Neural Network Classifiers for
Human Tissue Classification in NIR
Biomedical Multispectral Imaging

by

Sandeep Gurm

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Systems Design Engineering

Waterloo, Ontario, Canada, 2018

(© Sandeep Gurm 2018



This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Statement of Contributions

Content from the following paper is used in this thesis in Chapter 5:

Gurm, Sandeep, Ossama Badawy, and Alexander Wong. ”A Multi-layer Perceptron
Approach to Automatically Detect Tissue via NIR Multispectral Imaging.” Journal of
Computational Vision and Imaging Systems 3.1 (2017).

Contributor Statement of Contribution

Conceptual Design - 100%
S. Gurm (Candidate) Data Collection and Analysis - 90%
Writing and Editing - 70%

A. Wong Data Collection and Analysis - 10%
Writing and Editing - 20%

O. Badawy Writing and Editing - 10%

111



Abstract

Near infrared imaging (NIR) is an imaging modality that has gained traction for solving
biomedical problems in recent years. By leveraging the NIR spectrum, multiple spectra
from the NIR range can be used to extract meaningful data from a variety of targets
including human tissue; this technique is known as multispectral imaging (MSI) analysis.

A generalized tissue classification method that identifies human tissue in an NIR mul-
tispectral imaging field is explored. NIR images are captured from four different wave-
lengths, and features are extracted from the individual images. The features are then
manually labeled and used to train machine learning models to identify tissue/non-tissue
areas within a multispectral image set. Although the application in this thesis is used to
classify tissue/non-tissue, the techniques presented can be generalized to solve many other
MSTI classification problems in a variety of fields.

In particular, two machine learning models are explored in this thesis; a multi-layer per-
ceptron (MLP) and a convolutional neural network (CNN) approach. For each approach,
feature selection and hyper-parameter tuning were used to design the machine learning
architectures. After the design process, quantitative and qualitative tests were conducted
to evaluate the merits of each algorithm design.

Analysis found that the CNN approach yields excellent reliability and accuracy com-
pared to the MLP. The accuracy, sensitivity, and specificity of the CNN is 95.2, 94.4, and
95.7% as calculated on a test set of MSI data. The MLP results on the same data set yield
accuracy, sensitivity, and specificity values of 83.9, 85.4, and 83.1% respectively. It is also
demonstrated that the CNN design maintains excellent accuracy even when challenged
with varying tissue types and body compositions.

The impact of this research will be most applicable to biomedical imaging modalities
that utilize multispectral data. The techniques presented can be used to classify different
types of tissues and their pathologies. Furthermore, the techniques can be generalized
to other fields where multispectral data is used for inferencing, such as remote sensing
applications.
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Chapter 1

Introduction

Multispectral imaging (MSI) gained prominence in the field of remote sensing and has
grown to include various areas of application such as; art restoration, food quality, crime
scene detection, etc [1].

In the field of medical imaging, near infrared (NIR) multispectral imaging has become a
common technique to non-invasively and quantitatively evaluate tissue health [2], especially
in disease diagnosis and image guided surgery [1].

The problem that this thesis will address is the identification of regions in multispec-
tral images that are either tissue or non-tissue. This is an important first step in tissue
characterization as well as pixel classification.

To characterize multispectral images, several approaches have been taken by researchers.
A particularly effective approach has been to utilize a multi-layer perceptron (MLP), which
has shown potential to classify cancerous tissues in both visible and NIR imaging regimes,
as is demonstrated in the research put forward by Jolivot et al. [3] and Carrara et al. [1].

Furthermore, deep learning and convolutional neural networks (CNNs) have been used
to successfully classify multispectral image data. Research put forward by Malon et al.
shows the ability to detect mitotic figures in tissue by using deep learning and multispectral
image sets [5]. Albarqouni et al. also show the power of deep learning to identify mitotic
figures in tissue images [0].

Much of the contemporary medical imaging research on tissue classification focuses on
finding important diagnostic information; the aim of this thesis is not to classify specific
structures, cancers, or lesions. Rather, this thesis will look to build a novel architecture
which will generally classify areas of MSI data that are either tissue or non-tissue. The



motivation for doing this is to help make MSI applications more efficient; in real-time
imaging applications, knowing tissue/non-tissue regions in a MSI imaging field can help
reduce computational overhead by only processing relevant sections of the image. There is
a significant body of research on classifying skin vs. non-skin pixels in an image (covered in
Chapter 3) - some concepts from these works will be reviewed and built upon for classifying
tissue/non-tissue in an MSI scene.

1.1 Contribution and Motivation

The motivation for classifying tissue stems from an industrial application at Christie Digital
Systems in the field of real-time tissue analytics. MSI systems can be used to calculate
metrics about tissue health by using spectral ’slices’ of data to solve for physiological
analyte concentrations. These metrics can be used to fulfill clinical needs, and are intended
to be used in real-time situations. In the design of MSI systems, a common bottleneck in
the computation speed is due to the complex hardware configurations and the requirement
to acquire and process multiple images at a time.

To speed up the computation of MSI systems, a potential solution is to pre-classify
the image into two classes; tissue and non-tissue as a means of data reduction. A medical
MSI system field of view may contain surgical cloth, medical equipment, and various other
objects. To compute clinical algorithms on these non-tissue objects is a waste of compu-
tational time. Furthermore, computing clinical algorithms on non-tissue objects can be
confusing to a clinical practitioner who is observing the MSI system results in real-time.
Segmenting an image into tissue/non-tissue will yield a cleaner, more relevant image that
is easier to interpret.

Furthermore, the ability to successfully classify objects based on MSI data can be a
proof-of-concept for more complex classification tasks. For example, it may be possible to
use labeled MSI data to classify cancerous vs. healthy tissues, or oxygen rich vs. oxygen
deficient tissues.

The main challenge in using MSI data to classify tissue is that there are no specific
geometric features that can be used to classify tissue; tissue can take many forms, and there
are no specific geometric dependencies that can be relied on. Typical image classification
algorithms can easily identify cars, faces, and other objects based on the geometry of the
object. However, unlike the former examples, general human tissue does not have a distinct
geometry that can be relied on for training a classification model.



To begin designing classification algorithms, a corpus of data and target MSI archi-
tecture is necessary. A large MSI data set was gathered at Christie Digital Systems from
subjects with differing skin tones and body compositions, as well as several surgical /medical
non-tissue objects. The wavelengths used were 740, 780, 850, 945nm. Using these images,
the research presented will explore 2 main neural network based methods to classify the
data into tissue/non-tissue.

The key contributions of this thesis are:

e Creating features from MSI data slices that can be used for building machine learning
models

e A novel MLP classifier design which uses pixel-level spectra to classify multispectral
images

e A novel CNN classifier design which incorporates spatial context to classify multi-
spectral images

1.2 Organization of the Thesis

This thesis is structured as follows: the theoretical background in Chapter 2 will give a brief
overview of optical physics and tissue optics, followed by MLP and CNN fundamentals.
Chapter 3 describes the current state-of-the-art and will cover some common approaches
that have been taken by other researchers to solve similar problems. The proposed ap-
proaches are outlined in Chapter 4, which will give an overview of the data collection
process as well as an overview of the design process for the MLP and CNN solutions.

Chapter 5 and Chapter 6 describe the CNN and MLP designs, respectively. Each
chapter includes the hyper-parameter optimization process taken to optimize the designs.
Furthermore, within these chapters is a quantitative analysis of the effectiveness of the
designs.

A qualitative evaluation is done in Chapter 7, which compares the effectiveness of each
design against an extended set of challenge images to see how each design fares on varying
anatomical sites. Finally, recommendations for future research will be proposed in Chapter
8 that will build upon the contributions and research presented in this thesis.



Chapter 2

Theoretical Background

2.1 Tissue Optics

To understand the context of this work, it is necessary to first gain a basic understanding
of tissue interaction with light - this thesis will focus on NIR light in particular.

As NIR light is delivered to biological tissue, absorption and scatter of light occurs due
to the structure of the tissue as well as the composition of various components, such as
hemoglobin, melanin, and water/fat content [7]. The components of tissue have their own
distinct scattering and absorption characteristics. Each component will absorb or scatter
light differently based on the wavelength of the light, and as such, wavelengths of light can
be selected to build a mixed mathematical model to solve for the concentration of these

components [7]. The absorption of these components can be generally modeled as:
T = e Ul (2.1)
T = ek (2.2)

Where T represents the transmission of light (as a fraction), u, is the absorption of the
component of interest, L is the path length of the material (often assumed to be 1 cm to
simplify the model), € is the extinction coefficient, and ¢ is the concentration of the analyte
of interest [7].

The absorption, u,, is wavelength dependent. It is equal to the extinction coefficient, e,
times the concentration of the analyte of interest. The fundamental property of the extinc-
tion coefficient can be described as a material’s ability to absorb light per it’s concentration.



As such, to quantitatively determine the amount of the desired analyte in tissue, multiple
wavelength measurements of the transmission (or reflectance) must be calculated to create
an accurate model - this is the basis of MSI [¢].

For this research, oxyhemoglobin and deoxyhemoglobin are considered, as these com-
ponents are common across all types of human tissue. Four wavelengths are selected at
740nm, 780nm, 850nm, and 945nm; these wavelengths are selected for their location on
the isosbestic point of the oxyhemoglobin/deoxyhemoglobin extinction coefficient curves

{

as shown in Figure 2.1[7].
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Figure 2.1: Hb and HbO2 absorption curves in the NIR range [7]

T can be gathered from an NIR camera sensor for each wavelength, and e for Hb and

HbO2 can be obtained from Figure 2.1. The € matrix is represented as € = [:Hb } . Each
Hb02

row of the matrix is represented as:



€lp = [6740, €780, €850, E945] (2-3)

€EHbVO2 = [6740, €780, €850, 6945] (2-4)

Using the extinction coefficients matrix, it is then possible to solve for Hb and HbO2
concentration, as the system is overdetermined (i.e., more than 2 measurements, and solv-
ing for 2 unknowns). Equation 2.2 can be rearranged by taking the pseudo-inverse of
the extinction coefficient matrix (or simply inverse if the extinction coefficient matrix is
square):

c=—In(T)e* (2.5)

Using the principles outlined in this section, it is possible to solve for several tissue
characteristics and analytes.

2.2 Multi-Layer Perceptron

Multi-layer perceptrons have been commonly used to classify and model highly non-linear
data sets. It is the basis for one of the designs presented in this thesis to classify tissue/non-
tissue. This section will give a general overview of the MLP framework.

The MLP is a class of feed-forward neural network. It consists of an input layer, a
minimum of one hidden layer, and an output layer [9]. A depiction of an MLP is shown in
Figure 2.2.

Inputs are fed into the network, after which there can be several hidden layers. De-
pending on the design chosen, the classes of MLPs can be described as shallow or deep;
i.e., an MLP with multiple hidden layers is considered to be relatively deep, whereas an
MLP with fewer hidden layers is considered to be relatively shallow.

Each connection between layers has an associated weight with which the input is mul-
tiplied. Then, the sum of the weighted inputs enter a node, which usually contains an
activation function. The activation function maps the weighted sum of the inputs to an
output; this function can be highly non-linear or linear, depending on the application [10].
The activation function can be thought of as a decision function which emits an output
(decision) based on given inputs. Examples of an activation function include the sigmoid,
tanh, and Gaussian functions. A visual representation of the neuron is shown in Figure
2.3.
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Figure 2.2: A general example of an MLP architecture with 6 inputs, a hidden layer, and
3 output classes

The main purpose of the activation function is to provide a discrimination method for
the weighted inputs [10]. A major advantage of MLPs are their ability to discriminate
multi-dimensional and non-linear data. As more nodes are added to a MLP, the higher
order the decision boundary shall be.

Consider two variables that form the "half moon’ clusters shown in Figure 2.4. These
clusters can represent anything - for illustrative purposes, consider the axes to represent the
width of a particular feature vs. the height of a feature. The two different colour clusters
can represent two classes of the same object. To find an MLP based decision boundary
that will accurately discriminate between the two classes, the number of nodes or layers in
the hidden layers will dictate the order of the discrimination boundary.

7
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Figure 2.3: Diagram of a neuron and activation function

Figure 2.4: The effect of the number of modes in an MLP based decision boundary (from
left to right): 1 node in hidden layer, 2 nodes in hidden layer, 3 nodes in hidden layer

The decision boundary for 1 node appears to mis-classify several data points, whereas
the highest order decision boundary (3 nodes) does a much better job of separating the
two classes. Therefore, the 3 node architecture is most appropriate for classifying the two
data classes. This concept is very important to consider for the MLP design.

Mathematically, inputs are fed forward through the MLP, with the output of each node
modeled as:

0= f(Z wiz; — 0) (2.6)

Where o is the output from the node, z is the input(s) to the node, and w is the
weight(s) to the input [9]. For the first iteration of training a MLP, the weights are
typically initialized to a small random value [9]. When the output propagates through
the MLP, it is compared to the ’true’ value of the output (i.e., the label of the input). To
determine how well the MLP is fitting the true output, a loss function is needed to evaluate
performance. The subsection 2.4 Training Neural Networks will go into details as to how

8



MLP training works.

2.3 Convolutional Neural Networks

Convolutional neural networks work in similar principle to MLPs in the sense that both
architectures are composed of neurons that have learnable weights and biases [I1]. The
main advantage to CNNs over MLPs is their ability to accept spatial context and multi-
dimensional spatial information [11]. CNNs provide the ability to learn features from 2D
or 3D images and signals. For the purpose of this thesis, CNNs will be leveraged to add
spatial context to the tissue/non-tissue classification problem. This section will provide a
brief overview of the CNN framework.

An example of a possible structure of a CNN is represented in Figure 2.6. Consider
an example where the input (i.e., a desired set or class of images) has to be learned and
classified by an algorithm. To learn features from a set of images, a set of images are
fed into a CNN, where a convolution operation is performed by a filter. Mathematically,
convolution between two functions over an infinite interval is defined as [10]:

[e.9]

pl(z) = p(z) * ply) = / p(a)p(z — z)dz 2.7)

—00

In the context of CNNs, the convolution function can be simplified as a dot product
between the weights of the filter and the input [ 1]. To illustrate a simple example, Figure
2.5 shows a convolution operation on two 2x2 matrices.

S 8
3 =5*3 + 6*8 + 9*2 + 7*8

9

Figure 2.5: Example of convolution in a 2D context

In practice, the convolution operation by the filter is slid across a padded version of
the image in a stride length that depends on the desired output shape of the convolution
operation.

CNNs also use sub-sampling to reduce the spatial size of the input, which in turn leads
to a reduction in the number of parameters and computation of the network [I1]. An

9
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Feature Maps

Convolution Subsample Convolution  Subsample

Figure 2.6: Diagram of a CNN structure where the input image features are learned

example of a max pooling operation is shown in Figure 2.7. Here, a 4x4 image block is
reduced to a 2x2 block by taking the maximum value (max pooling) of a 2x2 subset of the
4x4 block.

Data Matrix

Pooled Data Matrix

—-
2X2 max 9 7

pooling

Figure 2.7: Operation of a 2x2 max pooling layer - each 2x2 block of data is reduced by
picking the max value

Finally, the sub-sampled inputs can be flattened by re-arranging a 2-dimensional array
into a 1-D vector. The 1-D vector is then fully connected to a series of neurons, which are
then fed into an activation function; examples of the activation function can include the
sigmoid function or a rectified linear unit [12]. The fully connected layer is connected to
an output node (or nodes), which classify the image.

10



The fully connected layer contains learnable weights, which can be found via optimiza-
tion methods (which are discussed in the next subsection). The output from the CNN is the
resultant classification desired. This concept will be utilized to find tissue vs. non-tissue
features in MSI data.

2.4 Training Neural Networks

Training a neural network, whether it is a MLP or CNN, refers to finding the weights of
a neuron or filter. Typically, weights are deemed to be most suitable if they minimize a
loss function (within the context of the training data). For problems which involve binary
classifiers, a common model to measure error (or loss) is known as the Kullback-Leibler
divergence (KL). KL divergence quantifies how close a probability distribution, p, is to a
candidate distribution, ¢ [13]. The KL divergence can also be referred to as the relative
entropy or cross-entropy [13]:

bi
Dkr(pllg) = Zpil092a (2.8)

Dy, is defined as non-negative, however it is unbounded and can potentially equal
infinity if there is substantial difference between p and ¢ [13]. Dgy can equal 0 if the
probability distributions p and ¢ are equal (i.e., there is no relative entropy between the
two distributions) [13].

The KL divergence can be used as a loss function to determine how well the weights of
the MLP/CNN are performing relative to the true output where the predicted distribution.
With the KL divergence, it is then possible to set-up an optimization problem that aims
to minimize the KL divergence, while updating the weights of the MLP. There are several
algorithms that can be used to solve optimization problems - for the scope of this thesis,
the stochastic gradient descent method (SGD) will be used.

SGD works by finding the best direction to update the weights of the MLP; i.e., find
the weight update that will lead to a lower loss [I1]. Mathematically, SGD takes the
differential of the loss function with respect to the weights to derive an expression [11].
The expression is used to calculate a weight update as shown by the following equations

[9]:
Aw = _nvaKL (29)

wk+1) =wk) — Aw(k +1) (2.10)

11



Where 7 is the learning rate of the SGD algorithm, V., Dk is the partial differential of
the loss function (in this case the KL divergence), w represents the weight being updated,
and k represents the specific epoch or data set.

The SGD algorithm continues iteratively until a stopping criteria is fulfilled. The cri-
teria can include; the loss function dropping below a pre-defined threshold, the ¢, change
drops below a pre-defined threshold, or the maximum number of iterations has been com-
pleted.

An important part of training a neural network is validating the neural network. Typ-
ically, data used to train a neural network can be divided into two classes; "training data’
and ’validation data’. Training data is used to train the neural network (i.e., find the
weights), whereas validation data (separate from the training data) is used to test the per-
formance of the neural network. When a neural network is trained, loss can be calculated
for both the training and validation data set. The loss metrics for both the training and
validation data set can also be used as a criteria to halt the training process.

12



Chapter 3

State of the Art

Several approaches have been pursued by researchers to characterize skin in colour images,
as well as tissue in NIR multispectral images. The approaches can be generalized as
statistical based approaches, and artificial neural network based approaches. This chapter
will review the literature pertaining to these approaches, and how this thesis will build
upon previous works.

3.1 Statistical Approaches

Cha et al. take an optimization approach by creating a probability density map and
classify tissue structures based on intensity thresholds [3]. This particular approach utilizes
masking layers, as well as Gaussian filters/overlays [3]. This approach appears to segment
multispectral images quite well, however it is unclear how well these techniques perform
across varying types of tissues (only porcine tissue was tested), and how the algorithm can
be generalized to other tissues.

A statistically intensive approach is taken by Deng et al. to characterize healthy vs.
cancerous tissue. They characterize the average and standard deviation of calculated met-
rics from multispectral images for cancerous and healthy tissues [11]. Then, they perform a
t-test to determine if the tissue is cancerous or not [11]. Although effective, this approach
suffers from requiring large sets of data (in this case, 450 patients) to characterize and
develop a profile.

There are several contemporary techniques for skin classification that are based on
characterizing the visible spectrum [15]. One such technique is presented by Jones et al. A

13



large dataset is scraped from the Internet which contains images of human skin as well as
non-skin items - approximately 1 billion pixels from these images are used to create a skin
vs non-skin dataset. By building histograms from each colour channel, the researchers are
able to separate the skin vs. non-skin pixels to a classification rate of 80%, with a 8.5%
false positive rate [10].

Mendenhall et al. approach skin classification by using both the visible and NIR spec-
trum, as many approaches that solely rely on the colour spectrum can have relatively high
false-alarm rates (8% to 15%) [17]. The authors utilize information from the spectral ab-
sorption of tissue components such as hemoglobin, melanin, and water. By leveraging the
absorption profiles across the NIR, spectrum, robust classifiers can be developed [17]. The
authors capture registered images at multiple wavelengths (227 spectral channels) from
400-2500 nm to characterize tissue vs. non-tissue objects. Given that some of the spec-
trum utilized is in the visible range, mixed colour and NIR Gaussian distributions are built.
These mixed Gaussians are used to classify pixels into tissue and non-tissue; the authors
report an accuracy of 98.6% with a false alarm rate of 1.1% against their test images [17].
However, the authors do state that acquiring such large data sets in real time (227 images
per frame) can be extremely expensive. They go on to state that the performance gains
may not justify the incurred cost [17].

Another statistical tool that has had some success in multispectral image classification
is principal component analysis (PCA) [2]. This technique has been used to evaluate skin
chromophores, and to extract blood and melanin data from RGB images[?].

Chao et al. use PCA and multispectral /hyperspectral imaging for the purpose of de-
tecting chicken skin tumors. The spectral range used in these experiments was from 420
to 850nm; three bands were selected for further analysis based on the results of PCA from
the hyperspectral image set. Images from wavelengths of 465, 575, and 705nm were used
to manually label tumorous and normal regions (labeling performed by a trained veteri-
narian). Using these labeled data sets, the researchers perform feature engineering and
derive various metrics for the labeled regions such as coefficient of variation, skewness, and
kurtosis [18]. These features are then used to create classifiers for normal and tumorous
tissue by means of fuzzy logic classifiers, and were able to obtain successful classification
rates of 91% and 86% for normal and tumorous tissue, respectively [15].

Although leveraging the visible spectrum shows some excellent results, there are some
limiting factors. There can be significant overlap between skin and non-skin intensities
[15]. Furthermore factors such as ambient lighting and objects that resemble tissue colour
can lead to problems with statistical methods that seek to leverage the visible specturm

[15].
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3.2 Artificial Neural Network Approaches

There are many accurate and robust approaches to classifying human tissue which include
artificial neural networks. This section will discuss some of these works that have been

published.

One such approach is presented by Al-Mohair et al., who combine a K-means clustering
method with an MLP. Using colour images, they transform the image into a colour space
which enhances separability between skin and non-skin pixels (YIQ colour space). After
transforming the image, the image is divided into smaller blocks of data, which are then
used to create texture descriptions of the skin. These texture descriptions and blocks are
used as inputs to an MLP, which discriminates regions of the image into skin/non-skin.
Once these regions are identified, a binary mask is created, which is then combined with
a K-means clustering process to create a mask for skin/non-skin areas of the image. The
authors achieve an accuracy of 87.2% with this technique; using the MLP by itself yields
an accuracy of 82.3% [19].

Jolivot et al. propose an MLP approach to classifying melanoma vs. healthy skin cells
[3]. They theorize that if given a collection of healthy skin images vs. disease state skin
images, they can train an MLP to classify healthy and diseased skin cells. The authors
test their theory on a standard 24 colour MacBeth Colour Checker (often used to calibrate
colour cameras). They show an excellent ability to predict calibrated colour patches, and
state that this technique may be a viable solution for future MSI classification [3].

Carrara et al. successfully employ a NIR MSI regime combined with an MLP design to
resolve melanomas. Their study employed a large clinical set of data (2142 patients) which
was used for training the MLP. Then, the researchers performed a study that compared
the prediction rate of their MLP to that of a trained clinician. The study concluded that
the MLP was able to emulate clinician opinion with a sensitivity of 88% and specificity of
80% [!]. The MSI wavelengths the researchers used in this study were from 483-950nm.

Zuo et al. leverage CNNs and recurrent neural networks (RNNs) for skin classification
tasks. CNNs assume that all inputs and outputs are independent of each other, whereas
the outputs of RNNs depend on previous computations [20]. The authors state that simply
using a CNN may not be sufficient to classify skin and non-skin pixels, as CNNs do not take
into account the relationship between pixels and their neighbours [20]. Zuo et al. design a
neural network which contains a CNN structure with integrated RNN layers. They theorize
that the convolutional layers will capture generic local features, and the RNN layers will
add further spatial context [20]. On two separate databases of test images, they achieve
accuracies of 95.93% and 98.10%.
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Artificial neural network approaches appear to yield promising results for modeling MSI
data. These techniques may be effective for the tissue/non-tissue classification problem.

3.3 Next steps

Given the current state of the art, this thesis seeks to build upon the previous research.
The results presented by Mendenhall et al. show that leveraging the optical response
of tissue at multiple wavelengths can be used to build an extremely accurate classifier.
However, their high accuracy may be attributed to using hundreds (227) spectral slices
of data, which the authors concede may be cost and computationally prohibitive [17].
Therefore, it is desirable to cut down the number of spectral slices to make this technique
viable. However, with fewer features, basic statistical techniques may not create enough
separation between tissue and non-tissue pixels as shown by the results presented by Chao
et al.

On the other hand, artificial neural networks appear to yield excellent results without
the need for hundreds of features/spectral slices. In general, it appears that techniques
which account for spatial context such as those presented by Zuo et al. and Al-Mohair et
al. appear to yield superior results than MLP based approaches proposed by Jolivot et al.
and Carrara et al.

Therefore, artificial neural network based classifiers will be pursued, as the application
for this thesis will have limited spectral bands of data to work with (four wavelengths

in the NIR region). Both MLP and CNN based approaches will be pursued, and their
performance will be compared.

16



Chapter 4

Proposed approach

To classify tissue using an MSI system, tissue and non-tissue objects must be characterized
across the MSI system spectra. For the context of this thesis, the industrial application
is medical imaging with an MSI camera/illumination system at Christie Digital Systems
(Kitchener, ON). Images will be collected at Christie Digital Systems, and these images
will be the basis of training the algorithms to classify images into tissue/non-tissue.

Given input images to be characterized, two main neural network classes, CNN and
MLP, will be designed to characterize tissue and non-tissue data. Both designs will leverage
manually labeled data sets captured from the MSI system. In terms of features, the MLP
will utilize average pixel level spectra from tissue and non-tissue data as inputs. For the
CNN design, 2 dimensional "patches’ of tissue and non-tissue data will be used as inputs
to incorporate spatial context.

The ultimate goal of this work is to train neural network designs to discriminate regions
of MSI data that are relevant (i.e., data reduction of non-tissue areas). Therefore, given
the output weights/architecture from each design of neural network, MSI data sets will
be processed and data reduction will take place by 'masking’ non-tissue areas of the MSI
data. The effectiveness of the data reduction will be evaluated both qualitatively and
quantitatively.

4.1 Data Collection

The proposed approach will utilize an imaging system created at Christie Digital Systems.
A high level diagram of the imaging system is shown in Figure 4.1.
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Figure 4.1: Configuration of the device used for data collection

MSI data (8 bit gray-scale images from the NIR sensor) is captured from four different
wavelengths; 740nm, 780nm, 850nm, and 945nm. Each LED is turned on sequentially for
20ms (to minimize any error due to movement). The NIR camera is configured to capture
an image during each LED illumination cycle. A ’blank’ image is also captured where no
illuminators are active; this image is subtracted from each LED image to compensate for
ambient lighting.

An imaging study was conducted at Christie Digital Systems, where forearm image data
was captured from subjects of varying age, tissue composition, and skin tone (Fitzpatrick
skin types I-VI). Data was captured from 42 subjects; this data was used as labeled ’tissue’
data.

Images of common operating room non-tissue objects were also collected, e.g. sponges,
sterile cloths, surgical instruments. These images were used as the labeled non-tissue data.

After the data was collected, two distinct approaches for classification were explored.
For each approach, features from the MSI data set had to be extracted to create any type
of machine learning model. An MLP approach used the pixel-level spectra of tissue/non-
tissue data as features to classify regions of MSI image sets. A CNN approach used spatial
context in the MSI data to evaluate tissue/non-tissue.

The diagram in Figure 4.2 shows how the data acquired by the MSI system is utilized.
Features are extracted from the multispectral images and fed into the MLP or CNN classi-
fiers. The output from these classifiers is a 'mask’ that will black out all non-tissue regions
in the images, and leave the tissue regions intact.
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Multispectral Images Feature Extraction

Figure 4.2: System data-flow diagram to create the tissue/non-tissue mask

4.2 Design and training of Neural Networks

The two architectures, MLP and CNN, must be designed and trained to identify regions of
tissue and non-tissue in MSI data. Hyper-parameter tuning was used to find an appropriate
design that will yield the best accuracy on training and validation data.

Once hyper-parameter tuning was done, the ideal architecture was trained for identify-
ing tissue and non-tissue. The weights and structure for each design were saved and used
to test new MSI data sets for their effectiveness.

All design iterations and research was conducted with open-source Python libraries -
Tensorflow[21] and Keras[22]. The Tensorflow package has extensible libraries and data
structures for creating neural networks; the Keras package is a simplified and intuitive
front-end to Tensorflow, and is used to rapidly create prototype neural networks.

4.3 Application of Neural Networks to MSI data

Once the neural networks have been designed and the weights for each learnable parameter
were saved, the MLP and CNN architectures were fed a set of test images to find regions
of tissue and non-tissue. The test images were new images (i.e., images that were not part
of the training process). Each pixel of the MSI data was evaluated for tissue/non-tissue,
and all non-tissue areas were masked. The effectiveness of each design was then evaluated
both quantitatively and qualitatively.
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Chapter 5

MLP Approach

To design an architecture for an MLP, the number of nodes and layers must be selected such
that the MLP produces accurate results. To achieve an optimal design, a hyper-parameter
optimization approach was taken to try various architectures to determine the appropriate
number of hidden layers and activation nodes. The number of hidden layers and nodes
will be systematically altered, and the training/validation loss data will be examined to
evaluate the effectiveness of each architecture.

5.1 Single Layer Design

To classify tissue/non-tissue for MSI data, an MLP design is proposed which uses pixel-
level spectra as inputs and a single hidden layer with the same corresponding number of
nodes; i.e., given n wavelengths, there will be n number of nodes which will take the pixel-
level spectra of each wavelength as an input. There is 1 hidden layer which also contains
n nodes. The diagram of the specific MLP architecture created for is shown in Figure 5.1,
which is for four wavelengths.

I, denotes the average pixel-level spectra at each wavelength. All the connecting lines
represent a weight that relates the input to the hidden layer, and the output of the hidden
layer to the output layer. The activation function used for each node is the sigmoid
function. The output of the MLP is a decimal number between 0 and 1, which can be
used to estimate the presence of tissue in accordance to the labels given to the data (i.e.,
tissue=1, non-tissue = 0).
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Figure 5.1: The architecture of the single layer MLP - I, is the input average pixel-level
spectra from each wavelength. All connections between layers and nodes signify weights
which are solved for by the back-propagation method. Output of the MLP is a decimal
value between 0 and 1 (above or equal to 0.5 =tissue, below 0.5 = non-tissue). Each node
signifies the sigmoid activation function

5.2 Training the MLP

Pixel-level spectra were manually sampled, across all wavelengths, from images that had
instances of tissue and non-tissue. A 10 pixel by 10 pixel region of interest (ROI) was
averaged at each instance of tissue/non-tissue. These pixel-level spectra averages are the
inputs to the MLP for building the model.

The MLP was trained by using binary cross-entropy as a loss function, and stochastic
gradient descent for optimizing the loss function (as outlined in Chapter 2); the training
data was split into a training subset and a validation subset of 80% and 20% respectively.
The training algorithm was run for 5000 epochs to determine an optimal number of training
epochs, i.e., the number of epochs which will yield minimum loss on the training set and
validation set.
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Loss vs number of training Epochs - MLP
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Figure 5.2: MLP training and validation loss vs. number of epochs

The Keras code used to build and train the model is provided in Appendix B. A block
diagram is shown in Figure 5.3 which illustrates the overall architecture of the MLP.

After running the training algorithm for 5000 epochs, the optimal number of epochs
is found to be 2838 as shown in Figure 5.2. At this number of epochs, the validation
set loss reaches a minimum. Although the training data set loss continues to decrease,
it is important not to over-fit the data, as continuing the training algorithm causes the
validation set loss to rise after epoch number 2838. Training the MLP to 2838 epochs gave
a training accuracy of 82.2%.

5.3 Hyper-parameter Optimization - Nodes

The MLP discussed in the previous section was designed by using a process known as hyper-
parameter optimization; where neural network parameters are systematically altered until
a desired result is reached. This section will discuss how the hyper-parameter optimization
was conducted.

For optimizing the number of nodes to be used in a hidden layer, an initial singular
hidden layer will be assumed. This layer will evaluate 1, 2, 4, and 8 node architectures.
Training and validation loss graphs will be generated for 5000 epochs as shown in Figures
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Figure 5.3: Block diagram for the MLP design for classifying tissue/non-tissue

5.4 to 5.7.

When evaluating the loss functions of each candidate design, the convergence between
the loss and training functions are evaluated. It is evident from a qualitative perspective
that the single layer 4 node design shown in Figure 5.6 shows the best minimization of the
training and validation loss at approximately 3000 epochs. Although Figure 5.7 also shows
excellent potential (8 node design), as it appears to have the same approximate training
and validation loss profile as the 4 node design. The 4 node design is preferred, as from an
implementation point of view, the 4 node design will have a faster run-time.
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101 Node MLP (Single Layer), Loss vs number of training Epochs

—— Training Loss

Validation Loss
0.9 1

0.8 1

0.7

Loss

0.6 1

0.5

0.4

0.3

0 lDIOO 2 DIOO 3060 40|00 5000
Epoch number

Figure 5.4: Loss functions of a single layer MLP design with 1 activation node

102 Node MLP (Single Layer), Loss vs number of training Epochs
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Figure 5.5: Loss functions of a single layer MLP design with 2 activation nodes
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104 Node MLP (Single Layer), Loss vs number of training Epochs
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Figure 5.6: Loss functions of a single layer MLP design with 4 activation nodes

108 Node MLP (Single Layer), Loss vs number of training Epochs
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Figure 5.7: Loss functions of a single layer MLP design with 8 activation nodes



5.4 Hyper-parameter Optimization - Layers

Similar to the procedure where the optimal number of nodes was found, the number of
layers vs. training and validation loss was explored. Given that the 4 node architecture
is preferred, 4 nodes were assumed for this tuning exercise. A single hidden layer will be
initially assumed, and layers will be sequentially added. The training and loss functions
will be analyzed for each architecture.

1 Layer MLP (4 nodes), Loss vs number of training Epochs
1.0

—— Training Loss

Validation Loss
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Figure 5.8: Loss functions of a single layer MLP design with 4 activation nodes
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2 Layer MLP (4 nodes), Loss vs number of training Epochs
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Figure 5.9: Loss functions of 2 layer MLP design with 4 activation nodes

4 Layer MLP (4 nodes), Loss vs number of training Epochs
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Figure 5.10: Loss functions of 4 layer MLP design with 4 activation nodes
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o 8 Layer MLP (4 nodes), Loss vs number of training Epochs
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Figure 5.11: Loss functions of 8 layer MLP design with 4 activation nodes

The training and validation loss profile is lowest for the single hidden layer design. The
2, 4, and 8 layer designs reach a steady state (Figures 5.9 to 5.11), however their loss
profiles are much higher than the single hidden layer design loss profile shown in Figure
5.8. Therefore, a single hidden layer design was pursued.
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5.5 MLP Results

Quantitative tests were performed on a ’challenge’ MSI data set of 3 different configu-
rations. The configurations have tissue as well as non-tissue objects in the frame. The
challenge MSI data set was not part of the training or validation set.

The classification results are shown in Figures 5.12-5.14. The original 780nm image
is shown in the left, and the corresponding classified image is shown on the right. Black
pixels in the classified image correspond to non-tissue.
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Figure 5.12: Test Image 1 for MLP design; (left) 780nm image of MSI data set, (right)

resultant classified image
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Figure 5.13: Test Image 2 for MLP design; (left) 780nm image of MSI data set, (right)
resultant classified image

For each classified image, regions of known tissue and non-tissue are labeled manually.
With these known regions, the accuracy, sensitivity, and specificity were computed and
summarized in Table 5.1.
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Figure 5.14: Test Image 3 for MLP design; (left) 780nm image of MSI data set, (right)
resultant classified image

Table 5.1: Performance metrics of the MLP model against three test images

Test Image | Accuracy | Sensitivity | Specificity
1 0.844 0.882 0.825
2 0.807 0.806 0.807
3 0.865 0.874 0.860
Average 0.839 0.854 0.831
S.D. 0.03 0.04 0.03

The results show that using an MLP with pixel-level spectra as features can be a viable
solution to classify tissue. However, this approach fails to generalize tissue and non-tissue
areas that have similar pixel-level spectra. For example, Figures 5.12-5.14 show that at
edges where there is gradual intensity roll-off, the algorithm mis-classifies these regions as
tissue. Furthermore, some areas at the edges of the forearm are mis-classified as non-tissue,
when the area is in fact tissue. To improve upon this design, some spatial context must be
added to the MLP architecture.
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Chapter 6

CNN Approach

To expand upon the MLP approach, the CNN is designed to integrate spatial context with
pixel level spectra. For this particular design, 'patches’ of tissue and non-tissue samples
(20 by 20 pixels) were taken from each wavelength image and were labeled as tissue/non-
tissue. The CNN was then trained by using binary cross-entropy as a loss function, and
stochastic gradient descent was used for optimizing the loss function. The design of the
CNN is shown in Figure 6.4.

Figure 6.1: MSI set with an example of training 'patch’ selection (20px by 20px) for tissue
and non-tissue
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6.1 CNN Design

The structure of the CNN is designed with 2 convolutional layers, each with 5 convolutional
filters. The first layer has filters of size 4x4 pixels, and the second layer has 2x2 pixel
filters. The type of filter used was initialized with random weights drawn from a uniform
distribution in the interval described in the following equation, taken from the techniques
presented by Glorot [23].

-1 1
vn'y/n
Where W;; represents the weights of the filter at indices ¢ and j. The parameters within

the brackets represent the interval, where n represents the size of the matrix upon which
the filter is being applied, and the operand U refers to a uniform distribution.

W, ~ U ] (6.1)

As an example, for a singular 4x4 filter, a random uniform distribution for a 20x20
image (i.e. from \;—2% to \/%70 appears as:

0.0881689  0.0638623 —0.0312524 —0.0984284
—0.2173570 —0.0937632 0.1427977  0.1446408

0.2108532  —0.0058700 0.1497313 —0.0743459

0.1077823  0.1916810 —0.0998226 —0.0721026

(6.2)

To gain some intuition on the structure of the CNN, the first convolutional layer struc-
ture is illustrated in Figure 6.2. Here it is shown that the 20x20x4 pixel input is fed into
the convolutional layer. The 5 filters have a size of 4x4 pixels. To convolve the input,
which has 4 spectral ’slices’ of data, the depth of each filter must be equal to 4, i.e., have
dimensions of 4x4x4.

2D convolution layer 1 - 5 filters, 4x4x4

—_—

20x20 patch, 4 wavelengths Output from convolution, 20x20x5

Figure 6.2: Ilustration of the first convolutional layer of the CNN design

Each filter convolves the multispectral data set, which has been padded with zeros for
the convolutional step. The stride length of the convolution is 1, i.e., the convolution is
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performed on every pixel. Therefore an output feature of 20x20x5 is produced, which will
go into the next convolutional layer. The successive convolutional layer also has similar
padding and stride length.

After the convolutional layers, a max pooling operation is applied, and the inputs are
flattened. Finally, the flattened layer feeds into 100 fully connected neurons which contain
a rectified linear unit activation function. The connected neurons then connect to a binary
soft-max classifier.

6.2 Training the CNN

The CNN was trained by using binary cross-entropy as a loss function, and stochastic gra-
dient descent for optimizing the loss function (as outlined in Chapter 2); the training data
was split into a training subset and a validation subset of 80% and 20% respectively. The
training algorithm was run for 100 epochs to achieve an optimum training and validation
accuracy as shown in Figure 6.3. The rationale for selecting the architecture and optimal
training epochs is covered in the next section (hyper-parameter optimization).

Loss vs number of training Epochs - CNN
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Figure 6.3: CNN training and validation loss vs. number of epochs

The Keras code used to build and train the model is provided in Appendix D. A block
diagram is shown in Figure 6.4 which illustrates the overall architecture of the MLP.
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input: | (None, 4, 20, 20)
output: | (None, 4, 20, 20)

conv2d_1_input: InputLayer
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max_pooling2d_1: MaxPooling2D
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output: (None, 500)

flatten_1: Flatten

input: | (None, 500)

dense_1: Dense
output: | (None, 100)

A
input: | (None, 100)

dense_2: Dense

output: (None, 2)

Figure 6.4: Block diagram for the CNN design for classifying tissue/non-tissue

The CNN loss graph shows high variability in the validation loss function, which in-
dicates that that some cases are alternating between classifying correctly and incorrectly.
However, since the overall magnitude of the loss is relatively low, the minimal training
loss is sought at 100 epochs. Training the CNN to 100 epochs gave a training accuracy of
98.9%.

6.3 Hyper-parameter Optimization - Filters

For optimizing the number of filters to be used in the convolutional layer(s), 2 convolu-
tional layers were originally assumed. These layers had filters added sequentially, and the
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training/validation loss was evaluated for 200 epochs as shown in Figures 6.5 to 6.7.
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Figure 6.5: Loss functions of a 2 layer CNN design with 5 convolutional filters
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Figure 6.6: Loss functions of a 2 layer CNN design with 10 convolutional filters
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%%gonv filter CNN (2 conv layers), Loss vs number of training Epochs
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Figure 6.7: Loss functions of a 2 layer CNN design with 20 convolutional filters

The least amount of noise and the lowest loss in the validation/training curves is shown
in Figure 6.5 (5 filters). The 10 filter and 20 filter designs do show comparable performance
to the 5 filter design, as they are approaching 0 loss in the training set, and they have
equivalent steady state validation losses of 0.25. However, there is a slight upward trend
in the validation loss profile of the 20 filter design, which may be a sign of overfitting.

Given that the three designs show comparable performance, it is preferred to go with
the fewest filters, as there will be less weights to train and the computational overhead will
be lower.

6.4 Hyper-parameter Optimization - Layers

Similar to the procedure where the optimal number of filters was found, the number of
layers vs. training and validation loss was explored. Given that the 5 filter architecture
is preferred, 5 filters were assumed for this tuning exercise. Two layers will be initially
assumed, and layers will be sequentially added. The training and loss functions will be
analyzed for each architecture and are presented in Figure 6.8 to 6.10.
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g(%onv Layer CNN (5 Conv filters), Loss vs number of training Epochs
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Figure 6.8: Loss functions of a 2 layer CNN design with 5 convolutional filters

4 Conv Layer CNN (5 Conv filters), Loss vs number of training Epochs
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Figure 6.9: Loss functions of a 4 layer CNN design with 5 convolutional filters
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Figure 6.10: Loss functions of a 6 layer CNN design with 5 convolutional filters

Given the results, the 2 layer CNN design converges to the most stable and minimal
loss functions for the training and loss curves. The 4 and 6 layer designs show erratic
profiles, which may be due to over-fitting.

In general, there appears to be more noise in the validation loss profile than the training
loss profile in each graph. This is due to two principal reasons. Firstly, the dropout layers
in the Keras model will randomly turn off a weight during the training process to reduce
over-fitting. This will create an appearance of a smoother training loss profile.

Furthermore, due to the relatively small training data set (90 samples), the validation
data set sample size is quite small (20% of the training set). Therefore, the validation loss
profile will appear to be relatively 'rougher’ than the training validation loss profile.
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6.5 CNN Results

Quantitative tests were performed on a ’challenge’ MSI data set of 3 different configu-
rations. The configurations have tissue as well as non-tissue objects in the frame. The
challenge MSI data set was not part of the training or validation set.

The classification results are shown in Figures 6.11-6.13. The original 780nm image
is shown in the left, and the corresponding classified image is shown on the right. Black
pixels in the classified image correspond to non-tissue.
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Figure 6.11: Test Image 1 for CNN design; (left) 780nm image of MSI data set, (right)
resultant classified image
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Figure 6.12: Test Image 2 for CNN design; (left) 780nm image of MSI data set, (right)
resultant classified image

For each classified image, regions of known tissue and non-tissue are labeled manually.
With these known regions, the accuracy, sensitivity, and specificity were computed and
summarized in Table 6.1:
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Figure 6.13: Test Image 3 for MLP design; (left) 780nm image of MSI data set, (right)

resultant classified image

Table 6.1: Performance metrics of the CNN model against three test images

Test Image | Accuracy | Sensitivity | Specificity
1 0.951 0.938 0.967
2 0.937 0.947 0.947
3 0.960 0.935 0.977
Average 0.952 0.944 0.957
S.D. 0.012 0.005 0.017

The CNN results show that incorporating spatial context with the pixel-level spec-
tra helps address the shortcomings that were evident in the MLP approach. The mis-
classifications in the CNN approach are less than the MLP, as the CNN approach handles
transitions and edges much better than the MLP. Furthermore, the overall classification
accuracy, sensitivity, and specificity are improved by incorporating spatial context.

40



Chapter 7

Qualitative Evaluation of Designs

Additional images of subjects were taken with the test device in an effort to test the
capability of the CNN and MLP designs. This section will qualitatively evaluate the
efficacy of each approach (MLP and CNN) on additional test images.

Thus far, only forearms have been evaluated by the MLP and CNN designs. Anatom-
ically, forearms will have a different tissue composition (in terms of muscle and fat) than
other body parts. This section will examine how well each design performs with body
parts that have differing muscle and fat compositions. To test robustness to tissue compo-
sition, additional test images were taken on volunteers at Christie Digital Systems to see
how well the classifier performs on body parts other than forearms. Various parts of the
anatomy were imaged from 3 different subjects to test the performance of the CNN and
MLP algorithms.

The test images were processed through the CNN and MLP designs. The resulting
classified CNN and MLP images are shown in Figure 7.1. From top to bottom, the images
are; chest, forearm, upper leg, bicep and back.

The CNN model performs well for all of the cases. The CNN masks foreign objects,
tattoos, and drapes/clothing well as shown in Figure 7.2. Also, physiological structures
such as veins are not misclassified. Furthermore, the false negative rates are very low when
looking at large patches of tissue.

To objectively evaluate the effectiveness of each approach, large ROIs were overlaid
on the tissue pixels (i.e., large enough to cover most of the tissue), and the percentage of
correct tissue classifications were calculated for each image. The results are shown in Table
7.1.
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Figure 7.1: CNN design classification results on other body parts - Left: original 780nm
image. Middle: CNN generated masked image. Right: MLP generated masked image
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Table 7.1: Percentage of correctly classified tissue pixels in ROI - MLP vs CNN

MLP | CNN
Forearm | 79.7% | 99.8%
Chest 36.6% | 100%
Leg 68.7% | 99.4%
Bicep 41.3% | 100%
Back 16.3% | 100%

Figure 7.2: Enlarged comparison of CNN and MLP performance on bicep tissue

The MLP does not perform as well as the CNN in general - it is notably worse in
situations where there is no ’forearm’ data (e.g., bicep, chest, leg, back). Since the MLP
relies on pixel-level spectra, and the training data came from forearms, it will be less likely
to work on differing body parts that have different pixel-level spectra responses (i.e., areas
with different tissue composition than a forearm). An example of the poor performance
is evident on the chest image. Figure 7.3 shows an enlargement of the CNN and MLP
performance on the chest tissue.

A possible explanation for the poor results by the MLP on other tissue types may be
due to the differing optical properties of fat and water, which vary across anatomical sites.

To understand specifically why the tissue response is slightly different, the optical prop-
erties of lipid and water must be understood, as different body parts may contain varying
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CNN
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Figure 7.3: Enlarged comparison of CNN and MLP performance on chest tissue

amounts of lipid and water. The absorption profile of lipid and water is shown in Figure
7.4 [24] [25] [26].

Since the absorption profiles of lipid and water vary drastically in the 945nm range
(where one of the MSI data images is captured), the absorption profiles are likely to be
the root cause as to why the MLP fails to correctly classify tissue/non-tissue.
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Figure 7.4: Absorption coefficients of fat and lipid vs wavelength [21] [25] [20]

7.1 Effects of Over-fitting

To test the effect of over-fitting on the masking performance of the CNN, an experiment
was done on the set of images shown in the previous chapter. The CNN model was re-
trained with its original CNN design, and a 2 layer, 20 filter CNN design which was trained.
The intent of the 2 layer, 20 filter design is to create a model that has been over-fit.

The bicep image in particular highlights the consequence of using an over-fit model.
Comparative results are shown in Figure 7.5.

Using 20 filters to characterize and classify tissue (vs. using 5 filters) can lead to
characterizing features which may be either irrelevant and/or redundant. Selecting the
appropriate number of convolutional filters is critical when designing a CNN.
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Figure 7.5: The effect of over-fitting CNN design - top: 5 filter CNN design, bottom: 20
filter CNN design, left: original 780nm image, right: masked image
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Chapter 8

Future work and Conclusion

8.1 Summary of Contributions

To summarize, the main contributions of this thesis were as follows:

e MLP design that uses pixel level spectra from MSI data to classify tissue and non-
tissue

e CNN design that uses spatial context from MSI data to classify tissue and non-tissue
e Hyper-parameter optimization for the design of the MLP and CNN models

e Qualitative and quantitative evaluation of the MLP and CNNs on MSI data

8.2 Future Work

To build upon the work shown in this thesis, there are many potential research projects
that can be pursued. This section will discuss some potential research avenues and their
impact.

8.2.1 Classification of Tissues

Future research can specifically investigate the use of CNNs and MSI data to classify and
model specific tissue characteristics, structures, and pathologies.
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In terms of data collection, labeled data sets should be used to train a classifier - for
example, if evaluating cancerous vs. healthy tissue, an expert should classify regions of the
image that are definitively cancerous or healthy. Crowd sourcing diagnoses and opinions
from an expert panel is also a practical method of gathering labels for data.

For longer term future work, unsupervised deep learning approaches should be explored
once a large data-set of medical opinion on MSI data sets has been gathered. Unsupervised
deep learning algorithms could find commonality between various classifications of tissue
and enable more meaningful insights to medical MSI data.

8.2.2 Model Fitting

From a non-classification standpoint, it would be interesting to investigate whether an
MLP/CNN architecture could be used to assist with analyte concentration determination.
For example, if a system was developed to calculate the concentration of an analyte of
interest, and given:

e MSI data-set from candidate system

e Set of corresponding extinction coefficients

e 'Gold standard’ data; i.e., known analyte concentration of interest determined by a

generally accepted lab method

It would be possible to develop a correction factor by creating a neural network ar-
chitecture that would fit a mathematical model to the 'gold standard’. In mathematical
terms, consider matrix A as a matrix of observations, z as the model coefficients (i.e.,
extinction coefficients), and b as the final calculated value of the concentration of interest:

A=bx (8.1)

Azt =b (8.2)

Then, consider a correction factor that is a function of the difference between the
calculated value and the ’gold standard’ value from another method:

A = b — GoldStandard (8.3)
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Using a neural network architecture, denoted by the function NN, and MSI observations
A, a correction factor can be modeled as:

k= NN(A A) (8.4)
Finally, the correction can be implemented as:

Al —klz™t=b (8.5)

This example, although simplistic, is the general framework for how future research can
be conducted on finding tissue analyte concentrations with MSI data sets.

8.2.3 Ensemble Methods

For real-time applications research, the MLP approach is attractive due to its relative
speed of implementation. The MLP approach can still be a viable option if given a diverse
enough data-set. As shown in the qualitative analysis, differing body compositions will
yield different magnitudes of pixel-level spectra.

Therefore, a study must be organized that samples several types of body tissue to build
a more robust classifier. Also, the MLP can be used in conjunction with other methods
such as random forests and support vector machines (SVMs) to get better accuracy.

A separate study can quantify the speed of implementation of each model on a stan-
dardized data set. Furthermore, the trade-off between speed and accuracy for different
models and algorithms can be investigated.

8.3 Conclusion

This thesis demonstrated two distinct approaches and designs for classifying MSI tissue
data - a multi-layer perceptron, and a convolutional neural network design.

It was found that the CNN design yields excellent reliability and accuracy compared to
the MLP. The accuracy, sensitivity, and specificity of the CNN is 95.2, 94.4, and 95.7% as
measured on a test set of MSI data. The MLP results on the same data set for accuracy,
sensitivity, and specificity are 83.9, 85.4, and 83.1% respectively. It is also demonstrated
that the CNN design shows superior robustness to tissue types and body composition.
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The MLP is considered due to its relative simplicity and speed of real-time implemen-
tation, however it does suffer from poor generalization and selectivity. It was found that
the MLP design is highly dependent on the tissue composition of the training set, and fails
to generalize to other body parts. Furthermore, the MLP fails at sharp contrast transi-
tions (such as borders, veins). Conversely, the CNN design was robust to different tissue
compositions, and generalized well to other body parts.

There are several paths for future work to take place. Using the designs and methods
shown in this thesis, further MSI studies can be conducted in the context of diagnostic
applications which require tissue classification. Furthermore, other fields which utilize MSI
data can leverage the same techniques for classification tasks; e.g., remote sensing tasks or
geospatial analysis.

This thesis has given an introductory glance at the potential of combining neural net-
work architecture and tissue optics. This author hopes that this thesis has laid the ground-
work for future research in classification of tissues, and that clinically useful classifiers are
designed from the techniques presented.
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Appendix A

FloydHub Training Data

To leverage GPU capabilities, a cloud based server and code repository is used. To access
the scripts used in this thesis as well as the corresponding plots and models, access:

https://www.floydhub.com /sunnygurm/projects/uw-thesis

To access training and test data, access:
https://www.floydhub.com/sunnygurm/datasets

To initialize the training data set in FloydHub, initialize the project with:

floyd init sunnygurm/uw-thesis
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Appendix B

MLP Training

https://www.floydhub.com /sunnygurm/projects/uw-thesis/15

floyd run --cpu --data sunnygurm/datasets/trainingdata:/trainingdata ’python3
mlp_learning.py’

The key Keras code snippet to build the model is presented below (see the files in
FloydHub for the full code):

num_classes=2

model

model.
model.
model.
model.

= Sequential()

add(Dense(4, input_dim = 4))

add(Dense (4, activation = ’sigmoid’))

add(Dense(1, activation = ’sigmoid’))

compile(optimizer=’rmsprop’,
loss=’binary_crossentropy’,
metrics=[’accuracy’])

history=model.fit(X_train, y_train, validation_split=0.2, epochs=2838, shuffle=
True, batch_size=24)
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Appendix C

MLP Hyperparameter Optimization

https://www.floydhub.com /sunnygurm /projects /uw-thesis /2

floyd run --cpu --data sunnygurm/datasets/trainingdata:/trainingdata ’python3
mlp_learning_find_optim_nodes.py’
https://www.floydhub.com/sunnygurm/projects/uw-thesis/3

floyd run --cpu --data sunnygurm/datasets/trainingdata:/trainingdata ’python3
mlp_learning_find_optim_layers.py’
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Appendix D

CNN Training

https://www.floydhub.com /sunnygurm/projects/uw-thesis/14

floyd run --gpu+ --data sunnygurm/datasets/trainingdata:/trainingdata ’python3
deep_learning.py’

The key Keras code snippet to build the model is presented below (see the files in
FloydHub for the full code):

num_classes=2

model = Sequential()

model .add(Conv2D(5, (4, 4), input_shape=(4, 20, 20), padding=’same’, activation
=’relu’ ,kernel_constraint=maxnorm(3)))

model . add (Dropout (0.05))

model.add(Conv2D(5, (2, 2), activation=’relu’, padding=’same’, kernel_constraint
=maxnorm(3)))

model .add (MaxPooling2D(pool_size=(2, 2)))

model.add (Flatten())

model.add (Dense (100, activation=’relu’, kernel_constraint=maxnorm(3)))

model .add(Dense(num_classes, activation=’softmax’))

# Compile model

epochs = 100

lrate = 0.005

decay = lrate/epochs

sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)

model.compile(loss=’binary_crossentropy’, optimizer=sgd, metrics=[’accuracy’])

print (model.summary())
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### Fit the model

history=model.fit(X_train, y_train, validation_split=0.2, epochs=epochs, shuffle
=True, batch_size=12, verbose=2)

### Final evaluation of the model

scores = model.evaluate(X_train, y_train, verbose=0)
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Appendix E

CNN Hyperparameter Optimization

https://www.floydhub.com/sunnygurm/projects/uw-thesis/7

floyd run --gpu+ --data sunnygurm/datasets/trainingdata:/trainingdata ’python3
deep_learning find_optim_nodes.py’
https://www.floydhub.com/sunnygurm/projects/uw-thesis/8

floyd run --gpu+ --data sunnygurm/datasets/trainingdata:/trainingdata ’python3
deep_learning_find_optim_layers.py’
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Appendix F

FloydHub Evaluation Scripts

To run the trained models on FloydHub, reference the output directory of the main train-
ing scripts. As an example, the following script will evaluate a batch of test images using the
deep learning model (results stored at https://www.floydhub.com /sunnygurm/projects/uw-
thesis/18/output):

floyd run --gpu+ --data sunnygurm/projects/uw-thesis/14/output:/output2 --data
sunnygurm/datasets/testdata:/testdata ’python3
test_images_deep_learning_batch.py’
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