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Abstract

In order to incorporate more composite materials in mass production vehicles within
the automotive industry, compression moulding manufacturing techniques have been de-
veloped. Using processes such as Sheet Moulding Compound (SMC), and Direct Long
Fibre Thermoplastic (DLFT), composite parts can be manufactured at a cycle time quick
enough for use in mass production vehicles. Composites present a large opportunity to
reduce vehicle mass as they have high specific strength and stiffness compared to metallic
structural materials. They also do not corrode and are more formable then equivalent
metallic materials. However, in order to design a vehicle in the virtual space one needs to
be able to accurately predict the response of the materials used in crash simulations.

The microstructure of SMC and DLFT parts is very different from the laminated com-
posite structures used in other industries. The orientation of the fibres in the material
changes during the manufacturing process. The resulting fibre orientations are three di-
mensional in nature. The existing theories that have been developed for modelling lami-
nated two dimensional composite materials are not applicable to these materials, especially
for predicting material failure. To predict failure in composite materials details of the mi-
cromechanics are required, as they drive the failure phenomena. A framework which is
three dimensional and takes the fibre orientation into account is required to accurately
model these material systems.

A micro mechanics homogenization technique is developed where the material proper-
ties in the region surrounding the fibre change as a function of position within a unit cell
representative of the composite. The change of properties around the fibre is known as a
functionally graded interphase (FGI). This modelling method quasi satisfies the equilib-
rium condition between the fibre and matrix. Through the use of an interphase instead of
an interface, it allows any number of aligned fibres to be represented as a single represen-
tative fibre. The stresses in the fibre and matrix are combined to predict the elastic stress
strain response of a composite.

A generalized solution to this problem is developed, where the stress changes as a func-
tion of position within the FGI. This allows the modelling framework to be applied to
instances where the matrix material is plastically deforming. The strain in the representa-
tive fibre is determined using Eshelby’s solution to the inclusion problem from the strain
applied to the far field of the composite unit cell (or finite element). Since the strain in
the representative fibre and bulk matrix material is different a third deformation region
called the interphase matrix is included within the FGI and accommodates the additional
strain through a compatibility condition. The resulting solution allows for the stress and
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strain in the fibres, the bulk matrix and the matrix material adjacent to the fibre to be
separately determined and used in the prediction of failure.

The model is further developed by considering what happens when a composite material
is unloaded and the stresses return to zero. The elastic strain in the bulk matrix material
is related to the elastic strain in the fibre allowing for a more direct method of strain
partitioning when the matrix is plastically deforming around an elastic inclusion. This is
more computationally efficient than existing methods for incremental strain partitioning.

To incorporate fibre orientation in the model, a discrete number of representative fibre
orientations are considered. A volume fraction of fibres is assigned to each of these orienta-
tions to predict the homogenized response of a compression moulded composite. Through
studying three SMC microstructures under various applied strains it is determined that
sixty representative fibres and associated fibre volume fractions are required to predict the
response of an SMC material. This can be used to predict the response of the composite
material required for the development cycle of new vehicles for the automotive industry.
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Chapter 1

Introduction

Automotive vehicle material selection is being driven by “fuel economy” regulations, and
the increasing inclusion of heavy electronic components for infotainment and advanced
powertrains. It is desirable to reduce the mass of the vehicles structure to meet these new
regulations and mitigate the inclusion of heavy components [137]. The energy consumption
of a vehicle can be broken down into three components: the energy required to overcome
terrain, the energy required to overcome aerodynamic drag, and the energy required to
overcome frictional forces such as rolling resistance [161]. The vehicle mass has a direct
effect on the rolling resistance and overcoming terrain such as driving over hills, which
effects the fuel economy. Another added benefit of decreasing the vehicle mass can be
observed from Newton’s second law, where reducing the mass decreases the force required
to accelerate, which in turn aids with vehicle dynamics.

The mass of a material is related to its density. To design lightweight structures,
the materials need to be low density, stiff, and strong. Densities of common engineering
structural materials is given in Table 1.1.

Current automotive construction is dominated by steel based designs for passenger
vehicles, with aluminum becoming more prevalent with the new vehicle regulations. Mag-
nesium is used in some casting applications within the body structure, however it presents
a serious corrosion issue when the vehicles are exposed to the environment. Other metallic
materials such as steel and aluminum are also subject to corrosion. An opportunity ex-
ists in replacing metallic structures with composite materials for automotive applications
as their densities are lower than any of the metallic structural materials. The density of
composite materials (ρ) is governed by the rule of mixtures as

ρ = Vfρf + (1− Vf )ρm (1.1)
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Table 1.1: Densities of selected engineering materials; alloys, plastics, reinforcement fibres,
and composites [59, 45]

Material Density (kg/m3)
Aluminum 2700

Carbon fibre 1600-2000
Epoxy 1200-1300

E Glass 2550
E Glass fibre 60% PMC 2000

Kevlar fibres 1440
Kevlar 60% PMC 1380
Polyamide (PA) 1460

Polyamideimide (PAI) 1380
Magnesium 1740
Titanium 4510

Steel 7870

where Vf is the fibre volume fraction, ρf is the fibre density, and ρm is the matrix density.
The challenge in using composite materials is that the behaviour of the material is more
difficult to predict than that of a metallic structure and the high cost associated with man-
ufacturing techniques that have been previously used in the aerospace industry. The high
cost has limited the use to high end vehicles for structural applications such as by Automo-
bili Lamborghini in the early 2000’s [66]. The manufacturing techniques use hand placed
layers of unidirectional or woven composite sheets in a mould which is then processed to
create the final part. This process is both labour and time intensive. Composites materials
are very good in energy absorption applications such as structural safety members. They
have more energy absorption mechanisms than metallic materials making them excellent
candidates for replacing metallic structures in the vehicle body in white [43]. Recently the
application of composite structures in automotive crush structures has been investigated
with promising results [42, 186].

In this thesis, the composite materials under consideration are limited to two phase
composites with long fibre reinforcements and polymer matrix materials. The polymer
matrix materials under consideration are both thermoplastics and thermosets which can
be used to manufacture composites with a quick production cycle time. Long fibres are
described as having an aspect ratio (length to width) of over 100:1 allowing the end effects
to be ignored. The fibres in consideration have a nominal diameter of approximately 10
µm.
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Lower cost fibre glass composite materials have been used to manufacture the body
work for every generation of Chevrolet Corvette since it was introduced in 1953. Low
cost composite materials manufacturing techniques are required to use composite mate-
rials in high volume production vehicles to keep the material competitive with existing
metallic technologies. Compression moulding materials and techniques exist such as Sheet
Moulding Compound (SMC), Bulk Moulding Compound (BMC), and Direct Long Fibre
Thermoplastics (DLFT). These compression moulding materials allow for forming similar
to metallic materials with orders of magnitude lower production cycle times than tradi-
tional hand laid composites. The fibre content of compression moulding composites range
between around 20 and 60 weight percent fibres. The structures made of these materials
are complex and three dimensional in nature and do not behave as laminated composites.
The theory to predict the response of laminated composites in the elastic regime has been
well developed along with associated failure modes. However, the mechanics to describe
the behaviour of three dimensional composite structures is less well developed. A model
which is capable of capturing all composite failure modes is also required. Talreja has de-
scribed this need to create a framework capable of including all existing composite failure
theories [165].

Automotive design has become reliant on computer aided engineering simulations such
as Finite Element (FE) methods to design and validate components for crash worthiness
early in the design cycle. In order to incorporate composite materials within vehicles, the
automotive industry requires material models capable of simulating their response. For
the purpose of automotive design, analysis is limited to FE analysis using two dimensional
shell elements of at least 5 mm in size for component level and full car crash simulations.
However, this level of analysis may not be accurate enough to predict the response of
complex shaped three dimensional composite structures. It is accepted that to be able
to predict failure of composite materials the micromechanics response is required [165].
In order to optimize composite structures for automotive applications there is a need
for a robust model, which accounts for the micromechanics of deformation for composite
materials as well as their failure.

Micromechanics models are based on the interaction between the two phases in a com-
posite material. It is common to create representative volume elements (RVE’s) based
on assumptions about the fibre packing to model the interaction between the fibres and
matrix in a composite material. It is desired to create a modelling framework where the
three-dimensional response of a long fibre composite material is predicted from the material
properties of the two constituents. For compression moulding manufacturing techniques
the fibre orientation distribution must be taken into account. The research hypothesis is:

The micromechanics response of a long fibre reinforced composite ma-
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terial can be captured using a single unit cell, which takes into account
the properties of the reinforcing fibre, the matrix and the mechanical
interaction between the two represented by a functionally graded in-
terphase by subdividing a region of interest into a number specific fibre
orientations.

The material response of a polymer matrix long fibre composite material is a function
of the response of its constituents, with the interaction between the fibres and matrix
being accounted for through a functionally graded interphase. In the model a unit cell
homogenizes the response from a micro level to a meso scale for use in computer aided
engineering of automotive structures made out of long fibre reinforced composite materials.
The model accounts for the response of the composite up to the point of failure and is
formulated to allow for future implementation of failure theories.

1.1 Summary of Model Requirements

The requirements for the model are:

• Incorporate three dimensional

• Work for all loading directions

• Capture both elastic and plastic response

• Design for implementation of failure as a future enhancement

• Incorporate fibre orientation data

• Be computationally efficient

• Be size independent

• Develop for LS-DYNA FE software
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Chapter 2

Literature Review

To achieve the goals outlined in the introduction, an understanding of composite materials
is required and the relevant literature has been studied. To combine the material behaviour
of the two phases, information regarding the material behaviour of the individual phases is
required. The interaction between the phases and methods to describe the micromechanics
are required. Understanding of existing homogenization schemes is necessary to develop a
computationally efficient model. The mechanics of composite failure is necessary to develop
the model such that failure can be implemented in the future. In order to incorporate fibre
orientation, familiarity with methods others have used is necessary.

2.0.1 Existing Material Models in LS-DYNA

Due to the desire of these models to be used in the automotive industry the capabilities
of the models in LS-DYNA must be known. LS-DYNA contains several material models
developed specifically for composite materials are given in Table 2.1. These built in material
models only capture the elastic response of laminated composites with some common failure
theories accounted for. Therefore, in order to use LS-DYNA to model compression moulded
composite materials a user defined material subroutine is required. Additionally details of
the micromechanics response are desired for the future implementation of failure theories.
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Table 2.1: Composite material models available in LS-DYNA

Material card Name Description
MAT 22 Composite Damage Orthotropic elastic with Chang

and Chang damage for laminates
MAT 54,MAT 55 Enhanced Composite Dam-

age
Orthotropic elastic with damage

MAT 58 Laminated Composite Fab-
ric

Orthotropic elastic with failure
for laminates

MAT 59 Composite Failure Model Orthotropic elastic with failure
for laminates, works with solid el-
ements

MAT 116 Composite Layup Elastic response of composite
layups

MAT 161, MAT 162 Composite MSC Progressive failure of composite
layups

MAT 219 CODAM2 Composite damage model for
transversely isotropic laminates

MAT 235 Micromechanics Dry Fabric Realignment of fabrics when
formed

MAT 261 Laminated Fracture Daim-
ler Pinho

Damage model for laminated or-
thotropic composites

MAT 262 Laminated Fracture Ca-
manho

Damage model for laminated or-
thotropic composites
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2.1 Phase Properties

In this section, the material properties of the phases in the composite materials of interest
are discussed. In particular, modelling of the polymer matrix material and characterization
is discussed in detail.

This research is focused on materials made by the combination of two distinct phases,
however additional phases occur due to the combination of the two materials known as an
interphase. For nano-composites where the fibre diameter is on the scale of nano-meters
it is common to describe a third phase or interphase between nano reinforcements and the
matrix material. Herasati et al. describe the interphase size based on the variation of the
density of the polymer in the vicinity of carbon nanotubes [94].

2.1.1 Fibre Properties

It is widely accepted that carbon based reinforcing fibres exhibit transversely isotropic
elastic material behaviour. Adams and Crane found that AS(industrial designation) class
graphite fibres exhibit transversely isotropic material behaviour with a modulus 16 times
greater in the axial direction than the transverse direction [13]. King et al. have also found
that both pan and pitched based carbon fibres exhibit transversely isotropic behaviour
[117]. Chamis working with the National Aeronautics and Space Administration (NASA)
has published a list of the transversely isotropic properties for common reinforcing fibres
[44].

Kant and Penumadu have investigated the fracture properties of individual carbon
fibres by creating nano-scale surface defects to measure the fracture toughness and fracture
patterns [114]. Sun et al. have shown that natural fibres have transversely isotropic
properties, and using a transversely isotropic model is required for accurate prediction of
composite properties [162]. The precursor used to manufacture carbon fibres affects the
fibre failure modes due to the local atomic structure of the fibres [40]. Therefore, for the
purpose of model development, transversely isotropic fibre properties will be assumed since
they can be simplified to isotropic depending on the fibre material.

2.1.2 Polymer Experimental Characterization

Buckley et al. have characterized the strain rate sensitivity of epoxy using split Hopki-
son bar apparatus near the glass transition temperature with strains beyond 100% [36].
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Richeton et al. have conducted experimental characterization of polycarbonate (PC), poly-
methylmethacrylate (PMMA) and polyamideimide (PIA) under a range of strain rates and
temperatures under compression [146]. Increasing the strain rate will increase the stiffness
and yield stress, which has a similar effect to decreasing the temperature and is caused
by an increased resistance to polymer chain mobility [146]. Richeton et al. also noted
that there is an increase in temperature due to adiabatic heating from deformation which
cannot be ignored in material modelling [146].

Service conditions for polymer matrix composite have been found to have a profound
effect on the degradation of material properties. In particular, the response of the polymer
matrix is affected by temperature and humidity. An extensive review of polymer aging has
been completed by Hutchison [107]. Humidity, temperature, and length of time exposed
to both has shown to have an effect on the properties of polymers and their compos-
ites. Adams and Crane found that the temperature and humidity of samples affect their
performance in terms of failure; in particular, the environmental effects on epoxy [13].
Shikhmanter et al. found that samples conditioned at elevated temperature and humidity
experienced more fibre matrix debonding upon failure [156]. Olmos and Gonzalez-Benito
have observed that the presence of water affects the interphase between a fibre and matrix
[136]. Haghighi et al. have measured the moisture uptake of polycarbonate polymers [77].

Dasappa et al. conducted creep experiments on glass fibre mat reinforced thermoplastics
to find the temperature and stress effects on strain [51]. Dassappa et al. have also decoupled
the viscoplastic strain from the creep performance of the same composites by reloading the
specimen multiple times at the same load for increasing time and examining the effect
on creep [52]. Both temperature and humidity have effects on the overall performance of
composites, however the exposure histories are required to assess the environmental effects
on the composite. Therefore, although important, the environmental effects are excluded
from the models presented in this thesis.

2.1.3 Polymer Modelling

Polymers exhibit different mechanical behaviour than other common engineering materials
such as metals or ceramics. This is largely attributed to polymers not having a regular
crystallographic arrangement, which metals and ceramics have. Instead, polymers have
long hydrocarbon chains, which are intertwined and in the case of thermosetting polymers
contain cross-links between the hydrocarbon chains. Metals deform plastically through
dislocations of planes of atoms in the crystal structure [106]. Polymers deform plastically
through the chains moving past each other and straightening out [177]. Early work on
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explaining the deformation mechanics of polymer materials was done by Robertson [148]
who based his model on shear stress and Eyring’s model. Eyring’s model is another fun-
damental work on the mechanics of polymers [64]. As polymers behave differently than
metals, new constitutive laws were required to model the material behaviour. The phe-
nomenological constitutive behaviour of metal is well established in the classic works of
Hill on the subject of metal plasticity [96].

The strain rate sensitivity of necking under uniaxial tension was discussed by Hutchin-
son and Neale in 1977 [108]. In this work, the strain rate sensitivity and localization
phenomena of viscous materials was defined in terms of overall strain in the material in
a phenomenological sense. This work is seen as one of the early models, which could be
adopted for use in modelling the plastic response of polymers. In 1983 Hutchison and Neale
discussed the neck propagation of polymeric materials [109], in this work they captured the
softening and subsequent hardening exhibited by polymer materials in a phenomenological
model [109]. While these phenomenological based models can be fit to the stress-strain
response of polymers, they do not contain enough detail to predict the full response of poly-
mers under different loading and environmental conditions. Models based on the physical
mechanisms for polymers are required for predictive models of polymers.

The mechanical behaviour of glassy polymers began to be studied in the late 1980’s
to improve predictions over the previously used phenomenological models. A few new
models emerged to better capture the response of polymeric materials. The first model
was developed by the group of Boyce at MIT in 1988 to capture the strain rate temperature
and pressure dependence of these materials as well as post yield softening [32]. This work
in particular was on poly methyl methacrylate (PMMA) and uses a Eyring dashpot and a
Langevin spring to represent the material response and the incorporation of state variables
to capture the physical response [32]. Boyce presented further developments in 1989 for use
of this model and similar models for both single crystal and glassy polymers through the
decomposition of the deformation gradient into a product of the elastic and plastic portion
[33]. This model was extended to a full three-dimensional model with eight coupled chains
for a constitutive model by Boyce’s group in 1993 [17]. Richeton et al. have described how
the yield stress changes as a function of temperature and strain rate as an extension to the
cooperative model [146]. In Richeton et al. pressure sensitivity on the yield stress is based
on the work of Boyce et al. [146, 32].

A group at Eindhoven University led by Govaert have developed an elasto-viscoplastic
model for simulating the response of glassy polymers known as the Eindhoven glassy poly-
mer model. They created a constitutive modelling framework for polymers up to yield
point using a compressible Leonov model with expansion to multiple modes [166]. The
model has been expanded to work for multiple stress relaxation times [174]. They have

9



modeled the effects of the temperature and strain rate effects on glassy polymers such as
PMMA [173].

Another polymer constitutive model was developed around the same time by the group
of C.P. Buckley at Oxford University. In this model, the stress is divided into three compo-
nents: the mean stress arising from volumetric change, the bond stretching stress and the
conformational stress [37]. Buckley’s group has calibrated this model for various thermo-
plastic and thermosetting resins including epoxy, PMMA, polystyrene, and poly(ethylene
terphthalate) [38, 36, 180, 67]. More details on this model and the implementation into
finite element codes is given in [35, 124]. The advantage of this model over the other two
is that all of the variables used in the constitutive model are physically based whereas the
other models use state variables and fitting parameters which do not have physical bases.
The glass rubber model also allows for multiple relaxation times to be accounted for by
each relaxation time being given its own volume fraction of the polymer resulting in a
relaxation time spectrum.

2.1.4 Functionally Graded Materials

Functionally Graded Materials (FGM) is a special class of materials where the material
properties such as thermal or elastic moduli change as a function of position within the
material. FGM’s were first produced in Japan using a powder metallurgy technique dis-
cussed by Koizumi [118]. Birman and Byrd have reviewed works reporting that FGM’s
have superior energy absorption due to toughness compared to non FGM’s [30]. Centrifu-
gal casting is a technique that can be used to manufacture FGM’s and the properties of
these FGM’s has been researched by Mohammadi et al. [131].

Some researchers have used a functionally graded material within composite material
models. Benveniste and Miloh have defined a quasi FGI by having multiple spheres of
interphase around an inclusion [29], however this does not capture the full functionally
graded nature of composite interphases. Jasiuk and Kouider have described an interphase
zone where the elastic properties change as a function of radial distance from the fibre
described by a linear or power-law relation [112]. This work was extended to provide
thermal properties by Ostoja-Starzewski at al. in this method the interphase zone is
subdivided into regions where the properties are either that of the fibre or matrix these
regions are arranged such that the properties change over the interphase zone [138]. Wang
and Jasiuk defined a functionally graded interphase around spherical reinforcements and
have successfully captured the elastic response of a composite using this functionally graded
interphase [176]. Describing the interaction between a long fibre and matrix has not been
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completed using a functionally graded interphase. Additionally, the current definitions
only consider elastic deformation of the fibre and matrix a more robust model is required
to describe the interaction when there is plastic flow in any of the constituents.

2.2 Micromechanics of Two Phase Composite Mate-

rials

Micromechanics involves modelling the interaction between the fibre and matrix to capture
the response of composite materials. The importance of modelling composites at different
size scales is discussed in a review paper by Hashin who reviewed the existing approaches
at different size scales macro, mini and micro [83]. Micromechanics based methods became
prevalent in the 1980’s, one of the most influential authors on the subject is Jacob Aboudi
who has written a textbook on the subject [10] and created the method of cells approach.
Talreja concluded that is required to model the exact and complex failure modes of long
fibre reinforced composite materials [165].

2.2.1 Composite Representative Volume Elements (RVE)’s

In order to account for the micromechanics of composites, one needs to consider a region in
space containing a fibre surrounded by matrix material known as an RVE. The use of RVE’s
are especially relevant for woven fabrics where the fibre tows are repeated periodically. Hill
is given credit of creating the concept of using an RVE [97]. Jacques et al. have proposed a
representative unit cell model for 3-D woven textile fabrics where an RVE is used to define
the overall constitutive law of the material and homogenize the meso scale model to macro
scale [110]. Fliegener et al. have modeled the long fibre reinforced thermoplastics which
are injection moulded evaluating the microstructure of the injection moulded samples and
simulating the elastic response of the material using finite element analysis [70], however,
they were only able to predict the response within 10% of experimental results.

RVE’s are also common at micro scale and are the foundation of many of the models and
theories for composites. Asp et al. used three different fibre packing arrangements in their
finite element analysis of transverse tension failure of composites; square, hexagonal and
diagonal square [20]. Asp et al. found that the failure initiation location under transverse
tension was dependent on the fibre packing arrangement used [20]. Bulsara et al. have
used a representative unit cell for modelling the damage in fibre reinforced composites
considering the distribution and packing of fibres [41]. Chen and Liu have used a square
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fibre packaging in their boundary element method model for composites [46]. Harper et
al. have made a representative volume element to capture the response of a short fibre
composite by considering a repeating unit cell for 2-D, and have considered the size effects
on statistics of the unit cell such as the number of fibres included [78, 79].

There are two common fibre packing arrangements used when considering a unit cell
containing individual fibres, either a square packing or hexagonal packing, which describe
the array shape of the centerline of the fibres. There is also interest as how these two
arrangements compare to experimentally observed fibre arrangements within composites.
Wongsto and Li have researched the effect of fibre packing orientation on the microme-
chanics of composites, comparing the results from square and hexagonal packing to real
random fibre orientations within an RVE [179]. Gommer et al. have developed an advanced
image processing technique to determine the microstructure of composites and discovered
that the packing arrangement is dependent on the degree of compaction of the composite
while manufacturing [75]. The selection of the domain of the RVE is crucial to the overall
predictive capabilities of composite models, and careful selection is required to capture the
response of interest.

2.2.2 Generalized Method of Cells

Aboudi has derived the equations for the micromechanics of composites containing rectan-
gular fibres within a rectangular region as an RVE [1]. This analysis method is referred to
the generalized method of cells in later works, was developed for isotropic elastic metallic
based composites [1]. Aboudi has generalized the method of cells to work with elasto-
viscoplastic materials [2]. The equations for the method of cells are derived by assuming
that the normal and shear stresses are continuous along the interface between the fibre and
matrix. However, it is found that this condition cannot be satisfied for two phase composite
materials where the phases have different stiffness’s. The formulation was changed to have
the average displacement match between the phases. It has also been shown that there is
a deviation between Aboudi’s method of cells and the solution if a cylindrical fibre is used
for fibre volume fractions above 0.3 [2]. Therefore, this method has been demonstrated
to only be valid for low volume fraction composites, although it has been used to analyse
composites at high volume fractions as well.

Aboudi then derived the equations for the micromechanics effects of short fibre compos-
ite materials to develop continuum equations based on the micromechanics for an elastic
system [3]. This work was extended to include the thermal properties of composites using
a similar method as the elastic work [4]. Once again, a rectangular cross section of the
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fibres is used and the model is not capable of predicting the plastic response of short fibre
composites and is limited to low fibre volume fractions.

Benveniste and Aboudi researched the effects of fibre debonding on wave propagation
and mechanical properties for boron epoxy composites using the method of cells [27]. The
debonding was modeled using a displacement incompatibility between the fibre and matrix,
such that the matrix would displace more when they become debonded [27]. Aboudi
extended the method of cells further to model imperfect bonding between the fibres and
the matrix, where a damage parameter is introduced to account for an imperfect interface
between the fibres and matrix [5].

Aboudi extended the method of cells to micromechanics based strength analysis for
long fibre composite materials [6]. In this work, it is assumed that the failure for both the
matrix and the fibre are stress driven and three strength parameters are used to evaluate
failure [6]. The failure criterion proposed is not very advanced and proposes constants as
a cut off limit for failure, such as having one stress level, above which the composite fails.
The model was extended to fatigue failure of composites using a micromechanics approach
using a similar form to evaluating the strength of unidirectional composites [8]. A review
of the implementations of Aboudi’s model for the method of cells is given in [7].

Aboudi then implemented a non-linear viscoelastic behaviour of the matrix material to
use the method of cells to predict the time dependent response of an epoxy carbon fibre
composite [9]. A similar approach was used by Yancey and Pindera to predict the creep
response of a graphite epoxy composite using the generalized method of cells [182].

Low et al. have used Aboudi’s method of cells and extended it to work with a three-
phase composite, where the interphase is also heterogeneous [127]. A quarter symmetry
model was adopted for Aboudi’s method of cells meaning that the method is not applicable
to all loading conditions [127]. Low et al. expanded this methodology to include thermal
properties changing as a function of position radially around the fibre [128]. However, in
this method the changes in fibre properties happen in a rectangular pattern, which is not
representative of the behaviour for round fibres.

Recently Sun et al. have used the generalized method of cells presented by Aboudi to
model natural fibre composites [162]. Aboudi’s model was selected to model the anisotropic
behaviour of natural sisal fibres. The overall macroscopic elastic response of the sisal fibre
composite was predicted using the method of cells [162]. Bednarcyk et al. have shown how
the generalized method of cells can be applied to vectorized constitutive laws and have
studied heat transfer modelling using the method of cells [23].

Aboudi’s method of cells does not account for the transversely isotropic nature of
common non-metallic fibre materials such as carbon fibre which Chamis has found to
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exhibit transversely isotropic behaviour [44]. Although Aboudi’s method was developed
for isotropic metal composites using a rectangular fibre and only valid for low volume
fractions it has been widely accepted and well established, due to shortcomings discussed
various micromechanics models have been developed.

2.2.3 Development of Micromechanics Models

Other micromechanics models have been developed for long fibre composites. The focus of
much of this effort has been to improve the prediction of transverse properties. Adams and
Crane developed a micromechanics model around the same time as Aboudi, which is more
applicable for long fibre reinforced composites. Their model uses plane strain symmetry
of a quarter symmetric unit cell model where the matrix is elasto-plastic and follows a
Prandtl-Reuss flow rule and the fibre is transversely isotropic [13]. Unfortunately this
model does not account for loadings in all directions and is incapable of use with bending
loads, however it is better for the prediction of transverse material properties than Aboudi’s
method of cells. An improved model is therefore desirable, which would be applicable to
generalized loadings and have improved transverse material response.

2.2.4 Interface versus Interphase in Micromechanics Models

An interface is a surface, which separates two phases in a material. Classically an interface
has been used to describe the force transfer between the fibre and the matrix in a composite
material. It is also assumed that the force transfer occurs solely through shear stress acting
across the surface of the interface known as an interfacial shear stress. The maximum value
of interfacial shear stress for a given material pairing is known as the interfacial shear
strength and is used in failure prediction. The perfect interface assumption made in many
models assumes that the displacement is continuous across the interface i.e. the fibre and
matrix displacements are the same.

An interphase is a separate phase located between the two or more other phases of the
composite, an interphase occupies a volume whereas an interface has an associated surface
area. Benveniste and Miloh have developed a model where there are imperfect interfaces
between multiple interphases surrounding the spherical inclusion to account for the defor-
mation of the composite [29]. Benveniste and Miloh have proposed seven different interface
conditions depending on the material properties, and that the material properties change
radially as a function of position [29]. This model violates stress and strain compatibility
between the seven phases and is very complex compared to other micromechanics models.
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Another approach to using the interphase for two phase composites is to assume that
three phases are present within the material, the fibre, the matrix and the interphase. The
interphase is used to account for the stress transfer between the reinforcement and matrix
instead of considering the traction forces along an interface as shear stresses. Either strain
or stress continuity between the phases is assumed and often neither of these conditions is
completely satisfied.

The first implementation of an interphase was by Christensen in 1969 where the prop-
erties of composites with spheroidal rigid reinforcements and voids were considered [48].
This work was followed in 1979 by a work where the elastic solution for the interaction
between a spheroidal inclusion and a matrix and a transversely isotropic fibre in a matrix
are considered for the linear elastic case using an interphase [49]. Benveniste discussed the
effects of an imperfect bond with a composite comprised of spherical reinforcements and
a near field matrix as well as a far field matrix [24]. Benveniste et al. have discussed the
micromechanics and stress fields of composites with coated spherical reinforcements with
the coating being an interphase [28]. Achenbach and Zhu have described the load transfer
between the fibre and the matrix as occurring through an interphase around a long fibre
reinforcement where strain is discontinuous allowing for the load difference between the
phases [12]. This model again uses a quarter symmetric unit cell model and is therefore
not applicable to bending loads, there is also a strain incompatibility between the three
phases which is not physical [12]. Chen and Lui have also used an interphase as a third
phase between the fibre and matrix to model the transverse properties of composites [46].
Upadhyaya and Kumar have described the stress transition between the fibre and matrix
through an interphase in the fibre pull out test. They described the stress distribution
as a function of position around the fibre, for a single fibre being pulled out of a matrix.
They compared the analytical results for the axisymmetric problem to a finite element
simulation of the problem and found a good match. They have also shown that there is
a large transition in the stress around the fibre [172]. An argument against the use of an
interphase is that until recently there was little proof of the existence of a third distinct
phase.

2.2.5 Experimental Evidence of the Existence of an Interphase

Experimental results support the existence of an interphase. There is no distinct third
phase with independently characterized material properties. Instead, the material proper-
ties change in the vicinity of the fibre. Recently Karger-Kocsis et al. have conducted a
review of the interphase concept discussing various aspects of the interphase such as tai-
loring the properties through the use of surface modifications of the fibres by sizing agents
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[115]. Fibre sizing refers to fibre coatings or surface treatments used by fibre manufacturers
to increase fibre wetability with certain matrix materials and is used to promote bonds be-
tween the fibre and matrix. It has been found by Yang and Pitchumani that the presence of
a reinforcing fibre affects the structure of the polymer matrix in the immediate surround-
ings of the fibre. Affected are polymer properties like chain length, crystallinity, cross link
density, etc. [183]. Concentration gradients of the curing agent for thermosetting polymers
near the fibre and fibre sizing cause there to be a gradient in the material properties within
the near field of the fibre [183]. The variation in polymer structure occurs within 30-170
nm of the fibre, which is about 0.6-3.4 % of a typical fibre radius away from the fibre [183].
Li et al. have shown using scanning electron microscopy that the concentration of atoms of
both matrix and fibre changes as a function of position around the reinforcing fibre [125].
Li et al. have also observed that the degree of crosslinking around the fibre changes as a
function of position from the fibre [125].

A review of nano indentation, which is a nano scale measurement of material hardness
has been conducted by Gibson, highlighting how a grid pattern of nano indentation is
used to evaluate the change in material properties as a function of position around a fibre
[74]. Kim et al. have determined that the thickness of the interphase region surrounding
a fibre is on the scale of 1 µm and varies depending on fibre sizing [116]. Olmos and
Gonzalez-Benito have reported a change in material distribution up to 15 µm away from
a fibre attributed to an interphase experimentally observed using nano indentation [136].
There is discrepancy between the size of the interphase experimentally measured by Kim et
al. and Olmos and Gonzalez-Benito due to advancements in experimental techniques and
the materials considered. Olmos and Gonzalez-Benito have also reported that the elastic
moduli of the interphase changes as a function of distance away from the fibre [136]. The
overall consensus from these experimental works is that representing the interphase as a
phase with distinct properties is not an accurate representation of the natural phenomena.
If an interphase is used, the best representation is to have the material properties change
as a function of position away from the fibre.

2.3 Homogenization

Homogenization is a modelling technique used to simplify the problem and retrieve the
effective properties of a multiphase material from the properties of the constituents with-
out using a full field model. A full field model considers the interaction of the phases
considering their actual size. For FE models this would requires a mesh with separation
of the individual phases to capture their behaviour. Homogenization techniques are used
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to predict the overall behaviour of the composite material from information about the ma-
terials and microstructure. Homogenization techniques were created to allow prediction
of the effective properties of composites for engineering calculations before FE computer
simulations where commonplace.

2.3.1 Classic Homogenization Techniques

The simplest form of homogenization are the bounds imposed by the rule of mixtures and
assumes that the strains or stresses in the phases are the same. These bounds are known as
the Voigt assumption when the strains in the phases are the same or the Reuss assumption
when the stresses in each phase are the same. The Voigt and Reuss assumptions form the
upper and lower bounds respectively on the predicted response of composite materials.

The Voigt assumption calculates the overall elastic tensor as a combination of elastic
tensors of the phases as

L = VfLf + VmLm (2.1)

where Vf is the fibre volume fraction, Lf is the fibre elasticity tensor, Vm is the matrix
volume fraction assuming negligible void content the matrix volume fraction is calculated
as Vm = 1− Vf , and Lm is the matrix elasticity tensor.

For the Reuss assumption the overall composite elasticity tensor is

L =
[
VfL−1

f + VmL−1
m

]−1
. (2.2)

These fundamental assumptions serve as a basis for composite homogenization techniques.

Eshelby described the elastic field in an infinite material containing an inclusion of
various shapes based on an ellipsoidal inclusion. The equations were derived for various
inclusion geometries; spherical, ellipsoidal, cylindrical, assuming that both the matrix and
the inclusion are isotropic elastic materials [62]. Eshelby performed a further study for
the elastic field in the region surrounding an inhomogeneity, which is much closer to the
inclusion than the initial solutions [63]. Mori and Tanaka used Eshelby’s method to describe
the strain fields in materials containing multiple inclusions of the same shape and alignment
with a given inclusion volume fraction [132]. Benveniste extended the method presented
by Mori and Tanaka to a form where it could be used to describe the strain partitioning
between two phases in composite materials using Eshelby’s solutions [25]. To et al. have
derived the expressions for the elastic properties of composite materials in a wave-vector
domain and have been able to reproduce the expressions of Eshelby [62] and Mori and
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Tanaka [132, 167]. For Eshelby’s solution, the strain in the fibre (εf ) is calculated as a
function of the overall strain applied to the far field (ε) through the localization tensor as

εf = Tε (2.3)

where the strain localization tensor T is

T =
[
I + SfL−1

m (Lf − Lm)
]−1

(2.4)

where I is the fourth order identity tensor, and Sf is Eshelby’s inclusion tensor for the
given fibre shape [144].

Early work on determining the overall elastic moduli of two phase composites was
done by Hashin in 1961 and was based on Eshelbian mechanics known as the variational
approach [92]. Hashin went on to derive the bounds on the moduli of a two-phase system
for metallic materials which was used as a basis for composites [80, 93]. Hashin and
Shtrikman have assumed that in a unit cell the stress and strain are the same as the overall
composite material and have derived the bounds on elastic response based on the strain
energy creating an upper and lower bound on the elastic constants [93]. The methodology
was extended to be used with fibrous materials instead of randomly distributed second
phase particles in 1964 [89]. In this early work, the fibres are given a hexagonal packing
arrangement and it is shown that this can be representative of a random distribution
in plane, which is the fibre distribution typical of unidirectional fibre plies [89]. This
method was further extended to discuss plane strain loading with transversely isotropic
reinforcements [81].

Hill developed theories on the mechanics of composite materials for perfectly bonded
two phase composite materials based on the work of Eshelby. In this work, the bounds on
the moduli for a composite material are discussed as related to Ruess and Voigt upper and
lower bounds on the elastic modulus [97]. This methodology was then extended to work
with fibre strengthened materials which are isotropic and elastic [98]. Hill extended this
method to work for the case where the matrix acts in an elasto-plastic manner, as should
be expected with metal matrix composites [99]. Hill then worked on implementing the
self-consistent method for use in two phase isotropic composite with spheroidal inclusions
to homogenize the method [100]. This was extended to work with fibre reinforcements for
scenarios where the difference in stiffness between fibre and matrix is small and there is a
low volume fraction of fibres [101]. Hill has proposed the self-consistent scheme where the
orientation average stress or strain in the inclusion is set to be equal to the overall stress
or strain applied to the material [100]. The self-consistent scheme gives better results
for polycrystalline material where the stiffnesses are similar as opposed to multiphase
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composite materials where there is a large difference in the stiffness of the phases [139].
Walpole has described the overall elastic moduli of two phase composites with needle and
disc shaped inclusions building on the work of Hill and Eshelby [175].

Pioneering work on laminate theory for composites was completed by Tsai under con-
tract to NASA [168]. In this work, the planar stiffness and strength of unidirectional plies
of composite material was derived [168]. The transverse and shear loadings of unidirec-
tional composites were researched by Adams and Doner in 1967 to extend the theory of
laminated composites to off axis loadings [14, 15]. Aboudi extended the existing elastic
theory developed by Hashin and Tsai to work with elastic viscoplastic composite materials
for laminated materials and the wave propagation in these materials [11].

2.3.2 Advanced Homogenization Developments

Cherkaoui et al. have derived the equations for strain localization in materials with coated
inclusions where a thin third phase surrounds the inclusion [47]. This is the double inclusion
problem and was formulated for elastic materials.

Ghossein and Lévesque have compared homogenization methods for ellipsoidal inclu-
sions to a full field numerical model and have found that for moderate volume fractions
of inclusions used in Lielens’ technique produces results closest to the numerical solution
[73, 126]. For low volume fractions Eshelby and Mori-Tanaka methods produce reasonable
estimates. In general, these homogenization techniques of the first order over predict the
material response [73].

Ponte Castañeda proposed a variational approach known as the linear comparison com-
posite based on the effective energy potentials to create bounds on the response of non-
linear composites by comparing them to linear composites [140].

Zhou and Meschke have extended the work of Ponte Castañeda to predict the ho-
mogenized strength of composites considering both inclusions and voids [187]. Boudet et
al. have homogenized the elasto-visco-plastic response of composites with kinematic and
isotropic work hardening using an extension to linear comparison composite framework by
Ponte Castañeda and the effective internal variable approach [31]. Brassart et al. have
used an incremental variational principle to homogenize the response of elasto-visco-plastic
composites through another extension to the work of Ponte Castañeda [34]

Doghri et al. have proposed a method to homogenize elasto-visco-plastic composites us-
ing a backwards Euler implicit time integration scheme, linearizing the material behaviour
over the time step [54]. It is also noted that the use of the Mori and Tanaka homogenization
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[132] and Eshelby solution [62] within Doghri’s method using these linearized elasto-visco-
plastic responses results in the over prediction of the stress strain response where the
inclusion is stiffer than the matrix material [54]. Doghri and Ouaar have compared two
methods of using the instantaneous tangent modulus and the total secant modulus in the
Mori-Tanaka framework compared to finite element full field response [56]. The two meth-
ods are based on considering either the incremental instantaneous tangent stiffness or the
total secant method where the stiffness is found from the total stress and strain, instead
of the instantaneous stress strain relationship where the materials flow according to J2

plasticity [55]. Doghri et al. also indicate that they are not able to predict the response
of random short fibre composites using the first and second order schemes for linearization
of the problem using the two-step homogenization procedure since both over-predict the
stress strain response compared to a full field FE model [55]. Czarnota et al. have used
an additive tangent method for linearization to use the Mori-Tanaka method for materials
with elasto-visco-plastic phases with the homogenization verified through full field finite
element representative volume element simulations [50].

Dinzart and Sabar have extended Eshelby’s method for materials with imperfect inter-
faces where displacement across the interface is not continuous. A Mori Tanaka approach
is used to homogenize the response of elastic materials with imperfect interfaces [53]. Gu
and He have derived the elastic moduli for unidirectional fibre reinforced composites with
imperfect interfaces where there is a discontinuity of strain around the fibres based on the
equations derived by Hill in 1964 [76, 98]. Xu et al. used the generalized self-consistent
method to predict the elastic moduli of composites with imperfect interfaces where there
is a jump in the stress and displacement across the boundary [181].

Lielens et al. introduced the concept of interpolating between the upper and lower
Hashin Shtrikman bounds using a Mori-Tanaka scheme and the fibre volume fraction to
improve the accuracy of the model’s predictions [126]. Lielens et al. used their interpolation
method to predict the response of a two-dimensional structure made out of SMC. Taking
the effect of fibre orientation was included using a two-step homogenization procedure
where the fibre orientations were grouped into grains of the same orientation [126]. The
Mori Tanaka approach is used to homogenize the response of the grains, which are combined
using the Voigt assumption of equal strain to homogenize to the overall composite response
[126].

Pierard et al. have also used a two-step homogenization procedure for composites with
different inclusion shapes and orientation, the first step is to group the like orientation into
grains and then homogenize the grains into an overall material response [139]. The homog-
enization is done in two steps first define the grain homogenization using a method such as
the Mori-Tanaka homogenization scheme then homogenize the grains using a generalized

20



procedure such as the Voigt or Ruess procedure to predict the overall material response
[139]. This is different from the work of Lielens through the use of different inclusion
shapes and presenting the results of the analysis [139, 126]. The method of using pseudo
grains has also been used by Ogierman and Kokot who determined that nine pseudo grains
using 27 parameters are required to efficiently subdivide the fibre orientations into enough
unique orientations to capture the overall stiffness and stress strain response of a composite
with non-spherical inclusions [135].

Tucker and Liang have reviewed techniques for homogenization of short fibre compos-
ites, comparing the results to FE for aligned fibres [171]. Müller et al. have compared
homogenization techniques to predict the effective modulus of short fibre composites with
full field models [133]. Sburlati and Cianci have proposed a model for spherically reinforced
matrix materials where there is an interphase surrounding the inclusion and within the in-
terphase the elastic properties transition between those of the inclusion and those of the
matrix material as a function of the radial position within the interphase [152]. They have
found that the thickness of the interphase effects the response and homogenized properties
of the composite containing spherical inclusions [152].

2.4 Failure

Although incorporation of failure is not part of this thesis; future work will involve incor-
porating failure theories into the framework. It is important to understand failure theories
to design the framework for their incorporation. The major composite failure modes are
discussed in this section. Many failure and damage models exist for composite materials.
In a recent review Talreja discusses the development of failure models and states that none
of the existing models is successful at fully capturing all failure modes for composite ma-
terials [165]. The first composite failure model was created by Azzi and Tsai and used the
method presented by Hill [95] to predict failure [21]. Hoffman proposed that all composite
failure is brittle and a brittle fracture model was introduced using nine material parameters
[103]. Another well known failure criterion which was used with classical laminate theory is
the Tsai and Wu failure criterion [170]. Hashin et al. worked on developing failure models
for unidirectional composite laminates by performing further work beyond that of Tsai to
define the nonlinear behaviour of composite materials. They used a a Ramberg-Osgood ap-
proach to modelling the stress strain response for the transverse and shear directions [88].
Tsai summarized continuum based composite failure models including maximum stress and
strain as well as yield functions [169]. Hashin also proposed a piecewise failure criterion
for unidirectional composite materials separating the fibre and matrix modes of failure.
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This resulted in improvements over the Tsai Wu criteria [82]. Composite failure models
can be broken into two categories: one which considers the performance of a composite
with accumulated damage and the second where the composite failure is considered. Most
composite failure occurs due to micro scale phenomena, which will be further discussed.

Another aspect of composite failure is fatigue. This was first studied by Hashin who
created a simple stress life approach for composite laminates [90]. Hashin went on to de-
velop damage models for composite materials for lifecycle analysis of composite structures
[91]. This work progressed to theories on the effects of delamination and damage due to
delamination of laminated composite materials using a variational approach [84]. This
work was furthered to talk about damage and the effects of cracks in laminated composites
on their structural properties [85, 86, 87]. Benveniste and Aboudi looked into the crack
propagation in laminated composites [26].

Micromechanics based failure models are required since the failure phenomena of com-
posite materials is initiated at the microscale. Jelf and Fleck have categorized the failure of
unidirectional composites into four categories, fibre failure, elastic microbuckling, matrix
failure and plastic microbuckling [113]. Asp et al. have considered the transverse failure
of composites due to matrix failure between the fibres as well as at the interface between
the fibre and matrix [18]. Asp et al. have also found that all transverse composite failure
is either due to interface failure or matrix microcracking and the initiation of these failure
modes is competing [20]. Research into further micromechanics based failure modes is
discussed in this section.

2.4.1 Composite Damage

Damage requires a quantification of the severity and quantity of local micro scale failures
within the composite material and the composite structures ability to continue to support
load. Most of the damage theories relate to laminated composite structures which are not
considered in this thesis. Most of the developments of damage models for composites as-
sume only two-dimensions and are not applicable to three-dimensional structures. Zhuang
and Talreja have examined the effects of voids on the growth of delaminations and damage
in unidirectional composite laminate plates subjected to compressive loading and buckling
[188]. Talreja has discussed the failure modes applicable to the damage of laminated com-
posite materials and has stressed the importance of accounting for these failure modes in
structural design [164].

Damage detection using nondestructive testing techniques is crucial to knowing the ex-
act damage in a composite. Recently there have been advances in detection technologies.
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The damage in a glass fibre laminated composite was investigated by Sket et al. using x-
rays and the different micro failure modes were identified for a three-point bend specimen
[157]. Scott et al. have demonstrated a new technique using acoustic emission sensing to
detect the presence of voids and matrix cracking within composite materials. They have
also demonstrated the ability to determine the fibre orientation and spacing using this
technique; allowing for microstructure analysis with nondestructive testing [155]. These
advanced techniques can be used to better understand the damage accumulation in com-
posites under repeated loadings and allow for improvements in the evaluation of predictive
models.

Damage models have been developed to predict the failure of composites through dam-
age accumulation. Bulsara et al. have developed a composite RVE model to consider the
damage and failure, a maximum stress criterion. Failure evaluation is based on the matrix
strength, fibre strength and interfacial strength. Two damage initiation modes are con-
sidered: matrix cracking and fibre matrix debonding. Temperature effects on damage are
also studied [41]. This model is applicable to transverse properties and resulting damage
but is not generalized to 3-dimensions.

Another major contributing factor to damage in composites are the inherent presence
of voids within laminated composites manufactured using hand laid techniques. Ricotta et
al. have studied the effect of voids on crack growth in laminated composite fabrics [147].
Lambert et al. have studied the growth of voids during fatigue and the effect of voids on
the fatigue life of laminated composites [121]. Garcia et al. have developed a model for
spherical inclusions where the effects of debonding of the particles is solved analytically to
capture the effects of debonding and the progressive nature of debonding using a coupled
fracture energy and stress criterion [71]. The presence of voids is important to the un-
derstanding of damage, however the quantity of voids produced using new manufacturing
techniques is not documented.

Damage is a useful tool for evaluating the service life of components or their ability to
function following an impact event. Damage prediction is also useful when evaluating the
overall failure of a component due to an accumulation of failure modes. These developments
are beyond the scope of the work outlined in this thesis. However, knowledge of damage
theories is important in model development to allow a future implementation of damage
frameworks.
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2.4.2 Composite Macro Failure

Phenomenological based failure models have been relatively well established for the field
of composite laminate theory [170, 21, 82]. These failure criterions are sufficient for overall
predictions; however, they have many short comings including the fact that they are unable
to account for the various failure initiation modes experienced by fibrous composites.

A worldwide failure exercise containing 19 different approaches for modelling failure of
composite materials was conducted from 1998-2004 to bring together all the relevant failure
criteria for laminated composites [102]. This exercise has been reviewed by Soden et al.,
the project comprised of compiling existing failure models for laminated composites. The
major shortcomings identified in the available failure models are: no 3-D failure criteria,
no delamination initiation and propagation criteria, no creep and fatigue behaviour, no
temperature effects, no cyclic loading and limited implementation of the failure criterion
into commercial analysis software [160]. More recently a 3-D failure criterion has been
developed by Raimondo et al. allowing for a phenomenological fit for unidirectional com-
posites [145], this still does not have predictive capabilities in the case of changing the
materials comprising the composite.

Puck and Schürmann developed a failure model for laminated composites at a phe-
nomenological level to predict failure for engineering design. The individual contributions
to failure are discussed including multiple modes for fibre failure and inter-fibre failure and
the degradation of strength due to fibre failure [142]. This failure model is extended to
include three different failure modes and three different laminate configurations by Puck
and Schürmann [143]. The calibration and implementation of this laminate failure criterion
is discussed by Puck et al. [141]. Dong et al. have improved upon the failure theory devel-
oped by Puck and have incorporated fracture mechanics into the phenomenological failure
theory [58]. These phenomenological failure criteria are reasonable for use in laminates,
however they do not contain the detail required to predict localized failure in composites as
are expected to occur in complex automotive structures. Therefore, micromechanics based
failure criteria are required to successfully predict the onset and propagation of failure in
automotive composite structures.

2.4.3 Fibre Matrix Debonding

Debonding is the process where the bond between the fibre and matrix is broken, leading
to no load transfer between the fibre and matrix. Interface debonding is a common failure
mode in transverse tension as well as under axial loading. The interfacial shear strength is
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commonly associated with this failure mode and is based on the assumption of shear along
the fibre matrix interface.

King et al. have used an interphase to describe the interface failure between the fibre
and matrix due to coating on the fibres, with various different coating materials [117]. Asp
et al. have defined the interface failure between the fibre and matrix under transverse loads
as being a function of the stress triaxiality in the matrix [18]. Bulsara et al. have discussed
how the distribution of fibres in the cross section effects the transverse strength and fibre
matrix debonding [41]. The initiation of debonding is dependent on the model used and
the initiation criteria.

Zhandarov and Mäder have reviewed literature on laboratory tests of interfacial shear
strength, which is typically done by embedding a length of fibre within the matrix and
testing how much force is required to pull the fibre out of the matrix. They also conducted
experiments testing the bond strength of glass and aramid fibres in cement and epoxy
matrices and comparing their results to existing theories [185]. Nano indentation testing
can also be used to determine the interfacial shear strength of a fibre matrix pairing as
reviewed by Gibson, by applying a load to a punch in contact with only the fibre and
compressing until the fibre begins to move relative to the matrix [74].

2.4.4 Fibre Microbuckling

Fibre microbuckling is a failure mode that occurs while the composite is under compressive
loading. The buckling mechanism is similar to Euler buckling for a slender member. Due
to the high aspect ratio of the fibre there is a tendency for lateral deflection while subjected
to compressive loading with little lateral support from the matrix. The matrix supports
the tendency for lateral buckling of the fibre to a point but above this point the fibres
buckle in a fashion known as micro buckling or kink banding.

Budiansky described the micromechanics of microbuckling of carbon fibres and named
the phenomena fibre kinking, and found that high angle failures were most common [39].
One of the main characteristics of failure under axial compression experimentally observed
by Shikhmanter et al. is the failure mechanism through microbuckling of the fibres in the
matrix [156]. Jelf and Fleck found that of the four failure modes, plastic microbuckling is
the most prevalent for compressive loading [113]. Budiansky and Fleck have derived the
equations to describe fibre microbuckling and have found that the phenomena is driven
by plastic deformation of the matrix and has strong dependency on the degree of fibre
misalignment [40]. Slaughter and Fleck have developed a viscoelastic model for the mi-
crobuckling of composites based on the plastic model developed by Budiansky and Fleck
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[158, 40]. Slaughter and Fleck moved on to discuss the effects of fibre waviness and distri-
bution on the microbuckling of a composite laminate and found the compressive strength
of the composite to be very sensitive to the fibre waviness [159]. Sutcliffe and Fleck have
experimentally observed and characterized the microbuckling of fibres [163]. Fleck and Shu
implemented a fibre buckling initiation criterion in a 2-D finite element code for simulating
the onset of failure through microbuckling [69].

Lui et al. have devised a failure model based on fibre microbuckling dependent on the 2-
D distribution of fibre waviness using the research done previously by Fleck and co-authors
[129]. Recently Bar-On and Wagner have proposed a model for fibre reinforced materials
with platelets in the matrix to provide additional reinforcement, and studied the effects
of the platelets on failure modes such as micro-buckling of the fibres [22]. Raimondo et
al. have captured microbuckling by considering a shear and kinking based failure criterion
[145]. The phenomenon for fibre microbuckling is well understood, however the implemen-
tation of failure criterion in unique to the model being used and should be considered while
developing a new model framework.

2.4.5 Fibre Tensile Failure

Fibre failure is usually considered to be brittle failure when the maximum stress that the
fibre can support is exceeded. Fibre failure predominately occurs when the composite
is under tension, whereas microbuckling is the dominant failure mode that occurs under
compression. It is common to assume that the fibres only support load along their axis,
and transverse fibre failure is not considered.

Raimondo et al. have used a maximum stress failure criterion to describe the axial
failure of the fibres [145]. At high loads Lambert et al. found fibre failure to be the main
failure mechanism of composites under cyclic loading [121]. Kant and Penumandu have
researched how fibres fail in tension under the presence of an existing surface flaw [114].
Most failure models incorporate a maximum tensile failure stress. This is considered in the
development of the model framework in this thesis.

2.4.6 Matrix Microcracking

Matrix microcraking is a failure mode by which the matrix material fails in between the
fibres. In this failure mode crack initiation occurs within the matrix material and the
crack spreads within the matrix but not into the fibre. This failure mode is more likely to
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occur in the direction perpendicular to the fibre under transverse and shear loading. For
non-unidirectional composites this failure mode occurs more often in resin rich areas.

Microcracking development and propagation in the matrix has been discussed under
combined and shear loadings by Fleck and Jelf [68]. Asp et al. have suggested that matrix
microcracking between the fibres is due to the stress triaxiality experienced in the region
surrounding the fibres [18]. Asp et al. went on to develop crack initiation criteria for glassy
polymers dependent on the stress state using common metallic yield criterion such as Von
Mise’s and Tresca [19]. Asp et al. have also identified that the yield and subsequent crack
formation in the matrix occurs at much lower stresses in composites than it does for the
matrix on its own [20].

The matrix cracking between fibres subject to transverse loading has been studied by
Bulsara et al. [41]. Lambert et al. have found matrix microcracking to be an important
fatigue failure mechanism at low loads [121]. Matrix cracking was also found to be a
precursor for delamination under cyclic loading [121]. The implementation of microcrack
initiation is dependent on the model used and there is disagreement between researchers on
the initiation criteria. All initiation criteria are considered during the model development.

2.4.7 Cohesive Elements for use in Failure Modelling

Cohesive elements can be used to simulate the interface between the reinforcing fibres and
the matrix. Most of the work on this method has occurred within the past ten years due
to computational advancements. Typically, the matrix and the fibre are meshed in finite
element software using two distinct sets of material properties, the meshes of the fibre and
matrix are attached to one another using cohesive elements. Cohesive elements are used for
micromechanics modelling as well as modelling delamination at the ply level in laminated
composites. Jalalvand et al. have demonstrated how cohesive elements can be used to
capture damage due to delamination of laminated composites [111]. The use of cohesive
elements in a full field model is very computationally expensive.

Kushch et al. used cohesive elements between the fibre and matrix to simulate the
micro-scale debond and crack initiation along the interface between the fibre and matrix.
They also observed through the use of the cohesive model that the stress is reduced in
the neighbouring fibres of the debond, however the load has to be increased around other
fibres leading to crack propagation of the debond [119]. O’Dwyer et al. have used cohe-
sive elements to describe two failure modes at the micromechanics level when a composite
is subjected to mode I and mode II loading, the bond between the fibre and matrix is
simulated using cohesive elements. They also considered these loads on an adhesive bond
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between the composite ply and an adjacent ply to see if there was debonding between the
fibres and matrix first or debonding of the adhesive layer [134]. Yang et al. have imple-
mented both interface debonding and matrix microcracking through the use of cohesive
elements around fibres using a Drucker-Pranger model to account for the matrix micro-
cracking [184]. Cohesive elements are promising in their use in modelling of debonding,
however other modelling techniques are required to capture the other failure modes.

2.5 Fibre Orientation Effects in Compression Moulded

Composites

Composite structures manufactured using compression moulding techniques such as SMC,
BMC, and DLFT do not have aligned fibres and their strength and stiffness is dependent
on the fibre orientation distribution within the composite. Feld et al. have described
how anisotropy arises in SMC material due to flow and change in fibre orientation dur-
ing processing [65]. For short fibre composites manufactured using injection moulding or
similar compression moulding techniques, the fibre orientation plays a crucial role in the
properties of the structure. In Section 2.3 homogenization techniques were discussed to
homogenize fibre orientations into the overall response such as Lielens et al., Pierard et al.,
and Ogierman and Kokot [126, 139, 135].

Massardier-Nageotte et al. have discussed techniques for evaluating fibre orientation
and fibre volume content in SMC materials including X-ray and optical techniques [130]. Le
et al. have discussed using X-ray microtomography to analyse the fibre and void content in
SMC materials [122]. Le et al. found that there is a variation in fibre volume fraction over
the thickness of a SMC plate with lower volume fraction at the surfaces and higher volume
fraction in the core of the material (roughly 1.8 times higher). They also found that the void
content was higher in the core of the material. They have also shown that before forming
the fibre orientation of the raw SMC is in the x1, x2 plane with preferential orientation in
the x1 manufacturing direction [122]. Garesci and Fliegener have used microtomography
to evaluate the fibre orientations in a DLFT composite and have predicted the through
thickness change in elastic properties using the Halpin Tsai relations [72]. Schladitz et al.
evaluated the fibre orientation of SMC using both x-ray micro computed tomography and
scanning acoustic microscopy to determine the effects of preferential orientation on the
fatigue life of the material [154].

Advani and Tucker have developed a method to represent fibre orientation distributions
as the probability that a fibre will be in a specific orientation given as Ψ(θ, φ), where the
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probability is represented as a function of Euler angles θ and φ or alternatively as the fibre
unit vector n̂ as Ψ(n̂) [16]. The fibre orientation tensors are created by integrating the
orientation distribution over the fibre directions to obtain either a second or fourth order
tensor as

A =

∮
n̂in̂jΨ(n̂)dn (2.5)

A =

∮
n̂in̂jn̂kn̂lΨ(n̂)dn (2.6)

[16]. The fibre orientation distribution can also be recovered from the fibre orientation
tensors where the fibre orientation distribution allows for the details of the angular distri-
butions to be visualized, closure approximations are used to relate the second and fourth
order orientation distribution functions [16].

Schjødt-Thomsen and Pyrz have discussed the non-symmetric stiffness tensors that
arise using the Mori Tanaka approach when incorporating fibre orientations into the ho-
mogenization scheme. They proposed a method to create symmetric stiffness tensors which
works for specific cases of inclusion shape and orientation [153].

Dray et al. have used a two-stage homogenization for short fibre composites. First the
overall elasticity tensor for the unidirectionally aligned composite is calculated as

LUD = Lm + Vf (Lf − Lm) : Tmt (2.7)

where Tmt is the Mori-Tanaka strain localization tensor given as

Tmt = T : [(1− Vf )I + VfT] (2.8)

where T is the strain localization tensor presented in Eq. 2.4. The unidirectional stiffness
tensor is then modified through the orientation tensor to calculate a new modified stiffness
tensor as the second part of the homogenization [60].

A two-step homogenization has become a commonly used method for dealing with com-
posites containing misaligned inclusions [57]. This method requires the fibre orientation
distribution function to be discretized into a number of pseudo grains each with a unique
orientation and associated fibre volume fraction. Commonly, the Mori Tanaka homogeniza-
tion scheme is implemented as the first step of the homogenization, followed by assuming
that the strain applied to each pseudo grain is the same (Voigt homogenization) as the
second step.
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Chapter 3

Elastic Functionally Graded
Interphase Model

Currently, to capture the micromechanics response of composite materials it is common to
create a full field finite element model with separate meshes for the fibre and the matrix
material, which are joined using cohesive elements. This approach is computationally
inefficient. The goal with the new framework is to capture the same fidelity with respect to
the stresses and strains in each material while improving computational efficiency. In order
to eliminate the need for cohesion between two separate material models, the homogenized
response of both materials combined is required. The model needs to account for the
interaction between the fibres and the matrix material within the constitutive framework.

This chapter covers the development of an elastic model depicting the micromechan-
ics response of long fibre composites through the use of a functionally graded interphase
(FGI) surrounding a single representative fibre. The model itself contains no physically
distinct phases since it accounts for the presence of the fibre through homogenization of
the response. The model was calibrated and validated using published experimental data
by Hsiao and Daniel [104] and Kyriakides et al. [120].

3.1 Model Formulation

In this section, the formulation of the elastic FGI model is presented. After the completion
and publication of this model it was found that a model developed by Sburlati and Cianci
[152] uses similar principles to determine the effective modulus of a composite material
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with spherical inclusions subjected to a hydrostatic pressure, however the model developed
herein is for general three-dimensional load cases and cylindrical inclusions. It should also
be noted that the work of Sburlati and Cianci was published after the model presented in
this section had been submitted for publication [152, 150].

3.1.1 Model Assumptions

The matrix material is assumed to be an isotropic elastic material with a Young’s modulus
and Poisson’s ratio. The fibres are assumed to be a transversely isotropic elastic material
requiring the transverse axial shear modulus, two Young’s moduli and two independent
Poisson’s ratios to describe the deformation. It is assumed that the fibres are stiffer than
the matrix. The elastic material models relate stress to strain using the relationship

σ11

σ22

σ33

σ12

σ23

σ13


=
[
L
]


ε11

ε22

ε33

ε12

ε23

ε13


. (3.1)

Note that the definition of shear strain is the ε form which is half of the γ definition of
shear strain and all the related tensors will be presented in this form for consistency.

For the isotropic matrix material, the elasticity tensor L is

[
L
]

=
Em

(1 + νm)(1− 2νm)


1− νm νm νm 0 0 0
νm 1− νm νm 0 0 0
νm νm 1− νm 0 0 0
0 0 0 1− 2νm 0 0
0 0 0 0 1− 2νm 0
0 0 0 0 0 1− 2νm

 (3.2)

where the matrix Young’s modulus is Em and the Poisson’s ratio is νm. For the transversely
isotropic fibre material the general response follows Eq. 3.1, but the elasticity tensor L has
the form

[
L
]

=


L11 L12 L12 0 0 0
L12 L22 L23 0 0 0
L12 L23 L22 0 0 0
0 0 0 L44 0 0
0 0 0 0 L66 0
0 0 0 0 0 L44

 . (3.3)
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Where the six elastic terms are

L11 =
EfA(1− νfT )

1− νfT − 2ν2
fTA

(
EfT
EfA

) (3.4)

L12 =
EfT νfTA

1− νfT − 2ν2
fTA

(
EfT
EfA

) (3.5)

L22 =
EfT

(
1− ν2

fTA

(
EfT
EfA

))
(

1− νfT − 2ν2
fTA

(
EfT
EfA

))
(1 + νfT )

(3.6)

L23 =
EfT

(
νfT + ν2

fTA

(
EfT
EfA

))
(

1− νfT − 2ν2
fTA

(
EfT
EfA

))
(1 + νfT )

(3.7)

L44 =2GfTA (3.8)

L66 =
EfT

1 + νfT
(3.9)

the elastic constants are the fibre axial modulus EfA , the fibre transverse modulus EfT , the
transverse axial fibre shear modulus GfTA , the fibre transverse Poisson’s ratio νfT and the
fibre transverse axial Poisson’s ratio νfTA . It should be noted that the fibre axial transverse
Poisson’s ratio is related to the fibre transverse axial Poisson’s ratio as

νfAT =

(
EfT
EfA

)
νfTA (3.10)

and has been omitted from the terms of the elastic matrix for the transversely isotropic
elastic fibre for simplicity.

The transversely isotropic elasticity tensor for the fibre is referred to as Lf from here
forward and the isotropic elasticity tensor for the matrix material is referred to as Lm.

It is assumed that the strain in the fibre and the matrix is the same as the strain
applied to the material. This is the Voigt assumption which forms the upper bounds on
the homogenized response of composite materials. It is known to work well when the
material is loaded along the fibre direction, but over predicts for the transverse response.
This assumption is incorrect as it is well documented that the strain in the fibre and matrix
are not the same, however it served as a starting point for model development.

It is assumed that the fibres are round in cross section and have a constant cross
sectional area along their length. It is also assumed that there is a constant fibre volume
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fraction within the region of interest. The fibre volume fraction is equivalent to the fibre
area fraction by making these assumptions. It is also assumed that the fibres all have the
same diameter. The area of a fibre (Af ) is related to the fibre radius (rf ) as

Af = πr2
f . (3.11)

The number of fibres within a unit area can therefore be determined as

n =
Af
Vf

(3.12)

It is assumed that the fibres have a square packing and are evenly spaced, which limits the
maximum volume fraction to 0.77.

3.1.2 Unit Cell Definition

In order to homogenize the model more effectively, the mechanism of load transfer has to
be considered. Traditional composite modelling is based on the use of the surface area of
the fibres being used to transfer the load as an interface. The amount of load which is
transferred across the interface depends on the interface quantity and properties. Shear
is the method for the force transfer across the boundary and this leads to large stress
concentrations in the vicinity of the fibre for the Voigt assumption which is being used.
It is crucial for a model to correctly capture the stress transition in order to predict the
breakdown or failure of the interface. Considering a region within a composite material
with one unit of volume, the quantity of interface is

Aintf = 2
√
πnVf (3.13)

where Aintf is the area of interface within the volume being considered. The quantity of
interface is dependent on the number of fibres within the region of interest and also the
fibre diameter.

An interphase is another method that can be used to represent the load transfer between
the fibre and matrix. An interphase is a third material phase which has different material
properties from both the fibre and the matrix. The interphase approach is used in the
double inclusion problem where it is assumed that the inclusion is surrounded by a second
inclusion of the same shape. If the interphase size is assumed to be proportional to the
fibre radius with some proportionality constant p, then the volume of interphase material
within a region of interest is

Vintp =
(p− 1)Vf

π
. (3.14)
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Assuming that the interphase size is proportional to the fibre radius allows the total quan-
tity of interphase to be independent of the number of fibres. Therefore, one fibre surrounded
by an interphase can represent any number of aligned fibres. An interphase based approach
is used in the proposed model framework.

A unit cell is defined using a natural system of coordinates where the domain of each
axis is −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, and −1 ≤ x3 ≤ 1. A single representative fibre is
aligned with the x1 axis of the unit cell as illustrated in Figure 3.1. The representative

x1

x2

x3

Figure 3.1: Unit cell configuration with a representative fibre along the x1 axis [149]

fibre radius (rrf ) for the unit cell is defined as

rrf =

√
4Vf
π
. (3.15)

It is assumed that the interphase starts within the representative fibre and extends beyond
the representative fibre into the matrix material. Two proportionality constants k and l
are defined to describe the boundaries of the interphase zone. The interphase start radius
(ris) occurs within the boundary of the representative fibre and is given by

ris = krrf (3.16)

where the range of k is 0 ≤ k ≤ 1. The outer boundary of the interphase is the interphase
finish radius (rif ) which is given by

rif = lrrf (3.17)

where l ≥ 1. It was decided later that an upper limit on l can be assigned such that the
interphase zone ends at the edge of the unit cell and does not go into neighbouring unit
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cells. This limit is

l ≤
√

π

4Vf
, (3.18)

which is similar to Eq. 3.15 and comes from setting the representative fibre radius to 1.
The bounds on the interphase zone on the x2, x3 plane is shown in Figure 3.2. We have

ris

rif

rrf

Figure 3.2: Interphase zone limits on the x2, x3 plane

defined our unit cell containing a single representative fibre surrounded by an interphase
zone based only on the fibre volume fraction and two interphase parameters k and l.

3.1.3 Functionally Graded Interphase

The material properties within the interphase are unknown, they will be different from
the fibre and matrix but are undefined for a two-phase composite material. The material
properties of the fibre and matrix are obtained from experiments, however the interphase
properties will influence the response of the overall composite material.

As the Voigt assumptions forms the upper bounds on the elastic modulus for composite
materials, the interphase is used as a method to reduce the stiffness by reducing the
amount of material which is as stiff as the fibres. This is accomplished by transitioning
the elastic properties in the interphase zone from those of the representative fibre to the
matrix properties as a function of position around the representative fibre. This creates a
FGI. Since only the properties of the representative fibre and the matrix are known, the
interphase is used to define an abrupt transition between the two materials.
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Given that the elastic material properties are assumed to change as a function of radial
position within the interphase zone, the elastic moduli are used to initially define the
interphase functions. Since the fibres are transversely isotropic the generic fibre modulus
Ef is used to define the interphase functions and can represent either the axial or transverse
fibre modulus depending on the loading direction. The end points of the interphase function
in cylindrical coordinates about the representative fibre are (ris, Ef ) and (rif , Em) as the
inner and outer endpoint respectively. The interphase functions are defined using control
points. The simplest case uses the two end points as values of the function. Control points
can also be the derivative of the function evaluated at a specific point.

Compatibility between the phases is enforced due to the Voigt assumption where the
strain in each phase is equivalent. Although the stress equilibrium between the phases
is violated, there is a transition in stress along the FGI so that locally the violation of
equilibrium is small even though there is a discontinuity between the stress in the fibre
and that of the matrix material.

The interphase functions are integrated to create a representative interface radius (rri)
where there is a sharp transition between the fibre and matrix properties. The represen-
tative interface radius is used to modify the fibre volume fraction in a rule of mixtures
approach to predict the response of the two-phase composite. The process for calculating
the representative interface radius is to integrate the interphase function in cylindrical co-
ordinates about the representative fibre then equate the volume to that of a tube with the
inner radius of ris and an outer radius of rri known as the volume of difference in moduli
(v∆E). The volume of this tube is given as

v∆E = π (Ef − Em)
(
r2
ri − r2

is

)
, (3.19)

which can be rearranged to calculate the representative interface radius as

rri =

√
v∆E

Ef − Em
+ r2

is. (3.20)

Linear Interphase Function

A linear function is defined using the two end points of the interphase zone (ris, Ef ) and
(rif , Em) as control points where the value of the function is known. The modulus within
the interphase zone is described as a function of the radius as

E(r) = −
(
Ef − Em
rif − ris

)
r +

Efrif − Emris
rif − ris

. (3.21)
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The volume of difference in moduli is calculated by integrating the interphase function
around the representative fibre as

v∆E =

∫ 2π

0

∫ rif

ris

∫ −(Ef−Em
rif−ris

)
r+

Efrif−Emris
rif−ris

Em

rdEdrdθ (3.22)

where θ is a rotation about the x1 axis of the unit cell. Evaluating the integral the resulting
volume of difference in moduli is

v∆E =
π

3
(rif − ris) (rif + 2ris) (Ef − Em) . (3.23)

Equating this volume of the difference of moduli to the case of the tube given in Eq. 3.19
and rearranging to find the representative interface radius given in Eq. 3.20. The resultant
representative interface radius for the linear interface function is

rri =

√
1

3

(
r2
if + rifris + r2

is

)
. (3.24)

For comparison of the interphase functions and interface radii the two end points
of the interphase functions were set to (ris, Ef ) = (0.5, 213.7 GPa), and (rif , Em) =
(0.8, 3.45 GPa). Using these end points the interphase function and representative in-
terface radius are plotted in Figure 3.3. It is noted that the use of a linear interphase
function leads to an abrupt transition in the slope of the elastic moduli at the end points
of the interphase zone. This transition between the linear function and the constant values
beyond the end points cause the derivative at the end points to not be definable.
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Figure 3.3: Elastic modulus as a function of position in cylindrical coordinates about the x1

axis using the linear interphase function and the associated linear representative interface
radius [150]

Quadratic Interphase Functions

For quadratic interphase functions, the two end points are used as control points where
the value of the interphase function is known, using a similar approach to that used for
the linear interphase function. Two distinct interphase functions are defined by setting
the value of the derivative of the end points of the interphase function to zero. The first
quadratic interphase function uses the derivative set to zero at (ris, Ef ) resulting in the
radius being defined as a function of modulus as

r(E) =
rif − ris

(Em − Ef )2 (E − Ef )2 + ris. (3.25)

The order of integration for the interphase function changes from modulus, radius, and
then around the x1 axis used for the linear interphase function to radius, modulus and
then about the x1 axis. The volume of differences of stress is calculated by integrating the
equation

v∆E =

∫ 2π

0

∫ Ef

Em

∫ rif−ris

(Em−Ef)
2 (E−Ef)

2
+ris

ris

rdrdEdθ, (3.26)
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which results in a volume of difference of moduli of

v∆E =
π

15
(rif − ris) (3rif + 7ris) (Ef − Em) . (3.27)

The representative interface radius for the case of the first quadratic interphase function is
calculated in the same fashion as that for the linear interphase function given in Eq. 3.24,
which is determined to be

rri =

√
1

5
r2
if +

4

15
rifris +

8

15
r2
is. (3.28)

The first quadratic interphase function and associated representative interface radius are
shown in Figure 3.4
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Figure 3.4: Elastic modulus as a function of position in cylindrical coordinates about the x1

axis using the quadratic 1 interphase function and the associated quadratic 1 representative
interface radius [150]

The second quadratic interphase function has the derivative of the function set to zero
at (rif , Em), which results in there being a continuous derivative of the modulus across this
point. For this interphase function the modulus is defined as a function of the radius as

E(r) =
Ef − Em

(rif − ris)2 (r − rif )2 + Em. (3.29)
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The integration order for the second quadratic interphase function is the same as for the
linear interphase function given in Eq. 3.22. The equation to calculate the volume in
difference of modulus is

v∆E =

∫ 2π

0

∫ rif

ris

∫ Ef−Em

(rif−ris)
2 (r−rif)

2
+Em

Em

rdEdrdθ. (3.30)

The resulting volume of difference of Young’s modulus through integration is

v∆E =
π

6
(rif − ris) (rif + 3ris) (Ef − Em) . (3.31)

This volume is again equated to that of a tube to calculate the representative interface
radius, which for the second quadratic interphase function is

rri =

√
1

6
r2
if +

1

3
rifris +

1

2
r2
is. (3.32)

The second quadratic interphase function and associated representative interface radius
are shown in Figure 3.5
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Figure 3.5: Elastic modulus as a function of position in cylindrical coordinates about the x1

axis using the quadratic 2 interphase function and the associated quadratic 2 representative
interface radius [150]
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Exponential Interphase Function

An exponential function is used to describe the Young’s modulus as a function of position
anywhere within the domain of the unit cell as the function is continuous over the domain.
The derivatives of the function can also be evaluated at any point within the unit cell and
not just over the domain of the interphase zone. Two additional material paring parameters
m and q are used to further define the functionality of the exponential interphase function
and they are used to change the curvature depending on the material pairing used. The
exponential interphase function defines the modulus as a function of the position as

E(r) = Ef −
Ef − Em

1 + e

(
−20m
rif−ris

+10q+
20mris
rif−ris

) . (3.33)

As the function is continuous within the unit cell the limits of integration on the radius
are changed to start at a radius of zero and extend to the interphase finish radius rif .
Thus, the volume calculated is compared to a cylinder instead of a tube to evaluate the
representative interface radius. The volume of difference in Young’s modulus is

v∆E =

∫ 2π

0

∫ rif

o

∫ Ef−
Ef−Em

1+e

(
−20m
rif−ris

+10q+
20mris
rif−ris

)

Em

rdEdrdθ (3.34)

Evaluating the integral the volume in difference of Young’s modulus is

v∆E = B

20 ln
(
1 + eC

)
rifm+3 F2

(
1, 1, 1; 2, 2;−eC

)
rife

C

−3 F2

(
1, 1, 1; 2, 2;−eC

)
rise

C −3 F2

(
1, 1, 1; 2, 2;−eD

)
rife

D

+3 F2

(
1, 1, 1; 2, 2;−eD

)
rise

D

 (3.35)

where

B = −π (rif − ris) (Ef − Em)

200m2
, (3.36)

C = −20m+ 10q, (3.37)

D =
10 (2mris + qrif − qris)

rif − ris
. (3.38)

The 3F2

(
1, 1, 1; 2, 2;−eB

)
functions are hypergeometric functions given in Pochhammer’s

notation [61]. The volume is compared to that of a cylinder with the outer radius of rri as

v∆E = π (Ef − Em) r2
ri. (3.39)
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Eq. 3.35 is equated to Eq. 3.39 resulting in a representative interface radius of

rri =
1

20m


− 40 ln

(
1 + eC

)
mr2

if + 40 ln
(
1 + eC

)
mrifris

−3 F2

(
1, 1, 1; 2, 2;−eC

)
2r2

ife
C +3 F2

(
1, 1, 1; 2, 2;−eC

)
4risrife

C

−3 F2

(
1, 1, 1; 2, 2;−eC

)
2r2

ise
C +3 F2

(
1, 1, 1; 2, 2;−eD

)
2r2

ife
D

−3 F2

(
1, 1, 1; 2, 2;−eD

)
4rifrise

D +3 F2

(
1, 1, 1; 2, 2;−eD

)
2r2

ise
D


1
2

. (3.40)

The solution to the representative interface radius for the exponential interphase function
is a sum of six infinite series and has dependence on the m and q values used to define the
function. Therefore, although the exponential interphase function has favorable mathe-
matic properties it is not practical for an engineering application where the computational
efficiency of the process is important. The representative interface radius has not been
evaluated due to these reasons. A plot of the exponential interphase function is given in
Figure 3.6 where the values of m and q are set to unity.
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Figure 3.6: Elastic modulus as a function of position in cylindrical coordinates about the
x1 axis using the exponential interphase function [150]

Comparison of Interphase Functions

Four functions have been derived to describe the transition in Young’s modulus in the region
known as the interphase zone, which surrounds and includes a portion of the representative
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fibre. The interphase zone occupies the volume in cylindrical coordinates about the x1 axis
of the unit cell in between the interphase start and interphase finish radii, ris and rif
respectively. A plot comparing the four functions is shown in Figure 3.7, which uses the
same values previously stated.
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Figure 3.7: Elastic modulus as a function of position in cylindrical coordinates about the
x1 axis a comparison of the proposed interphase functions [150]

3.1.4 Stress Calculation

The average stress is used to compare the results of the proposed model to experimental
results. The stress in the fibre and that of the matrix are combined volumetrically by
defining a representative fibre volume fraction from the representative interface radius
calculated using the interphase function. The representative fibre volume fraction is

Vrf =
π

4
r2
ri. (3.41)

The average stress is calculated by the rule of mixtures modified by the representative
fibre volume fraction as

σ = Vrfσf + (1− Vrf )σm, (3.42)
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where σf is the stress calculated for the representative fibre and σm is the stress calculated
for the matrix material. As both materials are elastic and since the Voigt assumption is
used, the strain in both materials is equivalent. Therefore, the rule of mixtures applies to
the constitutive laws and the average stress is calculated as

σ = Lε (3.43)

where the overall elasticity tensor L is a combination of that of the fibre and matrix as

L = VrfLf + (1− Vrf )Lm. (3.44)

The combination of an isotropic elastic material model with a transversely isotropic mate-
rial model results in a transversely isotropic material with the generalized elasticity tensor
of

L =


L11 L12 L12 0 0 0
L12 L22 L23 0 0 0
L12 L23 L22 0 0 0
0 0 0 L44 0 0
0 0 0 0 L66 0
0 0 0 0 0 L44

 (3.45)

where the six elastic constants are

L11 = (1− Vrf )
[
Em(1− νm)

1− νm − 2ν2
m

]
+ Vrf

 EfA(1− νfT )

1− νfT − 2ν2
fTA

(
EfT
EfA

)
 , (3.46)

L12 = (1− Vrf )
[

Emνm
1− νm − 2ν2

m

]
+ Vrf

 EfT νfTA

1− νfT − 2ν2
fTA

(
EfT
EfA

)
 , (3.47)

L22 = (1− Vrf )
[
Em(1− νm)

1− νm − 2ν2
m

]
+ Vrf

 EfT

(
1− ν2

fTA

(
EfT
EfA

))
(

1− νfT − 2ν2
fTA

(
EfT
EfA

))
(1 + νfT )

 , (3.48)

L23 = (1− Vrf )
[

Emνm
1− νm − 2ν2

m

]
+ Vrf

 EfT

(
νfT + ν2

fTA

(
EfT
EfA

))
(

1− νfT − 2ν2
fTA

(
EfT
EfA

))
(1 + νfT )

 , (3.49)

L44 = (1− Vrf )
[

Em
2(1 + νm)

]
+ Vrf2GfTA , (3.50)

L66 = (1− Vrf )
[

Em
2(1 + νm)

]
+ Vrf

[
EfT

1 + νfT

]
. (3.51)
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Seven elastic material constants are required to model the overall elastic response of a
unidirectional composite material using the functionally graded interphase approach.

The stress in the fibre and stress in the matrix are calculated using their individual
constitutive law, the fibre stress is

σf = Lfε (3.52)

and for the matrix
σm = Lmε. (3.53)

The stresses in the fibre and the matrix are stored to allow for the implementation of stress
based failure criteria for the materials.

3.1.5 Model Implementation

The proposed model and Aboudi’s method of cells [10] were implemented into user defined
material models in the commercial finite element code LS-DYNA. The explicit dynamic ver-
sion of LS-DYNA was used for the implementation of the User MATerial models (UMAT).
LS-DYNA provides the user with the current deformation gradient F, the strain increment
∆ε, and time step ∆t. The UMAT calculates the stress update to be returned to LS-
DYNA. The stresses in each phase are stored as history variables to be used in subsequent
time steps.

3.2 Results

Three studies were conducted to evaluate the proposed model, the existing modelling
framework of Aboudi using the generalized method of cells [10], and experimental data.
The first study compares the proposed model to that of Aboudi over a range of fibre
volume fractions. The second study compares the model to the stress strain response of a
carbon fibre epoxy system studied by Hsiao and Daniel [104]. The third study compares
the proposed model to the stress strain response of a carbon fibre peek system studied by
Kyriakides et al. [120]. For all studies a single 8 noded hexahedral element was used.

3.2.1 Comparison Over a Range of Fibre Volume Fractions

For this study, a factitious carbon fibre epoxy system were considered with material prop-
erties taken from Chamis 1986 [44]. The material properties are given in Table 3.1.

45



Table 3.1: Material properties taken from Chamis 1986 [44] used to compare the proposed
model to Aboudi’s model

Carbon Fibre
EfA (GPa) 213.7
EfT (GPa) 13.8
GfTA (GPa) 13.8

νfT 0.2
νfTA 0.25

Epoxy
Em (GPa) 3.45

νm 0.35

Table 3.2: Interphase parameters calibrated to Aboudi’s model

Interphase Function k l
Linear 0.89 1

Quadratic 0.92 1

The fibre volume fraction is varied between 0.25 and the upper limit of the unit cell
model of 0.77. Both linear and quadratic interphase functions were considered, although
as the model is calibrated to find an appropriate representative interface radius value, the
functionality of the model does not affect the accuracy. All that would change when going
between the linear and quadratic interphase function would be the values of the interphase
parameters k and l to produce the same value of rri. The model was calibrated to match
Aboudi’s model for uniaxial deformation along the fibre direction, the interphase parame-
ters are given in Table 3.2. It is noted that the difference between using the quadratic 1 and
quadratic 2 interphase function is not distinguishable by varying the interphase parameters
in increments of 0.01, therefore it is reported as just the quadratic interphase function.

One end of the single element had all four nodes fixed in place while the opposite end
allowed for motion along the x1 direction which is aligned with the fibre. The four corner
nodes on the face which moves in the x1 direction are constrained from motion in the x2 and
x3 directions. Thus, the boundary conditions induce a stress in all three directions with
an applied displacement only in one direction. The stress induced by the displacement
is compared between the two models. The normal stress induced in the x1 direction is
compared in Figure 3.8. The stress induced in the x1 direction by the proposed model
predicts a stress within 2% of that predicted by Aboudi’s model. The overall trends of the
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Figure 3.8: Stress induced normal to the x1 direction by the applied displacement over a
range of fibre volume fractions [150]

two models are the same, however the slope of the proposed model is slightly lower than
that of Aboudi’s model over the range of fibre volume fractions.

As stress was induced in all directions due to the boundary conditions applied to the
finite element, the Von Mises stress predicted by the models is compared in Figure 3.9.
The Von Mises stress is within 1% of each other over the range, with the proposed model
slightly under predicting Aboudi’s model for low volume fractions. The calibration of the
model was conducted at a volume fraction of 0.6, as such the results will differ at the ends
of the range of fibre volume fractions considered.

The results of the normal stress in the transverse direction to the fibre was also evalu-
ated. This stress is normal to the x2 and x3 directions of the unit cell and the magnitude is
equivalent due to the applied displacement. A comparison of the transverse normal stress
induced by the applied displacement is shown in Figure 3.10 There is a large difference
between the predicted response of the two models. The proposed model is linearly re-
lated to the fibre volume fraction, however, Aboudi’s model has an inverse relation to the
fibre volume fraction. In Aboudi’s model the two elasticity constants that influence the
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Figure 3.9: Von Mises stress induced by the applied displacement over a range of fibre
volume fractions [150]
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Figure 3.10: Transverse stress induced by the applied displacement over a range of fibre
volume fractions [150]
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transverse stress strain response are

L12 =
EfEm

VfEm + VmEf

[
VfνfEf (1 + νm) (1− 2νm) + VmνmEm (1 + νf ) (1− 2νf )

VfEf (1 + νm) (1− 2νm) + VmEm (1 + νf ) (1− 2νf )

]
[
1− VmEf + VfEm

VfνfEm + VmνmEf

]
− VfEf + VmEm

2[
VfEf (1 + νm) (1− 2νm) + VmEm (1 + νf ) (1− 2νf )

VfνfEf (1 + νm) (1− 2νm) + VmνmEm (1 + νf ) (1− 2νf )

]
,

(3.54)

and

L22 =− EfEm
2 (VfνfEm + VmνmEf )

− EfEm (VmEf + VfEm)

2 (VfνfEm + VmνmEf )

− (VfEf + VmEm) [VfEf (1 + νm) (1− 2νm) + VmEm (1 + νf ) (1− 2νf )]
2

4 [VfνfEf (1 + νm) (1− 2νm) + VmνmEm (1 + νf ) (1− 2νf )]
2 .

(3.55)

The first term in both of the elastic tensor terms for Aboudi’s model have inverse de-
pendence of the fibre volume fraction resulting in the curvature shown. The intersection
point for the two models is at 0.72 volume fraction. The proposed model over-predicts
Aboudi’s model by 115% at 0.25 volume fraction and under-predicts by 18 % at 0.78 vol-
ume fraction. The trends of Aboudi’s model are those established for the lower bound
on elasticity such as the Reuss assumption where the stress in both phases is assumed to
be the same or other estimates such as the Hashin Shtrikman lower bound [93]. One key
difference between the models is that Aboudi assumes there is an isotropic fibre whereas in
the current implementation the assumption of transverse isotropy in the fibres is used to
reduce the transverse stiffness. Aboudi’s model requires this inverse dependence to reduce
the transverse stiffness due to the assumption of isotropic fibres.

3.2.2 Comparison with Data from Hsiao and Daniel, 1996

The proposed elastic model is calibrated to the stress strain curves provided by Hsiao and
Daniel for a unidirectional carbon fibre epoxy system [104]. The system consisted of IM6G
fibres with a 3501-6 epoxy prepreg with 0.6 volume fraction, which is an aerospace grade
material. The calibration parameters for this model are given in Table 3.3, a quadratic
interphase function was chosen as it increases the k value to seem more physically likely
compared to the linear interphase function. Stress strain data was given for axial com-
pression, transverse compression, and shear by Hsiao and Daniel [104]. The Stress strain
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Table 3.3: Model parameters for IM6G/3501-6 composite to match the experimental data
of Hsiao and Daniel

IM6G Fibre
EfA (GPa) 279
EfT (GPa) 13.8
GfTA (GPa) 13.8

νfT 0.3
νfTA 0.3

3501-6 Epoxy
Em (GPa) 3.45

νm 0.35
Interphase
k 0.7
l 1

response were compared up to 1% strain where there was clear separation between the
elastic models and the experimental results.

For axial compression, the stress strain results of the models compared to the experi-
ment are shown in Figure 3.11. The proposed model provides a very accurate prediction
of the experimental stress strain response up to 0.8% strain where the experimental data
curves downwards. The stress predicted by Aboudi’s model is 18.4% higher than the
calibrated proposed model for all strains as they are both linear elastic models. At 1%
strain the proposed model predicts a stress 7.6% higher than the experiment and the stress
predicted by Aboudi’s model is 27% higher than the experiment.

The comparison of the stress strain results for transverse compression between the two
models and experiment are shown in Figure 3.12. For transverse compression, the proposed
model matches the experiment very closely predicting a 1.5% higher stress at 1% strain.
Aboudi’s model predicts a 21% lower strain than the proposed model, which results in it
predicting a 19% lower than experimental stress at 1% strain.

A comparison of the shear stress strain response of the models compared to the ex-
perimental response is given in Figure 3.13. At 1% strain the proposed model predicts an
11% higher stress than the experimental results. Similarly to the axial compression case,
there is curvature to the shear stress strain response. The point of divergence is at around
0.65% strain. Aboudi’s model predicts 116% higher stress than the proposed model at all
strains, which results in a predicted stress which is 140% too large at 1% strain.
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Figure 3.11: Axial compression stress strain response of the proposed model and Aboudi’s
model compared to the experimental data of Hsiao and Daniel [104] [150]
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Figure 3.12: Transverse compression stress strain response of the proposed model and
Aboudi’s model compared to the experimental data of Hsiao and Daniel [104] [150]
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Figure 3.13: Shear stress strain response of the proposed model and Aboudi’s model com-
pared to the experimental data of Hsiao and Daniel [104] [150]

3.2.3 Comparison with Data from Kyriakides et al., 1995

The third set of data for comparison is for a unidirectional AS4 carbon fibre in an APC-2
Poly(ethyl ether ketone) (PEEK) matrix composite system published by Kyriakides et al.
[120]. Stress strain data for uniaxial tension and compression in the fibre direction and
transverse to the fibre direction where presented along with shear stress strain data. The
material parameters used in the model calibration are given in Table 3.4. The fibre volume
fraction for this composite system is 0.6. The stress strain response is compared up to 1
% strain, as with the previous data set.

Loading in the fibre direction for tension and compression is given in Figure 3.14 where
the experimental stress strain results are compared to the proposed model and Aboudi’s
micromechanics model. In tension the experimental curve exhibited upward curvature
resulting in Aboudi’s model being a better fit in tension where as there is very good
agreement for the proposed model in compression. In tension at 1% strain the proposed
model under-predicts the stress by 9% where as Aboudi’s model over-predicts the response
by 1.3%. Aboudi’s model predicts 12% higher stress than the proposed model for the
given calibration. In compression at 1% strain the proposed model over-predicts the stress
by 6.8% where Aboudi’s model over predicts the stress by 19.5%. In compression, the
proposed model is a very good match up to 0.7% strain where the response transitions to
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Table 3.4: Model parameters for AS4/APC-2 composite to match the experimental data
of Kyriakides et al.

AS4 Fibre
EfA (GPa) 214
EfT (GPa) 13.8
GfTA (GPa) 13.8

νfT 0.2
νfTA 0.28

APC-2 PEEK
Em (GPa) 4.10

νm 0.356
Interphase
k 0.71
l 1
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Figure 3.14: Fibre direction stress strain response of the proposed model and Aboudi’s
model compared to the experimental data of Kyrakides et al. [120] [150]
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plastic behaviour.

The results for loading in the direction transverse to the fibres is shown in Figure
3.15 where the experimental data is compared to the prediction from the proposed model
and Aboudi’s model. Under transverse tension the experiment failed at under 1% strain.
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Figure 3.15: Transverse fibre direction stress strain response of the proposed model and
Aboudi’s model compared to the experimental data of Kyrakides et al. [120] [150]

A comparison of the models’ predictions was conducted at 0.5% strain as there was a
clear early onset of plasticity in the composite system. In tension the proposed model
over predicts the stress by 19.8% where as Aboudi’s model only over predicts the stress
by 9.7%. In compression, the proposed model over predicts the stress at 0.5% strain by
11.4%, Aboudi’s model only over predicts the stress by 1.8% at the same strain. Aboudi’s
model predicts an 8.5% lower stress for a given strain compared to the proposed model.

The shear stress strain response is compared between the proposed model, Aboudi’s
model and the experiment in Figure 3.16. In shear, nonlinear deformation onsets at a
much lower strain compared to the axial and transverse fibre directions and the stress is
compared at a shear strain of 0.25%. The proposed model over predicts the stress by
8% at this strain and Aboudi’s model over predicts the stress by 138% at this strain.
Aboudi’s model predicts a 119% higher stress than the proposed model over the strain
range compared.
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Figure 3.16: Shear stress strain response of the proposed model and Aboudi’s model com-
pared to the experimental data of Kyrakides et al. [120] [150]

3.3 Discussion

The material parameters used in the calibration were not obtained from the respective
papers where the experimental results were published as they were not included in the
papers. Most of the parameters came from Chamis who published the material proper-
ties of similar class materials such as the AS4 and IM6G fibres [44]. In particular, the
transverse properties of the fibres is not given when fibres are assumed to be isotropic. A
key assumption of this model which allows it to accurately predict the transverse stiffness
is that the fibres are transversely isotropic, allowing for a reduced stiffness in the plane
normal to the fibre direction. Other models change the assumption to not having equal
strain in the fibre and matrix which induces the curvature seen in Aboudi’s model over the
range of volume fractions in Figure 3.10.

The transverse fibre properties are relatively hard to obtain compared to the axial
properties. Experimentally, the transverse properties of individual fibres are tested by
compressing them in between glass slides however the measurements are very difficult to
complete as the fibre diameter is on the order of 10 micro meters. The contact of fibre on
the glass slides leads to stress concentrations, which affect the resulting material properties.
Measurement of the very small force and displacement of the individual fibres also leads
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to increased measurement error and uncertainty. Often fibre properties are found inversely
by performing experimental measurement on a composite and using a micromechanics
model to calculate the fibre properties. The problem with this approach is that the fibre
properties are dependent on the model and assumptions of the model formulation.

Comparing the transverse stress strain results of Aboudi’s model to the proposed model
the intersection point is at Vf = 0.72. At volume fractions above this Aboudi’s model
predicts a higher stress where as volume fractions below this the proposed model predicts
a higher stress. It is interesting to note that this cross over point occurs near the upper limit
of the fibre volume fraction arising from the assumed square fibre packing arrangement.
The proposed model requires the transversely isotropic fibre assumption to bring the stress
back in line with experimental data due to the Voigt assumption. the transverse predictions
could be further improved through the use of strain localization in the fibre such as by the
method introduced by Eshelby [62].

The results for the axial fibre direction are a close match to the experimental result
for both models. This is a much easier problem to solve for as one can obtain the axial
properties of fibres through single fibre testing where the ends of a single fibre are imbedded
in matrix material. Such tests provide accurate results as the interface between the fibre
and matrix does not fail through fibre pull out.

It is also possible to experimentally measure the matrix properties for some classes of
polymer materials, however the presence of the fibres does have an effect on the material
properties of the matrix. Li et al. have shown through the use of transmission electron
microscopy and energy dispersive x-ray analysis that the degree of curing of a thermosetting
resin changes as a function of radial position around fibres due to bonds established with
the sizing on the fibres [125]. Reactions of the sizing change the amount of specific elements
in the resin as a function of radial position away from the fibre [125]. These experimental
techniques used by Li e al. could be to determine the bounds of the interphase zone.

Another method that could be used to determine the size of the interphase zone is
nano-indentation. Karger-Kocsis et al. have reviewed the recent advancements and exper-
imental characterization of the interphase [115]. The fibre sizing also effects the size of the
interphase zone and the functionality.

The stress strain response of the matrix material has been simplified to linear elastic,
however in reality polymers exhibit rate, temperature, and stress triaxiality dependent
response. These effects are also present in the elastic regime, which could explain the
differences in the stress strain response between tension and compression with the exper-
imental data from Kyriakides et al. Weeks and Sun have demonstrated the strain rate
dependence of the AS4/Peek system [178].
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3.4 Conclusions of Elastic Model

The elastic response of a unidirectional composite system is modeled using the functionally
graded interphase model. The model consists of a unit cell containing a single represen-
tative fibre, which is surrounded by a functionally graded interphase where the elastic
properties change as a function of radial position. Four interphase functions are proposed
to define this transition in material properties within the interphase. The material pair-
ing parameters k and l are fit to match the stress strain response of the composite. In
the model, the effects of the Voigt assumption as an upper bound on the elastic response
is reduced through an effective modification of the fibre volume fraction. Coupled with
the assumption of a transversely isotropic fibre this allows for accurate prediction of the
material’s elastic response in all directions.

The results predicted by the model are similar to those of Aboudi’s model and it is
possible to calibrate the interphase parameters to match the results of Aboudi’s model.
The exception is in the transverse direction due to the Voigt assumption. The use of the
interphase allows for improved prediction of the elastic stress strain response of composite
materials as the material pairing constants are adjusted to match the experimental results.
There is also a physical interpretation of the functionally graded interphase which has
been observed experimentally. The model calculates the overall stress from the stress of
the individual phases. The stress in both the fibre and matrix phases are stored for use in
implementation of failure theories.

3.5 Summary of Model Limitations

The limitations of this model are:

• It is limited to elastic deformation and is not applicable to the point of failure

• It is limited to a maximum fibre volume fractions of 0.77 resulting from the assumed
square packing

• The strains in the fibre and matrix are assumed to be the same which is not correct
for the implementation of strain based failure

• The transitions within the interphase zone have discontinuous derivatives at the
boundaries

• The rate and stress state dependent response of the polymer material is neglected
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Chapter 4

Generalized Functionally Graded
Interphase Model

Polymers are known to exhibit an elasto-visco-plastic material response and therefore this
behaviour must be accounted for in the model. Whereas the elastic model discussed previ-
ously assumed that the fibres were transversely isotropic and the strain was equal between
the phases, the generalized model assumes that the strain in the fibre arises due to Eshelby’s
inclusion problem [62]. The generalized model assumes that the stress state changes as a
function of position within the interphase, whereas previously, it was the material prop-
erties that were changing. This assumption is applicable to elastic, plastic, and viscous
effects of the material response. It is also noted that the elastic assumption made pre-
viously is a sub set of the generalized solution as by changing the elastic properties in a
functionally graded manner results in the stress changing as a function of position related
to the functionality of the interphase.

4.1 Model Formulation

For the generalized model the same unit cell approximation given in Figure 3.1 is used. As
the Voigt assumption is no longer used, the deformation is no longer constant across the
unit cell. The deformation is subdivided into three regions based on the functionality of
the interphase. The three regions are shown in Figure 4.1 where the white region is the
bulk matrix deformation region, the yellow region is the interphase matrix deformation
region and the green region is the representative fibre deformation region.
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Figure 4.1: Deformation regions of the unit cell model defined by the interphase radii

The critical radii for the definition of the deformation regions are the representative
interface radius (rri), which is the boundary between the representative fibre deformation
region and the interphase matrix deformation region, and the interphase finish radius
(rif ), which is the boundary between the interphase matrix deformation region and the
bulk matrix deformation region. The interphase finish radii are a function of the material
pairing constant l, which has the relation given in Eq. 3.17. The representative interface
radius is a function of the integration of the interphase functions.

4.1.1 Stress Based Functionally Graded Interphase Functions

For the generalized model the interphase functions are defined using a stress gradient in
any direction. The stress in the interphase varies between that of the fibre (σf ) and the
stress state of the bulk matrix material (σbm). It is important to note that the fibre stress
is different from the representative fibre stress as they act over different regions. The
interphase end points are (ris, σf ) and (rif , σbm). Additional polynomial functions up to
a quartic function are defined to describe the stress gradient within the interphase. The
number of control points required to define a polynomial is o+1 where o is the order of the
polynomial function. The control points used in defining the interphase functions consist
of the values of the function at the end points and the derivatives of the function at the
end points along with values or derivatives of the function evaluated at other locations.
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Linear Interphase Function

The two stress values at the end points of linear interphase function are used as con-
trol points for the interphase function. The control points of the interphase function are
(rif , σbm) and (ris, σf ). The stress as a function of radius in the interphase zone is given by

σ(r) = −
(
σf − σbm
rif − ris

)
r +

σfrif − σbmris
rif − ris

(4.1)

Eq. (4.1) is integrated over the interphase zone in cylindrical coordinates to obtain the
volume of the difference in stress in the interphase zone v∆σ, which is calculated as

v∆σ =

∫ 2π

0

∫ rif

ris

∫ σ(r)

σbm

rdσdrdθ (4.2)

Substituting for the interphase function

v∆σ =

∫ 2π

0

∫ rif

ris

∫ −(σf−σbm
rif−ris

)
r+

σf rif−σbmris
rif−ris

σbm

rdσdrdθ (4.3)

Evaluating the integral, the resulting volume of difference in stress is

v∆σ =
π

3
(rif − ris) (rif + 2ris) (σf − σbm) . (4.4)

Equating the volume found through integration given in Eq. 4.4 to the volume of a tube
with end points at σf and σbm, with an outer radius of rri and inner radius of ris given as

v∆σ = π (σf − σbm)
(
r2
ri − r2

is

)
, (4.5)

which is rearranged to calculate the representative interface radius rri as

rri =

√
v∆σ

σf − σbm
+ r2

is. (4.6)

The representative interface radius for the linear interphase function is calculated as

rri =

√
1

3

(
r2
if + rifris + r2

is

)
, (4.7)

which is the same result as for the linear elastic interphase function given in Eq. 3.24. This
is a fairly obvious result as it has previously been shown that the representative interface
radius is only a function of the interphase start and finish radii and has no dependence on
the elastic constants or in this case the stress in the fibre and the stress of the bulk matrix.
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Quadratic Interphase Functions

Three control points are required to define a quadratic interphase function. The stress at
the two end points of the function are used as control points for the function. The third
control point is defined by setting derivative of the interphase function to zero at one of
the two ends. In this way two quadratic interphase functions are defined in the same way
as for the elastic interphase functions, with the zero-derivative located at (rif , σbm) and
(ris, σf ).

For the case of the derivative evaluated at (ris, σf ) the interphase function defines radius
as a function of stress, which is given as

r(σ) =
rif − ris

(σbm − σf )2
(σ − σf )2 + ris. (4.8)

The order of integration has to be changed as the function is defined differently as radius
as a function of stress as opposed to stress as a function of radius.

v∆σ =

∫ 2π

0

∫ σf

σbm

∫ r(σ)

ris

rdrdσdθ (4.9)

Solving the integral by substituting Eq. 4.8 into Eq. 4.9 the volume of difference of stress
is

v∆σ =
π

15
(rif − ris) (3rif + 7ris) (σf − σbm) , (4.10)

which is substituted into Eq. 4.6 to calculate the representative interface radius as

rri =

√
1

5
r2
if +

4

15
rifris +

8

15
r2
is. (4.11)

Again this representative interface radius is equivalent to that calculated for the elastic
interphase function given in Eq. 3.28.

The second quadratic interphase function arises from the derivative control point eval-
uated at (rif , σm). In this quadratic interphase function the stress is given as a function of
radius about the x1 axis as

σ(r) =
σf − σbm

(rif − ris)2
(r − rif )2 + σbm. (4.12)

The interphase function is integrated as per Eq. 4.2 to calculate the volume of difference
of stress which is

v∆σ =
π

6
(σf − σbm) (rif + 3ris) (rif − ris) . (4.13)
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The representative interface radius is calculated using Eq. 4.6, for the quadratic interphase
function given in Eq. (4.12) it is

rri =

√
1

6
r2
if +

1

3
rifris +

1

2
r2
is, (4.14)

which again is equivalent to the representative interface radius for the elastic case given in
Eq. 3.32.

Cubic Interphase Function

Four control points are used to define a cubic function, the values of the points at the end
points of the functions (rif , σbm) and (ris, σf ) are known and the derivative of the function
at those points is set to zero giving the four control points. The stress as a function of
position within the interphase zone is given as

σ(r) =

σf − σbm
1
6

(
r3
if − r3

is

)
+ 1

2

(
rifr2

is − risr2
if

) [1

3
r3 − ris − rif

2
r2 + risrifr +

r3
if

6
−
risr

2
if

2

]
+ σbm.

(4.15)

This is integrated using Eq. 4.2 to calculate the volume of difference in stress as

v∆σ =
π

10
(σf − σbm)(3rif − 7ris)(rif − ris). (4.16)

The representative interface radius is then calculated using Eq. 4.6 resulting in the follow-
ing representative interface radius

rri =

√
3

10
r2
if +

4

10
rifris +

3

10
r2
is. (4.17)

A plot of the cubic interphase function and its associated representative interface radius is
shown in Figure 4.2.
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Figure 4.2: Cubic interphase function and associated representative interface radius defined
around the x1 axis of the unit cell

Quartic Interphase Function

To define a quartic function, a fifth control point is required. At the end points of the
function the values are known and the derivatives are set to zero which gives four con-
trol points. The fifth control point defines the stress half way between ris and rif and
has the following coordinate in cylindrical coordinates about the x1 axis of the unit cell(
rif+ris

2
,m(σf − σbm) + σbm

)
where the parameter m is added to define the stress as having

a value between σbm and σf by varying the parameter m between 0 and 1. Using the five
control points along with the new material pairing parameter m the quartic interphase
function is easily calculated as

σ(r) =
1

(rif − ris)4

[
(σf − σbm)

(
(16m− 8) r4 − (32mrif + 32mris − 18rif − 14ris) r

3

+
(
16mr2

if + 64mrifris + 16mr2
is − 11r2

if − 32risrif − 5r2
is

)
r2

−
(
32r2

ifris + 32mrifr
2
is − 22r2

ifris − 10rifr
2
is

)
r + 16mr2

ifr
2
is

)
+ σf

(
r4
if − 4r3

ifris − 5r2
ifr

2
is

)
+ σbm

(
11r2

ifr
2
is − 4rifr

3
is + r4

is

) ]
.

(4.18)
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The volume of difference in stress is calculated by substituting Eq. 4.18 into Eq. 4.2
resulting in

v∆σ =
π

30
(σf − σbm) (16mrif + 16mris + rif + 13ris) . (4.19)

Again, this volume is used in Eq. 4.6 to calculate the representative interface radius
resulting in

rri =
1

30

√
480m

(
r2
if − r2

is

)
+ 30r2

if + 360rifris + 510r2
is. (4.20)

Note that unlike the other interphase functions, which result in the representative interface
radius being a function of rif and ris this interface radius is also a function of the material
pairing parameter m, which was introduced for this interphase function. A plot of the
quartic interphase functions and their associated representative interface radii is given in
Figure 4.3 for 6 different values of m. It is observed that for a low m value such as m = 0.0

0 0.2 0.4 0.6 0.8 1

Radius

0

50

100

150

200

S
tr

e
s
s
 (

M
P

a
)

m=0

m=0.2

m=0.4

m=0.6

m=0.8

m=1

Figure 4.3: Quartic interphase functions and their associated representative interface radii
defined around the x1 axis of the unit cell for varying m values

the sense of the stress switches from tension to compression or compression to tension
depending on the stress state, which is not physically possible. Therefore, m values should
not be less than approximately 0.2 to avoid this issue.
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Comparison of Interphase Functions

The proposed polynomial interphase functions are compared for a set of endpoints in Fig-
ure 4.4. The associated representative interface radii for the interphase functions shown

0 0.2 0.4 0.6 0.8 1

Radius

0

50

100

150

200

S
tr

e
s
s
(M

P
a

)

Linear

Quadratic 1

Quadratic 2

Cubic

Quartic m=0

Quartic m=1

Figure 4.4: Comparison of the interphase functions defined around the x1 axis of the unit
cell

in Figure 4.4 are illustrated in Figure 4.5 along with the interphase bounds ris, rif , and
rf . It is noted that the two quadratic interphase functions give almost identical represen-
tative interface radii. The linear and cubic interphase functions also give nearly identical
representative interface radii. The quartic interphase function provides the largest range
of representative interface radii along with the derivatives being continuous at the ends,
which is why it is used in all future model calibrations.

4.1.2 Deformation Partitioning

The fibre strain is calculated using Eshelby’s solution, for a single infinitely long cylindrical
inclusion. For the case of our unit cell the representative fibre extends to the ends of the unit
cell, such that there is a finite length fibre within the unit cell. The important distinction
is that in the fibre direction, the end effects are ignored and it is assumed that the strain
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in the x1 direction is the same for the fibre as the overall unit cell, which is the result of
the infinitely long cylindrical inclusion. The representative fibre strain is calculated as

εrf = Tε (4.21)

where ε is the strain applied to the far field, which in our case is equivalent to the overall
unit cell strain. The strain localization tensor is given in Eq. 2.4. Eshelby’s inclusion
tensor for the case of an infinitely long cylindrical inclusion is

Sf =



0 0 0 0 0 0
νm

2−2νm
5−4νm
8−8νm

4νm−1
8−8νm

0 0 0
νm

2−2νm
4νm−1
8−8νm

5−4νm
8−8νm

0 0 0

0 0 0 1
4

0 0
0 0 0 0 3−4νm

8−8νm
0

0 0 0 0 0 1
4

 . (4.22)

The elasticity tensors Lm and Lf are the isotropic elasticity tensor for the matrix material
and the transversely isotropic elasticity tensor for the fibre given in Eq. 3.2 and Eq. 3.3
respectively.

The strain is partitioned using compatibility between the phases which is enforced
through the displacement gradients. The deformation is partitioned into three segments
volumetrically as

G = VrfGrf + VimGim + (1− Vrf − Vim)G (4.23)

where G is the overall displacement gradient applied to the unit cell, Vim is the volume
fraction of the interphase matrix portion, Grf is the displacement gradient in the represen-
tative fibre and Gim is the displacement gradient in the matrix portion of the interphase.

The overall displacement gradient is known as it is applied to the unit cell. The fibre
displacement gradient is calculated from the overall displacement gradient through the
strain localization tensor using the proof shown in Section 4.1.2. The matrix portion of
the interphase displacement gradient is calculated as

Gim =
G(Vrf + Vim)− VrfGrf

Vim
(4.24)

Fibre Displacement Gradient Proof

We will start by assuming that the fibres undergo small strain to failure and therefore,
only undergo infinitesimal strain prior to failure. Infinitesimal strain is defined as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.25)
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where the indices i and j have values between one and three. For the case where i = j,
the normal strain simplifies to

εii =
∂ui
∂xi

. (4.26)

The displacement gradient G is defined as

G =

∂u1∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 . (4.27)

The deformation gradient F is related to the displacement gradient as

F = G + I, (4.28)

where I is the second order identity tensor. The deformation gradient can be written in
terms of the displacement gradient as

F =

∂u1∂x1
+ 1 ∂u1

∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

+ 1 ∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

+ 1

 . (4.29)

The deformation can be decomposed into either the left V or right U stretch tensor and a
rotation R as

F = VR = RU (4.30)

respectively. We will assume that the fibres undergo no rotation such that the left and
right stretch tensors are equivalent. We will also assume that the displacement gradient of
the fibre is symmetrical such that

∂ui
∂xj

=
∂uj
∂xi

. (4.31)

We can therefore rewrite the off diagonal terms of the displacement gradient as

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.32)

which is equivalent to our infinitesimal strain tensor given in Eq. 4.25. The displacement
gradient for the representative fibre is equivalent to the representative fibre strains and can
be rewritten as

Grf =

εrf11 εrf12 εrf13
εrf12 εrf22 εrf23
εrf13 εrf23 εrf33

 . (4.33)
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Therefore, the displacement gradient in the representative fibre is equivalent to the strain
in the representative fibre

Grf = εrf . (4.34)

4.1.3 Fibre Model

The representative fibre is assumed to deform elastically and the fibre stress is calculated
from the fibre strain which is given by Eq. 4.21 as

σf = Lεrf . (4.35)

4.1.4 Matrix Model

As discussed in Section 2.1.3 polymers do not follow typical metallic material models and
require material models which have been developed specifically for polymeric materials.
The model developed by the Buckley and co-authors [37, 36, 35] is implemented to simu-
late the response of an epoxy matrix material. The input to the glass rubber model is the
deformation gradient F. Two regions within the model use the glass rubber constitutive
law, the bulk matrix region and the interphase matrix region. The deformation gradients
for these regions are the overall deformation gradient F and the interphase matrix defor-
mation gradient Fim respectively. The deformation gradient for the interphase matrix is
calculated as

Fim = Gim + I. (4.36)

In this section the equations are derived in terms of the deformation gradient regardless of
the specific region.

The volume ratio is defined in order to derive the deviatoric deformation gradient for
the polymer

J = det F. (4.37)

The deviatoric portion of the deformation gradient is then calculated as

F̄ = J−
1
3 F. (4.38)

Note that this differs from the classical continuum mechanics definition of

F̄ij = Fij −
1

3
trace(F)δij, (4.39)
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and arises due to the partially incompressible nature of polymeric materials. The time

derivative of the deviatoric deformation gradient ˙̄F is required to calculate the deviatoric
velocity gradient as

L̄ = ˙̄FF̄−1. (4.40)

The deviatoric velocity gradient is decomposed into the symmetric and skew symmetric
portions being the deviatoric deformation rate (D̄), and the spin (W) respectively given
as

D̄ =
1

2

(
L̄ + L̄T

)
, (4.41)

W =
1

2

(
L̄− L̄T

)
. (4.42)

Note that the spin is independent of the velocity gradient being deviatoric and is therefore
not a deviatoric quantity. The deviatoric left Cauchy Green tensor is calculated from the
deviatoric deformation gradient as

B̄ = F̄F̄T (4.43)

In the glass rubber model the stress is split into three components; the mean stress
(σmean), the bond stretching stress (Sb), and the conformational stress (Sc). The mean
stress is due to the volumetric change and is calculated from the matrix bulk modulus
(Km) as

σmean = Km ln J. (4.44)

The relaxation time of the polymer includes viscous and creep effects and is crucial to
calculating the bond stretching stress. It is assumed that the mean value of a relaxation
spectra represents that spectrum of relaxation times, and that the relaxation time remains
constant within the numerical integration scheme used to solve the problem. The bond
stretching stress is updated objectively using the Jaumann rate (Ŝb) as

Ṡb = Ŝb + WSb − SbW. (4.45)

The Jaumann rate is calculated as

Ŝb = 2GbD̄−
Sb
τ

(4.46)

where Gb is the shear modulus associated with bond stretching, and τ is the relaxation
time. The first step in the calculation of the relaxation time is to calculate the octahedral
bond stretching stress (σoct) as

σoct =

√
1

3
Sb : Sb. (4.47)
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The viscous portion of the deformation rate is calculated as

Dv = D̄− Ŝb
2Gb

. (4.48)

The viscous portion of the deformation rate is used to calculate the Mises average viscous
strain (εv) as

εv =

√
2

3
Dv : Dv. (4.49)

The viscous strain is used to calculate the fictive temperature (Tfic) as

Tfic = Tgl + (Tfft − Tgl)
(

1− exp
(
−εv
ε0

))
(4.50)

where Tgl is the glass transition temperature of the polymer, Tfft is the final fictive tem-
perature of the polymer, and ε0 is the reference rejuvenation strain range. The relaxation
time is calculated as

τ =
Vsσoct
2RT

exp
(
−Vpσmean

RT

)
sinh

(
Vsσoct
2RT

) τ0 exp

(
Ct

Tfic − T∞
− Ct
Tgl − T∞

+
∆H0

RT
− ∆H0

RTgl

)
(4.51)

where Vs is the shear activation volume, R is the universal gas constant, T is the tempera-
ture of the polymer, Vp is the pressure activation volume, τ0 is the linear relaxation time at
the reference conditions, Ct is the Cohen-Turnbull constant, T∞ is the Vogel temperature,
and ∆H0 is the activation enthalpy.

The third contribution to the stress is the conformational stress. To evaluate this stress,
first the eigenvalues (λ̄k) of the left Cauchy Green tensor given in Eq. 4.43 are calculated.
The principal components of the conformational stress are calculated from the eigenvalues
as

Sck =
λ̄k
J

∂Acm
∂λ̄k

− P for k = 1, 2, 3 (4.52)

where Acm is the free energy function, and P is the pressure resulting from the constraint
that the trace of the conformational stress is zero. The free energy function is

Acm =
NskBT

2

[
(1 + η) (1− α2)

1− α2
∑3

i=1 λ̄
2
i

3∑
i=1

λ̄2
i

1 + ηλ̄i
+

3∑
i=1

ln
(
1 + ηλ̄2

i

)
+ ln

(
1− α2

3∑
i=1

λ̄2
i

)]
(4.53)
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where Ns is the density of the slip links in the polymer, kB is the Boltzmann constant,
η represents the freedom of movement in the slip links, and α is a measure of the inex-
tensibility of the polymer chains. The principal stresses are rotated back to the reference
frame using the associated eigenvectors (qk) of the eigenvalues (λ̄k) calculated from the left
Cauchy Green tensor (B̄), the conformational stress is

Sc = Sckqk ⊗ qk for k = 1, 2, 3. (4.54)

Note that superposition of the stress states applies for each of the three stress states rotated
from the principal values.

The three stress contributions are added together to obtain the overall stress state of
the polymer as

σ = σmean + Sb + Sc. (4.55)

Note that it is assumed that temperature remains constant during the deformation, however
it is possible to include temperature rise due to deformation in the future.

A major advantage the glass rubber model has over state variable based models is that
all the parameters are physically based and can be measured through experimentation.
The model is based on thermodynamics and is able to capture the temperature effects of
the polymer, which is crucial for polymers when they are close to their glass transition
temperatures.

4.1.5 Stress Calculation

The representative fibre volume fraction (Vrf ) is calculated using Eq. 3.41. Additionally,
the volume fraction of interphase matrix material is required, which is

Vim =
π

4

(
r2
if − r2

ri

)
(4.56)

The average stress is calculated by volumetrically averaging the stress in each region as

σ = (1− Vim − Vrf )σbm + Vimσim + Vrfσf . (4.57)

The average stress is used to compare the model predictions to experimental results.
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Figure 4.6: Flow chart of how the user defined material model works within LS-DYNA
[149]

4.2 Model Implementation

The model described in section 4.1 is implemented in a user defined material model within
LS-DYNA. The explicit dynamic solver in LS-DYNA is used. A flow chart showing how
the user defined material model code is set up as shown in Figure 4.6. The model requires
24 input parameters comprising of material properties, and interphase parameters along
with the interphase function to be used.

Two studies were conducted, the first using a 1 unit cubic element to replicate the quasi
static results presented by Hsiao and Daniel [104], the second was to reproduce the results
under moderate strain rates and used a sample of the same geometry as Hsiao and Daniel
[105]. The second model geometry is a drop tower test specimen 24.5 mm tall, 12.7 mm
wide and 8.7 mm thick made up of unidirectional aligned fibres. For the drop tower test
the nodes on one of the contact faces where constrained from motion in the direction of
the applied motion. They were only allowed to move in the plane normal to the applied
displacement to prevent barreling of the specimen. The nodes along the opposite face had
an applied velocity controlled displacement applied to them, but were also free to move
in the plane normal to the applied velocity. The velocity was ramped up to the required
velocity to achieve the reported strain rates, the strain rates, velocities and simulation
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Table 4.1: Prescribed velocities and simulation times to replicate the results from Hsiao
and Daniel [105], note the value in parenthesis is for axial compression

Strain rate (/s) Velocity (mm/msec) Simulation time (msec)
120 3.048 0.31
110 2.794 0.1
10 0.254 0.92
2 0.0508 16.65

0.4 0.01016 21.03
0.01 0.000254 3456[795]

times for the drop tower tests are given in Table 4.1.

4.3 Results

Material parameter calibrations were carried out for the two different model set ups con-
sidered at quasi static strain rates and with strain rate sensitivity. A quartic interphase
function was used for the calibration of both, as it offers the most tune ability of rri as
shown in Figure 4.4. The material parameters for both models are given in Table 4.2. The
values of the material constants for the polymer matrix material were calibrated within
the range of data provided by Buckley et al. for epoxy matrix materials [35]. The material
system for both of the experimental works that are being compared is IM6G/3501-6 carbon
epoxy prepreg.
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Table 4.2: Material parameters for both models

Material Parameter Quasi-static Strain rate sensitive
Fibre modulus (GPa) 279 279
Fibre Poisson’s ratio 0.2 0.2
Fibre volume fraction 0.6 0.6

Matrix shear modulus for bond stretching stress (Gb) (GPa) 1.3 2.0
Matrix bulk modulus (Km) (GPa) 4.6 4.3

Matrix activation enthalpy (∆H0) (kJmol−1) 102 102
Matrix glass transition temperature (Tgl) (K) 383 445

Matrix Vogel temperature (T∞) (K) 331 375
Matrix Cohen Turnbull constant (Ct) (K) 2068 2068

Matrix shear activation volume (Vs) (m3mol−1) 2.23 × 10−3 1.43 × 10−3

Matrix pressure activation volume (Vp) (m3mol−1) 2.06 × 10−4 2.06 × 10−4

Matrix linear relaxation time (τ0) (msec) 3.49× 1012 3.3 × 109

Matrix final fictive temperature (Tfft) (K) 413 465
Matrix rejuvenation strain range (ε0) 0.337 0.330
Matrix slip link density (Ns) (m−3) 4.58 × 1027 6.16 × 1027

Matrix inextensiability factor of the network (α) 0.288 0.310
Matrix freedom of sliplink movement (η) 0 0

Interphase inner bound (i) 0.70 0.85
Interphase outer bound (l) 1.15 1.13

Interphase quartic parameter (m) 0.25 0.40
Temperature (K) 293 293
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4.3.1 Quasi Static Results

Compression along the fibre direction, and transverse to the fibre direction along with pure
shear. Modelling was carried out using a single element of size 1 unit, at a quasi-static
strain rate of 0.01/s. The model is calibrated to the transverse compression curve as it is
most effected by the polymer stress strain behaviour. The transverse compression stress
strain curve is given in Figure 4.7. The model matches the experimental curve very well
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Figure 4.7: Quasi static transverse compression stress strain results compared with exper-
imental data from [104] [149]

up to 2.25% strain. After that, the model over-predicts the stress. The divergence of
the model predictions is likely due to the onset of failure in the experiment resulting in
damage, which is not accounted for in the model. The likely failure modes for this loading
are matrix microcracking and fibre matrix debonding, which are discussed in [18, 19, 20].
Another possible explanation is that as the matrix deforms plastically the deformation in
the fibre is no longer described by Eq. 4.21 as the strain localization considers the total
strain in the bulk matrix portion and does not consider the effects of including plastic
strains in the scheme.

For validation, the model is compared to the axial compression and shear. The axial
compression is given in Figure 4.8. Under axial compression there is a good match between
the model and experiment up until 0.8% strain where the stress strain response deviates.
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Figure 4.8: Quasi static axial compression stress strain results compared to experimental
data from [104] [149]

In the experimental work of Hsiao and Daniel the effects of fibre waviness were observed
[104], the model does not include these effects. Fibre waviness could lead to an increase
and earlier onset to fibre microbuckling, which also leads to matrix micro cracking and
fibre matrix debonding. None of these failure modes are accounted for in the model.

The second validation is against the shear data shown in Figure 4.9. It is observed
that the proposed model over predicts the stress strain response up to 0.65% strain then
there is excellent correlation until 1.45% strain where the models diverge again. The over
prediction in the elastic regime is interesting as elasticity was captured more accurately
in Figure 3.13 when the strain in the fibre and matrix were equal. The difference at the
higher strains is again attributed to the onset of failure modes not accounted for in the
model.

4.3.2 Rate Sensitive Results

Hsiao and Daniel also conducted drop tower testing on thick unidirectional composites to
evaluate the strain rate sensitivity of the material [105]. Finite element modelling was
conducted on a sample of the same dimensions as mentioned previously and typical stress
distributions for the loadings considered are shown in Figure 4.10. It is noted that there
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Figure 4.9: Quasi static shear stress strain results compared to experimental data from
[104] [149]

(a) Axial 0.4/s (b) Transverse 2/s

Figure 4.10: Typical stress distributions in the specimens subjected to the two loading
conditions [149]
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is a reduction in stress at the ends of the specimen where the boundary conditions are
applied. The stress strain curves shown in the results are the average of the elements at
the middle of the specimen to avoid the effects of the boundary conditions from Saint
Venant’s principle.

The material only exhibits strain rate sensitivity when subjected to transverse com-
pression as the deformation is dominated by the matrix material response. The model
parameters were calibrated for the 120/s and 2/s strain rate and validated with the 0.01/s
stress strain response. The transverse compression stress strain response is shown in Figure
4.11. To evaluate the model’s accuracy a plot of the percentage error between the model
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Figure 4.11: Transverse compression stress strain results compared to experimental data
from [105] (points) [149]

and the experimental data points versus the strain is given in Figure 4.12. Note the first
two data points for the 2/s and 120/s strain rate are excluded as they are above the range
given in the graph, around 20-50% over prediction. At the lower strain values the percent
difference is much higher as a difference of 5 MPa at 10 MPa stress is 50% versus 5% at
100 MPa stress levels. For strains above 1.3% the 2/s and 0.01/s model predicts ±5% of
the experimental stress. The 120/s curve under-predicts the stress strain response above
2% strain to a maximum of 8% under the experimental response. The jaggedness of the
120/s curve is due to the results in [105] being presented as the raw data points versus the
curves given for the other two strain rates.
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Figure 4.12: Comparison of the difference in the transverse compressive results between
the proposed model and experimental data from [105] [149]

Under axial compression the material does not exhibit strain rate sensitivity as shown
in Figure 4.13. The stress strain response of the different strain rates is co-linear as the
fibre elasticity dominates the response. The only difference between the curves is the failure
point. The strain to failure increases with increasing strain rate. The failure modes are not
currently accounted for in the model. It is interesting to note that the axial stress strain
response is different from those presented in Figure 4.8 where there was fibre waviness
leading to more fibre micro buckling.
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Figure 4.13: Rate sensitive axial compression response with experimental data from [105]
represented as points [149]

4.3.3 Mesh Sensitivity Study

A mesh sensitivity study was conducted for transverse compression at 120/s strain rate.
The element size used in the previous study was 1 mm cube hexahedral element. Herein
the element size is varied from 0.5 mm to 3 mm to observe the effects of the element size
on the models results. The effects of element size on computation time are also explored.
Stress contour plots of the four element sizes considered are shown in Figure 4.14 for the
same applied strain. As the element size is increased, the details of stress concentrations
are lost, although the average stress stays the same. Therefore, higher mesh density near
stress concentrations is advised to better capture the onset of failure when it is incorporated
in the model.

The stress strain response for the four different mesh sizes is given in Figure 4.15. The
change in element size has little consequences on the stress strain response of the model
and the model is independent of mesh size. The only advantage to using a smaller mesh
size is the extra detail obtained around stress concentrations.

Another important aspect to consider is whether the additional computational time is
worth the detail gained through using a finer mesh. The total computation time required
to complete the analysis of the four different mesh sizes is shown in Figure 4.16. It takes
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Figure 4.14: Stress contour plot results with varying mesh size subjected to transverse
compression [149]
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Figure 4.15: Results with varying mesh size subjected to transverse compression [149]
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Figure 4.16: Computation time versus element size for the mesh sensitivity analysis [149]

nearly 1270 times more time to complete the simulation with 0.5 mm elements as compared
to 3 mm elements. For the 0.5 mm mesh it requires over 24 hours of computation time
to produce the results. It takes 22.2 times as long for the 0.5 mm mesh as the 1 mm
mesh used for the analysis in the previous section and still captures nearly the same
level as detail. Going to smaller element size results in a smaller explicit time step as
well as increasing the number of locations the problem is solved so it has two negative
consequences. It is recommended that the larger elements are used to reduce computation
time while maintaining the accuracy of the stress strain response.

4.4 Discussion

The functionally graded interphase can be thought of as an infinite number of concentric
layers surrounding the fibre where the stress traction changes ever so slightly to produce a
nearly perfect interface between the layers. As such, equilibrium is slightly violated across
the interphase. Each of these regions has its own associated displacement gradient which
average to the interphase matrix displacement gradient Gim. Adding additional layers in
the interphase would complicate the problem and result in the stress and strain calculation
being required in each additional portion of the interphase zone.
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The stress is defined as a function of radial position, which is an axisymmetric definition
of the stress state. This is misleading as the model was subjected to non-axisymmetric
loads. The definition of the FGI is more general in describing how any stress component
changes between that of the fibre and that of the bulk matrix material in three-dimensional
space.

The strain partitioning assumes that the strain in the fibre is related to the overall strain
applied to the unit cell. This strain contains both elastic and plastic contributions from the
matrix material regions. In the transverse direction, the plastic strain in the matrix reduces
the stress compared to the elastic assumption inherent in Eshelby’s solution. Therefore,
it is expected that as the matrix material deforms plastically less strain occurs in the
fibres, which would reduce the stress predicted by the model at higher strains when matrix
plasticity is present.

4.5 Conclusions

The elasto-visco-plastic response of a unidirectional composite material has been modeled
using a stress based functionally graded interphase and Eshelbian strain partitioning. The
model shows excellent agreement when compared with experimental data up to the on-
set of failure. A mechanism based glass rubber model is able to capture the intricacies
of polymer material behaviour when combined with the elastic fibre material model to
predict the response of the composite system. The functionally graded interphase allows
for compatibility between the materials while maintaining quasi equilibrium between the
phases.

The results are independent of the number of elements used in the analysis and there
are major gains in computation time when using larger elements. The incorporation of
failure or a better strain partitioning technique is required to improve the prediction of the
model up to the point of failure. With the models implemented five orders of magnitude of
strain rates have been simulated within 10% accuracy of the published experimental data
using a single set of input parameters.

4.6 Summary of Model Limitations

The limitations of this model are:

• It is limited to fibre volume fractions up to 0.77 from the square packing
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• The fibre is assumed to undergo no rotations

• The total strain is limited to approximately 20% due to the assumptions regarding
the fibre strain, the theory breaks down after this point

• The interphase matrix volume fraction must be a positive non-zero quantity

• The model does not account for changes in the strain partitioning due to permanent
deformation in the matrix

• The model does not account for failure
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Chapter 5

Incremental Strain Partitioning

In the generalized functionally graded interphase model, the strain in the fibre is related to
the total strain applied to the unit cell as per Eq. 4.21. The strain in the bulk matrix, which
is equivalent to the strain applied to the unit cell has both elastic and plastic portions of
strain in it at higher strains due to the plasticity in the matrix material. At higher strain,
the matrix material deforms plastically and there is no longer a linear relationship between
stress and strain. Thus, it is expected that less strain is transferred to the fibre from the
applied deformation to the bulk matrix material.

Two methods have been developed to deal with this problem of non-linear behaviour by
the homogenization of elasto plastic materials, known as the tangent and secant approach
[56]. In both of these methods the elasticity tensors Lf and Lm are modified using either
the tangent or secant modulus for the strain localization calculation given in Eq. 2.4. The
tangent modulus method considers the derivative of the stress strain curve at the given
stress and strain as

E =
dσ

dε
. (5.1)

The secant method considers the total stress and strain to develop the secant modulus as

E =
σ

ε
. (5.2)

For a small strain, the moduli predicted using the two methods coincide with the elastic
modulus. For larger strains the tangent modulus is lower than the secant modulus and
it has been found that the experimental measured stress strain response is somewhere
between the results generated by the tangent and secant method for updating the effective
elastic tensors in the strain partitioning calculation [56].
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5.1 Model Formulation

The version of LS-DYNA being used is an explicit dynamic finite element code, which uses
forward Euler time integration. In a user defined material model, LS-DYNA provides the
deformation gradient to calculate the next stress state F(t+1) as well as the overall strain
increment ∆ε(t+1) and expects to be returned the stress in the element σ(t+1).

For our case the fibres are always elastic materials, such that they act linearly up
until failure. Only the matrix material needs to undergo modification in the model to the
elasticity tensor to account for plasticity. Instead of using an average modulus based on
either the tangent or secant methods, a method to derive a new elastic tensor was proposed
from the relationship:

∆σbm = L∆εbm, (5.3)

which is rearranged to solve for the pseudo elastic tensor as

L = ∆σbm∆ε−1
bm. (5.4)

L is known as the pseudo elastic tensor for the matrix and replaces Lm in Eq. 2.4. In
Eq. 5.4 the strain is inverted as a 3 by 3 tensor, then represented in Voigt notation as
a 1 x 6 and the stress as a 6 x 1 matrix. The resulting pseudo elastic tensor is a 6 x 6,
which is the same size as the regular elasticity tensors Lm that it replaces. However, this
expansion results in a non-symmetric pseudo elastic tensor and leads to stability issues
with the explicit dynamic implementation. It also requires the calculation of a new pseudo
elastic tensor for each time step in the explicit dynamic integration scheme and inversion
of a 6 x 6 in the strain localization calculation.

As the fibres only undergo elastic deformation up to failure, a new mathematical ap-
proach was explored. What would happen to a composite material, which is loaded into
matrix plasticity and subsequently unloaded? From cyclic loading assuming that the ma-
terial unloads to zero stress, the elastic portion of the strain in both the fibres and matrix
would be recovered. The permanent deformation in the bulk matrix would remain which
arises due to matrix plasticity and viscous effects. It is postulated that for a composite
with an elastic fibre, the strain in the representative fibre is related to the far field elastic
strain in the bulk matrix material as

εrf = Tε(e)
bm (5.5)

where ε
(e)
bm is the elastic portion of the strain in the bulk matrix material.
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5.1.1 Incremental deformation partitioning

As the matrix material model is time dependent and the simulations being performed are
dynamic in nature and implemented in an explicit dynamic time integration scheme, the
model is incremental in nature and the representative fibre strain increment is related to
the bulk matrix elastic strain increment as

∆εrf(t+1) = T∆ε
(e)
bm(t+1). (5.6)

The element deformation in the finite element analysis is equivalent to the bulk matrix
deformation. The deformation gradient is the input to the glass rubber constitutive frame-
work used to calculate the stress update for the matrix material given in Section 4.1.4.
It is assumed that if the material is unloaded, the overall stress and bulk matrix stress
become zero. The recoverable portion of the strain from unloading is the elastic strain
experienced by the bulk matrix and is due to the elastic recovery of the stress. Therefore,
in our incremental framework we calculate the bulk matrix elastic strain from the bulk
matrix stress increment as

∆ε
(e)
bm(t+1) = L−1

m ∆σbm(t+1) (5.7)

where ∆σbm(t+1) is the bulk matrix stress increment used to update the stress for the next
time step, it is also assumed that the stress recovery in the matrix is isotropic elastic in
nature.

The fibre strain increment is used to determine the deformation that the interphase
portion of the matrix undergoes to satisfy compatibility conditions. It is assumed that the
fibres experience zero spin or rotation, and they only undergo small deformations before
failure, therefore the total fibre strain is equivalent to the representative fibre displacement
gradient as

Grf(t+1) = εf(t+1). (5.8)

The total representative fibre strain for the next time step is determined by adding the
increment in representative fibre strain to the total representative fibre strain from the
previous time step

εrf(t+1) = εrf(t) + ∆εrf(t+1). (5.9)

The deformation in the matrix portion of the interphase is calculated by volumetrically
averaging the displacement gradients to ensure that compatibility is maintained between
the phases. The displacement gradient in the matrix portion of the interphase is

Gim(t+1) =
G(t+1)(Vrf + Vim)−Grf(t+1)Vrf

Vim
(5.10)
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where G(t+1) is the overall displacement gradient calculated from the deformation gradient
F(t+1) provided by the finite element code to calculate the stress at the next time step.
The overall displacement gradient is calculated as

G(t+1) = F(t+1) − I. (5.11)

The overall displacement gradient is equivalent to displacement gradient for the bulk matrix
material, and Grf(t+1) is the displacement gradient of the representative fibre given in Eq.
5.8. The volume fractions are given in Eq. 3.41 and Eq. 4.56 for the fibre and interphase
matrix respectively. The deformation gradient of the interphase matrix material is input
to the glass rubber constitutive law given in Section 5.1.2 to calculate the stress in the
matrix portion of the interphase. The deformation gradient is related to the displacement
gradient as

Fim(t+1) = Gim(t+1) + I, (5.12)

which is the reverse operation to Eq. 5.11.

5.1.2 Glass rubber model implementation

The glass rubber model outputs the total stress from the deformation gradient and history
variables stored from the previous time step. For the glass rubber model, the deformation
gradient is modified to separate the deviatoric components. The volume ratio is defined as

J(t+1) =
∣∣F(t+1)

∣∣ . (5.13)

The deviatoric portion of the deformation gradient for the polymeric material is

F̄(t+1) = J
− 1

3

(t+1)F(t+1). (5.14)

The time derivative of the deviatoric deformation gradient is required to calculate the
velocity gradient, which is calculated as

˙̄F(t+1) =
F̄(t+1) − F̄(t)

∆t
(5.15)

where F̄(t) is the solution to Eq. 5.14 at the last time step and ∆t is the explicit dynamic
time step. The deviatoric velocity gradient is

L̄(t+1) = ˙̄F(t+1)F̄
−1
(t+1). (5.16)
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The velocity gradient is used to calculate the deformation rate and spin as the symmetric
and skew symmetric portions of the deviatoric velocity gradient respectively given as

D̄(t+1) =
1

2

(
L̄(t+1) + L̄T

(t+1)

)
(5.17)

W(t+1) =
1

2

(
L̄(t+1) − L̄T

(t+1)

)
(5.18)

where the spin is not deviatoric, since the skew symmetric portion is not effected by the
modification to the deformation gradient. The last kinetics calculation of the deformation
gradient is to calculate the left Cauchy Green tensor from the deviatoric deformation
gradient

B̄(t+1) = F̄(t+1)F̄
T
(t+1). (5.19)

The mean stress is calculated from the matrix bulk modulus and volume ratio as

σmean(t+1) = Km ln J(t+1). (5.20)

It is assumed that the mean relaxation time for the relaxation spectrum is used for all
calculations and that the relaxation time is constant within a time step. The deviatoric
bond stretching stress is updated objectively using the Jaumann rate increment as

Sb(t+1) = ∆Ŝb(t+1) + ∆t
[
W(t+1)Sb(t) − Sb(t)W(t+1)

]
. (5.21)

The Jaumann rate increment is calculated as

∆Ŝb(t+1) =

(
1− exp

(
−∆t

τ(t)

))[
2Gbmτ(t)D̄(t+1) − Sb(t)

]
(5.22)

where τ(t) is the relaxation time calculated in the last time step, and Gbm is the bond
stretching shear modulus.

To calculate the relaxation time for the next time step, first the equivalent octahedral
stress is calculated from the bond stretching stress

σoct(t+1) =

√
1

3
Sb(t+1) : Sb(t+1). (5.23)

Next, the viscous portion of the deformation rate is calculated as

Dv(t+1) = D̄(t+1) −
Ŝb(t+1)

2Gbm

(5.24)
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where and Ŝb(t+1) is the Jaumann rate of bond stretching stress, which is calculated as

Ŝb(t+1) = 2GmbD̄(t+1) −
Sb(t+1)

τ(t)

. (5.25)

This is different than the Jaumann rate increment used to update the stress. The viscous
strain is then calculated as

εv(t+1) = εv(t) + ∆t

√
2

3
Dv(t+1) : Dv(t+1) (5.26)

where the viscous strain εv(t) is stored as a history variable. The fictive temperature is
calculated as

Tfic(t+1) = Tgl + (Tfft − Tgl)
(

1− exp

(
−
(
εv(t+1)

ε0

)rfit))
. (5.27)

The relaxation time for the next time step τ(t+1) is calculated as

τ(t+1) =
Vsσoct(t+1)

2RT

exp
(
−Vpσm(t+1)

RT

)
sinh

(
Vsσoct(t+1)

2RT

) exp

(
C

Tfic(t+1) − T∞
− C

Tgl − T∞
+

∆H0

RT
− ∆H0

RTgl

)
τ0.

(5.28)

The third contribution to the stress is from the conformational stress. The eigenvalues
(λ̄k(t+1)) and eigenvectors of the left Cauchy Green tensor (B̄(t+1)) are calculated to find
the principal values. The principal portions of the conformational stress are calculated
using

Sck(t+1) =
λ̄k(t+1)

J

∂Acm(t+1)

∂λ̄k(t+1)

− p for k = 1,2,3 (5.29)

where p is the pressure arising from the trace of the conformational stress being zero.
Acm(t+1) is the free energy function, which is calculated as

Acm(t+1) =
NskBT

2

 (1+η)(1−α2)

1−α2
∑3
i=1 λ̄

2
i(t+1)

∑3
i=1

λ̄2
i(t+1)

1+ηλ̄2
i(t+1)

+
∑3

i=1 ln(1 + ηλ̄2
i(t+1)) + ln

(
1− α2

∑3
i=1 λ̄

2
i(t+1)

)
 (5.30)

The principal stresses are rotated back to the reference frame using the eigenvectors (qk(t+1))
of the left Cauchy Green tensor to calculate the conformational stress as

Sc(t+1) = Sck(t+1)qk(t+1) ⊗ qk(t+1). (5.31)

The total stress for the glass rubber constitutive law is returned to the user defined material
model by adding the three stress components

σ(t+1) = σm(t+1) + Sb(t+1) + Sc(t+1). (5.32)

91



5.1.3 Stress update and LS-DYNA implementation

In the user defined material model, the stress increment for the bulk matrix and interphase
matrix is calculated by subtracting the current total stress calculated by the glass rubber
model from the stress calculated for the next time step as

∆σbm(t+1) = σbm(t+1) − σbm(t), (5.33)

∆σim(t+1) = σim(t+1) − σim(t). (5.34)

The stress increment in the bulk matrix Eq. 5.33 is used as input to Eq. 5.6 to calculate the
fibre strain increment and the deformation gradient for the matrix portion of the interphase.
The fibre stress increment is calculated using the fibre strain increment calculated in Eq.
5.6 and the fibre elastic tensor as

∆σf(t+1) = Lf∆εf(t+1). (5.35)

The stress for the overall material is updated by volumetrically averaging the stresses in
each constituent as

σ(t+1) = σ(t) + Vrf∆σf(t+1) + Vim∆σim(t+1) + (1− Vrf − Vim)∆σbm(t+1), (5.36)

which is an objective update of all the stresses and is returned to LS-DYNA. The stress
in each individual constituent is also stored for the purpose of the incremental update and
so that the stress is known for failure. The total stress for the bulk matrix and the matrix
portion of the interphase is calculated in the glass rubber model and are stored as history
variables. The stress in the fibre is updated as

σf(t+1) = σf(t) + ∆σf(t+1). (5.37)

A block diagram of the model implementation in a user defined material model sub-
routine is shown in Figure 5.1. Note also that the method presented herein is a direct
method to account for the strain partitioning whereas most tangent or secant methods
require iteration to correctly capture the strain partitioning.
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Calculate Fim(t+1)

from F(t+1) and εf(t+1)

Calculate σim(t+1) and ∆σim(t+1)

from Fim(t+1) and σim(t)

Calculate σbm(t+1) and ∆σbm(t+1)

from F(t+1) and σbm(t)

Calculate ∆εf(t+1) and ∆ε
(e)
bm(t+1)

from ∆σbm(t+1)

Calculate ∆σf(t+1) and σf(t+1)

from ∆εf(t+1) and σf(t)

Calculate σ(t+1) from σ(t),

∆σf(t+1), ∆σim(t+1), and ∆σbm(t+1)

Glass Rubber Model

Glass Rubber Model

LS-DYNA

σ(t+1)

History Variables

History Variables

F(t+1)

Calculate FGI volume fractions

from k, l, and m

Figure 5.1: Block diagram for the implementation of the framework within a user defined
material model in LS-DYNA
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5.2 Results

The strain rate sensitive results in Section 4.3.2 are revisited using the same material
properties given in Table 4.2. The exact same model setup was used as in Section 4.3.2
and only the axial and transverse compression load cases are considered. The results for
transverse compression are shown in Figure 5.2, where the proposed model is presented
as a solid line, the previous model is presented as a dashed line, and the experimental
data are presented as points. The colours correspond to the three different strain rates
as used previously. The proposed framework tends to predict a higher overall stress for a
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Figure 5.2: Comparison of the results of the proposed framework with the results presented
in [149] and the experimental data from [105] for transverse compression

given strain when compared to the previous model for strains above 1%. This is due to
increased deformation in the matrix portion of the interphase as the fibre strain is reduced
in the transverse direction due to dependence on the elastic strain instead of the overall
strain. At strains below 1%, the proposed model offers a better prediction of the stress
strain response, as the stress is reduced due to the fibre strains only being related to the
elastic bulk matrix strains. Viscous and plastic strains previously had an influence on the
fibre strain leading to over prediction even at these low strain values. There is separation
of the stress strain response at higher strains due to failure modes, which are not currently
accounted for in the model.
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A comparison between the error of the previous framework and the current proposed
framework is given in Figure 5.3, where the solid lines represents the error of the proposed
model and the dashed lines are the previous model error. Both are compared to the
experimental data points from Hsiao and Daniel [105]. It is observed that the error is
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Figure 5.3: Error comparison between the proposed framework and the results presented
in [149] with the experimental data from [105] for transverse compression

significantly reduced for the proposed framework for most of the transverse stress strain
curves. There is a very large reduction in error at strains below 1%; the error in this
portion of the stress strain curve is more prominent as small changes in stress cause a much
larger change in percent error than they do at higher strains. For the 0.01/s strain rate,
the proposed framework over-predicts the stress at higher strains, which is due to failure
modes not accounted for in the model. Analysis is conducted on the average absolute error
produced by the results presented in Figure 5.3 shown in Table 5.1. The average absolute
error is calculated as

ē =

√∑u
i=1 e

2
i

u
(5.38)

where u is the number of data points and ei is the percentage error calculated at each data
point. On average, there is an 32% reduction in the average absolute error by using the
proposed model as compared to the previous model. There is a large improvement for the
higher two strain rates. If only the higher two strain rates are considered there is a 54%
reduction in the error by using the proposed model.
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Table 5.1: Error comparison over the strain range for transverse compression

Strain Rate 120/s 2/s 0.01/s
Absolute error proposed (%) 5.83 5.84 6.97

Absolute error from previous model (%) 10.79 15.51 6.16

For the axial direction, four strain rates were simulated and compared to the results
presented in Section 4.3.2 and the experimental data from Hsiao and Daniel [105]. The
axial results are shown in Figure 5.4. It appears that the previous model where the overall
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Figure 5.4: Comparison of the results of the proposed framework with the results presented
in [149] and the experimental data from [105] for axial compression

strain is used to predict the fibre strain is more accurate, however this is not the case.
The proposed model has a more accurate prediction up to 0.4% strain where linear elastic
deformation occurs. The current model does not account for failure modes, which would
occur such as fibre microbuckling or fibre rotation as the fibres are compressed along their
primary axis. The previous model results given in Section 4.3.2 under-predicts the axial
compression and intersects with the experimental results at higher strains. A comparison
of the error is also conducted for the axial compression direction shown in Figure 5.5.
Again, there are larger fluctuations in the error at low strains due to small differences
in stress result in larger error percentage. It is observed that the error for the proposed
framework is lower than the error for the previous framework up to 0.4% strain. Above
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Figure 5.5: Error comparison between the proposed framework and the results presented
in [149] with the experimental data from [105] for axial compression

Table 5.2: Error comparison for strains up to 0.4% under axial compression

Strain Rate 110/s 10/s 0.4/s 0.01/s
Absolute error proposed (%) 9.26 14.8 10.91 3.65

Absolute error from previous model (%) 13.70 18.00 11.44 3.34

this strain the proposed framework over-predicts the stress whereas the previous framework
eventually meets the experimental results. For strains up to 0.4% the average of absolute
error for the data points is given in Table 5.2 There is an improvement of 11.4% in the
prediction of the elastic response of the proposed framework over the range of strain rates.
However, if the entire strain range is considered, the proposed framework has on average
11.5% more error over all of the strain rates. The comparison over the entire strain range
is given in Table 5.3. If the error at the lowest strain rate is removed, the averages for
error reduction becomes 18.3% in the elastic range and 6.7% over the entire strain range

Table 5.3: Error comparison over the strain range for axial compression

Strain Rate 110/s 10/s 0.4/s 0.01/s
Absolute error proposed (%) 8.02 10.90 8.70 4.72

Absolute error from previous model (%) 9.92 12.48 7.80 2.84
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so, there is improved predictions over the entire strain range if we ignore the lowest strain
rate in the axial direction. Therefore, the proposed framework offers a better prediction
of the elastic response for axial compression and improved predictive capabilities for the
higher strain rates.

5.3 Discussion

Previously it was assumed that the axial direction followed a linear response and the model
was calibrated to have the same stress value at the end of the stress strain curve. Therefore,
the previous model under-predicts the response up until the point of intersection. Using
the same parameters, the proposed framework predicts a stiffer stress strain response and it
is still linearly dominated by the fibre stiffness. The increase in overall strain is attributed
to plasticity in the matrix, resulting in less strain being transferred transversely to the
fibres through Poisson’s effects and a resulting increase of deformation and stress in the
interphase. The curvature in the experimental results in the axial direction is attributed
to fibre buckling and possible onset of other failure modes. As the experiment was a
compression test the chances of bending of the specimen are high due to the buckling
failure mode. It is unknown if Hsiao and Daniel used strain gauges on both sides of their
specimens to detect bending [105].

This framework provides a direct approach to the strain partitioning in long fibre com-
posite materials and the strain localization tensor Eq. 2.4 is constant since the tensors Lm
and Lf are constant. In linearization techniques using either tangent or secant methods to
linearize the deformation and assuming that the fibre is elastic, the effective matrix elastic
tensor L∗m(t+1) would change for each time step in the explicit dynamic time integration
scheme. Therefore, in order to calculate the strain localization tensor, the effective bulk
matrix elastic tensor would need to be calculated and inverted at each time step adding
to the model complexity and computation time required. The strain partitioning proce-
dure used herein avoids this complication reducing the computational time that would be
required.

The initial viscous strain within the matrix material in the transverse direction does
not contribute to the fibre strain. As a result, the stress strain response predicted by the
model is reduced. The stress for a given strain in a later time step is increased, and leads
to an over-prediction of the stress strain results at higher strain. Failure is not included in
the model, which would result in the reduction of effective stiffness towards the end of the
stress strain curve.
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5.4 Conclusion

It is proposed that for elastic fibres, the strain in the fibre is related to only the elastic
strain in the matrix material. The elastic strain is defined as the strain that is recovered
by unloading the material to zero stress in the bulk matrix. The incremental framework to
implement this theory in the previously proposed stress based FGI model for implementa-
tion in an explicit dynamic finite element code is shown. The framework is implemented
and the model’s predictions are compared to the previously proposed FGI model where
the fibre strains are related to the overall strain and experimental data.

The proposed framework increases the predictive accuracy of the FGI framework re-
ducing the average error by 32% for transverse compression and 11.4% for the prediction of
the elastic axial response. For higher strain rates, there is a 54% reduction in average error
in the transverse direction; an 18.3% improvement in the elastic prediction in the axial
direction and a 6.7% improvement in the response over the entire strain range. Therefore,
it is concluded that for fibres, which exhibit elastic material response, the strains in the
fibre arise due to the elastic strains occurring in the surrounding matrix material.

5.5 Summary of Model Limitations

The limitations of this model are:

• It is limited to fibre volume fractions of 0.77 from the square packing

• The fibre is assumed to undergo no rotations

• The total strain is limited to approximately 20% due to the assumptions regarding
the fibre strain, the theory breaks down after this point

• The interphase matrix volume fraction must be a positive non-zero quantity

• The model does not account for failure
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Chapter 6

Incorporating Fibre Orientation in
the FGI Framework

Up to this point the FGI model has been developed for composites where all the fibres
are aligned within a unit cell. This can be used to model a layup through having one
unit cell per layer with a unique orientation compared to the neighbouring plies. For the
automotive composites of interest such as DLFT and SMC there is no laminate structure.
An image of the fibre location in an SMC material is given in Figure 6.1. Most of the fibres

Figure 6.1: Three-dimensional representation of fibre structure in SMC material [151]
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lie in the X Y plane, however the layers are not distinct and do not have a unique fibre
orientation. There is also visible fibre bridging in the Z direction between fibre bundles.

The complex microstructure of SMC composites must be considered in order to even-
tually be able to predict the failure of these materials due to micro-scale phenomena. The
orientation and location of fibres within a SMC material need to be included in the model.

The fibre orientation was analysed at 3 locations on a 457.2 mm by 254 mm plaque of
SMC material with a thickness of approximately 3 mm. The sample locations are shown in
Figure 6.2. The exact charge placement for the plaque is unknown however it was observed

Figure 6.2: Sample locations for CT scans with the coordinate system used [151]

that there was flow in the forming due to visible swirls and weld marks in the corners. A
weld in compression moulded material is where two flow fronts come in contact with each
other leading to a resin rich area without fibres crossing it.

6.1 Model Formulation

Instead of a single representative fibre within the unit cell, a finite number of representative
fibres with unique orientations are used in the model. These representative fibres are
assumed to be independent of each other i.e. their deformation is not affected by the
presence of other fibres. The representative fibres span the unit cell. The orientation of
the representative fibres is given by the algorithm introduced by Leopardi for discretizing a
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sphere into regions of equal surface area with a surface normal vector at their center [123].
The orientations are described in terms of the angles θ and φ as per Advani and Tucker
[16].

6.1.1 Functionally Graded Interphase

A functionally graded interphase surrounds each of the representative fibres and a quartic
interphase function is used to describe the stress as a function of radius of the specific
representative fibre as

σ(r) =
1(

(l − k)rf(i)

)4

[
(σf − σbm)

(
(16m− 8) r4 −

(
32mlrf(i) + 32mkrfi − 18lrf(i) − 14krf(i)

)
r3+(

16m(lrf(i))
2 + 64mlkr2

f(i) + 16m(krf(i))
2 − 11(lrf(i))

2 − 32klr2
f(i) − 5(krf(i))

2
)
r2−(

32l2kr3
f(i) + 32mk2lr3

f(i) − 22l2kr3
f(i) − 10lk2r3

f(i)

)
r + 16ml2k2r4

f(i)

)
+

σf
(
(lrf(i))

4 − 4l3kr4
f(i) − 5l2k2r4

f(i)

)
+ σbm

(
11k2l2r4

f(i) − 4k3lr4
f(i) + (krf(i))

4
) ]

(6.1)

where rf(i) is the radius of the specific representative fibre. This radius is given in terms
of the area fraction of the specific orientation as

rf(i) =

√
4Af(i)

π
(6.2)

where the specific fibre area fraction Af(i) is equivalent to orientation specific fibre volume
content Vf(i). The orientation specific volume fractions sum over the number of orientations
is equivalent to the overall fibre volume content of the region of interest

Vf =
n∑
i=1

Vf(i) (6.3)

where n is the number of fibre orientations considered. The orientation specific fibre volume
fraction is determined from analyzing the CT scan data.

The model is subdivided into three regions for each representative fibre with associated
volume fractions as was done for the case of a single unidirectional fibre. The volume
fraction of the representative fibre is calculated using the interphase parameters as

Vrf(i) = Vf(i)

(
16m(l2 − k2) + l2 + 12kl + 17k2

30

)
. (6.4)
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Each representative fibre has an associated interphase matrix portion which has a volume
fraction of

Vim(i) = Vf(i)

(
29l2 − 16m(l2 − k2)− 12kl − 17k2

30

)
. (6.5)

The remainder of the material deforms as the applied deformation to the unit cell.

Advani and Tucker define the fibre being aligned with the local Z axis of the of the
coordinate system [16] the fibre is defined as being aligned with the x1 axis of the unit
cell in the FGI framework. A rotation of π/2 about the Y axis is completed to rotate the
angles defined about the Z axis in the definition by Advani and Tucker to the x1 axis of the
local fibre coordinates in the unit cell. The fibre orientation is then defined as a rotation of
φ about the X axis of the unit cell followed by a rotation of θ about the x2 axis of the unit
cell. The description of fibre orientation within the unit cell is shown in Figure 6.3. The

Figure 6.3: Definition of the fibre orientation for a representative fibre in terms of θ and φ
[151]

coordinate transformation tensor Q is used to rotate from the global coordinate system to
the local representative fibre orientation and is given as

Q(i) =

− cosφ(i) sin θ(i) sinφ(i) cosφ(i) cos θ(i)

sinφ(i) sin θ(i) cosφ(i) − sinφ(i) cos θ(i)

− cos θ(i) 0 − sin θ(i)

 . (6.6)
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Note that each representative fibre has a unique transformation tensor hence the subscript
of (i) on the angles.

The strain localization tensor used to calculate the fibre strain given in Eq. 2.4 is
defined with the fibre aligned to the x1 axis through the Eshelby tensor given in Eq. 4.22.
The fibre strain must be calculated with the reference frame where the fibre is aligned
with the x1 axis of the coordinate system. Therefore, the fibre strain calculation must be
completed for each of the representative fibre orientations considered. The first step in
the strain localization calculation is to project the overall applied strain to the unit cell in
the local representative fibres coordinate system which as before is equivalent to the bulk
matrix strain. This is given as

εbm(i) = QT
(i)εbmQ(i). (6.7)

The representative fibre strain is then calculated as

εrf(i) = Tεbm(i) (6.8)

The representative fibre strain is then rotated back to the unit cell coordinate system using
the transformation

εrf(i) = Q(i)εrf(i)Q
T
(i). (6.9)

The fibre stress and interphase matrix deformation are calculated in the unit cell coordinate
system to make calculations easier.

The displacement gradient for the specific fibre orientation is equivalent to the specific
representative fibre strain

Grf(i) = εrf(i) (6.10)

The displacement gradient of the interphase matrix portion associated with the specific
representative fibre is

Gim(i) =
G
(
Vrf(i) + Vim(i)

)
− Vrf(i)Grf(i)

Vim(i)

. (6.11)

The interphase matrix strain is calculated using Green’s definition of strain from the de-
formation gradient as

εim(i) =
1

2

(
Fim(i)F

T
im(i) − I

)
(6.12)

where the relationship between the displacement gradient and deformation gradient is given
in Eq. 4.36.
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For every fibre orientation considered, the deformation of the representative fibre and
associated interphase matrix must be calculated. Therefore, increasing the number of
orientations considered will significantly affect the number of calculations that must be
completed within the model. To make the model more efficient, the minimum number of
orientations required to accurately predict the stress is desired.

The SMC of interest is a polystyrene matrix reinforced with glass fibres and is filled
with an unknown quantity of hollow glass spheres to reduce the density along with calcium
carbonate filler material. This material is used in production vehicles in applications such
as body panels and closures. The filled resin is treated as one material collectively known
as the matrix. Isotropic elasticity of the matrix material is assumed when comparing the
model to experimental results. The stress is calculated for each representative fibre as

σrf(i) = Lfεrf(i). (6.13)

The stress in each associated interphase matrix is calculated as

σim(i) = Lmεim(i). (6.14)

The stress in the bulk matrix material is calculated as

σbm = Lmε (6.15)

The overall stress is calculated by volumetrically averaging each of the fibre and associated
interphase matrix portion stresses with the bulk matrix stress and is calculated as

σ =

(
1−

n∑
i+1

(
Vrf(i) + Vim(i)

))
σbm +

n∑
i+1

(
Vrf(i)σrf(i) + Vim(i)σim(i)

)
. (6.16)

This stress is equivalent to the average stress over a region of interest.

6.1.2 Mori Tanaka Implementation

The Mori-Tanaka model was also implemented for comparison of the material model pre-
dictions. In the Mori Tanaka scheme the pseudo grain is split into two regions (the fibre and
matrix) instead of the three used with the FGI model. The Mori Tanaka model modifies
Eshelby’s strain localization tensor to include the effects of fibre volume content as

T(i) =
[(

1− Vf(i)

)
SfL−m1 (Lf − Lm) + I

]−1
. (6.17)
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The strain in the representative fibre is calculated in a coordinate system aligned with the
specific fibre orientation. As the Voigt assumption is made regarding the strain in each
pseudo grain, the strain in the representative fibre for each grain is

εrf(i) = T(i)ε(i). (6.18)

Since the strain localization tensor is a function of the orientation specific fibre volume
content (Vf(i)), a new strain localization tensor is calculated and inverted for each pseudo
grain. The strain applied is rotated to the representative fibre using the same method as
Eq. 6.7, which for the strain applied to the unit cell becomes

ε(i) = QT
(i)εQ(i). (6.19)

The strain in the representative fibre is rotated back to the unit cell coordinate system
using Eq. 6.9 to calculate the strain in the associated matrix phase for each pseudo grain.
As only small strains are considered, the strain compatibility equation for each pseudo
grain is

ε = Vf(i)εrf(i) + (1− Vf(i))εm(i), (6.20)

which is rearranged to solve for the matrix strain in each pseudo grain as

εm(i) =
ε− Vf(i)εrf(i)

1− Vf(i)

. (6.21)

Now that the strains in each of the phases is known, the stress calculations are completed
within each pseudo grain. The stress in the representative fibre is the same as the FGI
model given in Eq. 6.13. The stress in the associated matrix portion for each pseudo grain
is

σm(i) = Lmεm(i), (6.22)

which assumes that the matrix is an isotropic elastic material. The stresses are volumet-
rically averaged for all the pseudo grains as

σ =
n∑
i+1

[
Vf(i)σrf(i) + Vf(i)

( 1

Vf
− 1

)
σm(i)

]
. (6.23)

6.1.3 Comparison of Models

Both models have the same intent, to homogenize the response of a composite material
containing misaligned fibres. The strain localization calculation for each model is based on
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Eshelby’s method [62], however the modification to account for the fibre volume content
is different for the two models. In the Mori Tanaka model the volume fraction calculation
is accounted for in the strain localization tensor given in Eq. 6.17, which requires a new
strain localization for each pseudo grain with a different fibre volume content. This in turn
requires the inversion of the strain localization tensor in Eq. 6.18 for each pseudo grain
adding to the computational complexity of the model.

Through the modification to the Mori Tanaka strain localization tensor for fibre volume
content there is a reduction in the strain of the fibres compared to Eshelby’s method. Thus,
more strain occurs in the matrix portion in each pseudo grain using the Mori Tanaka
homogenization scheme. In the FGI model the volume fraction is modified as per the
volumetric integration of the FGI, reducing the effective fibre volume content from the
value of the composite. This modification to the volume fraction has the same effect as the
modification to the strain localization tensor for the Mori Tanaka model, however it does
not require the calculation and subsequent inversion of a new strain localization tensor for
each pseudo grain.

The overall effects of the models are similar, however the FGI model is more computa-
tionally efficient than the Mori Tanaka model. The FGI model also allows for calculation
of the stress in the interphase of each pseudo grain, whereas the Mori Tanaka model only
predicts the stress in the fibre and the associated matrix within each pseudo grain. The
FGI model allows for the prediction of the failure of the interphase between the fibres and
matrix, which in the future could be used to predict fibre matrix debonding, or matrix
micro cracking in the region around the fibre. The calculation of the bulk matrix stress in
the FGI model allows for the prediction of microcracking in the bulk matrix region as well.
Both models allow for the prediction of fibre failure through the fibre stress and strain
states for each pseudo grain.

6.2 Analysis Procedure

The three CT scans were analysed to evaluate the fibre orientation. The CT scans consisted
of approximately 500 images through the Z direction of the samples. The images were
grouped together to consider the variation of properties throughout the material thickness
and to give more data points for comparison. The images were divided into 12 regions across
the sample thickness for evaluation. Eighteen numbers of orientations are considered with
the number of orientations varied between 3 and 200 orientations over the half sphere given
by Leopardi’s algorithm [123]. The number of orientations over the half sphere are 3, 4,
9, 13, 21, 26, 38, 47, 60, 71, 87, 101, 119, 136, 156, 176, 198, and 200. These numbers of
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orientations were selected as they all contain orientations aligned in the X Y plane where
most of the fibres are oriented. Other numbers of orientations do not contain orientations
aligned in the X Y plane which would result in these fibres being represented as having
some angle of incline above the X Y plane. Examples of the partitioning scheme are given
in Figure 6.4

(a) Six Partitions (b) Ten Partions (c) 150 Partitions

Figure 6.4: Partitions of the sphere created with the MATLAB tool of Leopardi. Note
that six partitions has centre points in the equator plane, ten and 150 partitions do not
have centre points in the equator plane [151], the tool works over the entire sphere so the
six partitions shown is equivalent to three over the half sphere, ten to five and 150 to 75

Each region in each image was subjected to the same seven deformation paths to com-
pare the stress with different numbers of fibre orientations considered. The deformations
were the normal and shear deformations along with in plane biaxial loading. The de-
formations were applied by a displacement gradient acting on the unit cell model. The
displacement gradients applied to the different unit cells are

GX =

0.005 0 0
0 0 0
0 0 0

 , (6.24)

GY =

0 0 0
0 0.005 0
0 0 0

 , (6.25)

GZ =

0 0 0
0 0 0
0 0 0.005

 , (6.26)
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GXY =

 0 0.005 0
0.005 0 0

0 0 0

 , (6.27)

GY Z =

0 0 0
0 0 0.005
0 0.005 0

 , (6.28)

GZX =

 0 0 0.005
0 0 0

0.005 0 0

 , (6.29)

GBiaxial =

0.005 0 0
0 0.005 0
0 0 0

 . (6.30)

The stress state for each of the eighteen number of orientations is calculated for each of
the twelve regions through the thickness to compare the results and observe convergence
of the stress state. The applied displacement gradients were chosen to be in the elastic
deformation regime. The stress predicted by the last 4 number of partitions is averaged
and considered to be the converged stress value. The convergence criterion is met if the
absolute error of the last 4 number of orientations is less than 10% and the range of error
is within 10% for these last four number of orientations which are 156, 176, 198 and 200.

6.3 Model Calibration

As only the fibre properties of the SMC were know, the matrix properties had to be
interpolated knowing the macroscopic properties of the SMC material provided by General
Motors Canada.

6.3.1 Material Properties

The overall density and weight fraction of the fibres are given as 1.23 g/cm3 and 0.379
respectively. The material also contains a filler of unknown quantity. To determine the
fibre volume fraction, two equations relating the volume fraction to density and the weight
fraction to volume fraction and density are required. The rule of mixtures applies for
composite materials giving an overall density for a composite (ρc) of

ρc = Vfρf + (1− Vf ) ρm, (6.31)
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which is rearranged for the filled matrix material density (ρfm) as

ρfm =
ρc − Vfρf

1− Vf
. (6.32)

The fibre weight fraction (Wf ) is calculated using a burn off test where the weight that
remains is the weight of the fibres (wf ). The total weight of a composite is the sum of the
weight of the fibre and the weight of the filled matrix (wfm). The fibre weight fraction is
calculated as

Wf =
wf

wf + wfm
(6.33)

The weight of a phase is given by its density and the volume it occupies and gravity (g),
therefore Eq. 6.33 is rewritten in terms of the material densities and volume fractions as

Wf =
Vfρfg

Vfρfg + (1− Vf ) ρfmg
, (6.34)

which is normalized with respect to gravity to give

Wf =
Vfρf

Vfρf + (1− Vf ) ρfm
. (6.35)

Substituting in the filled matrix material density given in Eq. 6.32 and rearranging the
equation in terms of volume fraction, the resulting fibre volume fraction is

Vf =
Wfρc
ρf

. (6.36)

For the material, it is assumed that the fibres are E-glass which has a density of 2.55
g/cm3. Substituting the known values into Eq. 6.36, the resulting fibre volume fraction is
0.183 for the SMC. The filled matrix material density is calculated using Eq. 6.32, which
results in a density of 0.934 g/cm3 for the filled matrix material.

6.3.2 Model Calibration

A uniaxial load case was used to calibrate the model compared to experimental results
for the same material. The model was calibrated using the experimental Young’s modulus
reported in the experiments performed by General Motors of 7348MPa, the Poisson’s ratio
is 0.300. A strain of 0.005 was applied in the x1 direction while a strain of -0.0015 was
applied in the x2 direction with no strain applied in the x3 direction. It was found that
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Table 6.1: SMC material properties used in the model [151]

Known Properties Value Calibrated and Calcu-
lated Properties

Value

ρc 1.23 g/cm3 Vf 0.183
ρf 2.55 g/cm3 k 0.83
Wf 0.40 l 1.08
Ef 73 GPa m 0.4
νf 0.25 Em 4 GPa
Ec 7.35 GPa νm 0.25
νc 0.3

Table 6.2: Calibration stress state

Stress/Modulus FGI Mori-Tanaka
σX 36.68 MPa 37.88 MPa
σY 2.76 MPa -9.01 MPa
σZ -0.75 MPa -17.30 MPa
σXY -0.03 MPa 0.05 MPa
σY Z -0.04 MPa 0.05 MPa
σZX -0.80 MPa 0.88 MPa
Ex 7.37 GPa 7.58 GPa

adding a strain in the x3 direction resulted in compressive stresses in the x3 direction
and increased stress in the x2 direction to an amount that could no longer be considered
insignificant for the FGI model. One region through the thickness in sample one was
considered for the calibration. The calibrated parameters are given in Table 6.1. The
resulting stress state from the calibration is given in Table 6.2. There is a stress induced in
the Y direction for the FGI model although the primary deformation is in the X direction,
however the stress value is significantly lower than the X direction at around 7.5% of its
value. The remaining stresses induced from the FGI model are several orders of magnitude
lower and are neglected. For the Mori Tanaka model both the Y and Z stresses have a
value and it is compressive the Z component is 45.7% of the X stress component. In order
to reduce these stress components for the Mori Tanaka model a through thickness tensile
strain is required. This infers that if the material was pulled in one direction the through
thickness direction would expand, which violates Poisson’s ratio. This arises due to the
difference in the strain partitioning between the two methods in that each pseudo grain
has a different matrix strain for the Mori Tanaka approach whereas most of the material
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comprises of bulk matrix for the FGI approach.

Additional testing was performed on the SMC material resulting in a tensile modulus
varying between 7440 MPa and 7040 MPa for a 90% coverage plaque made out of the same
material. The initial charge coverage of the material provided for the CT scan analysis is
unknown. Orientation analysis was not completed on the material which was used for the
additional tensile testing. The additional testing confirmed the tensile properties predicted
by the models is within a reasonable range for the material. At this point the exact values
are less important, as the purpose of this study is to evaluate the number of pseudo grains
required for this material.

6.4 Results

The second order orientation tensors for the three samples have been produced to allow
for comparison between the models. The variation in fibre volume content is evaluated by
comparing the relative quantity of fibre orientation voxels across the thickness of the CT
scans. The stress state predicted by the Mori Tanaka and FGI frameworks are compared
for the seven-applied deformation and the stress error is evaluated over the 18 different
number of orientations to determine the minimum number of orientations required for a
two-step homogenization of the SMC material.

6.4.1 Orientation Analysis

The second order orientation tensor as defined by Advani and Tucker in Eq. 2.5 [16] is
calculated for the three samples to ease the interpretation of the stress results. For the
first sample the orientation is

A =

 0.5150 0.0119 −0.0038
0.0119 0.4264 −0.0021
−0.0038 −0.0021 0.0587

.

For the second sample the orientation is

A =

0.5231 0.0215 0.0006
0.0215 0.4119 −0.0088
0.0006 −0.0088 0.0650

.

For the third sample the orientation is

A =

0.4453 0.0401 0.00181
0.0401 0.4928 0.0029
0.0181 0.0029 0.0619

.
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The fibre orientation tensors represent the probability of finding a fibre along a certain
direction. As the orientation tensors are symmetric only 6 pieces of data are used to rep-
resent the fibre orientation, which would be the third lowest of the number of orientations
considered in this analysis. The fibre orientation distribution is used herein to create the
fibre orientation histograms for input to the models. The fibre orientation histograms for
the selected number of orientations is given in Appendix A.

6.4.2 Volume Fraction Variation

The variation in fibre volume content over the 12 regions is calculated by comparing the
number of fibre voxels in the different regions. It is assumed that each of the three samples
evaluated contains the average fibre volume fraction of 0.183, the fibre volume content in
the 12 regions has to average to this value. The variation of fibre volume content is shown
in Figure 6.5. All three samples present the same general trend where the volume fraction
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Figure 6.5: Variation of fibre volume content across the sample thickness [151]

is lowest at the edges of the material and in the middle. This indicates that the plaque
was moulded using two sheets of the SMC material as the charge. It is expected that this
variation in fibre volume content towards the surfaces affects the bending stiffness of the
material as the local stiffness of the material at the surface would be reduced.
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6.4.3 Stress Results and Error Convergence

The seven applied displacement gradients correspond to the following strain states assum-
ing infinitesimal strains: Biaxial strain εx = εy = 0.005, X Strain εx = 0.005, Y Strain
εy = 0.005, Z Strain εz = 0.005, XY Strain γxy = 0.005, YZ Strain γyz = 0.005, and
ZX strain γzx = 0.005. The other strain components are set to zero. For the 12 regions
through the thickness the error is compared for each of the 18 numbers of orientations
considered, and the average error, range in error and error standard deviation is calculated
for the 12 regions. The stress results for each of the 12 regions is calculated using both
the FGI and Mori Tanaka models as the first step in the two-step homogenization taking
the volume fraction variation into account. For the error statistics only the values for the
stress components, which satisfied the convergence criteria previously defined are plotted.
The range of the average error plots has been reduced to ±20% error to show more detail
of the error convergence, this excludes some error values for lower number of orientations.
Similarly, the range of the error range is truncated at 20% error to show the details of the
convergence. The standard deviation plot range is restricted to 4% error, which does not
show some of the data points for lower numbers of orientations. The results of the FGI
model are given as solid lines and the results of the Mori Tanaka model are given by the
dashed lines.

The results of the analysis for the applied biaxial strain is given in Fig. 6.6, the stress
as a function of position is given in Fig. 6.6a, the average error is shown in Fig. 6.6b, the
error range is given in Fig 6.6c, and the error standard deviation is given in Fig. 6.6d. The
X and Y stress component predicted by the Mori Tanaka model is significantly lower than
the X and Y stress components predicted by the FGI model. The variation in the X and
Y stress components of the Mori Tanaka model also very closely match the shape of the
volume fraction variation given in Figure 6.5. The X and Y stress components predicted
by the FGI model show much less variation due to fibre volume content. The shape of the
Z stress component is the same for the FGI and Mori Tanaka model, however the Mori
Tanaka model predicts that this stress component is compressive. The Z stress should be
tensile as the plane stress applied prevents contraction in the Z direction, which should
occur due to Poisson effects. This difference arises due to each pseudo grain having a
different matrix strain in the Mori Tanaka homogenization. The shear stress components
for both models are zero as expected. The average stress error is higher for the Mori Tanaka
model than the FGI model for the X, Y, Z and XY stress components. The average error
for the YZ stress component that converge is the exact same for both the Mori Tanaka
and FGI model. One of these YZ stress errors is not in the range of the plot until 119
orientations and starts off at -100% error. The trends in error range and standard deviation
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Figure 6.6: Stress state induced by biaxial strain and the associated stress error statistics
[151]
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are the same with the FGI model being better for the X, Y and Z stress components while
the shear stress components are the same for the two models.

The results of the analysis for the applied X strain is given in Fig. 6.7, the stress as a
function of position is given in Fig. 6.7a, the average error is shown in Fig. 6.7b, the error
range is given in Fig 6.7c, and the error standard deviation is given in Fig. 6.7d. The X
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Figure 6.7: Stress state induced by X strain and the associated stress error statistics [151]

stress results for the Mori Tanaka model are closer to the FGI model than they were for
the applied biaxial strain given in Figure 6.6a, however on average the X stress component
is still lower for the Mori Tanaka model than it is for the FGI model. The shape of the X
stress for the Mori Tanaka model matches the variation in fibre volume content given in
Figure 6.5. There is slight variation in the X stress component due to the variation in fibre
volume content in the FGI model, but it is definitely less prominent than the Mori Tanaka
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model. The Mori Tanaka model predicts that the Y stress for samples one and two and the
Z stress component for sample three is zero, however the FGI model predicts that these
values are around 14 MPa. This is attributed to the matrix strain being different in each
pseudo grain for the Mori Tanaka model. The shape of the Z stress component for samples
one and two along with the Y stress component for sample three matches between the FGI
and Mori Tanaka models, however the Mori Tanaka model predicts that these stresses are
compressive and the FGI model predicts that they are tensile. It makes sense for these
stresses to be tensile due to the applied deformation. The average stress for both models
show similar trends and in some cases the Mori Tanaka model has lower error in X stress
prediction. Less of the stresses converged for the Mori Tanaka model as it predicted those
stress components were zero when the FGI model gave a value for three stresses. Two of
the Z stresses predicted by the FGI model did not converge as some of their values across
the material thickness is close to zero stress. The error range and standard deviation are
higher for the Mori Tanaka model than the FGI model for nearly all the stress components
and particularly for the X stress, which corresponds to the loading direction.

The results of the analysis for the applied Y strain is given in Fig. 6.8, the stress as
a function of position is given in Fig. 6.8a, the average error is shown in Fig. 6.8b, the
error range is given in Fig 6.8c, and the error standard deviation is given in Fig. 6.8d.
Similarly, to the applied X strain the Y stress component predicted by the Mori Tanaka
model is lower on average than the Y stress predicted by the FGI model, but the peak
stresses predicted for the Y stress by the Mori Tanaka model are similar to the FGI model.
The shape of the Y stress component predicted by the Mori Tanaka model matches the
shape of the volume fraction variation given in Figure 6.5. The Y stress is higher for
sample three than samples one and two due to the fibre orientation tensor components and
preferred fibre orientations. Comparing the X stress values in Figure 6.7a to the Y stress
values in Figure 6.8a the X stress is slightly higher in samples one and two than the Y
stress in sample three and the Y stress in samples one and two is at a similar level to the
X stress in sample three, which indicates the effects of the overall fibre orientation tensor
on the stress states. Similarly, to the applied X strain, the Mori Tanaka model predicts
that the X stress component for samples one and two and the Z stress for sample three are
in compression but the shape is a close match between the Mori Tanaka and FGI models.
The FGI model predicts three stresses with a value of approximately 14 MPa, which the
Mori Tanaka model predicts as zero stress The Mori Tanaka model results for these stress
components do not meet the convergence criteria. The average Y stress error for samples
one and two is higher for the Mori Tanaka model than the FGI model. The average error
follows similar trends between the two models. The error range and standard deviation for
the Mori Tanaka model is larger than it is for the FGI model especially for fewer numbers

117



0 0.5 1 1.5 2 2.5 3
Position (mm)

-20

-10

0

10

20

30

40

St
re

ss
 (M

Pa
)

X Stress
Y Stress
Z Stress
XY Stress
YZ Stress
ZX Stress

(a) Stress vs. position

0 50 100 150 200
Number of Orientations

-20

-10

0

10

20

Av
er

ag
e 

Er
ro

r (
%

)

X Stress
Y Stress
Z Stress

(b) Average Error

0 50 100 150 200
Number of Orientations

0

5

10

15

20

Er
ro

r R
an

ge
 (%

)

X Stress
Y Stress
Z Stress

(c) Error Range

0 50 100 150 200
Number of Orientations

0

1

2

3

4

Er
ro

r S
ta

nd
ar

d 
D

ev
ia

tio
n 

(%
)

X Stress
Y Stress
Z Stress

(d) Error Deviation

Figure 6.8: Stress state induced by Y strain and the associated stress error statistics [151]
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of orientations.

The results of the analysis for the applied Z strain is given in Fig. 6.9, the stress as
a function of position is given in Fig. 6.9a, the average error is shown in Fig. 6.9b, the
error range is given in Fig 6.9c, and the error standard deviation is given in Fig. 6.9d. All
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Figure 6.9: Stress state induced by Z strain and the associated stress error statistics [151]

the stress components for the applied Z strain match between the FGI and Mori Tanaka
model. The X and Y stresses are higher than the Z stress due to the quantity of fibres
in these directions. Both the Mori Tanaka and FGI models predict that the X and Y
stress components are in tension, which is correct for the applied strain. The Z stress
component predicted by the Mori Tanaka model has slightly more variation across the
samples thickness compared to the FGI model, and the shape is similar to the volume
fraction variation given in Figure 6.5. The other stress components do not vary with
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the fibre volume content as much as the stress in the direction of the applied strain. The
average error in stress prediction by the two models is very similar and no clear conclusions
are drawn. The stress error range and standard deviation indicate that the Mori Tanaka
model has a larger range in stress error and larger deviation of the error over the 12 regions
compared to the FGI model.

The results of the analysis for the applied XY strain is given in Fig. 6.10, the stress as
a function of position is given in Fig. 6.10a, the average error is shown in Fig. 6.10b, the
error range is given in Fig 6.10c, and the error standard deviation is given in Fig. 6.10d.
The XY stress predicted by the Mori Tanaka model is again lower on average than the
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Figure 6.10: Stress state induced by XY strain and the associated stress error statistics
[151]

FGI model and there is more variation in the Mori Tanaka results as a function of the fibre
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volume content. The remainder of the stress components should be around zero for the
applied strain, however they are all very noisy and below a magnitude of 5 MPa for the
FGI model. The magnitudes of these stress components are higher for the Mori Tanaka
model with some peaking at around 8 MPa. The magnitude of the average stress error
is higher for the Mori Tanaka model than it is for the FGI model. The error range and
standard deviation is also larger for the Mori Tanaka models than for the FGI model. For
the applied XY strain only the XY stress component satisfies the convergence criteria for
both the FGI and Mori Tanaka models.

The results of the analysis for the applied YZ strain is given in Fig. 6.11, the stress
as a function of position is given in Fig. 6.11a, the average error is shown in Fig. 6.11b,
the error range is given in Fig 6.11c, and the error standard deviation is given in Fig.
6.11d. The YZ stress predicted by the Mori Tanaka model tends to be lower than the FGI
model. The Mori Tanaka model again shows more dependence on the fibre volume fraction
than the FGI model. Like the applied XY strain, the other stress components should be
zero however they are noisy with magnitudes of around 5 MPa with the stress values for
the Mori Tanaka model being higher than those of the FGI model. Only the YZ stress
component converges in samples one and two. In sample three the YZ, Z, and ZX stress
components converge for both models. The average error is higher for the Mori Tanaka
model for the YZ stress component. For samples one and two the stress error oscillates
about the 0% axis. This is attributed to there being a negative probability of having fibres
aligned with the YZ direction in samples one and two. for sample three the error range
and standard deviation is higher for the Mori Tanaka model than the FGI model, however
no conclusions can be drawn for samples one and two with regards to the error range and
standard deviation.

The results of the analysis for the applied ZX strain is given in Fig. 6.12, the stress as
a function of position is given in Fig. 6.12a, the average error is shown in Fig. 6.12b, the
error range is given in Fig 6.12c, and the error standard deviation is given in Fig. 6.12d.
The stresses predicted for the ZX strain are similar to those predicted by the applied YZ
strain. Again, there is variation in the ZX stress predicted by the Mori Tanaka model due
to the variation in fibre volume content. The other stress components are noisy, but should
be zero. The magnitude of the other stress components is higher for the Mori Tanaka model
than the FGI model. The ZX stress converges in all the samples and the YZ and Z stress
component for samples one and two converges. The values of the YZ and Z stress that
converge are more consistent across the sample thickness than the other stress components.
The average error for the Mori Tanaka model is higher for the ZX stress component while
the average error for the other stress components is similar between the two models. The
error range and standard deviation for samples one and two are greater for the Mori Tanaka
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Figure 6.11: Stress state induced by YZ strain and the associated stress error statistics
[151]
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Figure 6.12: Stress state induced by ZX strain and the associated stress error statistics
[151]
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Table 6.3: Comparing the percentage that 38 or 60 fibre orientations reduced the error
statistics [151]

Model Average Error Error Range Error Deviation
Number of Orientations 38 60 38 60 38 60

FGI 22.6 77.4 30.2 69.8 15.1 84.9
MT 23.5 76.5 19.6 80.4 5.9 94.1

model compared to the FGI model except for the YZ stress component.

Some general observations are made regarding the stress and stress errors for the seven
applied strains:

• The variation of stress as a function of position in the direction of the applied strain
depends heavily on the fibre volume content for the Mori Tanaka model

• The stress always converges in the direction of the applied strain

• If the stress component is always above 5 MPa the stress is likely to converge for the
FGI model

The first minima in the stress error statistics tend to occur at 38 and 60 orientations.
The percentage of occurrences that 38 versus 60 orientations provides lower error statistics
is compared for all the converged stress components for both the FGI and Mori Tanaka
models and is given in Table 6.3. For both the Mori Tanaka and FGI model more often the
predictions with 60 orientations is more accurate than the prediction with 38 orientations.
Choosing 60 orientations should be considered in future modelling efforts.

6.4.4 Effect of Fibre Volume Fraction Variation

For each of the 12 regions over the samples thickness the Von Mises equivalent stress
resulting from the 6 stress components is calculated. It is found that there tends to be a
linear relationship between the fibre volume fraction and the Von Mises equivalent stress.
Linear regression is completed to verify this, using the equation form

σeq = aVf + b (6.37)

the values for a, b and the r2 value for the models, for each applied strain is given in Table
6.4. There is a very good linear fit for the equivalent stress for the applied biaxial strain
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Table 6.4: Equation 6.37 constants for both models for each sample and r2 value of the fit

Strain Sample
FGI Mori Tanaka

a b r2 a b r2

Biaxial 1 96.486 13.262 0.994 257.14 -3.116 0.996
2 98.861 12.738 0.997 259.56 -3.819 0.998
3 93.898 13.675 0.998 251.93 -2.363 0.999

X 1 104.82 12.94 0.994 265.64 -2.424 0.997
2 103.7 13.081 0.999 265.14 -2.540 0.999
3 101.55 13.511 0.999 261.36 -1.764 0.999

Y 1 59.698 13.852 0.423 191.9 -1.215 0.727
2 46.899 16.421 0.328 172.14 2.672 0.699
3 71.342 11.343 0.564 213.16 -5.826 0.805

Z 1 204.48 -12.821 0.290 224.28 -13.514 0.192
2 321.83 -33.487 0.572 326.97 -30.655 0.455
3 229.11 -18.114 0.487 170.35 -4.988 0.226

XY 1 6.232 25.903 0.114 128.16 2.019 0.970
2 16.491 23.72 0.681 146.51 -1.736 0.989
3 5.268 25.808 0.151 129.83 1.246 0.978

YZ 1 1.827 25.115 0.001 124.52 0.133 0.644
2 -14.133 27.854 0.467 96.35 4.738 0.903
3 4.259 24.173 0.021 133.21 -2.285 0.837

ZX 1 -20.359 30.62 0.035 94.457 7.475 0.343
2 26.985 21.449 0.269 150.66 -3.507 0.882
3 -29.016 32.162 0.152 85.109 9.021 0.518
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and applied X strain for both models. The Mori Tanaka model has a better linear fit for
the other strain components where the FGI model has a weak correlation for the applied
shear strains. Both models have porer correlation in the Z direction with the FGI model
being slightly better than the Mori Tanaka model. In the Y strain the linear fit is slightly
worse than the X strain. This is attributed to there being fewer fibres in the Y direction
in samples one and two. Comparing the b value for strains where there is a strong linear
correlation, it is noted that for the Mori Tanaka model they are on average -2.671 MPa and
for the FGI model they are positive 13.2 MPa on average. This indicates that if the fibre
volume fraction was reduced to zero the equivalent stress for the Mori Tanaka model would
be negative where the FGI model would be positive which is expected due to the matrix
properties. Thus, the Mori Tanaka model has too much dependence on the fibre volume
content for predicting the stress state. The FGI model behaves as one would expect in this
respect.
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6.5 Discussion

The two homogenization schemes studied have similar results for the SMC samples con-
sidered. The volume fraction dependence of the predicted stress is greater in the Mori
Tanaka model than it is in the FGI model. Using the Voigt assumption for the second
homogenization step results in some non-physical compressive stresses predicted by the
Mori Tanaka model. Therefore, a different second homogenization may be appropriate for
the Mori Tanaka model with dependence on the fibre orientation. The FGI model does
not have this issue as it is assumed that the strain in the bulk matrix is the same for every
pseudo grain through the use of the interphase matrix portion of the interphase.

Ogierman and Kokot claim that 9 pseudo grains are required to recreate the fourth
order orientation tensor and stiffness tensors [135]. The ratio of the stiffness of the matrix
to the inclusion material used by Ogierman and Kokot is only 6.28 times as stiff [135].
Doghri and Tinel have discussed that a higher ratio of stiffness will affect the results of a
homogenization as the direction of the inclusions will have a greater effect on the overall
stiffness [57]. The ratio of the stiffness of the matrix and the fibres of the SMC studied
is 18.25, which is roughly 3 times the ratio used by Ogierman and Kokot. A larger ratio
of stiffness between the matrix and fibres requires a larger number of orientations in the
model.

Doghri and Tinel have shown that the number of pseudo grains has an effect on the
yield point of an elastic plastic material system, and that thousands of pseudo grains were
required to match the plastic behaviour [57]. Doghri and Tinel use a closure approximation
to predict the fibre orientation distribution from an assumed random inclusion orientation.
They did not report a large variation in the elastic properties with the number of orienta-
tions considered [57]. The measured fibre orientation distribution from CT scans are used
herein to evaluate the number of pseudo grains required so that the variation due to the
number of pseudo grains in the plastic behaviour is not observed due to only considering
the elastic response.

The fibre volume content also has an effect on the homogenized material response
as demonstrated in the comparison of the equivalent stresses. The fibre volume content
studied is approximately twice that of Doghri and Tinel or Ogierman and Kokot [57, 135].
It is expected that as the fibre volume content increases, the level of anisotropy produced
by the fibre orientation also increases. The effect of fibre volume fraction on modelling
results has been discussed in section 6.4.4 above.

The shape of the inclusion affects the Eshelby tensor and by extension the strain lo-
calization tensor for the material pairing. The fibre studied is assumed to be infinitely
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long and aligned with the x1 axis of the pseudo grain. This means that the strain in the
fibre along the x1 axis of the pseudo grain is the same as the strain applied to the unit
cell in the x1 direction of the pseudo grain. If the fibre does not span the unit cell, less
strain along this x1 direction would be transferred to the fibre. In the work of Doghri and
Tinel a fibre aspect ratio of 20 was used [57]. In Ogierman and Kokot a fibre aspect ratio
of 10 was used [135]. The smaller fibre aspect ratios reduce the amount of fibre strain in
the x1 direction of the pseudo grains, which reduces the anisotropy of the pseudo grains.
Therefore, additional pseudo grains should be required as the fibre aspect ratio increases
such as the case for long fibres.

The orientation distribution functions used by Doghri and Tinel and Ogierman and
Kokot are both found using a closure approximation from the fibre orientation tensors
[57, 135]. The closure approximation gives a mathematical relationship between the quan-
tity of fibres at a specific orientation and the fibre orientation tensor. Using a closure
approximation always allows for a calculated number of fibres within each pseudo grain.
The measured fibre orientation distribution is used herein and the orientation of each fibre
voxel must be assigned to one of the pseudo grain orientations. Increasing the number
of pseudo grains also increases the number of boundaries between pseudo grains and can
make it more difficult to assign fibre voxels to an orientation. There are also limitations on
the precision of the prediction of the voxel orientation, which leads to increased error with
higher number of orientations considered. This could explain why the error was observed
to be larger for 198 and 200 orientations versus 156 and 176 orientations. As the number of
boundaries increases, the accuracy of the fibre orientation prediction for a voxel becomes
problematic due to conflicts between the boundaries.

6.6 Conclusions

Sixty orientations are sufficient to predict the elastic response of an SMC material using
a two-step homogenization procedure with the Mori Tanaka and FGI models. The Mori
Tanaka model has more dependence on the fibre volume content than the FGI model and
it has been shown that this dependence may be too large based on the equivalent stress
states. CT scan data determining fibre orientation distribution in 12 regions through the
material thickness on three samples were used to evaluate the stress state convergence of
the models to end up with sixty orientations.

The stress predicted by the FGI converges faster than the Mori Tanaka model. The
error range and standard deviation of the FGI model also tends to be lower than the Mori
Tanaka model. Additionally, the FGI model is more computationally efficient than the
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Mori Tanaka model due to the strain localization tensor being constant for each orientation.
The shear stress components require more orientations to converge than the normal stress
components. For the FGI model as long as the stress component is above 5 MPa it is likely
to converge. The stress component in the strain direction is also likely to converge. The
following factors affect the number of orientations required for a composite system: fibre
aspect ratio, fibre volume content, the difference in stiffness between the fibre and matrix
material, and fibre orientation.

6.7 Summary of Model Limitations

The limitations of the model are:

• Limited to the elastic response

• Plastic response and failure is not considered in the number of orientation evaluation

• Limited to 0.77 fibre volume fraction due to square packing, but realistic boundaries
may be lower since the model neglects fibre-fibre interactions

• Fibres are considered to be continuous across the boundaries of the unit cell, and of
infinite length for modelling purposes, since they are much longer than the unit cell
size. In the SMC material used for model comparisons, the fibres have a length of 25
mm. The assumption is valid as long as the unit cell is smaller than the fibre length

• Voigt strain assumption for each pseudo grain is made, however there may be some
issues with the validity of this assumption especially for the two-phase Mori Tanaka
model

• Fibre curvature is not directly taken into account in the model formulation but can
be calibrated using the interphase parameters
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Chapter 7

Conclusions

In this thesis, a new micromechanics based model for composite materials with a polymer
matrix and elastic fibres has been developed. These materials are of interest to the auto-
motive industry as they have very high specific strength and stiffness compared to other
engineering materials. The light-weighting of vehicles is crucial to the improvement of vehi-
cle fuel economy and reduced environmental impact of the automotive industry. Materials
such as SMC and DLFT allow for production cycle times and part cost to be acceptable
for use in mass production vehicles. They offer reduced mass, increased formability, and
corrosion resistance as compared to traditional metallic materials. DLFT materials are
also recyclable at end of life. Additional challenges exist with these materials such as
the changes to the matrix material over time due to environmental degradation and the
prediction of the location of the reinforcements within a formed compression moulded part.

The microstructure of the finished part is crucial to its mechanical performance. The
complexity of the microstructure of compression moulded parts must be properly accounted
for when attempting to mathematically model their behaviour. The theory has been well
developed for dealing with laminated composite structures such as those used for decades
in the aerospace industry and in luxury automobiles. These structures are two dimen-
sional in nature and have well established layers of composite material with known fibre
orientations. Compression moulded composites on the other hand, are usually three di-
mensional structures and the fibre orientation within the finished parts is unknown. The
size of automotive composite parts is large compared to size of the reinforcing fibres and a
homogenization technique is necessary to account for the effects at the micro-scale, which
control the material response.

Before dealing with the complexity of the microstructure for compression moulded
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parts, the three-dimensional response of polymer matrix composites containing aligned
fibres needs to be understood. In Chapter 3, the elastic response of a composite with aligned
fibres is developed. It is assumed that the material properties close to the representative
fibre change radially as a function of position, creating the FGI. It is assumed that the fibre
and matrix materials undergo the same deformations and the fibre is transversely isotropic,
allowing for the reduction in stiffness under loading perpendicular to the fibres. Using the
FGI there is an effective reduction in the fibre volume fraction allowing the model to predict
lower than the upper bound on the elastic properties of the Voigt assumption, which is
used. The stress in the fibre and matrix are predicted separately and then combined.
This will allow for the future use of these stresses in failure prediction. This model is
shown to offer improvements over the method of cells model which is commonly used
for micromechanics predictions. Due to the volumetric assumption of the interphase, the
quantity of interphase material is independent of the fibre size allowing any number of
aligned fibres to be represented as a single representative fibre.

The FGI model is extended to predict the situation where the matrix material is de-
forming plastically in Chapter 4. It is assumed that instead of the material properties
changing as a function of position around the fibre, the stress changes as a function of
position. The previous assumption that the material properties change as a function of
position is a subset of the new assumption that stress changes as a function of position.
A third region is introduced as the strain partitioning between the fibre and bulk matrix
material is assumed to follow Eshelby’s solution, the additional strain to bridge the differ-
ence occurs in the interphase matrix portion. An advanced polymer material model (glass
rubber constitutive model) is used to capture the plasticity and strain rate effects of the
polymer matrix material using the materials thermodynamic properties where temperature
and viscous effects can be captured. The stress in the three regions can be used to capture
the onset of failure in the matrix, fibre, and interphase. The model is able to capture the
response up until the onset of failure modes in axial and transverse compression as well as
shear. The strain rate dependent response is evident in the transverse compression where
the matrix response is dominant.

The FGI model is extended to account for strain partitioning when the matrix is de-
forming irreversibly in Chapter 5. It was previously assumed that the strain in the fibre
is related to the overall strain applied to the unit cell. The assumption is now changed to
the fibre strain being related to the elastic strain in the bulk matrix material. It is shown
that this assumption improves the prediction of the transverse response of the material
greatly, while being more computationally efficient than other homogenization schemes
which involve the calculation of a tangent or secant modulus.

The fibre orientation is incorporated into the FGI model in Chapter 6, through the
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use of a two-stage homogenization scheme. Before the model can be implemented in LS-
DYNA for routine use in industrial applications, the number of unique orientations required
to accurately reproduce the stress strain response of the material is required. As each
orientation requires the calculation and storage of 12 additional stress terms in addition to
the 6 of the bulk matrix material, the minimum number of orientations is desirable. The
microstructure of an SMC plaque was evaluated at three locations and the model containing
the microstructure data was subjected to a series of strain states to predict the resulting
stress state. The fibre orientations were assigned to unique representative fibre orientations
over the half sphere where 18 different number of orientations were considered ranging from
3 up to 200 representative fibre orientations. It was found that 60 orientations over the
half sphere are required to accurately capture the response of the SMC composite for the
calibrated material properties, fibre volume content, and inclusion shape. The results of
the FGI model are compared to the two-step Mori Tanaka model and it is found that the
FGI model allows for more accuracy with fewer orientations and increased computational
efficiency compared to the Mori Tanaka model.

Overall, a three-dimensional homogenization scheme has been developed for composite
materials that works in all loading directions. Both elasticity and the plastic response of
the composite are captured through the stress based FGI. The model has been designed
to incorporate failure by allowing the user access to the stress and strain states of each
constituent of the composite material. The model is designed with computational efficiency
in mind. Only one strain localization tensor is required for all the representative fibres,
and a single representative fibre represents all fibres aligned in a given direction. This also
results in size independence of the model allowing for larger element sizes in finite element
simulations. Finally, the models have been developed to be implemented in LS-DYNA.
Thus, all the goals outlined in the introduction have been achieved. It has been shown
that the response of a long fibre reinforced composite material can be modeled considering a
unit cell containing a finite number of representative fibres at specific orientations using the
material properties of the fibre and matrix and accounting for the mechanical interaction
between them using a functionally graded interphase.

7.1 Future Work

The three CT scanned samples used in Chapter 6 were subjected to three-point bending
up to the point of failure. Once the model is implemented in LS-DYNA, the macroscopic
response of the three-point bend tests will be correlated to a finite element model containing
the fibre orientation and fibre volume fraction variation in a finite number of layers of
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element over the material thickness.

The failure modes including fibre failure, fibre buckling, matrix cracking, and fibre
matrix debonding need to be incorporated into the modeling framework. As discussed,
the FGI model predicts the homogenized stress and strain in the fibre, bulk matrix and
interphase matrix regions allowing for the implementation of failure theories which have
been developed for unidirectional composite materials. Additional complications arise
from the compression moulding process, such as fibre curvature, fibre end effects, and fibre
bundle effects. These will also have to be accounted for in the model.

A coupled manufacturing and solid mechanics model is required for these compression
moulded materials since the final material properties are a function of the re-orientation
of the fibres during the manufacturing process. Codes exist to predict the orientation
tensor for short rigid fibre composites and how they flow during moulding, however these
cannot account for high aspect ratio fibres which exhibit curvature post manufacturing.
Closure approximations to work with the 60 orientations from either a second or fourth
order fibre orientation tensor would be required before this additional predictive ability
could be incorporated.

7.2 Summary of Limitations

The model is restricted to a fibre volume content of 77%. This is not a limitation in practice,
since composite materials cannot be manufactured with such a high fibre content due to
issues with wetability of the fibres. For the compression moulding composites of interest
for the automotive industry, the bulk material typically has a maximum fibre content of
approximately 30%.

The fibre is assumed to undergo no rotations, which is not an issue for solid mechanics
simulations, however this would become a problem for manufacturing simulations. The
limitation on the fibre strain is also not a limitation since fibre failure would occur before
large strains for the classes of fibres considered.

The interphase quantity must be positive and non-zero. This does not cause problems
as long as the interphase zone exists. The whole model breaks down if this condition is
not.

Failure is not accounted for currently, but there are plans for the implementation of
failure as discussed throughout and in the future work section.

The fibre end effects of an SMC are not accounted for but could be added in the future.
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[122] T.-H. Le, P.J.J. Dumont, L. Orgéas, D. Favier, L. Salvo, and E. Boller. X-ray
phase contrast microtomography for the analysis of the fibrous microstructure of
SMC composites. Composites Part A: Applied science and manufacturing, 39:91–
103, 2008.

[123] P. Leopardi. A partition of the unit sphere into regions of equal area and small
diameter. Electronic Transactions on Numerical Analysis, 25:309–327, 2006.

[124] H.X. Li and C.P. Buckley. Evolution of strain localization in glassy polymers: A
numerical study. International Journal of Solids and Structures, 46:1607–1623, 2009.

[125] M. Li, Y.Z. Gu, H. Liu, Y.X. Li, S.K. Wang, Q. Wu, and Z.G. Zhang. Investigation
the interphase formation process of carbon fiber/epoxy composites using a multiscale
simulation method. Composites Science and Technology, 86:117–121, 2013.

[126] G. Lielens, P. Pirotte, A. Couniot, F. Dupret, and R. Keunings. Prediction of thermo-
mechanical properties for compression moulded composites. Composites Part A:
applied science and manufacturing, 29A:63–70, 1998.

[127] B.Y. Low, S.D. Gardner, C.U. Pittman, and R.M. Hackett. A micromechanical
characterization of graphite-fiber/epoxy composites containing a heterogeneous in-
terphase region. Composites Science and Technology, 52:589–606, 1994.

[128] B.Y. Low, S.D. Gardner, C.U. Pittman, and R.M. Hackett. A micromechanical
characterization of thermal stresses in carbon fiber/epoxy composites containing a
non-uniform interphase region. Composites Engineering, 5(4):375–396, 1995.

[129] D. Lui, N.A. Fleck, and M.P.F. Sutcliffe. Compressive strength of fibre composites
with random fibre waviness. Journal of the Mechanics and Physics of Solids, 52:1481–
1505, 2004.

[130] V. Massardier-Nageotte, A. Maazouz, G. Peix, and S. Bres. Methodologies for
the characterisation of glass fibre orientation and distribution in large components

144



moulded from sheet moulding compounds (SMC). Polymer Testing, 22:867–873,
2003.

[131] M. Mohammadi, J.R. Dryden, and L. Jiang. Stress concentration around a hole
in a radially inhomogeneous plate. International Journal of Solids and Structures,
48:483–491, 2011.

[132] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of
materials with misfitting inclusions. Acta Metallurgica, 21:571–574, 1973.
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Appendix A

Fibre Orientation Histograms

CT scan analysis was conducted on a plaque of SMC material at three locations. The
fibre orientation histograms for the three samples are plotted as discrete pole figures. The
colour and size of each point represents the relative fibre volume content for each fibre
orientation. The fibre volume contents for the regions of interest are given in Figure 6.5.

Orientation analysis is completed for each sample on a region of 9×9 mm2 in the X-
Y plane of the samples. Histograms are calculated for the 12 regions over the material
thickness at discrete points along the Z axis. Figure A.1, Figure A.2 and Figure A.3
show the pole figures for twelve regions over the thickness for samples one, two, and three
respectively. Note, that the origin of the azimuth angle is aligned to the X-axis for samples
one and two. The Y -axis for sample three is used as the azimuth angle. Almost all fibres
are aligned to the X−Y -plane, as there are few orientations detected in Z-direction. This
is due to the SMC manufacturing process and is true for all three samples. The in-plane
fibre orientation distributions change over thickness as seen in Figure A.1, Figure A.2, and
Figure A.3.
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Figure A.1: Pole figure histograms for sample one with 12 regions over Z. The origin of
the azimuth angle is aligned to the X-axis of the global coordinate system in Fig. 6.2 [151].
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Figure A.2: Pole figure histograms for sample two with 12 regions over Z. The origin of
the azimuth angle is aligned to the X-axis of the global coordinate system in Fig. 6.2 [151].
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Figure A.3: Pole figure histograms for sample three with 12 regions over Z. The origin
of the azimuth angle is aligned to the Y -axis of the global coordinate system in Fig. 6.2
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