door to the addition of new
scagnostics to the existing framework. By simply adding new scagnostics and computing them
all each and every time, the computational complexity of the algorithm continues to increase.
Modular scagnostics also opens the door to the computation of additional geometric objects
(such as the k-nearest neighbour graph) that perhaps are only required for one or two specialty
scagnostics and need not be computed every time.

10.4.2 Scagnostics in Higher Dimensions

Perhaps the largest hindrance in the current scagnostics framework is the limitation to two di-
mensional configurations. With the dimension of data ever increasing, combined with the ability

207

to effectively visualize data in these higher dimensions with tools such as Loon [115], the ability
to only identify structure in two dimensions is severely limiting.

Existing work has been done in this field, namely in [41], but there is plenty of work that could
be done to improve scagnostics in not only three dimensions, but also in higher dimensions.

While all of the geometric graphs used in defining scagnostics generalize in a straight-forward
fashion to high-dimensional space, consideration for whether or not there are natural extensions
of the measures on these graphs in high dimensional space needs to be taken into account. For
instance, recall that the striated scagnostic considers angles between adjacent edges in the minimal
spanning tree. In their implementation in three dimensional space, Fu & Oldford [41] consider
not only angles between adjacent edges, but also angles between adjacent planes (formed by three
adjacent edges). In doing so, the concept of striation is extended from two dimensions to three
dimensions by considering striation that occurs in three dimensional space, in addition to the
striation that occurs in two dimensional space. What was not explored, however, was the actual
types of configurations that may score highly on this scagnostic and if they represent interesting
structure.

Finally, there are some current scagnostics for which a straight-forward generalization does
not exist. For instance, consider the difficulty of generalizing the monotonic scagnostic. In two
dimensions, it’s simply calculated as Spearman’s rank correlation. Unfortunately, this correlation
does not generalize to three dimensions in a straight forward fashion. [41] considered calculat-
ing the pairwise partial Spearman’s ρ correlations, and taking the largest value. For instance,
calculating the partial correlation between X & Y, conditional on Z, we have

ρXY ·Z =
ρXY − ρXZρY Z√
1− ρ2

XY

√
1− ρ2

Y Z

where ρ∗∗ represent Spearman’s ρ between the specified variables. The monotonic scagnostic is
then

cmonotonic = max(ρ2
XZ·Y , ρ

2
Y Z·X , ρ

2
XY ·Z)

However, looking at conditional two-dimensional correlations may not be representative of
monotonicity in three dimensions, for example if X & Y are highly correlated, but X & Z and
Y & Z are not. A new proposal will need to be made that better captures monotonicity in high
dimensions.

These issues represent just some of the difficulties of properly generalizing the scagnostic frame-
work to higher dimensional space. More importantly, however, is having a solid two-dimensional
base on which to stand before generalizing to even three dimensions is feasible. Several issues have
been identified, with proposed solutions, within this thesis, representing a first step in solidifying
an appropriate two-dimensional base for which scagnostics can be generalized.

208

References

[1] Oguz Akbilgic, Hamparsum Bozdogan, and M Erdal Balaban. A novel hybrid RBF neural
networks model as a forecaster. Statistics and Computing, 24(3):365–375, 2014.

[2] Abdo Y Alfakih, Amir Khandani, and Henry Wolkowicz. Solving Euclidean distance ma-
trix completion problems via semidefinite programming. Computational optimization and
applications, 12(1-3):13–30, 1999.

[3] Babak Alipanahi Ramandi. New approaches to protein NMR automation. PhD thesis,
University of Waterloo, 2011.

[4] Shun-ichi Amari, Andrzej Cichocki, and Howard Hua Yang. A new learning algorithm
for blind signal separation. In Advances in neural information processing systems, pages
757–763, 1996.

[5] E Anderson. The irises of the Gaspe Peninsula. Bulletin of the American Iris Society,
59:2–5, 1935.

[6] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and
Christian E Elger. Indications of nonlinear deterministic and finite-dimensional structures
in time series of brain electrical activity: Dependence on recording region and brain state.
Physical Review E, 64(6):061907, 2001.

[7] Douglas Bates and Martin Maechler. Matrix: Sparse and Dense Matrix Classes and Methods,
2015. R package version 1.2-2.

[8] Stephen D Bay. Multivariate discretization for set mining. Knowledge and Information
Systems, 3(4):491–512, 2001.

[9] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. In NIPS, volume 14, pages 585–591, 2001.

[10] Marc Boullé. MODL: a Bayes optimal discretization method for continuous attributes.
Machine Learning, 65(1):131–165, 2006.

209

[11] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear
Matrix Inequalities in System and Control Theory, volume 15. Studies in Applied Mathe-
matics, SIAM, Philadelphia, Pennsylvania, 1994.

[12] Hector Corrada Bravo. Rcsdp: R Interface to the CSDP Semidefinite Programming Library,
2016. R package version 0.1.55.

[13] James P Bridge, Sean B Holden, and Lawrence C Paulson. Machine learning for first-order
theorem proving. Journal of Automated Reasoning, 53(2):141–172, 2014.

[14] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical Geometry of
Non-Rigid Shapes. Springer Science & Business Media, 2008.

[15] Krisztian Buza. Feedback prediction for blogs. In Data Analysis, Machine Learning and
Knowledge Discovery, pages 145–152. Springer, 2014.

[16] Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction
models of energy use of appliances in a low-energy house. Energy and Buildings, 140:81–97,
2017.

[17] Daniel B Carr. Looking at large data sets using binned data plots. In Computing and
Graphics in Statistics, pages 7–39. Springer-Verlag, New York, New York, 1991.

[18] Daniel B Carr, Richard J Littlefield, WL Nicholson, and JS Littlefield. Scatterplot matrix
techniques for large n. Journal of the American Statistical Association, 82(398):424–436,
1987.

[19] Jesús Cerquides and Ramon López De Màntaras. Proposal and empirical comparison of a
parallelizable distance-based discretization method. In KDD, pages 139–142, 1997.

[20] John Y. Ching, Andrew K. C. Wong, and Keith C. C. Chan. Class-dependent discretization
for inductive learning from continuous and mixed-mode data. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(7):641–651, 1995.

[21] Moody T Chu and Joel W Wright. The educational testing problem revisited. IMA Journal
of Numerical Analysis, 15(1):141–160, 1995.

[22] J Conway and N Sloane. Fast quantizing and decoding and algorithms for lattice quantizers
and codes. IEEE Transactions on Information Theory, 28(2):227–232, 1982.

[23] J Conway and N Sloane. Voronoi regions of lattices, second moments of polytopes, and
quantization. IEEE Transactions on Information Theory, 28(2):211–226, 1982.

[24] Andrea Coraddu, Luca Oneto, Aessandro Ghio, Stefano Savio, Davide Anguita, and Mas-
simo Figari. Machine learning approaches for improving condition-based maintenance of
naval propulsion plants. Proceedings of the Institution of Mechanical Engineers, Part M:
Journal of Engineering for the Maritime Environment, 230(1):136–153, 2016.

210

[25] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling
wine preferences by data mining from physicochemical properties. Decision Support Systems,
47(4):547–553, 2009.

[26] Paulo Cortez and Ańıbal de Jesus Raimundo Morais. A data mining approach to predict
forest fires using meteorological data. In J. Neves and J. Machado, editors, New Trends in
Artificial Intelligence, Proceedings of the 13th EPIA, pages 512–523. Portuguese Conference
on Artificial Intelligence, 2007.

[27] Tuan Nhon Dang and Leland Wilkinson. Transforming scagnostics to reveal hidden features.
IEEE Transactions on Visualization and Computer Graphics, 20(12):1624–1632, 2014.

[28] Aritra Dasgupta and Robert Kosara. Pargnostics: Screen-space metrics for parallel co-
ordinates. IEEE Transactions on Visualization and Computer Graphics, 16(6):1017–1026,
2010.

[29] S De Vito, E Massera, M Piga, L Martinotto, and G Di Francia. On field calibration of an
electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors
and Actuators B: Chemical, 129(2):750–757, 2008.

[30] Stefano Demarta and Alexander J McNeil. The t copula and related copulas. International
Statistical Review/Revue Internationale de Statistique, pages 111–129, 2005.

[31] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[32] Yichuan Ding, Nathan Krislock, Jiawei Qian, and Henry Wolkowicz. Sensor network local-
ization, Euclidean distance matrix completions, and graph realization. Optimization and
Engineering, 11(1):45–66, 2010.

[33] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proc. 2nd Int. Conf. Knowledge Discovery
and Data Mining, pages 226–231, 1996.

[34] Haw-ren Fang and Dianne P O’Leary. Euclidean distance matrix completion problems.
Optimization Methods and Software, 27(4-5):695–717, 2012.

[35] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes
for classification learning. In Proceedings of the 13th International Joint Conference on
Artificial Intelligence, pages 1022–1029. Morgan-Kaufmann, 1993.

[36] Elaine Fehrman, Awaz K Muhammad, Evgeny M Mirkes, Vincent Egan, and Alexander N
Gorban. The five factor model of personality and evaluation of drug consumption risk. In
Data Science, pages 231–242. Springer, 2017.

[37] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936.

211

[38] Roger Fletcher. A nonlinear programming problem in statistics (educational testing). SIAM
Journal on Scientific and Statistical Computing, 2(3):257–267, 1981.

[39] HA Friberg. Rmosek: The R-to-MOSEK optimization interface. R package version, 1(3),
2012.

[40] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical Learn-
ing, volume 1. Springer series in statistics Springer, Berlin, 2001.

[41] Lijie Fu. Implementation of three-dimensional scagnostics. Master’s thesis, University of
Waterloo, 2009.

[42] Salvador Garcia, Julian Luengo, José Antonio Sáez, Victoria Lopez, and Francisco Her-
rera. A survey of discretization techniques: taxonomy and empirical analysis in supervised
learning. IEEE Transactions on Knowledge and Data Engineering, 25(4):734–750, 2013.

[43] David Gil, Jose Luis Girela, Joaquin De Juan, M Jose Gomez-Torres, and Magnus Johns-
son. Predicting seminal quality with artificial intelligence methods. Expert Systems with
Applications, 39(16):12564–12573, 2012.

[44] W Glunt, TL Hayden, and M Raydan. Molecular conformations from distance matrices.
Journal of Computational Chemistry, 14(1):114–120, 1993.

[45] Michel X Goemans and David P Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM), 42(6):1115–1145, 1995.

[46] John C Gower and Garmt B Dijksterhuis. Procrustes Problems, volume 30. Oxford Univer-
sity Press on Demand, 2004.

[47] John C Gower and GJS Ross. Minimum spanning trees and single linkage cluster analysis.
Applied Statistics, pages 54–64, 1969.

[48] Daniel B Graham and Nigel M Allinson. Characterising virtual eigensignatures for general
purpose face recognition. In Face Recognition, pages 446–456. Springer, 1998.

[49] Peter Güntert. Automated NMR structure calculation with CYANA. Protein NMR Tech-
niques, pages 353–378, 2004.

[50] Peter Hall and Matt P Wand. On the accuracy of binned kernel density estimators. Journal
of Multivariate Analysis, 56(2):165–184, 1996.

[51] Timothy F Havel and Kurt Wüthrich. An evaluation of the combined use of nuclear magnetic
resonance and distance geometry for the determination of protein conformations in solution.
Journal of Molecular Biology, 182(2):281–294, 1985.

[52] Christoph Helmberg, Franz Rendl, Robert J Vanderbei, and Henry Wolkowicz. An interior-
point method for semidefinite programming. SIAM Journal on Optimization, 6(2):342–361,
1996.

212

[53] Bruce Hendrickson. The molecule problem: exploiting structure in global optimization.
SIAM Journal on Optimization, 5(4):835–857, 1995.

[54] Nicholas J Higham. Computing the nearest correlation matrix-a problem from finance. IMA
Journal of Numerical Analysis, 22(3):329–343, 2002.

[55] KM Ho and PD Scott. Zeta: A global method for discretization of continuous variables. In
3rd International Conference on Knowledge Discovery and Data Mining (KDD99), NewPort
Beach, USA, pages 191–194, 1997.

[56] Toby Dylan Hocking, Armand Joulin, Francis Bach, and Jean-Philippe Vert. Clusterpath
an algorithm for clustering using convex fusion penalties. In 28th International Conference
on Machine Learning, page 1, 2011.

[57] Heike Hofmann, Hadley Wickham, and Karen Kafadar. Letter-value plots: Boxplots for
large data. Journal of Computational and Graphical Statistics, 26(3):469–477, 2017.

[58] Lasse Holmström. The accuracy and the computational complexity of a multivariate binned
kernel density estimator. Journal of Multivariate Analysis, 72(2):264–309, 2000.

[59] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa, Nikolai F Rulkov, and Irene Rodriguez-
Lujan. Online decorrelation of humidity and temperature in chemical sensors for continuous
monitoring. Chemometrics and Intelligent Laboratory Systems, 157:169–176, 2016.

[60] Fritz John. Extremum problems with inequalities as subsidiary conditions. In Traces and
Emergence of Nonlinear Programming, pages 197–215. Springer-Verlag, 2014.

[61] Brian A Johnson and Kotaro Iizuka. Integrating openstreetmap crowdsourced data and
landsat time-series imagery for rapid land use/land cover (LULC) mapping: case study of
the laguna de bay area of the philippines. Applied Geography, 67:140–149, 2016.

[62] Charles R Johnson and Pablo Tarazaga. Connections between the real positive semidefinite
and distance matrix completion problems. Linear Algebra and its Applications, 223:375–391,
1995.

[63] Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer-Verlag, 1972.

[64] Randy Kerber. Chimerge: discretization of numeric attributes. In Proceedings of the tenth
national conference on Artificial intelligence, pages 123–128. Aaai Press, 1992.

[65] Brian J Kernohan, Robert A Gitzen, and Joshua J Millspaugh. Analysis of animal space
use and movements. In Radio Tracking and Animal Populations, pages 125–166. Elsevier,
2001.

[66] Nathan Krislock and Henry Wolkowicz. Explicit sensor network localization using semidefi-
nite representations and facial reductions. SIAM Journal on Optimization, 20(5):2679–2708,
2010.

213

[67] Nathan Krislock and Henry Wolkowicz. Euclidean distance matrices and applications. In
Miguel Anjos and Jean Lasserre, editors, Handbook on Semidefinite, Cone and Polynomial
Optimization: Theory, Algorithms, Software and Applications, volume 166 of International
Series in Operations Research & Management Science, chapter 30, pages 879–914. Springer
Science & Business Media, 2011.

[68] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[69] Maryann Lawlor. Small systems, big business. Signal Magazine, 2005.

[70] Xuan Liang, Tao Zou, Bin Guo, Shuo Li, Haozhe Zhang, Shuyi Zhang, Hui Huang, and
Song Xi Chen. Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC and
winter heating. Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 471(2182), 2015.

[71] RJ Lyon, BW Stappers, S Cooper, JM Brooke, and JD Knowles. Fifty years of pulsar
candidate selection: from simple filters to a new principled real-time classification approach.
Monthly Notices of the Royal Astronomical Society, 459(1):1104–1123, 2016.

[72] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson.
Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications, pages 88–97. ACM, 2002.

[73] Christopher D Manning, Hinrich Schütze, et al. Foundations of Statistical Natural Language
Processing, volume 2. MIT Press, 1999.

[74] David J Marchette. Random Graphs for Statistical Pattern Recognition. John Wiley & Sons,
2004.

[75] James Stephen Marron, Michael J Todd, and Jeongyoun Ahn. Distance-weighted discrimi-
nation. Journal of the American Statistical Association, 102(480):1267–1271, 2007.

[76] Marvin McNett and Geoffrey M Voelker. Access and mobility of wireless PDA users. ACM
SIGMOBILE Mobile Computing and Communications Review, 9(2):40–55, 2005.

[77] Sameep Mehta, Srinivasan Parthasarathy, and Hui Yang. Toward unsupervised correla-
tion preserving discretization. IEEE Transactions on Knowledge and Data Engineering,
17(9):1174–1185, 2005.

[78] Jorge J Moré and Zhijun Wu. Distance geometry optimization for protein structures. Journal
of Global Optimization, 15(3):219–234, 1999.

[79] Pedro J Moreno, Purdy P Ho, and Nuno Vasconcelos. A Kullback-Leibler divergence based
kernel for SVM classification in multimedia applications. In Advances in Neural Information
Processing Systems, pages 1385–1392, 2004.

214

[80] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications,
9(1):141–142, 1964.

[81] Yu E Nesterov and Michael J Todd. Self-scaled barriers and interior-point methods for
convex programming. Mathematics of Operations Research, 22(1):1–42, 1997.

[82] Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legen-
dre, Dan McGlinn, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos,
M. Henry H. Stevens, Eduard Szoecs, and Helene Wagner. vegan: Community Ecology
Package, 2017. R package version 2.4-3.

[83] Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.

[84] Emanuel Parzen. On estimation of a probability density function and mode. The Annals of
Mathematical Statistics, 33(3):1065–1076, 1962.

[85] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Trans-
actions of the Royal Society of London. A, 185:71–110, 1894.

[86] Bernhard Pfaff. cccp: cone constrained convex problems, 2015. R package version 0.2-4.

[87] Robert Clay Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36(6):1389–1401, 1957.

[88] Peter Radchenko and Gourab Mukherjee. Convex clustering via l1 fusion penalization.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2017.

[89] Adam Rahman and R Wayne Oldford. Euclidean distance matrix completion and point
configurations from the minimal spanning tree. SIAM Journal on Optimization, 28(1):528–
550, 2018.

[90] R. Rangarajan, R. Raich, and A. O. Hero. Euclidean matrix completion problems in tracking
and geo-localization. In 2008 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 5324–5327, March 2008.

[91] Murray Rosenblatt et al. Remarks on some nonparametric estimates of a density function.
The Annals of Mathematical Statistics, 27(3):832–837, 1956.

[92] Azriel Rosenfeld and Avinash Kak. Digital Picture Processing. Academic press, 1976.

[93] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[94] Jeffrey A. Ryan and Joshua M. Ulrich. quantmod: Quantitative Financial Modelling Frame-
work, 2017. R package version 0.4-9.

[95] Daniel V Samarov. The fast rodeo for local polynomial regression. Journal of Computational
and Graphical Statistics, 24(4):1034–1052, 2015.

215

[96] David W Scott. A note on choice of bivariate histogram bin shape. Journal of Official
Statistics, 4(1):47, 1988.

[97] Bernard W Silverman. Density Estimation for Statistics and Data Analysis, volume 26.
CRC press, 1986.

[98] Gregory E Sims, Se-Ran Jun, Guohong A Wu, and Sung-Hou Kim. Alignment-free genome
comparison with feature frequency profiles (ffp) and optimal resolutions. Proceedings of the
National Academy of Sciences, 106(8):2677–2682, 2009.

[99] Kirstine Smith. On the standard deviations of adjusted and interpolated values of an ob-
served polynomial function and its constants and the guidance they give towards a proper
choice of the distribution of observations. Biometrika, 12(1-2):1–85, 1918.

[100] W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning
tree of a sample. Journal of Classification, 20:25–47, 2003.

[101] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan Mainwaring,
and Deborah Estrin. Habitat monitoring with sensor networks. Communications of the
ACM, 47(6):34–40, 2004.

[102] Francis EH Tay and Lixiang Shen. A modified chi2 algorithm for discretization. IEEE
Transactions on Knowledge and Data Engineering, 14(3):666–670, 2002.

[103] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[104] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clus-
ters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

[105] Kim-Chuan Toh, Michael J Todd, and Reha H Tütüncü. SDPT3 - a Matlab software
package for semidefinite programming, version 1.3. Optimization Methods and Software,
11(1-4):545–581, 1999.

[106] Michael W Trosset. Applications of multidimensional scaling to molecular conformation.
1997.

[107] Michael W Trosset. Distance matrix completion by numerical optimization. Computational
Optimization and Applications, 17(1):11–22, 2000.

[108] Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy perfor-
mance of residential buildings using statistical machine learning tools. Energy and Buildings,
49:560–567, 2012.

[109] Pınar Tüfekci. Prediction of full load electrical power output of a base load operated com-
bined cycle power plant using machine learning methods. International Journal of Electrical
Power & Energy Systems, 60:126–140, 2014.

216

[110] John W Tukey and Paul A Tukey. Computer graphics and exploratory data analysis: An
introduction. In Proceedings of the Sixth Annual Conference and Exposition; Technical
Sessions, volume III, pages 773–785. National Computer Graphics Association, 1985.

[111] John W Tukey and Paul A Tukey. Computer graphics and exploratory data analysis: An
introduction. The Collected Works of John W. Tukey: Graphics: 1965-1985, 5:419, 1988.

[112] P Tukey and J Tukey. Graphic display of data sets in 3 or more dimensions. The Collected
Works of John Tukey, 5:189–288, 1988.

[113] Reha H Tütüncü, Kim-Chuan Toh, and Michael J Todd. Solving semidefinite-quadratic-
linear programs using SDPT3. Mathematical Programming, 95(2):189–217, 2003.

[114] Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant maximization with
linear matrix inequality constraints. SIAM journal on Matrix Analysis and Applications,
19(2):499–533, 1998.

[115] Adrian Waddell. Interactive visualization and exploration of high-dimensional data. PhD
thesis, University of Waterloo, 2016.

[116] Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics,
Series A, pages 359–372, 1964.

[117] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business
Media, 2009.

[118] Lee Wilkinson and Anushka Anand. scagnostics: compute scagnostics - scatterplot diagnos-
tics, 2012. R package version 0.2-4.

[119] Leland Wilkinson, Anushka Anand, and Robert L Grossman. Graph-theoretic scagnostics.
In INFOVIS, volume 5, page 21, 2005.

[120] Leland Wilkinson and Graham Wills. Scagnostics distributions. Journal of Computational
and Graphical Statistics, 17(2):473–491, 2008.

[121] Andrew KC Wong and David KY Chiu. Synthesizing statistical knowledge from incom-
plete mixed-mode data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(6):796–805, 1987.

[122] Kurt Wüthrich. Protein structure determination in solution by NMR spectroscopy. Journal
of Biological Chemistry, 265(36):22059–22062, 1990.

[123] Ying Yang and Geoffrey I Webb. Discretization for naive-Bayes learning: managing dis-
cretization bias and variance. Machine Learning, 74(1):39–74, 2009.

[124] I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks.
Cement and Concrete Research, 28(12):1797–1808, 1998.

217

[125] I-Cheng Yeh. Modeling slump flow of concrete using second-order regressions and artificial
neural networks. Cement and Concrete Composites, 29(6):474–480, 2007.

[126] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications,
36(2):2473–2480, 2009.

[127] I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting. Knowledge discovery on RFM model
using Bernoulli sequence. Expert Systems with Applications, 36(3):5866–5871, 2009.

[128] Fang Zhou, Q Claire, and Ross D King. Predicting the geographical origin of music. In 2014
IEEE International Conference on Data Mining (ICDM), pages 1115–1120. IEEE, 2014.

[129] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. LBFGS-B: Fortran subrou-
tines for large-scale bound constrained optimization. Report NAM-11, EECS Department,
Northwestern University, 1994.

[130] Zhisu Zhu and Yinyu Ye. Rdsdp: R Interface to DSDP Semidefinite Programming Library,
2016. R package version 1.0.4-2.

[131] Djamel A Zighed, Sabine Rabaséda, and Ricco Rakotomalala. FUSINTER: a method for
discretization of continuous attributes. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(03):307–326, 1998.

218

Appendices

219

Appendix A

Mathematical Proofs

A.1 Proof of Inverse Relationship between T and K

This statement is proven in two parts. First, any matrix D ∈ D−n is by definition negative
semidefinite on the space

{z ∈ Rn : zT1 = 0}

Then, applying the function T to this matrix results in

T (D) = − 1

2
PDP

For any x such that xT1 = 0, we therefore have

xTT (D)x = −1

2
xTPDPx

= −1

2
xT(I−H)D(I−H)x

= −1

2
xT(I− 11T

n
)D(I− 11T

n
)x

= −1

2
xTDx

which is positive semidefinite, and therefore

220

T (D) ∈ G+
n

To prove the converse case, for any G ∈ G+
n , applying the function K results in a symmetric

and hollow matrix by definition. Then, for any x such that xT1 = 0,

xTK(G)x = xT(1gT + g1T − 2G)x

= −2xTGx

Since G is positive semidefinite by definition, −2xTK(G)x is necessarily negative semidefinite,
and therefore

K(G) ∈ D−n

which completes the proof.

221

Appendix B

Scagnostic Universe Data Sets

The following data sets were used in the Scagnostics universe experiment of Chapter 2. All data
sets can be retrieved from the UCI Machine Learning Data Base [31]. Citations for data sets with
specific citation requirements are also present.

1. Abalone

2. Airfoil Self-Noise

3. Air Quality [29]

4. Appliance Energy Prediction [16]

5. Anuran Calls (MFCCs)

6. au2

7. au5

8. Auto MPG

9. Automobile

10. Banknote Authentication

11. Beijing PM2.5 Data [70]

12. BlogFeedback Data Set [15]

13. Blood Transfusion Service Center [127]

14. Breast Tissue

222

15. Breast Cancer Wisconsin (Prognostic)

16. Cardiotocography

17. Car Evaluation

18. Chess (King-Rook vs. King)

19. Cloud

20. Condition Based Maintenance of Naval Propulsion Plants [24]

21. Contraceptive Method Choice

22. Cover Type

23. Combined Cycle Power Plant [109]

24. Computer Hardware

25. Concrete Slump Test [125]

26. Concrete Compressive Strength [124]

27. Crowdsourced Mapping [61]

28. Dataset for Sensorless Drive Diagnosis

29. Default of Credit Card Clients [126]

30. Dermatology

31. Drug Consumption (quantified) [36]

32. Ecoli

33. Energy Efficiency [108]

34. Epileptic Seizure Recognition [6]

35. Fertility [43]

36. First-order Theorem Proving [13]

37. Forest Fires [26]

38. Gas Sensors for Home Activity Monitoring [59]

39. Geographical Original (sic) of Music [128]

40. Glass Identification

223

41. Haberman’s Survival

42. HTRU2 [71]

43. ILPD (Indian Liver Patient Dataset)

44. Istanbul Stock Exchange [1]

45. MAGIC Gamma Telescope

46. Physiochemical Properties of Protein Tertiary Structure

47. Statlog (Shuttle)

48. Spoken Arabic Digit

49. Wine Quality [25]

50. Yeast

224

Appendix C

Semidefinite Quadratic Linear
Programming in R - sdpt3r

Convex optimization is a well traversed field with far reaching applications. While perhaps un-
familiar to those in the statistical sciences, many problems important to statisticians can be
formulated as a convex optimization, perhaps the most well known of which would be the least
squares problem. More specifically, many problems in statistics can be formulated as a subset of
these convex optimization problems, known as conic linear optimization problems.

One such example would be the nearest correlation matrix problem [54], which was first con-
sidered when attempting to find correlations between stocks, where incomplete data on daily
stock returns are not unusual. Pairwise correlations are only computed when data is available for
both pairs of stocks under consideration, resulting in a correlation matrix that contains pairwise
correlations, but is not necessarily positive semidefinite - an approximate correlation matrix. The
goal is to then find the correlation matrix that is nearest to the approximate correlation matrix
in some way.

Other examples of problems that can be formulated in terms of a conic linear optimization
problem include D-optimal experimental design [99], classification using distance weighted dis-
crimination [75], minimum volume ellipsoids [60], and problems in educational testing [21].

Problems in related fields can also be solved, including finding the maximum cut (or maximum
k-cut) of a graph, finding the upper bound of the Shannon entropy of a graph, also known as the
Lovasz number [114], as well as problems in control theory, Toeplitz matrix approximation, and
Chebyshev approximation.

For the purpose of solving these conic linear optimization problems, we introduce the R pack-
age sdpt3r, an implementation of the MATLAB package SDPT3 [105]. While there are currently
functions in R available to solve some of the specific problems mentioned above - for instance the
function nearPD in the Matrix package by [7] solves the nearest correlation matrix problem - there

225

currently does not exist a general solver for conic linear optimization in R, making sdpt3r a novel
addition to the R library.

Of the R packages available to perform optimization, sdpt3r is the most general. The cccp
package [86] allows for linear and quadratic conic optimization, and the Rdsdp [130] & Rcsdp
[12] packages allow for semidefinite optimization, while the sdpt3r package allows for all of linear,
quadratic, and semidefinite conic optimization to be solved simultaneously (i.e., a problem with
any combination of semidefinite, quadratic, or linear cones can be solved). In addition, sdpt3r
allows for problems with log-barrier terms in the objective function to be solved. None of the
packages mentioned allow for this. This, of course, comes with the downside of potentially longer
run-times when using sdpt3r. While the other packages are optimized for their specific purpose,
the algorithm implemented in sdpt3r is more general. As such, a problem that can be formulated
as a straight-forward semidefinite conic optimization problem, for instance, may be solved faster
using Rdsdp. Other packages for optimization in R, such as Rmosek [39], require the purchase of
a commercial license for additional third party software.

In Sections C.1, C.2, and C.3 the mathematical formulation of the linear conic optimization
problem is discussed in greater detail, and three examples are introduced to explore the increasing
generality of the problem to be solved. Section C.4 discusses the R implementation of sdpt3r, and
the main function by which conic linear optimization problems are solved, sqlp, including the
required input, and the output generated. The same examples used in Section C.1 will be used to
demonstrate how a standard conic linear optimization problem can be converted to a form solvable
by sqlp. Section C.5 presents the classic form of several other well known problems that can be
solved using sdpt3r, as well as the helper functions available to convert them to the appropriate
form.

C.1 Conic Linear Optimization

At its simplest, a conic linear optimization problem has the following standard form [113]:

minimize
X

〈C, X〉
subject to

〈Ak, X〉 = bk, k = 1, ...,m
X ∈ K

(C.1)

where K is a cone. Generally, K is either a

� Semidefinite Cone - Sn = {X ∈ Rn×n : X � 0,Xij = Xji ∀ i 6= j}

� Quadratic Cone - Qn = {x = [x0; x̃] ∈ Rn : x0 ≥
√

x̃Tx̃}

226

� Linear Cone - Ln - non-negative orthant of Rn

Here, x̃ = [x1, . . . , xn−1], and 〈·,·〉 represents the standard inner product in the appropriate
space. In the semidefinite cone the inner product is 〈X, Y〉 = vec(X)Tvec(Y), where the operator
vec is the by-column vector version of the matrix X, that is, for the n×n matrix X = [xij], vec(X)

is the n2×1 vector [x11, x12, x13, . . . , x(n−1)n, xnn]T. Note that vec does not require a square matrix
in general.

While not inherently statistical, one of the simplest problems that can be formulated in terms
of a conic linear optimization problem is finding the maximum cut of a graph. Let G = [V,E]
be a graph with vertices V and edges E. A cut of the graph G is a partition of the vertices of G
into two disjoint subsets G1 = [V1,E1], G2 = [V2,E2], with V1 ∩V2 = ∅. The size of the cut is
defined to be the number of edges connecting the two subsets. The maximum cut is defined to be
the cut of a graph G whose size is at least as large as any other cut. For a weighted graph object,
we can also define the maximum cut to be the cut with weight at least as large as any other cut.

Finding the maximum cut is referred to as the Max-Cut Problem, and was one of the first
problems found to be NP-complete, and is also one of the 21 algorithms on Karp’s 21 NP-complete
problems [63]. The Max-Cut problem is also known to be APX hard [83], meaning in addition to
there being no polynomial time solution, there is also no polynomial time approximation.

Using the semidefinite programming approximation formulation of [45], the Max-Cut problem
can be approximated to within an approximation constant. For a weighted adjacency matrix B,
the objective function can be stated as

minimize
X

〈C,X〉
subject to

diag(X) = 1
X ∈ Sn

where Sn is the cone of symmetric positive semidefinite matrices of size n, and C = −(diag(B1)−
B)/4. Here, we define diag(a) for an n × 1 vector a to be the diagonal matrix A = [Aij] of size
n× n with Aii = ai, i = 1, . . . , n. For a matrix X, diag(X) extracts the diagonal elements from
X and places them in a column-vector.

To see that the Max-Cut problem is a conic linear optimization problem it needs to be written
in the same form as Equation (C.1). The objective function is already in a form identical to that
of Equation (C.1), with minimization occurring over X of its inner product with a constant matrix
C = −(diag(B1) − B)/4. There are n equality constraints of the form xkk = 1, k = 1, ..., n,
where xkk is the kth diagonal element of X, and bk = 1 in Equation (C.1). To represent this in
the form 〈Ak, X〉 = xkk, take Ak to be

227

Ak = [aij] =

{
1, i = j = k

0, otherwise

Now 〈Ak, X〉 = vec(Ak)
Tvec(X) = xkk as required, and the Max-Cut problem is specified as

a conic linear optimization problem.

Allowing for optimization to occur over only one variable at a time is quite restrictive, as only
a small number of problems can be formulated in this form. Allowing optimization to occur over
multiple variables simultaneously would allow for a broader range of problems to be solved.

C.2 A Separable Set of Variables

The conic linear optimization problem actually covers a much wider class of problems than those
expressible as in Equation (C.1). Variables can be separated into those which are constrained
to a semidefinite cone, S, a quadratic cone, Q, or a linear cone, L. The objective function is a
sum of the corresponding inner products of each set of variables. The linear constraint is simply
a sum of variables of linear functions of each set. This more general version of the conic linear
optimization problem is

minimize
Xs,Xq ,Xl

∑ns

j=1〈Cs
j , Xs

j〉+
∑nq

i=1〈C
q
i , Xq

i 〉+ 〈Cl, Xl〉

subject to ∑ns

j=1 (As
j)

Tsvec(Xs
j) +

∑nq

i=1 (Aq
i)

TXq
i + (Al)

T
Xl = b

Xs
j ∈ Ssj ∀ j

Xq
i ∈ Qqi ∀ i

(C.2)

Here, svec takes the upper triangular elements of a matrix (including the diagonal) in a column-
wise fashion and vectorizes them. In general for an n× p matrix X = [xij], svec(X) will have the

following form [x11, x12, x22, x13, ..., x(n−1)p, xnp]
T. Recall that matrices in S are symmetric, so it is

sufficient to constrain only the upper triangular elements of the matrix Xs. For this formulation,
As
j , Aq

i and Al are the constraint matrices of the appropriate size.

Some important problems in statistics can be formulated to fit this form of the optimization
problem.

228

C.2.1 The Nearest Correlation Matrix

First addressed by [54] in dealing with correlations between stock prices, difficulty arises when
data is not available for all stocks on each day, which is unfortunately a common occurrence.
To help address this situation, correlations are calculated for pairs of stocks only when data is
available for both stocks on any given day. The resulting correlation matrix is only approximate
in that it is not necessarily positive semidefinite.

This problem was cast by [54] as

minimize
X

||R−X||F
subject to

diag(X) = 1
X ∈ Sn

where R is the approximate correlation matrix and || · ||F denotes the Frobenius norm. Unfortu-
nately, the Frobenius norm in the objective function prevents the problem being formatted as a
conic linear optimization problem.

Since the matrix X is constrained to have unit diagonal and be symmetric, and the matrix R
is an approximate correlation matrix, meaning it will also have unit diagonal and be symmetric,
we can re-write the objective function as

||R−X||F = 2 ∗ ||svec(R)− svec(X)|| = 2 ∗ ||e||

Now, introduce a variable e0 such that e0 ≥ ||e||, and define e∗ = [e0; e]. The vector e∗ is now
restricted to be in the quadratic cone Qn(n+1)/2+1. This work leads to the formulation of [105]

minimize
e∗, X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e∗

diag(X) = 1
X ∈ Sn
e∗ ∈ Qn(n+1)/2+1

Here, [X,Y] denotes column binding of the two matrices Xn×p and Yn×m to form a matrix of
size n × (p + m). By minimizing e0, we indirectly minimize e = svec(R) − svec(X), since recall
we have e0 ≥ ||e||, which is the goal of the original objective function.

To see this as a conic linear optimization problem, notice that e0 can be written as 〈Cq, Xq〉

229

by letting Cq = [1; 0n(n+1)/2] and Xq = e∗. Since the matrix X (i.e., Xs) does not appear in the
objective function, the matrix Cs is an n× n matrix of zeros.

Re-writing the first constraint as

svec(X) + [0, In(n+1)/2] e∗ = svec(R)

we can easily define the constraint matrices and right hand side of the first constraint as

As
1 = In(n+1)/2

Aq
1 = [0, In(n+1)/2]

b1 = svec(R)

The second constraint is identical to the constraint from the Max-Cut problem, where each
diagonal element of X is constrained to be equal to 1. Define b2 = 1, and for the kth diagonal
element of X, define the matrix Ak as

Ak = [aij] =

{
1, i = j = k

0, otherwise

yielding 〈Ak,X〉 = xkk. To write this as (As
2)TXs, define

As
2 = [svec(A1), ..., svec(An)]

Since e∗ does not appear in the second constraint, Aq
2 = 0n(n+1)/2+1.

The final step is to combine the individual constraint matrices from each constraint to form
one constraint matrix for each variable, which is done by defining As = [As

1, As
2], Aq = [Aq

1, Aq
2].

We also concatenate both right hand side vectors to form a single vector by defining b = [b1; b2].
Here, the notation [X; Y] is used to denote two matrices Xp×m and Yq×m bound vertically to
form a matrix of size (p+ q)×m. With this, the nearest correlation matrix problem is written as
a conic linear optimization.

C.3 Semidefinite Quadratic Linear Programming

While Equation (C.2) allows for additional variables to be present, it can be made more general
still to allow even more problems to be solved. We will refer to this general form as a semidefinite
quadratic linear programming (SQLP) problem.

230

The first generality afforded by an SQLP is the addition of an unconstrained variable Xu,
which, as the name suggests, is not bound to a cone, but instead, it is “constrained” to the reals in
the appropriate dimension. The second generalization is to allow for what are known as log-barrier
terms to exist in the objective function. In general, a barrier function in an optimization problem
is a term that approaches infinity as the point approaches the boundary of the feasible region. As
we will see, these log-barrier terms appear as log terms in the objective function.

Recall that for any linear optimization problem, there exists two formulations - the primal for-
mulation and the dual formulation. For the purposes of a semidefinite quadratic linear program-
ming problem, the primal problem will always be defined as a minimization, and the associated
dual problem will therefore be a maximization

C.3.1 The Primal Problem

The primal formulation of the SQLP problem is

minimize
Xs

j ,X
q
i ,X

l,Xu

∑ns

j=1[〈Cs
j , Xs

j〉 − vsj log det Xs
j] +

∑nq

i=1[〈Cq
i , Xq

i 〉 − vqi log γ(Xq
i)]

+ 〈Cl, Xl〉 −
∑nl

k=1 vlk log Xl
k + 〈Cu, Xu〉

subject to ∑ns

j=1 As
j(X

s
j) +

∑nq

i=1 Aq
iX

q
i + AlXl + AuXu = b

Xs
j ∈ Ssj ∀ j

Xq
i ∈ Qqi ∀ i

Xl ∈ Lnl

Xu ∈ Rnu

(C.3)

For each j, Cs
j and Xs

j are symmetric matrices of dimension sj, restricted to the cone of positive
semidefinite matrices of the same dimension. Similarly, for all i, Cq

i and Xq
i are real vectors of

dimension qi, restricted to the the quadratic cone of dimension qi. For a vector u = [u0; ũ] in a
second order cone, define γ(u) =

√
u2

0 − ũTũ. Finally, Cl and Xl are vectors of dimension nl,
restricted to linear cone of the same dimension, and Cu and Xu are unrestricted real vectors of
dimension nu.

As before, the matrices Aq
i , Al, and Au are constraint matrices in qi, nl, and nu dimensions

respectively, each corresponding to their respective quadratic, linear, or unrestricted block. As
j is

defined to be a linear map from Ssj to Rm defined by

A
sj
j (Xs

j) = [〈As
j,1,X

s
j〉; . . . ; 〈As

j,m,X
s
j〉]

231

where As
j,1 . . .A

s
j,m ∈ Ssj are constraint matrices associated with the jth semidefinite variable

Xs
j .

C.3.2 The Dual Problem

The dual problem associated with the semidefinite quadratic linear programming formulation is

maximize
Zs
j ,Z

q
i ,Z

l,y
bTy +

∑ns

j=1[vsj log det Zs
j + sj vsj (1− log vsj)]

+
∑nq

i=1[vqi log γ(Zq
i) + vqi (1− log vqi)]

+
∑nl

k=1[vlk log Zl
k + vlk (1− log vlk)]

subject to

(As
j)

Ty + Zs
j = Cs

j , Zs
j ∈ Ssj , j = 1, . . . , ns

(Aq
i)

Ty + Zq
i = Cq

i , Zq
i ∈ Qqi , i = 1, . . . , nq

(Al)
T
y + Zl = Cl, Zl ∈ Lnl

(Au)Ty = Cu, y ∈ Rm

(C.4)

where (As
j)
T is defined to be the adjoint operator of As

j , where (As
j)

Ty =
∑m

k=1 ykA
s
j,k. Equations

(C.3) and (C.4) represent the most general form of the linear conic optimization problem that can
be solved using sdpt3r.

C.3.3 Optimal Design of Experiments

Consider the problem of estimating a vector x from measurements y given by the relationship

y = Ax + ε, ε ∼ N (0, 1).

The variance-covariance matrix of such an estimator is proportional to (ATA)−1. A reasonable
goal during the design phase of an experiment would therefore be to minimize (ATA)−1 in some
way.

There are many different ways in which (ATA)−1 might be made minimal. For example,
minimization of the trace of (ATA)−1 (A-Optimality), minimization of the maximum eigenvalue
of (ATA)−1 (E-Optimality), minimization of the determinant of (ATA)−1 (D-Optimilaity), and
maximization of the trace of ATA (T-Optimality) all have their merits.

232

Perhaps the most commonly used of these optimality criteria is D-Optimality, which is equiv-
alent to maximizing the determinant of ATA. Typically, the rows of A = [a1, ..., aq]

T are chosen
from M possible test vectors ui ∈ Rp, i = 1, ...M , which are known in advance. That is,

ai ∈ {u1, ...,uM}, i = 1, ..., q

Given that the matrix A is made up of these test vectors ui, [114] write the matrix ATA as

ATA = q

M∑
i=1

λiuiui
T (C.5)

where λi is the fraction of rows in A that are equal to the vector ui. Then, [114] write the
D-optimal experimental design problem as a minimum determinant problem

minimize
λ

log det (
∑M

i=1 λiuiui
T)−1

subject to
λi ≥ 0, i = 1, ...,m∑M

i=1 λi = 1

Due to the inequality constraint, this primal formulation cannot be interpreted as an SQLP
of the form of Equation (C.3). By defining Z = u diag(λ) uT, the dual problem is [105]

maximize
Z, zl, λ

log det (Z)

subject to
−
∑p

i=1 λi(uiui
T) + Z = 0, Z ∈ Sn
−λ+ zl = 0, zl ∈ Rp

+

1Tλ = 1, λ ∈ Rp

Keeping in mind that this is a dual configuration, and thus follows Equation (C.4), we proceed
with writing the D-Optimal design problem as an SQLP by first considering the objective function.
The objective function depends only on the determinant of the matrix variable Z, which is the
log-barrier. This indicates that the variable vs in Equation (C.4) is equal to 1 in this formulation,
while vq and vl are both zero. Since λ does not appear in the objective function, the vector b is
equal to 0.

The constraint matrices A are easy to define in the case of the dual formulation, as they
multiply the vector y in Equation (C.4), so therefore multiply λ in our case. In the first constraint,
each λi is multiplied by the matrix formed by −uiu

T
i , so define Ai to be

233

Ai = −uiu
T
i , i = 1, ..., p.

Then, the constraint matrix is As = [svec(A1), ..., svec(Ap)]. In the second constraint con-
taining the linear variable zl, the constraint matrix is Al = −Ip, and in the third constraint
containing only the unconstrained variable λ, the constraint matrix is Au = 1T. Since there is no
quadratic variable, Aq = 0.

Finally, define the right hand side of each constraint

Cs = 0n×n
Cl = 0p×1

Cu = 1

which fully specifies the D-Optimal design problem as an SQLP.

In the next section, we will demonstrate using R how these definitions can be translated for
use in the main function of sdpt3r so an SQLP problem can be solved.

C.4 Solving a Conic Linear Optimization Problem in R

Each of the problems presented in Section C.1 can be solved using the sdpt3r package, an R imple-
mentation of the MATLAB program SDPT3. The algorithm is an infeasible primal-dual predictor-
corrector path-following method, utilizing either an HKM [52] or NT [81] search direction. The
interested reader is directed to [113] for further details surrounding the implementation.

The main function available in sdpt3r is sqlp, which takes a number of inputs (or an sqlp_input

object) specifying the problem to be solved, and executes the optimization, returning both the
primal and dual solution to the problem. This function will be thoroughly discussed in Section
C.4.1, and examples will be provided. In addition to sqlp, a prospective user will also have access
to a number of helper functions for well known problems that can be solved using sdpt3r. For
example, the function maxcut takes as input an adjacency matrix B, and produces an S3 object
containing all the input variables necessary to solve the problem using sqlp. These functions will
be discussed in Sections C.4.2, C.4.4, C.4.6, and C.5.

For sdpt3r, each optimization variable will be referred to as a block in the space in which it
is restricted. For instance, if we have an optimization variable X ∈ Sn, we will refer to this as
a semidefinite block of size n. It is important to note that it is possible to have multiple blocks
from the same space, that is, it is possible to have both X ∈ Sn as well as Y ∈ Sm in the same
problem.

234

C.4.1 Input Variables

The main function call in sdpt3r is sqlp, which takes the following input variables

blk A matrix object describing the block structure of the optimization variables.
At A matrix object containing constraint matrices As, Aq, Al, and Au

for the primal-dual problem.
b A vector containing the right hand side of the equality constraints, b,

in the primal problem, or equivalently the constant vector in the dual.
C A matrix object containing the constant C matrices in the primal objective

function or equivalently the corresponding right hand side of the equality
constraints in the dual problem.

X0, y0, Z0 Matrix objects containing an initial iterate for the X, y, and Z variables for
the SQLP problem. If not provided, an initial iterate is computed internally.

OPTIONS A list object providing additional parameters for use in sqlp.
If not provided, default values are used.

The input variable blk describes the block structure of the problem. Letting L be the total
number of semidefinite, quadratic, linear, and unrestricted blocks in the SQLP problem, define
blk to be an L × 2 matrix object, with the first column describing the type of block, and the
second denoting the size of the optimization variable, summarized in Table C.1.

Block type Column 1 Column 2
Semidefinite s sj
Quadratic q qi
Linear l nl
Unrestricted u nu

Table C.1: Structure of blk.

The input variable At corresponds to the constraint matrices in Equation (C.3), and C the
constant matrices in the objective function. The size of these input variables depends on the
block they are representing, summarized in Table C.2 for each block type.

Block type
Semidefinite Quadratic Linear Unrestricted

At s̄j ×m qj ×m nl ×m nu ×m
C sj × sj qj × 1 nl × 1 nu × 1

Table C.2: Size of At and C for each block type.

Note that in Table C.2, s̄j = sj(sj + 1)/2. The size of At in the semidefinite block reflects
the upper-triangular input format that has been discussed previously. In a semidefinite block, the
optimization variable X is necessarily symmetric and positive semidefinite, it is therefore more
efficient to consider only the upper-triangular portion of the corresponding constraint matrix.

235

It is important to note that both input variables At and C are matrices of matrices, a constraint
matrix and a constant matrix for each optimization variable. While blk does not have this same
requirement, we will nonetheless use the same structure to initialize blk as we do At and C for
the sake of consistency.

In general, the user need not supply initial iterates X0, y0, and Z0 for a solution to be found
using sqlp. The infeasible starting point generated internally by sqlp tends to be sufficient to
find a solution. If the user wishes to provide a starting point however, the size parameters in
Table C.3 must be met for each block.

Block type
Semidefinite Quadratic Linear Unrestricted

X0 sj × sj qj × 1 nl × 1 nu × 1
y0 sj × 1 qj × 1 nl × 1 nu × 1
Z0 sj × sj qj × 1 nl × 1 nu × 1

Table C.3: Required size for initial iterates X0, y0, and Z0.

The user may choose to depart from the default values of several parameters which could
affect the optimization by specifying alternative values in the OPTIONS list. A complete list of all
parameters that can be altered can be found in Appendix C.5.9.

An important example is the specification of the parbarrier parameter in OPTIONS, which
specifies the presence of a log-barrier in the objective function. The default case in OPTIONS

assumes that the parameters vsj , vqi , vlk in Equation (C.3) are all 0. If this, however, is not the
case, then the user must specify an L × 1 matrix object in OPTIONS$parbarrier to store the
values of these parameters (including zeros). If the jth block is a semidefinite block containing p
variables, parbarrierj = [vsj1, ..., v

s
jn]. If the jth block is a quadratic block containing p variables,

parbarrierj = [vqj1, ..., v
q
jn]. If the jth block is a linear block parbarrierj = [vl1, ..., v

l
nl

]. Finally, if

the jth block is the unrestricted block, then parbarrierj = [0, ..., 0], where 0 is repeated nu times.
Section C.4.6 contains an example where OPTIONS$parbarrier is specified.

As an additional input option, sqlp can take an S3 object of class sqlp_input, emanating
from one of the helper functions (such as maxcut) which will be discussed in later sections. If an
S3 object is to be provided, the user must indicate this directly by directly indicating the input
is an S3 object by directly assigning it to the sqlp_obj input variable, and omitting all other
inputs. A user is free to create their own helper functions which create sqlp_input objects, and
need only ensure that it contains the named fields blk, At, C, b, and OPTIONS.

When executed, sqlp simultaneously solves both the primal and dual problems, meaning
solutions for both problems are returned. The relevance of each output therefore depends on the
problem being solved. The following object of class sqlp_output is returned upon completion

The examples in subsequent subsections will demonstrate the output provided by sqlp.

236

pobj the value of the primary objective function
dobj the value of the dual objective function

X A matrix object containing the optimal matrix X for the primary problem
y A vector object containing the optimal vector y for the dual problem
Z A matrix object containing the optimal matrix Z for the dual problem

C.4.2 The Max-Cut Problem

Recall that the maximum cut of a graph G with adjacency matrix B can be found as the solution
to

Minimize 〈C,X〉
subject to

diag(X) = 1
X ∈ Sn

where C = −(diag(B1)−B)/4. In Section C.1, we wrote this in the form of an SQLP

Minimize 〈C,X〉
subject to

〈Ak,X〉 = 1, k = 1, . . . , n
X ∈ Sn

where we defined Ak as

Ak = [aij] =

{
1, i = j = k

0, otherwise

To convert this to a form usable by sqlp, we begin by noting that we have one optimization
variable, X. Therefore, with L = 1, we initialize the required input variables as follows

R> blk <- matrix(list(), nrow = 1, ncol = 2)

R> At <- matrix(list(), nrow = 1, ncol = 1)

R> C <- matrix(list(), nrow = 1, ncol = 1)

This initializes blk, At, and C as a matrix of matrices. While not required mathematically in
this problem, this is the format required for all problems solved using sqlp, and will be required
for any problem with more than one optimization variable.

237

This initialization has the advantage of allowing blk to contain character and numerical values,
without using the overhead of a data frame. Having X constrained to the space of semidefinite
matrices of size n, we specify blk as

R> blk[[1,1]] <- "s"

R> blk[[1,2]] <- n

With the objective function in the form 〈C,X〉, we define the input C as

R> one <- matrix(1, nrow = n, ncol = 1)

R> C[[1, 1]] <- -(diag(B %*% one) - B) / 4

where B is the adjacency matrix for a graph on which we would like to find the maximum cut,
such as the one in Figure C.1.

B =



0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 1
1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0



Figure C.1: A graph object and associated adjacency matrix for which we would like to find the
maximum cut.

The matrix At is constructed using the upper triangular portion of the Ak matrices. To do
this in R, the function svec is made available in sdpt3r.

R> A <- matrix(list(), nrow = 1, ncol = n)

R> for(k in 1:n){

R> A[[k]] <- matrix(0, nrow = n, ncol = n)

R> diag(A[[k]])[k] <- 1

R> }

R> At[[1, 1]] <- svec(blk[1,], A)

238

Having each of the diagonal elements of X constrained to be 1, b is a n× 1 matrix of ones

R> b <- matrix(1, nrow = n, ncol = 1)

With all the input variables now defined, we can now call sqlp to solve the Max-Cut problem

R> sqlp(blk, At, C, b)

C.4.3 A Numerical Example and the maxcut Function

The built-in function maxcut takes as input a (weighted) adjacency matrix B and returns an S3
object containing the input necessary for sqlp. This object can be passed directly to sqlp using
sqlp_obj, or each input variable can be passed individually. If we wish to find to the maximum
cut of the graph in Figure C.1, given the adjacency matrix B we can compute the input variables
for sqlp using maxcut

R> out <- maxcut(B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk, At, C, b)

R> sqlp(sqlp_obj = out)

$pobj

[1] -14.67622

$X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

V1 1.000 0.987 -0.136 -0.858 0.480 0.857 -0.879 0.136 -0.857 0.597

V2 0.987 1.000 0.026 -0.763 0.616 0.929 -0.791 -0.026 -0.929 0.459

V3 -0.136 0.026 1.000 0.626 0.804 0.394 0.592 -1.000 -0.394 -0.876

V4 -0.858 -0.763 0.626 1.000 0.039 -0.469 0.999 -0.626 0.470 -0.925

V5 0.480 0.616 0.804 0.039 1.000 0.864 -0.004 -0.804 -0.864 -0.417

V6 0.857 0.929 0.394 -0.469 0.864 1.000 -0.508 -0.394 -1.000 0.098

V7 -0.879 -0.791 0.592 0.999 -0.004 -0.508 1.000 -0.592 0.508 -0.907

239

V8 0.136 -0.026 -1.000 -0.626 -0.804 -0.394 -0.592 1.000 0.394 0.876

V9 -0.857 -0.929 -0.394 0.470 -0.864 -1.000 0.508 0.394 1.000 -0.098

V10 0.597 0.459 -0.876 -0.925 -0.417 0.098 -0.907 0.876 -0.098 1.000

Note that the value of the primary objective function is negative as we have defined C =
−(diag(B1)−B)/4 since we require the primal formulation to be a minimization problem. The
original formulation given in [45] frames the Max-Cut problem as a maximization problem with
C = (diag(B1) −B)/4. Therefore, the approximate value of the maximum cut for the graph in
Figure C.1 is 14.68 (recall we are solving a relaxation).

As an interesting aside, we can show that the matrix X is actually a correlation matrix by
considering its eigenvalues - we can see it clearly is symmetric, with unit diagonal and all elements
in [-1,1].

R> eigen(X)

$values

[1] 5.59e+00 4.41e+00 2.07e-07 1.08e-07 4.92e-08 3.62e-08 3.22e-08

[8] 1.90e-08 1.66e-08 9.38e-09

The fact that X is indeed a correlation matrix comes as no surprise. [45] show that the set
of feasible solutions for the Max-Cut problem is in fact the set of correlation matrices. So while
we may not be interested in X as an output for solving the Max-Cut problem, it is nonetheless
interesting to see that it is in fact in the set of feasible solutions.

C.4.4 Nearest Correlation Matrix

Recall that the nearest correlation matrix is found as the solution to

minimize
e∗, X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e∗

diag(X) = 1
X ∈ Sn
e∗ ∈ Qn(n+1)/2+1

In Section C.2 we wrote this as the following SQLP

240

minimize
e∗, X

〈C, e∗〉
subject to

(As)Tsvec(X) + (Aq)Te∗ = b
X ∈ Sn
e∗ ∈ Qn(n+1)/2+1

for C = [1,0n(n+1)/2], and

As = [As
1, As

2]
Aq = [Aq

1, Aq
2]

b = [b1; b2]

where

As
1 = In2

Aq
1 = [0, In2]

As
2 = [svec(A1), . . . , svec(An)]

Aq
2 = 0n2

b1 = svec(R)
b2 = 1T

and A1, . . . ,An are given by

Ak = [aij] =

{
1, i = j = k

0, otherwise

To be solved using sqlp, we first define blk. There are two optimization variables in the
formulation of the nearest correlation matrix - X is an n × n matrix constrained to be in a
semidefinite cone, and y is an n(n+ 1)/2 + 1 length vector constrained to be in a quadratic cone,
so

R> blk <- matrix(list(), nrow = 2, ncol = 2)

R> blk[[1, 1]] <- "s"

R> blk[[1, 2]] <- n

R> blk[[2, 1]] <- "q"

R> blk[[2, 2]] <- n * (n + 1) / 2 + 1

Note that X does not appear in the objective function, so the C entry corresponding to the
block variable X is an n× n matrix of zeros, which defines C as

R> C <- matrix(list(), nrow = 2, ncol = 1)

241

R> C[[1, 1]] <- matrix(0, nrow = n, ncol = n)

R> C[[2, 1]] <- rbind(1, matrix(0, nrow = n2, ncol = 1))

Next comes the constraint matrix for X

R> At <- matrix(list(), nrow = 2, ncol = 1)

R> A1s <- diag(1, nrow = n2, ncol = n2)

R>

R> Aks <- matrix(list(), nrow = 1, ncol = n)

R> for(k in 1:n){

R> Aks[[k]] <- matrix(0, nrow = n, ncol = n)

R> diag(Aks[[k]])[k] <- 1

R> }

R> A2s <- svec(blk[1,], Aks)

R> At[[1, 1]] <- cbind(A1s, A2s)

then the constraint matrix for e∗.

R> A1q <- matrix(0, nrow = n, ncol = n2 + 1)

R> A2q1 <- matrix(0, nrow = n2, ncol = 1)

R> A2q2 <- diag(1, nrow = n2, ncol = n2)

R> A2q <- cbind(A211, A212)

R> At[[2, 1]] <- rbind(A1q, A2q)

and the right hand side vector b

R> b <- rbind(svec(blk[1,], R), matrix(1, n, 1))

The nearest correlation matrix problem is now solved by

R> sqlp(blk, At, C, b)

242

C.4.5 A Numerical Example and the nearcorr Function

To demonstrate the nearest correlation matrix problem, we will modify an existing correlation
matrix by exploring the effect of changing the sign of just one of the pairwise correlations. In the
context of stock correlations, we make use of tools available in the R package quantmod [94] to
access stock data from five tech firms (Microsoft, Apple, Amazon, Alphabet/Google, and IBM)
beginning in 2007.

R> library("quantmod")

R> getSymbols(c("MSFT", "AAPL", "AMZN", "GOOGL", "IBM"))

R> stock.close <- as.xts(merge(MSFT, AAPL, AMZN,

+ GOOGL, IBM))[, c(4, 10, 16, 22, 28)]

The correlation matrix for these five stocks is

R> stock.corr <- cor(stock.close)

R> stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close

MSFT.Close 1.0000000 -0.2990463 0.9301085 0.5480033 0.2825698

AAPL.Close -0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127

AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390

GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146

IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Next, consider the effect of having a positive correlation between Microsoft and Apple

R> stock.corr[1, 2] <- -1 * stock.corr[1, 2]

R> stock.corr[2, 1] <- stock.corr[1, 2]

R> stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close

MSFT.Close 1.0000000 0.2990463 0.9301085 0.5480033 0.2825698

AAPL.Close 0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127

AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390

GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146

IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Unfortunately, this correlation matrix is not positive semidefinite

243

R> eigen(stock.corr)$values

[1] 2.8850790 1.4306393 0.4902211 0.3294150 -0.1353544

Given the approximate correlation matrix stock.corr, the built-in function nearcorr returns
an S3 object containing the input necessary for sqlp. This object can be passed directly to sqlp

using sqlp_obj, or each input variable can be passed individually.

R> out <- nearcorr(stock.corr)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk, At, C, b)

R> sqlp(sqlp_obj = out)

Since this is a minimization problem, and thus a primal formulation of the SQLP, the output
X from sqlp will provide the optimal solution to the problem - that is, X will be the nearest
correlation matrix to stock.corr.

$X

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.25388359 0.86150833 0.5600734 0.3126420

[2,] 0.2538836 1.00000000 -0.09611382 0.3808981 0.6643566

[3,] 0.8615083 -0.09611382 1.00000000 0.6115212 0.3480430

[4,] 0.5600734 0.38089811 0.61152116 1.0000000 0.5935021

[5,] 0.3126420 0.66435657 0.34804303 0.5935021 1.0000000

The matrix above is symmetric with unit diagonal and all entries in [−1, 1]. By checking the
eigenvalues,

eigen(X)$values

[1] 2.846016e+00 1.384062e+00 4.570408e-01 3.128807e-01 9.680507e-11

we can see that X is indeed a correlation matrix.

244

C.4.6 D-Optimal Experimental Design

Recall from Section C.3 that the D-Optimal experimental design problem was stated as the fol-
lowing dual SQLP

maximize
Z, zl, λ

log det (Z)

subject to
−
∑p

i=1 λi(uiui
T) + Z = 0, Z ∈ Sn
−λ+ zl = 0, zl ∈ Rp

+

1Tλ = 1, λ ∈ Rp

which we wrote as

maximize
Z, zl, λ

log det (Z)

subject to

(As)Tλ + Z = Cs, Z ∈ Sn

(Al)
T
λ + zl = Cq, zl ∈ Rp

+

(Au)Tλ = Cu, λ ∈ Rp

where b = 0, and

As = −[svec(A1), . . . , svec(Ap)]
Al = −Ip
Au = 1T

Cs = 0n×n
Cl = 0p×1

Cu = 1

Here, A1, . . . ,Ap are given by

Ai = uiui
T, i = 1, . . . , p

To convert this to a form usable by sdpt3r, we initialize our input variables by noting we have
three blocks - X, zl, and λ

R> blk <- matrix(list(), nrow = 3, ncol = 2)

R> At <- matrix(list(), nrow = 3, ncol = 1)

R> C <- matrix(list(), nrow = 3, ncol = 1)

As before, we declare the three blocks in blk. The first block is semidefinite containing the
matrix Z, the second a linear block containing zl, and the third an unrestricted block containing
λ

245

R> blk[[1, 1]] <- "s"

R> blk[[1, 2]] <- n

R> blk[[2, 1]] <- "l"

R> blk[[2, 2]] <- p

R> blk[[3, 1]] <- "u"

R> blk[[3, 2]] <- 1

Next, by noting the variable λ does not appear in the objective function, we specify b as a
vector of zeros

R> b <- matrix(0, nrow = p, ncol = 1)

Next, looking at the right-hand side of the constraints, we define the matrices C

R> C[[1, 1]] <- matrix(0, nrow = n, ncol = n)

R> C[[2, 1]] <- matrix(0, nrow = p, ncol = 1)

R> C[[3, 1]] <- 1

Finally, we construct At for each variable

R> A <- matrix(list(), nrow = p, ncol = 1)

R> for(k in 1:p){

R> A[[k]] <- -uk %*% t(uk)

R> }

R> At[[1, 1]] <- svec(blk[1,], A)

R> At[[2, 1]] <- diag(-1, nrow = p, ncol = p)

R> At[[3, 1]] <- matrix(1, nrow = 1, ncol = p)

The final hurdle necessary to address in this problem is the existence of the log-barrier. Recall
that it is assumed that vs, vq, and vl in Equation (C.4) are all zero in OPTIONS. In this case, we
can see that is not true, as we have a log term containing Z in the objective function, meaning vs

is equal to one. To pass this to sqlp, we define the OPTIONS$parbarrier variable as

R> OPTIONS$parbarrier <- matrix(list(), nrow = 3, ncol = 1)

R> OPTIONS$parbarrier[[1]] <- 1

R> OPTIONS$parbarrier[[2]] <- 0

R> OPTIONS$parbarrier[[3]] <- 0

246

The D-Optimal experimental design problem can now be solved using sqlp

R> sqlp(blk, At, C, b, OPTIONS)

C.4.7 A Numerical Example and the doptimal Function

To demonstrate the output generated from a D-optimal experimental design problem, we consider
a simple 3 × 25 matrix containing the known test vectors u1, ...,u25 (the data is available in the
sqlp package). To generate the required input for sqlp, we use the function doptimal, which takes
as input an n×p matrix U containing the known test vectors, and returns an S3 object containing
the input necessary for sqlp. This object can be passed directly to sqlp using sqlp_obj, or each
input variable can be passed individually. The output we are interested in is y, corresponding to
λ in our formulation, the percentage of each ui necessary to achieve maximum information in the
experiment.

R> data("DoptDesign")

R> out <- doptimal(DoptDesign)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

$y

[,1]

[1,] 0.000

[2,] 0.000

[3,] 0.000

[4,] 0.000

[5,] 0.000

[6,] 0.000

[7,] 0.154

[8,] 0.000

[9,] 0.000

[10,] 0.000

[11,] 0.000

[12,] 0.000

247

[13,] 0.319

[14,] 0.000

[15,] 0.000

[16,] 0.240

[17,] 0.000

[18,] 0.000

[19,] 0.000

[20,] 0.000

[21,] 0.000

[22,] 0.000

[23,] 0.287

[24,] 0.000

[25,] 0.000

The information matrix ATA is a linear combination of the test vectors ui, weighted by the
optimal vector y above.

C.5 Additional Problems

The sdpt3r package considerably broadens the set of optimization problems that can be solved in
R. In addition to those problems presented in detail in Section C.4, there are a large number of
well known problems that can also be formulated as an SQLP.

Each problem presented will be described briefly, with appropriate references for the interested
reader, and presented mathematically in its classical form, not as an SQLP as in Equation (C.3)
or (C.4). Accompanying each problem will be an R helper function, which will produce an S3
object containing the input variables blk, At, C, and b so that the problem can be solved using
sqlp. This object can be given directly to sqlp to solve the problem, or the individual input
variables can be extracted. Each method is presented. Each helper function is made available to
the user in the sdpt3r package. Each of these problems were originally presented in [105], and
have simply been transcribed here.

C.5.1 Minimum Volume Ellipsoids

The problem of finding the ellipsoid of minimum volume containing a set of points v1, ...,vn is
stated as the following optimization problem [114]

248

maximize
B, d

log det(B)

subject to
||Bx + d|| ≤ 1, ∀]vex ∈ [v1, ...,vn]

The function minelips takes as input an n× p matrix V containing the points around which
we would like to find the minimum volume ellipsoid, and returns the input variables necessary to
solve the problem using sqlp.

R> out <- minelips(V)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.2 Distance Weighted Discrimination

Given two sets of points in a matrix X ∈ Rn with associated class variables [-1,1] in Y = diag(y),
distance weighted discrimination [75] seeks to classify the points into two distinct subsets by
finding a hyperplane between the two sets of points. Mathematically, the distance weighted
discrimination problem seeks a hyperplane defined by a normal vector, ω, and position, β, such
that each element in the residual vector r̄ = YXTω + βy is positive and large. Since the class
labels are either 1 or -1, having the residuals be positive is equivalent to having the points on the
proper side of the hyperplane.

Of course, it may be impossible to have a perfect separation of points using a linear hyperplane,
so an error term ξ is introduced. Thus, the perturbed residuals are defined to be

r = YXTω + βy + ξ

Distance weighted discrimination [75] solves the following optimization problem to find the
optimal hyperplane.

249

minimize
r, ω, β, ξ

∑n
i=1(1/ri) + C1Tξ

subject to
r = YXTω + βy + ξ

ωTω ≤ 1
r ≥ 0
ξ ≥ 0

where C > 0 is a penalty parameter to be chosen.

The function dwd takes as input two n × p matrices X1 and X2 containing the points to be
separated, as well as a penalty term C ≥ 0 penalizing the movement of a point on the wrong side
of the hyperplane to the proper side, and returns the input variables necessary for sqlp to solve
the distance weighted discrimination problem.

R> out <- dwd(X1, X2, C)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.3 Max-kCut

Similar to the Max-Cut problem, the Max-kCut problem asks, given a graph G = (V,E) and
an integer k, does a cut exist of at least size k. For a given (weighted) adjacency matrix B and
integer k, the Max-kCut problem is formulated as the following primal problem

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij ≥ 1/(k − 1) ∀ i 6= j
X ∈ Sn

Here, C = −(1− 1/k)/2 ∗ (diag(B1)−B). The Max-kCut problem is slightly more complex
than the Max-Cut problem due to the inequality constraint. In order to turn this into a standard

250

SQLP, we must replace the inequality constraints with equality constraints, which we do by
introducing a slack variable xl, allowing the problem to be restated as

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij − xl = 1/(k − 1) ∀ i 6= j

X ∈ Sn
xl ∈ Ln(n+1)/2

The function maxkcut takes as input an adjacency matrix B and an integer k, and returns the
input variables necessary for the problem to be solved using sqlp.

R> out <- maxkcut(B, k)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.4 The Graph Partitioning Problem

The graph partitioning problem can be formulated as the following primal optimization problem

minimize
X

tr(CX)

subject to
tr(11TX) = α
diag(X) = 1

Here, C = −(diag(B1)−B), for an adjacency matrix B, and α is any real number.

The function gpp, takes as input a weighted adjacency matrix B and a real number alpha and
returns the input necessary to solve the problem using sqlp.

R> out <- gpp(B, alpha)

R> blk <- out$blk

R> At <- out$At

251

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.5 The Lovasz Number

The Lovasz Number of a graph G, denoted ϑ(G), is the upper bound on the Shannon capacity of
the graph. For an adjacency matrix B = [Bij] the problem of finding the Lovasz number is given
by the following primal SQLP problem

minimize
X

tr(CX)

subject to
tr(X) = 1
Xij = 0 if Bij = 1
X ∈ Sn

The function lovasz takes as input an adjacency matrix B, and returns the input variables
necessary for the Lovasz number to be found using sqlp.

R> out <- lovasz(B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

Toeplitz Approximation

Given a symmetric matrix F, the Toeplitz approximation problem seeks to find the nearest sym-
metric positive definite Toeplitz matrix. In general, a Toeplitz matrix is one with constant de-
scending diagonals, i.e.,

252

T =


a b c d e
f a b c d
g f a b c
h g f a b
i h g f a


is a general Toeplitz matrix. The problem is formulated as the following optimization problem

maximize
X

−yn+1

subject to [
I 0
0 −β

]
+

∑n
k=1 yk

[
0 γkek

γke
T
k −2qk

]
+ yn+1B ≥ 0

[y1, ..., yn]T + yn+1B ≥ 0

where B is an (n + 1) × (n + 1) matrix of zeros, and B(n+1)(n+1) = 1, q1 = −tr(F), qk = sum of

kth diagonal upper and lower triangular matrix, γ1 =
√
n, γk =

√
2 ∗ (n− k + 1), k = 2, ..., n,

and β = ||F||2F .

The function toep takes as input a symmetric matrix F for which we would like to find the
nearest Toeplitz matrix, and returns the input variables required to solve the problem using sqlp.

R> out <- toep(F)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.6 The Educational Testing Problem

The educational testing problem arises in measuring the reliability of a student’s total score in an
examination consisting of a number of sub-tests [38]. In terms of formulation as an optimization
problem, the problem is to determine how much can be subtracted from the diagonal of a given
symmetric positive definite matrix S such that the resulting matrix remains positive semidefinite
[21].

The Educational Testing Problem (ETP) is formulated as the following dual problem

253

maximize
d

1Td

subject to
A− diag(d) � 0

d ≥ 0

where d = [d1, d2, ..., dn] is a vector of size n and diag(d) denotes the corresponding n × n
diagonal matrix. In the second constraint, having each element in d be greater than or equal to
0 is equivalent to having diag(d) � 0.

The corresponding primal problem is

minimize
X

tr(AX)

subject to
diag(X) ≥ 1

X � 0

The function etp takes as input an n × n positive definite matrix A, and returns the input
variables required to solve the educational testing problem using sqlp.

R> out <- etp(A)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.7 Logarithmic Chebyshev Approximation

For a p × n (p > n) matrix B and p × 1 vector f , the Logarithmic Chebyshev Approximation
problem is stated as the following optimization problem [114]

minimize
x, t

t

subject to
1/t ≤ (xTBi·)/fi ≤ t, i = 1, ..., p

254

where Bi· denotes the ith row of the matrix B. Note that we require each element of B·j/f to be
greater than or equal to 0 for all j.

The function logcheby takes as input a matrix B and vector f, and returns the input variables
necessary to solve the Logarithmic Chebyshev Approximation problem using sqlp.

R> out <- logcheby(B, f)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.8 Linear Matrix Inequality Problems

We consider three distinct linear matrix inequality problems, all written in the form of a dual
optimization problem. The first linear matrix inequality problem we will consider is defined by
the following optimization equation for some n× p matrix B known in advance

maximize
η, Y

−η
subject to

BY + YBT � 0
−Y � − I

Y − ηI � 0
Y11 = 1, Y ∈ Sn

The function lmi1 takes as input a matrix B, and returns the input variables blk, At, C, and
b for sqlp.

R> out <- lmi1(B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

255

R> sqlp(sqlp_obj = out)

The second linear matrix inequality problem is

maximize
P, d

−tr(P)

subject to
A1P + PA1

T + B ∗ diag(d) ∗BT � 0
A2P + PA2

T + B ∗ diag(d) ∗BT � 0
−d � 0∑p
i di = 1

Here, the matrices B, A1, and A2 are known in advance.

The function lmi2 takes the matrices A1, A2, and B as input, and returns the input variables
necessary for sqlp.

R> out <- lmi2(A1, A2, B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

The final linear matrix inequality problem originates from a problem in control theory [11]
and requires three matrices be known in advance, A, B, and G

maximize
η, P

η

subject to [
AP + PAT 0

BP 0

]
+ η

[
0 0
0 I

]
�
[
−G 0
0 0

]
The function lmi3 takes as input the matrices A, B, and G, and returns the input variables

necessary to solve the problem using sqlp.

R> out <- lmi3(A, B, G)

R> blk <- out$blk

256

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk, At, C, b, OPTIONS)

R> sqlp(sqlp_obj = out)

C.5.9 OPTIONS

vers specifies the search direction
0, HKM if semidefinite blocks present, NT otherwise (default)
1, HKM direction
2, NT direction

predcorr TRUE, use Mehrotra prediction-correction (default)
FALSE, otherwise

gam step-length (default 0)
expon exponent used to decrease sigma (default 1)

gaptol tolerance for duality gap as a fraction of the objective function (default 1e− 8)
inftol tolerance for stopping due to infeasibility (default 1e-8)

steptol tolerance for stopping due to small steps (default 1e-6)
maxit maximum number of iterations (default 100)

stoplevel 0, continue until successful completion, maximum iteration, or numerical failure
1, automatically detect termination, restart if small steps is cause (default)
2, automatically detect termination

scale_data TRUE, scale data prior to solving
FALSE, otherwise (default)

rmdepconstr TRUE, remove nearly dependent constraints
FALSE, otherwise (default)

parbarrier declare the existence of a log barrier term
default value is 0 (i.e., no log barrier)

257

	List of Figures
	List of Tables
	Introduction
	Probabilistic Structure
	Geometric Structure
	Data Aggregation
	Thesis Structure

	Background
	Probability Structure
	Geometric Structure
	Voronoi Diagrams & Delaunay Triangulations
	Minimal Spanning Tree
	Nearest Neighbour Graphs
	Alpha and Convex Hulls

	Scagnostics
	Pre-processing
	Measures

	Additional Work on Scagnostics
	Transforming Scagnostics
	Pargnostics
	Density-based Cognostics

	Concluding Remarks

	On Scagnostics
	On the Distribution of Scagnostic Measures
	On Extreme Index Values
	On Missing Structure
	On Higher Dimensional Views

	On Euclidean Distance Matrix Completion
	Motivating Examples
	The Euclidean Distance Matrix Completion Problem
	Background Mathematics
	The General Completion Problem
	The Semidefinite Programming Algorithm
	The Non-convex Position Formulation
	The Dissimilarity Parameterization Formulation

	Completions from the Minimal Spanning Tree
	Judicious Choice of Bounds
	A Constructive Solution

	Generating More Constrained Configurations

	edmcr - An R Package for Euclidean Distance Matrix Completion Problems
	Euclidean Distance Matrix Completion in R
	edmc

	Unconstrained EDMCP
	A Completion from the Minimal Spanning Tree
	Dimension Reduction using the Guided Random Search
	Concluding Remarks

	EDMCP: Experimental Analysis
	Reconstructing the Iris data
	Completions as a Function of Percentage Missing
	Distances as a Function of Percentage Missing
	Reproducing the Minimal Spanning Tree
	Reproducing the Point Configurations

	Reconstructing Data U[0,1]p
	Completions as a Function of Dimension
	Distances as a Function of Dimension
	Reproducing the Minimal Spanning Tree
	Reproducing the Point Configurations

	Concluding Remarks

	Binning: For More Than the Birds
	Existing Binning Techniques
	Supervised
	Unsupervised
	Issues with Existing Methods

	Tree-based Binning Framework
	GapBin

	Additional Tree-based Binning Algorithms
	Concluding Remarks

	treebinr - An R Package for Binning
	The General Structure of treebinr
	The Main Function - treebin
	stopCriteria
	binMeasure
	boundaryTest
	makePoint
	selectBin
	splitBin
	binInfo and inputs

	Other Built-in Algorithms
	Clustered Binning
	Equal Width Binning

	A Simple Example
	Additional Functionality
	Add a Point
	Perform the Next Split in Sequence
	Undo the Last Split in Sequence
	Split a Chosen Bin
	Prune a Bin

	Concluding Remarks

	Binning: Experimental Results
	Two Dimensions
	Measures on a Real Data Set - Diamonds

	Three Dimensions
	Cats
	Centaur
	David
	Gorilla

	Higher Dimensions
	Statue Manifold
	Olivetti Faces
	Frey Faces
	UMIST Faces
	USPS Handwritten Digits

	Concluding Remarks

	Modifying the Scagnostic Framework
	Changes to Existing Scagnostics
	Convex and Skewed - The Issue with Weighting
	Proposing a New Alpha Value
	Tree-based Binning as a Pre-Processing Step

	New Measures
	The Grid Scagnostic
	The Symmetry Scagnostic

	Configurations from MST Edge Length Distributions
	Generating a General Minimal Spanning Tree
	Controlling Skewness
	Controlling Outlying
	Controlling Stringy
	Configurations using Restricted Angle Subsets

	Future Work
	A Modular Framework
	Scagnostics in Higher Dimensions

	References
	Appendices
	Mathematical Proofs
	Proof of Inverse Relationship between T and K

	Scagnostic Universe Data Sets
	Semidefinite Quadratic Linear Programming in R - sdpt3r
	Conic Linear Optimization
	A Separable Set of Variables
	The Nearest Correlation Matrix

	Semidefinite Quadratic Linear Programming
	The Primal Problem
	The Dual Problem
	Optimal Design of Experiments

	Solving a Conic Linear Optimization Problem in R
	Input Variables
	The Max-Cut Problem
	A Numerical Example and the maxcut Function
	Nearest Correlation Matrix
	A Numerical Example and the nearcorr Function
	D-Optimal Experimental Design
	A Numerical Example and the doptimal Function

	Additional Problems
	Minimum Volume Ellipsoids
	Distance Weighted Discrimination
	Max-kCut
	The Graph Partitioning Problem
	The Lovasz Number
	The Educational Testing Problem
	Logarithmic Chebyshev Approximation
	Linear Matrix Inequality Problems
	OPTIONS

