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Abstract 

Semidefinite prograrnming, SDP, is an extension of hear programming, LP, where 

the nomegativity constraints are replaced by positive semidefiniteness constraints 

on ma- variables. SDP has proven successfuI in obtaining tight relaxations for 

NP-hard combinatorial optimization problems of simple structure sach as the max- 

cut and graph bisection problems. In this work, we try to solve more complicated 

combinatorial problems such as the quadratic assignment, genaal graph partition- 

ing and set partitioning problems. 

A tight SDP relaxation can be obtained by exploithg the geometncal structure 

of the convex hull of the feasible points of the original combinatorial problem. The 

analysis of the structure enables as to find the so-called ''minimal face' and "gang- 

ster operator" of the SDP. This plays a signincant role in simplifykig the problem 

and enables us to derive a d e d  SDP darat ion for the three dinerent problems. 

We develop an efficient "partial infeasible" primal-dud interior-point algorithm by 

using a conjugate gradient method and by taking advantage of the special data 

structure of our relaxation. Numerical tests show that the approximations given 

by our approach are of high quality. 

Futnre work for solving a large sparse problem with onr approach is also dis- 

cussed for each of the applications. In particular, for a large sparse set partitioning 

problem, we propose an approach combinhg a mixed LP-SDP relaxation with ma- 

trix decomposition t ethniques. 
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Chapter 1 

Introduction and Notation 

1.1 Introduction 

Semidefinite prograrnming, SDP, is an extension of linear programmhg, LP, where 

the nonnegativity constraints are replaced by positive semidefiniteness constraints 

on matnx variables. It possesses almost as simple and h o s t  as nice a structure 

as LP does. SDP not only can approximate more problems than LP does but 

&O can provide be t te  approximations. Moreover, through SDP, a lot of p o w d  

tools deveioped in continuons optimization, mch as interior-point methods, can be 

applied to tackle many hard discrete optimization problems. 

SDP has recently been active in many mathematical and engineering research 

areas s u c h  as control, min-max eigenvalue problems and combinatorial optimization 

problems, see e.g. Alizadeh [ALI95, AL1921 and Vandenberghe and Boyd [VB96]. 

In those research activities, SDP ha9 aliready shown its potentid as a very pow- 

edid tool. In partic*, SDP ha9 proven successhl in obtaiaing tight relaxations 

for NP-hard combinatorial optimization problems of simple structure mch as the 



max-cnt and graph bisedion problems. These relaxations can be obtained fkom 

their comesponding quadratically constrained quadratic programming formulation 

through their Lagrangian d d ,  see e.g. [PRW95]. However, for a hard combina- 

t o r d  ~roblem wïth sophïsticated structure, how to h d  a tight SDP relaxation is 

still an open question. In this work, we try to present a d e d  SDP approach for 

solving more complicated combinatoria problems snch as the quadratic assignment 

problem, genaal graph partitioning problems and set partitioning problems. 

The quadratic assignment problem, general gaph partitioning problem and set 

partitioning problem, denoted QAP, GP and SP, respectively, have ail been &en- 

sively investigated because of th& special structures and th& numerons practicd 

applications. Since they are all wd-known as NP-hard problems (see e.g. [GJ79]), 

the current popular approaches are focused on finding a "near optimdn solution 

by solving a relaxation problem for each of thern. Therefore, to fhd a tight relax- 

ation for each of these problems is essential for finding high qnality "near optimal" 

solutions. 

Althongh the QAP, GP and SP do not look alike, they do have some corn- 

mon structure. They alI can be formdated so that th& constraints Look like the 

hizr  -t - . + hnz, = 1, 

where each a, is either O or 1 and z = (zl,. . . ,z,)' is a 0-1 vector. We cal1 the 

above constraints the assignment cotzstrainh. This common structure tnnis ont to 

be essential in devdoping an SDP fiamework to solve QAP, GP and SP. 

Our wotk in this thesis serves two purposes: 



use semidefinite programming relaxations to obtain better lower bounds and 

high qnality approximate solutions in order to solve QAP, GP and SP. 

try to deveiop a d e d  way of applying SDP to tackle hard combinatorid 

optimization problems having similar structure to QAP, GP and SP. 

The structure of the thesis is as follows. 

In the second part of Chapta 1, ne introduce some notation which will  be used 

throughout t his thesis. 

In Chapter 2 we introduce semidefinite programming. We will describe briefly 

the geornetry of the feasible set of SDP and duality t h m .  We will demonstrate 

an SDP relaxation procedure for general quadratidy constrained quadratic pro- 

gramming problems. 

In Chapter 3, we develop an SDP relaxation for the quadratic assignment prob- 

lem by exploiting the geometrical structure and using the Gangster opaator. To 

solve the large SDP relaxation, a truncated conjngate gradient method is hied 

when implementing a primal-dud interior-point aigorithm. 

In Chapter 4, we develop an SDP relaxation for GP by following almost the 

same procedure as for QAP. As a byproduct, the SDP relaxation is almost the 

same as for the Q AP. Therefore, it is solved by the same methods. Numerical tests 

are run for both unweighted and weighted graphs. 

In Chapter 5, ne develop an SDP relaxation for SP. Again we follow b o s t  the 

same procedure as for QAP. Numerical tests are rnn by using the same algorithm 

for QAP. For large sparse SP with block structure, a mixed LI?-SDP relaxation 

approach is proposed. Preliminary nmerical tests are ran by using an infeasible 

primal-dual interior-point algorithm. 



In the last chapta, we will give our summary and discussion about fùture work. 

1.2 Notation 

In this section, we give some notations and terminologies which wiîl be used through- 

out the thesis. 

We work with the space of rra1 n x n symmetric matrices, denoted Sm, with the 

trace inner product (A, B) := trace AB. The dimension of the matrices is assamed 

to be n, d e s s  otheraise noted. 

Suppose J c {(i, j )  : 1 5 i < j 5 n). The subspace of r x n symmetric 

matrices with nonzero index set J is denoted SJ, Le., 

SJ := {X E S, : Xij = O if both (i, j )  and ( j ,  i )  6 J )  . 

The set of n x n positive semidefinite mat&-, denoted P,, forms a closed 

convex cone, which is selfpolar, Le., the polar cone. 

The space & is endowed with the L6wner partial orda, i.e. A r (resp. 5 )  B 
denotes A - B is positive definite (resp. positive semidehite). (Similady for 4 

and 5 )  

For a matilt Q E S,  Q1 is defined as follows 

For v E P, Diag(v) denotes the diagonal mat& formed fiom the vector v .  

Conversely, for a matrix M, diag (M) , wïth lower case d, denotes the colnmn vector 

formed from the diagonal of M. 



For an n x m matrix X ,  vec(X) denotes the nm x 1 vector formed from the 

colnmns of the matrix X, wide Mat (2) denotes the n x m matrix reshaped fiom 

an nm x 1 vector 2. 

For a vector v = (vi,. . . ,un)' E Ra, let v,, E 929-*' denote the (p - p +  1) x 1 

vector (v,, . . . ,v,)'. v > O denotes that vi > O for i = 1,. . .,n. 

For a matruc M ,  MZj denotes its jth c o l m .  

The vector e, E 92" denotes the vectot of ones, while e is a vector of ones when 

there is no ambiguity. The vector ui is the i-th unit uector; and EG = waf + ujui. 

En is a n x n matrix with all its entries being equal to one. 1, is a n x n identical 

matrix. We use E and I when there is no ambiguîty. 

R ( M ) ,  N(M) denote range space and nu21 space of M, respectively. Fos a 

square matrix M, det(M) denotes the deteminant. For two rn x n matrices 

M, N, the Hadamard product, or entry-Wise product, is denoted M O N. For tao 

rn x n matrices Ml N, the Kronecker product, or tensor product, is denoted MQ N. 

For a linear operator A : 32" + Sm, the adjoint operator of A, denoted A', 

is a linear operator mapping from Sm to Rn such that for any z E Rn and any 

Y E 92m, 

( 4 4 9  Y) = (2, A'(Y))- 

The awow operator, acting on an n x n matrix Y, is d e h e d  by 

where Ylqo is the n x 1 vector fotmed from the last n components of the e s t ,  or 

O th column of Y. The operator Ç J : Sn + Sn with its range R(ÇJ)  = SJ is c d e d  

the Gangster operator. It "shootsn holes or zeros in a given matrix, Le., gïven a set 



J c{(i,j) : i < j  ~ { l ,  ..., n}) andamatrix Y ES, as 

the operator Ç J ( Y )  satides 

The gangster operator is self-adjoint, i-e., 

(See e.g FLE95] for its application on large sparse quasi-Newton method. The 

name of the gangsta operator was introduced in [TOI'I?].) 



Chapter 2 

Semidefinit e Programming 

2.1 Introduction 

Semidefinite programming can be a very p o w d  tool for several different applica- 

tions: e.g. min-max eigenvalae problem [RW95] ; trust region problems [RWSW] ; 

control problems [VB93] and hard combinatorid optimization problems [ALI95]. 

In this chapter, we will fist present some state of the art resdts on the theory 

and algorithms for SDP. We aRU present the dnality theory and the primal-dud 

interior-point framework for SDP, which resembles t hat for linear progtamming . 

In order to have a deeper insight into SDP, we will have a look at the geometncal 

structure such as faces and dimensions of feasible sets. Again we d l  see the sim- 

ilarity between the SDP feasible sets and polyhedra. Then ne will discuss how to 

derive an SDP relaxation for the general quadratically constrained quadratic pro- 

gramrning problem. W e  WU see how an SDP relaxation, generated by Lagangian 

dual relaxation and homogenieation, yields a lower bound. 



2.2 Duality Theory and Interior Point Methods 

A semidefinite programming problem ha9 the foUowing form 

x >r O, 
where both A : Sn -+ R and B : S, + 929 are liaear operators. The dual problem 

of (P) is 
min aty+tPt 

(D) s-t. k ( y ) + B * ( t ) k C  

y € *  t€32 f ,  

where A* and 8' are the adjoint operators of A and B ,  respectively. The linear 

operators A and B acting on X E S, can be expressed explicitly by the following 

two vedors , respectively. 

and 
trace ( B I X )  

(2.2.1) 

trace ( B J )  

where E Sm for i = 1,. . . , p  uui be consbcted ushg A(Eij), while similsir1y 

for Bi ES, for for i = l ,  ...,go 

Definition 2.1 1. Problem ( P )  is called stnctly fe<uible if M e n  ezists a feasible 

point x i'ch that R + O and B ( X )  < 0; 



2. Problem ( D )  is  called stn'ctly feasible i f  t h e n  czists a feast-ble point i and i 
such that d'(6) + 878 > C and î > 0. 

The foUowing theorem characterizes the dnality of  SDP. For a genaal theorem 

for cone-LP's and its proof, s e  e-g. [WOL81]. 

Theorem 2.1 Let ( P )  or (D) be strictly feasible. Then: 

(a) Let X and (y, t )  be feasible solutiolis of ( P )  and ( D ) ,  respectively. Then 

trace CX 5 aty + b% . 

(b) If one of the problems is infea.de, then the other L9 infeasible or unbounded. 

(c) Let both ( P )  and ( D )  be feasible, then their optimal utzlues are equal. Fur- 

themore,  the dual ( p h a l )  optimal solution is attained i f  the prima1 pioblem 

( P )  (the dual problern ( D ) )  is strictly feasible. 

(dl Let X and (y, t )  be feasible solutions of ( P )  and ( D ) ,  respectively. Then X 

and ( y t ,  tt)t are optimal i f  and only if 

duality gap := t t(b - B(X)) + trace ((d'(y) + Ba(t)'- C ) X )  = 0, 

or equiualently, if and only if 

t i (B(X)  - b)i = O,V& and ( A ' ( y )  + Bœ(t)  - C ) X  = O. 

The fououring example shows that if the prima1 problem is not strictly feasible, then 

the duai may not attain its optimal solution. 



Example 2.2.1 Conîider the SDP pair 

The Slater condition holds for the dual but not for the prirnal. The optimal valve 

for both is zero. The primal is attaàned, but the dual is not. 

Based on the above optimality condition for SDP, we now ontline an infeasible 

primal-dual interior-point approach for solving the above primai-dual pair (P) and 

(D) . This approach is introduced in [HRVW96]. Becanse of examples like Example 

2.2.1, we need to make the following assumption: 

both the primal problem (P) and the dual problem (D) are shictly feasible, 

We introduce a slack variable Z 2 O for the dual constraint such that 

Then the log-barrier problem for the dual problem (D) can be described as follows: 

miri aty + Ott - p(10g det Z + Eq=l log ti) 

t A*(y) + B'(t) - Z = C 

t > o ,  2 2 0 .  

Here p is a positive real number d e d  the bam0er parameter. For each p > 0, 
there is a corresponding Lagrangian: 

LJX, y, t ,  2) = aty + btt - p(log det Z + EL, log ti) - 
trace ((d'(y) + B*(t) - Z - C)X). 



The stationary point of the Lagrangian yidds the fo110wïng optimality conditions 

for the log-b& problem. 

Fp := d(X) - a  - 0  

Fd : = A œ ( y ) + B ' ( t ) - C - 2  = O  

Fa : = t o ( & - B ( X ) ) - p e  = O  

Fzx :=zx-pl = O  

X k O ,  220, t > O ,  

where the 4th equation is modified fiom X - pzd1 = O. The strict concavity 

of log det Z and log ti implies that there exists a unique solution to the optimd- 

ity conditions for each p > O. Denote the Mique point coqsponding to p as 

( X ( p ) ,  y(p),  t (p) ,  Z ( p ) )  . The set of sach points for each p > O 

defines a smooth m e  which is called the central puth. The central path plays a 

vital role in primal-dual interior-point methods. It has been found to be beneficial 

that the iterate points stay within a neighborhood of the central path. By doing so, 

robustness in convergence can be expected. For each point ( X ,  y, t, 2) on the central 

path, it is easy to determine its associated p ralae using the last two equations of 

the optimality conditions: 

u =  
trace (ZX) - t t(b - B ( X ) )  trace (ZX) + tt ( b  - B ( X ) )  - - - 

(Note: ttace(ZX) + t t (b - B(X) )  is jnst the duality gap.) We wi l l  use (2.2.3) to 

define the associated p valne for a point (X, y,t, Z) even when it is not on the 

central path. The interior-point algorithm is the fonowing. We start with a point 

(X, y, t, 2) which satisfies X + 0, Z + O, t > O and & - B(X) > O. We estimate 

its associated p value and divide it by two: 

trace (ZX) + tt(b - B(X)) 
C C =  

2(n + d 



(Note: this simple h e d c  pdorms very w d  in practice, even thongh it does 

not guarantee monotonic decrease in pl  see [VC93]-) We attempt to h d  steps 

(bX, by , bt, 62) snch that the nea point (X + 6X1 y + by, t + tft, Z + 62) becomes 

dose to the point (X(P) ,  y(p), t (p) ,  Z(p)) on the centrd path at this value of p. 

W e  can h d  sach a step with a variant of Newton's method in the following way. 

IR orda to apply operators A and B to nonsymmetric matrices, we extend th& 

definition. For any nonsymmetric square ma& M, let 

and 

Rom the definitions of (2.2.0) and (2.2.1) and the fact that for A E S, 

1 
trace (AX)  = trace (m) = trace - (A(X + F)) , 

2 

the above definitions are w d  defmed. We linearize the system (2.2.2) by the fol- 

lowing system of equations 

This linear system, where 6X, 6 2  are symmetnc, may be inconsistent. By solving 

for 62 using the second equation, we have 

az = F~ + d-(by) + B-(&), (2.2.5) 

which is symmetric Then we solve for 6X asing the 4th equation in (2.2.4) and 

the definition of Fzx fiom (2.2.2). We get 

JX = pz-' - X - z-'FJC - ZW'(A'(Jy) +- Bm(M))X. (2.2.6) 



Evidently, 6X is not symmetrïc in general. By substituting the above expression 

for 6X into the first and the thnd equation of the h e a r  system (2.2.4), ve obtain 

the fonowing linear gystem for (by, bt) ,  called the nonnul equations. 

d(Z-' FdX - Z-'(Aœ(&) + Bm(St))X) = A(c<Z-' X Z-'&X) + Fp 

t O t3(Z-'F& - Z0'(d*(&) + B*(Jt))X) 

+at 0 (a - B(x)) = t 0 B ( ~ z - '  - x - z - ~ F ~ x )  - F ~ ~ .  
(2.2.7) 

We solve the normal equations for (by, bt) . Then, by substituting (6y, 6t) into 

(2.2.5) and (2.2.6), we have 62 and JX. Finally, we let 

to symmettize 6X. As we have seen, we always symmetrize bX in order to update 

X. Hence, the symmetrized bX may no longer be a Newton direction. However, 

it is still a descent direction for the objective as shown in [HRW96]. This is 

the reason we c d  this method a variant of Newton's method This nonsymmetry 

issue has also been dealt with by other people, see e.g. Kojima et al. [KSH94], 

Monteiro [MON95], Zhang [ZHA95], Alizadeh et ai. [AH0941 and Nestaov et al. 

[NT94, NT951. 

The last part of the algorithm is the Iine search To measare the progress of the 

algorith, we use the convex merit fanction 

f,(X, y, t, Z) = trace (ZX) - p log det(ZX)+ 

tt(b - B(X)) - pet log(t 0 (b - B(X)))+ (2.2.8) 

f llFPI12 + ~l lFd1I2*  

To guarantee global convergence of the algofithm, the key conditions given in 

[HRWV96] state that the step size a should be snch that the following Goldstein- 



Armijo conditions ase satisfied. 

where O < & < & < 1, s := (X, y, t ,  2) and 6s := (bX, 6y,6t, 62).  Because of this 

result, a line search method was developed in [HRW96].  This Iine se& method 

has been used s u c c e s ~ y  in s o h g  the SDP relaxation for the max-cut problem 

and the min-max eigerïdue problems, see [HRW96]. We demonstrate this line 

search method by hding the prima step a, in the following. 

step 0: set cr, := 1; 

step 1: if b - B(X + q J X )  > O and X + %6X + 0,  stop. Otherwise, go to step 2; 

step 2: repeat a, t 0.8% mtil both b - B(X + a&C) > O and X + ap6X > O are 

satisfied. go to step 3; 

step 3: a, t 0.95%. (to make sure the next point is not too close to the boundary.) 

Similady, we can find the dual step size ad. 

AfZer we find the constants cr, and ad, we step to the new point 

We repeat the same procedure as above until some stopping criterion is satisfied. 

A stopping criterion will be discassed in the next chapter. 



2.3 Geometrical Structure of SDP 

Note that in the SDP problem (P) the inequality constraints can always be changed 

to eqnality constraints by adding slack variables. Withoat loss geneiality, we rewrite 

the SDP problem (P) as the following SDP problem in matrix form. 

max trace CX 

s.t. traceAix=* for 1 s i  S m  

x 2 o. 

Its dual is 

The feasible set of the prima SDP (2.3.10) is defined as 

The set FP is called an elliptope, see e.g. Laurent and Poljak [LP95]. 

The feasible set of the dnal SDP (2.3.11) is defined as 

The set FD is called spectrahedra in e.g. [RAM93]. 

In this sectionwe will mainly discnss the geometrical structure of elliptopes Fp, 

since the geometrical structure of spectrahedra follows fiom similar arguments, 

see e.g. Ramana [RAM93]. The stndy of the facial stracture of elliptopes is rela- 

tively new in the optimization literature. The facial structure of general convex sets 

was used by Borwein and Wolkowicz pW81]. Pataki (in [PAT94a] and [PAT94b]) 



dismsed the facial structure of cone-LP7s and SDP's, Similar work can also be 

found in Ramana [RAM93] and Laurent and Poljak [LP95]. An introduction to the 

general structure of convex sets can be found in Rockafellar B O  CrO]. 

Definition 2.2 Given a convcz set G ,  P is a face of G if 

imply that z, y E F. 

Now we characterize the faces of the closed convex cone of z x n positive semidefinite 

matrices. Recd  that the dosed convex cone is denoted P,. 

Theorem 2.2 The following statements are equivalent. 

(i) F L9 a face of P,. 

(3 There ezists an orthogonal projection matriz Q , 

Q = Qt = Q*, 

(iii) There &ts an orthogonal projectwn matriz Q , 

Q = Qt = Q', 

such that F = (1 - Q)P& - Q) . 

Mo reover, 

F = {X 2 O : N(X)  > R(Q)) for some Q = Qt, 

and the relative interior of F satkfies 

ri F = {X 2 O : N ( X )  = 'R(Q))  for some Q = Qt. 



For proof and other details, see e-g. [BC75]. 

Now we consider the faces of elliptopes Fp. The following two resdts are 

straightfomard. See e.g. Pataki [PAT96]. 

Theorem 2.3 The set F i9 o face of Fp if and only if there easts a face G of 

P, such that 

F = G n f i .  

* 
Denote the dimension of a set F by d i .  F . 

Theorem 2.4 Let G be a face of Pm. Then, there e225ts a n x m matriz V lmth 

rank (V)  = m such that: 

Y E G if and only if there ezists a matriz X E Pm such that Y = VXVt  ; 

Now, we discuss the extreme points and extreme rays of the elliptope Fp, see 

e.g. Rockafellar [ROC?O]. 

Definition 2.3 The m y  Y is an eztreme ray of 3 p  if: 

for any rays, YlundK of FP , 

implies Yi = AY2, for some A 2 O .  

The following theorem characterizes the structure of elliptopes 3,  using its extreme 

points and extreme rays. For a more general resdt see e.g. Klee [KLE57]. 

Theorem 2.5 An elliptope .Fp is the Minkowski suna of convez hull of its set of 

eztrerne points and eztreme rays. 



2.4 SDP Relaxation for Quadratically 

Constrained Quadrat ic Prograrnming 

Consider the following qnadratically constrained quadratic programming problem 

pt = min z t & + 2 b 0 2 + ~  

subject to zt& + 2biz + O, i = 1,. . . , p  (2.4.14) 

z t & + 2 2 ~ 2 + ~ = 0 , i = p + 1  , . . . ,  972, 

where E S,, bi E Rn and ci is a scdar. The matrioes & can be indehite, there- 

fore, problem (2.4.14) is generdy a very hard, non-convex optimkation problem. 

(Note: if matrices & are a l l  positive semidefinite, problem (2.4.14) can be solved 

efficiently by an interior point method. See e.g. (NN931) A lot of hard combinato- 

rial opthkation problems can be written in the above form. For example, a 0-1 

quadratic programming problem can be umitten in the form (2.4.14) by expressing 

its 0-1 variables as xi(zi - 1) = O .  The feasible set of (2.4.14) can be either a finite 

discrete set or a continuous dense set. 

Now we describe the Lagrangian dual approach, by which an SDP relaxation 

for problem (2.4.14) can be derived. 

Problem (2.4.14) can be aritten as 

min 

sub ject to 



We can homogeniee the above problem by adding a new variable zo sach that 

xg = 1. As a r d t ,  we get the following eqaivalent problem 

min 

sab j e d  to 

h m  the Lagrangian of the above problem, we get the following lower boand. 

To prevent the above quadratic form from going to negative infinity, the hidden 

constraint has to be satided. 

Therefore, we can get a lower bomd for problem (2.4.14) by solvkig the Lagrangian 

dual relaxation problem 

PR = max t 

r, 2 O for i = 1, . . . , p .  



The dnal of the Lagrangian d d  relaxation is then 

m i .  

snbject to Yoo = 1 

trace 

trace 

To jnstify that the probiem (2.4.16) is an SDP relaxation, we let 

Shen the above problem (2.4.16) becomes the original quadratic optimization prob- 

lem. Therefore, the SDP problem (2.4.16) is really a relaxation for problem (2-4.14). 

In other words, the SDP relaxation caa be derived by the followhg approach called 

the direct approach. 

1. Find a representation for each of the original quadratic constraints for the 

rank-one matrix 

2. replace the ranksne ma& by an matrix Y 2 0. 

Before ne apply the Lagrangian dnal approach to derive an SDP relaxation for each 

of the applications, we would Eke to point out the following: 



a redundant constraint for the original problem (2.4.14) may yield a non- 

redundant constraint for the SDP relaxation (2.4.16). 

This means that h d i n g  the "rightl constraints of the original problem is essential. 

As we will see when we move on, this can be achieved by exploiting the specid 

structure for each of the applications. For a 0-1 quadratic programming problem, a 

recipe for deriving an SDP relaxation was given by Poljak, Rend and Wokowicz, 

see e.g. [PRW95]. Also see e.g. 

relaxation for nonconva quadratic 

pK951 for some characterization of an SDP 

programS. 



Chapter 3 

Quadratic Assignment Problem 

3.1 Introduction 

The qnadratic assignment problem, QAP, can best be desaibed by the foUowing 

problem: 

We are given n facilities and n locations. There is a given amount of 

flow between every pair of facilities and a given cost rate per unit flow 

(distance) between every pair of locations; and, there is a setup cost for 

a facility in a given location. We want to assign each facility to a unique 

location in such a way that the total cost (sam of cost for every pair of 

facilities plus the s u m  of the setup cost) is minimieed. 

We use o, for the flow between facilty i and facility j ,  bgj for the cost rate. 

per unit flow between location i and location j and fij for the cost for setting up 



facility i at location j, for al l  i, j E {l, . . . ,n). Let 

For convenience let c, = -0.5fG and define 

The diagond elements of A and B are all zao and both A and B are symmetric 

matrices. For a given apsignment, let X be the permutation matrix defined by 

Thus the jth column XEj is the indicator set for the jth location. Snch an X can 

represent the assignment. For each sach assignment X, 

trace ( A X B F  - 2 C P )  

gives the total cost. Therefore, the minimal total cost is obtained by solving the 

quadratic assignment problem in the trace formnlation 

(QAP) p' := en trace ( A X B X t  - Z X ) ,  

where II denotes the set of permutation matrices. As ne ean see, (QAP) is a O- 

1 quadratic minimi.ation problem. The qnadratic term cornes h m  the flow and 

distance matrices and the linear term arises fkom the setup cost. 



The QAP is well known to be NP-hard and the traveling salesman problem 

(TSP), a well hown NP-hard problem, can be formtdated as QAP (see e.g. 

[SG76]). h practice, QAP problems larger than order R = 16 ate still considered 

very hard. The Nagent test problem (see e.g. [CNR68] and PKRSl]) of d k ~ n a i o n  

n = 20 has only recently been solved (See e.g.[LPFt93]). The techniques nsed so far 

are based on branch and bound metbods which use bounding techniques, sach as 

Gilmore-Lawla bound [GIL62, LAW631, eigenvalue bounds mW92a, HRW92bl 

and bounds based on linear programming relaxation [AJ94] and m 9 4 ] .  Many 

heuristic techniques, such as simulated annealing, &O need a lower bonnd to see 

how good a solntion is. 

In both the Ghore-Lawler bottnd technique and the eigenvalue bound tech- 

nique, the quadratic term and the linear term are relaxed separated to form two 

different problems. The s u m  of the optimal &es of the two rdaxed problems 

gives the lower bound. This is the disadvantage of these tao techniques due to the 

fact that the sum of the minimal values of two fanctions is less than or equal to the 

minimal value of the s a m  of the two hctions.  Theref'ore, a fnrther improvement 

of the lower bound can be expected if the quadratic and linear terms are combined. 

ki this chapter, ne describe and test a new approach based on a semidefinite 

programming relaxation. This relaxation prove to be namerically snccessfnl. In the 

SDP approach, the quadratic term and the lineat tam are treated together. The 

relaxation of the linear equality constraints, corresponding to the doubly stochastic 

property of permutation matrices, impiies that the prima1 of onr SDP relaxation 

does not satisfy the Slater constraint qualification (strict feasibility). Although 

there is no dnality gap in theory, since the dnal does satisfy the Slater constta.int 

qualification, this leads to an aabounded dud optimal solution set. see Exam- 

ple 2.2.1. Numerical difficulties can arise when trying to implement interior-point 



methods. However, the minimal face of the semidehite cone can be found by 

exploithg the structure of the barycenter of the convex hull of the parnatation 

matrices. Then, the primai problem can be projected onto the minimal face. This, 

combined with the so called Gangster operator, yields a regularized SDP of smaller 

dimension, which can be solved in a numericdy stable way. 

Now we would lïke to present some special notations for this chapter. 

We use the Kronecker product, or tensor product, of taro matrices, B @ A, when 

discussing the quadratic assignment problem Q AP. Note that the objective fnnction 

q(X)  = trace ( A X B X  - 2CX) = vec (X)'(B @ A)vec (X) - 2vec (C)'vec (X). 

The Kronecker product gives rise to generalized notions of trace and diagonal. 

For any n x n matrix X, we define the following (n2 + 1) x (n2 + 1) matri* 

The, prineipakblock-diagonal-operato~ denoted bodiag : S,l+i -t Sn, is defined 

where Y is written as 

Y =  

where Ym is a scalar, and Yoi, for i = 1,. . . ,n, are n x 1 and 1 x n vectors, 

respectively, and xi, for i, j = 1, . . . , n , are n x n blocks of Y. 



The adjoint operator of bodiag is denoted BoDiag 

BODiag : Sn + S,,Z+~ 

and for a matrix S é S, 

BOD~S~ (S) := 

Thus the adjoint equation 

trace (wb0diag (Y)) = trace ( ~ ' ~ i a ~  ( W)Y) 

holds for aU W E Sn and Y E &+l. 

The o ff-block-diagonal-operator denoted oOdiag (Y) : S,,z +l -+ Sn , is defined by 

trace (Yl1) . . . trace (yin) 

oodiag (Y) := 

trace (Y,) . . . trace (Y,) 

where Y is written in the same block matrix form as for the bOdiag operator. 

The adjoint operator of oodiag is denoted OoDiag (S), 

and for a matrix S E & 

Thus the adjoint equation 

trace (Woodiag (Y)) = trace (OoDiag (W)Y) 



The adjoint operator of arraw is defined by 

and for a vector u> E W2 

h m h )  = 1-1 -Lw Diag (w ) . 

(The name arrow cornes from the pattern of nonzero elements.) Note that 

trace ( Arrow (w)Y)  = wtarrow (Y). 

The set of matrices with row and colrunn sums one is denoted 

E := {X : Xe = Xe = e) = {X : IlXe - e(12 + I l X e  - el[* = O). 

The set of û-l matrices is denoted 

Z : = { X : X $ = X , ,  i , j = l ,  ..., n}. 

The set of orthogonal matrices is denoted as O ,  and the set of (entrywise) non- 

negative matrices is denoted as N. 

The set of matrices for which the Hadamard product of any pair of distinct rows 

(and any two distinct columns) is eqnal to the zero vector is denoted 

3.2 An SDP Relaxation 

It is well known that the set of permutation matrices II can be characterized as 

the intersection of 2 and E and also as the intersection of O and N (see e.g. 



With the introduction of the matrix set U, we have the following result. 

Proof. It is easy to see that 

W e  want to show that 

Rom the definition of E ,  we h o w  that in each colnmn or row there eRsts an entry 

X, # O .  Since X E 'H, we have Xi, = O for p # j and X, = O for q # j .  

Therefore X' = 1 and thas is the only nonzero entry in row i and colamn j ,  i.e. 

X E II. O 

The set 'H will be used later. We rewrite QAP nsing (3.2.19). 

pœ = min trace (AXBX' - 2CXt) 

(X is orthogonal) 

(X is donbly stochastic) 

We can see that there are a lot of redundant constraints in QAP'. Susprisingly, 

however, the SDP relaxation of these constraints are not ail redundant. This c m  

help tighten the SDP relaxation. We will discuss the reason in detail for nsing the 



redundant constraints XXf = X X  = I below. We will &O see the advantage of 

using Xe = Xte = e. 

The constraints can now be relared to get an SDP relaxation of QAPB. This 

can be done either via Lagrangian duality or duectly fiom the QAP. We shall 

ontline how the Lagrangian relaxation yidds an SDP relaxation of QAP. (See &O 

[PRW95].) In the process, we also introduce several of the linear operators used in 

our relaxations. We change the row and colamn wm constraints iato IlXe - el12 + 
I(Xt e - e Il2 = O - Consider the following eqnivalent formulation of the QAP problem 

(QU). 
pa := min trace (AXBX' - 2CXt)  

s.t, XXî = I 

(QAPd FX=I 
IlXe - e1I2 + IIXte - el12 = O 

x$-x, = O ,  vâ,j. 
As we can see from the Lagrangian dual approach described in Chapter 2.4, we will 

homogenize the problem by kimeasing the dimension of the problem by one. We 

first add the (0,l)-constraints and equation IlXe - e1I2 + llXte - e1I2 = O to the 

objective fnnction nsing Lagrange multipliers Wi and respectively. We get 

= min max trace ( A X B X  - 2CXt) + C, Wij(X$ - Xi$) 
X X k X t X d  W,uo (3.2.20) 

Interchanging min-max yields 

Po 1 max min trace (AXBXt - 2CXt) + C, wij(X,$ - x,) 
W,uo XXt=XtX=I  (3.2.21) 



We now homogenize the objective bct ion by maltiplying the linear tetms by a 

t 2  
Po 2 := m a  min trace [AXBXt + W(X 0 X)' + ~ ( l l X e i I *  + IIX eII ) 

W XX' r I 

X ' X  = I 
=; = x 

-20 (2C + W) Xt] - 2 x o ~ e t ( X  + Xt)e + 2nuo. 
(3 -2.22) 

kitroduckg a Lagrange multiplier tao for the constraint on zo and Lagrange mul- 

tiplier~ Sb for XXt = I  and So for XtX = I ,  we get 

p~ = max min trace [AXBX' + w(llXel12 + I Ix'c~[~) 
wtsb,so,~a ,W x, 20 

+W(X 0 X)' + woz; + S r n t  + SoXtX ] 

-tracezo(2C f W)Xt - 2z0%e'(X + Xt)e 

-wo - traceSb - trace So + 2nw. 

W e  have grouped the qnadratic, hear ,  and constant terms together. We now 

d e h e  2 := vec(X), y' := (xo, zt) and w := vec(W) and get 

-wo - trace Sb - trace So, 

where we d e h e  the (n2 + 1) x (n2 + 1) matrix 

and the linear operators 



and 

OoDiag (S) := 1 - 1  
0 S , @ I  

and 

Note that we will refer to the additional row and colnmn generated by the 

homogenization of the problem as the &th row and c o l m .  By using the hidden 

semidefinite constraint, Le., the pure quadratic ninction is bounded below only if 

the Hessian 

LQ + h ~ o w  (w)woEoo + BDDiag (SI,) + OoDiag (S,) + uoD 

is positive semidefinite, we see that (3.2.24) is equivalent to 

max -wo - trace Sb - trace S, 
(01) 

s.t. LQ + Arrow (w)wo& + BoDiag (Sb) + OoDiag (S,) + % D 2 0. 

We introduce the (n2 + 1) x (n2 + 1) daal matrix variable Y 2 O and derive the dual 

of the SDP problem Di . Then, we obtain our desired SDP relaration of QAPl as 

follows. 
min trace LoY 

s.t. bOdiag(Y)=I oOdiag(Y)=I 
(Pl 1 

arrow (Y) = O trace DY = O 

where the arrow operator, bodiag and oodiag are the the adjoint operators to 

Arrow (-), BoDiag and OODiag , respectiveiy; (They are defined in Chapter 1.2 

and Section 1 of this chapter) the arrow operator tepresents the 0-1 constraints 

by guaranteeing that the diagonal and O th colnmn are identical; the bodiag and 



oodiag represent the orthogonality constraints; and, bally, the nom constraint 

is represented by the consfraint trace DY = O .  NOW we can show that there is 

exactly one redundancy among the constraints given by the operator bodiag and 

the opaator oOdiag . 

Theorem 3.1 Among the constraints given by the operator bodiag and the oper- 

ator oOdiag there is exactly one redundant constraint. M o n  preke ly ,  let 

L e .  the nu22 space of the operator B* is of dimension one. 

Pro of. Let S, T E S, be the dual variables corresponduig to bodiag and oodiag , 
respectively. We fust choose S = -T = 1. Then Bœ(S ,T)  = O .  Hence, the n d  

space of B' is not empty. 

Now let Til = O. We need only prove the following. 

Bœ(S, T) =  d dia^ (S) + o0Diag (2') = O implies S = O,  T = 0. 

Since TI1 = 0 and 

 dia^ (S) + O"Diag (T) = [G] + [*] = O 9  

we have 



thns, S = O. This implies that T = O as ad. O 

Remark: an alternative proof can be done based on the fact that if the assign- 

ment polytope {X : Xe = X e  = e, X 2 0) is expressed as 

then the lhear operator A* has the property dim(N(BV)) = 1. 

3.3 Geometry of the Feasible Set 

In this section we study the geometncal structure of the feasible set of the SDP re- 

laxation ( Pl ). We have expressed the orthogonality constraints with both X X  = 1 

and XtX = I. It is interesting to note that this redandancy adds extra constraints 

into the relaxation which are not redundant. These constraints reduce the size of 

the feasible set of the relaxation and so tighten the resultiag bounds. W e  denote 

the feasible set of the SDP relaxation (P l )  by Fl.  Note that D # O is positive 

semidefinite, therefore, to satisfy trace DY = O, Y has to be singniar, which means 

that the feasible set of the prima1 problem Pl is not strictly feasible. From this 

we can see that the relaxation of the redtmdant constraints Xe = X t e  = e c m  

actually help us see the geometric structure of the feasible set. It is not &&dt 

to find an interior point for the feasible set of the dnal (Di), which means that 

Slater eonstra.int q11aIification (sttict feasibility) holds for (Di ). Therdore (P l  ) is 

attained and there is no dnality gap in theory for this primal-dual pair. However, 

since Slater constraint qualincation for the prMal fails, this is not t d y  a proper 

dual pair. This is because we cannot stay exaetly feasible, 2 O, in the absence of 

Slater condition. (See PTW951.) Moreover, because the snpremum of (Di ) may 



never be attained, numerical instability is Iikely to occur. In order to overcome this 

ditnculw, we need to explore the geometrical strnctnre of Fi. 

It is clear that the matrices 

YI:=( vec (x) )(l ~ e c ( X ) ~ )  for 

are feasible points of FI. Moreover, since these points are rank-one matrices, we 

see that they are contained in the set of extreme points of Fi, see e.g. Pataki 

[PAT94a]. W e  need only to consider faces of P which contain all of these extreme 

points Yx for X E II. W e  want to ibd the minimal face, which is the intersection 

of all these faces. The following theorem characterizes the minimd face by hding 

a point in its relative interior, namely the barycenter. This point has a very simple 

and elegant smicttue. 

Theorem 3.2 Let x = vec(X) . Define the barycenter point 

r I  

1. Y has a 1 in the (1,1) position and n diagonal n x n blocks with diagonal 

elements lin. The fist row and column equd the diagonal. The rest of the 

matriz is  made up of R x n blocks tmth dl elements epud to l/(n(n - 1)) 



ezcept for the diagond elements which are zems: 

3. the n2 + 1 eigenvalues of P are given in the vector 

n/(P) = {U : u E R(T')), 

where the assignment corutraint m a t ~ x  T is 



5. the range of Y can be ezpressed by the columns of the (n2 + 1) x ((n - 1)2 + 1) 

where the mat* V 

Proof. Fix X E II, and let 

Consider the entries of the 0th row of Y. Since &,(i-r)n+j = 1 means i is assigned 

to j and there are (n - 1)! such permutations, the components of the O th row of 

k- are given by 

Now consider the entnes of Y in the other rows, Ybl)n+n,(i-l)n+j. 

i) if p = i and q = j , then Yb-l)n+qI(i-i)n+j = 1 means that i is assigned to j 

and there are (n - 1) ! such permntations, therefore the diagonal dements are 

ii) Now suppose that p # i and q # j, i.e., the elernent is an off-diagonal elenient 

in an off-diagonal block. then Yklln+a(i-l)m+j = 1 means that i is assigned 

to j and p is assigned to q and since there are (n - 2)! sach permutations, 



iii) Otheraise, suppose that p = i or q = j but not both, Le., we consider the 

off-diagonal elements of the diagonal block and the diagonal elements of the 

off-diagonal blocks. By the propezty of permutation matrices, these elements 

are all O, 

This proves the representation of P in 1. 

Let ns h d  the rank and eigenvalztes of P. W e  partition 

thus defining the block W. We have 

where S = X - 5 E. As a result, we have 

Direct vdcat ion  shows that 

The eigenvalues of nI, - E are n, with mdtipffcity n - 1, and 0. Note that 

the eigenvalues of a Kronecker piodnct are given by the Kronecker product of 

eigenvalues. Therefore, we have that the eigenvalues of S are l / ( n  - 1) , with 

multiplicity (n - 1)' , and 0, with multiplicity 2n - 1. T h d o r e ,  we have 

ranlc(?) = 1 +rank(S) = (n- +i. 

This proves 2. 



By (3.3.31), we can easily see that l/(n - 1) , with mdtiplicity (n - 1)' , are 
&O eigenvaltres of P. Also, 2 is an eigenvalue of Y .  Therefore, since r a d  (1) = 

(n - i)* + 1, we have that the eigenvaltles of I are 2, l/(n - 1) with multiplicity 

(n - 1)*, and O with mdtipliuty 2 1  - 1. This proves 3. 

Note that rank (T) = 2n - 1 and TI = O. Therefore, we have 

This proves 4. 

Since rank (P) = (n - 1)* + 1 and TY = 0, the colamns of Y span the range 

space of P. O 

Remark: The structure of the assignment polytope has been well studied. An 

alternative proof for part 1 and part 2 can be done based on the well known fact 

that the dimension of the assignment polytope is (n - 1)2. 
The above characterization of the bacycenta enables us to find the minimal 

face of FI that contauis the feasible set of the SDP relaxation. Note that the range 

space of the barycenter ? spanned by the colnmns of is the n d  space of the 

assignment matrix T. However, we would lilre to point out that this property of 

QAP is not true for a general feasible set with aa assignment structnre. Here is a 

counter example. 

Consider the problem 

21 = 1  

21 +z* +a +24 = 1 

21, 22, 23, x4 2 O- 

As we can see its only solution is (1,0,0, O)', hence, its barycenter is a rank-one 

matrix. However, the n d  space of the above system is of dimension 3. 



This fact again tells us that a snccess in findlig a barycenter is the key in exploiting 

the geometrïcal structure of a given problem with an assignment strnctuxe. 

FinaIly, let t(n) := y. We have the followhg coroflary. 

Corollary 3.1 The dimension of the minimol face is t((n - 1)' + 1). Moreouer, 

the minimal face can be ezpressed as kS+l)z+l~. 

Fkom Theorem 3.2 we condnde that Y 2 O is in the miaimal face if and only 

if Y =  PR^ for some R 2 O .  We can now replace the matru Y by PRP &the 

SDP relaxation (Pt) . As a r e d t  we get the following projected SDP relaxation. 

min 

s.t* 

B y construction, t his program satisfies 

trace (Yt L* P) R 
bOdiag (p&) = I 

oOdiag @RF) = I 

arrow (PRP) = O 

(PR+),,,, = 1 

R k 0 .  

the generalized Slater constra.int qualifica- 

tion for both the prima1 and the dual. Therefore there will be no duality gap and 

the optimal solutions are attained for both prima1 and daal. The projected SDP 

relaxation (Relazl)  has been solved by a primal-dual interior-point method. (See 

e-g. [KAR95]). 



3.4 Gangster Operator and 

Final SDP Relaxation 

It is very interesthg to study the structure of Y .  Because of the symmetry, we 

only consider the npper triangular part. W e  denote the zero entries of Y by the 

following set 

With the set J we define the gangster operator 

As a resdt, we have 

G(P) = o. 

For any permutation matrix X E II, Yx has its entries either O or 1, and 

Y is just a convex combination of all these matrices Yx for X E II. Hence, fkom 

(3.4.32), we have 

çJ(Yx) = 0 vx E II- 

Therefore, we can even fiuther tighten the feasible set of the projected SDP te- 

laxation problem (Relazl)  by adding the naturd constraints GJ(Y) = O .  Note 

that the gangster operator constraints Ç J ( Y )  = O can be directly derived fkom the 

expression of the QAP f&ble set, E fi 'H. 

The following useful properties can be derived h m  the fact that TY = 0. . 
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Lemma 3.2 Let R be arbitrary (n - l)* + 1 x (n - 1)' + 1 symmettic matriz with 

when & *9 ascalar, fio, for i =  1, ..., n - 1 ,  are ( n - 1 )  x 1 uectors und &, 
f i ,  = 1 , .  - 1, are (n-1)  x (n- 1) blocks of R.  Let Y = VRP and 
partition Y as 

Y =  

when Ym is a scalar, &, for i = 1,. . . , n, are R x 1 vectors und for i ,  j = 

1,. . . ,n,  arc n x n blocks of Y .  Then 

4 

Y& 

Y ~ e  = &, for i = 1,. . . ,n, 

- .  

Y,, - - . Y* : - -  

and 

b) 



Proof. W e  can easily check that Ym = &. Since TY = O,  ne have 

The remaining results foJlows fkom direct verification. CI 

Now, we add the gangster operator to the projected SDP relaxation problem 

(Re lax l )  . Rom Lemma 3.2, we have 

Note that the off-diagonal entries for each Ifi are zeros. Therefore it follows that 

the arrow operator is redundant. Whennore, by part a) of Lemma 3.2, we can see 

that the principal-block-diag operator is redandant. Similady, the off-block-diag 

operator is redundant . 

i = @ - l ) n + q  j = ( p - l ) n + r  for q<r  or 

(i,j) : i = ( p - l ) r r + q  j = (r - l ) m + p  for p < r r  # n 

07) # (n-217-1) 

With the new index set j ae have the foi lo~hg lemma. 

Lemma 3.3 For any matriz Y E SJ,  

rityY=o -L Y=O. 



Proof. The matrix Y can be written as 

W e  let 

Then from pw = O ,  we have Z = O. Note that 

Therefore if we write the above matrix 2 as 

then we have, for i , j  E {l, . . . , n - 11, 

Note that YN = = 0,  for i = 1, .. .n - 1, and 

Yn-zn-i = Yn-in-z = O. W e  have VYnnV = O and hence 



for i, j E {l,. . . ¶n - 1)- 

Since xj c m  be either a diagonal matrix or a matrix wïth diagonal equal to 

zeros, we have the fonowing two cases. 

Case 1: xi is a diagonal matrnt 

Let 

whieh implies that xj = 0. 

Case 2: ', is a mahix with diagonal equal to zaos. 

Let 

where A is a n - 1 by n - 1 ma& with diagonal equal to zeros. Thus, we have 

which implies that 1 = O and A = O, i.e. xj = O. Therefore, we have Y, = O and 

for i , j  € {l, ..., n - l}, Le., 

Y = O. 



O 

W e  can get rid of ail of the redandant constraints fiPm the gangster operator 

ÇJ based on the following theorem. 

Theorem 3.3 Let Y = VRIP with fonn 

1- Ç j ( Y )  = O implies t h d  diag (Yt,) = O,...,diag(&,l) = O and 

diag = O. 

2. Let J = j u (O, O) ,  then the rnapping &(Y) i~ onto. 

Proof. Let Ç J ( Y )  = O. Then fkom Lemma 3.2, we have, for each i = 1,. . . , n, 

C diag (xi) = 
j=l 

and 

diag (Y;ï) = &, 

which implies that diag (Km) = 0, for i = 1, . . . n - 3, and therefore 



which implies that 

diag (Yn-2n-1) = O 

diag (Y,t,) = O 

diag (Y,-i,) = O. 

This complet es the proof for 1. 

Since = i and çJ(Y) = O,  we know that Ym is linearly independent on G J .  
The rest of the proof for 2 follows immediately fiom Lemma 3.3. O 

Therefore, by eliminating the redundant constraints we now can get a very 

simple final SDP relaxation. 

where X E P~,-l)2-l. (Note: in the rest of the chapter, X is not for a permutation 

matrix but the prima1 matrix variable for the SDP rekxation.) Its dad problem is 

Note that the gangster opaator is sel f  adjoint and Çj(S)  = SJ.  The foflowing 

theorem @es a v e q  interesthg property of a feasible solution of the final SDP 

relaxation. 

Theorem 3.4 Let X be a feasible solution of ( R e l a d ) .  Then, the n x n matrit 

Mat ((diag (f7xi"))4 L9 a doubly stochmtic matriz, i. C. 



Proof. Let Y = PX+. Then from Lemma 3.2 and Ç j ( Y )  = Eoo , we have 

& = diag (Y) and Ym = 1. The rest of the proof follows immediately fiom the 

part a) of Lemma 3.2. CI 

Rom the above theorem, we can see that the final SDP relaxation can not only 

give a lower bound for the QAP, bnt also yields a doubly stochastic matrix, which 

may be used to derive a good feasible solution for the QAP- 

Befixe we solve the final SDP relaxation, we wodd like to give interior points 

for both the primal feasible set and t&e dnd feasible set. 

Theorem 3.5 The ((n - 1)2 + 1) x ((n - 1)2 + 1) matriz 

is an strictly interior point of the feasible set for (Reloz2).  

Proof. Note that x is positive definite since nl'-i - E,-l is positive dehite. 

The rest of the proof follows fiom showing that 

V X P  = ir, 



where P is the barycenter. 

Theorem 3.6 Let 

w = M [ L ] .  0 (1- - En) 

Then for a suficiently large scalar M, w is a stricffy interior point of f e a d l e  set 

(02) 

Proof. It is obviaus that we only need to show the rnatrix 



positive definite. Notice that etV = O ,  we have 

+ (et In) I n  - E ) )  1 ( e t )  ( e n  - 1 )  1 

I l .  

Since the matrix In-1 + is positive definite, we have that 

is positive definite. O 

3.5 A Tkuncated Primal-infeasible Dual-feasible 

Interior-Point Met hod 

Helmbag et al. [HEL94, HRVW961 proposed a primd-dual interior-point method 

for solving general semidefinite programming problem. We desaibed the rnethod 

in Chapter 2. With this method they successfdly solved max-cut problems. Based - 

on this method, we develop a so d e d  tncncated pt imaf- infedte  dud-feosible 

interior-point method to solve the ha1 SDP relaxation (ReZaz2). This method 



aims to generate a lower bomd &ciently for large scde QAP. We describe this 

method in the test of the section- 

3.5.1 Why this Method? 

We rewrite the dud problem (4) by introdacing a slack matrïx 2. 

The Karush-Kuhn-Tucker conditions of the dual log-barria problem are 

where X > 0, Z + O and W E SJ. The îust  equation is prima1 feasibility 

conditions, while the second is the dual feasibility conditions and the third takes care 

of complementary slackness for X and 2. We solve this system of equations with 

the variant of Newton's method discussed in Chapter 2, i.e. we always symmetrize 

6X d e r  we obtain a solution (6X, 6W, 62) by solving the foilowing system of 

From the second equation, we have 



Substitnting it into the third equation, we have 

Substitnting this to the fmt equation, we obtain the fonowing normal equation 

Since in our following algorithm, we can always maintain dnal feasibility, we can 

k t  FD = O. W e  denote the linear operator G~(VZ-'WWPXP~) by A and the 

right hand side by b .  

A(-) := Ç~(VZ-~P(-)PXP) (3.5.40) 

and 

a := F~ - G . @ z - ~ F ~ ~ ) Y ~ ) ,  (3.5.41) 

where we use the dot - to represent a variable for the operator. Then the normal 

equation becomes 

A(SW) = b. (3 -5 -42) 

The size of the above problem is m = n3 - 2n2 + 1. For n = 20 and n = 

30, m = 7201 and m = 25201, respectively. Therefore, to solve snch a huge 

(and most likely dense) system of equations, a direct solver sach as the direct 

Cholesky factorization is not likely to be dcient or most probably can not even be 

implemented due to memory limitations. It is worthwhile to note that even if the 

above system of equations can be solved directly, it is very tirne consuming to create 

the explicit matrix fonn for the system. An alternative approach to solving the 

normal equations is to use an iterative solver s u c h  as the preconditioned conjugate 

gradient algorithm. The algorithm is shown below: 



The Preconditioned Conjngate Gradient Algorithm 

Given: initial solution y, a Mt-hand operator A, right-hand-side vector b and 

preconditioner Q . 

Initialization: r = b - A(y) . Repeat until stopping criteria are satisfied: 

The conjugate gradient method has been proven to be a very powerhil tool in 

Mtious interior-point methods to solve the Newton equation for large problems. In 

particular, for large sparse problems, the conjugate gradient rnethod performs very 

well due to the fact that preconditioners of high qnality can be derived eficiently by 

expioiting the sparity structure (see e-g. [CHI95]). In the conjugate gradient algo- 

r i t h ,  the most expensive part is the evaluation of the vedor d(q) , the complexity 

of which for the normd eqnation (3.5.42) is O(nS).  Thezefore, to make the interioc 

point method efiicient, for each interior point update, it is necessary to stop the 



conjugate gradient algorithm as soon as possible. One way to do so is to soloe the 

normal equation approximately i.e., truncating or stopping the conjugate gradient 

algorithm early. AS we expect, this may r e d t  in prhal infeasibility- However, 

the strict feasibility of the dual can still be maintained. As a lower boand is given 

by the dual objective value, it is not necessary to solve the problem (Relaz2) to 

optimality to generate a good lower bound. In otha words, by not aiming to solve 

the problem (Rekaz2) to optimality, we can make this interior-poÏnt method more 

eficient. The essence of this method is the so called inezact Newton method (see e.g 

PES82j). One successfal application of a similar method can be fonnd in Portugal, 

Resende et al. [PRVJ94]. See e.g. (VB95] for a similar approach for solving SDP 

problems derived fiom the control applications. 

3.5.2 The Preconditioned (Truncated) Conjugate Gradient 

Method 

Stopping criteria for the Conjugate Gradient Method 

For the conjugate gradient algonthm, a lunit on the number of iterations is set up 

depending on the compromise between accaracy and &ciency. IR our numerical 

test, the limit is Iess than the square root of the size of the above system. 

The angle 8 between d(6W) and b can be computed by 

where r is the residaal. We choose a small number o ( in our test u = 0.001). The 

stopping criterion for the conjugate gradient method is the following: 

1 - cos 8 5 u, or the number of iteration reaches the b i t .  (3.5.43) 



When (3.5.43) is satisfied, we terminate the conjngate gradient algorithm. See e.g. 

[PRVJ94] for reference for the stopping criterion. 

Preconditioner 

Lt is well known that a good and cheap preconditiona is the key factor to the 

snccess of a conjngate gradient method. A preconditioner is usually constrncted 

&om the information contained in the matrix or linear operator. Some popdar 

preconditioners, constrneted by M n o n s  techniques such as minimum spanning tree 

and incomplete Cholesky, can be obtained very eficiently fiom an erpliat matnx 

representation of the constraints. Unlilre a linear system with expliut ma& fom, 

it caa be very expensive to constract snch preconditioners for a generd linear oper- 

ator system. Fortunately, we will see fiom the following that the speual structure 

of the gangster operator makes it cheap to construct a preconditiona. 

Let EC be the explicit m x m matrix form for the linear operator system (3 -5.39) 

and let x = P x ~ ~  and 2 = $Y-'*. Then the linear operator system (3.5.39) 

becomes 

For 1 5 k, 1 5 m, let us try to calcalate &, the (k, 1 )  entry of K. Note that we 

can always order the index set J .  Let (k, kj) and (li, l j )  be the index pairs fiom 

1 corresponding to k and 1,  respectively. The lth column of K is 

Therefore, 



The above formula can be wed to constract a preconditiona in an &&nt way 

that exploits sparsity. In our numerical test, we took the diagonal of X: as the 

preconditioner. 

3.5.3 Implement ation 

In our truncated primal-infeasible dual-feasible interior-point algorithm for QAP, 

we use a stopping aiterion that differ fkom the standard primal-dud interior-point 

method for general semidefinite programming problems. We describe the stopping 

uiterïon as follows. 

Stopping Criterion for the Interior-Point Method 

Becanse of the primal infeasibility, instead of nsing the duality gap, we use the 

increasing rate of the dual objective valne, which is defined as 

where W& is the dual objective value at the iteration k. At  each iteration the dual 

objective valne gives a lower bonnd and the lower bound increases as k inaeases. 

We choose a s m d  nnmber e snch that when 

we terminate the algorithm. In other words, when the gain for increasing the 10wer 

bound is not worth the complitation expense, we stop the algorithm. Since our 

goal is to find a lower bound, this stopping aiterion is quite reasonable. In OUI 

numerical tests, we took c = 0.001. 



Flow Chart of the Primaf-infeasible Primai-dual Interior-Point Algo- 

tithm 

step 0: initial prima and dnal interior-points. They are piven by Theorem 3.5 and 

Theorem 3.6. 

x : = R ,  w : = w , z = V t ( ~ ~ f  w)P 
p := trace (ZX) /(2n) ; 

step 1. if stopping aiterion (3.5.44) is not satisîied, then compute Fp, Fzx (see 

(3.5.35)) and b (see (3.5.41)). Solve (3.5.42) by the preconditioned (hm- 

cated) conjngate gradient method with the stopping criteria (3.5.43); (see 

Subsection 3.5.1) 

step 2. compute 6X, 62 by (3.5.38) and (3.5.37) and by syrnrnetrization. Use the 

line search algorithm desaibed in Chapter 2.2 to find a, and a d  such that 

and both q, and ad are as close to one as possible. 

step 3 update X, W and Z by 

p t trace (ZX) / ( ln ) .  Goto step 1. 

3.6 Numerical Tests and Comments 

We coded the truncated primal-infeasible and daal-fmible interior-point algorithm 

in both C and Matlab. We tested our code by using some test problems from 



Q APLIB, see e.g. [BKRS 11. We present the resalts of onr namerical testing in this 

section- 

3.6.1 Goal of the Numerical Tests 

The numerical tests serve two purposes 

a compare the lower boands given by the SDP relaxation with the existing 

bounds, 

understand the performance of the trtxncated primal-infeasible dual-feasible 

interior-point approach to see how -cation affects both the lower b o ~ d  

and the CPU time. 

3.6.2 Measures of Performance 

The comparison of the SDP bonnd with the existing bounds is sammarized in Table 

3 -6.0. The lower bounds given by the ewisting bounding techniques in the literature 

for the testing problems are included for comparison. The table reada as follows. 

The fist column indicates the problem instance looked at and its size, nu- refers 

to the Nugent example of size ar For references of the problem instances we tefer 

to QAPLIB. The second to the seventh colamns give the optimal solution OPT, the 

GilmoreLawler bound GLB [GIL62, LAW631, the projection or elimination bound 

EL1 of mW92a], the bound RRD obtained by (RRD941, EVB3 from pW92], and 

bound GAN given by the SDP relaxation with gangster operator, respectively. The 

last column shows the semidefinite bound given by Karisch [KAR95]. An ka. '  

means that the valne of the bound is not available. 



u 
nugO5 

nugo6 

nugo7 

nugo8 

nugl2 

nugl5 

nug20 

mg30 

Hadl2 

Hadl4 

Hadl6 

Hadl8 

Had20 

carlOga 

carlogb 

car lOgc 

carlogd 

carloge 

OPT GLB EL1 RRD EVB3 GAN Ba 

- - - - - - - - - - 

1652 1536 1573 n-a- 1589 1640 1198 

2724 2492 2609 n.a. 2630 2709 2651 

3720 3358 3560 n-a- 3594 3678 3612 

5358 4776 5104 n-a. 5150 5286 5174 

6922 6166 6625 n.a. 6678 6847 6713 
- - 

4954 3586 4079 n.a. 4541 4847 4436 

8082 6139 7211 n-a. 7617 7941 7603 

8649 7030 7837 n-a- 8233 8546 8208 

8843 6840 8006 n-a. 8364 8658 8319 

9571 7627 8672 n.a- 8987 9327 8912 

Table 3.6.0: cornparison of Iowa bounds 



OPT FEAS IFEAS CPU(sec) CPU(sec) 

FEAS IFEAS 

Table 3.6.1: Feasible solution vs- infeasible solution 

The above numerical r e d t s  show that both rdaxation 2 and relaxation 3 give 

very good bounds, especially for problems with linear terms. Therefore, semidefinite 

relaxation approach for QAP is very promising. In Table 3.6.1, we study how 

trancation Sects  the quality of lower bound and CPU times. The column under 

OPT is for optimal objective valne. The columns Mda FEAS and IFEAS are for 

the lower bounds obtained by both feasible interior-point method and infeasible 

interior-point method, respectively. The last two columns are for the CPU times 

for b O t h feasible and infeasible interior-point met hods, respectively. 

Rom Table 3.6.1, we can see that by trnncating the conjugate gradient iter- 

ations, the infeasible interior-point approach can still give almost as good lowa 



bound as the feasible interior-point method but with mach less CPU tirne. Also, 

we observed that the trnncation happened mostly d&g the final iterations of the 

interior-point algorithm (where the increasing rate for the objective is akeady quite 

small), which indicates that trnncation is necessary. 

3.7 Future Work 

Our nitnre work will be to make our approach more escient for large scde problems. 

In addition to optimiPng our code and using some fast matrix computation packages 

such as LAPACK, we wodd Iike to apply Paalina Chin's approach (see e-g. [CHI95]) 

to solve the Newton's equation, Le. instead of solving the small but dense normal 

equation, we w i .  try to solve a larger but sparse system of equations. h this way, we 

can fdly take advantage of the sparsity and, possibly, find a better preconditioner. 



Chapter 4 

Graph Partitioning Problem 

4.1 Introduction 

The graph partitioning problem, GP, can be described as follows: 

Given: an undirected graph G = ( V ,  E )  having node V and edge E and 

a weight, a, >_ O for the edge between node i and node j . We consider 

the problem of partitioning V into k disjoint subsets VI , .  . . , Vk of given 

sizes ml,. . . , rnk  in such a way that the s a m  of weights of edges that 

connect nodes in different subsets is minimal. 

We let o, = O if there is no edge between node i and node j .  Then the 

symmetric matrir A = (aij) is the weighted adjacency matriz of the graph G. The 

matrix A can be written in the following. 



We assume that the graph has no loops, hence the diagonal elements of A are all 

zeros. The graph G is an unweàghted graph if cr, for each edge is either O or 1. 

Otherwise, the graph G is weighted graph. For a given pattition of the graph into 

k snbsets, let X = ( x i j )  be the n x k ma& (n = Lm< is the cardinality of V )  

defmed by 

1 if node i is in the j th  snbset 
2ij := 

O if node i is not in the f th  subset. 

Thus the j t h  colamn XEj is the indicator set for the j t h  subset. Such a matrix X 

can represent the partition. Let II be the set of sach matrices. An edge between 

nodes i and j is d e d  an uncut edge if both i and j are in the same subset. Then 

for each partition X E II, 

gives the total weight for the uncut edges. As a r e d t ,  the total weight for the cut 

edges is 
1 w(E,) := -(etAe - trace ( P A X ) ) .  
2 

Note that for any partition matrix X E II, we have 

trace XDiag (Ae)X = etAe. 

Therefore, the minimal weights w'(Ed) is obtained by solving the graph parti- 

tioning problem in the trace formulation 

(GPI)  
w*(E&) = min %raceXtLX 2 

snbject to X E II, 

where the matrix 

L := Diag (Ae) - A 



is cded  the Lapiacian matriz of a gmph. 

The graph partitioning problem is well known to be NP-hard and t h d o r e  find- 

ing an optimal solution is likeiy vay  diffidt .  Yet this problem has many applica- 

tions in M n o a s  areas. One important application is VLSI design; see e.g. [LENSO] 

for a garvey of fntegrated Circuit Layont. See &O [winr92] for its application to 

netlist partition. 

One popular and very snccessfd heuristic for fmding "good" partitions was pro- 

posed by Kernighan and Lin m70] in 1970. In the early 70's Donath and H o h a n  

[DH73] provided an eigenvalue-based bound. Several new eigenvaluô-based bound 

techniques were presented by Rend1 and WoIkowicz in @WS5a] and a compntational 

study showed these bounds are very good, see e-g FRW941. An SDP relaxation 

technique for eqaal-partitionhg problem, Le., the sizes of the subsets are all equal, 

has been successfdly devdoped in [KR94]. h this chapter, we are going to develop 

an SDP relaxation for the general graph partitioning problem as described above. 

4.2 An SDP Relaxation 

In order to have an SDP relaxation for (GPI), we will reformulate (GPI) as a 

quadratically constrained quadratic programming problem. Since the matrix X is 

restricted to 0-1 components, we have Xii = X', i.e., 

Also, since Xek = e,,, we have 
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for any i # j E (1, . . . , k). Therefore we can reformalate (GPI) as the following 

problem 

min 

sub je& to 

where we let = (ml, . . - , mi)'. Severai of these constraints are dearly redundant . 
Rednndant constraints can still be nonredundant in the SDP relaxation as we have 

seen in Chapter 3. An equivalent quadratic constrained qnadratic progranunhg 

problem is 

&trace Xt LX - 2 

snbject to X O X = X 

IIxek - %Il2 = 0 

IIXte, - *Il2 = O 

X, O XZj = O Và # j. 
By following the same procedure as for the quadratic assignment problem, we have 

the following SDP relaxation for GP. 

min trace LAY 

s.t. arrow (Y) = 0 

traceDIY = O 

traceD2Y = O 



where: 

the gangster operator constraint represents the (Hadamard) orthogonality of the 

colamns, Xs o XZj = O, Vi  # j ;  and, finally the nom constraints are represented 

by the constraints with The (kn + 1) x (kn + 1) matnces 

and 

Since both Di and D2 are positive semidefinite, the feasible set of the problem 

(RGP) is not strictly feasible. Hence we can not apply an interior-point method 

right away. However, one find a very simple stradured matrix in the relative interior 

of the feasible set, which we do in the next section. 

4.3 Geometry of the Feasible Set 

In this section we study the geometncal structure of the feasible set, denoted 3, 

and of the convex cone P of the SDP relaxation (RGP). As 3 is not strictly 

feasible, we need to find the minimal face of the feasible set f as in the case of 

quadratic assignment problem. It is dear that the matrices 

YX := ( ' ) (1 WC(X)'), f k  X E II, 
vec (X) 



are in 7. Moreover, since these points are raaksne matrices, we see that they are 

contained in the set of extreme points of 3. We need only to consider the minimal 

face, the intersection of faces of P which contain all of these extreme points Yx, 

for X E II. The foIlowing theorem characterizes the minimal face by finding a 

point in its relative interior, namdy the barycenter. This point has a very simple 

and degant structure. 

Theorem 4.1 Let z = vec(X). Define the barycenter point 

2. the ronk of the barycenter 

rank (Y)  = (6 - l)(n - 1) + 1; 



- 3. the rows of the matriz 

f w m  a baAp for the nul1 space of I; 

T := 

4. the columns of the matriz 

-m2 

O . .  

- m k  

f o r n  a basiii for the range space of Y ,  when 

Proof. There are n! ways to permute the nodes and there are -mi! ways to  

permute the members of each set. Therefore, there are z!~, !  possible partition 

matrices, 

Consider the (n(j - 1) + i) th c o l m  of Yx is 



The COIUIQIL is zero nnle~s 2 ,~ i - l )~  = 1. The element Z n ( j - l ) ~  conesp~nds to the 

i, j dement of the partition matnx X, Le., this element is 1 if node i is in set j. 

There (ml ..--mk-) partition matrices, X, to (GPI)  aith zn(j-,)+i = 1. Therefore 

the components of the O th row of P are given by 

a (ml! . - . mk!) (ml! - O - mk!) (n O l)!mj - m j  
Yo,n(j-i)+i7 = C l =  - -- 

n ! 
%(+l) +i=l 

n ! ( m ! . ! )  R 

NOW look at the (q - 1)n + p  el-t of zn(<-i)+j- We di~tingnish ~ O I X  

1. Assume that j = q and i = p. There are again (ml !.-.mk !) partitions to (GPI) 

with i ( p - ~ ) ~ + ~  = 1, i.e.r, this confirms the faet that the diagonal elements are 

e q d  to the elements of the 0th row. 

2. Assume that the node indices i = p while the set indices j # q. Since 

the same node cannot be in tao different sets, this implies that the diagonal 

elements of the off-diagonal blocks of the matrices Yx are all O. 

3. Assume that the node indices i # p whüe the set indices j = p. these are the 

off-diagonal elements of the diagonal blodcs. Then there are ( n ; ~ ~ ~ $ ~ ~ i )  

possible partitions. 

4. If both the node indices i # p and the set indices j # q, then these are the 

of£-diagonal elements of the offaiagonal blocks. There are ("n;?~"' possible 

partitions. 

Dividing these expressions in the four cases by we get the representation 

of I in 1. 



Now let as h d  a basis foi the range space of P. W e  partition 

where = k, thns 
n defining the 

where S = W - &ninit @ E,. As a result, ne have 

rank (Y) = 1 + rank(S). 

Direct verification shows that 

S =  
1 

(nDiag (f i) - riam') 8 (RI, - En). 
n*(n - 1) 

The n d  space of the matrix (nDiag (*) - *fit) and the n d  space of the matrix 

(nl, - En) are spanned by ek and k, respectively. Therefore, their range spaces 

are spanned by the columns of Vk and Vm, respectively. Hence, the range space of 

S is s p w d  by the columns of K Q Vn- This irnplies that tank (S) = (k - 1) (n - 1) 
This proves 2. Moreover, we have that the null space of P is of dimension k+n  - 1. 

and 

TP=o, T V = O .  

This implies that the rom of T span the null space of I and the columns of 

span the range space of 3. O 

Remark: The stmcture of the polytope of partitions has been well stadied. 

The feasible set 7 is a relaxation of the polytope obtained by lifting the partition 



matrices into the higher dimensional matrix space. Therefore the dimension of the 

minimal face and the structure of the n d  space can be studied from the hown 

resdts of the polytope of partitions. 

4.4 Final SDP Relaxation 

Rom Theorern 3.2 we condude that Y O is in the minimal faee if and only 

Y = PR+, for some R 2 O. We can now substitate Y R P  for Y in the SDP 

relaxation (RGP ) . we get the following projected SDP relaration. 

The following os& properties can be derived from the fact that TY = 0. 

Let R be an arbit~ary (n-l)(k-1)+1 x (n-l)(k-1)+1 

where & LP a scalar, Rio, for i = 1, ..., k - 1, are (n- 1) x 1 vectors und R+ 

for i , j  = 1,. . . ,rr - 1, a n  (n - 1) x (R - 1) blocks of R. Let Y = PR@ and 



partition Y as 

where Ym is a scalar, &, for i = 1,. . . , k, are n x 1 vectors and xi, fo+ i , j  = 

l,.. .,k, are n x n Llocks of Y .  Then 

Ys% = %-&, for i = 1,. . . , k 

and 

m i 6  = &Ki, for i, j = 1, .. . , k. 

k 

Cii,=dhj, foi  j=l ,  ..., k. 
i=l 

Proof. h m  the equation between Y and R, we see that Ym = & . In addition, 

since TP = O, we have 



The remaining remlts follow fiom direct vdcation.  0 

From Lemma 4.1, we condude that the arrow operator is redundant given the 

œangsta constraint hold and ( Y R Y ~ ) ~ ~  = 1. Now we win show that there are no O 

redundant constiaints left- W e  do this by showing that the nnll space of the adjoint 

operator is O .  

Theorem 4.2 Suppose that W E SJ .  Then 

ir'~J(w)t=o - çJ(w) =o .  

Proof. Let Y = ÇJ(W). Y can be written as 

where for i , j  E (1,. . ., k), are n x n matrices. We let 

Z=(K@V,) '  

Ykl - - Ykk 

Then Z = O .  Note that 

v, . O 

K @ K =  
O ..* 
-vn ... -K 

Therefore if we write the above ma& Z as 

zl1 ... &k-1 

Zk-11 - Zk-lk-1 



then we have, for i, j E (1,. . . , n - l), 

Note that Yu = xi = O for i = 1,. . . k-1. W e  have cY*V, = O for i = 1,. . . k-1. 

Thesdote, 

ZG = P(xj )V = O, 

for i, j E {l, . . . , k - 1). Since Ki can be either a diagond matrix or a zero matrix, 

we can write 

2, = [; 1:: ' 1 +-*,,-. = o .  
. . O  =la-1 

Thus we have Kj = O for i ,  j E (1,. . . , k - 1). Therefore, 

Therefore, by eliminating the redundant constraints we can get a vay  simple 

projected SDP relaxation. We let 9 = J LJ (O, O). 



Its dual problem is 

max -Ww 

(RELAXD) S-t- P ( L ~  + w)P 2 0 

w E sJ- 
Note that the gangster operator is se l f  adjoint and ÇJ(S) = SJ.  The fonowing 

theorem gives a very interesthg property of a feasible solution of the projected 

SDP relaxation. 

Theorem 4.3 Let R be a feasible solution of (RELAXP) . Then the n x k matriz 

Mat ((diag M PR^')) satrpjes 

Mat ((diag ( ~ R P ) ) ~ . ~ ) ~  = e, 

and 
- Mat ((diag ( V R P ) ) ~ ~ ) ' ~  = m. 

Proof. Let Y = PRP. Then from Lemma 4.1 and Ç J ( Y )  = Eoo, ae have 

= diag (Y) and &O = 1. The rest of the proof follows immediately fkom part 

a) of Lemma 4.1. 0 

Rom the above theorem, we can see that the h a 1  SDP relaxation can not only 

give a lower bound for the GP, but it also yields a n x k mat& which may be used 

to derive a good feasible solution for the GP. 

Before we solve the b a l  SDP relaxation, ne would like to give interior points 

for both the prima1 feasible set and the dnal fmibIe set. 

Theorem 4.4 The ( ( k  - l ) (n  - 1)  + 1) x ((k - 1)(n - 1) + 1) mat* 



is a strictly feasible point of the feasible set for (RELAXP),  where 

Proof. Note that R is positive definite since both nDiag (*c-i) - +E&z~-, 

and nIn-l - are positive definite. 

The rest of the proof foUows fkom showi~g that 

where I is the barycenter. W e  see that 

where it is straightforward to check that 



Theorem 4.5 The matriz 

is a strictly feasible point for the dual problern (RECAXD), if  M is a suficiently 

large scdur. 

Note that 

Le = (Diag (Ae) - A)e = Ae - Ae = 0. 

W e  have for the fkst part 

Since the ma& 4-1 + E É - ~  is positive definite and matrix cLVn is positive 

semidefinite, their Kronecker product (It-l + 8 ( C L V , )  is positive semidef- 

inite, i.e., matrix ~ L ~ Y  is positive semidefinite. Now for the second part, note 



that etV = O and we have 

Since both matrix Ic-i + Ek-l  and matrix + are positive definite, we can 

see that when M is large enongh matru P W ~  is positive definite. This completes 

the proof. O 

4.5 Numerical Tests 

Since the final SDP relaxation is sudar to the QAP, we use the same techniques 

as in the chapter for QAP to solve it. Af'ter solving the h a 1  SDP relaxation, we 

ob tain not only a lower bonnd for the graph partitioning problem but a solution R 

for the SDP relaxation. By reshaping the diagonal of Y R P ,  we can get a n x k 

matrix X which satisfies all the feasible constraints except the 0-1 constraint for the 

original graph partitioning problem. By solving a network subproblem with X as its 

adjacent matsix, we can find a feasible solution for the graph partitioning problem, 

which gives an upper bound. With this feasible solution as an initial solution, 

we use Adaptive Simulated Annealing technique (or VFSR) (See e.g [INGSS]) to 

generate a better upper boand. To meamre how dose our upper bound is to the 

optimal objective value, we use the measure 

apperbound - lowerbound 
relative gap := 

lowerbound 



Our numerical r e d t s  are based on random unweighted and weighted graphs. 

We indude two instances for each case. First, eight unweighted graphs were ran- 

domly generated. Each edge was generated independent of other edges with prob- 

ability 0.5. These graphs have vertices of 36,60,84 and 108, respectively. The 

number of subset K are 2,3  and 4. The size for each partition is randomly gen- 

erated. Next, another eight weighted graphs were randody generated. Each edge 

was generated independent of the 0th- edges. The weights are integer nnmbers 

between O and 10. Again these graphs have vertices of 36,60,84 and 108, respec- 

tively. The number of subsets k are 2,3 and 4. The size for each partition is 

randomly generated. In the tables, the colnmn under LB is the lower bound, the 

column under INIT is the initial npper bomd and the colamn under BEST is the 

uppa bound generated by the VFSR The last colomn under GAP is for the gap. 

From the table for weighted graphs, we observe that the gaps are less than 0.05. 

However, for unweighted graph the gaps are mostly between 0.05 and 0.10. The 

initial upper bounds derived fkom the SDP solution are very good as we can see 

that the upper bound can hardly be improved by VFSR. The resdts significantly 

improve those in FRW94] and are comparable to the r e d t s  in [KAR95, KR941 

which are restricted to the equipartition case. 

4.6 Conclusion 

In this chapter, using the same approach as in the QAP chapter, we derive an SDP 

relaxation for the general graph partitionhg problem. This relaxation is almost 

the same as the one for QAP. Numerical tests show that this relaxation can give a 

good lower bound, in particular for weighted graphs. Therefore, this SDP relaxation 

approach for the general graph partition problem is very promising. As ne  can see, 



1 1 BEST N T  LB 

Table 4.5.2: Bisection for Unweighted Graphs 

Table 4.5 -3: %partition for Unweighted Graphs 

a36 

b36 

a60 

BEST M T  LB 

122 122 111 

103 108 97 

321 332 297 

GAP 

0.099 

0.062 

0.081 



1 BEST IMT LB 1 GAP 1 

Table 4.5 -4: &partition for Unweight ed Graphs 

1 BEST INIT LB 1 GAP 

Table 4.5.5 : bi-partition for weighted Graphs 



- - -- - - - 

Table 4.5.6: 3-partition for weighted Graphs 

wa36 

Table 4.5.7: 4partition for weighted Graphs 

BEST INIT LB 

1336 1336 1302 

wa36 

GAP 

0.026 

BEST INIT LB 

1912 1931 1853 

GAP 

0.032 



the dual problem of our SDP relaxation is very sparse. Our htme work will be 

focused on solving the large sparse problems. W e  have succesddly extended to 

GP the theoretical results and algorithm for the QAP as the SDP relaxations for 

both QAP and GP are similar. We expect any large scale implementation of oar 

algonthm to apply equally well to both problems. 



Chapter 5 

Set Partitioning Problems 

5.1 Introduction 

The set partitionhg problem, SP, can be described as follows. 

Suppose we are given a set M with m elements; and let 

M ={Mj : j  E N:= {1 ..., n}) 

be a given collection of subsets of M such that the Mion contains M 

Le., UjENMj = M. For each Mil there is an associated  COS^ ci. W e  

want to find a subset F of the index set N snch that: 

1. the union still contains M, UjEFMj = M; 

2. the sets are pairarise disjoint, Mk f î  Mi = 4, for k # j E F; 

3. and the s u m  of the costs Ci,, is minimized. 



Let A = (ej) be the m x n ma* with 

The matrù A is cded the inndmce matriz of the coilection M ; each column of A 

is the indicator vector for the set Mi. Each &set F c N, for which the collection 

of sets { M i Y i  E F) satisfies 1 and 2, is cailed a set partition of the set M. For a 

given set partition, ne let z E {O, 1)" defined by 

Such an z can represent the set partition. 

The set partitioning problem can now be formdated as the following 0-1 integer 

programming problem 

p* := min ce z 

( S m  subjed to Az = e 

z E {O, 1)". 

Without loss generality, we assume that A ha9 fidl row rank. For each i E 

{Ir2 , - - - ,m) ,  we let 

The ith row of the constraints, az = 1, parantees that the ith element is in 

exactly one set. 

The set partitioning problem h a  been extensively investigated because of its 

special structure and its nnmerons practical applications. The best knomn appiica- 

tion is airline crew scheduling, see e.g. the recent retetence [HP93]. Other applica- 

tions indude: truck scheduling; bus schedaling; f d t y  location; circuit design and 



capital investment. (See e.g Garfinkel and Nemhauser [GN69], Marsten @UR74], 

Balas and Padberg pP76], Baki [BAL77], Nemhauser and Weber [Nw79], Fisher 

and Kedia pK901 Chan and Yano [GY921 and HofEinan and Padberg [HP92].) 

Since the set partitioning problem is wd-known to be NP-bard, many murent 

approaches focas on hding a optimal" solution using various hearistic tech- 

niques. A natural candidate fm genaating a lower bound is the bear programming 

relaxation. The hear programming relaxation is as follows 

p i p  := min 8s 

(SPLP) subject to Az = e 

z 2 O* 

To improve the approximate solution for (SPT), one can use cutting planes andfor 

branch-and-boand techniques in conjnnction with various bonnd improvement tech- 

niques. (See chu and Beasley [CB95] for a literature s w e y  on exact and heuristic 

algonthms for SP.) We indude the folIowing related papers in the bibEography 

[AFST69, BFSI, BH90, GER89, HT94, RF881. 

In this chapta, we develop an SDP relaxation for the set partitioning problem. 

In our approach, in addition to taking cate of all the linear progranunhg relaxation 

constraints, we employ the 'gangster ~perator" to eficiently model the special 0-1 

structure of (SPT). By this SDP approach we can generate a better lower bound 

for the set partitioning problem. Li addition, we combine the SDP relaration wîth 

the standard LP relaxation and take advantage of block structures in the data. 

5.2 An SDP Relaxation 

To derive an SDP relaxation for SP, ne reformulate the 0-1 integer programming 

model (SPT) as a quadratically constrained quadratic programmiag problem. 



Since the variables zi are restacted to 0-1, ne have zi = zf , i.e. 

In addition, since ~z = 1 for each i E {l, . . . , m),  we have 

Therefore (SPT) is equivalent to the following. 

pf = min t ( z  0 z) 

subject to A(z O 2) = e 

( a ~ z - l ) ~ = O ,  for &{1,2, . . . ,m) 

- ( z o x )  -z = O  

z k y  = O ,  if k # j ,  = 1, a, = 1 forsome i. 

By adding a scalar 20, n e  can eliminate the hear terms (homogenize) in the 

existing constraints of the above problem. 

p* = min ct(z O x) 

subject to A(z O z)  = e 

(-1, ai)(s, z ~ ) ~ ( z O ,  zt)(-1, = 0 

for i {1,2, . . . ,m} 

We now replace the quadratic tenus with a matrix, i.e., ne replace the tank one 

matru (zo, zt)'(zo, zt) by the positive semidehite matrix Y 2 O with Y E 



We get the following SDP relaxation. 

(PSDP) 

min traceCY 

mbject to trace (Diag (O, %)Y) = 1, i = 1,. . . , rn 
(-1, %)Y(-1,~)'  = O, i = 1,. . . , m 
anoa(Y) = O  

G J ( ~ )  = 0 

Yoo = 1 

y >: O, 

where C = Diag (O, L) and the operator GJ is a gangster operator with 

J : = { ( k , j )  : i f ~ = a , = I  k <  jforsomei}; 

the arrow constraint represents the 0-1 constraints by gaaranteeing that the di- 

agonal and 0th colnmn (or row) are identid; the gangster operator constraint 

tepresents constraints in (5.2.47); and, hally, the assignment constraints Ax = e 

are represented by the first two set of constraints in (PSDP). 

Define the rn x (n + 1) assi'ment constraint matriz 

T := [-e, A]. 

Each feasible Y satisfis Y 2 O and 

Therefore the range space and n d  space sati* 

Now let the null space of T be spamed by the c01nmns of a (n + 1) x (n - m + 1) 
matrk V, i-e., let 

N(T) = 'R(V). 



This implies that Y = V X V  for some X = X 2 O ,  Le., we are able to q r e s s  each 

feasible Y as V X V .  In order to solve large s a l e  problems, a sparse representation 

of the n d  space of T is as&. W e  use a simple technique, called Wolfe's u a d b l e -  

reduction tecihnique pOL62] .  (For a "sparsestn representation, see e.g. [CPSG] .) 

Without loss generality, we assume that 

Then, the matrix 

v =  

satides N(T) = R(V) . 

We now take a look at the folloaring interesthg properties of the ma* VXVt . 

Lemma 5.1 For any arbitrury (n - m + 1) x (n - m + 1) symmetric matriz 

let Y = VXVf and unite Y as 



= Ym, for i = 1,. .. ,m; 

Y o j = ~ Y l e ,  for i = l ,  ..., m, j=l ,  ..., n. 

Proof. Since 

TY = T V X V  = O, 

we have, (-1,e)Y = 0, for each 1 5 i 5 m. 

This shows that the first two sets of constraints in (PSDP) are redondant. Before 

we write our final SDP relaxation, we present another lemma which helps get rid 

of more redundant constraints. 

Lemma 5.2 Cet Y = VXVt . Then 

Proof. Suppose Y = V X V  and GJ(Y) = O. Let j E {l, 2,. . . ,n), then there 

exists i E {1,2,. . . ,m) such that 

By Lemma 5.1, we have 

This implies that 



Rom the definition of the gangster operator, we have 

T her dore 

Now replachg Y by V X V  in (PSDP) and getting nd of the redundant con- 

straints, we have the following final SDP relaxation for SP. Let J = J U (O, O ) .  

PISDP := min trace VtCVX 

(PSDPF) subject to Ç J ( V X v )  = EOO 

x 2 0, 

where X E F,-,+i, C = Diag (O, 2). The dual is 

Note that the gangster operator is self adjoint and &(S) = Sj .  

Rom Lemma 5.1 and Lemma 5.2, we can immediately dexive the following. 

Theorem 5.1 Let X be any feasible solution of (PSDPF). Then (diag (VXv))l, 

(the last n diagonal element of the mat* VXVt) ,  is a feasible solution of the linear 

progrurnming nlazotion (SPLP). 

Proof. Let X be afeasible solution of(PSDPF) and Y = VXVt .  Then 

Ç j ( y )  = EOO and 

%j 2 O, for i E {1, ..., n). 



Rom Lemma 5.1 and Lemma 5.2, we have Ya = diag (Y) and Ym = 1, and thns 

for each i E {1, -. . ,m),  

Based on the theorem above and the fact that the objective value of the SDP 

relaxation is (O, C )diag ( V X V )  , the following corollary follows . 

Coroilary 5.1 The lower bound given by the SDP relazation (PSDPF) LP greater 

than or equal to the one given by the LP rekuation, Le.  pgm 2 p i p .  

In addition, we now see that there is no dnality gap between (PSDPF) and (DS- 

DPF). 

Theorem 5.2 Problem (DSDPF) i s  strictly feasible. 

Proof. fiomLemma5.2,wehave,foranyX, 

Ther efor e 

N(Gj(V V ) )  c N(arrow (V V)) .  

(where the dot represents the variables for the operators.) In other word, their 

adjoint operators satisfy 

Thdore,  for y = -e E Sl", there exists W E Sj such that 

VARow (y)V = v w v  



and, by nsing Schur complements, we see that 

for M big enongh. Therefore P(-MEao + W) is stnctly feasible for large enough 

P -  D 

Rom Theorem 5.2, we know that the dual problem satisfies the Slater condi- 

tion. Therefore, there is no duality gap between the prima1 problem (PSDPF) and 

the dual problem (DSDPF) and, moreover, the primal optimal value is attained. 

However, the primal problem (PSDPF) may not be stnctiy feasible. Consider the 

same example problem as in Chapta 3.3 

Observe that the feasible set is a singleton (1,0,0, O)'. Note that for this problem 

n = 4 and nt = 2, so V is a 5 x 3 matrix. Thas, for any feasible solution of its 

final SDP relaxation X E Pa, the diagonal of V X V t  is (1,1,0,0, O)t. This means 

that rank ( V X V t )  5 2 ,  which implies that r a d  (X) 5 2. Therefore, the h d  SDP 

relaxation is not strictly feasible. 

5.3 Numerical Testing for Small Problems 

Since the fina SDP relaxation is exactly the same as the one for QAP, we use the 

same technique as in the chapter for QAP to solve it, i.e., we use the same infeasible 

primal-dud interior-point algorithm as for QAP. As we have seen fiom the geomet- 

t-ical discussion above, the dgorithm may have to deal with those problems whose 



prima1 SDP relaxation are not strictly feasible and whose dual SDP relaxation cm 

not attain their optimal due .  As the main p q o s e  of our algorithm is to find a 

lower bound, we expect that our infeasible primaLdual interior-point algorithm can 

handle those problems due to the fonowing reason. 

0 Because the dual problem is strictly feasible and only has ineqnality con- 

straints, the h e  search can e d y  maintain dual feasibility. Thedore, a 

lower bound c m  always be obtained fiom the dual objective value. 

The purpose of our numerical tests is to ilInstrate that the lower bonnd given 

by our algorithm for the SDP relaxation is better than the one given by LP relax- 

ation. In addition, aRer solving the relaxation, The diagonal of V X V  satisfies the 

constraints of the linear programming relaxation. 

Our numerical tests for smaU problems are based on real data for bus schedaling 

problems. The results are summariz;ed in Table 5.3.8. The colamns under nrow, 

ne01 and nzero are for the number of rows, c o h s  and nonzero elements, respec- 

tively. The last two columns show the lower bounds by LP and SDP relaxations, 

respectively- A Iowa bounds marked with a star means that the Iowa bound is 

equal to the optimal objective value. As we can see, numerical results show that 

onr SDP approach is very promising. 



nrow ncol nzero LP SDP 

Table 5.3.8: Numerical Results 

5.4 SDP Relaxation for Large Sparse 

and Future Work 

Problems 

5.4.1 An SDP Relaxation with Block Structure 

As we see fiom the introduction, the set partitioning problems are usaally derived 

from real world problems such as scheduling problems. These problems can be of 

very large size (> 10,000) and very sparse. 

Cmentdy, an approlcimate solution for a large size set partitioning problem can 

be obtained by solving a correspondhg large sparse hear  programming relaxation 

and the information fiom the primal and dual optimal solutions are used to decide 

which colamas, or sets Mi, should be chosen for the partition. Since the diagonal 

of an SDP solution is a feasible solution of the LP relzixation, we expect that this 

solution can help in maüng the choices. On the other hand, it is hard to solve 



an SDP problem of size e.g. over 10,000. In order to make SDP relaxation more 

cornpetitive with LP to solve the large spârse problem, we have to h d  a way to 

exploit the sparsity of the set partitioning problem. ln this section, we relax part 

of the variables of the set partïtioning problem by SDP while we treat the others 

with an LP relaxation. 

Consider a large sparse set partitioning problem 

p- = min ctx 

( L W  subject to Az = e 

x E (O, 1)". 

By permnting the rows and colnmns of A, we can rewrite A as in the following 

whae for each i E {l, . . . , k), Fi is a mi x matrLc and Gi is a r n ~  x n< matrix 

and H is a r n ~  x n~ ma&, and 

The sparsity pattern of the ma& A is illustrated in Figure 5.1. 

Corresponding to each submatrix Fi, for i E (1, . . . , k) , we define 

and 



Figure 5.1: Sparsity Pattern of MahVr A 

such that 

and 

such that 

For each i E (1, -. . , k), ne  write 



Similarly, for each i E {l, . . . , k), n e  can write 

New for cadi i E {l, . . . , k), we d e h e  an index set for a gangsta operator. 

~ + ~ i j ' = l ~ ~  
( p , q ) :  p < qfor some j 

@' = Gp = 1  

W e  rewrite ((CSP) as 

An equivalent quadratically constrained quadratic programming formulation can 

then be expressed as follows 



By addhg, for each i E {l, . . . , k}, a scdar x&, we homogenize the above problem 

as follows 

pœ = min cLl & ; z ~ ~  0 z~~ + g N z ~  0 ZN 

subject to FixBi 0 XB; = k-, 
t t o  (-1, &')(z&;, zBi) ( z B i ,  =Li)(-1, F/)~ = 0 ,  

for j E { l ,  2,. . , mi), 

z& 0 2gi - Z&X& = 0, 

( x i i ) *  = 1, 

& i ~ &  = O ,  for any pair @,q) E Ji, 

for i { l , .  . . ,k} 

In the above quadratically constrained quadratic programming, we replace the rank- 

one matru (z;,, z b i J t ( z $ ,  xi,) by the ma* B for each i E (1, . . . , k) , and also 

X N X ~  by YN. Then we obtain an SDP relaxation as follows 

where K E pw+i for E (1,. . , k) and YN E PnHb Since the coefficient matrices 

for YN are all diagonal, we can always write YN = Diag (z) , where z E R n ~ ,  r 2.0. 



For each i E {l, . . . , k} , we define an operator J& : Pqci -t R*G sach that 

Then we have the folloaing eqnivalent problem. 

P ~ D P  = min zl &(diag (X))-))l, + 
sub ject to Fi(diag (K))t, = hi, 

(-1, @)K(-1, Jf)* = O, for J- € {1,2,. . . ,m}, 
arrow (B) = 0, 

(a), = 1, 

GJ~(K) = 0, 

for i E {l, - -. , k) 
EL, A ( K )  + Hz = e, 

YBi 0,-..,YBI 2 0 , ~  2 0 .  

For each i E Cl,. . . , k), we constrnct a (ni + 1) x (w - mi + 1) matrix mch 

that the n d  space of [-hi, Fi] is spanned by the colnmns of K. We follow the 

same procedure as that in the above section, i.e., for i E (1, . . . , k), we replace Yi by 

X X i v  and get rid of the redundant constraints. We denote Ci := Diag (O, c'Bi). 

Note that c',,(diag (K))i, = trace-(Diag (0, c & ) x ) .  Then we have the following 

final SDP relaxation. 

( L P S D P F )  

KSDP ' min C$ trace vCiKXi + &Z 

subject to c-, CL.(KXiV) + H z  = h, 

Ç&(Xi) = EL, for i € {1, ..., k} 
x1 ?O,.. *,Xk?O, 2 2 0 ,  

where, for i E {l,. . . ,k), Xr E Pw-,,+l and the operator GA is a gangster 



operator with 

Observe that in the final SDP relaxation (LPSDP F) there are semidefinite matrix 

variables and nonnegative vector variables as well. Thas, we call the final SDP 

relaxation a mked LP-SDP relaxation. 

Its dual is 

( L D S D P F )  

where for i E (1,. . . , k), Wi and are dual variables. 

For each feasible solution (XI, . . . , XI, z) of ( L P S D P F )  , we construct an n x 1 

vect or 

where y; = (diag (xXiv))l:w, for i = 1, . . . , k. Applying the Theorem 5.1 to each 

block, we have Fiyi = G~ for i = 1,. . . , k. Also note that CL, Gis + H z  = k,. 

Therefore, we have the foJlowing resdts. 

Theorem 5.3 Let (Xi,. . . , XL, z) be any feasi61e solution of (LPSDPF)  . Then 



the vector 

Based on the above theorem and the fact that Ci, for i = 1,. . . , k, are all 

diagonal matrices, the followi~g corollary follows. 

Corollary 5.2 Tite lover kund given by the SLIP relaxation (LPSD P F) is great 

that or equal to the one giuen by the LP relazation ( S P  L P )  , i-e., pisop 2 p i p  . 

5 A.2 An Infeasible Primal-Dual Interior-Point Met hod 

We rewrite the dnal (LDSDPF)  b y  introducing a slads matrix 2. for each i E 

(1, . . . , k) and a sladc vector z .  

( L D S D P Z )  



The Karush-Kuhn-Tucker conditions of the dual log-b& problem are 

Ar(Kxie) + H z  hG = J ' " = o  
Ç& (WGV) - @,& = Fkl = O, 

for i~ {l,-..,Q 

P X + z - c  = p . , = ( )  

v(Diag(O,XGi)+Wi-Ci)&+& = Fh = 0, 

for i ~ { l , . - - , k }  

z o z - p u  = F & = O  

&Xi - PI = & = O ,  

for i E {l,. . . , k}- 
The first t a o  equations are primal feasibilïty conditions, while the third aad foarth 

are the dud feasibility conditions and the kst hro takes cares of complimentary 

slahess for Xi and Zi and x and z, respectively. We solve this system of equa- 

tions with a variant of Newton's method. We apply operators A- and Çz to 

nonsymmetric matrices and then we linearize the above system as follows. 

cLi d&Xiv) + H62 = -pi 

G.& ( W x i q )  = -Fi1 

for i~ { l , . - - , k }  

F6X + 82 = 9% 

T(Diag(0,dPGi) +sW;))K+6Zi = -FA 

for i E { l , - - . ,k}  

6 z o z + r o J z  = -Fix 

6 2 '  + Z i a  = -p' ZX 

for i € {1, - :. ,&}* 

Rom the third and fourth equations, we have, for i E 11,. . . , k), 

Mi = OF', - q(Diag (O, AtGi) + 6Wi))& 



and 

62 = -Fg - PbX. (5 -4.52) 

Substitnting (5.4.51) and (5.4.52) into the last h o  equations, respectivdy, we have 

and 

Substitnting (5.4.53) and (5.4.54) into the kst h o  equations, ne have the following 

final normal equation. 

for i E {l, . . ., k}, 
where 

Denote the matrix representation of the left hand side of the normal equation by 

K. The matrix K: has a very nice sparsity stnictare shown in Figure 5.2, where the 

width of the long narrow bar is r n ~  which is mach less than the size of the matrix. 

We solve the normal equation by a preconditioned conjagate gradient method. 

Let (6W:, . . . , Mc, 6A') be the solution for the normal equation. B y equations 

(5.4.51), (5.4.52), (5.4.53) and (5.4.54), we can obtain, for each i E (1, . . . , k) , 
JZ;, 6zr, tf&' and dzi, respectively. Finally, by symmetrizing JX,', Le., 



Figure 5.2: Sparsity Pattern 

we obtain a search direction. We then do a Iine search and update the m e n t  

point. Based on the duality gap, we update p by asing the following f o d a  

5.4.3 Preliminary Numerical Tests and Future Work 

In the previous subsections, we have developed an approach for solving problems 

with matrix structure (5.4.48). We did some preliminary numerical tests jnst to 

see how this SDP relaxation works for s m d  problems. In our testing, we use 

the diagonal of the matrix representation K as the preconditioner. The infeasible 

primal-dual interior-point algorithm for the rnixed LP-SDP relaxation is coded in 

C and Matlab. The results are suxunarized in Table 5.4.9. In Table 5.4.9, the 

columns under mow, ncol and nzero are for the nnmber of rows, colwnns and 



- 

nrow ncol nzero LP SDP LP-SDP 

Table 5-4.9: Numericd Results 

nonzero elements, respectively. The colnmns under LP and SDP show the lower 

bounds given by LP relaration and SDP relaxation for a g e n d  dense problem, 

respectively, while the last column under LP-SDP shows the lower bounds given by 

our mixed LP-SDP relaxation, 

For our fatare work, we would like to use the mired LP-SDP relaxation to derive 

an approach to solve general large sparse set partitioning problems. To achieve this, 

we propose the following: 

to have the same mat& sparsity pattern as described for the mùred LP-SDP 

relaxation, the mahix for the general problem need to be transformed into 

form like (5.4.48). This can be done by treating the 0-1 matrix A as an 

incidence matrix of a graph or netlist and applying graph partitioning and 

neth t partitioning techniques; 

because of the nice sparsity structure as shown in Figare 5.1, more sophis- 

ticated incornplete factorization preconditioners can be used to improve the 

performance of primal-dual interior-point solvers, see e.g. [CHI95]. 

We would like to point out another hture work. For a more general block 



structure 

we should be able to develop an SDP relaxation as ad. But this might involve a 

to tdy  different approach since projection may not be easily applied. 



Chapter 6 

Summary and Discussion 

In this thesis, ne have developed a anined semidefinite programming relaxation 

approach to solve three different applications: quadratic agsignment problëm, p p h  

partitioning problem and set partitioning problem. Numerical tests have shown 

that the bounds given by our SDP relaxations are of high quality for these three 

applications. This again demonstrates that semidehite programming is really a 

very p o w d  tool for solving hard combinatorid optimization problems. 

We feel that our contributions are not ody in dexiving better bounds for the 

applications using SDP but more interestingly, the SDP approach itself. Through 

the three different applications, we have illustrated oar SDP approach for a general 

problem with a structure of assignment constraints. We sammarize the SDP a p  

proach for a genaal problem with the special assignment strnctnre in the foUowing. 

derive a gangster operator based on the assignment constraints; 

0 derive some other operators, such as the arrow opaator, based on the 0th- 

special structure of the problem; 



O generate a relative interior point for the minimal face containing all rank one 

feasible matrix solutions and then derive a projection m a t e  ikom the range 

space of this relative interior point; 

derive the final SDP relaxation by appIying the projection matrix and by 

getting rid of the redandant constraints. 

Finally we wonld like to point out that with the gangster opaator, we can represent 

a combinatorial structure by a matrix sparsity structure and therefixe be able to 

appiy a lot of sparse matrir techniques to solve a large problem. 
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