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aDepartment of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1

bWaterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

Abstract

We analyze the effects of dielectric decrement and finite ion size in an aqueous

electrolyte on the capacitance of a graphene electrode, and make comparisons

with the effects of dielectric saturation combined with finite ion size. We first

derive conditions for the cross-over from a camel-shaped to a bell-shaped capaci-

tance of the diffuse layer. We show next that the total capacitance is dominated

by a V-shaped quantum capacitance of graphene at low potentials. A broad peak

develops in the total capacitance at high potentials, which is sensitive to the ion

size with dielectric saturation, but is stable with dielectric decrement.

Keywords: graphene, capacitance, electrolyte, dielectric decrement, steric

effects

1. Introduction

Graphene has found many applications in electronics and photonics, but in

recent years, a new application of graphene-based devices for biochemical sens-

ing has materialized [1, 2, 3]. Typically, graphene-based sensors function as a

field effect transistor (FET), where a single sheet of graphene acts as the con-5

ducting channel and is in contact with a liquid electrolyte [4]. Since graphene
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is chemically inert and hydrophobic [5], the interface between graphene and

the electrolyte is considered to be ideally polarizable, and therefore the insu-

lating layer between the conducting channel and the electrolyte that typically

arises in electrolyte-insulator-semiconductor FETs (EISFETs) can be eliminated10

[6]. Besides using graphene in a transistor mode, it was shown that operating

graphene-based devices in the capacitor mode can provide additional advantages

to sensing functionality [7]. When electrolytically gated, graphene’s quantum

capacitance has been shown to be much smaller than that of the electric double

layer in the electrolyte [8, 9, 10], and as a consequence the surface potential on15

graphene exhibits more control over sensor output [11].

As a consequence of graphene’s zero energy band gap, the electrical conduc-

tivity and differential capacitance of graphene-based FETs both exhibit min-

ima as functions of the applied potential at the neutrality point, or point of

zero charge [7, 11, 12]. This clear minimum, a unique feature of graphene,20

yields a more accurate sensing mechanism than previously seen, particularly in

EISFETs, where shifts of the threshold potential are measured [6]. Experimen-

tal work has shown that graphene-based FETs are sensitive to changes in pH

and/or ion concentration in the electrolyte, where typically either shifts in the

capacitance or conductivity minimum of the device are observed [7, 13, 14]. It is25

known that graphene’s π electron bands can yield a doping density in graphene

of up to ∼ 1 nm−2 [15]. This large doping density may give rise to strong elec-

tric fields (of up to ∼ 13 V/nm) [15], which results in the dielectric saturation

of solvent [16, 17, 18, 19, 20]. Large electric fields near graphene can also give

rise to a prominent ion crowding, such that the effects of finite ion size, or steric30

effects become increasingly important [21, 22, 23, 24, 25].

We have recently studied in Refs. [26, 27] the effects of both finite ion size

and dielectric saturation on the differential capacitance of electrolytically gated

graphene by using the Bikerman-Freise (BF) model [28, 29] and the Booth model

[30], respectively. However, large doping densities of graphene were found to be35

related to large potential drops across the electric double layer [26, 27]. This

may give rise to significant dielectric decrement in the solvent, especially in
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dense electrolytes, which is due to the excess polarizability of the hydrated

ions [31, 32, 33, 34, 35, 36, 37]. Accordingly, our primary goal in this work is

to explore the combined effects of finite ions size and dielectric decrement on40

differential capacitance of graphene over a large range of the potential applied

through an aqueous ionic solution.

There was a large amount of work done to incorporate dielectric decrement

into the framework of the Poisson-Boltzmann (PB) equation for an electrolyte

with a metallic electrode [31, 32, 33, 34, 35, 36, 37], with some groups using a45

linearized decrement model to obtain analytical solutions to the modified PB

(mPB) equation [32, 33, 34]. Since much of the experimental work for graphene

in aqueous electrolytes uses ion concentrations below 2 M [7, 13, 14], we adopt

here a linearized dielectric decrement model with empirical parameters [38],

and combine it with the BF model for ion steric effects [28, 29]. This approach50

enables us to obtain an analytical expression for differential capacitance of the

diffuse layer, and the total differential capacitance of graphene is obtained via

a series connection of its quantum capacitance with that of the diffuse layer.

Our secondary goal in this work is to explore how combinations of the ion

steric effect with dielectric saturation and dielectric decrement, treated sepa-55

rately, affect the dependence of the diffuse layer capacitance on the potential

applied through that layer. Namely, it is well-known that the inclusion of ion

steric effect in the mPB theory prevents excessive ion crowding at the inter-

face between electrolyte and a metallic electrode, which causes the so-called

“camel-shaped” or “M-shaped” capacitance of diffuse layer as a function of the60

potential [23]. Using the BF model gives rise to a change in the shape of that

capacitance, going from a local minimum to a local maximum at the potential

of zero charge (PZC) with increasing ion concentration. Finding a criterion that

gives the ion concentration at which this cross-over from a “camel-shaped” to a

“bell-shaped” capacitance takes place plays an important role in recent models65

of finite ion size effects in ionic liquids [23, 39, 40]. While we have found in our

previous work how this criterion changes in the presence of dielectric satura-

tion [27], we shall determine analogous criterion in this work in the presence of
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dielectric decrement that generalizes the result found in Ref. [33].

After outlining the theoretical model, we discuss results for the diffuse layer70

capacitance and for the total capacitance of graphene, followed by our conclu-

sions.

2. Theory

We start from a mean-field free-energy functional [25, 33, 34, 36], which will

enable us to model the ion steric effects, dielectric saturation, and dielectric75

decrement in a self-consistent manner. After using the governing equations

and the conditions for stationarity, we derive the diffuse layer capacitance from

the first-integral. We then discuss the necessary modifications for a graphene

electrode [26, 27]. Unless explicitly stated, we use Gaussian electrostatic units,

where 4πϵ0 ≡ 1, with ϵ0 being the dielectric permittivity of vacuum.80

2.1. The Generalized Poisson-Boltzmann Equation

We consider a z : z symmetric electrolyte, which contains positive and neg-

ative ions with concentration, c±, and relative dielectric permittivity of solvent,

ε. We start by minimizing the free energy, F = U − TS, of the system, where

the electrostatic energy is85

U =

∫ [
− we(∥∇ϕ∥, c+, c−) + ze(c+ − c−)ϕ− µ+c+ − µ−c−

]
d3r⃗. (1)

The first term is the self-energy of the electric field, which is given by [17]

we(∥∇ϕ∥, c+, c−) =
1

4π

∥∇ϕ∥∫
0

ε(E, c+, c−)E dE, (2)

where we allow the dielectric permittivity to generally depend on the magnitude

of the electric field, E, as well as on ion concentrations, c±. Since no microscopic

models are available for the full dependence of ε(E, c+, c−) on all variables, one

may resort to treating the dielectric saturation and dielectric decrement sepa-

rately by allowing either ε(E, c+, c−) = εsat(E) or ε(E, c+, c−) = εdec(c+, c−),90
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respectively. In our previous work [27], we have studied the dielectric satura-

tion by adopting the Booth model for εsat(E) [30] and proceeding to include

the ion steric effects, as described below. In this work, we only present a

derivation of the theory employing dielectric permittivity that describes di-

electric decrement, which allows the integral in Eq. (2) to be evaluated as95

we(∥∇ϕ∥, c+, c−) = εdec(c+, c−)∥∇ϕ∥2/(8π). The second term in Eq. (1) is

the electrostatic energy of the ions in the potential ϕ, while the last two terms

are the constraints for the conservation of the number of ions and are related

to the chemical potentials of the bulk electrolyte, µ±.

The entropic portion of the free energy is derived from a lattice-gas model100

for cells of size a, which may be occupied by positive or negative ions, as well as

water molecules [21, 22, 23]. For simplicity, we assume that the size of the ions

and water molecules are the same and equal to a, and therefore, the entropic

term is

−TS =
kBT

a3

∫ [
a3c− ln(a3c−) + a3c+ ln(a3c+)

+ (1− a3c− − a3c+) ln(1− a3c− − a3c+)
]
d3r⃗, (3)

with the negative and positive ions described by the first and second terms,105

respectively, and the water molecules by the last term. In the same manner,

we assume that the excess polarizabilities of positive and negative ions are the

same, α+ = α− ≡ α ≥ 0, so that the linearized model for dielectric decrement

may be written as εdec = εw − α(c+ + c−) [32, 33, 34, 36, 38], where εw is

the dielectric constant of water (≈ 80). Then, minimizing the free energy with110

respect to ion concentrations yields

c± =
cbe

∓zeβϕe−
αβ
8π ∥∇ϕ∥2

1− ν + νe−
αβ
8π ∥∇ϕ∥2

cosh(zeβϕ)
, (4)

where β = 1/(kBT ) is taken at room temperature, and ν = 2a3cb is the ion

packing fraction from the steric effects, with cb being the bulk concentration of

both positive and negative ions. We note that the unmodified PB equation is

returned by allowing ν → 0 and α → 0. The generalized PB equation in the115
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presence of dielectric decrement and steric effects is obtained by minimizing the

free energy with respect to potential,

∇ · [εdec(c+, c−)∇ϕ] = −4πρ, (5)

where the volume charge density, ρ = ze(c+ − c−), is expressed via Eq. (4). We

note that if εdec is constant, i.e., α = 0, then Eq. (5) is reduced to the mPB

with ion steric effects described by the BF model [22, 23].120

2.2. Diffuse Layer Capacitance

Solving the generalized PB equation in Eq. (5) in one dimension (1D) for the

diffuse layer, which occupies the region x ∈ [0,∞), requires two boundary con-

ditions for the potential ϕ(x), one at the interface with the electrode (graphene)

at x = 0, ϕ(0) = ϕ0, and the other in the bulk of the electrolyte, ϕ(x) → 0 and125

hence dϕ
dx → 0 as x → ∞. However, in order to obtain differential capacitance of

the diffuse layer, it suffices to only find the first integral of Eq. (5). It is easier

to obtain the first integral directly from the free energy F = U − TS via the

Beltrami identity, noting that the spatial variable x is missing in Eqs. (1) and

(3). Denoting the electric field by E = −dϕ
dx , the first integral is130

E2

8π

[
εw − 4αcbe

−αβ
8π E2

cosh(zeβϕ)

1− ν + νe−
αβ
8π E2

cosh(zeβϕ)

]

−2cb
βν

ln
[
1− ν + νe−

αβ
8π E2

cosh(zeβϕ)
]
= 0, (6)

giving a relation between E and ϕ at any point x ∈ [0,∞), which expresses the

condition of constant disjoint pressure in diffuse layer [25].

The differential capacitance of diffuse layer per unit area is defined as Cd =

dσd

dVd
, where σd is the total charge density per unit area in diffuse layer and

Vd = −ϕ0 is the potential drop across that layer [27]. Bazant et al. [24] showed135

that the diffuse layer capacitance may be generally expressed as Cd = −ρ0/E0,

where E0 is the value of the electric field E at x = 0, and ρ0 = ze
(
c0+ − c0−

)
is

the volume charge density in the electrolyte evaluated at x = 0, with c0± being

given by Eq. (4) upon replacements ∥∇ϕ∥ → |E0| and ϕ → ϕ0. Thus, one could
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solve Eq. (6) numerically for E0 in terms of ϕ0 and use Eq. (4) at x = 0 to140

evaluate the diffuse layer capacitance Cd for any given value of the potential,

ϕ0 = −Vd. To that effect, it is convenient to introduce dimensionless parameters

α̃ = αcb/εw and Ẽ = E0/Ec, where Ec =
√
8πcb/ (βεw). Then, from Eq. (4),

the diffuse layer capacitance may be written as

Cd =
CD

Ẽ

e−α̃Ẽ2

sinh(zeβVd)

1− ν + νe−α̃Ẽ2 cosh(zeβVd)
, (7)

where CD = εw/ (4πλD) is the Debye capacitance, with λ−1
D =

√
8πβz2e2cb/εw145

being the inverse Debye length of the electrolyte.

However, it is interesting that Eq. (6) may be solved explicitly for the po-

tential ϕ0 = −Vd in terms of E0. Using the dimensionless parameters α̃ and Ẽ,

we obtain from Eq. (6)

Vd =
1

zeβ
arccosh

(
1− ν

ν
eα̃Ẽ

2

[
−1 +

2α̃Ẽ2

L(Ẽ)

])
, (8)

where L(Ẽ) = W
(
2α̃Ẽ2(1− ν)e(2α̃−

ν
2 )Ẽ

2
)
, with W being the Lambert-W func-150

tion. By substituting Vd from Eq. (8) into right-hand side of Eq. (7) one obtains

Cd as a function of Ẽ. Thus, an analytical relation between the diffuse layer

capacitance and the diffuse layer potential drop is obtained by considering the

obtained Cd(Ẽ) and Vd(Ẽ) from Eq. (8) as parametric functions with the nor-

malized electric field, Ẽ = E0/Ec, being the parameter. Such relation is useful,155

e.g., in analyzing the cross-over from a “camel-shaped” to a “bell-shaped” ca-

pacitance Cd as a function of the potential when Vd → 0.

Moreover, by applying Gauss’ law to the diffuse layer, we may write σd =

−ε0E0/ (4π), where ε0 ≡ εw −α
(
c0+ + c0−

)
is the value of the dielectric permit-

tivity εdec at x = 0. With c0± being given by Eq. (4) at x = 0, we may substitute160

ϕ0 = −Vd from Eq. (8) into that equation and use the Gauss’ law to express the

charge density per unit area in the diffuse layer as a function of the normalized

electric field, σd(Ẽ). This enables us to make contact with the charge density

on graphene.
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2.3. Including Quantum Capacitance of Graphene165

In our previous work [26, 27], we showed quite generally how to include

a graphene electrode into this framework. Allowing for a charge-free Stern

(or compact) layer with capacitance CS , which is positioned between the dif-

fuse layer and graphene, the total differential capacitance of electrolytically

gated graphene may be expressed as a series connection of three capacitors,170

Ctot =
(
C−1

d + C−1
S + C−1

g

)−1
, with Cg being the quantum capacitance of

single-layer graphene (SLG), see, e.g., Ref. [27]. Unlike metallic electrodes,

graphene exhibits strong effects due to smallness of its quantum capacitance

near the PZC, which is a consequence of the low-energy properties of the elec-

tronic band structure in carbon based materials.175

Historically, the first accounts of the role of electronic capacitance of carbon

electrodes in electrolyte were given in classical papers by Yeager and Gerischer

[41, 42], followed by the first theoretical interpretation [43] and a decisive exper-

imental confirmation of the effect, published much later [44]. All those studies

reported V-shaped capacitances with a rounded minimum that attains a surpris-180

ingly low value, on the order of 1 µF/cm−2 at the PZC. The first combination of

the electronic capacitance of a graphite electrode and the double layer in ionic

liquids was given recently by Kornyshev et al. [45]

On the other hand, there is insufficient information at this time about the

Stern layer capacitance of the graphene-solvent interface, CS , partly because185

the total capacitance, Ctot, is completely dominated by the smallness of the

quantum capacitance of graphene near the PZC. While it would be possible to

use the above expression for Ctot by treating CS phenomenologically, as was

done in Ref. [27], we remark that precise modeling of CS at the graphene-

solvent interface would require a more subtle analysis [13, 46, 47, 48], which190

lies beyond the scope of the present work. Nevertheless, we expect that useful

information on the qualitative behavior of the total differential capacitance for

electrolytically gated graphene may be obtained by ignoring the role of the Stern

layer, so we proceed by studying a series connection of the capacitance of the

diffuse layer, Cd, and the quantum capacitance of graphene, Cg.195
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As in Refs. [26, 27], we use the definition Cg = −dσg

dVg
, where σg is the

surface charge density on graphene and Vg = EF /e is its doping potential, with

EF being the Fermi energy in graphene relative to its Dirac point. For charge

carrier densities in graphene up to ∼ 1 nm−2, which are typically achieved for

doping potentials up to |Vg| ∼ 1 V, one may use the Dirac cone approximation200

for graphene’s π electron bands, giving [26]

σg =
2

π

e

(~vFβ)2
[
dilog

(
1 + eβeVg

)
− dilog

(
1 + e−βeVg

)]
, (9)

where dilog is the standard dilogarithm function, and vF ≈ 106 m/s is the Fermi

speed in graphene. As a result, we obtain

Cg =
4e2

πβ (~vF)2
ln [2 cosh (βeVg/2)] , (10)

which attains a minimum value of ≈ 0.8 µF/cm2 for Vg = 0 at room temperature

and exhibits a linear increase with the potential according to Cg ∝ |Vg| for205

βe|Vg| & 1, as a signature of the Dirac cone approximation.

Defining the total applied potential as Va = Vd + Vg, we obtain the total

differential capacitance of electrolytically doped graphene as

Cdg =
Cd Cg

Cd + Cg
, (11)

where a relation between Vd and Vg is determined via the charge neutrality of

the system, σg + σd = 0 [27]. It is worthwhile mentioning that this condition210

enables us to express the charge density on graphene as σg(Ẽ) = −σd(Ẽ),

where Ẽ = E0/Ec is the normalized electric field at the graphene/electrolyte

interface. By expressing Vg in terms of σg via Eq. (9), one can ultimately obtain

both Vg and Cg from Eq. (10) as functions of Ẽ. Therefore, Ẽ is a common

parameter, shared by the quantities that pertain to both the diffuse layer and215

the quantum capacitance, enabling one to study, e.g., the relation between the

total capacitance in Eq. (11) and the total applied potential by treating them

as parametric functions, Cdg(Ẽ) and Va(Ẽ).

Moreover, we can use a parametric representation for Vd(Ẽ) from Eq. (8) and

the above obtained function Vg(Ẽ) to analyze the split of a given total applied220
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potential, Va, into the potential drop across the diffuse layer and the doping

potential of graphene. In this way, we can avoid a numerical solution of a com-

plicated system of equations for E0 and ϕ0 = −Vd, which would involve Eq. (6)

at x = 0 and the neutrality condition written in the form σg = ε0E0/ (4π),

where σg is given by Eq. (9) with Vg = Va − Vd.225

3. Results and Discussion

We first analyze the differential capacitance of the diffuse layer, Cd, as a

function of the potential drop across that layer, Vd, taking into account steric

effects given by the BF model and dielectric decrement, as discussed in the

previous section. We also make comparisons with results from our previous230

work [27], where we analyzed steric effects given by the BF model and dielectric

saturation effects given by the Booth model. Since Cd is even function of Vd

under the model assumptions adopted here, we only show results for Vd ≥ 0.

Referring to the data used in Refs. [32, 33], we use α = 3 M−1 and α = 12 M−1

as lower and upper bounds for typical values of the coefficients in the linearized235

dielectric decrement model. As for the steric effect, we use in most calculations

Bjerrum length at room temperature, a ≈ 0.71 nm, as an upper bound for

typical ion sizes [27, 32, 33].

We discuss several model combinations, which we label appropriately for

the ease of comparison. Considering various effects separately, we label the240

steric effect by S, dielectric decrement by D, and dielectric saturation treated

via the Booth model by B. A combination of the steric effect with the dielectric

decrement is labeled by D+S, whereas combination of the steric effect with

the dielectric saturation via the Booth model is labeled by B+S. The model

involving point ions with constant dielectric permittivity of solvent is naturally245

referred to as the PB model.

3.1. Diffuse Layer Capacitance

In the panels (a) and (b) of Fig. 1, we see that the U-shaped capacitance

of the simple PB model is changed to a “camel-shaped” form (at low ion con-

10



  

(a) (b)

(c) (d)

Figure 1: Panels (a) and (b) show comparisons of the diffuse layer capacitance Cd for the

cases when only the steric effect (S), dielectric decrement (D), or dielectric saturation via

Booth model (B) is taken into account, as well as for the simple Poisson-Boltzmann (PB)

case. Panels (c) and (d) show comparisons of Cd for a combination of the steric effect with

dielectric decrement (D+S) and a combination of the steric effect with dielectric saturation

via the Booth model (B+S), along with the case when only the steric effect (S) is taken into

account and with the simple PB case. Results are shown for the bulk ion concentrations c = 1

M and c = 10−3 M (curves shifted to the right). In the panels (a) and (c) we use α = 3 M−1,

while in the panels (b) and (d) we use α = 12 M−1. In all cases the steric effect is treated via

the BF model with a = 0.71 nm.

centrations c) or “bell-shaped” form (for sufficiently large ion concentrations250

c) due to either the S model or D model, whereas the B model only gives an

offset to the U-shape in the form of a closely-spaced local peak-and-valley pair.

While the large Vd behavior of the capacitance Cd follows the inverse square-root

11



  

asymptotics deduced before for the S model [23, 24, 27] and for the D model

[32, 33], Cd is seen to continue to increase without bound with increasing Vd for255

the B model in a manner that parallels the increase in the PB model.

In the panels (c) and (d) of Fig. 1, we demonstrate the effects of combining

the D and S models (D+S) or B and S models (B+S). One notices that, for

the smaller value of ion polarizability, α = 3 M−1, used in the panels (a) and

(c), there is a relatively strong interplay of the steric and dielectric decrement260

effects, such that, e.g., a “camel-shaped” capacitance with shallow minimum at

Vd = 0, seen in the panel (a) for the D model with ion concentration of c = 1

M, becomes “bell-shaped” in the panel (c) for the D+S model with the same

ion concentration. On the other hand, for the larger value of α = 12 M−1, used

in the panels (b) and (d), one sees very little differences between the models D265

and D+S, showing that the dielectric decrement prevails over the steric effect,

even for a relatively large ion size of a = 0.71 nm. At the same time, the B+S

model exhibits quite dramatic effect on the capacitance for the potential values

beyond the peak positions, which is observed as a significant lowering of Cd for

large Vd values for the B+S model in the panels (c) and (d), when compared270

to the corresponding curves for the S model in the panes (a) and (b). This

reduction of Cd by a factor n/
√
εw, where n ≈ 1.33 is the optical refractive

index of water, is a somewhat unexpected consequence of a strong interplay of

dielectric saturation and steric effects in the B+S model for asymptotically large

Vd, which was analyzed in detail in Ref. [27].275

In Fig. 2, we explore a range of small values of the potential Vd for the ca-

pacitance Cd obtained by using the D+S and B+S combinations of models. We

display a range of ion concentrations c that exhibits cross-over from a “camel-

shaped” to a “bell-shaped” capacitance for both models with increasing c values.

We recall that in the S model, i.e., in the absence of dielectric saturation and280

dielectric decrement effects, a condition for this cross-over is ν ≡ 2a3c > 1/3, as

deduced by Kornyshev et al. [23, 40, 49] from the BF model for ion steric effects

in ionic liquids. With a = 0.71 nm, this occurs for ion concentrations c > 0.77

M in the bulk electrolyte. For the B+S model, we have derived in Ref. [27] a
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(a) (b)

Figure 2: A comparison of the diffuse layer capacitance Cd for a model combining the dielectric

decrement with ion steric effects (solid lines), and a model combining the dielectric saturation

via the Booth model with ion steric effects (dashed lines), for the bulk ion concentrations

between c = 0.1 M and c = 2 M. While for all curves the ion size is a = 0.71 nm, the ion

polarizability coefficient takes values α = 3 M−1 (panel a) and α = 12 M−1 (panel b).

generalization of that condition as285

3ν − 1 +
(
εw − n2

) 16πc

5βE2
sat

> 0, (12)

where Esat ∼ 1 V/nm is a critical electric field for which the dielectric saturation

sets in within the Booth model [30]. With the same ion size, one obtains a

somewhat reduced critical value of ion concentration for the cross-over, c > 0.66

M.

Using the parametric representation of the relation between Cd and Vd from290

the previous section, we obtain a new generalization of the condition for the

“camel-to-bell” shape cross-over of the diffuse layer capacitance at Vd = 0 for

the D+S model as

48να̃2 − 40α̃2 − 24να̃+ 16α̃+ 3ν − 1 > 0, (13)

where α̃ ≡ αc/εw. Again using the ion size a = 0.71 nm, we find the critical ion

concentrations for the cross-over to be c > 0.61 M for α = 3 M−1 and c > 0.34295

M for α = 12 M−1. These values are corroborated by the shape of the curves

shown in Fig. 2 in the limit Vd → 0.
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(a) (b)

Figure 3: A comparison of the diffuse layer capacitance Cd for a model combining the dielectric

decrement with ion steric effects (solid lines), and a model combining the dielectric saturation

via the Booth model with ion steric effects (dashed lines), for ion concentrations c = 10−6 M,

c = 10−4 M, c = 10−2 M and c = 1 M. While for all curves the ion size is a = 0.71 nm, the

ion polarizability coefficient takes values α = 3 M−1 (panel a) and α = 12 M−1 (panel b).

In Fig. 3, we focus on the behavior of the peaks in the “camel-shaped”

capacitance Cd for the D+S and B+S models at very low ion concentrations in

the bulk electrolyte, c ≪ 1 M (we only show the case c = 1 M for reference).300

As anticipated in the panels (c) and (d) of Fig.1, one can see in Fig. 3 that

the two models give almost identical capacitance curves for small potentials,

which arise from the prevalence of the PB model at low ion concentrations and

small potentials. For α = 3 M−1, the peak positions and peak heights happen

to be almost identical for the two models, whereas for α = 12 M−1 the peaks’305

positions are lower and their heights are significantly smaller in the D+S model

with respect to those in the B+S model. Interestingly, the peak heights in

both models are independent of ion concentrations, while the peak positions

seem to increase in proportion to ln c for c ≪ 1 M. Those observations can be

rationalized by considering the asymptotic behavior of Cd for large Vd, found310

for the S model in Refs. [23, 24, 27] and for the D model in Refs. [32, 33].

Namely, both models yield a generic asymptotic form C
(as)
d ∼ 1/

√
X, which

captures the dependence on both the potential Vd and ion concentration c with
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X = βzeVd+ln(ν/2) for the S model and X = βzeVd+ln(2α̃) for the D model.

An estimate for the peak positions in the “camel-shaped” curves in Fig. 3 can315

be then obtained by equating C
(as)
d with the diffuse layer capacitance in the

PB model, CPB. Remarkably, the dependence of CPB on the potential and ion

concentration may be expressed compactly for large potentials in terms of the

above variable X as C
(as)
PB ∼ eX/2. Then, solving the equation C

(as)
PB = C

(as)
d

yields the X values that reproduce qualitative features of the curves for both320

models in Fig. 3 for c ≪ 1 M.

It should be stressed that values of the diffuse layer capacitance shown in

Figs. 1-3 are unrealistically high in comparison to the values measured in aque-

ous solutions with metallic electrodes at ionic concentrations c ∼ 1 M, see,

e.g., [24, 32, 46]. This is a consequence of our using a continuous description325

of the solvent dielectric response described in terms of the local dielectric con-

stant, dependent on ion concentrations and electric field. Namely, the effects of

molecular structure of the solvent are very important at the nanoscale distances

from an electrode [15]. These effects can be incorporated within a mean field

approach by invoking a compact layer (interchangeably called inner layer, or330

Helmholtz layer, or Stern layer), giving rise to the so-called Gouy-Chapman-

Stern-Grahame model, discussed in detail in Ref. [46]. As a result, the total

capacitance of a double layer formed at the interface with a metallic electrode

can be represented as a series connection of the diffuse layer capacitance, Cd,

and the Stern layer capacitance, CS . The properties of such compact layer can335

be deduced from a microscopic picture of the metal-electrolyte interface within

a nonlocal dielectric formalism [47, 48], giving values on the order of CS ∼ 10

µF/cm−2 [46].

Alternatively, a Stern layer capacitance may be simply treated as an em-

pirical parameter, as in Refs. [24, 32, 37], where a correct order of magnitude340

matching the experimental data was achieved using the values CS = 125, 146,

and ≈ 155 µF/cm−2, respectively. The main effect of the Stern layer capaci-

tance is to reduce the value of the total double layer capacitance near the PZC

for high ion concentrations, as well as at high potential values, where the effects
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of finite ion size and/or dielectric decrement give rise to peaks in a “camel-345

shaped” capacitance. It is interesting that such smoothening of the capacitance

curves, and reduction of the absolute values at their extrema, may be achieved

by introducing short-range correlations between ions in the lattice gas model,

thereby bypassing the necessity to introduce a Stern layer into the theory [40].

3.2. Including Quantum Capacitance of Graphene350

Regarding the Stern layer capacitance of a graphene-solvent interface, far

less is known than in the case of metallic electrodes. For example, recent mea-

surements of the capacitance of carbon based electrical double layer capacitors

in a 6M KOH aqueous electrolyte showed that, unlike the case of multi-layer

graphene, the inferred Stern layer capacitance for a SLG electrode changes quite355

rapidly, and in a rather asymmetric manner, taking values in the range from

CS ≈ 17 µF/cm−2 up to ≈ 60 µF/cm−2 when the potential drop across that

layer deviates by some 0.05 V from the PZC (see Fig. 4(d) in Ref. [13]). In

our previous work, we have deduced a value of CS ≈ 60 µF/cm−2 for the B+S

model combination by adopting a simple model for the Stern layer placed next360

to graphene, which is consistent with the lattice gas model for ion steric effects

and with the dielectric saturation in solvent. Namely, we have evaluated CS

for a layer of water of thickness a/2 with uniform dielectric permittivity deter-

mined from σg = εsat(E0)E0/ (4π), which clearly depends on the charge density

on graphene σg, but not on the ion concentration in the electrolyte [27]. It365

would be difficult to adapt such model of Stern layer in a consistent manner

to the D+S model combination, since dielectric decrement depends on ion con-

centration in the electrolyte. Therefore, given the uncertainty regarding proper

modeling of the Stern layer for SLG in general, and aiming at a comparison of

the effects of the D+S and B+S model combinations on electrolytically gated370

graphene in particular, we only consider here a series connection of the capac-

itance of the diffuse layer, Cd, and the quantum capacitance of graphene, Cg,

given in Eq. (11).

In Fig. 4(a) we show the dependence of Cdg, given in Eq. (11), on the total
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(a) (b)

Figure 4: The diffuse layer capacitance Cd (solid lines), the quantum capacitance Cg (dashed

lines), and the total capacitance Cdg from Eq. (11) (dotted lines) are shown in panel (a) as

functions of the total applied potential Va = Vd + Vg for a model of Cd that combines the

dielectric decrement with ion steric effects for ion concentrations c = 10−6 M, c = 10−4 M,

c = 10−2 M and c = 1 M, with fixed ion size a = 0.71 nm, and the ion polarizability coefficient

α = 12 M−1. The corresponding values of the ratio of the doping potential in graphene, Vg ,

to the total applied potential Va are shown in panel (b).

applied potential Va = Vd + Vg in a broad range of ion concentrations. We375

only consider in Fig. 4 the case where Cd is calculated with the model labeled

D+S, which combines the dielectric decrement with steric effects, using the same

parameters as those corresponding to the solid curves in Fig. 3(b). Besides the

results for Cdg, we also show in Fig. 4(a) separate results for Cd and Cg as

functions of Va, each evaluated with the corresponding values of the potential380

components, Vd and Vg, respectively. One notices in Fig. 4(a) that the quantum

capacitance Cg of graphene is very small at the applied potentials Va . 1 V

and, hence, it dominates in Cdg at such potentials for all ion concentrations,

except the lowest one, c = 10−6 M. Accordingly, the strong dependence of Cd

on the ion concentration at low potentials is suppressed in Cdg. On the other385

hand, as the applied potential increases, say for Va & 1 V, Cd starts exhibiting

the Cd ∝ 1/
√
|Vd| dependence, whereas Cg continues to increase, so that a

broad peak develops in Cdg in the range 1.5 . Va . 2 V in Fig. 4(a). We note

that such peak could be manifested in experiments as saturation of the total
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capacitance with increasing applied potential.390

In Fig. 4(b), we show the ratio Vg/Va of the doping potential of graphene to

the total applied potential Va as a function of that potential. One notices that,

owing to the smallness of Cg with respect to Cd, generally a quite large fraction

of the applied potential goes to doping the graphene, except for small applied

potentials, Va . 1 V, at the lowest ion concentration, c = 10−6 M. For example,395

one observes in Fig. 4(b) that, at the potential Va ≈ 1.6 V, where Cdg exhibits

a broad maximum for ion concentrations 10−4 < c < 10−2 M in Fig. 4(a), the

doping potential of graphene is quite large, Vg ≈ 1.3 V, whereas the value of

Vd ≈ 0.3 V confirms the prevalence of the Cd ∝ 1/
√
|Vd| dependence of the

diffuse layer capacitance seen in Fig. 3(b).400

(a) (b)

Figure 5: A comparison of total capacitance Cdg with the diffuse layer capacitance obtained

with different models: a combination of dielectric decrement with ion steric effects (D+S,

black lines), a combination of dielectric saturation via the Booth model with ion steric effects

(B+S, red dash-dotted dashed lines), a model with ion steric effects alone (S, green dashed

lines), and the simple Poisson-Boltzmann model (PB, blue dotted lines). All results are shown

for ion concentrations c = 10−3 M (thin lines) and c = 1 M (thick lines). The D+S model

is shown for ion polarizability coefficients α = 3 M−1 (solid black lines) and α = 12 M−1

(dashed black lines). The ion size in the models involving steric effects is taken to be a = 0.71

nm (panel a) and a = 0.25 nm (panel b).

Finally, in Fig. 5 we discuss the total differential capacitance, Cdg, given in

Eq. (11), for a low and a high ion concentration and two ion sizes. We compare
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the cases when Cd is obtained with the simple PB model, S model, and the

combinations D+S and B+S. The most striking effect seen in the figure is that

all the cases are almost identical for the applied potentials Va . 1 V, owing405

to the fact that quantum capacitance Cg of graphene is very small at such

potentials. As in Fig. 4(a), one notices that there is a relatively small change

in the shape of Cdg when ion concentration changes from c = 1 M to c = 10−3

M. For both concentrations, the quasi-linear dependence of Cdg on Va comes

from the characteristic V-shaped dependence of the quantum capacitance Cg of410

graphene on its doping potential Vg.

While Cg continues to dominate when combined with Cd obtained with the

PB model, giving its linear dependence for larger Va values in Fig. 5, one notices

that, when the model combinations D+S and B+S are used for Cd, there arises a

maximum in Cdg for Va & 1 V. This maximum is strongly dependent on the ion415

size, except in the case of the D+S model with large ion polarizability coefficient

of α = 12 M−1, which was studied in Fig. 4. One sees that the rather narrow

peak near Va = 1 V for the B+S model with a = 0.71 nm in Fig. 5(a) becomes

broader and taller, and it moves to Va ∼ 1.5 V, when the ion size is reduced

to a = 0.25 nm for the B+S model in Fig. 5(b). A structure seen in the region420

1 . Va . 1.5 V for the curves labeled B+S in Fig. 5(b) is a signature of the

competition between the ion steric effects and dielectric saturation, discussed at

length in Ref. [27].

Probably the most dramatic effect of reducing the ion size is observed for

the curves labeled S, when Cd is only modeled by including the ion steric effects425

via the BF model. One sees that the broad peak at Va ∼ 2 V in the curves

labeled S in Fig. 5(a) completely disappears for the smaller ion size in Fig. 5(b).

Moreover, the curves labeled S in that figure practically coincide with the curves

labeled PB for point ions (a = 0). This echoes the observation made by Bazant

et al. [24] in studying the BF model, where unreasonably large ion sizes had430

to be used to give rise to “camel-shaped” capacitance for metallic electrodes in

aqueous solutions. At the same time, the curves labeled D+S in Fig. 5(b) still

exhibit a broad peak for electrolytically gated graphene at the potential values
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2 . Va . 2.5 V, which persists even in the limit of point ions. Hence, given that

there is some uncertainty regarding the appropriate choice for ion sizes [24], it435

seems that only a combination of the ion steric effects with dielectric decrement

is capable of giving rise to a stable, broad peak in the total capacitance Cdg at

the applied potentials Va & 1 V. While a conclusive evidence for such “camel-

shaped” capacitance of electrolytically gated graphene is still missing, the data

reported in Ref. [50] do show some asymmetrically positioned, broad peaks in440

the total capacitance at relatively large applied potentials.

4. Concluding Remarks

We have performed an analysis of the role of dielectric decrement in combi-

nation with finite ion size effects for differential capacitance of electrolytically

gated graphene using a mean-field theory based variational approach. Extensive445

comparisons were made with a model combining the finite ion size effects with

dielectric saturation in the solvent. Most of our analysis is aided by the fact

that expressions for the capacitance are obtained in analytic form, expressing

various modifications of the Poisson-Boltzmann theory.

We have started with a thorough discussion of the above models for dif-450

ferential capacitance of a diffuse layer in an aqueous solutions using realistic

estimates for various parameters in a broad range of ion concentrations. In par-

ticular, we have presented generalizations of the condition for cross-over from a

“camel-shaped” to a “bell-shaped” diffuse layer capacitance, taking into account

the effects of dielectric decrement and dielectric saturation, in addition to finite455

ion size effects.

Using a series connection of the quantum capacitance in graphene electrode

and the diffuse layer capacitance in the electrolyte, we have confirmed that the

total capacitance is dominated by graphene’s quantum capacitance at the values

of the applied potential . 1 V. At higher potential values, a peak develops in460

the total capacitance, which can be quite sensitive to the adopted value for the

ion size in the presence of dielectric saturation. On the other hand, combining
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the finite ion size effect with dielectric decrement yields a rather stable, broad

peak in the total capacitance of electrolytically gated graphene at the applied

potential values & 1 V, which persists even in the limit of point ions.465

The above discussion is important for future studies of modeling electrolyt-

ically gated graphene because typically quite large surface charge densities can

be achieved in doped graphene, which may cause extensive ion crowding and

high electric fields near graphene that may require taking into account the ef-

fects of dielectric decrement and dielectric saturation in the adjacent solution,470

respectively. The most important next task in those studies should involve re-

alistic modeling of the capacitance for a Stern layer at the graphene-solvent

interface. Access to empirical information about the Stern layer capacitance

near the potential of zero charge is likely to be severely limited because of the

smallness of the quantum capacitance of graphene at small applied potentials.475

However, regions around possible peaks, or saturation in the total capacitance

of electrolytically gated graphene at large applied potentials, could reveal more

information regarding the Stern layer at the graphene-solvent interface.
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Highlights 
 
 

 First study of dielectric decrement and steric effects for graphene in electrolyte  
 

 New condition for crossover from camel- to bell-shaped diffuse layer capacitance 
 

 Novel analytical treatment of diffuse layer capacitance based on Eq.(8)  
 

 Comparisons with analogous effects for dielectric saturation and steric effects  
 

 All 3 effects are important due to large charge density on graphene in experiments 
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