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Abstract 

Model Predictive Control (MPC) can be an interesting concept for designing a power 

management strategy for hybrid electric vehicles according to its capability of online 

optimization by receiving current information from the powertrain and handling hard 

constraints on such problems. In this article a power management strategy for a power 

split plug-in hybrid electric vehicle is proposed using the concept of MPC to evaluate the 

effectiveness of this method on minimizing the fuel consumption of those vehicles. Also 

the results are compared with Dynamic Programming.   

Keywords: Plug-in Hybrid Vehicles, Power Management Strategy, Model Predictive 

Control, Dynamic Programming, Fuel Consumption. 

1. Introduction

Air pollution and rising fuel costs is an important concern for transportation industry. 

Hybrid electric vehicles have come to existence as a solution to this problem. Other 

sources of energy in hybrid vehicle powertrains have made the engines smaller and more 

efficient. Therefore these vehicles have less emissions and also better fuel economy. 

Hybrid electric vehicles (HEV) powertrains consist of an efficient engine and electric 

motor/generator in addition to a power storage device that is usually a battery. With the 

development of advanced battery technologies, the energy storage capacity of batteries 

has significantly improved. The plug-in hybrid electric drive train is designed to fully or 

partially use the energy of the energy storage to displace part of the primary energy 

source [1]. In plug-in hybrid vehicles (PHEVs) the battery is fully charged before starting 

off with the conventional home electric plugs. Therefore plug-in hybrid vehicles can go 

longer on pure electric mode. According to [2] about half of the daily driving distance is 

less than 64 km (40 miles). If a vehicle is designed to have 64 km (40 miles) of pure 

electric range, that vehicle will have half of its total driving distance from the pure 

electric vehicle (EV) mode [1]. In that case, there will be rarely need for starting the 

engine in most urban travels. This leads to a better fuel economy in plug-in hybrid 

vehicles with respect to conventional hybrids.  

According to the Electric Power Research Institute (EPRI), more than 40% of the 

U.S. generating capacity operates at a reduced load overnight, and it is during these off-

peak hours that most PHEVs could be recharged. Recent studies show that if PHEVs 

replace one-half of all vehicles on the road by 2050, only an 8% increase in electricity 

generation (4% increase in capacity) will be required [3]. At today’s electrical rates, the 

incremental cost of charging a PHEV fleet overnight will range from $90 to $140 per 

vehicle per year. This translates to an equivalent production cost of gasoline of about 60 

cents to 90 cents per gallon [4]. So PHEVs are a very interesting option for the future of 

transportation. 
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Designing the power management is as important as choosing the architecture of a 

hybrid powertrain architecture. The best architecture can operate poorly in case of using 

an inappropriate control strategy. One way to design power management strategy for a 

PHEV is extending the strategies applied on conventional hybrid vehicles [5]. Of course 

design of a power management strategy needs some considerations, for instance the 

choice of the correct objective function to be minimized, forecasting the future load based 

on the information available at runtime and also the characteristics of the vehicle [6].  

It should be mentioned that most of the strategies in commercial hybrid vehicles are 

rule-based [7]. 

Rule-based approaches put a constraint on the power split between different power 

sources on-board based on the current state of the powertrain (e.g., vehicle/engine speed, 

battery charge, power demand, etc.) through some map, or rule base [8]. Then some rules 

can be to ensure that the states of the system are as close as possible to the desired 

scheme. Those decisions can be conducted through some maps. These maps can be 

constructed from engineering expertise and insight, or using more formal methods such 

as optimization [9] or fuzzy logic [10].  Stochastic dynamic programming (SDP) method 

is quite appealing in this context because of its ability to optimize the system 

performance with respect to a probabilistic distribution of some different drive cycles 

[11]. However, this method has some computational complexity issues [12]. Moura et al. 

derived an optimal power management strategy for a plug-in hybrid vehicle (power split 

architecture) based on stochastic dynamic programming which rations battery charge by 

blending engine and battery power in a manner that improves engine efficiency and 

reduces total charge sustenance time [13].  

Freyermuth et al. [14] simulated and compared four different control strategies for a 

power split PHEV with 16 km AER (All Electric Range) battery pack for a vehicle with 

similar performances with for couple of strategies. 

In Electric Vehicle/ Charge Sustaining (EV/CS), the engine only turns on when the 

power demand is higher than available power of battery. Differential Engine Power 

strategy is similar to EV/CS but the engine-turn-on threshold is lower than the maximum 

power of electrical system. In Full Engine Power strategy, if the engine turns on it will 

supply all the power demand of the drive cycle and no power will drain from the battery. 

The aim of this strategy is to force the engine to operate in higher power demand and 

consequently in higher efficiency. Optimal Engine Power Strategy, similar to previous 

strategy, seeks to propel the engine more efficiently in higher power by restricting the 

engine operation close to peak efficiency. 

Freyermuth et al. concluded EV/CS is equivalent to Differential Engine Power and 

Full Engine Power is the best of all and much better than optimal Engine Power [14]. 

Rule-based strategies are rigid and their performance is considerable for a known 

pattern of drive cycle (for taxi cabs or bus routes) but they’re not optimized. The same 

thing is expected for the offline optimization methods through which the strategy is 

designed according to a predefined drive cycle. So this strategy is not necessarily 

optimized for a deviated drive cycle. But more advanced control techniques are based on 

real-time optimization. Also referred to as causal systems, they rely on real-time feedback 

to optimize a cost function that is developed using past information [5]. This gap is 

covered in the approach we present in this article.  

Trajectory power management algorithms require knowledge of future power 

demand. This approach uses this information to specify the future power contribution of 

different sources of energy on board. Such optimization can be performed offline for 

drive cycles known a priori using deterministic dynamic programming (DDP) [15], and 

can also be performed online using optimal model predictive control [16].  
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Gong et al. [17, 18] suggested that it is possible to improve the control strategy of 

PHEV if the trip information is determined a priori by means of recent advancements in 

intelligent transportation system (ITS) based on the use of global positioning system 

(GPS) and geographical information system (GIS). 

In this paper a model-based strategy is proposed with the use of model predictive 

control (MPC) concept. MPC seems a proper method to exploit the potentials of modern 

concepts and to fulfil the automotive requirements since most of them can be stated in the 

form of a constrained multi-input multi-output optimal control problem and MPC 

provides an approximate solution of this class of problems [19]. In general, Model 

predictive control is the only advanced control technology that has made a substantial 

impact on industrial control problems: its success is largely due to its almost unique 

ability to handle, simply and effectively, hard constraints on control and states [20].  

The popularity of MPC stems from the fact that the resulting operating strategy 

respects all the system and problem details, including interactions and constraints, which 

would be very hard to accomplish in any other way. Indeed, often MPC is used for the 

regulatory control of large multivariable linear systems with constraints, where the 

objective function is not related to an economical objective, but is simply chosen in a 

mathematically convenient way, namely quadratic in the states and inputs, to yield a 

“good” closed-loop response. Again, there is no other controller design method available 

today for such systems that provides constraint satisfaction and stability guarantees [21]. 

The only serious drawback of this method is the volume of calculations for any time 

step of control. This is the reason that MPC was mostly used for controlling chemical 

processes that are considered as slow systems. But by having faster processors nowadays, 

there is an obvious motivation for using this model-based control method for rather fast 

systems especially for the automotive systems.  

Application of MPC to hybrid vehicles has been investigated before. Wang et al. [22] 

integrated the MPC controller and proposed a real time control system. The system 

can be used for all kinds of hybrid architectures based on engine and electric motor. 

They used a number of different performance indices that can be applied to the 

control system. By changing the operational weights in the cost function, the power 

control system can achieve different goals. Borhan et al. [23] applied MPC to a power 

split hybrid electric vehicle, whereas they ignored the dynamics of powertrain against 

other faster dynamics for the model inside the controller. They proposed that the fuel 

economies achieved with MPC are better than those reported by the rule-based PSAT 

simulation software.  

In fact, this method has not been applied to design a power management strategy for a 

plug-in power split hybrid electric vehicle; the goal we seek in this article. It should be 

mentioned that plug-in powertrain is different from conventional hybrid vehicles in terms 

of initial conditions and constraints. In a PHEV, the battery capacity is larger and it can 

be charged from another source out of powertrain; the battery can be fully charged before 

vehicle is started, whereas it is an impossible option for a HEV. In a HEV powertrain, the 

battery state of charge (SOC) should be maintained inside a definite range (for instance 

between 0.60 to 0.65 in [23]) and final SOC value at the end of simulation time should be 

the same as initial SOC [1]. But generally in PHEVs, the battery is discharged from a 

high level and when SOC drops to a reference value, the control strategy tries to keep it 

as close as possible to that level. This reference value is lower than what it is in a HEV. 

The strategies that are applied on HEVs can be implemented on PHEVs, but should be 

modified for the best performance. Therefore, these are originally two different problems 

with different constraints. 
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     To compare MPC results, we solved Dynamic Programming (DP) for this problem 

with the same dynamics and constraints as well. DP has been extensively used in 

literature in order to find a global solution for HEVs control strategies. DP cannot be 

implemented online.  Therefore it’s just a benchmark for developing heuristic strategies.  
Dynamic programming yields results that are close to being global optimal. In the 

context of optimal control, DP and PMP are two different approaches to obtain optimal 

trajectories for deterministic optimal control problems. In the minimum fuel consumption 

problem of HEVs, the DP method guarantees a global optimal solution by detecting all 

possible control options [24].   
Moreover we will compare the MPC performance with the result, that has been 

proposed in [24] according to Pontryagin’s Minimum Principle (PMP) for a PHEV. 

According to [25] for urban driving conditions, the power split showed best fuel 

economy in comparison with series and parallel configurations. In highway driving 

condition, power split and parallel architectures showed similar and better efficiency in 

comparison to series architecture. 

At first the theory of MPC will be explained in brief. After designing the power 

management strategy, it will be implemented on the model and results of simulation will 

be compared to Dynamic Programming. The discussion and the conclusion sections come 

afterwards.  

 

 

 

2. Theory 
 

The general design objective of MPC is to compute a trajectory of a future input to 

optimize the future behaviour of the plant output. The optimization is performed within a 

limited time window based on the information of the plant at the start of the time 

window.  

Moving horizon window is the time interval in which the optimization is applied. The 

length of this window is called prediction horizon ( )pN . It determines how far we wish to 

predict the future.  The objective of solving an MPC problem is to find a vector that 

contains the variation of inputs in order to reach the desired trajectory of outputs. The 

length of this vector is called control horizon ( )cN .  

In the planning process, we need the information about state variables at time ti in 

order to predict the future. This information is denoted as x(ti) which is a vector 

containing many relevant factors, and is either directly measured or estimated. A good 

dynamic model will give a consistent and accurate prediction of the future [26]. 

Meanwhile an integrator is naturally embedded into the design, leading to the 

predictive control system tracking constant references and rejecting constant disturbances 

without steady-state errors.  

For linear MPC, the model inside the controller is an augmented one which contains 

an integrator for each output. 

For an augmented discrete system like: 

 

(  1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k

y k Cx k Du k

  

                                                                                

(1)

 
 

Where x, u and y are state variable, input and output of the linear system. 
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Note that D=0 due to the principle of receding horizon control, where a current 

information of the plant is required for prediction and control. 

The relation between the predicted output of the system inside the prediction window 

(Y), time step ik  , measured states at 
it  and the designed variation of the inputs will be 

(prediction equation): 

( ) iY Fx k U 
                                                                                                      

(2) 
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Where ( 2 )i iy k k  means the predicted output on 2ik   step based on the 

measurement on 
ik  step [26].

  The performance of a control system can deteriorate significantly when the control 

signals from the original design meet with operational constraints. But with a small 

modification, the degree of performance deterioration can be reduced if the constraints 

are incorporated in the implementation, leading to the idea of constrained control. For 

modifying the controller, all the constraints must be changed in the form of variation in 

input signal. For the constraints on the amplitude of the input, variation of the inputs and 

the outputs: 

 
min max

1 2

min max

min max
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If a quadratic objective function is used for the optimization, this is a quadratic 

programming problem. 

 

 

3. Model Description 
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Among the different architectures for a hybrid electric vehicle, power split 

configuration seems to be the most efficient one for a limited capacity of battery. In a 

power split configuration, the engine, the electric motor and the generator are connected 

to each other by means of a planetary gear set. The start off the vehicle is pure electric. It 

means that the engine is shut off. This status continues for driving with low speed until 

the battery state of charge drops to a predefined level or the velocity increases. Hereby 

the engine is started and delivers power to the drivetrain and simultaneously charges the 

battery with the help of the generator.  For full performance, the battery empowers the 

electric motor to propel the vehicle with the help of the engine. With regenerative 

braking, a part of dissipated energy returns to the battery by the electric motor. 

For deriving the dynamics of the system it is assumed the mass of the pinion gears is 

small, there is no friction, no tire slip or efficiency loss in powertrain. By considering the 

vehicle longitudinal dynamics, the equation of the system will be according to (7), (8) 

and (9) which is derived by J. Liu et al [27]. 
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In this relation: 
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Where the variables and parameters are defined in the Appendix. 

If the macroscopic behavior of the battery is to be represented within a more complex 

system, as is typically the case in vehicle modeling, the battery is often represented by an 

equivalent circuit. We can use a simple circuit for modeling the battery. The external 

resistance represents the effect of chemical reactions. Since only one resistance is 

considered, the complex nonlinear effects such as diffusion and battery surface 
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capacitance are not directly considered [28]. Therefore a simple internal resistance model 

for the battery is considered. 

In PHEVs, the battery pack is discharged from a fully charged status to a reference 

SOC, where the vehicle is then operated as a regular hybrid [28]. The value we have 

chosen here as the reference SOC is 30% regarding to the life of the battery pack. 

These idealized assumptions will result in a more optimistic fuel economy prediction. 

In this system there are 3 states: ring speed ( )r  which is proportional to the vehicle 

velocity, engine speed ( )e , and battery state of charge ( )SOC . Also there are 3 inputs: 

Engine ( )eT , Motor ( )mT and Generator Torque ( )gT . m  and g represent motor 

drive and generator drive efficiency respectively (Including DC/DC convertor and 

DC/AC inverter) [29]. The readers are referred to [30] for an empirical estimation of the 

power electronics efficiency. When the battery is discharged k=1. But k=-1 for battery 

charging. 

 

4. Problem Statement 
 

The goal of this research is to design a control strategy for a plug-in hybrid vehicle 

with power split architecture.  The battery in a plug-in hybrid vehicle is fully charged 

before vehicle start off. We assume that the vehicle goes on the pure electric mode until 

the charge of the battery drops to a reference state of charge, then the strategy enters a 

loop governed by MPC. This controller tries to keep the state of charge around the 

reference and simultaneously minimize the fuel consumption. In this problem there are 3 

inputs that give flexibility to the control problem.  

In each prediction window we need a cost function to be minimized that results in 

maximum fuel economy and tracking a predefined level of battery charge while 

following a predefined drive cycle. The cost function is: 
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(11) 

Where ( ) ( 1) ( )T k i T k i T k i       . 

The first term is related to keep the state of charge around reference. The second term 

is for minimizing the fuel consumption. The third and fourth terms try to minimize the 

input variations inside the prediction horizon. 
1 2 3 4, , ,     are weighting parameters that 

are chosen according to the predicted maximum value of the weighted variables. In most 

optimization problems except in rather rare cases (e.g., [31] and [32]), only minimizing 

fuel consumption is the objective, and pollution limitation is considered as a constraint of 

the process; as long as pollution is within predefined limits, it does not influence the 

optimization process [6]. 

We chose the FTP75 drive cycle to estimate fuel consumption. Also there are some 

constraints on this problem that are defined as following: 
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For finding a simpler form of the controller and also using the linear MPC, the 

equations of the system were linearized for each time step around the operating point. 

Moreover, we use receding horizon control principle where the actual control input to the 

plant only takes the first sample of the control signal, while neglecting the rest of the 

trajectory. Also the fuel consumption map of the engine was estimated as:  

 
2

e e em T   &
                                                                                                       (13) 

 

Where ,  are constant. 

As mentioned before, the current optimization problem can be converted to a 

quadratic form. Assume that the cost function is written in the form of 

1
( )

2

T TJ k U H U U E

M U N

   

                                                                                       (14) 

Where M and N are specified by the constraints of (12). Note that input for MPC 

problem is the inputs variation, with length of control horizon. Typical solution to this 

problem  using Lagrangian multipliers can be found [33]: 

 
1 1 TU H E H M                                                                                              (15) 

 

where  1 1 1( )TMH M N MH E      . 

Since this problem must be solved in every time step we need a fast approach. 

Identifying active constraints in each time step would be helpful to accelerate the 

calculation procedure. In this paper we used Hildreth’s quadratic programming procedure 

that suggests an iterative approach to identify the active constraints in order to solve the 

problem and find the second term in equation (15). Figure 1 summarizes the algorithm of 

MPC.  

 

 

 

 

 

 

 

Figure 1. MPC structure 
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For Dynamic Programming, we only considered the fuel consumption inside the cost 

function. The quadratic term in (11) for controlling SOC was replaced with a hard 

constraint on SOC in charge sustaining mode. Other constraints and dynamics have 

remained unchanged.  

Fuel consumption map of the engine is shown in figure 2. 

 

Figure 2. Engine fuel consumption map [29] 

 

 
 

5. Results of Simulation 
 

The simulation was done in the MATLAB environment. The requested torque was 

calculated based on 2 sequential FTP drive cycles. This torque is one of the inputs to the 

controller. Power management strategy uses this input and a linearized model of the 

powertrain to predict the future contribution of each power source on board. Outputs of 

the controller are applied to the nonlinear model of the powertrain (equations 7 to 9) so 

that we can find out critical state variables like battery state of charge, vehicle velocity 

and especially fuel consumption. Figure 3 shows the fuel consumption for different 
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values of MPC parameters. Control horizon (Nc) is less than the prediction horizon(Np). 

The input horizon should be as large as the expected transient behavior. In practice, a 

value of Nc≥3 often seems to give performance close to the ‘global optimal’. To achieve 

closed-loop behavior close to open-loop behavior, Nc=1 will often be sufficient [34]. 

 

Figure 3. Fuel consumption vs. control and prediction horizon 

 
It can be seen that the least fuel consumption can be found with Nc=8 and Np=10. All 

simulations have been done with respect to these values. Therefore fuel economy will not 

necessarily be improved by increasing prediction horizon. 

Figure 4 shows the simulation procedure that has been followed in this paper. 

 

Figure 4. Simulation Procedure 

 
 

 The battery is fully charged at the beginning of the drive cycle and the vehicle goes 

on a pure electric mode until the state of charge drops to 0.3, the reference state of 

charge. Fuel consumption in this period is zero. 

Figure 5 and table I show the electric range of the PHEV for different reference states 

of charge. 
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Figure 5. Electric range of PHEV for different reference SOCs 

 
 

 

 
Table I . All Electric Range/ Fuel Consumption for different SOCs 

 

Reference SOC AER (km) Fuel Consumption (l/100km) 

0.3 19.14 1.41 

0.35 17.80 2.06 
0.4 17.26 2.33 

0.45 14.01 3.37 

 

 

Figure 6 shows the torque, speed and efficiency of the electric motor. As shown in 

figure 7 the generator torque on the pure electric mode is equal to zero since there is no 

need to charge the battery (SOC is higher than the reference).Figure 8 shows the 

cumulative fuel consumption which is around 1.41liter per 100 km. Engine is shut off and 

on many times to maximize the fuel economy. 
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Figure 6. Motor Torque, Speed, Efficiency 

 
 

Figure 7. Generator Torque, Speed, Efficiency 
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Figure 8. Engine Torque, Speed, Fuel Consumption 

 
Figure 9 shows the cost function value along the drive cycle. For non-pure electric 

mode portion there is a tiny deviation from zero for the most time steps and for some 

points the cost function is not minimized according to the driving condition. 

 

Figure 9. Cost Function Value 

 
Figure 10 shows fuel consumption increase by considering the input variation inside 

the cost function. 
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Figure 10. Fuel consumption vs. reference SOC 

 
 

Figure 11 to 14 show the result of Dynamic Programming which was applied for 

charge sustaining mode. 

 

 

Figure 11. Dynamic Programming result: Motor Torque, Speed, Efficiency  
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Figure 12. Dynamic Programming result: Generator Torque, Speed, Efficiency  

 

 
Figure 13. Dynamic Programming result: Engine torque, speed, fuel consumption  
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Figure 14. SOC comparison for Dynamic Programming and MPC in charge 

sustaining mode  

 

 
 

6. Discussion 
 

It’s evident that by reducing the reference state of charge we can reduce fuel 

consumption (Table I) and also increase the electric range of the PHEV. Reducing the 

state of charge reference is restricted by health parameters and life time of the battery. 

When SOC drops to a predefined level, the controller switches to charge sustaining (CS) 

mode and tries to maintain the state of charge as close as possible to the reference (0.3). 

According to figure 6 the motor torque will increase upon accelerating especially in 

the full electric range. Also MG2 can capture a part of braking torque as shown by the 

negative torques. In figure 7 the generator speed is negative because of the power split 

device. Since the carrier part is stationary to keep the engine off, the sun gear which is 

connected to the generator rotates in the reverse direction of the ring gear which is 

connected to the motor. In charge sustaining mode, depending on the engine speed, the 

direction of sun gear rotation will change as shown in the speed plot figure 8. The job of 

the generator is to recharge the battery and also restart the engine (an effect that is 

ignored in the present work). The generator never stops rotating while the vehicle is 

moving so it potentially can produce electricity. But it needs a share of engine power 

which is sometime sufficient for both contributing to the power needed for vehicle 

propulsion and also recharging the battery. So the power management strategy can 

connect or disconnect the generator to or from the battery when required to keep the SOC 

as close as possible to the reference. Generator efficiency is not as high as that of the 

motor. 

Figure 8 must be closely investigated with figure 9 since fuel consumption is one of 

the terms inside the cost function. In the electric range of travel, cost function value is 

proportional to the squared difference of SOC with reference SOC. Therefore by getting 

closer to the charge sustaining mode, the cost function value decreases and finally 

reaches to zero upon start of CS mode. From now on the main part of cost function value 

relates to fuel consumption and input variation constraints. Because of some constraints 

on engine, motor and generator torque, this value cannot be matched to its global 

minimum. It should be noted that the cost function is the summation of squared predicted 

input variations and fuel rate along the prediction window at any time step. One of our 

important concerns is sustaining the battery SOC closely to the reference. Changing the 
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corresponding weight parameter (
1 ) inside the cost function in simulation has revealed 

that the least fuel consumption is obtained when 
1 equals the inverse of lower and upper 

bounds average of SOC.  

It’s evident that by increasing the reference SOC, fuel consumption will decrease as 

shown in figure 10. In plug-in hybrid the reference SOC is set to a lower value if it is 

possible. This value is closely related to the battery life time. By removing the terms 

related to input variations from the cost function, we obtain better fuel economy as 

expected. Considering constraints in order to make a more realistic decision leads to fuel 

consumption increase. Another important issue is the trend of curves, which was 

predictable. The general solution to (15) is proportional to the E matrix. It should be 

mentioned that the reference SOC can be factorized from the E matrix. Therefore the 

solution of the quadratic programming problem has a proportional relation to the 

reference SOC. According to (13), we can justify the linear behavior shown in figure 10. 

By adding the input variation to the cost function, fuel consumption behavior has been 

changed to a piecewise linear curve.  

The results of DP in charge sustaining mode are illustrated in figure 11 to 13. 

According to figure 12, there is no need for the generator to capture higher torque values 

to make a sudden increase in SOC (this issue was important for MPC) because of the 

constraint on SOC in charge sustaining mode. Also, the generator speed goes on higher 

levels in DP in comparison to figure 7, since the average speed of the engine is more than 

what it is in MPC. This makes operating points get closer to the engine sweet spot. 

Therefore, the resultant fuel consumption is 204.3 gr, although the engine never stops 

operating. The fuel consumption for MPC without considering input variation inside 

MPC cost function while SOCref =0.3 is 233.7 gr. This shows 14.4% increase in fuel 

consumption regarding DP result.  

According to figure 14, SOC for DP is free to fluctuate in specific range around 

reference SOC and this makes fuel consumption less than MPC where the controller was 

enforced to maintain SOC around the reference.  

Kim et al. [24] applied Pontryagin’s minimum principle (PMP) to a power split 

PHEV based on FTP 72 (UDDS) drive cycle. They predicted 1.53 l/100km as the fuel 

consumption. By sticking to the same controller proposed in this paper and just changing 

the driving schedule it was revealed that MPC suggests even better fuel economy (1.29 

l/100km). Moreover, MPC can also be implemented online. 

By adding the variation of inputs inside the cost function and choosing appropriate 

MPC parameters, we can obtain fuel consumption equal to 1.41 l/100km according to the 

FTP 75 drive cycle. 

Moreover, it took 35.4 second in real time for 2828 seconds simulation (for two 

successive FTP 75 drive cycles) to be completed. The simulation is conducted in the 

MATLAB environment and on a machine which is powered by a 3.16 GHz dual core 

CPU and a 4 GB memory. It would be even faster if the controller was implemented as a 

C-code. It means that MPC is capable of being implemented online.  

In summary, a model-based controller was proposed to effectively handle the hard 

constraints on power management strategy design problem of a PHEV. In this work the 

effect of MPC parameters was investigated without ignoring the powertrain dynamics. 

MPC problem was solved by considering input variation inside the cost function to not 

even consider them as a hard constraint but to make the system operate as smoothly as 

possible. 
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7. Conclusion 
 

In this article, a power management strategy for a plug-in hybrid vehicle was 

designed according to the discrete MPC concept with appropriate parameters and 

compared to dynamic programming. The model inside the controller was linearized and 

discretized. Simulation was done along 2 successive FTP 75 drive cycles to get an insight 

into the electric range of the PHEV. It was revealed that fuel economy will not 

necessarily be improved by increasing the prediction horizon. Also for making the 

analysis more realistic, the input variations were considered inside the cost function that 

should be minimized in each time step.  

Simulation results showed a promising fuel consumption of 1.41 l/100km by 

following the FTP 75 drive cycle. 
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Appendix 
 

Table II reviews the model parameters and variables. 

 
TABLE II. VARIABLES & PARAMETERS DESCRIPTION 

 

Symbol Unit Value Description 

    
2kg rad

h s

  
0.02 Engine Speed Coefficient 

    
1kg

W
h

  1.86 Engine Power Coefficient 

m& kg
h

 - Fuel Rate 

gI  
2.kg m  0.1 Generator Equivalent Inertia 

sI  
2.kg m  0.1 Sun Equivalent Inertia 

eI  
2.kg m  0.5 Engine Equivalent Inertia 

cI  
2.kg m  0.1 Carrier Equivalent Inertia 

mI  
2.kg m  0.1 Motor Equivalent Inertia 

rI  
2.kg m  0.1 Ring Equivalent Inertia 

tireR  m  0.3 Tire Radius 

K  - 6.75 Gear Ratio  

m  kg  1380 Vehicle Mass 

g  
2

m
s

 9.81 Gravity Acceleration 

rf   0.02 Friction Coefficient 

  
3

kg
m

 1.2 Air Density 

A  2m  2.5 Vehicle Frontal Area 

dc  - 0.2 Drag Coefficient 

R  - 78 Ring Teeth No. 

S  - 30 Sun Teeth No. 

ocV  V  345.6 Battery Open Circuit Voltage 

battR    0.85 Battery Open Circuit Resistance 

battQ  .A s  54167 Battery Capacity 

refSOC  - 0.3 Reference SOC 

 

 

 

 

 

 

 

 

 

 


