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Abstract

In this thesis, I propose and consider inference for a semiparametric stochastic mixed

model for bivariate longitudinal data; and provide a prediction procedure of a future cycle

utilizing past cycle information. This thesis is built on the work of Zhang et al (1998)

[45] and Zhang, Lin & Sowers (2000) [44]. However, the papers are missing big gaps

in the theoretical results, are to be applied on univariate longitudinal data, and contain

no coverage of prediction of future cycles. We fill in all the gaps in this thesis as well

as consider real application of a dataset that contains bivariate longitudinal data. The

proposed approach models the mean of outcome variables by parametric fixed effects and a

smooth nonparametric function for the underlying time effects, and the relationship across

the bivariate responses by a bivariate Gaussian random field and a joint distribution of

random effects. The prediction approach is proposed from the frequentist prospective and

a prediction density function with predictive intervals will be provided. Simulations studies

are performed and a real application of a hormone dataset is considered.

iv



Acknowledgements

I would like to express my deep gratitude towards my advisor, Prof. J. Dubin, for

suggesting the problem to me and for his guidance, support and encouragements along the

way! I would also like to thank all my committee members, Profs. Lang Wu, Grace Yi,

Leilei Zeng and Ashok Chaurasia for their participations and time. I am grateful for all my

professors who have taught me both at University of Toronto and University of Waterloo,

who set examples for me and inspire me. Special thanks go to Prof. D.A.S Fraser at U of T

for taking me on as his research assistant when I was a 3rd year undergraduate student and

introduced statistical research to me; to Prof. Ellen Gold at UC-Davis and Prof. Wesley

Johnson at UC-Irvine, for their allowance of the use of the hormonal dataset presented in

this paper; and to Prof. George A. Heckman for allowing me to participate in a medical

research project that partially funded me. I would like to acknowledge that my research

was also partially supported by NSERC Discovery Grant (RGPIN-2014-05911), Queen

Elizabeth II Graduate Scholarships in Science & Technology, and Department of Statistics

at University of Waterloo among others. I treasure and am grateful for the friendship and

support from my friends and colleagues at the department who shared my ups and downs

during these eventful years. Lastly, I would like to express my utmost gratitude to my dear

parents for their unwavering love and support.

v



To my parents.

vi



Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Major approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Linear mixed effects model . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Nonparametric regression models . . . . . . . . . . . . . . . . . . . 4

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Flexible modelling for univariate longitudinal data . . . . . . . . . . 8

1.2.2 Modelling cyclic longitudinal data . . . . . . . . . . . . . . . . . . . 8

1.2.3 Modelling multivariate longitudinal data . . . . . . . . . . . . . . . 9

1.3 Motivation and the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Bivariate Longitudinal Hormone Dataset 12

2.1 The hormone dataset for a single menstrual cycle . . . . . . . . . . . . . . 12

2.2 The hormone dataset for multiple menstrual cycles . . . . . . . . . . . . . 13

vii



3 Univariate semiparametric stochastic mixed effects models 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Univariate semiparametric mixed effects models . . . . . . . . . . . . . . . 19

3.3 Proof of inference results in the paper . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Derivation of model regression coefficients and nonparametric functions 20

3.3.2 Derivations of bias and covariance of random effects and stochastic

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Derivation of REML estimating equations and Fisher information

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Semiparametric Stochastic Mixed Effects Models for Bivariate Longitu-

dinal Data 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The Bivariate Semiparametric Stochastic Mixed Effects Model . . . . . . . 44

4.2.1 The Proposed Model Specifications and Assumptions . . . . . . . . 44

4.2.2 Matrix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Covariance Structures . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.4 The Gaussian Field Specification . . . . . . . . . . . . . . . . . . . 47

4.3 Estimation and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Estimation of Model Coefficients, Nonparametric Function, Random

Effects and Gaussian Fields . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Biases and Covariances of Model Coefficients, Nonparametric Func-

tion, Random Effects and Gaussian Fields . . . . . . . . . . . . . . 50

4.3.3 Estimation of the Smoothing Parameters and Variance Parameters 51

viii



4.4 Bivariate semiparametric mixed effects model for perodic longitudinal data

from multiple cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 A Simulation Study using NOU . . . . . . . . . . . . . . . . . . . . 54

4.5.2 Misspecification of Gaussian Fields . . . . . . . . . . . . . . . . . . 56

4.6 Bivariate Longitudinal Hormone Data Analysis . . . . . . . . . . . . . . . 57

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Prediction 66

5.1 Introduction and literature review . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Predictive Distribution and Predictive Intervals . . . . . . . . . . . . . . . 67

5.2.1 General Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.3 Prediction of an entire cycle . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Application to the univariate cyclic longitudinal hormone dataset . . . . . 74

5.5 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion and Future Work 78

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Robustness of model assumptions . . . . . . . . . . . . . . . . . . . 79

6.2.2 Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.3 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.4 Extension to multivariate longitudinal data with one or multiple cy-

cles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.5 Prediction for the bivariate model . . . . . . . . . . . . . . . . . . . 81

ix



References 82

APPENDICES 87

A Technical Complements 88

A.1 Polynomials & splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.3 Stochastic processes and random fields . . . . . . . . . . . . . . . . . . . . 92

A.4 Theoretical derivations for Chapter 4 . . . . . . . . . . . . . . . . . . . . . 94

A.4.1 Proof of the normal matrix (4.6) . . . . . . . . . . . . . . . . . . . 94

A.4.2 Proof of (4.7), (4.8) and (4.9) . . . . . . . . . . . . . . . . . . . . . 94

A.4.3 Proof of biases of (4.12) and (4.13) and a lemma . . . . . . . . . . . 96

A.4.4 Proof of covariance of random effects (4.15) . . . . . . . . . . . . . 100

x



List of Tables

4.1 Estimates of regression coefficients, variance parameter and smoothing pa-

rameter for the progesterone and estrogen data. . . . . . . . . . . . . . . . 55

4.2 Estimates of regression coefficients, variance parameter and smoothing pa-

rameter for the progesterone and estrogen data. . . . . . . . . . . . . . . . 58

5.1 PSE values for different proxies for Yi,j−1 based on 100 simulations. . . . . 73

5.2 PSE values for different proxies for Yi,j−1 based on the hormone dataset with

3 consecutive cycless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



List of Figures

2.1 Plots of log progesterone and log estrogen levels against days in a standard-

ized menstrual cycle, superimposed by estimated population mean curve f̂1

and f̂2 and their 95% pointwise confidence intervals. . . . . . . . . . . . . . 14

2.2 Plots of empirical sample variance of log progesterone and log estrogen levels

at each distinct time points in a standardized menstrual cycle. . . . . . . . 15

2.3 Plots of range of cycle lengths and missing data for each cycle for each

woman among women that have at least 3 consecutive cycles. . . . . . . . 16

2.4 Plots of log progesterone and log estrogen levels against days in 3 standard-

ized menstrual cycles, superimposed by estimated population mean curve f̂1

and f̂2 and their 95% pointwise confidence intervals. . . . . . . . . . . . . . 17

4.1 Plots of log progesterone and log estrogen levels against days in a standard-

ized menstrual cycle, superimposed by estimated population mean curve f̂1

and f̂2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Plots of log progesterone and log estrogen levels against days in 3 standard-

ized menstrual cycles, superimposed by estimated population mean curve f̂1

and f̂2 and their 95% pointwise confidence intervals. . . . . . . . . . . . . . 61

4.3 Empirical Bias in estimated nonparametric functions f̂1 and f̂2 based on 500

simulation replications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



4.4 Pointwise empirical (dashes) and frequentist (solid) standard errors of the

estimated nonparametric functions f̂1 and f̂2 based on 500 simulation repli-

cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 A graph showing the estimated 95% coverage probabilities of the true non-

parametric functions f1 and f2 based on 500 simulation replications. . . . . 64

4.6 Plots of empirical sample variance of log progesterone and log estrogen levels

at each distinct time points in a standardized menstrual cycle. . . . . . . . 65

5.1 Plots of simulated subjects with the lowest, second lowest, median and

largest PSE values with respect to conditional on Yi,j−1,pc based on 100

simulations, with pointwise 95% confidence interval. True data: black; pno:

blue; pc: red; pre: green; 0.25*pre + 0.75*pc: orange; 95% CI: pink. . . . . 73

5.2 Plots of progesterone levels for women with the lowest, 10th quantile low-

est, median and 90th quantile PSE values with respect to conditional on

Yi,j−1,pc2, with pointwise 95% confidence interval. True data: black; pno:

pink; pc2: blue; pc1: red; pre: green; 0.25 * pre + 0.75 * pc: orange; 0.5 *

pre + 0.5 * pc: yellow; 0.75 * pre + 0.25 * pc: purple; 95% CI:gray. . . . . 75

xiii



Chapter 1

Introduction

The distinctive feature of longitudinal data is that measurements of each subject are

collected repeatedly over time, which induces a correlation structure among observations for

the same subject. For multivariate longitudinal data, repeated measurements are observed

jointly for two or more responses. To better understand the relationships among the

responses at the same time or different times, the correlation structure among the responses

needs to be studied.

Many methods have been developed over the years to accommodate this additional

structure, with the emphasis below on models that allow subject-specific predictions of

longitudinal trajectories; marginal models will not be emphasized here.

1.1 Major approaches

1.1.1 Linear mixed effects model

The linear mixed effects (LME) model is one of the most popular approaches to mod-

elling continuous longitudinal response data. This model was first proposed by Laird and

Ware [19] in 1982 and thus is sometimes called the Laird and Ware Model.
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Suppose that there are m subjects in a longitudinal dataset. Let Yi = (Yi1, . . . , Yini)
T

be the set of ni repeated measurements for the ith subject, then the LME model for subject

i is written as

Yi = Xiβ +Zibi + εi, i = 1, . . . ,m, (1.1)

where β = (β1, . . . , βp)
T is a vector of fixed effects, bi = (bi1, . . . , biq)

T is a vector of random

effects assuming to have a multivariate normal distribution with mean zero and covariance

matrix D, Xi = (XT
i1, . . . ,X

T
ini

)T is an (ni × p) matrix of covariates associated with the

fixed effects, Zi = (ZT
i1, . . . ,Z

T
ini

)T is an (ni × q) matrix of covariates associated with the

random effects, and εi = (εi1, . . . , εini)
T is a vector of measurement errors assuming to have

a multivariate normal distribution with mean zero and covariance matrix Σi, independent

of bi.

It is further assumed, initially, that conditional on the random effects, the components

of the response Yi are independent across different measurements for the ith subject, which

requires that Σi = σ2Ini . This is referred to as the conditional independence assumption,

with equal variance. This assumption implies the conditional model:

Yi|bi ∼ Nni(Xiβ +Zibi,Σi);

and under the model assumptions, it is straightforward to show

Yi ∼ Nni(Xiβ,ZiDZ
T
i + Σi),

which is referred as the marginal model of Yi. Note that marginally, the Yij are not

independent for a given subject i, with the correlation among the Yij for subject i being

induced by the random effects bi.

The fixed effects are assumed to be the same for all individuals to which they apply in

the population (e.g., split up by treatment group). The random effects, on the other hand,

have the interpretation how the ith subject effect deviates from those in the population.

Under the conditional independence assumption, the introduction of the random effects bi

also induces correlation among the components of Yi, as noted above. The LME model

does not require a balanced longitudinal design and each individual can have a unique

sequence of measurement times. This makes the LME model well suited for modelling

longitudinal data.
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The LME model (1.1) can also be formulated to include all subjects into one compact

model. Let n =
∑m

i=1 ni, and denote the vectors

Y =

Y1

...

Ym

 , b =

b1...
bm

 , ε =

ε1...
εm

 ,

of responses, random effects and measurement errors over all subjects with dimension n×1,

mq × 1 and n× 1, respectively; and the design matrices are

X =

X1

...

Xm

 , Z =

Z1 · · · 0
...

. . .
...

0 · · · Zm

 ,

of dimension n× p and n×mq. Then the LME model in the matrix form over all subjects

is

Y = Xβ +Zb+ ε, (1.2)

with the distributional assumption(
b

ε

)
∼ N

((
0

0

)
,

(
Q 0

0 Σ

))
,

where

Q =

D · · · 0
...

. . .
...

0 · · · D


of dimension mq ×mq, and

Σ =

Σ1 · · · 0
...

. . .
...

0 · · · Σm

 = σ2I

with I denoting the identity matrix of dimension n.

3



1.1.2 Nonparametric regression models

Although the LME model is easily implemented and widely used in practice, some

complex datasets require more flexible and sophisticated modelling techniques beyond the

linear model. Specifically, smoothing techniques can be effectively applied in various sce-

narios when modelling longitudinal data. We will first review several common smoothing

techniques.

Splines, cubic splines, and smoothing splines

A spline is essentially a piecewise polynomial whose different polynomials are joined

together such that certain continuity properties are ensured. The points at which the

polynomials join are known as the knots of the spline. The precise mathematical definition

of splines is given in Appendix A.1.

A commonly used spline is called a cubic spline. A cubic spline g is a differentiable

function defined on some interval [a, b], with h distinct knots such that a < τ1 < τ2 <

· · · < τh < b and satisfies the following two conditions [17]. First, on each of the intervals

(a, τ1), (τ1, τ2), . . . , (τh, b), g is a cubic polynomial; second, the cubic spline g, its first

derivative g′ and its second derivative g′′ are continuous at each knot τ1, . . . , τh, and hence

on the whole of [a, b]. A cubic spline on an interval [a, b] is said to be a natural cubic spline

if its second and third derivatives are zero at a and b [17], which implies that g is linear on

the two extreme intervals [a, τ1] and [τh, b].

Natural cubic spline plays an important role in nonparametric regression. Consider the

simplest nonparametric regression model in which yi are observations with covariate values

tk, k = 1, . . . , v,

yk = g(tk) + εk, (1.3)

where g(t) is an unknown smooth function defined on [a, b] and εk, k = 1, . . . , v are dis-

tributed as independent and identically Normal with mean 0 and variance σ2. Let S[a, b]

be the space of functions on some interval [a, b] that have two continuous derivatives1.

1We call a function smooth if it is in S[a, b]. [17].

4



Then under model (1.3), the smoothing spline estimator can be obtained by maximizing

the following penalized log-likelihood

−1

2
log(σ2)− 1

2σ2

[
−

v∑
i=1

{yk − g(tk)}2 − λ
∫ b

a

{g′′(x)}2dx

]
;

which is equivalent to minimizing the the following penalized residual sum of squares

v∑
k=1

{yk − g(tk)}2 + λ

∫ b

a

{g′′(x)}2dx, (1.4)

where λ is called a smoothing parameter and governs the trade-off between smoothness

and goodness-of-fit. As λ goes to infinity, the penalty term
∫ b
a
{g′′(x)}2dx will be forced to

be very small, and thus the fit ĝ will approach a linear regression fit; and as λ goes to zero,

the main contribution will be the residual sum of squares, and thus the fit ĝ will approach

the interpolating curve. The resulting estimator is the natural cubic spline and it is the

unique minimizer over all functions in S[a, b]2. Note that all the observed covariate values

{ti} are used as knots; i.e., the number of knots is the the number of observations, and the

locations of the knots coincide with the locations of the covariate observations {ti}. This

is the defining feature of smoothing spline.

The smoothing spline has close connection with the LME model. It has been shown that

the fitted smoothing spline evaluated at the covariate values (ĝ(t1), ĝ(t2), . . . , . . . , ĝ(tv))

equals the best linear unbiased prediction (BLUP) solution Ŷ = Xβ̂ + Zb̂ to a linear

mixed effect model (1.2). For more details, see [9].

Regression splines

When the number of covariate values become large, computation becomes more difficult

and thus the number of knots needs to be reduced. This leads to regression splines and

penalized splines.

2To be more mathematically rigorous, the minimization is over the space of functions that are differ-

entiable on [a, b] and have absolutely continuous first derivative, which by definition includes all functions

that are in S[a, b] [17].

5



Regression splines are a basis function-based nonparametric regression method. A Basis

defines the space of functions (or a close approximation to it) of which f is an element [38],

and consists of basis functions, see Appendix A.2 for more details. This approach uses a

small number of knots and estimates coefficients as a parametric regression of the basis

functions [11].

Let {ζ1(x), . . . , ζd(x)} be a set of basis functions where d is the number of knots3, where

d is often small (5 or 6); then one approximates g(t) in (1.3) by

g(t) ≈
d∑
i=1

αiζi(t)

where (α1, . . . , αd) are unknown parameters and can be estimated by fitting the parametric

model

yi =
d∑
i=1

αiζi(t) + εi (1.5)

via ordinary least squares. Regression splines are computationally easy, as one only needs

to run a linear parametric regression. This is one of the key features of the model. However,

estimation of g(t) can be sensitive to the choice of number of knots and the locations of the

knots. In the statistical context, the knots are often equally spaced or placed at quantiles

of the data[11].

Penalized splines

Penalized splines are a hybrid of regression splines and smoothing splines. The esti-

mation proceeds by fitting (1.5) with a quadratic penalty term that is the same to that in

smoothing splines, i.e., the integrated square of the second derivative of the fitted curve,

scaled by some smoothing parameter.

Typically, the number of knots are much larger than that in regression splines but

smaller than the number of observations, as required in smoothing splines. The knot

selection is an active research area. Initial attempt at selection of the knots is to use

3In general, the number of knots needs not to be the same as the number of basis functions.

6



a model selection criterion. With d candidate knots comes 2d possible models; thus the

application of the usual model selection becomes very computational intensive and thus

not applicable in many scenarios [27]. A number of other knot selection criterion have

been proposed, many of which are based on stepwise regression ideas. For more details,

see Section 3.4 and Chapter 5 in [27].

Penalized regression can have various forms of penalties. Eilers & Marx [8] proposed to

base the penalty on (higher-order) finite differences of the coefficients of adjacent B-splines,

the basis functions used in smoothing:

S =
w∑
i=1

{
yi −

u∑
j=1

ajBj(xi)

}2

+ λ
u∑

j=k+1

(∆kaj)
2,

where (xi, yi) are w data points; Bj(·) is a set of u B-splines;
∑w

i=1

{
yi −

∑u
j=1 ajBj(xi)

}2

is the least squares objective function4; ∆aj = aj−aj−1, and λ is the smoothing parameter

governing the goodness-of-fit and smoothness. This is a good discrete approximation of

the integrated square of the kth derivative and reduces the dimensionality of the problem

to u, the number of B-splines from w, the number of observations.

A number of bases can be used for regression splines and penalized splines. In principle,

a change of basis does not change the fit5. However, some bases are more numerically stable

and allow computation of a fit with greater accuracy. In addition, ease of implementation

and interpretation are two other important factors to consider, though the latter may be

less important if one is more interested in the fit, not the estimated coefficients [27].

Similarly to bases, there are also other penalties available, see Section 3.8 in [27] for

example.

4A fitted curve ŷ to data (xi, yi) is the linear combination ŷ(x) =
∑n

j=1 âjBj(x).
5This is because two bases can be equivalent if they span the same set of functions. The span of a set

is the set of all possible linear combinations of the basis functions in that set.

7



1.2 Literature review

1.2.1 Flexible modelling for univariate longitudinal data

There have been many extensions beyond the linear mixed effects models to allow for

further flexibility in specifying the mean structure for the modelling of longitudinal data

often by using various splines. This comes in two forms - one is to specify design matrices

by basis functions [3] [34], and the other is through a nonparametric component in the

model [45] [44]. In addition, in some models, various stochastic process are employed to

model more flexible within-subject correlation [31] [45].

For example, Brumback and Rice [3] used natural cubic splines to model the mean

structure of the linear mixed model. They extended the traditional LME model to gen-

eralized smoothing spline models for samples of curves stratified by nested and crossed

factors. They specify the design matrices associated with fixed effects and random effects

by bases of functions, as opposed to the usual known covariates’ matrices. Verbyla et al [34]

advocated a similar approach as Brumback & Rice [3], where data-based determination of

the smoothing parameters was advocated in the paper, yet their model specification is

slightly different. The techniques were applied to the analysis of designed experiments,

with further details described in [34]. Welham et al [37] provided a comparison study of

mixed model using splines for curve fitting.

In addition to modeling the mean structure of using a smoothing spline, some efforts

were geared toward modelling complicated within-subject covariance. Taylor, Cumberland

& Sy [31] used a particular stochastic process to model the data in addition to the usual

random effect term which induces within-subject correlation.

1.2.2 Modelling cyclic longitudinal data

One feature in certain longitudinal datasets is that the response is cyclic. This feature

happens commonly in the epidemiology studies, particularly related to hormones. For

independent data, a periodic cubic smoothing spline has often been used for estimating a

periodic function nonparametrically [44]. The smoothing parameter is often estimated by

8



minimizing integrated mean squared error or by cross-validation. However, for correlated

data, some of the methods can no longer be accurately applied. Much effort has gone

toward solving this additionally data complexity.

To further their efforts on semiparametric stochastic mixed models, Zhang et al [44]

proposed a semiparametric stochastic mixed model for periodic longitudinal data, where

covariate effects are modelled parametrically and the periodic time courses are modelled

nonparametrically; and used a stochastic process and random effects to model the within-

subject and between-subject correlation respectively.

Instead of cubic smoothing spline, Welham et al [36] modelled cyclic longitudinal data

using mixed model L-splines. In addition, Meyer et al [22] proposed a functional data

analysis approach to model cyclic data. They explore modes of variation, displayed as

curves, each of which captures some aspect of typical departure from average cyclic be-

haviour. Last but not least, Wood [38] used penalized cubic regression spline to model a

cyclic smooth function. These models, however at this stage to our knowledge, are only

applicable to univariate longitudinal analysis.

1.2.3 Modelling multivariate longitudinal data

All of the literature aforementioned reviewed were developed on univariate longitudinal

responses. A growing number of data require techniques to model bivariate, or in more

generality, multivariate responses.

Some of the efforts of modelling multivariate longitudinal data have emphasized on

dimension reduction, such as in Fieuws & Verbeke[10] and Chiou & Muller [5], both of which

proposed pairwise modelling approach. Fieuws & Verbeke[10] adapted traditional random

effects models to multivariate longitudinal data whereas Chiou & Muller [5] introduced

a functional pairwise interaction model from the perspective of functional data analysis.

Xiong & Dubin [41] and Xiang et al [40] uses nonparametric approaches to model subject-

specific curves for multivariate longitudinal data. A review of multivariate longitudinal

data analysis can be found in Verbeke et al [33]. Further literature review on bivariate

longitudinal data analysis will be provided in Chapter 4. Joint models for multivariate

longitudinal data and survival data, such as Chi & Ibrahim [4], will not be reviewed here.

9



1.3 Motivation and the problem

The models proposed in this thesis are motivated by a bivariate longitudinal hormone

dataset. One of the response variables is a hormone called progesterone, and the other

response variable is another hormone called estrogen, both of which are related to re-

productive cycles. Both hormone samples in the dataset are collected daily over several

consecutive menstrual cycles from women participated in the study. Since multiple men-

strual cycles data are collected, the nature of the data determines that it is intrinsically

cyclic. The hormone dataset is described in details in Chapter 2.

Due to the fact that the two hormones may potentially be interactive to each other, it

is of interest to model them jointly to explore the correlations between the two hormone

levels, as opposed to modelling them separately. We are also interested in modelling the

complex time courses of the two hormone levels jointly in a single cycle, as well as some

covariate effects, such as age, on the hormones. Furthermore, prediction of a single future

observation or of an entire cycle utilizing past cycle observations is meaningful to explore.

More often than not, only a single cycle or possibly two consecutive cycles are considered

per woman in data analysis in the literature. We will expand upon this focus in the thesis.

To solve this complex problem, we decompose it into three smaller problems and il-

lustrate them in three related chapters in this thesis. In Chapter 3, we briefly review the

univariate semiparametric stochastic model in Zhang et al [45] and provide derivation de-

tails that were absent from the original paper. This chapter will serve as a springboard to

Chapter 4 and Chapter 5, where we are building the result to bivariate modelling and it

will provide set up for univariate prediction problem in Chapter 5.

In Chapter 4, we extend the univariate model in previous chapter and propose and

consider inference for a bivariate semiparametric stochastic mixed model for longitudinal

data. The model uses parametric fixed effects to model the covariate effects and smooth

nonparametric functions for each of the two underlying time effects. The between-subject

correlations are modelled using separate but correlated random effects and the within-

subject correlations by a bivariate Gaussian random field.

In Chapter 5, we propose a general prediction procedure of either a single observation

or of an entire cycle using past cycle information for periodic univariate longitudinal data

10



from a Frequentist viewpoint. The stochastic process in the univariate model need to have

an exponential correlation structure, then by utilizing the Markov property, a prediction

density function with prediction intervals can be obtained.

In the last chapter, Chapter 6, we discuss the merits and limitations of findings in

previous chapters and potential areas of future work.
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Chapter 2

The Bivariate Longitudinal Hormone

Dataset

2.1 The hormone dataset for a single menstrual cycle

In the bivariate longitudinal hormone dataset on progesterone and estrogen briefly

mentioned in Chapter 1, daily urine samples were collected from 403 employed women aged

between 20 to 44 years old, with a completion of a median of five consecutive menstrual

cycles each [14]. Among these, 338 women collected at least one complete menstrual cycle

daily urine samples with complete covariate information and fewer than three days of

missing data in any five-day period, and had no conception in the analyzed cycles. Risk

factor data were obtained at baseline in-person interview. The details of the study design

and assay methods are described previously Gold et al [14] [15].

For analyses that we will later describe and conduct in Chapter 4, one randomly selected

cycle is used, and we randomly select 30 study participants from the study due to the

heavy computational burden, with a total of 5498 observations for both responses. Each

woman contributes from 16 to 43 observations over a menstrual cycle, resulting an average

of 28 observations per woman. In order for the results to be biologically meaningful, the

menstrual cycle length for each women has been standardized to a reference of 28 days, i.e.,

12



day * 28 / max day of observation, based on the assumption that the change of hormone

level for each woman depends on the time of the menstrual cycle relative to the cycle

length. The standardization generates 56 distinct time points with increments between

time points of 1/2 day each. To make the normality assumption more appropriate, a log

transformation was used for each of the two hormones.

Figure 2.1 plots the log-transformed progesterone and estrogen levels during a stan-

dardized menstrual cycle. Figure 2.2 plots their empirical sample variances calculated at

each distinct time point.

2.2 The hormone dataset for multiple menstrual cy-

cles

For analysis that we describe and conduct in Chapter 5, we will use up to 3 consecutive

cycles and consider multiple consecutive cycle data for each women, which will lead to a

lower number of women in the analysis. Of the 338 women in the study sample, 112 women

collected daily urine samples for at least 3 consecutive cycles with complete covariate

information and did not have a conception during the analyzed cycles.

Missing data. Considering the 3 consecutive cycles per woman, we expect the ranges of

cycles to be of similar lengths; in particular, if the difference of the maximum cycle length

and the minimum cycle length per woman is greater than 10 days, then we regard data

entries to be unreasonable. For example, for woman X, if the ranges of 3 consecutive cycles

considered are 34, 26, 30, respectively, then we find the data to be reasonable; whereas if

the ranges of 3 consecutive cycles considered are 53, 26, 27, then we question the validity

of the data entries for that particular woman.

The range of the difference of the maximum cycle length and the minimum cycle length

length per woman varies between 1 and 37; and of 336 cycles considered (3 cycles for each

women), 285 cycles have missing data less than or equal to 10%, see Figure 2.3. Due to

the abnormal large range of the difference of the maximum cycle length and the minimum

cycle length length for some women and the severity of missing data, we only consider

13
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Figure 2.1: Plots of log progesterone and log estrogen levels against days in a standardized

menstrual cycle, superimposed by estimated population mean curve f̂1 and f̂2 and their

95% pointwise confidence intervals.

those women that have the range of the difference of the maximum cycle length and the

minimum cycle length less than or equal to 10 days and those women that have missing

data less than 10%, thus reducing the sample size from 112 to 94.
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Figure 2.2: Plots of empirical sample variance of log progesterone and log estrogen levels

at each distinct time points in a standardized menstrual cycle.

We will conduct analysis in Chapter 5 using this study sample with 3 consecutive

cycles. Among the 94 study participants, the total number of observations is 7693*2 for

both responses, with each women contributing between 66 and 103 observations. The age

range in this new sample is between 23 to 44 years old and the lengths of the menstrual

cycles ranges between 19 to 38 days over all women and all cycles, with the average to be
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Figure 2.3: Plots of range of cycle lengths and missing data for each cycle for each woman

among women that have at least 3 consecutive cycles.

27.3 days. For the same reason as discussed earlier, the cycle length is standardized to a

reference 28 days. A log transformation was applied to both of progesterone and estrogen

levels to ensure the normality assumptions satisfied as in the single cycle case.

Figure 4.2 displays the log-transformed progesterone and estrogen levels for 3 consecu-

tive cycles which shows that the mean two hormone levels changes over time nonlinearly

and periodically.
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Figure 2.4: Plots of log progesterone and log estrogen levels against days in 3 standardized

menstrual cycles, superimposed by estimated population mean curve f̂1 and f̂2 and their

95% pointwise confidence intervals.
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Chapter 3

Univariate semiparametric stochastic

mixed effects models

3.1 Introduction

In this chapter, I will briefly review the model proposed by Zhang et al [45], as the

model proposed in the paper would serve as a foundation to the subsequent chapters in

the thesis. In addition, non-trivial theoretical details that were absent in the Zhang et al

[45] are proved in this chapter in details. Furthermore, we will point out some problems

in some of the Zhang et al [45] minor yet important results.

The chapter is organized as followed. Section 3.2 outlines the proposed model intro-

duced in Zhang et al [45]. Section 3.3 provides theoretical derivations of results given in

the paper. Section 3.3.1 provides the derivation of the regression coefficients and non-

parametric function. Section 3.3.2 provides the derivation of biases and covariances of the

regression coefficients, nonparametric function, random effects, and stochastic processes

Section 3.3.3 provides the derivation of the REML estimating equations and the Fisher in-

formation Matrix. Section 3.4 provides a summary of the chapter, and discusses challenges

and future work.
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3.2 Univariate semiparametric mixed effects models

A univariate semiparametric mixed effects model extended the traditional linear mixed

effects model by introducing additional nonparametric functions and various stationary and

nonstationary stochastic processes to model serial correlation into one cohesive model, see

Zhang et al [45] and Wu [39]. Specifically, suppose there are m subjects and each subject

has ni measurements, i = 1, . . . ,m; let Yij, j = 1, . . . , ni denote the jth measurement for

the ith subject, then the model can be written as

Yij = XT
ijβ + f(tij) + ZT

ijbi + Ui(tij) + εij (3.1)

where β is a p× 1 vector of regression coefficients associated with covariates Xij, f(t) is a

twice-differentiable smooth function of time, the bi are independent q×1 vectors of random

effects associated with covariates Zij, the Ui is an independent random processes used to

model serial correlation, and εij are independent measurement errors. The random effects

bi are assumed to be normally distributed with mean 0 and variance D(φ), where D is

assumed to be unstructured and is a positive definite matrix depending on a parameter

vector φ, whose components will depend on the dimension of the random effects bi; Ui(t) is

a mean zero Gaussian process1 with covariance function cov(Ui(s), Ui(t)) = γ(ξ, α; t, s) for

some specific parametric function γ(·) with a parameter vector ξ and a scalar parameter

α, where the components of ξ will depend on the specification of the mean-zero Gaussian

process; and εij is distributed as normal (0, σ2). The bi, Ui(t) and εij are assumed to be

mutually independent.

Inference of the model can be based on common smoothing methods discussed in Section

1.1.2. In Zhang et al [45], smoothing splines was used and the estimators of the regression

coefficients β and the estimator of the nonparametric function f(·) are obtained using

maximum penalized likelihood

`(β,f ;Y )− λ

2

∫
[f ′′(t)]2dt (3.2)

1A Gaussian process is a stochastic process {Xt, t ∈ T} (T is a totally ordered index set), any finite

number of which have a joint Gaussian distribution [26].
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where `(·) is the log-likelihood function and λ ≥ 0 is the smoothing parameter controlling

the balance between the goodness of fit and the roughness of the estimated f(·). The

resulting estimators are called the maximum penalized likelihood estimator (MPLE). The

penalized likelihood function (3.2) can also be rewritten as

`(β,f ;Y )− λ

2
fTKf , (3.3)

where K is the nonnegative definite smoothing matrix, defined in Equation (2.3) in Green

and Silverman [17]. The random effects bi and the stochastic process Ui are estimated

using their conditional means given the data as in LME models.

The use of smoothing spline allows the model to be rewritten as a modified LME

model [45], which provides a foundation for the estimation of the smoothing parameter

λ and variance parameters. The variance components and the smoothing parameter are

estimated using restricted maximum likelihood (REML). The BLUPs from this modified

LME model are identical to the MPLEs from (3.2 - 3.3).

3.3 Proof of inference results in the paper

3.3.1 Derivation of model regression coefficients and nonpara-

metric functions

Lemma 1. Given the log likelihood function of (β,f) from Zhang et al[45]

`(β,f ;Y ) = −1

2
log |V | − 1

2
(Y −Xβ −Nf)TV −1(Y −Xβ −Nf), (3.4)

where N is the incidence matrix defined in from Zhang et al[45] and Γi is the covariance

matrix for the Gaussian process Ui, V = diag(V1, . . . , Vm) and Vi = ZiDZ
T
i + Γi +

σ2Ini , i = 1, . . . ,m, show

β̂ = (XTWxX)−1XTWxY .

and

f̂ = (NTWfN + λK)−1NTWfY
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where Wx = W −WN(NTWN +λK)−1NTW ,Wf = W −WX(XTWX)−1XTW ,

and W = V −1.

Proof. Taking derivative of 3.4 with respect to β, we have 2

`β =

(
−1

2

)
(−2)XTV −1(Y −Xβ −Nf)

= XTW (Y −Xβ −Nf)

= XTWY −XTWXβ −XTWNf .

Set `β = 0, we have

XTWXβ̂ +XTWNf̂ = XTWY . (3.5)

Thus,

β̂ = (XTWX)−1(XTWY −XTWNf̂). (3.6)

Similarly, taking derivative of 3.4 with respect to f , we have

`f =

(
−1

2

)
(−2)NTW (Y −Xβ −Nf)− λ

2
(2)Kf

= NTWY −NTWXβ −NTWNf − λKf .

Setting `f = 0, we have

NTWXβ̂ + (NTWN + λK)f̂ = NTWY , (3.7)

which give

f̂ = (NTWN + λK)−1(NTWY −NTWXβ̂). (3.8)

Plugging f̂ (3.8) into equation (3.5), we have

XTWXβ̂ +XTWN [(NTWN + λK)−1(NTWY −NTWXβ̂)] = XTWY .

Expanding and rearranging the equation, we have

XTWXβ̂ −XTWN(NTWN + λK)−1NTWXβ̂

= XTWY −XTWN(NTWN + λK)−1NTWY ,

2Note ∂
∂s (x−As)TW (x−As) = −2ATW (x−As).
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which can be reexpressed as

XT [W −WN(NTWN + λK)−1NTW ]Xβ̂

= XT [W −WN(NTWN + λK)−1NTW ]Y ,

or

XTWxXβ̂ = XTWxY

where Wx = W −WN(NTWN + λK)−1NTW . Solving for β̂, we have

β̂ = (XTWxX)−1XTWxY .

Similarly, plugging β̂ (3.6) into equation (3.7), we have

NTWX[(XTWX)−1(XTWY −XTWNf̂)] + (NTWN + λK)f̂ = NTWY .

Expanding and rearrangingthe equation, we have

[NTWN + λK −NTWX(XTWX)−1XTWN ]f̂

= NT [W −WX(XTWX)−1XTW ]Y ,

which simplifies as

(NTWfN + λK)f̂ = NTWfY .

We thus obtain the estimator of f̂

f̂ = (NTWfN + λK)−1NTWfY

where Wf = W −WX(XTWX)−1XTW .

Therefore, the maximum penalized likelihood estimators of β̂ and f̂ from Zhang et al

[45] are

β̂ = (XTWxX)−1XTWxY .

where Wx = W −WN(NTWN + λK)−1NTW . and

f̂ = (NTWfN + λK)−1NTWfY

where Wf = W −WX(XTWX)−1XTW .
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3.3.2 Derivations of bias and covariance of random effects and

stochastic process

Derivations of biases of regression coefficients, nonparametric function, random

effects and stochastic process

Lemma 2. Show

E(β̂)− β = (XTWxX)−1XTWxNf ,

and

E(f̂)− f = −λ(NTWfN + λK)−1Kf

and these biases go to 0 as λ goes to 0. Also find their covariances.

Proof. For regression coefficient estimator β̂,

E(β̂) = (XTWxX)−1XTWxE[Y ]

= (XTWxX)−1XTWx(Xβ +Nf)

= (XTWxX)−1XTWxXβ + (XTWxX)−1XTWxNf

= β + (XTWxX)−1XTWxNf

Or equivalently, the bias of regression coefficient estimator β̂ is

E(β̂)− β = (XTWxX)−1XTWxNf . (3.9)
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For nonparametric function estimator f̂ = (NTWfN + λK)−1NTWfY ,

E(f̂)

= (NTWfN + λK)−1NTWfE[Y ]

= (NTWfN + λK)−1NTWf (Xβ +Nf)

= (NTWfN + λK)−1NTWfXβ + (NTWfN + λK)−1NTWfNf

= (NTWfN + λK)−1NTWfXβ + (NTWfN + λK)−1(NTWfN + λK − λK)f

= (NTWfN + λK)−1NTWfXβ + (NTWfN + λK)−1(NTWfN + λK)f

−λ(NTWfN + λK)−1Kf

= (NTWfN + λK)−1NWfXβ + f − λ(NTWfN + λK)−1Kf

= f − λ(NTWfN + λK)−1Kf ,

where the term (NTWfN + λK)−1NWfXβ vanishes since by plugging Wf = W −
WX(XTWX)−1XTW , we have

(NTWfN + λK)−1NWfXβ

= (NTWfN + λK)−1N
[
W −WX(XTWX)−1XTW

]
Xβ

= (NTWfN + λK)−1NWXβ

−(NTWfN + λK)−1NWX(XTWX)−1XTWXβ

= (NTWfN + λK)−1NWXβ

−(NTWfN + λK)−1NWXβ

= 0.
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Plugging Wx into bias (3.9) of β̂, we have

E(β̂)− β

=
[
XT (W −WN(NTWN + λK)−1NTW )X

]−1 ·
XT (W −WN(NTWN + λK)−1NTW )Nf

=
[
XT (W −WN(NTWN + λK)−1NTW )X

]−1
XTWNf

−
[
XT (W −WN(NTWN + λK)−1NTW )X

]−1 ·
XTWN(NTWN + λK)−1NTWNf

=
[
XT (W −WN(NTWN + λK)−1NTW )X

]−1 ·
XTWN

[
f − (NTWN + λK)−1NTWNf

]
→ 0 as λ→ 0

Note that the last term in square bracket vanishes as λ→ 0.

The covariance of β̂ is

Cov(β̂) = (XTWxX)−1XTWxCov(Y )
[
(XTWxX)−1XTWx

]T
= (XTWxX)−1XTWxVWxX(XTWxX)−1

since W T
x = Wx and

[
(XTWxX)−1

]T
=
[
(XTWxX)T

]−1
= (XTWxX)−1.

The covariance of f̂ is

Cov(f̂) = (NTWfN + λK)−1NTWfCov(Y )
[
(NTWfN + λK)−1NTWf

]T
= (NTWfN + λK)−1NTWfVWfN (NTWfN + λK)−1

since W T
f = Wf and[
(NTWfN + λK)−1

]T
=
[
(NTWfN + λK)T

]−1
= (NTWfN + λK)−1.

Lemma 3. Show

E(b̂i) = DZT
i Wi

[
λNi(N

TWfN + λK)−1K −Xi(X
TWxX)−1XTWxN

]
f ,

25



and ,

E
[
Ûi(si)

]
= Γi(si, ti)Wi

[
λNi(N

TWfN + λK)−1K −Xi(X
TWxX)−1XTWxN

]
f .

and these biases go to 0 as λ goes to 0.

Proof. The estimators of the random effects b̂i and the stochastic process Ûi are given by

b̂i = DZT
i Wi(Yi −Xiβ̂ − f̂i)

and

Ûi(si) = Γi(si, ti)Wi(Yi −Xiβ̂ − f̂i).

Similarly, we want to find their biases and covariances. For the expected values of these

estimators, we first calculate

E(Yi −Xiβ̂ − f̂i) = E(Yi)− E(Xiβ̂)− E(f̂i)

= Xiβ +Nif −XiE(β̂)− E(f̂i)

= Xiβ +Nif −Xi

[
β + (XTWxX)−1XTWxNf

]
−
[
Nif − λNi(N

TWfN + λK)−1Kf
]

= Xiβ +Nif −Xiβ −Xi(X
TWxX)−1XTWxNf

−Nif + λNi(N
TWfN + λK)−1Kf

=
[
λNi(N

TWfN + λK)−1K −Xi(X
TWxX)−1XTWxN

]
f

where

E(f̂i) = E(Nif̂) = NiE(f̂) = Nif − λNi(N
TWfN + λK)−1Kf .

Thus, the expected values are

E(b̂i) = DZT
i WiE(Yi −Xiβ̂ − f̂i)

= DZT
i Wi

[
λNi(N

TWfN + λK)−1K −Xi(X
TWxX)−1XTWxN

]
f ,

and similarly,

E
[
Ûi(si)

]
= Γi(si, ti)WiE(Yi −Xiβ̂ − f̂i)

= Γi(si, ti)Wi

[
λNi(N

TWfN + λK)−1K −Xi(X
TWxX)−1XTWxN

]
f .
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Note that as λ → 0, both the biases in the estimators of the random effects b̂i and

the stochastic process Ûi go to zero, since by plugging Wx = W −WN(NTWN +

λK)−1NTW , we have

XTWxNf

= XTWNf −XTWN(NTWN + λK)−1NTWNf

= XTWN
[
f − (NTWN + λK)−1NTWNf

]
→ XTWN

[
f − (NTWN)−1NTWNf

]
as λ→ 0

= 0

Lemma 4. Let χi =
(
Xi Ni

)
and χ =

(
X N

)
, show

Cov(b̂i − bi) = D −DZT
i ViZiD +DZT

i WiχiC
−1χTWχC−1χTi WiZiD.

Proof. For the covariances, we will first find the covariance of the random effects bi. Since

Cov(b̂i − bi) = Var(b̂i) + Var(bi)− Cov(bi, b̂i)− Cov(b̂i, bi)

and Var(bi) = D, it suffices to find Var(b̂i) and Cov(bi, b̂i). To find

Var(b̂i) = DZT
i WiVar(Yi −Xiβ̂ − f̂i)WiZiD,

denote

Wxi = Wi −WiNi(N
TWN + λK)−1NT

i Wi

and

Wfi = Wi −WiXi(X
TWX)−1XT

i Wi,
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we have

Cov(Yi,Xiβ̂) = Cov(Yi,Xi(X
TWxX)−1XTWxY )

= Cov

(
Yi,Xi(X

TWxX)−1
m∑
j=1

XT
j WxjYj

)
= Cov

(
Yi,Xi(X

TWxX)−1XT
i WxiYi

)
= Cov(Yi,Yi)[Xi(X

TWxX)−1XT
i Wxi ]

T

= ViWxiXi(X
TWxX)−1XT

i ,

= Vi[Wi −WiNi(N
TWN + λK)−1NT

i Wi]Xi(X
TWxX)−1XT

i ,

= [Ii −Ni(N
TWN + λK)−1NT

i Wi]Xi(X
TWxX)−1XT

i ,

Cov(Xiβ̂,Yi) = [Cov(Yi,Xiβ̂)]T = Xi(X
TWxX)−1XT

i [Ii−WiNi(N
TWN+λK)−1NT

i ]

Cov(Yi, f̂i) = Cov(Yi,Nif̂)

= Cov(Yi,Ni(N
TWfN + λK)−1NTWfY )

= Cov(Yi,Ni(N
TWfN + λK)−1

m∑
j=1

NT
j WfjYj)

= Cov(Yi,Ni(N
TWfN + λK)−1NT

i WfiYi)

= Cov(Yi,Yi)[Ni(N
TWfN + λK)−1NT

i Wfi ]
T

= ViWfiNi(N
TWfN + λK)−1NT

i

= Vi[Wi −WiXi(X
TWX)−1XT

i Wi]Ni(N
TWfN + λK)−1NT

i

= [Ii −Xi(X
TWX)−1XT

i Wi]Ni(N
TWfN + λK)−1NT

i

Cov(f̂i,Yi) = [Cov(Yi, f̂i)]
T = Ni(N

TWfN + λK)−1NT
i [Ii −WiXi(X

TWX)−1XT
i ]

and3

Cov(Xiβ̂, f̂i) = Cov
[
Xi(X

TWxX)−1XTWxY ,Ni(N
TWfN + λK)−1NTWfY

]
= Xi(X

TWxX)−1XTWxCov(Y ,Y )[Ni(N
TWfN + λK)−1NTWf ]

T

= Xi(X
TWxX)−1XTWxVWfN (NTWfN + λK)−1NT

i .

Cov(f̂i,Xiβ̂) = [Cov(Xiβ̂, f̂i)]
T = Ni(N

TWfN+λK)−1NTWfVWxX(XTWxX)−1XT
i

3Recall Cov(AX,BTY ) = ACov(X,Y )B
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Thus,

Var(Yi −Xiβ̂ − f̂i)
= Var(Yi) + Var(Xiβ̂) + Var(Nif̂)

−Cov(Yi,Xiβ̂)− Cov(Xiβ̂,Yi)

−Cov(Yi, f̂i)− Cov(f̂i,Yi)

+Cov(Xiβ̂, f̂i) + Cov(f̂i,Xiβ̂)

= Vi +Xi(X
TWxX)−1XTWxVWxX(XTWxX)−1XT

i

+Ni(N
TWfN + λK)−1NTWfVWfN (NTWfN + λK)−1NT

i

−[Ii −Ni(N
TWN + λK)−1NT

i Wi]Xi(X
TWxX)−1XT

i

−Xi(X
TWxX)−1XT

i [Ii −WiNi(N
TWN + λK)−1NT

i ]

−[Ii −Xi(X
TWX)−1XT

i Wi]Ni(N
TWfN + λK)−1NT

i

−Ni(N
TWfN + λK)−1NT

i [Ii −WiXi(X
TWX)−1XT

i ]

+Xi(X
TWxX)−1XTWxVWfN (NTWfN + λK)−1NT

i

+Ni(N
TWfN + λK)−1NTWfVWxX(XTWxX)−1XT

i

Var(b̂i)

= DZT
i ViZiD

+DZT
i Wi[Xi(X

TWxX)−1XTWxVWxX(XTWxX)−1XT
i

+Ni(N
TWfN + λK)−1NTWfVWfN (NTWfN + λK)−1NT

i

−[Ii −Ni(N
TWN + λK)−1NT

i Wi]Xi(X
TWxX)−1XT

i

−Xi(X
TWxX)−1XT

i [Ii −WiNi(N
TWN + λK)−1NT

i ]

−[Ii −Xi(X
TWX)−1XT

i Wi]Ni(N
TWfN + λK)−1NT

i

−Ni(N
TWfN + λK)−1NT

i [Ii −WiXi(X
TWX)−1XT

i ]

+Xi(X
TWxX)−1XTWxVWfN (NTWfN + λK)−1NT

i

+Ni(N
TWfN + λK)−1NTWfVWxX(XTWxX)−1XT

i ]WiZiD
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We now want to find the covariance between b̂i and bi. First, we need to find

Cov(bi,Yi) = Cov[bi, (Xiβ +Nif +Zibi +Ui + εi)]

= Cov(bi,Zibi)

= DZT
i ,

Cov(bi,Xiβ̂) = Cov[bi,Xi(X
TWxX)−1XTWxY ]

= Cov

[
bi,Xi(X

TWxX)−1
m∑
j=1

XT
j WxjYj

]
= Cov[bi,Xi(X

TWxX)−1XT
i WxiYi]

= Cov(bi,Yi)[Xi(X
TWxX)−1XT

i Wxi ]
T

= DZT
i WxiXi(X

TWxX)−1XT
i

Cov(bi, f̂i) = Cov(bi,Nif̂)

= Cov(bi,Ni(N
TWfN + λK)−1NTWfY )

= Cov

[
bi,Ni(N

TWfN + λK)−1
m∑
j=1

NT
j WfjYj

]
= Cov

[
bi,Ni(N

TWfN + λK)−1NT
i WfiYi

]
= Cov(bi,Yi)

[
Ni(N

TWfN + λK)−1NT
i Wfi

]T
= DZT

i W
T
fi
Ni(N

TWfN + λK)−1NT
i
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Thus,

Cov(bi, b̂i)

= Cov[bi,DZ
T
i Wi(Yi −Xiβ̂ − f̂i)]

= Cov(bi,Yi −Xiβ̂ − f̂i)WiZiD

= [Cov(bi,Yi)− Cov(bi,Xiβ̂)− Cov(bi, f̂i)]WiZiD

= [DZT
i −DZT

i WxiXi(X
TWxX)−1XT

i

−DZT
i W

T
fi
Ni(N

TWfN + λK)−1NT
i ]WiZiD

= DZT
i WiZiD

−DZT
i

[
WxiXi(X

TWxX)−1XT
i +WfiNi(N

TWfN + λK)−1NT
i

]
WiZiD

= DZT
i WiZiD

−DZT
i [(Wi −WiNi(N

TWN + λK)−1NT
i Wi)Xi(X

TWxX)−1XT
i

+(Wi −WiXi(X
TWX)−1XT

i Wi)Ni(N
TWfN + λK)−1NT

i ]WiZiD

= DZT
i WiZiD

−DZT
i Wi[(Ii −Ni(N

TWN + λK)−1NT
i Wi)Xi(X

TWxX)−1XT
i

+(Ii −Xi(X
TWX)−1XT

i Wi)Ni(N
TWfN + λK)−1NT

i ]WiZiD

and

Cov(b̂i, bi)

= DZT
i WiZiD

−DZT
i Wi

[
Xi(X

TWxX)−1XT
i Wxi +Ni(N

TWfN + λK)−1NT
i Wfi

]
ZiD

= DZT
i WiZiD

−DZT
i Wi[Xi(X

TWxX)−1XT
i (Wi −WiNi(N

TWN + λK)−1NT
i Wi)

+Ni(N
TWfN + λK)−1NT

i (Wi −WiXi(X
TWX)−1XT

i Wi)]ZiD

= DZT
i WiZiD

−DZT
i Wi[Xi(X

TWxX)−1XT
i (Ii −WiNi(N

TWN + λK)−1NT
i )

+Ni(N
TWfN + λK)−1NT

i (Ii −WiXi(X
TWX)−1XT

i )]WiZiD
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Cov(b̂i − bi)

= Var(b̂i) + Var(bi)− Cov(bi, b̂i)− Cov(b̂i, bi)

= D +DZT
i ViZiD

+DZT
i Wi[Xi(X

TWxX)−1XTWxVWxX(XTWxX)−1XT
i

+Ni(N
TWfN + λK)−1NTWfVWfN(NTWfN + λK)−1NT

i

−[Ii −Ni(N
TWN + λK)−1NT

i Wi]Xi(X
TWxX)−1XT

i

−Xi(X
TWxX)−1XT

i [Ii −WiNi(N
TWN + λK)−1NT

i ]

−[Ii −Xi(X
TWX)−1XT

i Wi]Ni(N
TWfN + λK)−1NT

i

−Ni(N
TWfN + λK)−1NT

i [Ii −WiXi(X
TWX)−1XT

i ]

+Xi(X
TWxX)−1XTWxVWfN(NTWfN + λK)−1NT

i

+Ni(N
TWfN + λK)−1NTWfVWxX(XTWxX)−1XT

i ]WiZiD

−DZT
i WiZiD

+DZT
i Wi[(Ii −Ni(N

TWN + λK)−1NT
i Wi)Xi(X

TWxX)−1XT
i

+(Ii −Xi(X
TWX)−1XT

i Wi)Ni(N
TWfN + λK)−1NT

i ]WiZiD

−DZT
i WiZiD

+DZT
i Wi[Xi(X

TWxX)−1XT
i (Ii −WiNi(N

TWN + λK)−1NT
i )

+Ni(N
TWfN + λK)−1NT

i (Ii −WiXi(X
TWX)−1XT

i )]WiZiD

= D −DZT
i ViZiD

+DZT
i Wi[Xi(X

TWxX)−1XTWxVWxX(XTWxX)−1XT
i

+Ni(N
TWfN + λK)−1NTWfVWfN(NTWfN + λK)−1NT

i

+Xi(X
TWxX)−1XTWxVWfN(NTWfN + λK)−1NT

i

+Ni(N
TWfN + λK)−1NTWfVWxX(XTWxX)−1XT

i ]WiZiD (3.10)

Denote

A = Xi(X
TWxX)−1XTWx

and

B = Ni(N
TWfN + λK)−1NTWf
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we have the terms in the square brackets

Xi(X
TWxX)−1XTWxVWxX(XTWxX)−1XT

i

+Ni(N
TWfN + λK)−1NTWfVWfN (NTWfN + λK)−1NT

i

+Xi(X
TWxX)−1XTWxVWfN (NTWfN + λK)−1NT

i

+Ni(N
TWfN + λK)−1NTWfVWxX(XTWxX)−1XT

i

= AV AT +BV BT + AV BT +BV AT

= AV (AT +BT ) +BV (BT + AT )

= (A+B)V (AT +BT ) (3.11)

where

A+B

= Xi(X
TWxX)−1XTWx +Ni(N

TWfN + λK)−1NTWf

= Xi(X
TWxX)−1XT [W −WN(NTWN + λK)−1NTW ]

+Ni(N
TWfN + λK)−1NT [W −WX(XTWX)−1XTW ]

= Xi(X
TWxX)−1XTW −Xi(X

TWxX)−1XTWN(NTWN + λK)−1NTW

+Ni(N
TWfN + λK)−1NTW

−Ni(N
TWfN + λK)−1NTWX(XTWX)−1XTW

= (Xi Ni)
(

(XTWxX)−1 −(XTWxX)−1XTWN(NTWN + λK)−1

−(NTWfN + λK)−1NTWX(XTWX)−1 (NTWfN + λK)−1

)(
XT

NT

)
W

= χiC
−1χTW

and

AT +BT

= WX(XTWxX)−1XT
i −WN(NTWN + λK)−1NTWX(XTWxX)−1XT

i

+WN(NTWfN + λK)−1NT
i

−WX(XTWX)−1XTWN(NTWfN + λK)−1NT
i

= W (X N)
(

(XTWxX)−1 −(XTWxX)−1XTWN(NTWN + λK)−1

−(NTWfN + λK)−1NTWX(XTWX)−1 (NTWfN + λK)−1

)(
XT

i

NT
i

)
= WχC−1χTi
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Thus, equation (3.11) becomes

(A+B)V (AT +BT )

= χiC
−1χTWVWχC−1χTi

= χiC
−1χTWχC−1χTi

Therefore, by (3.10)

Cov(b̂i − bi) = D −DZT
i ViZiD +DZT

i WiχiC
−1χTWχC−1χTi WiZiD

3.3.3 Derivation of REML estimating equations and Fisher in-

formation matrix

Given in Zhang et al. [45], the REML log-likelihood of (τ,θ) is

`R(τ,θ;Y ) = −1

2
log |V∗| −

1

2
log |XT

∗ V
−1
∗ X∗| −

1

2
(Y −X∗β̂∗)TV −1∗ (Y −X∗β̂∗)

= −1

2

[
log |V∗|+ log |XT

∗ V
−1
∗ X∗|+ (Y −X∗β̂∗)TV −1∗ (Y −X∗β̂∗)

]
where X∗ = [X,NT ], V∗ = τB∗B

T
∗ +V , and B∗ = NB where B = L(LTL)−1 and L is

r × (r − 2) full-rank matrix satisfying K = LLT and LTT = 0.

Take derivative with respect to τ , we have

∂`R
∂τ

=

(
−1

2

)
·

[
∂ log |V∗|

∂τ
+
∂ log |XT

∗ V
−1
∗ X∗|

∂τ
+
∂(Y −X∗β̂∗)TV −1∗ (Y −X∗β̂∗)

∂τ

]
(3.12)
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Calculating the terms in the square brackets one by one, the first term gives

∂ log |V∗|
∂τ

=
∂ Tr(logV∗)

∂τ
since log |X| = Tr(logX) in general

=
Tr ∂(logV∗)

∂τ

= Tr
∂(logV∗)

∂τ

= Tr

[
∂(logV∗)

∂V∗

∂V∗
∂τ

]
= Tr(V −1∗ B∗B

T
∗ ). (3.13)

The second term4 is

∂ log |XT
∗ V

−1
∗ X∗|

∂τ
=

∂ Tr
[
log(XT

∗ V
−1
∗ X∗)

]
∂τ

=
Tr ∂

[
log(XT

∗ V
−1
∗ X∗)

]
∂τ

= Tr
∂
[
log(XT

∗ V
−1
∗ X∗)

]
∂τ

= Tr

{
∂
[
log(XT

∗ V
−1
∗ X∗)

]
XT
∗ V

−1
∗ X∗

∂XT
∗ V

−1
∗ X∗

∂V∗

∂V∗
∂τ

}
= Tr

[
−V −1∗ X∗(X

T
∗ V

−1
∗ X∗)

−1XT
∗ V

−1
∗ B∗B

T
∗
]
. (3.14)

The last term uses identity

V −1∗ (Y −X∗β̂∗) = V −1(Y −Xβ̂ −Nf̂)

which, after taking transpose on both sides, is equivalent to

(Y −X∗β̂∗)T (V −1∗ )T = (Y −Xβ̂ −Nf̂)TV −1.

4Recall ∂aTX−1b
∂X = −X−1abTX−1 for some matrix X and vectors a, b, and ∂Y −1

∂x = −Y −1 ∂Y
∂x Y

−1

for some matrix Y .
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Since V∗ = τB∗B
T
∗ + V , where B∗ is symmetric, and V is diagonal, thus V T

∗ = V∗ and

RHS = (Y −X∗β̂∗)T (V −1∗ )T

= (Y −X∗β̂∗)T (V T
∗ )−1

= (Y −X∗β̂∗)TV −1∗

⇒ (Y −X∗β̂∗)TV −1∗ = (Y −Xβ̂ −Nf̂)TV −1

thus, the partial of the last term is

∂

∂τ
(Y −X∗β̂∗)TV −1∗ (Y −X∗β̂∗)

= (Y −X∗β̂∗)T
∂V −1∗
∂τ

(Y −X∗β̂∗)

= −(Y −X∗β̂∗)TV −1∗
∂V∗
∂τ
V −1∗ (Y −X∗β̂∗)

= −(Y −Xβ̂ −Nf̂)TV −1B∗B
T
∗V

−1(Y −Xβ̂ −Nf̂) (3.15)

by using the identities. Note that here we didn’t take partials of β̂ and f̂ . Plugging results

(3.13) (3.14) (3.15) into equation (3.12), we have the score equation for τ as

∂`R
∂τ

=

(
−1

2

)
· {Tr(V −1∗ B∗B

T
∗ ) + Tr

[
−V −1∗ X∗(X

T
∗ V

−1
∗ X∗)

−1XT
∗ V

−1
∗ B∗B

T
∗
]

+(Y −Xβ̂ −Nf̂)TV −1B∗B
T
∗V

−1(Y −Xβ̂ −Nf̂)}

=

(
−1

2

)
· {Tr

(
[V −1∗ − V −1∗ X∗(X

T
∗ V

−1
∗ X∗)

−1XT
∗ V

−1
∗ ]B∗B

T
∗
)

−(Y −Xβ̂ −Nf̂)TV −1B∗B
T
∗V

−1(Y −Xβ̂ −Nf̂)}

=

(
−1

2

)
·
{

Tr(P∗B∗B
T
∗ )− (Y −Xβ̂ −Nf̂)TV −1B∗B

T
∗V

−1(Y −Xβ̂ −Nf̂)
}

where P∗ = V −1∗ − V −1∗ X∗(X
T
∗ V

−1
∗ X∗)

−1XT
∗ V

−1
∗ is the projection matrix.
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Now, we want to proceed to find Fisher information matrix for (τ,θ). In other words,

we need to find the second-order partial derivatives of `R with respect to (τ,θ); and then

the expected values of the second-order partial derivative.

∂2`R
∂τ 2

=
∂

∂τ

(
∂`R
∂τ

)
=

∂

∂τ

{
−1

2
Tr(P∗B∗B

T
∗ ) +

1

2
(Y −Xβ̂ −Nf̂)TV −1B∗B

T
∗V

−1(Y −Xβ̂ −Nf̂)

}
= −1

2
Tr(

∂

∂τ
P∗B∗B

T
∗ ) +

∂

∂τ

[
1

2
(Y −Xβ̂ −Nf̂)TV −1B∗B

T
∗V

−1(Y −Xβ̂ −Nf̂)

]
= −1

2
Tr(−V −1∗

∂V∗
∂τ
V −1∗ B∗B

T
∗ )

=
1

2
Tr(P∗B∗B

T
∗ P∗B∗B

T
∗ )

and

E

(
∂2`R
∂τ 2

)
=

1

2
Tr(P∗B∗B

T
∗ P∗B∗B

T
∗ ).

∂2`R
∂τ∂θj

=
∂

∂τ

(
∂`R
∂θj

)
=

∂

∂τ

{
−1

2
Tr(P∗

∂V

∂θj
) +

1

2
(Y −Xβ̂ −Nf̂)TV −1

∂V

∂θj
V −1(Y −Xβ̂ −Nf̂)

}
= −1

2
Tr(

∂

∂τ
P∗
∂V

∂θj
) +

∂

∂τ

[
1

2
(Y −Xβ̂ −Nf̂)TV −1

∂V

∂θj
V −1(Y −Xβ̂ −Nf̂)

]
= −1

2
Tr(−V −1∗

∂V∗
∂τ
V −1∗

∂V

∂θj
)

=
1

2
Tr(P∗B∗B

T
∗ P∗

∂V

∂θj
)
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and

E

(
∂2`R
∂τ∂θj

)
=

1

2
Tr(P∗B∗B

T
∗ P∗B∗B

T
∗ ).

∂2`R
∂θj∂θk

=
∂

∂θj

(
∂`R
∂θk

)
=

∂

∂θj

{
−1

2
Tr(P∗

∂V

∂θk
) +

1

2
(Y −Xβ̂ −Nf̂)TV −1

∂V

∂θk
V −1(Y −Xβ̂ −Nf̂)

}
= −1

2
Tr(

∂

∂θj
P∗
∂V

∂θk
) +

∂

∂θj

[
1

2
(Y −Xβ̂ −Nf̂)TV −1

∂V

∂θk
V −1(Y −Xβ̂ −Nf̂)

]
= −1

2
Tr(P∗

∂2V

∂θj∂θk
− V −1∂V

∂θj
V −1

∂V

∂θk
)

+
1

2
(Y −Xβ̂ −Nf̂)T [−V −1∂V

∂θj
V −1

∂V

∂θk
V −1 + V −1

∂2V

∂θj∂θk
V −1

−V −1∂V
∂θk

V −1
∂V

∂θj
V −1](Y −Xβ̂ −Nf̂)

= −1

2
Tr

(
P∗

∂2V

∂θj∂θk
− P∗

∂V

∂θj
P∗
∂V

∂θk

)
−1

2
(Y −Xβ̂ −Nf̂)T

(
P∗
∂V

∂θj
P∗
∂V

∂θk
− P∗

∂2V

∂θj∂θk
+ P∗

∂V

∂θk
P∗
∂V

∂θj

)
·V −1(Y −Xβ̂ −Nf̂)

and

E

(
∂2`R
∂θj∂θk

)
=

1

2
{Tr

(
P∗

∂2V

∂θj∂θk
− P∗

∂V

∂θj
P∗
∂V

∂θk

)
+ Tr

(
P∗
∂V

∂θj
P∗
∂V

∂θk
− P∗

∂2V

∂θj∂θk
+ P∗

∂V

∂θk
P∗
∂V

∂θj

)
}

=
1

2
Tr

(
P∗
∂V

∂θj
P∗
∂V

∂θk

)
as desired.
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3.4 Discussion and future work

I provide essential theoretical proofs and derivations for results from Zhang et al [45],

which pave the way for the theoretical development of the next chapter, Chapter 4. No

simulation results is shown here since the paper already contains it, though I wrote the R

program myself and have replicated both the simulation and the analysis of data applica-

tion. The R code is available upon request.

In addition, I also updated the findings from Zhang et al [45] and have shown in Lemma

3 that as the smoothing parameter λ goes to 0, the biases in the estimators of the random

effects b̂i and the stochastic process Ûi also goes to zero.

However, I would like to point out some other issues with that paper. First, there is

a discrepancy between the covariances of the estimators of the random effects b̂i stated in

the paper and the results that I derive in Lemma 4. In the paper,

Cov(b̂i − bi) = D −DZT
i ViZiD +DZT

i WiχiC
−1χTi WiχiC

−1χTi WiZiD

whereas, what I find is

Cov(b̂i − bi) = D −DZT
i ViZiD +DZT

i WiχiC
−1χTWχC−1χTi WiZiD

as shown in Lemma 4. The discrepancy is shown in colour red.

Second, an important omission in the simulation study is identified. Zhang et al [45]

provided an estimate of τ , which is the inverse of the smoothing parameter, in the data

analysis; however, mysteriously, they left out the estimate of τ in the simulation studies.

Having run a set of simulation study myself (results are not shown here), I can speculate

the reason why the estimates of τ was not presented in their simulation results is due to

the poor quality of its estimation; specifically, very poor relative bias. We would need to

do further research to determine why τ ’s performance is poor in my simulation study; and

very likely in their simulation and possibly to improve upon its estimation.

In spite of the issues mentioned above, the model proposed in Zhang et al [45] provide

a flexible yet easy-to-implement framework to model complex univariate longitudinal data.

It incorporated a nonparametric term into the model as part of the population mean

39



structure to better model the complex time course of the hormone levels. The incorporation

of the stochastic process gives more structure to model the within-subject covariance.

The theoretical derivation shown in this chapter serve as a springboard to Chapter 4

where a semiparametric stochastic mixed effects model is proposed to model the bivariate

longitudinal data; and Chapter 5 where a prediction procedure of a future cycle is presented

under the univariate semiparametric stochastic mixed model framework.
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Chapter 4

Semiparametric Stochastic Mixed

Effects Models for Bivariate

Longitudinal Data

4.1 Introduction

In this chapter, I am interested in modelling time courses for the estrogen and pro-

gesterone metabolite profiles for a single cycle, the effects of covariates on the hormone

excretion, and the potential correlation between the two hormones. Joint modeling of the

hormone profiles of estrogen and progesterone is challenging. First, the time courses of

the univariate hormones profiles is complex such that to model using a simple parametric

function, such as linear mixed effects model, is insufficient; see Figure 4.1. Second, mul-

tiple layers of correlation structures, say within-subject correlation between the bivariate

hormones at different time points, also present a challenge.

Some of the univariate techniques discussed in Chapter 1 have been extended to the

bivariate case. For example, Sy, Taylor & Cumberland[30] employed multivariate stochas-

tic processes to jointly model bivariate longitudinal data. Funatogawa, Funatogawa &

Ohashi [12] proposed a bivariate autoregressive linear mixed effects model for longitudi-
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Figure 4.1: Plots of log progesterone and log estrogen levels against days in a standardized

menstrual cycle, superimposed by estimated population mean curve f̂1 and f̂2.

nal data. And shared random effects is another approach for jointly modeling outcomes

[33]. More recently, Raffa & Dubin[25] modelled bivariate longitudinal responses, from

outcomes of different data types, via a mixed effects hidden Markov modeling approach.
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And, most relevant in terms of the type of data focused upon in this paper, Liu et al [21]

extended the univariate state space model in time series analysis, and proposed a bivariate

hierarchical state space model to bivariate circadian rhythmic longitudinal responses; each

response is modelled by a hierarchical state space model, with both population-average

and subject-specific components; and the bivariate model is constructed by linking the

univariate models based on the hypothesized relationship between the responses.

It is worth noting that some Bayesian semiparametric modelling was proposed in the

literature. For example, Ghosh & Hanson [13] extended the work of Zhang et al [45] and

Zeger & Diggle [43] to the multivariate longitudinal data from a Bayesian prospective. A

multivariate mixture of Polya trees prior distribution was used to model the multivariate

random effects. Das et al [6] proposed a Bayesian semiparametric model for bivariate

sparse longitudinal data.

In this chapter, we extend Zhang et al [45] and propose a bivariate semiparametric

stochastic mixed model for bivariate repeated measures data. The bivariate model uses

parametric fixed effects and smooth nonparametric functions for each of the two underlying

time effects. The between-subject correlations are modelled using separate but correlated

random effects and the within-subject correlations by a bivariate Gaussian field. The

model allows us to investigate the relationship of the two responses through the correlation

of the random effects and the bivariate Gaussian field, which can not only describe the

concurrent relationship of the two responses but also allows for characterizations of the

relationship across time points. We derive maximum penalized likelihood estimators for

both the fixed effects regression coefficients and the nonparametric time functions. The

smoothing parameters and all variance components are estimated simultaneously using

restricted maximum likelihood.

The chapter is organized as followed. Section 4.2 specifies the proposed model with as-

sumptions. Section 4.3 provides estimation and inference procedures. Specifically, Section

4.3.1 gives estimation procedures for the model parameters, the nonparametric components,

random effects and the Gaussian fields. Section 4.3.2 specifies the biases and covariances

for all the estimators given in Section 4.3.1; and Section 4.3.3 concludes this section by pro-

viding the estimation procedures of the smoothing parameters and variance components.

Section 4.4 extends the model proposed in Section 4.2 to accommodate bivariate periodic
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longitudinal data with multiple cycles. Section 4.5 investigates the proposed methodology

through a simulation study. Section 4.6 illustrates the model by analyzing bivariate lon-

gitudinal female hormone data collected daily over a single menstrual cycle, and finally,

Section 4.7 provides a summary of our proposed model, and discusses challenges and future

work. Technical details are included in Appendix A.4.

4.2 The Bivariate Semiparametric Stochastic Mixed

Effects Model

4.2.1 The Proposed Model Specifications and Assumptions

Denote Yij = (Y1ij, Y2ij)
T to be the bivariate metabolite levels of estrogen and proges-

terone for the ith subject at time point tij, i = 1, . . . ,m and j = 1, . . . , ni. The bivariate

model is

Yij = XT
ijβ + f(tij) +ZT

ijbi +Ui(tij) + εij, (4.1)

where β = (β1,β2)
T are (p1+p2)×1 vectors of fixed effects regression coefficients associated

with known covariates Xij = diag(XT
1ij,X

T
2ij); b = (b1i, b2i)

T are 2q × 1 vectors of ran-

dom effects, respectively, associated with known covariates Zij = diag(ZT
1ij,Z

T
2ij); f(t) =

(f1(t), f2(t))
T are twice-differentiable smooth functions of time; Ui(t) = (U1i(t), U2i(t))

T is

a mean zero bivariate Gaussian field with covariance matrix

Ci(s, t) =

(√
ξ1(s)ξ1(t)η1(ρ1; s, t)

√
ξ1(s)ξ2(t)η3(ρ3; s, t)√

ξ2(s)ξ1(t)η3(ρ3; t, s)
√
ξ2(s)ξ2(t)η2(ρ2; s, t)

)
(4.2)

where ξ1(t) and ξ2(t) are variance functions; corr(U1i(t), U1i(s)) = η1(ρ1; s, t),

corr(U2i(t), U2i(s)) = η2(ρ2; s, t), and corr(U1i(t), U2i(s)) = η3(ρ3; s, t) are correlation func-

tions, where ρ1, ρ2 and ρ3 are correlation coefficients; and the measurement errors εij =

(ε1ij, ε2ij)
T are bivariate normal with mean 0 and variance diag(σ2

1, σ
2
2). We assume bi to

be 2q-dimensional normal with mean zero and unstructured covariance matrix G(φ), and

that the random effects, the stochastic process and the measurement error to be mutually

independent.
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This model (4.1) is an extension to the model proposed in Zhang et al [45], where a

univariate semiparametric stochastic mixed model for longitudinal data was proposed. The

challenge here is that we are modeling a bivariate longitudinal response model, which is

achieved by modeling a joint distribution of the random effects and the bivariate Gaussian

field. The two random effects are assumed separate but correlated. This specification of

random effect structure is preferred as opposed to the shared random effects due to the

flexibility that the structure allows over imposing a common random effect. The distribu-

tions of the two random effects can be potentially distinct, with different distributions or

the same distribution with different parameters.

4.2.2 Matrix Notation

To make inferences from the model (4.1), we will write the model in matrix form - first,

in subject level; then, over all subjects.

Denote Yi = (Yi1, . . . ,Yini)
T and similarly for Xi, Zi, Ui and εi. Let t′ = (t′1, . . . , t

′
r)

be a vector of ordered distinct values of tij, i = 1, . . . ,m and j = 1 . . . ni and define Ñi to

be the ni× r incidence matrix for the ith subject connecting ti = (ti1, . . . , tini)
T and t′ such

that

Ñi[j, `] =

1 if tij = t′`

0 otherwise,

where Ñi[j, `] denotes the (j, `)th entry of matrix Ñi for j = 1, . . . , ni and ` = 1, . . . , r1.

Let N1i = A1iÑi and N2i = A2iÑi, be the incidence matrices for the first and second

response, respectively, where

A1i =



1 0 0 . . . 0

0 0 0 . . . 0

0 1 0 . . . 0

0 0 0 . . . 0
...

. . .

0 . . . 0 0 1

0 0 0 . . . 0


∈ IR2ni×ni , A2i =



0 0 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0

0 1 0 . . . 0
...

. . .

0 0 0 . . . 0

0 . . . 0 0 1


∈ IR2ni×ni .
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Then, the proposed bivariate semiparametric stochastic mixed model (4.1) can be written

as

Yi = Xiβ +N1if1 +N2if2 +Zibi +Ui + εi

for subject i, where f1 = (f1(t
′
1), . . . , f1(t

′
r))

T and f2 = (f2(t
′
1), . . . , f2(t

′
r))

T . Note that

here we implicitly assume that each subject has distinct and potentially unequally spaced

time points and that the bivariate responses are observed at the same time point for the

same subject which is often realized in actual data applications, though this assumption

can be easily modified if needed.

Further denoting Y = (Y T
1 , . . . ,Y

T
m )T and X, N1, N2, b,U , ε similarly and letting

n =
∑m

i=1 ni, then the bivariate semiparametric stochastic mixed effects model over all

subjects is

Y = Xβ +N1f1 +N2f2 +Zb+U + ε, (4.3)

with assumptions  bU
ε

 ∼N

0

0

0

 ,

D(φ) 0 0

0 Γ(ξ, ρ) 0

0 0 Σ(σ2)




where D(φ) = diag(G, . . . ,G); Γ(ξ, ρ) = diag(Γ1(t1, t1), . . . ,Γm(tm, tm)) and the (k, k′)th

entry of Γi(ti, ti) is Ci(k, k
′); and Σ(σ2) is the diagonal matrix with alternating entries σ2

1

and σ2
2.

4.2.3 Covariance Structures

(a) Mean and Covariance of the Proposed Model

The marginal or population-averaged mean of Y is

E(Y ) = Xβ +N1f1 +N2f2,

and the marginal covariance of Y , averaged over the distribution of subject-specific effects

b is

cov(Y ) = ZDZT + Γ + Σ.
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The mean response for a specific subject is

E(Y |b) = Xβ +N1f1 +N2f2 +Zb,

and the covariance among the longitudinal observations for a specific subject is

cov(Y |b) = cov(U) + cov(ε) = Γ + Σ,

which describes the covariance of the subject deviations from the subject-specific mean

response E(Y |b). The within-subject correlation (Γ + Σ) structure is enhanced by the

addition of bivariate Gaussian field into the model.

(b) Modelling the Relationship of the Bivariate Responses

Moreover, the proposed model also allows for explicit analysis of the relationship of

the bivariate responses, which is explained by the covariance of the random effects and

and the covariance of the bivariate Gaussian field. Specifically, the covariance between the

bivariate responses at time points tij and tik for individual i is given by

cov(Y1ij, Y2ik)

= cov(XT
1ijβ1 + f1(tij) +ZT

1ijb1i + U1i(tij) + ε1ij,X
T
2ikβ2 + f2(tik) +ZT

2ikb2i + U2i(tik) + ε2ik)

= cov(ZT
1ijb1i + U1i(tij) + ε1ij,Z

T
2ikb2i + U2i(tik) + ε2ik)

= ZT
1ijcov(b1i, b2i)Z2ik + cov(U1i(tij), U2i(tik))

= ZT
1ijG

′Z2ik +
√
ξ1(tij)ξ2(tik)η3(ρ3; tij, tik), (4.4)

where G′ is the q by q upper off-diagonal block matrix of covariance matrix G for the

random effects bi. The result shows that the inclusion of bivariate Gaussian field allows

for modelling the covariance of the bivariate responses at different time points.

4.2.4 The Gaussian Field Specification

To accommodate for more complicated within-subject correlation and potential cor-

relation between the bivariate responses, we propose to include various stationary and

nonstationary bivariate Gaussian fields to model serial correlation. This allows for the
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within-subject covariance and the correlation between bivariate responses to be a function

of time.

There are potentially many choices available: Wiener process or Brownian motion [31];

an integrated Wiener process and so on. One particular Gaussian process/field worthy of

mentioning is the Ornstein-Uhlenbeck (OU) process [18] which has a correlation function

that decays exponentially over time corr(Ui(t), Ui(s)) = exp{−α|s − t|}. The variance

function for OU process ξ(t) = σ2/2a is a constant, thus the process is strictly stationary.

When ξ(t) varies over time, then the process becomes nonhomogenesous (NOU) and, for

example, we can assume ξ(t) = exp(a0 + a1t+ a1t
2).

4.3 Estimation and Inference

4.3.1 Estimation of Model Coefficients, Nonparametric Func-

tion, Random Effects and Gaussian Fields

The proposed model (4.3) implies the marginal model

Y = Xβ +N1f1 +N2f2 + ε∗, ε∗ ∼ N2n(0,V )

where V = ZDZT + Γ + Σ. Thus, the log-likelihood function for (β,f1,f2) is :

`(β,f1,f2;Y ) ∝ −1

2
log |V | − 1

2
(Y − β −N1f1 −N2f2)

TV −1(Y − β −N1f1 −N2f2)

for given fixed variance parameters. We estimate the parameters β, f1 and f2 by maxi-

mizing the penalized likelihood [35]:

`(β,f1,f2;Y )−λ1
∫ b

a

[f ′′1 (t)]2dt−λ2
∫ b

a

[f ′′2 (t)]2dt = `(β,f1,f2;Y )−λ1fT1 Kf1−λ2fT2 Kf2
(4.5)

where λ1 and λ2 are smoothing parameters; a and b is the range of time t; and K is the

nonnegative definite smoothing matrix, defined in Equation (2.3) in Green & Silverman[17].

Since observation time points tij are assumed to be the same for both responses, the
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smoothing matrix K, which is determined by time increments, is also the same. The

resulting estimators for the nonparametric functions are the natural cubic spline estimators

of f1 and f2.

Differentiation of (4.5) with respect to β, f1, f2 gives the estimators (β̂, f̂1, f̂2) that

solvesXTWX XTWN1 XTWN2

NT
1 WX NT

1 WN1 + λ1K NT
1 WN2

NT
2 WX NT

2 WN1 NT
2 WN2 + λ2K


βf1
f2

 =

XTWY

NT
1 WY

NT
2 WY

 , (4.6)

where W = V −1, for details see Appendix A.4.1. To study the theoretical properties of

the estimates, such as bias and covariance, we derive the closed-form solutions for β̂, f̂1

and f̂2

β̂ = (XTWxX)−1XTWxY (4.7)

f̂1 = (NT
1 Wf1N1 + λ1K)−1NT

1 Wf1Y (4.8)

f̂2 = (NT
2 Wf2N2 + λ2K)−1NT

2 Wf2Y , (4.9)

whereWx = W1−W1N2(N
T
2 W1N2+λ2K)−1NT

2 W1,Wf1 = W2−W2X(XTW2X)−1XTW2,

and Wf2 = W1 − W1X(XTW1X)−1XTW1 are weight matrices with W1 = W −
WN1(N

T
1 WN1 + λ1K)−1NT

1 W and W2 = W −WN2(N
T
2 WN2 + λ2K)−1NT

2 W .

Empirically, all inverses (XTWxX)−1, (NT
1 Wf1N1 +λ1K)−1, and (NT

2 Wf2N2 +λ2K)−1

exist. Note that they are the corresponding block-diagnoal elements of the inverse of the

coefficient matrix in equation (4.6).

Estimation of the subject-specific random effects bi and the subject-specific Gaussian

field Ui(si) is obtained by calculating their conditional expectations given the data Y .

Therefore,

b̂i = E(b|Y ) = DZT
i V

−1
i (Yi −Xiβ̂ − f̂1i − f̂2i) (4.10)

and similarly,

Ûi(si) = Γ(si, ti)V
−1
i (Yi −Xiβ̂ − f̂1i − f̂2i) (4.11)

where f̂1i = N1if̂1 and f̂2i = N2if̂2. Technical details for this subsection is included in

the Appendix A.4.2.
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4.3.2 Biases and Covariances of Model Coefficients, Nonpara-

metric Function, Random Effects and Gaussian Fields

From closed-form solutions of estimators from equation (4.7) (4.8) and (4.9) in Section

4.3.1, the biases of the estimators β̂, f̂1 and f̂2 can be easily calculated, see Appendix

A.4.3, and we have

E(β̂)− β = (XTWxX)−1XTWx(N1f1 +N2f2) (4.12)

E(f̂1)− f1 = (NT
1 Wf1N1 + λ1K)−1(NT

1 Wf1N2f2 − λ1Kf1) (4.13)

E(f̂2)− f2 = (NT
2 Wf2N2 + λ2K)−1(NT

2 Wf2N1f1 − λ2Kf2). (4.14)

Similarly, the expected values of the estimators in (4.10) and (4.11) for the subject-specific

random effects bi and for the subject-specific Gaussian field Ui(si) are

E(b̂i) = DZT
i Wi[λ1N1i(N

T
1 Wf1N1 + λ1K)−1K −Xi(X

TWxX)−1XTWxN1

−N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2N1]f1

+DZT
i Wi[λ2N2i(N

T
2 Wf2N2 + λ2K)−1K −Xi(X

TWxX)−1XTWxN2

−N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1N2]f2

and

E
[
Ûi(si)

]
= Γi(si, ti)[λ1N1i(N

T
1 Wf1N1 + λ1K)−1K −Xi(X

TWxX)−1XTWxN1

−N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2N1]f1

+Γi(si, ti)[λ2N2i(N
T
2 Wf2N2 + λ2K)−1K −Xi(X

TWxX)−1XTWxN2

−N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1N2]f2.

It can be shown that the biases of β̂, f̂1, f̂2, b̂i and Ûi all go to 0 as both smoothing

parameters λ1 → 0 and λ2 → 0, see Lemma 5 in Appendix A.4.3.

For covariances, simple calculation using (4.7) (4.8) and (4.9) gives the covariance of β̂

cov(β̂) = (XTWxX)−1XTWxVWxX(XTWxX)−1
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and the respective covariances of f̂1 and f̂2

cov(f̂1) = (NT
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf1N1(N
T
1 Wf1N1 + λ1K)−1

cov(f̂2) = (NT
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf2N2(N
T
2 Wf2N2 + λ2K)−1.

The covariances of the estimators in (4.10) and (4.11) for the subject-specific random effects

bi and for the subject-specific Gaussian field Ui(si) are

cov(b̂i − bi) = D −DZT
i WiZiD +DZT

i WiχiC
−1χTWχC−1χTi WiZiD (4.15)

and

cov(Ûi(si)−Ui(si))

= Γ(si, si)− Γ(si, ti)WiΓ(si, ti)
T + Γ(si, ti)WiχiC

−1χTWχC−1χTi WiΓ(si, ti)
T ,

where χi =
(
Xi N1i N2i

)
and χ =

(
X N1 N2

)
. The calculation of the results is

non-trivial and is provided in Appendix A.4.4.

4.3.3 Estimation of the Smoothing Parameters and Variance Pa-

rameters

To estimate the smoothing parameters and variance components jointly using the re-

stricted maximum likelihood (REML), we rewrite the proposed semiparametric model as

a modified linear mixed model. Specifically, by Green [16], the nonparametric functions f1

and f2 under a one-to-one linear transformation are

f1 = Tδ1 +Ba1

f2 = Tδ2 +Ba2

where δ1 and δ2 are vectors of dimensions 2; a1and a2 are of dimensions r − 2; B =

L(LTL)−1 and L is r× (r− 2) full-rank matrix satisfying K = LLT and LTT = 0. Thus

the proposed semiparametric mixed model (4.3) can be rewritten as a modified linear mixed

model [45],

Y = Xβ +N1Tδ1 +N1Ba1 +N2Tδ2 +N2Ba2 +Zb+U + ε, (4.16)
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where β∗ = (βT , δT1 , δ
T
2 )T are the regression coefficients and b∗ = (aT1 ,a

T
2 , b

T ,UT )T are

mutually independent random effects with a1 distributed as normal (0, τ1I), a2 distributed

as normal(0, τ2I) where τ1 = 1/λ1 and τ2 = 1/λ2, and (b,U ) having the same distribution

as specified before. The marginal variance of Y under the modified mixed model repre-

sentation becomes V∗ = τ1B1∗B
T
1∗ + τ2B2∗B

T
2∗ + V , where B1∗ = N1B and B2∗ = N2B.

Under the modified linear mixed model (4.16), the REML log-likelihood of (τ1, τ2,θ) is

`R(τ1, τ2,θ;Y ) = −1

2

[
log |V∗|+ log |XT

∗ V
−1
∗ X∗|+ (Y −X∗β̂∗)TV −1∗ (Y −X∗β̂∗)

]
,

where X∗ = [X,N1T ,N2T ]. Taking the derivative of `R with respect to τ1, τ1, and θ

and using the identity V −1∗ (Y −X∗β̂∗) = V −1(Y −Xβ̂ −N1f̂1 −N2f̂2), the estimating

equations for smoothing parameters τ1, τ2 and variance components θ can be obtained:

∂`R
∂τ1

= −1

2
tr(P∗B1∗B

T
1∗)+

1

2
(Y −Xβ̂−N1f̂1−N2f̂2)

TV −1B1∗B
T
1∗V

−1(Y −Xβ̂−N1f̂1−N2f̂2),

(4.17)

∂`R
∂τ2

= −1

2
tr(P∗B2∗B

T
2∗)+

1

2
(Y −Xβ̂−N1f̂1−N2f̂2)

TV −1B2∗B
T
2∗V

−1(Y −Xβ̂−N1f̂1−N2f̂2),

(4.18)

and

∂`R
∂θj

= −1

2
tr(P∗

∂V

∂θj
)+

1

2
(Y −Xβ̂−N1f̂1−N2f̂2)

TV −1
∂V

∂θj
V −1(Y −Xβ̂−N1f̂1−N2f̂2), (4.19)

where P∗ = V −1∗ − V −1∗ X∗(X
T
∗ V

−1
∗ X∗)

−1XT
∗ V

−1
∗ is the projection matrix.

The covariance of the smoothing parameters τ1, τ2 and variance components θ can

be estimated using a Fisher-scoring algorithm, where the Fisher information matrix is

obtained using (4.17), (4.18) and (4.19),

I =

Iτ1τ1 Iτ1τ2 Iτ1θ

Iτ2τ1 Iτ2τ2 Iτ2θ

Iθτ1 Iθτ2 Iθθ

 =

Iτ1τ1 Iτ1τ2 Iτ1θ

ITτ1τ2 Iτ2τ2 Iτ2θ

ITτ1θ ITτ2θ Iθθ

 ,

where

Iτ1τ1 =
1

2
tr(P∗B1∗B

T
1∗P∗B1∗B

T
1∗), Iτ2τ2 =

1

2
tr(P∗B2∗B

T
2∗P∗B2∗B

T
2∗),
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Iτ1θj =
1

2
tr

(
P∗B1∗B

T
1∗P∗

∂V

∂θj

)
, Iτ2θj =

1

2
tr

(
P∗B2∗B

T
2∗P∗

∂V

∂θj

)
,

and

Iτ1τ2 =
1

2
tr(P∗B1∗B

T
1∗P∗B2∗B

T
2∗), Iθjθk =

1

2
tr

(
P∗
∂V

∂θj
P∗
∂V

∂θk

)
.

4.4 Bivariate semiparametric mixed effects model for

perodic longitudinal data from multiple cycles

We extend methods from Section 4.2 to fit bivariate periodic longitudinal data with

multiple cycles. The model was motivated by the dataset described in Chapter 2, where

the hormone data changes periodically from one cycle to another, and both the mean

and the variance demonstrate periodic features, see Figure 4.2. Specifically, Denote Yij` =

(Yij1, Yij2)
T to be the bivariate responses for the ith subject at time point tij`, i = 1, . . . ,m,

j = 1, . . . , ni and ` = 1, . . . , l. The proposed model for bivariate periodic longitudinal

responses is

Yij` = XT
ijβ + f(tij`) +ZT

ijbi +Ui(tij`) + εij`, (4.20)

where β = (β1,β2)
T are (p1 + p2) × 1 vectors of fixed effects regression coefficients asso-

ciated with known covariates Xij = diag(XT
1ij,X

T
2ij); b = (b1i, b2i)

T are 2q × 1 vectors

of random effects, respectively, associated with known covariates Zij = diag(ZT
1ij,Z

T
2ij);

f(t) = (f1(t), f2(t))
T are twice-differentiable periodic smooth functions of time; Ui(t) =

(U1i(t), U2i(t))
T is a mean zero bivariate Gaussian field with covariance matrix

Ci(s, t) =

(√
ξ1(s)ξ1(t)η1(ρ1; s, t)

√
ξ1(s)ξ2(t)η3(ρ3; s, t)√

ξ2(s)ξ1(t)η3(ρ3; t, s)
√
ξ2(s)ξ2(t)η2(ρ2; s, t)

)
(4.21)

where ξ1(t) and ξ2(t) are periodic variance functions; corr(U1i(t), U1i(s)) = η1(ρ1; s, t),

corr(U2i(t), U2i(s)) = η2(ρ2; s, t), and corr(U1i(t), U2i(s)) = η3(ρ3; s, t) are correlation func-

tions, where ρ1, ρ2 and ρ3 are correlation coefficients; and the measurement errors εij =

(ε1ij, ε2ij)
T are bivariate normal with mean 0 and variance diag(σ2

1, σ
2
2). We assume bi to

be 2q-dimensional normal with mean zero and unstructured covariance matrix G(φ), and
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that the random effects, the stochastic process and the measurement error to be mutually

independent; and that the fixed effects β is across all cycles.

This model (4.20) is an extension to the model (4.1) and the model proposed in Zhang

et al [44]), where a univariate semiparametric stochastic mixed model for periodic longi-

tudinal data was proposed. A key difference from model (4.1) in Section 4.2 is that both

the nonparametric function and the variance of the Gaussian fields are constrained to be

periodic, thus resulting in the specification of the smoothing matrix K and the variance of

the Gaussian fields to be different. Also by taking advantage of the periodicity of the data,

the incidence matrix can be largely reduced by only estimating the nonparametric function

for one period. Preliminary application to the hormone shows that the method works well,

see Figure 4.2, where the smooth curve is the estimated nonparametric function and its

pointwise 95% confidence intervals. This is still ongoing research and more will be touched

upon in the discussion section.

4.5 Simulations

4.5.1 A Simulation Study using NOU

We conduct a simulation study to evaluate the performance of the estimates of the

model regression parameters and nonparametric function using the REML estimates of

the smoothing parameters and the variance parameters. Bivariate longitudinal data are

generated according to the following model:

Y1ij = ageTi β1 + f1(tij) + b1i + U1i(tij) + ε1ij

Y2ij = ageTi β2 + f2(tij) + b2i + U2i(tij) + ε2ij

i = 1, . . . , 30; j = 1, . . . , 28; tij ∈ {1, . . . , 28}

where b1i and b2i are separate but correlated random intercepts following a bivariate normal
distribution with mean 0 and unstructured covariance matrix D(φ1, φ1,2, φ2); U1i and U2i

are simulated from mean 0 bivariate NOU fields modeling serial correlation, with variance
function var(U1i(t)) = exp{a10 + a11t + a12t

2}, var (U2i(t)) = exp{a20 + a21t + a22t
2} and
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corr(U1i(t), U1i(s)) = ρ
|s−t|
1 corr(U2i(t), U2i(s)) = ρ

|s−t|
2 , i.e. the covariance function for the

bivariate NOU field is

Ci(s, t) =

(
ρ
|s−t|
1 exp{a10 + 1

2 [a11(s+ t) + a12(s2 + t2)]} 0

0 ρ
|s−t|
2 exp{a20 + 1

2 [a21(s+ t) + a22(s2 + t2)]}

)
;

ε1ij and ε2ij are simulated from a mean 0 bivariate normal distribution with covari-

ance diag(σ2
1, σ

2
2); and the nonparametric smooth functions are generated from f1(t) =

5 sin (2π/28) t and f2(t) = 3 cos (2π/28) t. Covariate age is randomly generated between

20 and 44 years old by R.

Table 4.1: Estimates of regression coefficients, variance parameter and smoothing param-

eter for the progesterone and estrogen data.

Model parameters True Value Parameter estimate Bias SE Model SE

β1 1.00 0.9987 0.0013 0.0271 0.0267

β2 0.75 0.7496 0.0005 0.0282 0.0267

τ1 1.00 0.7478 0.2522 0.1460

τ2 1.00 0.7388 0.2612 0.1535

φ1 1.00 0.9946 0.0054 0.0895

φ1,2 -0.50 -0.5019 -0.0038 0.0730

φ2 1.00 0.9971 0.0029 0.0868

σ2
1 1.00 0.9989 0.0011 0.0173

σ2
2 1.00 0.9994 0.0006 0.0185

ρ1 0.20 0.1620 0.1900 0.1034

a10 -0.44 -0.4936 -0.1218 0.7143

a11 0.30 0.3530 0.1767 0.7607

a12 -0.20 -0.2151 -0.0755 0.1823

ρ2 0.15 0.1483 0.0113 0.1531

a20 -1.60 -1.8383 -0.1489 0.9225

a21 0.30 0.4771 0.5903 0.6754

a22 -0.10 -0.1298 -0.2980 0.1187

Table 4.1 records the simulation results for estimates of model parameters based on 500

simulation replicates and 30 subjects, where the model-based SE is yet to be computed for
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the smoothing parameters and the variance components. The Bias is defined as the bias

of the parameter estimated divided by its true value, i.e., relative bias. The parameter

estimates of the regression coefficients β1 and β2, and the variance estimates of the ran-

dom intercepts and measurement errors are nearly unbiased, whereas the estimates of the

smoothing parameters and the NOU variance parameters are slightly biased.

The biases for the nonparametric functions f̂1 and f̂2 are both minimal and center

around 0, see Figure 4.3. Figure 4.4 shows that model standard errors of estimates of f̂1

and f̂2 agree quite well with the empirical standard errors.

Figure 4.5 shows the estimated pointwise 95% coverage probabilities of the true non-

parametric functions f1 and f2. The means for the estimated coverage probabilities are

95% and 93% for f̂1 and f̂2. Overall, our simulation study results are good.

4.5.2 Misspecification of Gaussian Fields

We further conduct simulation studies when the Gaussian fields are incorrectly specified

and study the effect of this misspecification on fixed effects, variance, and smoothing

parameter estimations. Specifically, we use OU and Wiener bivariate Gaussian fields,

respectively, to analyze datasets generated by NOU bivariate Gaussian field with the same

specification as above.

Based on 400 simulations results for each choice of Gaussian field, the estimates of

regression coefficients and random intercepts are fairly robust with bias close to zero even

when the bivariate Gaussian field is misspecified as bivariate OU or Wiener field. The

estimates for the smoothing parameters is much more biased for both bivariate OU or

Wiener field, though misspecification in OU field would lead to less bias than that in

Wiener. The estimates for variance of the measurement error are almost unbiased with

the misspecification of bivariate Wiener field; whereas it is 20% more biased in the case

of misspecification of bivariate OU field. In conclusion, misspecification of Gaussian field

does not have a major influence if more emphasis is placed on the estimates of regression

coefficients, yet the estimates of smoothing parameters and some variance components can

vary significantly from the true values in the presence of misspecification of Gaussian field.
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4.6 Bivariate Longitudinal Hormone Data Analysis

Denoting {(Y1ij, Y2ij)} the jth log-transformed progesterone and estrogen values mea-

sured at standardized day tij since menstruation for the ith woman, we consider the follow-

ing bivariate semiparametric stochastic mixed model for the hormone dataset described in

Section 2.1:

Y1ij = ageTi β11 + underWeightTi β12 + overWeightTi β13 + f1(tij) + b1i + U1i(tij) + ε1ij

Y2ij = ageTi β21 + underWeightTi β22 + overWeightTi β23 + f2(tij) + b2i + U2i(tij) + ε2ij

i = 1, . . . , 30; j = 1, . . . , ni; tij ∈ {0.5, 1.0, . . . , 28}

where the specifications of random intercepts b1i and b2i, the bivariate Gaussian field U1i

and U2i, the measurement errors ε1ij and ε2ij, and the nonparametric smooth functions are

the same as those in the simulation study. Covariates underWeight and overWeight are

indicator variables, which is characterized by Body Mass Index (BMI) where if BMI is less

than 19.0 then the person is categorized as underWeight whereas if BMI is greater than

25.7, then overWeight. For future work, more potential covariates will be considered. For

computational stability, standardized days were centered at the median day 14 and divided

by 10; covariate age is also centered at median 33 years old and divided by 100. Thus,

f1(t) and f2(t) represent the progesterone and estrogen curves, respectively, for women of

33 years old with normal weight.

Table 4.2 records the results of estimates of regression coefficients, smoothing parame-
ters and variance components. The standard errors of our fixed effects parameter estimates
are sufficiently large such that none of the fixed effects parameter estimates are statisti-
cally significant. That said, in terms of point estimates, we find a negative association
on both responses with age, and both overweight and underweight (compared to regular
BMI) are also negatively associated with progesterone only. The estimated correlation of
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Table 4.2: Estimates of regression coefficients, variance parameter and smoothing param-

eter for the progesterone and estrogen data.

Model parameters Parameter estimate Standard Error

β11 -1.2651 1.8674

β12 -0.1687 0.2995

β13 -0.1837 0.2009

β21 -0.1455 1.7131

β22 0.0068 0.2747

β23 0.0765 0.1843

τ1 4.6081

τ2 1.8475

φ1 0.6455

φ1,2 -0.2755

φ2 0.6208

σ21 0.6499

σ22 0.6019

ρ1 0.2368

a10 -0.7699

a11 0.2894

a12 -0.1673

ρ2 0.0917

a20 -1.7431

a21 0.5172

a22 -0.0800

the bivariate responses can be calculated from variance estimates from Table 4.2:

corr(Y1ij , Y2ik) =
cov(Y1ij , Y2ik)√

var(Y1ij)
√

var(Y2ik)

=
φ1,2√

σ2
1 + φ1 + ρ01exp{a10 + a11tij + a12t2ij}

√
σ2
2 + φ2 + ρ02exp{a20 + a21tik + a22t2ik}

=
−0.2755√

0.6499 + 0.6455 + exp{−0.7699 + 0.2894tij − 0.1673t2ij}
·

1√
0.6019 + 0.6208 + exp{−1.7431 + 0.5172tik − 0.0800t2ik}

,
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since cov(Y1ij, Y2ij) = cov(b1, b2) in this case. For example, if tij = 5 and tik = 6, then

corr(Y1ij, Y2ik) = −0.2343, which indicates that that the two hormones are negatively

correlated when progesterone is at tij = 5 and estrogen is at tik = 6. The estimates of

nonparametric function f̂1 and f̂2 and their 95% confidence interval are superimposed over

the log responses in Figure 4.1, respectively, which accurately captures the underlying

trends of the bivariate longitudinal responses.

4.7 Discussion

We propose and build a model for analysis of bivariate cyclic longitudinal data and

provide inference procedures. The model is proposed in the likelihood framework and

the regression parameters and nonparametric functions are estimated by maximizing a

penalized likelihood function. The smoothing parameter and variance components are

numerically estimated using the Fisher-scoring algorithm based on restricted maximum

likelihood. Modelling the time effect nonparametrically gives more flexibility in specify-

ing the response mean structure, and the Gaussian field allows for additional flexibility

in specifying the within-subject correlation structure, including possibly non-stationarity.

The correlation of the two responses were explained only through the correlation of the

random effects in the data analysis in Section 4.6, though the proposed model 4.1 can ac-

commodate more complicated correlation structure of the responses through the covariance

matrix (4.21) of the bivariate Gaussian field, as illustrated in subsection 4.2.3. Simulation

results show that inference procedure performs well in all estimation results.

The bivariate semiparametric stochastic longitudinal model we proposed can be readily

extended to multivariate longitudinal data. Dimensionality can pose as a challenge during

the extension however. In the bivariate studies, we employed both C++ and parallel

computing in the simulation study. Despite the effort, there is still computational burden

on estimation procedure. Also, due to the high dimensionality of the model and the

estimation problem, the algorithm is not always converging for all parameters; however,

it does very well for the estimations of all parameters. Considering the high dimensional

feature, the algorithm actually performs very well, specifically, about 90% to 95% of the
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time the algorighm converges in the simulation study and always converges in the real

dataset applications for the parameter estimations.

Parameter initializations of the bivariate Gaussian fields need to be properly chosen

as some initialization of Gaussian field parameters may lead to infinity in some entries of

variance-covariance matrix, thus causing the matrix degenerate. This said, in the anal-

ysis of the real dataset, we tried three very different initializations of the Gaussian field

parameters from one another, and all estimates of the regression parameters, the variance

components, and smoothing parameters are qualitatively the same, which is reassuring.

Initialization of the smoothing parameter in the Fisher-Scoring algorithm could also be

part of consideration for future work. Note in the simulation study and the data analysis,

both smoothing parameters are initialized to be 1 and it may not apply in the general

setting. In our proofs, we allow the smoothing parameters λ1 and λ2 to go to zero, and

this have implication on variance, which can be further investigated.

In this chapter, we consider modelling the bivariate longitudinal responses jointly via

separate but correlated random effects and bivariate Gaussian field. For future work, the

bivariate longitudinal responses can also be modelled separately for comparison purposes

in order to compare the efficiency gains from modelling the data jointly. The specification

of the random effect structure allows flexibility over imposing a shared random effects.

We would like to further explore sensitivity/robustness to the model assumptions. We

have investigated the impact of Gaussian field misspecification in the simulation studies,

which show that the choice of Gaussian field has little impact on the fixed effect parameters

of interest. However, if we were interested in the underlying biological process, a deeper

understanding of the choice of the Gaussian field is needed, including for the covariate

structure in equation (4.4). For example, residual plots may be considered as a potential

tool for model diagnostics and also for automatic choices for parameter selections; such as

a procedure that makes sense for initialing values to better avoid any local maximization or

lack of convergence for parameters to be estimated in the algorithm. Also, non-Guassian

models can be generalized under the proposed framework if needed. In spite of further work

to consider, this is a flexible and informative method for modeling bivariate longitudinal

response data and we look forward to further extensions of this work in the above and

possibly other directions.
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Figure 4.2: Plots of log progesterone and log estrogen levels against days in 3 standardized

menstrual cycles, superimposed by estimated population mean curve f̂1 and f̂2 and their

95% pointwise confidence intervals.
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Figure 4.3: Empirical Bias in estimated nonparametric functions f̂1 and f̂2 based on 500

simulation replications.
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Figure 4.4: Pointwise empirical (dashes) and frequentist (solid) standard errors of the

estimated nonparametric functions f̂1 and f̂2 based on 500 simulation replications.
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Figure 4.5: A graph showing the estimated 95% coverage probabilities of the true non-

parametric functions f1 and f2 based on 500 simulation replications.
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Figure 4.6: Plots of empirical sample variance of log progesterone and log estrogen levels

at each distinct time points in a standardized menstrual cycle.
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Chapter 5

Prediction

5.1 Introduction and literature review

Prediction is one of the fundamental problems in the statistical discipline. Usually

due to finite resources or other constraints, only a small portion of the data are available

for making reasonable predictions of new/future observations, thereby making prediction

a challenging problem. In the context of periodic longitudinal data, I would like to pre-

dict future cycles for a single response from past cycles, to detect any potential signs of

abnormalities or even illnesses.

In the literature, most prediction problems were approached from the Bayesian prospec-

tive, such as Taylor et al [32], Yu, Taylor & Sandler [42], and Proust-Lima & Taylor [24].

These three papers are concerned with prediction of prostate-specific antigen(PSA) using

joint longitudinal and survival models. Serrat et al [29] studied the same problem using

both frequentist and Bayesian approaches. Proust-Lima et al [23] provide a review on

the methods. Lawless & Fredette [20] propose a frequentist approach to obtain prediction

intervals and predictive distributions under a general parametric framework. The key to

the solution is via exact or approximate pivotal quantity.

In this chapter, I propose a prediction procedure from the frequentist prospective. In-

stead of approaching the problem using exact or approximate pivotal quantities, underlying
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covariance structure of the Gaussian process in the univariate semiparametric model in-

troduced in Zhang et al [44] is utilized to help solve the problem. The method can be

generally applied when the stochastic process in the semiparametric model has exponen-

tial correlation functions, which implicitly induces the Markov property. The prediction

approach will be illustrated through simulation studies and application to the hormone

dataset. Univariate prediction only will be considered in this chapter in the methodologi-

cal development; however, we will discuss the prediction problem in the bivariate context

in the discussion section.

The chapter is organized as followed. Section 5.2 proposes a general prediction proce-

dure of a single future observation for univariate longitudinal data. Specifically, Section

5.2.1 provides a prediction density function and prediction intervals for a single future ob-

servation. Section 5.2.2 illustrates the proposed method by an example; and Section 5.2.3

concludes this section by presenting methods and challenges when predicting an entire fu-

ture cycle. Section 5.3 investigates the proposed methodology through a simulation study.

Section 5.4 illustrates the model by analyzing bivariate longitudinal female hormone data

collected daily over a single menstrual cycle, and finally, Section 5.5 provides a summary

of our proposed model, and discusses challenges and future work.

5.2 Predictive Distribution and Predictive Intervals

5.2.1 General Method

We present in this section a general prediction procedure of a single future observation

for univariate longitudinal data. Consider the periodic semiparametric stochastic mixed

model introduced in Zhang et al [44], which is the univaraiate version of the model proposed

in Section 4.4. Denote {Yij} to be the jth measurement for the ith subject and suppose

there are m subjects and each subject has ni measurements; then the model is written as

Yij = XT
ijβ + f(tij) + bi + Ui(tij) + εij, (5.1)

where β is regression coefficients associated with covariatesXij; f(t) is a twice-differentiable

periodic function with period length to be T ; the bi are independent subject-specific ran-
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dom intercepts assumed to be normally distributed with mean 0 and variance φ; the Ui(t)

are independent mean zero Gaussian process with periodic covariance function ξ(t) and

correlation function corr(Ui(s), Ui(t)) = η(ρ; s, t) where ρ is correlation coefficient and be-

tween 0 and 1, and εij is distributed as independent normal (0, σ2
ε ). The bi, Ui(t) and εij

are assumed to be mutually independent.

The aim of the prediction procedure is to predict a single future observation Yi,j given

past observations Yi1, . . . , Yi,j−1 and the associated covariates Xij . The proposed method

take advantage of the fact that past observations Yi1, . . . , Yi,j−1 explicitly influence the

present observation Yi,j; and thus past can be treated as additional predictor variables. If

Gaussian process Ui’s have exponential correlation structure

cov(Ui(s), Ui(t)) = σ2 exp(ρ|s− t|),

then the conditional distribution of Ui(tij) given all past observations Ui(ti1), . . . , Ui(ti,j−1)

depends only on the previous observation value Ui(ti,j−1), and model (5.1) can be re-

interpreted as a transition Markov model by rewriting it as

Yij = XT
ijβ + f(tij) + bi + Ui(tij) + εij

where

Ui(tij) = α(tij)Ui(tij−1) +H(tij), (5.2)

α(tij) = exp(ρ|tij − ti,j−1|), and the H(tij) are mutually independent N(0, G) random

variables where G = σ2[1−α(tij)
2]. By substituting Ui(tij) = Yij −XT

ijβ− f(tij)− bi− εij
to Equation 5.2,

Yij −XT
ijβ − f(tij)− bi − εij

= α(tij)(Yi,j−1 −XT
i,j−1β − f(ti,j−1)− bi − εi,j−1) + Z(tij),

and rearragning gives

Yij = XT
ijβ + f(tij) + bi + εij

+α(tij)(Yi,j−1 −XT
i,j−1β − f(ti,j−1)− bi − εi,j−1) + Z(tij).
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Therefore, the predictive density function is

Yij|Yi,j−1,Xij ,Xi,j−1 ∼ N(µcond, σcond),

where

E(Yij|Yi,j−1,Xij ,Xi,j−1) = µcond = XT
ijβ + f(tij) + α(tij)(Yi,j−1 −XT

i,j−1β − f(ti,j−1))

and

V ar(Yij|Yi,j−1,Xij ,Xi,j−1) = σcond = V ar[bi − α(tij)(bi + εi,j−1) +H(tij) + εij)]

= [1 + α(tij)
2]V ar(bi) + [1 + α(tij)

2]V ar(εi,j−1) + V ar[H(tij)]

= [1 + α(tij)
2]φ+ [1 + α(tij)

2]σ2
ε + σ2[1− α(tij)

2].

This is an extension of the transition Markov models [7] to the periodic semiparametric

model (5.1). The appeal of this method is that it takes advantage of the properties of

Gaussian process and can be applied as long as Ui’s have the exponential correlation

structure. This model can also be applied when times of measurements are not common

to all subjects, which does not always hold for other correlation models [7].

5.2.2 An illustrative example

Suppose the stochastic process Ui(t) in the model follows mean-zero non-homogeneous

Ornstein-Uhlenbeck (NOU) process with covariance structure

cov(Ui(s), Ui(t)) = exp

(
ξ(t) + ξ(s)

2

)
exp(log ρ|s− t|)

where ξ(t) = ξ0 + ξ1s1(t) + ξ2s2(t) is the periodic cubic spline [44], where sj(t) = aj(t) +

bj(t
2) + cjt

3 + (t− tj)3+, with coefficients aj, bj, and cj to be

aj = −T (T − tj)
2

+
3(T − tj)2

2
− (T − tj)3

T

bj =
3(T − tj)

2
− 3(T − tj)3

2T

cj = −T − tj
T

.
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Then by the Markov properties of the NOU process, the conditional distribution of Ui(tij)

given all its predecessors depends only on the previous value Ui(ti,j−1), and

Ui(tij)|Ui(ti,j−1) ∼ N

(
α(tij)Ui(ti,j−1), exp

(ξ(tij) + ξ(ti,j−1)

2

)
(1− α(tij)

2)

)
where

α(tij) = exp(log ρ|tij − ti,j−1|)

and the process is initiated by

Ui(ti1) ∼ N(0, exp(ξ(ti1))).

Equivalently, with the same initial conditions,

Ui(tij) = α(tij)Ui(ti,j−1) +H(tij) (5.3)

where H(tij) are mutually independent N(0, G) random variables where G = exp((ξ(tij) +

ξ(ti,j−1))/2)(1 − α(tij)
2). Substitute equation (5.3) into model (5.1) and rearranging, we

have

Yij = XT
ijβ + f(tij) + bi + α(tij)Ui(ti,j−1) +H(tij) + εij

= XT
ijβ + f(tij) + bi

+α(tij)(Yi,j−1 −XT
i,j−1β − f(ti,j−1)− bi − εi,j−1) +H(tij) + εij.

Therefore,

Yij|Yi,j−1,Xij ,Xi,j−1 ∼ N(µcond, σcond).

where

E(Yij|Yi,j−1,Xij ,Xi,j−1) = µcond = XT
ijβ + f(tij) + α(tij)(Yi,j−1 −XT

i,j−1β − f(ti,j−1))

and

V ar(Yij|Yi,j−1,Xij ,Xi,j−1)

= σcond = V ar[bi − α(tij)(bi + εi,j−1) +H(tij) + εij)]

= [1 + α(tij)
2]V ar(bi) + [1 + α(tij)

2]V ar(εi,j−1) + V ar(H(tij))

= [1 + α(tij)
2]φ+ [1 + α(tij)

2]σ2
ε + exp

[
ξ(tij) + ξ(ti,j−1)

2

]
[1− α(tij)

2].
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5.2.3 Prediction of an entire cycle

To predict an entire cycle given the past cycles, we have to come up with ways to

best approximate previous observations Yi,j−1, j = 2, . . . , ni for the entire cycle, which is

unknown to us. There are several ways to approach it.

One way is that we can take advantage of the cyclic nature of the data, by using

(j − 1)th observation value from previous cycle, denoting Yi,j−1,pc, to approximate the

previous observation Yi,j−1. Another way is to use the predictive value Yi,j−1,pre as a proxy

for the previous observation Yi,j−1. A third way is weighted version of the previous two

methods, with some weights w upon the two proxies, e.g. w∗Yi,j−1,pc+(1−w)∗Yi,j−1,pre, 0 <
w < 1. We will demonstrate the effectiveness of these methods in Section 5.3.

In the application of hormone data, due to the measurements to be unequally spaced,

it is possible that Yi,j−1,pc is not available for that particular time point j−1 from previous

cycle. In this case, we can either interpolate the past cycle to obtain the measurement or

we can rely on the observations two cycles away, denoting Yi,j−1,pc2, as a proxy. We will

touch upon this issue in more detail in Section 5.4.

5.3 Simulation Studies

A simulation study is conducted to evaluate the performance of the prediction method.

Univariate periodic longitudinal data are generated (m = 50) according to the following

model:

Yij = ageTi β1 + f(tij) + bi + Ui(tij) + εij

i = 1, . . . , 50; j = 1, . . . , 28; tij ∈ {1, . . . , 28}

where bi are mutually independent N(0, φ); Ui are simulated from zero-mean NOU process

modeling serial correlation, with variance function ξ(t) = ξ0 + ξ1s1(t)+ ξ2s2(t) as described

in the last section, and corr(Ui(t), Ui(s)) = ρ|s−t|. εij are simulated from a mutually

independent N(0, σ2) ; and the nonparametric periodic smooth function is generated from
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f1(t) = 5 sin (2π/28) t. Our goal is to predict the longitudinal response values of the second

cycle, using the observations from the first cycle.

There are, in general, two ways to apply the prediction method in the simulation study.

Since the true values of β and f are known in simulation, they can directly be used to

obtain the prediction result; whereas in real life scenario when the true values of β and

f are unknown, β̂ and f̂ from the estimating procedure can be used to best approximate

the true values. I will demonstrate the latter method to better mimic what I will do for

the application dataset in the next section. The performance of different methods for each

simulation is evaluated by the average predictive squared error (PSE) defined

PSE =
1

m

m∑
i=1

(Yij − µcond)2

where Yij is the true simulated response and µcond is the mean value from the conditional

distribution.

Table 5.1 records PSE values for different proxies for Yi,j−1 based on 100 simulation

replicates and 50 subjects. pno means Yi,j conditional on the true simulated data Yi,j−1;

pc conditional on the Yi,j−1,pc from previous cycle; pre conditional on the Yi,j−1,pre from

predictive prior observation; and the rest are weighted version of pc and pre. We see that of

three main methods, pno, pc and pre, pno method performs the best as expected with the

lowest PSE value, with pc follows closely behind; and pre performs the worst, especially

towards the latter part of the cycle, see Figure 5.2. In the interest of not overcrowding,

not all of the weighted versions are added to the plots. What is interesting is that both of

first two weighted versions perform better than the pno version, i.e. µcond are computed

with more or equal weights are put into conditional on the Yi,j−1,pre from predictive prior

observation. Conditional on Yi,j−1,pre takes more account of present cycle while conditional

on Yi,j−1,pc takes only account of previous cycle; resulting the hybrid version with more

weights on Yi,j−1,pre in more desirable results.

Note that it is unsurprising that using the estimates instead of the true values takes

much more computational time since parameters have to be estimated for each simulation

before the prediction method takes place.
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Figure 5.1: Plots of simulated subjects with the lowest, second lowest, median and largest

PSE values with respect to conditional on Yi,j−1,pc based on 100 simulations, with pointwise

95% confidence interval. True data: black; pno: blue; pc: red; pre: green; 0.25*pre +

0.75*pc: orange; 95% CI: pink.

Table 5.1: PSE values for different proxies for Yi,j−1 based on 100 simulations.

pno pc pre 0.25*pre + 0.75*pc 0.5*pre + 0.5*pc 0.75*pre + 0.25*pc

PSE 1.7735 1.7774 2.3246 1.6642 1.7177 1.9379
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5.4 Application to the univariate cyclic longitudinal

hormone dataset

We apply the prediction method to the hormone dataset with 3 consecutive cycles

described in Chapter 2. Denoting Yij the jth log-transformed progesterone values measured

at standardized day tij since menstruation for the ith woman, we consider the following

univariate semiparametric stochastic mixed model:

Yij = ageTi β1 + underWeightTi β2 + overWeightTi β3 + f(tij) + bi + Ui(tij) + εij

i = 1, . . . , 50; j = 1, . . . , ni; tij ∈ {1, . . . , 28}

where the specifications of random intercepts bi, the Gaussian process Ui, the measure-

ment errors εij and the nonparametric smooth functions are the same as those in the

simulation study. Covariates underWeight and overWeight are indicator variables, which

is characterized by Body Mass Index (BMI) where if BMI is less than 19.0 then the person

is categorized as underWeight whereas if BMI is greater than 25.7, then overWeight; this

means the comparison group is normal weight, i.e., between 19.0 and 25.7 BMI. For com-

putational stability, standardized days were centered at the median day 14 and divided by

10; covariate age is also centered at median 36 years old and divided by 50. Thus, f(t)

represents the progesterone curve for women of 36 years old with normal weight.

Our goal is to predict the progesterone level for the third cycle, using the previous two

cycles. Similar to the simulation study, there are several proxies for the previous observed

progesterone level Yi,j−1 in Cycle 3, which is assumed to be unknown. One key problem in

the hormone data analysis is that one of the proxies, Yi,j−1,pc may not be always available

from previous cycle, i.e., Cycle 2 in this case; since the response observations are unequally

spaced and the menstrual cycle lengths vary from cycle to cycle. This problem is solved

by linear interpolation of Cycle 2 using all available observed hormone levels from the

same cycle. However, in the case where the end points are unavailable, e.g. progesterone

observation is missing at day 1 in Cycle 2 but is needed as a proxy for Yi,1,pc; interpolation,

either linear interpolation or cubic spline interpolation, would not produce the interpolated

end points. In this case, I propose to interpolate the end points by using observations from

74



Cycle 1 and combined with other available interpolated values from Cycle 2 to use as

proxies for Yi,j−1 in Cycle 3.
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Figure 5.2: Plots of progesterone levels for women with the lowest, 10th quantile lowest,

median and 90th quantile PSE values with respect to conditional on Yi,j−1,pc2, with point-

wise 95% confidence interval. True data: black; pno: pink; pc2: blue; pc1: red; pre: green;

0.25 * pre + 0.75 * pc: orange; 0.5 * pre + 0.5 * pc: yellow; 0.75 * pre + 0.25 * pc: purple;

95% CI:gray.

Table 5.2 records PSE values for different proxies for Yi,j−1 for the aforementioned

hormone dataset of 3 consecutive cycles. For demonstration purposes, we randomly select
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50 women from the dataset to perform the analysis. Method pno means Yi,j conditional

on the true previous observation Yi,j−1; pc1, pc2 conditional on the Yi,j−1,pc1 and Yi,j−1,pc2

from Cycle 1 and Cycle 2, respectively, either the from true previous observations or from

interpolations; pre conditional on the Yi,j−1,pre from predictive prior observation; and the

rest are weighted version of pc2 and pre. We see that of four main methods, pno, pc2, pc1

and pre, it comes as no surprise that pno method performs much better than the rest of

3 proxies with the lowest PSE value; the other three proxies produce similar PSE values,

with pre performs the better than the other two pc’s, see Figure 5.2, which indicates that

none of the observations from either cycles, Cycle 1 or Cycle 2, are good proxies for Yi,j−1.

However, since the estimated nonparametric functions are estimates of the overall time

trend for the entire sample, it is not suitable for some study participants.

Table 5.2: PSE values for different proxies for Yi,j−1 based on the hormone dataset with 3

consecutive cycless.

pno pc2 pc1 pre pre/4 + 3*pc2/4 pre/2 + pc2/2 3*pre/4 + pc2/4

PSE 0.2716 2.4998 2.2335 1.5324 2.1081 1.8163 1.6243

Since results from conditional on predictive prior observations Yi,j−1,pre is better, the

weighted version puts weights between pre and pc2. Suppose pc1 and pc2 perform much

better, weighted version can be changed to w ∗pc1+(1−w)∗pc2, 1 < w < 0. As expected,

the weighted versions perform better than either the pc versions, especially when more

weights are put on Yi,j−1,pre.

5.5 Discussion and future work

In conclusion, we provide a novel prediction procedure from a frequentist viewpoint,

while most of other prediction methods in the literature are from the Bayesian standpoint.

The method requires that the stochastic process in model (5.1) has exponential correlation

structure, which implicitly implies Markov property; resulting in the model to be able to

be rewritten in the form of autoregressive model of order one for the method to work.
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For prediction of a single future observation, a direct application of this method pro-

duces the prediction density function and prediction intervals of the single future observa-

tion of interest, given the previous longitudinal measurement is observed. The method is

straightforward to apply and the performance was shown to be fairly good in both a sim-

ulation study and in a real application dataset. Also note that the univariate longitudinal

data does not have to be periodic in this case.

For prediction of an entire future cycle, iterative application of this method needs to

be applied; and due to the unavailability of the previous longitudinal observations, proxies

of the previous longitudinal observations need to be utilized. The choice of proxies and

the variations between cycles affect the accuracies of the prediction results. If there is

little variation from cycle to cycle, then the method performs well; otherwise, due to great

variations of cycles, proxies using past cycle information provide a poor substitute for the

true previous longitudinal observation that is unavailable; resulting in less than satisfactory

results.

Several areas of future work can be considered. First, extension of the univariate pre-

diction method to the bivariate case can be explored. I would like to utilize the correlation

between the bivariate responses to help with the prediction of a given response, beyond just

using the past response or past cycle information when predicting a future response in a

univariate longitudinal context. Secondly, when predicting a future cycle, the longitudinal

observations of a cycle can be viewed as realizations of a multivariate stochastic/Gaussian

process and thus treating observations of a cycle as one unit in the vector form. Then, the

properties of the process may give rise to a more general prediction procedure for predic-

tion of a future cycle. Third, the proposed prediction procedure is performed under the

standardized time scale. It would be interesting to explore how the prediction procedure

would work under the original time scale; or given the predictions under the standardized

time scale, one could back transform to go to the original scale for an individual person,

if of interest. Lastly, I would like to investigate further the robustness of the accuracy of

prediction under the violations of our model assumptions.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In Chapter 3, I briefly reviewed the proposed model from Zhang et al [45] and presented

and updated detailed derivations for the findings contained in the paper; also two minor

discrepancies were identified and further simulation studies need to be explored to ensure

the accuracy of the smoothing parameter estimate. The chapter provides a solid foundation

for me to extend it to the bivariate longitudinal model proposed in the next Chapter, and

also gives the set-up needed for the prediction problem in Chapter 5.

In Chapter 4, I propose and develop a model for analysis of bivariate longitudinal data

and provide inference procedures, building off of specification and procedures for univariate

longitudinal data, inspired by earlier work from Zhang et al [45] among other researchers

having proposed semiparametric models for univariate longitudinal response data. The

bivariate model is proposed in the likelihood framework and the regression parameters

and nonparametric functions are estimated by maximizing a penalized likelihood function.

The smoothing parameter and variance components are numerically estimated using the

Fisher-scoring algorithm based on restricted maximum likelihood. Modelling the time ef-

fect nonparametrically gives more flexibility in specifying the response mean structure, and

the Gaussian field allows for additional flexibility in specifying the within-subject correla-

tion structure, including possibly non-stationarity. The correlation of the two responses is
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specified only through the correlation of the random effects in the simulation study, though

the proposed model can accommodate more complicated correlation structure of the re-

sponses through the covariance matrix of the bivariate Gaussian field. Simulation results

show that the inference procedure performs well across a variety of simulation settings.

In Chapter 5, we proposed a prediction procedure of either a single observation or of

an entire cycle under the frequentist framework, which is not often done in the literature

for longitudinal data. Under Bayesian modelling, dependence on the prior, complicated

MCMC algorithm and robustness of the prior specification pose as a challenge in modelling,

but the predictive distribution follows naturally from the posterior distribution assuming

the prior distribution assumptions are reasonable. Frequentist methods, on the other hand,

can be more challenging as there is no prior to help augment observed data but it is more

computationally efficient. Prediction of a single future observation is straightforward and

ready to use. Both simulation and real data analysis produce satisfactory results. Predic-

tion of an entire cycle poses more of a challenge than prediction of a single observation. I

overcome the challenge by finding proper proxies for previous observed data point. If the

data behaves cyclic in a very uniform way, i.e., the pattens of cycles do not vary much from

cycle to cycle for all units under consideration, then the proxy using past cycle performs

well, as demonstrated in the simulation study. However, if the cycle varies greatly from

cycle to cycle and from unit to unit under consideration, then the proxy using past cycle

to predict the present cycle can be inaccurate, as shown in the real data analysis.

6.2 Future work

In spite of the advances conveyed in previous chapters, I look forward to extend in

following subject areas.

6.2.1 Robustness of model assumptions

All models proposed in this thesis are investigated under Gaussian framework, which

includes the bivariate Gaussian fields, random effects and measurement errors. We would
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like to further explore sensitivity/robustness to this assumption. When or if the model

assumptions are violated, how much would the violation affect the estimations of the

parameters of interest? Some theoretical explorations can be explored and simulation

studies can be performed.

Also, non-Guassian models can be considered under the proposed framework in the

future to allow for more generality. However, under non-Gaussian models, it can pose

some challenge on the estimating procedure. For example, if the random effect is no longer

assumed to be normally distributed, then the penalized likelihood would be difficult to

specify, which is the key to the entire proposed estimation procedure.

Further, only joint models of the bivariate longitudinal data are considered in the thesis,

it is of interest to model the bivariate longitudinal data separately to justify the efficiency

gains by modelling the bivariate longitudinal data jointly.

6.2.2 Model diagnostics

It is very challenging to identify or justify which Gaussian field to be chosen to appro-

priately model the underlying biological or other process. It is also of interest to identify

the most reasonable covariance structure for the bivariate responses in equation (4.4); and

to justify the use of bivariate Gaussian field to model the complicated within-subject cor-

relations, or can we get away with simpler specifications of serial correlations, such as

in ε term in a more standard linear mixed effects model. Although extensive empirical

simulations can be performed to help solve the issue, there is not a clear or easy-to-use

method for this. As discussed in Chapter 4, we have investigated the impact of Gaussian

field misspecification in the simulation studies, which show that the choice of Gaussian

field has little impact on the fixed effect parameters of interest; and perhaps residual plots

could be utilized as a tool to help solve the problem. However, if we were interested in the

underlying biological process or any of issues mentioned above, a deeper understanding is

needed.
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6.2.3 Missing data

In the current real data applications, we excluded women with more than 10% miss-

ing data and with larger than normal range of the difference of maximum cycle length

and minimum cycle length. Even if the exclusions are reasonable under the current set-

ting, it might be of interest to include women with more missing data to obtain a more

comprehensive sample to avoid selection bias.

6.2.4 Extension to multivariate longitudinal data with one or

multiple cycles

The model proposed in Chapter 4 can be readily extended to more general multivariate

cyclic longitudinal data. Specifically, extension to model bivariate longitudinal data with

multiple cycles is proposed and preliminarily tested by using a small sample (m = 20) from

the hormone study in Section 4.4. However, as the number of subjects increases in the

sample size and as the number of cycles increases, computation time becomes extended.

As discussed in Chapter 4, even with both C++ and parallel computing were utilized in

the simulation study, the computation time is extended; modeling of a high-dimensional

single dataset may also lead to some degree of computational burden for the proposed

methodology.

6.2.5 Prediction for the bivariate model

An extension of the prediction problem discussed in Chapter 5 could be made to the

bivariate case. However, there is an additional layer of dependence between the two re-

sponses due to their correlation. In the bivariate case, the correlation between the bivariate

responses can be utilized to help with the prediction of a given response, beyond just us-

ing the past response or past cycle information when predicting a future response in a

univariate longitudinal context.
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Appendix A

In this thesis, a number of technical definitions and results have been given. This

appendix provides some details on them. Further details can be found in corresponding

text books, some of which are listed in references.

A.1 Polynomials & splines

In this section, we give precise definitions [28] related to polynomials and splines.

Polynomials of Order m. The space

Pm =

{
p(x) : p(x) =

m∑
i=1

cix
i−1, c1, . . . , cm, x ∈ R

}

of polynomials of order m has the following attractive features:

1. Pm is a finite dimensional linear spaces with a convenient basis;

2. Polynomials are smooth functions;

3. Polynomials are easy to store, manipulate, and evaluate on a digital computer;

4. The derivatives and antiderivatives of polynomials are again polynomials whose co-

efficients can be found algebraically;
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5. The number of zeros of a polynomial of order m cannot exceed m− 1;

6. Various matrices (arising in interpolation and approximation by polynomials) are

always nonsignular, ad they have strong sign-regulatiry properties;

7. The sign structure and shape of a polynomial are intimately related to the sign

structure of its set of coefficients;

8. Given any continuous function on the interval [a, b], there exists a polynomial which

is uniformly close to it;

9. Precise rates of convergence can be given for approximation of smooth functions by

polynomials

10. May approximation processes involving polynomials tend to produce polynomial ap-

proximations that oscillate wildly.

Piecewise Polynomials. The main drawback of the space Pm of polynomials for approxima-

tion purposes is that the class is relatively inflexible [28]. Thus we introduce the concept

of piecewise polynomials.

Let a = x0 < x1 < · · · < xk < xk+1 = b, and write ∆ = {xi}k+1
0 . The set ∆ partitions

the interval [a, b] into k+1 subinterval, Ii = [xi, xi+1), i = 0, 1, . . . , k−1 and Ik = [xi, xk+1].

Given a positive integer m, let

PPm(∆) = {f : there exists polynomials p0, p1, . . . , pk in Pm

with f(x) = pi(x) for x ∈ Ii, i = 0, 1, . . . , k} (A.1)

We call PPm(∆) the space of piecewise polynomials of order m with knots x1, . . . , xk.

Note piecewise polynomial functions are not necessarily smooth and can be discontin-

uous.

Polynomial Splines With Simple Knots. Let ∆ be a partition of the interval [a, b] as in

definition of piecewise polynomials, and let m be a positive integer. Let

Sm(∆) = PPm(∆) ∩ Cm−2[a, b],
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where PPm(∆) is the space of pieceswise polynomials. We call Sm(∆) the space of polyno-

mial splines of order m with simple knots at the points x1, . . . , xk.

Polynomial splines possess the following attractive features:

1. Polynomial spline spaces are finite dimensional linear spaces with very convenient

bases;

2. Polynomial splines are relatively smooth functions;

3. Polynomial splines are easy to store, manipulate, and evaluate on a digital computer;

4. The derivatives and antiderivatives of polynomial splines are again polynomial splines

whose expansions can be found on a computer;

5. Polynomial splines possess nice zero properties analogous to those for polynomials;

6. Various matrices arising naturally in the use of splines in approximation theory and

numerical analysis have convenient sign and determinantal properties;

7. The sign structure and shape of a polynomial spline can be related to the sign struc-

ture of its coefficients;

8. Every continuous function on the interval [a, b] can be approximated arbitrarily well

by polynomial splines with the order m fixed, provided a sufficient number of knots

are allowed;

9. Precise rates of convergence can be given for approximation of smooth functions by

splines - not only are the functions themselves approximated to high order, but their

derivatives are simultaneously approximated well;

10. Low-order splines are very flexible, and do not exhibit the oscillations usually asso-

ciated with polynomials.
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A.2 Basis functions

There are two main popular bases - truncated power functions and the B-spline basis.

Using the truncated power functions, the truncated power basis of degree p is

1, t, t2, . . . , tp, (t− κ1)p+, . . . , (t− κr)
p
+

where {κ1, . . . , κr} is the set of knots and r is the number of knots and (t− κ)p+ is defined

to be

(t− κ)p+ =

{
(t− κ)p+ t > κ

0 otherwise

For example, a cubic spline can be written as

g(t) = β0 + β1t+ β2t
2 + β3t

3 +
r∑

k=1

bk(t− κk)3+.

Another popular basis is the B-spline basis. Compared to the truncated power basis,

the B-spline basis is more numerically stable, since the former is far from being orthogonal.

A B-spline consists of specially connected polynomial pieces. A B-spline of degree q has

the following general properties [8]:

• It consists of q + 1 polynomial pieces, each of degree q;

• the polynomial pieces join at q inner knots;

• at the joining points, derivatives up to order q − 1 are continuous;

• the B-spline is positive on a domain spanned by q + 2 knots; zero everywhere else;

• at a given t, q + 1 B-splines are nonzero.

For example, let Bj,4(t) be the jth B-spline basis function, j = −3, . . . , e of order 4 (degree

3) for knots {κ1, . . . , κe}. The cubic B-splines can be defined recursively [2, 11] in terms

of lower-order B-splines

Bj,1(t) =

{
1 κj ≤ t < κj+1,

0 otherwise
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Bj,k+1(t) =
t− κj

κj+k − κj
Bj,k(t) +

κj+k+1 − t
κj+k+1 − κj+1

Bj+1,k(t), k > 0.

In addition, there are other basis functions available, such as polynomial basis, cubic

spline basis and radial basis functions. For more details, see Section 3.2 in [38] and Section

3.7 in [27].

A.3 Stochastic processes and random fields

Stochastic process and random fields

Given a parameter space T , a stochastic process f over T is a collection of random

variables

{f(t) : t ∈ T}.

If T is a set of dimensionN , and the random variables f(t) are all vector valued of dimension

d, then we call the vector valued random field f a (N, d) random field [1].

A stochastic process {Yt : t ≥ 0} is said to be

• stationary if, for all t1 < · · · < tn and h > 0, the random n-vectors (Yt1 , Yt2 , . . . , Ytn)

and (Yt1+h, Yt2+h, . . . , Ytn+h) are identically distributed; that is, time shifts leave joint

probabilities unchanged.

• Markovian if, for all t1 < t2 < · · · < tn, P (Ytn ≤ y|Yt1 , Yt2 , . . . , Ytn−1) = P (Ytn ≤
y|Ytn−1); that is, the future is determined only by the present and not the past.

Gaussian process and Gaussian fields

A real-valued Gaussian (random) field [1] or Gaussian (random) process is defined to be

a random field f on a parameter set T for which the finite distributions of (ft1 , ft2 , . . . , ftk)

is multivariate Gaussian for each 1 ≤ k <∞ and each (t1, . . . , tk) ∈ T k.

Since multivariate Gaussian distributions are determined by means and covariances,

Gaussian random fields are also determined by their mean and covariance functions, given

by

m(t) = E[f(t)]
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and

C(s, t) = E[(f(s)−m(s))(f(t)−m(t))].

Multivariate Gaussian fields taking values in Rd are fields for which 〈α, ft〉 are a real

valued Gaussian field for every α ∈ Rd. The mean function m(t) now takes values in Rd

and the covariance is non-negative definite d× d matrices:

C(s, t) = E[(f(s)−m(s))′(f(t)−m(t))]

with (i, j)th element being

Cij(s, t) = E[(fi(s)−mi(s))
′(fj(t)−mj(t))].

Ornstein-Hulenbeck (OU) process

An Ornstein-Hulenbeck process Xt [18] with parameters (a, σ) and initial condition ξ

satisfies the following stochastic differential equation:

dXt = −aXtdt+ σdWt,

whose solution is

Xt = e−atξ + σ

∫ t

0

e−a(t−s)dWs.

Its expectation and covariance are

E(Xt) = e−atE(ξ),

and

E(XsXt) = e−ase−atE(ξ2) + σ2

∫ s∧t

0

e−a(s−u)−a(t−u)du

= e−a(s+t)
(
E(ξ2) + σ2 e

2as∧t − 1

2a

)
.

If ξ is Gaussian, then Xt is a Gaussian process. In particular, if ξ is Gaussian with mean

zero and E(ξ2) = σ2

2a
, then

E(XsXt) =
σ2e−a|s−t|

2a
.

The OU process is stationary, Gaussian, and Markovian, and is the only nontrivial

process that satisfies these three conditions.
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A.4 Theoretical derivations for Chapter 4

A.4.1 Proof of the normal matrix (4.6)

Proof of (4.6). Taking derivative of the log-likelihood function (4.5) with respect to β, f1,

and f1, we have

`β = XTW (Y −Xβ −N1f1 −N2f2)

`f1 = NT
1 W (Y −Xβ −N1f1 −N2f2)− λ1Kf1

`f2 = NT
2 W (Y −Xβ −N1f1 −N2f2)− λ2Kf2.

Set `β, `f1 and `f2 to be zero, we have

XTW (Xβ̂ +N1f̂1 +N2f̂2) = XTWY (A.2)

NT
1 W (Xβ̂ +N1f̂1 +N2f̂2) + λ1Kf̂1 = NT

1 WY (A.3)

NT
2 W (Xβ̂ +N1f̂1 +N2f̂2) + λ2Kf̂2 = NT

2 WY , (A.4)

which can be rewritten as (4.6).

A.4.2 Proof of (4.7), (4.8) and (4.9)

Proof of (4.7), (4.8) and (4.9). From equations (A.2), (A.3) and (A.4), we can reexpress

the parameter estimators

β̂ = (XTWX)−1XTW (Y −N1f̂1 −N2f̂2)

f̂1 = (NT
1 WN1 + λ1K)−1NT

1 W (Y −Xβ̂ −N2f̂2) (A.5)

f̂2 = (NT
2 WN2 + λ2K)−1NT

2 W (Y −Xβ̂ −N1f̂1). (A.6)

To solve explicitly for β̂, f̂1 and f̂2, we first plug f̂1 (A.5) into equations (A.2) and (A.4),

rearrange and obtain

XTW
[
Xβ̂ −N1(N

T
1 WN1 + λ1K)−1NT

1 W (Xβ̂ +N2f̂2) +N2f̂2
]

= XTWY −XTWN1(N
T
1 WN1 + λ1K)−1NT

1 WY ;

94



and

NT
2 W

[
Xβ̂ −N1(N

T
1 WN1 + λ1K)−1NT

1 W (Xβ̂ +N2f̂2) +N2f̂2
]

= NT
2 WY −NT

2 WN1(N
T
1 WN1 + λ1K)−1NT

1 WY

respectively; which can be rewritten as

XTW1Xβ̂ +XTW1N2f̂2 = XTW1Y (A.7)

and

NT
2 W1Xβ̂ + (NT

2 W1N2 + λ2K)f̂2 = NT
2 W1Y (A.8)

respectively, where W1 = W −WN1(N
T
1 WN1 + λ1K)−1NT

1 W . Or equivalently as

β̂ = (XTW1X)−1XTW1(Y −N2f̂2), (A.9)

and

f̂2 = (NT
2 W1N2 + λ2K)−1NT

2 W1(Y −Xβ̂) (A.10)

respectively. Then plugging (A.9) into (A.8) and (A.10) into (A.7) and rearrange, we have

(NT
2 W1N2 + λ2K)f̂2 −NT

2 W1X(XTW1X)−1XTW1N2f̂2

= NT
2 W1Y −NT

2 W1X(XTW1X)−1XTW1Y ,

and

XTW1Xβ̂ −XTW1N2(N
T
2 W1N2 + λ2K)−1NT

2 W1Xβ̂

= XTW1Y −XTW1N2(N
T
2 W1N2 + λ2K)−1NT

2 W1Y ,

respectively. Therefore, after rearranging and regrouping terms, the closed-form solutions

for f̂2 and β̂ are

f̂2 = (NT
2 Wf2N2 + λ2K)−1NT

2 Wf2Y ,

and

β̂ = (XTWxX)−1XTWxY ,
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where Wf2 = W1 −W1X(XTW1X)−1XTW1, and Wx = W1 −W1N2(N
T
2 W1N2 +

λ2K)−1NT
2 W1. Similarly, to obtain the closed-form solution for f̂1, we plug (A.6) into

equation (A.3) and obtain

NT
1 W2Xβ̂ + (NT

1 W2N1 + λ1K)f̂1 = NT
1 W2Y , (A.11)

whereW2 = W−WN2(N
T
1 WN1+λ1K)−1NT

2 W . Plugging β̂ = (XTW2X)−1XTW2(Y −
N1f̂1) into (A.11), the closed-form solution for f̂1 is

f̂1 = (NT
1 Wf1N1 + λ1K)−1NT

1 Wf1Y ,

where Wf1 = W2 −W2X(XTW2X)−1XTW2.

Proof of (4.10) and (4.11). From model assumptions, it follows that

Y ∼ N2n (Xβ +N1f1 +N2f2,V ) , b ∼ N2m(0,D).

Since the covariance of Y and b is

cov(Y , b) = cov(Xβ +N1f1 +N2f2 +Zb+U + ε, b)

= cov(Xβ, b) + cov(N1f1, b) + cov(N2f2, b) +Zcov(b, b) + cov(U , b) + cov(ε, b)

= ZD,

the joint distribution of Y and b is(
Y

b

)
∼N2n+2m

((
Xβ +N1f1 +N2f2

0

)
,

(
V ZD

DZT D

))
.

Therefore, by the property of normality, the conditional expectation results follows.

A.4.3 Proof of biases of (4.12) and (4.13) and a lemma

Proof of (4.12) and (4.13). For regression coefficient estimator β̂,

E(β̂) = (XTWxX)−1XTWxE[Y ]

= (XTWxX)−1XTWx(Xβ +N1f1 +N2f2)

= β + (XTWxX)−1XTWx(N1f1 +N2f2)
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For nonparametric function estimator f̂1 = (NT
1 Wf1N1 + λ1K)−1NT

1 Wf1Y ,

E(f̂1) = (NT
1 Wf1N1 + λ1K)−1NT

1 Wf1(Xβ +N1f1 +N2f2)

= 0 + (NT
1 Wf1N1 + λ1K)−1(NT

1 Wf1N1 + λ1K − λ1K)f1

+(NT
1 Wf1N1 + λ1K)−1NT

1 Wf1N2f2

= f1 − λ1(NT
1 Wf1N1 + λ1K)−1Kf1 + (NT

1 Wf1N1 + λ1K)−1NT
1 Wf1N2f2

where (NT
1 Wf1N1 + λ1K)−1NT

1 Wf1Xβ = 0 since

(NT
1 Wf1N1 + λ1K)−1NT

1 Wf1Xβ

= (NT
1 Wf1N1 + λ1K)−1NT

1

[
W2 −W2X(XTW2X)−1XTW2

]
Xβ

= (NT
1 Wf1N1 + λ1K)−1NT

1 W2Xβ

−(NT
1 Wf1N1 + λ1K)−1NT

1 W2X(XTW2X)−1XTW2Xβ

= 0.

Remark. The bias of nonparametric function estimator f̂2 in (4.14) can be derived

similarly as that of f̂1.

Lemma 5. The biases of β̂, f̂1, f̂2, b̂i and Ûi all go to 0 as both smoothing parameters

λ1 → 0 and λ2 → 0.

Proof. As λ1 → 0 and λ2 → 0 simultaneously, then

Wx →W1 −W1N2(N
T
2 W1N2)

−1NT
2 W1, (A.12)

where

W1 →W −WN1(N
T
1 WN1)

−1NT
1 W (A.13)
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Plugging Wx in (A.12) into bias of β̂ in (4.12), we have

E(β̂)− β
= (XTWxX)−1XT

[
W1 −W1N2(N

T
2 W1N2)

−1NT
2 W1

]
(N1f1 +N2f2)

= (XTWxX)−1XTW1(N1f1 +N2f2)

−(XTWxX)−1XTW1N2(N
T
2 W1N2)

−1NT
2 W1(N1f1 +N2f2)

= (XTWxX)−1XTW1N1f1

+(XTWxX)−1XTW1N2

[
f2 − (NT

2 W1N2)
−1NT

2 W1N2f2
]

−(XTWxX)−1XTW1N2(N
T
2 W1N2)

−1NT
2 W1N1f1

= (XTWxX)−1XTW1N1f1

−(XTWxX)−1XTW1N2(N
T
2 W1N2)

−1NT
2 W1N1f1 (A.14)

Further, plugging W1 in (A.13) into(A.14), we have

E(β̂)− β
= (XTWxX)−1XT

[
W −WN1(N

T
1 WN1)

−1NT
1 W

]
N1f1

−(XTWxX)−1XT
[
W −WN1(N

T
1 WN1)

−1NT
1 W

]
N2(N

T
2 W1N2)

−1NT
2 ·[

W −WN1(N
T
1 WN1)

−1NT
1 W

]
N1f1

= (XTWxX)−1XTWN1f1 − (XTWxX)−1XTWN1(N
T
1 WN1)

−1NT
1 WN1f1

−(XTWxX)−1XTWN2(N
T
2 W1N2)

−1NT
2 WN1f1

+(XTWxX)−1XTWN2(N
T
2 W1N2)

−1NT
2 WN1(N

T
1 WN1)

−1NT
1 WN1f1

+(XTWxX)−1XTWN1(N
T
1 WN1)

−1NT
1 WN2(N

T
2 W1N2)

−1NT
2 WN1f1

−(XTWxX)−1XTWN1(N
T
1 WN1)

−1NT
1 WN2(N

T
2 W1N2)

−1NT
2 ·

WN1(N
T
1 WN1)

−1NT
1 WN1f1

= 0

Therefore, the bias of β̂ goes to 0 as λ1 → 0 and λ2 → 0.

As λ1 → 0 and λ2 → 0 simultaneously, the bias of f̂1

E(f̂1)− f1 → (NT
1 Wf1N1)

−1NT
1 Wf1N2f2 (A.15)
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where

Wf1 = W2 −W2X(XTW2X)−1XTW2 (A.16)

and

W2 →W −WN2(N
T
2 WN2)

−1NT
2 W (A.17)

Plugging Wf1 in (A.16) into bias of f̂1 in (A.15) and plugging W2 in (A.17) into Wf1 in

(A.16), we have

E(f̂1)− f1
= (NT

1 Wf1N1)
−1NT

1 W2N2f2 − (NT
1 Wf1N1)

−1NT
1 W2X(XTW2X)−1XTW2N2f2

= (NT
1 Wf1N1)

−1NT
1 WN2f2 − (NT

1 Wf1N1)
−1NT

1 WN2(N
T
2 WN2)

−1NT
2 WN2f2

−(NT
1 Wf1N1)

−1NT
1

[
W −WN2(N

T
2 WN2)

−1NT
2 W

]
X(XTW2X)−1XT ·[

W −WN2(N
T
2 WN2)

−1NT
2 W

]
N2f2

= 0− (NT
1 Wf1N1)

−1NT
1 WX(XTW2X)−1XTWN2f2

+(NT
1 Wf1N1)

−1NT
1 WX(XTW2X)−1XTWN2(N

T
2 WN2)

−1NT
2 WN2f2

+(NT
1 Wf1N1)

−1NT
1 WN2(N

T
2 WN2)

−1NT
2 WX(XTW2X)−1XTWN2f2

−(NT
1 Wf1N1)

−1NT
1 WN2(N

T
2 WN2)

−1NT
2 WX(XTW2X)−1XT ·
WN2(N

T
2 WN2)

−1NT
2 WN2f2

= 0

Therefore, the bias of f̂1 goes to 0 as λ1 → 0 and λ2 → 0. Similar results can be shown

for the bias of f̂2. Since

XTWx(N1f1 +N2f2)→ 0,

and

NT
2 Wf2N1f1 → 0, NT

1 Wf1N2f2 → 0

as λ1 → 0 and λ2 → 0 as shown before, both the biases in the estimators of the random

effects b̂i and the stochastic process Ûi go to zero.
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A.4.4 Proof of covariance of random effects (4.15)

Proof.

Cov(b̂i − bi) = Var(b̂i) + Var(bi)− Cov(bi, b̂i)− Cov(b̂i, bi).

Since Var(bi) = D, it suffices to find Var(b̂i) and Cov(bi, b̂i). To find

Var(b̂i) = DZT
i WiVar(Yi −Xiβ̂ − f̂1i − f̂2i)WiZiD,

we will first find

Var(Yi −Xiβ̂ − f̂1i − f̂2i)
= Var(Yi) + Var(Xiβ̂) + Var(N1if̂1) + Var(N2if̂2)

−Cov(Yi,Xiβ̂)− Cov(Xiβ̂,Yi)

−Cov(Yi, f̂1i)− Cov(f̂1i,Yi)− Cov(Yi, f̂2i)− Cov(f̂2i,Yi)

+Cov(Xiβ̂, f̂1i) + Cov(f̂1i,Xiβ̂) + Cov(Xiβ̂, f̂2i) + Cov(f̂2i,Xiβ̂)

+Cov(f̂1i, f̂2i) + Cov(f̂2i, f̂1i)

Denote

Wxi = W1i −W1iN2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i

Wf1i = W2i −W2iXi(X
TW2X)−1XT

i W2i

Wf2i = W1i −W1iXi(X
TW1X)−1XT

i W1i

where

W1i = Wi −WiN1i(N
T
1 WN1 + λ1K)−1NT

1iWi

W2i = Wi −WiN2i(N
T
2 WN2 + λ2K)−1NT

2iWi
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we have

Cov(Yi,Xiβ̂) = Cov(Yi,Xi(X
TWxX)−1XTWxY )

= Cov

(
Yi,Xi(X

TWxX)−1
m∑
j=1

XT
j WxjYj

)
= Cov

(
Yi,Xi(X

TWxX)−1XT
i WxiYi

)
= Cov(Yi,Yi)[Xi(X

TWxX)−1XT
i Wxi ]

T

= ViWxiXi(X
TWxX)−1XT

i

= Vi[W1i −W1iN2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

= ViW1i[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

= Vi[Wi −WiN1i(N
T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

= [Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

Cov(Xiβ̂,Yi)

= [Cov(Yi,Xiβ̂)]T

= Xi(X
TWxX)−1XT

i [Ii −W1iN2i(N
T
2 W1N2 + λ2K)−1NT

2i]·
[Ii −WiN1i(N

T
1 WN1 + λ1K)−1NT

1i]
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Cov(Yi, f̂1i) = Cov(Yi,N1if̂i)

= Cov(Yi,N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1Y )

= Cov(Yi,N1i(N
T
1 Wf1N1 + λ1K)−1

m∑
j=1

NT
1jWf1jYj)

= Cov(Yi,N1i(N
T
1 Wf1N1 + λ1K)−1NT

1iWf1iYi)

= Cov(Yi,Yi)[N1i(N
T
1 Wf1N1 + λ1K)−1NT

1iWf1i ]
T

= ViWf1iN1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

= Vi[W2i −W2iXi(X
TW2X)−1XT

i W2i] ·
N1i(N

T
1 Wf1N1 + λ1K)−1NT

1i

= ViW2i[Ii −Xi(X
TW2X)−1XT

i W2i]N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

= Vi[Wi −WiN2i(N
T
2 WN2 + λ2K)−1NT

2iWi]

[Ii −Xi(X
TW2X)−1XT

i W2i]N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

= [Ii −N2i(N
T
2 WN2 + λ2K)−1NT

2iWi]

[Ii −Xi(X
TW2X)−1XT

i W2i]N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

Cov(f̂i,Yi) = [Cov(Yi, f̂i)]
T

= N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i[Ii −W2iXi(X
TW2X)−1XT

i ]

[Ii −WiN2i(N
T
2 WN2 + λ2K)−1NT

2i]
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Cov(Yi, f̂2i) = Cov(Yi,N2if̂i)

= Cov(Yi,N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2Y )

= Cov(Yi,N2i(N
T
2 Wf2N2 + λ2K)−1

m∑
j=1

NT
2jWf2jYj)

= Cov(Yi,N2i(N
T
2 Wf2N2 + λ2K)−1NT

2iWf2iYi)

= Cov(Yi,Yi)[N2i(N
T
2 Wf2N2 + λ2K)−1NT

2iWf2i ]
T

= ViWf2iN2i(N
T
2 Wf2N2 + λ2K)−1NT

2i

= Vi[W1i −W1iXi(X
TW1X)−1XT

i W1i] ·
N2i(N

T
2 Wf2N2 + λ2K)−1NT

2i

= ViW1i[Ii −Xi(X
TW1X)−1XT

i W1i]N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i

= Vi[Wi −WiN1i(N
T
1 WN1 + λ1K)−1NT

1iWi]·
[Ii −Xi(X

TW1X)−1XT
i W1i]N2i(N

T
2 Wf2N2 + λ2K)−1NT

2i

= [Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi] ·
[Ii −Xi(X

TW1X)−1XT
i W1i]N2i(N

T
2 Wf2N2 + λ2K)−1NT

2i

Cov(f̂i,Yi) = [Cov(Yi, f̂i)]
T

= N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i[Ii −W1iXi(X
TWX)−1XT

i ]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]
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where Ii = Ini , and1

Cov(Xiβ̂, f̂1i)

= Cov
[
Xi(X

TWxX)−1XTWxY ,N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1Y
]

= Xi(X
TWxX)−1XTWxCov(Y ,Y )[N1i(N

T
1 Wf1N1 + λ1K)−1NT

1 Wf1 ]
T

= Xi(X
TWxX)−1XTWxVWf1N1(N

T
1 Wf1N1 + λ1K)−1NT

1i

Cov(f̂1i,Xiβ̂) = [Cov(Xiβ̂, f̂i)]
T

= N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWxX(XTWxX)−1XT
i

Cov(Xiβ̂, f̂2i)

= Cov
[
Xi(X

TWxX)−1XTWxY ,N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2Y
]

= Xi(X
TWxX)−1XTWxCov(Y ,Y )[N2i(N

T
2 Wf2N2 + λ2K)−1NT

2 Wf2 ]
T

= Xi(X
TWxX)−1XTWxVWf2N2(N

T
2 Wf2N2 + λ2K)−1NT

2i

Cov(f̂2i,Xiβ̂) = [Cov(Xiβ̂, f̂i)]
T

= N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWxX(XTWxX)−1XT
i

and

Cov(f̂1i, f̂2i)

= Cov
[
N1i(N

T
1 Wf1N1 + λ1K)−1NT

1 Wf1Y ,N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2Y
]

= N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1Cov(Y ,Y )[N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2 ]
T

= N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

Cov(f̂2i, f̂1i)

= [Cov(Xiβ̂, f̂i)]
T

= N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i.

1Recall Cov(AX,BTY ) = ACov(X,Y )B
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Thus,

Var(Yi −Xiβ̂ − f̂1i − f̂2i)
= Var(Yi) + Var(Xiβ̂) + Var(N1if̂1) + Var(N2if̂2)

−Cov(Yi,Xiβ̂)− Cov(Xiβ̂,Yi)

−Cov(Yi, f̂1i)− Cov(f̂1i,Yi)

−Cov(Yi, f̂2i)− Cov(f̂2i,Yi)

+Cov(Xiβ̂, f̂1i) + Cov(f̂1i,Xiβ̂)

+Cov(Xiβ̂, f̂2i) + Cov(f̂2i,Xiβ̂)

+Cov(f̂1i, f̂2i) + Cov(f̂2i, f̂1i)

= Vi +Xi(X
TWxX)−1XTWxVWxX(XTWxX)−1XT

i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

−[Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

−Xi(X
TWxX)−1XT

i [Ii −W1iN2i(N
T
2 W1N2 + λ2K)−1NT

2i]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]

−[Ii −N2i(N
T
2 WN2 + λ2K)−1NT

2iWi][Ii −Xi(X
TW2X)−1XT

i W2i]

N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

−N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i[Ii −W2iXi(X
TW2X)−1XT

i ]

[Ii −WiN2i(N
T
2 WN2 + λ2K)−1NT

2i]

−[Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi][Ii −Xi(X
TW1X)−1XT

i W1i]

N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i

−N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i[Ii −W1iXi(X
TWX)−1XT

i ]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]

+Xi(X
TWxX)−1XTWxVWf1N1(N

T
1 Wf1N1 + λ1K)−1NT

1i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWxX(XTWxX)−1XT
i

+Xi(X
TWxX)−1XTWxVWf2N2(N

T
2 Wf2N2 + λ2K)−1NT

2i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWxX(XTWxX)−1XT
i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i.
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Var(b̂i)

= DZT
i ViZiD

+DZT
i Wi[Xi(X

TWxX)−1XTWxVWxX(XTWxX)−1XT
i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

−[Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

−Xi(X
TWxX)−1XT

i [Ii −W1iN2i(N
T
2 W1N2 + λ2K)−1NT

2i]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]

−[Ii −N2i(N
T
2 WN2 + λ2K)−1NT

2iWi][Ii −Xi(X
TW2X)−1XT

i W2i]

N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

−N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i[Ii −W2iXi(X
TW2X)−1XT

i ]

[Ii −WiN2i(N
T
2 WN2 + λ2K)−1NT

2i]

−[Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi][Ii −Xi(X
TW1X)−1XT

i W1i]

N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i

−N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i[Ii −W1iXi(X
TWX)−1XT

i ]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]

+Xi(X
TWxX)−1XTWxVWf1N1(N

T
1 Wf1N1 + λ1K)−1NT

1i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWxX(XTWxX)−1XT
i

+Xi(X
TWxX)−1XTWxVWf2N2(N

T
2 Wf2N2 + λ2K)−1NT

2i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWxX(XTWxX)−1XT
i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i] ·
WiZiD.
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Now, we want to find Cov(b̂i, bi)

Cov(bi, b̂i) = Cov[bi,DZ
T
i Wi(Yi −Xiβ̂ − f̂1i − f̂2i)]

= Cov(bi,Yi −Xiβ̂ − f̂1i − f̂2i)WiZiD

= [Cov(bi,Yi)− Cov(bi,Xiβ̂)− Cov(bi, f̂1i)− Cov(bi, f̂2i)]WiZiD

where

Cov(bi,Yi) = Cov(bi,Xiβ +N1if1 +N2if2 +Zibi +Ui + εi)

= Cov(bi,Zibi)

= DZT
i ,

Cov(bi,Xiβ̂) = Cov[bi,Xi(X
TWxX)−1XTWxY ]

= Cov

[
bi,Xi(X

TWxX)−1
m∑
j=1

XT
j WxjYj

]
= Cov[bi,Xi(X

TWxX)−1XT
i WxiYi]

= Cov(bi,Yi)[Xi(X
TWxX)−1XT

i Wxi ]
T

= DZT
i WxiXi(X

TWxX)−1XT
i

= DZT
i W1i[Ii −N2i(N

T
2 W1N2 + λ2K)−1NT

2iW1i] ·
Xi(X

TWxX)−1XT
i

= DZT
i Wi[Ii −N1i(N

T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i
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Cov(bi, f̂1i) = Cov(bi,N1if̂i)

= Cov[bi,N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1Y ]

= Cov

[
bi,N1i(N

T
1 Wf1N1 + λ1K)−1

m∑
j=1

NT
1jWf1jYj

]
= Cov

[
bi,N1i(N

T
1 Wf1N1 + λ1K)−1NT

1iWf1iYi
]

= Cov(bi,Yi)
[
N1i(N

T
1 Wf1N1 + λ1K)−1NT

1iWf1i

]T
= DZT

i Wf1iN1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

= DZT
i W2i[Ii −Xi(X

TW2X)−1XT
i W2i] ·

N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

= DZT
i Wi[Ii −N2i(N

T
2 WN2 + λ2K)−1NT

2iWi]

[Ii −Xi(X
TW2X)−1XT

i W2i]N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

and

Cov(bi, f̂2i) = Cov(bi,N2if̂i)

= Cov(bi,N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2Y )

= Cov

[
bi,N2i(N

T
2 Wf2N2 + λ2K)−1

m∑
j=1

NT
2jWf2jYj

]
= Cov

[
bi,N2i(N

T
2 Wf2N2 + λ2K)−1NT

2iWf2iYi
]

= Cov(bi,Yi)
[
N2i(N

T
2 Wf2N2 + λ2K)−1NT

2iWf2i

]T
= DZT

i Wf2iN2i(N
T
2 Wf2N2 + λ2K)−1NT

2i

= DZT
i W1i[Ii −Xi(X

TW1X)−1XT
i W1i] ·

N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i

= DZT
i Wi[Ii −N1i(N

T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −Xi(X
TW1X)−1XT

i W1i]N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i
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Thus,

Cov(bi, b̂i) = Cov[bi,DZ
T
i Wi(Yi −Xiβ̂ − f̂1i − f̂2i)]

= Cov(bi,Yi −Xiβ̂ − f̂1i − f̂2i)WiZiD

= [Cov(bi,Yi)− Cov(bi,Xiβ̂)− Cov(bi, f̂1i)− Cov(bi, f̂2i)]WiZiD

= DZT
i WiZiD

−DZT
i Wi{[Ii −N1i(N

T
1 WN1 + λ1K)−1NT

1iWi]

[Ii −N2i(N
T
2 W1N2 + λ2K)−1NT

2iW1i]Xi(X
TWxX)−1XT

i

+[Ii −N2i(N
T
2 WN2 + λ2K)−1NT

2iWi][Ii −Xi(X
TW2X)−1XT

i W2i]

N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i

+[Ii −N1i(N
T
1 WN1 + λ1K)−1NT

1iWi][Ii −Xi(X
TW1X)−1XT

i W1i]

N2i(N
T
2 Wf2N2 + λ2K)−1NT

2i}WiZiD

and

Cov(b̂i, bi) = DZT
i WiZiD

−DZT
i Wi{N2i(N

T
2 Wf2N2 + λ2K)−1NT

2i[Ii −W1iXi(X
TW1X)−1XT

i ]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1i[Ii −W2iXi(X
TW2X)−1XT

i W2i]

[Ii −WiN2i(N
T
2 WN2 + λ2K)−1NT

2i]

+Xi(X
TWxX)−1XT

i [Ii −W1iN2i(N
T
2 W1N2 + λ2K)−1NT

2i]

[Ii −WiN1i(N
T
1 WN1 + λ1K)−1NT

1i]}WiZiD
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Therefore, after cancelling out identical terms, we have

Cov(b̂i − bi)
= D +DZT

i ViZiD

+DZT
i Wi[Xi(X

TWxX)−1XTWxVWxX(XTWxX)−1XT
i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

+Xi(X
TWxX)−1XTWxVWf1N1(N

T
1 Wf1N1 + λ1K)−1NT

1i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWxX(XTWxX)−1XT
i

+Xi(X
TWxX)−1XTWxVWf2N2(N

T
2 Wf2N2 + λ2K)−1NT

2i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWxX(XTWxX)−1XT
i

+N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1VWf2N2(N
T
2 Wf2N2 + λ2K)−1NT

2i

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2VWf1N1(N
T
1 Wf1N1 + λ1K)−1NT

1i·]
WiZiD.

Denote

A = Xi(X
TWxX)−1XTWx

B = N1i(N
T
1 Wf1N1 + λ1K)−1NT

1 Wf1

C = N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2

the terms in the square brackets become

AV AT +BV BT + CV CT +AV BT +BV AT +AV CT + CV AT +BV CT + CV BT

= AV (AT +BT + CT ) +BV (BT +AT + CT ) + CV (CT +AT +BT )

= (A+B + C)V (AT +BT + CT ) (A.18)

Recall from the estimation procedure, (XTWxX)−1XTWxY

(NT
1 Wf1N1 + λ1K)−1NT

1 Wf1Y

(NT
2 Wf2N2 + λ2K)−1NT

2 Wf2Y

 =

 β̂f̂1
f̂2

 = C−1

XTWY

NT
1 WY

NT
2 WY

 .
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Dividing Y from both sides and take out the common term W , we have

⇒

 (XTWxX)−1XTWx

(NT
1 Wf1N1 + λ1K)−1NT

1 Wf1

(NT
2 Wf2N2 + λ2K)−1NT

2 Wf2

 = C−1

XT

NT
1

NT
2

W . (A.19)

Thus,

A+B + C = Xi(X
TWxX)−1XTWx +N1i(N

T
1 Wf1N1 + λ1K)−1NT

1 Wf1

+N2i(N
T
2 Wf2N2 + λ2K)−1NT

2 Wf2

=
(
Xi N1i N2i

) (XTWxX)−1XTWx

(NT
1 Wf1N1 + λ1K)−1NT

1 Wf1

(NT
2 Wf2N2 + λ2K)−1NT

2 Wf2


=

(
Xi N1i N2i

)
C−1

XT

NT
1

NT
2

W
= χiC

−1χTW

by plugging equation (A.19), and

AT +BT + CT = (A+B + C)T = WχC−1χTi

which by equation (A.18) gives

(A+B + C)V (AT +BT + CT )

= χiC
−1χTWVWχC−1χTi

= χiC
−1χTWχC−1χTi .

Therefore, Cov(b̂i − bi) becomes

Cov(b̂i − bi) = D −DZT
i WiZiD +DZT

i WiχiC
−1χTWχC−1χTi WiZiD

where χi =
(
Xi N1i N2i

)
and χ =

(
X N1 N2

)
. Similarly,

Cov(Ûi(si)−Ui(si))

= Γ(si, si)− Γ(si, ti)WiΓ(si, ti)
T + Γ(si, ti)WiχiC

−1χTWχC−1χTi WiΓ(si, ti)
T

where χi and χ are defined the same as before.
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