
Real-time Predictive Control Strategy for a Plug-in
Hybrid Electric PowertrainI

Elsevier1

Radarweg 29, Amsterdam

Amir Taghavipoura,∗, Nasser L. Azada, John McPheea

aSystems Design Engineering Department, University of Waterloo, 200 University Ave. W,
Waterloo, Ontario

Abstract

Model predictive control is a promising approach to exploit the potentials of

modern concepts and to fulfill the automotive requirements. Since, it is able to

handle constrained multi-input multi-output optimal control problems. How-

ever, when it comes to implementation, the MPC computational effort may

cause a concern for real-time applications. To maintain the advantage of a pre-

dictive control approach and improve its implementation speed, we can solve the

problem parametrically. In this paper, we design a power management strat-

egy for a Toyota Prius plug-in hybrid powertrain (PHEV) using explicit model

predictive control (eMPC) based on a new control-oriented model to improve

the real-time implementation performance. By implementing the controller to

a PHEV model through model and hardware-in-the-loop simulation, we get

promising fuel economy as well as real-time simulation speed.

Keywords: Automotive powertrain, plug-in hybrid electric vehicle, power

management, explicit model predictive control.

2010 MSC: 00-01, 99-00

IFully documented templates are available in the elsarticle package on CTAN.
∗Corresponding author, Email:ataghavi@uwaterloo.ca
1Since 1880.

Preprint submitted to Journal of LATEX Templates March 20, 2015

The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.mechatronics.2015.04.020 © 2015. This manuscript
version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

https://dx.doi.org/10.1016/j.mechatronics.2015.04.020
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Rising fuel costs, stringent legal standards and increasing environmental con-

cerns have made car manufacturers produce vehicles with high fuel efficiency and

low emissions. This is possible due to new components and technologies that

are introduced in automotive powertrains (e.g. turbo charging, exhaust gas re-5

circulation, continuous variable transmission). Unfortunately, it seems that the

control software of powertrains remains backward with respect to their com-

plexity [1]. While most current strategies are based on heuristics and look-up

tables, [2, 3] have shown that model predictive control has a large potential

for automotive powertrain control design. One of the most attractive solutions10

for sustainable transportation to car manufacturers is the hybrid electric pow-

ertrain. Hybrid electric vehicles exploit energy production and energy storage

systems to achieve improved fuel economy with respect to conventional power-

trains. For further improvement in fuel economy and emissions performance,

plug-in hybrid electric vehicles (PHEVs) were introduced. These vehicles benefit15

from a larger power storage system which leads to a longer full-electric range in

comparison to HEVs. As such, they can significantly reduce the environmental

footprint of the vehicle. These vehicles are one step closer to the full electric

vehicle (EV) but more attractive to the market with range-anxiety concerns for

EVs.20

To maximize fuel economy and emissions performance, control strategies are

required to estimate the amount of energy to be produced and stored optimally.

HEV power management decides on how much power should be produced by

the internal combustion engine and how much should be stored/released from

the electric drive to achieve the demanded power at the wheels, while enforcing25

the operating constraints, and to optimize fuel economy at the same time. The

PHEV’s larger battery provides more flexibility and on the other hand more

complexity for the power management system in comparison to HEVs. Several

strategies for HEV/PHEV power management have been proposed, including

dynamic programming (DP), stochastic dynamic programming (SDP), equiv-30

2

alent fuel consumption minimization (ECMS), and model predictive control

(MPC). To fully exploit these strategies’ capability for improving fuel econ-

omy and emission performance, complete information of the driving schedule

is required beforehand. Unfortunately, information about the future driving

cycle is not available during conventional driving. Furthermore, planning for35

the whole future driving cycle is computationally demanding. Even by having

the exact driving schedule available at the starting point, DP cannot be im-

plemented in real time, although it can offer the most efficient solution. As a

result, rule-based strategies based on DP results are usually implemented to the

powertrain controller.40

Stochastic models can reduce some of these problems, but the choice of

stochastic model and its identification still faces some challenges [4]. Moura

et al. derived an optimal power management scheme for a plug-in hybrid ve-

hicle (power-split architecture) based on stochastic dynamic programming [5].

Musardo et al. [6] proposed an adaptive ECMS (A-ECMS) method based on45

driving condition, which calculates the equivalency factor in ECMS technique

for parallel HEVs. Tulpule et al. [7] used the ECMS approach to design a

power management strategy in series and parallel PHEVs by considering two

operation modes (EV and Blended).

Model predictive control is another approach for designing a power man-50

agement strategy. The success of MPC in industrial applications is due to its

ability to handle processes with many manipulated and controlled variables and

constraints in a rather systematic manner [8]. Furthermore, MPC allows an

objective function to be optimized by the controller. Other advantageous MPC

features are the capability of dealing with time delays [9], of taking advantage55

from future information [10], and of rejecting measured and unmeasured dis-

turbances [11]. It is noteworthy that MPC embodies both (receding horizon)

optimization and feedback adjustment. Model predictive control has been ap-

plied to diesel engines control [12], catalyst control [13], transmission control

[14], and HEV [15, 16]/ PHEV [17, 18] power management.60

Despite the obvious benefits of MPC, its capabilities are limited due to the

3

computational effort required for solving the online optimization problem of the

MPC [19]. In our previous work [20], we compared the performance of A-

ECMS strategy to MPC approach for designing a power management strategy

for a PHEV. Both strategies improved fuel economy by 10% in comparison to65

the baseline control strategy, but A-ECMS was approximately 15 % faster than

MPC.

This shortcoming can be overcome by using the so-called explicit MPC

(eMPC) methods. In eMPC the online optimization problem involved in the

MPC is solved off-line using multi-parametric programming approaches and the70

control variables and the value function of the optimization problem are derived

as explicit functions of the system state variables, as well as the critical regions

of the state-space where these functions are valid. Such a function is piecewise

affine in most cases, so that the MPC controller maps into some polyhedral

regions that can be stored as a look-up table of linear gains [8]. The key advan-75

tage of explicit MPC is that it can replace the online optimization problem of

the traditional MPC with a set of function evaluations, significantly reducing

the computational effort required for the implementation [19].

Explicit MPC techniques [21] can be used to synthesize the controller as a

piecewise affine function. With this approach, the MPC can be implemented80

in a micro-controller without the need for an optimization solver and satisfying

limitations on memory and computational power characteristic of automotive

electronic control units (ECUs).

In practice, explicit MPC is limited to relatively small problems (typically

1-2 inputs, up to 5-10 states, up to 3-4 free control moves). But it allows one85

to reach very high sampling frequencies and requires a very simple control code

to be embedded in the system [8].

Industrial problems addressed through explicit MPC techniques have been

reported in technical papers, starting from what is probably the first work in

this domain which is traction control [22]. Most applications of explicit MPC90

have been reported in the automotive domain and electrical power converters.

The hardware-in-the-loop (HIL) systems have become efficient tools for strat-

4

egy and interface software development [23]. The HIL systems allow a lot of

control function development to be done and verified ahead of a vehicle build.

Improved software quality and early verification of software leads to reduced ve-95

hicle commissioning time if a minimum level of functionality exists before being

handed off to the various engineering teams for further development [24].

The authors in [25] applied the HIL approach to a parallel HEV configu-

ration in order to analyze fuel reduction benefits due to hybridization without

any influence of vehicle characteristics or engine technology improvement. Pe-100

tersheim and Brennan [26] down-scaled the electric machine and the battery of

an HEV to perform a lab-scale HIL simulation.

The advent of microprocessor-based electronic control units (ECUs) for car

engines and powertrain created a need for new tools for testing, calibrating,

and validating these ECUs. HIL simulation met this need, and became a key105

technology for engine ECU testing and calibration [27].

Lee et al. present a formal process for developing such a HIL simulator that

uses automatic code generation to streamline the transition of control system

designs from pure simulation to a commercial embedded code [28].

The use of HIL simulation for automotive ECU development is not limited110

to engine applications. In fact, HIL simulation has been used effectively for the

development, calibration, and validation of transmission and driveline electronic

control units.

In this paper, we propose a near-optimal, real-time implementable solution

for a PHEV power management strategy using explicit model predictive control.115

In [4], the authors used an eMPC solution for a series HEV, but to the best of

our knowledge, this is the first time that an explicit model predictive controller is

designed and implemented for a power-split PHEV architecture. Due to system

complexity, there are some challenges for finding an appropriate control-oriented

model. Using eMPC is only practical for relatively small problems because120

the size of the controls database is exponentially increased by the number of

state variables. Therefore, the control-oriented model should be very simple,

but accurate enough to capture the complex dynamics of a power-split PHEV

5

powertrain. Moreover, the control-oriented model and the optimization cost

function should be chosen in such a way that they guarantee a feasible solution,125

optimality, stability and desirable performance for the controller. The proposed

control system is a switched discrete-time one. As a result, stability analysis

is required to make sure that the control system keeps its performance for all

PHEV operating points. Therefore, we introduce an innovative control-oriented

model that is very simple and addresses the mentioned issues.130

In the next section, we introduce the simulation model. Then, we discuss

the power management strategy design and implementation by developing an

appropriate control-oriented model. In section 4, we show the polytopes result-

ing from solving the eMPC and discuss the physical interpretation of different

regions. Then we discuss the stability of the closed-loop system. In section 7,135

we apply the designed controller to the simulation model, which is followed by

HIL testing. Finally, we discuss the results and compare them with the MPC

approach.

2. Powertrain simulation model

Among the different architectures for a hybrid electric vehicle, the power split140

configuration seems to be the most efficient for a limited size of battery [29].

In a power split configuration, the engine, the electric motor and the generator

are connected to each other by means of 2 planetary gear sets (PGS). Figure 1

shows the schematic of the Toyota Prius plug-in powertrain. The engine shaft

and first electric machine are connected to the carrier and the sun gear of PGS145

1. The second electric machine is connected to the sun gear of the second PGS.

To derive the dynamics of the system, it is assumed that the mass of the

pinion gears is small, there is no friction, no tire slip or efficiency loss in the

powertrain. By considering the vehicle longitudinal dynamics and an internal

resistance model for the battery, the equation of the system can be written as150

(1), (2) and (3).

6

Figure 1: Toyota Prius plug-in powertrain schematic. ICE: Internal combustion engine, MG:

Motor/Generator, PSG: Planetary gear set, FD: Final drive

(
I
′
v(s1+r1)

2

r1I
′
eK

+
I
′
vs

2
1

r1I
′
gK

+ r1)(
r2
s2
)ω̇r = ((s1+r1)

I′
e

)Te + (s1
I′
g

)Tg

+((s1+r1)
2

r1I
′
e

+
s21

r1I
′
g

)(r2s2)Tm − ((s1+r1)
2

r1I
′
eK

+
s21

r1I
′
gK

)C (1)

(
I
′
er

2
1K

(s1+r1)I
′
v

+
I
′
es

2
1

(s1+r1)I
′
g

+ s1 + r1)ω̇e = −(r1
I′
v

)C (2)

(
r21K

(s1+r1)I
′
v

+
s21

(s1+r1)I
′
g

)Te + (r1K
I′
v

)Tm − (s1
I′
g

)Tg

˙SoC = −
Voc −

√
V 2
oc − 4(Tmωrη

−k
m − Tgωgηkg)Rbatt

2RbattQbatt
(3)

where I
′

v = (m/K)R2
tire+(Im+ Ir)K, I

′

g = Ig + Is, and I
′

e = Ie+ Ic. Moreover,

for the first planetary gear set we have r1ωr+s1ωg = (r1+s1)ωe as a kinematic

constraint. C denotes the total resistive torque at the driver wheels and can

be found as C = mgfrRtire +0.5ρAfcd(ωr/K)2R3
tire by ignoring the wheel slip155

effect and gradability. The total resistive torque consists of two terms: one is

related to the equivalent tire rolling resistance and the second one considers the

effect of the drag force.

In this system, there are 3 state variables: first ring gear speed (ωr), which

is proportional to the vehicle velocity, engine speed (ωe), and battery state of160

7

charge (SoC). There are 3 inputs: engine (Te), motor (MG2) (Tm) and gener-

ator (MG1) torque (Tg). ηm and ηg represent motor and generator efficiency,

respectively. When the battery is discharging k=1. But k=-1 for battery charg-

ing. The model parameters are listed in Table 1.

3. Power management strategy design165

In this paper, we design a power management strategy for a PHEV by

using multi-parametric model predictive control approach. Bemporad et al.

[21] presented a technique to determine the linear quadratic regulator for con-

strained systems through offline multi-parametric linear programming (mp-LP)

and multi-parametric quadratic programming (mp-QP). The control law was170

shown to be piecewise linear and continuous, and could be implemented as a

lookup table, i.e., different linear state feedback laws apply to different polyhe-

dral regions. Therefore, the online control computation is reduced to determin-

ing the region associated with the current state and then applying the stored

control law associated with that region.175

First of all we need a control-oriented model to design the controller. The

design procedure of the controller can be divided into 2 different stages: offline

and online. The objective of the offline procedure is to populate some look-

up tables which contain the appropriate control actions for different system

operating points. In this procedure, we solve the multi-parametric programming180

problem with an initial condition. The result is a polytope with a specific control

action. Then we have to explore the state space to find the other polytopes and

control actions. There may be a large number of look-up tables as the result

of solving the optimization problem. In this case, region reduction methods

can be used to remove sone redundant constraints in the optimization problem185

in order to downsize the look-up tables and improve controller speed in the

implementation stage. Finally we find the least number of the look-up tables.

The online procedure happens during controls implementation. Here, we

need a fast and efficient search algorithm to look up the tables to find which

8

Table 1: Variables and Parameters Description

Symbol Unit Value Description

Ig kgm2 0.1 Generator equivalent inertia

Is kgm2 0.1 Sun gear equivalent inertia

Ie kgm2 0.5 Engine equivalent inertia

Ic kgm2 0.1 Carrier equivalent inertia

Im kgm2 0.1 Motor equivalent inertia

Ir kgm2 0.1 Ring gear equivalent inertia

Rtire m 0.3 Tire average radius

m kg 1440 Vehicle curb weight

K − 3.268 Final drive gear ratio

fr − 0.02 Equivalent rolling resistance coefficient

Af m2 2.5 Vehicle frontal area

ρ kg/m3 1.2 Air density

cd − 0.25 Drag coefficient

r1 − 78 First ring gear teeth No.

s1 − 30 First sun gear teeth No.

r2 − 79 Second ring gear teeth No.

s2 − 30 Second sun gear teeth No.

Voc V 207.2 Battery open circuit voltage

Rbatt Ω 0.85 Battery open circuit resistance

Qbatt Ah 21.72 Battery nominal capacity

9

Figure 2: eMPC design procedure

one of those polytopes contains the initial state variable. This algorithm is190

called point location. Once the corresponding polytope is found, the eMPC law

is obtained. These steps are shown in Figure 2.

In the following subsections, we address each step separately.

3.1. Control-oriented model

We have to consider a relatively simple model to take advantage of explicit195

model predictive control approach. To obtain smaller look-up tables and make

it possible to implement the controller to a commercial hardware with a limited

amount of memory and computational power, we use the following model inside

the controller:

Z(k + 1) = AZ(k) +BU(k) (4)

where Z =
[
SoE, E

]T
and U =

[
PBAT , PENG, PBRK

]T
.200

A =

 1 0

0 1


B =

 a1 0 a2

a3 a4 a5


There are 2 state variables in this model: battery state of energy (SoE) and

tractive energy E. Battery SoE is defined as the ratio of battery stored/released

10

energy to the battery total usable energy. We define the tractive energy E the

integral of the power which is required to propel the vehicle, i.e. tractive energy

is the power required in a time step to propel the vehicle. We have 2 sources205

of energy in the powertrain: the battery and the fuel. We define 2 inputs to

address these sources as PBAT and PENG which are the battery and the en-

gine power, respectively. The battery power is the summation of powers from

2 onboard motors. The third input is required to stop the vehicle. As a result,

we add braking power to the control actions. The coefficients a1-a5 are chosen210

based on battery pack capacity, efficiencies (electrical and mechanical) as well as

the control period that is considered in the design procedure: a1 = −∆t/EBAT ,

a2 = ηregen∆t/EBAT , a3 = ηBAT∆t, a4 = ηENG∆t, a5 = −∆t where ηregen,

ηBAT , ηENG are the percentage of the regenerative braking power that returns to

the battery, electrical motor propulsion efficiency (including battery and power215

electronic efficiencies), and the engine propulsion efficiency (including the me-

chanical efficiencies of the powertrain components), respectively. EBAT and

∆t are the maximum stored energy in the battery and the desired controller’s

sampling time.

3.2. Optimization problem formulation220

In a hybrid electric vehicle, researchers are interested in improving the fuel

economy and emissions performance while maintaining the vehicle drivability.

Emissions are not considered in this paper, but reducing the fuel consumption

has an important contribution to the emissions performance.

In a PHEV, fuel economy is closely related to the battery depletion trajec-225

tory. As a result, we consider a tracking term inside the cost function that SoE

should follow at each time step (SoEref). To address drivability, we consider

another term inside the cost function to ensure that the hybrid powertrain pro-

vides adequate propulsion power, the driver request (Eref). We also need to

reduce the fuel consumption as our main objective. Since the engine fuel con-230

sumption is proportional to the engine generated power, we should minimize the

engine power as one of the assumed control actions. The cost function along

11

the prediction horizon can be written as follows:

minU
∑Np

j=1

{
Y T (j)QY (j) + UT (j)RU(j)

}
s.t. SoEmin

Emin

 ≤

 SoE

E

 ≤

 SoEmax

Emax


Umin ≤ U ≤ Umax (5)

where Y =
[
SoE − SoEref , E − Eref

]T
, Np is the prediction horizon length,

and Q and R are.235

Q =

 ω1 0

0 ω2



R =


ω3 0 0

0 ω4 0

0 0 ω5


The above cost optimization is subjected to the constraints on state variables

and control actions. The weighting parameters ωi (i = 1, 2, .., 5) should be tuned

for the best performance.

There are 4 parameters in the cost function: 2 state variables (SoE,E) and

2 setpoints (SoEref , Eref). To separate the parameters from each other, we240

have to rewrite (5) as:

minU
∑Np

j=1

{
XT (j)HX(j) + UT (j)RU(j)

}
s.t.

GU ≤ W+ SX

(6)

where X =
[
SoE, E SoEref , Eref

]T
, Xmin =

[
SoEmin, Emin

]T
,

Xmax =
[
SoEmax, Emax

]T
, and the matrices are:

12

H =


ω1 0 −ω1 0

0 ω2 0 −ω2

−ω1 0 ω1 0

0 −ω2 0 ω2



G =


−I3×3

I3×3

O4×3



W =


−Umin

Umax

−Xmin

Xmax



S =



O6×4

1 0 0 0

0 1 0 0

−1 0 0 0

0 −1 0 0


In multi-parametric programming, the objective is to find the optimizer U∗,

for a whole range of parameters X, i.e. U∗(X) as an explicit function of the pa-245

rameter X. The cost function is quadratic, so we are solving a multi-parametric

quadratic programming (mp-QP) problem. As shown in [30], we wish to solve

problem (6) for all X within the polyhedral set of feasible values XN . According

to [31], if we consider the multi-parametric quadratic program (6), then the

set of feasible parameters XN is convex, the optimizer U∗ is continuous and250

piecewise affine (PWA), and the optimal function J∗ is continuous, convex and

piecewise quadratic.

U∗(X) = fiX + gi, X ∈ Ti = {X | hiX ≤ ki} ; i = 1, ..., N (7)

Each {Ti}Ni=1 defines a polytope which will be referred as a region. Note

that the evaluation of the PWA solution (6) of the mp-QP problem provides

13

the same result as solving the quadratic program, i.e. for any given parameter255

X, the optimizer U∗(X) is identical to the optimizer obtained by solving the

quadratic program (6) for X.

To solve the mp-QP problem we need to solve an active constraint identifi-

cation problem. A feasible parameter X̂ is determined and the associated QP

(6) is solved. This will yield the optimiser U∗ and active constraints, defined260

as inequalities that are active at solution. The rows indexed by the active con-

straints are extracted from the constraint matrices G, W and S to form the

matrices GA, WA and SA

Now, we can compute the regions. It is possible to use the Karush-Kuhn-

Tucker (KKT) conditions to obtain an explicit representation of the optimiser265

UN (x) which is valid in some neighborhood of X̂:

HU +GTλ = 0

λT
(
GU −W− SX̂

)
= 0

λ ≥ 0

GU ≤ W+ SX̂

(8)

We can find the optimized variable: U = −H−1GTλ . For inactive con-

straints, λ = 0. For active constraints and the corresponding Lagrange multi-

pliers λA, inequality constraints are changed to equalities. Substituting for U

from (7) into the equality constraints gives:270

−GAH
−1GT

AλA +WA + SAX̂ = 0

=⇒ λA = −(GAH
−1GT

A)
−1(SAX̂ +WA)

The optimal control trajectory U are given as affine functions of X̂

U∗(X̂) = H−1GT
A(GAH

−1GT
A)

−1(SAX̂ +WA) = fiX̂ + gi (9)

In the next step, the set of states is determined where the optimizer U∗ sat-

isfies the same active constraints and is optimal. Such a region is characterized

by two inequalities and is written compactly as hiX ≤ ki where

14

hi =

 Gfi − S

(GAH
−1GT

A)
−1SA


ki =

 W−Ggi

−(GAH
−1GT

A)
−1WA


Once the controller region is computed, the algorithm proceeds iteratively275

until the entire feasible state space XN is covered with controller regions Ti, i.e.

XN = ∪i=1,...,NTi.

3.3. Region reduction

At the implementation stage, a small number of constraints defining a region

is preferable, since the controller must quickly check the constraints to find the280

appropriate control action. Therefore, computation of the minimal representa-

tions of the controller regions Ti where hi and ki are given, according to (11),

can significantly reduce the computational load in most multi-parametric pro-

gramming solvers [32]. There are a couple of approaches to identify and remove

redundant constraints to reduce the number of regions. An typical way to ad-285

dress this problem is to solve n-LPs (in the worst-case, n−1 constraints) for each

region in order to detect and remove all redundant constraints [33]. Another

approach, called ray shooting [34], is suitable for the cases where the fraction

of redundant constraints is low. On the other hand, the bounding box approach

is most useful for polytopes with many easily detected redundant constraints.290

The region reduction that is used here is a combination of ray shooting and

bounding box in order to find the redundant constraints even faster [35].

3.4. Point location problem

In this part, we consider the point-location or set membership problem for

the class of discrete-time control problems with linear state and input constraints295

for which an explicit time-invariant piecewise state feedback control law over a

set of overlapping polyhedral regions is given. The point-location problem comes

15

into play online when evaluating the control law. One must identify the state

space region in which the measured state lies at the current sampling instance.

As the number of defining regions grows, a purely sequential search through the300

regions is too slow to achieve high sampling rates. Hence, it is important to find

an efficient online search strategy.

However, due to the combinatorial nature of the problem, the number of state

space regions over which the control look-up table is defined grows in the worst

case exponentially [21], [31]. Here, the well-known concept of interval trees305

[36] is used to find a list of candidates that are possible solutions to the point-

location problem. Standard interval trees are efficiently ordered binary search

trees for determining a set of possibly overlapping one-dimensional line segments

that contain a given point or line segment. The mentioned line segments can

be found through the bounding box approach. Then, a local search needs to be310

done on the list of candidates in order to determine the polytope to which the

current state variable belongs [35]. The optimization problem has been solved

here using multi-parametric toolbox [37]. After solving the mp-QP problem,

we obtain lookup tables and control actions. The following section discusses the

lookup tables further.315

4. Resulting polytopes

Based on the drive cycle, maximum demanded power, and also the battery

state of charge, we can discretize the SoEref and Eref range. Here, we define

9 levels for each. By solving the mp-QP problem, we end up with 81 different

sets of polytopes, each containing a definite control action. The total number of320

polytopes in each set is 3153. Figure 3 shows how the polytopes are distributed

for different SoEref and Eref levels.

By doing region reduction, we can reduce the total number of polytopes to

3123. To get more insight to the problem, we can consider the set corresponding

to Eref = 0 and SoEref = 60. It consists of 33 polytopes. As shown in Figure325

4, the number of polytopes around the reference set points is most concentrated.

16

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

0

10

20

30

40

50

E
ref

SoE
ref

N
u
m

b
e
r

o
f

p
o
ly

to
p
e
s

Figure 3: Number of polytopes for different levels of Eref and SoEref

The reason is that the eMPC controller is supposed to track a predefined level

of SoE and E.

Figure 5 shows the control action versus different measured values of SoE

and E (initial conditions) at the current sampling instance. It contains 33330

polytopes. We can analyze this figure in 4 different regions, labelled I-IV in

Figure 4:

(I) E > Eref and SoE < SoEref : In this part, the controller has to increase

the battery state of charge and slow down the vehicle. There are 2 ways to

do that. One is to increase the engine power in order to charge the battery.335

The other is to increase the braking power in order to get use of regenerative

braking. Figure 5 shows that the controller uses both ways to get to the objective

in region (I). The battery power should be negative indicating that it is being

charged (Figure 5.a). Moreover, if δE = |E − Eref | is high, the braking power

will be more (as shown in Figure 5.c)340

(II) E < Eref and SoE < SoEref : Since E < Eref , the powertrain is

required to provide propulsion power from the engine and/or the electric drive.

But, in this case, the battery state of energy is less than the reference value

(SoE < SoEref), so we cannot use the electric drive to assist the engine to

17

40 45 50 55 60 65 70 75 80
−50

0

50

SoE (%)

E
 (

k
W

s
)

I IV

IIIII

Figure 4: Polytope set for Eref = 0 and SoEref = 60

propel the vehicle by depleting the battery further. On the other hand, we345

cannot use the regenerative braking for charging the battery (zero in Figure

5.c), since we cannot stop the vehicle. As a result, the engine plays a key role

in this case. As shown in Figure 5.a PBAT < 0, because SoE is less than the

reference value. Region (II) is the worst case among all 4 propulsion scenarios.

(III) E < Eref and SoE > SoEref : In this region, we should accelerate350

the vehicle (PBRK = 0). The electric drive can assist the engine since we

have enough charge in the battery. Another objective of the controller is to

minimize the engine power (to reduce fuel consumption). In region (III), there

is no need to increase SoE so the electric drive can take care of propelling the

vehicle. Moreover, the engine power is changing based on the magnitude of δE355

(as shown in Figure 5.b)

(IV) E > Eref and SoE > SoEref : In this case, we neither need propulsion

power nor battery charging. So, there is no need to run the engine (for the

sake of fuel consumption); as a result the engine power is zero throughout this

region. However, we need to stop the vehicle so PBRK ̸= 0. On the other hand360

PBAT > 0 to deplete the battery to return SoE closer to SoEref .

Figure 6 shows the continuous cost function over the set of polytopes which

is piece-wise quadratic.

18

40

60

80

−50

0

50

−50

0

50

SoE (%)

(a)

E (kWs)

P
B

A
T

 (
k

W
)

40

60

80

−50

0

50

0

20

40

60

80

SoE (%)

(b)

E (kWs)

P
E

N
G

 (
k

W
)

40

60

80

−50

0

50

0

10

20

30

40

SoE (%)

(c)

E (kWs)

P
B

R
K

 (
k

W
)

Figure 5: Control actions for Eref = 0 and SoEref = 60 based on different initial conditions

(a) battery power (b) engine power (c) braking power19

40

60

80

−50

0

50

0

5

10

15

x 10
6

SoE (%)E (kWs)

J
*
(x

)

Figure 6: Cost function J∗ for Eref = 0 and SoEref = 60 based on different initial conditions

5. Stability notes

The main drawback of MPC is that it doesn’t guarantee stability in general.365

MPC might drive the state variables to a part of state space where there is no

solution to the finite time optimal control problem which can meet the con-

straints. As a result, the feasibility and stability of MPC must be investigated.

The closed-loop system with MPC is globally asymptotically stable if and only

if the optimization problem is feasible [38]. For the eMPC problem, feasibility370

of the solution is not adequate for proving stability, since we have a switched

discrete-time system. So, we have to investigate the stability of the closed-loop

system at 3 levels. First, the local stability of the closed-loop system around the

equilibrium point in each of 81 sets of polytopes should be proven. Secondly, we

have to prove the global stability of the mentioned controller throughout that375

specific set of polytopes. Finally, the stability of the closed-loop system must

be investigated, while the controller switches between different sets of polytopes

based on reference SoE and E. In each set of polytopes which belongs to a defi-

nite SoEref and Eref , the controller drives the state variables to the mentioned

reference values in finite time steps and Z0 = [SoEref , Eref]
T is the equilibrium380

20

point in each set. To prove the local stability of the closed-loop system, we pick

the polytope which contains Z0. The control corresponding to that polytope is:

Û = f0Ẑ + g0 (10)

By applying the above control to the control-oriented model we can find the

closed-loop system equation as:

Z(k + 1) = (A+Bf0)Z(k) +Bg0 (11)

By defining Z̃ = Z − Z0, we transfer the state variables to the equilibrium385

point. As a result we have:

Z̃(k + 1) = (A+Bf0)Z̃(k)

+Bg0 + (A+Bf0 − I2×2)Z0 = ÃZ̃(k) + B̃ (12)

Now, we can investigate the stability of (12) around Z̃ = 0. First we show

that Ã is locally and asymptotically stable for all 81 sets of polytopes. We have

a discrete switching system and need to make sure that the spectral radius of

Ã is less than unity, which is confirmed by the results in Figure 7.390

We show that if Ã is stable and B̃ is bounded, then closed-loop system (12)

is stable. For a discrete system, if V1(Z̃k) > 0 exists and ∆V1(Z̃k+1, Z̃k) =

V1(Z̃k+1) − V1(Z̃k) < 0 then the system is exponentially stable in the sense of

Lyapunov. Since Ã is stable , we can find P1 > 0 and Q > 0 such that:

Ã
T
P1Ã− P1 +Q = 0 (13)

We assume that V1(Z̃k) = Z̃T
k P1Z̃k. As a result,395

∆V1(Z̃k+1, Z̃k) = Z̃T
k+1P1Z̃k+1 − Z̃T

k P1Z̃k

= Z̃T
k (Ã

T
P1Ã− P1)Z̃k + B̃

T
P1Z̃k+1 + B̃

T
P1Z̃k

If Q = I2×2 in (13) we can write:

21

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

0

0.2

0.4

0.6

0.8

1

E
ref

SoE
ref

S
p
e
c
te

ra
l
R

a
d
iu

s

Figure 7: Spectral radius of Ã for different levels of Eref and SoEref

∆V1(Z̃k+1, Z̃k) = −Z̃T
k Z̃k + B̃

T
P1Z̃k+1 + B̃

T
P1Z̃k (14)

Suppose that in (14) we take P1 = I2×2 and Q > 0; then we can say

Ã
T
Ã ≤ I2×2 and ∥Z̃k∥ is monotonically convergent:

∥Z̃k+1∥ ≤ ∥Ã∥∥Z̃k∥ ≤ ∥Z̃k∥ (15)

Therefore:

∆V1(Z̃k+1, Z̃k) ≤ −∥Z̃k∥2 + 2∥B̃∥∥P1∥∥Z̃k∥ (16)

If B̃ is bounded, there is a β > 0 such that ∥B̃∥ < β∥Z̃k∥2. As a result:400

∆V (Z̃k+1, Z̃k) ≤ ∥Z̃k∥2(1− 2β∥P1∥∥Z̃k∥) (17)

For ∥Z̃k∥ < (1/2β∥P1∥),∆V1(Z̃k+1, Z̃k) < 0, (12) would be stable. In this

problem, β = 10−8.

Now, we have to investigate the global stability of the closed-loop system for

each set of polytopes.

22

Theorem. The equilibrium x = 0 is exponentially stable on sets of poly-405

topes if there exist a function V̄ (x) where (α, γ > 0):

α∥x∥2 < V̄ (x) < γ∥x∥2 (18)

with a negative forward difference ∆V̄ (xk+1, xk) = V̄ (xk+1)− V̄ (xk) < 0 when

xk ∈ Tj\0 and xk+1 ∈ Ti [39].

We introduce the following function as a positive definite candidate (since

Q > 0) for V :410

V̄ (Z̃) =

Np∑
j=1

{Z̃T (j)QZ̃(j)} (19)

which is a part of the cost function. We previously proved that ∥Z̃k+1∥ ≤ ∥Z̃k∥

so we can easily get ∆V̄ (Z̃k+1, Z̃k) < 0. As a result, the closed-loop system is

globally and exponentially stable.

Up to now, we investigated the stability of the closed-loop system of each set

of polytopes. However, the controller switches between different sets of poly-415

topes to cover all operating points. A switched system is stable if all individual

subsystems are stable and the switching is sufficiently slow, so as to allow the

transient effects to dissipate after each switch. In [40], this property is for-

mulated and justified using multiple Lyapunov techniques. In this work, the

switching frequency depends on the dynamics of (SoEref , Eref). As mentioned420

before, (SoEref , Eref) are bounded values. As a result, we assume that the

following equations govern the dynamics of those reference values.

 SoEref (k + 1)

Eref (k + 1)

 =

 1/γ 0

0 1/γ

 SoEref (k)

Eref (k)

+ Γ (20)

where γ should be chosen in such a way that guarantees (20) stability and

also makes the switching system slower than the control-oriented model. For

stability, γ should be greater than unity, so that the poles of (20) are located425

inside the unity circle in the z-plane. On the other hand, these poles should

be far enough from the center of unity circle to slow down the system (20)

23

response. We assume that ρ is the largest spectral radius of Ã for all 81 sets of

polytopes. If we choose 1/γ > ρ, the switching system will be slower than the

control-oriented model. As a result, we choose γ in such a way that the poles430

of the switching system are located inside the dark ring of Figure 8 in order to

make the switched system stable.

We can join the control-oriented model to the switching system:

X(k + 1) =

 I2×2 O2×2

O2×2 (1/γ)I2×2

X(k)

+

 B

O2×3

U(k) +

 O2×1

Γ

 (21)

where 1 < γ < 1/ρ. For the closed-loop system, (21) can be transformed to: Z̃k+1

Z̃0,k+1

 =

 Ã O2×2

O2×2 (1/γ)I2×2

 Z̃k

Z̃0,k

+

 B̃

Γ

 (22)

Since the spectral radius of (1/γ)I2×2 is less than unity and Γ is bounded435

(∥Γ∥ < 115), according to the above discussion there is a V2(Z̃0,k) = Z̃T
0,kP2Z̃0,k >

0 that ∆V2(Z̃0,k+1, Z̃0,k) =< 0 where P2 > 0.

For the whole system, we introduce a positive definite V (P1, P2 > 0) such

that:

V (

 Z̃k

Z̃0,k

) = [
Z̃k Z̃0,k

] P1 O2×2

O2×2 P2

 Z̃k

Z̃0,k


= Z̃T

k P1Z̃k + Z̃T
0,kP2Z̃0,k = V1 + V2 (23)

We proved that ∆V1 < 0 and ∆V2 < 0, so that ∆V = ∆V1+∆V2 < 0. Now,440

we can say that closed-loop system (21) is stable.

6. HIL simulation

The electronic control unit (ECU) strategy prove-out is done in successive

steps on (1) off-line simulations on a desktop, (2) HIL, (3) dynamometer, and (4)

24

Figure 8: The locus of switching system poles in the z-plane

vehicle, with each step bringing in additional “real” substitutes for the virtual445

models. The ECU validation procedure in this sequence has some advantages.

First, it ensures that component-level testing is done prior to subsystem and

system level testing. Second, it capitalizes on the fact that ECUs are usu-

ally available much sooner than vehicle hardware prototypes, enabling a large

amount of testing to be completed prior to vehicle manufacturing [24].450

The off-line simulations used within the early phases of the development

process are often called model-in-the-loop (MIL) simulations. For the modeling

of the vehicle and functions at the MIL stage, standard tools such as Mat-

lab/Simulink, MapleSim, and Dymola can be used. The next step is software-

in-the-loop (SIL) simulation, where the functional model of an ECU is replaced455

by C-code and coding errors can be found independent of the future ECU hard-

ware. In the next step, the actual hardware of the ECU is available and the tests

can be supported by HIL simulation. The HIL simulation consists of two parts:

open-loop integration and closed-loop strategy testing [41]. Then open-loop test

platform uses a simpler model inside the real-time computer in order to check460

the functionality of user inputs and low-level I/O interfaces, for instance, push

button start or gear shift command. The closed-loop test platform needs the

dynamical model of the plant implemented on the real-time computer, which

provides feedback information from the plant.

After the software tests are successfully passed, the calibration of the ECUs465

25

can be done on the test-bench or in the vehicle. At this point changes to the

functions and system specifications are time consuming, expensive, and in most

cases not possible [42].

Since the performance of the ECU is tested in a virtual vehicle environment,

the vehicle dynamics model need to be both accurate and real-time capable [42].470

As the interactions between the physical and virtual components of a HIL

simulator are bidirectional, it is crucial that the time frames of these components

match exactly. Therefore, the virtual components must run in real time, placing

tight requirements on the HIL microprocessor, operator system, and integration

routine.475

7. Hardware Description

An HIL simulation setup provides a more realistic environment then MIL

simulation for controller evaluation purposes, as it takes into consideration dif-

ferent aspects of the control loop that are neglected in MIL simulations, such as

communication issues and controller computational limitations. The two main480

components in an HIL setup are: 1) an independent processing unit to run the

controller procedure, and 2) a powerful real-time processing unit to run the

plant model. For our HIL simulation, the designed controller is programmed

into an ECU, and the powertrain model is solved by a real-time target to pro-

vide the accurate sampling which the controller requires. The communication485

channel between the ECU and the plant (real-time target) is Control Area Net-

work (CAN) bus. The following sections contain details of the hardware used

in this research.

7.1. MotoTron ECU

The HIL simulation results are more reliable when the controller prototype490

is the same as the controller used in the real plant. For power management

system applications, a MotoTron ECU with flash memory size of 2 MB is used

to serve as the powertrain controller. This ECU is from the ECM-5554-112

26

family of controllers from Woodward that uses an 80MHz Motorola MPC5554

processor. The commercial version of this controller is used in automotive and495

marine applications. The automotive-based design of this ECU makes it an

ideal choice for the HIL simulations. To program the controller code into the

ECU, the code needs to be compiled by the MotoHawk Green Hills compiler.

Then, the generated code can be programmed into the ECU by the MotoTune

software. The controller code itself can be complied using Woodward’s Green500

Hills compiler, which compiles the required code directly from a Simulink model.

7.2. PXI Real-time Target

A PXI platform from National Instrument (NI) is used as the real-time tar-

get. The processing unit of this computer is PXI-8110, which is powered by

a 2.26 GHz quad-core CPU with 2GB of RAM. This PXI platform runs the505

LabVIEW Real-Time operating system, which responds to an interrupt or per-

forms a task before a specified deadline, as opposed to non-real-time operating

systems where tasks are prioritized based on different criteria such as main-

taining the hardware/software functionality. Therefore, by making use of such

real-time operating systems, the model can be solved with greater consistency,510

and communication delays can be minimized. To use this platform for solv-

ing the powertrain model in real-time, the model has to be converted into a

C-code and then into a Digital Link Library (DLL) to be used in the LabVIEW

environment.

Major responsibilities of the real-time target are shown in Figure 9. Each515

core of the real-time target CPU runs a different application. One core is re-

sponsible for running the PXI-host communication. This application is solely

used to send and receive variables to and from the laptop host via Ethernet

connection. The other CPU core runs the CAN communication application.

The remaining cores are responsible for solving the powertrain model.520

7.3. CAN Bus

The hybrid vehicle has several critical subsystems with individual control

modules such as the engine, battery, transaxle and brakes. The controllers

27

Figure 9: Communication schematic of the HIL setup

communicate with each other and with the vehicle system controller on a CAN-

based communication network. The behaviors of these subsystems are strongly525

influenced by their individual controllers. Not all of these control modules were

connected in the HIL setup. Those controllers that were not connected as hard-

ware pieces were simulated as models along with the plant dynamics on the HIL

system. So, the communication between controllers and the controller func-

tionalities had to be modeled carefully to ensure a good compromise between530

functional accuracy and real-time constraints [24]. On a CAN bus, each of the

nodes are directly connected to the bus, and there is no central control unit

to regulate the communications. Instead, the CAN bus is a serial message-

based protocol, where each node can send and receive messages when the bus

is free. When two nodes start to send a message simultaneously, the message535

with higher priority prevails, and the lower-priority message waits until the bus

is free. The priority of each message is identified by an arbitration ID, where

lower IDs have the higher priority. The arbitration ID also serves as the name

tag for each message. When a node transmits a message on the CAN bus, the

message is received by every node on the bus. Each node can then ignore the540

message, or do a specific task based on the ID and the contents of the message.

The other part of a CAN message is the data frame. A CAN data frame is

defined byte-wise, i.e., the message consists of groups of bytes that contain an

integer number. Thus, to send a variable, it should be scaled to an integer

number, based on its range and required accuracy.545

28

Figure 10: Schematic of the HIL setup

As shown in Figure 10, the simulation model is implemented to the PXI

target via LabVIEW. The MotoTron ECU is communicating with the PXI tar-

get via CAN bus. The power management system that is designed in Mat-

lab/Simulaink can be included in the MotoTune toolbox that is provided by

MotoHawk software and is compiled by the MotoHawk Green Hills compiler.550

We can monitor the HIL test procedure in the laptop host.

The power management system requires two readings from the plant: the

current battery state of charge and the current demanded tractive energy. The

two measurements are calculated by the real-time target by solving the power-

train model. Also, it takes two readings from SoEref and Eref . The real-time555

target then sends these four pieces of information in a single CAN message to

the ECU. The controller processes the information and calculates PBAT , PENG,

and PBRK and sends them back to the real-time target in another message.

Table 2 shows the variables, and the position of the variable in the CAN

messages for ECU-PXI communication.560

In the base CAN frame format (CAN 2.0 A protocol), the identifier portion

of the message (arbitration ID) contains 11 bits following the start bit. The

main data frame can contain up to 8 bytes (64 bits). Combined with all other

29

Table 2: CAN message definition for the HIL simulation

CAN message MotoHawk LabVIEW

message arbitration message variable start bit start bit

name ID length name bit length bit length

PXI to ECU 1 7 bytes Eref 48 8 8 8

SoEref 40 8 16 8

E 24 16 24 16

SoE 8 16 40 16

ECU to PXI 2 7 bytes PBAT 40 16 8 16

PENG 24 16 24 16

PBRK 8 16 40 16

regulatory bits, a CAN message is comprised of up to 108 bits. Depending on

the bit-rate of the CAN channel, a limited number of messages can be sent565

on a CAN bus. In this HIL setup, the CAN channels work with a bit rate of

500 kbps (kilo-bits per second); therefore, the maximum capacity of each CAN

channel is roughly 4600 messages per second. The communication program on

the real-time target runs at every 1ms and sends a message (PXI to ECU) in

each run of the loop. The controller program also runs every 5ms and sends one570

message (ECU to PXI). Thus, 1200 messages are sent in each second, and this

load occupies 26% of the CAN channel capacity.

8. Controls implementations

After finding the polytopes and the corresponding control actions, we need

to implement the controller on the simulation model by using low-level controls.575

Basically, we have to change the provided power to torque and speed for different

components. Figure 11 shows the procedure that is done at each control time

step. At the beginning, we have Eref and SoEref as well as initial SoE and

demanded energy that are given to the eMPC controller. By using point location

algorithm, we can find the appropriate controls among the polytopes. We are580

30

Figure 11: Low-level controls implementation

looking for Te, Tm, and ωg. On the propulsion side, we have PBAT and PENG.

Once we got PENG, we can use the optimal operating line of the engine, which

gives us the most efficient operating point for the given PENG. Now, we have

the engine speed and torque for the optimum operating point. By having Te

we can control the engine throttle to the desired engine torque [43]. The engine585

torque setpoint can directly be given to the engine low-level controller.

If we measure the vehicle velocity, we will be able to get the MG1 speed

setpoint by using the speed constraint relation on the first planetary gear set

(z = s1
r1

where s1 and r1 are the number of sun and ring gear teeth). Meanwhile,

if we use a static torque relation on the planetary gear set, we can find the MG1590

torque based on the engine torque. Now MG1 power is calculated and we

can find the MG2 power, since we have the PBAT from eMPC controller. By

measuring the MG2 speed at the current time step, we are able to find the last

setpoint value, which is MG2 torque. Now, we can implement the controller to

the simulation model.595

9. Controls Implementation Notes for HIL

For implementing the eMPC power management system onto the ECU, a

database with the size of 1.5 MB plus the eMPC search algorithm should be

31

Figure 12: Powertrain model inside the real-time computer

stored in the hardware memory. The search algorithm code is not in-lined,

and cannot be compiled to the MotoTron ECU. Unfortunately, by in-lining the600

algorithm code, the size of code plus eMPC database exceeds the 2 MB flash

memory size of the ECU.

To solve this problem, the eMPC power management was modified. The

resulting control action surfaces (Figure 5) versus state variables were approxi-

mated with some new surfaces. Using this technique, we reduced the size of the605

controller from 2 MB to 121 kB for the eMPC power management system.

Figure 12 shows different parts of the simulation model inside the real-time

computer.

The ECU passes 3 control actions: PBAT , PENG, and PBRK to the real-

time target via CAN bus at every 5 milliseconds. The real-time target runs the610

simulation model and corresponding low-level controls at every 1 ms. As shown

in Figure 12, PBAT and PENG are fed into the setpoint configurer where the

setpoints for the low level controllers are determined. Then, Tm, ωg, and Te are

transferred to the electric drive and engine low-level controls. By applying the

low-level controls commands to each component of the powertrain model, SoC,615

E, SoEref , and Eref are measured at each 1 ms and passed to the ECU via

32

CAN bus.

10. Model-in-the-loop Simulation Results

In this section, two different strategies to deplete the battery along two

UDDS drive cycles are used.620

10.1. No Knowledge of Trip Information

The first strategy is charge depletion charge sustenance (CDCS). In CDCS,

the vehicle is primarily operated in charge depletion mode (CD) by utilizing

battery electrical energy. When the SoC reaches a predefined level, the opera-

tion mode is switched into the charge sustenance (CS) mode to maintain SoC625

close to that predefined level. Figure 13.a shows the drivability performance as

well as the battery depletion curve. In Figure 13.b the propulsion power and the

demanded power at each time step are compared and we can see that eMPC is

able to maintain the vehicle drivability. Figure 13.c shows the propulsion power

(PBAT and PENG). As shown, the engine is off for the first part of the trip and630

takes over when the battery SoC drops to the predefined level. Fuel economy

in this strategy is equal to 119 mile per gallon (MPG).

10.2. Known Travelling Distance

For the second strategy, we assume that we have knowledge of travelling

distance to the next charging station. If travelling distance was less than the635

vehicle all electric range, the best strategy would be going in pure electric mode.

Otherwise, we follow another strategy; we assume the battery SoC linearly

decreases with the distance traveled by the vehicle (linear blended mode [44]).

In Figure 14.a, the SoC follows the linear profile and the engine operation is

distributed along the entire drive cycle (Figure 14.b), which results in 133 MPG.640

Therefore, known travelling distance will improve fuel economy by 11.76 %. For

demonstrating the performance of the controller along the drive cycle, zoomed

view of some part of the plots were added to Figures 13 and 14.

33

0 500 1000 1500 2000 2500
0

50

100

(a)
Drive cycle (km/h)

Vehicle velocity (km/h)

SoC (%)

0 500 1000 1500 2000 2500
0

20

40

60

(b)

P
o
w

er
 (

k
W

)

0 500 1000 1500 2000 2500
−50

0

50

100

Time (s)

P
o
w

er
 (

k
W

)

(c)

Demanded Propulsion

Engine Battery

2050 2075 2100
0

25

2050 2075 2100
0

40

Figure 13: Charge depletion/ charge sustenance strategy in MIL (a) vehicle velocity and

battery depletion profile (b) demanded and propulsion power (c) engine and battery power

34

0 500 1000 1500 2000 2500
0

50

100

(a)
Drive cycle (km/h)

Vehicle velocity (km/h)

SoC (%)

0 500 1000 1500 2000 2500
0

20

40

60

(b)

P
o

w
er

 (
k

W
)

0 500 1000 1500 2000 2500
−50

0

50

100

Time (s)

P
o

w
er

 (
k

W
)

(c)

Demanded Propulsion

Engine Battery

2050 2075 2100
0

40

2050 2075 2100
0

25

Figure 14: Linear blended strategy in MIL (a) vehicle velocity and battery depletion profile

(b) demanded and propulsion power (c) engine and battery power

35

10.3. Discussion

Fuel consumption for each strategy is listed in Table 3. Compared to645

MPC [17], the newly-designed eMPC performs better in terms of fuel econ-

omy as well as real-time implementation capability. Table 3 shows how much

improvement we made by changing the control-oriented model and the cost

function. Previously, we designed a non-linear model predictive controller using

the plant model as the control-oriented model. In this paper, we developed a650

simpler control-oriented model, which led to better real-time performance of the

controller, i.e the new control-oriented model results in a faster controller with

better performance. In the control implementation procedure we directly used

the engine optimal operating line, instead of estimating the fuel consumption,

and considered it inside the cost function. Instead of minimizing the fuel con-655

sumption rate, we showed that minimizing the engine power led to a better fuel

efficiency performance for the controller. In this way, we kept the cost function

convex and also removed the requirement of estimating the fuel consumption

rate, which can introduce errors in the solution. Indeed, the optimal operat-

ing line of engine might be alternating during the engine operation due to the660

engine temperature. In such cases, we can develop an adaptive version of the

present controller so that some parameters get updated during the engine oper-

ation. In our experience, the performance of the model predictive controller is

closely related to the control-oriented model, more than any other factor. Com-

putationally, it took 17.53 and 22.36 s in real time respectively, for CDCS and665

blended, for 2828 seconds of simulation (for two successive UDDS drive cycles)

to be completed. The simulation is conducted on a machine which is powered by

a 3.16 GHz dual core CPU and a 4 GB memory. Therefore, the eMPC strategy

is 44% faster than MPC on average.

11. Hardware-in-the-loop Simulation Results670

In Figure 15.a, the vehicle drivability performance and battery state of

charge for CDCS strategy are demonstrated. In Figure 15.b, we can see that the

36

Table 3: MIL with low-fidelity powertrain model: Fuel economy for different control strategies

Control Strategy MPC eMPC improvement

(MPG) (MPG) (%)

Charge Depletion/Charge Sustenance 105 119 13.33

Linear blended mode 112 133 18.75

Table 4: eMPC MIL and HIL test: Fuel economy for different control strategies

Control Strategy MIL HIL

(MPG) (MPG)

Charge Depletion/Charge Sustenance 119 116

Linear blended mode 133 127

driver demanded power is followed by the propulsion power. This shows that

the powertrain is able to provide the required propulsion power, so the vehicle

velocity can follow the predefined UDDS schedule. Figure 15.c shows the index675

of demanded power as well as SoE index. Figure 16 shows these results for the

blended mode strategy. Note that the engine operation has reduced the battery

SoC depletion slope which results in better fuel economy as compared to CDCS

strategy. For demonstrating the performance of the controller along the drive

cycle, zoomed view of some part of the plots were added to Figures 15 and 16.680

Table 4 shows the MIL and HIL fuel economy for the eMPC power manage-

ment system.

Note that if we use the same controller and simulation model for MIL and

HIL, the simulation results should be the same. The oscillations of the vehicle

velocity shown in Figure 13 and Figure 14, as compared to Figure 15 and Figure685

16, is due to switching between different polytope sets along the drive cycle. Fuel

economy for CDCS and blended mode strategies in HIL testing are worsened by

37

0 500 1000 1500 2000 2500
0

50

100

(a)Drive cycle (km/h)

Vehicle velocity (km/h)

SOC(%)

0 500 1000 1500 2000 2500
0

20

40

60

P
o
w

e
r

(k
W

)

(b)
Demanded Propulsion

0 500 1000 1500 2000 2500
0

5

10

Time (s)

In
d
e
x
 n

u
m

b
e
r

(c)

Demanded power SOE

2425 2470
0

25

2425 2470
0

40

Figure 15: Charge depletion/ charge sustenance strategy in HIL (a) vehicle velocity and

battery depletion profile (b) demanded and propulsion power (c) Demanded power and SoE

indices

38

0 500 1000 1500 2000 2500
0

50

100

(a)Drive cycle (km/h)

Vehicle velocity (km/h)

SOC(%)

0 500 1000 1500 2000 2500
0

20

40

60

P
o
w

e
r

(k
W

)

(b)
Demanded Propulsion

0 500 1000 1500 2000 2500
0

5

10

Time (s)

In
d
e
x
 n

u
m

b
e
r

(c)

Demanded power SOE

1550 1625 1700
0

100

1550 1625 1700
0

55

Figure 16: Blended mode strategy in HIL (a) vehicle velocity and battery depletion profile

(b) demanded and propulsion power (c) Demanded power and SoE indices

39

2.5% and 4.5%, as compared to MIL simulation. This error is due to replacing

the eMPC data base and its search algorithm with the approximated look-

up tables. In brief, the difference between MIL and HIL simulation results is690

due to the difference between the original and modified CRPE-eMPC power

management systems.

12. Conclusions

In this paper, we used the explicit model predictive control approach to de-

sign a power management strategy for a plug-in hybrid powertrain. We solved695

a multi-parametric problem to improve real-time implementation performance

over a conventional model predictive control. We developed a new control-

oriented model which contains 4 parameters. We implemented the developed

controller to a PHEV simulation model and obtained a promising fuel economy

as well as real-time implementation performance. We reduced the simulation700

time by 44% and improved fuel economy by 16% on average, in comparison

to MPC. Moreover, the designed power management system performance was

validated through hardware-in-the-loop testing. To implement the power man-

agement system to the control hardware with limited memory size and com-

putational capability, some modifications were applied to the original control705

scheme. HIL simulations show that the proposed power management system

can be implemented to a commercial hardware in real time. It is noteworthy

that we will pursue full vehicle validation once our Green and Intelligent Auto-

motive HEV facility is completed at the University of Waterloo. Then, we will

be able to by-pass the current powertrain ECU of our Toyota plug-in Prius and710

implement the proposed power management strategy along with a calibration

procedure.

13. Acknowledgements

The authors gratefully acknowledge the NSERC/Toyota/Maplesoft Indus-

trial Research Chair program for financial support of this research.715

40

14. References

[1] B. Saerens, M. Diehl, J. Swevers, and E. Van den Bulck, ”Model predictive

control of automotive powertrains - first experimental results,” in 47th IEEE

Conference on Decision and Control, 2008, pp.5692–5697.

[2] P. Ortner, P. Langthaler, J. V. G. Ortiz, and L. del Re, ”MPC for a diesel720

engine air path using an explicit approach for constraint systems,” in Proc.

IEEE International Conference on Control Applications,Munich, Germany,

2006, pp.2760-2765.

[3] H. Hur, T. Nagata, and M. Tomizuka, ”Model-based optimal gear shift pat-

tern scheduling and smooth gear shifting control,” Steuerung und Regelung725

von Fahrzeugen und Motoren - AUTOREG 2006, VDIBerichte Nr. 1931,

2006. VDI Wissensforum, 2006, pp.303-312.

[4] S. Di Cairano, W. Liang, I.V. Kolmanovsky, M.L. Kuang, and A.M. Phillips,

”Power smoothing energy management strategy for a series hybrid electric

vehicle,” IEEE Trans. on Control Systems Technology, vol. 21, no. 6, pp730

2101-2106 , 2013.

[5] S.J. Moura SJ, H.K. Fathy, D.S. Callaway and J.L. Stein , ”A Stochastic

Optimal Control Approach for Power Management in Plug-in Hybrid Elec-

tric Vehicles,” IEEE Transactions on Control Systems Technology, vol. 19,

no. 3, pp 545-555, 2011.735

[6] C. Musardo, G. Rizzoni, and B. Staccia, ”A-ECMS: An Adaptive Algo-

rithm for Hybrid Electric Vehicle Energy Management,” European Journal

of Control, vol. 11, no. 4, pp. 509524, 2005.

[7] P. Tulpule, V. Marano, and G. Rizzoni, ”Effects of different PHEV control

strategies on vehicle performance,” In American Control Conference, pp.740

39503955, 2009.

41

[8] A. Alessio and A. Bemporad, A Survey on Explicit Model Predictive Control:

Lecture Notes in Control and Information Sciences: Springer, vol. 384, pp

345-369, 2009.

[9] S. Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky, and D. Hrovat,745

”An MPC design ow for automotive control and applications to idle speed

regulation,” in Proc. 47th IEEE Conf. on Dec. and Control, pp.56865691,

2008.

[10] P. Falcone, F. Borrelli, J. Asgari, H. Tseng, and D. Hrovat, ”Predictive

active steering control for autonomous vehicle systems,” IEEE Trans. Contr.750

Systems Technology, vol. 15, no. 3, pp 566580, 2007.

[11] S. Di Cairano and H. Tseng, ”Driver-assist steering by active front steering

and differential braking: Design, implementation and experimental evalua-

tion of a switched model predictive control approach,” in Proc. 49th IEEE

Conf. on Dec. and Control, pp.28862891, 2010.755

[12] P. Ortner, P. and L. Del Re, ”Predictive Control of a Diesel Engine Air

Path,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3,

pp 449-456, 2007.

[13] S. Trimboli , S. Di Cairano , A. Bemporad and I. Kolmanovsky, (2009)

”Model predictive control for automotive time-delay processes: An applica-760

tion to air-to-fuel ratio,” in Proc. 8th IFAC Workshop Time-Delay Syst., pp

1-6, 2009.

[14] R. Amari , M. Alamir and P. Tona, ”Unified MPC strategy for idle-speed

control, vehicle start-up and gearing applied to an automated manual trans-

mission,” in Proc. 17th IFAC World Congr., pp 7079 -7085, 2008.765

[15] G. Ripaccioli, A. Bemporad, F. Assadian, C. Dextreit, S. Di Cairano,

and I. Kolmanovsky, Hybrid Modeling, Identication, and Predictive Con-

trol: An Application to Hybrid Electric Vehicle Energy Management: Hy-

42

brid Systems: Computation and Control, ser. Lec. Not. in Computer Science:

Springer, vol. 5469, pp 321335, 2009.770

[16] H. Borhan, A. Vahidi, A.M. Phillips, and I.V. Kolmanovsky, ”Predictive

Energy Management of a Power-Split Hybrid Electric Vehicle’” in American

Control Conference , pp. 39703976, 2009.

[17] A. Taghavipour, M. Vajedi, N.L. Azad, and J. McPhee, ”Predictive Power

Management Strategy for a PHEV Based on Different Levels of Trip Infor-775

mation,” in IFAC Workshop on Engine and Powertrain Control, Simulation

and Modeling, vol. 3, no. 1, pp 326-333, 2012.

[18] A. Taghavipour, N.L. Azad, and J. McPhee, ”An optimal power manage-

ment strategy for power split plugin hybrid electric vehicles,” International

Journal of Vehicle Design, vol. 60, no. 3, pp 286-304, 2012780

[19] K.I. Kouramasa, C. Panosa, N.P. Faiscab, and E.N. Pistikopoulos, ”An

algorithm for robust explicit/multi-parametric model predictive control,”

Automatica, vol. 49, no. 2, pp 381389, 2013.

[20] M. Vajedi, A. Taghavipour, N.L. Azad, and J. McPhee, ”A comparative

analysis of route-based power management strategies for real-time applica-785

tion in plug-in hybrid electric vehicles,” In American Control Conference

2014.

[21] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, ”The explicit

linear quadratic regulator for constrained systems,” Automatica, vol. 38, no.

1, pp 3-20, 2002.790

[22] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, ”A hybrid approach to

traction control,” Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.)

HSCC 2001, vol. 2034, no. 5, pp 162-174, 2001.

[23] R. Conti, E. Meli, A. Ridolfi, and A. Rindi, ”An innovative hardware in

the loop architecture for the analysis of railway braking under degraded795

43

adhesion conditions through roller-rigs,” Mechatronics, vol. 24, no. 2, pp

139–150, 2014.

[24] D. Ramaswamy, R. McGee, S. Sivashankar, A. Deshpande, and et al., ”A

Case Study in Hardware-In-the-Loop Testing: Development of an ECU for

a Hybrid Electric Vehicle,” SAE Technical Paper 2004-01-0303, 2004.800

[25] R. Trigui, B. Jeanneret, B. Malaquin, F. Badin, and C. Plasse, ”Hardware

In the Loop Simulation of a Diesel Parallel Mild-Hybrid Electric Vehicle,”

IEEE Vehicle Power and Propulsion Conference (VPPC), 2007.

[26] M. Petersheim, S. Brennan, ”Scaling of hybrid-electric vehicle powertrain

components for Hardware-in-the-loop simulation,”Mechatronics, vol. 19, no.805

7, pp 1078-1090, 2009.

[27] H.K. Fathy and Z.S. Filipi and J. Hagena and J.L. Stein, ”Review of

hardware-in-the-loop simulation and its prospects in the automotive area,”

Proc. SPIE 6228, Modeling and Simulation for Military Applications, 2006.

[28] W. Lee, S. Park, and M. Sunwoo, ”Towards a Seamless Development Pro-810

cess for Automotive Engine-Control System,” Control Engineering Practice,

vol. 12, no. 1, pp 977–986, 2004.

[29] K. Muta, M. Yamazaki, and J. Tokieda, ”Development of new-generation

hybrid system ths ii drastic improvement of power performance and fuel

economy”, SAE technical paper 2004-01-0064, 2004.815

[30] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos, ”Explicit Linear

Quadratic Regulator for Constrained Systems,” Automatica, vol. 38, no. 1,

pp. 3-20, 2002.

[31] F. Borrelli, Constrained Optimal Control Of Linear And Hybrid Systems:

Lecture Notes in Control and Information Sciences: Springer, vol. 290, 2003.820

[32] P. Tondel, T. A. Johansen, and A. Bemporad, ”An algorithm for multipa-

rameteric quadratic programming and explicit MPC solution,” Automatica,

vol. 39, no. 5, pp 489-497, 2003.

44

[33] K. FUKUDA, ”Polyhedral computation FAQ,”

http://www.ifor.math.ethz.ch/staff/fukuda., 2000.825

[34] S.W. Cheng and A. Janadan 1992) ”Algotithms for Ray-Shooting and In-

tersection Searching,” Journal of Algorithms, vol. 13, no. 3, pp 670-692,

1992.

[35] M. Kvasnica, ”Efficient Software Tools for Control and Analysis of Hybrid

Systems,” PhD thesis ETH Zurich, 2008.830

[36] M. De Berg, O. Schwarzkopf, M. Van Kreveld, and M. Overmars, Com-

putational Geometry: Algorithms and Applications: Springer, 2nd edition,

2000.

[37] M. Kvasnica, P. Grieder, and M. Baotic, ” Multi-Parametric Toolbox

(MPT),” Available from http://control.ee.ethz.ch/ mpt/, 2004.835

[38] A. Zheng, and M. Morari, ”Stability of Model Predictive Control with Soft

Constraints,” IEEE Transactions on Automatic Control, vol. 40, no. 10, pp

1818-1823, 1995.

[39] G. Ferrari-Trecate, F.A. Cuzzola, D. Mignone, and M. Morari, ”Analysis of

Discrete-time Piecewise Affine and Hybrid Systems ,” Automatica, vol. 38,840

no. 12, pp 21392146, 2002.

[40] D. Liberzon, Switching in Systems and Control: Birkhauser Boston, 2003.

[41] R. McGee, ”Ford Motor Company Hybrid Electric Escape Powertrain Con-

trol System Development and Verification Utilizing Hardware-in-the-Loop

Technology,” dSPACE User Conference, 2002.845

[42] D. Winkler, and C. Ghmann, ”Hardware-in-the-Loop simulation of a hybrid

electric vehicle using Modelica/Dymola,” Proceedings of the 22nd Interna-

tional Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS-22),

Yokohama, Japan, 2006.

45

[43] A. Taghavipour, N.L. Azad, and J. McPhee, ”Design and Evaluation of a850

Predictive Powertrain Control System for a Plug-in Hybrid Electric Vehi-

cle to Improve Fuel Economy and Emissions,” IMechE, Part D: Journal of

Automobile Engineering, Accepted for publication, 2014.

[44] C. Zhang, A. Vahidi, X. Li, and D. Essenmacher, ”Role of trip information

preview in fuel economy of plugin hybrid vehicles,” ASME Dynamic Systems855

and Control Conference, pp. 253-258, 2009.

46

