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Abstract

Individuals are prioritized based on their risk profiles when allocating limited vaccine stocks

during an influenza pandemic. Computationally expensive but realistic agent-based simula-

tions and fast but stylized compartmental models are typically used to derive effective vac-

cine allocation strategies. A detailed comparison of these two approaches, however, is often

omitted. We derive age-specific vaccine allocation strategies to mitigate a pandemic influ-

enza outbreak in Seattle by applying derivative-free optimization to an agent-based simula-

tion and also to a compartmental model. We compare the strategies derived by these two

approaches under various infection aggressiveness and vaccine coverage scenarios. We

observe that both approaches primarily vaccinate school children, however they may allo-

cate the remaining vaccines in different ways. The vaccine allocation strategies derived by

using the agent-based simulation are associated with up to 70% decrease in total cost and

34% reduction in the number of infections compared to the strategies derived by using the

compartmental model. Nevertheless, the latter approach may still be competitive for very

low and/or very high infection aggressiveness. Our results provide insights about potential

differences between the vaccine allocation strategies derived by using agent-based simula-

tions and those derived by using compartmental models.

Introduction

Influenza is a highly contagious viral disease. Each year 5–15% of the world population is

infected with influenza resulting in 3–5 million severe cases and 250,000–500,000 deaths [1].

Together with pneumonia, influenza is the seventh leading cause of death in the U.S. [2]. Con-

sidering the cost of medical treatments and working day losses, the annual burden of influenza

epidemics to the U.S. economy was estimated as $87.1 billion in 2003 [3].
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An emerging virus that spreads globally may lead to an influenza pandemic [4]. Unlike sea-

sonal epidemics, pandemics occur abruptly and cause horrendous death tolls, e.g., the 1918

Spanish influenza pandemic infected around 500 million and killed approximately 50 million

people worldwide [5]. Among pandemic mitigation interventions (e.g., social distancing, pub-

lic health measures, antiviral prophylaxis), vaccination provides the most efficient and durable

response [6, 7]. However, the supply of influenza vaccine is often scarce during a pandemic

due to production limitations. Thus, the population is prioritized based on risk-factors related

to influenza exposure and transmissibility when distributing the available doses [8].

In the literature, compartmental models [9–16] and agent-based simulations [17–22] are

frequently employed to make mitigation plans for influenza pandemics and evaluate the

effectiveness of various public health interventions [23–25]. Although it is known that the

infection propagation is different in these two approaches [26], a detailed comparison of the

strategies derived by using them is often omitted. On the one hand, compartmental models

represent the number of individuals in each stage (or compartment) of the epidemic (e.g.,

susceptible, exposed, infected, recovered) by continuous-time state variables, and formulate

the transitions among different compartments using differential equations. These models

can rapidly evaluate many scenarios and intervention strategies, but they assume that indi-

viduals in each compartment mix uniformly and randomly with each other. Moreover,

deterministic compartmental models do not consider the uncertainties in disease propaga-

tion (e.g., stochasticity in transmission events, incubation, and recovery periods) [22]. Thus,

such models may not accurately model infection dynamics, especially at the initial and final

stages of a pandemic when few infectious individuals exist [27]. Despite their simplifying

assumptions, compartmental models have proved to be predictive [28–30], and they have

been successfully extended to capture large-scale host heterogeneities. These extensions of

the simple compartmental framework include age-specific contact patterns [13] and hetero-

geneities induced by spatial structure [31]. Agent-based simulations, on the other hand,

consider uncertainties about the infection parameters, and they store individual-level infor-

mation to model contact patterns in a population at the expense of increased computational

burden [32–34].

Our goal in this paper is to identify possible scenarios under which performances of the

effective age-specific vaccine allocation strategies derived by using compartmental models and

agent-based simulations may differ significantly in practical settings. For this purpose, we con-

sider an influenza pandemic in Seattle using a custom-built deterministic compartmental

model and an agent-based simulation developed by Chao et al. (2010) [6]. The compartmental

model is calibrated to closely approximate the results of the agent-based simulation under no

vaccination. We apply mesh-adaptive optimization to derive effective age-specific vaccine

allocation strategies based on four different objective functions. At each iteration of the opti-

mization process, the performances of the newly generated vaccine allocation strategies are

evaluated using the agent-based simulation in one set of experiments, and using the compart-

mental model in the other set of experiments. We perform sensitivity analysis to identify the

differences between these two approaches under various vaccine coverage and infection

aggressiveness scenarios.

We observe that the age-specific vaccine allocation strategies derived by using computa-

tionally expensive but more realistic agent-based simulation and those derived by using fast

but more stylized compartmental model are different, although both models are calibrated to

generate similar results under no vaccination. We use the agent-based simulation to evaluate

the performances of strategies derived by the compartmental model. Our results show that the

vaccine allocation strategies derived by the agent-based simulation are associated with up to

70% decrease in total cost and 34% reduction in the number of infections compared to the
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strategies derived by the compartmental model. Nevertheless, the latter approach may still be

competitive for very low and/or very high infection aggressiveness scenarios.

It is clear that any two infectious disease spread models can differ from each other with

respect to the assumptions in their design and parametrization. Furthermore, the degree to

which each modeling approach allows for inclusion of heterogeneity and uncertainty varies.

Therefore, the empirical comparison presented in this study is valid for the considered agent-

based influenza pandemic simulation which is well-known and commonly used in the litera-

ture [6]. Our results, however, still provide important insights into the possible differences

between the vaccine allocation strategies derived by using agent-based simulations and deter-

ministic compartmental models.

Materials and methods

We consider different levels of vaccine coverage and infection aggressiveness, and apply mesh-

adaptive optimization [35] to find effective strategies for allocating limited vaccine doses to dif-

ferent age-groups in the population with respect to four performance measures: total cost,

number of deaths, number of infections, and years of life lost. We evaluate the performances

of the trial vaccine allocation strategies at each iteration of the optimization algorithm using an

agent-based simulation in one set of experiments, and a compartmental model in the other set

of experiments.

Agent-based simulation

We employ FluTe, an open-source and validated agent-based pandemic influenza simulation

developed by Chao et al. (2010) [6]. FluTe’s contact network is composed of census tracts

divided into communities of 500–3,000 individuals. Each community consists of randomly

generated households of 1–7 individuals in one of the five age-groups: preschool children (0–

4), school children (5–18), young adults (19–29), adults (30–64), and seniors (65 and over).

Individuals can be members of multiple community-based mixing groups such as households,

household clusters (composed of socially close households), neighborhoods and communities.

The simulation has two time epochs for each day: day- and night-time. At night time, individ-

uals can only make contacts within their community-based mixing groups, whereas they may

contact other individuals in day-time if they share the same social mixing group, e.g., daycare,

school, workplace.

In each time epoch, a contact for potential disease transmission between any two individu-

als sharing a mixing group is generated. During a contact between a susceptible and an infec-

tious individual, influenza transmission may occur with a probability that depends on vaccine

efficacy, virus load and symptoms of the infectious individual. Each infected person follows a

predefined daily viral load profile representing the level of infectiousness on each day of the

disease duration. Infected individuals may become symptomatic after an asymptomatic incu-

bation period of one to three days [36]. Symptomatic individuals are twice as infectious as the

asymptomatic ones. Infected individuals recover and become immune after six days.

The vaccinated individuals have reduced likelihood of getting infected during a contact,

becoming symptomatic when infected, and transmitting the disease [37]. The vaccine efficacy

reaches its maximum level in two weeks with exponential increments, and the maximum vac-

cine efficacy varies among the age groups. Due to incremental nature of vaccine efficacy, the

timing of vaccine interventions affects success in containing influenza pandemics. FluTe

allows administrating vaccines before (pre-vaccination) or after (reactive vaccination) the

onset of the pandemic. We refer the reader to Chao et al. (2010) for further details about FluTe

[6].
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Compartmental model

We develop a deterministic compartmental model that closely approximates the results of

FluTe for Seattle under no vaccination. Similar to FluTe, we divide the population into five age

groups, AG = {preschool children (0–4), school children (5–18), young adults (19–29), adults

(30–64), seniors (65+)}. Each age group i 2 AG includes vaccinated and unvaccinated individ-

uals in five compartments: susceptible (S), exposed (E), infected (I), recovered (R), and

dead (D). We denote the susceptible individuals in age group i 2 AG with vaccination status

h 2 H = {(u)nvaccinated, (v)accinated} by Sh
i , for example. The exposed compartment (E) cor-

responds to the asymptomatic individuals in FluTe. In addition, the infected compartment (I)

corresponds to the symptomatic individuals in FluTe. A proportion of asymptomatic individu-

als never develop symptoms in FluTe, therefore, we split the exposed compartment into two

sub-compartments: those who eventually show disease symptoms (E!I), and those who

recover without showing symptoms (E!R). The symptomatic individuals are twice as infec-

tious as asymptomatic ones in both FluTe and the SEIR model.

The incidence rate of new infections in age group i caused by infectious individuals in age

group j, denoted by λij, is given by:

lij ¼
Fijðb

u
j ðI

u
j þ Eu

j =2Þ þ b
v
j ðI

v
j þ Ev

j =2ÞÞ

Nj
: ð1Þ

In Eq (1), Fij is the contact rate from age group i to j. Parameter b
u
j (b

v
j ) denotes the transmis-

sion rate of unvaccinated (vaccinated) infectious individuals in age group j given a single con-

tact with a susceptible individual. Variables Iuj (Ivj ) and Eu
j (Ev

j ) represent the number of

unvaccinated (vaccinated) infected and exposed individuals in age group j, respectively. Note

that Eu
j ¼ ðE!IÞ

u
j þ ðE!RÞ

u
j and Ev

j ¼ ðE!IÞ
v
j þ ðE!RÞ

v
j . Finally, Nj is the size of age group j,

and ∑j2AG Nj = N where N denotes the total population size. The overall infection rate of indi-

viduals in age group i is equal to λi = ∑j2AG λij. Note that vaccinated (v) and unvaccinated (u)

compartments are interdependent because the infection rate λi depends both on the number

of vaccinated and unvaccinated infectious individuals. Fig 1 depicts the transitions among the

compartments, and the model equations are given by:

dSh
i

dt
¼ � ð1 � �hi ÞliS

h
i h 2 H; i 2 AG ð2aÞ

dðE!IÞ
h
i

dt
¼ ð1 � �hi Þlio

h
i S

h
i � th

i ðE!IÞ
h
i h 2 H; i 2 AG ð2bÞ

dðE!RÞ
h
i

dt
¼ ð1 � �hi Þlið1 � oh

i ÞS
h
i � gh

i ðE!RÞ
h
i h 2 H; i 2 AG ð2cÞ

dIhi
dt
¼ th

i ðE!IÞ
h
i � ðx

h
i þ wh

i ÞI
h
i h 2 H; i 2 AG ð2dÞ

dRh
i

dt
¼ x

h
i I

h
i þ gh

i ðE!RÞ
h
i h 2 H; i 2 AG ð2eÞ
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dDi

dt
¼
X

h2H

wh
i I

h
i i 2 AG ð2fÞ

Parameter �hi 2 ½0; 1� denotes the reduction in the likelihood of becoming infected after vac-

cination, naturally �ui ¼ 0 for unvaccinated individuals. Parameter oh
i 2 ½0; 1� denotes the pro-

portion of exposed individuals who eventually become symptomatic. Parameters th
i , gh

i , x
h
i ,

and wh
i denote the Exposed-to-Infected, Exposed-to-Recovered, Infected-to-Recovered, and

Infected-to-Death transition rates, in that order. We set gh
i ¼

1

1=x
h
i þ 1=th

i

to ensure that the

exposed individuals who recover without showing symptoms stay asymptomatic during the

course of the disease. The D compartment is included in the model for tracking the number of

influenza-related deaths.

Let pi denote the vaccinated proportion of age group i. Moreover, let bi denote the initial

number of infecteds in age group i. The boundary conditions 8i 2 AG are given by

Sv
i ð0Þ ¼ piðNi � biÞ, Su

i ð0Þ ¼ ð1 � piÞðNi � biÞ, Ivi ð0Þ ¼ pibi, Iui ð0Þ ¼ ð1 � piÞbi,

Ev
i ð0Þ ¼ Eu

i ð0Þ ¼ Rv
i ð0Þ ¼ Ru

i ð0Þ ¼ Dið0Þ ¼ 0. We solve the system of differential Eq (2)

numerically using the fourth-order Runge-Kutta method [38].

Formulating the optimization problem

The optimization aims to find an effective age-specific allocation of a given vaccine supply V
such that ∑i2AG piNi� V. We consider four different performance measures:

• Total expected cost is equal to the sum of vaccination, infection and mortality costs. Vaccina-

tion cost (cbi ) includes the vaccine price, work time lost, and the cost of potential side effects.

Fig 1. Transition rates between compartments.

doi:10.1371/journal.pone.0172261.g001
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Infection cost, which is different for unvaccinated (cui ) and vaccinated (cvi ) individuals, refers

to the sum of medication, outpatient visits and hospitalization expenses. Mortality cost (cdi )

stands for the terminal care expenses.

• Total number of infections is equal to the number of individuals affected by the pandemic.

• Total number of deaths is equal to the number of influenza-related deaths.

• Total years of life lost (YLL) weighs each death with the expected remaining life time based

on the U.S. life tables and the age distributions [39, 40].

In particular, at any time during the course of the pandemic, the four performance mea-

sures are calculated as follows:

Total cost ðTCÞ ¼
X

i2AG

ðcbNipi þ cui NIui
þ cvi NIvi

þ cdi NDi
Þ;

Total number of infections ðTIÞ ¼
X

i2AG

ðNIui
þ NIvi

Þ;

Total number of deaths ðTDÞ ¼
X

i2AG

NDi
;

Total YLL ðTYÞ ¼
X

i2AG

YiNDi
;

where Yi denotes the YLL value of age group i 2 AG. Moreover, NIui
(NIvi

), and NDi
represent

the total number of infections among unvaccinated (vaccinated) individuals and influenza-

related deaths in age group i 2 AG, respectively.

Calibration

We run FluTe using the population file for Seattle (around 560,000 residents) that is included

in the software distribution package. Contact rates within mixing groups and infectious disease

parameters of influenza are set based on the values estimated in Chao et al. (2010) so that

attack rates are consistent with the 1957 Asian A(H2N2) and 2009 A(H1N1) influenza pan-

demics without vaccination [6]. We seed the model with 10 randomly generated infected peo-

ple. The vaccinated individuals have 40% reduced probability of becoming infected, 40%

reduced probability of becoming symptomatic given infection, and 67% reduced probability of

transmitting infection. These values represent the effectiveness of a well-matched seasonal

influenza vaccine [41]. The vaccine is only 60% as effective in seniors as everyone else, since

older people with weaker immune systems often have a lower immune response to influenza

vaccine [42].

The homogeneous mixing assumption of the compartmental model (referred to as SEIR

model hereafter) results in faster and more diverse disease spread, whereas the infection fol-

lows a more tranquil pattern in FluTe, i.e., individuals can transmit the disease only to those in

their contact list. For a fair comparison of the age-specific vaccine allocation strategies derived

by using the SEIR model and FluTe, we calibrate the SEIR model so that the number of new

infections for each day of the pandemic closely matches to the corresponding average outcome

from FluTe over 100 replications under no vaccination. In particular, we calibrate the SEIR

model by varying the contact rates (Fij), transmission rates (b
h
i ), and initial number of infec-

tions (bi). As a goodness of fit measure, we use Pearson’s chi-square statistic (χ2 measure), and

employ the numerical optimization algorithm described in the following section to find

parameters of the SEIR model that minimize the maximum χ2 measure over all age groups.

Deriving effective vaccine allocation strategies for pandemic influenza
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We first perform the calibration for R0 = 1.2. We then repeat the process for each R0 value

considered in our numerical analyses using the previous calibration results as the initial solu-

tion. We keep the contact rates the same as those found for R0 = 1.2 (see S1 Table) because ini-

tial tests show that further calibration of the contact rates for different R0 values is not

necessary to obtain good matches between the results of FluTe and the SEIR model. Fig 2a

depicts the cumulative number of infections in each day after the calibration process. The

cumulative number of infections in different age groups are presented in Fig 2b–2f. Further-

more, S2 Table in the supplement shows the similarity between the age-specific attack rates in

FluTe and in the SEIR model under no vaccination. The parameters of FluTe and the cali-

brated SEIR model are provided in Table 1. We do not present the parameters of FluTe related

to network structure and virus load profile and refer the readers to Chao et al. (2010) for more

details [6].

Fig 2. Cumulative number of infections in each age group of FluTe and the SEIR model after the calibration process for R0 = 1.2 without

vaccination. (a) Total population. (b) Preschool children (0–4). (c) School children (5–18). (d) Young adults (19–29). (e) Adults (30–64). (f) Seniors (65+).

doi:10.1371/journal.pone.0172261.g002
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Solution approach

The pandemic propagation is nonlinear because the incidence of new infections depends both

on the current number of infectious and susceptible individuals. Moreover, the size and dura-

tion of outbreaks are uncertain in agent-based simulations like FluTe. All of these factors

render traditional gradient-based optimization methods inapplicable. We therefore use a

Table 1. Input parameters of FluTe and the SEIR model.

SEIR FluTe Source

Latent period duration (LPD) 1.9 days 1.9 days‡ [6]

Total disease duration (TDD) 6 days 6 days [6]

Infectious period duration (IPD) 4.1 days 4.1 days TDD−LPD

Transition rate

Exposed-to-Infectious(τu) 0.52632 – (LPD)−1

Exposed-to-Recovered (γ) 0.1667 – (TDD)−1

Infectious-to-Recovered (ξ) 0.2439 – (IPD)−1

Likelihood

of showing the symptoms (ωu)† 0.67 0.67 [6]

Transmission rate/probability

(βu)*
Initial number of infections (b)

SEIR FluTe SEIR FluTe

Basic reproduction number (R0) 1.2 0.0044 0.2057 19.48 10 Calibration and [6]

1.4 0.0053 0.2435 22.07 10

1.6 0.0063 0.2812 7.88 10

1.8 0.0071 0.3190 5.01 10

2.0 0.0077 0.3567 5.01 10

2.2 0.0083 0.3944 5.01 10

2.4 0.0089 0.4322 5.01 10

Age group specific disease parameters

0–4 5–18 19–29 30–64 65+

Population size 36,722 124,787 71,601 265,047 65,303 [6]

Death rate (unvaccinated-χu) 0.0049 0.002 0.0056 0.0038 0.001 [13]

Death rate (vaccinated-χv) 0.0012 0.0005 0.0017 0.0011 0.0004 [13]

Vaccine efficacy in

becoming infected 40% 40% 40% 40% 24% [6]

transmitting the disease 40% 40% 40% 40% 24% [6]

showing the symptoms 67% 67% 67% 67% 40% [6]

Performance related parameters

0–4 5–18 19–29 30–64 65+

Infection cost (unvaccinated)($) 275.3 275.3 328.98 328.98 492.56 [13]

Infection cost (vaccinated)($) 231.58 231.58 264.71 264.71 404.54 [13]

Terminal care cost($) 3,435 3,435 7,605 7,605 8,309 [13]

Vaccination cost ($) 37.26 37.26 37.26 37.26 37.26 [13]

YLL (years) 79.42 70.71 57.92 36.45 13.37 [39, 40]

‡: Mean of a discrete distribution of 1, 2, or 3 days with probabilities 0.3, 0.5, and 0.2.
†: These numbers are for the unvaccinated individuals. For the vaccinated individuals, they should be multiplied by (1- vaccine efficacy in showing the

symptoms).

*: These numbers are for the unvaccinated individuals. For the vaccinated individuals, they should be multiplied by (1- vaccine efficacy in transmitting the

disease).

doi:10.1371/journal.pone.0172261.t001
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derivative-free approach, in particular, the mesh-adaptive direct search (MADS) algorithm as

implemented in open-source software NOMAD [43]. Starting from an initial solution, the

MADS algorithm iteratively tries to improve the current best solution by generating trial

points on a mesh, which is a discretization of the variable space. Each iteration is composed of

two main steps: the search and the poll steps. The search step evaluates a number of trial mesh

points. If an improved mesh point is found, then the next iteration is initiated with the new

incumbent solution using a larger mesh size. Whenever the search step fails to generate an

improved mesh point, then the poll step is invoked. The poll step explores the variable space

near the current incumbent solution. If the poll step also fails to improve the current best solu-

tion, then the mesh size and poll size parameters are reduced in order to increase the search

resolution. The MADS algorithm stops after a given number of iterations or when the mesh

size reaches a precision limit. We refer the reader to Le Digabel (2011) for more information

about the MADS algorithm and NOMAD [44].

All numerical experiments are conducted using a PC with 48 cores (2.85 Ghz and 128 GB

memory). We run both FluTe and the SEIR model up to one year. We generate 10 trial solu-

tions in each iteration of the MADS algorithm. In one set of experiments, we use FluTe to eval-

uate the performance of trial solutions (FluTe+MADS), and in another set of experiments we

use the SEIR model (SEIR+MADS). When using FluTe, we perform 24 replications to estimate

the average performance of each trial solution. Based on our initial experiments, this sample

size is sufficient to reduce the effects of sample variance on the results. We terminate the

MADS algorithm after 1,000 trial solutions or when the mesh size is less than or equal to 10−13.

The SEIR model evaluates trial solutions much faster than FluTe. Therefore, when using the

SEIR model, we terminate the MADS algorithm after 100,000 trial solutions or when the mesh

size is less than or equal to 10−13. We select pi = 0.5, 8i 2 AG as the initial solution in the

MADS algorithm, i.e., vaccinate 50% of the population in each age group. Although this solu-

tion may be infeasible under some vaccine coverage scenarios, it is still a proper initial solution

because the MADS algorithm allows constraint violations in the intermediate iterations to

diversify the search.

Results

We present the age-specific vaccine allocation strategies derived by FluTe+MADS and SEIR

+MADS. We highlight the age groups prioritized by each approach and evaluate the relative

performance of the proposed strategies under various scenarios for multiple objective

functions.

The basic reproductive number (R0) represents the average number of infections generated

by a typical infectious person in a completely susceptible population. If R0 > 1, the infection

spreads in the population. Otherwise, the infection eventually dies out without any interven-

tion [45]. Fraser et al. (2009) estimated the R0 value of the 2009 H1N1 pandemic between 1.4

and 1.6 [46]. Medlock and Galvani (2009) reported that 30% vaccine coverage can mitigate a

pandemic like the 2009 H1N1 if there is no delay in response time (i.e., vaccination starts on

the first day of the pandemic) [13]. We therefore use R0 = 1.6, 30% vaccine coverage, and no

delay in response time as the base case in our experiments. Note that the result of Medlock

and Galvani (2009) depends on vaccine efficacy. They assumed 80% vaccine efficacy against

infection for 0 to 64-year-olds and 60% for those 65 and older. More than 30% coverage would

be required for less effective vaccines (or a mismatched vaccine). Moreover, the whole process

of producing a pandemic vaccine for a novel influenza virus takes four to six months [47].

Therefore, a base case scenario with no response delay may seem unreasonable. However, we

consider no other pandemic interventions such as quarantine, public health measures and
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antivirals, which may slow down the pandemic spread substantially. This effect may render the

no response delay scenario more acceptable as a base case. In addition, analyzing the no

response delay scenario is important to evaluate the maximum potential of a particular vacci-

nation policy and coverage level to mitigate the pandemic.

Table 2 reports the age-specific vaccine allocation strategies derived by FluTe+MADS and

SEIR+MADS in the base case. SEIR+MADS vaccinates only school children (5–18) to mini-

mize the total cost (TC) objective. For other objectives, preschool (0–4) and school children

are mainly vaccinated, and the remaining vaccines are allocated to young adults (19–29).

FluTe+MADS vaccinates school children for the most part, and allocates the remaining vac-

cines to preschool children and young adults. Observe that SEIR+MADS uses fewer vaccine

doses than FluTe+MADS for the TC objective, possibly because the effect of vaccination is

more pronounced in the SEIR model as a result of the homogeneous mixing assumption.

In S1 Fig, we compare the overall attack rates of the SEIR model and FluTe under the

same vaccination policy: the available vaccine stocks are primarily allocated to school chil-

dren, the remaining doses are first allocated to preschool children, and then to young adults.

For each coverage level and R0 value, the SEIR model has resulted in less overall attack rate

than Flute, illustrating the more pronounced effect of vaccination in the former model. Fur-

thermore, the critical vaccination fraction to stop the epidemic is lower in the SEIR model,

and the amount of vaccine used relative to this threshold affects the optimal allocation. For

example, if one can stop an epidemic by vaccinating only school children, there is no reason

to vaccinate others.

We evaluate performances of the vaccine allocation strategies derived by FluTe+MADS

and SEIR+MADS using FluTe with 100 replications. As seen in Table 3, the strategy from

Table 2. Vaccine allocation strategies obtained by FluTe+MADS and SEIR+MADS under the base-case scenario.

Performance measure Vaccination fractions for each age group

0–4 5–18 19–29 30–64 65+

TC SEIR+MADS - 87% - - -

FluTe+MADS - 99% 34% - -

TI SEIR+MADS 100% 100% 9% - -

FluTe+MADS 89% 100% 9% 1% 1%

TD SEIR+MADS 100% 100% 9% - -

FluTe+MADS 5% 97% 50% 3% 2%

TY SEIR+MADS 100% 100% 9% - -

FluTe+MADS 21% 98% 50% 1% -

R0 = 1.6, 30% vaccine coverage, no delay in response time. TC: Total cost, TI: Total number of infections, TD: Total number of deaths, TY: Total YLL

doi:10.1371/journal.pone.0172261.t002

Table 3. Objective values of recommended vaccine allocation strategies.

Performance measure Sample mean Difference p-value

SEIR+MADS FluTe+MADS

TC ($M) 23.2 6.5 16.7 <0.001

TI (infections) 1,170.3 945.2 225.1 0.117

TD (deaths) 10.7 9.9 0.8 0.584

TY (life years lost) 459.8 367.5 92.3 0.094

R0 = 1.6, 30% vaccine coverage, no delay in response time. The performance measures are calculated using FluTe with 100 replications.

doi:10.1371/journal.pone.0172261.t003
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FluTe+MADS is significantly better than the one from SEIR+MADS for the TC objective.

This is mainly due to the fact that the amount of vaccine used in the strategy from SEIR

+MADS, while containing the disease effectively in the SEIR model, is insufficient to do so

in FluTe.

Fig 3. Vaccine allocation strategies derived by FluTe+MADS and SEIR+MADS under all objective functions for various R0 values (30% vaccine

coverage, no delay in response time). (a) SEIR+MADS with the TC objective. (b) FluTe+MADS with the TC objective. (c) SEIR+MADS with the TI

objective. (d) FluTe+MADS with the TI objective. (e) SEIR+MADS with the TD objective. (f) FluTe+MADS with the TD objective. (g) SEIR+MADS with the TY

objective. (h) FluTe+MADS with the TY objective.

doi:10.1371/journal.pone.0172261.g003
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Sensitivity analysis on R0

We vary the basic reproduction number R0 between 1.2 and 2.4 under 30% vaccine coverage

with no delay in response time to analyze the sensitivity of the proposed vaccine allocation

strategies to R0. For the total cost (TC) objective, SEIR+MADS increases the vaccinated pro-

portion of school children from 47% to 100% as R0 increases from 1.2 to 2.0 (see Fig 3a). After

covering school children, the remaining vaccines are allocated to preschool children when R0

� 2.0. FluTe+MADS vaccinates 45% of school children as well as a small portion of preschool

children and young adults when R0 = 1.2 (see Fig 3b). Furthermore, FluTe+MADS covers all

school children when R0� 1.6. SEIR+MADS allocates 35% of the available vaccine when R0 =

1.2 and all of the available vaccine when R0� 2.2. On the other hand, FluTe+MADS allocates

43% of the available vaccine when R0 = 1.2 and all of the available vaccine when R0� 1.8. Intu-

itively, both methods use fewer vaccine doses for smaller R0 values to keep the vaccination cost

low.

For the total number of infections (TI) objective, SEIR+MADS recommends a similar strat-

egy for each R0; vaccinate all preschool and school children as well as small portions of young

adults and/or seniors (65+) (see Fig 3c). However, vaccine allocation strategies from FluTe

+MADS vary by R0 (see Fig 3d). These strategies cover all school children and allocate the

remaining vaccines to preschool children and young adults when R0� 1.4. Note that both

approaches use all available vaccine stocks, as vaccination cost is no longer a concern for the

TI objective. This result is also valid for the total number of deaths (TD) and total YLL (TY)

objectives.

For the TD and TY objectives, there is a trade off between reducing the number infections

(by vaccinating school children) and reducing the casualties in high-mortality age groups (by

vaccinating preschool children and young adults). SEIR+MADS again vaccinates all preschool

and school children for all R0 values (see Fig 3e and 3g). FluTe+MADS covers all school chil-

dren in addition to some proportions of preschool children and young adults when R0� 2.2

(see Fig 3f and 3h). However, when R0 = 2.4, FluTe+MADS vaccinates preschool children and

young adults for the most part rather than school children. This unique case is due to high

mortality rates of preschool children and young adults (see Table 1). The vaccine stocks

become insufficient to contain the pandemic when R0 = 2.4, therefore, the recommended strat-

egy focuses on minimizing casualties in high-mortality age groups.

The vaccine allocation strategies from FluTe+MADS perform better than those from SEIR

+MADS when R0 is between 1.4 and 2.2, i.e., when the effective vaccine allocation becomes

critical to control the pandemic (see S2 Fig). However, SEIR+MADS performs better than

FluTe+MADS or the difference is not significant when R0 < 1.4 or R0 > 2.2. Recall that we run

the MADS algorithm for at most 1,000 trial solutions in FluTe+MADS, while we allow for

100,000 trial solutions in SEIR+MADS. Therefore, it is not unlikely that SEIR+MADS finds

better strategies than FluTe+MADS, especially when a small vaccination level is enough to

contain the infection (i.e., R0 < 1.4). On the other hand, when the infection is very aggressive,

i.e., R0 > 2.2, 30% vaccine coverage in the base case is not enough for containing the pandemic,

and therefore, there is limited room for improvement by optimizing the vaccine allocation.

One exception to this pattern is for the TD and TY objectives where FluTe+MADS performs

7% and 9% better than SEIR+MADS, respectively, by prioritizing high-mortality age groups,

i.e., preschool children and young adults when R0 = 2.4.

Sensitivity analysis on vaccine coverage and response time

We set R0 = 1.6 and analyze the sensitivity of the age-specific allocation strategies to vaccine

coverage and response time. Table 4 presents the strategies obtained under 20%, 30% and 40%
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vaccine coverage with no response delay (i.e., vaccination starts on the first day of the pan-

demic). SEIR+MADS vaccinates preschool and school children for the most part, and allocates

the remaining vaccines to young adults for all objectives except the total cost (TC) objective

for which 87% of school children is vaccinated under all coverage levels to reduce the vaccina-

tion cost. FluTe+MADS vaccinates school children, and allocates the remaining vaccines to

preschool children and young adults.

The strategies from FluTe+MADS outperforms SEIR+MADS in all objective types when

vaccine coverage is 30% (see S3 Fig). However, strategies from SEIR+MADS for the total num-

ber of deaths (TD) and the total YLL (TY) objectives on average perform better than those

derived by FluTe+MADS when the vaccine coverage is 20% or 40% (see S3 Fig). If the vaccine

coverage is 20%, there is a small set of effective vaccine allocation strategies that can contain

the pandemic. On the other hand, if the vaccine coverage is 40%, the set of effective strategies

is large with many local optimums. In both cases, a large number of trial solutions should be

evaluated. FluTe+MADS may not find an effective strategy with 1,000 trial solutions when the

vaccine coverage is 20%, and gets stuck at a local optimum when the vaccine coverage is 40%.

Furthermore, the random noise around the objective values of each FluTe replication may

make it difficult for the MADS algorithm to find an effective improvement direction.

Table 5 presents the allocation strategies for different response time scenarios with R0 = 1.6

and 30% vaccine coverage. Prevaccination refers to the case where the vaccine is administered

two weeks before the beginning of the pandemic so that it reaches its maximum effectiveness

by the time the virus starts spreading. Others refer to the scenarios where the vaccination starts

d days after the onset of the outbreak (d = 0, 10, 20, 30, 40, 60, 80, or 90). In these delayed

response scenarios, the vaccine effectiveness will gradually increase and reach its maximum

level in two weeks during the course of the pandemic both in the SEIR model and FluTe [6].

In Table 5, SEIR+MADS vaccinates preschool children and school children for all objec-

tives except for the TC objective. More interestingly, the recommended allocation strategy is

rather insensitive to response delay for the TI, TD and TY objectives. This result is due to the

fact that the impact of vaccination is so pronounced in the SEIR model that the infection can

still be contained by vaccinating high transmitters even after 90-day response delay.

Table 4. Vaccine allocation strategies for different coverage scenarios.

FluTe+MADS SEIR+MADS

Vaccine coverage Vaccination fraction for each age group (pi) Vaccination fraction for each age group (pi)

0–4 5–18 19–29 30–64 65+ 0–4 5–18 19–29 30–64 65+

TC 20% 1% 88% 1% - - - 87% - - -

30% - 99% 34% - - - 87% - - -

40% 34% 98% 22% 2% 3% - 87% - - -

TI 20% 2% 87% 2% - 1% - 90% - - -

30% 89% 100% 9% 1% 1% 100% 100% 9% - -

40% 64% 98% 99% 2% 1% 100% 100% 84% - 3%

TD 20% 15% 80% - - 10% - 90% - - -

30% 5% 97% 50% 3% 2% 100% 100% 9% - -

40% 6% 100% 96% 11% - 100% 100% 80% 2% -

TY 20% 34% 70% 6% - 12% - 90% - - -

30% 21% 98% 50% 1% - 100% 100% 9% - -

40% 64% 98% 98% 2% 2% 84% 100% 95% - -

R0 = 1.6, no response delay

doi:10.1371/journal.pone.0172261.t004
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The vaccine allocation strategies from FluTe+MADS, however, vary significantly with

response time, although vaccinating the school children is still the main focus in most cases.

For the total number of deaths (TD) objective, FluTe+MADS increases the vaccinated propor-

tion of age groups who have high mortality risk as the response is further delayed. When the

response delay is 80 days, for example, the vaccinated proportion of school children drops to

0% and young adults are fully covered. This result complies with the literature which suggests

prioritizing vaccination of high transmitters (e.g., school children) earlier and prioritizing vac-

cination of those who have high mortality rate (e.g., young adults, preschool children) later in

the pandemic [14, 48, 49].

Table 5. Vaccine allocation strategies for different response time scenarios.

SEIR+MADS FluTe+MADS

Response time (days) Vaccination fraction for each age group (pi) Vaccination fraction for each age group (pi)

0–4 5–18 19–29 30–64 65+ 0–4 5–18 19–29 30–64 65+

TC P – 86% – – – 19% 100% – – 4%

0 – 87% – – – – 99% 34% – –

10 – 89% – – – 77% 100% 15% – 5%

20 – 91% – – – 46% 100% 31% – 4%

40 – 96% – – – – 96% 49% 5% –

60 – 100% – – – 23% 83% 71% – 8%

80 1% 100% – – – 48% 6% – 54% –

90 72% 100% – – – 4% 5% – 55% –

TI P 100% 100% 1% – 9% 16% 100% 43% – –

0 100% 100% 9% – – 89% 100% 9% 1% 1%

10 100% 100% 9% – – 67% 99% 16% 2% 2%

20 100% 100% 7% 1% – – 100% 39% 5% –

40 100% 100% 9% – – 19% 100% – 14% –

60 100% 100% 9% – – 30% 93% 52% – 5%

80 100% 100% 1% 2% – 56% 65% 88% – 4%

90 100% 100% 1% 2% – 59% 40% – 36% –

TD P 100% 100% 9% – – 13% 100% 17% 9% 1%

0 100% 100% 9% – – 5% 97% 50% 3% 2%

10 100% 100% 9% – – – 100% 60% – –

20 100% 100% 9% – – 14% 100% 27% 6% 6%

40 100% 100% 9% – – – 100% 60% – –

60 100% 100% 5% 1% – 66% 98% 23% – 8%

80 100% 100% 9% – – 100% – 100% 22% –

90 100% 100% 9% – – 87% – 100% 24% –

TY P 100% 100% 9% – – 71% 100% 10% 2% 6%

0 100% 100% 9% – – 21% 98% 50% 1% –

10 100% 100% 9% – – 93% 98% – 4% –

20 100% 100% 9% – – 36% 100% 37% – 4%

40 100% 100% 9% – – 1% 100% 59% – –

60 100% 100% 9% – – 100% 100% 9% – 1%

80 100% 100% 9% – – 100% 47% 100% – –

90 100% 100% 9% – – 100% 100% – 2% –

R0 = 1.6, 30% vaccine coverage. P: Prevaccination.

doi:10.1371/journal.pone.0172261.t005
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The strategies from FluTe+MADS generally outperform those from SEIR+MADS for dif-

ferent response time scenarios (see S3 Fig). The performance difference mainly decreases as

the response is further delayed, except for the TD objective, where significant differences are

obtained by focusing on high-risk age groups even when the response delay is more than 60

days.

Conclusions

Health policy makers commonly use agent-based simulations and compartmental models

when evaluating and designing effective vaccine allocation strategies. Our study shines a light

on the possible differences between the strategies obtained by these two approaches. In particu-

lar, we observe that age-specific vaccine allocation strategies derived by using a computationally

expensive but realistic agent-based simulation and those derived by using a fast but stylized

compartmental model may be different from each other. They, however, both recommend vac-

cinating school children for the most part, which complies with the literature [19, 49].

The age-specific vaccine allocation strategies derived by using the agent-based simulation

significantly outperforms those derived using the compartmental model especially for moder-

ate levels of basic reproduction number (i.e., 1.4� R0� 2.2) when vaccine stocks are not very

scarce. In other cases, either it is rather easy to control the pandemic (e.g., when R0 = 1.2), so

there are several strategies that can effectively control the infection, or vaccination is not suffi-

cient to control the pandemic. In such extreme scenarios, the performance gap between the

two approaches is small because there is limited room for improvement.

We also note the following two observations. First, SEIR+MADS tries to limit the number

of infected individuals for all R0 levels using almost the same vaccine allocation strategy for all

objective functions under all scenarios. On the other hand, strategies from FluTe+MADS vary

significantly for different objective functions and parameter scenarios seeking a balance

between the number of infections and influenza-related deaths. Second, the impact of vaccina-

tion is very significant in SEIR+MADS possibly due to the homogeneous mixing assumption.

Therefore, once evaluated by FluTe, the performance of the strategies from SEIR+MADS

appears to be less effective compared those derived by FluTe+MADS. Similar observations are

reported by other studies that evaluate the performances of strategies derived by compartmen-

tal models using agent-based simulations [20].

Our observations summarized above are based on the comparison of a specific agent-based

simulation and a compartmental model. However, FluTe is commonly used and well-received

in the literature [50–52]. Therefore, although they are not directly generalizable, our observa-

tions are likely to hold for other agent-based simulations and compartmental models whose

assumptions are similar to those analyzed in this study. The differences between the age-spe-

cific vaccine allocation strategies derived by SEIR+MADS and FluTe+MADS are possibly due

to the combined effect of considering the heterogeneity in contact patterns and stochasticity in

disease progression. However, we left measuring the individual effect of heterogeneity and sto-

chasticity for future research as such an analysis requires a more simplified methodological

setting.

There are a few limitations of our analysis. First, we examine age-specific vaccine allocation

but do not consider other important risk factors, e.g., chronic medical conditions and preg-

nancy. Moreover, we use a deterministic numerical optimization algorithm, which does not

incorporate the variance in the simulation replications when updating the search direction.

Using a faster agent-based simulation, the number of replications can be increased to reduce

the variance. Alternatively, ranking and selection methods can be applied to find the proper

number of replications for each vaccine allocation strategy, which is left for future research.
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S1 Table. The daily contact rate of age group i and age group j (Fij) used in the SEIR model

after the calibration. We assume that the total number of daily contacts between age groups i
and j is symmetric. To calculate the daily contact rate of someone in age group i with age

group j, we divided the total number of daily contacts between i and j by the population of age

group i. So, the age-specific contact rates are asymmetric because the population of age groups

i and j are different.

(PDF)

S2 Table. Age specific influenza attack rates in Asian A(H2N2) pandemic and simulations

of metropolitan Seattle using FluTe and the SEIR model for R0 = 1.6 without vaccination.

(PDF)

S1 Fig. Overall attack rates for different vaccine coverage levels and R0 values. (a) FluTe.

(b) SEIR model. Both Flute and the SEIR model evaluate the same vaccine allocation policy for

all vaccine coverage levels. In this policy, available vaccine stocks are primarily allocated to

school children, the remaining doses are first allocated to preschool children, and then to

young adults.

(EPS)

S2 Fig. Objective values of vaccine allocation strategies for different R0 values (30% vaccine

coverage, no delay in response time). (a) Total cost. (b) Number of infections. (c) Mortality.

(d) Years of life lost.

(EPS)

S3 Fig. Objective values of vaccine allocation strategies for different coverage scenarios

(R0 = 1.6, no delay in response time) and response time scenarios (R0 = 1.6, 30% vaccine

coverage). (a) Total cost. (b) Number of infections. (c) Number of deaths. (d) Years of life lost.

(EPS)
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