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ABSTRACT

Plug-in hybrid electric vehicle (PHEV) development seems to be
essential step on the path to widespread deployment of electric vehicles
(EVs) as the zero-emission solution for the future of transportation. Because
of their larger battery pack in comparison to conventional hybrid electic
vehicles (HEVs), they offer longer electric range which leads to a superior
fuel economy performance. Advanced energy management systems (EMSs)
use vehicle trip information to enhance a PHEV’s performance. In this
study, the performance of two optimal control approaches, model predictive
control (MPC) and adaptive equivalent consumption minimization strategy (A-
ECMS), for designing an EMS for different levels of trip information are
compared. The resulting EMSs are fine-tuned for the Toyota Prius plug-in
hybrid powertrain and their performances are evaluated by using a high-fidelity
simulation model in the Autonomie software. The results of simulation show
that both MPC and A-ECMS can approximately improve fuel economy up
to 10% compared to the baseline Autonomie controller for EPA urban and
highway drive cycles. Although both EMSs can be implemented in real time,
A-ECMS is 15% faster than MPC. Moreover, it is shown that the engine
operating points are more sensitive to the battery depletion pattern than to
different driving schedules.

Key Words: Plug-in hybrid electric vehicle, Energy management system,
Model Predictive Control, Adaptive equivalent consumption
minimization strategy

I. INTRODUCTION

Stringent environmental standards and rising fuel
costs have made the development of the hybrid electric
vehicle (HEV) and plug-in hybrid electric vehicle
(PHEV) inevitable as viable alternatives to internal
combustion engine (ICE) powered vehicles. A hybrid
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electric powertrain consists of two propulsion systems:
an ICE and an electric drive system. To optimize
the energy flow between two power sources, an
energy management system (EMS) is used. This EMS
makes use of the onboard electric drive system for
minimizing the hybrid vehicle environmental footprint,
while maintaining its drivability performance [1].

EMSs for HEV/ PHEVs can be categorized in two
major classes: reactive and route-based. The reactive
EMS schemes generate approximate optimal solutions
for the problem, since they only use the current driving
conditions. For instance, rule-based controllers, charge
depleting charge sustenance (CDCS) strategy, and
equivalent consumption minimization strategy (ECMS)
are reactive control schemes. On the other hand, route-
based EMSs use the driving schedule information to
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enhance the performance of the controller.
Several optimal control methods for route-

based energy management schemes were studied in
the literature [2], including: dynamic programming
(DP), Pontryagin’s minimum principle (PMP),model
predictive control (MPC), and Adaptive ECMS (A-
ECMS). DP suggests a global optimal solution to the
vehicle’s energy management problem [3, 4], but it is
not real-time implementable. Lin et al. [5] have found
near-optimal rules for a parallel HEV EMS by using
DP, and improved the fuel economy and emissions
performance of the vehicle. A two-scale DP method
is used for optimal EMS design in [6, 7, 8], where
the power demand is calculated according to the prior
knowledge from the trip, and the best battery depletion
profile is derived using a simple model of the battery.

Razavian et al. [9, 10] have developed a real-time
EMS for a series HEV based on the PMP technique.
The proposed controller requires the cruise time as well
as the restored amount of energy during regenerative
braking in order to adjust the related parameters
independent of speed trajectory. In this way, they
could use the instantaneous Hamiltonian minimization
procedure instead of the integral cost minimization
for the optimal control problem to improve the fuel
economy significantly.

MPC is a suitable approach for designing controls
with application to automotive systems, since it can
handle constrained optimal control problems [11]. This
approach can effectively integrate the performance of
optimal control with the robustness of feedback control.
Wang [12] proposed real-time control schemes for
different hybrid architectures using the MPC approach.
Borhan et al. [13] applied MPC to a power-split HEV,
by ignoring the faster dynamics of the powertrain
for obtaining the control-oriented model inside MPC,
which led to a better fuel economy as compared to the
rule-based PSAT simulation software. Taghavipour et
al. [14] applied MPC to a power-split PHEV and used
dynamic programming as a benchmark for evaluating
the EMS performance. In another work [15], the authors
developed a MPC EMS and applied it to a high-fidelity
model of a power-split PHEV in the MapleSim software
in order to minimize fuel consumption and emissions.

ECMS has been extensively utilized for designing
EMSs. The objective of this approach is to minimize
total energy consumption, including fuel (consumed by
the engine) and electric energy (stored in the battery).
Tulpule et al. [16] employed the ECMS approach to
design an EMS for series and parallel PHEVs by
considering two operation modes of EV and Blended.
Musardo et al. [17] introduced an A-ECMS method

based on the driving condition to find the equivalency
factor in ECMS technique for parallel HEVs. Wollaeger
and Rizzoni [18] demonstrated a near-optimal EMS
by depleting the battery SOC based on a prior
knowledge of the travelling distance without speed
trajectory. Stockar et al. [19] proposed a supervisory
EMS for series-parallel PHEVs by minimizing the
overall vehicle CO2 emissions that are indirectly
produced during electric power generation, followed by
a PMP approach for finding optimum power distribution
between the engine and the electric motor. Moreover,
a novel approach was proposed to find an optimum
battery depletion profile in real time based on the
available preview trip information for a power-split
PHEV [20, 21]. A route-based real-time EMS based on
A-ECMS is designed to optimally control the energy
management in a PHEV [22]. It is noteworthy that
PHEV fuel economy can be significantly improved
by employing the trip information preview in the
EMS [23].

However, to the best of our knowledge there is
no comparative study of route-based EMSs for PHEVs
regarding real-time implementation capabilities. In this
study, the performance of two popular route-based
EMSs, MPC and A-ECMS, are compared for different
levels of trip information and evaluated by using
a high-fidelity simulation model in the Autonomie
software (which is widely used in the automotive
industry for EMS design purposes). The EMSs are
evaluated in terms of resultant fuel economy as well as
computational effort. The EMSs are fine-tuned for the
Toyota Prius plug-in hybrid powertrain.

The paper is organized as follows: the high-fidelity
model of Toyota Prius plug-in hybrid powertrain in
the Autonomie software is introduced in chapter II.
Different levels of trip information and resulting energy
management strategies are described in section III. In
section IV, real-time EMSs are designed based on the
MPC and A-ECMS approaches. Section V provides
a comparison between the performance of different
strategies in terms of fuel economy, simulation time,
and the pattern of engine operating points.

II. TOYOTA PRIUS PLUG-IN HYBRID
POWERTRAIN MODEL

A high-fidelity powertrain model in the Autonomie
software is used for evaluating the performance
of EMSs. This forward-looking model is built on
MATLAB and Simulink according to the experimental
data that is obtained through real-world testing of
HEV/PHEVs; it can simulate the performance, fuel
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Fig. 1. Schematic of power-split PHEV powertrain [20].

economy and emissions of the vehicle in a more realistic
way [24]. Therefore, one can validate the EMS by using
high-fidelity models available in Autonomie with high
confidence.

This software is widely accepted by OEMs as
a simulation tool for powertrain controls performance
evaluation. In this study, we use the Autonomie
software for modeling the Toyota Prius plug-in hybrid
powertrain. The powertrain of this vehicle is similar
to the 3rd generation Toyota Prius except for the
battery pack. The larger Lithium-ion battery pack used
here provides longer full electric driving range while
reducing the environmental footprint considerably.
Fig. 1 shows a schematic of this powertrain. There are 2
electric motors (MG1 and MG2) which are connected to
the engine and the final drive with 2 planetary gear sets.
More information about this model of the power-split
PHEV powertrain can be found in [20, 25].

III. LEVEL OF TRIP INFORMATION

By taking advantage of advancements in vehicle
intelligence and communications technologies to
acquire preview knowledge of the trip, a significant
improvement of the EMS performance can be made.
Look-ahead trip data to predict future driving conditions
can be provided by Global Positioning Systems (GPS),
Intelligent Transportation System (ITS), Geographic
Information Systems (GIS), radars, and other on-board
sensors.

In terms of the level of access to the preview
trip information, the EMSs can be categorized into
three groups: I) no information, II) travelling distance,
and III) speed trajectory. In fact, these levels of trip
information suggest different battery depletion profiles,
which lead to the EMS performance improvement.

As mentioned before, Reactive EMSs don’t require
any preview of the trip information. In CDCS, the
vehicle is initially operated in charge depleting mode

(CD) by depleting battery electric energy. When the
SOC drops to a certain level, the operation mode
is switched into the charge sustenance mode (CS)
to maintain SOC close to that predefined level. The
operation mode can be manually switched between CS
and CD in the manual CDCS strategy. In this way, one
can select CS mode to run the engine during driving
in the highways in order to save stored electric energy
in the battery for the situations that engine doesn’t
operate efficiently, especially in urban area driving. The
Autonomie default control strategy is rule-based and
similar to the CDCS strategy. The only difference is
the engine operation in CD mode while the driver’s
demanded power is high.

The designed EMSs in this study (based on
MPC and A-ECMS approaches) employ a blended
strategy and optimally utilize two energy sources,
engine and battery, simultaneously to maintain the high
performance of the powertrain. These EMSs can be
implemented with two different levels of information.
If the travelling distance is known in advance, a linear
battery depletion profile is used as a reference SOC.
Another possible way is to acquire traffic conditions
via some sensors in order to find an optimum battery
depletion profile. The optimum profile helps further
improvement in EMS performance. Fig. 2 shows
the proposed architecture for the optimal route-based
energy management of PHEVs [20], which consists of
three main subsystems: a SOC trajectory builder, route-
based EMS, and low level controllers.

The SOC trajectory builder is designed to predict
the optimum SOC profile based on the preview
knowledge of the trip. This optimum SOC is employed
in the route-based EMS to find the optimum power
distribution between the engine and battery, in real
time. Finally, the low-level controllers make the
engine (Pe) and the electric motors (Pm) provide
the demanded power (Pd) based on the optimum
power distribution. To optimize SOC trajectory, first
the future speed trajectory is predicted based on the
traffic speed profile, maximum permissible speed, and

Pd
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Driver
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Fig. 2. Schematic of the real-time route-based EMS [20].
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road signs. The route is divided into some segments,
considering that obstacles such as bridge ramps, traffic
lights, or stop signs are located at the margin of the
segments. A math-based trip model was developed
to calculate the fuel consumption and SOC profile
based on the power distribution for the proposed
speed trajectory. Finally, the optimum SOC profile
is obtained by minimizing total fuel consumption
considering constraints on the powertrain components.
The power distribution is formulated by the power
ratio parameter (PR), which is the ratio of the battery
power (Pb) to the demanded power (Pd). For the real-
time implementation, the segments are clustered into
groups based on the demanded power. It is assumed
that the PR in the segment of each group is constant.
This clustering reduces the number of optimization
parameters and makes the algorithm independent of the
trip distance [20].

IV. ENERGY MANAGEMENT SYSTEMS

4.1. Model Predictive Control

In the MPC approach, the future behavior of the
plant output is optimized by computing a trajectory of
inputs. The optimization procedure is done within a
time window by using the measured information from
the plant. The length of this time window is called
the prediction horizon which determines how far we
need to predict the future. Additionally, a sufficiently
accurate and simple model of the system is required
to perform prediction and find the appropriate array
of control inputs through an optimization procedure.
This model must capture the essential dynamics of the
plant and give an accurate and consistent prediction
of the future. The length of the input array is called
the control horizon. In the receding horizon control
approach, the first sample of control inputs array is
applied to the plant, and the rest of the trajectory is
ignored [12]. An integrator is embedded into the design
in order to make the predictive control system track
constant references and reject constant disturbances
without steady-state errors. This approach does not need
steady-state information about the control inputs or
state variables to be implemented.

As a control-oriented model inside MPC, the
vehicle longitudinal dynamics and an internal resistance
model for the battery are considered. The equations of

the system are written as (1), (2) and (3):
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The parameters are adjusted according to the
Toyota Prius plug-in hybrid powertrain, where Voc is
the open-circuit voltage of the battery, Rbatt is the
battery resistance, Qbatt is the battery capacity, ηm
is motor efficiency, ηg is generator efficiency, (r1, s1)
and (r2, s2) are the number of ring and sun gear teeth
for two planetary gear sets, and Iv, Ie, and Ig are the
equivalent inertia of the vehicle, the engine and the
generator, respectively. In this system, there are 3 state
variables: ring speed (ωr) which is proportional to the
vehicle velocity, engine speed (ωe), and battery state of
charge (SOC). Also, there are 3 inputs: engine torque
(Te), motor torque (Tm) and generator torque (Tg) in
order to provide the driver’s demanded torque (Td).
When the battery is discharged k = 1, where as k = −1
for battery charging [14, 25].

In each prediction window, a cost function is
minimized to maximize fuel economy and track a
predefined reference SOC trajectory while maintaining
drivability. The cost function is:

J(k) =

Np∑
i=1

(w1(SOCref (k + i)− SOC(k + i))2

+w2(ṁ(k + i))2). (4)

where w1 and w2 are the weighting parameters for
SOC tracking and fuel minimization, respectively. The
performance of a control system can significantly be
degraded when the control signals from the original
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design meet with the constraints. To solve this issue, all
the constraints must be changed in the form of variation
in input signal. The constraints on this problem are
defined as follows:

Te,min < Te < Te,max (5)
Tm,min < Tm < Tm,max

Tg,min < Tg < Tg,max

ωe,min < ωe < ωe,max

ωr,min < ωr < ωr,max

ωg,min < ωg < ωg,max

SOCmin < SOC < SOCmax

For finding a simpler form of the controller, the
equations of the system are linearized for each time
step around the operating point. According to the engine
fuel consumption map, a linear fit to the fuel rate
versus squared engine speed and engine power is quite
satisfactory. Therefore, the fuel consumption rate of the
engine is estimated as:

ṁf = αω2
e + βTeωe (6)

where α and β are constants [26].

4.2. Adaptive ECMS

The ECMS approach was proposed to optimally
determine energy distribution between one external
energy source (fuel), and the electric energy of the
battery in HEVs. The energy stored in the battery is
indirectly generated by the fuel in the tank. As a result,
the energy consumption is determined by the equivalent
fuel consumption of both fuel and electric energy.

However, the larger battery pack in a PHEV mainly
stores the grid electric energy. Therefore, the main
portion of the battery energy is not generated from the
fuel. As a result, the total cost of the grid electric energy
and fuel is considered as a criterion to evaluate the
vehicle performance, which is formulated in Eq. 7 [22]:

Cost = kfṁf − keηchQmax
˙SOC (7)

where ṁf is the fuel consumption rate, Qmax is the
maximum battery capacity, ηch is the charger efficiency,
and kf , ke are the unit price for the gas and electric
energy, respectively.

The objective of the ECMS EMS is to minimize
the total energy cost (Eq. 8,9) which is subjected to the
constraints (Eq. 10) on the battery SOC, the engine, and

battery power:

J =

∫ tf

t0

(kfṁf + S keηchηbPb) dt (8)

˙SOC = − ηb
Qmax

Pb (9)

SOC(t0) = SOC0

SOC(tf ) = SOCf

SOCmin ≤ SOC ≤ SOCmax

Pb,min ≤ Pb ≤ Pb,max

Pe,min ≤ Pe ≤ Pe,max (10)

where S is an equivalency factor, ηb is the battery
efficiency, and Pb, Pe are the battery and engine power,
respectively.

The equivalency factor is a design parameter to
make a balance between the supply and demand of
electric energy during a trip by regulating the electrical
cost. To find the optimum value of the equivalency
factor, the future driving condition should be available.
However, one can consider the adaptive ECMS (A-
ECMS) to make the EMS independent of the trip
information. To this end, the reference SOC which is
generated by the SOC trajectory builder helps finding
the equivalency factor. This reference SOC may be
found by the least trip information, which is linear
profile versus travelling distance, or by the whole
trip information which leads to the optimum battery
depletion profile.

V. RESULTS AND DISCUSSIONS

In this section, the performance of the two
designed EMSs are evaluated in terms of real-time
implementation and fuel economy for different battery
depletion trajectories using the high-fidelity model
which was introduced in section II. Two different
driving schedules for urban driving and combined
highway and urban driving are used for the simulation.
The first one is a combination of three UDDS drive
cycles (3U drive cycle) and the latter is a HWFET drive
cycles and two UDDS and (UHU drive cycle). Then,
the engine operating points pattern for different cases
are discussed in order to explain the contribution of trip
information in improving the fuel economy.

5.1. Drivability and fuel economy

According to Fig. 3 to Fig. 9, the solid (battery
SOC) and bold (fuel consumption) curves represent
the energy stored in the battery and the fuel tank
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for propelling the vehicle. The summation of these
two curves with appropriate coefficients represents the
demanded power from the driver along the drive cycle,
shown as the dashed line. Now, the challenge is how
to change the rate of using energy from both sources
so that we get the best fuel saving along the trip.
The simulation results for EMSs without any preview
trip information according to the UHU drive cycle are
shown in Fig. 3, 4, and 5.

In CDCS strategy, the energy stored in the battery
propels the vehicle approximately for the first half of
the trip (t = 1715 s), then the engine takes over and
the operating mode switches to CS (Fig. 3). The rule-
based controller of Autonomie has a similar approach,
but it starts the engine even when SOC is more than the
predefined value. As shown in Fig. 4 for acceleration at
t = 220 s and t = 1720 s, the engine assists the electric
drive to propel the vehicle. This leads to a longer
charge depletion period and 2.1% improvement in fuel
economy (MPG) over CDCS.

The engine operates more efficiently at high speeds
in comparison to low speeds. As a result, engine
operation while the vehicle is driven on the highway
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Fig. 3. Charge depleting/charge sustenance (CDCS) strategy perfor-
mance over the UHU driving schedule-with no trip information
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Fig. 4. Autonomie default rule-based strategy performance over the
UHU driving schedule-with no trip information
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Fig. 5. Manual charge-sustenance/charge depleting strategy perfor-
mance over the UHU driving schedule-with no trip information
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Fig. 6. Linear blended mode strategy performance over the UHU
driving schedule-level of trip information: Distance

can improve fuel economy. On the other hand, it is
preferable to use electric energy for driving in urban
areas. In manual CDCS, the driver can manually
switch between EV mode (CD) and HEV mode (CS)
depending on the traffic condition. This can improve
fuel economy even further. It is found that the manual
CDCS strategy utilizes more engine power in the
highway rather than rule-based strategy, and extends
the CD operating mode until t = 3100 s (Fig. 5). This
strategy enhances the fuel economy by 5.6% compared
to the default rule-based controller in Autonomie
software.

The trip information and the battery depletion
profile improves the EMS performance by enhancing
the PHEV fuel economy. The battery depletion profile
can be obtained based on different levels of trip
information. If the travelling distance is available
beforehand, the linear depletion profile is used as
the reference SOC. In the case of a modern vehicle
with on-board sensors, the future driving condition can
be predicted. Then, the optimum depletion profile is
generated by the SOC trajectory builder in real time
and applied to the EMS. The simulation results of MPC
and A-ECMS for linear reference SOC and optimum
reference SOC are shown in Fig. 6 and 7, respectively. It
is shown that both EMSs satisfy the constraint on SOC
at the end of the trip.

Since the MPC controller solves a quadratic
programming (QP) problem at each time step, it is
generally slower than the ECMS strategy. Therefore,
the MPC implementation procedure is modified to make
the controller faster at the price of compromising its
performance, so that when we run the model and
the controller using a fixed time step scheme (∆t =
10 ms), we get comparable simulation times for both
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Fig. 7. Blended mode strategy with optimized reference SOC
performance over the UHU driving schedule-level of trip
information: Speed trajectory

controllers. To do this, we increase the MPC sampling
time to solve fewer QP problems over the driving
schedule.

By comparing Fig. 6 and 7, the effect of the
increasing control period for MPC can clearly be
seen in degrading its battery depletion trajectory
tracking performance. Nonetheless, MPC performance
for reducing fuel consumption is still comparable with
ECMS controller.

For linear blended mode and optimized reference
SOC case (Fig. 6 and 7), the reference SOC
tracking performance of A-ECMS is better than MPC
approach. MPC decides on more battery power to
propel the vehicle while accelerating (at t = 210 s and
t = 2400 s), which results in smoother engine operation
to avoid engine inefficient operation in such transients.
On the other hand, A-ECMS utilizes more engine
power for acceleration in order to follow SOC reference
trajectory.

On the highway, A-ECMS utilizes more engine
power for the acceleration part, but MPC uses battery
power in acceleration mode and then restores the battery
energy by operating the engine to track the reference
SOC.

For instance, in the time period of 180s to 360s, the
fuel consumption and ∆SOC are 0.122 L, 0.032% for
MPC, and 0.087 L, 0.049% for A-ECMS, respectively.
As a result, MPC increases SOC (decrease ∆SOC of
the segment) by utilizing more engine power at the end
of the segment.

Fig. 8, 9 show the simulation results for evaluating
the EMSs performance in an urban driving experience
(3U drive cycle). Both EMSs perform similarly in terms
of reducing the fuel consumption.
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Fig. 8. Linear blended mode strategy performance over the 3U driving
schedule-level of trip information: Distance
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Fig. 9. Blended mode strategy with optimized reference SOC
performance over the 3U driving schedule-level of trip
information: Speed trajectory

Table 1 summarizes the fuel consumption by
using different EMSs with different levels of trip
information in UHU and 3U drive cycles. The manual
CDCS strategy shows the best performance, when the
future trip information is not available. The manual
CDCS or linear blended mode strategies result in close
fuel consumption for two driving schedules, which
shows the potential of manual CDCS for reducing fuel
consumption with no information about the trip in
advance.

In urban drive cycle (3U), the linear blended mode
leads to a better performance for both EMSs, because
the electric energy is available until the end of the
trip. For the combined urban and highway driving
schedule (UHU), manual CDCS operates the engine
more efficiently and therefore leads to a better fuel
economy.
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Table 1. Fuel economy for different levels of trip information

Strategy Level of trip MPG MPG
information UHU cycle 3U cycle

CDCS No 93.1 94.9
Rule-based No 95.1 97.7

Manual CDCS No 100.5 99.6
A-ECMS, linear SOC Distance 98.3 104.7

MPC, linear SOC Distance 97.4 105.4
A-ECMS, optimized SOC Speed 103.4 107.7

MPC, optimized SOC Speed 102.9 108.5

For the optimized reference SOC where the whole
future speed trajectory is available, both MPC and A-
ECMS result in the best fuel economy. Using these
EMSs, the fuel economy is improved by 8.5% and
10.2% for UHU and 3U drive cycles in comparison to
the results of the default rule-based controller of the
Autonomie software.

According to Table 1, the MPC controller performs
better in the 3U drive cycle, where we have a more
predictable driving pattern.

Although the MPC performance is negatively
affected by increasing the sampling time, it still sug-
gests a comparable fuel economy with A-ECMS, which
shows the flexibility of this approach for designing an
EMS. It is noteworthy that MPC outperforms A-ECMS
without considering the mentioned compromise due to
real-time implementation concerns.

The computational effort for both EMSs should be
considered for comparing their real-time implementa-
tion capabilities. To compare the computational effort,
all simulations were run on a PC with Intel Core 2 Duo
CPU (E8500, 3.17GHz) and 4GB RAM. The average
computation time of MPC and A-ECMS strategies are
240, 208s for UHU drive cycle, and 290, 252 s for 3U
drive cycle, respectively.

5.2. Engine operating points

To have a closer look at the designed EMSs
performances, we investigate the engine operating
points for different strategies along the 3U and UHU
schedules. Fig. 10 shows the engine operating points
for CDCS and manual CDCS strategies. Fig. 11 and
Fig. 12 show the engine operating points for blended
mode strategies by employing the MPC and A-ECMS
approaches to design EMS.

The engine operating points are more sensitive to
different battery depletion strategies than to changing
the drive cycle. For instance, Fig. 10-a and Fig. 10-
b are remarkably similar. The same argument can be
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Fig. 10. Engine operating points for (a) CDCS strategy along 3U (b)
CDCS strategy along UHU (c) manual CDCS along 3U (d)
manual CDCS along UHU

mentioned for Fig. 11 and Fig. 12 in linear blended
mode case. However, a significant pattern change can
be observed by comparing Fig. 10-b and Fig. 10-d.
For the blended mode strategy with optimized reference
SOC, we expect to see a different pattern of the engine
operating points along different drive cycles, since the
battery depletion profile is specifically derived for a
drive cycle, which is a different approach compared to
the other battery depletion strategies.

Fig. 10-d pattern is very close to Fig. 11-
d and Fig. 12-d. Moreover, Table 1 shows the
advantage of using manual CDCS for reducing fuel
consumption with less information about the driving
pattern compared to the case where we are using an
optimized SOC depletion trajectory. This shows the
potential of manual CDCS in improving the EMS
performance specially in the combined UHU schedule
by involving the driver in the energy management
procedure.

As shown in Fig. 11 and Fig. 12, the MPC and
A-ECMS approaches result in a similar pattern of
the engine operating points. Since fuel consumption
reduction is one of the objectives of optimal control in
both methods, the engine operating points are pushed
to approach the engine optimal operating line. As a
result, a considerable fuel saving is observed by using
the mentioned EMSs.

VI. CONCLUSIONS

In this paper, the performance of two real-time
implementable PHEV EMSs (MPC and A-ECMS) were
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Fig. 11. MPC engine operating points for (a) Linear blended strategy
along 3U (b) Linear blended strategy along UHU (c) Blended
strategy with optimized SOC along 3U (d) Blended strategy with
optimized SOC along UHU
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Fig. 12. A-ECMS engine operating points for (a) Linear blended
strategy along 3U (b) Linear blended strategy along UHU (c)
Blended strategy with optimized SOC along 3U (d) Blended
strategy with optimized SOC along UHU

compared in terms of fuel economy and computational
effort. We evaluated the performance of two systems
by using Toyota Prius Plug-in Hybrid high-fidelity
model in Autonomie software for different levels of trip
information. It was concluded that the fuel economy
from the MPC and A-ECMS approaches are close
with similar level of trip information. Without any
information about the future driving condition, manual
CDCS strategy has the best performance. By having
more trip information, the performance of control

systems is improved. It was shown that MPC and A-
ECMS strategies can improve the fuel economy up
to 10% compared to the Autonomie software baseline
controller. Although A-ECMS is 15% faster than MPC
in terms of simulation time, both approaches can
be implemented in real-time. Finally, it was shown
that the engine operating points are more sensitive
to the battery depletion pattern than to different
driving schedules. We are currently implementing the
proposed controllers on commercial real-time hardware
to evaluate their performance in hardware-in-the-loop
testing procedure. Afterwards, the performance of the
proposed controllers on the Prius plug-in powertrain
will be evaluated on rolling dynos and on our test track.
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