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Abstract

This thesis describes several projects under the common theme of generating and manip-
ulating the spatial quantum phase structure of matter and electromagnetic waves. Experi-
ments dealing with the following topics are addressed: perfect crystal neutron interferometry,
far-field phase-grating moiré interferometry, orbital angular momentum (OAM), spin-orbit
states, and lattices of spin-orbit states.

The first focus of the thesis is describing the work related to the construction of a new
beamline dedicated to quantum information related neutron interferometry experiments at
the National Institute of Standards and Technology’s Center for Neutron Research. This
includes the development of the necessary environmental isolation, phase stability, and tem-
perature isolation mechanisms; and the installation and optimization of spin polarization
elements. The new beamline is now operational and it is currently one of only three neutron
interferometry facilities in the world.

The second focus of the thesis is to describe the development and characterization of
far-field phase-grating moiré neutron interferometry. This technique enables studies that
are complimentary to those of perfect crystal neutron interferometry experiments. It may
be used to probe structured materials and characterize neutron interactions with potential
gradients. A two phase-grating moiré neutron interferometer was developed, characterized,
and optimized. This setup was then employed to probe the microstructure of a monodisperse
suspension of ∼2 µm diameter polystyrene spheres. Furthermore, a three phase-grating
moiré neutron interferometer was developed and characterized. This unique setup promises
a wide range of impactful experiments from far-field imaging of material substructure to
fundamental physics.

The third focus of the thesis is to describe neutron OAM. These experiments revolve
around the preparation and characterization of an azimuthally varying phase profile. The
demonstration of neutron OAM using a perfect crystal neutron interferometer is described,
where a spiral phase plate was used to induce OAM in one of the paths of the interferometer.
Furthermore, a modified setup was used to perform neutron holography of a macroscopic
object which induces an azimuthally varying phase profile. These methods provide a new
tool for interferometric testing of neutron optics and the characterization of coherence of
neutron beams.

The last focus of the thesis is to describe matter wave and optical spin correlated OAM
(spin-orbit) states. Methods to prepare neutron spin-orbit states via special geometries of
magnetic fields are proposed. The preparation, entanglement characterization, and proposed
experimental verification of such states are described in detail. Furthermore, a method
which is capable of preparing lattices of optical and neutron spin-orbit states is introduced
and described. This method utilizes novel optical and neutron devices and it is based on
coherent averaging and spatial control methods borrowed from nuclear magnetic resonance.
The experimental preparation and characterization of optical lattices of spin-orbit states is
described in detail.
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2.3 Two Phase-Grating Moiré Interferometer . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Measuring the Microstructure of Samples with the Far-Field Interferometer . 45
2.4.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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2.10 Far-field phase-grating moiré NI . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11 Schematic of the two phase-grating interferometer setup . . . . . . . . . . . . 37
2.12 Contrast optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Measured far-field intensity of the two PGMI . . . . . . . . . . . . . . . . . . 40
2.14 Contrast and frequency of the two PGMI . . . . . . . . . . . . . . . . . . . . 41
2.15 Phase stepping with the two PGMI . . . . . . . . . . . . . . . . . . . . . . . 42
2.16 Contrast vs wavelength of the two PGMI . . . . . . . . . . . . . . . . . . . . 43
2.17 Phase-contrast imaging with the two PGMI . . . . . . . . . . . . . . . . . . 44
2.18 Two PGMI contrast at polychromatic beamline . . . . . . . . . . . . . . . . 47
2.19 Scattering data obtained via the two PGMI . . . . . . . . . . . . . . . . . . 48
2.20 Polystyrene sphere solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.21 Three PGMI setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.22 Contrast optimization of the three PGMI . . . . . . . . . . . . . . . . . . . . 53
2.23 Contrast vs three PGMI length . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.24 Phase stepping with the three PGMI . . . . . . . . . . . . . . . . . . . . . . 55
2.25 Sample imaging with the three PGMI . . . . . . . . . . . . . . . . . . . . . . 56

ix



3.1 State probabilities after an SPP . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Intrinsic vs extrinsic OAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Phase-imaging of an OAM beam . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Neutron holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Intensity profiles obtained with OAM beams and holography . . . . . . . . . 68
3.6 Measured and simulated interferograms . . . . . . . . . . . . . . . . . . . . . 69
3.7 Computed far-field intensity of the neutron OAM beam . . . . . . . . . . . . 70

4.1 Spin orientations of spin-orbit beams . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Methods of producing neutron spin-orbit states . . . . . . . . . . . . . . . . 74
4.3 Quadrupole spin-orbit state . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Coefficients of spin-orbit states . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Overlap of spin-orbit states . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Generating lattice of spin-orbit states with magnetic gradients . . . . . . . . 80
4.7 Concurrence of the quadrupole spin-orbit state . . . . . . . . . . . . . . . . . 82
4.8 Normalized concurrence of the quadrupole spin-orbit state . . . . . . . . . . 83
4.9 Setup for the spin-orbit Ramsey fringe experiment . . . . . . . . . . . . . . . 84
4.10 Spin dependent intensity and momentum distributions . . . . . . . . . . . . 85
4.11 Spin dependent momentum distributions of the quadrupole spin-orbit state . 86
4.12 Spin dependent momentum distributions of the LOV beams . . . . . . . . . 87
4.13 Proposed experiment to map out the 2D momentum distribution of a neutron

spin-orbit state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.14 Optical Michelson interferometer . . . . . . . . . . . . . . . . . . . . . . . . 89
4.15 Far-field intensity and phase profile of ` = 420 optical OAM beam . . . . . . 90
4.16 Generating optical LOV beams . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.17 Polarization dependent intensity of the optical LOV beam . . . . . . . . . . 92
4.18 Measured intensities of optical LOV beams . . . . . . . . . . . . . . . . . . . 93
4.19 Optical phase imaging of the LOV beams . . . . . . . . . . . . . . . . . . . . 94
4.20 Polarization dependent intensities of optical LOV beams . . . . . . . . . . . 95
4.21 Mapping of the 2D linear and circular birefringence with optical LOV beams 96

x



Chapter 1

Introduction and Formalism

1.1 Thesis Outline and Main Results

The focus of this thesis is the description of several projects under the common theme of
generating and manipulating the spatial quantum phase structure of matter waves and elec-
tromagnetic waves. The thesis builds upon the work of previous students and colleagues.
Most closely related are: Dmitry Pushin’s thesis describing the work on a decoherence free
subspace perfect crystal neutron interferometer (NI) [1]; Joachim Nsofini’s thesis describing
the work on a quantum information model of dynamical diffraction [2]; and Chandra Shahi’s
thesis describing the construction of the new neutron interferometry beamline at National
Institute of Standards and Technology’s (NIST) Center for Neutron Research (NCNR) [3].
In this thesis, experiments dealing with the following topics are addressed: perfect crystal
neutron interferometry, far-field phase-grating moiré interferometry, orbital angular momen-
tum (OAM), spin-orbit states, and lattices of spin-orbit states. The chapters are structured
as follows:

• Chapter 1 contains the theoretical framework needed for this thesis. In addition, it de-
scribes the neutron interferometry beamlines at the NCNR [4,5], and the development
and characterization of a vacuum chamber which was employed for NI temperature
isolation [6]. A brief reference is made to modeling the neutron propagation through
a perfect crystal [7], a proposal for a new five blade NI geometry [8], the effects of
annealing on neutron interferometry [9], and an experimental test of the chameleon
theory of dark energy [10].

• Chapter 2 describes the development and characterization of far-field phase-grating
moiré neutron interferometry. This includes the characterization of neutron diffrac-
tion from phase-gratings using Bragg diffraction crystals [11], demonstration of a two
phase-grating moiré neutron interferometer [12] and its application to measuring the
microstructure of samples [13], and the demonstration of a three phase-grating moiré
neutron interferometer for large interferometer area applications [14].

• Chapter 3 reviews the fundamentals of OAM and the demonstration of neutron OAM
[15]. The chapter then focus on the experiment demonstrating neutron holography of
a macroscopic object which induces OAM [16].
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• Chapter 4 presents and describes the methods for preparing and characterizing neutron
spin-orbit states [17], and the extensions to lattices of neutron spin-orbit states [18].
The preparation, entanglement characterization, and proposed experimental verifica-
tions of such states are described in detail. Lastly, the chapter introduces and de-
scribes the analogous methods to prepare and characterize optical lattices of spin-orbit
states [19].

1.2 Electromagnetic Waves and Matter Waves

Max Planck proposed in 1900 that energy is quantized and introduced what is now known
as the “Planck’s constant” with a value of h = 6.62607 × 10−34 J·s [20, 21]. In 1905 Albert
Einstein proposed that light is also propagated and absorbed in quanta, which are now called
“photons” [22]. The energy, E, and momentum, p, of a photon are given by:

E = hf =
hc

λ
= ~kc, p =

E

c
=
h

λ
= ~k (1.1)

where ~ = h/2π is the reduced Planck’s constant, and f, λ, k = 2π/λ, and c ≈ 3× 108 m/s
are the frequency, wavelength, wavevector, and speed of light respectively. Note that for the
momentum relation the mass-energy equivalence formula E = mc2 was used.

Electromagnetic waves are described by a wave function, Ψ(r, t), which is governed by
the wave equation:

∇2Ψ(r, t) =
1

c2

∂2Ψ(r, t)

∂t2
(1.2)

where ∇2 is the Laplacian, r is an arbitrary direction in (x, y, z), and t is time. In 1924 Louis
de Broglie proposed that the wave-particle duality captured by p = h/λ was applicable to
particles as well [23]. It follows then that the energy and the momentum of a particle, or a
matter wave, are given by:

E =
p2

2m
=

h2

2mλ2
=

~2k2

2m
, p = mv =

h

λ
= ~k (1.3)

where m, v, λ, and k are the mass, velocity, de Broglie wavelength, and wavevector of the
particle respectively.

In 1926 Erwin Schrodinger determined a wave equation for matter waves [24], now known
as the Schrodinger Equation (SE):

(
− ~2

2m
∇2 + V (r, t)

)
Ψ(r, t) = HΨ(r, t) = i~

∂Ψ(r, t)

∂t
(1.4)

where H is the Hamiltonian, V (r, t) is the external potential, and Ψ(r, t) is the wave function
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which contains a complete description of what can be learned about a quantum system. The
probability of finding a particle at a location r0 at time t0 is given by the Born rule [25]:

I(r0, t0) = Ψ∗(r0, t0)Ψ(r0, t0) = |Ψ(r0, t0)|2 (1.5)

where Ψ∗(r0, t0) is the complex conjugate of Ψ(r0, t0). The normalization constraint is that:

∫ ∞
−∞
|Ψ(r, t)|2dr = 1. (1.6)

Conservation of momentum results from the fact that if Ψ(r, t) satisfies the SE, then
so does Ψ(r + r0, t) for any constant r0. Superposition comes naturally from the fact that
Ψ3(r, t) = αΨ1(r, t) + βΨ2(r, t) satisfies the SE for any scalars α, β provided that Ψ1(r, t)
and Ψ2(r, t) are already solutions. Superposition is a central feature of waves in general
which states that waves pass through each other and continue unaffected, while at points of
overlap the net result is the sum of the individual amplitudes.

Diffraction, reflection, refraction, and interference are a consequence of the stationary
equations, and therefore the complete set of wave phenomena of light occur for matter
wave as well because the time-independent forms of Eq. 1.2 and Eq. 1.4 have the same
mathematical structure.

In free space where V (r, t) = 0, a possible solution to the SE is in the form of plane
waves:

Ψ(r, t) = ei(
~k·~r−ωt) (1.7)

where ω = E/~. Plane waves are a good basis, but physical solutions are often described by
wave packets, which are a normalizable distribution of plane waves. From Eq. 1.7 it follows
that the wavevector and the angular frequency of a plane wave can be obtained as follows:

~k = ~∇φ ω = −∂φ
∂t

(1.8)

where φ = ~k · ~r − ωt denotes the phase of the plane wave.
From here the focus will solely be on neutrons as far as matter waves are concerned.

The neutron can be described by a three dimensional wave packet, which is defined by the
momenta distributions in all three spatial directions. If the potential is separable in (x, y, z)
then the momentum distribution is also separable. The distribution is typically assumed
to be Gaussian with mean wavevectors kx0,y0,z0 and variances σkx,ky ,kz . It follows that the
spatial coherence volume of the wave packet is given by the product of the coherence lengths
σx,y,z = 1/(2σkx,ky ,kz). The neutron wave function in momentum space along the propagation

3



direction (conventionally the ẑ direction) may then be expressed as:

Φ(kz) =

(
1

2πσ2
kz

) 1
4

e
− (kz−kz0)

2

4σ2
kz , (1.9)

and

P (kz) = Φ∗(kz)Φ(kz) = |Φ(kz)|2 (1.10)

is the corresponding neutron momentum distribution. The normalization constant was cho-
sen so that

∫∞
−∞ P (kz)dkz = 1. The neutron wave function in position space is given by the

inverse Fourier Transform of the neutron wave function in momentum space:

Ψ(z) = F{Φ(kz)} =
1√
2π

∫ ∞
−∞

Φ(kz)e
ikzzdkz =

(
1

2πσ2
z

) 1
4

e
− z2

4σ2z eikz0z (1.11)

and

I(z) = Ψ∗(z)Ψ(z) = |Ψ(z)|2 (1.12)

is the probability of neutron’s position along the z−direction. It follows that
∫∞
−∞ I(z)dz =

1. In the separable case the total neutron wave function in momentum space is Φ(k) =
Φ(kx)Φ(ky)Φ(kz) or in position space Ψ(r) = Ψ(x)Ψ(y)Ψ(z).

In the absence of a potential, the momentum variance is time independent, that is σk(t) =
σk(0) for all t. This states that the divergence of a beam in free space remains constant in
time. For a Gaussian wave packet the time dependent position variance (spatial coherence
length) has the form:

[σz(t)]
2 = [σz(0)]2 +

(
~t

2mσz(0)

)2

(1.13)

The spreading of matter waves does not occur for electromagnetic waves because for matter
waves each wavelength corresponds to a unique velocity v = h/(mλ) whereas for light all
wavelengths travel at the same velocity. This is one of the most well-known time-dependent
diffraction difference between matter waves and electromagnetic-waves [26].

For σz(t)� σz(0), or equivalently t� 2mσz(0)
~ or L� 4πσ2(0)

λ
where L = vt is the distance

traveled in time t, Eq.1.13 simplifies to:

σz(t) ∼
~t

2mσz(0)
=

λz0L

4πσz(0)
. (1.14)

For a majority of the work presented in this thesis, a fast neutron produced in a reactor
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Figure 1.1: a) A wave packet going through a uniform slab of material with an index of
refraction “n” acquires a phase shift of φ. This phase shift corresponds to a delay of the
neutron wave packet relative to the position that it would possess if there was no material.
b) Neutron refraction through a prism. The angle of deviation can be derived via Snell’s law
or by noting that the prism induces a spatially dependent phase shift onto the neutron wave
function.

core traverses a neutron guide, the end of which is a slit. After exiting the slit and propagating
in free space, the neutron acquires a transverse coherence length of

σ⊥(L) ∼ λz0L

sw
(1.15)

where sw is the width of the slit and L is the distance between the slit and the point of
interest. This equation holds because the source of the neutrons, the reactor core, is far
away from the slit.

1.3 Quantum Phase

1.3.1 Optical Potential and the Quantum Phase

This thesis only considers time independent potentials. The SE, Eq. 1.4, can then be solved
by the method of separation of variables. Assuming that Ψ(r, t) = ψr(r)ψt(t) the time
evolution is given by

ψt(t) = e−iHt/~. (1.16)

Inside of a material neutrons experience an “optical potential”. The elastic interaction of
a neutron with a sample containing many nuclei at positions Rj can be written as a sum of
delta functions. A delta function is denoted by “δ(r)” and has the following two properties:
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δ(r − r0) =

{
∞ if r = r0

0 if r 6= r0

and

∫ ∞
−∞

δ(r − r0)dr = 1 (1.17)

The mean interaction potential, or optical potential for a material is given by [27]:

V = 〈V (r)〉 = 〈2π~
2

m

∑
j

bjδ(r −Rj)〉 =
2π~2

m
Nbc (1.18)

where N and bc are the number density and the coherent scattering length of the material
respectively. N = ρAv/M where ρ and M are the density and molar mass of the material
respectively, and Av = 6.02214× 1023 is the Avogadro’s number.

After passing through the material (see Fig. 1.1a) the accumulated phase is the integral
over the Lagrangian [28]:

φ =
1

~

∫ t

t0

L dt′ =
1

~

∫ t

t0

(p · v −H)dt′ =

∫ x

x0

k · ds−
∫ t

t0

ωdt′ (1.19)

Here only energy conserving potentials will be considered, and hence one may ignore the
second term which always results in a global phase. For small perturbations:

(p+ δp)2

2m
+ V = E → v · δp ≈ −V (1.20)

We are always interested in the relative phase, ∆φ, which is the induced phase shift
relative to the phase shift in free space:

∆φ =
1

~

∫ t

t0

δp · vdt′ ≈ −1

~

∫ t

t0

V dt′ = − 1

~v

∫ x

x0

V dx (1.21)

As per convention we shall use φ to denote ∆φ. Therefore, when a neutron traveling
along the ẑ direction passes through a material (Fig. 1.1a), the neutron wave function is
integrated over the potential to obtain:

Ψout(z) = Ψin(z)

∫ ∞
−∞

e
− i

~
∫ t
t0
V dt
dkz = Ψin(z)

∫ ∞
−∞

e−i
NbcD2π

kz dkz ≈ Ψin(z)e
−iNbcD2π

kz0 = Ψin(z)eiφ

(1.22)

where V is the optical potential experienced by the neutron inside the material, and D is
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the thickness of the material. The phase shift

φ = −Nbcλz0D (1.23)

in a physical sense represents the delay of the neutron wave packet relative to the position
that it would possess if there was no material. Or when dealing with spatially dependent
optical potentials, it is the relative spatial phase shift. Typical neutron experiments are done
with kz0 >> σkz and therefore only kz0 may be considered when calculating φ. The delay
corresponding to the phase shift (see Fig. 1.1a) is given by:

d =
λz0
2π

φ (1.24)

Using Eq. 1.21, the neutron transverse wave function after a prism (see Fig. 1.1b) is:

Ψout(x) = Ψin(x)e
−i/~

∫ t
t0
V dt ≈ Ψin(x)e−iNbc2πx tan(γ)/kz0 = Ψin(x)eiqx (1.25)

where γ is the prism incline angle, and q = −Nbc2π tan(γ)/kz0. To quantify refraction one
needs to analyze the wave function in momentum space which is given by the inverse Fourier
transform of the wave function in position space:

Ψout(kx) = F−1{Ψout(x)} =
1√
2π

∫ ∞
−∞

Ψin(x)eiqxe−ikxxdx =

(
1

2πσ2
kx

) 1
4

e
− (kx−q)2

4σ2
kx (1.26)

where a Gaussian form for Ψin(x) was assumed. Therefore, in this example kx0 = 0 before
the prism and kx0 = q after the prism. The refraction angle is:

θ = sin−1

(
q

kz0

)
= sin−1

(
λ2
z0Nbc
2π

tan γ

)
≈ λ2

z0Nbc
2π

tan γ (1.27)

The small angle approximation in the last step is valid for standard materials and thermal
neutrons where λ2Nbc/π ≈ 10−6. Eq. 1.27 describes neutron refraction across a potential
boundary, and it is in accordance with the well known Snell’s law. In 1621 Willebrord
Snellius (Snell) discovered for electromagnetic waves a relationship between the angle of
incidence and angle of refraction at the interface between two different isotropic media [29].
This relation is now known as “Snell’s law”:

n

n0

=
k

k0

=
λ0

λ
=
v0

v
=
c

v
=

sin γ0

sin γ
(1.28)

where n is called the index of refraction. The speed and wavelength of light inside a medium
are v = c/n and λ = λ0/n. Hence the frequency f = v/λ remains the same (or rather energy
E = hf is conserved). In general, the index of refraction is a function of light’s frequency
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n = n(f), or alternatively wavelength n = n(λ). For visible light and common transparent
materials n typically decreases with increasing wavelength dn

dλ
< 0. A consequence of this dis-

persion relation is that white light separates into its component colors after passing through
a prism. The typically quoted refractive index of materials are for yellow light (λ = 589 nm).

“Fermat’s Principle” states that light always takes the shortest optical path, or in other
words light travels in paths which can be transversed in the least time. In 1662 Pierre de
Fermat introduced the idea that the optical path length between two points in space is the
geometrical path length times the index of refraction of the material [30]. The optical path
length is thus given by the integral of the index of refraction over the geometrical path
length:

s =

∫
ndl (1.29)

Snell’s law (Eq. 1.28) can be derived through Fermat’s principle, and vice versa.
It follows that an index of refraction can be defined for neutrons [27]:

n

n0

=
k

k0

=
λ0

λ
=

v

v0

=
sin γ0

sin γ
(1.30)

In terms of the material properties the index of refraction may be expressed as

n

n0

=

√
1− V

E
=

√
1− λ2Nbc

π
≈ 1− λ2Nbc

2π
(1.31)

One notes that the ratio of velocities for matter waves is inverse to that of light. Also,
another difference that arises is that for neutrons the transverse component of velocity is
preserved when entering a medium, v sin γ = v0 sin γ0.

Using Eq. 1.30 the diffraction angle due to a prism (see Fig. 1.1b) is given by:

θ = γ − γ0 = γ − sin−1

(√
1− λ2

z0Nbc
π

sin γ

)
(1.32)

In the small angle approximation where λ2Nbc/π << 1, both Eq. 1.27 and Eq. 1.32 approx-
imate to:

θ ≈ (1− n) tan γ (1.33)

In a similar fashion diffraction phenomena can also be analyzed using Eq. 1.22. The
conceptual difference between the two is that for diffraction the coherence length plays a
role, whereas in refraction it does not; for diffraction the coherence length needs to be
the size of the features while for refraction it can be infinitesimally small. This approach
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to determining diffraction by analyzing the spatially dependent phase profile of the wave
function will be used by all subsequent chapters of the thesis.

1.3.2 Quantum Spin and Magnetic Potentials

Neutron’s are spin−1/2 particles with the following properties:

• they obey the Pauli exclusion principle. Hence, no two neutrons can posses the same
quantum numbers. However, given the typical parameters at the neutron interferome-
try beamlines at the NCNR: flux ∼ 1010 s−1m−2, neutron speed ∼ 1800 m/s, coherence
volume ∼ 1 nm3, and beam diameter of ∼ 10 mm3, the probability of two neutrons
sharing a phase volume is negligible.

• their distribution over energy levels follow Fermi-Dirac statistics. Given the low flux
density and the high temperatures of interest (∼ 290 K), the neutron energy spectrum
is well described by a Maxwell-Boltzmann distribution.

• they have a quantized intrinsic spin angular momentum of S = ±~/2. The spin state
can thus be described by a two-component complex-valued vector called a spinor.

Neutrons have a permanent magnetic moment along the anti-parallel direction of their
spin. An external magnetic field defines the spin quantization axis, which is taken to be the
ẑ axis by convention. The spin state can then be expressed as a linear combination of two
eigenstates: the state aligned with the magnetic field called “spin-up” which is represented
by |↑z〉, and the anti-aligned state “spin-down” represented by |↓z〉. It is convenient to
use the “bra-ket” notation, where the ket |Ψ〉 represents the spin wave function and the
bra 〈Ψ| represents its conjugate transpose. The two spin states are orthogonal, that is,
〈↑z | ↑z〉 = 〈↓z | ↓z〉 = 1, and 〈↑z | ↓z〉 = 〈↓z | ↑z〉 = 0.

Given the normalization constraint of 〈Ψ|Ψ〉 = |Ψ|2 = 1, an arbitrary spin state is given
by:

|Ψ〉 = cos(α/2) |↑z〉+ eiβ sin(α/2) |↓z〉 . (1.34)

The two angles, α and β, can be used to construct a sphere representing the possible states of
spin−1/2 particles. This Bloch sphere, shown in Fig. 1.2a, is the geometrical representation
of a two-level quantum system. The probability that one measures the spin to be in a certain
eigenstate is:

| 〈↑z |Ψ〉 |2 = cos2(α/2) | 〈↓z |Ψ〉 |2 = sin2(α/2) (1.35)

It is convenient to use the representation where eigenvectors are assigned to the spin states

and the corresponding eigenvalues are the probabilities of occurrence. Setting |↑z〉 =

(
1
0

)
and |↓z〉 =

(
0
1

)
, the spin wave function can then be expressed as:
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Figure 1.2: a) The neutron spin state can be geometrically represented on the Bloch sphere.
b) A magnetic field which is parallel to the spin direction may be used to induce a spin
dependent phase shift onto the incoming wave function, while a magnetic field which is
perpendicular to the spin direction may be used to rotate the spin vector about the magnetic
field axis.

|Ψ〉 = cos(α/2)

(
1
0

)
+ eiβ sin(α/2)

(
0
1

)
=

(
cos(α/2)
eiβ sin(α/2)

)
(1.36)

The potential experienced by a neutron inside of a magnetic field is:

Vm = −~µ · ~B = −|µ|~σ · ~B = −~γ
2

(σ̂xBx + σ̂yBy + σ̂zBz) (1.37)

where ~µ is the neutron magnetic moment, γ = 1.832 × 108 T−1s−1 is the neutron gyro-
magnetic ratio, and

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(1.38)

are the Pauli matrices which possess the following commutation relations:

[σ̂x, σ̂y] = 2iσ̂z [σ̂y, σ̂z] = 2iσ̂x [σ̂z, σ̂x] = 2iσ̂y (1.39)

where [A,B] = AB −BA is the commutation operator.
The magnetic field operator, Ûm, is given by Eq. 1.21 with Eq. 1.37. The spin evolution

in an external magnetic field is given by:

Ûm |Ψ〉 = e
− i

~
∫ t
t0
Vmdt′ |Ψ〉 = e

i γ
2

∫ t
t0
~σ· ~Bdt |Ψ〉 (1.40)
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In the case of time independent magnetic fields the expression for Ûm simplifies to:

Ûm = ei
γt
2
~σ· ~B = 1 cos θ + i(~σ · ~n) sin θ (1.41)

where ~n is the magnetic field unit vector, 1 is the identity matrix, and

θ =
γ|B|t

2
(1.42)

is the precession angle. It follows from Eq. 1.41 that a magnetic field that is parallel to the
spin direction may be used to induce a phase shift similar to Eq. 1.22. Whereas a magnetic
field that is perpendicular to the spin direction may be used to obtain an equal superposition
of the two spin eigenstates or a complete spin flip. These scenarios are depicted on Fig. 1.2b.

The action of a magnetic field gradient is analogous to the optical potential gradient, and
Eq. 1.22 may be used. The calculated dynamics agree with the classical description where
in an inhomogeneous magnetic field the force on a magnetic dipole is given by:

~F = m~a = −~∇U = ~∇(~µ · ~B) = ±γ~
2
~∇| ~B| (1.43)

The induced velocity and wavevector are then given by:

~v = ~at = ± γ~
2m

~∇| ~B|t, ~k =
m~v

~
= ±γ

2
~∇| ~B|t (1.44)

1.4 Neutron Interferometry1

1.4.1 Neutrons

In 1931 Walther Bothe and Herbert Becker observed uncharged highly penetrating radiation
when they collided alpha particles with beryllium, boron, or lithium [31]. They postulated
that this was gamma radiation. In 1932 James Chadwick showed that this radiation consisted
of uncharged particles whose mass was similar to that of a proton [32]. For discovering the
neutrons Chadwick was awarded the 1935 Nobel Prize in Physics.

Neutrons are subatomic particles with the following properties:

• neutrons are matter waves and are described by a wave function. Their propagation
and interaction with potentials is described in section 1.2.

• neutrons experience interactions via all four forces of nature: strong, electromagnetic,
weak, and gravitational. The relative strength of the four forces is 1 : 10−2 : 10−7 :
10−39 respectively [33].

• the mean radius squared of the neutron is 0.8 fm.

1This section is largely taken from Ref. [4–6]
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Figure 1.3: 20 MW research reactor at the NCNR. A fast neutron produced in a reactor core
is first moderated using heavy water to thermal energies and then further cooled using a liquid
hydrogen cold source before traversing a neutron guide. This thesis deals with experiments
done at NIOFa, NIOF and the CNI beamlines (located on the bottom two guides). At the
NIOFa the neutron beam is extracted by a pyrolytic graphite (PG) monochromator with
λ = 0.44 nm and λ = 0.22 nm components with an approximate ratio of 3.2:1 in intensity.
At the NIOF beamline a PG monochromator extracts λ = 0.271 nm neutrons. The CNI
is located on the NG6 end-station and has a neutron spectrum approximately given by a
Maxwell-Boltzmann distribution with Tc = 40 K or λc = 0.5 nm. Figure courtesy of NCNR.

• whereas the bound neutrons in an atoms are stable, the lifetime of an unbound neutron
(such as the free neutrons produced in nuclear reactors) is around 15 min [34].

The discovery of nuclear fission in 1938 [35] initiated the construction of nuclear reactors
for various applications such as power sources of electricity. The category of interest to this
thesis is Research Reactors that serve primarily as neutron sources. One such reactor is at
the National Institute of Standards and Technology’s (NIST) Center for Neutron Research
(NCNR), where a 20 MW reactor provides a steady flux of thermal and cold neutrons for a
variety of instruments, see Fig. 1.3.

1.4.2 Perfect Crystal Neutron Interferometer

Interferometers employing particle self-interference have proven to be an extremely sensitive
measuring tool, allowing for the precise characterization of material properties as well as
measurements of fundamental constants. Numerous neutron interferometers (NI) have been
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demonstrated: wave front division NI based on single slit diffraction, spin echo NI, amplitude
and phase-grating NI, Jamin-type NI, perfect crystal NI, and others [33]. The perfect crystal
NI, based on amplitude division, has achieved the most success due to its size and path sep-
aration of a few centimeters. Numerous perfect crystal NI experiments have been performed
which explore the nature of the neutron and its interactions. For example, the probing of
local gravitational fields [36], observing the 4π symmetry of spinor rotation [37], observ-
ing orbital angular momentum [15, 16], putting a limit on the strongly-coupled chameleon
field [10, 38], implementing quantum information algorithms [39], observing non-classical
correlations [40], observing the quantum Cheshire Cat [41], observing the GHZ correlations
of a triple-entangled neutron state [42], and the precision measurements of coherent and
incoherent scattering lengths [43].

The perfect crystal NI is a macroscopic device whose length is on the order of centimeters.
Several perfect crystal NIs that are available at NIST are shown in Fig. 1.4a. A perfect crystal
NI is cut from a float-zone grown silicon ingot so that a series of Bragg-diffracting “blades”
protrude from a common base. The typical cross section of the incoming neutron beam is
∼8 mm by 2 mm. Treating the path degree of freedom as a two-level quantum system we

can label the path with the positive momentum in the ŷ direction as |0〉 =

(
1
0

)
and the

path with the negative momentum in the ŷ as |1〉 =

(
0
1

)
, see Fig. 1.4b. Due to the narrow

momentum acceptance of the NI, the wave function of incoming neutrons is taken to be a
pure state:

|Ψ0〉 = |0〉 (1.45)

The incoming beam is Bragg diffracted by the first blade into a superposition of two coherent
paths. The absorption due to the silicon blades is negligible and hence the blade operator
can be expressed as a unitary operator:

ÛB =

(
t −r∗
r t∗

)
(1.46)

where t and r are the transmission and reflection coefficients. The wave function after the
first blade (see Fig. 1.4b) is:

|Ψ1〉 = ÛB |Ψ0〉 = t |0〉+ r |1〉 (1.47)

The intensities of the transmitted and reflected beams after a NI blade typically converge
to |t|2 = .65 and |r|2 = .35 [7]. Dynamical diffraction theory describes the interaction of
photons and matter waves satisfying Bragg and near Bragg diffraction condition in perfect
periodic crystal lattices. While the dynamical diffraction theory has been very successful
for explaining many diffraction phenomena, the mathematics can be quite cumbersome. We
introduced a quantum information model based on a neutron random walk through a perfect
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crystal [7,8]. The model greatly simplifies the problem, while accurately predicting dynamical
diffraction effects. To verify this quantum information model, we used it to reproduce
features of dynamical diffraction that have been studied before such as the intensities in
the Borrmann triangle and Pendellösung oscillations. Furthermore, with this new model
we proposed and analyzed a novel five blade NI geometry which is both a decoherence free
subspace to low frequency vibrations and a refocusing to the dynamical diffraction related
phase [8]. A full description of this model can be found in Joachim Nsofini’s thesis [2].

Considering the most common three blade Mach-Zehnder (MZ) geometry, the action of
the second blade is identical to the first. Since we post-select on the paths which end up at
the detector the operator of the second blade can be expressed as:

ÛM =

(
0 −r∗
r 0

)
(1.48)

The wave function after the second blade (see Fig. 1.4b) is:

|Ψ2〉 = ÛM |Ψ1〉 = −r∗r |0〉+ rt |1〉 (1.49)

A phase flag is placed inside the interferometer to induce and vary the phase shift between
the two paths. The phase flag is typically a uniform slab of material such as quartz, and
its action is described by Eq. 1.22. The induced phase shift onto λ = 0.271 nm neutrons
from a 1 mm thick piece of quartz is ∼ 5000°, which would result in a large loss of contrast
as the wave packets in the two paths would be significantly displaced w.r.t. each other (see
Fig. 1.1a). In order to compensate for this displacement the phase flag is typically placed
across both paths. For small angles of phase flag rotation δ the induced phase difference
φflag is approximately linear with δ. As φflag is the relative phase shift between the two
paths, the operator of the phase flag can be expressed as:

Ûflag =

(
1 0
0 eiφflag

)
(1.50)

The wave function after the phase flag (see Fig. 1.4b) is:

|Ψ3〉 = Ûflag |Ψ2〉 = −r∗r |0〉+ rteiφflag |1〉 (1.51)

The action of the third blade is identical to the first. This blade acts to recombine and mix
the two paths of the interferometer. The wave function after the third blade (see Fig. 1.4b)
is:

|Ψf〉 = ÛB |Ψ3〉 =
[
−tr∗r − r∗rteiφflag

]
|0〉+

[
−rr∗r + t∗rteiφflag

]
|1〉 (1.52)

The two outgoing beams are called the “O-beam” and the “H-beam”. The O-beam is the
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Figure 1.4: a) Examples of perfect crystal silicon neutron interferometers (NIs) at the NCNR.
Interferometers 1, 2, 3, and 7 are called “skew symmetric” and they possess a larger space
to accommodate samples. Interferometer 5 is the commonly used three blade Mach-Zehnder
NI which possess the highest contrast (∼ 90%). Interferometer 8 is the decoherence free
subspace NI used in Ref. [39]. Figure taken from Ref. [4]. b) A schematic of the three blade
Mach-Zehnder perfect crystal silicon NI. The first blade creates a coherent superposition
of two paths inside the interferometer, which are then refocused by the second blade, and
interfered on the third blade. The phase shift between the two paths can be varied by
rotating the phase flag, typically a precise flat of quartz.

outgoing path which parallel to the direct beam, as per Fig. 1.4b. The intensity at the
detectors is given by:

IO = | 〈0|Ψf〉 |2 = |r|4|t|2(1 + cos[φflag]) (1.53)

IH = | 〈1|Ψf〉 |2 = (|t|4|r|2 + |r|6)− |r|4|t|2 cos[φflag] (1.54)

The intensities at the detectors in an experiment deviate from the ideal values and have
to be fit to a cosine function:

IO = A + B cos[φflag + φ0] (1.55)

where A and B are fit parameters, φflag is the action of the phase flag, and φ0 is an intrinsic
phase shift. The intrinsic phase shift is the experiment-dependent, relative phase differ-
ence between the two neutron paths and is typically a parameter of interest in a neutron
interferometry experiment.

The neutron count rate at the detector follows a Poisson distribution, so that ∆N =
√
N ,

where ∆N is the standard deviation of the total counting rate N . This statistical uncertainty
is typically the main contributor to the uncertainty in neutron interferometry measurements.

The contrast is a measure of the degree of coherence between the two paths inside the
interferometer. Contrast at the detectors is determined from the ratio of the fit parameters
(Eq. 1.55) and reflects the depth of the intensity modulations:

C =
max{I} −min{I}
max{I}+ min{I}

=
B

A
. (1.56)
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Figure 1.5: The original facility dedicated to neutron interferometry experiments: neutron
interferometry optics facility (NIOF). It is a massive enclosure that uses a box within a box
within a box approach. The beamline is located on the NG7 guide at the NCNR, see Fig. 1.3.
Figure taken from Ref. [4].

The typical contrast at the NCNR is C ∼ 85%. Some of the contrast loss mechanisms
come from surface and crystallographic imperfections of the phase flag and the NI blades and
are therefore associated with the interferometer itself and not the environment [9]. Machining
of interferometers is done with a diamond coated wheel, ensuring that the surfaces of the
blades are parallel within a tolerance of a few µm. This is typically followed by chemical
etching to remove any residual strain in the crystal lattice. The presence of impurity in the
silicon crystal may introduce distortions that spoil the parallelism of the lattice planes. In
the case of a wide neutron beam that interacts with a larger section of the interferometer
blade, contrast is reduced compared to the optimally located narrow focused beam. Other
contrast loss mechanisms originate from changes in the external environment such as acoustic
waves, vibrations, temperature gradients, and the humidity of the air, all of which can couple
to the NI crystal geometry and internal conditions. In a typical NI with blade separations
of ∼ 5 cm a neutron with wavelength λ = 0.44 nm takes ∼ 100 µs to pass through the
interferometer. The nm sized-wavelength combined with the relatively large NI path length
require extreme forms of environmental isolation.

1.4.3 Neutron Interferometry Beamlines at the NCNR

Currently, there are two neutron interferometry facilities at the National Institute of Stan-
dards and Technology (NIST) Center for Neutron Research (NCNR) in Gaithersburg, MD,
and their layout is depicted on Fig. 1.5 and Fig. 1.6. The original facility, Neutron Interfer-
ometry Optical Facility “NIOF”, depicted on Fig. 1.5, was built to preserve long-term phase
stability [44]. It is a massive enclosure that uses a box within a box within a box approach.
The outermost enclosure is a concrete blockhouse that provides environmental and vibra-
tional isolation. It encompasses another massive enclosure that provides passive thermal and
acoustic isolation. Finally, the innermost enclosure is a cadmium lined aluminum box that
houses the interferometer and detectors. Aluminum and silicon have small neutron absorp-
tion cross sections (σa) and incoherent scattering cross sections (σinc), while cadmium has a
very large absorption cross section. Al: σa = 0.231 × 10−24 cm2 and σinc = 0.0082 × 10−24
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Figure 1.6: The newly constructed beamline dedicated to quantum information enabled neu-
tron interferometry experiments, NIOFa. It is a compact facility with increased accessibility
that delivers a higher neutron flux. The beamline is located on the NG7 guide at the NCNR,
see Fig. 1.3. Figure taken from Ref. [4].
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cm2; Si: σa = 0.171× 10−24 cm2 and σinc = 0.004× 10−24 cm2; Cd: σa = 2520× 10−24 cm2

and σinc = 3.46× 10−24 cm2 [45]. These values are for λ = 0.18 nm neutrons. The neutron
transmittance through a material slab of thickness D is given by Lambert’s law of beam
attenuation:

I

I0

= e−(σa+σinc)ND. (1.57)

where N is the number density, NAl = 6.03 × 1022 cm−3, NSi = 5.01 × 1022 cm−3, NCd =
4.63× 1022 cm−3. Thus, it would take a (Si, Al, Cd) block of thickness (∼ 77 cm, ∼ 49 cm,
∼ 60 µm) to reduce the intensity by 50% of a λ = 0.18 nm neutron beam.

The enclosure that houses the interferometer is temperature controlled through a set of
heaters and is able to maintain a constant internal temperature to within 5 mK. Furthermore,
the NIOF is constructed on its own foundation separate from the rest of the building and
incorporates a vibration isolation system. With its ability to stabilize the temperature and
damp vibrations, the original facility provides exceptional phase stability and high contrast
for interferometry experiments.

The new beamline dedicated for quantum information enabled experiments (NIOFa) was
built alongside the existing facility on the cold guide NG7, see Fig. 1.6. It is a compact
facility with increased accessibility that delivers a higher neutron flux. The motivation for
the construction of this beamline was a novel design of a decoherence free subspace NI which
was shown to be robust against vibrational frequencies up to 22 Hz [39], therefore diminishing
the necessity for traditional massive vibrational isolation enclosures. The neutron beam is
extracted from a cold neutron guide by a pyrolytic graphite (PG) monochromator with
λ = 0.44 nm and λ = 0.22 nm components with an approximate ratio of 3.2:1 in intensity.
To change from bichromatic to monochromatic configuration, i.e. filter out the λ = 0.22
nm component, a liquid nitrogen cooled Be-filter with nearly 100% filter efficiency [4] was
installed downstream of the NIOFa entrance slit.

The environmental shielding at NIOFa largely differs from the design of the original
facility. Its main wall consists of tall paraffin wax and steel shot-filled-steel walls surrounding
the neutron guide. The interferometer’s only enclosure is a cubic aluminum box with a length
of 76.2 cm per side. The box is similarly lined with cadmium to decrease neutron background
and sits on a 3 mm thick fiberglass base that isolates it thermally from the optical table.

1.4.4 Neutron Interferometry in Vacuum2

The compactness of the NIOFa facility comes at the expense of long-term phase stability
and requires novel methods of environmental isolation. Thermal isolation of the neutron
interferometer was achieved by using a vacuum chamber, which shields the interferometer
from temperature fluctuations inside the guide hall.

We demonstrated the functionality of a neutron interferometer in vacuum and character-
ize the use of a compact vacuum chamber enclosure as a means to isolate the interferometer
from spatial temperature gradients and time-dependent temperature fluctuations [6]. The

2This section is largely taken from Ref. [6]. The lead authors were Parminder Saggu and Taisiya Mineeva.
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Figure 1.7: a) Cross-sectional sketch of the vacuum chamber with the interferometer inside.
b-c) Simulated temperature across the last NI blade given the setup in the chamber with the
heating element on the wall of the vacuum chamber set to 23.5 ◦C and the heating element at
the base of interferometer set to 23.4 ◦C. The black rectangle depicts the expected neutron
beam size. b) The temperature variance across the blade given an ambient temperature of
23 ◦C and c) given an ambient temperature of 19 ◦C. The simulated temperature variances
are 0.00003 ◦C and 0.001 ◦C respectively. Figures taken from Ref. [6].

vacuum chamber is found to have no depreciable effect on the performance of the interfer-
ometer (contrast) while improving system stability, thereby showing that it is feasible to
replace large temperature isolation and control systems with a compact vacuum enclosure
for perfect crystal neutron interferometry.

The vacuum chamber was constructed from aluminum 6061-T6 because of its low neutron
scattering and absorption cross-sections. The body of the vacuum chamber is an aluminum
tube with an inner diameter of 30.5 cm, an outer diameter of 32.5 cm, and an inner height
of 20.3 cm giving a total enclosed volume of roughly 14830 cm3. The top and bottom
plates along with flanges were designed with grooves appropriate for Fluoropolymer O-rings.
Flanges were welded onto the aluminum tube and were then screwed into upper and lower
aluminum plates to close the chamber.

The vacuum chamber (Figure 1.7a) was placed inside of a cubic, cadmium-lined aluminum
box. The chamber itself was supported by the rotation, translation and height stages for
optical alignment of the NI with the neutron beam. The interferometer was placed in-
side the chamber on a specially machined aluminum cradle. A polyoxymethylene plate was
sandwiched between the base of the cradle and the vacuum chamber, secured using screws
made from the organic thermoplastic polymer, polyether ether ketone (PEEK). Both Poly-
oxymethylene and PEEK were selected as insulators to prevent heat transfer between the
vacuum chamber and the interferometer because of their good mechanical properties. To
minimize temperature gradients inside the chamber two heating elements were installed: an
internal one located below the interferometer base (denoted as “In2” on Fig. 1.7a) and an
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Figure 1.8: a) Temperature measurements at the inner chamber wall using ln1 (red, scale on
left), interferometer base using ln2 (blue, scale on left), and their difference (grey, scale on
right). b) Corresponding phase measurements. The gap in the phase measurements between
January 20th and 22nd stems from the reactor shutdown. A typical phase uncertainty is
shown. This uncertainty is purely statistical and at the 68% confidence level. c) Contrast
measurements taken at ambient pressures (no vacuum or 760 Torr) (blue curve) and at
10−4 Torr with the turbo pump turned off (yellow curve). Phase uncertainties are purely
statistical at the 68% confidence level. Figures taken from Ref. [6].

external one that was wrapped around the outside of the vacuum chamber walls (denoted
as “In1” Fig. 1.7a).

There are a number of vacuum compatible feedthroughs on the vacuum chamber. The
first one is a rotary feedthrough to hold and rotate the phase flag. The second provides
a connection to a vacuum pump while the third and fourth provide electrical connections
for thermistors taped to the inner wall of the vacuum chamber and to the heater on the
interferometer cradle. All electrical leads are twisted pairs to minimize stray magnetic fields.
The two probes inside the vacuum chamber monitor the temperature difference between the
wall of the chamber and the interferometer. A third probe, a Pt 100 resistor, was taped to
the outside of the vacuum chamber to gauge the overall temperature insulation provided by
the chamber.

3D numerical simulations of the setup were done using finite element analysis to gain
insight into the temperature variation across the interferometer. The simulation geometry
closely resembles the setup shown in Figure 1.7a, and consists of the vacuum chamber, heat-
ing elements, skew symmetric NI, and the depicted cradle under the NI. Actual dimensions
and material properties of those elements were used. Since the NI sits in the middle of
vacuum chamber with two heating elements, one around the outside of the chamber walls
and one directly under the interferometer base, both radiating and conducting heat trans-
fer mechanisms were considered in our simulations. Initial simulations show that in order
to maintain a stable temperature at the interferometer, it needs to be in contact with the
heating element via a good thermal conductor. For that reason, we removed the insulating
felt that has been historically placed under the NI base.

Figures 1.7b and 1.7c depict the simulated temperature within the central cross section
of the analyzer blade when the heating elements for the wall of the vacuum chamber and
the base of interferometer were set to fixed temperatures of 23.5 ◦C and 23.4 ◦C respec-
tively. The choice of the set temperatures of the heating elements in the simulations reflects
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experimentally determined temperature combinations for which phase stability was achieved.
Figure 1.7b shows that for an external ambient temperature of 23 ◦C in such a configu-

ration, the temperature across the last blade of the NI varies by 30 ◦µC; while Figure 1.7c
shows that for an external ambient temperature of 19 ◦C the temperature varies by 1 ◦mC.
This is a factor of 100 more variation caused by a shift of only 4 ◦C external. The black
rectangle specifies the expected neutron beam size at the last NI blade, while the external
temperature range reflects the typical temperature variance in the guide hall throughout the
year.

The vacuum system was tested at the new beam line (NIOFa) using a four blade skew-
symmetric NI and λ = 0.22 nm neutrons. Data for phase stability was collected over a
period of several months. From Jan 15th to Jan 20th the heating element at the wall of the
vacuum chamber was set to 23.5 ◦C and the heating element at the base of interferometer
was set to 23.6 ◦C. The temperatures were measured using two thermistors, placed near
the NI base and on the inner chamber wall. Figs. 1.8a and 1.8b show the temperature and
phase measurements for a subset of our data. The temperature difference between the base
of the NI and the inner wall of the chamber was around 0.4 ◦C and the phase drifted by
approximately 30 ◦ over a span of 5 days.

We achieved higher phase stability as we reduced the set point of the heating tape at
the base of the NI to 23.4 ◦C so that the temperature difference between the inner vacuum
chamber walls and the NI base was minimized. The temperature at the base of the inter-
ferometer was well stabilized between 23.400 ℃ and 23.401 ℃. During a 3 day period, we
observed high phase stability, with no appreciable drift. A linear fit of the data depicted in
Fig. 1.8b obtains a slope of only (0.003± 0.03) deg/hr at the 68% confidence level.

We further examined the effect of the vacuum enclosure on the contrast of the NI by
taking ∼ 30 min interferogram scans. The question being investigated was whether the
vacuum would induce contrast-destroying strain on the NI crystal and whether the vacuum
enclosure is compatible with the rest of the NI setup. The contrast scan without the vacuum
chamber was around 54% while the contrast in an air-filled vacuum chamber was around
46%; a change in contrast most likely due to difference in the position of the interferometer
before and after installation of the chamber. When comparing contrast with the vacuum
chamber in place, contrast increases at lower pressures (Fig. 1.8c).

Using the turbo pump, the chamber was pumped down to its lowest achievable pressure of
4 ·10−4 Torr. While the pump was operating, the contrast dropped to 37% due to mechanical
vibrations caused by the pump. After the pump was turned off, with an initial pressure of
10−4 Torr the contrast increased to approximately 49%.

We therefore conclude that one can operate a perfect crystal neutron interferometer with
high contrast and phase stability inside a vacuum chamber.

1.5 Two-level Quantum Systems and Coherent Super-

positions

Here we will consider two-level quantum systems, also known as “qubits”, which are quantum
analogues of classical bits. A classical bit is a basic unit of information which can have only
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Figure 1.9: a) Isomorphism between the two-level quantum systems: spin state of fermions,
polarization state of light, and the path inside of an interferometer. b) An analogous Ramsey
fringe sequence with spin, polarization, and interferometer path. For the {spin, polarization,
path}: the system starts in a {spin state along the ẑ direction, circularly polarized light,
path 0}; then a {magnetic field pulse along the x̂ direction, quarter wave plate (Q.W.P), first
crystal blade} creates a superposition of the two eigenstates; then a {magnetic field pulse
along the ẑ direction, material with optical activity (O.A.), phase flag} induces a phase
shift between the two eigenstates; and finally a {magnetic field pulse along the x̂ direction,
Q.W.P, last crystal blade} mixes the two eigenstates. c) Post-selecting on one eigenstate
results in Ramsey fringes which are sinusoidal oscillations as a function of the phase shift.
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one of two outcomes, usually represented by 0 and 1. The qubit on the other hand can be
in a state of superposition of both outcomes. Therefore the quantum superposition allows
for interference effects which correlate the probabilities of the outcomes.

Two-level quantum systems are described by Eq. 1.36, and they are geometrically repre-
sented by the Bloch sphere (see section 1.3.2). This common description is due to the fact
that there is an isomorphism between all two-level systems. In this thesis we consider three
different two-level quantum systems: the quantum spin of a neutron, the polarization state
of light, and the two paths of an interferometer.

The spin eigenstates are denoted by s ∈ {↑x, ↓x, ↑y, ↓y, ↑z, ↓z}, the polarization states
of light are denoted by p ∈ {H, V,D,A,	,�}, the two paths of the interferometer are
denoted by path ∈ {0, 1}. We may put these on a Bloch sphere (see Fig. 1.9a), where by
convention the propagation axis is the ẑ axis. A phase shift may be induced along any
axis for any degree of freedom (DOF). In the case of spin, a magnetic field along {x̂, ŷ, ẑ}
direction induces a phase shift on the spin DOF along {σ̂x, σ̂y, σ̂z}. For the polarization
DOF a birefringent material with its optics axis along the {x̂, x̂ − ŷ} direction provides
a phase shift along the {σ̂x, σ̂y}. A material with optical activity provides a phase along
σ̂z. Inside of an interferometer a phase flag provides a σ̂z phase shift for the path DOF.
Note that the operator differences between polarization and spin come from the fact that
on the Poincaré sphere that describes optical polarization, any two antipodal points refer
to orthogonal polarization directions; while on the Bloch sphere that describes the spin-1/2
state, any two antipodal points refer to anti-parallel spin directions.

Coherence in two-level quantum systems may be illustrated by a Ramsey fringe sequence,
which we can demonstrate via any system (see Fig. 1.9b):

|ΨR〉 = ei
π
2
σ̂xei

θ
2
σ̂zei

π
2
σ̂x

(
1
0

)
(1.58)

The first π/2)x term creates a superposition of the two eigenstates. For convenience here
we have considered the operator which creates an equal superposition. The second term
adds a phase shift of θ. The last π/2)x term mixes the two eigenstates. The probability of
post-selecting onto a specific eigenstate at the output is:

| 〈ẑ|ΨR〉 |2 = cos2

(
θ

2

)
| 〈−ẑ|ΨR〉 |2 = sin2

(
θ

2

)
(1.59)

These θ dependent oscillations are depicted in Fig. 1.9c, and they are known as Ramsey
fringes. In a spin Ramsey fringe the probabilities of {↑z, ↓z} at the output are varied by
the magnetic field pulse between the π/2 spin pulses. In a polarization Ramsey fringe the
probabilities of {	,�} at the output are varied by the material with optical activity which
is between the quarter wave plates. In an interferometer the probabilities of path {0, 1} at
the output are varied by the phase flag between the interferometer blades.
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Chapter 2

Phase-Grating Moiré Interferometry1

2.1 Introduction and Historical Background

The discovery of the neutron led to the construction of a variety of phase sensitive neutron
interferometers. Neutrons in particular are a convenient probe due to their relatively large
mass, electric neutrality, and sub-nanometer-sized wavelengths. The earliest neutron inter-
ferometer (NI) was formed via a biprism, and through wavefront division achieved Fresnel
interference effects with up to 60 µm path separations [46]. Amplitude division created by
Bragg diffraction off of crystal lattice planes was later used to make perfect crystal NIs with
MZ path separations of several centimeters [47], see section 1.4. This relatively large path
separation along with the macroscopic size of the interferometer contributed to its success in
exploring the nature of the neutron and its interactions. However, perfect crystal NIs posses
a very narrow wavelength acceptance, are difficult to fabricate, and operate only under strin-
gent forms of vibration isolation and beam collimation [4–6, 44, 48]. This limits their wide
spread adaption at many neutron sources.

Advances in micro- and nano-fabrication of periodic structures with high aspect ratios
and features ranging between 1 µm to 100 µm enabled employing absorption and phase-
gratings as practical optical components for neutron beams. The first demonstration of
a Mach-Zehnder based grating NI in 1985 [49] used 21 µm periodic reflection gratings as
beam splitters for monochromatic (λ = 0.315 nm) neutrons. A few years later, a three
transmission phase-grating Mach-Zehnder NI was demonstrated for cold neutrons (0.2 nm
< λ < 50 nm) [50–53]. The need for cold- or very cold- neutrons with a high degree of
collimation limits the use of such interferometers in material science and condensed matter
research.

An alternative approach was the Talbot-Lau interferometer (TLI) proposed by Clauser
and Li for cold potassium ions and x-ray interferometry [54], and implemented by Pfeiffer
et al. for neutrons [55]. The TLI is based on the near-field Talbot effect [56] and uses a
combination of absorption and phase-gratings. The Talbot effect or self imaging phenomena
occurs for beams with periodic spatial phase profiles, and it dictates that a self image of
the periodic profile will be reproduced at the Talbot distances in the near-field region, see
Fig. 2.1. In the TLI setup the sample, introduced in front of the phase-grating, modifies

1The material in this chapter is largely taken from Refs. [11–14].
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the phase and amplitude of the Talbot self-image. Since neutron sources are comparatively
weak to x-ray sources, a challenge in developing neutron phase imaging is overcoming the
low intensity that is an outcome of requiring small apertures to produce quasi-coherence in
the transverse directions. The use of a neutron TLI was the first solution to this problem by
requiring coherence in only one direction, enabling the use of a source grating which reduced
the intensity by about 60% rather than several orders of magnitude as was required for use
of the transport of intensity method [57]. A neutron TLI typically uses a monochromatic
beam (∆λ/λ ranges from 1% to 25%) and is composed of three gratings: a source grating
made of gadolinium with a period of the order of 1 mm; a phase modulating grating with
combs etched in silicon with period of order 10 µm and aspect ratios of order 10; and an
analyzer grating made of gadolinium with period of the order 5 µm [55, 58, 59]. The period
and aspect ratio required for the analyzer grating remains a fabrication challenge. The use of
a monochromatic beam is preferred as the Talbot distance where one obtains the self-image
is inversely proportional to wavelength and the depth of the combs in the phase modulating
grating is chosen to produce a π phase modulation for the working wavelength. Even though
chromatic sensitivity of the TLI is reduced, thus leading to a gain in neutron intensity, in
this setup the absorption gratings are challenging to manufacture and limit the incident flux
reaching the detector; while the neutron wavelength spread will cause contrast loss as the
distance to interference fringes (fractional Talbot distance) is inversely proportional to the
neutron wavelength.

It has been previously demonstrated for atoms and electromagnetic waves that the two
grating TLI setup produces fringes in the far-field [60–63]. This “Lau effect” [64] requires
the first grating to be an intensity mask which serves as an array of mutually incoherent
sources, and the second grating is either an intensity or a phase mask which through Fresnel
diffraction results in the interference pattern on the screen. When the distance between the
two gratings is at multiples of half Talbot length, an image of the first grating is produced
at the plane at the second grating, and that image beats with the second grating to produce
the beat pattern in the far-field downstream.

Both Lau and Talbot effects turned out to be special cases of a more universal moiré effect.
Our colleagues from NIH had demonstrated this universal moiré effect for X-Rays [65], and
together we have demonstrated it for neutrons. In regards to the Lau and Talbot effects, the
conceptual step forward of the neutron phase-grating moiré interferometer (PGMI) is to go
to the other end of the moiré effect spectrum for the matter waves, where two pure phase
masks produce a beat pattern when both the source and the detector are in the far-field
range. This interference would be observed even if the two phase-gratings are in contact,
provided that their periods are appropriately different, see Fig. 2.10.

The main differences between the PGMI and the neutron Talbot-Lau grating interfer-
ometer are that only phase-gratings are used, a broader wavelength distribution is accepted,
and the fringes are observed in the far-field. The phase moiré effect in the far-field produces
large period interference fringes that are orders of magnitude larger than the period of the
gratings, enabling direct detection with an imaging detector without the need for an absorb-
ing analyzer grating. Thus a greater intensity is transmitted through a PGMI and the PGMI
has comparatively relaxed grating fabrication requirements especially at smaller grating pe-
riods. In addition, grating alignment for the PGMI is an order of magnitude less stringent
compared to the perfect crystal NI whose individual diffracting elements must be aligned
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Figure 2.1: Beam diffraction after a phase-grating with period λG. The region after the
phase-grating where the diffraction orders have not yet been separated is known as the
near-field region. Self-imaging phenomena occur in this region and the intensity forms a
pattern known as the Talbot carpet. In the Talbot carpet the grating profile is repeated
at Talbot distances dt = 2λ2

G/λ, where λ is the wavelength of the beam. In the far-field
the diffraction orders (-1,0,1) separate and the intensity profile is indicative of the beam’s
momentum distribution.

relative to each other to within 0.01 arcsec [66]. Other advantages of this setup include the
use of widely available thermal and cold neutron beams, large, variable interferometer area,
and the broad, simultaneous wavelength acceptance.

This chapter describes the implementation of the PGMIs operating in the far-field regime.
Section 2.2 describes the experiments to characterize the action of the phase-gratings onto
a neutron beam using momentum projective measurements [11]. Section 2.3 describes the
implementation of the two PGMI [12]. Section 2.4 describes the experiment to use the two
PGMI to measure the microstructures of samples [13]. Section 2.5 describes the implemen-
tation of the three PGMI [14].

2.2 Characterization and Optimization of Neutron Phase-

Gratings2

This section describes the experiments to characterize the action of the phase-gratings onto
a neutron beam using momentum projective measurements. Neutron diffraction from phase-
gratings was characterized using Bragg diffraction crystals to resolve individual diffraction
orders. Well-defined diffraction peaks are observed and perturbations to the diffraction
peaks as a function of grating alignment is explored. This lends itself to directly assessing
the grating quality. Furthermore this technique may be able to improve the contrast of the
grating interferometers by providing in-situ aides to grating alignment.

2This section is largely taken from Ref. [11]. The lead author was Benjamin Heacock.

26



0.0

0.4

0.8 ϕ0=0 or 2π 

ϕ0=π/2 
ϕ0 =π

a) b)

c)

0.0

0.2

0.4

P
f(
k x

)

0 2π-2π
kx

P
f(
k x

)

0 π-π
kx

0.0

0.2

0.4

0.6 ϕ0=0 or 2π 

ϕ0=π/2 ϕ0 =π

P
f(
k x

)

0 2π-2π
kx

-6π 6π

d)

0.0

0.2

0.4

P
f(
k x

)

0 2π-2π
kx

λG=σ

λG=8σ

λG=4σ
λG=σ λG=8σ

λG=4σ

Figure 2.2: Transverse momentum distribution of a Gaussian wave packet with a spatial
coherence length of σ = 1 after passing through (a) a φ0 step potential (b-d) a 50% comb-
fraction phase-grating with period λG and phase amplitude φ0. In (c,d) the neutron wave
packet is on axis with a (phase jump, phase step) of the phase-grating. Therefore, as the
period is increased the profile in (c) approaches the profile seen in (a). Figure taken from
Ref. [11].

2.2.1 Theory

Neutron optics rely on refraction and diffraction phenomena for beam control and manip-
ulation [67]. Various shapes of materials with unique neutron indices of refraction can be
constructed to induce phase shifts, diffraction, beam displacements, and spin-dependent in-
teractions. The action of such components may intuitively be understood by noting that
writing a spatially-dependent phase over the neutron wave function modifies its momentum
distribution, see section 1.3.

Consider the transverse portion of the spatial wave function Ψi(x) of an incoming neutron
wave packet which is propagating in the ẑ direction. Applying a spatially dependent phase
φ(x) over the incoming wave function results in an outgoing wave function of

Ψf (x) = e−iφ(x)Ψi(x). (2.1)

To analyze diffraction phenomena we look at the neutron wave function in momentum-space:

Φf (kx) = F{Ψf} = F{e−iφ(x)} ∗ F{Ψi}, (2.2)

where F{...} is a Fourier transform, and ∗ is the convolution operator. In our experiments
we measure the outgoing neutron momentum distribution, which is calculated as:

Pf (kx) = Φ∗f (kx)Φf (kx) (2.3)
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Figure 2.3: (a) Experimental setup. λ = 0.44 nm neutron beam is spectrally narrowed and
collimated by passing through a monochromator crystal and a slit. The resulting beam passes
through a grating whose effect is measured by an analyzer crystal and proportional counter.
The grating was rotated around all three coordinate directions. (b) SEM micrographs of the
three gratings that were used in the experiment. Figure taken from Ref. [11].

where Φ∗f (kx) is the complex conjugate of Φf (kx).
The action of a spatially dependent phase shift is nicely illustrated by considering a

neutron wave packet passing on-axis thorough a phase step potential of magnitude φ0:

Ψf (x) = e−i
φ0
2

sgn[x]Ψi(x), (2.4)

where sgn[...] is the sign function. The outgoing transverse momentum distribution can be
calculated via Eq. 2.3. Fig. 2.2a shows outgoing momentum distributions for the case of an
incoming Gaussian wave packet and various φ0 amplitudes.

The induced phase onto a neutron wave packet due to the phase-step is directly propor-
tional to the momentum (or wavelength λz = 2π/kz) along the propagation axis:

φ(x) = −NbcλzD(x), (2.5)

where Nbc is the scattering length density of the phase-step material and D(x) is the thickness
of the phase-step at location x. Therefore for broad wavelength distributions one must
integrate over the wavelength as each λz corresponds to a particular φ0.

If a neutron wave packet passes through a phase-grating of period λG, then Pf (kx) will
exhibit diffraction peaks with angular separations of

θ = sin−1

(
nλ

λG

)
, (2.6)

where n is an integer and represents the diffraction order. The relative amplitudes of the
diffraction peaks will depend on the shape and amplitude of the phase profile. For example,
the phase profile of a 50% comb-fraction square wave phase-grating is given by
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Figure 2.4: The left column of plots is the measured momentum distributions as a function
of grating rotation about the y-axis for Grating-1. Grating rotation ranges from -2 degrees
to 2 degrees in one degree steps from bottom to top. Uncertainties are purely statistical,
and lines connecting data points are shown for clarity. The middle (right) column shows
the momentum distributions (phase profiles) computed from the SEM micrographs. Figure
taken from Ref. [11].
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Figure 2.5: Zeroth and first order diffraction peak areas from the measured momentum
distributions (data points) and the momentum distributions computed from the SEM trans-
forms (solid lines) as a function of grating rotation about the y-axis for (a) Grating-1, (b)
Grating-2, and (c) Grating-3. Uncertainties shown are pure statistical. Figure taken from
Ref. [11].

φ(x) =
φ0

2
sgn

[
cos

(
2πx

λG

)]
, (2.7)

and the corresponding momentum distributions are shown in Fig. 2.2b for various amplitudes
φ0. Note that for a φ0 = π phase-grating the zeroth diffraction order is suppressed.

To resolve the individual diffraction peaks, the wave packet’s coherence length σ must be
suitably long compared to the grating period. Figs. 2.2c and 2.2d show Pf (kx) for various
neutron wave packet coherence lengths. (Fig. 2.2c, Fig. 2.2d) shows the case where the
neutron wave packet is on axis with a (phase jump, phase step) of the phase-grating. It can
be seen that as the coherence lengths of the neutron wave packet becomes much shorter than
the period of the grating, the diffraction peaks will no longer be well-defined.

2.2.2 Experimental Methods

The experiment was performed at the NIOFa beamline at the National Institute of Standards
and Technology (NIST) Center for Neutron Research (NCNR) in Gaithersburg, MD [4, 5].
See Fig. 1.3 for the beamline’s location at the NCNR, and see section 1.4.3 for a description
of the NIOFa beamline.

A schematic of the experiment is shown in Fig. 2.3a. A λ = 0.44 nm neutron beam
is extracted from the neutron guide using a pyrolytic graphite (PG) monochromator. The
beam is further prepared through Bragg diffraction (Laue geometry) using a perfect-silicon
crystal (111) monochromator. To measure the outgoing momentum distribution modified
by the phase-grating, we placed a second perfect-silicon crystal (111) analyzer after the
grating. The monochromator was rotated relative to the analyzer by a rotation stage with
an embedded optical encoder, allowing arcsecond precision motion.

The Bragg diffracted wave packets are Lorentzian in shape in momentum space. Their
nominal transverse coherence length is given by the Pendellösung length ∆H = 35 µm for
the (111) reflection from silicon at λ = 0.44 nm. A cadmium slit is used to collimate the
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Figure 2.6: Grating-2 measured momentum distributions when (a) perpendicular to the
incoming beam and (b) rotated by ∼ 40 degrees about the x-axis so that it is approximately
a π phase-grating. Uncertainties shown are pure statistical. Lines are fitted Lorentizians.
Figure taken from Ref. [11].

transmitted beam. The momentum-space acceptance of the monochromator - analyzer pair
add in quadrature; so the observed widths of the measured diffraction peaks constitute an
upper bound on the spread in momentum space (and a lower bound on the coherence length)
of the incoming wave packet.

Three gratings were analyzed in this experiment. The period of each grating was λG =
2.4 µm. The grating depths were h = 29.0 µm, h = 23.9 µm, and h = 15.8 µm; the
corresponding phase amplitudes are (for λ = 0.44 nm neutrons) 2.6 rad, 2.2 rad, and 1.4 rad,
respectively. Scanning Electron Microscope (SEM) micrographs of the three gratings are
shown in Fig. 2.3b.

The gratings were first all analyzed separately. Momentum distributions were measured
as a function of rotation about three axes (defined in Fig. 2.3a): (1) the axis perpendicular
to the neutron propagation and grating diffraction directions (y−axis), (2) the axis defined
by the grating diffraction direction (x−axis), and (3) the propagation beam axis (z−axis).
In addition, momentum distributions were measured with two gratings separated by 20 cm
as a function of rotation about the z-axis.

2.2.3 Rotational Effects on the Resulting Momentum Distribution

Rotations about the y-axis cause the effective grating period to decrease. However, the
severe aspect ratio of these gratings causes a change in the phase path integral to be the
dominant effect. Integrating over the neutron’s trajectory through a phase-grating as a
function of rotation about the y-axis modifies the effective phase profile from a nominal
square wave. Note that this effect is not as pronounced for very cold neutrons [68], because
the phase-gratings used have aspect ratios close to unity.

To quantify this effect, the integrated phase profiles were computed from the SEM mi-
crographs as a function of rotation about the y-axis using silicon’s neutron scattering length
density of 2.1 × 10−6 Å−2. The momentum distributions were computed by transforming
the phase profiles taken from the SEM micrographs according to Eq. 2.2 using a fast Fourier
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transform (FFT). The power spectra of the FFT compared to experimental momentum space
distributions for Grating-1, along with the effective phase profiles, are shown in Fig. 2.4.

The diffraction peaks were characterized by fitting the measured intensity versus monochro-
mator rotation to multiple Lorentzians. Fig. 2.5 compares the areas of the fitted Lorentzians
to the areas of the peaks in the FFT power spectra taken from the grating SEM phase pro-
files. The computed diffraction peak areas from the SEM were scaled to match the absolute
peak areas of the measured distributions with the relative areas between diffraction orders
and grating rotations preserved. The asymmetry between the two first-order diffraction peak
areas was unique to Grating-1. This effect can be understood by inspecting the phase pro-
files in Fig 2.4c. As the grating is rotated, the phase profile has an asymmetrical slope. The
sign of the slope changes as the grating rotation crosses zero. This unique phase profile is
only seen in Grating-1 because of the baseball-bat-shaped grating walls visible in the SEM
micrograph Fig. 2.3b.

Due to the high aspect ratio of neutron phase-gratings, the phase profile vanishes as
the rotation about the y-axis approaches ∼ λG/h ∼ 5 degrees. The quality of the grating
further diminishes the angular range over which the grating is effective. This can be seen by
inspecting the relative peak areas in Fig. 2.5. Because of the distorted walls of Grating-1,
the first order peak areas have a large slope as a function of y-axis rotation when the grating
is aligned to the beam. This adds a transverse momentum dependence to the diffracted wave
amplitudes if the grating is used in a phase-grating NI, which may diminish interferometer
contrast. Even for the typical beam divergence of ∼ 0.5 degrees, the angular edges of the
beam probe drastically different grating profiles. This effect is absent in Grating-2 and
Grating-3, where the diffracted peak areas form a maximum when the grating is aligned to
the beam.

Rotations about the x-axis only change the effective thickness of the grating, and therefore
the phase of the grating changes by

φ(x)→ φ(x)

cosα
. (2.8)

A 50% comb-fraction grating with a π phase amplitude theoretically has the zeroth-order
peak suppressed as shown in Fig. 2.2a. However, the amplitude of the zeroth order peak is
proportional to cos2(φ0/2), hence the peak reappears slowly as a function of grating thickness.
Demonstration of the zeroth-order peak suppression is shown in Fig. 2.6 by rotating Grating-
2 about the x-axis.

However, the disappearance of the zeroth-order peak does not hold true for a π phase-
grating with sloped walls. Thus, if a grating is known to be aligned to the y-axis, as in the
previous section, and to be the proper thickness of silicon to be a π phase-grating, the lack
of a zeroth order peak is a measure of the squareness of the grating. The almost complete
suppression of the zeroth order peak seen in Fig. 2.6b matches the SEM micrograph in
Fig. 2.3 in that Grating-2 is of very high quality and closely estimates a square wave.

Grating rotations about the z-axis rotate the diffraction plane of the grating out of the
diffraction plane of the monochromator-analyzer pair (the x-z plane in Fig. 2.3a). This can
be interpreted as effectively lengthening the grating’s period by
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λG →
λG

cos γ
, (2.9)

where γ is the angle of elevation between the crystal and grating diffraction planes about
the z-axis. Because the momentum distribution is only narrow in the crystal diffraction
direction, rotating the grating about the ẑ axis reduces the σ/λG ratio (see Fig. 2.2d). This
causes the measured diffraction peaks to overlap as the grating is rotated as shown in Fig. 2.7.

When two gratings with the same period are used in series, the n-order diffraction peaks
from the first grating are diffracted into n+m order peaks, where m is the diffraction order
of the second grating. The measured momentum distribution of Grating-1 and Grating-2
operated in series is shown in Fig. 2.8. Second order diffraction peaks now have amplitudes
similar to the first and zeroth order peaks.

If one or both of the gratings are rotated about the z-axis, Eqn. 2.6 is modified and the
crystal monochromator/analyzer pair will measure peak locations of

θ = sin−1

[
λ

λG
(n cos γ1 +m cos γ2)

]
(2.10)

for two gratings of the same period λG, with γ1 and γ2 the z-axis rotation of Grating-1 and
Grating-2, respectively. The effect of rotating one grating about the z-axis while leaving
the other aligned is shown in Fig. 2.9. The number of observable peaks increases because
n+m cos γ need not add to an integer between −2 and 2 for n and m restricted to {0,±1}.
As shown in Fig. 2.9 seven diffraction peaks were resolvable; though up to nine peaks are
possible.
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Figure 2.10: Two phase-grating moiré NI operating in the far-field. The setup relies on a
modulated phase-grating which resulted from the overlap of two phase-gratings with slightly
different periods. With a diverging beam two phase-gratings with identical periods λG1 = λG2

can be used and the distance between them, D, determines the effective period, λeff . The
camera is placed in the far-field to image the intensity formed by the diffraction orders.

2.3 Two Phase-Grating Moiré Interferometer3

This section describes the implementation of a two phase-grating moiré neutron interfer-
ometer (PGMI) operating in the far-field regime. The demonstration includes the use of a
continuous monochromatic beam (λ = 0.44 nm), a continuous bichromatic beam (1/3 in-
tensity λ1 = 0.22 nm and 2/3 intensity λ2 = 0.44 nm), a continuous polychromatic beam
(approximately given by a Maxwell-Boltzmann distribution with Tc = 40 K or λc = 0.5 nm),
and a pulsed neutron beam (λ = 0.5 nm to λ = 3.5 nm).

2.3.1 Theory

The far-field moiré NI relies on a modulated phase-grating which resulted from the overlap
of two phase-gratings with slightly different periods, as shown in Fig. 2.10. With a diverging
beam two phase-gratings with identical periods λG1 = λG2 can be used. In the small angle
approximation the effective period of the second grating is given by:

λ′G2
=
λG1(L1 +D)

L1

(2.11)

where L1 is the distance from the slit to the first phase-grating, and D is the distance from

3This section is largely taken from Ref. [12].
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Figure 2.11: Schematic of the two phase-grating interferometer setup. A neutron beam
is passed through a narrow slit to define the neutron coherence length along the direction
which is perpendicular to the grating fringes. Two identical phase-gratings (G1 and G2) are
separated by distance D. They are placed at a distance L1 from the slit and L2 from the
imaging camera. The fringe pattern period at the camera is wavelength independent and
the fringe visibility can be optimized with the conditions discussed in the text. A sample
to be imaged may be placed before the gratings (upstream position) or after the gratings
(downstream position). Figure taken from Ref. [12].

the first to the second phase-grating. The period of modulated phase-grating resulting from
the overlap of λG1 and λ′G2

is given by:

λeff =
λG1λ

′
G2

λG1 − λ′G2

=
λG1(L1 +D)

D
(2.12)

Finally, the effective period of the modulated phase-grating at the location of the detector
is given by:

λd =
Lλeff

(L1 +D)
=
LλG1

D
(2.13)

where L = L1 +D + L2 is the distance between the slit and the camera.
In order for the neutron to diffract from the first grating G1 at the distance L1, the

neutron’s coherence length (along the y-axis in Fig. 2.11), should be at least equal to the
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period of the grating. The coherence length is given by Eq. 1.15:

σ =
λL1

sw
> λG1 . (2.14)

The second grating G2 is placed at a distance D from the first grating, and a distance L2

from the neutron camera. As neutron cameras have limited spatial resolution η, the fringe
period λd at the camera should be bigger than neutron camera resolution:

λd =
LλG1

D
> η, (2.15)

Similarly the fringe oscillations on the detector are a periodic function of the slit location,
with the period (often called source period) given by:

λs =
LλG1

D
. (2.16)

Therefore, in order to observe a fringe pattern on the detector the slit width should be
smaller than the source period, i.e. λs < sw.

To verify that we are indeed in a far-field regime we consider the Fraunhofer distance
when the coherence length is used as the source dimension:

dF = 2
σ2

λ
= 2λ

(L1

sw

)2

. (2.17)

We consider the coherence length because it is always equal or greater than the grating
period in the setup. To satisfy the far-field regime L2 should be greater than the Fraunhofer
distance:

dF
L2

≈ λL

s2
w

� 1. (2.18)

Given the experimental parameters of the monochromatic beamline dF/L2 ≈ 0.04, poly-
chromatic beamline dF/L2 ≈ 0.02 for λ = 0.5 nm, and the beamline at the pulsed source
dF/L2 ≈ 0.08 for λ = 0.35 nm. The other two conditions for far-field regime are:

L2 � λ, L2 � sw. (2.19)

In our cases they are the least strict conditions.
The intensity at the camera must be computed numerically by propagating the neutron

wave function into the far-field. The intensity is then fit to a cosine curve to obtain the
contrast. It has been shown [65] that for equal period λG1 = λG2 ≡ λG, π/2-phase-gratings,
with 50% comb fraction, the maximum contrast is optimized for the condition δ1(λ) =
δ2(λ) = 0.5, where:

δ1(λ) =
λL1D

Lλ2
G

, δ2(λ) =
λL2D

Lλ2
G

. (2.20)
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Figure 2.12: Optimization data. a) The contrast is found by placing the gratings vertically
and rotating one of them along the roll axis in very fine increments. The plot shows the
contrast at the monochromatic beamline as a function of the first grating rotation around
the neutron propagation axis. b) The dependence of the contrast at the bichromatic setup
on the slit width sw. The fit is given by applying Eqn. 2.23 to the data, and shows good
agreement with the calculated source period Ps. Figure taken from Ref. [12].

The experimental setup, shown in Fig. 2.11, consists of a slit, two identical linear phase-
gratings of silicon combs with a period of λG1 = λG2 = 2.4 µm, and a neutron imaging
detector (neutron camera). To align the gratings the setup is initially arranged with theo-
retically calculated optimal slit width and lengths L1, D, and L2. Then one of the gratings
is rotated around the neutron propagation axis (ẑ axis) until the fringe pattern is observed
at the camera. The contrast with the monochromatic setup as a function of the first grating
rotation around the ẑ axis is shown in in Fig. 2.12a.

The slit height sh (slit length along the x-axis direction in Fig. 2.11) can be larger than
the slit width sw in order to increase neutron intensity, provided that the gratings are well
aligned to be parallel to that direction. The angular range of appreciable contrast is inversely
related to the slit height λG/(2L1sh/L). The expected range of ±0.007° agrees with the range
depicted on Fig. 2.12a.

The intensity of the fringe pattern recorded by the camera can be fit to a cosine function

I = A+B cos(2πfx+ φ), (2.21)

where x is the pixel location on the camera. Thus the mean A, the amplitude B, the frequency
f, and the differential phase φ can be extracted from the fit. The contrast or fringe visibility
is given by :

C =
max{I} −min{I}
max{I}+ min{I}

=
B

A
. (2.22)

Due to the generally low neutron flux of monochromatic beamlines, the slit widths are
optimized for intensity vs contrast. The contrast as a function of the slit width for the
bichromatic setup is shown in Fig. 2.12b. Variation of the contrast vs. slit width could be
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Figure 2.13: Typical far-field images obtained with (a) 300 s exposure time with the bichro-
matic neutron beam (b) 10000 s exposure time with the monochromatic neutron beam, (c)
median filter applied on three images with 2 s exposure time with the polychromatic neutron
beam (d) normalized image from the J-PARC pulsed source. The integrated intensities of
the regions specified by the yellow rectangle show the observed fringe pattern at the camera.
The dark region in the middle of the bichromatic image is due to the collimator in that
particular setup and not due to the gratings. Figure taken from Ref. [12].

described by the sinc function:

C = C0

∣∣∣∣sinc

[
πs

λs

]∣∣∣∣ . (2.23)

where C0 is the maximum achievable contrast with a given setup. Thus, given a slit width
of one third of the source period, in our case 281 µm, would give an upper bound of 83%
contrast. The fit in Fig. 2.12b gives a source period of λs = 843± 43 µm, which is in good
agreement with λs = 845 µm obtained with Eq. 2.16 where D = 10 mm.

2.3.2 Experimental Methods

Although π/2-phase-gratings for a specific neutron wavelength give optimal fringe visibility,
available to us were five different gratings with various depths. We had used gratings corre-
sponding to 0.27π phase shift at 0.44 nm wavelength for the mono- and bi-chromatic setups
and 0.2π phase shift at 0.5 nm wavelength for the polychromatic setup.

The experiment was performed in four different configurations. The bichromatic and
monochromatic beam configurations were performed at the NG7 NIOFa beamline [4] at the
National Institute of Standards and Technology Center for Neutron Research (NCNR) with
L1 = 1.73 m and L = 3.52 m for bichromatic beam and L1 = 1.20 m and L = 2.99 m
for monochromatic beam. See Fig. 1.3 for the beamline’s location at the NCNR, and see
section 1.4.3 for a description of the NIOFa beamline. The neutron camera used in this
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Figure 2.14: a) The contrast as a function of the separation distance between the gratings
for the monochromatic, bichromatic, and polychromatic neutron beams. The fits are given
by Eq.12 in [65], and the contrast for the monochromatic, bichromatic and polychromatic
beamlines is optimized at D = 12 mm, 12 mm, and 10 mm respectively, agreeing well with
theoretical predictions [65]. b) The frequency of the oscillation fringes varies linearly as a
function of the distance between the gratings. The linear fit is according to (D−D0)/(LλG)
which for the monochromatic setup gives D0 = −0.75 mm and L = 3.04 m, the bichromatic
setup gives D0 = −0.8 mm and L = 3.51 m, and polychromatic setup gives D0 = −3.8 mm
and L = 8.36 m. The exposure time was 2 s. Figure taken from Ref. [12].

setup has an active area of 25 mm diameter, with scintillator NE426 (ZnS(Ag) type with 6Li
as neutron converter material) and a spatial resolution of ∼ 100 µm, and virtually no dark
current noise [69]. Images were collected in 300 s long exposures. The neutron quantum
efficiency of the camera is 18% for λ = 0.22 nm and about 50% for λ = 0.44 nm. The neutron
beam is extracted from a cold neutron guide by a pyrolytic graphite (PG) monochromator
with λ = 0.44 nm and λ = 0.22 nm components with an approximate ratio of 3.2:1 in
intensity. To change from bichromatic to monochromatic configuration, i.e. filter out the
λ = 0.22 nm component, a liquid nitrogen cooled Be-filter with nearly 100% filter efficiency
[4] was installed downstream of the interferometer entrance slit. The slit width was set to
200 µm and slit height to 2.5 cm.

The polychromatic beam configuration was performed at the NG6 Cold Neutron Imaging
(CNI) facility [70] at the NCNR. See Fig. 1.3 for the beamline’s location at the NCNR. The
CNI is located on the NG6 end-station and has neutron spectrum approximately given by a
Maxwell-Boltzmann distribution with Tc = 40 K or λc = 0.5 nm. The slit to detector length
is L = 8.8 m and slit to G1 distance is L1 = 4.65 m. The slit width was set to 500 µm and
slit height to 1.5 cm.

The imaging detector was an Andor sCMOS NEO camera viewing a 150 µm thick LiF:ZnS
scintillator with a Nikon 85 mm lens with a PK12 extension tube for a reproduction ratio
of about 3.7, yielding a spatial resolution of η = 150 µm. To reduce noise in the sCMOS
system, the median of three images were used for analysis.

The fourth configuration used a pulsed neutron beam produced at the Energy-Resolved
Neutron Imaging System (RADEN) [71], located at beam line BL22 of the Japan Proton
Accelerator Research Complex (J-PARC) Materials and Life Science Experimental Facility
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Figure 2.15: Linear phase stepping is achieved with parallel translation of the first grating G1

by increments smaller than the period of the gratings. (Top) Data from the monochromatic
beamline (Bottom) Data from the polychromatic beamline. In both cases linear dependence
between the phase and grating translation is observed, while the contrast is preserved. Data
was collected for the translation range of 0 µm to 5 µm, in increments of 0.2 µm (0.5 µm)
for monochromatic (polychromatic) plot. Figure taken from Ref. [12].

(MLF). The wavelength range that was used was from 0.05 nm to 0.35 nm. The slit to
detector length is L = 8.6 m and slit to G1 distance is L1 = 4.24 m. The slit width was
set to 200 µm and slit height to 4 cm. The neutron imaging system employed a micro-pixel
chamber (µPIC), a type of micro-pattern gaseous detector with a two-dimensional strip
readout, coupled with an all-digital, high-speed FPGA-based data acquisition system [72].
This event-type detector records the time-of-arrival of each neutron event relative to the
pulse start time for precise measurement of neutron energy, and it has a spatial resolution
of 280 µm (FWHM). The readout of the µPIC detector introduces a fixed-pattern noise
structure which is completely removed by normalizing to empty beam measurements. Thus,
the visibility measurements are from open-beam normalized images of the moiré pattern.
The average number of detected neutron events was about 80 per 160 micron pixel with a 4
h integration time.

2.3.3 Results and Discussion

By observing the interference fringes with and without a sample that has been placed either
upstream or downstream of the gratings we can extract the conventional beam attenuation,
dark-field contrast, and differential phase contrast. By varying the grating spacing D, this
interferometer may also be employed to measure small angle scattering of microstructures
in the range of nm to several µm, as described in section 2.2.

Fig. 2.13 (a)-(d) show examples of typical images of the interference pattern obtained in
optimized configurations for different beamlines: (a) bichromatic beam with λ1 = 0.22 nm
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Figure 2.16: Grayscale representation of the contrast (fringe visibility) dependence on neu-
tron wavelength and gratings separation distance, D. Contrast data obtained with a pulsed
neutron beam from a spallation source at J-PARC. Data was collected for the wavelength
range of 0.05 nm to 0.35 nm, in increments of 0.05 nm; and for separation distance values
of 3 mm, 6 mm, 12 mm, 18 mm, and 24 mm. Figure taken from Ref. [12].

and λ2 = 0.44 nm (b) same beamline as (a) but with a Be-filter to completely eliminate the
λ1 = 0.22 nm component (c) polychromatic neutron beam with peak wavelength λc = 0.5 nm
and (d) a pulsed source for λ = 0.25 nm. In Fig. 2.13 (a) the middle dark region corresponds
to the collimator which was placed at the front in the setup, and not the grating pattern.
As the Be-filter adds divergence to the beam it can be seen that the dark middle region gets
washed out in Fig. 2.13 (b). The box on each image represents a region of integration along
the vertical axis and the integral curve is shown under each image. Such integral curves
were used to fit with Eq. [2.21] to extract phase, frequency, and compute the contrast via
Eq. [2.22].

Fig. 2.14a shows contrast (fringe visibility) change versus grating separation, D. The
data obtained at NIST for the monochromatic, bichromatic and polychromatic beamlines
is plotted on the same figure for comparison. The theoretically calculated contrast curves
for the three conditions are also plotted, which were based on estimates of 0.27π phase
shift gratings at 0.44 nm wavelength for the mono- and bi-chromatic setups and 0.2π phase
shift at 0.5 nm wavelength for the polychromatic setup. The maximum contrast for the
monochromatic, bichromatic and polychromatic beamlines are achieved at D = 12 mm,
12 mm, and 10 mm respectively, agreeing well with theoretical predictions. Theoretical
estimates indicate that there is room for improvement of contrast by improving grating profile
and detector resolution. Fig. 2.14b shows the linear dependence of the fringe frequency at
the camera on the grating separation. As the distance between the gratings is increased the
period of the fringes at the camera is decreased. The linear fit is according to (D−D0)/(LλG)
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Figure 2.17: Phase-contrast imaging with a polychromatic beam (a) The aluminum sample
in front of the G1 grating. The yellow box roughly outlines what is being imaged. The sample
has a step profile in the middle region and threaded screw holes in the corners. (b) Neutron
attenuation image due to absorption and scattering. Grayscale bar represents transmission
through the sample. (c) Spatial variation of the contrast attenuation due to the sample,
− log(Csample/Cempty). In this case white represents a loss in contrast and black represents
no loss in contrast. (d) Phase shift in the moiré pattern at the detector due to the sample.
Grayscale bar represents radians. Here, the white and black patterns represent the highest
phase gradient that the neutrons acquire when passing through the sample. Figure taken
from Ref. [12].

which for the monochromatic setup gives D0 = −0.75 mm and L = 3.04 m, the bichromatic
setup gives D0 = −0.8 mm and L = 3.51 m, and polychromatic setup gives D0 = −3.8 mm
and L = 8.36 m.

To implement phase stepping of the fringe pattern at the camera one grating needs to
be translated in-plane in the perpendicular direction to the grating lines (along the y-axis in
Fig. 2.11 or along the grating vector). The translation step size needs to be smaller than the
grating period. The top plot in Fig. 2.15 shows the two-dimensional plot of phase stepping
for the monochromatic beamline setup; and the bottom plot in Fig. 2.15 shows the phase
stepping for the polychromatic beamline setup. In both cases linear dependence between the
phase and grating translation is observed, while the contrast is preserved.

Similar aligning procedures and measurements were performed at J-PARC spallation
pulsed source. Fig. 2.16 shows the contrast as a function of the wavelength for various
grating separations. Due to the nature of the pulse source we were able to extract contrast
as a function of wavelength. Note that at the time of the experiments J-PARC was running
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at 200 KW as opposed to 1 MW due to technical problems. This lowered the neutron flux to
1/5 of the standard flux and the low intensity proved to be a significant challenge in terms
of optimizing the setup for each independent wavelength.

The beam attenuation, decoherence, and phase gradient images shown in Fig. 2.17 (b)-
(d) are of an aluminum sample shown in Fig. 2.17 (a). The approximate imaged area is
depicted by the rectangular box. The images in Fig. 2.17 (b)-(d) were obtained by the
Fourier transform method described in [73]. At the described polychromatic beamline at
NIST three images with 20 s exposure time were taken at each step in the phase-stepping
method [74]. A median filter was then applied to every set of three images. The phase step
size was 0.24 µm ranging from 0 to 2.4 µm of the G2 transverse translation. The G1 - G2

grating separation was D = 11.5 mm.
Fig. 2.17 (b) shows the conventional attenuation-contrast radiography of the sample,

where white color represents full transmission (no attenuation). The shape and features of
the sample are well defined in the image. Fig. 2.17 (c) shows the decoherence of the fringe
contrast due to the sample, − log(Csample/Cempty), where the white color represents loss of
contrast and the black color represent no contrast reduction. As expected the areas which
caused the largest attenuation also caused the largest loss of contrast. Fig. 2.17 (d) shows
the phase shift in the moiré pattern at the detector due to the sample. The white and black
patterns represent highest phase gradient that the neutrons acquire when passing through
the sample.

2.4 Measuring the Microstructure of Samples with the

Far-Field Interferometer4

This section describes the demonstration that a neutron far-field interferometer can be em-
ployed to measure the microstructure of a sample. The autocorrelation length of the two
phase-grating moiré neutron interferometer, and hence the microstructure length scale that
is probed, is proportional to the grating spacing and the neutron wavelength, and can be
varied over several orders of magnitude for one pair of gratings. The potential advantages
of a far-field neutron interferometer include high contrast with a polychromatic beam (over
30%), no requirement for an absorbing grating to resolve the interference fringes, and the
ability to measure the microstructure in the length scale range of 100 nm to 10 µm by varying
either the grating spacing or neutron wavelength with a broad wavelength range and single
set of gratings.

Neutrons probe matter primarily via the strong nuclear force and thus provide a compli-
mentary measure of the composition of a sample to electromagnetic probes such as x-rays.
The interaction with the nucleus also provides a means for isotopic sensitivity, for instance
allowing one to create contrast matched solutions composed of heavy and light water. In
conventional attenuation based neutron radiography, one measures the local areal density
(Nt) from σNt, where σ is the total scattering cross section with typical values of 10−24

cm2 (∼ 1 barn), N is the number density and t is the path length through the material. In
neutron phase imaging, one measures a phase shift of the wavefront which is proportional

4This section is largely taken from Ref. [13]. The lead author was Daniel Hussey.
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to the local areal density from bcλNt, where bc is the coherent scattering length (∼ 10−13

cm) and λ is the neutron wavelength (∼ 10−8 cm). Thus if the measurements have similar
counting statistics and other uncertainties, neutron phase imaging would be ∼1000 times
more sensitive to variations in the areal density of an object. If there are fluctuations in
the scattering length density (Nbc) due to a non-uniform microstructure, one observes small
angle scattering (SAS). In interferometric phase imaging measurements, SAS results in a
reduction of the contrast of the interference pattern [75–78].

Talbot-Lau interferometer (TLI) has been used to measure the pair-correlation function
of samples. The auto-correlation length of the TLI is linear in the separation of the detector
and sample position. In order to scan through a range of auto-correlation lengths, the
sample-detector separation needs to be varied, which loses the inherent spatial registration
over the measurements. As well, to probe smaller auto-correlation lengths (<1 µm) requires
small (∼ 1 cm) separation between detector and sample so that the auto-correlation length
will vary through an object prohibiting these methods from obtaining tomographic (3D)
reconstructions. Recently spin echo modulated small angle neutron scattering (SEMSANS)
has been demonstrated to provide a quantitative measure of the pair-correlation function [79].
Such a system allows one to scan the auto-correlation length through scanning the neutron
wavelength and differences between two magnetic field regions to cover a broad range of
auto-correlation lengths. Similar to the TLI, the method also places the sample in close
proximity (∼ 1 cm) to the detector so that the auto-correlation length will vary through
a sample of finite thickness. As well, the method requires neutron spin polarization and
analysis, which in practice reduces the intensity by an order of magnitude from the incident
intensity.

The diffraction angle due to a sample with periodicity λs is given by:

θ ∼ ± λ

λs
= ±qλ

2π
= ± y0

Ls
, (2.24)

where q is the Q-vector, Ls is the distance between the sample and the detector, and y0 is
the displacement at the detector which corresponds to a phase shift in the fringe pattern:

φ0 = ±2πy0

λd
= ±λLs

λd
q = ±ζq, (2.25)

where ζ is commonly referred to as the autocorrelation length of the PGMI. Taking Ls ∼ L/2
(placing the sample near the gratings):

ζ =
λLs
λd

=
λLsD

λGL
=
λD

2λG
, (2.26)

In the presented work, the grating separation D was the primary means of varying ζ, with
D ranging from about 3.5 mm to 40 mm.

As the sample simultaneously induces a positive and a negative phase shift the contrast
at the camera reduces. The greatest reduction in contrast typically occurs for φ0 = π, which
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a) b)

Figure 2.18: Empty interferometer visibility. (a) The raw moiré pattern for 10 mm grating
separation. (b) The visibility of the moiré pattern as a function of grating separation for the
6 regions of interest indicated in (a). The spatial resolution of the detector was 0.25 mm and
limited the range of the visibility measurements in this case. Figure taken from Ref. [13].

corresponds to:

q ∼ 2πλG
Dλ

. (2.27)

Hence the PGMI is sensitive to a specific inverse length scale within the sample.
By measuring the contrast reduction, µd at different autocorrelation lengths of the inter-

ferometer, ζ, one measures the pair-correlation function G(ζ) [78]:

e−µd(ζ)t =
Csample(ζ)

Cempty(ζ)
= e−

∫
path Σ[1−G(ζ)]dt ∼ e−Σt[1−G(ζ)] (2.28)

where t is the thickness of the sample, Σ is macroscopic scattering cross section, and the
rightmost relation holds for homogeneous samples. For a monodisperse solution of spheres
[78]:

Σ =
3

2
φv∆ρ

2λ2r. (2.29)

where φv is the sphere volume fraction, r is the radius, and ∆ρ = ρparticle − ρsolvent is the
difference between the scattering length densities of the spheres and the water.

2.4.1 Experimental Methods

The experiments were conducted at the cold neutron imaging (CNI) instrument on the
neutron guide 6 (NG-6) at the NIST Center for Neutron Research (NCNR) [70]. See Fig. 1.3
for the beamline’s location at the NCNR. The instrument flight path enabled an overall
length of L = 8.44 m, L2= 4.24 m, and L1= 4.20 m. A vertical slit of 0.5 mm width masked
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a) b)

c) d)

Figure 2.19: Scattering data from a dilute, monodisperse suspension of polystyrene spheres.
(a) Raw image of the 1 mm thick polystyrene sample at a grating separation of 13.5 mm.
(b) Measured visibility reduction as a function of grating spacing. The uncertainty bars
are derived from the one standard deviation of measured fringe visibility reduction over
the imaged area of the cuvette. As such, the actual uncertainty is likely larger due to other
systematic measurement uncertainties that have yet to be fully quantified. The solid lines are
a model assuming a dilute mixture of spheres, and the mean of the wavelength distribution
changes linearly between two grating separations, which were determined from a non-linear
least squares fit. Note that measurements with a monochromatic beam would not suffer from
this systematic effect. (c) Using the lambda ramp function, µdλ

−2 is plotted vs calculated
pair-wise auto-correlation |1 − G(ζ)| for a dilute suspension of spheres. The data show an
oscillation, indicating that clustering (short-range order) of the spheres or multiple scattering
is being observed. This might also indicate that the correction for the change in wavelength
needs to be improved. (d) USANS measurements of three volume fractions of spheres, from
which the diameter was measured; the oscillations are due to the monodispersity of the
spheres. Figures taken from Ref. [13].
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the beam at the entrance; thus the transverse coherence length for a neutron wavelength of
0.5 nm was about 4 µm. Two silicon phase-gratings of 2.4 µm period were used. Grating
trenches were oriented vertically to avoid gravitational effects. The first grating was held
fixed, while the second grating could be manipulated in pitch, roll, yaw, and longitudinal
separation. The mounting scheme was such that the closest approach of the two gratings
was about 3 mm.

The data in Fig. 2.18 was obtained with an amorphous silicon detector in direct contact
with a 300 µm thick LiF:ZnS scintillator screen. The spatial resolution of this system is
about 250 µm, and 100 exposures of 1 s were averaged. The data in Fig. 2.19 were obtained
with an Andor sCMOS NEO camera viewing a 150 µm thick LiF:ZnS scintillator with a
Nikon 85 mm lens with a PK12 extension tube for a reproduction ratio of about 3.7, yielding
a spatial resolution of about 150 µm. To reduce noise in the sCMOS system, the median of
three images with 20 s exposure time were used for analysis.

The wavelength distribution of the imaging instrument at NG-6 has not yet been mea-
sured. The simulated wavelength distribution can be approximated by a Maxwell-Boltzmann
distribution with temperature 40 K giving a peak neutron wavelength of about 0.5 nm. While
the far-field interferometer is achromatic, the visibility is maximized for wavelengths which
experience a π/2 phase shift. To provide a π/2-phase shift for neutrons with a 0.5 nm
wavelength, the grating depth in silicon should be 15.1 µm. However, there were 5 available
gratings for the experiment, of varying depths, all with period of 2.4 µm and etched with
a Bosch process. The gratings were fabricated at the NIST Nanofabrication facility. We
measured the visibility obtainable with three combinations of G1 and G2 after aligning the
relative roll between G1 and G2 and scanned their relative separation. Since the gratings
employed in this experiment were not optimized for this spectrum, it is possible that higher
visibility could be obtained.

The raw images were converted to attenuation, phase gradient, and fringe visibility images
using a Fourier transform method that requires a reference image with no sample and a
single structured image of the sample. Note that without phase stepping data the algorithm
demodulates the images so that the pixel pitch of the reconstructed images is that of the
fringe spacing; with phase stepping data, the reconstructed data have the same pixel pitch
as the input data. In this work, only the attenuation and visibility images were analyzed.

By scanning either (or both) the inter-grating spacing or the wavelength one obtains
a measure of the pairwise auto-correlation function G(ζ). For the geometry of the present
setup, the q-ranges from 10−2 nm−1 to 10−4 nm−1. It would be feasible to approach higher q-
ranges with either larger period gratings or grating mounting that enabled a closer approach.
To reach higher q-ranges, one could use finer pitched gratings or a detector with higher spatial
resolution may enable resolving the fringes for large separations, but the fringe visibility
maybe reduced to an impractical level. That said, the q-range of a typical first order Talbot-
Lau neutron interferometer is more tightly restricted due to the constraints from the wave-
length specific Talbot-distance and the proximity of the sample with the gratings.

2.4.2 Results and Discussion

The pair of gratings that produced the highest visibility were installed and finely aligned
with regards to pitch, roll and yaw, and overall yaw alignment with the beam. A scan of
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Figure 2.20: Photo of the sample holders for the polystyrene sphere solution about 3 weeks
after the measurements. The 4 mm thick holder is on the left and is clearly turbid, while the
1 mm thick holder is on the right showing that the spheres have settled out. Figure taken
from Ref. [13].

the change in visibility with respect to the inter-grating spacing, D, was conducted, shown
in Fig. 2.18.

A distribution of the visibility of the far-field interferometer flat field was observed, as can
be seen in the raw images and persists for the range scanned D. The visibility distribution
may be connected to the wavelength distribution of the flat field or to inhomogeneities in
the etch depth of the gratings. A ray-tracing simulation of the beam line shows that the
average wavelength in the beam center (corresponding to the right-hand side of the images)
is about 0.55 nm and increases to about 0.8 nm where the highest visibility is observed on
the left.

To assess the quantitative measurement of the microstructure with the far-field interfer-
ometer, a monodisperse solution of 1.97±0.34 µm diameter polystyrene spheres with sample
thickness 1 mm and 4 mm were imaged. The polystyrene spheres were in a solvent mixture
of 50% H2O, 50% D2O (by volume) to give a sphere volume fraction φv = 0.05 so that the
mass densities of solid spheres and solvent were nearly matched to prevent sedimentation
during the measurement. The pair correlation function of the sample can be approximated
by:

G(ζ) =

√
1− ζ2

4r2

(
1 +

ζ2

8r2

)
+

ζ2

2r2

(
1− ζ2

16r2

)
ln

[
ζ/r

2 +
√

4− ζ2/r2

]
∼ e−

8
9
ζ
r (2.30)

Therefore as ζ increases, as per Eq. 2.28 and Eq. 2.29, the contrast reduction for dilute
spheres of radius r should asymptotically approach:

µd =
3

2
φv∆ρ

2λ2r. (2.31)

The fringe visibility reduction was measured over the 1 cm diameter sample area and
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is shown in Fig. 2.19. The data show a clear decrease in µd with grating separation (and
hence ζ). We believe this is due to the fact that as the grating separation is increased,
the wavelengths that contribute most strongly to the contrast are shifted to shorter wave-
lengths. Working on this assumption, we model the change in the average of the wavelength
distribution as a ramp function:

λ(D) =λ1Θ{D1 −D}+ λ2Θ{D −D2}

+ Θ{D −D1}Θ{D2 −D}
(
λ1 +

(λ2 − λ1)(D −D1)

(D2 −D1)

)
(2.32)

where Θ{...} is the Heaviside function. The four free parameters were determined from a
nonlinear least squares fit of the data using the pair correlation function for dilute spheres,
which is shown as the solid lines in Fig. 2.19b. From the fit, D1 = (12.74 ± 0.80) mm,
D2 = (21.83± 0.61) mm, λ1 = (0.643± 0.013) nm, while λ2 = (0.515± 0.003) nm, which are
reasonable wavelengths for the cold neutron spectrum of the NG6 imaging beamline. While
the model is somewhat heuristic, we intend to conduct spectral measurements of the NG-6
beamline to permit calculation of the visibility and thus provide a better correction. Further,
this situation would not be present if the measurements were made with a monochromatic
beam, either using a double crystal monochromator, velocity selector, or time of flight mea-
surements.

Using Eq. 2.26 and Eq. 2.32 to calculate ζ, Fig. 2.19c shows µd/λ
2 for both the 1 mm and

4 mm thick samples. The predicted µd from a dilute monodisperse solution of polystyrene
spheres is also plotted. The data show clear oscillations, which may indicate that multiple
scattering is present or that the spheres are sticking together to create twin dumbbells. In the
latter case the auto-correlation |1−G(ζ)| has an expected oscillation period of (2/π)diameter
= 1.25 µm, which approximately matches the observed period of about 1.5 µm. That the
oscillations are more prevalent in the 1 mm sample than the 4 mm sample is surprising, but
the 1 mm sample showed a faster settling rate than the 4 mm thick sample, as shown in
Fig. 2.20, indicating that there was likely a higher number of particles that formed dumbbell
pairs.

In follow up experiments, a two PGMI setup was used to study sub-micron porosity
detection in laser sintered stainless steel alloy 316 (SS316) test objects [80], and selective
laser melted and conventionally manufactured SS316 dogbones [81].

2.5 Three Phase-Grating Moiré Interferometer5

This section describes the demonstration of a broadband, three PGMI operating in the far-
field. The schematic diagram of the setup is depicted in Fig. 2.21. The three PGMI employs
the universal moiré effect [65] and is an extension to the two PGMI [12,13]. Contrary to the
typical MZ interferometers that have two separate and distinct beam paths, the three PGMI
works in the full-field of a cone beam from a finite source, similar to in-line holographic
devices. Such full-field systems can be understood intuitively in the framework of Fourier
imaging developed by Cowley and Moodie [82, 83]: the 2nd grating produces a series of

5This section is largely taken from Ref. [14].
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Figure 2.21: Three phase-grating interferometer schematic diagram where the 3rd grating
is offset from the echo-plane to produce the moiré pattern, with period λd, at the camera.
The system can be analyzed as the superposition of continuous arrays of Mach-Zehnder
interferometers; two of which are illustrated in the figure. This interferometer is sensitive
to phase gradients, such as those induced by gravity. A sample may be placed between the
gratings for phase imaging, or for dark field imaging. Figure taken from Ref. [14].

achromatic Fourier images of the 1st grating at a specific “echo-plane” downstream. The
3rd grating is detuned from the echo-plane to produce a phase moiré effect with the Fourier
images, which is observed as a beat pattern in intensity in the far-field. When all three
gratings have the same period (λG) the fringe period at the detector (λd) is given by [65]:

λd =
(L1 +D1 +D2 + L2)

|D2 −D1|
λG. (2.33)

where L1, D1, D2, and L2 are defined in Fig. 2.21. The fringe frequency at the detector is
given by fd = 1/λd. The Fourier image and the 3rd phase-grating both possess regular square
grating profiles. Therefore, the moiré pattern they create are broad straight fringes. If there
is an angle between the two, the direction of the moiré fringes will rotate relative to the
grating direction of the 3rd grating.

The experiments were performed at the Cold Neutron Imaging (CNI) facility [70] at
the National Institute of Standards and Technology’s (NIST) Center for Neutron Research
(NCNR), where a 20 MW reactor provides a steady flux of thermal and cold neutrons for a
variety of instruments. The CNI is located at the end position of neutron guide 6 and as such
has a polychromatic neutron spectrum that is approximately given by a Maxwell-Boltzmann
distribution with Tc = 40 K or λc = 0.5 nm. See Fig. 1.3 for the beamline’s location at the
NCNR.

For this demonstration, we used Si gratings which were available, but not necessarily
optimal for our setup. The period of each grating was 2.4 µm. The 1st and 3rd gratings had
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Figure 2.22: The measured contrast (red) and frequency (blue) of the interference pattern at
the camera as a function of the difference between the grating separations. The uncertainties
are purely statistical. The plotted theoretical frequency (straight blue line) derived from
Eq. 2.33 shows good agreement with the measured data. Figure taken from Ref. [14].

a depth of 16 µm corresponding to a phase shift of ∼ π/2 for the mean wavelength of 0.5 nm,
while the 2nd grating had a depth of 30 µm corresponding to a phase shift of ∼ π. The effect
of a single π/2 or π phase-grating on the neutron transverse momentum distribution is shown
in Fig. 2.2b. The gratings were oriented vertically to avoid beam deviation due to gravity.
Rotational alignment of the gratings about the z-axis was done with 0.01° accuracy. The slit
width was set to 500 µm and slit height to 1.5 cm. The slit to detector length was fixed at
L = 8.8 m, while the distance between the slit and the 2nd grating was fixed at 4.75 m. The
detector used was an sCMOS camera viewing a 150-µm-thick LiF:ZnS scintillator and had
a spatial resolution of ∼ 150 µm. The exposure time was 20 s per image, and the detector
efficiency was ∼ 0.4.

Contrast as a function of the difference between the grating separations (D2 − D1) is
plotted in Fig. 2.22. The distance between the 1st and 2nd grating was D1 = 4.6 cm, while
the distance between 2nd and 3rd grating, D2, was scanned. In the methods section of [65] it
is shown that the contrast is dependent on the autocorrelation functions of the 1st and 3rd

grating profiles, and that for ideal 50% comb-fraction gratings the contrast peaks when the
autocorrelation distances are half the grating period. For our geometry, D2−D1 ≈ ±1.2 cm
values produce autocorrelation distances close to half a period for both 1st and 3rd gratings.
The peak positions of the observed contrast agree with this prediction. At equal separation
distances, D1 = D2, the third grating is at the Fourier image location and no fringes are
expected. On Fig. 2.22 it can also be seen that the fringe frequency is linearly proportional
to the difference of separation distances, as per Eq. 2.33.

The 1st and the 3rd grating can be translated away from the middle grating in synchro-
nized intervals in order to achieve large interferometer length. Fig. 2.23 shows the peak
contrast as a function of the distance from the 1st to the 3rd grating. The data are the
contrast of the empty interferometer and illustrate how the contrast varies with the length
of the interferometer, possibly pointing to coherence loss from increased air scattering and
mechanical vibrations [84]. At each new length the contrast optimization was performed by
finely translating the 3rd grating. Contrast was observed with an interferometer length of
4 m, which was the limit of our experimental setup. An interferometer area of ∼ 8 cm2 is

53



0 1 2 3 4
Interferometer Length (D1+D2) [m]

0
0.5
1.0
1.5
2.0

3.0
2.5

3.5

C
o
n
tr

a
st

 [
%

]

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C
on

tr
as

t [
%

]

43210

Interferometer Length (D1+D2) [m]

Figure 2.23: Peak contrast, where D2 −D1 ≈ 1.2 cm, as a function of the distance between
the 1st and 3rd grating. The purely statistical uncertainties are smaller than the individual
points. Figure taken from Ref. [14].

estimated for that configuration.
To observe phase shifts inside the three PGMI and quantify the robustness of the setup

we performed “linear phase stepping” depicted in Fig. 2.24. This process verifies that the
phase shifts of the fringes from the grating movement agree with expected phase stepping
behavior - movement of the grating by one period (2.4 µm) causes a 2π phase shift. Here
the phase shift of the induced interference fringes is obtained by parallel translation of the
third grating with step sizes smaller than the period of the gratings. It was observed that
the phase of the interference fringes linearly increases as expected.

Placing a sample between the gratings allows for phase and dark-field imaging [12,85]. For
a rectangular sample of 6061 aluminum alloy the linear attenuation of integrated intensity
calculated as -ln(Isample/Iempty) and the normalized contrast calculated as Csample/Cempty are
shown in Fig 2.25. It is observed that the sample degrades the relative contrast to 0.28, most
likely due to small angle neutron scattering off of the microstructure present in the alloy.
The images were obtained by the harmonic analysis method described in [75].

The three PGMI presents a unique opportunity for material characterization as one can
readily vary by orders of magnitude the autocorrelation length used to probe the sample.
The method is analogous to the probing of autocorrelation lengths with a two phase-grating
interferometer [13], but the probed autocorrelation length in this case is the separation length
of the individual MZ interferometers depicted in Fig. 2.21:

∆h ≈ λ

λG
Ls (2.34)

where Ls is the distance from the 1st grating to the sample. Therefore, the unique ability
of the three PGMI is accessing larger autocorrelation lengths (>100 µm), which are beyond
the standard limits of the ultra small angle neutron scattering (USANS) and other neutron
dark-field imaging methods. Potential applications would be the probing of porous mineral
samples and oil/gas core samples, man-made porous scaffolds and materials.

The enclosed area of the interfering neutron paths is an important parameter of a NI and
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Figure 2.24: Phase stepping. The phase of the interference fringes at the detector is linearly
varied by a parallel translation of the 3rd grating. The interferometer length was set to 2 m,
and D2 −D1 ≈ 1.2 cm to optimize contrast. The 3rd grating was then translated along the
grating vector (along the y-direction in Fig. 2.21) from 0 to 5 µm in increments of 0.25 µm.
Figure taken from Ref. [14].

its response to potential gradients and forces. Perfect crystal interferometers are limited to
the practical size of commercially available perfect or dislocation free Si ingots. For perfect
crystals with Bragg angles of ∼ π/4 an area of ∼ 100 cm2 can be achieved for the particular
monochromatic wavelength [48]. The three PGMI has the unique opportunity to reach and
surpass the perfect crystal NI in this regard. In the current setup, with 2 m separation
between the gratings, the enclosed area is ∼ 8 cm2 for 0.5 nm wavelength neutrons, while it
is ∼ 15 cm2 for largest perfect crystal NI available at NIST for 0.271 nm neutrons. Reducing
the grating period to 600 nm and upgrading to a longer beamline which can accommodate
grating separation of 4.5 m will potentially increase the area to ∼ 160 cm2. Another key
advantage of the three PGMI is in terms of the accepted neutron flux, as the uncertainties
in the NI contrast measurements are purely statistical. The neutron acceptance of a perfect
crystal is orders of magnitude smaller than the broadband acceptance of the three PGMI.

Although this initial demonstration achieved a maximum 3% contrast, the theoretical
maximum contrast for square profile gratings is 32%. The factors that reduce the contrast
are the finite slit width, which is estimated at a relative fraction of between 11% and 18% de-
pending on the slit transmission profile; the actual phase-shift profile of G2 which determines
its efficiency; neutron scattering over the long distance of the NI by air or intervening parts
such as vacuum windows. Contrast reduction with increased grating separation also points
to scattering effects over distance and mechanical vibration as potential factors that degrade
performance. Future work will include direct assessment of individual grating diffraction
efficiencies to characterize and minimize these losses.
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downstream from the 2nd grating. b) Linear attenuation of integrated intensity. The shape of
the sample and the hole in the corner are recognizable in the image. c) Normalized contrast.
It is observed that the sample degrades the relative contrast to 0.28, most likely due to small
angle neutron scattering off of the microstructure present in the alloy. Figure taken from
Ref. [14].

2.5.1 Potential Applications

One of the hallmark neutron interferometer experiments was the “COW” experiment (named
for the authors of the first paper: Collella, Overhauser, and Werner) which measured the
phase shift of neutrons caused by their interaction with Earth’s gravitational field [36],
which is a measure of the local acceleration due to gravity “g”. The interferometer used
had an area of ∼ 8 cm2, and the most sensitive versions of the experiment were completed
with δg/g ≈ 10−2 disagreement with expectations, but with a statistical uncertainty of
δg/g ≈ 10−3 [86]. Recently it has been proposed that this disagreement may have been
due to Bragg-plane misalignments in the interferometer blades [66]. Since the original COW
experiments, g has been measured using neutrons with a very cold neutron interferometer at
the 8×10−4 level [51] and a spin-echo spectrometer at the 10−3 level [87]. It should be noted
that the current benchmark of δg/g = 2× 10−11 is set by atom interferometry [62,88,89].

The three PGMI allows for a similar experiment, where the gratings and the source slit
are rotated in synchronization around the beam axis as to vary the angle of the diffracted
path, and thereby the induced gravitational potential. Considering only the current setup
with 107 mm−2 s−1 neutron fluence rate and the 15 mm by 0.5 mm slit will yield an incoming
flux of N ≈ 7.5 × 107 s−1. With current contrast C = 0.01 and detector efficiency η = 0.4,
the uncertainty δφ in the phase (φ) due to counting statistics (shot noise) is:

δφ =
1

C
√
ηNt

≈ 2.4× 10−3 rad (2.35)

in a t = 1 minute measurement time. The phase due to Earth’s gravitational acceleration
(g = 9.8 m s−2) is:

φ = gT 2

(
2π

λG

)
≈ 160 rad, (2.36)

with grating period λG = 2.4 µm, and T = D12/vn is the neutron flight time between the
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gratings where vn ≈ 800 m s−1 is the peak neutron velocity. Thus one minute of measurement
in the current setup would offer:

δφ

φ
=
δg

g
≈ 1.5× 10−5. (2.37)

Furthermore, a successful realization of the COW experiment could lead to a similar
experiment to measure big “G”, the Newtonian constant of gravitation. The CODATA
recommended value of G = 6.67408(31)×10−11 m3kg−1s−2 with relative standard uncertainty
of 4.7×10−5 [21] consists of several discrepant experimental results. One can take advantage
of the long path of the three PGMI to place a large mass along the neutron paths. Benefit
over atom interferometry would be precise knowledge of the neutron path w.r.t. to the source
mass. In principle this would allow for a measurement using the three PGMI of δG/G to a
10−5 level or smaller.

There are many aspects of the three PGMI that we can improve and expand. These
include interferometer contrast which for our setup can reach up to 32% [65]. The factors
that reduce the contrast are the finite slit width, which is estimated to reduce the contrast
by between 11% and 18% depending on the slit profile; the actual phase-shift profile of G2

which determines its efficiency; neutron scattering over the long distance of the NI by air
or intervening parts such as vacuum windows. Future work will include direct assessment
of individual grating diffraction efficiencies to characterize and minimize these losses. In
addition to contrast gains, using smaller grating period and increasing the interferometer
length will also improve the sensitivity of the three PGMI.

2.6 Conclusion

This chapter introduced and described the far-field phase-grating moiré neutron interferom-
eters. The designs have a broad wavelength acceptance and requires non-rigorous alignment.
The interferometers operate in the far-field regime and can potentially circumvent many
limitations of the single crystal and grating based Mach-Zehnder type interferometers, and
the near-field Talbot-Laue type interferometers that are in operation today. Mach-Zehnder
type interferometers may provide the most precise and sensitive mode of measurements but
a successful implementation requires highly collimated and low energy neutron beams. On
the other hand, a near-field Talbot-Laue interferometer requires absorption analyzer gratings
which curtails flux and interference fringe contrast. These constraints can be significant in
a variety of applications.

The performance of the demonstrated interferometers was limited primarily by grating
imperfections and detector resolution. However, the design is simple and robust. It is ex-
pected that the next generation of interferometers based on the far-field design will open
new opportunities in high precision phase based measurements in materials science, con-
densed matter physics, and bioscience research. In particular, because of the moiré fringe
exploitation in this type of interferometers, the uses may be highly suitable for the studies
of biological membranes, polymer thin films, and materials structure. Also, the modest cost
and the simplicity of assembly and operation will allow this type of interferometers to have
wide acceptance in small to modest research reactor facilities worldwide.
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The chapter also describes that using only phase modulating gratings, one can create a
neutron far-field interferometer which creates neutron small-angle scattering images. One
can easily tune the autocorrelation length probed by this far-field interferometer to obtain
a measure of the microstructure of an object, thus providing multi-scale imaging capability.
After correcting for a change in wavelength, the measured reduction in fringe visibility agree
reasonably well with that expected from a monodisperse solution of spheres. The fairly
broad range of probed autocorrelation length also allowed observation of a likely short-range
ordering of the spheres.
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Chapter 3

Neutron Orbital Angular Momentum
and Applications to Holography1

3.1 Overview of ei`φ

Since their experimental demonstrations a quarter-century ago [90,91], there has been great
progress in generation, detection, and applications of “structured waves” of light and quan-
tum particles, where the wavefront is patterned to attain nontrivial propagation characteris-
tics such as orbital angular momentum (OAM), non-diffraction, and self-healing [92–96]. The
structured OAM waves have demonstrated a number of applications in microscopy, encoding
and multiplexing of communications, and manipulation of matter [97–103].

Electromagnetic waves can carry three types of momentum: linear momentum along
the propagation axis which is described by Eq. 1.1, spin angular momentum (SAM) of ±~
associated with circular polarization, and OAM associated with an azimuthally varying phase
profile ei`φ. Analogously, neutrons can carry three types of momentum: linear momentum
along the propagation axis which is described by Eq. 1.3, spin angular momentum (SAM) of
±~/2 associated with the quantum spin, and OAM associated with an azimuthally varying
phase profile ei`φ. The azimuthal phase structure can clearly be associated with beams
carrying OAM by looking at the analogous expressions in azimuthal coordinates for the
momentum operator and the wavevector in terms of total phase (see Eq. 1.8, note that here
the total phase of the wave is denoted by Φ to distinguish it from the azimuthal coordinate
φ):

kx =
∂Φ

∂x
& p̂x = −i~ ∂

∂x
⇒ kφ =

∂Φ

∂φ
& L̂z = −i~ ∂

∂φ
(3.1)

Poynting in 1909 postulated that circularly polarized light must carry an angular mo-
mentum of ±~ [104]. In 1936 Beth demonstrated the transfer of this angular momentum
from circularly polarized light to the rotational motion of a birefringent wave plate [105].
The analogous form of angular momentum appears for spin−1/2 particles in the form of spin
polarization which is an intrinsic form of angular momentum carried by elementary particles.

1The material in this chapter is largely taken from Refs. [16–18].
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In 1992 Allen et al. recognized that light beams carrying “phase singularities” in the
form of ei`φ also carry a well defined OAM of `~ [91]. Work on lines of phase singularities
date back to Dirac’s work of 1930s on magnetic monopoles [106]. Whereas electromagnetic
phase singularities were considered by Nye and Berry in 1970s in their studies of Antarctic
ice sheets [107]. OAM beams are also called “helical beams” because their wavefronts are
helices (as opposed to planar wavefronts of plane waves which carry no OAM), and “doughnut
beams” because their intensity in the far-field has a ring shape. Coullet in his work related
the mathematics of helical beams to superfluid vortices and coined the term “optical vortex”
[108], which is also used today.

The most direct way of generating OAM waves is to pass a Gaussian beam through
an azimuthally varying potential gradient such as that of a spiral phase plate (SPP), as
demonstrated by Beijersbergen et al. in 1994 [109]. A more versatile and useful method of
generating helical phase beams is the use of pitch fork holograms which were first demon-
strated by Bazhenov et al. in 1990 [90]. These optical devices are currently the standard
means by which helical phase beams are generated.

Electron OAM was demonstrated in 2010 by M. Uchida and A. Tonomur [110]. The
following year B. J. McMorran et al. demonstrated electron OAM with high values [111]. In
2015, my colleagues demonstrated the control of neutron OAM [15].

3.2 Basis States of Orbital Angular Momentum

For convenience let us consider a neutron beam propagating in the z-direction with mo-
mentum kz, and the expectation values of momentum in the transverse plane equal to zero.
The OAM operator in a cylindrical coordinate system (r, φ, z) is Lz = −i~ ∂

∂φ
. The OAM

eigenstates are a convenient basis for the neutron wave packet when the coherence lengths
in the transverse directions are equal σx = σy ≡ σ⊥, where σx,y = 1/(2∆kx,y), and ∆kx,y are
the x and y spreads of the wave packet’s transverse momentum distributions.

Under this cylindrical symmetry the neutron wave function is separable in terms of spin
and each of the cylindrical coordinates Ψs(r, φ, z) = R(r)Φ(φ)Z(z) |s〉, where s ∈ {↑=

(
1
0

)
, ↓=(

0
1

)
} specifies the neutron spin state along the quantization axis. With the standard devia-

tion of momentum being constant in the transverse direction, the transverse wave function
R(r)Φ(φ) may be described in terms of solutions to the 2-D harmonic oscillator, and the
longitudinal wave function Z(z) treated as a Gaussian wave packet. The eigenstates, de-
noted by |nr, `, kz, s〉, are specified by the radial quantum number nr, the azimuthal quantum
number `, the wave vector along the z direction kz, and the spin state s.

The eigenstates in cylindrical coordinates (r, φ, z) are

|nr, `, kz, s〉 = N ξ|`|e−
ξ2

2 L|`|nr
(
ξ2
)
ei`φZ(z) |s〉 , (3.2)

where ξ = r/σ⊥ is the rescaled radial coordinate, N = 1
σ⊥

√
nr!

π(nr+|`|)! is the normalization

constant, nr ∈ (0, 1, 2...), ` ∈ (0,±1,±2...), and L|`|nr (ξ2) are the associated Laguerre poly-
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nomials. The total neutron energy is

ET = ~ω⊥(2nr + |`|+ 1) +
~2k2

z

2m
− ~µ · ~B, (3.3)

where ~µ is the neutron magnetic dipole moment, ω2
⊥ = ~/(2mσ2

⊥), m is the neutron mass,

and ~B is the external magnetic field.
Before we consider spin-orbit states of neutrons it is useful to describe the action of a SPP

in terms of orbital basis states. We may ignore the spin component here as the action of this
spiral phase plate is spin independent. Consider a SPP of thickness h(φ) = h0 + hsφ/(2π),
where φ is the azimuthal angle, h0 is the base height, and hs is the step height. As a result of
the optical potential, a neutron wave packet propagating on axis through the SPP acquires
a phase of α(φ) = −Nbcλh(φ) = α0 + qφ, where Nbc is the scattering length density of
the SPP material, λ is the neutron wavelength, q = −Nbcλhs/(2π) and the uniform phase
α0 = −Nbcλh0. The parameter “q” is commonly referred to as the topological charge and
it quantifies the nature of the singularity at the center. The operator of the SPP can be
expressed as:

ÛSPP = eiα0eiqφ. (3.4)

Generally, when a plane wave propagates through such a topology, the wavefronts become
|q| intertwined helical surfaces with a helicity defined by the sign of q.

Let the incident neutron state carry well defined quantum numbers nrin and `in:

|ψin〉 = |nrin , `in〉 , (3.5)

where we suppress the kz and s labels as they are unaffected by the SPP. To simplify we set
z = 0 at the exit of the SPP and we set σ⊥ = 1. The state after the SPP can be expanded
in terms of the basis functions

|ΨSPP〉 = ÛSPP |Ψin〉 =
∞∑

nr=0

Cnr,`in+q |nr, `in + q〉 . (3.6)

with the coefficients

Cnr,` =

∫ ∞
0

dr

∫ 2π

0

dφ r〈nr, ` |ΨSPP〉 . (3.7)

When the incoming neutrons have zero OAM (nrin = `in = 0), the coefficients are

Cnr,` =

e
iqπsinc(qπ) for nr = ` = 0
|`|
2

Γ(1+
|`|
2 )√

nr!(nr+|`|)!
ei(q−`)πsinc[(q − `)π] otherwise

(3.8)

where Γ (1 + |`|/2) is the gamma function. When the incoming state has a definite orbital
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Figure 3.1: The probabilities for each of the ` = −1, 0, 1 and nr = 0, 1 states when a neutron
wave packet with no OAM (nrin = `in = 0) passes through a spiral phase plate with a
topological charge q. Figure taken from Ref. [17].

quantum number `in, the output state is a state with definite orbital quantum number `in +q.
Fig. 3.1 shows the probabilities |Cnr,`|2 for nr = 0, 1 and ` = −1, 0, 1. From Eq. 3.8 we

see that Cnr,`=0 6= 0 only when nr = 0. From Fig. 3.1 we see that when a neutron wave
packet with zero OAM passes through a SPP, the OAM quantum number of the neutron
wave packet is incremented by the topological charge (q) of the SPP. The radial quantum
number of the outgoing wave packet can take any allowed value, the most probable one is
nr = 0 for small q-values. If we consider, for example, a topological charge of q = +1 then
the state after the SPP is

|ΨSPP〉 =

√
π

16

∞∑
nr=0

√
1

nr!(nr + 1)!
|nr, 1〉 . (3.9)

Hence a SPP provides control over the orbital quantum number.

3.3 Intrinsic and Extrinsic Orbital Angular Momen-

tum

Heretofore, we have discussed neutron wave packets for which the propagation axis coincides
with the SPP or quadrupole axis. In this case, the SPP/quadrupole axis defines the OAM
quantization axis. However, neutron beams are typically an incoherent superposition of
neutron wave packets, where the neutron beam diameter is between 10−1 m and 10−4 m,
and the transverse coherence length of the neutron wave packets, σ⊥, is of the order of 10−5

m to 10−9 m [112,113].
In studies of optical OAM a distinction is made between “extrinsic OAM” and “intrinsic

OAM” [114, 115]. One can extend this distinction to the case of neutron beams. Extrinsic
OAM is the orbital angular momentum centered about the SPP/quadrupole axis and it
is given by the cross product of wave packet’s position and its total linear momentum;
intrinsic OAM, usually associated with helical wavefronts, is the orbital angular momentum
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Figure 3.2: a) As the coherence length of the neutron wave packets is much smaller than
the beam diameter, we may differentiate between “extrinsic OAM” calculated w.r.t. the
SPP axis as the cross product of wave packet’s position and its total linear momentum, and
“intrinsic OAM” which is associated with helical wavefronts. The black arrows on top of
the wave packets indicate the direction of the induced diffraction due to the SPP. b) The
probabilities of the nr = 0, 1 and ` = 0, 1 states when a neutron wave packet with no OAM
nrin = `in = 0 passes through an SPP with q = 1. The probabilities are calculated w.r.t. the
neutron’s propagation axis and they are plotted as a function of the rescaled distance from
the center of the SPP, r0/σ⊥, where r0 is the distance between the SPP axis and the wave
packet’s propagation axis, and σ⊥ is the transverse coherence length of the wave packet.
Figure taken from Ref. [18].

represented by `. The intrinsic OAM does not depend upon the position of the axis, provided
that the axis is parallel to the propagation axis [116]. This is depicted on Fig. 3.2a which
shows that a helical wavefront is induced only for the wave packet whose propagation axis
coincides with the SPP axis.

Consider a neutron wave packet with nin = `in = 0 and which is centered on (r0, φ0):

|Ψo〉 =
1√
πσ2
⊥
e
− r

2+r20−2rr0 cos(φ−φ0)
2σ2⊥ , (3.10)

After passing through an SPP which is centered at r = 0, the expectation value of OAM
about the SPP axis is:

<L̂z> =

∫ ∞
0

dr

∫ 2π

0

dφ r 〈Ψo| Û †SPP

(
−i~ ∂

∂φ

)
ÛSPP |Ψo〉 = ~q. (3.11)

Therefore all wave packets in the output beam acquire a well defined mean OAM relative
to the SPP axis. Such wave packets are diffracted in the transverse direction, such that the
induced external OAM relative to the SPP axis is independent of their location:

Lz = ~r × ~p = r0~k⊥ = ~q, (3.12)
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Figure 3.3: Schematic describing the experiment of Ref. [15] where an SPP was used to
induce OAM onto the neutron beam. The phase profile of the beam was imaged via the
perfect crystal NI as shown. The intensity profiles at the camera at the output are indicative
of the azimuthal phase profile of an OAM beam.

where k⊥ = q/r0 is induced by the SPP (in Fig. 3.2a the diffraction direction is depicted
with black arrows).

On the other hand, as shown in Fig. 3.2b, the intrinsic OAM of a neutron wave packet
quickly vanishes as the wave packet’s propagation axis is displaced from the center of the
SPP. The intrinsic OAM of the output beam has a Gaussian dependence to the displacement
from the center of the SPP [117].

For material studies there is a need for methods to generate neutron spin-orbit states not
restricted to one particular axis. This may be achieved by creating a lattice of spin-orbit
states as described in the next section. When considering beams carrying OAM of major
importance is the one fixed axis in space about which the OAM is quantized. In the case of
beams carrying a lattice of OAM states there is a two-dimensional array of such axes and
we are interested in what happens locally within each cell. Particularly, when this beam
interacts with a material then the region around the local OAM axes becomes important.

3.4 Demonstration of Neutron Orbital Angular Mo-

mentum

In 2015 my colleagues demonstrated the control of neutron orbital angular momentum [15].
A brief description of the experiment is provided here.

The goal of the experiment, depicted in Fig. 3.3, was to increment neutron OAM by
imparting an azimuthally varying phase over the beam via an SPP, and use the perfect crystal
neutron interferometer (NI) to image the phase profile. The experiments were performed at
the NIOF beamline which is described in section 1.4.3. The perfect crystal NI is described
in section 1.4.2.
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The standard method to characterize the induced OAM is to prepare the OAM beam
in one arm of an interferometer. The output of the interferometer will then be a coherent
superposition of the given OAM beam with a reference beam carrying no OAM. The 2D
intensity profile of the output beam will possess a helical structure whose order of rotational
symmetry equals |q|. Applying a phase shift between the two paths via a phase flag inside the
interferometer effectively rotates the resulting 2D intensity profile. The direction of rotation
determines the sign of q.

In the experiment of Ref. [15] several SPPs machined out of aluminum were used. The
SPP diameter was 1 cm and the step heights correspond to ` =1, 2, 4, 7.5 for neutron
wavelength of λ = 0.271 nm. The neutron beam diameter was ∼2 cm, while the trans-
verse coherence lengths of the neutron wave packets were in the range of nanometers to
micrometers.

3.5 Holography with a Neutron Interferometer

3.5.1 Introduction

Holography was introduced by Dennis Gabor in 1948 [118], who showed that a far-field
electron micrograph of an object could be used to make a transmission mask that allows the
object to be reconstructed with visible light. Due to subsequent advances in the brightness
of electron sources and, notably, the development of techniques for numerical reconstruction
[119], holography has since become a significant branch of electron microscopy [120]. Atomic-
resolution neutron holography has been demonstrated and applied to the determination of
crystal structures [121–123]. The advent of coherent laser light sources in the 1960s made
all–optical holography practical [124, 125], to a degree that optical security holograms are
now routinely printed on many paper currencies, credit cards, and identification documents
[126, 127]. Holography remains a vibrant field of research in imaging science, as shown by
numerous recent research papers.

This section describes the first demonstration of holography using neutron beams and
macroscopic optical elements. Although deployed in a neutron interferometer (NI) with
a Mach-Zehnder configuration [33], the method is a simple adaptation of the two-beam
wedge technique introduced by Leith and Upatnieks [124,125], and it is discussed using the
conventional terminology of object, reference and reconstruction beams.

The object is a spiral phase plate (SPP) that was previously used to impart orbital
angular momentum (OAM) to neutron waves [15]. In this respect the experiment is a neutron
analogue of the holography of braided optical fibers performed by Bazhenov, Vasnetsov
and Soskin [90]. The neutron holograms resemble the fork dislocation gratings synthesized
by them and by Heckenberg, et al. [128], which have since been used to transfer angular
momentum to electrons [110, 111] and light [129]. Digital reconstruction of this hologram
provides information about the phase generated by the SPP, which should be useful in the
design of the next generation of neutron OAM experiments.

Holography provides a direct connection between the refractive and diffractive mechanism
of OAM imprinting of particles and waves. This first demonstration of neutron holography
of a macroscopic object suggests that the complex grating methods used to produce OAM,
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Figure 3.4: a) The off-axis method of optical holography of semitransparent objects in-
troduced by Leith and Upatnieks. The object here is a continuous-tone transparency; its
hologram was recorded on a photographic plate. The object shown here is actually the
holographic reconstruction of the original object, said to be a good facsimile of the original.
b) An artistic depiction of the neutron holography experiment. A neutron enters a single-
crystal silicon Mach-Zehnder neutron interferometer (NI) and is separated into two paths
by the left beamsplitter (BS). A spiral phase plate (SPP) with q = 2 is placed in the lower
path, generating the object beam; a prism tilts the wavefront of the upper path to provide
the reference beam. Object and reference beams are reflected at the central BS, and are
coherently combined at the right BS. One of the output beams of the right BS is sent to an
imaging detector, the other to an integrating counter that serves as an intensity monitor.
Note that the experiment is an expectation valued measurement over many events, each of
which involves only a single neutron. That is, there is one neutron at a time in the NI and
the hologram is build up from an incoherent superposition of many events. Figure taken
from Ref. [16].
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Bessel, and Airy beams for light and electrons [130–132] may also be extended to neutrons.

3.5.2 Schematic of Neutron Holography

A NI is used to effect the coherent superposition of an object beam and a reference beam.
As shown in Fig. 3.4b, the object beam consists of neutrons that have passed through an
aluminum SPP in one arm of the NI. The SPP imprints a spatially-varying phase of qφ upon
the neutron input beam, where q is the topological charge of the SPP and φ is the azimuthal
angular coordinate on the neutron wavefront, with coordinate origin being the center of
the SPP surface. The other arm of the NI provides the reference beam. The holographic
image is constructed from the interferogram of object and reference beams, as recorded by
a neutron sensitive digital camera. When no optical device is present in the reference arm,
this interferogram displays the topological charge of the object beam, which is the same as
that of a beam with OAM of `~, where ` = q. By placing a prism into the reference beam
we introduce a linear gradient which effectively tilts the wavefronts.

The experiment is an expectation valued measurement over many events, each of which
involves only a single neutron. In optics one would manipulate fully coherent beams and in
the neutron case where an interferometer is used the coherence need only be larger than the
deviation due to the prism and the object. There is no advantage in the neutron case in
having the coherence beyond that because there is one neutron at a time in the interferometer
and the hologram is built up from an incoherent superposition of many events. The neutron
coherence length is a function of the beam momentum spread, and in our experimental
setup it is on the order of microns, while the incident neutron beam is several millimeters
in size, and the deviation due to the SPP and the prisms is on the order of nanometers.
Hence the coherence length we use captures the physics needed to perform holography. We
have combined neutron interferometry with holography and an appropriate coherence length
must be used as the modification of the neutron coherence is extremely difficult and time
consuming.

The transverse wave function of the incoming neutron wave packet, which is centered at
an arbitrary position (x0, y0) in the beam, can be taken to be:

Ψt = (2πσ2)−1/2e−
(x−x0)

2+(y−y0)
2

4σ2 , (3.13)

where σx = σy ≡ σ is the coherence length. After the first NI blade there is a coherent
superposition of the two paths inside the interferometer. The wave function of the object
beam (Ψo) acquires a e−iqφ term due to the SPP and the wave function of the reference beam
(Ψr) acquires a e−iky term due to the prism; where k is proportional to the spatial gradient
due to the prism, and y is the vertical coordinate in the plane of the image, as indicated
in Fig. 3.4b. In addition, there is an intrinsic phase θ between the two paths. The last NI
blade coherently combines the two paths and the intensity at the camera is then given by:

I =

∫ d

0

∫ d

0

|Ψr + Ψo|2dx0dy0 = A+B cos(ky − qφ+ θ), (3.14)

where d is the beam size, and d >> σ; and A and B are experimental constants which are
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a)

b)

q=1q=0 q=3q=2

q=0 q=1 q=2 q=3

Figure 3.5: Simulation of the intensity profiles at the 2D detector for SPPs with topological
charges of q = 0, 1, 2, 3 in the object beam, and (a) no prism in the reference beam, and (b)
a prism in the reference beam. Fractional values of q correspond to admixtures of orbital
angular momentum states with various integer values of `. Note that the successive fork
dislocations unfold as q passes through integer values. Figure taken from Ref. [16].

ideally equal to 1/2. The intensity profile is equivalent to what is obtained with a fully
coherent beam. Figure 3.5a displays the calculated interferograms when only the SPP is
present in the NI, and Fig. 3.5b shows the interferograms when both the SPP and the prism
are present. We complete the holographic process by applying digital reconstructions to
the measured forked dislocation structures, showing that they yield the phase and intensity
profiles associated with the SPP.

3.5.3 Experimental Method

The experiment was performed at the NIOF beamline at the National Institute of Standards
and Technology (NIST) Center for Neutron Research (NCNR) in Gaithersburg, MD [4, 5].
See Fig. 1.3 for the beamline’s location at the NCNR, and see section 1.4.3 for a description
of the NIOF beamline. The λ = 0.271 nm wavelength neutrons are incident onto a perfect
crystal NI. See section 1.4 for a detailed description of the NI.

An aluminum SPP with q = 2 was placed in the object beam of the NI. The construction
of the SPP is described in Ref. [15]. We note here that the SPP was made with a standard
milling machine cutting a spiral staircase into the surface of a segment of aluminum dowel.
A topological charge q = 2 is obtained with a staircase with a total vertical descent of 224
µm, which is ≈ 106 × λ. Those experienced in optical design for visible light may find it
surprising that the mechanical figure of an optical component need only be controlled within
a few thousand multiples of the operational wavelength. This is possible with neutrons, since
neutron indices of refraction for most materials differ from unity by a few parts per million.

In the reference beam a vertical linear gradient was introduced by using two identical
fused silica optical wedges arranged back-to-back. These wedges had a 6◦ angle and each
could be rotated independently a full rotation of 2π. Note that any non-gradient phase shift
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Figure 3.6: Measured and simulated interferograms at the 2D detectors for the q = 2 SPP
and 6◦ fused silica prism independently, as well as when both are placed in the neutron
interferometer to produce the pitch fork pattern. It is necessary to add a horizontal gradient
of 0.3 rad/mm to the simulation to reproduce the measured images. Figure taken from
Ref. [16].

inside the interferometer would only shift the pattern at the camera.
For the images depicted in Fig. 3.6, the wedges were adjusted to give a theoretical linear

phase gradient of 3.4 rad/mm. Reactor fluctuations were monitored using the 3He integrat-
ing counter. The interferograms were recorded on a neutron-sensitive digital camera that
has an active area of 25 mm diameter and a spatial resolution of 100 µm. The neutron
quantum efficiency of the camera is 18% and individual images were taken in 28-hour runs.
The average of three images was used for analysis.

3.5.4 Results

Figure 3.6 depicts interferograms for four different configurations. Figure 3.6a shows the
grayscale intensity profile obtained with an empty interferometer. It can be seen that the
input beam is nonuniform. Figure 3.6b shows the experimental and simulated interferograms
for the case in which only the prism is placed in the reference beam of the interferometer.
The number of fringes in the simulated interferogram are in agreement with the measured
image. Figure 3.6c shows the interferogram when only the SPP is present in the object beam.
It is necessary to add a horizontal gradient of 0.3 rad/mm to the simulation for Figs. 3.6a
and 3.6b to reproduce the measured figures. This horizontal gradient might explain the
nonuniformity of Fig. 3.6a as well. Figure 3.6d shows the hologram obtained when the prism
is placed in the reference beam and the SPP is placed in the object beam. The expected
fork grating pattern is recognizable in this hologram.
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Figure 3.7: Intensity and phase profiles of the computed hologram reconstruction for the
measured images in Fig. 3.6b corresponding to no SPP in the object beam; and Fig. 3.6d
corresponding to a q = 2 SPP being in the object beam. Note that the phase range is from
−π/2 to π/2, which is why we see four arms instead of two as seen on Fig. 3.5a, where the
range is from −π to π. The images are interpolated, and show the central 20x48 array of
the numerical reconstruction. The mask for the phase plots is included for clarity. Figure
taken from Ref. [16].

Figure 3.7 shows the numerical reconstruction of the experimental images shown in
Figs. 3.6b and 3.6d. The reconstruction was obtained by computing the Fresnel-Kirchhoff
diffraction integral in the Fresnel limit for λd = 70 mm2 using the expression:

Γ(ν, µ) =
i

λd
e−iπλd(ν2+µ2)F

{
h(x, y) exp

(
−i π
λd

(x2 + y2)
)}

(3.15)

where λ is the wavelength of the virtual wave illuminating the hologram; d is the distance
between the hologram and the reconstruction plane; F is the Fourier transform; x and y
are the hologram coordinates; h(x, y) is the obtained hologram image; and ν and µ are the
normalized forms of image reconstruction coordinates (ξ, η), such that (ν, µ) = (ξ, η)/(λd).
The Fourier transform was computed using the Fast Fourier Transform algorithm. The
reconstructed intensity, |Γ|2, and the phase, tan−1(Im[Γ]/Re[Γ]), were then computed.

For the hologram, it can be seen from the uniform intensity distribution that the zero
diffraction order corresponds to ` = 0, while the first diffraction order displays the doughnut
profile indicative of a beam carrying OAM. By plotting the reconstructed phase we con-
firm that the first diffraction beams correspond to beams with ` = 2 as expected. Note
that the spherical phase outside the Fourier transform was dropped in the Eqn. 3.15 recon-
struction integral in order to look down the diffracted OAM beam paths and not along the
reconstruction plane normal.

70



Chapter 4

Preparation of Spin-Coupled Orbital
Angular Momentum States 1

4.1 Introduction

In addition to possessing spin angular momentum, beams of light [91], electrons [110, 111],
and neutrons [15] can carry orbital angular momentum (OAM) parallel to their propagation
axis. There have been many recent developments in preparation and detection of OAM waves
[95, 133]. OAM waves have found applications in microscopy, encoding and multiplexing of
communications, quantum information processing, and the manipulation of matter [97–103].

In addition, it is possible to create “spin-orbit” states in which the spin and orbital angular
momentum are correlated. For light, the correlation is between OAM and the polarization
degree of freedom (DOF) [134,135], while for electrons and neutrons it is between OAM and
the spin DOF [17, 136]. Optical spin-orbit beams have demonstrated applications in high
resolution optical imaging, high-bandwidth communication, optical metrology, and quantum
cryptography [137–140].

Neutrons are spin−1/2 particles, and therefore the spin provides a two-level DOF. A
“spin-orbit” state is one in which spin and OAM are correlated. In this chapter we specifically
consider states where the two spin eigenstates are correlated with different OAM states:

|ΨSO〉 =
1√
2

(|n↑, `↑, ↑〉+ eiβ |n↓, `↓, ↓〉), (4.1)

where `↑ 6= `↓, and β is an arbitrary phase.
This chapter describes methods of producing neutron spin-orbit states using special ge-

ometries of magnetic fields. The techniques are based on coherent averaging and spatial
control methods borrowed from nuclear magnetic resonance [141–144]. A highly robust
method is introduced and described, applicable to both electromagnetic and matter wave
beams, that can produce a beam consisting of a lattice of spin-orbit states. The practical
methods for preparation and detection of neutron spin-orbit states are quantified and com-
pared. Lastly, methods are proposed to characterize neutron spin-orbit states by measuring

1The material in this chapter is largely taken from Refs. [17–19].
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correlations between the spin direction and the momentum projected to a specific axis. This
detection technique may be used to overcome the main challenges associated with low flux
and the small spatial coherence of neutron beams.

4.2 Spin Polarization Geometries of Spin-Orbit States

Following the nomenclature of polarization correlated OAM states [133], we classify neutron
spin-orbit states according to their spin orientation profile. There are four categories of
spin-orbit states with radially independent spin orientations as shown in Fig. 4.1. They are:

(a) “cylindrically polarized states” where the spin orientation is given by ~P = cos(β)r̂ +
sin(β)φ̂, where β is an arbitrary phase;

(b) “azimuthally polarized states” which are a subset of cylindrically polarized states where
~P = ±φ̂;

(c) “radially polarized states” which are a subset of cylindrically polarized states where
~P = ±r̂; and

(d) “hybrid polarization states” where ~P = sin(2φ + β)r̂ + cos(2φ + β)φ̂, where β is an
arbitrary phase.

The simplest method to generate any of those four states is to pass an appropriate input
state into the magnetic SPP of q = ±1, as the four categories arise when ∆` = `↑ − `↓ =
±1. The optical spin-orbit states with analogous polarization orientation geometries are not
characterized by ∆` = ±1. This difference comes from the fact that on the Poincaré sphere
that describes optical polarization, any two antipodal points refer to orthogonal polarization
directions; while on the Bloch sphere that describes the spin-1/2 state, any two antipodal
points refer to anti-parallel spin directions.

We consider a spin-orbit state for which one orbital quantum number is zero and the
other ±1. When `↑ = 0 the hybrid polarized states of Fig. 4.1d possess {`↑ = 0, `↓ = −1},
and the cylindrically polarized states possess {`↑ = 0, `↓ = 1}. All of the states with given
{`↑, `↓} differ by a phase on the spin DOF. This phase can be directly varied by an external
magnetic field along the spin quantization axis, Bz. For `↓ = 0 the hybrid polarized states
possess {`↑ = 1, `↓ = 0} while the cylindrically polarized states possess {`↑ = −1, `↓ = 0}.
Hence a π spin rotation around σ̂⊥ can be used to transform a state with hybrid polarization
geometry into a state with cylindrical polarization geometry (and vice versa), but not to
change ∆`.

The preparation techniques described in this chapter can also produce spin-orbit states
with radially dependent spin orientations. The main three categories are shown in Fig. 4.1:
e) quadrupole spin-orbit state; and two skyrmion-like states: f) hedgehog and g) spiral.
The described rules for radially independent spin-orbit states also apply to these radially
dependent spin-orbit states.
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Figure 4.1: The spin orientation (red arrows) of the spin-orbit states with a coupling between
`↑ = 0 and `↓ = ±1, where the ẑ axis points out of the page. In analogy to optical OAM
terminology, we may classify four categories of spin-orbit states with radially independent
spin orientations: a) “cylindrically polarized states” where the spin orientation is given by
~P = cos(β)r̂ + sin(β)φ̂, where β is an arbitrary phase; b) “azimuthally polarized states”

which are a subset of cylindrically polarized states where ~P = ±φ̂; c) “radially polarized

states” which are a subset of cylindrically polarized states where ~P = ±r̂; and d) “hybrid

polarization states” where ~P = sin(2φ+ β)r̂ + cos(2φ+ β)φ̂, where β is an arbitrary phase.
Note that all of the states with a certain {`↑, `↓} differ by a phase on the spin DOF. The
preparation techniques described in this chapter can also produce spin-orbit states with
radially dependent spin orientations. The main three categories are: e) quadrupole spin-
orbit states as described by Eq. 4.37; f) hedgehog skyrmion states; and g) spiral skyrmion
states. An array of any of these three states can be obtained via the appropriate LOV prism
pair combination. Figure taken from Ref. [18].
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Figure 4.2: Four methods of producing neutron spin-orbit states. The phase and intensity
profiles of the output states, post-selected on the spin state correlated to the OAM, are
shown on the right. a) An incoming neutron wave packet in a coherent superposition of the
two spin eigenstates passes through a magnetic SPP, which is made out of a material for
which magnetic and nuclear scattering length are equal, thereby inducing an azimuthally
varying phase for only one spin state. b) A spin-polarized neutron wave packet passes
through a quadrupole magnetic field which induces the spin-orbit state. After transversing
the quadrupole field, the intensity profile of the spin state correlated to the OAM has a ring
shape. c) A sequence of quadrupoles with appropriate length and orientation acts as a BB1
pulse which increases the radii at which the spin and OAM are maximally entangled. d)
A sequence of magnetic prisms (named LOV prism pairs) can be used to approximate the
quadrupole operator and produce a lattice of neutron spin-orbit states. Figure taken from
Ref. [18].
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4.3 Methods to Prepare Neutron Spin-Orbit States

4.3.1 Magnetic Spiral Phase Plate

The spin-orbit state represented by Eq. 4.1 may be prepared by taking an incoming beam
in a coherent superposition of spin up and spin down states (for convenience we shall choose
the ẑ axis to be the spin quantization axis and that nrin = `in = 0):

|Ψin〉 =
1√
2
|0, 0〉 (|↑z〉+ |↓z〉), (4.2)

and passing it through an SPP made out of a magnetic material. When such an SPP is
magnetized along the spin quantization axis, its operator can be expressed as

ÛmSPP = ei[Nbcλh(φ)+Nbmλh(φ)σ̂z ]. (4.3)

where bm is the neutron magnetic scattering length of the material [27], and σ̂z is the Pauli
spin operator. Consider an SPP which is fabricated from a material whose nuclear and
magnetic scattering lengths are equal, bc = bm. Then the phase acquired by one spin state
would be α↑(φ) = −N(bc−bm)λh(φ) = 0 and that of the other α↓(φ) = −N(bc +bm)λh(φ) =
β+qφ, where now q = −Nbcλhs/π and β = −2Nbcλh0. Using this magnetic SPP, spin-orbit
states may be generated in the form of:

|Ψq
mSPP〉 = ÛmSPP |Ψin〉 (4.4)

=
e
− r2

(2σ2⊥)√
2πσ2

⊥
(|↑z〉+ eiβeiqφ |↓z〉) (4.5)

=
1√
2

(|0, 0, ↑z〉+ eiβ
∞∑

nr=0

Cnr,q |nr, q, ↓z〉). (4.6)

The action of a q = −1 magnetic SPP is shown in Fig. 4.2a. For a convenient comparison
with other methods of producing spin-orbit states we will set β = π/2 in Eq. 4.6. |Ψq

mSPP〉
possesses maximal single particle entanglement between the spin DOF and the OAM DOF
as there is an equal superposition of |`↑, ↑z〉 and |`↓, ↓z〉.

4.3.2 Quadrupole Magnetic Field

Spin-orbit states can also be prepared with a quadrupole magnetic field [17]. In this case
the OAM is induced via a Pancharatnam-Berry geometrical phase [145,146]. The spin-orbit
state is achieved by propagating a neutron wave packet that is spin polarized along the
ẑ-direction,

|Ψin〉 = |0, 0, ↑z〉 , (4.7)
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Figure 4.3: A spin-orbit state is achieved by propagating a neutron wave packet that is spin
polarized along the ẑ-direction through a quadrupole magnetic field. In the output state the
spin directions in the transverse plane acquire an azimuthal symmetry indicative of OAM.

through a quadrupole magnetic field ~B = K(−xx̂ + yŷ), where K is the magnitude of the
quadrupole magnetic field gradient. The Hamiltonian of a neutron inside a magnetic field
can be written as H = ~̂σ · ~Bγ~/2, where ~̂σ is the vector of Pauli matrices (σ̂x, σ̂y, σ̂z), and γ
is the neutron gyromagnetic ratio. Assuming the neutron is traveling along the ẑ axis, the
time that the neutron spends inside the magnetic field is τ = d/vz, where d is the length
of the quadrupole and vz is the neutron velocity. By defining OAM raising and lowering
operators l̂± = e±iφ and spin operators σ̂± = (σ̂x ± iσ̂y)/2, the quadrupole operator can be
expressed as

ÛQ(rc) = e−i
πr
2rc

[− cos(φ)σ̂x+sin(φ)σ̂y ] (4.8)

= cos

(
πr

2rc

)
1 + i sin

(
πr

2rc

)(
l̂+σ̂+ + l̂−σ̂−

)
, (4.9)

where we have re-parametrized the quadrupole operator using the characteristic radial dis-
tance rc at which the spin undergoes a π rotation after passing through the quadrupole,

rc =
πvz
γKd

. (4.10)
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The state after the quadrupole can be expanded in the basis functions of Eq. 3.2 as

|ΨQ〉 = ÛQ |Ψin〉

=
e
− r2

(2σ2⊥)√
πσ2
⊥

[
cos

(
πr

2rc

)
|↑z〉+ ie−iφ sin

(
πr

2rc

)
|↓z〉

]

=
∞∑

nr=0

∞∑
`=−∞

(Cnr,`,↑ |nr, `, ↑〉+ iCnr,`,↓ |nr, `, ↓〉) . (4.11)

The coefficients are given by

Cnr,`,↑ =

∫ ∞
0
dξ

∫ 2π

0
dφ 〈nr, ` |nrin , `in〉 ξ cos

(
πσ⊥
2rc

ξ

)
(4.12)

Cnr,`,↓ =

∫ ∞
0
dξ

∫ 2π

0
dφ 〈nr, ` |nrin , `in〉 ξeiφ sin

(
πσ⊥
2rc

ξ

)
(4.13)

Integrating over φ selects ` = `in for the spin-up coefficients, and ` = `in − 1 for the spin-down
coefficients. This simplifies Eq. (4.11) to

|ΨQ〉 =
∞∑

nr=0

(Cnr,`in,↑ |nr, `in, ↑〉+ iCnr,`in−1,↓ |nr, `in − 1, ↓〉) . (4.14)

Note that this coupling between spin and OAM can easily be seen from the quadrupole operator
in Eq. (4.9).

The coefficients Cnr,`in,↑ and Cnr,`in−1,↓ are real for all values of rc/σ⊥. The various coefficients
Cnr,`,s are plotted in Fig. 4.4, given an input state with nrin = `in = 0. The ratio rc/σ⊥ quantifies
the action of the quadrupole on the neutron wave packet. The strong quadrupole fields regime
corresponds to rc → 0 and the weak quadrupole regime to rc →∞. It can be verified that

∞∑
nr=0

(C2
nr,`in,↑ + C2

nr,`in−1,↓) = 1. (4.15)

In Fig. 4.4 it is shown that to maximize the single particle entanglement between the spin and
OAM the quadrupole magnet should be of such strength and length as to produce a spin flip over
1.82 times the coherence length of the wave packet, that is rc = 1.82σ⊥.

The action of the quadrupole magnet is shown in Fig. 4.2b and Fig. 4.3. It can be observed
that the intensity profile of the spin state which is correlated to the OAM is now a ring shape.

4.3.3 Spin-Orbit States with Higher Order OAM Values

The quadrupole magnetic field method described above takes a spin-polarized input state with
`↑ = `↓ = 0 and outputs a spin-orbit state with `↑ = 0 and `↓ = ±1. We now consider situations
where the spin-orbit correlations involve higher order OAM values. With spin-orbit states generated
via the magnetic SPP, this is a trivial matter of using a |q| > 1. For quadrupole magnetic fields
the following sequence of j pulses may be used:
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Figure 4.4: The coefficients Cnr,`,s of the spin-orbit state for nr = 0 and nr = 1 as a function
of rc/σ⊥. The input state is nrin = `in = 0. The vertical line at rc/σ⊥ = 1.82 corresponds
to the point of maximum concurrence for the nr = 0 subspace. Strong quadrupole fields
correspond to rc → 0 while no quadrupole rc →∞. Figure taken from Ref. [17].

|Ψj
Q〉 =

(
ÛQ(rc)e

−iπ
2
σ̂x |↓z〉 〈↓z|

)j
ÛQ(rc) |0, 0, ↑z〉 (4.16)

=
e−ξ

2/2√
πσ2
⊥

[
cos

(
πr

2rc

)
sinj

(
πr

2rc

)
|−j, ↑z〉+ i sinj+1

(
πr

2rc

)
|−(j + 1), ↓z〉

]

where |↓z〉 〈↓z| is the projection operator for a spin-down state. The j = 0 case corresponds
to the spin-orbit state produced via a quadrupole magnetic field as described in Eq. 4.37.
For j > 1, both |↑z〉 and |↓z〉 are correlated to higher order OAM values, and the intensity
profiles of 〈↑z |Ψj

Q〉 and 〈↓z |Ψj
Q〉 are both ring shapes.

4.3.4 BB1 Sequence

After a neutron wave packet passes through a quadrupole magnetic field, the maximally
entangled spin-orbit state, given by |Ψq=−1

mSPP〉 (see Eq.4.6), occurs for r = rc/2. However, the
range of maximal entanglement can be increased by using a sequential chain of appropri-
ately oriented quadrupole magnets. We will see that this results in the ability to increase
the width of the ideal ring filter without significantly affecting the amount of spin-orbit en-
tanglement, boosting post-selection performance. To begin, notice that the situation with
a single quadrupole magnet resembles a standard over/under-rotation pulse error in spin
physics [144]: with a fixed azimuthal coordinate φ, as the radial coordinate deviates from
the ideal value r = rc/2, the spin undergoes a rotation about the φ̂ axis with a rotation angle
greater or less than π/2. The amount of such over/under-rotation is fixed for a given value
of r.

To increase robustness to these errors we consider the Broad-Band1 (BB1) composite
pulse [147] which can be implemented by sequential quadrupoles with different strengths
and orientations. This particular composite sequence is considered because of its robust per-
formance while using only four quadrupole magnets. It is important to note that applying
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Figure 4.5: Overlap as a function of radius between the maximally entangled spin-orbit state
|Ψq=−1

mSPP〉 and output states produced by the following methods: (red) the BB1 sequence,
|ΨBB1〉; (black) the quadrupole, |ΨQ〉; (blue) the N=2 sets of LOV prism pairs, |ΨN=2

LOV〉;
(purple) the N=1 sets of LOV prism pairs, |ΨN=1

LOV〉. In each of these cases, rc = 1.82σ⊥. Each
lattice cell of |ΨN=1

LOV〉 is shown to be a good approximation of |ΨQ〉, and the approximation
is improved by reapplying the LOV operator. It is also shown that the |ΨBB1〉 has a larger
range of radii than |ΨQ〉 for which the spin and OAM are maximally entangled. Figure taken
from Ref. [18].

the quadrupole operator repeatedly N times does not take the orbital quantum numbers out-
side the ` = 0,±1 values. That is, [ÛQ(rc)]

N |Ψin〉 = ÛQ(rc/N) |Ψin〉, where the quadrupole

operator ÛQ(rc) was defined in Eq. 4.8. However, the standard magnetic quadrupole can
be rotated by an angle δ about the ẑ axis. In this case its interaction is described by the
modified operator, ÛQ(rc, δ) = e−i

δ
2
σ̂z ÛQ(rc)e

i δ
2
σ̂z , and the BB1 sequence results in the output

state

|ΨBB1〉 = ÛQ

(rc

2
, δ1

)
ÛQ

(rc

4
, δ2

)
ÛQ

(rc

2
, δ1

)
ÛQ (rc, 0) |Ψin〉 , (4.17)

where δ1 = cos−1(−1/8) and δ2 = 3δ1. These angles were tuned to eliminate 1st and 2nd

order over/under-rotation errors [147].
To quantitatively compare |ΨBB1〉 with |ΨQ〉 we can look at their overlap with the max-

imally entangled spin-orbit state |Ψq=−1
mSPP〉 of Eq. 4.6. The overlap between two states |Ψ1〉

and |Ψ2〉 is given by | 〈Ψ1|Ψ2〉 |, and it is a measure of the closeness of two quantum states,
with a value of unity for identical states. Fig. 4.5 shows | 〈Ψq=−1

mSPP|ΨBB1〉 | and | 〈Ψq=−1
mSPP|ΨQ〉 |

as a function of radius. It is clear that |ΨBB1〉 has a larger range of radii for which the spin
and OAM are maximally entangled. This can also be observed in the intensity profile of
〈↓z |ΨBB1〉 that is plotted in Fig. 4.2c, where the inner dark region is smaller than that of
Fig. 4.2b.
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Figure 4.6: Spin up polarization profile as the beam passes through linear magnetic field
gradients. The two gradients constitute a LOV prism pair which is used to create lattices of
spin-orbit states.

4.3.5 Lattices of Spin-Orbit States

The method to produce lattices of spin-orbit states via the LOV prism pairs is motivated by
applying the Suzuki-Trotter expansion to Eq. 4.8:

ei
π

2rc
(xσ̂x−yσ̂y) = lim

N→∞
(ei

π
2rcN

xσ̂xe−i
π

2rcN
yσ̂y)N . (4.18)

We can see thatN set of perpendicular linear magnetic gradients approximates the quadrupole
operator. Fig. 4.12 illustrates how the spin manipulation via magnetic field gradients gives
rise to a lattice of azimuthally varying spin directions. Choosing that the operators be
independent of N , we define the linear magnetic gradient operator as

Ûφg,φm = e−i
π

2rc
[x cosφg+y sinφg][σ̂x cosφm+σ̂y sinφm] (4.19)

where φg (φm) indicates the gradient (magnetic field) direction in the x̂ − ŷ plane. For
spin−1/2 particles one way to approximate the magnetic linear gradient operators is with
magnetic prisms as shown in Fig. 4.2d. In our preceding work of Ref. [19], described in
section 4.5, we have termed such linear gradient operators as “Lattices of Optical Vortices”
(LOV) prism pairs. The general LOV operator can be expressed as:

ÛN
LOV = (Ûφg,φmÛφg±π2 ,φm±

π
2
)N , (4.20)

and the corresponding beams with lattices of spin-orbit states are given by:
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|ΨN
LOV〉 = (Ûφg,φmÛφg±π2 ,φm±

π
2
)N |Ψin〉 . (4.21)

This process is shown in Fig. 4.2d for (Ûπ,0Ûπ
2
,π
2
)2 and |Ψin〉 = |↑z〉, where the output

beam is a lattice of spin-orbit states with `↑ = 0 and `↓ = −1.
When considering beams carrying OAM of major importance is the one fixed axis in

space about which the OAM is quantized. In the case of beams carrying a lattice of OAM
states there is a two-dimensional array of such axes and we are interested in what happens
locally within each cell. Particularly, when this beam interacts with a material then the
region around the local OAM axes becomes important. However, although the spin-orbit
beam can cleanly be described via Laguerre-Gaussian modes, the beam carrying a lattice of
spin-orbit states can not due to the translational symmetry.

The orientations of the gradient operators give us the possibility of producing lattices of
spin-orbit states with positive and negative values of OAM. For example, (Û0,0Ûπ

2
,π
2
)2 applied

to an incoming state of |Ψin〉 = |↑z〉 produces an output beam with a lattice of spin-orbit
states with `↑ = 0 and `↓ = 1. Note that this particular gradient sequence approximates
the action of a monopole magnetic field geometry. Furthermore, we can obtain lattices of
spin-orbit states with higher order OAM values by substituting the LOV operator, ÛN

LOV, in
place of the quadrupole operators, ÛQ(rc), in Eq. 4.16.

Due to the periodic nature of the linear gradient operators, the spin-orbit states in these
beams form a two-dimensional array with a lattice constant of

a =
2πvz

γ|B| tan(θ)
(4.22)

where |B| is the magnitude of the magnetic field and θ is the inclination angle of the LOV
prism pairs. In Fig. 4.2d the phase and intensity profiles of the polarization state which is
correlated with the OAM illustrate the lattice structure. The OAM structure of the resulting
beam can be analyzed by looking at the phase profile of the spin state which is correlated
with the OAM:

arg
(
〈↓z |ΨN

LOV 〉
)

= − tan−1
[
cot
(πy
a

)
tan
(πx
a

)]
. (4.23)

By analyzing Eq. 4.23 it can be observed that the lattice cells are centered on a `z = 1
phase structure, while the lattice cell corners are on a `z = −1 structure. Although the
number (N) of LOV prism pairs does not affect the phase profile, in any lattice cell the
number of well defined intensity rings is equal to N/2. Therefore, N provides control over
the mean radial quantum number nr in a lattice cell, and even expansions of Eq. 4.18 should
be used. Note that using LOV prism pairs which produce different lattice constants results
in a “superlattice” which has an overlay of the distinct lattice constants.

Eq. 4.20 shows that a physical shift by a distance, d, of a prism along its incline direction
(x or y) results in a simple phase shift of dπ/2rc around the corresponding axis. This
simplifies the aligning of the prisms.
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Figure 4.7: Concurrence (on the left) of the spin-orbit state for the filtered η = 0, 1, 2
subspaces, and the probability (on the right) of the given η = 0, 1, 2 subspaces. The vertical
line at rc/σ⊥ = 1.82 corresponds to the point of maximum concurrence for the η = 0
subspace. Figure taken from Ref. [17].

4.4 Characterization of Neutron Spin-Orbit States

4.4.1 Entanglement in the Spin-Orbit States

A useful measure of entanglement for a bipartite quantum system is the concurrence, which
is equal to 1 when the entanglement is maximum and 0 when the state is separable. For a
bipartite mixed state ρSO, the concurrence is given by

C(ρSO) = max{0, λ1 − λ2 − λ3 − λ4}, (4.24)

where the λi’s are the eigenvalues, sorted in descending order, of√√
ρSO(σy ⊗ σy)ρ∗SO(σy ⊗ σy)

√
ρSO, (4.25)

and ρ∗SO is the complex conjugate of ρSO. For a pure state ρSO = |ψSO〉〈ψSO|, Eq. (4.24)
reduces to

C(|ψSO〉) =
√

2 (1− Tr[ρ2
S]), (4.26)

where ρS = TrO[|ψSO〉〈ψSO|] is the reduced density matrix obtained by tracing over the
subsystem S (or equivalently tracing could be over subsystem O).

Let us first consider the entanglement of the spin-orbit neutron state in the case where
we filter on a single radial quantum number nr = η. In this case the renormalized spin-orbit
state is a pure state

|ψη〉 =
1
√
pη

(Cη,`in,↑ |`in, ↑〉+ iCη,`in+1,↓ |`in + 1, ↓〉) , (4.27)

where pη is the probability of the wave packet being in the specific nr = η subspace:

pη = C2
η,`in,↑ + C2

η,`in+1,↓. (4.28)

The concurrence of the |ψη〉 and probability coefficients pη as a function of rc/σ⊥ are shown
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Figure 4.8: Concurrence of the spin-orbit state obtained by tracing the radial subspace. The
vertical line at rc/σ⊥ = 1.82 corresponds to the point of maximum mixed state concurrence
of 0.97. The concurrence does not go to 1 because the traced state is not pure. Figure taken
from Ref. [17].

in Fig. 4.7 for the radial subspaces η = 0, 1, 2. The concurrence of the spin-orbit state
obtained by passing through a quadrupole is maximized for the η = 0 radial subspace when
there is a spin flip at ∼ 1.82 times the coherence length of the wave packet. This condition
is represented by the vertical line in Figs. 4.4, 4.8, and 4.7.

Next we consider the case where the neutron capture cross-section of the detector is
independent of the nr subspace. 3He neutron counting detectors do not distinguish different
radial states and so the effect of measurement traces over the radial quantum number. For
nrin = `in = 0, the spin-orbit density matrix obtained by tracing over the radial degree of
freedom is

ρSO =
∞∑

nr=0

[
C2
nr,0,↑ |0, ↑〉 〈0, ↑|+ iCnr,0,↑Cnr,1,↓ |0, ↑〉 〈1 ↓|

−iCnr,0,↑Cnr,1,↓ |1, ↓〉 〈0, ↑|+ C2
nr,1,↓ |1, ↓〉 〈1, ↓|

]
. (4.29)

This reduced state is not a pure state (Tr[ρ2
SO] 6= 1). The concurrence of this mixed spin-

orbit state can be computed using Eq. (4.24) and it is shown in Fig. 4.8. We find that the
maximum value of concurrence is C(ρSO) = 0.97 and it occurs at rc/σ⊥ = 1.82. Hence even
after averaging over all radial subspaces the spin-orbit state is still highly entangled.

4.4.2 Spin-Orbit Ramsey Experiment

The successful preparation of the entangled state could be verified by using a Ramsey Fringe
experiment. For the experiment we require a polarized neutron beam, two quadrupole mag-
nets and a solenoid between them (see Fig. 4.9). The first quadrupole creates the spin-orbit
state. The solenoid provides a uniform magnetic field along the spin quantization axis and
introduces a phase shift, β, in the spin degree of freedom. The corresponding operator is
Uz(β) = cos (β/2) 1 + i sin (β/2) σ̂z. The second quadrupole can be rotated by angle θ and
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a) b)

Figure 4.9: a) The setup for the spin-orbit Ramsey fringe experiment. The arrows on the
magnets depict the quadrupole geometry. b) The integrated intensity at the output for the
spin-up and spin-down neutrons as a function of the spin precession (β) inside the solenoid.
The rotation of the second quadrupole is set to θ = π. An identical plot can be obtained
when β = π and the quadrupole rotation is varied. This variation of the intensity is an
indication of the correlations between the spin and OAM. The phase induced by the spin
rotation can be compensated by the rotation of the quadrupole. Figure taken from Ref. [17].

can act as an inverse operator of the first quadrupole:

UQ2(θ) = cos

(
πr

2rc

)
1 + i sin

(
πr

2rc

)[
e−iθl+σ̂+ + eiθl−σ̂−

]
(4.30)

With the setup shown in Fig. 4.9, when the input state is |0, 0, ↑〉, the state at the exit
(global phase excluded) is

|ΨR〉 = UQ2(θ)Uz(β)UQ |0, 0, ↑〉

=

[
cos

(
πr

rc

)
cos

(
β − θ

2

)
− i sin

(
β − θ

2

)]
|0, 0, ↑〉

− i sin

(
πr

rc

)
cos

(
β − θ

2

)
eiφ |0, 0, ↓〉 (4.31)

The integrated intensities at the output are

I↑(β, θ) =

∫ ∞
0

dr

∫ 2π

0

dφ r |〈↑ |ΨR〉 |2

= 1− πσ⊥
rc

F

(
πσ⊥
rc

)
cos2

(
β − θ

2

)
(4.32)

I↓(β, θ) =

∫ ∞
0

dr

∫ 2π

0

dφ r|〈↓ |ΨR〉 |2

=
πσ⊥
rc

F

(
πσ⊥
rc

)
cos2

(
β − θ

2

)
, (4.33)

84



Ψ      〉| mSPP|               |2    〉
q=1

↓z

0

0

0

0.05

0.1

0.15

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0

0

0.01

0.02

0.03

0

0.05

0.1

0

0.04

0.08

|                    |2ℱ{              }

x

y

kx

ky

0

0.04

0.08

a)

b)

σ⟂

-σ⟂

σ⟂-σ⟂ 0

0

x

y
σ⟂

-σ⟂

σ⟂-σ⟂ 0

0

x

y
σ⟂

-σ⟂

σ⟂-σ⟂ 0

0

x

y
σ⟂

-σ⟂

σ⟂-σ⟂

2/σ⟂

-2/σ⟂

2/σ⟂-2/σ⟂ 0

0

kx

ky

2/σ⟂

-2/σ⟂

2/σ⟂-2/σ⟂ 0

0

kx

ky

2/σ⟂

-2/σ⟂

2/σ⟂-2/σ⟂ 0

0

kx

ky

2/σ⟂

-2/σ⟂

2/σ⟂-2/σ⟂

Ψ      〉| mSPP|               |2    〉
q=1↓

x Ψ      〉| mSPP|               |2    〉
q=2↓

x Ψ      〉| mSPP|               |2    〉
q=3↓

x

Ψ      〉| mSPP    〉
q=1

↓z |                    |2ℱ{             }Ψ      〉| mSPP    〉
q=1↓

x
|                    |2ℱ{              }Ψ      〉| mSPP    〉

q=2↓
x

|                    |2ℱ{              }Ψ      〉| mSPP    〉
q=3↓

x

Figure 4.10: ∆` = |`↑z − `↓z | of spin-orbit states can be determined by mixing the two spin
states and obtaining the a) 2D intensity profile or b) 2D momentum distribution. We set
`↓z = 0 so that q = ∆`. By mixing the two spin eigenstate carrying different OAM, the OAM
difference manifests itself as an asymmetry in the 2D intensity profile and the 2D momentum
distribution profile. Without spin mixing, that is projecting onto |↓z〉, the 2D profiles show
no azimuthal nodes. With spin mixing, that is projecting onto |↑x〉, the number of azimuthal
nodes is equal to q. Figure taken from Ref. [18].

where F (πσ⊥/rc) is Dawson’s integral. The integrated spin intensities at the output Eq. 4.32
and 4.33 show the same behaviour if β is varied for fixed θ, and if θ is varied for fixed β.
The fact that the phase induced by the spin rotation can be compensated by the rotation
of the orbital state is an indication of the spin-orbit entanglement. The bottom part of
Fig. 4.9 displays the spin-dependent integrated intensity for β varied with θ = π and with
rc/σ⊥ = 1.82. Note that the amplitude of the oscillations of the integrated intensity is not
1 because the spin-orbit state obtained by tracing the radial degree of freedom is not pure.

4.4.3 Intensity Correlations

The two paths of a Mach-Zehnder interferometer are isomorphic to a two-level quantum
system such as the spin−1/2 DOF. Therefore after a mixing in the spin DOF, the spin
dependent 2D intensity profiles will possess a helical structure which quantifies the induced
OAM. For simplicity consider the spin-orbit state |Ψq

mSPP〉 (Eq. 4.6). The two-dimensional
intensity, post-selected on a particular spin direction |s〉, is given by

I(x, y) = | 〈s|Ψq
mSPP〉 |

2 (4.34)

Without spin mixing, i.e. post-selecting on |↑z〉 or |↓z〉, the resulting 2D intensity profile is
a Gaussian in both cases, which does not reveal any OAM structure.

To determine the induced OAM on the |↓z〉 component we would need to post-select
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Figure 4.11: Spin dependent momentum distribution of |ΨQ〉 . Except for the magnetic
SPP, the other methods shown in Fig. 4.2 produce radial diffraction in addition to the
azimuthal diffraction. However this does not change the described azimuthal asymmetry used
to characterize the spin-orbit states. In comparison to Fig. 4.10 the azimuthal asymmetry is
even more pronounced, as shown in this figure for the case of the spin-orbit state prepared
via a quadrupole magnetic field.

on a perpendicular spin direction. The 2D intensity profiles projected onto |↑x〉, given by
| 〈↑x |Ψq

mSPP〉 |2, are shown in Fig. 4.10a for magnetic SPPs with q = 1, 2, 3. These are
identical to the expected profiles obtained via the interferometric measurement described
above.

The order of rotational symmetry of the 2D intensity profiles is equal to |∆`| = |`↑−`↓| =
|q|. Applying a spin rotation along σ̂z before the spin mixing effectively rotates the resulting
2D intensity profile. The direction of rotation determines the sign of q. The initial azimuthal
offset determines β at the detector.

4.4.4 Momentum Correlations

Another method to characterize spin-orbit states is to measure their 2D momentum distri-
bution. The 2D momentum distribution, post-selected on a particular spin direction |s〉, is
given by

P (kx, ky) = |F{〈s|Ψq
mSPP〉}|

2 (4.35)

where F{...} is the Fourier transform. If we apply spin filters along the spin eigenbasis of
|Ψq

mSPP〉, i.e. along |↑z〉 or |↓z〉, then the 2D momentum distribution of 〈↑z |Ψq
mSPP〉 would be

a Gaussian profile indicative of the prepared incoming state carrying no OAM, and that of
〈↓z |Ψq

mSPP〉 would be a ring shape. However, the ring-shaped momentum distribution does
not uniquely define an OAM beam; for example, it is possible to have a radially diverging
beam which has a ring-shaped 2D momentum distribution.

If we post-select on a perpendicular spin axis then the spin-orbit coupling breaks the
symmetry of the 2D momentum distribution profile as shown in Fig. 4.10b. Therefore we
propose a method to characterize the spin-orbit states by mapping out their 2D momentum
distribution after spin filtering along a perpendicular spin axis.

In this method as well, the order of rotational symmetry of the 2D momentum profiles
is equal to |∆`| = |`↑ − `↓| = |q|. Applying a spin rotation along σ̂z before the spin mixing
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Figure 4.12: Spin dependent momentum distribution of the |ΨN=2
LOV〉 when the beam is com-

posed of a) one lattice cell where rc = 1.82σ⊥ b) multiple lattice cells. The plots show
that each lattice cell of the |ΨN=2

LOV〉 beam carries spin dependent OAM, but the beam which
composed of many lattice cells does not carry OAM. The plots in b) also describe the spin
dependent intensities of the |ΨN=2

LOV〉 beam in the far-field. Lastly, it should be noted that
both cases a) and b) possess azimuthal symmetry in their momentum distribution which can
be used to characterize the spin dependent OAM of each lattice cell.
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Figure 4.13: When post-selecting onto a perpendicular spin eigenbasis of a spin-orbit state
the OAM manifests itself as an asymmetry in the 2D momentum distribution (see Fig. 4.10).
a) Proposed experiment to map out the 2D momentum distribution of a neutron spin-
orbit state by measuring the momentum projections via a Bragg crystal. This allows for
analysis of the beam’s OAM components by mapping out the momentum distribution. b)
We may assemble the momentum projections at each ω obtained by rotating the Bragg
crystal around the crystal plane direction. The 2D momentum distribution is obtained from
the projection curves via the inverse Radon transform. In the examples depicted we perform
the inverse Radon transform on 36 equally spaced slices of ω ∈ [0°, 175°] and reconstruct the
2D momentum distribution. Figure taken from Ref. [18].
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Intensity Profile

Camera

SPP q=6

Mirror

λ=532nm Laser

Figure 4.14: Optical Michelson interferometer where the sample is the polished aluminum
SPP. Here we characterize the action of an SPP which in reflection mode acts as a q = 6 for
λ = 532 nm light. The helical phase structure is clearly visible.

effectively rotates the resulting 2D momentum profile. The direction of rotation determines
the sign of q. The initial azimuthal offset determines β at the detector.

Allowing a state to propagate into the far-field, where the intensity profile is indicative of
the momentum distribution profile, is not practical with the small neutron diffraction angles
induced by the OAM. A more practical method is to use a diffracting crystal and obtain
momentum projection curves which can then be used to reconstruct the 2D momentum dis-
tribution. A proposed experiment is shown in Fig. 4.13a. A spin-orbit state is prepared by
passing a coherent superposition of the two spin eigenstates through a magnetic SPP. The
spin is then projected onto a perpendicular spin direction using a spin filter. A rotatable
Bragg crystal enables a measurement of the momentum projected to the crystal plane di-
rection. The two rotation angles ω and ζ effectively allow us to obtain the projections of
the 2D momentum distribution along an arbitrary angle in the transverse plane, as shown
in Fig. 4.13b. A standard problem of medical imaging, obtaining the “backprojection im-
age” (2D momentum distribution) via the “sinogram” (projection curves) is achieved with
the inverse Radon transform [148]. Fig. 4.13b shows the reconstructed image obtained via
36 equally spaced projections. Note that because of the azimuthal symmetry of the spin-
orbit state, rotating the spin filter of Fig. 4.13a by an angle ω and fixing the Bragg crystal
orientation produces the same outcome as shown in Fig. 4.13b.

These procedures work similarly if the spin-orbit state is created via any method depicted
in Fig.4.2. Note that other than the magnetic SPP, the other methods produce radial diffrac-
tion in addition to the azimuthal diffraction. However this does not change the described
azimuthal asymmetry used to characterize the spin-orbit states. In fact, the asymmetry be-
comes even more pronounced. Fig. 4.11 and Fig. 4.12 show the spin dependent momentum
distribution of |ΨQ〉 and |ΨN=2

LOV〉 respectively. Therefore we proposed that an initial exper-
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a) b)

Figure 4.15: The measured a) far-field intensity profile, and b) phase profile measured via
the Michelson interferometer of Fig. 4.14, of the ` = 420 optical OAM beam. The ring shape
intensity profile and the helical phase structure are clearly visible. The aluminum SPP used
to create this optical OAM beam in reflection mode, would act as a q = 1 SPP for λ = 0.271
nm neutrons in transmission mode.

iment be done with LOV prism pairs to maximize the use of the incoming beam flux and
circumvent problems with small coherence lengths.

4.5 Lattices of Optical Spin-Orbit states

4.5.1 Optical OAM

As the methods of generating neutron lattices of spin-orbit states are based on a general
model we can demonstrate the power of these protocols on photon beams by producing a
lattice of states where polarization and OAM are correlated. This can be achieved because
there is an isomorphism between the Bloch sphere representing the spin states of fermions
and that of the Poincaré sphere representing the polarization states of light (see section 1.5).

It is illustrative to see the complementarity between the optical system and the neutron
system. Consider the aluminum SPPs used in the neutron OAM and holography experiments
(see section 3.4 and section 3.5). In those experiments the neutron passed through the
aluminum SPP and acquired an azimuthal phase profile indicative of OAM. However, light
would reflect from the polished aluminum SPPs instead of passing through them. Therefore
in this case it is convenient to use a Michelson interferometer to image the induced phase
profile. Fig. 4.14 shows the experiment with a SPP whose phase step thickness of 1.6 µm
induces ` = 6 onto the λ = 532 nm reflected light.

Optics also allow us to explore higher order OAM beams. Consider an aluminum SPP
with thickness 112 µm which acts as a q = 1 SPP for λ = 0.271 nm neutrons. For λ = 532 nm
light reflecting from its surface it acts as a q = 420 SPP. Fig. 4.15a is the resulting intensity
distribution in the far-field. The intensity is ring shaped as expected. Placing this SPP into
the Michelson interferometer of Fig. 4.14 produces the images shown in Fig. 4.15b. Here we
see the tangential interference fringes quantifying the induced OAM.
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Figure 4.16: The lattices of optical spin-orbit beams are produced by passing a circularly
polarized light beam through N sets of Lattice of Optical Vortices (LOV) prism pairs. A LOV
prism pair consists of two perpendicular optical birefringent prisms where one prism has the
optical axis along the prism incline and the second prism has the optical axis offset by 45°.
The lattice constant is given by a = λ/(ne − no) tan(θ), where θ is the prism incline angle,
ne and no are the extraordinary and ordinary refractive indices, and λ is the wavelength of
the incoming light. Figure taken from Ref. [19].

4.5.2 Preparation of Optical LOV Beams

Similar to Eq. 3.2 the eigenstates in cylindrical coordinates (r, φ) for polarized light can be
expressed as

|nr, `, p〉 = N ξ|`|e−
ξ2

2 L|`|nr
(
ξ2
)
ei`φZ(z) |p〉 , (4.36)

where where N = 1
σ⊥

√
nr!

π(nr+|`|)! is the normalization constant, ξ = r/σ⊥ is the dimension-

less radial coordinate, φ is the azimuthal coordinate, nr ∈ {0, 1, 2...} is the radial quantum

number, ` ∈ {0,±1,±2...} is the azimuthal quantum number, L|`|nr (ξ2) are the associated La-
guerre polynomials, Z(z) is the longitudinal wave function often approximated by a Gaussian
wave packet, and p ∈ {�,	} is the polarization state of light.

Consider the optical spin-orbit state:

|ΨSO〉 =
e−

r2

2

√
π

[
cos

(
πr

2rc

)
|�〉+ ieiφ sin

(
πr

2rc

)
|	〉
]
, (4.37)

where we have set σ⊥ = 1. |ΨSO〉 describes a vector vortex beam where the OAM is
induced via Pancharatnam-Berry geometrical phase. The intensity (post-selected on the
right circularly polarized light) and the polarization distribution (before the polarization
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Figure 4.17: Intensity profile at the camera of |ΨN=2
LOV〉 optical beam, where we have postse-

lected on the polarization state which is correlated with the OAM.

post-selection) are depicted on the zoomed-in plot of Fig. 4.16.
Our proposed procedure for producing a beam with a lattice of optical spin-orbit states

consists of a sequence of linear birefringent gradients that are equal in magnitude and per-
pendicular to each other and the polarization axis of the incoming light. Examining and
truncating the right-hand side of Eq. 4.18, we see that it can be interpreted as a sequence
of N perpendicular linear gradients.

In the case of photons one way to produce the linear gradients is via optical birefringent
prisms as shown in Fig. 4.16. Placing one prism with an optical axis along the prism
incline and a second prism with an optical axis offset by 45° results in the product operation
(Û0,0Ûπ

2
,π
2
). We had termed such a set a “Lattice of Optical Vortices (LOV) prism pair”.

This process is shown in Fig. 4.16 for N = 2 sets of LOV prism pairs. The spin-orbit
states in these lattices form a two-dimensional array with a lattice constant of

a =
λ

∆n tan(θ)
(4.38)

where ∆n and θ are the birefringence and the incline angle of the LOV prism pairs. As
mentioned in section 4.3.5 the number of LOV prism pairs N provides control over the mean
radial quantum number nr in a lattice cell, and even expansions of Eq. 4.18 should be used.
In the N = 1 case both polarization states are similarly coupled to the OAM forming vortex-
antivortex structures, and both `z = 1 and `z = −1 phase structures are illuminated. Similar
vortex-antivortex structures can also be obtained via Wollaston prisms [149,150].
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Figure 4.18: Intensity profiles post-selected on a particular polarization state of the lattices
of optical spin-orbit beams. Top two rows are the simulated the observed images for odd N,
while the bottom two rows are the simulated the observed images for even N. The lattice
constant specified by Eq. 4.38 for λ = 532 nm light and our 2° quartz LOV prism sets
is a = 1.68 mm; the measured lattice constant at the camera being slightly larger due to
beam divergence. If desired, the lattice constant can easily be pushed into the µm-range
by fabricating prisms with a larger incline angle out of a high birefringent material such as
TiO2. Figure taken from Ref. [19].
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Figure 4.19: a) Phase imaging of the N = 2 lattice of optical spin-orbit beams where we
post-select on the polarization carrying the OAM. The N = 2 sets of LOV prism pairs are
placed in one path of the interferometer and a linear phase gradient is applied in the other
path (Gy ∼ 20 rad/mm) by tilting a mirror in order to pronounce the well known fork
structure holograms in the lattice, which indicate the presence of OAM beams. Figure taken
from Ref. [19]. b) Phase imaging of the N = 1 case in which both polarization states are
similarly coupled to the OAM, and both `z = 1 and `z = −1 phase structures are illuminated.
Furthermore, as shown the phase profile structure depends on the direction of the applied
phase gradient (where Gx ∼ 5 rad/mm and Gxy ∼ −6.8 rad/mm).

4.5.3 Experimental Methods

In the following experimetns a laser of wavelength 532 nm was used, along with standard
polarizers, wave-plates, and optical components. The LOV prism pairs were circular quartz
wedges (birefringence of ∼ 0.0091) with a wedge angle of 2° and diameter of 2.54 cm. One
wedge had the optical axis aligned with wedge angle while the other wedge had the optical
axis aligned 45° to wedge angle.

For images shown in Fig. 4.18 the setup consisted of a laser, a linear polarization filter, a
quarter-wave plate, N LOV prism pairs, a quarter-wave plate, a linear polarization filter, and
a CMOS camera. For beam phase imaging shown in Fig. 4.19, a four-mirror interferometer
[151] was used because it allowed for compensation of the beam deviation due to the LOV
prism pairs. An alternative method would have been to add a non-birefringent prism after
each prism of the LOV prism pair in order to compensate for the beam deviation. A linear
phase gradient in Fig. 4.19 was introduced to obtain the fork structure holograms by tilting
the mirror of the interferometer path which did not contain the LOV prism pairs.

4.5.4 Characterization of Optical LOV Beams

Fig. 4.17 shows the typical intensity profile at the camera of the |ΨN=2
LOV〉 optical beam,

where we have postselected on the polarization state which is correlated with the OAM. For
the following analysis we will select a three by three lattice. The simulated and observed
polarization profiles for N = 1, 2, 3, 4 are plotted in Fig. 4.18, and are in a good agreement.
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Figure 4.20: By postselecting on linear polarization the intensity profile shows an asymmetry
indicative of the spin-orbit state in each lattice cell. Shown are the intensity profiles post-
selected on a particular polarization state of the N=2 lattices of optical spin-orbit beams.
Top row shows the simulated images the bottom row shows the observed images.

For our LOV prism pairs the lattice constant given by Eq. 4.38 comes out to be 1.68 mm,
though it was measured to be slightly larger due to beam divergence.

The period of the lattice can span a large range. LOV prism pairs fabricated from TiO2

(birefringence of ∼ 0.29) with an incline angle of 60° would produce a lattice period of a ∼ 1
µm for a light wavelength of 532 nm. Furthermore, if birefringent materials which exhibit
the Pockel’s effect are used then with the addition of external electric field control a variable
period may be obtained via the electro-optic effect.

The ring structure intensity shown in Fig. 4.18 is indicative of the polarization profile of
the spin-orbit state (Eq. 4.37) and not the OAM structure. To show that there is a lattice
of OAM states we measure the phase profile of the beam using an interferometer. The
schematic of the setup is shown in Fig. 4.19a where a linear phase gradient in one path has
been introduced to observe the characteristic fork structure hologram indicative of OAM. A
lattice of fork structures can clearly be seen, indicating an `z = 1 at each lattice center. In
the N = 1 case both polarization states are similarly coupled to the OAM, and both `z = 1
and `z = −1 phase structures are illuminated. This can be observed on Fig. 4.19b.

As described in section 4.4.3, when postselecting on perpendicular polarization eigenbasis
the intensity profile shows an asymmetry indicative of the spin-orbit state in each lattice cell.
Fig. 4.20 shows the intensity profiles post-selected on a particular linear polarization state
of the N=2 lattices of optical spin-orbit beams.

4.5.5 Characterizing Materials with Optical LOV Beams

Sets of LOV prism pairs can be used to construct a Ramsey interferometer which is capable
of measuring the 2D linear and circular birefringence of materials. This is the 2D extension
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Figure 4.21: Ramsey interferometer for the mapping of the 2D linear and circular birefrin-
gence. A sample is placed between two sets of LOV prisms. The intensity pattern at the
camera is modified according to the direction and magnitude of the induced phase. A slab
of quartz was used the linear birefringent sample and a solution of fructose and water for
the optical activity sample.
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of the interferometric measurement procedure described in section 4.4.2.
Fig. 4.21 shows the simulated and observed profiles when a sample with uniform phase is

placed inside the interferometer. The intensity pattern at the camera is modified according
to the direction and magnitude of the induced phase. The resolution in these measurements
is set by the lattice constant of the LOV beam.

A quartz sample was used for the birefringent sample and a solution of fructose and water
for the optical activity sample. The quartz sample was rotated to vary the phase. For the
circular birefringence measurements concentration of fructose in water was varied.

4.5.6 Conclusion

This chapter has introduced and quantified new methods of preparing neutron spin-orbit
states. This is a step towards general programming of the spin and quantum phase of
neutron wavefronts, which addresses the fundamental limitations of neutron scattering and
imaging techniques. For example, recent interest in complex topological and quantum ma-
terials [152, 153] suggests a need for a tool with unique penetrating abilities and magnetic
sensitivity. Analysis of material properties could be performed using a neutron spin-orbit
lattice where the lattice constants are matched to the characteristic length scales of materi-
als. The methods described here allow for the direct control of spin-orbit state parameters
within a neutron beam. Furthermore, a method is proposed to characterize neutron spin-
orbit states which overcomes the main challenges associated with low neutron flux and the
neutron’s small spatial coherence length.

The described protocols provide a two-dimensional control of the characteristic length
scale of the single spin-orbit features. It may be possible to create a lattice of ring-shaped
optical atomic traps, individual instance of which have figured prominently in recent studies
of atomtronic circuits [154]. One can also envisage vortex pinning in Bose-Einstein conden-
sates via these beams [155]. Lattices of polarization coupled optical vortices may also be
fruitful in microscopy or basic studies of the interaction of structured light [100–103] with
individual atoms or molecules. This is because OAM is defined with respect to a single axis
perpendicular to the wavefront. Thus, in studies using a single OAM axis, only atoms or
molecules in the region of a fraction of a wavelength about that axis are subject to the OAM
selection rules [139,156]. This technique extends those rules across a region proportional to
the area of the fully-structured wavefront.
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Chapter 5

Conclusion and Future Prospects

This thesis described several projects which are under the common theme of generating
and manipulating the quantum phase structure of matter waves and electromagnetic waves.
These results have contributed to the fields of: perfect crystal neutron interferometry, grating
based neutron interferometry, and matter wave and optical structured waves.

Chapter one provides a theoretical framework which is required for rest of the thesis.
In addition, the chapter briefly covers the construction of a new beamline at the National
Institute of Standards and Technology’s Center for Neutron Research dedicated to quantum
information related neutron interferometry experiments. The new beamline now provides
environmental and temperature isolation for the NIs, and a cryostat has been incorporated
into the setup.

Chapter two described the development and characterization of far-field phase-grating
moiré neutron interferometry. A two phase-grating moiré neutron interferometer has been
demonstrated, and it has been employed for the measurement of the microstructure of a
sample. Furthermore, a three phase-grating moiré neutron interferometer has been demon-
strated. This novel technique has proven to be advantageous over the other neutron inter-
ferometry setups in terms of broader wavelength acceptance and less stringent alignment
requirements.

Chapter three focused on the experiments relating to neutron orbital angular momentum
(OAM). The first demonstration of the control of neutron OAM and the first use of the
perfect crystal neutron interferometer to perform holography of a macroscopic sample were
described. These methods provide a new tool for interferometric testing of neutron optics
and the characterization of coherence of neutron beams.

Chapter four focused on the theory and experiments dealing with neutron and optical
spin correlated OAM (spin-orbit) states. Methods to prepare neutron spin-orbit states via
special geometries of magnetic fields were presented. The preparation, entanglement char-
acterization, and proposed experimental verification of such states are described in detail.
The chapter then introduces and describes a novel method capable of preparing lattices of
optical and neutron spin-coupled OAM states. Lastly, the experimental demonstration and
characterization of optical lattices of spin-orbit states is described in detail.
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5.1 Future Work

• The new beamline at the National Institute of Standards and Technology’s Center for
Neutron Research dedicated to quantum information related neutron interferometry
experiments is now operational. Spin elements were installed and optimized, and a
cryostat has been incorporated into the setup. The future work on this beamline will
include the characterization of magnetic phase transitions of materials which occur at
low temperatures.

• The achieved contrast of 3% of the three phase-grating moiré neutron interferometer
was well below the theoretical expectation of 30%, and it was determined that the
phase-gratings are sub-optimal. Higher quality phase-gratings will need to be fabri-
cated for the next set of experiments. Furthermore, to increase the expected contrast
above 30% triangular sloped gratings will be used in order to reduce the intensity of
the higher order diffraction peaks. Lastly, gratings fabricated from magnetic materials
will be made and characterized in order to introduce a correlation between the spin
degree of freedom and the diffraction orders.

• The future prospects for the three phase-grating moiré neutron interferometer are the
characterization of materials with large autocorrelation lengths, and the measurements
of the gravitational constants “g” and “G”. The current CODATA recommended value
of G consists of several discrepant experimental results, and there is a need for a high
precision measurement.

• In the area of neutron spin-orbit states, the next step will be to demonstrate lattices
of neutron spin-orbit states via the LOV prim pairs. The neutron LOV beams will be
characterized by mapping out the spin dependent intensity correlations to avoid the
need of incorporating the LOV prisms into the perfect crystal neutron interferometer.

• Neutrons are a convenient probe of materials due to their relatively large mass, electric
neutrality, and sub-nanometer-sized wavelengths. Once the lattices of neutron spin-
orbit states are demonstrated, it is expected that these unique beams are used as a
probe of chiral and helical materials. In particular, the aim is to characterize skyrmion
magnetic structures.

• In the area of optical spin-orbit states, the follow up experiment is to pass entangled
photons through the LOV prism pairs and perform a quantum information protocol.
This experiment is currently under way with our colleagues from the University of
Waterloo.

• Another application of the optical spin-orbit states is the exploration of its use towards
the imaging of chiral biological samples. This research area is currently being explored
and a dedicated microscope is being built for this purpose.
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C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating inter-
ferometer,” Nature materials, vol. 7, no. 2, pp. 134–137, 2008.

[77] S. K. Lynch, V. Pai, J. Auxier, A. F. Stein, E. E. Bennett, C. K. Kemble, X. Xiao,
W.-K. Lee, N. Y. Morgan, and H. H. Wen, “Interpretation of dark-field contrast and
particle-size selectivity in grating interferometers,” Applied optics, vol. 50, no. 22,
pp. 4310–4319, 2011.

[78] M. Strobl, “General solution for quantitative dark-field contrast imaging with grating
interferometers,” Scientific reports, vol. 4, 2014.

[79] M. Strobl, M. Sales, J. Plomp, W. G. Bouwman, A. S. Tremsin, A. Kaestner, C. Pap-
pas, and K. Habicht, “Quantitative neutron dark-field imaging through spin-echo in-
terferometry,” Scientific reports, vol. 5, 2015.

[80] A. J. Brooks, G. L. Knapp, J. Yuan, C. G. Lowery, M. Pan, B. E. Cadigan, S. Guo,
D. S. Hussey, and L. G. Butler, “Neutron imaging of laser melted ss316 test objects
with spatially resolved small angle neutron scattering,” Journal of Imaging, vol. 3,
no. 4, p. 58, 2017.

[81] A. J. Brooks, D. S. Hussey, H. Yao, A. Haghshenas, J. Yuan, J. M. LaManna, D. L.
Jacobson, C. G. Lowery, N. Kardjilov, S. Guo, M. M. Khonsari, and L. G. Butler,
“Neutron interferometry detection of early crack formation caused by bending fatigue
in additively manufactured ss316 dogbones,” Materials & Design, vol. 140, pp. 420–
430, 2018.

[82] J. Cowley and A. Moodie, “Fourier images: I-the point source,” Proceedings of the
Physical Society. Section B, vol. 70, no. 5, p. 486, 1957.

[83] J. Cowley and A. Moodie, “Fourier images iv: the phase grating,” Proceedings of the
Physical Society, vol. 76, no. 3, p. 378, 1960.

[84] V. Bushuev, A. Frank, and G. Kulin, “Dynamic theory of neutron diffraction from
a moving grating,” Journal of Experimental and Theoretical Physics, vol. 122, no. 1,
pp. 32–42, 2016.

[85] D. Pushin, D. Cory, M. Arif, D. Jacobson, and M. Huber, “Reciprocal space approaches
to neutron imaging,” Applied physics letters, vol. 90, no. 22, p. 224104, 2007.

[86] S. Werner, H. Kaiser, M. Arif, and R. Clothier, “Neutron interference induced by
gravity: new results and interpretations,” Physica B+ C, vol. 151, no. 1, pp. 22–35,
1988.

[87] V.-O. de Haan, J. Plomp, A. A. van Well, M. T. Rekveldt, Y. H. Hasegawa, R. M. Dal-
gliesh, and N.-J. Steinke, “Measurement of gravitation-induced quantum interference
for neutrons in a spin-echo spectrometer,” Physical Review A, vol. 89, no. 6, p. 063611,
2014.

106



[88] G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Ka-
sevich, “Testing gravity with cold-atom interferometers,” Physical Review A, vol. 91,
no. 3, p. 033629, 2015.

[89] G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and
G. Tino, “Bragg interferometer for gravity gradient measurements,” Physical Review
A, vol. 93, no. 6, p. 063628, 2016.

[90] V. I. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with wave front
screw dislocations,” Pisma v Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, vol. 52,
pp. 1037–1039, Oct. 1990.

[91] L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular mo-
mentum of light and the transformation of laguerre-gaussian laser modes,” Physical
Review A, vol. 45, no. 11, p. 8185, 1992.

[92] J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and
E. Karimi, “Structured quantum waves,” Nature Physics, vol. 11, no. 8, pp. 629–634,
2015.

[93] V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simulta-
neous micromanipulation in multiple planes using a self-reconstructing light beam,”
Nature, vol. 419, no. 6903, pp. 145–147, 2002.

[94] G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of acceler-
ating airy beams,” Physical Review Letters, vol. 99, no. 21, p. 213901, 2007.

[95] S. M. Barnett, M. Babiker, and M. J. Padgett, “Optical orbital angular momentum,”
Philosophical Transactions of the Royal Society A, vol. 375, no. 2087, 2017.

[96] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics,
vol. 3, no. 5, pp. 305–310, 2007.

[97] M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics, vol. 5, no. 6,
pp. 343–348, 2011.

[98] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular
momentum states of photons,” Nature, vol. 412, no. 6844, pp. 313–316, 2001.

[99] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue,
S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing
orbital angular momentum multiplexing,” Nature Photonics, vol. 6, no. 7, pp. 488–496,
2012.
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