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Abstract 

Mathematical modelling of biological systems is an essential tool for better understanding and for 

optimizing biological processes. Simulating the experiments before performing them is a time-saving 

strategy when seeking for optimal operating conditions.  

Dynamic flux balance analysis (DFBA) is a constraint-based dynamic modelling approach where the cell 

is assumed to act as an optimizing agent that allocates resources to maximize/minimize a suitable biological 

objective. In this modelling approach a linear programming (LP) problem is solved at each time interval 

involving the optimization of an objective function subject to constraints. This is a significantly different 

modelling approach than the one generally adopted for biochemical systems where dynamic mass balances 

are formulated for each metabolite.  An important advantage of the dynamic metabolic flux models as 

compared to the more conventional models reported before is that DFBA models do not depend heavily on 

accurate kinetic information. The ultimate purpose of this research was to develop DFBA type models with 

a minimal number of parameters to fit and predict experimental data.  Two main challenges had to be 

addressed: (i) - finding the biologically meaningful objective function that cells are trying to 

maximize/minimize and (ii) - finding a minimal set of limiting constraints. Limiting constraints includes 

any limit that potentially reduces the solution space such as kinetics, thermodynamics, gene expression, etc. 

The focus on this thesis was to develop algorithms to address these challenges in a systematic fashion. In 

the first published paper from this thesis (Chapter 5), I present two approaches for finding the kinetic 

constraints, an algorithm based on Lagrange multipliers and a parametric sensitivity algorithm. Both 

algorithms were applied using two case studies, one for E.coli that used a simplified metabolic network and 

a second for B. Pertussis with a more comprehensive metabolic network. Although both algorithms were 

capable of finding the constraints for the simple E.coli example, for the more complicated metabolic 

network used with B.Pertussis, the parametric sensitivity approach was found to be inefficient and 
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numerically challenging. Thus, it was concluded that the Lagrange multiplier approach is preferable when 

considering metabolic networks of large dimensions. 

In the second paper published from this work (Chapter 6) I proposed a method for systematically and 

simultaneously finding the objective function and the limiting constraints necessary to describe data.   To 

that aim, a set based approach that accounts for the errors in the experiments were proposed. Using this 

method both the active kinetic constraints and biological objective function were identified simultaneously 

using a bilinear optimization formulation.  

In the final stage of this research, the developed algorithms were applied for building a DFBA model for 

CHO cell culture (Chapter 9). We systematically found an objective function for mammalian cells that 

involve the simultaneous maximization of growth and minimization of apoptosis.  We argued in this part 

of the work that this objective function correlates well with reported phenomena for CHO cells including 

the occurrence of the Warburg effect that involves the preferable conversion of glucose to lactate.  

In terms of experimental work we conducted an initial study to investigate the damaging effect of effect of 

CO2 accumulation on CHO cell culture. This preliminary study motivated us to develop a perfusion process 

for high cell density culture of CHO cells based on an ATF filtration system. In this development work we 

identified different challenges for effective perfusion operation and we propose some practical measures to 

address these challenges. 
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Chapter 1 

Introduction 

 Research Motivation 

The modern biopharmaceutical industry that started with the discovery of Penicillin, the first antibiotic, 

received new momentum by the introduction of recombinant DNA technology. This technology 

emerged after Paul Berg presented his gene-splicing experiment and the idea progressed when Herbert 

Boyer and Stanley Cohen put forward the idea of inserting the recombinant DNA into bacteria. 

Genentech was the first biopharmaceutical company that used this technology for large-scale 

production of recombinant DNA. Genentech’s first product was recombinant Insulin, the first human 

protein therapeutic using DNA technology. Five years later in 1982, USA Food and Drug 

Administration (FDA) approved the recombinant DNA based insulin and the product was further 

marketed by Eli Lilly. Since then many other therapeutic proteins including blood factors VII and VIII, 

interferons and many other life-saving drugs have been approved.  The market of biopharmaceuticals 

has increased at an unprecedented rate. For example, in 2009, 200 biopharmaceuticals were reported in 

the market with more than US $99 billion sales, and in 2016 it reached to US $228 billion (Moorkens 

et al., 2017). Protein based biopharmaceuticals are in the top 5 the best-selling drugs (Craven, Whelan, 

& Glennon, 2014). 

Monoclonal antibodies (mAbs) are a major group of therapeutic proteins that have a major role in 

today’s biopharma industry. They are used for diagnostic purposes and research but their main role is 

treatment of various range of diseases from infections to inflammatory diseases and cancers. The 

success of monoclonal antibodies such as Infliximab (Remicade), Etanercept (Enbrel), Bevacizumab 

(Avastine), Rituximab (Rituxan), Adalimumab (Humira), Trustuzumab (Herceptin) has led to increased 
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demand of these products to more than 100kg/year and created a need for improving production yield 

through the improvement of cell lines and manufacturing processes.   

To produce recombinant protein therapeutics proteins including mAbs, a host cell is required that is 

engineered to contain the gene of interest which is responsible for the production of the desired protein. 

The choice of host cell is very critical for producing the therapeutic proteins with the right efficacy and 

that can be safely used as a therapeutic agent.  

The first host used for production of recombinant proteins was the bacteria Escherichia coli                  

(E.coli) followed later by other hosts including mammalian cells, insect cells, fungal cells and plants. 

Nowadays the majority of recombinant therapeutic proteins are produced in mammalian cell lines such 

as Chinese hamster ovary (CHO), baby hamster kidney (BHK), human embryonic kidney (HEK-293), 

human retina derived (PERC6) and mouse myeloma (NS0). One of the main reasons for choosing 

mammalian cells as the host cell line for producing therapeutic proteins is their capability to provide 

post-translational modifications such as proper glycosylation of the protein of interest. Glycosylation 

is a process whereby different glycans are attached to proteins in particular configurations thus 

conferring recombinant glycoproteins with particular physical and functional properties (Butler & 

Spearman, 2014). More than 70% of recombinant therapeutic proteins are produced in CHO cells. 

Among the special features of CHO cells that has made them popular for large scale manufacturing are 

their ability to grow in a suspension culture, their inherent resistance to infection by viruses and their 

gene amplification qualities that makes them able to express larger quantities of proteins (Butler & 

Spearman, 2014). 

In recent years, some of the ‘blockbuster’ mAbs have gone off patent so there is an opportunity for 

generic (biosimilar) manufacturing companies entering this market to further increasing the 

competition. Delays in market entry due to time spent on cell line and bioprocess development impacts 
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profitability and also increases the risk of loss of market share. This further motivates originator 

companies to optimize their manufacturing processes and to achieve better product quality. 

Mathematical models are essential tools for improving the understanding of the cell metabolism and 

cell culture behavior and for their use in model based bioprocess optimization. 

Biopharmaceutical process optimization is often more challenging as compared to other chemical 

manufacturing processes as biological organisms that are used for producing the desirable products 

exhibit significant variability in their responses to environmental conditions. Moreover, a particular 

combination of different environmental perturbations can heavily impact the intracellular level of these 

producing cells. Thus, to understand biological systems, it is not sufficient to just analyze each 

environmental factor individually as the interactions between those factors are of special importance. 

The discipline of System Biology studies a biological system as an integrated system of interacting 

parts (Tomar & De, 2013). 

Since the introduction of mammalian cells for the production of biopharmaceuticals, different 

metabolic models have been used for the systematic understanding of cellular behavior at different 

conditions. These reported models have been generally used for describing a limited set of process 

conditions and also for some process optimization targets like finding the most appropriate feeding 

regime in fed-batch operation. Chinese hamster ovary (CHO) cell have been modelled using different 

approaches and, to a lesser degree, other models have been developed for the study of less utilized cell 

hosts such as hybridoma and HEK 293.  

These metabolic models have been mostly developed for describing a static state of the biosystem 

which make it less useful for actual manufacturing processes that are of a dynamic nature. A few 

available dynamic models are available that only consider the metabolism loosely and instead they 

involve unstructured mass balances with many kinetic terms of the Monod form. These kinetic terms 
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generally involve a large number of parameters which makes these models highly sensitive to model 

error and measurement noise in the data used for model calibration, especially when data is scarce as it 

is often the case in biochemical operations (Ghorbaniaghdam, Henry, & Jolicoeur, 2013). Thus there is 

a genuine motivation to seek for structured models that correctly account for metabolic interactions 

while resulting in more parsimonious expressions with a smaller number of calibration parameters. 

Such models are expected to be more robust and better suited for model based prediction and 

optimization over a large range of operating parameters.  

 Objective 

In this research, the object was to develop necessary algorithms required for building a Dynamic Flux 

Balance Analysis model to be used for mammalian cells. Unlike the conventional dynamic unstructured 

models which, as mentioned above, use many kinetic expressions involving a large set of tuning 

parameters, the currently proposed approach is based on using Dynamic Flux Balance Analysis (DFBA) 

algorithm (Mahadevan, Edwards, & Doyle, 2002). DFBA is based on the formulation of an 

optimization problem where a particular flux distribution in a metabolic network is sought such as a 

specific objective function is optimized subject to certain constraints. The rationale behind DFBA is 

that natural evolution had conditioned the cell to act as an agent that optimally allocates resources to 

satisfy a certain biological objectives. For bacterial and microbial organisms typical objectives that 

have been successfully used to describe experiments were maximization of growth and maintenance of 

a particular redox potential. However, optimization objectives have not been proposed as yet for 

mammalian cells due to their relative higher complexity as compared to bacteria. For example, 

mammalian cells exhibit particular regulatory mechanisms such as programmed cell death (apoptosis) 

or cell death by autophagy that have to be accounted for when defining an objective function for 
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optimization.  Thus, a main goal of this proposed study is to find an objective function and specific 

metabolic constraints that can be combined together to formulate a suitable optimization problem which 

solution describes the experimental behavior of the mammalian cells.  

Then, the resulting DFBA model can be employed in future process optimization approaches for genetic 

modification, media design or bioprocess operation.  

Although the final goal was to formulate a dynamic metabolic flux model for CHO, I initially developed 

the model calibration approach for E. coli and Bordetella Pertussis. The reasons for developing the 

initial approach for these microorganisms were: (i)- a simple calibrated dynamic metabolic flux model 

of E.coli was available (Mahadevan et al., 2002) thus allowing us to test our identification approach on 

an a priori known model, (ii)- the metabolic network of reactions was a priori known for Pertussis with 

reasonable accuracy (Budman, Patel, Tamer, & Al-Gherwi, 2013) and was provided by a collaborating 

company, (iii)- considerable data were already available at the beginning of this project and iv- the 

assumption of growth rate as the objective function to be maximized within the model has been reported 

to work well for bacteria whereas the objective functions that are suitable for CHO have not been clearly 

identified as yet.  

Using the data available for Pertussis or in silico data (simulated data) generated by the available E. 

coli model, we developed systematic approaches to identify the constraints and objective functions that 

are the basic elements of the dynamic metabolic flux models. Then, using the approaches for systematic 

identification of constraints and objective function, we developed a DFBA model for CHO. To calibrate 

this model two sets of data collected during two different batch operation were used. The use of batch 

mode was preferred over continuous operation since the data spans in the former a larger range of 
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operating conditions over the duration of the batch thus providing richer information for model 

calibration. 

An additional part of the current project is a continuation of a study of CHO cell death under a mimicked 

perfusion cell culture. The perfusion operation was initially implemented by conducting intermittent 

replacements of part of the supernatant volume during a batch culture. Although the fed-batch operation 

is the most common type of operation in the biopharmaceutical industry due to a  lower risk of 

contamination and the simplicity of operation, in recent years perfusion mode of operation has become 

very popular (Chotteau, 2015) especially by introduction of new perfusion systems. Perfusion processes 

are generally better able to maintain constant growth conditions over a larger range of cell densities. In 

the experiments it was realized that limitation in nutrients is not the only limiting factor and other 

factors such as higher concentration of carbon dioxide might play a critical role. Recognizing the 

importance of perfusion and following the results described above using an emulated perfusion system, 

the final part of the thesis involved the construction and experimentation of a continuous perfusion 

bioreactor system. Data collected from this perfusion system was used together with batch data to 

calibrate the proposed dynamic metabolic flux model described above. 
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Chapter 2 

Literature review 

 Monoclonal antibodies 

In the early twentieth century, Paul Ehrlich proposed the idea of “magic bullets” that referred to drug 

substances that will be able to specifically target an agent causing disease in the body and destroy it. 

The first monoclonal antibody was for use in patients with a kidney transplant to prevent the organ 

rejection by immune system. This product was developed in 1975 and approved in 1986 and the new 

era of developing monoclonal antibodies for different diseases including various type of cancers started 

(Liu, 2014). Among the ten best selling drugs of 2016, seven of them were monoclonal antibodies 

(Philippidis, 2017). 

 Chinese Hamster Ovary (CHO) cells  

Chinese hamster was first used in 1919 for research on pneumococci. Chinese hamster was recognized 

as a suitable research host due to their low number of chromosomes. The Chinese hamster ovary (CHO) 

cell line was developed by Theodore T. Puck in 1957 (Marcus, Sato, Ham, & Patterson, 2006). Since 

their introduction CHO cells had many applications in biomedical research. They grow well in in vitro 

culture and can be grown in both adherent and suspension cultures. The first approved therapeutic 

protein obtained from recombinant mammalian cells, human tissue plasminogen activator, was 

produced using CHO cells. Since their approval in 1986, CHO cells have been recognized as the 

workhorse for producing recombinant therapeutic proteins including mAbs (Kim, Kim, & Lee, 2012). 

Other mammalian cells also have been used for this purpose but none of them are as popular as CHO 

cells. CHO cells are the host cell line for about 70% of all the recombinant therapeutic produced 
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(Jayapal, Wlaschin, Hu, & Yap, 2007). The reasons for their popularity are that CHO cells are well-

studied and they are considered safe by drug agencies. They exhibit good gene amplification thus 

resulting in increased protein productivity, they support the necessary post translation modifications 

such as glycosylation and they adapt well to serum free media (Kim et al., 2012). 

 Vaccines 

Vaccines are biological material enhances the immunity to a specific disease. Vaccines are one of the 

most important inventions of humankind. Edward Jenner introduced the first vaccine against smallpox 

in 1796 and since then vaccines have had a vital role in eradication of the disease (Nabel, 2013). Rabies 

vaccine was the next vaccine that is produced in the cultured cells (Plotkin, 2014). More than 70 

vaccines are in the market to be used against about 30 types of microbes. Main groups of vaccines are 

live or attenuated organisms and killed (inactivated organisms) based vaccines. In some cases when the 

antigen responsible for immunity against the target disease is known purified or recombinant subunits 

of the vaccine could be used instead of the whole live or killed organism. Killed vaccines cannot 

replicate inside the body so they are usually administered in combination with a compound called 

adjuvant to increase their potency. Aluminum salts are among common adjuvants used in vaccine 

industry (Ulmer, Valley, & Rappuoli, 2006). 

 Bordetella pertussis 

Bordetella pertussis is a gram negative bacteria. This bacteria is responsible for whooping cough, a 

potentially fatal bacterial disease. Two types of vaccines for whooping cough are available: whole-cell 

and acellular vaccines. Acellular vaccines are advantageous in terms of having fewer side effects thus 

they are normally the vaccines of choice. The acellular vaccine generally is composed of 1–4 protein 
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virulence factors: pertussis toxin (PT), pertactin (PRN), fimbriae (FIM) and filamentous hemagglutinin 

(FHA). 

 Cell metabolism  

Mammalian and bacterial cells need energy for driving the cell functions. This energy is provided by 

several biochemical reactions that involve carbon and nitrogen sources (mainly carbohydrates and 

amino acids, lipids) that are normally consumed by the cells and are converted to energy carrier 

molecules (e.g. ATP and ADP) and other intermediate materials required for cell activities. The 

reactions occurring in the cell are generally classified into catabolic and anabolic. Catabolism is the 

process of breaking down the large molecules (e.g. glucose) into other useful molecules, energy and 

redox potential (e.g. NADH), and anabolism is the process of formation of new molecules that are 

required for cell functions using the biomolecules resulted from catabolism (Alberts, 2008). Figure (2-

1) shows schematically the catabolic and anabolic pathways in the cell. 

Enzymes, mostly made of proteins, are biochemical catalysts involved in regulating (e.g. accelerating) 

the biochemical reactions.  Metabolic pathways generally referred to groups of biochemical reactions. 

For example, glycolysis, citric acid cycle (also known as TCA cycle or Krebs’s cycle), oxidative 

phosphorylation, pentose phosphate pathway and urea cycle are among the main metabolic pathways. 

  



 

10 

 

 

Figure 2-1 Catabolism and anabolism in cells. Catabolism is the process of breaking down the 

large molecules into other useful molecules, energy and redox potential, and anabolism is the 

process of formation of new molecules that are required for cell functions using the 

biomolecules resulted from catabolism. 

 Glycolysis 

Glycolysis is the first and main pathway in glucose metabolism. In glycolysis, for each mole of glucose 

consumes, two moles of pyruvate and two moles of ATP are generated. Glycolysis takes place in the 

cytosol. The net reaction summarizing the glycolytic pathway, after canceling out intermediate 

reactions along the pathway, is: 

Glucose + 2 NAD+ + 2 Pi + 2 ADP → 2 Pyruvate + 2 NADH + 2 ATP + 2 H+ + 2 H2O 
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 Pentose phosphate  

The pentose phosphate pathway (PPP) branches out from the glycolytic pathway and its main goal is 

to provide the NADPH needed for reductive biosynthesis such as synthesis of lipid and nucleic acid 

and also reduction of glutathione. PPP has two phases: an oxidative phase that generates NADPH (while 

oxidizing glucose-6-phosphate to ribose 5-phosphate) and a non-oxidative phase that interconverts 

sugars (Berg, Tymoczko, Stryer, & Stryer, 2002). The net reaction of the oxidative PPP phase can be 

written as: 

Glucose 6-phosphate + 2 NADP+ + H2O → ribulose 5-phosphate + 2 NADPH + 2 H+ + CO2 

The ratio of NADPH to NADP+ has been often suggested as the main factor for controlling the pentose 

phosphate pathway (Barcia-Vieitez & Ramos-Martinez, 2014). The pentose phosphate pathway occurs 

in the cytoplasm. 

 TCA cycle 

Citric acid cycle, also known as TCA cycle, or Krebs’s cycle is another important pathway in cell 

metabolism located in the mitochondria. The TCA cycle describes an aerobic process occurring in the 

cells which the main goal is the production of NADH needed for ATP production.  In microorganisms 

that undergo glycolysis Pyruvate both converts to Acetyl- CoA and also feeds into TCA cycle. The net 

reaction is as follows: 

Pyruvate + 2 NAD + 2 CoA → 2 Acetyl CoA + 2 NADH + 2 CO2 

Some microorganisms such as Pertussis undergo gluconeogenesis where the reactions occur in reverse 

order to glycolysis, i.e. from pyruvate towards the generation of glucose (Hu & Zhou, 2012).  
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Acetyl-CoA is also generated by oxidation of fatty acids. After formation, Acetyl-CoA breaks into two 

molecules of CO2.  As mentioned above, the TCA cycle provides reducing NADH that will be used in 

other reactions such as the oxidative phosphorylation pathway and it also has an important role in 

providing the precursors required for synthesis of some of the amino acids such as glutamine (Hu & 

Zhou, 2012). The TCA cycle net reaction can be written as follows: 

Acetyl CoA + 3 NAD+ + FAD + ADP + Pi + H2O → 2 CO2 + 3 NADH + FADH2 + ATP + CoA 

 Oxidative phosphorylation pathway 

The oxidative phosphorylation pathway is an important pathway in producing energy for the cell. In 

this pathway, nutrients are oxidized to produce energy storage molecules of ATP. In fact, at this stage 

electrons that are released in glycolysis are consumed in the TCA cycle. It should be remembered that 

while oxidative phosphorylation has an important role in providing energy for the cell, reactive oxygen 

species (ROS) such as superoxide and hydrogen peroxide are also produced in this pathway resulting 

in an increase of free radicals that have detrimental effects on the cell including aging (cellular 

senescence)  and also some diseases.  

https://en.wikipedia.org/wiki/Reactive_oxygen_species
https://en.wikipedia.org/wiki/Reactive_oxygen_species
https://en.wikipedia.org/wiki/Superoxide
https://en.wikipedia.org/wiki/Hydrogen_peroxide
https://en.wikipedia.org/wiki/Radical_(chemistry)
https://en.wikipedia.org/wiki/Senescence
https://en.wikipedia.org/wiki/Disease
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Figure 2-2 Summary of ATP production from one mole of glucose. This figure shows ATP 

production in each pathway of glycolysis and TCA cycle. 

  Metabolic regulation  

Cells convert nutrients, mainly glucose, to energy for survival, proliferation and protein production. 

Glycolysis, the TCA cycle, and oxidative phosphorylation are the key pathways used by the cell to 

produce up to 36 moles ATP per mole of glucose consumed. Ammonia, lactate and CO2 molecules are 

also key by-products of these pathways (Figure 2-3). 
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Figure 2-3 Schematic representing the differences between oxidative phosphorylation and 

anaerobic glycolysis 

In the absence of enough oxygen, the carbon molecules follow from the pyruvate branch point an 

anaerobic metabolic pathway in which lactate production occurs instead of CO2. In this situation, only 

two moles of ATPs are produced for every one mole of glucose being consumed (Figure 2-3). 

Surprisingly, proliferative mammalian cells such as tumor cells and most cell lines for producing 

recombinant proteins have been found to metabolize glucose to lactate even in the presence of sufficient 

amounts of available oxygen. This phenomenon has been referred to as the ‘Warburg effect” or aerobic 

glycolysis. In fact the Warburg effect is viewed as an inefficient metabolic pathway since in the 

conversion of one mole of glucose to lactate only 4ATP are produced, as compared to oxidative 

phosphorylation where up to 36 moles of ATP are produced for each consumed mole of glucose (Figure 

2-3) (Quek, Dietmair, Kromer, & Nielsen, 2010; Vander Heiden, Cantley, & Thompson, 2009). It has 

also been observed that the lactate resulting from glucose consumption is an important inhibition factor 
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for cell growth and product formation due mostly to increased acidity of the medium and increased 

osmolality (Ahn & Antoniewicz, 2012b). 

On the other hand and despite the resulting inefficient ATP production the Warburg effect has some 

beneficial consequences since through a set of signaling and regulatory pathways it protects fast-

growing cells by reducing mitochondrial activity, which is known to be partially responsible for 

apoptosis.  Beyond ATP additional requirements for proliferating cells are nucleotides, amino acids, 

and lipids for growth. Amino acids need more equivalents of carbon and NADPH, as compared to ATP, 

to be synthesized inside the cell. Therefore, instead of converting all the glucose through the oxidative 

phosphorylation pathway to CO2 in the mitochondria, cells allocate some glucose derived resources to 

macromolecular precursors such as acetyl-CoA. 

 

Figure 2-4 Schematic representing the aerobic glycolysis pathway in proliferative cells. These 

cells produce large amount of lactate and 4mol of ATP. 
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Glycolytic intermediates are required for anabolism of nonessential amino acids and ribose that is 

necessary for nucleotides’ synthesis. Also glycolytic intermediates are needed for synthesis of fatty 

acids (Vander Heiden et al., 2009). 

Another example of an energetically inefficient metabolic pathway in mammalian cells is partial 

oxidization by transamination of glutamine to ammonia and to non-essential amino acids such as 

alanine and aspartate (Quek et al., 2010).  This phenomenon is actually associated with a truncated 

TCA cycle, where lower fluxes occur between pyruvate to citrate flux but a higher flux occurs from α-

ketoglutarate to oxaloacetate (Lake-Ee & and Lars Keld, 2009). 

As already mentioned above the by-products from incomplete metabolism of mammalian cells, mainly 

lactate and ammonia, create unfavorable living conditions for cells in the media. They have been 

generally found to be inhibitory for cell growth and protein production. Several strategies have been 

developed to cope with these challenges ranging from molecular biology methods for cell line 

modification to process optimization strategies (Quek et al., 2010), as described below. 

 Lactate reduction and control 

Generally, in CHO cells producing proteins, it has been observed that lactate is produced during the 

growth phase when cells are growing faster as compared to the post-exponential phase of growth. It has 

been also observed that in some of the CHO cell lines there is a metabolic shift from lactate production 

to lactate consumption. There are different hypotheses on how this shift is regulated. For example, 

oxidative stress in the cells and/or lack of some key nutrient such as copper has been mentioned as 

possible factors (Luo et al., 2012). 
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Altamirano et al (2006), studied the lactate response by comparing two different culture conditions: 1- 

a combination of 20 mM glucose with 6mM glutamate and 2- a combination of 5mM glucose and 

20mM galactose with 6 mM glutamate. They observed that for the second culture where part of the 

glucose used in the first culture was substituted with galactose, the formation of lactate was lower where 

glucose was initially used and then galactose was used. During the phase of galactose consumption 

they also observed consumption of endogenous lactate in the culture. To explain the results, they 

performed metabolic flux analysis (MFA) study and suggested that lactate is not consumed as a source 

of energy and hypothesized that other pathways exist involving the non-oxidative decarboxylation of 

pyruvate. These pathways have been also reported in cancer cells (Altamirano, Illanes, Becerra, Cairo, 

& Godia, 2006; Galleguillos et al., 2017). However in a separate modelling study based on flux balance 

analysis (FBA), Martinez et al. compared the fluxes during two phases, before and after shifting from 

lactate production to lactate consumption, and suggested that during the lactate production phase most 

of acetyl-CoA produced by pyruvate dehydrogenase (PDH) was used for the production of fatty acids 

and steroids while during the lactate consumption phase only 32% of the produced acetyl-CoA was 

later used for production of fatty acid and steroids while majority of  acetyl-CoA went through the TCA 

cycle and was oxidized there. They suggested that the discrepancy between their findings with the study 

by Altamirano might be due to over-simplification of the metabolic network that was used in 

Altamirano’s work (Martinez et al., 2013). Sengupta et al (2011) applied both MFA and isotopomer 

labeling for mapping the flux of CHO cell culture during the post-exponential phase of low growth. 

They observed that the majority of glucose was metabolized into NADPH. They suggested that the 

reason for this preferential pathway might be the higher demand of NADPH for reducing the oxidative 

stress. This research also indicated that lactate is not produced at this stage as most of the material flux 

originating from pyruvate was directed into TCA cycle (Sengupta, Rose, & Morgan, 2011). Templeton 
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et al. (2013) used MFA in combination with 13C to study the different phases of cell growth and 

antibody production in CHO cell culture. They found that in the fast-growing phase, lactate was 

produced in higher amounts as compared to the post-exponential phase and the activity in the TCA 

cycle was minimal during the growth phase. Also, they observed that following a metabolism shift from 

higher growth to higher antibody production, the lactate response changed from production to 

consumption. Oxidative phosphorylation was the main source of energy production when antibody 

production was at its highest level but also the oxidative pentose phosphate pathway was observed to 

be highly active during this time period. This study also found that during the stationary phase while 

the growth rate declined, the TCA cycle and the oxidative pentose phosphate pathway remained active. 

They argue that during the time with the highest antibody production, cells were in their highest 

oxidative state (Templeton, Dean, Reddy, & Young, 2013). Wilkens et al performed a metabolic flux 

analysis for two different CHO culture conditions wherein one of them only glucose was fed to the 

culture and in the other glucose was fed together with galactose. In the culture fed with the combination 

of galactose and glucose after the initial consumption of glucose, galactose started to be consumed. 

This suggested that in the galactose consumption phase not enough pyruvate was available for the cells 

to use as energy source so the produced lactate was converted to pyruvate by changing the direction of 

the corresponding reaction regulated by lactate dehydrogenase. The resulting pyruvate was 

subsequently directed into the TCA cycle (Wilkens, Altamirano, & Gerdtzen, 2011). In a study by Xing 

et al in 2011, a CHO cell line expressing an antibody fusion protein (B1) metabolic flux analysis was 

used to optimize the amino acid composition in the cell culture medium. They increased the 

concentration of methionine, tryptophan, asparagine and serine that were considered as limiting and 

reduced the concentration of arginine, alanine and glycine with the goal of reducing the ammonia 

production. Then, as a result of the lower concentration of ammonia, both the cell density and protein 



 

19 

 

production were increased (Xing et al., 2011). Hefzi et al developed a genome-scale flux balance 

analysis model for CHO cells where they included 4455 metabolites, 6663 reactions and 1766 annotated 

genes in their model. This model connected the genotype and phenotype of CHO cells and showed the 

potential for protein production by engineered CHO cells that would utilize the resources optimally 

(Hefzi et al., 2016). 

 Genetic modification of mammalian cells 

Knowledge about the cell metabolism has been often used to develop genetic modification strategies 

that would result in larger growth and productivity. For example, in a study on hybridoma cells 

producing monoclonal antibodies it was found that knocking down the lactate dehydrogenase (LDH) 

gene resulted in decreased lactate production and substantial improvements in cell viability and protein 

production (Chen, Liu, Xie, Sharp, & Wang, 2001).  

In another investigation, the overexpression of yeast pyruvate carboxylase (PYC2) gene in BHK-21 

cells transfected with Erythropoietin (EPO) gene was induced to enhance the activity of pyruvate 

carboxylase that promotes growth under glucose reduced conditions thus resulting in decrease lactate 

formation. Pyruvate carboxylase activity has not been observed in mammalian cells, however its gene 

does exist (Lake-Ee & and Lars Keld, 2009). The over-expression of the gene also resulted in about 

doubling of the efficiency of consumed glucose towards the production of EPO (Irani, Beccaria, & 

Wagner, 2002; Irani, Wirth, van Den Heuvel, & Wagner, 1999). Toussaint et al designed a CHO cell 

line producing a monoclonal antibody that resulted in a shift towards lactate consumption, extended 

growth phase and, higher cell concentration and productivity in fed-batch operation (Toussaint, Henry, 

& Durocher, 2016). 
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The glutamine pathway has also been considered as a target for cell line genetic engineering studies. 

The enzymatic reaction led by the glutamine synthetase (GS) enzyme is responsible for the synthesis 

of glutamine from glutamate and ammonia and it is the only reaction occurring in mammalian cells that 

synthesize glutamine. The GS enzyme becomes essential for mammalian cell survival when the 

medium is not externally supplied with glutamine. In some cell lines such as mouse myeloma, there is 

not sufficient expression of GS for survival thus glutamine has to be added. In CHO cells the GS 

expression is just enough for survival thus requiring the addition of glutamine. In these cells, 

Methionine sulphoximine (MSX) is added to inhibit endogenous GS activity and only cell lines 

transfected with the overexpressed GS survive in this medium. In summary, mammalian cells 

transfected using the GS system can be grown in a glutamine-free medium with just glutamate added 

as a substitute. Reduced glutamine usage results in the lower formation of toxic ammonia thus resulting 

in improved growth. This method has been commercialized by the Lonza Company and has gained 

wide acceptance in the industry (Bebbington et al., 1992; Fan et al., 2012; Quek et al., 2010). 

 Methods to increase cell density 

Since productivity is often associated with cell mass, there is often a motivation to increase cell density. 

Also for experimental studies, it is important to obtain high density so as to increase the sensitivity of 

the experiment to changes in experimental conditions.  

The mode of cell cultivation has a significant effect on viable cell density. Fed-batch and perfusion are 

the most common modes of operation in the industry for obtaining higher cell density. Fed-batch culture 

is nowadays the dominant approach in the biopharmaceutical industry for controlling the cell-specific 

growth rate and residual nutrient concentrations while leading to high cell density. A concentrated feed 

is typically used to provide enough nutrients and to maximize viable cell density and product titer. Cell 
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densities of ~10 million cells/ml can be attained in fed-batch by extending the productive state for long 

periods of time. A fed-batch culture consists of two phases: an initial growth phase followed by a cell 

density decline phase. The reason that perfusion culture is nowadays less common comparing to fed-

batch is that perfusion operation is more complicated to run comparing to fed-batch. Also, the risk of 

contamination in perfusion is relatively higher and the right equipment for perfusion scale-up was not 

available until recently (Bonham-Carter, 2011). 

Feeding is used as a strategy to increase cell density but cell growth can be hindered by the 

accumulation of inhibitory agents such as ammonia and lactate and also by elevated osmolality resulting 

from the addition of a base needed for pH control (Newland, Kamal, Greenfield, & Nielsen, 1994). 

Unlike microbial cells’ cultures for which limiting the feed can be helpful in controlling the cultivation 

and limiting the by-products formation, in mammalian cells excessive starvation may induce apoptosis 

which results in a  high cellular death rate (𝑘𝐷) and decreased productivity. Based on these limitations 

some strategies have been developed for mammalian cells such as initial over-supply of nutrients 

followed by a cell arrest phase obtained by adding growth inhibitors or decreasing temperature. As 

mentioned above, perfusion is another mode of operation used to increase cell density. Because of its 

importance in the current research, it is described separately in the following chapter. 

 Mathematical metabolic modelling 

In order to develop and optimize a process, a thorough understanding of the process is a critical step. 

Mathematical metabolic models are useful for describing and better understanding biological processes. 

A simple and well-developed model is often helpful in reducing the number of experiments required 

for developing and optimizing the process. Generally, models should be easy to build and use and the 

type of model to be developed may also depend on the specific expected application. 
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For example in order to find the best targets for genetic manipulation metabolic models could be used 

to rationally identify needed knock out/in/up/down of genes responsible for specific enzymes in the 

metabolic pathway to increase the production of desired metabolites. Without having a systematic view 

based on a model such a manipulation might need a higher number of trial and error based experiments. 

Instead, by forecasting the best targets based on mathematical modelling, recombinant DNA techniques 

can be implemented to change or delete the genetic function of a specific target (Zomorrodi, Suthers, 

Ranganathan, & Maranas, 2012). On the other hand, at the bioprocess level, models can also be used 

to design the feeding regime in a fed-batch operation or the perfusion rate schedule in a perfusion 

operation to maximize growth and/or productivity.   

 Mathematical model categories 

Mathematical models for biochemical systems can be classified, according to their specifications and 

applications, into different groups: Structured or unstructured, segregated or unsegregated, 

deterministic or stochastic (Sidoli, Mantalaris, & Asprey, 2004). Structured models explicitly take into 

account the intracellular reactions reported for a particular organism unlike unstructured models than 

just describe mass balances of specific metabolites using empirical yields and Monod expressions but 

do not account for the different reactions involving a specific metabolite either as a reactant or as a 

product. Segregated cell models account for the heterogeneity of the cell culture thus assuming that 

different cells are at different metabolic stages at any given time. On the other hand un-segregated 

models assume that the cell population is homogeneous and thus describe an average status of the cell 

population within the culture. Unlike deterministic models where parameter and initial conditions 

values are fixed, stochastic models assumed these values to be random. The choice of the modelling 
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approach for a particular problem depends on the purpose of the model, the situation of the process and 

available data (Sidoli et al., 2004). 

 Kinetic Models 

A common approach in biochemical modeling is to identify main reactions involved in the process and 

to describe each of the reaction rates by kinetic expressions of Monod or other types. These kinetic 

expressions are then combined together into a system of differential equations that represent dynamic 

mass balances of each of the metabolites participating in the identified reactions as substrates or 

products. These models are deterministic since they involve deterministic parameters and initial 

conditions. In some cases, simple unstructured empirical mass balances are used where the 

consumption of the metabolite towards biomass or towards another metabolite is determined by 

empirical Monod kinetic terms and yields. For example, a simple kinetic model that has been used 

extensively for glucose consumption for producing biomass by using Monod type equations is given as 

follows: 

S→X           (2-1) 

𝑑𝑠

𝑑𝑡
= −

µ𝑚𝑎𝑥

𝑘𝑠+𝑠

𝑋

𝑌𝑋 𝑆⁄
         (2-2) 

where 
𝑑𝑆

𝑑𝑡
 is the consumption rate of glucose, µmax⁡  is the maximum specific growth rate, S and X are 

glucose and biomass concentration, 𝑘𝑠 is the value of S when μ/μmax = 0.5, 𝑌𝑋 𝑆⁄  is the rate of biomass 

formation from substrate (glucose) consumption.  

When considering many metabolites, these types of kinetic models are generally heavily parameterized. 

Then, in the presence of a large set of kinetic parameters, the downside of these models is their 
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sensitivity to model structure error and measurement noise especially when data is scarce. Also, the 

parameter estimation step is challenging since the kinetic equations are mostly expressed in non-linear 

forms thus necessitating nonlinear estimation techniques, e.g. when using Michaelis-Menten type 

equations (Sidoli et al., 2004). An additional problem is that parameters in the numerator and 

denominator of Michaelis-Menten expressions are highly correlated necessitating experiments at very 

low concentrations to determine the half-saturation constants while at low concentrations the data is 

generally inaccurate. 

 Metabolic flux analysis (MFA) 

Metabolic flux analysis (MFA) is a modelling approach that identifies the distribution of flux rates at 

steady-state conditions. Based on stoichiometric relations among metabolites, dynamic mass balances 

can be written for the metabolites as follows: 

𝑑𝐱

𝑑𝑡
= 𝑺. 𝒗          (2-3) 

where S is the stoichiometric matrix, x is the vector representing the concentration of the metabolites, 

𝒗  is the vector for metabolic fluxes and µ is the cell specific growth rate. In MFA it is usually assumed 

that the intracellular environment is at a quasi-steady state (
𝑑𝐱

𝑑𝑡
= 0). 

 This assumption is based on the fact that changes in intracellular fluxes (within the cells) occur much 

faster comparing to extracellular ones but this may not be always accurate.  

𝑺. 𝒗 = 0          (2-4) 

Generally, input and output fluxes into and from the cell can be experimentally measured whereas 

intracellular fluxes are more difficult to measure. Following the assumption of quasi-steady state, it is 

possible to cancel out the reactions among intracellular intermediates and establish relations between 
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input and output fluxes but the resulting model is generally underdetermined given by equation 2-5 

since the degrees of freedom are larger than zero: 

d=n-k-m          (2-5) 

where d is the degree of freedom, n is the number of fluxes, k is the number of constraints and m is the 

number of measurable fluxes.  

There are two major approaches to address the under-determinacy problem or lack of measurements 

for calibrating stoichiometric models: 

a) Using labelling data to experimentally find important/negligible intracellular fluxes 

b) Fit extracellular data with a mathematical and biologically meaningful objective function 

subject to constraints where the latter are based on the stoichiometry and kinetic rate limits. 

These two approaches are further discussed in the following sections. 

Isotope-based metabolic flux analysis is a technique to measure intracellular metabolic fluxes. 13C-

based metabolic flux analysis has been applied in different prokaryotic and eukaryotic systems (Yang, 

2013). 13C-MFA technique involves the following steps: (1) selecting appropriate tracers for the 

system under study (2) implementing isotopic labeling experiments, (3) quantifying isotopic labeling 

distributions in metabolic products, (4) estimating metabolic fluxes using least-squares regression, and 

(5) evaluating the goodness of fit and computing confidence intervals for estimated fluxes 

(Antoniewicz, 2013). 

Although promising the “Application of MFA technique using 13C” poses several challenges as 

follows: 

a) Dilution of isotopic labels of intracellular metabolites  

b) High flow rate of extracellular metabolites such as lactate may result in lower intracellular 

labeling due to the high exchange rate between intracellular and extracellular lactate.  
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c) Compartmentalization of metabolism since some metabolites like pyruvate, citrate, malate, and 

amino acids are involved in different metabolic pathways whereas current techniques cannot label them 

separately. Hence, just the sum of the individual contributions can be quantified (Ahn & Antoniewicz, 

2012b). 

The second approach is called flux balance analysis that is discussed in the next section. 

 Flux Balance Analysis (FBA) modelling 

Flux Balance Analysis (FBA) is one of the modelling methods that has been extensively used for 

studying metabolic activities in a wide range of systems ranging from microbes to human cells. FBA 

is categorized among the type of models referred to as “constraint-based” models. By imposing various 

meaningful constraints on the system, the solution space of an underdetermined system of equations 

can be reduced to reach a unique solution. The main advantage of FBA type models is their capability 

of predicting the behaviour of metabolites in metabolic networks without a need for excessive kinetic 

information about that network. FBA mathematically describes the system under study by developing 

a matrix of stoichiometric coefficients. This matrix is used for formulating mass balances in terms of 

the fluxes associated with the different reactions involved in the metabolic network. The initial FBA 

approach was proposed for describing a steady state situation according to which the production rates 

of produced metabolites are equal to the consumption rates of consumed nutrients as already presented 

in equations (2-3) and (2-4). As explained in the former section, the resulting system of stoichiometric 

equations is usually underdetermined (i.e. more unknowns than equations). To partially address this 

problem it is considered that cells are trying to maximize/minimize an objective function subject to 

stoichiometric or other constraints and the resulting optimization problem will force a solution at 

particular constraints. Accordingly, the FBA can be formulated as an optimization problem as follows: 
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max  𝑪𝑻𝒗          (2-6) 

       Subject to    𝑺. 𝒗 = 0 

                         0 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 

where 𝑪𝑻𝒗  is an objective function which has to be maximized,  𝑪𝑻is a  vector of weights for each flux 

in the objective function that reflects the relative contributions of amino acids or other metabolites to 

biomass and 𝒗 is the set of reaction fluxes that are subject to constraints. Constraints like the availability 

of substrates are usually the most common ones used in previously reported work. Upper and lower 

bounds for each reaction flux are associated to reaction rate limitations. As for all FBA problems setting 

a biological meaningful objective function is very important. For example, maximization of biomass is 

a common optimization objective that has been used to predict the system behavior in some 

microorganisms especially for bacteria. It should be noticed that FBA can only solve for the fluxes 

between reactants and products for each reaction but it cannot provide information about the individual 

metabolites’ concentrations (Mahadevan et al., 2002).  

There are some extension models to FBA that will be briefly discussed in the following subsections. 

 Flux variability analysis 

Due to a lack of a sufficient number of constraints FBA may lead to multiple solutions. This situation 

might have a negligible impact on the prediction of the model or it could be an important one depending 

on the proximity of the solutions to each other and to the importance of the fluxes that are not 

determined uniquely.  
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 Dynamic Flux Balance Analysis 

FBA is only capable of modelling the flux distribution at steady state. Hence, it is not able to determine 

the evolution with time of the metabolites’ concentrations. To capture the dynamics of the system, a 

dynamic extension of FBA has been proposed that is referred to as Dynamic flux balance analysis 

(DFBA). In the original DFBA formulation proposed by Palsson group (Savinell & Palsson, 1992) it 

was assumed that the fluxes are piecewise constant, i.e. they remain constant during short time intervals. 

Hence, the resulting fluxes calculated at each time interval T can be used to calculate the concentrations 

in a recursive fashion using the Euler discretization of the corresponding dynamic balance as follows: 

𝛹𝑖+1 = 𝛹𝑖 +⁡(S. 𝑣𝑖)⁡⁡𝑋𝑖. ∆𝑡  (T= time interval)    (2-7) 

For example, a dynamic model for the diauxic growth of E.coli on glucose and acetate (Mahadevan et 

al., 2002) was formulated by using DFBA as follows: 

@ each sampling time i          (2-8) 

max 𝑐𝑇𝑣  

        Subject to 𝑣𝑖 >⁡0                                                                        

                          
1

𝑋̅
⁡

𝑑𝛹

𝑑𝑡ℎ𝑖𝑔ℎ𝑒𝑟
 ≤⁡

1

∆𝑡.𝑋𝑖
(𝛹𝑖+1 − 𝛹𝑖) =S. 𝑣𝑖 ≤ 

1

𝑋̅
⁡

𝑑𝛹

𝑑𝑡𝑙𝑜𝑤𝑒𝑟
        

                         𝛹𝑖+1 = 𝛹𝑖 +⁡(S. 𝑣𝑖)⁡𝑋𝑖 ⁡T⁡⁡⁡⁡⁡⁡⁡⁡          (T= time interval)    

where here 𝑋̅ is an average biomass concentration over a given period of time (e.g. duration of 

exponential phase or post-exponential phase), 𝑋𝑖⁡is the biomass at time i, (dΨ/dt) higher  and (dΨ/dt)lower  

are higher and lower bounds on consumption or production rates. These limiting metabolic rates can be 

defined as a function of concentration/s of metabolites participating in the corresponding reaction. 
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These rate constraints are determined from experiments. T is a time interval value used for discrete 

numerical integration (Budman et al., 2013). 

The key advantage of DFBA, and the reason that is chosen for the current research is that it often needs 

a limited number of constraints to describe the evolution of metabolites thus often requiring a small 

number of parameters to describe the system (Mahadevan et al., 2002). This may be a significant 

advantage as compared to kinetic models that were reviewed in the previous sections and that require 

many parameters thus making them sensitive to noise and also to regular FBA models that do not model 

the process dynamics. These advantages make DFBA a promising modeling method for optimization 

purposes but its application to experimental systems poses several challenges. First, the models that 

have been proposed in the literature such as the E.coli model given above, generally involve a small 

number of metabolites. For this case, the constraint and objective function are generally determined by 

trial and error. On the other hand when the number of metabolites that need to be modeled is much 

larger as compared to the E.coli model given above, finding the biological function and the constraints 

necessary to explain the experimental data is much more challenging. Finding systematically the 

minimal number of constraints of the DFBA model is a main focus of the current work. 

 Challenges regarding the DFBA modelling of mammalian cells 

 Modeling of mammalian cells is generally more challenging as compared to other microorganisms 

such as bacteria. Mammalian cells are subject to death mechanisms such as apoptosis (programmed 

cell death) that significantly limit their long term viability. Also, due to their slow growth as compared 

to bacteria, experiments are slow with the resulting increased chances of contamination while viability 

limitations impose serious constraints on the ability to collect data for model calibration.  
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Bacterial cells are generally grown in relatively simple chemically defined media. Most flux constraints 

that have been used within metabolic models of bacteria were generally related to the uptake rate of a 

major ingredient such as glucose. On the other hand, in mammalian cells, media is much more complex. 

This complexity combined with the fact that manufacturers of medium for mammalian cells do not 

reveal the media composition poses challenges for the formulation and calibration of mathematical 

models.   

 The choice of the objective function 

FBA type models have generally adopted the optimality assumption of evolutionary biology whereby 

cells are using resources optimally to maximize or minimize a specific objective function in order to 

survive. A common objective function used especially for bacterial systems is the maximization of 

growth or final biomass at the end of a batch (Orth, Thiele, & Palsson, 2010). However, several other 

objective functions also have been investigated such as minimization of the production rate of redox 

potential, minimization of ATP production rate, maximization of ATP production rate, maximization, 

and minimization of nutrient uptake rate, maximization of biomass yield per unit flux) maximization 

of ATP yield (maximal energy efficiency), minimization of the overall intracellular flux, maximization 

of ATP yield per flux unit (maximizing ATP yield while minimizing enzyme usage), maximization of 

biomass yield per flux unit (maximizing biomass yield while minimizing enzyme usage), minimization 

of glucose  consumption (more efficient usage of substrate) and minimization of reaction steps 

(minimization of the number of reaction steps for cell growth) (Schuetz, Kuepfer, & Sauer, 2007). The 

FBA modeling studies involving different objective functions have been mostly done based on the 

central metabolic network or genome-scale network of E.coli. Defining the right objective function has 

been reported to greatly impact the model prediction accuracy. In certain studies the minimization of 
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the production rate of redox potential under nutrient limitations, the linear maximization of the overall 

ATP or biomass yields have been found to more accurately predict the system behavior as compared to 

the objective of maximizing growth or final biomass (Pramanik & Keasling, 1997; Schuetz et al., 2007) 

. 

Mammalian cells might accomplish different functionalities during their time evolution comparing to 

bacteria. A previous study for finding a suitable objective function on hybridoma cell central 

metabolism studied the following possibilities: 1) minimization of ATP production, 2) minimizing total 

nutrient uptake and 3) minimizing redox metabolism through minimizing NADH production.  That 

study suggested that while not a single objective could solely rule the cell behavior, minimizing the 

NADH production can better describe the typical characteristic behavior of hybridoma cells such as 

their inefficient use of nutrients. Such inefficient use of resources translates into higher rates of 

consumption of glutamine and production of alanine (Savinell & Palsson, 1992) . 

Burgard et al. proposed a systematic approach using a bi-level optimization principle in which while at 

the upper level minimized the sum of square errors between the experimentally measured fluxes and 

the predicted fluxes, FBA model equations were used in the lower level (Burgard & Maranas, 2003). 

Where 𝑣𝑗⁡represent the flux of reaction j (obtained from optimization problem), 𝑣𝑗
𝑒𝑥𝑝

 experimentally 

determined flux of j,𝑐𝑗 are weights determining the contribution of each flux to the objective function 

which are adjusted by the outer optimization problem such as to minimize the sum of the squared error 

between the experimental and optimization flux rates and 𝑆𝑖𝑗⁡is the stoichiometric coefficient of 

metabolite i in reaction j.  The work was based on experimental data from the central metabolic network 

of E.coli using isotopomer analysis. The cost of the lower level optimization problem in equation (2-7) 

is a linear combination of fluxes multiplied by different weights where the latter are also decision 
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variables. For example, if the correct objective function following optimization would be the 

maximization of growth, those fluxes which contribute to biomass production would be multiplied by 

the weights corresponding to the relative contributions of fluxes to growth while all other weights 

would be zero. This approach can be potentially used to both identify the hypothesized objective 

function and to examine how the objective function may change by changing environmental conditions 

(Burgard & Maranas, 2003).  It should be noted that this latter work was done for continuous operation 

where the system is at steady state. 

To the knowledge of the authors, systematic approaches to find the most suitable objective function for 

dynamic cultures have not been proposed. The bi-level optimization formulation given above has been 

used in the current thesis for comparison with the new methodologies proposed in the current work. 

Furthermore, Dynamic Metabolic Flux Models have not been formulated as yet for mammalian cells 

and it remains an open area of research that will be addressed in the current work. 
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Chapter 3 

Methodology 

 Cell line 

Two cell lines were used: dihydrofolate reductase-deficient CHO cell line (dhfr- CHO) able to produce 

anti-RhD MAb that was originally provided by Cangene Corporation (Mississauga, ON) and a CHOZN 

ZFN-modified GS-/- CHO cell producing anti-rabies IgG provided by SAFC/MilliporeSigma (St Louis, 

MO). The latter has been reported to provide much higher titer as compared to the former. 

 Cell culture media 

Both cell lines were cultivated in serum-free media.  The medium used for (dhfr- CHO) was HyClone 

SFX-CHO by Thermo Fisher Scientific (Waltham, MA), a liquid serum-free medium designed for 

CHO cells. For CHOZN ZFN, the medium used was EX-CELL-CD CHO Fusion by 

SAFC/MilliporeSigma (St Louis, MO). Since (dhfr- CHO) cannot to synthesize glutamine, and cells 

need glutamine for growth, 1mM glutamine (Thermo Fisher Scientific, Waltham, MA) was added to 

the medium before its use in the cell culture experiments. CHOZN ZFN is a GS cell line which can to 

synthesize glutamine so addition to the medium for growth is not required.  

 Seed culture 

To prepare the seed culture, a cryogenic vial of cells (containing 1ml of cells at a density of 5-10 ×106 

cells/ml) was rapidly thawed in a water bath at 37 °C under a laminar flow hood and quickly diluted in 

a 125 ml shaker flask containing 30 ml of pre-warmed serum-free media.  
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 Cell count 

To determine the cell density and viable cell density of the culture a Trypan blue exclusion method was 

used. 100 µl of Trypan blue (0.4%) was mixed with 100 µl of the cells (in their medium) and a 20 µl 

of this mixture was loaded into a hemocytometer. The total number of cells and the blue stained (viable) 

cells and the blue stained (viable) cells were counted under a microscope.  

 Sub-culturing 

Based on growth rate, the cells should be passaged 2 to 3 times a week. The passaging step involves 

removing some part of the old medium (containing cells) and adding a new medium to the flask to 

lower the cell density to approximately 0.25×106 cells/ml at any single passaging operation. This 

procedure maintains the cells within their exponential growth phase. During the exponential growth 

phase, the cell viability was above 95%. 

 Weaning of the cells (adaptation to low serum media) 

(dhfr- CHO) used in this study were an adherent cell line and required 10% serum. To adapt it to the 

suspension condition in spinner flask, it was necessary to gradually decrease the amount of the serum 

in the medium. For this purpose, a sequential process was used. First cells were cultured in was 

monolayer in a T-flask containing cell culture medium to which 10% fetal bovine serum (Invitrogen, 

CA, USA) was added. Following two sub-cultur steps under these conditions and once the cells were 

identified to be in their growth phase with more than 90% viability, they were sequentially sub-cultured 

gradually and adapted to 7.5%, 5%, 2.5% and finally 1% serum. For each of these subcultures, the cells 

were dislodged by trypsin-EDTA solution (Sigma, MI, USA), centrifuged at 100 X g for 4 min and the 

trypsin-EDTA were aspirated from the flask. After adapting to 1% serum in T-flask, cells in their mid-
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growth phase with more than 90% viability were transferred to a spinner flask with a cell density of 

around 0.3 million cells/mL and the experiment was started (Radford, Niloperbowo, Reid, & 

Greenfield, 1991). 

 Metabolites analysis 

Lactate, ammonia, glucose and glutamine were analyzed using a BioProfile 400 (Nova Biomedical, 

MA, USA).  

 Quantification of mAb 

Quantification of monoclonal antibody was done in MilliporeSigma (MI, USA) by using a ForteBio 

(Pall ForteBio LLC, CA, USA). 

 Amino acid analysis 

To remove the cell debris from the cell culture medium, samples from the cell culture medium were 

centrifuged at 4500rpm for 4 minutes. The amino acid analysis was performed with a pre-column 

derivatization method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) Waters 

AccQFluor Reagent (Waters, MA.USA).  Sample preparation was done by mixing 70 µL of AccQFluor 

borate buffer in a 10 µL volume of sample. After vortexing the sample for approximately 10 seconds, 

20 µL of AccQFluor reagent was added to the mixture and further vortexed, for 10 seconds the mixture 

was incubated for 1 minute at room temperature and later it was placed in a water bath at 55o C for 10 

min. This step was done to hydrolyze the excess AccQFluor reagent to 6-Aminoquinolone (AMQ), N-

hydroxysuccinimide (NHS) and carbon dioxide. A five-point standard calibration curve was prepared 

by successive dilution and analysis of a mixture of standard amino acids that contains a 2.5 mM of each 

of the hydrolysate amino acids and 1.25 mM of cysteine (Sigma Aldrich, MI, USA). 
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For amino acid analysis, a Waters 1525 chromatography system (Waters Corporation) with a 

fluorescence detector (W2475; Waters 1525; Waters Corporation) was used. An excitation wavelength 

of 250 nm and an emission wavelength of 400 nm was applied. Also, the gain value was set to 1.0 and 

a filter value of 0.5. The volume of each sample was 5 µl that was provided by placing an insert inside 

the sample bottles. A Waters AccQ.Tag Amino Acid Analysis Column C18 (4 µm; 3.9 mm × 150 mm), 

specifically designed for this amino acid analysis method was used. As this analysis involves separation 

of 19-22 different amino acids and compounds, the procedure requires attention to the following steps: 

1) The column is kept at conditions suggested by the manufacturer,  

2) The water used for buffer preparation must be Millipore grade water with a resistivity 

of 18.2 MΩ.cm (at 25°C)  

3) All the glassware including the buffer glasses is washed carefully,  

4) All the buffers should be filtered and degassed properly before usage. Buffers being used are 

Buffer A: an acetate-phosphate buffer which is a mix of 100 mL AccQTag A concentrate with 

1-liter Millipore water) and Buffer B: a mix of acetonitrile and water (60:40%).  

5) The column temperature was set to 37 oC and the column was conditioned with buffer B for 10 

minutes at a flow rate of 1 mL/min. Before every run, the column was equilibrated for 10 

minutes at a 1 mL/min flow with 100 % of Buffer A (Carrillo-Cocom et al., 2015; Cohen, 

2000). A Gradient table for the HPLC runs is presented in Table 3-1. 
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Table 3-1 Gradient table for the HPLC runs, buffers AccQ.Tag buffer A and B 

 Time (min) Flow rate (mL/min) A% B% 

Initial 1.0 100 0 

0.5 1.0 98 2 

15 1.0 93 7 

19 1.0 90 10 

32 1.0 67 33 

33 1.0 67 33 

34 1.0 0 100 

37 1.0 0 100 

38 1.0 100 0 
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Chapter 4 

Perfusion process development 

 The basics of perfusion operation 

The perfusion mode of operation unlike the batch and fed-batch operating modes is considered a 

continuous operation. In perfusion operation the spent medium is continuously removed from the 

bioreactor and replaced by fresh medium, while cells are kept inside the bioreactor using a cell retention 

device. During medium replacement, the nutrients consumed as a result of cell metabolism are usually 

replenished by feeding of the new medium.  A key advantage of perfusion processing is that lactate and 

ammonia, the most common by-products of cell metabolism that usually have a toxic or inhibitory 

effect on cell growth and protein production, are regularly removed. Thus perfusion operation generally 

promotes higher cell growth and lower cells death thus leading to much higher cell densities.  Since the 

product titer is generally correlated with cell mass, higher cell density in the bioreactor generally 

translates to higher productivity per volume. The perfusion operation is generally implemented in two 

phases. During the first phase, the goal is to achieve a certain level of cell density while in the 

subsequent second phase the goal is to keep the cell density at a steady state (plateau) for a longer 

period of protein production. The level of cell density during this second phase is usually adjusted by 

regulating the perfusion rate and harvest rate and by bleeding out a certain amount of cells, including 

the dead cells. The overall equation for the perfusion process is shown in equation (4-1). 

dX

dt
= µX − 𝑘𝐷X − D𝑋𝐻 −

𝐶𝐵𝑅

𝑉
𝑋        (4-1) 

where µ is the specific growth rate,⁡𝑘𝐷 is the cell specific death rate, X is the concentration of biomass, 

D is the dilution (perfusion) rate, XH is the biomass concentration of the harvested stream. If the cell 
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retention device has 100% efficiency in retaining the cells this value should be equal to zero 

(Konstantinov et al., 2006). 

In the early days of the modern biopharmaceutical industry, i.e. during the 1980s and 1990s, perfusion 

systems were initially introduced and they attracted significant attention as on those days the product 

yields of the available industrial cell lines were only a few milligrams to few hundreds milligram. 

Hence, perfusion was considered as an attractive option for producing a larger amount of products. The 

most common cell retention devices used at that time were spin filters, which will be introduced in the 

next section. However, those devices were not really efficient, especially due to scale-up challenges. 

When product yield was significantly improved as a result of cell engineering advancements, perfusion 

systems became less popular compared to fed-batch operations due to the relative operating complexity, 

additional hardware requirements and potential contamination of perfusion systems. For some products 

that were not stable, such as recombinant Antihemophilic Factor VIII, perfusion remained almost the 

only viable process option because the medium containing the expressed protein must be taken out of 

the bioreactor and sent directly for purification before it denatures inside the bioreactor.  

Beyond these special applications, perfusion is gaining attention once again mainly because the 

development of new cell retention devices that are scalable. Other factors that have motivated the use 

of perfusion are the need for increasing amounts of therapeutic proteins, the availability of novel single-

use bioprocess systems that make it possible to use only one manufacturing line for the production of 

multiple products and advancement in continuous purification systems to match the continuous 

production from perfusion (Bonham-Carter, 2011; Jacquemart et al., 2016).  

Beyond their use in the large-scale production of proteins, in recent years perfusion processes have 

been found to be very useful in development of personal cancer treatment especially in immunotherapy 

using chimeric antigen receptor-modified T cell (CAR-T cell) in which it is critical to produce sufficient 
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amount of patients’ modified  T cells in a short amount time (Levine, Miskin, Wonnacott, & Keir, 2017; 

Wang & Riviere, 2016). 

 Cell retention devices 

The lack of effective scalable cell retention device has been the main obstacle for using perfusion mode 

in bio-manufacturing operations. Cell retention devices can be based on different physical principles 

such as filtration, gravity, and acceleration. A cell retention system should be able to separate close to 

100% of the cells from the effluent stream and it has to keep this efficiency even at high-density cell 

conditions (Woodside, Bowen, & Piret, 1998). Several factors should be considered regarding the 

choice of cell retention systems such as cell retention and cell density capacity, the residence time of 

cells in the bioreactor, mechanical shear stress and the retention of the protein of interest inside the 

bioreactor. Some of the cell retention devices have a re-circulation loop in which the medium containing 

cells is circulated inside this loop and only part of that stream will be extracted out for the protein 

harvesting. However, this recirculation process combined with the use of peristaltic pumps may result 

in detrimental mechanical shear stress on cells. The cell retention time during cell separation is another 

factor that may have negative effects on cell culture conditions as during this time cells may be exposed 

to stressful culture conditions.  For example, oxygen shortage might occur during the time the cells are 

within the cell retention devices (Chotteau, 2015). Some of the cell retention systems available are 

reviewed below. 

 Gravitation/Acceleration based devices 

These devices are working based on acceleration or gravity where the media is usually pumped through 

a peristaltic pump to these settlers. These devices are normally used for anchorage-dependent cells 
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attached on micro- carriers due to the higher solid density in these cases as compared to suspension cell 

systems without micro-carriers that cannot be effectively separated with gravitational devices. 

 Inclined settler 

Inclined settlers consisted of inclined plates on which the cell sedimentation occurs. The cell culture 

medium containing cells is pumped into the lower part of the settler. Then, sedimented cells are sent 

back to the bioreactor and the cell-free media is pumped out from the top part of the settler to the harvest 

tank. The main advantage of inclined settlers is that cell bleeding, i.e. elimination of dead cells from 

the bioreactor, is possible in this type of settling device. Also, inclined settlers contribute negligible 

shear stress to the cells. On the other hand, cells in an inclined settler usually adhere to the plates 

resulting in an increase of the residence time within the settler in the range of 30 minutes to few hours. 

To mitigate this problem, vibration can be applied to the system and also the cell metabolism can be 

manipulated to inhibit the cell adhesion to the settler plates. Manipulation of the metabolism might be 

accomplished by using a heat exchanger to lower the temperature of the media that goes to the settler. 

Despite these possible modifications, the cell perfusion capacity within inclined settlers is relatively 

low and thus scale-up is considered a challenge (Chotteau, 2015; Woodside et al., 1998). 

 Acoustic Settler 

In this type of settlers, acoustic waves are applied to a chamber where the cell broth has been previously 

pumped in. The cells are concentrated to a particular density so they experience resonance at the 

frequencies of the imposed acoustic waves. When the waves are interrupted, the aggregated cells settle 

rapidly, falling back into the bioreactor. This settling device needs significant power to generate the 
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waves and the transfer of this vibrational energy to the cells may damage them. The use of this device 

has been reported in pilot scale applications only (Chotteau, 2015). 

 Filtration based devices 

Filters have been developed and used for separation of mammalian cells from culture medium but 

fouling remains a major challenge for long-term operation. Different modifications have been proposed 

to address fouling. 

 Spin-filters 

Spin filters consist of a cylindrical membrane rotating within the bioreactor around the same centerline 

axis as the impeller. The spent culture medium is drawn from the culture volume into the cylinder and 

then out of the reactor while the cells are retained by the membrane. Spin-filters differ from cross-flow 

filters in two major aspects: the fluid flow relative to the filtration surface is produced by the rotation 

of the cylinder and the filtration surface is typically inside the reactor. Hence, the trans-membrane 

pressure drop can be manipulated independently from the cross-flow velocity, the retentate cell 

concentration is more uniform over the whole filter surface and the cells remain within the controlled 

environment (Woodside et al., 1998). 

 Cross-flow filters  

Cross-flow filtration or tangential flow filtration is a common filtration methodology that has been used 

in many applications. Unlike normal dead-end filtration where the flow passes through the filter, in 

cross-flow filtration the feed flows tangentially to the filter surface. Hence, in tangential flow filtration, 

fouling is reduced as compared to processes involving dead-end filters and thus the process can be 

operated continuously since intermittent washing is not required.  
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ATF perfusion system (ATF: Alternating tangential flow) is a particular perfusion system manufactured 

by Repligen that has been used in the current research. Membrane fouling is significantly reduced in 

this system due to the use of a special diaphragm that produces an alternating tangential flow (Kelly et 

al., 2014) .Hollow-fiber cartridges are typical choices of cross-flow filters for cell retention in 

mammalian cell perfusion applications. In these systems, the suspension is pumped to an external 

cartridge and it is concentrated as it flows across a membrane. The concentrated material containing 

the cells is recycled back to the reactor, while the cell-free permeate exits the system. The pressure drop 

between the inlet and recycle streams drives the cross-flow across the membrane and determines the 

surface shear rate. The resulting trans-membrane pressure difference is the highest near the inlet of 

membrane and it may even be reversed at the filter outlet thus generating a non-uniform permeate flux. 

The permeate flux has been reported to be the most important parameter in determining the filter’s 

fouling. 

Among all the aforementioned cell retention systems, ATF perfusion system is currently viewed as 

especially advantageous as it is usually easier to use and control and it is amenable to scale- up. Thus, 

the ATF perfusion system has been chosen for the perfusion experimentation conducted in the current 

thesis. 

 Challenges in the operation of a perfusion bioreactor: 

 Level control: 

As mentioned earlier, in perfusion operation the media is continuously substituted by fresh medium. 

In order to keep the level in the bioreactor constant during this exchange of contents the flow of fresh 

medium entering the bioreactor should match the flow of spent medium.  Although the use of the same 
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peristaltic pump and the same tubing would be expected to result in a balance of the flows, due to 

several factors such as fatigue in the tubing (Chotteau, 2015) or differences between the pressure in the 

bioreactor and the harvest tank this balance is not always maintained. The resulting deviations from the 

balance between fresh medium and spent medium flowrates might cause during long term operation to 

overflow or to a critical reduction of the medium level inside the bioreactor. To address this problem 

two solutions are available. A first option is to control the level by using by adjusting the feeding pump 

based on a level sensor’s measurements. This method is only partially effective because due to foaming 

at the top of the bioreactor, especially at higher cell density, the readings from the level sensor are 

highly inaccurate. A second solution used in the current work is to place the bioreactor on top 

of a scale and use the weight as an indicator for the level inside the bioreactor. Based on the 

weight a level controlling system was designed using a PID controller that based on the weight 

measurement sends corrective actions to a feeding peristaltic pump.  

 Oxygen and Carbon dioxide transfer 

Providing enough oxygen for the cells in a perfusion operation is a key challenge, especially in a smaller 

scale bioreactor, since cell density is substantially higher than a batch or fed-batch operation (up to 

hundred times). As a result of this high density, the overall oxygen consumption rate (OUR) is generally 

high as per the balance equation for oxygen (equation 4-2).  Also,  according to the dynamic balance 

of oxygen within the bioreactor (equation 4-3), it is evident that a higher oxygen transfer rate (OTR) is 

required to keep the oxygen level above the critical point of dissolved oxygen (C in equation 4-2) which 

is normally 20- 50 % of saturation for CHO cells.  

OUR=𝑞𝑂2𝑋          (4-2) 
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dC

dt
= OTR − OUR         (4-3) 

The OTR is often empirically calculated based on the volumetric transfer coefficient (𝑘𝐿𝑎) as given in 

equation 4-4. According to this equation, it is possible to increase OTR by increasing⁡𝑘𝐿𝑎. Some of the 

factors affecting 𝑘𝐿𝑎 are the rotational speed of the impeller, the bioreactor geometry, temperature and 

pressure and the amount of surfactants used to mitigate foaming. 

OTR = 𝑘𝐿𝑎(𝐶𝑠 − 𝐶)         (4-4) 

Although increasing the impeller speed (rpm) is an easy way to increase OTR it should be noted that 

mammalian cells are more susceptible to damage resulting from shear stress. Thus, there is a limit on 

the speed of impeller that usually depends on the type of cells being cultured. Also decreasing the 

bubble size by manipulating the sparger operation results in more surface for oxygen transfer with a 

resulting increase of 𝑘𝐿𝑎 but it also produces foam that has a detrimental effect on cells. Manipulating 

the amount of surfactants is also a common practice to increase 𝑘𝐿𝑎  but it also has drawbacks. First 

surfactants may be toxic to the cells and also its addition to filter-based perfusion systems might cause 

clogging of the filter. 

In addition to oxygen control, regulating the amount of CO2 in the bioreactor is essential for effective 

operation of mammalian cell cultures. As a result of the cell metabolism carbon dioxide usually 

accumulates inside the bioreactor and lowers the pH. For example, Gary et al suggested that when pCo2 

was in the range of 30-76 mmHg it better supported the protein production in CHO cells growing in 

perfusion culture and higher level of pCO2 (> 105 mm Hg) had an inhibitive and destructive effect on 

the cell growth (Gray, Chen, Howarth, Inlow, & Maiorella, 1996). An initial project of the current thesis 

addressed this issue and is reported later in Chapter 7. It was found that the accumulation of carbonic 
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acid caused the reduction of pH to values that were found to be inhibitory to cell growth in spinner 

flask cultures of CHO cells. 

To tackle OTR limitations and accumulation of CO2 we have proposed in the current work to use two 

different type of impeller with different agitation profile, one Rushton at the bottom and one Marine 

type closer to the surface of the liquid in the bioreactor. Following this design, the oxygen had a higher 

chance of being dissolved in the medium.  

 

Figure 4-1 Idealized mixing profile in the bioreactor with two different impellers 

Also, we used a ring sparger that by producing larger bubble size helped to expel the CO2 from the 

bioreactor and in addition, a microsparger with smaller pore size was used to provide enough oxygen 

to the culture. Thus, the effect of the addition of the microsparger was to increase the 𝑘𝐿𝑎 as compared 

to the values obtained with the ring sparger alone. 

At the earlier batch phase occurring before the perfusion phase, the ring sparger was sufficient. This 

sparger is connected to the air supply and as mentioned above promotes the stripping of CO2 from the 
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culture while providing enough dissolved oxygen (DO). During the second phase of operation when 

perfusion starts pure oxygen was provided through the microsparger while the ring pipe sparger was 

still providing regular air. The reason for switching the flow from air to pure oxygen was to satisfy the 

higher oxygen demand at this stage thus maintaining a suitable air/oxygen ratio that ensures the right 

level of DO while avoiding excessive foam formation inside the bioreactor.  

  Antifoam addition 

Excess foam formation is detrimental to cell growth and protein. Bursting of the bubbles within the 

foam can damage the cells and decrease the cell viability (Routledge, Hewitt, Bora, & Bill, 2011). 

Inside the bioreactor, foaming can block the filters and increase the pressure inside. Addition of 

antifoam is a common practice in bioprocess engineering to decrease the foam formation. However, 

there are some points that should be considered regarding antifoam usage. Antifoam addition will 

decrease the oxygen transfer inside the bioreactor, and addition of antifoam could be an issue for the 

downstream and purification process because antifoams are known to foul the membranes. Also 

depending on the cell line, some antifoams might have toxic effects on the cells. Thus, it is generally 

recommended to perform a toxicity test for the antifoam to be used in the bioreactor by adding a 

different concentration of the antifoam to the cell line in the flask and assessing the resulting toxicity. 

 Effect of peristaltic pumps and tubing 

In the perfusion operation used in the current work, the cells were extracted from the bioreactor by 

using a peristaltic pump and then they were filtered using an ATF filter. Both the pumping and filtering 

operation result in shear stress that is potentially damaging to the cells. One way to reduce this shear 

stress was to use tubes with larger diameters, however it could result in an increase of the loop volume. 
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A useful strategy utilized to mitigate the shear effects was to use tubes with a larger diameter but with 

a shorter length that while reducing the shear stress they are also able to minimize the residence time 

in the circulation loop. It should be noted that generally it is suggested to keep the residence time less 

than 2 minutes (Chotteau, 2015). 

 Materials and methods 

  Cell preparation for inoculum 

For this study, a CHOZN ZFN-modified GS-/- CHO cell line (SAFC/MilliporeSigma, MO, USA) was 

used. Cells were thawed and suspended in a 125 ml flask containing 30 mL of medium, shaker condition 

of 36.9oC, 5% CO2 and rpm of 100 were used during the cell expansion. After two days, cells were 

dispensed to two 125 ml flasks with the cell density of 0.3 million cells/ml and were fed with fresh 

medium. Cell expansion continued for almost two weeks so as enough cells were available for 

inoculation of the bioreactor and that the cells were in their growth phase with more than 95% viability. 

Cell count and cell viability were performed using a hemocytometer under the microscope and the 

Trypan blue method (Strober, 2001).  

 Preparation of the bioreactor and ATF perfusion system 

The bioreactor’s vessel was connected to different sections of tubing required for feed, inoculum, 

harvest, perfusion, cell bleed, gases, base addition and antifoam. Each of these lines was connected to 

a disk filter with an easy connector (Figure 4-2). 



 

49 

 

 

Figure 4-2 End tube connection to disk filter. 

For each run the ATF perfusion’s filtration set-up was equipped with a new diaphragm and connected 

to the bioreactor vessel using a dip tube went to the bottom of the vessel that was connected to the top 

of the filter. The port at the bottom of the filter was equipped with a tube with an easy connector to 

allow for connectivity to the harvest tank. The bioreactor vessel and the ATF filter were autoclaved 

while connected together. The bioreactor’s vessel was connected to the controller and the probes were 

calibrated. The pipeline considered for the cell bleed was designed to be closer to the surface of the cell 

culture media where usually the cell debris was found to accumulate (Figure 4-3). 
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Figure 4-3 Schematic of perfusion set-up. 

  Bioreactor operation set points 

The bioreactor was inoculated to a cell density of about 1 million cells/ml, the temperature was set to 

36.9oC , DO to 40%, pH to 6.9 and the impeller agitation speed was set at 150 rpm. 

  pH control by base addition 

Following the above discussion about the need for reducing the CO2 level in section 4-3-2 with its 

resulting detrimental effect on pH and cell viability, it was required to add a base to keep the pH at its 

desired level. For the cell line used in this study, a pH of 6.9-7.0 was recommended by the supplier. 

Sodium carbonate (Na2CO3) and Sodium hydroxide (NaOH) were used as recommended for 

mammalian cell cultures. Sodium carbonate is milder compared to sodium hydroxide but it is known 

to increase the osmolality, that could be detrimental to a high cell density culture. Hence, 1M sodium 

hydroxide was used. As sodium hydroxide could be detrimental to the cell culture at the feeding location 
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the base addition line was positioned immediately above the impeller, i.e. at a region that is considered 

to be well mixed inside the bioreactor. 

 Perfusion rate 

The perfusion rate is an important factor in running perfusion processes. This rate has a great impact 

on cell growth and protein production and quality since it determines whether enough nutrients are 

available for the cells and whether toxic by-products are removed fast enough from the bioreactor. 

From an economic perspective consuming less cell culture medium is highly desired but this 

consideration should not come with the price of sacrificing cell growth, protein production, and protein 

quality. Hence, finding the optimum perfusion rate is critical for a successful operation. There are a few 

common criteria for adjusting the perfusion rate that is discussed here as follows: 

1) Based on the level of key nutrients such as glucose 

2) Based on trial and error and former experience; this method usually needs extensive 

experimentation so it was not pursued in the current work  

3) Based on a desired cell-specific perfusion rate (CSPR). This is the most common method in the 

industry where perfusion rate is adjusted based on the cell density and by using the parameter 

CSPR(pL/Cell/Day) that relates the perfusion rate to the cell density as per the following 

formula: 

CSPR =
𝐷

𝐶𝑣
         (4-5) 

In equation (4-5), D is the perfusion rate in units of (Reactor volume/Day, RV/Day), and Cv is viable 

cell density (millions of viable cells/ml, MVC/mL). Generally, the CSPR is kept constant by changing 
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the perfusion rate (D) as a function of the measured cell density. As mentioned earlier it is desired to 

use less medium while supporting cell growth and protein production and quality. Thus, keeping the 

CSPR at the lowest possible rate is an important goal. An acceptable CSPR for the industry is around 

40-100 pL/cell/day. Konstantinov and colleagues introduced a method called “push-to-low” that is 

acceptable for products for which a longer residence time will not adversely affect the protein quality. 

In this method, CSPR is decreased in an iterative-stepwise fashion to find the minimum CSPR that is 

also acceptable in terms of cell growth and protein production quantity and quality (Konstantinov et 

al., 2006). 

To find the perfusion rate in this research, the following approach was taken.  The two different 

phases of operation, i.e. the initial growth in a batch operation and the second phase involving perfusion 

while maintaining a constant cell density were approached differently.  

1) For the growth phase, the bioreactor was sampled each day for cell counting. Based on the 

counted cells and a prediction of the viable cells for the following day was estimated from 

equation (4-6). 

𝐶2 = 𝐶1𝑒
µ𝑡         (4-6) 

2) The prediction provided an estimate of the time that the cell density will reach the desired level 

at which the second phase of perfusion should be started. For the perfusion operation where 

the cell density was kept approximately constant, perfusion was started and bleeding of the 

cells was implemented to remove the dead cells and to keep the cell density at steady-state. The 

perfusion rate was found based on the desired CSPR. In the current study, we were aiming at a 

CSPR of 80 pL/day/cell. The harvest rate was calculated from the mass balance based on the 

perfusion and the bleeding rates. 
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 Results, discussion, and suggestions for a perfusion run 

During a two weeks perfusion experiment, the highest cell density reached at day 12 was 51 million 

cells per mL (Figure 4-4) starting from about one million cell per mL. The cell viability at this point 

was about 80%. Subsequently, the viable cell density dropped to around 35 million cells/ml on the last 

day of this experiment (day 14) with a cell viability of 75%.  The perfusion operation started at day 3, 

when the viable cell density was around 4.7 million cells/ml with around 98% cell viability and the 

glucose concentration as the main carbohydrate source decreased to approximately 3.2 g/l (~16 mM) 

from its initial level of 5 g/l (Figure 4-5). As mentioned above, the desired CSPR in this study was 

80pL/cell/day and thus based on the measured the cell density the perfusion rate that started at 0.67 

RV/Day was increased to around 3 RV/Day. The cell bleed rate was started at day 9 when the cell 

viability dropped to about 80%. The bleed rate started at 0.07 RV/Day and it was gradually increased 

to 0.18 RV/Day. Up to day 4, the ring sparger was enough to keep the DO at the set point but after that, 

the microsparger with pure oxygen was required and at this point, foam formation started to become a 

challenge. The addition of antifoam (Antifoam C from MilliporeSigma) was done based on the 

observed layer of foam that formed at the top of the working volume in the bioreactor. The observed 

thickness of the foam layer was 1 cm at day 5, 3 cm of foam at day 8 and approximately 6-8 cm of 

foam at day 10. Antifoam addition (0.1 % Antifoam C (MilliporeSigma, MI, USA)) was performed 

using a peristaltic pump and its flow rate was adjusted based on the relative amount of foam that was 

observed at the top of the culture.   
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Figure 4-4. Viable cell density vs. time. Cells reach to their maximum cell density of around 50 

million cells per mL. 
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Figure 4-5 Glucose profile in perfusion culture. Glucose level is kept above critical level for cell 

growth. 
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Figure 4-6 Lactate profile in perfusion culture. It was tried to keep the lactate level lower than 

harmful level. 
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Figure 4-7 Ammonia profile in perfusion culture. It was tried to keep the ammonia level lower 

than harmful level. 
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Figure 4-8 Amino acid concentration profile in perfusion culture. 

During this perfusion run glucose concentration for most of them were kept above 3 g/l (16.7 mM), 

which is an acceptable range for glucose concentration. Lactate concentration was mostly between 1-

1.5 g/l (11-16 mM) (Figure 4-6) and ammonia concentration was kept mainly under 2.4 mM (Figure 4-

7). Asparagine was consumed very quickly during the batch phase from 6.4 mM to less than 2mM 

(Figure 4-8). Similar results were observed previously by Duarte et al. and the reason might be that 

asparagine and serine are the major nitrogen sources for the GS-CHO cells (Duarte et al., 2014). 

Compared to other reported perfusion experiments with CHO cells (Clincke et al., 2013) which reached 

to about 30 million cells/mL in a two week experiment, in this study we reached a higher cell density 
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(50 million cells/mL). Among the reasons for this improvement in cell density might be that in this 

experiment by having the lactate and ammonia as the toxic by-products of the culture concentrations 

were kept lower, which favored increased cell growth. It has been discussed by several groups 

(Aghamohseni et al., 2014; Andersen & Goochee, 1995; Butler, 2006) that accumulation of ammonia 

could impact the protein quality in the culture especially by affecting the glycosylation. It has been 

shown higher ammonia will decrease the terminal sialylation so in this experiment by controlling the 

level of production of ammonia the quality of the produced protein has potentially been improved.   
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Chapter 5 

Identification of Active Constraints in Dynamic Flux Balance 

Analysis 

1This study deals with the calibration of dynamic metabolic flux models that are formulated as the 

maximization of an objective, subject to constraints. Two approaches were applied for identifying the 

constraints from data. In the first approach a minimal active number of limiting constraints is found 

based on data that are assumed to be bounded within sets, whereas in the second approach, the limiting 

constraints are found based on parametric sensitivity analysis. 

The ability of these approaches to finding the active limiting constraints was verified through their 

application to two case studies:  an in-silico (simulated) study describing the growth of E.coli and an 

experimental study for Bordetella pertussis (B.pertussis).  

 Introduction 

Living cells can be described as complex biological systems involving a combination of different 

molecular elements such as proteins, lipids, sugars, and nucleic acids. These species interact with each 

other through biochemical reactions involving different metabolites according to pre-defined metabolic 

networks (Toya, Kono, Arakawa, & Tomita, 2011). Cells use these metabolites for growth and function. 

The fluxes associated with biochemical reactions involving these metabolites are highly dependent on 

                                                      
1 This chapter has been published as the paper: Nikdel, A., & Budman, H. (2016). Identification of 

active constraints in dynamic flux balance analysis. Biotechnol Prog. doi: 

10.1002/btpr.2388 
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environmental conditions. The ability to mathematically describe the changes in the fluxes due to 

different environmental perturbations would allow for systematic understanding and optimization of 

the biological system under study.  

Stoichiometric-based metabolic models are an important group of structured metabolic modeling 

consisting of systems of mass balance equations that are based on stoichiometric relations among 

metabolites. Stoichiometric models generally assume that the intracellular environment is at a quasi-

steady state (Baroukh, Muñoz-Tamayo, Steyer, & Bernard, 2014). Following this assumption, it is 

possible to establish relations between input and output fluxes, but the resulting model is generally 

underdetermined since the degrees of freedom are larger than zero (more fluxes than balanced 

metabolites existed in the metabolic network): 

d = n-k           (5-1) 

where d is the degrees of freedom, n is the number of fluxes and k is the number of constraints.  To 

partially address the under-determinacy it has been proposed to formulate the problem as a 

maximization or minimization of a biologically meaningful objective function subject to constraints. 

This method is referred to as flux balance analysis (Orth et al., 2010; Raman & Chandra, 2009; Sidoli 

et al., 2004). Because most biotechnological processes are transient in nature, dynamic models are 

sought to describe them (Ahn & Antoniewicz, 2012a). Most reported dynamic metabolic models are 

based on dynamic mass balances of dominant metabolites involving kinetic expressions of the 

biochemical reactions involved in the metabolic network. The identification of this type of models is 

normally posed as an optimization problem where the unknown kinetic parameters are sought by 

minimizing the least squared differences between experimental and simulated data (Borchers et al., 

2013; Nolan & Lee, 2011). Since the resulting optimization problems are often non-linear and non-
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convex, finding the global solutions is challenging. Also, with increasing number of kinetic parameters, 

these models are often difficult to calibrate and more sensitive to sensor noise (Moles, Mendes, & 

Banga, 2003). 

An alternative to these extensive dynamic kinetic models is to use the dynamic extension of the FBA 

modeling approach, referred to as dynamic flux balance (DFB), which is the focus of the current study 

and it can be used to calculate the dynamic evolution of the metabolic fluxes. In contrast to the 

aforementioned dynamic models that are based on dynamic mass balances of dominant metabolites, 

DFB does not require extensive kinetic information (Mahadevan et al., 2002; Schuetz et al., 2007). The 

key idea in the DFB approach is to solve the FBA model at discrete sampling intervals where at each 

interval we seek to optimize a biological meaningful objective function subject to certain constraints 

(Budman et al., 2013; Mahadevan et al., 2002). A typical DFB formulation is as follows: 

@ each time interval k  (k=1,…, T)      (5-2) 

     max
vk

𝒄𝑻𝐯𝐤   ( 𝐯𝐤=(𝑣1,𝑣2, … , 𝑣𝑛)k ) 

Subject to: 

𝑔(𝜓𝑘) ≤ |𝐒. 𝐯𝐤| ≤ 𝑓(𝜓𝑘)  

 𝐯k ≥ 0 

Where S is the matrix of stoichiometric coefficients,⁡𝐯k is the vector of fluxes at time k,  𝒄𝑇𝐯k  is an 

expression for a biologically motivated objective function, e.g. growth, ATP consumption etc. that have 

to be maximized or minimized (objective function),⁡𝜓𝑘 represents a concentrations of extracellular 

metabolites and f and g are vector functions of the metabolites concentrations at each time interval that 

could be of Michaelis-Menten or other type.  
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Hence, it is not necessary with this modeling approach to calibrating kinetic expressions for all the 

metabolites of interest but only for a few limiting ones participating as arguments in the functions f and 

g in (5-2) while the evolutions of the other metabolites and the fluxes are determined by stoichiometric 

relations.  

However, the main challenge for calibrating such models is to identify the limiting constraints that will 

result in a good fit of experimental data.  A study by Mahadevan et al (Mahadevan & Schilling, 2003b) 

proposed a method to find upper and lower limits on fluxes at steady state but the application of flux 

models to dynamic situations requires the identification of kinetic constraints that are dependent on 

metabolites’ concentrations. Kinetic and metabolic concentration related constraints are of particular 

importance for non-genome scale based models where gene regulatory limitations are not explicitly 

considered in the model (Bordbar, Monk, King, & Palsson, 2014; Mahadevan & Schilling, 2003a; Reed, 

2012). A simple DFB model reported for E.coli (Mahadevan et al., 2002) showed that few constraints 

such as rate limits on glucose or oxygen consumption can be sufficient to describe the processes under 

study. Since the metabolic networks considered in the previous studies were relatively small, the 

constraints given by functions f and g in (5-2) were mostly identified by trial and error.  

For systems represented by more complex metabolic networks, identifying the limiting constraints by 

trial and error is challenging. For example, a DFB model of a Bordetella pertussis microorganism as 

used in one of the case studies of the current work is described by over 40 reactions. In previous work 

by one of the authors (Budman et al., 2013), a DFB model for Bordetella Pertussis was formulated 

where the necessary limiting constraints to explain the experimental data were found by a trial and error 

based search.  This procedure was computationally expensive and prone to errors since it was found 

that the data could be explained by many combinations involving redundant constraints. Since each of 
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the constraints has to be expressed by the functions f and g in equation (5-2) and these functions 

involved kinetic parameters that must be identified from data, including redundant constraints in the 

DFB model will result in a larger than necessary number of kinetic expressions and parameters thus 

leading to higher sensitivity to measurement noise. In this work, we are presenting and comparing two 

data-based approaches for finding the limiting constraints required for formulating DFB models: one 

based on convex sets and the other is based on parametric sensitivity analysis. 

 Materials and methods: 

Two different approaches are presented and compared: i- a convex set-based approach and ii- a 

parametric sensitivity analysis based approach. 

i. Sets based approach 

The key idea for finding the limiting constraints in the DFB model by this method is to represent the 

data by convex sets. To this purpose, it is assumed that because of measurement error or unmeasured 

disturbances, the metabolite concentrations are bounded by upper and lower limits at each time interval 

for which data is collected. For example, typical set constraints for glucose concentrations for the E-

coli diauxic metabolism with 10% bounds are depicted in Figure 5-1. 
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Figure 5-1. Set constraints for glucose concentrations for the E-coli diauxic metabolism 

(Mahadevan et al., 2002) with 10% wide bound. 

By this representation, the actual value of metabolite concentrations at each time interval is assumed to 

be always contained within these constraints and all the possible data points, bounded by them, are 

referred heretofore as sets. Equivalently the maximal uptake or consumption rates of metabolites can 

be calculated from the upper and lower bounds on metabolite concentrations and can then be added as 

linear constraints in the optimization problem formulated for the DFB model.  

Using this set-based approach the following 3-step procedure is proposed to find a DFB model to 

describe the experimental data: 

Step 1: Find a flux distribution that maximizes the objective function to be chosen for the process, e.g. 

maximization of growth subject to the set based constraints. These constraints can be given in terms of 

upper or lower bounds on concentrations as explained above or as upper and lower limits of uptake rate 

or production rate of external metabolites. Mathematically, the problem is expressed based on (5-2) as 

follows: 
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@ all T intervals  (k=1,…,T)      (5-3) 

     max
𝐯𝐤

𝐜𝐓. 𝐯𝐤  

     Subject to:        

1

∆𝑡.𝑋𝑘
(ѱ𝑘 − ѱ𝑘+1

𝐿 ) ≤ 𝐒. 𝐯𝐤 ≤
1

∆𝑡.𝑋𝑘
(ѱ𝑘 − ѱ𝑘+1

𝑈 )           

 Where matrix S is the stoichiometric coefficients, 𝐯𝐤 = (𝒗𝟏,𝒗𝟐, … , 𝒗𝒏)𝐤 is the vector of fluxes⁡⁡of n 

metabolites at the time interval of k. 𝒄𝑻. 𝐯𝐤 : is the cost to be maximized or minimized (objective 

function),⁡ѱ𝑘 and 𝑋𝑘 are representing measured concentrations of extracellular metabolites and 

biomass at the time of k. The inequality constraint in (5-3) is derived from the discretization of the 

general mass balance equation for metabolites (
𝑑𝝍

𝑑𝑡
= 𝐒𝒗𝑋). The inequality in equation (5-3) is for a 

metabolite being consumed whereas for a metabolite that is being produced, the inequality operators 

have to be inverted. It should be noticed that in both (5-2) and (5-3) the same objective is optimized but 

while in (5-2) the constraints are given as a function of the concentrations through the vector functions 

f and g, in (5-3) these functions are not known a priori and they have to be identified from 

measurements. For that purpose, in (5-3) the constraints are set to measured upper and lower bounds 

on specific rates of consumption/production of metabolites. 

Step 2: Find the key metabolites such that by only imposing kinetic constraints on those metabolites 

the experimental data, represented by convex sets as explained above, can be properly simulated by the 

DFB model.   

For finding the uptake or production rates which are limiting the solution space of the optimization 

problem, at the optimal point, a Lagrange multiplier approach (Bertsimas & Tsitsiklis, 1997) is used. 

The optimization (minimization or maximization) of an objective function as in here f (𝐯𝐤) = ⁡ 𝐜
𝐓𝐯𝐤⁡⁡can 

be formulated as follows: 
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 𝐯𝐤=argmin
𝐯𝐤

𝐜𝐓𝐯𝐤         (5-4a) 

Subject to: 

GLI(𝐯𝐤) ≤ 0         (5-4b) 

GLI(𝐯𝐤) ≤ 0  are the inequality constraints(lower and upper bounds of the production or the uptake rate 

of measured metabolites . The Lagrange multipliers (λ) and Lagrange function (Lagrangian) are defined 

as per the following equation: 

𝐿(𝐯𝐤, λ) = ⁡ 𝐜
𝐓𝐯𝐤 − λ⁡GLI(𝐯𝐤)  

Which is equivalent to the following set of conditions: 

𝜆 ≤ 0           (5-4c) 

GLI(𝐯𝐤) ≤ 0          (5-4d) 

𝜆× GLI(𝐯𝐤) = 0          (5-4e) 

∇𝐯𝐤L(𝐯𝐤, 𝜆) = 0          (5-4f) 

Where GLI(𝐯𝐤) is an inequality constraint, 𝐯𝐤  is the vector of decision variables, 𝐯𝐤 is the optimal 

solution of the fluxes. By solving equations (4c-4f) the value of the Lagrange multipliers (λ) for each 

of the constraints can be calculated. Equation (5-4e) represents the complementarity condition that 

forces either the Lagrange multiplier or the corresponding inequality to be zero. The value of the 

Lagrange multiplier at the optimum is equal to the rate of change in the value of the objective function 

as the constraint is relaxed. A value of zero for λ implies that by relaxing the constraint the value of the 

function which is intended to be maximized does not change and thus, this constraint is not active. In 

contrast, a higher value of the Lagrange multiplier is an indicator that the constraint is active since the 

objective function changes as a result of deviations from the value of that constraint. 
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By identifying the active constraints, it is possible to assess which metabolite’s consumption or 

production rates are limiting constraints at each interval of the solution of the DFB model. 

Step 3- The goal of the final step of this method is finding kinetic expressions as a function of 

metabolites that mathematically describe the active constraints found in step 2. To this purpose, at each 

interval, uptake or production rates of the active constraints are formulated as Michaelis-Menten-type 

or another type of kinetic model as a function of the corresponding concentration of metabolite 

associated to the active constraint: 

dѱm

dt
=

Vm,max.ѱ𝑚

Km+ѱ𝑚
𝑋         (5-5) 

Where here 
𝑑ѱ𝑚

𝑑𝑡
 is the uptake or production rates of a metabolite (active constraints) identified in step 

2 as a function of its concentrations ѱ𝑚⁡at each corresponding time interval and Vm,max, Km⁡ are the 

kinetic parameter values to be identified. The consumption rates or production rates of metabolites are 

assumed in this work to be bounded by a function of the extracellular metabolite concentration (please 

see the last equation in the set of equation 5-3). This is strictly a model assumption that has been 

previously done in other reported metabolic flux models e.g. (Mahadevan et al., 2002). The validity of 

this assumption is assessed by the ability of the model to capture the data. The Lineweaver-Burk and 

Eadie-Hofstee plots are graphical methods that can be used for identifying the constants in (5-5) (Shuler 

& Kargi, 1992) if the kinetics is of Michaelis-Menten type. Using the identified kinetic parameters of 

active metabolic constraints (i.e. uptake or production rate of active constraints), it is possible to 

generate a predictive dynamic metabolic flux model for given initial conditions of the concentrations 

of all metabolites. For the case that Michaelis-Menten kinetics is found unsuitable for representing the 

dependency of the metabolite rate of change with respect to concentration, other nonlinear functions 

are fitted using the lsqcurvefit function in MATLAB. 
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The key numerical advantages of this set-based approach, are: i- step 1 and step 2 involve the solutions 

of a linear programming problems and therefore are simple to compute and ii-step 3 involves separated 

fitting of each metabolite profile as compared to other modelling approaches that require simultaneous 

fitting of all the metabolites by simultaneous calibration of a larger number of model parameters. 

For each of the microorganisms under study, we created the sets of upper and lower bounds of uptake 

and production rates based on measurements of extracellular concentrations of metabolites at two 

consecutive time intervals. 

For the E. coli example in silico data generated with a reported model (Mahadevan & Schilling, 2003b) 

was used for model calibration. The reason for using in silico instead of actual experimental data was 

to test the ability of the proposed methodology to correctly identify the constraints and parameters of 

the model. To generate the in silico data a 10 percent Gaussian random noise was introduced to simulate 

noisy data and used in lieu of experimental data.  

For B. pertussis, two sets of experimental data of metabolite concentrations at regular time intervals 

were available. The available data included amino acids and biomass concentrations at different time 

points. However, we found that the sampling frequency of the experimental data was insufficient for 

generating smooth estimates of the uptake rates bounds. Therefore, we applied a non-linear polynomial 

regression function in MATLAB to interpolate the data and generate smoother estimates of uptake 

rates.  

One of the limitations of this proposed approach is that due to stoichiometric correlations the activation 

of constraints is sensitive to measurement noise. For instance, in the presence of noise, the concentration 

of several metabolites may reach constraint values at the same time. To provide robustness on noise 

related errors we performed the identification of the active constraints as per the 3-step procedure 

described above for progressively smaller sets of values contained within the original convex sets. For 
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example, if the maximum noise levels in the data were ±10% with respect to an average value between 

the upper and lower bound of concentration at each time interval, we performed the identification of 

the limiting constraints for sets with magnitudes of ±10%, ±7%, ±5%, and ±2% of the measurements. 

In case that at a particular time interval different limiting constraints were obtained for different 

assumed noise levels, we selected as limiting constraints the ones that occur most times.    

Finally, for both E.coli and B.Pertussis, as commonly assumed for bacteria (Feist & Palsson, 2010a, 

2010b; Meadows, Karnik, Lam, Forestell, & Snedecor, 2010) we considered the maximization of the 

growth rate as the objective function for the DFB model. The linear programs defined in this section 

were solved using the cplexlp solver (‘interior-point’ algorithm) of IBM ILOG CPLEX for 

MATLAB Toolbox. 

ii- Parametric sensitivity analysis based approach  

We adopted the idea of bi-level optimization that previously was used by Burgard et al. (Burgard & 

Maranas, 2003) for finding the objective function in FBA models and Raghunathan et al. (Arvind U. 

Raghunathan, PÉRez-Correa, Agosin, & Biegler, 2006; A. U. Raghunathan, Perez-Correa, & Biegler, 

2003) for parameter estimation in FBA for a parametric sensitivity analysis based approach as a 

comparison to our proposed set-based approach. 

The idea behind this approach is to calculate the sensitivity of a function describing the level of fit 

between data and model predictions on different possible kinetic constraints. Then, the degree by which 

the constraint affects the quality of fit function is used as an indicator for whether the specific constraint 

should be considered or ignored in the DFB model. To assess the sensitivity,  ±10⁡%⁡ changes were 

introduced in the uptake or production rates of external metabolites with respect to a set of nominal 

values calculated in a bi-level optimization problem as explained below (Model of (Mahadevan et al., 

2002). Then, the effects of the deviations from these nominal parameter values on the sum of squared 
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errors (SSE) of predicted metabolites concentrations were calculated and compared. All possible 

combinations of constraints on the different metabolites were tested for parametric sensitivity.  

The uptake and production rates were initially assumed to be described by Michaelis-Menten type 

kinetics as a function of the concentration of the metabolite (m) being produced or consumed as in 

equation (5-5). 

The sensitivity of the SSE was calculated with respect to deviations of the maximum uptake or 

production rate of a metabolite from its nominal value, i.e. changes in the coefficient of the numerators 

of the Michaelis-Menten expressions in equation (5-5) on their nominal values calculated in an outer 

optimization level. 

A key challenge for the application of this method is to find the nominal values of the parameters to be 

used in the Michaelis-Menten expressions describing the uptake and consumption rates.  

The nominal parameters’ values for calculating the sensitivities were obtained from the following bi-

level optimization problem: 

Min
𝑉𝑚1,𝑚𝑎𝑥,..,𝑉𝑚𝑁,𝑚𝑎𝑥,𝐾𝑚1,…,𝐾𝑚𝑁

SSE=∑ ((
ѱ𝑚1𝑘

−ѱ𝑚1𝑘
𝑒

ѱ𝑚1𝑘
𝑒̅̅ ̅̅ ̅̅ ̅̅ )2 +⋯+ (

ѱ𝑚𝑁𝑘
−ѱ𝑚𝑁𝑘

𝑒

ѱ𝑚𝑁𝑘
𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅ )2)𝑇

𝑘=1   (5-6) 

s.t: 

    @ each T interval 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡max
vk

𝐜𝐓. 𝐯𝐤 

s.t:        

|
⁡⁡
⁡𝐒
𝐦𝐢 . 𝐯𝐤| ≤

Vmi,max.ѱ𝑚𝑖,𝑘

Kmi
+ѱ𝑚𝑖,𝑘

  
mmol

gdw.hr
   (i=1, 2,…, N)  N: total number of metabolites 

Where, ѱ𝑚𝑁𝑘

𝑒̅̅ ̅̅ ̅̅ ̅ is the mean value of the concentration of metabolite i at time interval k. The division by 

the average was done for the purpose of normalization of each metabolite with respect to the others. In 
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this bi-level or nested optimization problem, the inner optimization problem solves the DFB model by 

maximizing (or minimizing) the objective function subject to kinetic constraints. The parameters 

defining the kinetic constraints (Michaelis-Menten expressions) are calculated from the outer 

optimization problem in which the sum of square error (SSE) between model predictions and 

experimental data of metabolites are minimized. This bi-level optimization problem is solved in 

MATLAB. A linear programming algorithm was used to solve the inner level using an ‘interior–point’ 

algorithm implemented by the MATLAB function linprog function. The nonlinear upper level 

optimization problem was solved using the fmincon function. Due to the nonlinearity of the 

optimization problem involving a quadratic objective and nonlinear constraints, we found that the 

results are highly dependent on the initial guesses. Thus, to avoid local optimal solutions, we conducted 

a global search over a large range of initial guesses using the globalsearch function in the MATLAB 

Global Optimization Toolbox. 

An additional obvious difficulty with the parametric sensitivity approach based on the solution of the 

bi-level optimization (5-6) is that initially the consumption rates and production rates of all metabolites 

must be assumed to be limiting thus requiring the calibration of many nominal parameters’ values. 

Although some of these constraints were found ultimately to be redundant and eliminated following 

the parametric sensitivity analysis, the required initial search of nominal values partially neutralizes the 

key advantage of DFB models, which aim to describe the system with few constraints. Also, all 

combinations of constraints have to be tested to eliminate redundant constraints. Accordingly, the 

parametric sensitivity approach is impractical for problems involving many metabolites. For that 

reason, it is applied in this work only for the E.coli case study that involves four reactions but it is not 

pursued in the B. pertussis system that involves over 40 metabolites. 
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 Results and discussion 

To verify the two approaches presented above, we consider two case studies for two different 

microorganisms: E. coli and B. pertussis (Budman et al., 2013; Mahadevan et al., 2002). The set-based 

approach was applied to both, whereas the parametric sensitivity approach was only applied for E.coli 

for the purpose of comparison with the set-based technique. 

For the E.coli model, we considered three extracellular metabolites present in the network: glucose, 

acetate and oxygen as potential limiting constraints and for B.Pertussis we considered 16 external 

metabolites as possible active constraints: alanine, arginine, aspartate, glutamate, glycine, histidine, 

isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine, and valine.  

The E.coli case study was an easy tool to verify the correctness of the methods since the solution was 

known a priori. The model was used to generate in silico data that was artificially corrupted by noise 

to simulate actual data. Then, we check whether the original DFB model of E-coli proposed in 

(Mahadevan et al., 2002) could be recovered based on the simulated data with noise. For the B. pertussis 

case study, actual experimental data and a preliminary DFB model were available (Budman et al., 

2013). However, the latter model was previously calibrated by trial and error as reported in (Budman 

et al., 2013) and thus it was not known a priori whether the assumed limiting constraints for that 

preliminary model were the best ones for fitting the available data. Accordingly, the set-based 

methodology was used to produce a better model that resulted in improved fitting between data and 

predictions as compared to the previously reported model. 
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 Case study 1: E.coli 

 Set based approach 

The model assumes four species: glucose, acetate, oxygen, and biomass. The stoichiometric matrix for 

the problem is given in Appendix A.  Glucose and oxygen are consumed throughout the batch culture 

while acetate is first produced and it is only consumed after glucose is depleted. Initially, a total of three 

candidate constraints were considered for glucose, acetate, and oxygen.  

In order to provide robustness to noise, as explained in the previous section, the identification of the 

active constraints was done for different levels of noise in the measurements, i.e. for ±2%, ±5%, ±7% 

and ±10% with respect to the average value of the upper and lower bound at each point. By comparing 

the Lagrange multipliers for all the possible constraints, i.e. glucose, acetate and oxygen, during the 

first two hours of the culture only oxygen transfer was found to be a limiting constraint until time=4.2 

hours at which time glucose became the dominant constraint and, towards the end of the batch, oxygen 

again became an active constraint. By the end of the culture, only for the ±10% noise level, acetate was 

also identified as an active constraint for a few time intervals but for all other levels of noise, it was 

identified that only glucose and oxygen remain as the active constraints while the acetate constraint 

remains inactive. 

Since the dependency of the identified limiting rate in glucose with respect to the corresponding glucose 

concentrations appear to be of Michaelis-Menten type the kinetic expressions were obtained using the 

Lineweaver-Burk and Eadie-Hofstee plots. Lineweaver-Burk, a plot of 
1

𝑉
 versus⁡

1

ѱ
  (Figure 5-2), was 

used for finding V𝑚𝑎𝑥. To find 𝐾𝑚 we used the Eadie-Hofstee plot, a plot of V versus 
𝑉

[ѱ]
 (Figure 5-3) 

in which⁡𝐾𝑚 is the slope of this plot. Confidence intervals for the parameters were calculated for the 
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bounds on data corresponding to the maximal level of noise of ±10% error in metabolic data and were 

as follows:⁡𝑉𝑚𝑎𝑥= [10.6, 10.7] and 𝐾𝑚= [0.0123, 0.0195]. The constraint on oxygen rate was found to 

be constant and equal to OUR=13.5 

 

 

Figure 5-2 Lineweaver-Burk plot for determining⁡𝑽𝒎. Blue line is plot without noise in the data, 

red and black lines are the plot with ±10 noise in the data 
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Figure 5-3 Eadie -Hofstee plot for determining Km. Blue line is plot without noise in the data, 

red and green lines are the plot with ±10 noise in the data 

The two constraints in glucose and oxygen were found to be sufficient for building a DFB model that 

was able to explain the experimental data. This coincides with the constraints that were considered in 

the original model used to generate the in silico data thus demonstrating that the method identified the 

correct constraints. The identified parameters are also very similar to the ones used in the original model 

(Vm= 10 and Km=0.015). The model with the identified kinetics was used to simulate a batch as shown 

in Figure 4, which is in agreement with the model results shown in (Mahadevan et al., 2002). It should 

be noticed that in this process, glucose is preferentially used until it is completely depleted at 7.5 hours. 

Subsequently acetate is used as nutrient until it is completely depleted at time=10 hours. As illustrated 

in Figure 5-4, the consumption of oxygen during the glucose consumption period is considerably higher 
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comparing to the period during which acetate is consumed which is expected from the stoichiometric 

relations among the metabolites. 

 

Figure 5-4 Metabolic concentration profiles resulted from the DFB model for E.coli; red is the 

original model and blue is the one that resulted by introducing the noise 
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 Parametric sensitivity analysis approach for E.coli 

Following the general formulation given in (5-6) the nominal parameters values were solved from the 

following bi-level optimization problem: 

min
𝑉𝐺𝑙𝑢,𝑚𝑎𝑥,𝐾𝐺𝑙𝑢,𝑉𝐴𝑐𝑒,𝑚𝑎𝑥 ,𝐾𝐴𝑐𝑒

SSE=∑ ((
ѱ𝐴𝑐𝑒𝑘−ѱ𝐴𝑐𝑒𝑘

𝑒

ѱ𝐴𝑐𝑒𝑘
𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅ )2 + (

ѱ𝐺𝑙𝑐𝑘−ѱ𝐺𝑙𝑐𝑘
𝑒

ѱ𝐺𝑙𝑐𝑘
𝑒̅̅ ̅̅ ̅̅ ̅̅ )2 + (

ѱ𝑋𝑘−ѱ𝑋𝑘
𝑒

ѱ𝑋𝑘
𝑒̅̅ ̅̅ ̅̅ )2 +𝑇

𝑘=1

(
ѱ𝑂2𝑘

−ѱ𝑂2𝑘
𝑒

ѱ𝑂2𝑘
𝑒̅̅ ̅̅ ̅̅ ̅̅ )2)          (5-7) 

Subject to: 

    @ All T intervals 

⁡max
v

cT. v 

⁡|𝐒𝐆𝐥𝐜. 𝐯𝐤| ≤
VGlc,max.ѱ𝐺𝑙𝑐,𝑘

KGlc + ѱ𝐺𝑙𝑐,𝑘

𝑚𝑚𝑜𝑙

𝑔𝑑𝑤. ℎ𝑟
 

⁡|𝐒𝐀𝐜. 𝐯𝐤| ≤
VAc,max.ѱAc,k

KAc + ѱAc,k

𝑚𝑚𝑜𝑙

𝑔𝑑𝑤. ℎ𝑟
 

 |
⁡⁡⁡⁡
𝐒
𝑶𝟐 . 𝐯𝐤| ≤ 𝑂𝑈𝑅⁡

𝑚𝑚𝑜𝑙

𝑔𝑑𝑤.ℎ𝑟
 

The nominal parameters’ values are listed in Table 5-1 and resulted in a minimal sum of square errors 

of SSE=94.63. These parameters are identical to the original parameter values used in Mahadevan et 

al. (Mahadevan et al., 2002). Although the acetate related constraint is not present in the original 

mathematical model, it was initially assumed to be non-zero with the intention to test whether the 

parametric sensitivity analysis proposed here shows it to be a redundant constraint.  
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Table 5-1 Estimated kinetic parameters for E.coli model 

Parameter Value 

𝑉𝐺𝑙𝑐,𝑚𝑎𝑥 10 

𝐾𝐺𝑙𝑐 0.02 

OUR 15 

𝑉𝐴𝑐,𝑚𝑎𝑥 0.1 

𝐾𝐴𝑐 2.2 

 

As depicted in Figure 5-1, for glucose, either 10% increases or decreases in the glucose uptake 

constraint caused a sharp increase in the value of SSE around the minimal value i.e. VGlc,max=10. This 

indicates that the glucose uptake rate is an active constraint around that nominal value of the kinetic 

parameter. Then, it was found that a 10 % decrease in the oxygen uptake rate (OUR) around the value 

of OUR=15, increased the SSE from 94.6 to 121.94 (Figure 5-6), but increasing the oxygen uptake rate 

did not affect the SSE. Similarly, it was observed that a 10% decrease in VAc,max from a nominal value 

of 2.2, resulted in an increase in the SSE from 94.6 to 101.86 (Figure 5-7). On the other hand a 10% 

increase in 𝑉𝐴𝑐,𝑚𝑎𝑥⁡ did not affect the SSE indicating that beyond this value its impact on the SSE is 

null. When only a glucose constraint was used the SSE increased to 206.13. On the other hand, when 

constraints on both glucose and acetate were used without a constraint on oxygen the SSE was 95 

slightly higher than the value of SSE obtained when using glucose and oxygen together which resulted 

in an SSE = 94.69. Therefore, it was concluded that the acetate constraint is redundant because it cannot 

be used to further reduce the SSE as compared to the use of a glucose and oxygen constraints. 
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Figure 5-5 parametric sensitivity analysis of glucose kinetics. With perturbation in 𝑽𝒎𝒂𝒙 of 

glucose around the estimated value, SSE increases sharply. 

 

Figure 5-6. Parametric sensitivity analysis of acetate kinetics. Perturbation in 𝑽𝒎𝒂𝒙 of acetate 

around the estimated value does not have a big impact on the SSE value. 
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Figure 5-7 parametric sensitivity analysis for oxygen uptake rate.  

In summary, it is evident that both the set-based and parametric sensitivity approaches are successful 

in identifying the limiting constraints for this relatively simple model of E.coli comprising only four 

reactions. However, this case study clearly illustrated that the parametric sensitivity approach is 

numerically more complex for two main reasons: i- It requires a priori calculation of nominal values 

for the parameters from a nonlinear bi-level optimization problem and ii- It requires testing different 

combinations of constraints and their effect on the value of the SSE. This numerical complexity is of 

particular importance when trying to solve problems of much higher dimensions, i.e. a large number of 

metabolites, than the E.coli case such as the second case study presented below. Furthermore, for 

simplicity, the parametric sensitivity analysis that was used in this work was local in nature thus 

correlations among parameters were ignored. Global sensitivity analysis is possible (Rand, 2008) but it 

will further increase the numerical complexity of the parametric sensitivity approach. 
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An additional significant advantage of the set-based method is that the kinetic parameters involved in 

each constraint are identified separately using data related to the metabolite involved in the specific 

constraint whereas in the parametric sensitivity method the parameters of all the constraints must be 

identified together by solving a bi-level optimization. 

 Case study 2: Bordetella pertussis  

Bordetella Pertussis is a gram-negative bacteria causing the whooping cough disease (Thalen et al., 

2006). A metabolic network of Pertussis has been previously proposed by one of the authors (Budman 

et al., 2013). The model involves 47 metabolites with 49 reactions as listed in Appendix B. The system 

under study was operated in batch mode during the exponential growth phase followed by fed-batch 

operation after the main nutrient, glutamate, was depleted. The feeding of glutamate during the fed-

batch phase occurred at a rate 4.3 g/h. Replicated data for 16 amino acids was available at the times of 

0, 6, 24, 29, 31.1, 32, 34, 48.3, 51.9 and 55.6 hours.  

The application of the parametric sensitivity based approach for this case involving 49 reactions was 

found to be very challenging since it required the solution of a bi-level non-convex optimization 

problem with multiple parameters if the uptake/consumption rates of all the measured metabolites 

would be initially assumed as potential limiting constraints. Therefore, only the set based method was 

investigated for this case study. 

In the set-based approach applied for B. pertussis, first, all of the 16 measured external metabolites 

were considered as potential active constraints. Following the application of the three-step set based 

approach, the Lagrange multipliers had higher values for phenylalanine uptake rate, compared to the 

multipliers associated with the other metabolites. However, through the end of culture (greater than 45 

hrs), some other Lagrange multipliers related to alanine, serine, leucine, lysine, isoleucine threonine, 
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proline, valine, aspartate at their higher bound of uptake rate (which correlates to their production rate) 

are becoming important. Hence, we limited the production rate of these metabolites by imposing a zero 

production rate constraint.    

Based on the dependency of uptake rates of phenylalanine and histidine as a function of its 

concentration identified in step 2 of the method and shown in Figure 5-8 and Figure 5-9, it appeared 

that the consumption of phenylalanine could not be described by a Michaelis-Menten type kinetics. 

Instead, the uptake rate of this metabolite seems to follow an exponential type of dependency between 

the uptake rate and the corresponding concentration. It should be remembered that the kinetic constraint 

on the consumption/production rates of metabolites may describe a combination of different reactions 

thus explaining a kinetic model that is not of Michaelis-Menten type. It seems that saturation will occur 

at some higher concentration of the metabolites. We used MATLAB lsqcurvefit function to fit a Hill 

function as follows. We have shown a possible saturation behavior of the curve with a dashed line in 

Figure 5-8. 

rPhe =
0.0066ѱ𝑃ℎ𝑒

3.2

0.0223.2+ѱ𝑃ℎ𝑒
3.2         (5-8) 
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Figure 5-8 Phenylalanine kinetic curve. Data points is based on the nonlinear regression on the 

experimental data 

To verify the need for all the constraints, identified by the Lagrange multipliers solution, we 

investigated two models: i- a model that uses only a constraint on the uptake rate of phenylalanine. ii- 

a model that uses phenylalanine constraint together with maximal zero production rates of alanine, 

serine, leucine, lysine, isoleucine threonine, proline, valine, aspartate. When only phenylalanine and 

was considered as the only active constraint although the resulting model was able to describe most of 

the experimental data, alanine, serine, leucine, lysine, isoleucine, threonine, proline, valine, aspartate 

were slightly overestimated. On the other hand, the second model with the mentioned zero production 

rates’ constraints on metabolites above could describe the experimental data with very good fitting 

accuracy (SSE=8.84) between the model predictions and the experimental data. Chapman et al. 

(Chapman, Paget, Johnson, & Schwartz, 2016) also have mentioned the possible necessity of such 

constraints. The metabolic profiles resulted from this new DFB model is shown in Figure 5-9. For 
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confidential purposes, the data shown in this figure is normalized based on the glutamate concentration 

at time=0 of the batch. It is noteworthy that this model showed better fitting of the experimental data 

(SSE=8.84) as compared to the SSE=15.42 obtained with the earlier model reported by Budman et al. 

(Budman et al., 2013) where the necessary rate limiting constraints were obtained by trial and error. In 

order to gain an understanding for the reason that a kinetic constraint based on phenylalanine is needed 

to improve the fit between data and predictions, we conducted the model simulation with all the 

maximum consumption/production rates but without the kinetic constraint (phenylalanine). The result 

of this simulation is that most amino acids were depleted much earlier, at about 25 hours from the 

beginning of the batch instead of 31 hours as obtained with the phenylalanine constraint and as observed 

in the data. For example, the glutamate evolution without the kinetic constraints is shown in Figure 5-

10 and compared to data. In fact, the discrepancies observed between the data and model without the 

phenylalanine constraint were solely observed at lower concentrations of amino acids but the difference 

in the sum of square errors is very significant, SSE=252 without phenylalanine constraint versus 

SSE=8.84 with phenylalanine constraint. The need for the kinetic constraints to describe the evolution 

of metabolites at lower concentrations values is related to the fact that amino acids are strongly 

correlated with the biomass formation equation. This correlation is because all the amino acids 

contribute to biomass and from the fact that the mass balances of metabolites are calculated from 

specific consumption/production rates multiplied by the biomass concentration. Phenylalanine, cannot 

be biosynthesized according to the metabolic network and thus the depletion of phenylalanine 

determines the stoppage of biomass growth thus affecting all other amino acids at low concentration 

values. Only a few amino acids that contribute to biomass cannot be produced: phenylalanine, histidine 

and methionine and phenylalanine have the largest share in the biomass composition among these three. 

It is not surprising that other amino acids that can be synthesized, such as glutamate or proline, are not 
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limiting constraints since their depletion does not necessarily result in stoppage of growth as it is the 

case with phenylalanine.  

Furthermore, to show the correctness of the model regarding biomass formation, biomass as a 

function of time obtained with the model is given in Figure 5-11 showing good agreement with 

data (circles in the figure). It should be noted that biomass was not used for calibration of the model.  

Sources of remaining errors between data and model predictions are HPLC measurement error, 

possible inaccuracy of the metabolic network and inaccuracy of the biomass equation (see (Budman 

et al., 2013), for how the biomass equation was formulated based on protein/lipids/nucleotides 

estimated split and elemental analysis of biomass). Also, it should be remembered that the biomass 

composition may change along with time (Dikicioglu, Kirdar, & Oliver, 2015). 
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Figure 5-9 DFB model of B. pertussis in Fed-Batch mode. Blue circles are the experimental data 

and red line is the model simulation  

 



 

91 

 

 

Figure 5-10 Glutamate concentration evolution (without the use of kinetic constraints). As it 

shows without the use of kinetic constraints, the model is not able to predict the glutamate 

properly especially after the first day of the experiment 
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Figure 5-11 Evolution of biomass by time. Circles are experimental data and line is model 

prediction. 
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 Conclusions 

We presented two approaches for identifying limiting constraints required for the formulation of DFB 

models. Both methods were successful in identifying the same set of limiting constraints to describe 

the simulated and experimental data. However, the parametric sensitivity analysis based approach was 

found computationally challenging for identifying limiting constraints for the B. pertussis culture, 

which involved a large number of reactions.  

The parametric sensitivity analysis exhibit two main computational challenges: i- it required the initial 

calculation of nominal parameters values from a non-convex bi-linear optimization and ii-requires 

testing the effect of all combinations of possible constraints on the value of the sum of square errors 

between measurements and predictions. Therefore it was concluded that the approach is not practical 

for large metabolic networks such as the B. pertussis system considered in the second case study.  The 

calculations in the set-based approach are significantly simplified by assuming the data to lie within 

sets. This method is numerically advantageous since it involves the solution of LP problems and also 

finding of the kinetic expressions describing the constraints, can be done one at a time. Beyond its use 

for the formulation of the DFB models, the knowledge about the limiting constraints could also be used 

in the future for targeted genetic manipulations of the organisms under study. 
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Chapter 6 

A Systematic Approach for Finding the Objective Function and 

active constraints for Dynamic Flux Balance Analysis 

2Dynamic flux balance analysis (DFBA) has become an instrumental modeling tool for describing the 

dynamic behavior of bioprocesses. DFBA involves the maximization of a biologically meaningful 

objective subject to kinetic constraints on the rate of consumption/production of metabolites. In this 

chapter, we propose a systematic data-based approach for finding both the biological objective function 

and a minimum set of active constraints necessary for matching the model predictions to the 

experimental data. The proposed algorithm accounts for the errors in the experiments and eliminates 

the need for ad-hoc choices of objective function and constraints as done in previous studies. The 

method is illustrated for two cases: (i) for in silico (simulated) data generated by a mathematical model 

for E. coli and (ii) for actual experimental data collected from the batch fermentation of Bordetella 

pertussis (whooping cough).  

 Introduction 

Cell metabolism is generally described by a complex network of biochemical reactions involving 

different metabolites interacting with each other (Schilling, Edwards, Letscher, & Palsson, 2000; 

Schilling, Letscher, & Palsson, 2000). Different levels of cellular control orchestrate the evolution of 

                                                      
2 This chapter has been published as the paper: Nikdel, A., Braatz, R. D., & Budman, H. M. 

(2018). A systematic approach for finding the objective function and active constraints for 

dynamic flux balance analysis. Bioprocess Biosyst Eng. doi: 10.1007/s00449-018-1899-y 
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these reactions within kinetic or thermodynamic constraints. Systems biology elucidates the 

combinatorial role of different level of interaction between the reactions inside the cell as a system and 

its response to the changes in the surrounding environment of the cell (Jaqaman & Danuser, 2006). This 

systematic understanding is instrumental for optimizing the growth and productivity of existing cell 

lines or for designing new cell lines. 

Various metabolic models have been presented for an understanding of biological systems, including 

constraint-based flux balance analysis (FBA) as an important category of metabolic models. FBA 

models are used to describe the fluxes at steady state based on the optimality assumption of evolutionary 

biology whereby cells are using resources optimally to maximize or minimize a specific objective 

function in order to survive (Orth et al., 2010). 

Since most of the biological processes are dynamic in their nature, e.g. batch operations, models that 

represent these processes during transients are sought. Dynamic flux balance analysis (DFBA) is the 

dynamic extension of flux balance analysis (FBA) models to have the ability to estimate the 

metabolites’ concentrations over time (Foguet et al., 2016; Llaneras, Sala, & Picó, 2012).  

Models of dynamic biological systems have traditionally consisted of systems of differential equations, 

each describing a dynamic balance of a main nutrient or important byproduct that is being consumed 

or produced generally following Michaelis-Menten reaction kinetics. These models have been often 

found lacking since they involve a large number of kinetic parameters that need to be calibrated to fit 

the experimental data. Being based on an optimization with few limiting constraints, DFBA models are 

advantageous over these traditional dynamic models because they typically required a smaller number 

of calibration parameters (Mahadevan et al., 2002; Varma & Palsson, 1995). 
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Typically, DFBA models involve the solution at each time interval k of the optimization: 

max
𝒗𝒌

𝒄T𝒗𝒌,          (6-1) 

Subject to: 

𝒈(ѱ𝒌) ≤ |𝑺𝒗𝒌| ≤ 𝒇(ѱ𝒌) 

𝒗𝒌 ≥ 𝟎 

ѱ𝒌⁡ ≥ 0 

where S is the stoichiometric matrix, 𝒗𝒌 = (𝑣1, … , 𝑣𝑛)𝑘 is a vector of fluxes (moles/hr·mole of 

biomass) at time instance 𝑘, 𝑛 is the number of reactions, and the biological objective function is 

expressed as a specific linear combination of fluxes, 𝒄T𝒗𝒌. This objective function is generally related 

to a biological variable that is representative of the overall evolution of the culture such as growth rate, 

ATP production, etc. The constraints given by functions 𝒇 and 𝒈 that are dependent on specific 

metabolites’ concentrations at time k ѱ𝑘 are describing kinetic limitations associated to the 

consumption or production of these metabolites. 

Thus, the formulation of a DFBA model involves the choice of two main elements: 

1) A biological meaningful objective function 

2) A set of limiting constraints 

The stoichiometric matrix (S), generally available from public sources such as the KEGG (Kyoto 

Encyclopedia of Genes and Genomes), describes the metabolic reactions among species for any 

microorganism of interest. The idea behind the use of the constraints in this model is that only a few 

key metabolites are limiting in terms of their rate of consumption or production whereas all other 
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metabolites will follow the dynamic behavior of the limiting metabolites based on static stoichiometric 

relations among all metabolites. 

The formulation of the model as a constrained optimization is based on the assumption that cells have 

evolved through time to act as optimizers that allocate their resources through maximizing/minimizing 

an objective function subject to some kinetic constraints.  

The choice of a biological meaningful objective function (Sanchez & Saez, 2014) is of key importance 

for formulating an accurate DFBA that will not require a large number of associated constraints and 

calibrating parameters. The choice of the objective function has been reported to greatly impact the 

model prediction accuracy (Sanchez & Saez, 2014). 

Common objective functions used in previous studies, mainly for bacterial systems, are the 

maximization of growth rate or final biomass at the end of a batch (Orth et al., 2010). However, several 

other objective functions were found, by trial and error, to more accurately predict the system behavior 

such as minimization of the production rate of redox potential, minimization of ATP production rate, 

maximization of ATP production rate, maximization and minimization of nutrient uptake rate, 

maximization of biomass yield per unit flux, maximization of ATP yield (maximal energy efficiency), 

minimization of the overall intracellular flux, maximization of ATP yield per flux unit (maximizing 

ATP yield while minimizing enzyme usage), maximization of biomass yield per flux unit (maximizing 

biomass yield while minimizing enzyme usage), minimization of glucose consumption (more efficient 

usage of substrate), and minimization of reaction steps (minimization of the number of reaction steps 

for cell growth) (Knorr, Jain, & Srivastava, 2007; Pramanik & Keasling, 1997; Sanchez & Saez, 2014; 

Schuetz et al., 2007). Furthermore, it has been suggested that the objective function that rules the cell 

behavior may be a nonlinear combination of different specific objectives such as redox minimization, 
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growth maximization, or ATP production (Burgard & Maranas, 2003) rather than a linear combination 

as used in earlier DFBA models. 

In terms of the choice of a suitable objective function, mammalian cells might accomplish different 

functionalities during the course of the fermentation comparing to bacteria. For example, a previous 

study on hybridoma cell central metabolism (Burgard & Maranas, 2003) studied the three choices of 

objective function: 1) minimizing ATP production, 2) minimizing total nutrient uptake, and 3) 

minimizing redox metabolism through minimizing NADH production. That study concluded that, while 

no single objective could solely rule the cell behavior, minimizing the NADH production can better 

describe the typical characteristic behavior of hybridoma cells such as their inefficient use of nutrients. 

This inefficient use of resources translates into higher rates of consumption of glutamine and production 

of alanine (Savinell & Palsson, 1992). 

Some methods have been proposed for systematically finding the biological objective function. For 

example, an approach referred to as ObjFind has been reported (Knorr et al., 2007; Schuetz et al., 2007) 

that is based on the minimization of the sum of squared errors between identified fluxes from 

experimental and simulated data. A drawback of this method is that it involves a non-convex 

constrained optimization for which local optima are possible (Burgard & Maranas, 2003; Knorr et al., 

2007). Furthermore, the location of these multiple optima will be sensitive to the choice of limiting 

constraints. 

Knorr et al. (Knorr et al., 2007) developed a Bayesian-based method for selecting the most suitable 

objective function for E. coli growing on succinate and producing acetate. Among 5 possible objective 

functions, the minimization of the production rate of redox potential resulted in a better model in terms 

of its ability to fit the data, and was the only objective function capable of prediction of the acetate 

production by the cells. 
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The Biological Objective Solution Search (BOSS) method is an additional reported bi-level 

optimization algorithm for inference of the objective function that does not require assumptions of 

candidate objectives (Gianchandani, Oberhardt, Burgard, Maranas, & Papin, 2008; Mahadevan et al., 

2002). However, this method was found to lead to overfitting of experimental data and to the finding 

of objective functions that do not have a particular biological meaning but are rather a particular 

combination of certain metabolic fluxes. Furthermore, the resulting bi-level optimization is non-convex 

and computationally expensive (Gianchandani et al., 2008; Sanchez & Saez, 2014). 

FBA models are often referred as being “constraint-based” since they rely on biological constraints that 

represent the limited ability of the cell to consume certain nutrients or produce certain byproducts 

(Llaneras & Picó, 2008). These constraints can be categorized into two groups: non-adjustable and 

adjustable. Non-adjustable constraints such as stoichiometric constraints, enzyme, and transporter 

capacities are time independent and describe intrinsic characteristics of the cells under consideration. 

On the other hand, kinetic and regulatory constraints may change as a function of environmental 

conditions and therefore are reasonable to adjust in order to match the model predictions to the 

experimental observations (Llaneras & Picó, 2008).  

In an earlier work by the authors (Nikdel & Budman, 2016), the limiting constraints were found by 

inspecting the values of the Lagrange multipliers and assessing from them whether particular 

constraints are active or inactive at the solution. The disadvantage of that approach is that we had to 

decide on threshold values for the Lagrange multipliers as these values could not be systematically 

related to actual uncertainty/noise in the measurements.  

An additional challenge in our earlier study was related to multiplicity of solutions that is also common 

in FBA models due to a large number of reactions that are considered versus the limited number of 

measured variables that are used to constrain the problem. In the literature, the addition of both ad-hoc 
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chosen capacity constraints and/or thermodynamic constraints have been proposed to limit the solution 

space (Maranas, Zomorrodi, & Wiley Online Library, 2016). In our previous work, it was necessary to 

choose by trial and error a set of loose constraints to limit the solution space to address multiplicity. 

In this work, we propose a novel optimization-based algorithm to systematically and simultaneously 

identify both the limiting adjustable constraints (that is, an additional set of constraints to limit the 

solution space) and the biological objective function. For the limiting constraints, the objective is to 

identify the metabolites for which a change in their uptake or production rates significantly affects the 

value of the objective function and as a result on the estimated flux values. Constraints that are used to 

limit the solution space are also systematically identified from the proposed optimization. The 

significance of all the constraints is directly related in this work to measurement error. For the objective 

function, we investigate various probable objective functions by considering them simultaneously 

within the proposed optimization to find the solution of this problem that results in the best fit for 

describing the data. Then, after identifying the necessary constraints and biological objective function, 

a predictive model is formulated where the identified constraints are related to the corresponding 

metabolite concentrations and the future metabolite concentrations can be predicted using the fluxes 

resulting from the optimization into dynamic mass balances of all metabolites. 

This chapter is organized as follows. Section 6.2.1 presents the mathematical algorithm for identifying 

the limiting constraints and objective function, and Section 6.2.2 formulates a predictive model of 

metabolites based on the identified objective function and constraints. Section 6.3 presents 

experimental methods used to collect data for the B. pertussis case study and how to generate the in 

silico data used for the E. coli study. Section 6.4 presents the Results followed by Conclusions in 

Section 6.5.  
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 Theoretical and Experimental Methods 

The development of the DFBA model in this study involves two steps:  

1) An identification algorithm of limiting constraints and the biological objective function 

2) The development of a predictive DFBA model based on the identified constraints and 

biological objective function. 

These two steps are discussed separately below.  

 Identification algorithm 

The proposed identification algorithm was formulated to meet 3 main goals: 

1) Formulate the identification problem as a single-level optimization. 

2) Find limiting constraints such as the level of fit that can be directly related to the measurement 

error. 

3) Integrate into the algorithm a search for a biologically motivated objective function that results 

in best fit between data and model predictions. 

Regarding Goal 1, as mentioned in the Introduction, some approaches that were proposed for 

identifying DFBA models are based on bi-level optimization formulations which can be numerically 

challenging due to the existence of local minima. This problem is especially important for the objective 

of simultaneously identifying the objective function and the set of limiting constraints. Bi-level 

formulations derive from the need to minimize some measure of the quality of fit of model predictions 

and experiments while maximizing a biological objective as required in DFBA formulations as shown 

in equation (6-1). The measure of the fit, e.g. the sum of squared errors, is calculated with the input 
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data which generally consist of the concentrations of extracellular metabolites at different time 

intervals. To avoid a bi-level formulation, a key idea for the approach proposed in the current study is 

that the data (concentrations of extracellular metabolites) are represented by convex sets whereby, at 

each time interval, data points are limited by upper and lower bounds. For example, Figure 6-1 shows 

the evolution of glucose concentration during a batch where at each time interval the glucose level lies 

between an upper and lower limit.  

The use of convex sets to represent biological experimental data has been recently reported in several 

studies dealing with identification of biological models (Borchers et al., 2013; Nikdel & Budman, 

2016). In this approach, the experimental data within the convex set is generally assigned the same 

probability to occur. Experimental data in biological experiments are highly variable due to 

measurement noise or lack of exact repeatability due to unmeasured disturbances such as variability in 

initial conditions. Then, if the number of experimental repeats is not large, it is reasonable to ascribe 

the same probability to the values contained between the bounds at each time interval as shown in 

Figure 6-1. 
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Figure 6-1 Convex set constraints for glucose concentrations of E. coli diauxic metabolism with 

10% error bound 

Since the convex sets can be formulated as inequality constraints within an optimization, there is no 

need in our proposed approach to use a dedicated optimization level for minimizing the errors in fitting 

between data and model predictions. Hence, by using set constraints, a bi-level optimization 

formulation is avoided. 

The key idea for finding the limiting constraints in the DFB model by this method is to represent the 

data by convex sets. To this purpose, it is assumed that because of measurement error or unmeasured 

disturbances, the metabolite concentrate-actions are bounded by upper and lower limits at each time 

interval for which data is collected. For example, typical set regarding Goal 2, to identify a model that 

is robust with respect to uncertainty in measurements, the key idea is to perform an optimization with 

respect to two different sets of fluxes: one set of fluxes (⁡𝑱𝑻) that satisfies the convex sets’ inequalities 

without measurement uncertainty and a second set of fluxes (𝑱𝑹) that satisfies these inequalities with 

an accuracy related to the measurement error. This means that the original convex sets (used to solve⁡𝑱𝑻) 
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represent lack of repeatability of batches due to unmeasured disturbances, e.g. unmeasured changes in 

inoculum amount and population content, unmeasured changes in minor species, etc.  

In addition to these unmeasured disturbances there is measurement noise of magnitude epsilon. The 

flux vector 𝑱𝑹 is solved by satisfying the original convex sets with the added noise. 

Then, we seek a minimal set of constraints by adding to the optimization objective one term that it is 

related to the error between ⁡𝑱𝑻 and ⁡𝑱𝑹 and additional terms that penalize the activation of the limiting 

constraint. By minimizing the resulting objective function, we are minimizing the number of constraints 

that will be active at the solution while at the same time minimizing the error between the ideal set of 

fluxes ⁡𝑱𝑻 and the uncertain set of fluxes⁡𝑱𝑹. 

Regarding Goal 3, the search for the most suitable biologically meaningful objective function for 

solving the DFBA is conducted by adding different candidate functions, e.g. growth rate, redox 

potential etc., into the overall objective. Then, to force the solution towards one specific candidate, the 

cross-products of the candidates’ biological functions are also added to the objective function such as, 

at the solution of the minimization, these cross-products will be driven to zero and only one particular 

candidate will be left. 

Following the above considerations, the resulting optimization is 

min
𝑱𝑹,𝑱𝑻,𝒘

𝑳,𝒘𝑼,𝒘𝒄

(𝑱𝑻 − 𝑱𝑹)
T𝐇(𝑱𝑻 − 𝑱𝑹) − ∑ (𝑤𝑐𝑖)

𝑁𝐶
𝑖=1 𝒄𝒊

T𝑱𝑻 − ∑ (𝑤𝑐𝑖)𝒄𝒊
T𝑁𝐶

𝑖=1 𝑱𝑹 +⁡⁡
1

2
∑ (𝑤𝑐𝑖)(𝑤𝑐𝑗)
𝑁𝐶
𝑖=1
𝑗=1
𝑖≠𝑗

+

(∑ 𝑤𝑖
𝐿 − ∑ 𝑤𝑖

𝑈)
𝑁𝑚
𝑖=1

𝑁𝑚
𝑖=1

𝑛𝑔

𝜀𝑁𝑚
         (6-2a)  

subject to: 

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙

𝑤𝑖
𝑙 ≤ 𝑺𝒊⁡𝑱𝑹𝑋𝑘 ≤

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢

𝑤𝑖
𝑢       (6-2b)  
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𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
 ≤ 𝑺𝒊⁡𝑱𝑻𝑋𝑘 ≤

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢

        (6-2c) 

1⁡≤ 𝑤𝑖
𝑢 ≤⁡1 + 𝜀          (6-2d) 

1 − 𝜀 ≤ 𝑤𝑖
𝑙 ≤⁡1          (6-2e) 

⁡𝑱𝑹 ≥⁡0           (6-2f) 

⁡𝑱𝑻 ≥⁡0           (6-2g) 

ѱ𝒌⁡ ≥ 𝟎          (6-2h) 

0 ≤ 𝑤𝑐𝑖 ≤⁡1          (6-2i) 

∑ 𝑤𝑐𝑖
𝑁𝑐
𝑖=1 = 1          (6-2j) 

We defined  
𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
=

ѱ𝑖
𝑙,𝑘+1−ѱ𝑖

𝑘

∆𝑇
  and  

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢
=

ѱ𝑖
𝑢,𝑘+1−ѱ𝑖

𝑘

∆𝑇
 . The first term in the objective function (6-2a) 

is a quadratic term that minimizes the sum of square errors between the assumed two sets of fluxes 𝐽𝑇 

and 𝐽𝑅, 𝑱𝑻 represents the fluxes that satisfy tight constraints on metabolites’ concentrations or 

consumption and production rates of these metabolites as observed from the limited data available, and 

𝑱𝑹 are the fluxes that satisfy relaxed constraints for which it is assumed that the data are uncertain. The 

𝑺𝒊⁡is the row of the stoichiometric matrix representing metabolite⁡𝑖, and 𝑋𝑘 is the biomass value at 

time⁡𝑘. The Hessian is 

𝐇 = 𝑢𝑤 [
𝐈 −𝐈
−𝐈 𝐈

]         (6-2k) 

the sum of square errors between the elements of the vector 𝑱𝑻 and the elements of the vector  𝑱𝑹 

weighted by the scalar⁡𝑢𝑤that is selected sufficiently large so as for at the solution the first term in (6-

2a) is smaller than a tolerance (10−4) that is of the order of the noise 𝒏𝒈 in the biological objective (e.g. 

the measurement noise of the growth rate if the latter is used as the biological objective). 
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To account for the uncertainty in consumption/production rates, the bounds on the relaxed constraints 

are obtained by multiplying the bounds on the tight constraints by weights 𝑤𝑖
𝑢 and 𝑤𝑖

𝑙 ⁡ in Eq. 6-2a. 

These weights change between 1 to 1+𝜀 or 1–𝜀  to 1 for the upper or lower constraints respectively 

(equations (6-2d) and (6-2e)) where 𝜀 is chosen to reflect the expected uncertainty in the measurements 

of consumption/production rates of metabolites.  

The second and third term in the cost function (6-2a) describe the biological objective functions to be 

maximized in a DFBA model computed as a function of either the⁡⁡𝑱𝑻 or the 𝑱𝑹 vectors of fluxes that 

satisfy either the tight and relaxed constraints respectively. 𝑁𝐶  is the number of the objective functions’ 

candidates for the problem and the 𝑤𝑐𝑖 are the weight coefficients corresponding to the candidates of 

the objective function.  

The fourth term in Eq. (6-2a) are cross-products of the corresponding weights of any two candidate 

biological objective functions. The minimization in (6-2a) is expected to force these cross-products 

close to zero values thus only leaving one nonzero value of the weights⁡𝑤𝑐𝑖. This non-zero value of a 

𝑤𝑐𝑖will indicate which one of the candidate biological objectives is the one to be chosen for the problem, 

i.e. the goal is that at each time interval only one of the weight coefficients which has the highest impact 

will be driven to one and the rest will tend to zero. Mathematically there may be a situation that the 

resulting bilinear optimization will give fractional values, especially in the case that the sum of the 

cross-products of the weights is not significant as compared to the other terms in the objective function 

of the problem. If this happen it could be resolved by weighting the cross-products with a higher scalar 

weight.  

The fifth term in Eq. (6-2a) is to drive as many constraints as possible to non-active status, i.e. the 

redundant ones so as to identify only the necessary ones. It should be noticed that 1⁡≤ 𝑤𝑖
𝑢 ≤⁡1 + 𝜀 and 
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1 − ε ≤ wi
l ≤⁡1 and these inequalities imply that the extreme values of the weights are  𝑤𝑖

𝑢 = 1⁡ + ⁡𝜀⁡ 

and the smallest⁡𝑤𝑖
𝑙 = 1 − 𝜀. Thus, the minimization of the 5th term (∑ 𝑤𝑖

𝐿 − ∑ 𝑤𝑖
𝑈)

𝑁𝑚
𝑖=1

𝑁𝑚
𝑖=1 ⁡will drive 

as many as possible 𝑤𝑖
𝑙 to  1 − 𝜀 or 𝑤𝑖

𝑢⁡ to 1⁡ + ⁡𝜀⁡ respectively and thus, when they are active at these 

extreme values, the corresponding constraints are not necessary (not active) for the given noise. Hence 

if I can expand the bounds on the consumption/production rates up to the limit of the noise without 

affecting the error 𝑱𝑻 − 𝑱𝑹 in a significant way, this means that the corresponding constraints are not 

necessary to explain the data. Since the fifth term is of the order of 𝜀𝑁𝑚 (the ones are cancelling out 

with each other), we must introduce the factor,  
𝑛𝑔

𝜀𝑁𝑚
,⁡that ultimately render this term of the order of the 

assumed noise in the growth rate of magnitude⁡𝑛𝑔. 

In fact the first and the fifth terms are introduced in the objective function of the optimization (Eq. (6-

1)) to achieve a tradeoff between the error (𝑱𝑻 − 𝑱𝑹) and the limiting constraints active at the solution 

of 𝑱𝑻 and 𝑱𝑹.  

Constraints (6-2b) and (6-2c) are the key elements for the development of a predictive DFBA model 

presented in the next subsection. The idea is to find for which amino acid constraints (6-2b) and (6-2c) 

become active and to eventually replace these constraints by their corresponding kinetics functions to 

be able to predict future concentrations. More details for this process has been explained in Section 2.2. 

The objective function in (6-2a) is nonlinear involving a bilinear term and a quadratic term, and the 

constraints are all linear. Since the bilinear term involves products of weights that are each bounded 

between 0 and 1, the term is convex. Thus, overall this formulation results in a nonlinear convex 

optimization that can be solved by common optimization solvers such as fmincon in MATLAB. 

Accordingly, the optimization search must be conducted for different initial guesses. 
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For the special case that the biological objective function is known or assumed a priori and only the 

active constraints need to be identified, the nonlinear optimization of Eq. (6-2) that results from the 

presence of bilinear terms (terms 2 and 3 in Eq. (6-2a)) converts into the simple quadratic optimization: 

min
𝑱𝑹,𝑱𝑻,𝒘

𝑳,𝒘𝑼
(𝑱𝑻 − 𝑱𝑹)

T𝐇(𝑱𝑻 − 𝑱𝑹) − 𝒄T(⁡𝑱𝑻 + 𝑱𝑹) + (∑ 𝑤𝑖
𝐿 − ∑ 𝑤𝑖

𝑈)
𝑁𝑚
𝑖=1

𝑁𝑚
𝑖=1

𝑛𝑔

𝜀𝑁𝑚
  (6-3a) 

subject to: 

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
𝑤𝑖
𝑙 ≤ 𝑺𝒊⁡𝑱𝑹𝑋𝑘 ≤

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢
𝑤𝑖
𝑢       (6-3b) 

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
≤ 𝑺𝒊⁡𝑱𝑻𝑋𝑘 ≤

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢

       (6-3c) 

1⁡≤ 𝑤𝑖
𝑢 ≤⁡1 + 𝜀                             (6-3d) 

1 − 𝜀 ≤ 𝑤𝑖
𝑙 ≤⁡1                         (6-3e) 

⁡𝑱𝑹 ≥ 0                              (6-3f) 

⁡𝑱𝑻 ≥⁡0                          (6-3g) 

ѱ𝒌⁡ ≥ 𝟎         (6-3h) 

This quadratic optimization can be solved, for example, using cplexqp (IBM CPLEX) in a MATLAB-

compatible code. If the fluxes ⁡𝑱𝑹 = 𝑱𝑻 at the solution of the QP then the quadratic term in (6-3a) 

vanishes and the solution is identical to the solution of an LP that corresponds to the original 

formulation of a DFBA model equation (6-1) augmented by the second term that represents added 

uncertainty to the biological objective as explained before in this section. 

A main negative consequence of the multiplicity of solutions is that, for some problems such as the B. 

pertussis case study in this work, some of the rate constraints in equation (6-2b) and (6-2c) become 

active only on isolated time intervals along a batch fermentation and this sporadic activation of 

constraints depends highly on the initial guesses assumed for the optimization. On the other hand, it 



 

109 

 

should be remembered that one of the expected benefits of the DFBA model is to predict concentrations 

using only a few kinetic constraints so a small number of kinetic parameters would be needed. The 

sporadic activation of many constraints defeats this purpose since it would require constraining many 

amino acids and calibration of many corresponding kinetic expressions.  

A way to address this situation is by limiting the solution space for the optimization through the 

imposition of upper bounds on consumption or production rates of metabolites. Sometimes, these 

bounds are available from the literature. In the case that these bounds are not available, we propose to 

find the bounds from a modification of the optimization in (6-2a): 

min
𝑱𝑹,𝑱𝑻,𝒘

𝑳,𝒘𝑼,𝒘𝒄,𝒘
𝒔𝒄
(𝑱𝑻 − 𝑱𝑹)

T𝐇(𝑱𝑻 − 𝑱𝑹) − ∑ (𝑤𝑐𝑖)
𝑁𝐶
𝑖=1 𝒄𝒊

T⁡𝑱𝑻 − ∑ (𝑤𝑐𝑖)𝒄𝒊
T𝑁𝐶

𝑖=1 𝑱𝑹 +
1

2
∑ (𝑤𝑐𝑖)(𝑤𝑐𝑗)
𝑁𝐶
𝑖=1
𝑗=1
𝑖≠𝑗

+

(∑ 𝑤𝑖
𝐿 − ∑ 𝑤𝑖

𝑈)
𝑁𝑚
𝑖=1

𝑁𝑚
𝑖=1

𝑛𝑔

𝜀𝑁𝑚
 − (∑ 𝑤𝑖

𝑠𝑐)
𝑁𝑠𝑐
𝑖=1

𝑛𝑔

𝑊𝑈𝑁𝑠𝑐
       (6-4a) 

subject to: 

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
𝑤𝑖
𝑙 ≤ 𝑺𝒊⁡𝑱𝑹𝑋𝑘 ≤

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢

 𝑤𝑖
𝑢        (6-4b) 

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
≤ 𝑺𝒊⁡𝑱𝑻𝑋𝑘 ≤

𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢

         (6-4c) 

1⁡≤ 𝑤𝑖
𝑢 ≤⁡1 +⁡𝜀          (6-4d) 

1 − 𝜀 ≤ 𝑤𝑖
𝑙 ≤ 1          (6-4e) 

𝑱𝑹 ≥ 0            (6-4f) 

𝑱𝑻 ≥⁡0            (6-4g) 

ѱ𝒌 ≥ 𝟎           (6-4h) 

0 ≤ 𝑤𝑐𝑖 ≤⁡1           (6-4i) 

∑ 𝑤𝑐𝑖
𝑁𝑐
𝑖=1 = 1           (6-4j) 
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|𝑺𝒊⁡𝑱𝑻𝑋𝑘| ≤ 𝑤𝑖
𝑠𝑐          (6-4k) 

0 ≤ 𝑤𝑖
𝑠𝑐 ≤ 𝑊𝑢          (6-4l) 

The optimization (6-4a), in contrast with (6-2a), includes a sixth term in the objective function whose 

purpose is to maximize at each instance the absolute consumption/production rate of each metabolite 

(defined in 6-4k) towards an upper bound 𝑊𝑢 as defined by (6-4l). It can be easily verified that the 

additional term in (6-4a) is also of the order of the noise,𝑛𝑔 since the term is normalized by the 

maximum allowable value 𝑊𝑢 (Eq. 6-4l) and by the total number of metabolites⁡𝑁𝑆𝐶 . To constrain the 

solution space, it has been often proposed in the FBA literature to bound all the fluxes by a value of the 

order of the largest known consumption rate of the limiting nutrients (Maranas et al., 2016). In this 

work, we have used a similar criterion to choose the value of⁡𝑊𝑢. In principle, this value can be 

iteratively adjusted by executing the optimization in (6-4a)–(6-4e) for different values of 𝑊𝑢 until a 

satisfactory fitting between the vectors of fluxes 𝐽𝑇 and ⁡𝐽𝑅 is obtained. 

The fundamental difference between constraints (6-4b)–(6-4c) with respect to the constraints (6-4k)–

(6-4l) is that the former are tight constraints of the order of the noise (𝜀) on the metabolite 

consumption/production rates that are frequently active along a batch whereas the latter are loose rate 

constraints related to the noise 𝑛𝑔 in the biological objective that are only important in isolated time 

intervals along the batch. In principle, the additional term in (6-4a) together with constraints (6-4i)–(6-

4l) result in time-varying values of the weights 𝑤𝑖
𝑠𝑐 for each metabolite⁡𝑖. For the purpose of limiting 

the solution space of a predictive model, one time-independent upper bound is found for each 

metabolite 𝑖 from 

𝑤𝑖
𝑠𝑐,𝑚𝑎𝑥 = max⁡[𝑤𝑖

𝑠𝑐(𝑘)],        (6-5) 
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where 𝑘 ranges from 0 to 𝑇. Selecting the maximum bound is justified since, for the worst case that all 

𝑤𝑖
𝑠𝑐 = 𝑊𝑢, the effect of the sixth term in (6-4a) is guaranteed to be no larger than 𝑛𝑔, i.e. the noise in 

the biological objective function. Then, the bound 𝑤𝑖
𝑠𝑐,𝑚𝑎𝑥

 for each metabolite, 𝑖 is used as an upper 

bound for the rate of that metabolite in the predictive model that is presented in the next section. 

 Predictive DFBA model  

The predictive DFBA model is given by  

At each time instance 𝒌 (𝒌 = 𝟏,… , 𝑻) 

max
𝒗𝒌

𝒄T𝒗𝒌,          (6-6a) 

subject to: 

|𝑺𝒎𝒊𝒗𝒌| ≤ 
𝑉𝑚𝑖,𝑚𝑎𝑥.ѱ𝑚𝑖,𝑘

𝐾𝑚𝑖
+ѱ𝑚𝑖,𝑘

mmol

g∙dw∙hr
   (i = 1, 2,…,Nm;  Nm is the number of metabolites)  (6-6b) 

𝒗𝒌 ≥ 𝟎           (6-6c) 

|
𝑑𝜑𝑖

𝑑𝑡
| ≤ 𝑤𝑖

𝑠𝑐,𝑚𝑎𝑥
         (6-6d) 

ѱ𝒌 ≥ 𝟎           (6-6e) 

ѱ𝑘⁡= ѱ𝑘−1 + 𝑆𝑣𝑘𝑋𝑘∆𝑇 ≥ 0        (6-6f) 

where 𝑺 is the stoichiometric matrix and 𝑺𝒎𝒊 is the row of the stoichiometric matrix associated with the 

metabolite i.⁡ Equations (6-6a)–(6-6f) are a modified version of the optimization (6-4a)–(6-4k) with 

respect to four elements: 

The objective function (6-6a) includes only the biological objective (second term in 6-4a). This 

objective is based on the assumption that, at the optimal solution of (6-4a), the first term vanishes since, 

at 𝑱𝑻 ≈ 𝑱𝑹, the third term becomes identical to the second term, the fourth and sixth terms are neglected 
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since they are of the order of the noise⁡𝒏𝒈, and the fifth term also vanishes since only one 𝒘𝒄𝟏 = 𝟏 and 

the rest are zero. 

The limiting constraints identified, as explained above, the upper and lower bounds in (6-4b) and (6-

4c), are replaced by explicit functions (6-6b) of the corresponding metabolites concentrations at time⁡𝒌. 

Constraints (6-4i) and (6-4l) are replaced by upper bound constraints (6-6d) using the value𝒔⁡𝒘𝒊
𝒔𝒄,𝒎𝒂𝒙

 

calculated from (6-5). 

Equations to predict the concentrations of metabolites over time (Eq. 6-6f) is formulated based on mass 

balances. That is, Equation (6-6f) are time-discretized mass balances for all metabolites that are used 

to integrate the concentrations over time. 

The optimization (6-6a)–(6-6f) is an LP that is solved with the CPLEX optimization software. A 

fundamental advantage of the proposed model (6-6a)–(6-6f) is that the parameters in the kinetic 

expressions corresponding to the limiting constraints (6-6b) can be separately identified for each 

metabolite. This is particularly advantageous as compared to previously reported algorithms where the 

parameters corresponding to all the kinetic expressions involved in the constraints of the DFBA 

problem must be simultaneously identified from bi-level optimization formulations. 

The ability to identify the kinetic expression separately is due to the fact that, at each time instance, the 

solution of the optimization (6-4a) provides which constraint i is active; it is possible to find the 

corresponding values of the gradients, either 
𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑢

 or 
𝑑ѱ𝒊⁡

𝑑𝑡
|
𝑙
, that are active at the constraint. Then, 

Michaelis-Menten expressions  

𝑑ѱ𝑖

𝑑𝑡
=

𝑉𝑖,𝑚𝑎𝑥.ѱ𝑖

𝐾𝑖+ѱ𝑖
𝑋         (6-7a) 
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or alternative types of kinetic expressions can be found to correlate the bounds on the uptakes or 

production rates (
𝑑ѱ𝑖

𝑑𝑡
) of the metabolite as a function of its concentration⁡(ѱ𝑖)⁡ at every time interval, 

where 𝑉𝑖,𝑚𝑎𝑥, 𝐾𝑖⁡ are the kinetic parameters that should be identified. For example, if it is found that 

glucose is a limiting constraint, then a kinetic expression can be used to represent the relation: 

𝑑𝐺𝐿𝐶

𝑑𝑡
=

𝑉𝐺𝐿𝐶,𝑚𝑎𝑥.𝐺𝐿𝐶

𝐾𝐺𝐿𝐶+𝐺𝐿𝐶
𝑋         (6-7b) 

Then, the two parameters 𝑉𝐺𝐿𝐶,𝑚𝑎𝑥 and 𝐾𝐺𝐿𝐶 can be found from time data of glucose alone since the 

gradient of glucose on the left-hand side of Eq. (6-5) and the corresponding concentration of glucose at 

each time interval are available 

If Michaelis-Menten kinetics are assumed, graphical methods such as the Lineweaver-Burk are used to 

identify the parameters in the kinetic expressions (6-7a) or (6-7b) (Shuler & Kargi, 1992). For other 

types of kinetic expressions, nonlinear regression is done using the Curve Fitting Toolbox in the 

MATLAB environment.  

 Experimental and in silico data Used in the Case Studies 

The proposed method is applied in two case studies for two model microorganisms. The first study is 

the batch fermentation of E. coli system for which a DFBA model has been reported by Mahadevan et 

al. (Mahadevan et al., 2002).The model was used to generate in silico data consisting of simulated data 

with superimposed white noise. Since the DFBA model with the required biological objective function 

and constraints was available a priori, this case study serves to verify whether our methodology is able 

to identify the correct objective function and limiting constraints. 

For the second case study, we studied the fermentation of Bordetella pertussis (B. pertussis) used to 

produce the antigens of the whooping cough vaccine. The metabolic network for this organism involves 



 

114 

 

49 reactions. This process was assumed to operate initially in batch and, after depletion of the main 

nutrient, in fed-batch mode. Glutamate was the main nutrient for this microorganism. For this example, 

we use actual measurements of sixteen amino acids concentrations measured by HPLC. 

 Results 

 Case Study 1: E. coli 

The DFBA model describing the diauxic growth of an E. coli system involves four species: glucose, 

acetate, oxygen, and the biomass in its network. All species except the biomass are considered as 

potentially active constraints. 

The model proposed by Mahadevan et al. (Mahadevan et al., 2002) is based on a simplified metabolic 

network of four reactions involving the four aforementioned species shown in Appendix A. 

Mahadevan’s model assumes that the growth rate is maximized at each time interval subject to two 

kinetic limiting constraints on glucose and oxygen consumption: 

At all-time instances k: 

max
𝒗

𝒄T𝒗                                                                                                                                     (6-8)  

|𝐒𝐆𝐥𝐜𝒗| ≤
𝑉𝐺𝑙𝑐,𝑚𝑎𝑥.ѱ𝐺𝑙𝑐,𝑘

𝐾𝐺𝑙𝑐 + ѱ𝐺𝑙𝑐,𝑘

mmol

gdw ∙ hr
 

|𝐒𝐎𝟐𝒗| ≤ 𝑂𝑈𝑅 
mmol

gdw ∙ hr
 

This model was simulated for a total of 10 hr to simulate experimental conditions. Gaussian noise was 

added to the metabolites responses at a level of 5% of the total range of change of each metabolite 

during the batch. These simulated values were used as in silico data to test the proposed identification 

methodology as given by equations (4a)–(4e). The sampling interval used for discretization was 0.1 hr 
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and the oxygen uptake rate was OUR=10.Initial condition for metabolites and biomass at time zero was 

glucose (10.4mM), acetate (0.4mM), oxygen (0.21mM) and biomass (0.001g).  Based on this level of 

noise, 𝜺 was set equal to 0.1 and the upper bound in constraint (4k), 𝑊𝑢, was set to 10 mM/hr∙gdw. 

The weight 𝑢𝑤 defining the Hessian as per equation (2j) was set to 0.01. As mentioned in the 

methodology section, this weight is selected large enough such as the first term in (4a) at the optimum 

is of the order of 𝒏𝒈 (estimated noise in the growth rate). We used interior-point algorithms with 

cplexqp and cplexlp function in CPLEX for MATLAB toolbox. 

In order to test our methodology, we assume that any of the nutrients (glucose, acetate, or oxygen) can 

be potentially limiting. In addition, we assume two possible candidate biological objectives for 

maximization: (1) growth rate as given by equation (8), i.e. 𝒄𝟏
T = [1⁡1⁡1⁡1]⁡(see equation 4a) and (2) 

maximal consumption rate of acetate, which is represented by 𝒄𝟐
T = [39.43⁡⁡⁡0⁡⁡⁡ − 1.24⁡⁡⁡ − 12.12] in 

eq. (4a). 

The solution over time of the weights 𝑤𝑖
𝑢 and 𝑤𝑖

𝑙 for all the species is identified. These values indicate 

which rate constraints are considered at each time interval according to equations (4b) and (4c). 

Following the solution of problem (4a), it was found that the upper bound of oxygen depletion rate is 

active from 𝑡 = 0 until the end of the batch whereas the upper bound in glucose becomes active after 

𝑡 = 4.2 hr and thereafter. These results coincide with Mahadevan’s model where the limiting rate 

constraints are glucose and oxygen while acetate is not limiting, thus corroborating the ability of the 

method to identify the constraints. 

The weights involved in constraints (4k) and (4l) which are introduced to limit the solution space were 

found to be equal to their upper bound, i.e. 𝑤𝑖
𝑠𝑐 = 𝑊𝑢, for all the 4 species and for the entire duration 

of the batch. The weights 𝑤𝑐1 and 𝑤𝑐2 that correspond to the growth rate and to the acetate objectives 
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in equation (4a) are 1 and 0 for the entire duration of the batch, thus correctly identifying the growth 

rate as the objective to be maximized. This again verifies the ability of the proposed approach to identify 

the correct biological objective function. For the purpose of formulating the predictive model according 

to equations (6a)–(6f), it is necessary to identify kinetic expressions of the two identified limiting rate 

constraints as a function of the corresponding metabolite concentrations, i.e. the rate constraints in 

glucose and oxygen are expressed as a function of the corresponding glucose and oxygen concentrations 

respectively. Figure 6-2 shows the consumption rate of glucose obtained at each time interval as a 

function of the corresponding glucose concentration. For this plot, a Michaelis-Menten kinetic 

expression was identified using the Lineweaver-Burk graphical method. The resulting kinetic 

parameters for the glucose are as in the following table 6-1. It should be noted that these results are 

almost identical to the non-linear parametric estimation.  

Table 6-1 Estimated and original values of the parameters 

Parameter Original Value Estimated Value 

𝑉𝐺𝑙𝑐,𝑚𝑎𝑥 10 11.11 

𝑘𝐺𝑙𝑐 0.015 0.02 
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Figure 6-2 Kinetic curve of glucose (glucose uptake rate vs glucose concentration) in E.coli 

example 

The procedure identifies, in accordance with Mahadevan’s model used to generate the in silico data, 

Michaelis-Menten kinetics for the glucose consumption rate bound whereas a constant upper bound for 

the consumption of oxygen is identified. The numerical values of the kinetic constants are slightly 

different from Mahadevan’s model because they were identified by the procedure in (6-4a)–(6-4l) from 

simulations of the original model with superimposed noise. 

Figure 6-3 shows the comparison between the time evolutions of the 4 species as a function of batch 

time obtained from the original model without the noise (red line) and the identified model (blue line). 

The simulated results are slightly different between the original and identified models due to the 

differences in the kinetic rate expressions for the limiting constraints that resulted from the assumed 

noise. 
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Figure 6-3 Metabolite concentration profiles of E. coli case study red line is the simulated 

original model and the blue line is our identified model 

 Case Study 2: B. Pertussis 

Bordetella pertussis is a gram-negative, aerobic, and pathogenic bacteria causing Pertussis or whooping 

cough (Thalen et al., 2006). In this case, our algorithm is used for systematic identification from 

experimental data of limiting constraints and a suitable biological objective function of a B. pertussis 

fed-batch culture. Glutamate is the main carbon source used for the feeding of this culture, which is 

started at time 0 in batch operation until depletion of glutamate occurs and then the fed-batch operation 

is started with a constant glutamate feed rate of 4.3 g/h. A metabolic network involving 49 metabolites 
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and 50 reactions was available from a previous study by Budman et al.(Budman et al., 2013). The 

reactions that were considered are listed in Appendix B. HPLC measurements of 16 amino acids were 

available for a fifty hours fermentation process at 8 time instances: 0, 6, 24, 29, 31.1, 32, 34, 48.3 hr. 

The data is shown by circles in Figure 6-4. Due to confidentially reasons, all the presented data in this 

figure have been normalized based on the initial concentration of glutamate which is the main nutrient 

in this fermentation process.   

A nonlinear polynomial interpolation function was applied to interpolate the data between the available 

measured values. The sampling interval used for the identification procedure given by equations (6-

4a)–(4l) was 0.1 hr. The level of noise in the HPLC measurements was estimated as 10% of the full 

range of change of each amino acid and this value was used to estimate the 𝜀 = 0.1 used in the rate 

constraints (6-4b) and (6-4c). The upper bound 𝑊𝑢 in constraint (6-4l) was set to 10 mM/hr∙mM as in 

the previous case study. In principle, this value can be iteratively further adjusted as explained in 

Section 2. The weight 𝑢𝑤 defining the Hessian in equation (6-2j) was set to 0.01. 

Two candidates were considered as possible biological objectives for maximization: maximization of 

the growth rate and maximization of the lactate production rate. The growth rate is defined by the 

stoichiometric relations derived from the reactions listed in Appendix B.  

The identification procedure given by equations (6-4a)–(6-4l), was applied to the data to identify the 

objective function and limiting constraints. Among constraints (6-4bc), only one constraint is active for 

the entire duration of the batch corresponding to the upper bound in the consumption rate of 

phenylalanine. The biological reason for phenylalanine being the limiting active constraint might be 

due to the fact that phenylalanine is not produced by B. pertussis and should be externally supplied in 

the medium. 
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A key difference between the current case study and the previous case study is that here only a fraction 

of the species involved in the network is measured whereas in the previous study all species were 

measured. Thus, the current case study is highly under-determined and consequently, constraints (6-

4k)–(6-4l) that are used to limit the solution space become important. These constraints were found to 

be important for limiting the solution space for both consuming and producing species that are not being 

measured. 

The weights 𝑤𝑖
𝑠𝑐 (constraint 6-4k) were identified at each time interval and accordingly 𝑤𝑖

𝑠𝑐,𝑚𝑎𝑥
 was 

calculated using equation (6-5).  

 Six of the amino acids can be produced according to the metabolic reactions listed in Appendix B: 

Alanine, Aspartate, Glutamate, Isoleucine, Arginine, and Proline. However, it was found from the data 

that the concentration of these metabolites did not exhibit any noticeable increases in time. The reason 

is that these metabolites start to be synthesized only after they are completely depleted so as to further 

generate biomass, i.e., the production of these amino-acids is exactly balanced by their consumption 

towards biomass, especially during the fed-batch phase. In principle, an upper bound of 0 could have 

been assumed for the production rates but it was found that due to Euler discretization that it was 

difficult to satisfy the positivity constraint (6-6e) when the produced amino acids concentrations are 

very close to zero. For these six amino acids, having a constant upper bound with the value of 10−4 

was necessary. The preferable objective function was found to be the growth rate. This coincides with 

the objective function that has been prevalent if previous bacterial models and also corresponds to the 

objective function used in a B. Pertussis model reported in Budman et al. (Budman et al., 2013). 

Using the growth rate as the biological objective, it is possible to formulate the optimization problem 

as a QP as explained in equation (6-3a). Solving the problem as a QP serves to verify the nonlinear 
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optimization used to solve the problem in (6-3a)–(6-3h). The cplexqp solver in MATLAB was used to 

solve this quadratic optimization. The results were very similar to the results of the nonlinear 

optimization except for small differences in the values of the weights⁡𝑤𝑖
𝑠𝑐. 

To formulate a predictive model as given by equations (6a)–(6f), a kinetic expression was sought 

relating the maximum consumption rate in phenylalanine as a function of its concentration. From the 

relation between the measured consumption rates and the corresponding concentrations, it was 

concluded that a Michaelis-Menten relation is not suitable. Instead, as assumed in our earlier work 

(Nikdel & Budman, 2016), a Hill-type function (Weiss, 1997) was used to describe the maximal uptake 

rate of the phenylalanine by 

𝑟Phe =
0.0066⁡ѱPhe

3.2

0.0223.2⁡ѱPhe
3.2         (6-9) 

The values of the parameters in this expression were found using the lsqcurvefit of MATLAB. 

The bounds 𝑤𝑖
𝑠𝑐,𝑚𝑎𝑥

 used in constraints (6-6d) are obtained from the calculated values of the 

corresponding 𝑤𝑖
𝑠𝑐 according to equation (6-5). 

The simulated results for the 16 measured amino acids using equations (6a–f) using the phenylalanine 

expression in equation (9) and the constraints (6b) are shown in Figure 4. The sum of squared errors 

between simulations and measured values is SSE = 6.25. This error is significantly lower as compared 

to our earlier model of SSE = 15.42 (Budman et al., 2013) where the limiting constraints in developing 

the DFBA model was based on trial and error in contrast with the systematic approach proposed in this 

work. The reason that our model is not able to give a perfectly prediction for some of the metabolites 

might be due to the inaccuracies in the stoichiometric matrix and in the calculation of biomass amino 

acids’ composition.  
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In order to test further the predictive ability of the model, no constraints were included for biomass. 

The goal was to test whether the model without any biomass-related constraints could correctly predict 

the biomass evolution over time. This test is significant since all amino acids contribute to the 

composition of biomass and thus predicting correctly the evolution of biomass implies also a certain 

level of fidelity in the prediction of the amino acids. Biomass measurements were available for two 

different feeding rates of glutamate 4.3 g/hr and 4.7 g/ hr. The model predictions of biomass for both 

feeding rates show very good agreement between measured and predicted values (Figure 6-5). 
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Figure 6-5 Metabolite concentration profiles of B-Pertussis case study resulted from the DFBA. 

It also should be noted that the accuracy of the model could be increased by including more 

measurements in the identification step.  
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Figure 6-6 Biomass profile of B. Pertussis in fed-batch mode: red, blue, and green lines are 

model predictions with the fed-batch rate of 4.3, 6, and 7.4 g/h glutamate; circle, ×, and pink 

dots mark experimental data points for the feed rate of 4.3, 6, and 7.4 g/h glutamate. 
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 Conclusion 

The formulation of a dynamic metabolic flux balance model requires the identification of a suitable 

biological objective function to be maximized or minimized and active limiting constraints. In this 

contribution, we propose a systematic approach to identify both of these attributes for developing 

DFBA models. A key advantage of the proposed approach is that its formulation as a one-level 

optimization that simultaneously maximizes the biological objective together with terms that are related 

to the limiting constraints on consumption and production rates of amino acids. Proper weighting of 

these additional terms allows the constraint to be related to the relative errors incurred in measuring 

both amino acid concentrations as well as the biological objective variable. The use of set-based 

constraints ensures fitting between the data and the model predictions while avoiding the need for two-

level optimization formulations. Two case studies were investigated. In the first case study for E. coli 

for which a priori known model was used to generate in silico data, the proposed approach successfully 

recognized the correct objective function and constraint of the model. In the second case study that 

involved experimental data of B. pertussis fermentation, the scarcity of data and the complexity of the 

metabolic network rendered the problem underdetermined. Additional constraints were required in 

order to only allow realistic solutions. In this case, our approach systematically identified a single 

kinetic rate bound on one amino acid (phenylalanine) and a set of constant upper bounds on 

consumption and production rates where the latter served to limit the solution space. 

The resulting model was able to predict the evolution of biomass concentration with time whereas 

biomass values were not used for model calibration. 
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Chapter 7 

Inhibitory pH effect in culturing CHO cells  

3This chapter is the contribution of the author of this thesis as the second author of the paper titled: 

”Modeling of cell culture damage and recovery leads to increased antibody and biomass productivity 

in CHO cell cultures” (Naderi et al., 2014) so only an introduction and my main contribution to the 

paper has brought here.  In this paper, a mathematical model was proposed for the investigation of cell 

damage of a Chinese hamster ovary (CHO) cell culture secreting recombinant anti-RhD monoclonal 

antibody (mAb). Reduction of pH was found to be a responsible factor for irreversible cell damage. A 

Tessier-based model was used to describe this irreversible damage to cellular function. In this model, 

the actively growing fraction of cells is dependent on an intracellular metabolic product acting as a 

growth inhibitor.  To further verify the model, an offline model-based optimization of mAb production 

in the cell culture was carried out, with the goal of minimizing cell damage and thereby enhancing 

productivity through intermittent refreshment of the culture medium. An experimental implementation 

of this model-based strategy resulted in doubling of the yield as compared to the batch operation and 

the resulting biomass and productivity profiles agreed with the model predictions. 

                                                      
3 This chapter is based on the paper:  Naderi, S., Nikdel, A., Meshram, M., McConkey, B., 

Ingalls, B., Budman, H., & Scharer, J. (2014). Modeling of cell culture damage and recovery 

leads to increased antibody and biomass productivity in CHO cell cultures. Biotechnol J, 9(9), 

1152-1163. doi: 10.1002/biot.201300287 
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 Introduction 

Cell death following exponential growth in culture is still a major obstacle for efficient and economical 

production on an industrial scale. Cell death is primarily caused by apoptosis, a form of programmed 

cell death that can be triggered by environmental causes, such as depletion of essential nutrients, 

accumulation of metabolic by-products (ammonia, lactate and carbon dioxide), changes in pH, oxygen 

limitation, and hyperosmolality (Han, Kim, Kim, & Lee, 2010; Laken & Leonard, 2001). Autophagy, 

another death process, has been attributed to nutrient exhaustion (Hwang & Lee, 2008). Lysozymes 

released upon cell death affect both the titer and glycosylation, thus impacting both the quantity and 

quality of mAbs (Chee Furng Wong, Tin Kam Wong, Tang Goh, Kiat Heng, & Gek Sim Yap, 2005). 

An understanding of the mechanism and dynamics of these cell death processes will be crucial for the 

development of robust strategies for optimization of culture yield. 

Fed-batch and perfusion operations are two efficient process strategies that are often applied to mitigate 

the stressful conditions that occur during batch culture. In both culture techniques, controlled nutrient 

feeding, either continuously or at regular intervals, is performed; spent medium (either in part or in 

whole) is removed in the perfusion mode (Rodrigues, Costa, Henriques, Azeredo, & Oliveira, 2010). 

These strategies result in longer cell viability and higher recombinant protein production (Burky et al., 

2007; Zhang, Shen, & Zhang, 2004). However, formulating an optimal operating strategy (i.e. 

frequency and volume of feeding and medium removal) requires a detailed understanding of cell 

metabolism and physiology. Due to the complexity of cell metabolism and the many unknown 

intracellular factors involved in regulating cellular mechanisms, most strategies applied to date have 

been based on trial-and-error (Altamirano, Paredes, Illanes, Cairo, & Godia, 2004). 
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In another work the effect of key nutrients—glucose, glutamine, and asparagine on cell growth, 

maximum population density, cell death and longevity of the culture; given adequate initial reserves, 

these effects were found to be insignificant (Naderi et al., 2011a). Subsequently, the response of 

cultures to periodic feeding strategies was addressed in an attempt to improve culture conditions by 

compensating for the possible exhaustion of nutrients. Due to uncertainty about the identity of limiting 

nutrient(s), supplementation with complete medium was used. These earlier studies revealed that 

supplementation does not have a significant impact on mAb productivity. To model cell growth, a 

logistic model was used, because a limiting nutrient could not be identified. 

Excursions in pH levels are common and very significant in large scale bioreactors, even when operated 

under closed loop pH control, due to spatial gradients within the vessel (Nienow, 2006). In this present 

work, we provide evidence suggesting that the accumulation of a pH reducing compound results in cell 

damage. Towards these objectives, a set of experiments were carried out involving partial or complete 

replacement of the spent medium to mitigate the effects of the observed inhibition. Periodic complete 

replacement of the spent medium—a method often referred to as intermittent harvesting (Ozturk & Hu, 

2006)-  can mitigate cell damage and may increase cell longevity and productivity. Moreover, it appears 

that some cells may undergo replicative senescence rather than direct transition to apoptosis. As 

described below, once stationary phase was reached, most cells were committed to growth arrest, but 

there was a small fraction of cells that reverted to growth after each period of intermittent harvesting. 

This effect may be related to oncogene-induced growth arrest or replicative senescence under 

unfavorable environmental conditions, which has been reported previously (Ruiz et al., 2008).  
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 Materials and Methods 

 Cell Line and Culture Process 

A CHO (DHFR-) cell line, containing a fully human IgG-Variant gene for anti-RhD mAb, was provided 

by our industrial partner, Cangene Corporation, Winnipeg, MB. This recombinant mAb (IgG1-r9B8) 

has shown a relatively high affinity for the human RhD antigen, making it suitable for therapeutic 

application. The CHO cells were cultured in SFX-CHO (Hyclone) medium, supplemented with 1% 

serum (Invitrogen) and L-glutamine (Sigma) to a final concentration of 1 mM. No animals or human 

subjects were used in this research. 

 Analytical Methods 

Viability assays were carried out with Trypan Blue staining followed by cell counting on a 

hemocytometer. The glucose content of cell culture samples was measured enzymatically using a 

glucose test kit (Megazyme Glucose Test Kit). Lactate was assayed with a Lactate Plus meter from 

Nova Biomedical. The dissolved ammonia concentration was measured using a pH/ISE meter equipped 

with an Ammonia Ion-Selective electrode (VWR, model 710A). Dissolved oxygen (DO) was measured 

using VWR Symphony Dissolved Oxygen meters and corresponding probes. Electrode calibration was 

performed in water-saturated air in a special calibration chamber. The pH of the broth was measured 

by VWR SympHony SP21 meter. 

 Experimental Design 

To corroborate and model the adverse effect of pH on growth for the cell line under consideration, 

experiments were conducted in T-flasks at different initial pH values using 1N HCl for pH adjustment. 

Cell growth and pH were measured routinely in each flask. The culture was adherent in T-flasks.  
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Cell culture experiments were conducted in 500 ml spinner flasks (Bellco, USA) in a humidified CO2 

incubator (Sanyo IR Sensor, 37°C, 5% CO2) at 100 rpm. The inoculum density was approximately 0.2 

×106 cells/mL. In this series of experiments, pH was left intentionally uncontrolled. Samples were taken 

daily for immediate and offline analysis of cells and metabolites. 

Inhibitory effects of pH on growth of mammalian cells have been reported previously (Link et al., 2004; 

Lipscomb, Palomares, Hernandez, Ramirez, & Kompala, 2005). To verify the effect of pH levels on 

cell growth in the system under study, 3 sets of culture at different initial pH were prepared. Initially, 

the pH of 3 shaker flasks containing fresh medium (SFX-CHO) was adjusted at 7.6, 7.1 and 6.8, 

respectively, with 1N HCl. The initial cell density of CHO cell seeded in each shaker flask was 0.2x106 

cells/mL with 1% serum and 1mM glutamine. 

The culture from each shaker flask was split into 5 T-flasks 20 mL of cell culture in each. All 15 T-

flasks were incubated at 37°C and 5% CO2.  During the 5 days incubation period, cell concentration and 

pH of one T-flask in each set were measured. The results in Fig.7-1A and Fig.7-1B show that a 

reduction in pH results in significant reduction in cell growth. The differences were statistically 

corroborated by an ANOVA test (p=0.05) for the 3 pH levels tested for the viable cell densities 

measured at 63 hrs and 85 hrs which correspond to the maximal densities. On the other hand, the 

differences among the cultures at the beginning or end of the T-flask experiments are not statistically 

significant.  
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Figure 7-1 A Total viable cell concentration in T-flask. 1 ml of each flask was used for cell 

counting by Trypan Blue staining. Two repeats were done for each of a total of three pH levels. 
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Figure 7-1B pH of the culture in T-flask. 2 ml samples from each flask were used for pH 

measurement. Two repeats were done for each of a total of three pH levels. After measurements 

of cell count and pH the corresponding flask was discarded. 

To assess the effect of gaseous (oxygen/carbon dioxide) mass transfer effects on the pH, a series of 

experiments were performed in spinners at differing surface area to volume ratios (250 mL and 500 

mL) at identical agitation speeds (100 rpm) and at initial pH=7.6 adjusted by base addition. It was 

hypothesized that, for different culture volumes, mass transfer conditions may lead to different rates of 

accumulation of acidic metabolites. The use of different culture volumes at identical stirring speeds 
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provided a simple and convenient means to evaluate the potential effect of gas/liquid mass transfer on 

basal metabolism. The expected differences in pH levels for spinners with different culture volumes 

were fully corroborated as shown in Table 7-1 and in Figure 7-2, which indicates that for the 500 mL 

spinner consistently lower level of pH were attained as compared with the 250 mL spinner. The 

differences in pH between the two volumes were corroborated by a t-test (p=0.05) for all pH data 

obtained after time=48 hours (F=5.5 and Fcritical=3.2). Periodically a portion of the spent culture (50mL 

in the spinner containing 250 mL and 100 mL in the spinner containing 500 mL) was withdrawn and 

substituted with an equivalent amount of fresh medium. Before each withdrawal, we allow the cells to 

settle down (~15 min.) so as to minimize cell loss during withdrawal. It was expected that, if an 

inhibitory compound were accumulating in the supernatant, each withdrawal would help to renew 

growth by reducing the level of such compound.  

 

Table 7-1. Dissolved oxygen concentration (DO %) and pH of culture for two different 

volumes in 500 mL capacity spinner flasks. 

 V=250mL V=500mL 

Time (h) DO% pH DO% pH 

145 33.2 6.62 38.6 6.46 

196 27.0 6.50 40.1 6.32 

244 49.1 6.43 55.3 6.37 

293 43.9 6.44 46.5 6.36 

338 45.6 6.47 49.9 6.37 
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Figure 7-2 pH profile during partial intermittent feeding culture at volumes of 250 ml and 500 

ml. Feeding volume of 50ml and 100 ml at the times of 145, 196, 244 and 293 (hours) 

The total viable cell density assays for these two spinners are presented in Fig.7-3A. The differences in 

cell density between the two volumes were corroborated by a t-test (p=0.05) for densities collected after 

t=49 hrs (F=5.31 and Fcritical=2.53). Following the first withdrawal, the cultures recovered and reached 

cell density maxima and cell viability close to those achieved before dilution (almost equal, for the 

spinner containing 250 mL). This behavior is consistent with the hypothesis that the accumulation of 

an acidic compound results in pH reduction, leading to growth inhibition. However, no improvements 

in viability were observed in the subsequent withdrawal steps. The time course of viability in the 250 

mL and 500 mL cultures is shown in Figure7-3B. A progressive decline in viability was observed in 

spite of intermittent partial refreshment of the medium. Dissolved oxygen concentration measurements 

given in Table 7-1 for both spinners confirmed that dissolved oxygen was not in the limiting range, 
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even at peak cell density. The levels ranged between 30%-90% of air saturation at which DO has no 

significant effect on cell metabolism (Trummer et al., 2006). On the other hand the pH levels, also 

shown in Table 7-1, were found to be below the range of 6.80-7.60, which has been reported as optimal 

for other CHO cell lines (Link et al., 2004; Yoon, Choi, Song, & Lee, 2005).   

 

Figure 7-3A Harvesting operation at two different volumes. V=250 mL, ΔV=50 mL, V=500mL, 

ΔV=100 mL. Harvesting occurred at the times of 145,196,244,293 hours. Three repeats were 

done for 250 ml and two repeats for 500 ml.  
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Figure 7-3B Viability graph. Harvesting operation at two different volumes. V=250 mL, ΔV=50 

mL, V=500mL, ΔV=100 mL. Harvesting Occurred at the times of 145,196,244,293 hours. Three 

repeats were done for 250 ml and two repeats for 500 ml. 

Figures 7-3C and 7-4A-B show the metabolic condition observed in the spinners operating with 250ml 

and 500ml working volume, respectively. As shown, the higher cell density in the low-volume spinner 

led to a higher relative consumption rate of glucose in the post-exponential phase. They also show 

lactate and ammonia concentrations are nearly identical and below inhibitory level in both cultures. 
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Figure 7-3C Glucose profile for 250 and 500 mL flasks. Harvesting operation at two different 

volumes. V=250 mL, ΔV=50 mL, V=500mL, ΔV=100 mL. Harvesting Occurred at the times of 

145,196,244,293 hours. Three repeats were done for 250 mL and two repeats for 500 mL. 
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Figure 7-4A Lactate profile for 250 and 500 mL flasks. Harvesting operation at two different 

volumes. V=250 mL, ΔV=50 mL, V=500mL, ΔV=100 mL. Harvesting Occurred at the times of 

145,196,244,293 hours.  
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Figure 7-4B Ammonia profile for 250 and 500 mL flasks. Harvesting operation at two different 

volumes. V=250 mL, ΔV=50 mL, V=500mL, ΔV=100 mL. Harvesting Occurred at the times of 

145,196,244,293 hours. Three repeats were done for 250 mL and two repeats for 500 mL 

The observed decline in viable cell concentrations during intermittent harvesting operation (Fig.7-3A) 

suggests that an irreversible growth arrest occurred during long-term periodic operations.  This steady 

decline in viability rate coincided with a decrease of pH to growth-inhibiting level as shown in Table 

7-1 (pH< 6.6). Oncogene-induced growth arrest or replicative senescence has been reported to occur 

under harsh environmental conditions and it is often related to p53 regulation (Ruiz et al., 2008) and 

the effect of low pH on the regulation of p53 and cell damage has been clearly established (Xiao, Li, 

Yang, & Liu, 2003) . 
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To further assess whether the reduction in growth is due to depletion of a substrate or whether there is 

accumulation of an inhibitory compound in the medium two additional experiments were conducted as 

follows: (i) a fed-batch culture supplemented with 5× concentrated feed; and (ii) a full harvesting 

operation. The full harvesting culture was prepared with 500 mL of 2× concentrate SFX-CHO medium; 

the fed-batch culture employed an initial volume of 300 mL normal (1×) SFX-CHO medium. Once the 

cell density had reached an approximate maximum (80 h), the culture conditions were manipulated. In 

the full harvesting spinner, complete renewal of the culture supernatant was performed (by centrifuging 

of the total culture, discarding the supernatant and returning the cells in a same volume of fresh 

medium). In the fed-batch spinner, four feedings of 50 mL concentrated 5× SFX-CHO were added 

every 48 h, starting at 80 h. The results are shown in Fig. S1A–D (See Appendix D). Figure S1A, which 

shows viable cell concentration illustrates the growth-inhibition effect of pH at different working 

culture volumes. Until the peak in cell concentration is reached (~80 h) these experiments are equivalent 

to the experiments described in Fig. 7-3 and Fig 7-4. While both spinners started with equal cell density, 

a higher peak cell level was achieved in the fed-batch spinner, which started with a volume of 300 mL 

compared with the 500 mL culture used for intermittent harvesting. However, in the fully harvested 

spinner, not only was cell growth renewed after the harvesting event (80 h), but the cells maintained 

higher density for a significant time (~100 h). Conversely, in the fed-batch run, no improvement in 

viability was observed after each feeding, and the cells gradually entered a decline phase during which 

viable cell density and total viability decreased. Metabolite levels for these runs are shown in Fig. S1B–

D. The glucose level (Fig. S1-C) never falls below the limiting concentration, due to refreshing of the 

culture. The glutamine consumption rate in the full harvesting culture was low (Figure S1-D), while 

glutamine was depleted in the fed-batch culture due to consumption and dilution. Figure S1-B shows 

lactate production, revealing a high value of lactate at the early stage of the culture (which may have 
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been caused by the high initial cell density). In the full harvest culture, lactate was produced quickly 

after the medium replacement event: the concentration increased from near zero to over 10 mM in 24 

h. This rapid production of lactate demonstrates how quickly culture conditions can be changed by the 

metabolic activity of a high viability culture. In a separate experiment, an attempt was made to improve 

growth in a fed-batch mode by controlling pH at 7.1–7.2 by manual addition of NaOH (Data not 

shown). Although the growth in this pH-controlled culture was slightly higher than for cultures without 

pH regulation, a metabolic shift toward glycolysis gave rise to a very large specific consumption rate 

of glucose, almost 6 times larger than the consumption rates for cultures without pH regulation. Glucose 

was completely consumed after 3 days at which time the growth stopped and the lactate levels reached 

45 mM. In principle, we could have added more glucose after its depletion but this would have resulted 

in further lactate accumulation and so it could not lead to improvements in yield. Thus, for improvement 

of yield, we concluded that an intermittent harvesting operation is a better approach. 

  Conclusion 

This chapter describes the development of a comprehensive dynamic model for Chinese hamster ovary 

(CHO) cells producing anti-RhD monoclonal antibody (mAb) that accounts for metabolic behaviour 

over time. Development of the model required identification of the underlying parameters that play key 

roles in cell viability and monoclonal antibody productivity.  

It was found that a decrease in pH, attributed to the accumulation of an acidic compound, significantly 

inhibited cell growth. Although this suppression effect can be temporarily mitigated by partial or full 

replacement of culture with fresh medium, the culture rapidly returns to unfavorable conditions (due to 

high cell density and subsequently high metabolic activity).  As a consequence, cells gradually—and 

irreversibly—lose their capacity for regeneration.  
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We extended our previously published model to account for the cumulative reduction in pH and 

consequent growth inhibition.  The model accounts for the effects of several significant factors on cell 

growth and metabolic activity, and model simulations successfully reproduce the time profile of cell 

populations and major external metabolites. It should be noticed that the model does not account for 

effects that have not been explicitly tested in the experiments such as glucose depletion. To test the 

accuracy of the mathematical model it was used as the basis for an offline optimization of an 

intermittent harvesting schedule. Our experimental results showed that the predicted intermittent 

refreshment of the medium at optimal instances minimized cell damage and significantly improved 

productivity as compared to a batch operation.  The novel description of accumulated cell damage 

presented here can be used to incorporate the dynamics of this crucial mechanism into models of CHO 

cell culture, thus improving the accuracy of model-based predictions of culture yield. 
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Chapter 8 

Identification of a dynamic flux balance model of a CHO cell culture 

Mathematical models are essential tools for improving the understanding of cell metabolism and cell 

culture behavior and for their use in model-based bioprocess optimization. Dynamic flux balance 

analysis (DFBA) type of models are based on the premise that biological cells have adapted through 

evolution to optimally allocate resources to achieve certain biological goal subject to some limitations. 

A key challenge in the formulation of a DFBA is to identify from experimental data the specific 

biological goal that the cell seeks to optimize (objective function) and a minimal set of kinetic bounds 

(constraints) so as to avoid overfitting of the data used for model calibration. This paper applies a 

systematic methodology for identifying an objective function and constraints necessary for describing 

a dynamic culture of mammalian CHO (Chinese Hamster Ovary) cells. Using this approach we are able 

to calibrate a model that describes the data up to an a priori known margin of noise and which provides 

rational explanations for biological phenomena such as the excessive production of lactate by anaerobic 

fermentation during the growth phase of the cell culture referred to as the “Warburg effect”. The model 

that best explained the data during the exponential phase of growth is based on the maximization of 

growth rate combined with the minimization of NADH production in the cytoplasm and minimization 

of NADPH consumption in mitochondria and requires constraints on the consumption/production rates 

of only 5 metabolites. 
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 Introduction 

The success of monoclonal antibodies has significantly increased their demands and created a need for 

improving production yield through the optimization of cell lines and manufacturing processes. 

Mammalian cells, in particular, Chinese Hamster Ovary cells, are the host of choice for monoclonal 

antibody production.  

In order to optimally manipulate mammalian cell systems whether at the genetic or at the bioprocess 

level, it is imperative to understand the metabolic behavior of the biosystem under study and a 

mathematical model is a good tool to gain such understanding. 

A very common approach in biochemical modeling is kinetic modeling of the main reactions involved 

in the process. These models are based on a system of differential equations that describe the evolution 

of specific metabolites with respect to time by empirical mass balances where the consumption of the 

metabolite towards biomass or towards another metabolite or the production rates or by-products are 

determined by empirical Monod kinetic terms and yields. Each one of these kinetic expressions involve 

maximal rate coefficients, half saturation constant and yield coefficients thus resulting in a large 

number of calibration parameters that need to be identified from available experimental data.  

Therefore, these types of models are generally heavy parameterized when many metabolites are 

considered thus rendering them very sensitive to noise and inaccurate especially when data is scarce. 

Furthermore, the numerical estimation of parameters for these models from the solution of nonlinear 

optimization problems is challenging due to the large number of parameters and the nonlinearity of the 

kinetic expressions that may lead to the occurrence of multiple minima. 

An alternative modelling approach is based on the Dynamic Flux Balance Analysis (DFBA) algorithm 

(Mahadevan et al., 2002) DFBA is based on the formulation of an optimization problem where a 
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particular flux distribution in a metabolic network is sought such as a specific objective function is 

optimized subject to certain constraints. The rationale behind DFBA is that natural evolution had 

conditioned the cell to act as an agent that allocates resources such as a biological objective is 

optimized.  Being based on an optimization with few limiting constraints, DFBA models have been 

reported to be advantageous over other aforementioned modelling approaches because for certain 

micro-organisms such as bacteria the have often required a smaller number of calibration parameters  

A DFBA model can be formulated as follows: 

@ each sampling time i 

max 𝑐𝑇𝑣  

        subject to 𝑣𝑖 >⁡0         (8-1) 

     𝑓(𝜓𝑖) ≤ ⁡
1

𝑇𝑋𝑖
(𝛹𝑖+1 − 𝛹𝑖) =A. 𝑣𝑖 ≤ 𝑔(𝜓𝑖) 

     𝛹𝑖+1 = 𝛹𝑖  + A. 𝑣𝑖  𝑋𝑖 T  (T= time interval)       

Where  𝑋̅ is the average biomass concentration, 𝑋𝑖⁡is the biomass at time interval i, 𝑓(𝜓𝑖)⁡ and 𝑔(𝜓𝑖)r   

are lower and upper consumption or production rates of constraining metabolites concentration. These 

metabolic rates can be defined as a function of the concentration of a metabolite participating in the 

corresponding reaction. These rate constraints must be determined from experiments. The sampling 

time interval, T is selected to discretize the mass balances for the purpose of numerical integration 

(Budman et al., 2013; Mahadevan et al., 2002). 

Although in the past researchers have chosen the objective function and constraints in model (8-1) by 

trial and error, in our recent work (Nikdel & Budman, 2016) we have proposed a systematic approach 

for finding those from data and illustrated this method for a culture of microbial (non-mammalian) 

systems. For bacterial and microbial organisms typical objectives that can be successfully used to 
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describe experiments are maximization of growth and/or maintenance of a particular redox potential. 

However, suitable optimization objectives they have not been proposed as yet for dynamic metabolic 

models of mammalian cells due to their relative more complex behavior as compared to bacteria. For 

example, mammalian cells exhibit particularly regulatory mechanisms such as programmed cell death 

(apoptosis) that have to be taken into account when defining an objective function for optimization.  

Accordingly, systematic approaches for identifying DFBA models for mammalian cells have not been 

reported as yet.  

A key challenge in the identification of dynamic metabolic flux models from data is that they require 

minimizing a sum of square errors between data and model predictions over the duration of the 

experiment while satisfying at each time interval the optimization in (8-1) thus resulting in an overall 

bi-level optimization problem. Since the resulting bi-level optimization is numerically challenging and 

prone to convergence to local minima, we proposed (Nikdel & Budman, 2016) instead a single level 

optimization algorithm, briefly summarized in Section 2, to identify DFBA models based on the idea 

of set based description of the experimental data. In this study we apply this methodology, which 

previously was used for a microbial systems, to mammalian cell data. The goal here is finding a suitable 

objective function and a set of kinetic constraints to describe the behavior of mammalian cells by a 

DFBA model. Another key objective of the current study is to assess whether a dynamic metabolic flux 

model of mammalian cells is indeed will require a significantly lower of tuning parameters as compared 

to previously reported dynamic models (Naderi et al., 2011a). 

This chapter is organized as follows. In Section 2 the algorithm proposed by authors (Nikdel & 

Budman, 2016) for identifying the DFBA constraints, is summarized. Section 3 discusses the 

mammalian cells study including the metabolic network used and the experimental data. Section 4 



 

148 

 

presents the identification of the mammalian cell DFBA model and discusses the results followed by 

Section 5 with Conclusions. 

 Summary of the algorithm for identifying DFBA constraints  

The method for finding the limiting constraints is based on representing the data by convex sets.  It is 

assumed that because of sensor noise or unaccounted disturbances, the metabolites levels are bounded 

by upper and lower limits at each time interval for which data is collected. For example, set constraints 

for glucose concentrations during a batch culture that consumes glucose are illustrated in Figure 8-1. 

 

Figure 8-1 set constraints for glucose concentrations during a batch culture  

Thus, the actual value of metabolites concentrations at each time interval are bounded within constraints 

that are referred heretofore as sets.  

Using this set-based description of the data a 3-step procedure is used to find a DFBA model as follows: 
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Step 1: Calculate at each time interval a flux distribution from (8-1) that maximizes the objective 

function to be chosen for the process, e.g. maximization of growth subject to the set based constraints. 

Mathematically, the problem is expressed based on (8-2) as follows: 

 

@ all T intervals  (k=1,…,T)      (8-2) 

     max
𝐯𝐤

𝐜𝐓. 𝐯𝐤⁡  

        Subject to: 

        
−1

∆𝑡.𝑋𝑘
(ѱ𝑘 − ѱ𝑘+1

𝐿 ) ≤ 𝐒. 𝐯𝐤 ≤
−1

∆𝑡.𝑋𝑘
(ѱ𝑘 − ѱ𝑘+1

𝑈 ) 

Where matrix S is the stoichiometric coefficients, 𝐯𝐤 = (𝒗𝟏,𝒗𝟐, … , 𝒗𝒏)𝐤 is the vector of fluxes⁡⁡of n 

metabolites at the time interval of k. 𝒄𝑻. 𝐯𝐤 is the cost to be maximized or minimized (objective 

function),⁡ѱ𝑘 and 𝑋𝑘 represent measured concentrations of extracellular metabolites and biomass at the 

time of k. The inequality constraints in (8-2) are derived from Euler discretization of the general mass 

balance equation for each metabolite ѱ𝑚 (
𝑑𝝍

𝑑𝑡
= 𝐒𝒗𝑋) as done in (8-1). The inequality directions in 

equation 8-2 are applied for a metabolite that is being consumed whereas the directions are inverted for 

a metabolite that is being produced. It should be noticed that while in (8-1) the constraints are given as 

a function of the concentrations through the vector functions f and g to present kinetic limitations on 

the rate of reactions, in (8-2) the functions are unknown at this stage and they must be identified. Instead 

the production/uptake rates in (8-2) given by 𝐒. 𝐯𝐤 are constrained based on the upper and lower bounds 

identified directly from data, ѱ𝑘+1
𝑈  and ѱ𝑘+1

𝐿  respectively. 

Step 2: Identify a minimal number of metabolites which uptake/production rates need to be constrained 

as in (8-2) in order to fit the experimental data described by convex sets.   
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To find the uptake/production rates which are limiting the solution space of equation (8-2), a Lagrange 

multiplier approach(Bertsimas & Tsitsiklis, 1997) is formulated as follows: 

 𝐯𝐤=argmin
𝐯𝐤

(−𝐜𝐓𝐯𝐤)         (8-3) 

S.t:                      GLI(𝐯𝐤) ≤ 0  

GLI(𝐯𝐤) ≤ 0 are the inequality constraints lower and upper bounds of the production or the uptake rate 

of measured metabolites . If the Lagrangian is defined as follows: 

𝐿(𝐯𝐤, λ) = ⁡ 𝐜
𝐓𝐯𝐤 − λ⁡GLI(𝐯𝐤)  

The Lagrange multipliers and the optimal solution 𝐯𝐤 to (8-3) can be obtained from the following set 

of conditions: 

𝜆≥ 0           (8-4a)  

GLI(𝐯𝐤) ≤ 0          (8-4b) 

𝜆× GLI(𝐯𝐤) = 0          (8-4c) 

∇𝐯𝐤L(𝐯𝐤, 𝜆)=0          (8-4d) 

Where GLI(𝐯𝐤) is an inequality constraint, 𝐯𝐤 is the optimal solution of the fluxes. By solving equations 

(4a-4d) the value of the Lagrange multipliers (λ) for each of the constraints can be calculated. Equation 

(4c) represents the complementarity condition that forces either the Lagrange multiplier or the 

corresponding inequality to be zero. Based on the interpretation of the Lagrange multipliers a λ = 0 

implies that by relaxing the corresponding constraint the value of the function which is intended to be 

maximized does not change indicating that, this constraint is not active. In contrast, a large value of the 

Lagrange multiplier is an indicator that the constraint is active. From the active constraints, it is possible 

to assess which metabolite’s consumption or production rates are limiting constraints at each interval 

of the solution of the DFBA. 
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Step 3- Find kinetic expressions as a function of metabolites’ concentrations that can describe the time 

evolution of the active constraints found in step 2. To accomplish this, at each time interval, the active 

constraints are formulated with a particular type of kinetic expressions e.g. Michaelis-Menten or other 

as a function of the concentration of metabolite that participates in the reaction associated to the active 

constraint as follows: 

dѱm

dt
=

Vm,max.ѱ𝑚

Km+ѱ𝑚
𝑋         (8-5) 

Where, 
𝑑ѱ𝑚

𝑑𝑡
 is the uptake or production rates of a metabolite (active constraints) identified in step 2 as 

a function of its concentration ѱ𝑚⁡at each corresponding time interval and Vm,max, Km⁡ are the kinetic 

parameter values to be identified as described. 

The identification of the parameters in (8-5) is done by regression of the values of the production/uptake 

rates
−1

∆𝑡.𝑋𝑘
(ѱ𝑘 − ѱ𝑘+1

𝑈 ) and/or 
−1

∆𝑡.𝑋𝑘
(ѱ𝑘 − ѱ𝑘+1

𝑈 ) that were identified as active in step 2 with respect to 

the corresponding value of the metabolite concentration ѱ𝑘 . Using these parameters it is possible to 

generate a predictive dynamic metabolic flux model as shown in Equation (8-1) where expressions (8-

5) are used as the functions f or g in (8-1). 

The main numerical advantages of this three-step approach, are: i- step 1 and step 2 involve the 

solutions of a linear programming problems and therefore are simple to compute and ii-step 3 involves 

separated fitting of each metabolite profile as compared to other modelling approaches that require 

fitting of all the metabolites by simultaneous calibration of a larger number of model parameters. 

The linear programs defined in this section (8-2)-(8-4) were solved using the cplexlp solver (‘interior-

point’ algorithm) of IBM ILOG CPLEX for MATLAB Toolbox.  

In an earlier work (Nikdel & Budman, 2016) showed that the above 3 step procedure is able to 

successfully identify an assumed dynamic metabolic flux model of E.coli from in silico data generated 
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by that model thus corroborating the ability of the algorithm in identifying the model used for 

generating the in silico data.  

 Mammalian cells study: metabolic network and experimental data 

 Metabolic network of reactions used to formulate the matrix S in equations (8-1) 

and (8-2). 

The stoichiometric matrix S, in (8-1) and (8-2) is obtained from the main stoichiometric reactions for 

the mammalian cell under study. The metabolic network in this study it was taken by combining group 

of reactions used in different studies that were considered relevant to describe experiments with CHO 

cells (Naderi et al., 2011a; Zamorano, Wouwer, & Bastin, 2010) such as TCA cycle, glycolysis, amino 

acids’ synthesis reactions and transamination reactions. The glutamine synthesis reaction was added 

since the cell line used in the current work is able to synthesize glutamine. This resulting network 

involves 38 reactions including one reaction describing the formation of biomass as a function of amino 

acid contributions.  The reactions considered account for the main contributors to the carbon and 

nitrogen balances. For simplicity and since they were not measured, the balances for co-metabolites 

such as ATP/ADP and NADH/NAD+ are not explicitly considered at this stage. 

Since the model calibration and comparisons have been limited in this study to the growth phase only, 

mechanisms of cell necrosis which are predominant during the post-exponential phase were not 

explicitly considered. However, we have considered in the model the occurrence of apoptosis 

(programmed cell death) which is expected to occur in different degrees from the beginning of the batch 

culture. 
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 Experimental data used for model calibration/validation 

The data was obtained with a CHO (Chinese Hamster Ovary) cell line modified GS producing anti-

rabies IgG. This cell line is able to synthesize glutamine so the latter does not have to be added for 

growth.  

Two different experimental media from (MilliporeSigma, St. Louis, MI, USA) - medium 1 and medium 

2 were used for experimental purposes. Cells were in their exponential phase when inoculated for the 

actual experiment. Cells were inoculated at the cell density of about 1.1 million cells/mL for medium 

1 and 2.4 million cells/mL for medium 2 in a 3 liter bioreactor with 1.5 liter working volume. 

Experiment one was continued for 50 hours and experiment two using medium 2 that had a richer 

medium was continued for 96 hours. 

Cell density and viable cell density of the cultures were obtained from a Trypan blue exclusion method. 

Glucose, lactate, ammonia, and glutamine concentrations were measured with a Nova BioProfile 

analyzer. Amino acids were measured by HPLC. Due to the nature of the analytical methods data 

included amino acids and biomass concentrations were only available once per day. On the other hand, 

this data sampling frequency was insufficient for generating smooth estimates of the uptake rates 

bounds.  Therefore, we used non-linear polynomial regression in MATLAB to interpolate the data and 

generate smoother estimates of metabolites’ rates of production or consumption. 

 Identification of DFBA model for CHO cells  

One of the main goals of the current work was to identify a DFBA model that can explain some of the 

particular behavior exhibited by most mammalian cell systems such as very high production of lactate 

during the growth phase and cell death due to apoptosis (programmed cell death).   
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Flux balance models have generally adopted the optimality assumption of evolutionary biology 

whereby cells are using resources optimally to maximizing or minimizing a specific objective function 

in order to survive. Maximization of growth or biomass (Orth et al., 2010) has been commonly used 

for most studies dealing with bacteria. The steady-state FBA modeling studies that have been reported 

involving different objective functions have been mostly done E.coli. Here we show that defining the 

right objective function can greatly impact the DFBA model prediction accuracy for mammalian 

systems. 

 The formulation of the DFBA model involves identifying a suitable objective function 𝑐𝑇𝑣 equations 

8-1 and 8-3, and rate limiting constraints corresponding to particular amino acids as per the method 

presented in Section 2. 

The approach adopted in this work is to test the 3-step identification procedure with different objective 

functions 𝑐𝑇𝑣  (equation 8-3) and check a posteriori the sum of square errors between model predictions 

and data in order to choose a best model, i.e. most suitable objective function and set of limiting 

constraints. 

Mammalian cells must accomplish a much more diverse set of functionalities during their time 

evolution as compared to bacteria that seems to be targeted only to grow faster. For example, during 

their growth phase, mammalian cells make very inefficient use of resources in terms of ATP production 

since most of the glucose is initially converted to lactate instead of being consumed toward ATP 

production in the TCA cycle. This preferential consumption of glucose towards lactate is referred to as 

the Warburg effect. On the other hand fast nutrient depletion occurring during the growth phase in batch 

operation may induce apoptosis which results in high cellular death rate. It is known that apoptosis may 
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be enhanced through high TCA cycle activity occurring in the mitochondria (Fleury, Mignotte, & 

Vayssiere, 2002).  

Following the above, to assess which objective function and constraints best fit the experiments and 

successfully capture some of the phenomena described above, e.g. Warburg effect, we identified DFBA 

models with the 3-step method shown in Section 2 for 3 candidate objective functions as follows: 

O1-Maximization of growth rate at each time. 

O2-Minimization of NADH production in the cytosol plus minimization of NAD(P)H consumption in 

mitochondria at each time interval. 

O3-Combination of O1 and O2  

O1 is the objective function typically used for bacteria for which it is assumed that natural evolution 

had driven the microorganisms to the ultimate goal of growing as much as possible despite 

environmental conditions. One can argue that O1 is also a rational choice for mammalian cells during 

the exponential phase of growth where cells exhibiting mostly a growth pattern with a minimal amount 

of dead cells. 

Objective O2 arises from the observation mentioned above that self-programmed death apoptosis is 

largely correlated to the levels of cytochrome-C that is a key protein in the respiratory electron 

transport chain responsible for the synthesis of ATP. Then, since the electron transport reactions are 

coupled to the TCA cycle through NADH/FADH, the minimization of NADH production is 

tantamount to the cells striving to minimize the occurrence of apoptosis (programmed death). 

Although our stoichiometric matrix did not include a specific balance for NADH/FADH, its 

production could be inferred from the sum of the fluxes of the reactions producing NADH in cytosol 
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and reaction consuming NAD(P)H in mitochondria =⁡𝑣(R5) +⁡𝑣(R8) +𝑣(R11) ⁡𝑣⁡(R13)⁡+⁡𝑣(R34) 

+⁡𝑣(R40)+ 𝑣(R43). 

Where the corresponding reaction numbers are given in the Appendix C. 

Objective O3 combines both O1 and O2 to describe the possibility that cell attempt to simultaneously 

maximize its growth while reducing the occurrence of apoptosis.     

To test which objective function is most suitable and to find the corresponding limiting constraints, we 

apply the 3-step identification procedure (Section 2) to the data thus obtaining 3 different models each 

corresponding to the 3 objective functions considered in the study. Then, the models were compared in 

their ability to fit the data for the duration of the batch runs based on the Sum of Squared Errors (SSE) 

between the models’ predictions and the data. 

Following the 3-step method outlined in section 2, step 1 was implemented to find set based constraints 

from data for each of the 3 objective functions.  Secondly, using these set based constraints, the limiting 

constraints were found from the values of the Lagrange multipliers (see Section 2, Step-2) that for all 

the 3 models the active constraints corresponded to exactly the same 5 metabolites: alanine, glutamate, 

lactate, ammonia, and glycine. 

It should be noticed that although the same metabolites must be constrained in the model, the observed 

dependency of the consumption/production rates as a function of the current concentration (found as 

per Step 3 in Section 2) of the corresponding metabolite were different among the 3 models. 

Following the identification of the active constraints and in order to formulate a predictive model it is 

required to calibrate Monod or another type of kinetic expressions to the calculated values of 

consumption/production rates as a function of a corresponding metabolite concentration.  
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Different types of kinetic models, e.g. Monod, Hill and etc. were tried in order to fit the consumption 

production rates as a function of the metabolite concentrations. Although the model predictions using 

the identified kinetic models for the 5 constraints were acceptable, some of the predicted errors were 

found to be slightly higher than the measurement errors expected for the metabolites.  To further 

improve the fitting we decided to use for the 5 identified constraints, look up tables that will provide 

the specific consumption/production rates as a function of concentration values. Since one of the 

objectives of formulating a predictive model was to optimize the process with respect to the feeding of 

nutrient concentrations we develop look-up tables as a function of the main nutrient for this process 

which is glucose. It should be noticed that two of the identified constraints are by-products: lactate and 

ammonia. Then, the proposed dependency of the specific production rates of these two by-products as 

a function of glucose can be justified metabolically by the fact that in reality, some intermediate 

metabolite of glycolysis is actually limiting but it is not measured and therefore, it cannot be used 

explicitly to formulate a predictive model. 

In principle, the 5 constraints would suffice for defining a dynamic metabolic flux model as given in 

(8-1). However, it was found that with these constraints only the optimization problem in (8-1) resulted 

in multiple solutions thus necessitating the addition of coarse constraints to limit the solution space of 

the model. We found that these additional coarse constraints could be given as a function of constant 

upper bound values on the rate of consumption/production of all metabolites. 

It should be noticed that the need for such additional coarse constraints to limit the solution space of 

dynamic models has been recognized and reported before by other researchers (Zakrzewski et al., 

2012). 

 Using the kinetic constraints and the coarse constraints, 3 different models were obtained.  
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First, it was observed that all the 3 models based on the 3 objective functions and their corresponding 

constraints could be fitted reasonably well to the data. Table 8-1 shows the SSE for each of the models 

corresponding to each objective function.  

Table 8-1: Sum of Squared Errors (SSE) for each model (number of parameters are all the 

same) 

Objective Function SSE 

O1-max (growth) 1.49 

O2-min (NADH in the cytosol)-min 

NAD(P)H consumption in mitochondria 

8.74 

O3-combination O1 and O2 
1.3 

  

It is evident from Table 8-1 that O2 results in the worst fit. On the other hand, O1 and O3 provide a 

similar level of fit but O3 results in an improvement in the SSE as compared to O1. 

Figure 8-2 shows a comparison between the data and the predictions obtained with objective O3, i.e. 

maximization of (growth-production of NADH in cytoplasm-NAD(P)H consumption in mitochondria). 

As shown in Figure 8-2 the agreement is very good and the maximal observed errors between the data 

and the model predictions were of the order of up to 10% of the maximal variation in each metabolite. 

These maximal errors are of the order of the expected measurement errors in HPLC (amino acids) or 

the Bioprofile (Glucose, Lactate). 

It is of interest to inspect why the model based on objective function O3 resulted in the best fit to the 

data. To that purpose, it should be recalled that one of the salient characteristics of CHO cells used for 

cell culturing is their high production of lactate during the exponential phase of growth. This 

phenomena, referred to as the Warburg effect is particularly counterintuitive since the higher production 
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of lactate is occurring at the expense of reduced flow of glucose into the TCA cycle where the latter is 

very effective in the production of ATP/mol of glucose. 

Then, to explain the higher suitability of objective function O3 as compared to the other objective 

functions we run the 3 models corresponding to the 3 objective functions with constraints on all 

metabolites but without imposing any constraint on lactate levels and we subsequently tested the 

amount of lactate produced by each of the models.  Figure 8-3 shows the lactate as a function of time 

for the duration of the batch as predicted by the 3 models and as measured by the BioProfile. It is 

evident that objective 3 correctly predicts the large production of lactate which is a key feature in CHO 

cell cultures. 
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Figure 8-2 Dotted lines are the interpolation of experimental data of CHO cell culture number 

1 and solid lines are the DFBA model predictions. 
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Figure 8-3-a Dotted lines are the experimental data of CHO cell culture number 2 and solid line 

are the model predictions 
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Figure 8-3-b Dotted lines are the interpolation of experimental data of CHO cell culture number 

2 and solid line are the model predictions 
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Figure 8-4 Prediction for lactate with two different objective functions: Dot line in the presence 

of objective function O3 and solid line when the objective function is considered O1, Dashed 

line is the experimental data 

It should be noticed that the models obtained in this work are definitely advantageous in terms of the 

lower number of metabolites that have to be modelled in terms of kinetic behaviour as compared to 

other mammalian cell models. However, at this point not necessarily the required number of parameters 

is smaller as compared to other models in the literature since this number depends on the number of 

rows of the lookup tables formulated to describe the dependency of specific consumption/production 
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rates of 5 metabolites as a function of glucose concentrations. At this point, we have not optimized 

these tables so as to minimize the number of entries and this is left for future study. 

Regarding the choice of objective function, although objective O3 is able to correctly predict the lactate 

production when constraints on all other metabolites are used and it also results in the lowest SSE, it 

may not be the best possible objective to be used for a CHO cell system. For instance, it should be 

noticed that objectives O1 and O2 were combined with an equal weight into objective O3. However, it 

is possible that an alternative objective that combines O1 and O2 with different relative weighting may 

result in a better model than the one obtained for objective O3. The search for such optimal relative 

weighting that could reflect ATP or NADH equivalents of growth rate or apoptosis is left for future 

investigation.  

 Conclusion 

A dynamic metabolic flux model for mammalian cells was identified directly from data using a 3-step 

identification approach based on set based constraints. The model is able to correctly predict the 

measured metabolites while only 5 metabolites need to be described by kinetic expressions and used as 

constraints within the optimization problem describing the model. Three objective functions were 

investigated that represented the maximization of growth, the minimization of apoptosis and the 

combination of both objectives. It was found that the combination provides the best fitting to the data. 

A plausibility argument for the superiority of the objective function that simultaneously maximizes 

growth and minimizes apoptosis was that this constraint results in the superior prediction of the 

Warburg effect where lactate is produced in large amounts at the expense of ATP production by the 

electron transport chain. 
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Chapter 9 

Conclusions and recommendations 

The optimal operation of bioprocesses requires mathematical models to develop optimal operating 

recipes. Most mathematical models proposed in the literature that describe the time profiles of nutrients 

and by-products during cell cultures require a large number of parameters for fitting experimental data. 

Recognizing that the over-parameterization of these models make them very sensitive to noise and 

impact their prediction ability we investigated in this work the use of a particular type of models, 

dynamic metabolic flux models, that have been often reported as more compact in terms of the number 

of parameters that need to be identified. Thus, based on preliminary studies in the literature, our working 

hypothesis was that dynamic metabolic flux models would be able to describe the behavior in cell 

culture of different microorganisms with fewer parameters. To objectively assess this hypothesis we 

developed mathematical approaches that will be able to describe experiments with a minimal number 

of parameters.  

The final goal of the thesis was to apply the proposed mathematical approaches to mammalian cell 

cultures. The focus on CHO was motivated by an earlier study that I conducted on cell death in CHO 

cell cultures as a continuation of the work of another member of our research group (S. Naderi). In a 

preliminary study of my thesis, I conducted experiments on CHO cell cultures at different pH for I 

identified carbonic acid as a limiting factor for growth and that intermittent media replacement was 

instrumental to extend the viability of the culture. Following these initial experiments and based on the 

fact that the models of Naderi (Naderi et al., 2011b) were highly parameterized we sought for more 

parsimonious models for CHO cell cultures. Also, the finding that intermittent media replacements 

were notably advantageous for operating CHO cell cultures motivated me to look further into 
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continuous perfusion as a logical continuation of intermittent perfusion operation. Following these 

goals, we were also able to establish a collaboration with Sigma-Aldrich in St Louis, Missouri that 

provided a high producing CHO cell line, growth media for culturing and maintained close 

communication with us on the directions of the project.  

This thesis includes both theoretical and experimental part. In terms of theory the development of 

dynamic flux balance models requires finding a meaningful biological objective function to be 

maximized/minimized and active constraints. To address these challenges two main mathematical 

algorithms were suggested in this thesis which were published in separate papers. The algorithms were 

used initially to describe bacterial cultures, E.coli and B. pertussis but then were also applied CHO cell 

cultures. Following the recognition of the potential of perfusion for increasing cell growth, in the 

experimental section, I developed a bioreactor perfusion system for culturing CHO cells in a higher cell 

density.  

The thesis includes 9 different Chapters involving the different theoretical and experimental aspects of 

the work. Chapter 2 reviewed the relevant literature and Chapter 3 presents the relevant experimental 

and theoretical methods and materials. In the first part of Chapter 4 I reviewed the perfusion mode of 

operation, cell retention systems and challenges that I faced when developing the perfusion bioreactor 

system with an ATF filtration system. Here I have clearly identified challenges that have not been 

properly addressed in the literature such as methods to provide enough DO and for stripping the carbon 

dioxide while controlling the foam formation. Following the identification of these challenges, I have 

formulated a series of practical solutions that help me to develop a high cell density CHO cell culture 

in a 3 liter bioreactor. I performed experiments with this perfusion system where a maximum cell 

density of around 50 million cells per mL culture was achieved and I also showed the ability of the 

system to control the level of potentially toxic by-products such as lactate and ammonia. Although 
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companies are currently conducting perfusion operations of CHO cultures the particular problems 

associated with these operations have not been thoroughly reported. Hence, a paper summarizing our 

findings regarding the perfusion practical challenges and solution is currently in preparation.   

In chapter 5, two algorithms for identifying active constraints for developing DFBA models were 

presented and compared. These algorithms are based on two different concepts: 1- sensitivity analysis 

and 2- identification of active constraints using Lagrange multipliers. These algorithms were initially 

applied for building DFBA models for two case studies of E.coli and B. pertussis in batch and fed-batch 

mode of operation. The E.coli case study used in silico (simulated) data and was purposely developed 

to check the ability of the algorithm to converge to a dynamic metabolic flux model that was a priori 

known. A simplified metabolic network of E.coli containing four reactions was used for this case study. 

The second case study was using B.pertussis producing four antigens required for manufacturing the 

whooping cough vaccine. Data for different batch and fed batch cultures were provided by a company. 

Both of these proposed methods were capable of identifying the active kinetic constraints for E.coli 

example but the one based on the sensitivity analysis was found to be not efficient for the B.pertussis 

case that had a larger metabolic network. The disadvantages of the sensitivity analysis method were as 

follows: i- the method involved the solution of a non-convex bi-level optimization problem that was 

very difficult to solve and require numerous initial guesses to converge to a best solution and ii- the 

sensitivity had to be tested around specific nominal values of the parameters that were not known a 

priori. Hence the method require an iterative procedure where initial nominal parameter values must be 

identified, then the sensitivity is tested around these values and constraints are identified and then with 

these constraints a new set of nominal values have to be calculated and so on.   

While sensitivity analysis has been used before in the context of dynamic flux models, the second 

method that we proposed is novel and it is based on the idea of set-based constraints. The representation 
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of the data by this type of constraint greatly facilitates the identification procedure since it leads to a 

one level optimization problem. Moreover, we show that after identifying the constraints based on the 

values of Lagrange multipliers associated to each constraint, the fitting of a kinetic expression to 

describe the active constraint as a function of metabolite concentration can be done separately for each 

metabolite. This greatly simplifies the identification of the kinetic expressions necessary to formulate 

a predictive model. Although this algorithm based on Lagrange multiplier was shown to be very 

effective it was also found that it resulted in a multiplicity of solutions for the B. Pertussis case due to 

the large dimension of the metabolic network. To address this multiplicity time-independent upper 

bound constraints on the metabolites’ consumption or production rates were required. An additional 

challenge for this algorithm is that the activity/inactivity of the constraint depends on a threshold value 

of the Lagrange multiplier. Hence the activity of the constraint had to be decided by testing the 

sensitivity of the Lagrange multipliers to different levels of noise. This chapter has been published in 

the Biotechnology Progress Journal. 

Thus, two main challenges encountered with the algorithm presented in Chapter 5: 1- the algorithm in 

Chapter 5 find the constraints for an assumed biological objective that is maximized by the DFBA and 

2- the algorithm in 5 required correct assessment of the effect of noise on the Lagrange multipliers and 

this was found to be a laborious task. In Chapter 6 a new set-based algorithm was suggested to address 

these problems for simultaneously finding the biological meaningful objective function together with 

the active constraints through one single optimization problem and noise was directly accounted for in 

the optimization. This method was advantageous compared to prior as it was capable of finding the 

active constraints, objective function, and the upper bound constraints simultaneously using a bilinear 

optimization formulation.  This method was also verified using two case studies of E.coli and B. 

pertussis. After corroborating the accuracy of the algorithm with the simulated E.coli case study we 



 

170 

 

applied the algorithm to data from a B. pertussis case study (experimental data was provided by Sanofi 

Pasteur). The maximization of the biomass was identified as the best objective function and the uptake 

rate of phenylalanine was discovered as the single active constraint.  Thus the algorithm was able to 

find a highly compact model with one single kinetic expression. This algorithm is particularly 

advantageous as compared to the algorithm in Chapter 5 since it formally addresses the level of noise 

and its effect on the measured consumption/production rates in the optimization problem. However, the 

problem of multiplicity of solutions and the need to limit the solution space of the optimization problem 

by adding time –independent upper bounds on the metabolites’ consumption and production rates still 

remains as a challenge to be addressed in future research.  The results in Chapter 6 were reported in a 

paper published in the journal Bioprocesses and Biosystems Engineering. 

Chapter 7 reports my above mentioned contribution as a second author with a study dealing with cell 

damage due to the accumulation of carbon dioxide in cell culture flasks. By performing experiments at 

three different pH, I was able to identify that a reduction in pH significantly reduces the cell growth. 

Another experiment in shaker flask at two different volumes of 250 and 500mL was performed to study 

the effect of gaseous carbon dioxide. This experiment was performed in a semi-perfusion mode by 

substituting a portion of spent medium with fresh media at different times. The initial pH in the two 

spinner flask were the same but a higher pH drop was observed in the 500 mL flask as compared to the 

250 mL flask that hinted at an accumulation of an acidic compound in the spinners affecting growth.  

Based on pH and pK calculations we were able to identify carbonic acid with the pka=6.4 as the most 

plausible compound affecting cell growth. 

In chapter 8, the algorithms developed in chapter 6 for finding active constraints and biological 

objective function were used to develop a DFBA model for CHO cells in a batch experiment. At this 

point, we have only been able to fit the model for the exponential phase of growth. A key finding in 
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this chapter is that the biological function for mammalian cells that can be used to best describe the 

data is not as simple as for bacterial systems where only growth rate was maximized. In the case of 

mammalian cells, the simultaneous maximization of growth rate and minimization of NADH 

production in the cytoplasm and minimization of NADPH consumption in the mitochondria resulted in 

a better fit of the data. We have explained this finding by the fact that the production of NADH in the 

TCA cycle is correlated to apoptosis and thus the mathematical minimization of NADH production it 

describes the ability of the cell to optimize its chances for survival by minimizing apoptosis. Constraints 

on 5 metabolites were necessary to describe the data. Following fitting of the consumption/production 

rates of the limiting metabolites with standard kinetic expressions (e.g. Michaelis-Menten, Hill) it was 

found that the errors between data and model predictions were acceptable but not as accurate as 

expected considering the measurement error. To improve the fitting look-up tables were used that 

describe the consumption/production rates corresponding to the active constraints as a function of 

interpolated values among few glucose concentrations. 
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 Future work 

 Genome-scale DFBA models 

Following the publication of the genome sequence of CHO cells, the current models could be extended 

to include gene regulatory mechanisms. Following the multiplicity of solutions observed in some of the 

studies it would also be important to include constraints other than kinetic constraints considered in the 

current work e.g. thermodynamic constraints, protein expression constraints, gene expression related 

constraints etc. 

 In-silico Metabolic Engineering 

One important application of the developed DFBA model would be to develop in silico metabolic 

engineering approaches for designing better CHO cell lines producing more desired proteins and fewer 

by-products such as lactate. For example, DFBA models could be used for investigating the gene-

deletion targets in CHO cells based on identified constraints.  By combining the DFBA model with the 

method OptKnock(Burgard, Pharkya, & Maranas, 2003) that has been proposed by for gene-deletion 

in bacterial strains one could dynamically optimize cell line productivity.  

 Cell culture design and process optimization 

Finding the best combinations of nutrients in the cell culture media has always been an important goal 

in the biopharmaceutical industry. DFBA models can provide insights in terms of limiting external 

metabolites, intracellular metabolites and metabolites that are not easy to measure such as vitamins and 

trace elements. The model will be useful to ensure that sufficient amount of these elements are available 

in the media. Nowadays the most common technique for media optimization is black-box modelling 

based on techniques such as multivariate statistical tools.  By combining the information from DFBA 
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model with multivariate data analysis based models into hybrid models (empirical+mechanistic) the 

growth medium could be optimized. 

  Optimizing the protein quality and Quality-by-Design approaches 

Protein quality and lot-to-lot variability are important issues in the biopharmaceutical industry.  One of 

the important protein quality attributes is glycosylation. Models have been developed that link the 

concentration of extracellular metabolites to glycosylation models but due to a higher number of 

parameters to be estimated developing such models has been very difficult. Using DFBA models with 

less parameters compared should be helpful in developing models that couple the cell metabolism with 

glycosylation processes. 
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Appendix A 

 

J1   39.43 Ac + 35O2⁡→⁡X 

J2   9.46Glc + 12.92O2⁡→⁡X 

J3   9.84 Glc + 12.73O2⁡→⁡1.24Ac + X 

J4   19.23Glc⁡→⁡12.12Ac +X 
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Appendix B 

Metabolic network of B.Pertussis 

J1   Pyruvate → PEP 

J2   Pyruvate + CoA → Acetyl-coA + CO2 

J3   Acetyl-CoA + H2O +oxaloacetate → citrate + CoA 

J4   citrate →α-ketoglutarate + CO2 

J5   α-ketoglutarate + enz-N6 → succinyl transf. + CO2 

J6   Succinyl transf. + CoA → succinyl-CoA + enz-N6 

J7   Succinyl-CoA + phosphate → CoA + succinate 

J8   Succinate + acceptor → fumarate + reduction acceptor 

J9   Fumarate + H2O → malate 

J10   malate → oxaloacetate 

J11   glutamate + NH3 → phosphate + glutamine 

J12   2 glutamate ← glutamine + α-ketoglutarate 

J13   glutamate + H2O →α-ketoglutarate + NH3 

J14   proline + 2H2O → glutamate 

J15   oxaloacetate + glutamate → aspartate + α-ketoglutarate 

J16   aspartate + NH3 ← aspargine 

J17   PEP+HCO_3^-  → phosphate + oxaloacetate* 

J18   lactate → pyruvate 

J19   acetate + CoA ← acetyl-CoA + phosphate 

J20   2 acetyl-CoA → CoA + acetoacetyl-CoA 
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J21   acetoacetyl-CoA → PHB 

J22   glucose-6-phosphate + 3 glyceraldehyde-3-phosphate → 3 ribose-5-phosphate 

J23   acetyl-CoA + carrier-protein → acetoacetyl-carrier + CoA + CO2 

J24   Threonine + 3 pyruvate + 2 glutamate + acetyl-CoA + H2O → NH3 + 3CO2 + 2H2O + isoleucine 

+ α-ketoglutarate +valine + CoA + leucine 

J25   serine + tetrahydrofolate ←→ 5,10-methylenetetrahydrofolate + glycine + H2O 

J26   serine ←→ pyruvate + NH3 

J27   threonine ←→ glycine + acetaldehyde 

J28   aspartate→threonine + phosphate 

J29   hydrogen sulfide + acetyl-CoA + serine → CoA + cysteine + acetate 

J30   glutamate + pyruvate ←α-ketogultarate + alanine 

J31   aspartate + pyruvate + glutamate + succynyl-CoA → phosphate + α-ketogultarate + succinate + 

lysine + CO2 + CoA 

J32   malate → pyruvate + CO2 

J33   amino acids → biomass 

J34   amino acids → pertactin 

J35   PEP → glyceraldehyde 3-P + phosphate 

J36   2GAP + H2O→glucose 6-P + phosphate 

J37   J3 

J38   amino acids → Pertussis toxin 

J39   amino acids → fimbria 

J40   amino acids → FHA 

J41   Inverse of J14 
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J42   Inverse of J27† 

J43   Inverse of J30 

J44   2 glutamate + aspartate → fumarate + α-ketoglutarate + arginine 

J45   Glucose + 6-P GAP + 2 PEP + glutamate → tyrosine + D-xylose + α-ketoglutarate 

J46   Inverse of J26 

J47   valine + α-ketoglutarate → glutamate + 4 methyl-2-oxopentanoate 

J48   2 pyruvate +serine + aspartate + cysteine → CoA + 3 CO2 + glycine 

J49   Inverse of J18 

Stoichiometry of Purines 

Adenine: pyruvate + 2 glutamine + 2 aspartate + glycine → adenine + 2 glutamate + fumarate 

Guanine: pyruvate + 3 glutamine + aspartate +glycine → guanine + 3 glutamate + fumarate 

Stoichiometry of Pyrimidines  

UMP (Urydilic acid): glutamine + HCO_3^-+ aspartate + ribose-5-phosphate →UMP + CO2 + 

glutamate 

CMP (Cytidilic acid): glutamine +HCO_3^- þ aspartate + ribose-5-phosphate + NH3 → CMP +CO2 + 

glutamate 

TMP (Tymidilic acid): HCO_3^- + serine + glutamine + aspartate + ribose-5-phosphate → glycine + 

TMP + glutamate + CO2 
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Appendix C 

Metabolic network of CHO 

R1 Glc → G6P  

R2 G6P → 2·3phosphaglycerate  

R3 3phosphoglycerate →Pyr  

R4 Pyr → Lac  

R5 Pyr → AcCoA + CO2  

R6 AcCoA + Oxal → Cit  

R7 Cit →  KG + CO2 

R8 KG →SucCoA + CO2  

R9 SucCoA → Suc  

R10 Suc → Mal  

R11 Mal → Oxal  

R12 Mal → Pyr + CO2  

R13 Thr →Gly + AcCoA  

R14 Trp → Ala + NH4 +2·AcCoA  

R15 Lys → NH4 + KG  

R16 Ile → Glu + AcCoA + SucCoA  

R17 Leu → 2·AcCoA + 2·CO2  

R18 Tyr → Mal + Oxal + CO2  

R19 Ser + Met → Cys + NH4  

R20 Val → SucCoA + KG  
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R21 Glu + Oxal → Asp + KG  

R22 Glu → KG + NH4  

R23 Glu + Pyr → Ala + KG  

R24 Cys → Pyr  

R25 Ser → NH4 + Pyr  

R26 Gly → NH4 + CO2  

R27 Ser + Thr → SucCoA  

R28 Glu + 3phosphoglycerate → Ser + KG  

R29 Ser → Gly  

R30 Phe → Tyr  

R31 Asn → Asp + NH4  

R32 Gln → Glu + NH4  

R33 Arg → Glu  

R34 Glu → Pro  

R35 His → Glu + NH4  

R36 Gln + Asp → Glu + Asn  

R37 0.0208·Glc + 0.0377·Gln + 0.0006·Glu + 0.007·Arg + 0.003·Hist + 0.0084·Ile + 0.0133·Leu + 

.0101·Lys + 0.0033·Met + 0.0055·Phe + 0.008·Thr + 0.004·Trp + 0.0096·Val + 0.0133·Ala + 

0.026·Asp + 0.0004·Cys + 0.0165·Gly + 0.0081·Pro + 0.0099·Ser + 0.0077·Tyr →Biomass 

R4, R21, R22, R23, R29, R30, R31, R32 and R36 are assumed reversible 
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Appendix D 

 

Figure S-1-A-D Single full harvesting and fed-batch culture 

 

 


