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Abstract 

The global aquaculture industry is a multibillion dollar business that is threatened by pathogens, 

including a wide array of aquatic viruses.  Currently there are no antiviral treatments available 

to combat viral outbreaks, and as such viral infection can cause vast economic loss.  Two 

important species for aquaculture include rainbow trout (Oncorhynchus mykiss), destined for 

human consumption, and fathead minnow (Pimephales promelas), a common species grown for 

bait purposes.  Double-stranded (ds)RNA is a potent immunomodulating molecule produced 

during viral replication; dsRNA treatment induces a robust antiviral state that makes host cells 

refractive to viral replication.  This thesis explored dsRNA-induced innate antiviral pathways 

from two angles.  Firstly, the differences in dsRNA-induced responses between virally-produced 

dsRNA, synthesized dsRNA with natural sequence variation, and synthesized dsRNA with a 

homogenous sequence were analyzed in rainbow trout cells.  The dsRNA, regardless of source, 

was sensed at the cell surface by a common receptor in rainbow trout cells and induced an innate 

immune response and antiviral state against two aquatic viruses, viral hemorrhagic septicemia 

virus and infectious pancreatic necrosis virus; the virally-produced and lab-synthesized dsRNA 

molecules with natural sequence variation produced the most similar responses. The second 

angle of approach was to better understand the host’s response to exogenous dsRNA treatment. 

To this end, novel dsRNA sensors were identified and characterized in rainbow trout. This 

included class A scavenger receptors, the purported surface receptors for dsRNA, including 

MARCO, SCARA3, SCARA4, and SCARA5, as well as two novel cytoplasmic dsRNA sensors 

from the DExH/D-box family, DDX3 and DHX9.  The receptors found in rainbow trout 

contained the same conserved domains that are found in their mammalian counterparts, a first 

indication of conserved functionality.  Two MARCO variants were identified and found to bind 
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to two gram-negative and one gram–positive bacteria, but surprisingly not to dsRNA.  Rainbow 

trout DDX3 and DHX9 are both functional in their ability to bind to dsRNA.  The culmination 

of these findings was the development of a dsRNA molecule with sequence variation that can 

act as a potent antiviral therapy in vitro in fathead minnow cells. The findings from this thesis 

demonstrate the importance of ‘natural’ dsRNA as an innate immune signalling molecule and its 

potential to function as a prophylactic antiviral therapeutic for fish.   
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 Chapter 1: General introduction 

Double-stranded (ds)RNA is a potent inducer of antiviral immune responses.  Long 

(>30bp) dsRNA is not found in healthy cells, but is produced by viruses during their replication 

cycle; dsRNA has been identified from viruses of every genome type (Jacobs and Langland, 

1996; Lee et al., 1994; viral dsRNA reviewed by DeWitte-Orr and Mossman, 2010).  While 

dsRNA is able to modulate the adaptive immune response, the focus of this thesis is on its effects 

within innate immunity (Desmet and Ishii, 2012). DsRNA is sensed by host sensors on the cell 

surface, in the cytoplasm, and in the endosome, leading to the production of type I interferons 

(IFNs), Fig. 1.1 (IFNs; DeWitte-Orr and Mossman, 2010).  IFNs are secreted cytokines that 

signal through their cognate receptor in an autocrine and paracrine fashion, activating a signalling 

cascade that culminates in the expression of a large subset of genes known as IFN-stimulated 

genes (ISGs; Poynter and DeWitte-Orr, 2016; Crosse et al., 2018).  The protein products from 

these genes can be involved in the dsRNA-signalling pathway, or can directly limit viral infection 

by interacting with viral components or host machinery necessary for replication (Poynter and 

DeWitte-Orr, 2016; Crosse et al., 2018).  This pathway is very effective and efficient; low 

concentrations of dsRNA are able to produce robust and broad spectrum antiviral states (Jacobs 

and Langland, 1996; Poynter and DeWitte-Orr, 2015).  Our long-term goal is to utilize this 

pathway to produce more efficacious viral vaccine adjuvants and antiviral treatments for 

aquaculture purposes.  The following sections provide details regarding the steps in this pathway, 

the current state of knowledge in fish, and the importance of the aquaculture industry and the 

threat of pathogen outbreaks.  
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Figure 1.1. dsRNA-mediated signaling pathways, involving type I IFNs, ISGs and the 
antiviral state.  (A) When a virus infects a host cell dsRNA is produced during replication; this 
dsRNA will initially be found in the cellular compartment where viral replication is occurring.  
This dsRNA can be recognized by cytoplasmic sensors, such as the DExD/H-box helicase 
DHX9, which signals through an adaptor protein such as interferon-β promoter stimulator 1 (IPS-
1) to produce type I interferon (IFN).  IFNs are secreted cytokines that can bind to their cognate 
receptor, the interferon-α/β receptor (IFNAR), in an autocrine or paracrine fashion, triggering a 
signaling cascade that results in the production of IFN-stimulated genes (ISGs). Intracellular 
dsRNA can be released into the extracellular milieu the cytoplasm by cell lysis where it is bound 
by class A scavenger receptors (SR-A) on the surface of neighbouring cells and internalized 
through endocytosis. From the endosome dsRNA can be sensed by endosomal sensors or escape 
the endosome into the cytoplasm.  Endosomal sensors such as toll-like receptor 3 (TLR3) and 
cytoplasmic sensors, such as DHX9, bind dsRNA and induce IFNs and ISGs, establishing an 
antiviral state within the cells. (B) Intracellular dsRNA is sensed in the cytoplasm (ex. DHX9) 
or the endosome (ex. TLR3), which recruits adapter proteins IPS-1 and TIR domain-containing 
adapter molecule 1 (TICAM-1) respectively. These adaptor proteins stimulate activation of 
kinases TANK-binding kinase 1 (TBK1)/inhibitor of nuclear factor kappa-B kinase subunit 
epsilon (IKKε), which phosphorylate interferon regulatory factor (IRF)3 and IRF7. IRF3 and 
IRF7 homo- or hetero-dimerize and translocate to the nucleus, where they bind to the IFN 
promoter region, along with activator protein 1 (AP-1) and nuclear factor kappa-B (NF-kB), 
inducing IFN transcription. (C) IFN is produced via the secretory protein synthesis pathway of 
the cell, and released in the extracellular space, where it binds to its cognate receptor, IFNAR. 
Binding to IFNAR triggers a signaling cascade that results in the phosphorylation and 
dimerization of signal transducer and activator of transcription (STAT1) and STAT2, IRF9 is 
recruited to for a complex which translocates to the nucleus and binds to the interferon-sensitive 
response element (ISRE) of ISGs, stimulating their expression within the cell. The accumulation 
of ISGs within the cell establishes an antiviral state. 
 
1.1 Pathogen-associated molecular patterns 

Innate immunity is centered around the ability for the host to distinguish self from non-

self.  Pathogen-associated molecular patterns (PAMPs) are proteins, nucleic acids, and other 

molecules that are produced by pathogens and associated with an infection. PAMPs are either 

exclusively produced by microbes or have a distinguishing feature that separates them from host 

molecules, such as cellular location or nucleotide modifications (Brubaker et al., 2015). 

Examples of bacterial PAMPs are lipopolysaccharides (LPS), unmethylated CpG DNA, or 

peptidoglycan (Akira and Hemmi, 2003).  Fungi produce PAMPs such as zymosan, β-glucan, or 

chitin (Taghavi et al., 2017; van de Veerdonk et al., 2008).  Viral PAMPs tend to be nucleic acids 

but also include some proteins; examples include endosomal DNA, long dsRNA, endosomal 
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single-stranded (ss)RNA, or certain viral membrane proteins (Desmet and Ishii, 2012; Compton 

et al., 2003).   

The viral PAMP dsRNA is the focus of the present thesis.  DsRNA consists of two 

antiparallel RNA strands with Watson-Crick base pairing that form a right-handed double helix; 

this helix is A-form and underwound compared to a B-helix (Nicholson, 1996; Tang and Draper, 

1994).  The minor groove of dsRNA has free 2’-hydroxyl groups that facilitate interactions with 

binding partners (Nicholson, 1996; Bevilacqua et al., 1996).  DsRNA can be identified using 

differential digestion; under high salt conditions dsRNA is not degraded by ribonuclease (RNase) 

A, B, or TI, and dsRNA, not ssRNA, is susceptible to degradation by RNase III (DeWitte-Orr 

and Mossman, 2010).  There are three commercially available monoclonal antibodies available 

from Scicons that bind specifically to long (>40bp) dsRNA; these antibodies can be used for 

enzyme-linked immunosorbent assays (ELISAs), immunoblots, and immunofluorescence to 

identify dsRNA (Schönborn et al., 1991; Doherty et al., 2016).  Appendix A of this thesis 

provides a detailed protocol for four methods of identifying viral dsRNA, both antibody-

dependent and -independent.  

The mechanism by which dsRNA is produced depends on the genome of the virus and 

replication strategy.  DsRNA viruses produce dsRNA as their genome, and while this nucleic 

acid is contained within the capsid to prevent detection, there is evidence small amounts of 

genome are improperly encapsidated and can be found outside the capsid (Lloyd and Shatkin, 

1992).  Viruses with ssRNA genomes make dsRNA as replicative intermediates during the 

replication of their genomic RNA (Kumar and Carmichael, 1998).  DsRNA associated with DNA 

virus replication has been observed with several viruses (Jacquemont and Roizman, 1975).  

Converging bidirectional transcription can produce overlapping regions within RNA transcripts 
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that anneal to produce dsRNA; alternatively RNA polymerase III has been shown to transcribe 

cytoplasmic DNA into dsRNA that can trigger the type I IFN response (Kumar and Carmichael, 

1998; Chiu et al., 2009).   

DsRNA receptors are able to recognize dsRNA based on the unique helical structure of 

dsRNA, the length of dsRNA, the presence of 5’ triphosphate groups, and differences in 

nucleoside modifications (Kariko and Weissman, 2007, Myong et al., 2009; Okahira et al., 2005; 

Kato et al., 2008).  The main feature explored in this thesis is length. Host dsRNA molecules, 

such as short interfering (si)RNAs or micro (mi)RNAs, are short molecules (<30bp), viruses 

produce much longer molecules during replication (endogenous dsRNA reviewed by DeWitte-

Orr and Mossman, 2010).  The majority of dsRNA sensors are able to bind shorter dsRNA 

molecules, however dimerization is needed for activation and this requires a greater length; 

longer and more abundant dsRNA molecules induce a more robust response from receptor 

clustering (Heinicke et al., 2009; Kato et al., 2008; Peisley and Hur, 2013).  The most common 

form of dsRNA used in research to date is polyinosinic: polycytidylic acid (poly I:C); while an 

IFN-inducing molecule, poly I:C does not have natural sequence variation and has a different 

structure than molecules with sequence variation (Okahira et al., 2005; Löseke et al., 2006).  Poly 

I:C has limited biological relevancy as it is not a naturally produced molecule.  The focus of this 

thesis is to transition to the use of more biologically relevant dsRNA molecules that have natural 

sequence variation and nucleotides. In the 1960s poly I:C was a prospective candidate as a broad 

antiviral drug, however due to the high-potency of poly I:C in mammalian cells, there were 

adverse physiological effects; attempts to decrease the potency of poly I:C have had some 

success, however these therapies are still in development (DeWitte-Orr and Mossman, 2010).   
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1.2 dsRNA signalling pathways: adaptor molecules, kinases and transcription factors  

The recognition of dsRNA by a cognate pattern-recognition receptor (PRR) initiates a 

signalling pathway within the cell that culminates in the production of type I IFN, Fig. 1.1A 

(Sparrer and Gack, 2015).  Many steps of the dsRNA sensing pathway have been elucidated in 

fish, however as different fish species show variability in immune pathways, further research is 

needed to understand species-specific differences.  The downstream pathway to IFN induction 

can be separated into adaptor proteins, kinases, and transcription factor activation.  

1.2.1 Adaptor proteins 

Adaptor proteins function as linkage partners, matching the dsRNA-sensors to a specific 

signaling pathway. For example, toll-like receptor (TLR)3 recruits the adaptor molecule toll-

interleukin-1 receptor (TIR)-containing adapter molecule 1 (TICAM-1; also known as TRIF) 

and the RIG-I-like receptors (RLRs) and non-RLR DExD/H-box helicases recruit interferon-β 

promoter stimulator 1 (IPS-1; also known as MAVS, CARDIF, or VISA; Yoneyama et al., 2015; 

Kawai and Akira, 2008; Zhang et al., 2011; Oshiumi et al., 2010A). Interestingly, the dsRNA 

surface receptors class A scavenger receptors (SR-As) do not seem to have substantial signalling 

capabilities themselves, and likely function as dsRNA carriers, bringing dsRNA into the cell to 

endosomal sensors such as TLR3 (Nellimarla et al., 2015; Dansako et al., 2013).   These two 

adaptors have been identified in multiple fish species; and these proteins, like their mammalian 

homologs, interact with dsRNA receptors (Matsuo et al., 2008; Zou et al., 2015).  In mammals 

IPS-1 interacts with RLRs through caspase recruitment domains (CARDs) found on both the 

receptors and IPS-1; IPS-1 is found on the mitochondria and associates with receptors at the 

mitochondria upon receptor-ligand binding (Belgnaoui et al., 2011).  IPS-1 in fish also has 

CARDs and forms aggregates on the mitochondria after viral infection; there is evidence that 

IPS-1 in fish is involved in RLR signalling (Xiao et al., 2017; Zhang et al., 2014B; Huang et al., 
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2018).  In zebrafish (Danio rerio), co-immunoprecipitation assays have demonstrated 

interactions between IPS-1 and the RLRs (Zou et al., 2014B; Zou et al., 2015).  

1.2.2 Kinases and transcription factors 

IPS-1 and TICAM-1 activate the kinases TANK-binding kinase 1 (TBK1)/inhibitor of 

nuclear factor kappa-B kinase subunit epsilon (IKKε); these kinases phosphorylate transcription 

factors, including interferon regulatory factor (IRF)3 and IRF7; IRF3 and IRF7 homo- or hetero-

dimerize and translocate to the nucleus to bind to the IFN-promoter, Fig. 1.1B (Reikine et al., 

2014; Levy et al., 2011).  Nuclear factor kappa-B (NFκB) and activator protein (AP)-1 are two 

additional transcription factors activated by dsRNA receptor-binding that together with IRF3/7 

bind to the IFN promoter region and cause the production of IFN (Levy et al., 2011).  In fish, 

both kinases have been cloned and have kinase domains; their role in the IFN pathway is less 

well understand but there is evidence they have a similar function to mammalian counterparts 

(Li et al., 2015; Hu et al., 2018A, Hu et al., 2018B). For example, zebrafish TBK1 overexpression 

increased levels of phosphorylated IRF3, whereas inactivate isoforms did not (Hu et al., 2018B).  

The exact role of these kinases in the teleost dsRNA-mediated immune pathway still requires 

further elucidation. The transcription factors IRF3 and IRF7 have been cloned and functionally 

characterized in fish.  IRF3 and IRF7 are sufficient to activate fish IFN gene promoters; as is 

seen in mammals, these proteins are localized to the cytoplasm and upon stimulation with poly 

I:C or infection with virus they translocate to the nucleus and activate the IFN promoter (Cui et 

al., 2011; Holland et al., 2009; Sun et al., 2010; Chen et al., 2017). 

1.3 Type I interferon, its receptor and signaling  

1.3.1 Type I interferon 

 In mammals, viral infection or dsRNA stimulation leads to the production of IFN-α and 

IFN-β, both type I IFNs (Pestka et al., 2004).  IFN-α and IFN-β are differentially expressed after 
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viral infection and these differences depend on the species, cell-type, and nature of the viral 

infection (Pestka et al., 2004).  IFN is secreted from the cells and binds to the interferon-α/β 

receptor (IFNAR)1/2. This binding activates tyrosine kinase 2 (TYK2) and Janus kinase 1 

(JAK1), these kinases phosphorylate signal transducer and activator of transcription (STAT)1 

and STAT2.  STAT1 and STAT2 homo- or hetero-dimerize and bind to phosphorylated IRF9 to 

form the interferon-stimulated gene factor 3 (ISGF3) complex, which translocates to the nucleus 

and upregulates ISGs through binding to the interferon-sensitive response element (ISRE) 

sequences in the promoter region of these genes, Fig. 1.1C (Au-Yeung et al., 2013). 

Accumulation of ISGs within the cell establishes an ‘antiviral state’, a state in which a cell is 

refractory to virus replication (Poynter and DeWitte-Orr, 2016).  

 Many type I IFNs have been identified in a variety of fish species; indeed, IFNs in fish 

have a greater diversity than IFNs than mammals.  Twenty-two full-length type I IFN genes have 

been identified in rainbow trout (Oncorhynchus mykiss) (Zou et al., 2014A).  Fish type I IFN are 

sub-grouped into groups a-f and are classified as group I or group II, if they possess two or four 

cysteine residues respectively (Zou et al., 2014A).  The subgroups a and b are not reflective of 

mammalian IFN-α and IFN-β, however there is some evidence based on expression profiles that 

group I IFNs may be similar to IFN-β and group II may be more similar to IFN-α (Zou et al., 

2014A). Fish type I IFNs are highly upregulated in response to viral infection and stimulation 

with dsRNA of different sources (Zou et al., 2007; Poynter and DeWitte-Orr, 2015; Svingerud 

et al., 2012; Jensen and Robertsen, 2002; Milne et al., 2018). 

 The JAK/STAT pathway in fish also shows similar features to mammals and many of the 

components of this pathway have been identified in fish (Oates et al., 1999; Skjesol et al., 2010).  

STAT1 from zebrafish was able to rescue the phenotype of a STAT1 deficient human cells; 
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suggesting the fish protein has similar function to the mammalian homolog (Oates et al., 1999).  

Atlantic salmon (Salmo salar) STAT1 is phosphorylated and moves into the nucleus upon IFN1a 

stimulation (Skjesol et al., 2010).  IRF9 and STAT2 from crucian carp (Carassius carassius) 

were shown to activate an ISRE-containing promoter (Shi et al., 2012). 

1.3.2 Type I interferon receptor(s) 

 There is only one known type I IFN receptor in mammals, composed of subunits IFNAR1 

and IFNAR2, this is not the case in fish.  Studies in zebrafish and the mandarin fish (Siniperca 

chuatsi) have identified three subunits of the IFN receptor, the cytokine receptor family B 

(CRFB)5, CRFB1, and CRFB2 (Laghari et al., 2018; Aggad et al., 2009; Levraud et al., 2007).  

CRFB5 is homologous to IFNAR1 and CRFB1/CRFB2 are homologous to IFNAR2 (Laghari et 

al., 2018).  These three subunits form different complexes that preferentially bind different IFNs, 

for example in the mandarin fish IFNc preferentially binds CRFB2/CRFB5 and IFNd binds to 

CRFB1/CRFB5 (Laghari et al., 2018).   

1.3.3 Interferon-stimulated genes 

IFN stimulation in fish and mammals results in the production of a wide array of different 

genes, collectively termed IFN-stimulated genes (ISGs). These ISGs work together to block virus 

propagation at every step of the replication cycle. A detailed review of fish ISGs was published 

by Poynter and DeWitte-Orr in 2016, and is included in Appendix B of this thesis.  In general 

fish possess a similar variety of ISGs to that of mammals, including sensors (ex. protein kinase 

R; PKR), signaling molecules (ex. IRF3 and IRF7) and antiviral effectors (ex. myxoma resistant 

gene-1 (Mx1) and ISG15; Holland et al., 2008; Poynter and DeWitte-Orr, 2016; Liu et al., 2011). 

In this thesis, the regulation of four ISGs has been explored: viperin/viral hemorrhagic septicemia 

virus (VHSV)-induced gene (vig)-1, ISG15/vig-3, ISG56/vig-4, and Mx1.    
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Viperin (also known as vig-1) is a well-characterized ISG with multiple antiviral 

mechanisms in mammals; these include interfering with viral budding through inhibition of 

specific enzymes, and inhibiting viral genome replication through binding to viral proteins 

required for replication and assembly (Chin and Cresswell, 2001; Helbig et al., 2011; Wang et 

al., 2007). Fish express an ISG with a high sequence similarity to human and murine viperin; 

however, its mechanism of action in fish is not well understood (Boudinot et al., 1999).  The 

antiviral effects of viperin in both fish cells and whole animals have been shown; for example 

overexpression of viperin resulted in an antiviral state in crucian carp cells against grass carp 

hemorrhagic virus and in rock bream (Oplegnathus fasciatus) fish against megalocytivirus 

(Wang et al., 2014; Zhang et al., 2014A).  

ISG15 (also known as vig-3) is a small protein with many roles in mammalian immunity; 

it is a ubiquitin-like protein that covalently binds to its target protein in a process known as 

ISGylation (O'Farrell et al., 2002; Schneider et al., 2014). Current evidence suggests that ISG15's 

antiviral activity may be non-specific, as it conjugates to both host and viral proteins, thus its 

mechanism for preferentially targeting viral proteins might be its ability to conjugate newly 

synthesized proteins of which there would be many in a virus infected cell (Durfee et al., 2010). 

Interestingly, ISGylation has been found to have both stabilizing and destabilizing effects on its 

target proteins, but it is not clear how this is accomplished (Durfee et al., 2010; Lu et al., 2006; 

Schneider et al., 2014).  Fish ISG15 conjugates to viral proteins within infected cells, however 

the effect of this ISGylation is not understood (Langevin et al., 2013; Røkenes et al., 2007). 

Zebrafish ISG15 was found to conjugate to the P and NV proteins of infectious hematopoietic 

necrosis virus (Langevin et al., 2013). ISG15 in fish shows broad antiviral activity against many 

fish viruses, as seen with overexpression of orange-spotted grouper (Epinephelus coioides) 
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ISG15 in grouper spleen cells inhibiting grouper nervous necrosis virus and after knockdown of 

ISG15 by RNAi led to an increase in megalocytivirus viral load in tongue sole (Cynoglossus 

semilaevis) head kidney lymphocytes (Huang et al., 2013; Wang et al., 2012).  

Mammalian ISG56 (also known as the IFN-induced protein with tetratricopeptide repeats 

(IFIT)-1) is a member of the IFIT family of proteins (Zhou et al., 2013). ISG56 in mammals has 

demonstrated antiviral properties; however, its mechanism is not thoroughly elucidated and 

appears complex. One antiviral mechanism of ISG56 is interference with viral transcription 

through binding to eukaryotic initiation factor (eIF)3 or binding/sequestering viral 5`PPP-RNA 

or non-2`-O methylated viral RNA (Zhou et al., 2013; Diamond, 2014). Fish also express 

members of the IFIT family, including ISG56 (O'Farrell et al., 2002). As in mammals, fish ISG56 

proteins contain tetratricopeptide repeat domains and transcription is upregulated in response to 

viral infection (Long and Sun, 2014; O'Farrell et al., 2002; Zhou et al., 2013). While fish ISG56 

has been shown to have antiviral effects, its mechanism of action is poorly understood. 

Overexpression of ISG56 in tongue sole limited megalocytivirus replication and knockdown of 

ISG56 enhanced replication (Long and Sun, 2014).  

Mx proteins are dynamin-like guanosine triphosphate (GTP)ases with antiviral activity. 

In mammals, Mx1 induces a broad antiviral state by forming oligomers around viral 

nucleocapsids, ultimately targeting them for degradation (Schneider et al., 2014). Fish Mx is also 

interferon inducible and exhibits broad antiviral activity (Alvarez-Torres et al., 2013; Holland et 

al., 2008).  As with mammals, fish Mx proteins have different mechanisms of action. In grouper 

Mx was shown to limit grouper nervous necrosis virus replication through direct interactions, 

specifically it was seen that the coat protein of the virus binds to the effector domain of Mx (Chen 

et al., 2008). In barramundi (Lates calcarifer) it was found that increased Mx expression led to 



 
12 

a decrease in nervous necrosis virus RNA-dependent RNA polymerase (RdRp) activity; Mx co-

localized and co-precipitated with viral RdRp indicating a direct interaction (Wu et al., 2010).  

1.4 Pattern-recognition receptors 

PAMPs are recognized by their cognate receptors known as pattern-recognition receptors 

(PRRs).  dsRNA-specific PRRs belong to a wide variety of different receptor families, including 

toll-like receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), non-RLR 

DExH/D-box (DHX or DDX) helicases, class A scavenger receptors (SR-As), and ISG receptors 

(PKR and oligoadenylate synthetase (OAS)) (Olive, 2012; Brubaker et al., 2015).  TLR3 is the 

only known endosomal sensor of dsRNA in mammals; TLR3 is also found in fish and recently 

a novel role for TLR19 as an endosomal dsRNA receptor in fish has been identified (Matsuo et 

al., 2008; Ji et al., 2018; Kawai and Akira, 2008).  The RIG-I-like (RLR) family of sensors (RIG-

I and melanoma differentiation-associated protein 5 (MDA5)) are cytoplasmic, and both have 

been identified in fish species, with MDA5 expression found in a wider range of fish species 

compared to RIG-I, as RIG-I is not present in Acanthopterygii or rainbow trout (Yoneyama et 

al., 2015; Chen et al., 2017). OAS and PKR are cytoplasmic proteins that act as sensors for 

dsRNA and also as direct effector proteins, limiting virus replication at the transcription and 

translation level of protein production respectively; PKR is found in teleost fish, however OAS 

has not yet been identified (Hovanessian and Justesen, 2007; Garcia et al., 2007; Robertsen, 

2006). There are a number of review papers discussing these sensors in mammals (Kawai and 

Akira, 2010; Thompson et al., 2011; Ranjan et al., 2009) and fish (Poynter et al., 2015A; Chen 

et al., 2017; Rebl et al., 2010; Zou et al., 2010). However, the focus of the present thesis is the 

role of SR-As and non-RLR DExH/D-box helicases as dsRNA sensors in rainbow trout, and as 

such, they will be the focus below.   
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1.4.1 Class A scavenger receptors (SR-As) 

The SR-A family are surface expressed sensors that consists of five members, SR-AI/II, 

macrophage receptor with collagenous structure (MARCO), class A scavenger receptor 

(SCARA) member 3 (SCARA3), member 4 (SCARA4), and member 5 (SCARA5). SR-As all 

contain conserved features including a cytoplasmic domain, a transmembrane region, an α-

helical domain, a collagenous domain, and a variable terminal domain that may end at the 

collagenous domain, as is seen in SCARA3, or a scavenger-receptor cysteine rich (SRCR) 

domain as is the case for MARCO, SR-AI/II, and SCARA5, or for SCARA4 a C-type lectin 

domain (Zani et al., 2015).  SR-As were first discovered in macrophages, where they play 

important roles in recognizing chemically modified low-density lipoproteins (LDLs), converting 

macrophages to lipid-laden foam cells in atherosclerotic lesions (Gough and Gordon, 2000). SR-

As can also bind to proteoglycans of the extracellular matrix and apoptotic cells, facilitating a 

macrophage’s role as a phagocyte, removing debris from the body (Plüddemann et al., 2007; 

Santiago-Garcia et al., 2003).   

More recently, SR-A expression has been identified in cells other than macrophages and 

their role in innate immunity has begun to be understood (DeWitte-Orr et al., 2010). SR-As are 

able to bind gram-negative and -positive bacteria as well as bacterial components including LPS 

and lipoteichoic acid (Dunne et al., 1994; Peiser et al., 2000). SR-As can act as co-receptors for 

other receptors to mediate the pro-inflammatory response to bacterial ligands (Bowdish et al., 

2009).  Of particular interest to this project, SR-As play a role in virus-host interactions. Viruses 

such as vaccinia virus and herpes simplex virus type 1 use SR-As as surface receptors for cell 

entry (MacLeod et al., 2015; MacLeod et al., 2013). SR-As also play a role in innate immunity 

by sensing extracellular viral dsRNA (Limmon et al., 2008).   
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In mammals, dsRNA is recognized and internalized by SR-As, as was demonstrated by 

use of SR-A specific ligands, anti-SR-A antibodies, and SR-A knockout mice, all of which 

decreased the host response to dsRNA treatment (Limmon et al., 2008; DeWitte-Orr et al., 2010).  

The exact SR-As that are dsRNA-receptors has not yet been elucidate, compensatory effects of 

some SR-As have been identified, as the most dramatic inhibition of the dsRNA response was 

seen when multiple candidate SR-As were knocked down together (DeWitte-Orr et al., 2010).  

SR-As do not appear to be signalling receptors, instead they deliver ligands, such as dsRNA, to 

other receptors with signalling capabilities, such as TLR3 (Dansako et al., 2013; Nellimarla et 

al., 2015).  SR-AI in mammals has been the best studied member for a role in dsRNA-mediated 

responses. SR-AI binds to dsRNA through the conserved collagenous domain and knockdown 

of SRAI hinders cells ability to take up poly I:C; teleost fish do not have a homolog to SR-AI 

(Dansako et al., 2013). The study of individual SR-As is complicated by several factors; 

functional full-length receptors are membrane bound and trimeric; in overexpression studies the 

proteins often appear to accumulate within the endoplasmic reticulum, failing to reach the 

membrane, thus are non-functional (unpublished data).  Producing soluble recombinant protein 

is made complicated by the trimeric and membrane-bound nature of SR-As; however removal 

of the transmembrane domain does allow for production of soluble protein and this method has 

been a promising route to study SR-A ligand binding (Sankala et al., 2002).  

SR-A sequences have been cloned in several fish species, and these receptors bind to 

gram-negative and –positive bacteria and modified LDLs (He et al., 2014; Feng et al., 2016; 

Zhang et al., 2018; Poynter et al., 2017).  A study in rainbow trout gut cells found that poly I:C 

binding was blocked by pre-treatment with SR-A specific ligands and poly I:C blocked the 
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binding of acetylated LDL, a classic SR-A ligand (Poynter et al., 2015B).  While a role for SR-

As has been elucidated, it remains unknown which receptors bind dsRNA in fish species.   

1.4.2 Non-RLR DExH/D-box helicases 

The DExH/D-box helicases are a family of proteins that contain several conserved motifs, 

one of which being a DExH/D motif, DEIH (DHX) or DEAD (DDX) (Shih and Lee, 2014).  

While they are called RNA helicases, many also have DNA unwinding functions (Shih and Lee, 

2014). Indeed, DExH/D-box helicases play a number of important roles in both cellular 

homeostasis and antiviral immunity as both sensors of nucleic acids, and as signalling molecules 

or even transcription factors (Shih and Lee, 2014).  Very little is known about these receptors 

and their role in viral infection in fish. 

DHX9 (also known as nuclear DNA helicase II or RNA helicase A) is a nucleotide 

triphosphate (NTP)-dependent RNA and DNA helicase.  DHX9 is primarily a nuclear protein, 

however it can shuttle to the cytoplasm (Zhang et al., 1999).  DHX9 plays an essential role in 

embryonic development, DNA replication, genomic stability, and in both transcriptional and 

translational control through miRNA processing and mRNA processing and transport (reviewed 

in Lee and Pelletier, 2016; Lee et al., 2014; Lee et al., 1998). DHX9 is a dsRNA sensor that 

interacts with IPS-1 for IFN signalling; knockdown of DHX9 hinders the ability of mammalian 

cells to produce an IFN response to poly I:C, influenza A or reovirus (Zhang et al., 2011). 

Minimal research has explored teleost DHX9, with the exception of identification in channel 

catfish (Ictalurus punctatus; Tian et al., 2017) and goldfish (Carassius auratus; Silva de Assis 

et al., 2013).       

DDX3 is primarily a RNA helicase, with DNA helicase abilities, and is a gene regulator 

through transcription, splicing, export, and translational initiation (Ariumi et al., 2014; Lai et al., 

2008; Garbelli et al., 2011; Soto-Rifo and Ohlmann, 2013).  DDX3 has been found to be a 
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component of cytoplasmic stress granules, this is hypothesized to be due to its ability to interact 

with other RNA-binding proteins, as opposed to interacting with stress granule factors; stress 

granules can provide antiviral protection against some viruses such as influenza A (Soto-Rifo 

and Ohlamnn, 2013; Raman et al., 2016).   DDX3 also plays a role in IFN-β production; there 

are several potential mechanisms by which this occurs.  A direct interaction of DDX3 and 

TBK1/IKKε has been identified (Soulat et al., 2008; Schröder et al., 2008).  After bacterial 

infection DDX3 was recruited to the IFN-promoter, suggesting it may be directly affecting 

transcription (Soulat et al., 2008).  DDX3 also binds viral RNA and interacts with the adaptor 

protein IPS-1 to upregulate IFN production (Oshiumi et al., 2010A).  New studies are beginning 

to elucidate a role for these helicases in fish immunity. DDX3 from fathead minnow (Pimephales 

promelas) binds the non-virion proteins of two fish novirhabdoviruses (Biacchesi et al., 2017).  

DDX3 expression in grouper (Epinephelus coioides) cells upregulated IFN and ISGs, and 

overexpression protected against viral infection (Liu et al., 2017).    

Both DHX9 and DDX3 are proteins that are hijacked by several viruses to promote 

replication; albeit by many different mechanisms.  DDX3 is an interacting partner with the 

hepatitis C virus core protein, this interaction is not required for replication of viral RNA but 

instead hinders a DDX3-mediated immune response by preventing the interaction between 

DDX3 and IPS-1 (Angus et al., 2010; Oshiumi et al., 2010B).  A similar strategy is also utilized 

by vaccinia virus and hepatitis B virus; these viruses interfere with the interaction between DDX3 

and TBK1/IKKε (Wang and Ryu, 2010; Schröder et al., 2008).   DDX3 is required for Japanese 

encephalitis virus infection; DDX3 directly interacts with viral proteins and viral RNA, 

positively affecting viral RNA translation (Li et al., 2014). DDX3 interacts with human 

immunodeficiency virus (HIV)-1 replication in several ways, including facilitating reverse 
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transcription, mRNA transcription, transport, and packaging of viral RNA (Ariumi et al., 2014).  

DHX9 promotes infectivity of a broad range of viruses, including HIV-1, influenza A, and 

myxoma virus (reviewed in Lee and Pelletier, 2016).  DHX9 interacts with HIV-1 genomic RNA 

in a structure-dependent manner to support infectivity (Boeras et al., 2016).  DHX9 interacts 

with viral proteins form influenza A and myxoma virus to promote viral replication (Lin et al., 

2011; Rhaman et al., 2013).  It is currently unknown whether any aquatic viruses utilize DDX3 

or DHX9 to promote their replication or infectivity.       

1.5 Aquaculture  

 Aquaculture is an important industry for its contributions to the economy and to human 

food consumption. According to the Food and Agriculture Organization of the United Nations 

(FAO), total aquaculture of finfish in 2014 was 49.8 million tons worth $99.2 billion USD; in 

2014, 146.3 million tonnes out of 167.2 million tonnes of aquaculture production was used for 

human consumption (FAO, 2016).  In Canadian aquaculture, trout production accounted for 9607 

tonnes of fish worth 14 million CAD in 2016 (Fisheries and Oceans Canada, 2016).  A major 

source of loss for the aquaculture industry is infectious disease, approximately fifty percent of 

production loss, almost six billion dollars, is attributed to diseases (Assefa and Abunna, 2018).  

At Canadian latitudes the estimated loss of fish stocks due to disease is 34% (Leong and Bates, 

2013).  Viral outbreaks in fish aquaculture can cause high levels or mortality, for example viral 

hemohorrhagic septicemia outbreaks can cause mortality rates up to 90% (Benmansour et al., 

1997).  

  
1.6 Thesis objectives 

The aim of this thesis was to better understand viral dsRNA and its role in inducing innate 

antiviral immune responses in fish, with the goal of demonstrating its viability as an antiviral 
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therapy.  The hypothesis for this thesis was that dsRNA will be sensed and activate innate 

antiviral pathways in fish cells similar to those in mammals; in particular dsRNA with natural 

sequence variation will be an effective antiviral therapy in fish. The main objectives of this thesis 

were to: 

i) Determine whether in vitro transcribed dsRNA is a reasonable surrogate for viral dsRNA with       

         respect to antiviral induction capabilities. 

ii) Identify and clone putative surface and cytoplasmic dsRNA receptors in rainbow trout cells.          

         These included class A scavenger receptors and DExH/D-box helicases, DDX3 and DHX9. 

iii) Demonstrate in vitro transcribed dsRNA’s ability to protect fish cells in vitro from         

economically and ecologically relevant fish viruses.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
19 

Chapter 2: Understanding viral dsRNA-mediated innate immune responses at the 
cellular level using a rainbow trout model 

Sarah J. Poynter1 and Stephanie J. DeWitte-Orr2 
 

1.  University of Waterloo, Department of Biology, Waterloo, Canada 
2. Wilfrid Laurier University, Department of Health Sciences, Waterloo, Canada  
 
 
Frontiers in Immunology, 9, article 829. 2018.  
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
20 

2.1 Overview 

Viruses across genome types produce long dsRNA molecules during replication (viral (v-) 

dsRNA).  DsRNA is a potent signaling molecule and inducer of type I interferon (IFN), leading 

to the production of interferon-stimulated genes (ISGs), and a protective antiviral state within 

the cell. Research on dsRNA-induced immune responses has relied heavily on a commercially 

available, and biologically irrelevant dsRNA, polyinosinic:polycytidylic acid (poly I:C).  

Alternatively, dsRNA can be produced by in vitro transcription, (ivt-) dsRNA, with a defined 

sequence and length. We hypothesized that ivt-dsRNA, containing legitimate viral sequence and 

length, would be a more appropriate proxy for v-dsRNA, compared to poly I:C. This is the first 

study to investigate the effects of v-dsRNA on the innate antiviral response and to compare v-

dsRNA to ivt-dsRNA induced responses in fish cells, specifically rainbow trout. Previously, 

class A scavenger receptors (SR-As) were found to be surface receptors for poly I:C in rainbow 

trout cells. In the current study, ivt-dsRNA binding was blocked by poly I:C and v-dsRNA, as 

well as SR-A competitive ligands, suggesting all three dsRNA molecules are recognised by SR-

As.  Downstream innate antiviral effects were determined by measuring IFN and ISG transcript 

levels using qRT-PCR and antiviral assays. Similar to what has been shown previously with ivt-

dsRNA, v-dsRNA was able to induce IFN and ISG transcript production between 3h and 24h, 

and its effects were length dependent (ie. longer v-dsRNA produced a stronger response). 

Interestingly, when v-dsRNA and ivt-dsRNA were length and sequence matched both molecules 

induced statistically similar IFN and ISG transcript levels, which resulted in similar antiviral 

states against two aquatic viruses.  To pursue sequence effects further, three ivt-dsRNA 

molecules of the same length but different sequences (including host and viral sequences) were 

tested for their ability to induce IFN/ISG transcripts and an antiviral state. All three induced 

responses similarly. This study is the first of its kind to look at the effects v-dsRNA in fish cells 
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as well as to compare ivt-dsRNA to v-dsRNA, and suggests that ivt-dsRNA may be a good 

surrogate for v-dsRNA in the study of dsRNA-induced responses and potential future antiviral 

therapies.          
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2.2 Introduction 

 Long dsRNA molecules (>30bp) are immunomodulatory nucleic acids that can induce 

interferon and an antiviral state across vertebrate species (DeWitte-Orr et al., 2010; Secombes 

and Zou, 2017). DsRNA is an important pathogen-associated molecule pattern (PAMP) 

produced by viruses; as demonstrated by the sheer number and diversity of receptors in the 

cytoplasm, endosome, and surface used by host cells to detect dsRNA (Desmet and Ishii, 2012).  

In vertebrates, dsRNA is a potent inducer of the type I interferon (IFN) response, which produces 

a broad-spectrum antiviral state. Viral dsRNA is sensed in the cytoplasm by a wide range of 

receptors, such as Retinoic acid-inducible gene-I (RIG-I), RNA helicase A/DHX9, and 

Melanoma Differentiation-Associated protein 5 (MDA5), Toll-like receptor 3 (TLR3) in the 

endosome, and class A scavenger receptors (SR-As) on the cell’s surface (Desmet and Ishii, 

2012; DeWitte-Orr et al., 2010; Zhang et al., 2011).   

 When dsRNA is sensed in a cell it triggers a signaling cascade through various adaptor 

proteins, such as interferon-β promoter stimulator 1 (IPS-1) or TIR-domain-containing adaptor-

inducing interferon-β (TRIF, also known as TICAM-1), activating transcription factors, such as 

interferon-regulator factor (IRF)3/7, and causing the production of IFN.  IFNs are secreted from 

the cell and signal in an autocrine and paracrine fashion via their cognate receptor, interferon-

α/β receptor (IFNAR), to initiate the Janus kinase (JAK) and Signal Transducer and Activator of 

Transcription (STAT) signaling pathway resulting in the expression of a group of genes 

containing an interferon-sensitive response element (ISRE) known cumulatively as IFN-

stimulated genes (ISGs; Ivashkiv and Donlin, 2014; Poynter and DeWitte-Orr, 2016).  In rainbow 

trout (Oncorhynchus mykiss), there is an incredibly large repertoire of type I IFNs, as many as 

22 members have been identified. Type I IFNs in fish have an intricate naming system, teleost 

type I IFNs are subdivided into group 1 or group 2 based on the number of cysteine residues and 
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further into subgroups (a-f) based on phylogenetic analysis (Zou et al., 2014).  These naming 

systems have no relation to the alpha or beta system used in mammals (Zou et al., 2014).  IFN1 

is a type I IFN, belonging to group I and subgroup a (Zou et al., 2014) and is used in the present 

study as a representative transcript indicative of type I IFN expression.   

 IFNs in fish stimulate expression of a panel of ISGs including molecules from the IFN 

signaling pathway such as IRF3/7 and antiviral effectors that limit viral infection, including 

myxovirus resistance gene -1 (Mx1), viral hemorrhagic septicemia virus (VHSV)-induced gene 

(vig)-1, vig-3, and vig-4 (Holland et al., 2008; Poynter and DeWitte-Orr, 2016, O’Farrell et al., 

2002).  Vig-4 is a VHSV – induced gene; the deduced protein contains tetratricopeptide repeat 

motifs and shows similarities to the ISG56/IFIT1 family of ISGs (O’Farrell et al., 2002; 

Robertsen et al., 2008). The present study chose vig-4 as a representative transcript indicative of 

ISG expression because it has been used as a representative ISG in previous studies (Saito et al., 

2007; Scagnolari et al., 2012; Virtue et al., 2011; Goubau et al., 2014) and is up-regulated more 

strongly than other ISGs, such as Mx1 (Poynter and DeWitte-Orr, 2015). The dsRNA-induced 

accumulation of ISG proteins produces a protective antiviral state in rainbow trout cells against 

a variety of viruses (Poynter and DeWitte-Orr, 2015; Saint-Jean and Pérez-Prieto, 2006).   

 DsRNA sensed by a host cell in a natural system would be produced by viral infection, 

described here as v-dsRNA.  As viruses replicate, dsRNA is produced as a by-product of 

replication, a genomic fragment, or transcribed from DNA by host proteins (Ablasser et al., 2009, 

Weber et al., 2006; Majde et al., 1991; Loo et al., 2008).  The potent immune stimulatory nature 

of dsRNA makes it a candidate molecule for antiviral therapies and vaccine adjuvants, as well 

as for use in type I IFN studies.  Unfortunately, v-dsRNA is difficult to collect from viruses in 

quantities useful for experimental scenarios and likely impossible for industrial applications. In 
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the late sixties a synthetic form of dsRNA, polyinosinic:polycytidylic acid (poly I:C), was 

identified as a potent IFN-inducer and was considered a “viral mimic” (DeWitte-Orr and 

Mossman, 2010; Richmond and Hamilton, 1969; Schafer and Lockart, 1970).  Poly I:C is clearly 

different from dsRNA produced by a virus; poly I:C lacks sequence variation and natural 

structures, contains a range of lengths and one strand contains exclusively a modified inosine 

nucleotide (Löseke et al., 2006).  Owing to these differences, poly I:C is not sensed the same nor 

does it induce responses exactly the same as in vitro transcribed (ivt-) dsRNA (Kato et al., 2006; 

Löseke et al., 2006, Jiang et al., 2011; DeWitte-Orr et al., 2009).  In plasmacytoid dendritic cells 

only ivt-dsRNA was able to stimulate IFN-α production, poly I:C did not (Löseke et al., 2006). 

In rainbow trout cells, ivt-dsRNA induced a faster, stronger IFN1 and IFN2 response compared 

to poly I:C even when poly I:C was of much longer lengths (Poynter and DeWitte-Orr, 2015). 

Additionally, in mice, poly I:C is recognized by MDA5 whereas ivt-dsRNA and v-dsRNA 

activated RIG-I (Kato et al., 2006; Kato et al., 2008). For TLR3, human TLR3 but not teleost 

TLR3 has a much higher affinity for poly I:C than ivt-dsRNA (Kato et al., 2006; Matsuo et al., 

2008). 

 The current state of research regarding responses to dsRNA largely relies on the use of 

poly I:C; however, studies of individual receptors are shifting towards ivt-dsRNA, likely for the 

ease of controlling length (Kato et al., 2006; DeWitte-Orr et al., 2009; Peisley et al., 2012).  

Length has been shown to influence the magnitude of immune response in cells and dsRNA 

receptor types show length requirements and specificities (DeWitte-Orr et al., 2009; Kato et al., 

2006; Matsuo et al., 2008; Poynter and DeWitte-Orr, 2015).  For example, longer dsRNA 

molecules have been shown to inducer a strong IFN response (DeWitte-Orr et al., 2009) and 

RIG-I has been shown to sense dsRNA molecules under 1000 bp in length, while MDA5 senses 
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lengths greater than 1000 bp (Peisley et al., 2012; Kato et al., 2008). The effect of dsRNA 

sequence on IFN-induction is also poorly studied; there were no detectable sequence motifs for 

MDA5 activation identified from vaccinia virus-derived dsRNA (Pichlmair et al., 2009). One 

example of sequence-dependence is the cytoplasmic dsRNA receptor oligoadenylate synthetase 

(OAS) that requires a four-base pair specific motif for binding (Kodym et al., 2009).  Few studies 

have looked at the antiviral response induced by v-dsRNA, and any studies that do exist have all 

used mammalian models. Specifically, v-dsRNA derived from encephalomyocarditis virus, 

vaccinia virus and reovirus induced potent IFN responses in vero, HeLa and murine embryonic 

fibroblasts respectively (Pichlmair et al., 2009; Kato et al., 2008).    ivt-dsRNA is an alternative 

source of synthetic dsRNA that retains some features of v-dsRNA and can be produced on a 

larger scale. To our knowledge there have been no studies directly comparing a v-dsRNA and 

an ivt-dsRNA molecule of matched length and sequence, therefore it is unknown if ivt-dsRNA 

induces a comparable immune response to v-dsRNA. 

 Rainbow trout were used in this study as a model fish species for their importance in 

aquaculture and the existing knowledge base of the rainbow trout type I IFN and antiviral 

response (Poynter and DeWitte-Orr, 2015; Chang et al., 2009).  In rainbow trout cell lines ivt-

dsRNA or poly I:C induces type I IFN and an antiviral state and similarly whole rainbow trout 

pretreated with poly I:C also showed decrease susceptibility to a fish virus (Poynter and DeWitte-

Orr, 2015; Kim et al., 2009). Three aquatic viruses were used in this study: chum salmon reovirus 

(CSV), which has a segmented dsRNA genome that consists of 11 segments between 3947bp 

and 783bp (Lannan et al., 1981), infectious pancreatic necrosis virus (IPNV), which is a non-

enveloped Aquabirnavirus with a bisegmented dsRNA genome (Ørpetveit et al., 2012) and viral 

hemhorrhagic septicemia virus (VHSV), which is an enveloped Rhabodovirus with a negative-
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sense ssRNA genome (Purcell et al., 2012).  All three viruses readily infect rainbow trout cells, 

including RTG-2, a rainbow trout gonadal cell line (Kelly et al., 1978; Lorenzen et al., 1999). 

Mammalian reoviruses have previously been used as a source of dsRNA of different lengths and 

total genomic dsRNA has been used as an immune stimulus (Kato et al., 2008; Alexopoulou et 

al., 2001; Goubau et al., 2014).  VHSV and IPNV both represent important disease in the fish 

aquaculture industry and ecology as they have wide host ranges and can cause large die-offs of 

fish (Ørpetveit et al., 2012; Mortensen et al., 1999; Purcell et al., 2012).  

 This study compares IFN-mediated responses induced by three forms of dsRNA: v-

dsRNA, ivt-dsRNA, and poly I:C. The dsRNA is this study was delivered extracellularly.  In a 

viral infection, the dsRNA would be intracellular during its production and released to the 

extracellular space in the case of cell lysis where it could be recognized by neighbouring cells.  

In the case of a dsRNA-based therapy the dsRNA would be delivered to the cell surface and not 

to the cytoplasm. Because the dsRNA was delivered extracellularly, the surface receptor for these 

dsRNA molecules was investigated. The ability of v-dsRNA from aquatic viruses to induce IFNs, 

ISGs and an antiviral response was quantified. Length and sequence matched v-dsRNA and ivt-

dsRNA were compared with poly I:C for their ability to induce IFNs, ISGs, and mount an 

antiviral state against IPNV and VHSV. The results from this study provides valuable insight 

with regards to how fish cells respond to viral dsRNA as opposed to poly I:C, with applications 

for novel dsRNA-based therapies.  

2.3 Materials and methods 

2.3.1 Cell culture  

 Two rainbow trout cell lines were used in the present study to measure dsRNA-mediated 

responses: RTG-2, derived from rainbow trout gonad (Wolf and Quimby, 1962) and RTgutGC, 

derived from rainbow trout intestine (Kawano et al., 2011). Epithelioma Papulosum 
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Cyprini (EPC) and Chinook salmon embryonic cell line (CHSE-214) were used for viral 

propagation.  All cell lines used in this study were obtained from N. Bols (University of 

Waterloo, Waterloo, ON). All cell lines were grown in 75 cm2 plastic tissue culture flasks (BD 

Falcon, Bedford, MA, USA) at room temperature in Leibovitz's L-15 media (HyClone, Logan, 

UT, USA) supplemented with 10% v/v fetal bovine serum (FBS; Fisher Scientific, Fair Lawn, 

NJ, USA) and 1% v/v penicillin/streptomycin (P/S) (10 mg/mL streptomycin and 10000U/mL 

penicillin; Fisher Scientific). All dsRNA treatments were delivered extracellularly by addition 

of dsRNA to cell culture media.   

2.3.2 Virus propagation 

 Viral hemorrhagic septicemia virus (VHSV)-IVb (strain U13653) was propagated on 

monolayers of EPC (Fijan et al., 1983) cells, Chum salmon reovirus and infectious pancreatic 

necrosis virus (IPNV) were propagated on CHSE-214; all viruses were propagated at at 17oC 

(Nims et al., 1970). Virus containing media (L-15 with 2% v/v FBS (Fisher Scientific)) was 

collected 4–7 days post-infection, filtered through a 0.45µm filter (Nalgene, Rochester NY, 

USA) and kept frozen at −80 °C. The 50% tissue culture infective dose (TCID50)/mL values were 

estimated according to the Reed and Muench method (Reed and Muench, 1988).  The origin of 

the viruses used in this study has been described previously (Pham et al., 2014).  

2.3.3 Poly I:C 

 High-molecular weight (HMW) poly I:C (InvivoGen, San Diego, CA, USA) stocks were 

prepared at 1mg/mL and low-molecular weight (LMW) poly I:C (InvivoGen) stocks were 

prepared at 10mg/mL, both were diluted in phosphate buffered saline (PBS) (HyClone) and 

aliquots were stored at −20°C.  Before use aliquots were heated to 55oC for 15 min and then 

allowed to cool to room temperature for 20 min.  
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2.3.4 Synthesis of in vitro molecules 

 In vitro transcribed dsRNA molecules were produced as previously described using the 

MegaScript RNAi kit (Fisher Scientific; Poynter and DeWitte-Orr, 2015).  All primers used for 

synthesizing dsRNA, Table 1, had the T7 promoter sequence added to the 5’ end, 

TAATACGACTCACTATAGGGAG.  The following molecules were prepared: the full-length 

Chum salmon reovirus segment 6 (2052 bp); a 300bp internal segment of Chum salmon reovirus 

segment 1 (CSVseg1); a 200bp segment of rainbow trout GAPDH, rainbow trout Mx3, and an 

internal segment of the VHSV G gene (v200; 3851bp-4048bp) that has been previously described 

(Poynter and DeWitte-Orr, 2015).  Where needed, nucleotide distribution was calculated using 

Genomatix: DNA sequence toolbox (http://www.genomatix.de/cgi-bin/tools).  

2.3.5 Extraction of v-dsRNA and isolation of segments 

 To extract the CSV viral genome, CSV was propagated as described above; after 

complete destruction of the monolayer the viral-containing media was collected and cell debris 

was pelleted by centrifugation at 3000 x g for 5 min.  The supernatant was mixed with poly 

ethylene glycol BioUltra 8000 to a final concentration of 10% w/v (Sigma-Aldrich, St. Louis, 

MO, USA; catalogue number: 89510) and sodium chloride to a final concentration of 0.6% w/v 

and mixed on a Corning LSE Digital Microplate Shaker at 1400 RPM 4oC overnight (Corning 

Tewksbury, MA, USA; Dopazo et al., 1996).  The solution was then centrifuged at 17000 x g in 

a Sorvall Legend Micro 17 microcentrifuge for 20 min (Fisher Scientific). The resulting pellet 

was resuspended in 100µL PBS overnight at 4oC and the RNA was extracted using TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) as per manufacturers’ instructions.  To isolate segments 

of the genome, total genomic CSV dsRNA was run on a 1% agarose TAE gel containing 

GelGreen (1:10000 dilution; Biotium Inc, Fremont, CA, USA).   
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Table 2.1. Primers used for in vitro transcription of dsRNA and qRT-PCR.  Forward (F) and reverse 
(R) primer sequences (5’-3’), length of product (bp), annealing temperature (Ta), and accession 
number of source sequence are provided.  For dsRNA the length of the final dsRNA product is 
provided.   

Target 5’-3’ Length 
(bp) Ta Accession 

number 
dsRNA 
GAPDH 
(seq1) 

F - TGGCATCTCCTTCAACGACAA 
R - GCTGGGGGTACTATGGGTGT 200 55 NM_001124246.1 

Mx3  
(seq2) 

F - AGGACTCGGCAGAAAGGATA 
R - TTCTCCCTCGATCCTCTGGT 200 55 U47946.1 

V200  
(seq3) 

F - TCAGATGAGGGGAGCCACA 
R - CGCATGATCTGGCCATCAA 200 52 

Poynter and 
DeWitte-Orr, 
2015 

CSV 
seg1 

F - TATGGTCCCCACGTCCTGAT 
R - GCCTCCTACGTCACTCATCG 300 50 AF418294.1 

CSV 
seg6 

F - TATCTCCTTGCGCCCTTCTC 
R - AATAGTCATCCCCCTCCGGC 2052 60 AF418299.1 

qRT-PCR 

IFN1 F - AAAACTGTTTGATGGGAATATGAAA 
R - CGTTTCAGTCTCCTCTCAGGTT 141 55 Chaves-Pozo et 

al., 2010 

vig-4 
F - GGGCTATGCCATTGTCCTGT 
R - AAGCTTCAGGGCTAGGAGGA 
 

151 55 
Poynter and 
DeWitte-Orr, 
2015 

b-Actin 
F - GTCACCAACTGGGACGACAT 
R - GTACATGGCAGGGGTGTTGA 
 

174 55 Poynter et al., 
2015 

 

The band of interest was cut out and purified using the QIAquick gel extraction kit (Qiagen, 

Hilden, Germany) and quantified using a NanoDrop Lite Spectrophotometer (Thermo Fisher 

Scientific).  The v-dsRNA preparation was validated as pure dsRNA by two methods: acridine 

orange stained gel to confirm only red stained nucleic acids were visible, and differential 

nuclease degradation using RNase A and RNaseIII to ensure degradation by RNaseIII alone. 

These methods for visualizing dsRNA have been described previously (Poynter and DeWitte-

Orr, 2017). Resulting products (20 ng) were re-quantified by gel densitometry to confirm the 
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NanoDrop readings.  The matched ivt-dsRNA molecule was also gel purified and quantified as 

above for consistency.   

2.3.6 Labelling of dsRNA 

 The CSV seg1 ivt-dsRNA was labelled using the Ulysis Alexa Fluor 546 Nucleic Acid 

Labeling Kit (Fisher Scientific) as previously described (Poynter and DeWitte-Orr, 2015). 

Unbound fluorophores were removed using a Bio-Rad p30 spin column (Bio-Rad, Hercules, CA, 

USA).  

2.3.7 Competitive binding assay 

 RTgutGC cells were seeded at a density of 1x105 cells/well on glass coverslips in a 12-

well tissue culture plate.  After attaching overnight cells were pretreated with 200µL of L-15 

containing LMW, HMW, poly I, or poly C at 100 µg/mL, total native dsRNA at 40 µg/mL, or 

control L-15 alone for 30 min.  After this incubation 1.25µg (5µg/mL) of labelled CSVseg1 

dsRNA was added to the well with 50µg/mL of DEAE-dextran. DEAE-dextran is used in this 

context as a method of ensuring dsRNA reaches the cells in quantities sufficient for detection by 

fluorescence microscopy (DeWitte-Orr et al., 2010).  Six hours post treatment cells were washed 

3x with PBS, fixed for 10 min with 10% neutral buffered formalin (Fisher Scientific), nuclei 

were counterstained with 10 µg/mL 4’,6-diamidino-2-phenylindole (DAPI; Fisher Scientific) 

and mounted on coverslips with SlowFade Gold mounting medium (Fisher Scientific) for 

visualization. Images were captured using an inverted fluorescence microscope (Nikon Eclipse 

TiE with Qi1 camera) and analyzed using Nikon NIS-elements.  A blinded third-party researcher 

performed the fluorescence quantification measurements. Three images were captured of each 

treatment for each independent replicate. Alexa Fluor 546 fluorescence intensity was measured 

by automatic selection of the area surrounding DAPI stained nuclei, total number of cells within 
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the image were counted and the intensity/cell was calculated.  Intensity is presented as percentage 

of the in vitro only control with no pretreatment.   

2.3.8 Cell protection assays 

 RTG-2 cells were seeded at 1x104 cells/well in 96-well plates and allowed to attach 

overnight in regular growth media.  For each condition there were triplicate wells, and for each 

assay there was an untreated/uninfected control and an untreated/infected control.  Cells were 

treated with the indicated concentration of dsRNA for 3h or 6h at 20oC in 50µL of media 

containing L15, 1% P/S, and 2% FBS.  When dsRNA concentration was 0.01nM. 6h was selected 

for treatment to ensure a productive antiviral state prior to infection; 3h was found to be 

insufficient (data not shown).  After dsRNA pretreatment, the virus was added directly to the 

media to produce the necessary MOI (10 for VHSV, 0.2 or 0.02 for IPNV).  Cells were incubated 

at 17oC for 4-7days until desired accumulation of cytopathic effect (CPE) occurred.  Cells were 

rinsed 2X with PBS and a 5% v/v alamarBlue solution in PBS was added (Invitrogen).  Cells 

were incubated at room temperature for 1h in the dark and fluorescence was measured using a 

Synergy HT plate reader (BioTek, Winooski, VT, USA).  Data are presented as percentage of 

control, uninfected cells. 

2.3.9 RNA extraction, cDNA synthesis, and qRT-PCR 

 RTG-2 cells were plated at 5x105 cells/well in a 6-well plate and allowed to attach 

overnight.  Media was removed and cells were treated with dsRNA at the noted concentration in 

full-growth media, or with media only.  After the indicated incubation time media was removed 

and RNA extracted with TRIzol as per manufacturers’ instructions (Thermo Fisher Scientific).  

Possible contaminating DNA was removed using the TURBO DNA-free kit (Fisher Scientific).  

cDNA was synthesized using iSCRIPT (Bio-Rad) and 1µg of RNA.  qRT-PCR has been 

previously described for the primers used in this study (Poynter and DeWitte-Orr, 2015).  A no-
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reverse transcriptase (NRT) control was used to identify genomic contamination, a peak earlier 

than 35 cycles in the NRT control was considered excessive DNA contamination, no samples 

showed a peak earlier than this threshold. Melting curve analysis was completed (65oC to 95oC 

with a read every 5s) to determine primer specificity, only single peaks were produced. In 

addition to the NRT control, primers were designed to span introns for both β-actin and IFN1; 

as such genomic contamination would produce a much larger product, which would be evident 

in the melting curve analysis.  This technique could not be performed for vig-4, as it is predicted 

to be intron-less. Additionally, there are two predicted copies of vig-4 in the rainbow trout 

genome, the primers used in this study would amplify both variants; however, all sequencing 

performed identified only the published vig-4 sequence (NM_001124333.1).        

2.3.10 Statistical analysis  

 All data presented was derived from at least three independent experiments. Data were 

graphed and statistically analyzed using GraphPad Prism version 7.00 for Windows, GraphPad 

Software, La Jolla California USA, www.graphpad.com.  Statistical analyses were completed 

using a one- or two-way ANOVA with Tukey multiple comparison test, alpha = 0.05, P value 

<0.05 considered significant; qRT-PCR data was log2 transformed prior to analysis. 

2.4 Results 

2.4.1 dsRNA from different sources bind to the same surface receptor 

 RTgutGC cells, previously shown to bind poly I:C by SR-As (Poynter et al., 2015), were 

treated with fluorescently labelled ivt-dsRNA and punctate cell-associated binding was 

observed, (Fig. 2.1A).  Cells were then pretreated with an excess of poly I:C, either high- (HMW) 

or low-molecular weight (LMW), total CSV v-dsRNA, poly I or poly C (Fig. 2.1A,B).  Both 

sizes of poly I:C and the total v-dsRNA significantly blocked binding of the labeled ivt-dsRNA 

(Fig. 2.1B).  Poly I is a competitive ligand for SRA binding whereas poly C is a molecule of 
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similar chemical structure that is non-competitive for SRAs. Poly I significantly blocked ivt-

dsRNA binding while poly C did not (Fig. 2.1B).   

 

Figure 2.1. In vitro transcribed dsRNA, viral dsRNA, and poly I:C bind the same class A 
scavenger receptor in RTgutGC cells.  
RTgutGC cells were pretreated for 3h with high-molecular weight poly I:C (HMW), low-
molecular weight poly I:C (LMW), poly I, or poly C at 100µg/mL, or total chum salmon reovirus 
genome (v-dsRNA) at 40µg/mL, or control media.  Cells then received 1.25µg (5µg/mL) of 
Alexa Fluor 546 labelled CSVseg1 dsRNA (ivt-dsRNA) with 50µg/mL of DEAE-dextran.  6h 
post treatment cells were formalin fixed and nuclei were counterstained with DAPI; slides were 
visualized using an inverted fluorescence microscope (Nikon Eclipse TiE with Qi1 camera). (A) 
Representative images of cells with or without pretreatment, dsRNA = red, nuclei = blue.  (B) 
Fluorescence intensity per cell was quantified using Nikon- NIS-elements software and is 
presented as percent of the ivt-dsRNA only control, no pretreatment. Data represents three 
independent replicates and were analyzed statistically by one-way ANOVA, alpha = 0.05; a P 
value <0.05 considered significant.        
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2.4.2 v-dsRNA elicits a length-dependent, protective type I IFN response in RTG-2 cells  

 RTG-2 cells were treated with 10 ng/mL of total CSV v-dsRNA and significant induction 

of an IFN (IFN1) and an ISG (vig-4) were observed at the transcript level using qRT-PCR at 24h 

post treatment (Fig. 2.2A). IFN1 transcript production peaked at 3h and was no longer 

measurable by 24h and vig-4 production peaked at 24h (Fig. 2.2A).  Previously concentrations 

lower than 10ng/mL of ivt-dsRNA have been shown to induce IFN and ISG transcripts in RTG-

2 cells (Poynter and DeWitte-Orr, 2015).  To test the ability of v-dsRNA to establish a functional 

antiviral state, RTG-2 cells were pretreated for 3h with 10 ng/mL of total v-dsRNA and then 

infected with VHSV (MOI: 10) or IPNV (MOI: 0.2; Fig. 2.2B).  There was significant protection 

observed against both viruses when cell viability was measured using alamarBlue.   
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Figure 2.2. Viral dsRNA induces IFN1 and vig-4 transcripts over time and induces a 
protective antiviral state against viral hemorrhagic septicemia virus (VHSV) and infectious 
pancreatic necrosis virus (IPNV) in RTG-2 cells.   
(A) RTG-2 cells were stimulated with 10ng/mL of total chum salmon reovirus dsRNA (v-
dsRNA); IFN1 and vig-4 transcripts were measured by qRT-PCR at 3h, 12h, and 24h, normalized 
to b-actin, and presented as values relative to an unstimulated control.  (B) RTG-2 cells were 
pretreated with 10ng/mL v-dsRNA for 3h and then infected with VHSV at a multiplicity of 
infection (MOI) of 10 or IPNV at a MOI of 0.2.  After 4-7 days a fluorescent indicator dye, 
alamarBlue, was used to measure cell viability and data are presented as the percentage of an 
untreated, uninfected control.  Data represents three independent replicates and were analyzed 
statistically by one-way ANOVA, alpha = 0.05; a P value <0.05 considered significant.        
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opposed to number of molecules (Poynter and DeWitte-Orr, 2015).  It should be noted that these 

v-dsRNA molecules are different sequences as well as lengths.  There was a length-dependent 

response seen in the RTG-2 production of IFN1 and vig-4 transcripts, with the long segments 

inducing significantly more IFN1 and vig-4 transcripts than the short segments.  For both IFN1 

and vig-4 the medium segment fell in the middle range of long and short, and there was a 

significant difference between long and medium-induced vig-4 production.  A corresponding 

antiviral assay against VHSV and IPNV was completed similarly to the total v-dsRNA assay 

described above (Fig. 2.3C).  While both long and short v-dsRNA protected cells significantly 

from viral infection, there were no significant differences between the two lengths.   

 

 

 

 

 

 

 

 

 

 



 
37 

 
Figure 2.3. Long v-dsRNA segments induces higher levels of IFN1 and vig-4 transcripts but 
similar antiviral responses against viral hemorrhagic septicemia virus (VHSV) or 
infectious pancreatic necrosis virus (IPNV) in RTG-2 cells.   
Segments of the chum salmon reovirus genome were isolated based on length, segments fell into 
long (3690-3947bp), medium (2052-2242), or short (1317-1395) segment groups.  (A) 20ng of 
the isolated segments were run on a 1% agarose gel stained with ethidium bromide for 
visualization. (B) RTG-2 cells were treated with 0.05nM dsRNA for 3h and IFN1 and vig-4 
transcripts were measured by qRT-PCR, normalized to b-actin, and presented as values relative 
to an unstimulated control. (C) RTG-2 cells were pretreated with 0.05nM dsRNA for 3h and then 
infected with VHSV at a multiplicity of infection (MOI) of 10 or IPNV at a MOI of 0.2.  After 
4-7 days a fluorescent indicator dye, alamarBlue, was used to measure cell viability and data are 
presented as the percentage of an untreated, uninfected control.  Data represents at least 3 
independent replicates and were analyzed statistically by one-way ANOVA, alpha = 0.05; a P 
value <0.05 considered significant.   
 
2.4.3 Length- and sequence-matched v-dsRNA and ivt-dsRNA induce IFNs and an antiviral 

state similarly 

 To compare the IFN response induced by v-dsRNA and ivt-dsRNA directly, v-dsRNA 
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molecules and no significant difference was observed between the ivt-dsRNA and v-dsRNA 

molecules (Fig. 2.4B). This trend continued with the antiviral assays, where both ivt-dsRNA and 

v-dsRNA protected cells against IPNV and VHSV-induced cell death, but there were no 

significant differences in the protection between the two (Fig. 2.4C).   

 For comparison purposes, a 0.01nM HMW poly I:C (average length 3000bp) control was 

included for both qRT-PCR and antiviral assays. There was significantly less induction of IFN1 

and vig-4 transcript production from the HMW poly I:C at the 3h time point (Figure 2.4B). With 

VHSV infection all three dsRNA molecules protected similarly; however, with IPNV at an MOI 

of 0.2 ivt-dsRNA and v-dsRNA provided complete protection (with viability levels similar to 

uninfected control cells) but poly I:C did not. By an MOI of 0.02 all three dsRNA molecules 

provided the same amount of protection (Fig. 2.4C). 

2.4.4 Molecules of the same length but different sequence had similar effects 

 To test the effect of sequence on the magnitude of the immune response by RTG-2 cells 

three length-matched ivt-dsRNAs were made with different sequences, including different 

source material (2 rainbow trout genes, GAPDH and Mx3, and 1 viral gene, the VHSV G gene), 

and different nucleotide composition (Fig. 2.5A).  IFN1 and vig-4 transcripts were significantly 

induced following treatment with 0.05nM dsRNA for three hours but no significant differences 

between the three sequences were detected (Fig. 2.5B).  This matched the antiviral assays for 

both VHSV and IPNV, where protection was seen but no significant differences between 

molecules (Fig. 2.5C).   
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Figure 2.4. Length and sequence matched ivt- and v-dsRNA induced similar levels of IFN1 
and vig-4 transcripts and similar antiviral state against VHSV and IPNV infections in 
RTG-2 cells.   
A segment of the chum salmon reovirus genome (segment 6, 2052bp) was isolated (v-dsRNA) 
and a length and sequence matched dsRNA molecule was transcribed in vitro (ivt-dsRNA).  
High-molecular weight poly I:C (HMW) was included as a treatment control.  (A) 20ng of the 
isolated segments were run on a 1% agarose gel stained with ethidium bromide for visualization. 
(B) RTG-2 cells were treated with 0.01nM dsRNA for 3h and IFN1 and vig-4 transcripts were 
measured by qRT-PCR, normalized to b-actin, and presented as values relative to an 
unstimulated control. (C) RTG-2 cells were pretreated with 0.01nM dsRNA for 6h and then 
infected with VHSV at a multiplicity of infection (MOI) of 10 or IPNV at a MOI of 0.2 or 0.02.  
After 4-7 days a fluorescent indicator dye, alamarBlue, was used to measure cell viability and 
data are presented as the percentage of an untreated, uninfected control.  Data represents least 3 
independent replicates and were analyzed statistically by one-way ANOVA, panel B, or two-
way ANOVA, panel C, alpha = 0.05; a P value <0.05 considered significant. 
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Figure 2.5. ivt-dsRNA of the same length and different sequence induced similar levels of 
IFN1 and vig-4 transcripts and protective antiviral states against VHSV and IPNV in RTG-
2 cells.   
Three in vitro transcribed dsRNA molecules of the same length but different source sequences 
were used to test the effects of sequence on innate immune response.  (A) Genomatix was used 
to calculate the nucleotide distribution within the three sequences and the percentage of each 
nucleotide is shown. (B) RTG-2 cells were treated with 0.05nM dsRNA for 6h and IFN1 and 
vig-4 transcripts were measured by qRT-PCR, normalized to b-actin, and presented as values 
relative to an unstimulated control.  (C) RTG-2 cells were pretreated with 0.05nM dsRNA for 
3h and then infected with VHSV at a multiplicity of infection (MOI) of 10 or IPNV at a MOI of 
0.2.  After 4-7 days a fluorescent indicator dye, alamarBlue, was used to measure cell viability 
and data are presented as the percentage of an untreated, uninfected control.  Data represents 3 
independent replicates and were analyzed statistically by one-way ANOVA, alpha = 0.05; a P 
value <0.05 considered significant. 
 
2.5 Discussion 

 While poly I:C is an attractive dsRNA to use in studies of the dsRNA-mediated immune 

response, it is not biologically relevant and as such is either too potent, such as in mammalian 
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hypothesized that ivt-dsRNA would be a better molecule for modulating innate antiviral immune 

responses, as it has natural sequence variation and defined length. The goal of the present study 

was to test whether ivt-dsRNA was a comparable surrogate for v-dsRNA and to better understand 

v-dsRNA and ivt-dsRNA-mediated innate antiviral immune responses using a rainbow trout cell 

model. This is the first study to investigate v-dsRNA and its effects in an aquatic vertebrate 

system. The use of the two different cell lines helped provide answers to two separate questions, 

whether the molecules are bound by a common scavenger receptor and whether the molecules 

were inducing similar antiviral responses. RTgutGC was used as this cell line has been shown 

previously to express functional SR-As, surface receptors for dsRNA (Poynter et al., 2015). 

Additionally, RTG-2 has previously been shown to respond to low concentrations of dsRNA and 

is permissive to infection by both aquatic viruses used to test the establishment of an antiviral 

state (Poynter and DeWitte-Orr, 2015; Saint-Jean and Pérez-Prieto., 2006; Kelly et al., 1978).   

 The dsRNA in this study was delivered extracellularly; they were added directly to the 

media instead of being transfected into the cell.  In a viral infection, dsRNA would be 

intracellular during its production and released to the extracellular space during a lytic infection 

where it could be recognized by neighbouring cells.  In the case of a dsRNA-based therapy, the 

dsRNA would be delivered to the cell surface and not to the cytoplasm.  If dsRNA-based 

therapies are viable they need to be able to bind to the cell’s surface, thus the mechanism of 

recognition of ivt-dsRNA compared with v-dsRNA at the cell surface is important to discern.	

Poly I:C (both LMW and HMW) and v-dsRNA effectively blocked the binding of labelled ivt-

dsRNA molecules in RTG-2 cells, suggesting that all three dsRNA molecules do indeed bind 

SR-As on the cell surface.  This is consistent with previous studies in mammals that have shown 

ivt-dsRNA, poly I:C, and viral dsRNA are bound by SR-As (Limmon et al., 2008; DeWitte-Orr 
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et al., 2010; Mian et al., 2013; Dansako et al., 2013; Poynter et al., 2017).  A study in mouse 

splenocytes found HMW poly I:C but not LMW was bound by SR-As, and therefore both LMW 

and HMW poly I:C were tested in the present study for their ability to block binding (Mian et 

al., 2013).  In the present study no differences were observed between LMW and HMW poly 

I:C’s ability to block ivt-dsRNA binding, suggesting SR-A binding capabilities to dsRNA in 

mice differ from rainbow trout.  

 Next, the ability of v-dsRNA to induce the IFN pathway and antiviral response was 

tested. v-dsRNA induced IFN1 and vig-4 transcripts with similar kinetics to what was previously 

reported with ivt-dsRNA (Poynter et al., 2015) in that IFN1 transcript peaked at 3h and the ISG 

vig-4 accumulated over time. This antiviral response effectively reduced virus-induced cell death 

for two important fish pathogens, VHSV-IVb and IPNV. This is the first study in fish to 

demonstrate v-dsRNA as a stimulant of type I IFN and an inducer of an antiviral state against 

aquatic viruses.  

 This is not, however, the first study to use the reovirus genome as a source of v-dsRNA. 

Previously, the total reovirus genome as well as isolated segments has been used as immune-

inducing molecules in mammalian cells (Kato et al., 2008; Alexopoulou et al., 2001; Goubau et 

al., 2014).  One of the first studies of v-dsRNA as an immunostimulant was in 1967 when an 

isolated reovirus genome was injected into rabbits and induced interferon (Tytell et al., 1967).  

The cellular response to the reovirus genome has been demonstrated in mouse embryonic 

fibroblasts (MEFs) and human embryonic kidney cells (HEK293), both cell types producing 

IFN-β following v-dsRNA treatment (Kato et al., 2008; Goubau et al., 2014). Reoviruses are 

used for these types of studies due to the relative abundance of dsRNA produced during infection. 
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Current studies are underway to optimize methods to isolate dsRNA from viruses of other 

genome types.  

 Similar to ivt-dsRNA, v-dsRNA induced IFN pathways, and in some cases an antiviral 

state, in a length dependent manner.  The long v-dsRNA molecule induced more IFN1 than short 

and long v-dsRNA induced more vig-4 transcript than medium and short. At the level of an 

antiviral state, there were no differences between long and short v-dsRNA induced protection 

for either VHSV or IPNV infection; however, long v-dsRNA did appear to provide protection 

similar to control in the VHSV infection model while the short molecule did not (Fig. 2.3C). 

These differences are indeed subtle, which is unsurprising as the long segment is only 2x the 

length of the short, whereas previous studies of length have shown an effect with molecules with 

a 6x and 10x difference in length in RTG-2 cells (Poynter and DeWitte-Orr, 2015). It can then 

be hypothesized if shorter v-dsRNA molecules were used a greater difference in antiviral assays 

would be observed. It should be noted that while the molecules are of different lengths they are 

also of different sequences, and this could be a confounding variable in this study. While future 

studies may address this issue by digesting native dsRNA genome fragments or ligating 

fragments together, the present study aimed to focus on native molecules that were as unmodified 

as possible. Even so, evidence from this study and previous work suggest sequence does not play 

a role in levels of IFN induction (Peisley and Hur, 2013; Pichlmair et al., 2009). 

 Next a direct comparison between length and sequence matched v-dsRNA and ivt-

dsRNA was performed, and no significant differences were observed between the immune gene 

transcript induction and antiviral state established by v-dsRNA and the matched ivt-dsRNA. 

HMW poly I:C, however, even with a much longer average length, was not as effective at 

inducing IFNs or ISGs and required a lower MOI of IPNV in order to protect cells similarly to 
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v- or ivt-dsRNA.  This data suggests that indeed ivt-dsRNA but not poly I:C could be used as a 

surrogate for v-dsRNA. Indeed, previous work has shown that poly I:C induced IFN and ISG 

kinetics differently from ivt-dsRNA in rainbow trout cells (Poynter and DeWitte-Orr, 2015). 

These differences continue between fish and humans with regard to poly I:C. Human TLR3 

responds very strongly to poly I:C, whereas this was not the case for a fish, fugu, (Takifugu 

rubripes) TLR3, which responded most strongly to one length of ivt-dsRNA compared to poly 

I:C or other lengths of ivt-dsRNA (Matsuo et al., 2008). In vivo, poly I:C has had mixed effects 

as an antiviral therapy, being an effective protection mechanism against red-spotted grouper 

necrosis virus (RGNNV) in sevenband grouper (Epinephelus septemfasciatus; Nishizawa et al., 

2009), but in zebrafish (Danio reiro) infected with VHSV poly I:C was able to delay symptoms 

but only prevented mortality in 5% of fish (Kavaliauskis et al., 2015). Clearly, there is room for 

increasing the efficacy of dsRNA-based antiviral therapies in fish past the protection that poly 

I:C can provide.  

 It should be noted that there are differences between v-dsRNA generated in situ with the 

v-dsRNA isolated for the present study. One difference is the lack of dsRNA-associated proteins 

in the extracted v-dsRNA. Viruses use many mechanisms to hide dsRNA; one method is the 

production of proteins that bind dsRNA and effectively hide it from host receptors (Bale et al., 

2012). Host cells also have a number of dsRNA-binding proteins that could modify dsRNA 

availability and potency (DeWitte-Orr and Mossman, 2010).  Extracting v-dsRNA through a 

column or phenol/chloroform extraction would remove these proteins. These dsRNA-associated 

proteins may have effects on how the cell senses and responds to v-dsRNA.  Other modifications 

that could be influencing the cellular response to dsRNA that would survive extraction include 

methylation and 5’tri- or di- phosphates (Schaefer et al., 2008; Goubau et al., 2014).  Mammalian 
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reoviruses and poly I:C both have a 5’-diphosphate whereas ivt-dsRNA have 5’-triphosphate 

termini; both termini are able to activate RIG-I; however, the implication of this difference in 

rainbow trout is harder to elucidate due to the lack of RIG-I in this fish species (Marq et al., 

2011; Martin and Coleman, 1989; Goubau et al., 2014; Chen et al., 2017).  Interestingly long ivt-

dsRNA (>200bp), which would lack a 5’triphosphate was still able to activate RIG-I in murine 

embryonic fibroblasts (Kato et a., 2008). The cap status of the dsRNA molecules may also 

influence the host response; this has been best studied in terms of RIG-I and MDA5.  The 

addition of an M7G cap partially reduces the RIG-I stimulatory properties of dsRNA, whereas 

2’O-methylation entirely abrogates RIG-I activation (Schuberth-Wagner et al., 2015).  In terms 

of MDA5, mutant viruses lacking 2’-O-methyltransferase induced higher MDA5-dependent type 

I IFN expression (Züst et al, 2011). In the present study, v-dsRNA likely has a cap, as reoviruses 

put a 5’ cap on the positive strand of the genomic segments; in comparison, the ivt-dsRNA and 

poly I:C would not have a m7G cap (Goubau et al., 2014). Kato et al., 2008 found that capped 

ivt-dsRNA was still able to induce IFN-β production, unfortunately these molecules were not 

compared to uncapped molecules to determine if this had any positive or negative effects on 

stimulatory properties.  Studies are currently underway to explore the role of different cap 

modifications on the host innate immune response.     

 Based on the assumption that ivt-dsRNA can act as a surrogate for v-dsRNA in inducing 

IFN at the cellular level, and the v-dsRNA vs. ivt-dsRNA comparison performed used molecules 

with the same sequence, it follows to test whether nucleotide sequence makes a difference. From 

the results of a group of three ivt-dsRNA containing host or viral sequences it appears as though 

sequence does not significantly affect ivt-dsRNA’s IFN inducing capabilities. This is congruent 

with the current literature that suggests dsRNA sequence is not a major influence on dsRNA 
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receptor-binding, as is length and structure (Peisley and Hur, 2013; Pichlmair et al., 2009). 

Although there is evidence that RIG-I ligands generally have a uridine- or adenosine-rich 

ribonucleotide sequence and OAS has a four bp specific sequence motif, it is unclear if other 

receptors have any preference or sequence requirements, or whether there are any sequence 

preferences for fish dsRNA sensors (Saito and Gale, 2008; Kodym et al., 2009).  Sequence may 

play a role in an antiviral state when RNAi is considered; however, in this system there is an 

overwhelming IFN-mediated response that likely masks any RNAi effects (Luna et al., 2016). 

 Overall this study sheds light on the dsRNA-mediated immune response in rainbow trout 

cells.  The findings suggest that v-dsRNA produced by an aquatic reovirus is an interferon-

inducing PAMP.  There were no significant differences between a v-dsRNA molecule and a 

length and sequence matched ivt-dsRNA molecules with regards to inducing IFN and ISGs and 

antiviral state, suggesting that ivt-dsRNA may be useful in studies of interferon and in future 

antiviral therapies for fish.  This study sought to perform functional studies where possible, using 

antiviral assays to explore the biological relevancy of transcriptional quantification results.  

These findings contribute to a better understanding of the differences between dsRNA from 

different sources, which can help facilitate the production of more biologically relevant dsRNA-

based therapies. 
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3.1 Overview 

Class A scavenger receptors (SR-As) are a family of surface-expressed receptors who bind a 

wide range of polyanionic ligands including bacterial components and nucleic acids and play a 

role in innate immunity. Macrophage receptor with collagenous structure (MARCO) is a SR-A 

family member that has been studied in mammals largely for its role in binding bacteria. To date 

there is little information about SR-As in general and MARCO specifically in fish, particularly 

what ligands individual SR-A family members bind remains largely unknown. In the present 

study two novel rainbow trout (rt)MARCO transcript variants have been identified and their 

sequence and putative protein domains have been analyzed. When overexpressed in CHSE-214, 

a cell line that appears to lack functional scavenger receptors, GFP-tagged rtMARCO-1 and 

rtMARCO-2 were able to bind gram-positive, and gram-negative bacteria of both mammalian 

and aquatic sources. rtMARCO appears to bind bacteria via its scavenger receptor cysteine-rich 

(SRCR) domain, because SRCR deleted rtMARCO-1 and -2 were unable to bind bacteria. 

rtMARCO did not show any binding to the yeast cell wall component zymosan or to double-

stranded (ds)RNA. This is the first time rainbow trout MARCO sequences have been identified 

and the first in-depth study exploring their ligand binding profile. This study provides novel 

insight into the role of rainbow trout MARCO in bacterial innate immunity. 
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3.2 Introduction 

Class A scavenger receptors (SR-As) are surface receptors that perform a broad range of 

functions in mammals including: cell-cell recognition, macrophage adhesion, endocytosis, 

phagocytosis, and detection of pathogens as part of the innate immune system (Platt and Gordon, 

2001). There are eight classes of scavenger receptors, classes A-H, that were originally described 

by their ability to bind modified low-density lipoproteins and as such were studied for their role 

in atherosclerosis (Prabhu Das et al., 2014). SR-As are type II membrane glycoproteins whose 

family consists of SR-AI/II (Scavenger Receptor class A), MARCO (MAcrophage Receptor with 

COllagenous domain), SCARA3 (SCAvenger Receptor class A, member 3), SCARA4 

(SCAvenger Receptor class A, member 4) and SCARA5 (SCAvenger Receptor class A, member 

5). All members share cytoplasmic, transmembrane, α-helical, and collagenous domains, though 

they differ in the lengths of said domains and in the composition of their C-terminal domains 

(Whelan et al., 2012). MARCO, the focus of the present study, consists of the typical domains 

of an SR-A with a scavenger receptor cysteine-rich (SRCR) domain at the proximal end of the 

extracellular portion of the receptor (Bowdish and Gordon, 2009). In mammals, MARCO is 

mainly expressed on macrophages of the spleen marginal zone and lymph nodes, as well as on 

splenic dendritic cells (Elomaa et al., 1995; Granucci et al., 2003). Mammalian MARCO plays 

in important role in innate immune defenses against bacterial and fungal pathogens (Xu et al., 

2017). 

The role of SR-As in innate immunity has yet to be clearly elucidated; however, these 

receptors can bind to a wide range of pathogen-associated molecular patterns (PAMPs). 

Mammalian SR-As can detect bacteria and their PAMPs including: lipopolysaccharide (LPS), 

lipoteichoic acid (LTA; Platt and Gordon, 2001), as well as gram-positive and –negative bacteria 

(Canton et al., 2013). With regards to antiviral innate immunity, SR-As can detect extracellular 
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nucleic acids, including viral double-stranded RNA, and mediate a type I interferon response in 

mammals and likely in fish as well (DeWitte-Orr et al., 2009; Poynter et al., 2015). SR-As are 

also involved in antifungal innate immunity as SCARA4 has been shown to bind yeast as well 

as the yeast cell well component zymosan (Mori et al., 2014; Jang et al., 2009; Ohtani et al., 

2001), while MARCO has been shown to contribute to containing fungal infections in mice (Xu 

et al., 2017). Considering MARCO in particular, mammalian MARCO binds both gram-positive 

and -negative bacteria as well as LPS and LTA via its SRCR domain (Arredouani et al., 2005; 

Elomaa et al., 1998). 

Teleost SR-As are an emerging area of study, to date few studies exist looking at these 

important receptors and there is a serious deficit of functional data. It does appear that teleost 

fish express MARCO-like receptors and these receptors play a role in innate immunity, at least 

in response to bacterial infection. A study in common carp (Cyprinus carpio) identified two 

variants of MARCO, similar in structure and regulation during developmental stages and post-

infection with Aeromonas hydrophila (Feng et al., 2016). In yellow croaker (Larimichthys 

crocea) a MARCO sequence was identified and was upregulated after infection with Vibrio 

alginolyticus (He et al., 2014). A MARCO-like receptor has been identified in red drum 

(Sciaenops ocellatus) and was upregulated by bacterial and viral infection; a recombinant SRCR 

domain from this protein was purified and bound to bacteria (Qiu et al., 2013). In zebrafish 

(Danio rerio), MARCO mediated phagocytosis of Mycobacterium marinum and the initial pro-

inflammatory response to this infection was MARCO-dependent (Benard et al., 2014; Wittamer 

et al., 2011; Zakrzewska et al., 2010). 

The present study sought to identify novel rainbow trout (Oncorhynchus mykiss) 

MARCO sequences, and study the ability of rainbow trout MARCO to function as a surface 
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receptor in anti-bacterial, -viral or -fungal innate immunity. Two MARCO transcripts, 

rtMARCO-1 and rtMARCO-2, were identified and analyzed bioinformatically and their binding 

capabilities were tested. CHSE-214 was chosen to study ligand binding with over-expressed 

rtMARCO as this cell line demonstrates low bacterial binding capabilities. CHSE-214 is unable 

to bind extracellular dsRNA (Jensen et al., 2002) and therefore may lack functional class A 

scavenger receptors (DeWitte-Orr et al., 2010). Both variants, rtMARCO-1 and rtMARCO-2, 

had domains common to SR-As including an SRCR domain. It was found that rainbow trout 

rtMARCO-1 and rtMARCO-2 are able to bind Gram-negative and –positive bacteria, but did not 

bind to zymosan or dsRNA. 

3.3 Materials and methods 

3.3.1 Cell culture 

 The rainbow trout monocyte/macrophage cell line RTS-11 and the Chinook salmon 

(Oncorhynchus tshawytscha) embryonic cell line (CHSE-214) used for this study were obtained 

from N. Bols (University of Waterloo; Ganassin and Bols, 1998; Lannan et al., 1984). Cell lines 

were grown in 75 cm2 plastic tissue culture flasks (BD Falcon, Bedford, MA) at 20 °C in 

Leibovitz's L-15 media (HyClone, Logan, UT) supplemented with 10% (CHSE-214) or 20% 

(RTS-11) v/v fetal bovine serum (FBS; Fisher Scientific, Fair Lawn, NJ) and 1% v/v 

penicillin/streptomycin (P/S; 10 mg/mL streptomycin and 10000U/mL penicillin; Fisher 

Scientific). 

3.3.2 Reagents 

3.3.2.1. Poly I:C 

 High molecular weight (HMW) polyinosinic:polycytidylic acid (poly I:C) was purchased 

from Invivogen and suspended in sterile phosphate buffered saline (PBS) at a concentration of 

1 mg/mL, heated for 10 min at 55 °C and cooled at room temperature before being aliquoted and 
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stored at −20 °C. To solubilize precipitates before use, HMW poly I:C was reheated and cooled 

to room temperature. 

3.3.2.2 Fluorescently labeled E. coli, S. aureus, and zymosan 

 Fluorescently conjugated Escherichia coli (Alexa Fluor 594; K-12 strain), 

Staphylococcus aureus (Alexa Fluor 594: Wood strain without protein A), zymosan (Alexa Fluor 

594; Saccharomyces cerevisiae) BioParticles were purchased from Molecular Probes (Oregon, 

USA). Particles were re-suspended in PBS at a concentration of 20 mg/mL and sodium azide 

(Sigma) was added to a final concentration of 2 mM. Particles were stored at 4 °C. 

3.3.2.3 Labeling of Vibrio anguillarum 

 25 µL of V. anguillarum (Obtained from B. Dixon, Waterloo, ON) (1.19 × 1010 CFU/ml; 

25 µL was used per well) was pelleted at 10000xg for 2min, washed two times in PBS and re-

suspended in 25 µL of PBS with Biotium Live-or-dye 350/448 (32002) added at a 1 in 100 

dilution. After a 30min room temperature incubation in the dark the bacteria was pelleted, 

washed 3x with PBS and re-suspended in 25 µL of PBS for immediate use. 

3.3.3 Labeling HMW poly I:C 

 HMW poly I:C was labeled using the ULYSIS labeling kit following manufacturer's 

instructions (Thermo Fisher). Briefly, 1 µg of HMW poly I:C was precipitated and re-suspended 

in 20 µL of ULYSIS labeling buffer, heated at 95 °C for 5min and put on ice. Subsequently, 4 µL 

of labeling buffer as well as 1 µL of ULS labeling solution was added. The solution was heated 

at 90 °C for 10min, mixed with 75 µL of PBS and run through a BioSpin p30 (Bio-Rad) column 

to remove unbound fluorophores. dsRNA was added to a 12-well at a concentration of 1 µg/mL. 

3.3.4 RNA extraction cDNA synthesis and PCR reactions 

 RNA was extracted from 1×106 RTS-11 cells using TRIzol (Ambion) following 

manufacturer's instructions. RNA was treated with a DNA-free DNA Removal Kit (Ambion). 
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For cDNA synthesis, 1 µg of RNA was used in a 20 µL iScript reverse transcriptase reaction 

following manufacturer's instructions exactly (Bio-Rad). Phusion High-Fidelity DNA 

polymerase (Thermo Scientific) was used with reactions containing 200 µM each dNTP (Fisher 

scientific), 1X Phusion HF buffer (Thermo Scientific), 0.5 µM each forward and reverse primer, 

0.02U/µL Phusion DNA polymerase (Thermo Scientific) and 100 ng of template plasmid 

(pEGFP-C1-rtMARCO-1 or -2 were used as templates to create SRCR mutant plasmids) or 3 µL 

of undiluted cDNA (in a 60 µL reaction). A T100 thermocycler (Bio-Rad) was used with the 

following conditions: 98 °C 30s followed by 30 cycles of 98 °C for 10s, specific TA for 15s 

(Table 3.1), 72oC for 30 s/kb, followed by a final elongation of 72 °C for 10min and products 

were held at 4 °C. 

Table 3.1. Primer sequences and conditions used in the present study.  Target for amplification, 
primer sequence in the 5′ to 3′ direction, product length, and annealing temperature (TA) are 
provided. Product length varied depending on the variant of MARCO targeted. Italics denote the 
extra nucleotides added to facilitate restriction enzyme function, bold sequences are restriction 
sites. Underlined nucleotides are extra nucleotides added to keep the product in frame. 
Target Primer (5’-3’) Product length (bp) TA(oC) 

Full-length 
MARCO 

F – ATGGAGACATCAGTAGACAG 
R – TCACACACACTGCACCCCAG 

Marco-1: 1302 
Marco-2: 1260 64oC 

Cloning 
MARCO 

F –CGGCCGCTCGAGCGGAGACAT 
CAGTAGACAGAGG 
R –  GGGCCCGAATTCTCACACACA  
CTGCACCCCGG 

Marco-1: 1325 
Marco-2: 1283 50oC 

Cloning 
MARCO 
mutant 

R1 –GCGCCGGAATTCTCAACGAGC  
ACCCCCACCAACAAT 

Marco-1: 1060 
Marco-2: 1019 50oC 

Fragment 
MARCO 

F1 – TCCTCAAAGCTTCACCAGGC  
F2 – ACAAGGACGAGCTGGAACAC  
R – ACTGGTCCAGCTGCTCTTTC  

F1R – 505 
F2R – 357 50oC 

Cloning  HS-
SRAI 

F – GGCGCGCTCGAGGCGAGCAGT 
GGGATCACTTTCACAA 
R – GCGCCGGAATTCTTATAAAGT 
GCAAGTGACTCCAGCAT 

1382 50oC 
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3.3.5 Cloning of complete transcript CDS and mutant 

 The Bowdish lab at McMaster University (Hamilton, ON) generously provided the 

peGFP-C1 (Clontech) and pCDNA3.1-hSR-AI plasmids used in this study. MARCO rainbow 

trout primers were designed from the predicted salmon MARCO mRNA sequence (accession 

number XM_014173984.1) using NCBI primer BLAST. Primer sets used to amplify the full-

length sequence of both variants using the protocol described in 3.3.4. Products were sequenced 

at the Guelph Molecular Services Molecular Biology Unit within Laboratory Services of the 

University of Guelph (Guelph, ON) and sequences were subsequently analyzed and used for 

cloning experiments. 

3.3.6 Sequence analysis 

 All sequence analysis was done on deduced rainbow trout amino acid sequences. Protein 

sequences from all species were found on NCBI. MARCO rainbow trout mRNA sequences were 

translated into protein sequences using the ExPASy translate tool 

(http://web.expasy.org/translate/). 

3.3.6.1 Bioinformatics analysis – amino acid sequence alignments 

 Amino acid sequence similarities between rainbow trout MARCO sequences and other 

species were compared using BLASTp from NCBI. The rainbow trout sequence was always used 

as the first query sequences for consistency. The pairwise alignment of rtMARCO-1 and 

rtMARCO-2 was constructed using EMBOSS Needle (EMBL-EBI). 

3.3.6.2 Bioinformatics analysis – conserved domains 

 The cytoplasmic and transmembrane domains were determined using TMHMM software 

(http://www.cbs.dtu.dk/services/TMHMM) (Whelan et al., 2012). Alpha-helical domains were 

identified using the PSIPRED protein sequence analysis workbench 

(http://bioinf.cs.ucl.ac.uk/psipred/) (Whelan et al., 2012). The collagenous and SRCR domains 
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were determined using NCBI's CDD (http://www-ncbi-nlm-nih-

gov.proxy.lib.uwaterloo.ca/Structure/cdd/wrpsb.cgi; E value ≤ 0.01 (Whelan et al., 2012). The 

protein representations were made using IBS (Illustrator for Biological Sequences; 

http://ibs.biocuckoo.org/; Liu et al., 2015). 

3.3.6.3 Bioinformatics analysis – phylogenetic analysis 

 A phylogenetic tree was constructed with MEGA7 software (Kumar et al., 2016) using 

the Neighbor-Joining method based on the amino acid alignment (ClustalW) of full-length 

MARCO proteins from representative species. The sum of branch length is 7.435. The values 

next to the branches indicated the confidence probability that the interior branch length is greater 

than 0 was estimated using the bootstrap test based on 1000 replicates. The evolutionary 

distances as calculated using the Poisson correction method are provided and presented in units 

of number of amino acid substitutions/site. Gaps were treated with pairwise deletion and the rate 

of evolution among sites was considered uniform. SCARA3 and SCARA5 sequences from other 

fish species were included as non-MARCO SR-A controls. 

3.3.7 GFP labeled rtMARCO-1, -2, rtMARCO-1(ΔSRCR), rtMARCO-2(ΔSRCR), hSR-AI vector 

construction 

 pEGFP-C1-rtMARCO-1, pEGFP-C1-rtMARCO-2, pEGFP-C1-rtMARCO-1(ΔSRCR) 

and pEGFP-rtMARCO-2(ΔSRCR) were generated by amplifying the appropriate sequence by 

PCR using cDNA from RTS-11 and primers described in Table 3.1 pEGFP-C1-hSR-AI was PCR 

amplified using pCDNA3.1-hSR-AI as a template and primers described in Table 3.1 

(100ng/reaction). 60 µL reactions were set up using Phusion High-Fidelity DNA polymerase 

(Thermo Scientific) as described in section 3.3.2. A T100 thermocycler (Bio-Rad) was used with 

the following conditions: 98 °C for 30s followed by 30 cycles of 98 °C for 10s, 72 °C for 15s, 

TA (Table 3.1) with an annealing time of 30s/kb, followed by a final elongation of 72 °C for 
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10min and products were held at 4 °C. PCR products were purified using the MinElute PCR 

purification kit (Qiagen). A double-digest of 1 µg of PCR product and 1 µg of peGFP-C1 plasmid 

was performed using 10U of EcoRI (Roche) and 10U of XhoI (Roche) with 1X SureCut buffer 

H (Roche) in a total volume of 50 µL. PCR products and plasmid were then purified using the 

MinElute PCR purification kit (Qiagen). Ligation reactions included 50 ng of peGFP-C1 plasmid 

with a 1:5 ratio of insert and were combined in a 10 µL reaction with 1 µL of T4 Ligase (NEB) 

and 1X T4 ligation buffer (NEB). Ligations were left overnight at 4 °C and then warmed to room 

temperature for 15min prior to transformation. Competent JM109 (Promega) cells were 

transformed with 25 ng of plasmid/insert as per manufacturer’s instructions and plated on LB-

agar plates with 100 µg/mL kanamycin (Fisher Scientific). Colonies were grown overnight in 

6 mL of LB-broth containing 100 µg/mL kanamycin at 37 °C with shaking at 220 rpm in a MaxQ-

4000 orbital bench top incubator and shaker. Plasmids were purified using the GenElute Plasmid 

Miniprep Kit (Sigma) and vectors were to Guelph Molecular Services Molecular Biology Unit 

within Laboratory Services of the University of Guelph (Guelph, ON) for sequencing to confirm 

insert sequence and orientation. 

3.3.8 rtMARCO and hSR-AI protein overexpression and ligand binding in CHSE-214 

3.3.8.1 CHSE-214 transfection 

 CHSE-214 cells were seeded at 2 × 105 cells/well in a 12-well tissue culture plate (Fisher 

Scientific). After attaching overnight cells were rinsed one time with PBS and transfected using 

Fugene6 (Promega). Cells were transfected with 250 ng of plasmid/well at a ratio of 1.5 µL of 

Fugene6 to 1 µg of plasmid. Initial incubation of plasmid and Fugene6 was done in L-15 

(50 µL/µg of plasmid), and the resulting transfection mixture was added to 500 µL L-15 

containing 10% (v/v) FBS, but no antibiotics. After 24 h an addition 500 µL of 10% FBS media 

was added to the cells. The transfection efficiencies (TE) used in the present study were 5–20% 
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for all GFP-containing vectors transfected into CHSE-214. The transfection conditions were 

conducted to create low TEs to facilitate isolation of single transfected cells for imaging. 

3.3.8.2 Ligand binding assay 

 At 36 h post-transfection, cells were treated with 500 µL L-15 containing the following 

ligands for 6 h: E. coli (10 µg), S. aureus (10 µg), V. anguillarum (5.95 × 108 CFU), zymosan 

(20 µg). For blocking experiments with HMW poly I:C, cells were pretreated with a 100 µg 

HMW poly I:C in 500 µL L-15 for 30min prior to the addition of 10 µg E. coli for 3 h; control 

cells were treated the same without the addition of HMW poly I:C. After incubation with the 

ligand-containing media, media was removed and cells were rinsed 3x with PBS, fixed with 10% 

neutral-buffered formalin for 10min, stained with 10 µg/mL 4′,6-diamidino-2-phenylindole 

(DAPI) (Fisher Scientific) in PBS, and mounted on slides with SlowFade Gold mounting 

medium (Fisher Scientific). In the case of V. anguillarum the cells were not counterstained with 

DAPI, as it would interfere with visualization of the bacteria. Cells were left overnight for the 

mounting media to cure and imaged on a Nikon Eclipse Ti-S fluorescence microscope and 

analyzed using NIS-Elements software. 

3.4 Results 

3.4.1 Rainbow trout express 2 variants of MARCO 

Two MARCO transcripts were identified in rainbow trout, rtMARCO-1 (accession: 

KX452014.1) and rtMARCO-2 (accession: KY682703.1; Fig. 3.1), whose expression was 

confirmed in RTS11 (data not shown) using the MARCO fragment primers (Table 3.1). Both 

rtMARCO-1 and rtMARCO-2 have consensus sequences shared with other fish MARCO 

sequences, specifically the RGR VEV and the WGT CDD sequences (bolded in Fig. 3.1), as well 

as six cysteine residues within the SRCR (highlighted in Fig. 3.1; Yap et al., 2015; He et al., 

2014; Feng et al., 2016; Qiu et al., 2013). When compared to other species, including six species 



 
58 

of fish, the only sequences that showed high levels of similarity were to the predicted Atlantic 

salmon (Salmo salar) sequences (Table 3.2). The variant sequences vary in length; however, 

both sequences have all major domains, including a cytoplasmic, transmembrane, α-helical, 

collagenous and a SRCR (Fig. 3.2A). The variants have small differences in the lengths of their 

conserved domains (Fig. 3.2A). Using phylogenetic tree analysis (Fig. 3.2B), fish MARCO 

sequences clustered with high confidence, and between fish, salmonid MARCO sequences from 

Atlantic salmon and rainbow trout also clustered together with high confidence. Avian/reptile 

and mammalian cDNAs each formed their own distinct clusters respectively. Fish SCARA3 and 

SCARA5 formed individual clusters, separate from MARCO. 

 
 
Figure 3.1. Comparison of the amino acid sequence of rainbow trout MARCO variants 
rtMARCO-1 and -2. Amino acid sequences were deduced using ExPASy and sequences were 
aligned using EMBOSS Needle pairwise sequence alignment. Approximate location of the 
fragment primers (Table 3.1) F1, F2, and R are shown with arrows to demonstrate that different 
sized products would be created by F1/R and F2/R primer sets for different variants; the F1 
primer produced a product for variant 1 and F2 produced a product for variant 2. Conserved 
cysteine residues are highlighted in grey. 
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Table 3.2. Amino acid sequence similarities between Oncorhynchus mykiss rtMARCO-1 and -2 
sequences and other species. Amino acid query cover and identity values were determined using 
BLASTp. Accession numbers for the protein sequences are listed; *Atlantic salmon sequences 
are predicted. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rainbow trout (Oncorhynchus mykiss) 
MARCO-1 

Rainbow trout (Oncorhynchus mykiss) 
MARCO-2 

Query cover 
(%) Identity (%) E value Query cover 

(%) Identity (%) E value 

Atlantic salmon (Salmo salar) X1* 
XP_014020233.1 100 87 0 100 73 0 

Atlantic salmon (Salmo salar) X3*  
XP_014020235.1 100 85 0 100 72 0 

Yellow croaker (Larimichthys crocea) 
AHY18726.1 100 49 2e-110 100 49 2e-110 

Red drum (Sciaenops ocellatus) 
AGH27725.1 100 48 6e-110 100 47 5e-114 

Common carp (Cyprinus carpio) 
LC107820.1 94 38 3e-81 94 37 3e-76 

Zebrafish (Danio rerio)  
AII73713.1 100 38 6e-82 100 37 1e-80 

American alligator (Alligator mississippiensis) 
KYO18128.1 90 44 2e-55 89 44 2e-54 

House mouse (Mus musculus) 
AAA68638.1 92 32 1e-58 92 33 8e-55 

Human (Homo sapiens)  
NP_006761.1 96 42 4e-63 93 32 2e-55 
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Figure 3.2. The protein domain architecture of rainbow trout (Oncorhynchus mykiss) 
rtMARCO-1 and -2 and phylogenetic analysis illustrating the relationship between the 
novel fish MARCO sequences and other fish, reptile, avian and mammalian species.  
(A) Structures are scaled based on the length of each domain, total amino acids in each protein 
sequence is indicated by the number at the end of each protein. The cytoplasmic and 
transmembrane domains were determined using TMHMM software. α-helical domains were 
identified using the PSIPRED protein sequence analysis workbench. The collagenous and 
scavenger receptor cysteine-rich (SRCR) domains were determined using NCBI's Conserved 
Domain Database (CDD). (B) The phylogenetic tree was constructed with the MEGA7 software 
using the neighbor-joining method based on amino acid alignment (ClustalW) of full-length 
proteins. Numbers beside the internal branches indicate bootstrap values based on 500 
replications. 0.20 scale indicates the genetic distance. *indicates protein is predicted. Accession 
numbers are as follows: MARCO sequences: Atlantic salmon (Salmo salar) X1-
XP_014020233.1; Atlantic salmon (Salmo salar) X3-XP_014020235.1; Yellow croaker 
(Larimichthys crocea)-AHY18726.1; Red drum (Sciaenops ocellatus) AGH27725.1; Common 
carp (Cyprinus carpio) LC107820.1; Zebrafish (Danio rerio) AII73713.1; American alligator 
(Alligator mississippiensis) KYO18128.1; House mouse (Mus musculus) AAA68638.1; Human 
(Homo sapiens) NP_006761.1; Asian arowana (Scleropages formosus) XM_018732274.1; Red-
bellied piranha (Pygocentrus nattereri) XP_017547716.1; Red jungle fowl (Gallus gallus) 
NP_990067.1; Wild boar (Sus scrofa) AEX66158.1; Brown rat (Rattus norvegicus) 
NP_001102481.1; Common marmoset (Callithrix jacchus) XP_002749572.1; SCARA5 
sequences: Yellow croaker AHY18728.1; Zebrafish NP_001025361.1; Common carp 
BAU33576.1; SCARA3 sequences: Yellow croaker AHY18727.1; Common carp BAU33572.1. 
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3.4.2 CHSE-214 overexpressing SR-A express altered morphology 

As mentioned in the introduction, CHSE-214 cells were used in this study to monitor 

MARCO function as this cell line has been shown previously to be unable to bind an SR-A ligand 

(Jensen et al., 2002) and thus we hypothesized may be negative for functional SR-As. Most cell 

lines express one to many functional SR-As, and background ligand binding makes it very 

difficult to determine the role of a single SR-A. In control cultures, without MARCO over 

expression, CHSE-214 had very low to no background ligand binding, making it an ideal cell 

line for this study. Human SR-AI (hSR-AI) was used as a positive control for bacterial and 

dsRNA binding (Limmon et al., 2008; Peiser et al., 2000). CHSE-214 cells expressing either 

hSR-AI or rtMARCO-1/-2, or rtMARCO-1(ΔSRCR)/-2(ΔSRCR) occasionally showed a 

distinctly altered morphology that was drastically different than cells expressing the control GFP 

plasmid alone. This morphology was less evident in cells overexpressing the mutant MARCO 

sequences compared to wildtype (data not shown). The morphology caused the formation of 

plasma membrane processes, as well as dendritic projection-like structures (Fig. 3.3). It should 

be noted not every cell expressing an SR-A showed this extreme appearance, however all did 

have an altered membrane appearance; often these structures were only visible when the 

exposure time was increased causing overexposure of the body of the cells. 
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Figure 3.3. Morphological changes induced in CHSE-214 by transfection with GFP-tagged 
rtMARCO-1, rtMARCO-2 and hSR-AI. CHSE-214 cells were transfected with peGFP-C1 
plasmid alone or peGFP-C1 plasmid containing either rtMARCO-1 or -2 sequence or hSR-AI 
sequence. Three days post-transfection cells were fixed, mounted, and viewed for changes in 
morphology. Magnification 400x.  
 
3.4.3 Both MARCO variants bind bacteria via their SRCR domains 

rtMARCO-1 and -2 showed the same ligand binding profile; both were able to bind to 

human pathogenic bacteria, including: gram-negative bacteria (E. coli) and gram-positive 

bacteria (S. aureus; Fig. 3.4). CHSE-214 cells expressing empty vector (peGFP-C1) did not bind 

bacteria. CHSE-214 cells overexpressing rtMARCO-1 and -2 also bound the fish bacterial 

pathogen, Vibrio anguillarum. Empty vector expressing control cells did not bind 

V. anguillarum, demonstrating specificity for the receptor (Fig. 3.5). This binding appears to be 

via the SRCR domain, as both rtMARCO-1(ΔSRCR) and −2(ΔSRCR) lost the ability to bind 

E.coli, S. aureus, and V. anguillarum compared to wildtype (Fig. 3.4 and 3.5).  

rtMARCO-1	 rtMARCO-2	

hSR-AI	peGFP-C1	
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Figure 3.4. Rainbow trout rtMARCO-1 and rtMARCO-2 bind to human gram-negative 
and gram-positive bacteria through the SRCR domain. CHSE-214 cells were transfected 
with peGFP-C1 plasmid alone or peGFP-C1 plasmid containing the sequences of full-length 
rtMARCO-1, rtMARCO-2 or the truncated mutants lacking the scavenger receptor cysteine-rich 
(SRCR) domain. rtMARCO-1-ΔSRCR, rtMARCO-2ΔSRCR. Three days post-transfection cells 
were treated with 20 µg/mL of Alexa Fluor 594 labeled heat killed (A)Escherichia coli or 
(B)Staphylococcus aureus for 6 h. MARCO protein (green), bacteria (red), nuclei were 
counterstained with DAPI (blue). Magnification 400×.  
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Figure 3.5. Rainbow trout rtMARCO-1 and rtMARCO-2 bind to fish pathogenic gram-
negative bacteria through the SRCR domain. CHSE-214 cells were transfected with peGFP-
C1 plasmid alone or peGFP-C1 plasmid containing the sequences of full-length rtMARCO-1, 
rtMARCO-2 or the truncated mutants lacking the scavenger receptor cysteine-rich (SRCR) 
domain: rtMARCO-1-ΔSRCR, rtMARCO-2ΔSRCR. Three days post-transfection cells were 
treated with Live-or-Dye labeled Vibrio anguillarum (5.95 × 108 CFU) for 6 h. MARCO protein 
(green), bacteria (blue). Magnification 400×.  
 
3.4.4 rtMARCO do not appear to bind yeast and viral PAMPs 

 Neither rtMARCO-1 nor −2 were able to bind zymosan or dsRNA at levels detectable by 

fluorescence microscopy (Figs. 3.6 and 3.7A). Zymosan was able to bind the rainbow trout 

monocyte/macrophage cell line RTS-11, thus acting as a positive control for visualizing cell-

associated zymosan in our system (data not shown). hSRA-I has previously been suggested to 

bind dsRNA, thus acting as a positive control for binding exogenous dsRNA in our system 

(Limmon et al., 2008, Fig. 3.7A). DsRNA was unable to block E.coli binding to rtMARCO-1 or 

-2 but did block binding by hSRA-I (Fig. 3.7B). 
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Figure 3.6. Rainbow trout rtMARCO-1 and rtMARCO-2 do not bind to the yeast cell wall 
component zymosan. CHSE-214 cells were transfected with peGFP-C1 plasmid alone or 
peGFP-C1 plasmid containing rtMARCO-1 or rtMARCO-2 sequences. Three days post-
transfection cells were treated with 40 µg/mL of Alexa Fluor 594 labeled zymosan for 6 h. 
MARCO protein (green), zymosan (red), nuclei were counterstained with DAPI (blue). A control 
cell line (RTS-11) that binds zymosan was used as a positive control for visualization of zymosan 
(not shown). Magnification 400×.  
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Figure 3.7. Rainbow trout rtMARCO-1 and rtMARCO-2 do not bind the synthetic dsRNA 
poly I:C but human SRA-I does. CHSE-214 cells were transfected with peGFP-C1 plasmid 
alone or peGFP-C1 plasmid containing rtMARCO-1 or rtMARCO-2 sequences. Three days post-
transfection cells were treated for analysis. (A) Transfected cells were treated with 1 µg/mL of 
Alexa Fluor 546 labeled high molecular weight poly I:C (HMW) for 6 h. Cells expressing a 
MARCO protein or the eGFP control (green) did not show any association with dsRNA (red); 
however cells expressing human SR-AI (hSR-AI) showed robust binding to HMW. (B) Cells 
were pretreated with 200 µg/mL HMW for 30min, followed by treatment with 20 µg/mL Alexa 
Fluor 594 labeled heat killed Escherichia coli for 3 h. Nuclei were counterstained with DAPI 
(blue). Magnification 400×.  
 
3.5 Discussion 

In this study two rainbow trout MARCO sequences have been identified and analyzed 

and their ligand binding capabilities were explored. This is not the first report of multiple variants 

for MARCO in fish. Common carp (Cyprinus carpio) also possess two copies of MARCO (also 

known as SCARA 2; Feng et al., 2016). When comparing MARCO sequences between fish, the 

sequences had only moderate similarities; however, the conserved domains necessary for 

function appear to be present in rainbow trout (Fig. 3.2). Of particular importance is the presence 

of the SRCR in both sequences, as this sequence is believed to be vital for ligand binding in 

mammalian MARCO receptors (Elomaa et al., 1998; van der Laan et al., 1999). Both sequences 
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had similar domain architecture and had conserved amino acid residues found across species 

(Fig. 3.2; Qiu et al., 2013; Yap et al., 2015). 

GFP labeled rtMARCO-1 and -2 were overexpressed in CHSE-214 cells, a cell line that 

is hypothesized to be defective for SR-As as it is unable to respond to extracellular dsRNA 

(Jensen et al., 2002). Very low background bacterial binding in CHSE-214 cells observed in the 

present study substantiates this hypothesis. Following overexpression of rtMARCO-1 and -2 it 

was observed by fluorescence microscopy that some cells demonstrated a perinuclear halo of 

intense green in addition to a widespread green found throughout the cell, this staining was 

commented on in a study of SCARA5 (Jiang et al., 2006) and is visible in other MARCO 

overexpression studies (Hirano et al., 2012) but seldom noted. This staining suggests a 

localization of the protein to the trans-Golgi network (Jiang et al., 2006). 

Another notable change was in the morphology of some cells transfected with SR-A 

containing peGFP-C1 plasmids (Fig. 3.3). While not evident in every transfected cell, many cells 

transfected with rtMARCO-1, rtMARCO-2, or hSR-AI demonstrated long, filamentous 

projections. Dendritic-like plasma membrane formations were also observed in studies 

overexpressing MARCO in a variety of cultured mammalian cells (Pikkarainen et al., 1999; 

Hirano et al., 2012; Novakowski et al., 2016; Granucci et al., 2003; Grolleau et al., 2003, Ohtani 

et al., 1999). Why this rearrangement of the membrane occurs is not well understood. MARCO 

was essential for murine dendritic cell morphological changes mediated by actin during the 

process of activation (Granucci et al., 2003; Grolleau et al., 2003). Pikkarainen and colleagues 

found that Rac1 but not cdc42 was involved in MARCO-mediated actin reassembly (Pikkarainen 

et al., 1999), demonstrating this change in morphology is an active process triggered by signaling 

cascades within the cell. Thus in the present study, ligand binding as well as intracellular 
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signaling cascades triggered by rainbow trout MARCO might be conserved when over-expressed 

in CHSE-214 cells. 

Interestingly, similar to what was observed in the present study, previous work with 

murine and human MARCO demonstrated that the SRCR domain (domain V) of MARCO was 

important for its induced morphological changes (Pikkarainen et al., 1999; Novakowski et al., 

2016). Cells over expressing rtMARCO-1(ΔSRCR) and rtMARCO-2(ΔSRCR) did show 

reduced production of long filaments; however, short projections were still evident (Figs. 3.4 and 

3.5). While this observation may suggest rainbow trout MARCO could play a role in cell 

membrane morphology, more research into this area is needed. 

In fish, MARCO expression is upregulated in response to bacterial infection in common 

carp, red drum, and yellow croaker; this suggests they may play a role in bacterial recognition 

(Feng et al., 2016; He et al., 2014). A recombinant SRCR domain from a red drum MARCO-

like protein was created and bound gram-negative and gram-positive aquatic bacteria (Qiu et al., 

2013). In the present study, both rainbow trout MARCO variants bound robustly to human 

pathogenic gram-positive and gram-negative bacteria, as well as a fish pathogenic gram-negative 

bacterium (Figs. 3.4 and 3.5). These results align well with human MARCO, which can also bind 

E. coli and S. aureus (Arredouani et al., 2005). It is unsurprising rainbow trout MARCO variants 

play a role in binding to bacteria as this is a main role of MARCO in other species; it's importance 

is evident for example in MARCO −/− mice who have an impaired ability to clear S. pneumoniae 

from their lungs (Arredouani et al., 2004). MARCO also plays a role in controlling 

mycobacterium growth in zebrafish; morpholino knockdown of MARCO showed MARCO was 

required for phagocytosis of M. marinum after infection and this resulted in increased bacterial 

growth (Benard et al., 2014). Mammalian MARCO receptors bind to the bacterial cell wall 
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components LPS and LTA; however, gram-negative bacteria such as a Neisseria meningitides 

mutant strain that lacks lipid A are also bound by SR-A and MARCO (Mukhopadhyay et al., 

2006). This suggests that there are other bacterial component ligands for scavenger receptors 

outside of the classic LTA and LPS, this area of study requires further research in both fish and 

mammals. Indeed, the importance of this receptor in fish bacterial pathogenesis is just beginning 

to be elucidated. 

In mammals the SRCR domain of MARCO is the site of bacterial binding (Elomaa et al., 

1998; van der Laan et al., 1999). A naturally occurring variant of MARCO (MARCO II) that is 

missing the SRCR domain acts as a dominant-negative interfering with MARCO function 

(Novakowski et al., 2016). The SRCR appears to be mediating ligand binding in rainbow trout 

as well; rtMARCO-1(ΔSRCR) and rtMARCO-2(ΔSRCR) where the SRCR domain was 

removed lost their ability to bind both E.coli, S. aureus, and V. anguillarum compared to their 

wildtype counterparts (Figs. 3.4 and 3.5). Although this data suggests that the SRCR is vital for 

binding bacteria via rainbow trout MARCO, the possibility cannot be ruled out that the SRCR is 

also important for protein folding or localization and the loss of receptor binding is the result of 

receptor misfolding or localization to the cell surface. Clearly further studies are necessary to 

clearly delineate a role for SRCR specifically in bacterial binding; regardless, it is likely that 

rtMARCO plays an important role in innate immune sensing of bacteria in rainbow trout. 

 rtMARCO-1 and -2's ability to bind zyomsan, a fungal cell wall component, was also 

tested. Zymosan was chosen for testing as a putative ligand for rtMARCO because it was tested 

as a ligand for human MARCO but appeared not to bind; however, zymosan was a ligand for 

zebrafish SCARA4 (Fukuda et al., 2011; Jang et al., 2009; Elomaa et al., 1998). In mammals, 

SCARA4's collagenous domain is necessary for binding bacteria or zymosan (Mori et al., 2014), 
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a domain also present in MARCO, as such we tested rtMARCO-1 and -2 for any zymosan 

binding capabilities and none was detected. 

SR-As in mammals are key sensors for the innate antiviral immune response, being able 

to bind double-stranded (ds)RNA, a viral replicative product (DeWitte-Orr et al., 2010; Mian 

et al., 2013; Limmon et al., 2008). And while the role for MARCO specifically in binding dsRNA 

is not delineated in any species, red drum MARCO expression was upregulated by viral infection 

(Qiu et al., 2013). Thus it was possible that rtMARCO was involved in antiviral as well as 

antibacterial defense. This hypothesis was tested by observing rtMARCO-1 and -2's ability to 

bind poly I:C, a synthetic dsRNA. hSR-AI was included as a positive control, as hSR-AI was 

suggested to be the surface receptor for extracellular dsRNA in human epithelial cells (Limmon 

et al., 2008). Indeed in the present study fluorescently labeled high molecular weight (HMW) 

poly I:C bound hSR-AI overexpressing CHSE-214 cells (Fig. 3.7A). Pretreating cells with poly 

I:C prior to treatment with E.coli blocked bacterial binding, suggesting both ligands bind the 

same receptor at the same domain (Fig. 3.7B). These observations were not the same for 

rtMARCO where neither variant bound fluorescently labeled poly I:C nor could poly I:C block 

bacterial binding. Taken together these results suggest rainbow trout MARCO may not be 

involved in binding of dsRNA, or not with high enough affinity to be detected by fluorescence 

microscopy. It is also possible the GFP-tag that has been added to the protein is somehow 

interfering with dsRNA binding but not bacterial ligands. Further studies are underway to explore 

other candidate SR-As in rainbow trout for their role in dsRNA binding. 

3.6 Conclusions 

Class A scavenger receptors play in important role in innate immunity, with both 

bacterial, fungal and viral detection. The present study identifies two variants of MARCO, an 

SR-A family member, and characterizes its ability to bind bacteria but not viral or yeast 
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pathogen-associated molecular patterns (PAMPs). These findings are important for 

understanding pathogen-host interactions in fish. As well, MARCO in mammals functions as a 

co-receptor for other signaling pattern recognition receptors, such as the toll like receptors 

(Dorrington et al., 2013). Whether rtMARCO functions similarly has yet to be determined, but 

would broaden its capabilities within the innate immune detection system. Clearly further 

research is warranted to better understand MARCO in fish and its role as an innate immune 

sensor. 
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4.1 Overview 

Class A scavenger receptors (SR-As) are a family of five surface receptors whose 

functions in mammals are associated with innate immunity; however, their role in fish immunity 

requires further elucidation. The present study identifies, performs sequence analysis, and 

constitutive transcript expression analysis for three SR-A family members, SCARA3, SCARA4 

and SCARA5, from rainbow trout. This work will provide a basis for future studies on SR-A 

function and their role in innate immunity in this economically important fish.  
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4.2 Short Communication 

 Class A scavenger receptors (SR-As) are a family of five cell surface receptors, including: 

scavenger receptor class A I/II (SRAI/II), macrophage receptor with collagenous structure 

(MARCO), class A scavenger receptor (SCARA) member 3 (SCARA3), member 4 (SCARA4), 

and member 5 (SCARA5) (Whelan et al., 2012). In mammals, SR-As play important roles in 

macrophage-mediated clearance of pathogens (van der Laan et al., 1999), atherosclerosis (Moore 

et al., 2006), uptake of apoptotic cells (Platt et al., 1996), as innate immune sensors (DeWitte-

Orr et al., 2009) and as surface receptors mediating virus entry (MacLeod et al., 2015). 

Mammalian SR-As are able to sense both endogenous ligands, such as modified low-density 

lipoproteins, and pathogen-associated molecular patterns, such as lipopolysaccharide (LPS) and 

double-stranded (ds) RNA (Limmon et al., 2008; Peiser et al., 2002). Different SR-As bind to 

their own set of ligands, with both overlap and exclusivity between them. For example, in 

mammals all SR-As, with the exception of SCARA3, bind bacteria, whereas only SCARA4 has 

been shown to bind to the yeast cell wall component zymosan (Jang et al., 2009; Whelan et al., 

2012).  

 To date, SR-As have been identified in several fish species, including: large yellow 

croaker (Larimichthys crocea), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis), 

common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus) (Feng et al., 2016; 

Fukuda et al., 2011; Guo et al., 2016; He et al., 2014). In rainbow trout (Oncorhynchus mykiss) 

a partial SCARA4 and two full-length MARCO sequences have been identified, but no verified 

full-length salmonid SR-A sequences are available for SCARA3, SCARA4, or SCARA5 

(Poynter et al., 2015; Poynter et al., 2017). In addition to identifying novel SR-As in fish, the 

cognate ligands of SR- As and downstream functions in fish still require elucidation. In zebrafish, 

SCARA5 bound LPS, MARCO was required for phagocytosis of a mycobacterium, and 



 
75 

SCARA4 bound to zymosan and S. aureus but failed to bind to E. coli. SCARA4's binding 

pattern was different in mammals, where SCARA4 bound zymosan, S. aureus and E. coli 

(Benard et al., 2014; Fukuda et al., 2011; Jang et al., 2009; Meng et al., 2012).  

 In rainbow trout, scavenger receptor ligands were found to bind to two epithelial cell 

lines that expressed a partial sequence of SCARA4 (Poynter et al., 2015). Two variants of 

rainbow trout MARCO were identified and found to bind to two gram-negative and one gram-

positive bacteria, but did not bind to dsRNA or zymosan (Poynter et al., 2017). To date, identified 

SR-A functions in fish include: innate immune modulation (Guo et al., 2016; Meng et al., 2012), 

pathogen clearance (Benard et al., 2014; Meng et al., 2012; Poynter et al., 2017; Qiu et al., 2013), 

and expression on the surface of nonspecific cytotoxic cells (Kaur et al., 2003). Cumulatively, 

these studies support the role of SR-As in the immune response, and suggest there are differences 

between fish and mammalian receptors. In the present study, we have identified the full coding 

sequence (CDS) of three scavenger receptors in rainbow trout, SCARA3 (accession: 

MF664681.1), SCARA4 (accession: MF664680.1), and SCARA5 (accession: KX452177.2). We 

have analyzed the deduced proteins, and looked at their constitutive expression in a panel of 

tissues isolated from healthy rainbow trout. This work lays the foundation for future functional 

studies to be performed and therefore contribute to a better understanding of the role of SR-As 

in teleost fish.  

 To identify the full-length rainbow trout SCARA3 and SCARA4 sequences, primers 

were designed based on the predicted sequences previously published on NCBI, 

XM_021611973.1 and XM_021562976, respectively. SCARA5 degenerate primers were 

designed based on consensus sequences between an unnamed rainbow trout sequence 

(CDQ63372.1), zebrafish and yellow croaker SCARA5 sequences (NM_001030190.1 and 
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NM_001303324.1). RNA was extracted from unstimulated RTgill-W1 (SCARA5) and RTG-2 

(SCARA3 and SCARA4) cells, grown as previously described (Poynter and DeWitte-Orr, 2015; 

Poynter et al., 2015), using TRIzol (Life Technologies, Carlsbad CA, USA) as per manufacturers' 

instructions and RNA was treated with a DNA-free DNA removal kit (Fisher Scientific, Waltham 

MA, USA). PCR reactions were performed using Phusion Hot Start II High-Fidelity DNA 

Polymerase (Thermo Fisher Scientific, Waltham MA, USA) as previously described (Poynter et 

al., 2017). The PCR reactions were conducted in a T100 Thermal Cycler (Bio-Rad) at the 

following cycle conditions for SCARA5: 98°C for 30 s, 33 cycles of: 98°C for 7 s, 64°C for 20 

s, 72°C for 1 min, 72°C for 10 min and the reaction was held indefinitely at 4°C. The following 

cycle conditions were used for SCARA3 and SCARA4: 98°C for 30 s, 34 cycles of: 98°C for 5 

s, Ta (see Table 4.1) for 10s, 72°C for 1 min, 72°C for 10 min and the reaction was held 

indefinitely at 4°C. Resultant amplicons were purified using QIAquick Gel Extraction Kit 

(Qiagen, Hilden, Germany); products with the start or end of the CDS were cloned into pGEM 

T-easy vectors for sequencing after addition of A overhangs using GoTaq Flexi (Promega). To 

confirm their identity, PCR products or plasmids were sent to Laboratory Services (University 

of Guelph, Guelph ON, Canada) for sequence analysis. SCARA5 was sequenced in full; 

SCARA3 and SCARA4 were sequenced in overlapping fragments that were then assembled in 

silico to produce the full CDS. 
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Table 4.1. Primers used for qRT-PCR and sequencing. The forward (F) and reverse (R) primers 
presented in 5′-3′ direction, amplicon size, and annealing temperature for primers used in this 
study. SCARA5 was sequenced in full using a single set of primers; SCARA3 and SCARA4 
were sequenced from overlapping fragments (using F1/R1 and F2/R2 primer combinations).  

 

The resultant nucleotide sequence was translated into a deduced amino acid sequence 

using ExPASy (Artimo et al., 2012). The deduced protein sequences were aligned to other known 

published sequences using ClustalOmega; common domains were identified using SMART 

software (Feng et al,. 2016; Schultz et al., 1998) and figures were created using the IBS illustrator 

program (Liu et al,. 2015). All three scavenger receptor sequences contain a cytoplasmic and 

transmembrane domain, coiled-coil domain(s), and collagenous domains, as was expected based 

on sequences from other species, including human (Fig. 4.1A and B; Whelan et al., 2012). 

Domains were highlighted within the amino acid sequence and a moderate amount of conserved 

sequence was noted, with a high similarity between fish species (Fig. 1A). The EGRVEVFG and 

WGTVCDD sequences conserved amongst fish SCARA5 sequences were found in rtSCARA5 

(Yap et al., 2015; Fig. 4.1A). Rainbow trout SCARA3 terminated at its collagenous domain, 

Product Primer sequence (5’-3’) Product length Annealing 
Temperature (oC)

Sequencing

SCARA3F1/R1 F-ATGAAAGAAAGCTATTCTGG
R-CCACATCTAGACGGACGCTC 1243 53

SCARA3F2/R2 F-GTTGAGCGGTCTGAAGTCCA
R-TCAAGACACCGTGTCTGGGA 1033 65

SCARA4F1/R1 F-ATGCCCACAGACGATTTTGCAG
R-CTGACTCGTCCAGGCGTATC 1009 50

SCARA4F2/R2 F-CCGACTACCTGTCCGACTTG
R-CTGCATCGAGAAAGGGACCA 656 60

SCARA5F/R F-ATGGAGAATAGGGCGATGTA
R-TTAGGTGTTGCAGGTCACGC 1497 64

qRT-PCR

SCARA3 F-GAACCTGAACAACACGGTGC
R-CCACATCTAGACGGACGCTC 89 55

SCARA4 F-AGGACTCACTGCCCGATCT
R-GGCCTCACTCTGCATCGAG 70 55

SCARA5 F-CATGACCCGTATGGAGGACC
R-ACAGGCTCTCCAACTTCCAG 104 55

MARCO F-ACAAGGACGAGCTGGAACAC
R-TATCCCCCTTTGGTCCCTGT 92 55
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while SCARA4 ended in a C-type lectin domain and SCARA5 ended in the conserved scavenger 

receptor cysteine-rich (SRCR) domain. These findings are consistent within respective receptors 

from other species (Whelan et al., 2012). Nucleotide sequences were aligned with ClustalW 

(within Mega7) and used to create a phylogenetic tree using Mega7 (Fig. 4.2) (Kumar et al., 

2016); mosquito colmedin was included as an outgroup because it contains a transmembrane 

domain and multiple collagenous domains (Yap et al., 2015). The Neighbor-Joining method 

(Saitou and Nei, 1987) was used to predict a tree, a bootstrap test of 500 replicates was 

conducted, the percentage of replicate trees that taxa cluster together has been included next to 

branches (Felsenstein, 1985). Evolutionary distances were computed using p-distance method 

(Nei and Kumar, 2000) and units are number of base differences per site. Based on the 

phylogenetic analysis, each novel rainbow trout SR-A sequence clustered with high confidence 

with other fish sequences of each respective SR-A. These clusters were independent to those of 

mammalian SR-As (see Fig. 4.2).  
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Figure 4.1.  Rainbow trout scavenger receptor proteins have similar domains to other 
species. (A) The deduced rainbow trout SCARA3/4/5 sequences were aligned with known 
sequences from other fish and mammalian species. Only areas containing conserved domains are 
shown in this figure. Conserved domains were identified using SMART software and highlighted 
as followed: C-type lectin domain (grey background with white font), scavenger receptor 
cysteine rich domain (SRCR), (bolded), conserved cysteines (black background white font), 
SCARA5 EGRVEVYH and WGTVCDD motifs (grey background black font), collagenous 
domain (underlined), transmembrane region (italics). //indicates a break in the protein sequence. 
(B) A visual representation of the conserved domains within the rainbow trout and human 
scavenger receptor sequences; domains were identified with SMART software and the 
illustrations were created using IBS software. Length of protein in amino acids is provided at the 
end of each protein figure.  
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Figure 4.2. Phylogenetic tree analysis of rainbow trout scavenger receptor sequences. 
Nucleotide sequences were aligned with ClustalW (within Mega7) and used to create a 
phylogenetic tree using Mega7 with mosquito colmedin included as an outgroup. The Neighbor-
Joining method was used to predict a tree, a bootstrap test of 500 replicates was conducted. All 
sequences were found in the NCBI database and accession numbers can be found in 
Supplementary Table 4.S.1.  

 

SCARA3, SCARA4, and SCARA5 expression in healthy rainbow trout tissue was 

measured using qRT-PCR (Fig. 4.3). Tissue samples from four juvenile rainbow trout, between 
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75g and 210g, were added directly to TRIzol (50mg/mL) and homogenized using a manual 

homogenizer. RNA was extracted according to manufacturers' instructions and treated with a 

DNA-free DNA removal kit (Thermo Fisher Scientific). cDNA was synthesized using iScript 

reverse transcriptase (Bio-Rad) as previously described (Poynter and DeWitte-Orr, 2015). A no-

reverse transcriptase (NRT) control reaction was also included for each sample and was then 

checked via qRT-PCR. Any samples that showed a NRT peak was re-DNase treated as per 

manufacturers' instructions. SsoFast EvaGreen supermix (Bio-Rad) was used for all qPCR 

reactions; reactions were assembled and performed as previously described (Poynter and 

DeWitte-Orr, 2015), primers are listed in Table 4.1. Data were analyzed using a ΔΔCt method. 

Specifically, gene expression was normalized to the housekeeping gene (β-actin) and presented 

as relative to brain (SCARA3 and SCARA5) or spleen (SCARA4). Transcript data from the four 

different individual fish were pooled and the average expression levels were statistically 

analyzed using a one-way ANOVA and Tukey's post-hoc test using Kaleidagraph software with 

a 95% confidence interval (Synergy Software, Reading, PA, v4.1.0).  
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Figure 4.3. Constitutive expression of class A scavenger receptors at the transcript level in 
healthy rainbow trout tissue. Rainbow trout SCARA3, SCARA4, and SCARA5 expression in 
healthy, juvenile rainbow trout tissue samples. Data were analyzed using the ΔΔCt method. 
Specifically, gene expression was normalized to the housekeeping gene (β-actin) and presented 
as relative to brain (SCARA3 and SCARA5) or spleen (SCARA4). Samples were taken from 
four different individual fish, the data were averaged and statistically analyzed using a one-way 
ANOVA and Tukey's post-hoc test using Kaleidagraph software with a 95% confidence interval 
(Synergy Software, Reading, PA, v4.1.0).  
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 Tissue expression patterns appeared different between the SR-As; however the only 

statistically significant difference in expression was seen in the muscle, where SCARA3, 

SCARA4, and SCARA5 all showed high expression. This observation was similarly made in 

yellow croaker, where muscle demonstrated high expression of both SCARA3 and SCARA5 

(He et al., 2014). Although not statistically significant, there were other constitutive expression 

patterns observed in rainbow trout that were similar to those observed in yellow croaker for 

SCARA3 and SCARA5 (He et al., 2014). For example, gut and gill showed low expression for 

SCARA3 and SCARA5, and SCARA5 expression was higher than SCARA3 in the liver for both 

species (He et al., 2014). There were also differences observed between the present study in 

rainbow trout and the yellow croaker study. In yellow croaker SCARA3 expression was the 

lowest in the gill whereas in rainbow trout this was the case for head kidney (He et al., 2014).  

There was also greater expression in the spleen and head kidney in yellow croaker compared to 

other tissues, in rainbow trout spleen and head kidney showed low expression for SCARA3 and 

SCARA5 (He et al., 2014). It is unclear at present whether the differences observed at the 

transcript level have physiological implications.  

 Class A scavenger receptors play an important role in many functions, including 

maintaining homeostasis and innate immunity. Their identification in rainbow trout will allow 

for further study of their role in teleost fish.  
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4.3 Appendix  

Table 4.S.1 Supplementary data  
Sequence  Species name Accession number 
SCARA3   
Yellow croaker Larimichthys crocea NP_001290286.1 
Brown rat Rattus norvegicus NP_001102340.1 
House mouse Mus musculus NP_766192.1 
Common carp Cyprinus carpio BAU33572.1 
Channel catfish Ictalurus punctatus AHH37855.1 
Human 1 Homo sapiens   NP_057324.2 
Human 2 Homo sapiens NP_878185.1 
Common marmoset Callithrix jacchus JAB42881.1 
   
SCARA4   
Common carp 1 Cyprinus carpio BAU33574.1 
Common carp 2 Cyprinus carpio BAU33575.1 
House mouse Mus musculus NP_569716.2 
Human Homo sapiens NP569057.1 
Red junglefowl Gallus gallus NP_001034688.1 
Domestic cow Bos taurus NP_001095313.1 
Brown rat Rattus norvegicus NM_001025721.1 
Zebrafish Danio rerio NM_001122840.1 
   
SCARA5   
Human Homo sapiens AAH33153.1 
Domestic cow Bos taurus AAI42200.1 
House mouse 1 Mus musculus NP_083179.2 
House mouse 2 Mus musculus NP_001161790.1 
Yellow croaker Larimichthys crocea NP_001290253.1 
Zebrafish Danio rerio NP_001025361.1 
Brown rat Rattus norvegicus NP_001129327.1 
Common carp Cyprinus carpio BAU33576.1 
Greenspotted pufferfish Tetraodon nigroviridis JQ954963.1 
   
Colmedin   
Southern house mosquito Culex quinquefasciatus XM_001843280.1 
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5.1 Overview 

In mammals, the multi-functional DExH/D-box helicases, DDX3 and DHX9, are nucleic acid 

sensors with a role in antiviral immunity; their role in innate immunity in fish is not yet 

understood. In the present study, full-length DDX3 and DHX9 coding sequences were identified 

in rainbow trout (Oncorhynchus mykiss).  Bioinformatic analysis demonstrated both deduced 

proteins were similar to those of other species, with ~80% identity to other fish species and ~70-

75% identity to mammals, and both protein sequences had conserved domains found amongst 

all species.  Phylogenetic analysis revealed clustering of DDX3 and DHX9 with corresponding 

proteins from other fish.  Cellular localization of overexpressed DDX3 and DHX9 was 

performed using GFP-tagged proteins and endogenous DDX3 localization was measured using 

immunocytochemistry. In the rainbow trout gonadal cell line, RTG-2, DHX9 localized mostly 

to the nucleus, while DDX3 was found mainly in the cytoplasm.  Tissue distribution from healthy 

juvenile rainbow trout revealed ubiquitous constitutive expression, highest levels of DDX3 

expression were seen in the liver and DHX9 levels were fairly consistent among all tissues tested.  

Stimulation of RTG-2 cells revealed that DDX3 and DHX9 transcripts were both significantly 

upregulated by treatment with the dsRNA molecule, poly I:C.  A pull-down assay suggested both 

proteins were able to bind dsRNA.  The conserved common domains found between the rainbow 

trout proteins and other species with defined antiviral roles; combined with the ability for the 

proteins to bind to dsRNA, suggest these proteins may play an important role in fish innate 

antiviral immunity.  
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5.2 Introduction 

The DExD/H-box family of helicases includes a diverse array of proteins with 

multifunctional roles. Each DExD/H-box helicase contains a helicase motif II (DEAD, DEAH, 

DExD or DExH), as well as at least eight conserved motifs involved in adenosine triphosphate 

(ATP) binding and hydrolysis, nucleic acid binding, and RNA unwinding (Fullam and Schroder, 

2013). The DExD/H domain is well conserved from viruses and bacteria to mammals (Fuller-

Pace, 2006).  DExD/H-box helicases are involved in nearly all aspects of RNA-related cell 

processes including pre-mRNA splicing, mRNA export, and translation (Linder and Janowsky, 

2011; Tarn and Chang, 2009). In addition to roles in RNA metabolism, some DExD/H-box 

helicases play a role in the innate antiviral response, acting as sensors for viral nucleic acids 

and/or affecting downstream signaling events (Zhang et al., 2011; Kim et al., 2010; Miyashita et 

al., 2011).  Sensing viral nucleic acids is a key factor in host recognition of a viral infection; 

nucleic acids with unique defining features act as pathogen-associated molecular patterns 

(PAMPs) that are recognized by host-derived pattern recognition receptors (PRRs).  Long 

dsRNA produced during viral infection is one example of a nucleic acid PAMP, length is a 

distinguishing  feature to separate viral dsRNA from host dsRNA. PRRs can be found on the cell 

surface (ex. class A scavenger receptors), in the endosome (ex. toll-like receptors (TLR) TLR9 

or TLR3), or in the cytoplasm, (ex. RIG-I like receptors (RLRs) including RIG-I and MDA5; 

Takeuchi and Akira, 2010). MDA5 and RIG-I are DExD/H-box helicases that act as dsRNA 

sensors and play a pivotal role in activating signaling cascades, which culminate in the 

production of type I interferons (IFN) and the establishment of an antiviral state (Yoneyama et 

al., 2005). More recently, many other members of the DExD/H-box helicase family are now 

being recognized for their roles in nucleic acid sensing and mediating immune pathways 

(Sugimoto et al., 2014).                 
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The present study focused on two DExD/H-box helicases that are not part of the RLR 

family, DHX9 and DDX3, in rainbow trout (Oncorhynchus mykiss).  DDX3 plays an important 

role in nearly all aspects of RNA metabolism (Schröder et al., 2010).  In mammals DDX3 has 

two forms, DDX3X and DDX3Y, the genes encoding these proteins are found on the X and Y 

chromosomes respectively (Valiente-Echeverria et al., 2015).  DDX3X is widely expressed and 

has many roles including cell homeostasis, innate immunity, and viral replication; DDX3Y 

protein is only expressed in the male germline and plays a role in spermatogenesis (Ditton et al., 

2004).  For the remainder of this study DDX3X will simply be referred to as DDX3.  For host 

innate immunity, DDX3 increases type I IFN production by acting as a viral dsRNA sensor that 

associates with the adaptor protein IFN-β promoter stimulator 1 (IPS-1) to induce IFNs.  DDX3 

is also a transcriptional regulator that binds to the IFN-β promoter and enhances transcription 

(Schröder et al., 2008; Oshiumi et al., 2010A; Soulat et al., 2008).  DDX3 reduces influenza A 

replication via its role in stress granule formation (Raman et al., 2016).  In contrast to an antiviral 

function, DDX3 is also used by viruses to promote viral replication, as has been reported for 

hepatitis C virus, West Nile virus, and human immunodeficiency virus-1 (HIV-1; Ariumi et al., 

2007; Radi et al., 2012; Chahar et al, 2013).  

DHX9 (also known as Nuclear DNA helicase II (NDH II) or RNA helicase A (RHA)) 

has RNA, DNA, and triple-helical DNA structure helicase activity (Zhang and Grosse, 1994; 

Jain et al. 2010; Lee and Pelletier, 2016).  In mammals, DHX9 binds dsRNA and signals through 

IPS-1 to induce type I IFN (Desmet and Ishii, 2012; Zhang et al., 2011). DHX9 is also a substrate 

for phosphorylation by the dsRNA-receptor protein kinase R (PKR; Sadler et al., 2009). As with 

DDX3, in addition to its antiviral activity used by the host, many viruses actively recruit DHX9 

to enhance their replication. These viruses include: HIV-1, hepatitis C virus, cytomegalovirus, 
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adenovirus, hepatitis E, influenza A, classical swine fever virus, and foot and mouth disease virus 

(Lee and Pelletier, 2016).  

Very few studies have explored DHX9 or DDX3 in teleost fish.  DHX9 was identified in 

channel catfish (Ictalurus punctatus; Tian et al., 2017) and goldfish (Carassius auratus; Silva 

de Assis et al., 2013), neither study addressed a role for DHX9 in immunity.  DDX3 has been 

identified in goldfish (Silva de Assis et al., 2013), olive (Japanese) flounder (Paralichthys 

olivaceus; Wang et al., 2015), orange-spotted grouper (Epinephelus coioides; Liu et al., 2017), 

and zebrafish (Danio rerio; Pradhan et al., 2012). In the olive flounder two DDX3 genes were 

identified from the transcriptome, DDX3a and DDX3b (Wang et al., 2015).  Both genes were 

expressed in different proportions in a wide variety of tissues, and there were sex-dependent 

differences in expression, however unlike in mammals these variants are not sex-linked (Wang 

et al., 2015).  Zebrafish DDX3 had differential expression in fish treated with heat-killed 

Escherichia coli (Pradhan et al., 2012).  DDX3 from Epithelioma Papulosum Cyprini (EPC; a 

fathead minnow cell line), is a binding partner for the nonvirion (NV) proteins from two 

novirhabdoviruses, suggesting DDX3 plays an important role in either enhancing innate 

immunity or promoting virus replication in fish (Biacchesi et al., 2017). Additionally, 

overexpressed grouper DDX3 protected cells against grouper nervous necrosis virus but did not 

affect Singapore grouper iridovirus replication and was involved in enhancing IFN-related 

antiviral pathway components (Liu et al., 2017).  

In this study, sequences for DDX3 and DHX9 from rainbow trout were identified and 

bioinformatically analyzed. Endogenous expression levels of both transcripts were measured in 

both cell lines and tissues, and the effect of stimulation with the synthetic dsRNA, polyinosinic: 
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polycytidylic acid (poly I:C) was measured in RTG-2 cells. The ability for DDX3 and DHX9 to 

bind to dsRNA was explored using in vitro transcribed dsRNA.   

5.3 Materials and methods 

5.3.1 Cell culture 

 The rainbow trout gonad (RTG-2), rainbow trout gill (RTgill-W1), rainbow trout gut 

(RTgutGC), and epithelioma papulosum cyprini (EPC) cell lines were obtained from N. Bols 

(University of Waterloo; Fijan et al., 1983; Kawano et al., 2011; Bols et al., 1994; Wolf and 

Quimby, 1962).  Cell lines were grown in 75cm2 plastic tissue culture flasks (BD Falcon, 

Bedford, MA, USA) at 20oC (rainbow trout cells) and 25oC (EPC) in Leibovitz's L-15 media 

(HyClone, Logan, UT, USA) supplemented with 10% v/v fetal bovine serum (FBS; Fisher 

Scientific, Fair Lawn, NJ, USA), and 1% v/v penicillin/ streptomycin (P/S; 10 mg/mL 

streptomycin and 10000U/mL penicillin; Fisher Scientific).  

5.3.2 CDS Identification 

 Primers for the full-length coding sequences (CDS) of rainbow trout DDX3 and DHX9 

were designed. DDX3 primers were designed from an unnamed rainbow trout protein product 

(CDQ76520.1) which demonstrated similarity to olive flounder DDX3 variant 1 (AKS43549.1). 

The DHX9 primers were based on a predicted Atlantic salmon (Salmo salar) DHX9 sequence 

(XM_014190662.1).  DDX3 was amplified from start to stop codon using the predicted primers 

and DHX9 was sequenced in three overlapping fragments, Table 5.1.  RNA was extracted from 

RTG-2 cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and DNase treated using the 

TURBO DNA-free kit (Fisher Scientific).  cDNA was synthesized as per manufacturers’ 

instructions using iScript Reverse Transcriptase Supermix (Bio-Rad, Hercules, CA, USA), 1µg 

of RNA/20µL reaction.  PCR reactions were performed using Phusion High-Fidelity 2x master 

mix (ThermoFisher Scientific), 0.5µM forward primer, 0.5µM reverse primer, 2µL of cDNA and 
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nuclease-free water (Fisher Scientific) to a total volume of 20µL.  The following protocol was 

completed in a T100 Bio-Rad thermocycler: 98oC - 30s, 29 cycles of 98oC - 10s, Ta (Table 5.1) 

- 10s, 72oC - 1min 30s, followed by a final extension at 72oC - 5min. DDX3 was cloned directly 

into the peGFP-C1 vector for sequencing of the full-length product; DHX9 fragments had A-

overhangs added with GoTaq Flexi DNA polymerase (Promega, Madison, WI, USA) as per 

pGEM T-easy instructions, and were subsequently cloned into pGEM T-easy (Promega) for 

sequencing prior to full-length cloning into expression vectors. 

5.3.3 Full-length DHX9 amplification 

 To PCR amplify the entire DHX9 sequence a method adapted from Shevchuk et al., 2004 

was used. First three overlapping fragments were amplified as described above, Table 5.1.  The 

products were gel purified using the QiaQuick gel extraction kit (Qiagen, Hilden, Germany).  A 

100µL PCR reaction (reaction A) containing Phusion High-Fidelity 2x master mix and 100ng of 

each purified product were combined and the following protocol was completed in a T100 Bio-

Rad thermocycler: 98oC - 1min followed by 10 cycles of 98oC - 10s, 55oC - 10s, 72oC – 1min 

30s.  A second 100µl reaction (reaction B) containing Phusion High-Fidelity 2x master mix was 

created and included 3µl of unpurified reaction A and 0.5µM of DHX9 full-length forward and 

reverse primers with no tags, Table 5.1. The following protocol was completed: 98oC – 1 min, 

34 cycles of 98oC - 10s, 55oC - 10s, 72oC – 2min, followed by 72oC – 5min.  The product was 

then purified using the GeneJET PCR Purification kit (Fisher Scientific) and restriction sites 

were added using the pEGFP-C1-DHX9 primers from Table 5.1 under the conditions for reaction 

B.  The sequences have been deposited into the NCBI database, DDX3: KY905155 and DHX9 

(accession number not yet available).   
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Table 5.1. Primers, forward (F) and reverse (R), used for sequencing, cloning, and qRT-PCR for 
DDX3 and DHX9 in rainbow trout. Primer sequences are given in 5’-3’ orientation, product size 
in base pairs (bp) and annealing temperatures (Ta) are reported.  Where applicable: extra 
nucleotides for the GC clamp or to keep a protein in frame are shown in bold, a human influenza 
hemagglutinin (HA) protein tag sequence is italicized, restriction sites are underlined and 
reported in the primer name, and the GSG linker sequence is in bold italics.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
   

 

Primer Sequence 5’-3’ Size 
(bp)

Ta 
(oC)

Sequencing

DDX3
Full-length

F - ATGAGTCATGTGGCCGTCG
R - TTAGTTGCCCCACCAGTCCA

2136 50

DHX9
Frag.

F1-EcoRI -
GCGGCGGAATTCAGCGGACATCAAGAACTTCCTGTAT
R1 - AGTACTTGGATCAGGTGGCG
F2 - GCTTTTGAGGTGAATGTGGTGGA
R2 - TCTGGGGATCTGAGAGTGGA
F3 - ACACCTGGAGATGAACCCAC
R3-ApaI -
GCGGGCGGGCCCCTAATATCCCTGGCCCCCTCCATA

990

1257

1798

50

50

50

DHX9 Full-
length 

F - ATGGCGGACATCAAGAACTTCCTGTAT
R - CTAATATCCCTGGCCCCCTCCATA

3846 55

Cloning

pCDNA3.1-
DDX3-HA

F-EcoRI - CGGCCGGAATTCATGAGTCATGTGGCCGTCG
R-XhoI -
GCGCCCCTCGAGTTAGTTGCCCCACCAGTCCAGGTAGTGGT
TACCCATACGATGTTCCAGATTACGCT

2216 50

pCDNA3.1-
DHX9-HA

F-EcoRI -
GCGGCGGAATTCATGGCGGACATCAAGAACTTCCTGTAT

R-XbaI -
GCGCCCTCTAGACTAATATCCCTGGCCCCCTCCATAGGTAG
TGGTTACCCATACGATGTTCCAGATTACGCT

3926 50

peGFP-C1-
DDX3

F-XhoI - CGGCCGCTCGAGCGAGTCATGTGGCCGTCG
R-EcoRI - GGGCCCGAATTCTTAGTTGCCCCACCAGTCCA

2158 50

peGFP-C1-
DHX9 

F - see DHX9 Frag F1
R - see DHX9 Frag R3

3868 50

qRTPCR

DDX3
qPCR

F - GAAACCAAGAAGGGAGCGGA
R - GGATACTGGTGCAGGCGTAA

70 55

DHX9
qPCR

F - GGGTATTTGAGCCTGTGCCT
R - CTTCCTCTGCTCCAGGTTGG

197 55

MDA5
qPCR

F - GGTGTCCTGATGGCTGTGAA
R - CCAATGTCTCCTGCTCTGGG

109 55
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5.3.4 Bioinformatics 

 DDX3 and DHX9 nucleotide sequences were translated into deduced amino acid 

sequences using ExPASy; subsequent analysis was performed on these sequences (Artimo et al., 

2012).  Conserved motifs found within the DDX and DHX families were identified based on the 

report by Tian et al., 2017. The amino acid sequences were compared to other published 

sequences using EMBOSS Needle pairwise sequence alignment and the percent similarity and 

identity are reported.  Amino acid sequences were aligned using ClustalW (within MEGA7) and 

MEGA7 was used to create a Neighbor-joining tree using the p-distance method (Saitou and Nei, 

1987; Kumar et al., 2016; Nei and Kumar, 2000).  A bootstrap analysis was done for 1000 

replicates, the percentage of replicate trees that create the presented clusters is shown above each 

branch (Felsenstein, 1985). Conserved domains were identified using the NCBI conserved 

domain search and figures were created using the IBS illustrator program (Marchler-Bauer et al., 

2014; Liu et al., 2015).  All accession numbers can be found in Table 5.2.     

5.3.5 qRT-PCR 

5.3.5.1 RNA extraction 

 Tissue samples were collected from three juvenile rainbow trout, ranging in weight 

between 75g and 210g.  Tissue was added to TRIzol reagent (50mg tissue/mL TRIozl; 

Invitrogen) and homogenized with a manual homogenizer.  For endogenous expression rainbow 

trout cells were plated at 1x106 cells in a 6-well plate (BD Falcon), after overnight attachment 

TRIzol was added to the monolayer.  RNA was isolated using TRIzol reagent (Invitrogen) and 

treated using the TURBO DNA-free kit (Fisher Scientific).  For stimulation studies, RTG-2 cells 

were plated at 8x105 cells in a 6-well plate (BD Falcon) and allowed to attach overnight.  Cells 

were treated with 50µg/mL poly I:C (resuspended in PBS at 10mg/mL; Sigma-Aldrich) in 
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regular growth media, or media alone, for 4h or 24h.  RNA was extracted using the Bio-Rad 

Aurum RNA extraction kit, including an on-column DNase I digestion (Bio-Rad).   

5.3.5.2 cDNA synthesis and qPCR reactions 

 RNA from tissues and cell lines was reverse transcribed to cDNA using iScript reverse 

transcriptase as per manufacturers’ instructions at 1µg of RNA/20µL reaction. qPCR reactions 

contained: 2µl of 10-1 diluted cDNA, 1X SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA), 

0.2µM forward primer, 0.2µM reverse primer, and nuclease-free water (Fisher Scientific) to a 

total volume of 10µL, primers listed in Table 5.1. Triplicate technical replicates were performed.  

qPCR reactions were performed using the CFX Connect Real-Time PCR Detection System (Bio-

Rad). The program used for all qPCR reactions was: 98oC - 2 min, 40 cycles of 98oC -

 

5s, 55oC 

- 10s, followed by a melting curve completed from 65°C to 95°C with a read every 5s. Product 

specificity was determined through single PCR melting peaks, and a no-reverse transcriptase 

(NRT) control reaction was also included for each sample. Data were analyzed using the 

ΔΔCt method; gene expression was normalized to the housekeeping gene (β-actin).  For tissue 

and cell culture endogenous expression samples were presented as relative to the gonadal tissue 

sample or RTG-2 cells.  For poly I:C stimulation trials the data are presented as relative to an 

unstimulated control.  Data represent three individual fish or three independent replicates and 

were statistically analyzed with GraphPad Prism version 7.00 for Mac (GraphPad Software, La 

Jolla, CA USA, www.graphpad.com).  A one-way ANOVA with Tukey’s multiple comparison 

test was used to check for significant differences between data points, a p value<0.05 was 

considered significant.  

5.3.6 Expression vectors and cellular localization 

 The two plasmids used in this study were peGFP-C1 (Clontech, Mountain View, 

California, USA) and pCDNA3.1 (+) (Invitrogen). Cloned inserts were amplified using Phusion 
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High-Fidelity 2x master mix as described in 5.3.2 and 5.3.3 and gel purified using the QiaQuick 

gel extraction kit (Qiagen).  The insert and vector were digested with the two restriction enzymes 

(FastDigest Thermo Fisher) corresponding to the added restriction sites on the insert, for 1h at 

37oC, Table 5.1.  A 5:1 ratio of insert to 50ng of vector were ligated with NEB T4 ligase, 

overnight at 4oC (New England Biolabs, Ipswich MA, USA).  Plasmids was transformed into 

JM109 competent E. coli cells (Promega). Positive colonies were cultured overnight in Luria 

broth  containing 100µg/mL of kanamycin or ampicillin (peGFP-C1 or pCDNA3.1 respectively) 

and plasmids were purified using the GenElute Plasmid Preparation kit (Sigma-Aldrich).  For 

cellular localization, 3x105 RTG-2 cells were plated in 12-well plates (BD Falcon) on glass 

coverslips.  Plasmids were transfected into RTG-2 cells using Fugene6 (Promega) at a ratio of 

1µg plasmid to 3µL of Fugene6.  At 48h post-transfection cells were fixed using 10% neutral 

buffered formalin, nuclei were counterstained with 10µg/mL 4’,6-diamidino-2-phenylindole 

(DAPI; Fisher Scientific), and coverslips were mounted on glass slides with SlowFade Gold 

mounting medium (Fisher Scientific). Images were captured using an inverted fluorescence 

microscope, Nikon Eclipse TiE with Qi1 camera.       

5.3.7 Immunofluorescence 

 RTG-2 cells were plated at 2x105 cells in a 12-well plate (BD Falcon) on glass coverslips 

and cells were allowed to attach overnight.  Cells were rinsed with PBS before fixation with 10% 

neutral buffered formalin and permeabilized in 0.1%v/v Triton-X-100 in PBS.  After a 1h 

blocking period in blocking buffer (3% w/v BSA, 3% v/v goat serum, 0.02%v/v Tween-20, in 

PBS) the primary rabbit anti-DDX3 antibody (CusaBio, CSB-PA002106) was applied at a 1:100 

dilution in blocking buffer for 1h.  A goat anti-rabbit Fluorescein isothiocyanate (FITC) 

secondary antibody (Santa Cruz; SC2012) was applied at a 1:200 dilution in blocking buffer for 

1h. Nuclei were counterstained with 10µg/mL DAPI (Fisher Scientific) and coverslips were 
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mounted on glass slides with SlowFade Gold mounting medium (Fisher Scientific). Images were 

captured using an inverted fluorescence microscope, Nikon Eclipse TiE with Qi1 camera.  A 

secondary only control was used to account for background fluorescence.  There have been no 

reported antibodies that cross-react with teleost DHX9. Cross-reactivity trials with one 

commercially available DHX9 antibody (A300-854A) were attempted and were unable to detect 

rainbow trout DHX9; the antigen of most commercial antibodies surveyed did not encompass a 

conserved area in the rainbow trout protein and therefore were not experimentally tested. DHX9 

localization was measured using GFP-tagged protein overexpression and expression was limited 

to qRT-PCR studies for transcript expression.  

5.3.8 Western blotting 

 Tissue samples from three juvenile rainbow trout, between 75g and 210g, were taken and 

added directly to lysis buffer. Prior to protein extraction RTG-2, RTgill-W1, and RTgutGC were 

plated at 1x106 cells in a 6-well tissue culture plate and allowed to attach overnight (BD Falcon).  

Proteins were extracted from tissue or cells lines using radioimmunoprecipitation assay (RIPA) 

buffer (50mg tissue/mL or 1x106 cells/250µL; 25mM Tris, 150mM NaCl, 0.1% SDS, 0.5% 

sodium deoxycholate, 1% Triton-X 100).  Before use 2µL/mL of protease inhibitor cocktail 

(Sigma-Aldrich) was added to RIPA buffer.  Proteins were quantified using Bio-Rad Quick Start 

Bradford Protein Assay (Bio-Rad) and 20µg of protein samples were run on a 10% acrylamide 

SDS-PAGE gel alongside 5µL of PageRuler Prestained Protein Ladder (Thermo Scientific), after 

which proteins were transferred onto a polyvinylidene fluoride (PVDF) membrane (Bio-Rad) 

using the Trans-Blot Turbo system (Bio-Rad) and the mixed molecular weight program (1.3A; 

up to 25V for 7min). Blots were blocked for 1h in 5% skim milk powder in tris buffered saline 

with 0.1% Tween 20 (TBS-T). Blots were probed with a 1:2000 dilution of rabbit anti-DDX3 

primary antibody (CusaBio, CSB-PA002106) or rabbit anti-β-actin (Sigma-Aldrich, A2066) for 



 
97 

1h at room temperature. Blots were incubated in a 1:4000 dilution of goat anti-rabbit HRP-

conjugated secondary antibody (Bio-Rad, 172-1019) for 1h at room temperature. Protein was 

detected on blots using the chemiluminescent Clarity Western ECL Substrate (Bio-Rad) and 

images were captured using a VersaDoc Imager (Bio-Rad). 

5.3.9 Pull-down assay 

 EPC cells were seeded at 2x106 cells in a 25cm2 flask (BD Falcon).  After overnight 

incubation cells were transfected with 4µg of plasmids for expression of HA-tagged protein and 

12µl of Fugene6 transfection reagent in L-15 with 10% FBS and no antibiotics.  72h post-

transfection cells were lysed using 500µl of lysis buffer containing 50mM Tris, 150mM NaCl, 

pH 7.2 and 1%v/v Triton-X-100.  Before use 2µl/mL of protease inhibitor cocktail (Sigma-

Aldrich) was added to lysis buffer.  The cell lysate was mixed with 10µl of anti-HA magnetic 

beads (Bimake, Houston, TX, USA) that had been equilibrated in tris-buffered saline (TBS). 1µg 

of in vitro transcribed dsRNA, a 200bp molecule of viral sequence (previously described in 

Poynter and DeWitte-Orr, 2015), was added to the cell mixture and the cell/protein/dsRNA mix 

was rotated overnight at 4oC.  Beads were washed with TBS until a NanoLite Spectrophotometer 

(Fisher Scientific) read 0 at absorbance 260nm.  The beads were boiled in 20µL of 1x DNA gel 

loading dye (Fisher Scientific) and an immunoblot was performed using the J2 monoclonal 

antibody for dsRNA, as previously described (Appendix A). The immunoblot included 1µg of 

dsRNA ladder (New England BioLabs) and 20ng of the in vitro transcribed dsRNA as controls.   

5.4 Results 

5.4.1 Rainbow trout DDX3 and DHX9 sequence similarity and phylogeny  

Full-length coding sequences of DDX3 and DHX9 were identified from rainbow trout 

cells.  The deduced amino acid sequence of DDX3 aligned with 98% similarity to an unnamed 

rainbow trout protein product in the NCBI database (CDQ76520.1) and 87% similarity to the 
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olive flounder 2 protein (DDX3b), and out of surveyed sequences had the lowest similarity to 

brown rat (Rattus norvegicus), Table 5.2. DHX9 had an 89.2% similarity to zebrafish and was 

least similar to the American alligator (Alligator mississippiensis), Table 5.2.  A Neighbor-

joining tree was used to infer evolutionary history; both rainbow trout DDX3 and DHX9 

clustered closely with other fish species, unsurprising given the high sequence similarity, Fig. 

5.1.  The fish species formed a clade separate from the other non-fish species for each protein.  

The rainbow trout DDX3 clustered more closely to the second variant of olive flounder DDX3 

(DDX3b), whereas the other fish species examined clustered with the first olive flounder variant, 

DDX3a.    
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Table 5.2. Sequence similarity of rainbow trout DDX3 and DHX9 proteins to other animal species.  
Emboss Needle pairwise alignment was used to compare the deduced rainbow trout protein 
sequences to published (A) DDX3 and (B) DHX9 sequences available on NCBI.  % identity 
indicates the percentage of identical matches over reported aligned region, % similarity is the 
percentage of identical matches as well as similar amino acids (those awarded a positive value 
from the alignment matrix).   
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

A
DDX3

Species Accession % Identity % Similarity

Rainbow trout
Oncorhynchus mykiss

CDQ76520.1
unnamed protein product 98.0 98.0

Olive flounder 2
Paralichthys olivaceus AKS43550.1 81.0 87.0

Fathead Minnow
Pimephales promelas CZQ42530.1 80.4 85.6

Olive flounder 1
Paralichthys olivaceus AKS43549.1 79.7 83.4

African clawed frog
Xenopus laevis NP_001080283.1 73.4 80.9

Western clawed frog
Xenopus tropicalis NP_989196.1 73.8 80.7

Domestic cow
Bos taurus NM_001192962.1 70.7 78.1

Human
Homo sapiens AAC34298.1 70.4 77.9

House mouse
Mus musculus NP_034158.1 70.3 77.7

Golden hamster
Mesocricetus auratus NM_001281387.1 70.2 77.6

Brown rat
Rattus norvegicus NM_001167665.1 68.5 76.0

B
DHX9

Species Accession % Identity % Similarity

Zebrafish
Danio rerio NP_001188373.1 80.3 89.2

Japanese pufferfish
Takifugu rubripes BAV72136.1 78.3 87.0

African clawed frog
Xenopus laevis NP_001087383.1 75.7 85.4

Domestic cow
Bos taurus NP_776461.1 74.6 83.5

Human
Homo sapiens NM_001357.4 74.8 84.0

Rainbow trout
Oncorhynchus mykiss

CDQ56455.1
unnamed protein product 73.1 73.3

Brown rat
Rattus norvegicus NP_001100654.1 71.4 80.1

House mouse
Mus musculus NP_031868.2 70.4 79.1

American alligator
Alligator mississippiensis KYO24241.1 56.1 62.8
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Figure 5.1. Rainbow trout DDX3 and DHX9 cluster closely with respective proteins from 
other fish species.  A Neighbor-joining tree was constructed based on the deduced protein 
sequence of rainbow trout DDX3 and DHX9 and published protein sequences from NCBI.  
Analysis was performed using Mega 7 after alignment with ClustalW.  1000 bootstrap replicates 
were tested and the percentage of replicates trees where the shown taxa clustered together is 
reported above each branch.  Accession numbers are reported in Table 5.2.  
 
5.4.2 Conserved domains and motifs in rainbow trout DDX3 and DHX9 

 The conserved sequence motifs common to DEAD-box or DExH-box helicases were 

identified.  All DDX3 sequences, including rainbow trout, contained nine conserved motifs (Q, 

I, Ia, Ib, II (DEAD), III, IV, V and VI), while the DHX9 sequences, including the rainbow trout 

sequence, contained eight conserved motifs (Q, Ia, Ib, II (DEIH), III, IV, V and VI), Fig. 5.2A 

(Tian et al., 2017). These motifs were conserved between all animal species included for analysis.  

NCBI’s conserved domain search software was used to identify conserved domains in the 

rainbow trout DDX3 and DHX9 protein sequences, Fig. 5.2B.  The DDX3 proteins contain: a 
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SRMB domain (COG0513), the superfamily II DNA and RNA helicases; the DEAD_C domain 

(cd00268) a helicase domain found in members of the DEAD-box family; and the Helicase_C 

domain, a helicase conserved C-terminal domain, only found in DEAD/H helicases that contains 

motif III involved in ATP hydrolysis and RNA binding.  DHX9 proteins contain: a DEXDc 

domain (cd00046), found in members of the DEAD-like helicases superfamily and contains an 

ATP binding site, a putative Mg++ binding site; the Helicase_C domain (pfam00271); an HA2 

domain (SM00847), a helicase-associated domain found in a diverse set of RNA helicases; two 

DSRM domains (Smart00358), double-stranded RNA binding motifs, and an OB_NTP_BIND 

domain (pfam07717), an oligonucleotide/oligosaccharide-binding-fold found in the C-terminus 

of DEAD-box helicases, generally associated with the HA2 domain. 
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Figure 5.2.  Rainbow trout DDX3 and DHX9 proteins have conserved motifs and domains.  
(A) Nine and eight conserved motifs were identified in DDX3 and DHX9 rainbow trout protein 
sequences respectively, as well as in the amino acid sequences of other species.  Amino acids 
that are identical between all species are marked with an asterisk.  (B) Conserved domains were 
identified in the DDX3 and DHX9 proteins using the NCBI conserved domain search and figures 
were created using the IBS illustrator program.  Proteins and domains are drawn to scale with 
the total length in amino acids is reported at the end of each protein.  Accession numbers can be 
found in Table 5.2. The DDX3 protein domains identified were: the SRMB domain (COG0513), 
the superfamily II DNA and RNA helicases; the DEAD_C domain (cd00268) a helicase domain 
found in members of the DEAD-box family; and the Helicase_C domain, a helicase conserved 
C-terminal domain, only found in DEAD/H helicases.  The DHX9 protein domains identified 
were: a DEXDc domain (cd00046), found in members of the DEAD-like helicases superfamily; 
the Helicase_C domain (pfam00271); an HA2 domain (SM00847), a helicase-associated 
domain; two DSRM domains (Smart00358), double-stranded RNA binding motifs, and an 
OB_NTP_BIND domain (pfam07717), an oligonucleotide/oligosaccharide-binding fold.  
 
 
 
 
 

 
 
 

Brown rat 1174

African clawed frog 1262

Japanese pufferfish 1284

Domestic cow 1287

Zebrafish 1270

American alligator 1546

House mouse 1383

Rainbow trout 712

Human 1270

DSRM

DEXDc

Helicase_C

HA2

OB_NTP_BIND

SRMB

DEADc

Helicase_C

Rainbow trout 1253

Zebrafish 712

Olive flounder 1 694

Olive flounder 2 709

Human 662

House mouse 662

Brown rat 652

Golden hamster 662

Domestic cow 661

American clawed frog 699

DHX9 DDX3

African clawed frog 697

Fathead minnow 712

DDX3                   
                      Q         I        Ia      Ib   II   III IV  V     VI 
Rainbow_trout         RYTRPTPVQ AQTGSGKT PTRELAL TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Olive_flounder_1      RYTRPTPVQ AQTGSGKT PTRELAL TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Olive_flounder_2      RYTRPTPVQ AQTGSGKT PTRELAL TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Fathead_minnow        RYTRPTPVQ AQTGSGKT PTRELAL TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Zebrafish             RYTRPTPVQ AQTGSGKT PTRELAL TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
American_clawed_frog  RYTRPTPVQ AQTGSGKT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
African_clawed_frog   RYTRPTPVQ AQTGSGKT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Human                 RYTRPTPVQ AQTGSGKT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Brown_rat             RYTRPTPVQ AQTGSGCT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
House_mouse           RYTRPTPVQ AQTGSGKT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Golden_hamster        RYTRPTPVQ AQTGSGKT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
Domestic_cow          RYTRPTPVQ AQTGSGKT PTRELAV TPGR DEAD SAT LVF ARGLD YVHRIGRTGRVG 
                      ********* ****** * ******: **** **** *** *** ***** ************ 
 
DHX9 
                      Q         Ia      Ib      II   III IV   V      VI 
Rainbow_trout         GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR 
Zebrafish             GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR    
Japanese_flounder     GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR    
African_clawed_frog   GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR    
American_alligator    GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR 
Human                 GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR    
Brown_rat             GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR    
House_mouse           GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR   
Domestic_cow          GATGCGKTT TQPRRRI TVGVLLR DEIH SAT FLPG TNIAET EQRKGRAGR 
                      ********* ******* ******* **** *** **** ****** ********* 
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5.4.3 Differential cellular localization of DDX3 and DHX9 in rainbow trout cells 

Cellular localization of DDX3 and DHX9 was first measured using ectopically expressed 

proteins. The intracellular location of GFP-tagged DDX3 and DHX9 proteins was monitored in 

RTG-2 cells using fluorescence microscopy, Fig. 5.3. peGFP-C1-DDX3 localized to the 

cytoplasm, exhibiting a consistent punctate structure, Fig. 5.3A. Interestingly, when the cellular 

localization of endogenous DDX3 was measured using immunocytochemistry (ICC; Fig. 5.4) 

this punctate staining was not reproduced. Using ICC, DDX3 was still cytoplasmic, but with a 

more diffuse and even staining pattern.  peGFP-C1-DHX9 localized mainly to the nucleus, with 

some cells showing low levels of green fluorescence in the cytoplasm, Fig. 5.3B.  Some nuclei 

exhibited brightly fluorescent punctate structures, while all nuclei exhibited fluorescent 

exclusion from the nucleoli. Nucleoli were identified by localized DAPI staining exclusion (Sirri 

et al., 2008), as indicated by arrowheads, Fig. 5.3B. 
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Figure 5.3. In rainbow trout cells, ectopic expression of DDX3 and DHX9 reveals that 
DDX3 localizes in punctate cytoplasmic structures and DHX9 localizes to the nucleus with 
nucleolus exclusion.  Rainbow trout (A) DDX3 and (B) DHX9 sequences in the pEGFP-C1 
expression vector were overexpressed in RTG-2 cells (GFP; green) and nuclei were 
counterstained with DAPI (blue).   Two different fields of view are shown for each protein. The 
bottom image of (B) is a close-up image of a DHX9-expressing cell with white arrowheads 
indicating areas of DAPI exclusion in the nucleus, indicating nucleoli, and the corresponding 
areas of low-FITC expression. Magnification 400 X for both A and B.       
 

B eGFP-C1-DHX9A peGFP-C1-DDX3
DAPI + FITC FITC

DAPI FITC

DAPI + FITC FITC



 
105 

 
Figure 5.4.  Immunocytochemistry for endogenous DDX3 shows localization is cytoplasmic 
but not punctate.  To look at endogenous protein expression an anti-DDX3 antibody was used 
to detect DDX3 (FITC; green) in unstimulated RTG-2 cells.  Nuclei were counterstained with 
DAPI (blue).  A secondary (2o) only control showed no background FITC signal. Magnification  
200X.   
 
5.4.4 Ubiquitous, constitutive expression patterns for DDX3 and DHX9 in rainbow trout tissues 

and cell lines 

DDX3 and DHX9 expression patterns were measured in tissues extracted from juvenile 

rainbow trout and from three rainbow trout cell lines. Transcripts for DDX3 and DHX9 were 

found in the ten tissues tested, Fig. 5.5A.  Brain and heart showed levels that were elevated higher 

than gut and liver showed transcript levels higher still, Fig. 5.5A. Head kidney, spleen, thymus, 

gill, gonad, and muscle showed levels of DDX3 that were not significantly different than gut. 

While not quantitative, at the protein level gonad, brain and liver showed a trend towards higher 

amounts of protein being expressed, Fig. 5.5C.  The three common rainbow trout cell lines, RTG-

DDX3

2o only

Merge
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2, RTgutGC, and RTgill-W1 expressed DDX3 transcripts, with no significant difference between 

the cell lines, Fig. 5,5B.  In cell lines at the protein level RTG-2, RTgill-W1, and RTgutGC 

showed similar levels of DDX3, Fig. 5.5C.  DHX9 transcripts were also found in all ten tissues.  

There were no significant differences between any tissues, however gut showed the highest 

amounts of transcript, with considerable variability, and gonad had the lowest levels of 

expression, Fig. 5.5A.  In the three cell lines tested there was no significant difference between 

the cell lines, although there was a slightly increased level of transcript in RTgill-W1 compared 

to RTG-2 and RTgutGC, Fig. 5.5B.     
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Figure 5.5.  DDX3 transcript and protein, and DHX9 transcripts are found across rainbow 
trout tissues and cell lines.  Juvenile rainbow trout tissues were collected and (A) qRT-PCR 
was performed to measure DDX3 and DHX9 transcript levels across tissues. (B) DDX3 and 
DHX9 transcripts in three rainbow trout cell lines, RTG-2, RTgutGC, and RTgill-W, were 
measured using qRT-PCR. (A) and (B) Data were analyzed using a ΔΔCt method, gene 
expression was normalized to the housekeeping gene (β-actin), and presented as relative 
expression to the gonadal tissue or RTG-2 cells. N=3, data are presented with the standard error 
of the mean (SEM). Statistical analysis was performed on log2 transformed data and data were 
analyzed using a one-way ANOVA and Tukey’s multiple comparison test, a p value<0.05 was 
considered significant.  Data points denoted with the same letter were not significantly different 
from each other, if no letters are present there were no significant differences. (C) DDX3 protein 
expression was measured by Western blot analysis using an anti-DDX3 antibody, anti-β-actin 
was used as an internal control; data are representative of three individual fish.    
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5.5.5 Upregulation of DDX3 and DHX9 transcripts by poly I:C stimulation 

The effect of dsRNA-stimulation on DDX3 and DHX9 expression levels were measured 

in RTG-2 cells stimulated with 50µg/mL of poly I:C for 4h and 24h, Fig. 5.6.  MDA5, a dsRNA 

sensor that has previously been shown to increase in expression following poly I:C treatment in 

RTG-2 cells, was included as a positive control (Chang et al., 2011). While there was a modest 

and non-significant increase in transcript levels of all three sensors at 4h post-treatment, by 24h 

transcripts of all three helicases were significantly up-regulated.  

 
Figure 5.6. dsRNA (poly I:C) stimulation upregulates DDX3, DX9, and MDA5 transcript 
expression in RTG-2 cells.  RTG-2 cells were stimulated extracellularly with 50µg/mL of poly 
I:C for 4h and 24h.  DHX9, DDX3, and MDA5 transcripts were measured using qRT-PCR. Data 
were analyzed using a ΔΔCt method; gene expression was normalized to the housekeeping gene 
(β-actin) and then presented as relative to the unstimulated control.  Data represent three 
individual replicates and are presented with the standard error of the mean (SEM).  Data were 
log2 transformed prior to statistical analysis using a one-way ANOVA with a Tukey’s multiple 
comparison test, and a p value<0.05 was considered significant.  Data points labelled with the 
same letter do not have a statistically different average.   
 
5.5.6 DDX3 and DHX9 are capable of binding dsRNA 

The ability of rainbow trout DHX9 and DDX3 to bind dsRNA was measured using pull-

down assays.  HA-tagged DHX9 and DDX3 proteins were overexpressed in EPC cells and cell 

lysates were mixed with in vitro transcribed dsRNA of 200bp in length.  The 200bp molecule 

was used instead of poly I:C as the defined length produces a very clear band on an immunoblot, 

unlike the smear produced by poly I:C (Poynter and DeWitte-Orr, 2015). The HA-proteins were 
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pulled-down using magnetic anti-HA beads and dsRNA was detected in the resulting mixture by 

immunoblot analysis using the J2 anti-dsRNA antibody.  Cell lysate containing DDX3 and 

DHX9 was able to pull-down dsRNA but the control cell lysate showed no binding to dsRNA, 

Fig. 5.7.  When compared to the dsRNA-only control the dsRNA from the pull-down was a 

slightly larger size, possibly due to interference from proteins in the cell lysate mixture.       

 

 
 
Figure 5.7. Rainbow trout DDX3 and DHX9 bind dsRNA.  HA-tagged DDX3 and DHX9 
were overexpressed in EPC cells and cell lysate was collected.  Cell lysate was mixed with a 
200bp in vitro transcribed dsRNA molecule.  Protein/nucleic acid complexes were pulled down 
using magnetic anti-HA beads.  The resulting pull-down mixture was analyzed for dsRNA using 
an immunoblot with the J2 antibody, an anti-dsRNA antibody.  A control was included, cell 
lysate isolated from untransfected cells.  The dsRNA control lane represents 20ng of in vitro 
transcribed dsRNA loaded onto the gel.  This is a representative blot from three independent 
experiments.    
 
5.5 Discussion 

In mammals, DDX3 and DHX9 play important roles in cell homeostasis and innate 

immunity, however currently there is little knowledge about these helicases in fish. When a 

phylogenetic analysis was performed on the DDX3 and DHX9 deduced protein sequences, the 

clustering was as expected based on species relationships; the DDX3 and DHX9 sequences 

clustered separately from each other, and the fish sequences grouped with other fish over 

amphibians or mammals.  This is congruent with previous studies of DDX3 in grouper and olive 

flounder, both of which had similar topology in that fish clustered in a separate clade then other 
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species; olive flounder express a DDX3a and DDX3b and rainbow trout clustered with the 

DDX3b variant (Liu et al., 2017; Wang et al., 2015).  The domains and motifs identified in both 

rainbow trout DDX3 and DHX9 were conserved across known animal species sequences; indeed, 

rainbow trout DDX3 and DHX9 contained all the same motifs and domains as the other animal 

species analyzed.  The domains identified with DDX3 and DHX9 are mainly involved with the 

proteins’ role as helicases; DHX9 has two dsRNA binding motifs that are common to all species 

and have been described in channel catfish as well; these dsRNA binding motifs in mammals are 

necessary for dsRNA binding (Tian et al., 2017; Zhang et al., 2011).  It was therefore 

unsurprising that DHX9 was able to bind to dsRNA, as demonstrated using a pull-down 

technique.  DDX3 does not have a dsRNA binding motif per se; however, it’s capability of 

binding the dsRNA molecule poly I:C has been reported in mammals and the ability to bind to 

in vitro transcribed dsRNA was seen in this study (Oshiumi et al., 2010B).  Instead of using a 

dsRNA binding motif, DDX3 may be binding dsRNA via its helicase C domain, as was the case 

for two different DExD/H helicases that sense dsRNA, DHX33 and DHX15 (Liu et al., 2014; 

Lu et al., 2014). Whether this is the case for DDX3 remains to be elucidated.  

DDX3 localized to the cytoplasm of RTG-2 cells, which is consistent with mammalian 

DDX3 as well as grouper DDX3 (Lee et al., 2008; Liu et al., 2017). This is congruent with 

DDX3’s role as a cytoplasmic sensor for dsRNA, capable of interacting with cytoplasmic 

signaling proteins such as IPS-1 (Oshiumi et al., 2010A; Oshiumi et al., 2010B). It should be 

noted that DDX3 does not always localize to the cytoplasm, early studies in HeLa cells found 

DDX3 located predominantly in the nucleus, and treatment with leptomycin B, an inhibitor of 

CRM1-mediated nuclear transport, showed accumulation of previously cytoplasmic DDX3 in 

the nucleus; as such DDX3 is considered a nucleo-cytoplasmic protein (Owsianka and Patel, 
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1999; Schröder et al., 2010; Ranji and Boris-Lawrie, 2010; Schröder et al., 2008).  Similar to 

mammalian GFP-tagged DDX3, overexpression of rainbow trout peGFP-C1-DDX3 led to 

punctate cytoplasmic structures; these structures appear to be stress granules in mammals but 

their identity in fish cells remains unknown (Lai et al., 2008).  GFP-tagged DDX3 in grouper 

also demonstrated cytoplasmic localization, however there were fewer punctate structures and 

more diffuse staining than what was observed in rainbow trout cell lines, the same vector was 

used in both studies (peGFP-C1; Liu et al., 2017).  peGFP-C1-DHX9 in RTG-2 cells localized 

almost exclusively to the nucleus in a diffuse pattern with nucleolus exclusion.  There were some 

cells that demonstrated faint expression in the cytoplasm.  In mammalian cells DHX9 expression 

is generally nuclear, one exception is plasmacytoid dendritic cells where DHX9 was found in the 

cytosol (Kim et al., 2010; Fujita et al., 2005). This is congruent with DHX9’s ability to act as a 

transcriptional regulator (Fuller-Pace, 2006). peGFP-C1-DHX9 expression in RTG-2 was 

similar to HEK293T cells and HeLa cells where DHX9 localized to the nucleus and was excluded 

from the nucleolus (Fujita et al., 2005; Capitanio et al., 2017; Fuchosva and Hozak, 2002).  This 

is in opposition to DHX9 expressed in the human bone osteosarcoma cell line U2OS where GFP-

DHX9 localized to the nucleolus (Huang and Mitchell, 2008).  This difference could possibly be 

due to the different cell types used for expression studies. While DHX9 is largely a nuclear 

protein, it has been shown in mammals that DHX9 is able to bind to cytoplasmic IPS-1, along 

with RIG-I and MDA5 (cytoplasmic proteins) in myeloid dendritic cells, thus at least in some 

cell types or at low levels DHX9 must be cytoplasmic (Zhang et al., 2011).   

Expression of both DDX3 and DHX9 was constitutive across all tissues and cell lines 

tested, which was also observed in olive flounder and grouper tissue panels (Wang et al., 2015; 

Liu et al., 2017).  This is to be expected as both helicases play roles in maintaining cell 
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homeostasis (Linder and Janowsky, 2011; Tarn and Chang, 2009).  Interestingly, in the olive 

flounder differences were seen between sexes of the fish, with higher levels of both DDX3 

variants being present in the ovary compared to the testis, and differences in both levels of 

expression and relative variant expression seen in some tissues (Wang et al., 2015). The rainbow 

trout used in the present study had immature gonads and were not separated by gender, 

potentially a contributing factor to the variation seen between individuals (Wang et al., 2015).  

DDX3 transcript expression patterns were similar between rainbow trout and grouper, where 

liver demonstrated the highest levels of DDX3 transcript expression, brain and heart were 

moderate and gut demonstrated the lowest levels of expression (Liu et al., 2017).  Liver and brain 

also express high levels of DDX3 in olive flounder (Wang et al., 2015).  

DDX3 and DHX9 exhibited increased expression at the transcript level following dsRNA 

treatment. MDA5, a DExH/D-box helicase and dsRNA sensor, which had been previously shown 

to be up-regulated following dsRNA treatment was used as a positive control (Chang et al., 

2011).   This is consistent with grouper DDX3, which was up-regulated 5-fold 24h following 

poly I:C transfection (Liu et al., 2017). This suggests that DDX3 in fish might be inducible by 

type I IFN, which is contrary to mammals, where dsRNA (poly I:C) does not appear to up-

regulate DDX3 protein (Sparrer and Gack, 2015; Oshiumi et al., 2010A).  The mammalian 

DHX9 promoter sequence contains an interferon-sensitive response element suggesting it is an 

ISG (Sadler et al., 2009). Mouse and human DDX60, another DExD/H-box helicase family 

member, were both upregulated in response to recombinant IFN (Goubau et al., 2015).  It should 

be noted that dsRNA treatment is not synonymous with IFN treatment and that dsRNA can 

induce genes independently of IFNs (Daly and Reich, 1993; Reich et al., 1988). Further studies 

are necessary to understand DDX3 and DHX9’s induction mechanisms.  
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 The present study has demonstrated that rainbow trout express both DDX3 and DHX9. 

These DExD/H-box helicase family members are structurally similar to their respective proteins 

in other animal species. In agreement with their roles in cell homeostasis, their expression 

patterns are ubiquitous and constitutive; however, they are inducible following innate immune 

stimulation with dsRNA.  Finally, this study suggests a role for these proteins as sensors of 

dsRNA. The present study represents the initial groundwork needed to understand these 

important yet lesser studied innate immune proteins in fish. 
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6.1 Overview 

The farming of baitfish, fish used by anglers to catch predatory fish species, is of economic and 

ecological importance to North America.  Baitfish, including the fathead minnow (Pimephales 

promelas), are susceptible to infection from aquatic viruses, such as viral hemorrhagic 

septicemia virus (VHSV).  VHSV infections can cause mass mortality events amongst farmed 

fish and can be spread to novel water bodies through the baitfish vector.  In this study, a novel 

skin cell line derived from fathead minnow (FHMskin) is described and its use as a tool to study 

innate antiviral immune responses and possible therapies is introduced.  FHMskin grows 

optimally in 10% fetal bovine serum and at warmer temperatures, 25-30oC.  FHMskin is 

susceptible and permissive to VHSV-IVb infection, producing high viral titres 7.35x107 

(TCID50/mL) after only 2 days.  FHMskin cells do not experience significant dsRNA-induced 

death after treatment with 50-500ng/mL of in vitro transcribed dsRNA for 48h and respond to 

dsRNA treatment by expressing high levels of three innate immune genes, viperin, ISG15, and 

Mx1.  Pretreatment with dsRNA for 24h significantly protected cells from VHSV-induced cell 

death, 500ng/mL of dsRNA reduced cell death from 70% to less than 15% at a multiplicity of 

infection of 0.1.  Thus, the novel cell line, FHMskin, represents a new method for producing 

high tires of VHSV-IVb in culture, and for studying dsRNA-induced innate antiviral responses, 

with future applications in dsRNA-based antiviral therapeutics.  
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6.2 Introduction 

In recreational angling, baitfish are commonly used by anglers to lure fish.  In 2013, the 

freshwater baitfish industry was valued at $29.37 million USD in the US alone, with fathead 

minnow (Pimphales promelas) accounting for $9.88 million USD (Mor et al., 2017; United 

States Department of Agriculture, 2014).  Not only is baitfish health important due to potential 

economic loss caused by pathogen-induced fish death, but baitfish could also act as vectors to 

spread pathogens. For example, in the US the industry ships more than 10 billion fish per year 

cross country where they are brought to various rivers and lakes with potential for consumption 

by predatory fish or escape into the environment (Goodwin et al., 2011).  In a study of Wisconsin 

baitfish dealers and importers, 47% of tested cultured and 31% of tested wild fish lots tested 

positive for at least one virus (McCann, 2012).  In the same study fathead minnows were positive 

for one or more viruses 62% of the time, a higher percentage than the other baitfish tested 

(McCann, 2012).  

Viral hemorrhagic septicemia virus (VHSV) is an aquatic pathogen which has impacted 

the baitfish industry in Canada and the US.  Regulations to prevent the spread of the virus were 

put in place, including surveillance measures and the restriction of baitfish movement and 

harvesting locations (Kerr et al., 2012; Bilateral VHSV Surveillance Working Group, 2007).  

The Great Lakes strain of VHSV, VHSV-IVb, was first identified in the Great Lakes in 2005 

(Elsayed et al., 2006; Lumsden et al., 2007).  Natural VHSV infections have been documented 

from several baitfish species, including wild populations of bluntnose minnows (Pimephales 

notatus) (Frattini et al. 2011), emerald shiner (Notropis atherinoides) as well as both wild caught 

and commercial populations of spottail shiners (Notropis hudsonius) (Faisal et al. 2012).  

Experimentally, fathead minnows are permissive to VHSV infection and can shed the virus 

during infection (Al-Hussinee et al., 2010; Getchell et al., 2013). VHSV can be spread through 



 
117 

the urine, feces, and sexual fluids of infected fish, and there is evidence that predatory fish, such 

as the Tiger Muskellunge (Esox masquinongy), can be infected after eating fathead minnows 

infected with VHSV-IVb (Getchell et al., 2013).  In vitro, fathead minnow cell lines are often 

used to propagate VHSV and to identify the virus in fish tissues (Lumsden et al., 2007; Hope et 

al., 2010).  North American strains of VHSV are efficiently isolated using the cell lines EPC 

(Epithelioma Papulosum Cyprini; fathead minnow), FHM (fathead minnow) or BF-2 (bluegill 

fry), as recommended by the American Fisheries Society (AFS-Bluebook, 2014) and World 

Organization for Animal Health (OIE).  Fathead minnow cells from connective tissue and muscle 

(FHM; American Type Culture Collection CCL 42; Gravell and Malsberger, 1965) are 

permissive to VHSV-IVb, as are EPC (ATCC CRL-2872), originally classified as a carp cell line 

but has since been reclassified as fathead minnow (Winton et al., 2010; Pham et al., 2013).   

There is preliminary evidence suggesting that dsRNA-based antiviral therapies may be 

effective at controlling VHSV-IVb infections.  Studies have used both polyinosinic: 

polycytdiylic acid (poly I:C), a commercially available toll-like receptor (TLR)3 agonist, and in 

vitro transcribed dsRNA, made in vitro using T7 RNA polymerase, to protect rainbow trout cell 

lines from VHSV-IVb infection (Poynter and DeWitte, 2015).  Long dsRNA molecules are 

pathogen-associated molecular patterns (PAMPs) that are sensed by cytoplasmic sensors such as 

the RIG-I-like receptors (RLRs) and protein kinase R (PKR), and the endosomal sensor TLR3, 

to trigger signalling cascades that culminate in the production of the type I interferon (IFN) 

response (DeWitte-Orr and Mossman, 2010).  Type I IFNs are secreted cytokines that induce the 

expression of a panel of genes known as IFN-stimulated genes (ISGs).  These include both 

receptors and signalling molecules, such as those listed above, and antiviral effectors such as 

viperin, Mx1, and ISG15 (Poynter and DeWitte-Orr, 2016).  In fathead minnow, most aspects of 
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this pathway have not yet been elucidated, however it is known that fathead minnow cells 

produce sensors, IFN-related transcription factors, and ISGs at the transcript level in response to 

the overexpression of an unmethylated CpG DNA motif sensor, TLR9 (Xinxian et al., 2016).  In 

some cell types treatment with long dsRNA induces cell death; for example, in human 

endothelial cells poly I:C triggers apoptosis (Sun et al., 2011).  In teleost fish poly I:C-induced 

cell death has been observed in several non-salmonid fish cell lines, however to date no formal 

reports of this phenomena have been published. 

In this study, a novel fathead minnow cell line derived from the skin, FHMskin, was 

established and its optimal growth conditions were characterized. Additionally, FHMskin’s 

ability to support the replication of VHSV-IVb and the potential for in vitro transcribed dsRNA 

to protect the cells from VHSV-IVb infection were also explored.  

6.3 Materials and methods 

6.3.1 Cell line establishment 

 Fathead minnows, healthy in appearance, were obtained from the Upper Midwest 

Environmental Sciences Center (USGS; La Crosse, WI) where they were maintained in clean, 

continuously flowing well water. Fish were euthanized via cervical dislocation and the dull side 

of a sterile scalpel was used to scrape skin and scales off the body surface of the fish. Removed 

tissue was placed in a 50mL conical tube containing MEM-Eagle (M1018; Millipore-Sigma, 

USA) supplemented with 20% FBS, 1% L-glutamine (200mM), 0.5% NaHCO3 (7.5%), 1% 

penicillin/streptomycin (10,000units penicillin; 10mg/mL streptomycin), 0.25% Nystatin 

(10,000units/mL) and 0.1% Gentamicin (50mg/mL). The tube was centrifuged at 400 x g for 

10min. The supernatant was then removed and the pellet was resuspended in fresh MEM-Eagle 

(supplemented as described) in a 25cm2 flask (BD Falcon, San Jose, CA, USA). Cells were then 

incubated at 25°C and observed for confluency. Once a monolayer was formed, the FHMskin 
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cells were then routinely propagated at a 1:2 or 1:4 ratio.  Cells were cultured in T-75 tissue 

culture flasks (BD Falcon) in L-15 media (Corning, Corning, NY, USA) containing 10% v/v 

fetal bovine serum (FBS; Fisher Scientific, Fair Lawn, NJ) and 1% v/v penicillin/streptomycin 

(P/S; 10000U/mL penicillin and10mg/mL streptomycin; Fisher Scientific) prior to 

experimentation. Cells were detached using TrypLE (Fisher Scientific) and were used between 

passages 30-40 and for all experiments after seeding cells were allowed to attach overnight at 

25oC in 10% FBS media.  When not specified, cells were grown at 25oC in 10% FBS media.  

6.3.2 Barcoding 

 The DNA of the FHMskin cell line (passage 37) was extracted using a Qiagen DNEasy 

Blood and Tissue Kit, following manufacturers’ instructions (Qiagen, Hilden, Germany). Two 

replicates of the FHMskin, an extraction negative control, as well as polymerase chain reaction 

(PCR) positive and negative controls were sequenced at the cytochrome c oxidase 1 (UCOI, 

Ivanova et al., 2007) and cytochrome b (UCYTB, Palumbi, 1996) genes. One pGEM®-3Zf(+) 

Control Template (Life Technologies, Carlsbad, CA, USA) was included on each PCR plate for 

a sequencing positive control. PCR amplification and cycle sequencing of UCOI and UCYTB 

were accomplished with the BigDye™ Direct Cycle Sequencing Kit (Life Technologies) 

following the manufacturers’ protocol and using forward primers (from references above) 

modified with M13 tags to streamline sequencing work. Sequences were purified with a Big Dye 

XTerminator Purification Kit (Life Technologies) and analyzed on an Applied Biosystems 3500 

Genetic Analyzer (Life Technologies). Sequences were then edited using Codon Code Aligner 

(Version 7.0) and BLASTn searched in Genbank to determine sequence similarity.  

6.3.3 Virus propagation 

 VHSV-IVb isolate U13653 (Pham et al., 2014; Lumsden et al., 2007) was propagated on 

monolayers of Epithelioma Papulosum Cyprini (EPC) cells.  Virus infections were performed in 
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L-15 containing 2% FBS and 1% penicillin at 17oC.  Virus-containing media was cleared at 4000 

x g and filter sterilized through a 0.45µM filter. The 50% tissue culture infective dose TCID50/mL 

values were quantified according to the Reed and Muench method (1938). 

6.3.4 Cell viability measured using alamarBlue 

 The fluorescent cell metabolism reagent, alamarBlue, was used to measure cell viability.  

In all cell viability assays, after the indicated treatment or infection, media was removed from 

the 96-well plate (BD Falcon), cells were rinsed with phosphate buffered saline (PBS; Corning) 

and 100µL of PBS containing 5% alamarBlue reagent (Invitrogen, Carlsbad, Ca, USA) was 

added to each well.  Cells were incubated for 1h at room temperature in the dark and fluorescence 

was measured using a BioTek HT Synergy Plate Reader (BioTek, Winooski, VT, USA).  All 

relative fluorescent units (RFUs) were normalized to the uninfected or untreated control RFUs.   

6.3.5 In vitro dsRNA transcription  

  A 750bp dsRNA molecule with a green fluorescent protein (GFP) sequence was made 

using the MegaScript RNAi kit (Ambion, Carlsbad, CA, USA) following the manufacturers’ 

instructions.  A DNA template with T7 promoters on both DNA strands was amplified by PCR 

using 10ng of peGFP-C1 (Clontech, Mountain View, CA, USA) as a template, 2X Phusion High-

Fidelity master mix (Fisher Scientific), 0.5µM forward primer  

(5’TAATACGACTCACTATAGGGAGAGTGAGCAAGGGCGAGGAGCTG 3’)  

and 0.5µM reverse primer    

(5’TAATACGACTCACTATAGGGAGATTACTTGTACAGCTCGTCCATGC 3’) and up to 

50µL with nuclease-free water.  

The following protocol was carried out in a Bio-Rad T100 thermocycler (Bio-Rad, Hercules, 

CA, USA): 98oC - 30s, 34 cycles of 98oC - 10s, 50oC - 10s, 72oC - 30s, followed by 72oC - 5min.  
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The DNA template was purified using a QIAquick PCR purification kit (Qiagen) and used in the 

MegaScript RNAi kit as per manufacturers’ instructions to produce dsRNA.    

6.3.6 β-galactosidase staining 

 FHMskin cells were seeded at 2x105 cells in a 12-well tissue culture plate (BD Falcon). 

β-galactosidase activity was detected in cells using the Senescence Cells Histochemical Staining 

Kit, as per manufacturers’ instructions (Sigma-Aldrich, St. Louis, MO, USA).  Staining was 

allowed to continue for 24h at 25oC, at this time the positive control, an early passage (p7) Lake 

Sturgeon (Acipenser fulvescens) cell line (LSskin), showed robust staining. PBS:glycerol (30:70) 

was used as a mounting media and a glass coverslip was placed on top of cells prior to imaging 

with a Nikon Eclipse TS100 microscope with a Lumenera Infinity light camera at 100X 

magnification (Nikon, Tokyo, Japan; Lumenera, Ontario, Canada). 

6.3.7 Growth condition optimization 

 FHMskin cells were seeded at 2x105 cells in a 6-well tissue culture plate (BD Falcon).  

After overnight attachment at 25oC, cells were moved to different temperatures (all in 10% FBS 

media) or media was changed to 5% or 0% FBS and cells were incubated at 25oC.  Cells were 

detached in 500µL of trypsin-EDTA (0.25% trypsin, 2.21mM EDTA; Corning) and stained with 

a final concentration of 0.2% Trypan blue (Invitrogen) to ensure only live cells were counted; 

cells were then counted using the Countess II FL Automated Cell Counter (Fisher Scientific) at 

day 0 (after overnight attachment), day 3, and day 5.  The cell counts at 25oC and 10% FBS 

reported in Fig. 6.1B and 6.1C are the same data.   

6.3.8 Susceptibility to VHSV-IVb 

 FHMskin cells were plated at 1x104 cells/well in a 96-well tissue culture plate (BD 

Falcon).  Cells were exposed to a continuous infection of VHSV-IVb at the indicated multiplicity 

of infection (MOI) in 50µL of growth media containing 2% FBS.  Virus was added to the 96h 
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wells after overnight attachment and then in 24h increments; corresponding controls were treated 

in the same fashion but media contained no virus.  All infections were stopped at the same time 

and cell viability was measured using alamarBlue reagent as described in section 6.3.4.  

6.3.9 Permissiveness to VHSV-IVb   

 FHMskin cells were plated at 5x105 cells/well in a 6-well tissue culture plate (BD 

Falcon).  VHSV-IVb adsorption was completed in 500µL of 2% FBS media for 2h with gentle 

rocking at an MOI of 10, and a control was treated the same without virus.  Virus or control 

media was removed and cells were rinsed 3X with PBS before the addition of 2mL of 2% FBS 

media.  Cells were then incubated at 17oC and samples were taken from infected wells at day 0 

(immediately after absorption), and 2, 4, and 6 days PI.  Control cells were used to ensure 

cytopathic effects were caused only by viral infection.  Cell debris was removed from samples 

at 8000 x g and VHSV-IVb production was measured by TCID50/mL on EPC cells (plated at 

2x104 cells/well). Values were calculated using the Reed and Muench method (1938).  

6.3.10 Susceptibly to dsRNA-induced death 

 FHMskin cells were plated at 1x104 cells/well in a 96-well in a tissue culture plate (BD 

Falcon).  Cells were treated with indicated concentration of dsRNA, or no dsRNA for the control 

wells, in 50µL of growth media (extracellular dsRNA treatment); after 24h and 48h cell viability 

was measured using alamarBlue reagent as described in section 6.3.4.    

6.3.11 RNA extraction, cDNA synthesis, and qRT-PCR 

 FHMskin cells were plated at 8x105 cells/well in 6-well in a tissue culture plate (BD 

Falcon).  Cells were treated with 1mL of dsRNA-containing growth media (50ng/mL or 

500ng/mL) or growth media alone (control).  After 24h RNA was extracted using the Bio-Rad 

Aurum RNA extraction kit (Bio-Rad) with on-column DNase I digestion.  Maxima H Minus 

cDNA Synthesis Master Mix with dsDNase, was used to synthesis cDNA from 1µg of RNA in 
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a 10µL reaction.  qRT-PCR primer sequences for Mx1, ISG15, viperin, and β–actin (Xinxian et 

al., 2016) were used for the qPCR; reactions contained 1X SsoFast EvaGreen SuperMix (Bio-

Rad), 2µL of 10-2 diluted cDNA, 0.2µM forward primer, 0.2µM reverse primer, and nuclease-

free water to a total volume of 10µL (Fisher Scientific). Triplicate technical replicates were used 

for each sample/gene, and a no-reverse transcriptase control was included. qPCR reactions were 

performed using the CFX Connect Real-Time PCR Detection System (Bio-Rad). The program 

used for all qPCR reactions was: 98°C 2min, 40 cycles of 98°C 5s, 60°C 10s, followed by 95°C 

for 10s. A melting curve was completed from 65°C to 95°C with a read every 5s. Product 

specificity was determined through single PCR melting peaks. Data were analyzed using the 

ΔΔCt method. Specifically, gene expression was normalized to the housekeeping gene (β-actin) 

and expressed as fold change over the control group. 

6.3.12 Antiviral assays 

 FHMskin cells were seeded at 1x104 cells/well in a 96-well in a tissue culture plate (BD 

Falcon).  Cells were treated with 50µL of growth media containing 50ng/mL or 500ng/mL of 

dsRNA or growth media alone (control).  After 24h the media was removed and VHSV-IVb was 

added at the indicated MOI in 50µL of 2% FBS media.  After a 2h adsorption, the media was 

removed and the cells were rinsed 3X with PBS before the addition of 100µL of 2% FBS media.  

Cells were incubated at 17oC for 3 days prior to quantification of virus propagation by TCID50 

and analysis of cell viability using alamarBlue reagent, as described in section 6.3.4.   

6.3.13 Statistical analyses 

 All data represent at least three independent trials and are presented with the standard 

error of the mean (SEM).  Data were analyzed and graphed using GraphPad Prism version 7.00 

for Mac, GraphPad Software, La Jolla, CA USA, www.graphpad.com.  Where indicated in the 

figure legend data were log2 transformed prior to analysis; a one-way or two-way ANOVA with 
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a Tukey’s or Dunnett’s multiple comparison test, as indicated, was used to check for significant 

differences between all treatments or between the treatments and control group, respectively.  A 

95% confidence interval was used and a p value <0.05 was considered significant.  A letter 

system has been used to indicate differences between treatments, data points with the same letter 

did not have significant difference between their means.  

6.4 Results 

6.4.1 Successful establishment of a fathead minnow skin cell line 

 A fathead minnow skin cell line was successfully established from healthy juvenile 

fathead minnows. The identity of the fathead minnow skin cell, FHMskin, was confirmed to be 

fathead minnow by DNA barcoding (data not shown).  FHMskin cells did not show senescence-

associated β-galactosidase activity, as can be seen by a lack of blue staining, whereas the positive 

control lake sturgeon skin cells showed robust blue staining, Fig. 6.1A.  The optimal temperature 

for growth of these cells was determined to be 25oC or 30oC by counting the number of cells at 

3 and 5 days when grown at different temperatures. While there was no significant difference 

between the two temperatures the cells grew slightly better at 25oC so this temperature was used 

in all subsequent studies, Fig. 6.1B.  There was significantly less cell growth at lower 

temperatures, 4oC and 17oC, compared to the warmer temperatures at both day 3 and day 5, Fig. 

6. 1B.  FHMskin cells grew best at 10% FBS and there was significantly better growth with the 

increasing concentrations of FBS, with 5% being preferred to 0% and 10% being superior to 5%, 

Fig. 6. 1C. 
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Figure 6.1. FHMskin cells do not show senescence-associated β-galactosidase activity and 
grow in warm temperatures with 10% FBS.  (A) FHMskin cells were fixed and stained using 
a histochemical stain for β-galactosidase. Blue coloring indicates activity of this enzyme.  Lake 
sturgeon skin (LSskin) cells were included as a positive control, and unstained control cells are 
shown for both cell lines.  A PBS:glycerol (30:70) mounting media and coverslip were applied 
to cells; images were taken at 100X magnification with a Nikon Eclipse TS100 microscope.  
Optimal growth conditions for FHMskin cells were measured at (B) 4oC, 17oC, 25oC or 30oC (in 
10%FBS) or in (C) media containing 0%, 5%, or 10% fetal bovine serum (FBS) at 25oC. After 
0, 3, and 5 days cells were counted and are presented as a percentage of the day 0 count. N = 3 
and data are averages presented with standard error of the mean (SEM).  A one-way ANOVA 
with Tukey’s multiple comparison test was performed, a p value <0.05 was considered 
significant.  Data points with the same letter were not statistically different from each other at 
the given time point.   
 
6.4.2 FHMskin are susceptible and permissive to VHSV-IVb infection 

 FHMskin cells were continuously infected with VHSV-IVb (MOI = 0.01-10) and cell 

viability was measured at 24h, 48h, 72h, and 96h post-infection (PI) using the fluorescent cell 

viability reagent, alamarBlue, Fig. 6.2A.  As early as 48h PI significant cell death was 

measured across all MOIs, and by 96h there was complete decimation of the monolayer and 

almost no viable cells remained, Fig. 6.2A.  To assess the ability for VHSV-IVb to replicate in 

FHMskin cells, the viral titre produced by the cells was measured as a TCID50/mL.  FHMskin 

cells were infected with VHSV by 2h adsorption at an MOI of 10, the cells were then rinsed 
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and fresh media was added to allow for measurement of new virions and not those from the 

original virus preparation. To ensure the original virus was adequately removed, a sample was 

taken after rinsing and considered day 0, the titres from these samples were under 3.2x103 

TCID50/mL, Fig. 6.2B.  Virus titres were measured at 2, 4, and 6 days PI, and by 2 days there 

was significant a viral titre produced, the average TCID50/mL at day 2 was 7.35x107, Fig. 6.2B.   

 
 
Figure 6.2. FHMskin cells are susceptible and permissive to infection with VHSV-IVb.   (A) 
FHMskin cells were continuously infected with VHSV-IVb at the indicated multiplicity of 
infection (MOI) for 24-96h. Cell viability was measured using alamarBlue after every 24h post-
infection (PI).  Data are presented as the percent of the uninfected control cells at the 
corresponding time point.  (B) FHMskin cells were infected by 2h adsorption with VHSV-IVb 
at an MOI of 10.  Samples of virus-containing media were collected immediately after adsorption 
(day 0) and at 2, 4, and 6 days PI.  The TCID50/mL values were measured for each sample. N = 
3 and averages are presented with standard error of the mean (SEM). (A) Data were analyzed 
using a two-way ANOVA with a Tukey’s multiple comparison test. (B) Data were log2 
transformed prior to statistical analysis and analyzed with a one-way ANOVA with Tukey’s 
multiple comparison test.  A p value<0.05 was considered significant. Data points with the same 
letter were not statistically different from each other.   
 
6.4.3 FHMskin are not sensitive to dsRNA-induced cell death at concentrations less than 

1µg/mL and respond with the robust production of ISGs 

 To test whether the cells underwent dsRNA-induced death, FHMskin cells were treated 

with 0.05µg/mL – 5µg/mL of an in vitro transcribed dsRNA molecule for 24h and 48h, after 

which cell viability was measured using alamarBlue.  In this study, the dsRNA molecule 

contained a GFP sequence, which would not support possible sequence-matched RNAi effects 

on host or viral proteins (Maillard et al., 2013). GFP has previously been used in shrimp as a 
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neutral source of dsRNA that is not expected to have any virus-specific effects (Kim et al., 2007). 

There was moderate, but significant death after 48h at the highest concentrations of dsRNA, 

1µg/mL and 5µg/mL, Fig. 6.3A.  Due to this decrease in cell viability, all subsequent assays used 

the concentrations below this limit, 50ng/mL and 500ng/mL, Fig. 6.3A.  FHMskin cells treated 

with 50ng/mL or 500ng/mL of dsRNA for 24h demonstrated significantly higher amounts of 

viperin, ISG15, and Mx1 at the transcript level compared to untreated controls, as measured by 

qRT-PCR, Fig. 6.3B. At a concentration of 500ng/mL there was significantly more ISG 

expression compared to 50ng/mL for all three genes tested, Fig. 6.3B.  

6.4.4 dsRNA induced an antiviral state conferring protection against VHSV-IVb 

 FHMskin cells were pretreated for 24h with 50ng/mL or 500ng/mL of dsRNA.  Cells 

were then infected with VHSV-IVb by 2h adsorption with an MOI of 0.1, Fig. 6.4A, or an MOI 

of 10, Fig. 6.4B.  Cell viability was measured after three days with the cell viability reagent 

alamarBlue.  There was significant protection by both concentrations of dsRNA against both 

MOIs; the higher concentration, 500ng/mL, of dsRNA protected significantly better than 

50ng/mL, Fig. 6.4.  The virus titre was measured in dsRNA treated cells and untreated controls. 

At an MOI of 0.1 there was a significantly higher TCID50/mL measured in control infected cells 

compared to pretreated cells, with a significantly lower TCID50/mL in the 500ng/mL dsRNA 

treatment compared to the 50ng/mL dsRNA treatment, Fig. 6.4A.  There was a similar trend seen 

for an MOI of 10, however there was greater variation and no significant differences between 

treated and untreated cells was identified, Fig. 6.4B.   
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Figure 6.3. FHMskin cells experience moderate dsRNA-induced mortality and dsRNA-
treatment induces interferon-stimulated gene production. (A) Cell viability and (B) 
production of interferon-stimulated gene (ISG) transcripts were measured in FHMskin cells 
treated with in vitro transcribed dsRNA.  (A) Cell viability was measured using alamarBlue 24h 
and 48h after treatment with increasing concentrations of dsRNA. Data are presented as a percent 
of the untreated control.  (B)  Cells were stimulated with 50ng/mL or 500ng/mL of dsRNA for 
24h and qRT-PCR was used to measure transcript levels of viperin, ISG15, and Mx1.  Data were 
analyzed using a ΔΔCt method, gene expression was normalized to the housekeeping gene (β-
actin), and presented as relative to the untreated control.  (A) A one-way ANOVA with a 
Dunnett’s post-test was performed for each time point to compare treatments to the control. (B) 
A one-way ANOVA with Tukey’s multiple comparison was used to analyze log2 transformed 
data. A p value <0.05 was considered significant.  N=3 and data are presented with the standard 
error of the mean (SEM).  Data points with the same letter were not significantly different.    
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Figure 6.4. dsRNA pretreatment protects FHMskin cells from VHSV-IVb induced cell 
death and limits viral replication.  FHMskin cells were pretreated with 50ng/mL or 500ng/mL 
dsRNA, after 24h cells were infected by 2h adsorption with VHSV-IVb at a multiplicity of 
infection (MOI) of (A) 0.1 or (B) 10.  3 days post-infection cell viability was measured using 
alamarBlue and is presented as percent of the uninfected control. Virus titres were measured by 
TCID50/mL for each treatment. Data are representative of at least three independent replicates 
and averages are presented with standard error of the mean (SEM).  A one-way ANOVA with 
Tukey’s multiple comparison test was used to compare treatments; a p value <0.05 was 
considered significant.  Data points with the same letter were not statistically different from each 
other, no letters indicates no significant differences between any treatments.   
 
6.5 Discussion 

 The skin is an important innate immune barrier and of particular importance with respect 

to VHSV, which can replicate in skin (Harmache et al., 2006; Montero et al., 2011) and can be 

shed into the water column from infected fish (Kim and Faisal, 2011). Fathead minnow are 

susceptible to waterborne VHSV as these fish can be infected by immersion (Kibenge and 

Godoy, 2016; Al-Hussinee et al., 2010). The present study sought to characterize the novel 
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FHMskin cell line and to investigate the permissiveness and susceptibly of FHMskin to VHSV-

IVb infection and whether dsRNA could be used as a therapy to limit VHSV-IVb replication.  

This cell line has been passaged >70 times in the last two years since it’s development.  

FHMskin was established at 25oC and then moved to temperatures between 4oC and 30oC.  The 

cell line grew optimally at warmer temperatures, with no significant difference between 25oC 

and 30oC.  Another available fathead minnow cell line from the ATCC is an epithelial cell line, 

FHM, this cell line grows optimally between 28-34oC (Gravell and Malsberger, 1965).  EPC 

grows between 15-33oC, with optimal growth between 25-30oC (Fijan et al., 1983).  This has 

some correlation with fathead minnow in vivo, fish reared at 24oC show optimal body conditions, 

size, and sexual characteristics; if fish are reared at 28oC the fish are similar in size and 

reproductive status but have a lower quality (Brian et al., 2011).  

The FHMskin cell line was susceptible to VHSV-IVb infection, as demonstrated by 

virus-induced cytopathic effects (cell death) and was permissive to VHSV-IVb replication, as 

measured by virus titres. After 48h of infection with an MOI of 10 there was over 50% cell death, 

and the viral titre was 7.35x107 TCID50/mL. These values are comparable to VHSV-IVb 

propagation in EPC cells which produces a TCID50/mL of approximately 8x107-2x108. 

Interestingly, it takes EPC cells 5-7 days to produce this high of a titre while FHMskin cells 

produced this in just 2 days (Vo et al., 2015; Fig 6.2B).  FHMskin’s ability to support VHSV-

IVb replication so quickly has the potential to improve VHSV diagnostic assays, as faster virus 

replication in vitro would allow for identification of virus in a timelier manner, or could improve 

the sensitivity of current assays over the standard 28-day period.  Future work will be necessary 

to determine if this rapid replication in the FHMskin cell line might also indicate increased assay 
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sensitivity compared to the cell lines recommended for VHSV diagnosis by the American 

Fisheries Society and the World Organization for Animal Health.  

DsRNA is a potent IFN inducer, and in some cells the activation of these innate immune 

pathways results in cell death. For example, poly I:C, a commercially available dsRNA molecule 

is cytotoxic in brown bullhead (Ictalurus nebulosus) cells (BB, ATCC - CCL-59) using dosages 

as little as 5ng/mL (unpublished data). Before exploring dsRNA as an antiviral therapy in fathead 

minnow cells it was imperative to measure its possible cytotoxic effects.  The only cytotoxic 

effects observed with dsRNA in FHMskin cells were at higher concentrations (1µg/mL and 

5µg/mL) for 48h. As there were limited cytotoxic effects, dsRNA’s antiviral activity could be 

pursued at the concentrations where cell death was not observed.  

dsRNA was capable of inducing high levels of ISGs at the transcript level in FHMskin 

cells, suggesting that this cell line is capable of mounting an IFN-mediated innate immune 

response. The ISG induction patterns were similar to those seen in other fish cell lines. Compared 

to viperin and ISG15 (known as vig-1 and vig-3 in rainbow trout), the levels of Mx1 transcript 

were approximately 10-fold lower after induction; this corresponds with previous studies in 

rainbow trout where Mx1 also showed lower expression levels compared to ISG15 in response 

to dsRNA stimulation, Fig. 6.3B (Poynter and DeWitte-Orr, 2015).  ISG production leads to the 

establishment of an antiviral state, when a cell is actively inhibiting virus replication. As dsRNA 

was able to induce ISG production, its ability to induce an effective antiviral state in FHMskin 

cells was investigated. A dsRNA pretreatment for 24h was able to protect significantly protect 

FHMskin cells from viral infection, even at lower concentrations, Fig. 6.4. A 24h pretreatment 

was used as a study in rainbow trout found that prolonged exposure to an antigen increased 

uptake, this time point is longer than the usual exposure period for fish in a bath treatment setting 
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(Moore et al., 1998).  An in vivo study in Chum salmon (Oncorhynchus keta) found antiviral 

protection after a 3h immersion in poly I:C followed by a 4-day waiting period prior to infection 

(Eaton, 1990). Additionally, studies in vivo found poly I:C treatment protected Japanese flounder 

(Paralichthys olivacus) from VHSV infection, with higher poly I:C doses protecting up to 100% 

after a 2-day pretreatment (Takami et al., 2010). Previously, in vitro transcribed dsRNA 

pretreatment has been shown to  be effective in establishing an anti-VHSV-IVb state in rainbow 

trout cells (Poynter and DeWitte-Orr, 2015). With in vitro transcribed dsRNA’s natural sequence 

variation and tunability with respect to length and sequence, its features outstrip poly I:C’s 

abilities for antiviral therapeutics. Future in vivo studies will further clarify the potential for in 

vitro transcribed dsRNA to be used as an antiviral for fathead minnows against virus infection.   

The development of the FHMskin cell line contributes to our understanding of dsRNA-

mediated immune responses in fathead minnow, an underexplored area of research.  The cell line 

supports rapid and robust replication of VHSV-IVb, making it a useful tool in the study and 

identification of this virus.  The establishment of an antiviral state produced by dsRNA 

pretreatment in these cells is a first step towards future studies of dsRNA-based therapies in 

baitfish.  

Acknowledgments 

The authors wish to thank Dr. Nguyen Vo for his technical advice and scientific support.  We 

would also like to thank Zeb Woiak (Whitney Genetics Laboratory; U.S. Fish and Wildlife 

Service, Onalaska, WI) for assistance with the molecular identification as well as John Fisher 

(National Conservation Training Center Library, U.S. Fish and Wildlife Service; 

Shepherdstown, WV) for help locating reference articles.  Usage of trade names does not imply 

endorsement by the United States Government.  



 
133 

Chapter 7: General discussion and future directions 

7.1 Understanding fish immunology 

Fish play an important role in the ecosystem, the global and Canadian economies, and in 

human health as a food source.  A better understanding of fish immune systems will allow for 

the design of better vaccines, adjuvants, and antiviral therapies to support the aquaculture 

industry, an industry that in 2016 in Canada alone produced 120,000 tonnes of finfish worth 

$1.25 billion CAD (Fisheries and Oceans Canada, 2016).  It should be noted that innate immune 

responses are similar but not identical between mammals and fish. One example of this is that of 

TLR4, in mammals this is a well-defined receptor for bacterial lipopolysaccharide (LPS), 

whereas in fish TLR4 is not involved in LPS signaling (Sepulcre et al., 2009). While “fish” 

immunology is frequently compared to “mammalian” immunology, it is important to recognize 

these titles represent a vast diversity of species (Tort et al., 2003).  Just as there are differences 

in the immune response between mammals, such as those between a mouse and human, 

differences exist between fish species as well (Mestas et al., 2004).  An example of these 

differences is exemplified in the Atlantic cod (Gadus morhua); the majority of fish have the 

genes for the major histocompatibility complex II, but these genes have been lost in Atlantic cod 

(Star et al., 2011).  Another example would be that of the dsRNA-receptor RIG-I; while this 

receptor is found in most salmonids, it has not been located in rainbow trout (Oncorhynchus 

mykiss) and is an example of a potential erroneous assumption that could be made if all fish, 

even fish within the same family, were treated as the same without experimental confirmation 

(Biacchesi et al., 2009; Chen et al., 2017).  

 One objective of this thesis was to compare the immune responses induced in rainbow 

trout cells by dsRNA that is made by a virus (v-dsRNA), made in the lab by in vitro transcription 

(ivt-dsRNA), and commercially available (polyinosinic polycytidylic acid (poly I:C)). From this 
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study it was proposed that ivt-dsRNA with sequence variation is a better tool to study natural 

dsRNA responses than the synthetic poly I:C.  Differences in responses to dsRNA between fish 

species was tested when dsRNA responses were tested in a novel cell line derived from fathead 

minnow (Pimephales promelas).  Similar to rainbow trout, the fathead minnow cells expressed 

antiviral gene transcripts and a robust antiviral response to treatment with ivt-dsRNA.  These 

findings were expected as the dsRNA pathways are well-conserved and there are few fish cell 

lines that do not respond to dsRNA. Additionally, it has been previously demonstrated that 

VHSV-IVb replication is limited by the type I IFN response induced by ivt-dsRNA (Poynter and 

DeWitte-Orr, 2015).  Future studies will continue to explore the difference between sources of 

dsRNA, and in vitro and in vivo trials in different fish species will help to elucidate antiviral 

pathways induced by dsRNA, and how conserved these pathways are between fish species.    

7.2 dsRNA as an adjuvant or antiviral therapy in fish 

To the author’s knowledge only dsRNA in the form of poly I:C has been tested for its 

efficacy as an antiviral therapy and vaccine adjuvant in some fish species.  There is a great deal 

of variation in the effectiveness of poly I:C as an antiviral therapy, depending on the fish species 

being test and in some cases temperature.  Pre-treatment with poly I:C has shown almost 

complete protection against viral infection in several fish species, including nervous necrosis 

virus (NNV) infection in sevenband grouper (Epinephelus septemfasciatus), viral hemorrhagic 

septicemia virus (VHSV) infection in Olive flounder (Paralichthys olivaceus), and infectious 

hematopoietic necrosis virus (IHNV) infection in rainbow trout (Nishizawa et al., 2009; Avunje 

et al., 2017; Kim et al., 2009).  Interestingly, poly I:C was used successfully as a curative antiviral 

drug in sevenband grouper.  Oh and colleagues demonstrated that fish treated with poly I:C 20 

days post-infection (PI) from a natural occurrence of NNV had 6.3% mortality whereas fish that 

did not receive the poly I:C had a cumulative mortality reaching 90% (Oh et al., 2012).  An 
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earlier study where fish were experimentally infected as opposed to becoming naturally infected 

from the environment did not see this curative effect; further studies will be needed to explore 

the potential of poly I:C to prevent virus-induced death (Nishizawa et al., 2009).  In rock bream 

(Oplegnathus fasciatus) infected with rock bream iridovirus (RBIV) for two days prior to 

treatment with poly I:C there was a final mortality of 100%, but a substantial delay in this 

mortality (Jung et al., 2017). 

There are cases where poly I:C was not particularly effective at protecting fish from viral 

infection; rock bream pre-treated with poly I:C showed protection from RBIV at 20oC but not at 

23oC or 26oC. At the higher temperatures there was 100% mortality, although there were some 

delays in mortality in the poly I:C treated group. At 20oC there was 33.4% survivorship in the 

poly I:C treated group compared to 0% in the untreated group (Jung et al., 2017).  In zebrafish 

(Danio rerio) only 5% of fish were protected from VHSV infection after pre-treatment with poly 

I:C, there was a notable delay in the mortality of the fish treated with poly I:C but the end result 

was still substantial mortality (Kavaliauskis et al., 2015).   

At least two studies have tested poly I:C as an adjuvant for fish vaccines, in one case it 

was a combination of CpG DNA and poly I:C, and in the other study it was poly I:C stabilized 

with chitosan.  The addition of CpG/poly I:C enhanced the protective effect of an inactivated 

vaccine against salmonid alphavirus in Atlantic Salmon (Salmo salar), but did not result in 

increased levels of neutralizing antibodies (Thim et al., 2012).  In zebrafish, the chitosan 

stabilized poly I:C injected with an inactivated VHSV vaccine produced significant protection 

against VHSV, however the plasma from surviving fish also did not have neutralizing antibodies 

(Kavaliauskis et al., 2015).  While there are examples of poly I:C performing as a prophylactic 

antiviral treatment, and at least one example of poly I:C rescuing infected fish, there are also 
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cases where poly I:C is less effective and in several studies, poly I:C only delayed fish mortality.  

It is also unclear if this molecule can function as a strong adjuvant.  Future directions for this 

project focus on comparing the immuno-stimulatory antiviral and adjuvant properties of ivt-

dsRNA to poly I:C.  

7.3 Pattern-recognition receptors and functional studies 

 A better understanding of rainbow trout pattern-recognition receptors (PRRs) will help 

elucidate the immune pathways induced by viral pathogen-associated molecular patterns 

(PAMPs).  While mammalian models can be used as a guide to form a hypothesis for the function 

and ligand-binding profile of aquatic animal PRRs, experimental evidence is needed to clarify 

their function, for a better understanding of their similarities and differences to mammals. The 

first step to understanding the functionality of these receptors is to clone the coding sequences, 

as has been done in this thesis for SCARA3, SCARA4, SCARA5, MARCO-1, MARCO-2, 

DDX3, and DHX9.  Analysis of the conserved domains and motifs within these proteins suggests 

similarity of function to counterparts from other species. So far, with the PRRs identified in this 

manuscript, all domains have been similar to known sequences; however, with any new PRRs 

that are identified, missing domains would be of great interest and could give an indication of a 

difference in function. Following their identification, the next steps are to perform functional 

assays to identify the cognate ligands for these receptors.  Unfortunately, these functional assays 

have many hindrances and hurdles that need to be overcome. GFP-tagged MARCO-1 and 

MARCO-2 were successfully transiently overexpressed in fish cells and saw functional binding 

to bacterial ligands.  Overexpression studies with SCARA3/4/5 in fish cells were attempted, 

however, these studies were unsuccessful. To date it is unknown if this is because a) the proteins 

were not functional when overexpressed or b) if the proteins simply did not bind to any of the 

tested ligands, as the ligands were predicted based on studies in mammals.   
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Ligand binding has been studied in this thesis using transient transfection protocols to 

engineer cells to express the PRR of interest. There are several problems with this strategy.  Fish 

cells have low transfection efficiencies compared to the levels reached in mammalian cells.  This 

combined with their lower metabolism makes over expression studies challenging. For example, 

while mammalian cell lines can be transfected with almost 100% efficiency, fish cell transfection 

is often below 10% (Bonetta, 2005; Schiøtz et al., 2011).  EPC cells are by far the most efficient 

for transfections and after extensive optimization the transfection efficiencies were 15-45% 

depending on the method of counting positive cells (Lopez et al., 2001; Schiøtz et al., 2011; 

Collet et al., 2018).  In addition to the low transfection efficiency, studying type I IFN-mediated 

responses with transient transfected DNA has a unique difficulty, transfected DNA itself causes 

type I IFN production, with plasmid DNA acting as a PAMP (Li et al., 2005; Sobhkhez et al., 

2017). A study found that injecting Atlantic salmon in vivo with control plasmid induced several 

immune genes without the presence of an insert (Sobhkhez et al., 2017).  The creation of cell 

lines stably expressing these receptors are currently underway using traditional stable 

transfection methods, in hopes of having a less transient system in order to test ligand binding. 

 The CRISPR/Cas-9 system is a useful tool that among many applications can be used to 

create knock-in or knock-out cell lines.  Currently the application of CRISPER/Cas-9 has been 

successful in fish cells and is a tool that will be utilized in future studies (Chakrapani et al., 2016).  

One issue with any knock-down system in fish is the whole-genome duplication event in teleost 

fish, and a second genome duplication event in salmonids, creating an incredible range of genetic 

variation (Glasauer and Neuhauss, 2014; Collet et al., 2018).  In order to efficiently knockdown 

a gene, all the different variants should be identified and considered to achieve complete 

knockdown.   
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An additional future direction that would help to elucidate the function of PRRs is to create 

bioactive recombinant proteins.  Traditionally recombinant proteins are produced by bacteria. 

However, there are limitations of using a prokaryotic system to produce a eukaryotic protein in 

a functional form as the post-translational modifications may not be appropriate or present and 

the chaperones within the bacteria may not facilitate proper folding of the protein (Brondyk, 

2009). One way this can be overcome is to employ a eukaryotic protein expression system, such 

as baculoviruses and insect cells lines.  This technology is not new for fish proteins, the insect 

cell line SF-9 and a recombinant baculovirus was used to produce recombinant active growth 

fish hormone in 1994, and in the future the recombinant dsRNA sensors may be produced using 

this method (Tsai et al., 1994).  The expression of the surface class A scavenger receptors will 

be particularly cumbersome as the proteins are trimeric and membrane bound, but the 

extracellular domains can be produced as soluble proteins, as has been done for mammalian 

MARCO and a fish MARCO scavenger-receptor cysteine rich (SRCR) domain; full-length, 

active recombinant mammalian SR-A proteins have also been purified successfully (Qiu et al., 

2013; Sankala et al., 2002; Baid et al., 2018).  Once purified these proteins can be used for 

various ligand-protein interaction assays, such as surface plasmon resonance, bacteria-binding 

assays performed using fluorescent ligands and protein coated coverslips, or ELISA analysis 

(Qiu et al., 2013; Sankala et al., 2002).   

7.4 Synthetic PAMPs 

 The study of PAMPs relies on the use of synthetic molecules to mimic those produced 

by pathogens.  Some naturally occurring PAMPs, like lipopolysaccharide (LPS) from bacteria, 

can be purchased already purified, this is not the case for virally produced dsRNA; even with 

naturally occurring LPS the purity of these preparations is often questioned as contaminants such 

as other PAMPs may be present (Rutledge et al., 2011).  There are many reasons research to date 
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has relied on poly I:C, synthetic molecules tend to be more cost effective.  For example, when 

using the RNAi Megascript kit to produce dsRNA, this kit is approximately $26 for one reaction 

that can yield up to 50-100µg of dsRNA, although in this lab yields are generally lower, 

approximately 50µg.  Poly I:C cost depends on the brand, but for example EMD Millipore™ 

Calbiochem poly I:C is approximately $100 for 10mg, approximately $1 for 100µg.  Poly I:C is 

also easier to use, a simple reconstitution step produces a stock concentration, to create in vitro 

transcribed dsRNA a DNA template must be prepared followed by the transcription reaction, a 

digestion, and a purification.  The yield can also vary depending on the reaction and the template, 

and some optimization is needed. However, compared with the complexities of extracting virus-

produced dsRNA, the in vitro molecule preparation is much simpler, cheaper and requires less 

time and optimization.  

 Poly I:C is not a naturally occurring molecule and host cells have not evolved to sense 

and respond to this molecule (Löseke et al., 2008).  While in vitro transcribed dsRNA may have 

some downfalls compared to poly I:C, it has many advantages in terms of biological relevancy 

and is more efficient to produce than extracting viral dsRNA.  In vitro transcribed dsRNA 

provides a researcher with the option to control length and sequence, modified nucleotides can 

be added to the transcription reaction, or post-transcriptional modifications such as capping or 

tailing can be added using enzymatic reactions.  In this thesis in vitro dsRNA was used where 

possible as an alternative to poly I:C. Rainbow trout and fathead minnow cells both respond 

robustly to in vitro transcribed dsRNA by producing type I IFNs and an antiviral state. It was 

demonstrated the rainbow trout proteins DDX3 and DHX9 were able to bind to in vitro 

transcribed dsRNA using a pull-down assay.        
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7.5 Final Conclusions 

 The contents of this thesis provide evidence that dsRNA with natural sequence variation 

and defined length, is an important viral PAMP for the innate immune response in fish cells.  The 

use of the synthetic IFN-inducer poly I:C has been questioned and in vitro transcribed dsRNA 

has been suggested as a more biologically accurate substitute. Future studies using different fish 

species and different aquatic viruses will help elucidate the conservation of these findings for 

broader applications.  Identification of novel receptors in rainbow trout cells lays the groundwork 

for future studies to better understand the role of these receptors and their similarities and 

differences to mammalian homologs. The functional study of the dsRNA surface receptor 

MARCO showed an unexpected finding that the receptor variants did not bind to dsRNA, this 

emphasizes the need to further characterize receptors identified in fish for their functional 

purpose.  Future studies will translate the in vitro studies performed here to in vivo studies in 

whole fish. In vivo studies will clarify the potential for in vitro transcribed dsRNA to be used as 

an antiviral therapy or vaccine adjuvant to prevent the massive losses in aquaculture caused by 

viral disease. 
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A.1 Overview 

Long double-stranded RNA molecules are produced as a byproduct of viral replication.  Studying 

virus-derived dsRNA is important for understanding virus replication, understanding host 

responses to virus infections, and as a diagnostic tool for virus presence and replication.  Here 

we describe four different techniques for visualizing dsRNA; two antibody-dependent methods, 

immunoblotting and immunocytochemistry, as well as two antibody-independent methods, 

differential digestion and acridine orange staining. The benefits and disadvantages of each 

technique are also discussed. 
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A.2 Introduction 

Virus replication leads to the production of dsRNA, either as a genomic fragment, 

replication intermediate, replicative by-product, or potentially transcribed from viral DNA by 

host machinery (1,2).  These long dsRNA molecules act as an indicator of a viral infection, as 

healthy host cells do not contain dsRNA molecules >40bp (3).  Virus-derived (v)dsRNA 

molecules are recognized by host expressed pattern-recognition receptors (PRRs) and can induce 

a strong innate antiviral immune response (1).  Many viruses have evolved mechanisms to evade 

dsRNA-induced innate antiviral mechanisms (4). Thus studying (v)dsRNA is important for: i. 

understanding virus replication, ii. understanding host responses to virus infection, and iii. as a 

diagnostic tool for virus presence (for dsRNA genome viruses) and replication.  

Viral dsRNA is clearly an important molecule, worthy of study; however, the methods 

used to detect these virus-produced molecules can be difficult to execute.  There are a number 

of ways to visualize and distinguish dsRNA from other nucleic acids; a few examples are 

provided here.  Differential nuclease digestion can be used as dsRNA is sensitive to RNase III 

but resistant to RNase A and T1 under high salt conditions (3, 5, 6, 7).  There are three 

commercially available dsRNA antibodies, J2, K1, and K2 that can be used for immunoblotting 

or immunocytochemistry (ICC) (6, 8, 9, 10). Acridine orange (AO) stained agarose gels can be 

used to look for dsRNA in total RNA extractions from virus-infected cells, as AO stains single-

stranded nucleic acids red and double-stranded nucleic acids green (11); however AO staining 

will not differentiate dsDNA and dsRNA so this method alone is not enough to confirm dsRNA 

presence if there is a possibility of contaminating DNA.  Ideally more than one technique should 

be employed when looking to confirm the presence of dsRNA.  

The methods for each aforementioned technique are described here, with advantages and 

disadvantages compared in Table A.1.  These techniques allow for identification and 
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visualization of dsRNA within virus-infected cells.  An aquareovirus, chum salmon reovirus 

(CSV), is used as a model in this paper as it has a dsRNA genome and is an effective positive 

control for (v)dsRNA (9). The dsRNA detection methods described here include both antibody-

dependent and -independent assays. The antibody-dependent assays include ICC, Fig. A.1, and 

a dsRNA immunoblot, Fig. A.2. The strength of these assays include: providing information of 

the size of the dsRNA produced (dsRNA immunoblot) and indicating cellular localization (ICC), 

all while relying on the specificity of a monoclonal antibody. In addition, ICC is the only 

technique described here that does not require extraction of nucleic acids, as such there is no risk 

of dsRNA being formed during the extraction process.  Uninfected cells serve as an effective 

negative control, as the J2 antibody cannot detect dsRNA <40bp (8).  These assays however are 

time consuming and require specialized equipment. The antibody-independent assays use an 

RNA extraction method (from virus-infected cells; the same RNA used in the immunoblot), 

combined with either differential nuclease digestion and detection with ethidium bromide (EtBr), 

Fig. A.3, or AO staining, Fig. A.4, and require less specialized equipment.  AO stain is combined 

with agarose gel electrophoresis to differentially stain ssRNA red and dsRNA green. It has been 

suggested that RNA extraction methods using phenol/chloroform (ex. TRIzol) can cause dsRNA 

formation (12). We have not observed this in our controls, in fact, we have found commercial 

RNA extraction kits often are ineffective at extracting large (v)dsRNA molecules. The two 

antibody-independent detection methods for (v)dsRNA have different strengths (described in 

Table A.1). It should be noted that these two methods could also be combined; a differential 

digestion can be followed by AO staining in addition to or in place of EtBr.  When comparing 

fluorescence stains, EtBr is a more sensitive stain than AO, but the need to differentiate ssRNA 
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and dsRNA could outweigh sensitivity in some cases. As always, the detection method must be 

chosen based on the requirements of the researcher. 

Table A.1.  A summary of select techniques used to visualize dsRNA.   

 
 

 
Figure A.1. Immunocytochemistry to detect chum salmon reovirus (CSV) dsRNA in 
rainbow trout gonadal cells (RTG-2) using the J2 antibody. Cells were infected with CSV 
(TCID50/mL: 1.5x104) for 5 days, treated with media containing 10µg/mL in vitro transcribed 
dsRNA for 12h, or treated with control media.  A 2o only control showed no green signal (data 
not shown). Cells were counterstained with DAPI (green = dsRNA, blue = nuclei). Magnification 
200X. 

Uninfected Virus infected dsRNA treated 
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Figure A.2.  dsRNA immunoblot detecting dsRNA from chum salmon reovirus (CSV) 
infected Chinook salmon embryonic (CHSE-214) cells.  Cells were infected with TCID50/mL 
1.5x105 virus for 7 days prior to RNA extraction.  5µg of total RNA from CSV-infected cells 
was used in this experiment, and dsRNA was detected using the J2 antibody.  1µg of dsRNA 
ladder was also included. Total RNA from uninfected CHSE-214 cells has no bands (data not 
shown).       
 

 
Figure A.3.  Differential digestion confirming the presence of dsRNA from total RNA 
extracted from virus-infected cells. Cells were infected with 1.5x105 virus for 7 days prior to 
RNA extraction.  0.5µg of total RNA, 10µg of total RNA treated with RNase A or RNase A and 
RNase III were run on an agarose gel alongside 0.5µg O’Generuler 1kb plus.  The gel was stained 
with ethidium bromide and visualized under UV transillumination.       
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RNA RNase A  +III

RNase A  



 
177 

 

 
Figure A.4.  Acridine orange stain used to visualize nucleic acids with colorimetric 
indication of strandedness. RTG-2 cells were infected with 1.5x105 chum salmon reovirus 
(CSV) for 7 days prior to RNA extraction.  0.5µg of total RNA, dsRNA isolated from 10µg of 
total RNA digested with RNase A (dsRNA) were run on an agarose gel alongside 0.5µg 
O’Generuler 1kb plus.  4µg of poly I (ssRNA) and poly I:C (dsRNA) were run as controls.  The 
gel was stained with acridine orange. Double stranded nucleic acids stain green and single 
stranded nucleic acids stain red with this stain.  
 
A.3 Materials 

A.3.1 RNA extraction 

1. TRIzol reagent (15596-018, Ambion). 

2. 75% (v/v) Ethanol: Combine 7.5mL of 100% ethanol with 2.5mL molecular biology 

grade water.  Store at room temperature. 

3. 100% Isopropanol. 

4. Chloroform. 

5. Nuclease-free molecular biology grade water. 

6. Microcentrifuge tubes. 

7. Tabletop centrifuge (speed of at least 12000xg). 

!

Total 
RNA 

dsRNA Poly I Poly I:C 
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A.3.2 Immunocytochemistry 

1. ICC blocking solution (3% w/v BSA; 3% v/v goat serum, 0.02% v/v): In a 50mL Falcon 

tube dissolve, 1.5g bovine serum albumin, 1.5mL goat serum, in 48.49mL phosphate 

buffered saline (PBS), add 10µL Tween-20. Mix thoroughly by inverting tube.  Filter 

through 0.22µM filter and store at 4oC (see Note 1). 

2. Permeablization solution (0.5% v/v Triton-X): Mix 50µL Triton-X in 10mL of PBS. 

Prepare fresh. 

3. Permeablization solution (0.1% Triton-X): Mix 10µL, 0.5% (v/v), Triton-X in 10mL of 

PBS. Prepare fresh.   

4. 4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI, 5mg/mL): To prevent product 

loss reconstitute entire container of DAPI at once.  To 10mg of DAPI add 2mL of 

molecular biology grade water.  Mix thoroughly by vortexing. Divide into 10µL aliquots 

and store at -20oC protected from light. 

5. Circular cover glass 18mm diameter.   

6. Microscope slides 3” x 1” x 1mm. 

7. SlowFade Gold Antifade mountant (S36936, Fisher Scientific). 

8. 1X PBS with magnesium and calcium. 

9. 1X PBS without magnesium and calcium. 

10. Goat-anti mouse Dylight 488 antibody (Cedarlane, CLAS09-632). 

11. J2 monoclonal antibody (1mg/mL) (Scicons English and Scientific Consulting Kft, 

Hungary): To 200µg add 200µL molecular biology grade water.  Mix thoroughly by 

pipetting and let sit at room temperature for 15min.  Centrifuge the tube at max speed in 

a tabletop centrifuge for 5min to remove aggregates.  Divide into 5µL aliquots and store 

at -20oC.  
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A.3.3 dsRNA Immunoblot 

A.3.3.1 Polyacrylamide gel electrophoresis (PAGE) 

1. 40% (v/v) Acrylamide/BIS solution (Bio-Rad). 

2. 10% (w/v) Ammonium persulfate (APS):  Add 1g of APS solution to 10mL of MilliQ 

water; mix by vortexing. Divide into 100µL aliquots and store at -20oC. 

3. Tetramethylethylenediamine (TEMED). 

4. dsRNA ladder (N0363S, NEB). 

5. Orange DNA Loading Dye (6X) (R0631, Thermo Scientific).Tris-borate 

ethylenediaminetetraacetic acid (EDTA) (TBE; 5X): 445mM Tris base, 445mM borate, 

10mM EDTA.    Combine 54g of Tris base, 27.5g of boric acid and 20mL of 0.5M (pH 

8.0) EDTA.  Bring up to 1L with MilliQ water. Mix with a magnetic stir bar until clear. 

Store at room temperature.   

6. Mini-protein electrophoresis system (Bio-Rad). 

A.3.3.2 Membrane Transfer 

1. Trans-Blot Turbo Transfer System (Bio-Rad). 

2. MagnaLift Nylon Membrane 0.45µM. 

3. Extra thick western blotting filter paper (88620; Thermo Scientific) 

A.3.3.3 Immunoblotting 

1. Tris-buffered saline (TBS; 10X): 200mM Tris, 1.5M NaCl (pH 7.6).  Dissolve 24g Tris 

base and 88g of NaCl in 1L of MilliQ water. Adjust pH to 7.6 with concentrated HCl.  

Store at room temperature. 

2. TBS-T: TBS containing 0.1% (v/v) Tween-20.  Add 1mL of Tween-20 to 1L of TBS.  

Mix thoroughly by inversion.  Store at room temperature.     
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3. Blocking solution: 5% (w/v) skim milk in TBS-T. Combine 1g of skim milk powder with 

20mL of TBS-T.  Make fresh. 

4. 1o Antibody dilution solution: 2% (w/v) bovine serum albumin (BSA) in TBS-T. 

Dissolve 0.2g of BSA to 10mL of TBS-T.  Make fresh.    

5. 2o Antibody dilution solution: 5% (w/v) skim milk in TBS-T.  Combine 1g of skim milk 

powder with 20mL of TBS-T.  Make fresh.  

6. J2 monoclonal antibody (Scicons), see 2.2.  

7. Goat-anti mouse horseradish peroxidase (HRP) antibody. 

A.3.3.4 ECL Detection 

1. Clarity Western ECL substrate (Bio-Rad) 

2. VersaDoc Imaging System or similar system capable of imaging chemiluminescence 

(Bio-Rad) 

A.3.4 Nuclease Digestion  

1. RNase A (R6148, Sigma-Aldrich); dilute 1 to 10 in molecular biology grade water.  Mix 

thoroughly with vortex.  Prepare fresh.  

2. RNase III and RNase III digestion buffer (Fisher Scientific). 

3. Molecular biology grade 5M NaCl (Fisher Scientific). 

4. Poly inosinic: poly cytidylic acid (poly I:C, 10mg/mL) (1530, Sigma-Aldrich). To 

prevent product loss, reconstitute entire container of poly I:C at once.  To a 25mg 

container add 2.5mL of PBS.  Invert bottle to mix solution.  Heat in a 55oC water bath 

for 15min and then let cool at room temperature for 30min.   Divide into 20µL aliquots 

and store at -20oC. 

5. Poly inosinic acid (poly I; 10mg/mL) (P4154, Sigma-Aldrich). To prevent product loss 

reconstitute entire container of poly I at once.  To a 25mg container add 2.5mL of 
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molecular biology grade water.  Invert bottle to mix solution.  Heat in a 55oC water bath 

for 15min.   Divide into 20µL aliquots and store at -20oC.  

6. O’GeneRuler 1Kb Plus DNA ladder (SM1343, Thermo Scientific). 

A.3.5 Agarose Gel 

1. Mini-Sub Cell GT Cell (Bio-Rad). 

2. Orange DNA Loading Dye (6X) (R0631, Thermo Scientific). 

3. O’Generuler 1kb plus ladder. 

4. Tris-acetate EDTA (TAE, 50X): 2M Tris, 1M acetic acid, 50mM EDTA.  Dissolve 242g 

Tris base, 18.61g EDTA, and 57,1mL of acetic acid in 1liter of MilliQ water.  Store at 

room temperature.  

5. Ethidium bromide (EtBr) stain (0.5µg/mL).  Dilute 10µLof 10mg/mL stock EtBr in 

200mL of MilliQ water.  Store at room temperature away from UV light for up to 1 

month. 

6. Agarose (1% w/v in TAE). For a mini-gel combine 40mL of 1XTAE with 0.4g of agarose 

in a Bench Pint (OD260 Inc).  Microwave for approximately 1.5min until clear.  Swirl 

under cold water until you are able to touch the Bench Pint, and then pour into mold.  

7. Orange DNA Loading Dye (6X) (R0631, Thermo Scientific). 

A.3.6 Acridine Orange 

1. Acridine orange (AO) stain (15µg/mL). Measure 30mg of AO in a container big enough 

to fit the gel you are staining, add 200mL of MilliQ water.  Mix on a rocking platform at 

a low speed until there are no visible precipitates Prepare fresh.  

A.4 Methods  

Carry out all steps at room temperature and with room temperature reagents, unless specified. If 

not specified otherwise PBS is without magnesium and calcium.   
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A.4.1 Immunocytochemistry  

All wash steps will be 500µL/well for 1min; to easily remove media or wash solution invert plate 

over a collection dish.   

1. Plate cells in 12-well plate containing glass coverslips at a medium-confluency, for 

RTG-2 cells (13) 200,000cells/well in a total volume of 1mL.  

2. Incubate overnight at normal growth temperature to allow for re-attachment of cells. 

3. Infect cells with a sub-lethal titre of your virus of interest (in this case TCID50/mL 

1.5x104, in 500µL of media with 5% fetal bovine serum (FBS). Treat uninfected 

control wells with 500µL of infection media – without virus.  A positive control can 

be included (in this case, 10µg/mL in vitro transcribed dsRNA for 12h (see Note 2).  

4. Incubate for the required amount of time at a permissive temperature (5 days at 17oC 

for our example), after this time there may be some beginning signs of cytopathic 

effects, but the monolayer should be largely intact.  

5. Remove media from all wells and wash 1x with PBS (+Mg+Ca).   

6. To fix the cells add 500µL/well 10% neutral buffered formalin and incubate for 

10min. 

7. Wash cells 3x with PBS. 

8. To permeabilize the cells add 500µL/well of freshly prepared 0.5% Triton-X in PBS 

and incubate for 15min (see Note 3). 

9. Wash cells 3x with PBS. 

10. To block nonspecific binding, add 500µL ICC blocking solution to all wells and 

incubate for 1h.  

11. Wash cells 1x with PBS. 

12. Using a pipette tip, ensure that no coverslips are touching the walls of the well, as this 
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can draw the antibody solution off the coverslip. 

13. Dilute J2 (1o) antibody 1:200 in ICC blocking solution and add 40µL/coverslip; add 

ICC blocking solution alone to 2o antibody-only control and full control wells (no 

virus, 1o or 2o antibodies). 

14. Incubate for 1h in a humidified chamber; a Styrofoam cooler with wet paper towel at 

the bottom will suffice.  

15. Wash cells 3x with PBS. 

16. Using a pipette tip ensure that no coverslips are touching the walls of the well. 

17. Dilute goat anti-mouse Dylight 488 (2o) antibody 1:200 in IF blocking solution and 

add 40µL/coverslip; add IF blocking solution alone to full control well.  Incubate for 

1h in a humidified chamber in the dark.   

18. Rinse 3x with PBS 

19. To counterstain nuclei, dilute DAPI 1:1000 to 5µg/mL in PBS and add 300µL/well. 

Incubate for 5min in the dark 

20. Wash 3x with PBS and 1x with MilliQ water to remove residual salt. 

21. To mount coverslips, add 3µL of SlowFade Gold Antifade mountant to glass slides 

and using tweezers place coverslips cell-side down into mounting media. 

22. Incubate overnight at room temperature in the dark to cure mounting media. 

23. Visualize with a fluorescence microscope at 200x magnification (we use a Nikon 

Eclipse TiE with Qi1 camera and Nikon NIS-Elements software; see Note 4).  

A.4.2 Extraction of viral dsRNA from cells (RNA generated used for A.4.3, A.4.4 and A.4.5) 

1. Infect a T-75 flask of cells with your virus of choice at a sufficient titre, which will need 

to be determined (for this example, CHSE-214 cells (14) were infected with CSV 

(1.5x105). 
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2. Incubate at permissive temperature (17oC in this case) until cells are showing advanced 

cytopathic effects but prior to complete annihilation of monolayer (5-7 days with CSV). 

3. Aspirate media from the flask. 

4. Add 1.2mL of TRIzol reagent.  Coat cell growing surface with TRIzol by gently tilting 

the flask. Scrape cells and collect cell/TRIzol mixture in a 1.5mL microcentrifuge tube.  

The mix is split into two separate tubes of 600µL to facilitate processing.   

5. Complete RNA extraction as per manufacturers instructions.  Steps are as follows. 

6. To each 600µL of TRIzol add 0.12mL of chloroform and shake vigorously for 

approximately 30seconds. 

7. Incubate for 3min at room temperature. 

8. Centrifuge at max speed in a tabletop microcentrifuge (13200xg) for 15min at 4oC. 

9. Transfer the clear upper aqueous phase (this phase contains RNA) to a new 

microcentrifuge tube, taking care to not to remove any of the white or pink phases. 

10. To precipitate the RNA, Add 0.3mL of 100% isopropanol to the aqueous phase.  Shake 

vigorously and incubate at room temperature for 10min. 

11. Centrifuge at max speed in a tabletop microcentrifuge for 10min at 4oC.  Ensure the hinge 

of the tube is facing up so the pellet may be located. The pellet of RNA may be very 

small, draw off the supernatant by placing a pipette on the opposite side of the tube.   

12. To wash the RNA add 0.6mL of 75% ethanol.  Centrifuge at max speed in a tabletop 

microcentrifuge for 5min at 4oC.  

13. Remove the 75% ethanol carefully, to avoid displacing the pellet of RNA. 

14. Let the tube dry upside down on a KimWipe for 15min. 

15. Resuspend the pellet in 30µL of molecular biology grade water. 
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16. Heat at 55oC for 15min.  Let cool at room temperature for 15min.  

17. Quantify RNA using a NanoDrop Lite Spectrophotometer (see Note 5).  

A.4.3 dsRNA Immunoblot  

All steps are performed at room temperature unless otherwise specified; all rinses are for 5min 

with gentle rocking. 

A.4.3.1 Polyacrylamide gel electrophoresis (PAGE) 

1. Prepare a 30% acrylamide gel by combining 3.9mL MilliQ water, 1.5mL of 40% 

acrylamide/Bis solution, 600µL 10x TBE buffer, 100µL 10% APS in MilliQ water, and 

5µL of TEMED in a 15mL Falcon tube, ensuring APS and TEMED are added last. 

2. Mix thoroughly but quickly to ensure gel is poured before polymerization occurs in the 

Falcon tube.  Using a P1000 pipette to transfer solution into the Mini-PROTEAN Tetra 

handcast system (Bio-Rad), add comb for wells, allow to polymerize approximately 20-

30min. There is no stacking layer for this gel. Check the leftover gel solution in the Falcon 

tube; once this solution is solidified the gel should be as well. 

3. Assemble the gel apparatus and fill with 1X TBE.  Do not use the running buffer meant 

for a western blot. 

4. Load 2µL (1µg) of dsRNA ladder mixed with 8µL of molecular biology grade water and 

2µL of 6X Orange DNA Loading Dye into the dsRNA ladder lane. All sample lanes 

should contain 5µg of RNA mixed with 6X loading dye. (see Note 6,7,8) 

5. Run gel at 140V for 2.5-3h. (see Note 9)   

A.4.3.2 Transfer 

1. Cut 2 sheets of extra thick paper and a nylon membrane to the size of the gel. 

2. Soak paper and membranes in 0.5X TBE for 1-2min, until saturated. 
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3. Set up membrane/filter/gel stack with 1 layer of extra thick paper, nylon membrane, 

acrylamide gel, 1 layer extra thick paper (Fig. A.5). 

4. Roll out any air bubbles using a roller or clean test tube.   

5. Using Bio-Rad Turbo Semi-Dry Transfer apparatus, set transfer to 400mA (max 25V) 

for 90minutes, the actual transfer will vary between 100-200mA for the majority of the 

transfer. 

 
Figure A.5.  The order of assembly for a dsRNA immunoblot transfer.  From the bottom 
anode up, the stack should include a layer of extra thick filter paper, a nylon membrane, the 
polyacrylamide gel, and another layer of extra thick filter paper.  The membrane and filter paper 
should be presoaked in transfer buffer (0.5X TBE).    
 

A.4.3.3 Immunoblot 

1. Remove membrane from stack carefully using tweezers; transfer to a container of a size 

to fit the membrane flat, and block in 5% skim milk TBS-T solution for 1h on a rocking 

platform set to a low speed. 

2. Pour off block solution: rinse 3x with TBS-T. 

3. Add J2 antibody diluted 1:2000 in TBS-T with 2% BSA (see Note 10).  

4. Incubate overnight at 4oC with gentle rocking on a rocking platform set to a low speed. 

5. Remove primary antibody solution; collect for re-use. 

6. Rinse 3x with TBS-T. 

7. Add secondary antibody, goat-anti mouse HRP, 1:2000 in 5% skim milk TBS-T for 1h 

on a rocking platform set to a low speed, now at room temperature. 

-!

Extra thick filter paper!

Extra thick filter paper!
Polyacrylamide gel!
Nylon membrane!

Top (-) cathode!

Bottom (+) anode!+!
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A.4.3.4 Detection 

1. Remove secondary antibody solution, rinse 2x with TBS-T and 1x with TBS 

2. Mix equal parts Bio-Rad clarity luminol/enhancer solution and Bio-Rad clarity peroxide 

solution; a total of 0.5mL is sufficient for one membrane using this technique.  This 

solution must be made immediately before use. 

3. Place blot onto transparent sheet protector, cover with clarity substrate taking care to 

remove bubbles; incubate for 5min, keeping the membrane in the dark. 

4. Blot along the edges of the membrane using a KimWipe to remove any excess reagent, 

leaving membrane in sheet protector. Do not touch membrane directly. 

5. Image using VersaDoc imager or other imager set to Ultra Chemiluminescence for 30s-

1min (see Note 11, 12). 

A.4.4 Differential Digestion + EtBr stained agarose gel electrophoresis 

1. Combine 20µg of total RNA with 4µL of 10-1 diluted RNase A + 4µL of 5M NaCl and 

bring volume to 40µL with molecular biology grade water. 

2. Incubate for 15min at room temperature. 

3. Add 400µL of TRIzol (RNase A inactivation step). 

4. Perform TRIzol extraction as per manufacturers instructions, resuspending pellet in 20µL 

of molecular biology grade water, see 3.2.  

5. Keep RNA on ice until ready for downstream use.  For long-term storage store at -80oC 

6. Take 10µL of the dsRNA solution and add 5µL of RNase III + 2µL of RNase III buffer 

+ 3µL molecular biology grade water. 

7. Incubate at 37oC for 1h 
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8. Mix 10µL of the single digest with 2µL of 6X loading dye and 20µL of the double digest 

with 4µL of loading dye.  Both samples will contain the same amount of starting RNA, 

10µg.   

9. Run both the single digestion and double digestion on a 1% agarose (w/v) gel in 1X TAE 

buffer prepared in a horizontal slab gel mold, Wide Mini-Sub Cell GT Cell (Bio-Rad).  

The gel will use 40mL of 1% agarose.  4µL (0.5µg) of O’Generuler 1kb plus ladder is 

also included on the gel (see Note 13). 

10. Run the gel at 80V for approximately 90min in 1X TAE buffer.   

11. Transfer gel to a container with 200mL of 0.5µg/mL EtBr in MilliQ water and incubate 

for 15min at room temperature 

12. Transfer to a container with 300mL of MilliQ water to destain for 15-20min. 

13. Visualize using VersaDoc transilluminator, UV setting for EtBr, exposure time 5s. 

A.4.5 Acridine orange stained agarose gel 

1. Prepare a 1% agarose gel (w/v) in 1X TAE buffer, in a horizontal slab gel mold, Wide 

Mini-Sub Cell GT Cell (Bio-Rad). The gel will use 40mL of 1% agaraose. 

2. Mix samples with 6X loading dye (to a final 1X loading dye) and add to wells. In Fig. 

A.4 the samples include: 

a. 0.5µg O’GeneRuler 1kb plus 

b. 0.5 µg total RNA extracted from virus-infected cells  

c. 10 µg of RNaseA treated total RNA (starting concentration) extracted from virus-

infected cells (this treatment should demonstrate dsRNA) 

d. 4 µg of poly inosinic acid (poly I) (ssRNA control) (see Note 14) 

e. 4 µg of poly I:C (dsRNA control) (see Note 15) 

3. Run the gel at 80V for approximately 90min in 1X TAE buffer.   
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4. Stain gel in 200mL of 15µg/mL acridine orange in MilliQ water for 10min at room 

temperature. 

5. Destain for 30-60min in 300mL of MilliQ water; checking the gel at 15min intervals. 

(see Note 16, 17) 

6. Visualize using VersaDoc transilluminator, for AO set two custom channels: AO-red: 

695bp, blue LED, 0.5x gain, 1x1bin; AO-green: 530band pass (bp), blue LED, 0.5xgain, 

1x1bin. 

7. Overlap AO images using multi-channel viewer (see Note 18). 

A.5 Notes 

1. Triton-X and Tween-20 are viscous reagents, however it is very important they are 

pipetted accurately; to accomplish these we make a 50% solution prior to pipetting (for 

immunocytochemistry blocking buffer and Triton-X solution the dilution is made in PBS, 

for immunoblotting the dilution is made in MilliQ water). 

2. In vitro dsRNA, in this case a 200bp molecule made using the MEGAscript RNAi kit 

(Thermo Fisher Scientific), works as a stronger positive control compared to poly I:C.  

This is because J2 in some cases can have a 10x lower affinity for poly I:C compared to 

other forms of dsRNA (8).  If you are interested in looking at poly I:C the K1 antibody 

form Scicons would be a better choice.  

3. We have found this combination of fixative/permeablization effective to see viral dsRNA 

in both the cytoplasm and nucleus of fish cells.  We have found that 0.1% Triton-X in 

PBS is best for visualizing in vitro dsRNA. It is entirely possible this would not be 

sufficient in some cases; we have not used other methods in our lab but other options for 

fixation/permeablization could include using cold methanol, acetone, or perhaps not 

permeablizing to look at surface dsRNA.   
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4. Fish cells have high autofluorescence in the green spectrum, make sure to use an exposure 

that does not result in high background in the full control treatment. 

5. There could be residual DNA contamination in this RNA, for the immunoblot DNA 

contamination is not an issue as the antibody is specific, a digestion that is stopped with 

a second TRIzol extraction will also remove any DNA contamination in our experience.  

If you are using a downstream application straight from here you should strongly consider 

DNase treating the RNA.  

6. 5µg of total RNA was sufficient as the dsRNA in this sample is abundant.  If there is a 

lower amount of dsRNA within the total RNA sample or the abundance is unknown we 

recommended running a greater amount of RNA, for example in the past we have found 

20µg necessary.  

7. If you want a membrane transfer control, you can also load a pre-stained protein ladder 

into an additional well.  The dye in the RNA samples will not remain on the membrane 

but the protein ladder will, this can be useful to ensure you did not make any mistakes 

such as building your stack upside down. 

8. If you think your sample is very large and you are interested in knowing the exact size 

this ladder will not be helpful as it only has bands up to 500bp; you can use in vitro 

transcribed dsRNA of a longer length or a viral genome (preferably segmented) if 

available.   

9. This time will require optimization depending on your sample, usually viral dsRNA 

length is reflected in the length of the genome and as such the molecules are quite large.  

This time/speed puts a 500bp dsRNA ladder band at the bottom of the gel.  
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10. Diluting the antibody in TBS-T with BSA allows the antibody to be frozen, thawed and 

reused. This strategy has been very successful for us and we have freeze/thawed the same 

antibody solution 3-4 times without any apparent decrease in sensitivity. 

11. If the dsRNA in your sample is at a very low concentration you may need to do a very 

long exposure time. If this is the case it may be beneficial to cut off the ladder, as the 

ladder signal will be strong and might interfere with visualizing a fainter band.  The 

ladder is generally so strong that a visible brown band can be seen with the naked eye. 

12. It is recommended to image the gel after the five-minute incubation, however the 

membrane can be still be imaged several hours after the addition of the substrate. 

13. dsRNA migrates slightly slower than dsDNA on an agarose gel; this means the dsDNA 

ladder such as O’GeneRuler 1kb plus will not be an entirely accurate means of sizing 

your dsRNA molecules.  For our purposes however it has been sufficient.  If you are 

interested in getting the most accurate size you can run the dsRNA marker used in the 

immunoblot, but the same issues will remain that the ladder does not have a band higher 

than 500bp, so once again you will have to create an in vitro molecule to accurately assess 

larger sized dsRNA molecules.   

14. ssRNA from total RNA is not always a reliable control because it can have secondary 

structures that might interfere with the red/green staining.  Poly I is an commercially 

available ssRNA that works well as a ssRNA control.   

15. Poly I:C is a commercially available dsRNA molecule that works well as a positive 

control for dsRNA.  The DNA ladder will also function positive control for double-

strandedness. However it is less relevant, as a DNA molecule for our purposes.   An in 
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vitro dsRNA would also be a good control, but these molecules are more expensive to 

produce and may not be as readily available.   

16. Gels can be stained in AO and EtBr, however the AO stain must be completed first as the 

EtBr seems to interfere with the AO coloring.   

17. The destain period can be increased if the background is too high, an overnight destain 

can drastically reduce the background; however as the nucleic acids will start to diffuse 

out of gel you lose sensitivity, especially in the smaller and fainter bands; larger, strong 

bands look clear and well-stained in our experience. 

18. If the gel is understained all nucleic acids will visualize green, this is why having a strong 

single-stranded control is important to include. 
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B.1 Overview 

Type I interferons (IFN) are the cornerstone cytokine of innate antiviral immunity. In response 

to a viral infection, IFN signaling results in the expression of a diverse group of genes known as 

interferon-stimulated genes (ISGs). These ISGs are responsible for interfering with viral 

replication and infectivity, helping to limit viral infection within a cell. In mammals, many 

antiviral effector ISGs have been identified and the antiviral mechanisms are at least partially 

elucidated. In fish fewer ISGs have been identified and while there is evidence they limit viral 

infection, almost nothing is known of their respective antiviral mechanisms. This review 

discusses seven ISGs common to mammals and fish and three ISGs that are unique to fish. The 

lack of understanding regarding fish ISG's antiviral effector functions is highlighted and draws 

attention to the need for research in this aspect of aquatic innate immunity. 
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B.2. Introduction 

 When a cell senses a viral infection an alarm is raised and the cell begins to defend itself 

via the innate immune response; mediated by type I interferons (IFNs). IFNs are cytokines that 

signal in an autocrine and paracrine fashion to ultimately establish an antiviral state, which can 

make cells refractive to virus replication (Fig. B.1; Zhang and Gui, 2012). Fish type I IFNs fall 

into two groups, group 1 and 2, based on the number of cysteines they contain (2 and 4 

respectively; Zhang and Gui, 2012). IFN is secreted from the cell and binds to its cognate 

receptor (IFNAR), whose binding triggers the Janus kinase - signal transduction and activator of 

transcription (JAK-STAT) signaling pathway. Fish IFNs and their subsequent signaling 

pathways have been previously reviewed in detail (Zhang and Gui, 2012). In fish, like in 

mammals, JAK-STAT signaling leads to the formation of interferon-stimulated gene (ISG)-

factor 3 (ISGF3) that binds to the IFN-stimulated regulatory element (ISRE) of various ISGs 

(Schneider et al., 2014) inducing the expression of hundreds of antiviral genes (Schneider et al., 

2014; Zhang and Gui, 2012). ISGs are the workhorses of the innate antiviral response; they are 

the effector molecules that work together to limit every step of a virus's replication. The healthy 

cell maintains these proteins at low levels to limit inappropriate activation while keeping the cell 

poised to respond to legitimate viral infections (Schneider et al., 2014). As a second safety 

mechanism, many ISGs are produced in inactive forms and remain inactive until the cell is 

infected with a virus (Haller and Kochs, 2002; Schneider et al., 2014). There is also a subset of 

ISGs that function as pattern recognition receptors (PRRs), ISGs, and antiviral effectors 

combined, such as PKR (dsRNA-dependent protein kinase) and the OAS (oligoadenylate 

synthetase)/RNaseL pathway (Schneider et al., 2014). 
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Figure B.1. IFN-stimulated gene induction and function. ISGs (with the exception of PKR 
which is also a PRR) are generally not expressed or expressed at low levels in unstimulated cells, 
but are highly expressed upon stimulation. Three common experimental stimulants of ISGs are 
recombinant/endogenous IFN, synthetic dsRNA (poly I:C), and virus infection. With the 
exception of VigB319, ISG56, TRIM8 and TRIM39, which have not been shown to be induced 
by IFN, all other ISGs discussed in this review have been shown to be induced by virus infection, 
poly I:C, and IFN. Once ISGs accumulate within a cell, known as the antiviral state, the cell can 
defend itself from a virus infection. ISGs are capable of protecting the cell against virus infection 
at every different stage of virus replication. Red X's indicate steps of virus replication shown to 
be blocked by ISGs in mammals, while blue X's indicate steps of virus replication blocked by 
both the fish and mammalian homologue of the ISG. ISG15 is listed in blue, as it can bind to 
viral and cellular proteins in fish, but it is unclear what stage of the viral life cycle they hinder. 
PRR = pattern recognition receptor, PAMP = pathogen-associated molecular pattern, 
IFN = interferon, ISG = IFN-stimulated genes, poly I:C = poly inosinic: poly cytidylic acid, 
rIFN = recombinant IFN. 
 

 While hundreds of ISGs have been identified only a small subset have been shown 

definitely to have antiviral effectiveness. In 2011 over 380 human ISGs were cloned into 

expression vectors and overexpressed in human cells to identify antiviral activity against a range 

of viruses (Schoggins et al., 2011). A study of this magnitude in fish has not yet been conducted. 

As ISGs are so numerous, this review has focused on ISGs who are proven antiviral effectors or 

believed to directly limit viral replication, including: viperin (virus inhibitory protein, 

endoplasmic reticulum-associated), ISG15, ISG56, viral hemorrhagic septicemia virus (VHSV)-

induced gene (Vig)-B319, Mx, TRIM39, TRIM8 and grass carp hemorrhagic virus (GCHV)-
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induced gene (Gig)-1 and -2. Fish viperin, ISG15, ISG56, Mx, PKR, TRIM8, and TRIM39 have 

mammalian homologues while the expression of Vig-B319, Gig-1 and -2 appears to be fish 

specific. The fish species in which these ISGs have been identified are summarized in Table B.1 

and a comparison of antiviral activity, antiviral mechanism, and cellular location of mammalian 

and fish ISGs can be found in Table B.2. Modulation of the innate immune response is an 

excellent candidate approach to developing broad antiviral strategies. As fish in general and 

aquaculture in particular are economically important on a global scale; the purpose of this review 

is to highlight areas lacking understanding in the field of fish ISGs in order to encourage much 

needed research in the hopes of developing novel antiviral therapies. 

Table B.1. A summary of fish species from which each listed ISGs has been identified. Only complete 
transcript sequences published on NCBI haven been included in this table. Predicted or putative 
sequences have not been included. * = similar or –like sequence; + = ISG56. 
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Table B.2. Comparison of mechanisms of action and location of expression within the cell, between 
mammalian and fish ISGs, and virus families able to induce ISGs in specific fish species. The 
antiviral mechanism, cellular location (when active), and effectiveness against viral family have 
been compared. The host species and the viral family that the ISG has been effective against 
have been listed for fish, bolded viral families indicate virus families that have been shown to be 
limited by the mammalian ISG homologue as well. 

 

1: Wang et al., 2007, Helbig et al., 2011, Chin and Cresswell, 2001; 2:Cunha et al., 1996; 
Okumura et al., 2006; Skaug and Chen, 2010; 3: Zhou et al., 2013; Li et al., 2009; 4: Haller et al., 
2007; Kochs and Haller, 1999; Engelhardt et al., 2004; 5:Jeffrey et al., 1995; Balachandran et al., 
2000; Der and Lau, 1995; Kumar et al., 1994, 6: Suzuki et al., 2016; Kurata et al., 2013; 
7:Okumura et al., 2010; Tomar et al., 2012; 8:Zhang et al., 2014; Wang et al., 2014A, 
2014B9:Langevin et al., 2013; Huang et al., 2013; Furnes et al., 2009; Wang et al., 2012; 
10:Long and Sun, 2014; 11:Yeh et al., 2014; 12:Lin et al., 2006; Trobridge et al., 1997; 
Fernández-Trujillo et al., 2015; Leong et al., 1998; Kibenge et al., 2005; Caipang et al., 2003; 
Peng et al., 2012; Chen et al., 2008, Su et al., 2009, Fernandez-Trujillo et al., 2011, Alvarez-
Torres et al., 2013; Wu et al., 2010; 13:Sun et al., 2014; Sun et al., 2013, 2013; 14:Li et al., 2012, 
15:Zhu et al., 2008, 2009, Liu et al., 2011, 16:Wang et al., 2016; 17:Huang et al., 2016. 
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B.3. Viperin 

 Viperin (also known as vig-1) is a well-characterized ISG with multiple antiviral 

activities in mammals; these include interfering with viral budding through inhibition of specific 

enzymes, and inhibiting viral genome replication through binding to viral proteins required for 

replication and assembly (Chin and Cresswell, 2001; Helbig et al., 2011; Wang et al., 2007). 

Viperin associates with the cytosolic face of the endoplasmic reticulum (ER) until viral infection 

and then relocates to the cytoplasm, in lipid droplets or foci in the cytoplasm to inhibit virus 

replication (Chin and Cresswell, 2001; Helbig et al., 2011; Wang et al., 2007). One mammalian 

virus, human cytomegalovirus (HCMV), hijacks viperin and induces its expression then redirects 

it to the mitochondria where it increases viral entry (Seo et al., 2011).  

 Fish express an ISG with a high sequence similarity to human and murine viperin; 

however, its mechanism of action in fish is not well understood (Boudinot et al., 1999). Fish 

viperin is a demonstrated IFN-inducible protein that has been identified in many fish species 

(Table B.1). The antiviral effects of viperin in both fish cells and whole animals have been 

shown; for example overexpression of viperin resulted in an antiviral state in crucian carp 

(Carassius carassius) cells against GCHV and in rock bream (Oplegnathus fasciatus) fish 

against megalocytivirus (Wang et al., 2014A; Zhang et al., 2014). As is seen in infected 

mammalian cells, rock bream viperin localized to the ER in uninfected cells and dissociated from 

the ER to the cytoplasm after viral infection (Table B.2; Chin and Cresswell, 2001; Nasr et al., 

2012; Zhang et al., 2014). 

B.4. ISG15 

 ISG15 (also known as vig-3) is a small protein with many roles in mammalian immunity; 

it is a ubiquitin-like protein that covalently binds to its target protein in a process known as 

ISGylation (O'Farrell et al., 2002; Schneider et al., 2014). Current evidence suggests that ISG15's 
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antiviral activity may be non-specific, as it conjugates to both host and viral proteins, thus its 

mechanism for preferentially targeting viral proteins might be its ability to conjugate newly 

synthesized proteins of which there would be many in a virus infected cell (Durfee et al., 2010). 

Interestingly, ISGylation has been found to have both stabilizing and destabilizing effects on its 

target proteins, but it is not clear how this is accomplished (Durfee et al., 2010; Lu et al., 2006; 

Schneider et al., 2014). ISG15 conjugates to a lysine residue in the NS1 protein of influenza A 

and one outcome of this was the inhibition its ability to interact with importing A, leading to 

decreased viral replication (Zhao et al., 2010). 

 ISG15 has been identified in many fish species and is induced by IFN (Table B.1; 

Røkenes et al., 2007). As in humans, the LRGG motif of fish ISG15 is crucial for antiviral 

activity (Langevin et al., 2013; Wang et al., 2012). Fish ISG15 conjugates to viral proteins within 

infected cells, however the effect of this ISGylation is not understood (Langevin et al., 2013; 

Røkenes et al., 2007). Zebrafish (Danio rerio) ISG15 was found to conjugate to the P and N 

proteins of infectious hematopoietic necrosis virus (IHNV) and Atlantic salmon (Salmo salar) 

ISG15 was found conjugated to infectious salmon anemia virus (ISAV) proteins (Langevin et al., 

2013). ISG15 in fish shows broad antiviral activity against many fish viruses, as seen with 

overexpression of orange-spotted grouper ISG15 in grouper spleen cells inhibiting grouper 

nervous necrosis virus (GNNV) and overexpression of zebrafish ISG15 in Epithelioma 

Papulosum Cyprini (EPC) cells inhibited VHSV and IHNV; and after knockdown of ISG15 by 

RNAi led to an increase in megalocytivirus viral load in tongue sole head kidney lymphocytes 

(HKL) (Huang et al., 2013; Langevin et al., 2013; Wang et al., 2012). ISG15 was shown to 

localize to the cytoplasm after viral infection or poly I:C stimulation (Huang et al., 2013). ISG15, 

however, does not confer protection against all fish viruses, for example in orange-spotted 
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grouper (Epinephelus coioides) ISG15 provided protection against GNNV but was not effective 

in reducing Singapore grouper iridovirus (SGIV) viral transcripts (Huang et al., 2013). Where 

ISG15 is ineffective ISGylation is not seen, thus ISG15 is either not effective against these 

viruses or the viruses have fast acting countermeasures against ISG15 (Huang et al., 2013). 

 Mammalian ISG15, in addition to conjugating to intracellular proteins, is secreted and 

has cytokine activity (Bogunovic et al., 2013). This may also be the case for fish as ISG15 was 

found in the supernatants of poly I:C stimulated Atlantic salmon leucocytes (Røkenes et al., 

2007); this secreted property of ISG15 was also found in tongue sole (Cynoglossus semilaevis), 

where megalocytovirus infection of HKL led to secretion of ISG15 (Wang et al., 2012). 

Recombinant tongue sole ISG15 was able to activate head kidney macrophages and enhance 

immune gene expression in HKL (Wang et al., 2012). Treating tongue sole HKLs with 

extracellular recombinant ISG15 decreased viral load, and enhanced antibody-mediated 

inhibition of virus infection (Wang et al., 2012). In contrast to mammalian ISG15, and perhaps 

other fish, tongue sole ISG15 appeared to exert most of its antiviral activity through its 

extracellular role as opposed to its intracellular protein conjugation mechanisms (Wang et al., 

2012). 

B.5. ISG56 

 Mammalian ISG56 (also known as IFIT1) is a member of the IFIT family of proteins 

(Zhou et al., 2013). ISG56 in mammals has demonstrated antiviral properties; however, its 

mechanism is not thoroughly elucidated and appears complex. One antiviral mechanism of 

ISG56 is interference with viral transcription through binding to eukaryotic initiation factor 

(eIF)3 or binding/sequestering viral 5′PPP-RNA or non-2′-O methylated viral RNA (Zhou et al., 

2013; Diamond, 2014). Fish also express members of the IFIT family, including ISG56 

(O'Farrell et al., 2002). 
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 As in mammals, fish ISG56 proteins contain tetratricopeptide repeat domains and 

transcription is upregulated in response to viral infection (Long and Sun, 2014; O'Farrell et al., 

2002; Zhou et al., 2013). While fish ISG56 has been shown to have antiviral effects, its 

mechanism of action is poorly understood. Overexpression of ISG56 in tongue sole limited 

megalocytivirus replication and knockdown of ISG56 enhanced replication (Long and Sun, 

2014). Rainbow trout (Oncorhynchus mykiss) express Vig-4, which shares sequence similarity 

with ISG56 and another IFIT family member, ISG58 (O'Farrell et al., 2002). While there is no 

direct evidence for ISG56 being IFN-inducible in fish, transfection of fish cells with IRF3 or 

stimulation with poly I:C, an IFN-stimulating molecule, increased ISG56 or Vig-4 expression 

respectively, suggesting IFN-inducibility (Huang et al., 2015; Poynter and DeWitte-Orr, 2015). 

B.6. Mx 

 Mx proteins are dynamin-like GTPases with antiviral activity. For example in mammals, 

Mx1 induces a broad antiviral state by forming oligomers around viral nucleocapsids, ultimately 

targeting them for degradation (Schneider et al., 2014). While some aspects of its antiviral 

mechanism understood, many details of Mx's antiviral mechanism are not fully elucidated 

(Schneider et al., 2014). Mx isoforms vary between animals: humans and mice express 2 and rat 

express 3 forms of Mx, fish express many forms of Mx ranging from 1 in many fish species to 7 

in zebrafish (Lin et al., 2006; Leong et al., 1998). Fish Mx is also interferon inducible and 

exhibits broad antiviral activity (Alvarez-Torres et al., 2013; Holland et al., 2008). 

 As with mammalian Mxs, fish Mxs have antiviral properties against a wide range of 

viruses while some viruses are unaffected by Mx activity (Alvarez-Torres et al., 2013; Meier 

et al., 1990). Different Mx isoforms in fish show different antiviral ranges, as is seen in 

mammals, but interestingly fish Mx isoforms show interactions that have not been noted in 

mammals. Gilthead seabream (Sparus aurata) expressing Mx1, Mx2, and Mx3 individually 
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showed antiviral activity; however, these Mxs also interacted with each other, synergistically or 

antagonistic, depending on the virus that was infecting the cells (Fernández-Trujillo et al., 2015). 

It is hypothesized that interactions between different Mx isoform combinations create different 

oligomer conformations; if different isoforms are present in the oligomer ring it could affect the 

virus-targeting domain and alter its antiviral activity (Fernández-Trujillo et al., 2015). As with 

mammals, fish Mx proteins have different mechanisms of action. In grouper Mx was shown to 

limit GNNV replication through direct interactions, specifically it was seen that the coat protein 

of the virus binds to the effector domain of Mx (Chen et al., 2008). In barramundi (Lates 

calcarifer) it was found that increased Mx expression led to a decrease in nervous necrosis virus 

(NNV) RNA-dependent RNA polymerase (RdRp) activity; Mx co-localized and co-precipitated 

with viral RdRp indicating a direct interaction (Wu et al., 2010). It appears Mx directs RdRp to 

the perinuclear area for degradation; mammalian MxA has been found in to also inhibit viral 

polymerase activity. In some cases, purified recombinant MxA inhibited the viral polymerase of 

vesicular stomatitis virus (VSV) and nuclear-modified human MxA inhibits viral polymerase of 

Thogoto virus and influenza virus (Wu et al., 2010; Schwemmle et al., 1995; Turan et al., 2004; 

Weber et al., 2000). There has been an emphasis on the study of fish Mx, and more is known 

about this ISG than any other; however it is necessary to continue studying Mx, to identify 

different isoforms from fish species and identify their varying mechanisms of action for limiting 

viral infections. 

B.7. Vig-B319 

 Vig-B319 was first identified in VHSV-infected rainbow trout head kidney cells 

(O'Farrell et al., 2002). It is not yet confirmed that vig-B319 is IFN-induced; however, as with 

ISG56, poly I:C does stimulate vig-B319 suggesting it could be mediated by IFN (unpublished 

data). This seemingly fish-specific ISG was first identified in orange-spotted grouper and called 
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EcVig. EcVig was found to have four isoforms, EcVigA-D, with EcVig-A being the major 

isoform (Yeh et al., 2014). All four EcVig isoforms were induced by viral infection and 

overexpression of EcVigA resulted in protection against a NVV infection (Yeh et al., 2014). Vig-

B319 is an understudied ISG in fish that warrants further investigation. 

B.8. Gig1 and Gig2 

 As with vig-B319, the Gig family members are ISGs specific to fish that do not appear 

to have human homologues (Sun et al., 2014). Gig1 and Gig2 expression is upregulated in 

response to virus infection, and both promoters contain ISREs (Sun et al., 2013, 2014; Li et al., 

2012). The IFN-inducibility and IFN-dependence of Gig1 and Gig2 are unclear; recombinant 

IFN did not induce Gig1 or Gig2 in Grass carp (Ctenopharyngodon idella); however, 

recombinant IFN induced Gig2 in zebrafish and Gig1 in crucian carp (Jiang et al., 2009; Li et al., 

2012; Sun et al., 2013; Zhang and Gui, 2004). In crucian carp blastulae cells no observable Gig1 

was present prior to stimulation; however, after poly I:C or viral infection, Gig 1 was found in 

cytoplasm upon viral infection and limited GCHV replication (Sun et al., 2014). The antiviral 

mechanisms of these ISGs are still unknown. Overexpression of fish Gig proteins limits viral 

replication and induces a protective antiviral state; Gig1 and Gig2 have protective activity against 

GCHV, Gig2 has demonstrated effectiveness against spring viremia of carp virus (SVCV) and 

Rana grylio virus (RGV) (Li et al., 2012; Sun et al., 2013, 2014). Again, further research is 

necessary to understand the induction and expression patterns for Gig1 and Gig2 as well as its 

mechanism of action. 

B.9. TRIM39 and TRIM8 

 The tripartite motif (TRIM) family of proteins is an emerging group of antiviral ISGs. 

While some TRIMs are constitutively expressed and believed to interfere with early viral 

infection, other TRIMs are induced by IFNs and may function to limit later stages of virus 
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replication (Nisole et al., 2005; Carthagena et al., 2009). In a panel of 72 human TRIM genes, 9 

were shown to be upregulated by IFN (Carthagena et al., 2009). TRIM proteins contain a RING 

(Really Interesting New Gene) finger domain, one or two B-box domains and a coiled-coil 

region; they have many cellular functions including differentiation, development and cell 

proliferation (Carthagena et al., 2009; Nisole et al., 2005). Several mammalian TRIMs have 

antiviral properties based mainly on their function as E3-ubiquitin ligases, and there are a number 

of current reviews of mammalian TRIMs discussing their actions in detail (Rajsbaum et al., 2014; 

McNab et al., 2011). Briefly, a TRIM8/10/11/56 complex in mouse was able to inhibit HIV entry 

and TRIM8/25/31/56 was able to interfere with N-MLV entry (Uchil et al., 2008). TRIM8 was 

also found to have a role in innate immunity signaling, as it was able to mediate activation of 

NF-kB (Li et al., 2011). TRIM39 is common to mammals and fish; gain-of-function of 

mammalian TRIM39R induces genes involved with the type I IFN response and antiviral 

defenses (Kurata et al., 2013). TRIM39 has many additional roles in cell homeostasis control, 

including mediating apoptosis, cell cycle, and cytostasis (Zhang et al., 2012). 

 Fish have a larger number of TRIMs compared to mammals, in fact a new virus-induced 

TRIM subfamily, called finTRIMs, were first identified in rainbow trout (Van Der Aa et al., 

2009). finTRIMs from various species cluster into a separate group from TRIM39 (fish and 

human), TRIM25 (fish, human, chicken, Xenopus), TRIM39 (Xenopus, fish, human; Van Der 

Aa et al., 2009). While the antiviral roles of fish TRIMs are only now beginning to be studied, 

two of these proteins TRIM39 and TRIM8, have been preliminarily explored (Wang et al., 2016; 

Huang et al., 2016). It should be noted that neither TRIM has been shown to be induced by IFN 

directly, but both were upregulated after poly I:C treatment (Wang et al., 2016; Huang et al., 

2016). While there is a lack of confirmed full length TRIM8 or TRIM39 mRNA sequences 
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published on NCBI (as noted in Table B.1), there are many predicted sequences available. A 

gene involved in erythrocyte differentiation in zebrafish, which is closely related to TRIM39 has 

been identified, called blood-thirsty (bty or btr) (Yergeau et al., 2005). The zebrafish subfamily 

of btr genes is homologous to human TRIM39 (Zhang et al., 2015). Grouper TRIM39 was 

upregulated in response to virus challenge with an iridovirus. As with many ISGs, grouper 

TRIM39 localized to the cytoplasm in aggregates when transfected into cells (Wang et al., 2016). 

While there is a role for TRIM39 in cell cycle progression in fish, as is seen in mammals, antiviral 

activity was also observed, as overexpression significantly inhibited both SGIV and red-spotted 

grouper necrosis virus (RGNNV; Wang et al., 2016). TRIM8 was upregulated by SGIV and was 

most significantly increased at early stages of infection. Over-expression of TRIM8 in vitro in 

the grouper spleen (GS) cell line resulted in inhibition of both SGIV and RGNNV replication, 

possibly via enhanced IRF-3 or IRF-7-induced ISRE promoter activity (Huang et al., 2016). 

Further research into the complex roles of finTRIMs and other TRIMs from fish is necessary to 

fully understand whether or not these molecules are solely involved in regulating antiviral 

signaling pathways or if they limit virus replication directly. 

B.10. PKR 

 The double-stranded RNA-dependent protein kinase (PKR) is unique in this review as it 

functions as both a pattern recognition receptor (PRR) and an antiviral effector. As it is a PRR, 

PKR is expressed constitutively prior to stimulation with IFN (Balachandran et al., 2000). 

Following dsRNA binding and dimerization PKR becomes an active kinase that phosphorylates 

the eukaryotic-translation initiation factor 2α (eIF2α) (Balachandran et al., 2000). This 

phosphorylation inhibits protein translation within the cell, inhibiting viral replication. PKR also 

plays a role in signal transduction; it is able to activate NF-κB by phosphorylating IκB-α and 

also plays a role in IFN signaling; it has been recently reported that PKR plays a crucial role in 
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the signal transduction of the dsRNA sensor MDA5 (Pham et al., 2016; Kumar et al., 1994; Der 

and Lau, 1995). Additionally, PKR can induce apoptosis within virus-infected cells (Gill and 

Esteban, 2000). As PKR has a broad range of antiviral effector mechanisms, many viruses have 

developed methods evading PKR-mediated antiviral activities (discussed in section B.11). 

 PKR homologs have also been identified in a variety of fish species (Table B.1). As with 

mammals, fish PKR is also induced by IFN (Liu et al., 2011), contains at least two tandem 

dsRNA-binding motifs (dsRBMs), is constitutively expressed at low levels, and is able to inhibit 

protein translation (Zenke et al., 2010; del Castillo et al., 2012; Hu et al., 2016). At least two 

dsRBMs were required for binding dsRNA and triggering protein translation inhibition (Hu et al., 

2016). Grass carp PKR has three dsRBMs, two of which are similar to mammalian dsRBMs 

while the third, dsRBM1, is unique to fish (Hu et al., 2016). PKR in Japanese flounder 

(Paralichthys olivaceus) and crucian carp inhibited the replication of Scophthalmus maximus 

rhabdovirus (SMRV) and GCHV respectively via its eIF2α phosphorylation activity (Zhu et al., 

2008; Liu et al., 2011). While study into the antiviral role for PKR in fish has begun, very little 

is known regarding PKR's alternative roles, such as inducing apoptosis or signaling, in fish. 

 We would be remiss if we failed to examine PKZ while discussing PKR in fish. PKZ is 

a fish-specific PKR-like molecule that has Z-DNA binding domains instead of dsRBMs 

(Rothenburg et al., 2005). PKZ is also able to phosphorylate eIF2 α and inhibit protein translation 

(Yang et al., 2011). Although there is less direct evidence for antiviral effectiveness of PKZ, in 

crucian carp it was shown that PKZ was able to inhibit replication of GCRV. PKZ and PKR 

appear to have non-redundant roles as overexpression or knockdown of both resulted in a 

stronger antiviral response compared to either protein alone; notably PKR showed stronger 

antiviral properties than PKZ (Liu et al., 2011). 
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B.11. Fish virus countermeasures 

 The virus-host cell battle is hardly one-sided, aquatic viruses have developed methods 

for modulating host-produced ISGs. This battle is not restricted to mammalian viruses, fish 

viruses can interfere with host antiviral responses; for example, many ranaviruses are able to 

modulate PKR activity (Grayfer et al., 2012). Some fish viruses have the ability to prevent the 

induction of Mx. In two salmon head kidney cell lines infectious pancreatic necrosis virus 

(IPNV) blocked Mx protein expression (Jensen and Robertsen, 2002). This was further supported 

by studies in rainbow trout fibroblast cells where IPNV induced IFN transcription but hindered 

the activation of the Mx promoter (Collet et al., 2007). At least two IPNV viral proteins are 

suspected to be antagonists for the Mx promoter, viral nonstructural protein VP5 and protease 

VP4 (Skjesol et al., 2009). ISAV produces a 7i protein which is an interferon-signaling 

antagonist, as was seen by its ability to limit Mx-promoter activation and transcript levels, 

however it did not affect levels of IFN transcripts (McBeath et al., 2006). In a separate study 

ISAV proteins from segment 7 and 8 were found to independently down-regulate type I IFN 

promoter activity; interestingly the protein from segment 8 binds dsRNA and poly-A ssRNA 

(García-Rosado et al., 2008). There are only a handful of studies investigating virus immune 

evasion strategies in fish; this is another area of research that requires further elucidation. 

B.12. Conclusions 

 In conclusion, it appears as though fish and mammals express similar arsenals of ISG 

combatants to battle a viral infection. There are a small number of identified ISGs that are present 

in fish but not mammals and there are many ISGs that have been found in mammals but not yet 

in fish; however, this is not necessarily because they do not exist in fish, but that they have not 

yet been identified. While some fish ISGs have been cloned and induction patterns are somewhat 

known, very little is known about their mechanism of antiviral activity (Table B.2). Further 
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research is necessary to identify novel fish ISGs and characterize their mechanisms for limiting 

virus replication. Research into similarities and differences between mammalian and fish ISGs 

would guide our understanding of the evolution of innate antiviral immunity. ISGs are the front 

line of defense against viral infection and a lack of understanding of the mechanism of these 

molecules in fish greatly hinders our understanding of the host antiviral response and the 

development of novel antiviral therapeutics. 
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