
Shortest Paths in Geometric
Intersection Graphs

by

Dimitrios Skrepetos

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Dimitrios Skrepetos 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Norbert Zeh
Professor, Faculty of Computer Science,
Dalhousie University

Supervisor(s): Timothy M. Chan
Professor, Department of Computer Science,
University of Illinois at Urbana-Champaign
Adjunct Professor, Cheriton School of Computer Science,
University of Waterloo

Anna Lubiw
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Ian Munro
Professor, Cheriton School of Computer Science,
University of Waterloo

Eric Blais
Assistant Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Joseph Cheriyan
Professor, Department of Combinatorial Optimization,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis describes results from the following papers, which were all coauthored by
me and Timothy Chan.

• All-pairs shortest paths in unit-disk graphs in slightly subquadratic time [ISAAC
2016]

• All pairs shortest paths in geometric intersection graphs [WADS 2017]

• Faster approximate diameter and distance oracles in planar graphs [ESA 2017]

• Approximate shortest-path problems and distance oracles in weighted unit-disk graphs
[SoCG 2018]

iv

Abstract

This thesis studies shortest paths in geometric intersection graphs, which can model,
among others, ad-hoc communication and transportation networks. First, we consider two
classical problems in the field of algorithms, namely Single-Source Shortest Paths (SSSP)
and All-Pairs Shortest Paths (APSP). In SSSP we want to compute the shortest paths
from one vertex of a graph to all other vertices, while in APSP we aim to find the shortest
path between every pair of vertices. Although there is a vast literature for these problems
in many graph classes, the case of geometric intersection graphs has been only partially
addressed.

In unweighted unit-disk graphs, we show that we can solve SSSP in linear time, after
presorting the disk centers with respect to their coordinates. Furthermore, we give the first
(slightly) subquadratic-time APSP algorithm by using our new SSSP result, bit tricks, and
a shifted-grid-based decomposition technique.

In unweighted, undirected geometric intersection graphs, we present a simple and gen-
eral technique that reduces APSP to static, offline intersection detection. Consequently,
we give fast APSP algorithms for intersection graphs of arbitrary disks, axis-aligned line
segments, arbitrary line segments, d-dimensional axis-aligned boxes, and d-dimensional
axis-aligned unit hypercubes. We also provide a near-linear-time SSSP algorithm for in-
tersection graphs of axis-aligned line segments by a reduction to dynamic orthogonal point
location.

Then, we study two problems that have received considerable attention lately. The
first is that of computing the diameter of a graph, i.e., the longest shortest-path distance
between any two vertices. In the second, we want to preprocess a graph into a data
structure, called distance oracle, such that the shortest path (or its length) between any
two query vertices can be found quickly. Since these problems are often too costly to solve
exactly, we study their approximate versions.

Following a long line of research, we employ Voronoi diagrams to compute a p1 ` εq-
approximation of the diameter of an undirected, non-negatively-weighted planar graph in
time near linear in the input size and polynomial in 1{ε. The previously best solution had
exponential dependency on the latter. Using similar techniques, we can also construct the
first p1 ` εq-approximate distance oracles with similar preprocessing time and space and
only O plog p1{εqq query time.

In weighted unit-disk graphs, we present the first near-linear-time p1`εq-approximation
algorithm for the diameter and for other related problems, such as the radius and the
bichromatic closest pair. To do so, we combine techniques from computational geometry
and planar graphs, namely well-separated pair decompositions and shortest-path sepa-
rators. We also show how to extend our approach to obtain Op1q-query-time p1 ` εq-
approximate distance oracles with near linear preprocessing time and space. Then, we
apply these oracles, along with additional ideas, to build a data structure for the p1 ` εq-

v

approximate All-Pairs Bounded-Leg Shortest Paths (apBLSP) problem in truly subcubic
time.

vi

Acknowledgements

First, this thesis would not be a reality without my parents, who strove since my
childhood to show me the right path. Second, this thesis would not be a reality without
Professor Athanasios Tsakalidis, who introduced me to the world of theoretical computer
science. Third, this thesis would not be a reality without my supervisor, Professor Timothy
M. Chan, who taught me how research is done. Fourth, this thesis might not have been a
reality without the interactions I have had over the years with friends and foes, teachers
and professors, video games and books, places I lived in or visited, et cetera. For good or
for bad, everyone and everything played a role; is that not what people in chaos theory
call butterfly effect? But that would be the topic of another thesis.

vii

Dedication

This thesis is dedicated to my parents.

viii

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vii

Dedication viii

List of Figures xii

1 Introduction 1

1.1 General graphs . 2

1.2 Planar graphs . 6

1.3 Geometric intersection graphs . 9

1.3.1 Unit-disk graphs . 10

1.3.2 Other geometric intersection graphs 11

1.4 New results . 11

1.4.1 Single-source and all-pairs shortest paths 12

1.4.2 Diameter and distance oracles . 13

ix

2 Preliminaries 16

2.1 Model of computation . 16

2.2 Graphs and shortest-path problems . 16

2.3 Breadth-first search . 17

2.4 Graham’s scan for pseudoline arrangements 18

2.5 Planar separators and decomposition trees 19

2.6 Abstract Voronoi diagrams . 21

2.7 Sparse neighborhood covers . 22

2.8 Well-separated pair decompositions . 22

3 Single-source and all-pairs shortest paths in unit-disk graphs 25

3.1 SSSP in linear time after presorting . 27

3.2 Multiple-sources shortest paths in linear time 29

3.3 APSP in slightly subquadratic time . 36

4 Single-source and all-pairs shortest paths in geometric intersection graphs 39

4.1 Reducing SSSP to decremental intersection detection 41

4.2 Reducing APSP to static, offline intersection detection 43

4.2.1 Applications . 45

4.3 Static, offline rectangle intersection detection 48

5 Approximate diameter and distance oracles in planar graphs 51

5.1 A farthest-neighbor data structure . 53

5.1.1 Defining Voronoi diagrams in planar graphs 54

5.1.2 Constructing Voronoi diagrams in planar graphs 55

5.1.3 Constructing the farthest-neighbor data structure 58

5.2 Approximate diameter . 60

5.2.1 Decomposing G . 61

5.2.2 Approximating d pGin, Gout, Gq . 61

5.2.3 Recursively solving the problem in G`in and G`out 64

5.2.4 Analyzing our algorithm . 67

5.3 Approximate distance oracles . 69

5.3.1 Distance oracles with additive stretch 69

5.3.2 Approximate distance oracles . 71

x

6 Approximate shortest paths and distance oracles in weighted unit-disk
graphs 74

6.1 Approximate diameter and distance oracles 77

6.1.1 Preliminaries . 77

6.1.2 Distance oracles with additive stretch 78

6.1.3 Applications . 81

6.2 Approximate apBLSP . 84

6.2.1 Previous methods . 84

6.2.2 Improved method . 85

7 Open problems 88

References 92

xi

List of Figures

1.1 A country road network, a city road network, and a swarm of robots (the disks

represent the ranges of the antennas). 1

1.2 The graphs defined for the networks of Figure 1.1. 2

1.3 A dense city road network that is represented by the intersection graph of axis-

aligned line segments. 6

1.4 A planar graph and a coin-graph representation for it. 7

1.5 Intervals, arbitrary line segments, axis-aligned rectangles, and strings. 9

2.1 A pseudoline arrangement and its upper envelope. 19

2.2 A 2-well-separated pair of points in the Euclidean space. 23

3.1 A uniform 8ˆ 8 grid and the neighbors of the cell in the fourth row and column

(grey). 27

3.2 (a), (b), (c) A set of red and blue points, the unit disks centered at the former,

and the part of the upper envelope U of these disks above h. (d), (e), (f) The

part of each unit disk above h, the corresponding pseudoline family, and its upper

envelope U 1. 29

3.3 (a) The chunks of eight points for g “ 3. (b), (c), (d) The small upper envelope

of all points of each chunk. (e) The three small upper envelopes superimposed.

(f) The upper envelope of the small upper envelopes. 32

3.4 (a) The chunks of eight red and seven blue points. (b) The small upper envelope

e of the unit disks of all red points of the (bottom) leftmost chunk and the bit

vector for the vertex of e in the (top) leftmost slab. (c) The arrangement of the

unit disks of the blue points of the (top) leftmost slab and the bit vectors of its

faces. 34

3.5 (a) The witness vector for the leftmost slab of blue points and the small upper

envelope of all red points of the (bottom) leftmost chunk. (b) An upper envelope,

the marked blue points, the subslabs, and the corresponding pointers (pointers to

vσ,e are shown as pointers to e). 35

xii

3.6 A shifted grid (boundary points in blue). 36

4.1 ˘1-additive approximation. 43

4.2 A set of input disks (solid), their additively weighted Voronoi diagram (not an

accurate one), and two query disks (dashed). 45

4.3 A set of horizontal input segments (solid), its vertical decomposition (dotted),

and two query vertical segments (dashed). 46

4.4 Axis-aligned line segment intersection detection, orthogonal range detection, and

rectangle stabbing detection. The input rectangles are solid, while the query

rectangles are dashed. 48

5.1 (a) Five sites (the coloured vertices) of a planar graph. (b) Their graphic Voronoi

diagram. (c) A bisector of the blue and red sites. (d) The Voronoi diagram of the

five sites. 55

5.2 (a) A Voronoi diagram where a bisector bounds a Voronoi region. (b) Parts of

the bisectors of consecutive sites when no bisector bounds a Voronoi region. (c)-

(d) The Voronoi diagram for the two cases of (b). (e)-(f) The dual faces of the

vertices in VRps, ts, t, q, ruq (gray), VDpts, r, quq (bold), VDpts, r, tuq (dotted),

and bisps, rq (blue), for the two cases of (b). 59

5.3 (a) A planar graph. (b) A shortest-path separator (its vertices on the pink back-

ground) and the resulting decomposition. The vertices of A are on the blue back-

ground (similarly for B). The vertices of Gin are on the blue and pink background

(similarly for Gout). (c) The portals (red vertices). (d) Detour through portals. . 62

5.4 (a) The dense portals (purple vertices) for the planar graph of Figure 5.3(a). (b)-

(c) The graphs Bin and B1in, respectively (on the grey background). (d) The graph

G`in. 65

5.5 (a), (c) p lies between p1 and p2. (b), (d) p lies between a and p1. 67

6.1 Detour through a vertex of a separator path σ in Claim 6.1, where σ may be

internal, as in (a), or external, as in (b). Detour through a portal in Claim 6.2 in

(c). 80

xiii

Chapter 1

Introduction

Shortest-path problems abound in transportation and communication networks, even if
we hardly notice them. For example, how can we compute the best route between two
cities of a country? Similarly, given a city with roads either perpendicular or parallel to
one another, how can we find a path between two addresses with the minimum number of
turns? Last, consider a swarm of robots with antennas of unit ranges: how can we upper-
bound the time needed to transmit a message from one robot to another? Figure 1.1
depicts an example setting for each question.

(a) (b) (c)

Figure 1.1: A country road network, a city road network, and a swarm of robots (the disks
represent the ranges of the antennas).

We can model transportation and communication networks, such as the above, with
well-known mathematical structures: graphs. For example, for the country road network
in the first question, vertices correspond to cities and edges to roads. Similarly, for the
city road network in the second question, vertices correspond to roads and edges to road
intersections, and, for the ad-hoc communication network in the third question, vertices
correspond to robots and edges to pairs of robots at Euclidean distance at most two.
Figure 1.1 illustrates the corresponding graph for each network.

The aim of this thesis is to study shortest-path problems in graphs that can model
transportation and communication networks. Specifically, we are interested in the following

1

(a) (b) (c)

Figure 1.2: The graphs defined for the networks of Figure 1.1.

four problems.

• Single-source shortest paths (SSSP) and all-pairs shortest paths (APSP). In
SSSP we want to compute the shortest paths from a source to all vertices of a graph,
while in APSP we want to compute all pairwise shortest paths. Both problems are
among the most studied in the field of algorithms, but they have been only partially
addressed in the context of communication and transportation networks.

• Diameter. In this problem, which has received considerable attention recently due to
interesting results in general and planar graphs, we seek to find the longest shortest-
path distance of a graph, i.e., its diameter. The diameter of a transportation or
communication network is important, as it upper-bounds the time needed to travel
between any two cities or to exchange a message between any two entities, respec-
tively. Similar problems are computing the farthest neighbor of each vertex of a
graph (i.e., the vertex with the longest shortest-path distance from it) and the radius
of that graph (i.e., the smallest distance from any vertex to its farthest neighbor).

• Distance oracles. Here we intend to preprocess a graph into a data structure, called
distance oracle, such that we can return the shortest path or its length between any
two query vertices. For the rest of Chapter 1, we assume that all queries are of
the second type. Those data structures are necessary in modern transportation and
communication networks because their gigantic size prohibits us from storing either
the network itself (and run SSSP to answer each query) or all pairwise shortest paths
(by running APSP in the preprocessing phase).

Next, we survey solutions for the aforementioned problems in general graphs.

1.1 General graphs

Formally, a graph G “ pV,Eq is defined as a set V of abstract objects, called vertices, and
a set E of pairs of vertices, called edges, which can be either directed or undirected, and

2

either weighted or unweighted, i.e., have unit weight. Assuming that the vertices of G are
numbered 0, . . . , n´1, we can represent G either with an nˆn adjacency matrix A, where
Ari, js denotes whether pi, jq P E, or with a collection of adjacency lists, where the i-th
list contains each j such that pi, jq P E. Both representations can naturally be extended
to incorporate weights. We assume that the results stated in this section use the second
representation. For the rest of Chapter 1, let δ ą 0 be a constant, and let n and m be the
number of vertices and edges of a graph respectively. We assume that m ě n´ 1. In this
survey, we focus primarily on graphs of positive edge weights.

Single-source shortest paths. In non-negatively-weighted graphs, the well-known al-
gorithm of Dijkstra [Dij59], implemented with the Fibonacci heaps of Fredman and Tar-
jan [FT87], requires O pm` n log nq time. In unweighted graphs, a simple breadth-first
search (BFS) takes O pmq time.

Polylogarithmic improvements are obtainable in directed graphs with positive integer
edge weights in the word RAM model of computation. Let C be the largest edge weight.
The problem can be solved in O pm log logCq time, either with the deterministic algo-
rithm of Hagerup [Hag00] or with a randomized approach that employs van Emde Boas
trees [vEBKZ76] and [vEB77]. The fusion trees [FW93] and the atomic heaps [FW94] of
Fredman and Willard imply algorithms of O pm log nq and O pm` n log n{ log log nq ex-
pected time respectively. Dial’s algorithm [Dia69] takes O pm` nCq time, which was im-
proved to O pm` n logCq by Ahuja et al. [AMOT90], to O

`

m` nplogCq1{3`δ
˘

expected,

by Cherkassky et al. [CGS99], and to O
`

m` nplogCq1{4`δ
˘

by Raman [Ram97]. The pri-

ority queues of Thorup [Tho00] can be employed to solve SSSP in O
`

mplog nq1{2`δ
˘

and
O pm log log nq expected time, the latter of which was derandomized by Hagerup [Hag00].
Han [Han01] presented a deterministic O pm log log n log log log nq-time algorithm, and Ra-
man [Ram97] developed two deterministic and one randomized algorithms that run in
O
`

m` n 3
?

log n log log n
˘

, O
`

m` n
?

log n log log n
˘

, and O
`

m` nplog nq1{3`δ
˘

time re-
spectively. The best upper bound so far, O pm` n log log pmintn,Cuqq, belongs to Tho-
rup [Tho04b], who has also given a linear-time algorithm for undirected graphs [Tho99].

Graphs with negative edge weights have also been studied. For example, the classical
Bellman-Ford algorithm takes O pmnq time. For more such results, see [Gar85, GT89,
Gol95, San05, CMSV17].

All-pairs shortest paths. In real-weighted graphs, the classical Floyd–Warshall algo-
rithm can solve APSP in O pn3q time. The first improvement came by Fredman [Fre76],

who gave an O

ˆ

n3
´

log logn
logn

¯1{3
˙

-time algorithm and inspired a number of results that

shave off polylogarithmic factors (see [Dob90, Tak92, Han04, Tak04, Tak05, Zwi06, Cha08,
Han08, Cha10b, HT12]). Recently, Williams [Wil14], in a breakthrough, provided the first
superpolylogarithmic speedup with a randomized algorithm of n3

2Ωp
?

lognq
time, which was

3

later derandomized by Chan and Williams [CW16]. However, obtaining a truly-subcubic-
time APSP algorithm, i.e., one that runs in O

`

n3´δ
˘

time for some constant δ ą 0, still
remains a big open problem.

Similarly to SSSP, better results exist for APSP when the edge weights are small positive
integers, this time by using matrix multiplication. Specifically, in unweighted, undirected
graphs, Seidel [Sei95] and Galil and Margalit [GM97] presented rO pnωq-time algorithms,

where ω ă 2.373 [Wil12, Le 14] is the matrix multiplication exponent, and rO pfpn,mqq

denotes O
´

fpn,mq logOp1q n
¯

. They also showed how to handle the case of positive integer

weights upper-bounded by C in rO
`

Cpω`1q{2nω
˘

time, which was improved to rO pCnωq by
Shoshan and Zwick [SZ99]. In unweighted, directed graphs, Alon et al. [AGM97] solved

the problem in rO
`

npω`3q{2
˘

time. For graphs with edge weights upper-bounded by C, their

algorithm requires rO
`

Cpω´1q{2npω`3q{2
˘

time if C ď np3´ωq{pω`1q or rO
`

Cp5ω´3q{2npω`3q{2
˘

time otherwise. Takaoka [Tak98] improved upon Alon et al. with an rO
`

C1{3np6`ωq{3
˘

-time
algorithm. Finally, Zwick’s [Zwi02] algorithm works for edge weights in t´nt, . . . , 0, . . . , ntu

and requires rO
`

n2`µptq
˘

time, where µ “ µptq satisfies the equation ωp1, µ, 1q “ 1` 2µ´ t,
and ωp1, µ, 1q is the exponent of the multiplication of an nˆnµ matrix by an nµˆn matrix.
The best bound on ωp1, µ, 1q, due to Le Gall [LG12], implies that for weights in t´1, 0, 1u

the problem can be solved in rO pn2.5302q time.

In sparse graphs, Johnson’s algorithm [Joh77] solves APSP in O pmn` n2 log nq time,
while Hagerup [Hag00] gave an O pmn` n2 log log nq-time algorithm in the word RAM.
The same result can be obtained by running Thorup’s algorithm n times [Tho03] and
was extended to the real RAM model of computation by Pettie [Pet04]. Pettie and Ra-
machandran [PR05] developed a slightly faster algorithm for undirected graphs, requiring
O pmn logαpm,nqq time, where αp¨, ¨q denotes the inverse Ackermann function. Finally,
in the word RAM, Chan [Cha10b] showed how to achieve a polylogarithmic improvement
over the naive O pmnq-time approach of running n BFSs. For more results on SSSP and
APSP, see the survey of Zwick [Zwi01].

Diameter. Surprisingly, the only known way of computing the diameter of a graph
exactly is to naively run one of the above APSP algorithms and return the largest shortest-
path distance found. In fact, it is still open whether the diameter problem is as hard as
APSP, although many other related problems, such as computing the radius [AGW15],
have been proven to be APSP-hard.

Fortunately, faster algorithms exist in the approximate setting. For the rest of Chap-
ter 1, a c-approximation of the diameter ∆ is a value r∆ such that 1

c
∆ ď r∆ ď ∆. Besides

a trivial 2-approximation in undirected graphs, which can be obtained with any SSSP
algorithm, Aingworth et al. [ACIM99] provided the first such result. Their algorithm
works in non-negatively-weighted, directed graphs and computes a 3{2-approximation in
rO pn2 `m

?
nq time. Thus, even in dense graphs the diameter can be approximated in truly

subcubic time. Boitmanis et al. [BFLO06] gave an rO pm
?
nq-time algorithm in unweighted,

4

undirected graphs that computes an additive approximation r∆ with ∆´
?
n ď r∆ ď ∆. A

similar result can also be obtained with random sampling.

Roditty and Williams [RVW13] developed the first truly-subquadratic-time p2 ´ εq-

approximation algorithm in sparse graphs, with rO pm
?
nq expected running time and ap-

proximation factor the same as that in [ACIM99]. They also argued that in unweighted,
undirected sparse graphs that factor is most likely tight, by proving that unless the Strong
Exponential Time Hypothesis (SETH) fails, one cannot obtain a p3{2´ εq-approximation

in rO
`

n2´δ
˘

time. Finally, Chechik et al. [CLR`14] gave a 3{2-approximation algorithm

that runs in rO
`

mintm3{2,mn2{3u
˘

deterministic time.

Distance oracles. There are two obvious approaches to construct exact distance oracles.
In the first, we run an APSP algorithm in the preprocessing phase, store all pairwise
shortest paths, and use them to answer each query. In the second, we skip the preprocessing
and answer a query by running an SSSP algorithm on the fly.

The approximate setting does not help in directed graphs, as it has been proven that
any distance oracle with a finite approximation factor can also answer reachability queries,
for which no worst-case efficient data structure is known [AF90, Pǎt11]. However, the
undirected case does admit approximation results, the most prominent of which is by
Thorup and Zwick [TZ05]. For the rest of Chapter 1, a c-approximate distance oracle

of a graph G “ pV,Eq can return an approximation rdru, vs of the u-to-v shortest-path

distance distGru, vs with distGru, vs ď rdru, vs ď cdistGru, vs for any u, v P V . Thorup
and Zwick showed that given an integer k ě 1, a p2k ´ 1q-approximate distance oracle of
O
`

kn1`1{k
˘

space and O pkq query time can be constructed in O
`

kmn1{k
˘

expected time.
That result was later derandomized by Roditty et al. [RTZ05]. Oracles of similar space and
approximation factor had been developed previously [ADD`93, Mat96, ABCP98, Coh98,

DHZ00], but their query time was much worse, namely rO
`

kn1{k
˘

.

Using the widely-believed and partially-proven Erdös’s girth conjecture, Thorup and
Zwick argued that the space/approximation-factor trade-off of their oracle is optimal.
Thus, subsequent results on p2k ´ 1q-approximate oracles were focused on improving ei-
ther the query or the preprocessing time. In the former direction, Chechik [Che14] and
Wulff-Nilsen [WN13a] developed oracles with O p1q and O plog kq query time respectively.
In the latter direction, Wulff-Nilsen [WN13a], Baswana and Sen [BS06], and Baswana and
Kavitha [BK10] showed how to construct oracles of O

`

kn1`1{k
˘

space in near-quadratic
time. The oracle of Baswana and Sen works only for the unweighted case, while that of
Baswana and Kavitha works only for k ě 3. For more results on oracles, see the survey of
Sommer [Som14].

Despite the abundance of shortest-path results in general graphs, they are not efficient
enough for modern communication and transportation networks. First, these networks
could be dense, e.g., consider a city where each pair of horizontal and vertical roads intersect

5

each other, as in Figure 1.3. We would need to spend O pn2q time to solve SSSP, which
is too slow for practical purposes. Second, the best solutions for the diameter and the
distance oracles problems give 1.5- and 3-approximations respectively, so they are far from
useful in transportation networks. For example, according to Google Maps the shortest-
path distance between New York and Los Angeles in the road network of USA is 2,777
miles, so with a 3-approximate distance oracle we might need to drive 5,554 extra miles(!).

Figure 1.3: A dense city road network that is represented by the intersection graph of axis-aligned
line segments.

Fortunately, we can achieve much better solutions by noticing that often communication
and transportation networks can be represented by geometric intersection graphs. These
graphs are intersection graphs of geometric objects, where each vertex corresponds to an
object and each edge to a pairwise intersection. For example, the roads of the country
road network in Figure 1.1(a) intersect only at cities (assuming that there are no bridges),
so we can model it with a weighted, undirected planar graph,1 i.e., a graph that can be
embedded in the plane without edge crossings. In that graph, vertices correspond to cities,
edges to roads, and edge weights to road lengths; see Figure 1.4. Similarly, we can use an
unweighted intersection graph of axis-aligned line segments for the city road network in
Figure 1.1(b), where segments correspond to roads, and a weighted unit-disk graph for the
ad-hoc communication network in Figure 1.1(c), where unit disks are centered at robots.

Henceforth, we focus on studying shortest-path problems in geometric intersection
graphs. Next, we discuss known results for planar graphs in Section 1.2 and for other
classes of geometric intersection graphs in Section 1.3.

1.2 Planar graphs

A planar graph is a graph that can be drawn in the plane (i.e., map each vertex to a planar
point and each edge to a curve), such that edges intersect only at their endpoints. Euler’s
formula implies that these graphs are sparse, namely m ď 3n ´ 6, so they are usually

1By the circle packing theorem of Koebe–Andreev–Thurston, any planar graph can be seen as a coin
graph (i.e., an intersection graph of disks that intersect only on boundaries). There are numerical methods
to find an approximate coin-graph representation for a given planar graph [Moh93, CS03], but the disk
centers and radii may be irrational numbers [BDEG15].

6

(a) (b)

Figure 1.4: A planar graph and a coin-graph representation for it.

represented with a collection of adjacency lists. We can test, in linear time, whether a
given arbitrary graph is planar with the algorithm of Hopcroft and Tarjan [HT74] or with
other more practical methods [BCPDB03, BM04, dFdMR06, dFdM12], and if so, draw it
in the plane with straight line segments, as in [DFPP90, Sch90].

A key property of planar graphs, used extensively to provide efficient shortest-path
results, is the existence of efficient separators : a set of vertices whose removal decomposes
the graph into disjoint, induced subgraphs. Lipton and Tarjan [LT79] and Miller [Mil86]
showed how to compute in linear time a separator of O p

?
nq vertices that decomposes the

graph into two subgraphs of at most 2n{3 vertices each. Usually, shortest-path algorithms
employ separators as a subroutine to build an r-division for a specified parameter r, which
is defined as a collection of O pn{rq edge-disjoint subgraphs of at most O p

?
rq boundary

vertices each (a vertex is a boundary one if it belongs to two or more of these subgraphs).
Frederickson [Fre87] showed how to compute such a division in O pn log r ` pn{

?
rq log nq

time by applying the algorithm of Lipton and Tarjan recursively until graphs of size r
are reached. Goodrich [Goo95] improved the time to linear, while subsequent papers
tried to improve other quality parameters of the division [Sub95, KS98, FR06, Cab06,
CR10, INSWN11, KMS13]. In another direction, Thorup [Tho04a] provided a linear-time
algorithm that computes a shortest-path separator, i.e., a separator made of O p1q shortest
paths that decompose a graph into three subgraphs of at most n{2 vertices each. This type
of separators has been employed to develop numerous p1 ` εq-approximate shortest-path
results [Tho04a, Kle02, KKS11, KST13, GX15, WY16].

Single-source shortest paths. In unweighted, directed planar graphs, SSSP can be
solved in linear time with BFS, while in the presence of non-negative weights, Dijkstra’s
algorithm takes O pn log nq time. For the weighted case, Frederickson [Fre87] employed a
recursive scheme of O plog nq levels, namely the r-division discussed above, to improve the
time to O

`

n
?

log n
˘

. Later, Henzinger et al. [HKRS97] obtained an optimal linear-time
solution by using only O plog˚ nq recursion levels and a complicated version of Dijkstra’s

7

algorithm. The version of SSSP with negative weights has also been studied, where the
best result is due to Mozes and Wulff-Nilsen [MWN10] and takes O

`

n log2 n{ log log n
˘

time.

All-pairs shortest paths and diameter. Since Frederickson [Fre87] computed the di-
ameter (by solving APSP) in non-negatively-weighted, directed planar graphs in O pn2q

time, a natural question arose as to whether there exists a subquadratic-time algorithm for
the problem. Eppstein [Epp99] gave a partial answer for the unweighted case by proving
that if the diameter is constant, it can be found in linear time. Chan [Cha12] and Wulff-
Nilsen [WN10] presented two slightly-subquadratic-time solutions (for arbitrary diameter),

both requiring O
´

n2 ¨
log logn

logn

¯

time in unweighted graphs. Wulff-Nilsen’s algorithm also

works for the weighted case but in O
´

n2 ¨
plog lognq4

logn

¯

time. However, a truly-subquadratic-

time algorithm eluded researchers for many years, thus leading them to consider approxi-
mation algorithms.

A trivial 2-approximation can be obtained with the linear-time SSSP algorithm of Hen-
zinger et al. [HKRS97], while Berman and Kasiviswanathan [BK07] showed how to compute

a 3/2-approximation in rO
`

n3{2
˘

time. Weimann and Yuster [WY16], in a breakthrough,

presented the first p1`εq-approximation algorithm, requiring O
`

n
`

p1{εq4 log4 n` 2Op1{εq
˘˘

time. Nevertheless, their solution does not settle the problem because of the exponential
dependency on 1{ε and of the multiple (four) log n factors.

Unexpectedly, the next result came in the context of exact algorithms. In 2017, Ca-
bello [Cab17a] (full paper in [Cab17b]) made headway, by giving the first exact truly-
subquadratic-time algorithm, running in Õ

`

n11{6
˘

expected time. Interestingly, Cabello
employed a seemingly alien concept to planar graphs, Voronoi diagrams, which originates
from computational geometry. Later, Gawrychowski et al. [GKM`18], again using Voronoi

diagrams, derandomized Cabello’s algorithm and improved its running time to rO
`

n5{3
˘

.

Distance oracles. In real-weighted, directed planar graphs, Djidjev [Dji96] and Arikati

et al. [ACC`96] presented the first exact oracles. That of Djidjev has rO
`

n{
?
S
˘

query

time for space S P rn4{3, n3{2s, which was subsequently extended to the whole range
S P rn, n2s [CX00, FR06, Nus11, Cab12, MS12]. Recently, Cohen–Addad et al. [CDW17]
and Gawrychowski et al. [GMWWN18] adapted the Voronoi-diagram-based technique of
Cabello [Cab17b] to provide the first oracles with truly subquadratic space and polylog-
arithmic query time. They also obtained better time-space trade-offs: Gawrychowski et
al.’s data structure requires rO pn1.5{Sq query time for S P rn, n3{2s and O plog nq time for
S “ n3{2.

If we are willing to settle with an approximation, much more efficient results are known.
Specifically, in non-negatively-weighted, undirected planar graphs, Thorup [Tho04a] em-
ployed shortest-path separators to construct in O

`

p1{εq2n log3 n
˘

time an oracle with

8

O pp1{εqn log nq space and O p1{εq query time (he also considered the directed case). Tho-
rup’s result was later simplified by Klein [Kle02]. Kawarabayashi et al. [KKS11] described
an alternative oracle with linear space but O

`

p1{εq2 log2 n
˘

query time, and Kawarabayashi
et al. [KST13] improved the dependency on 1{ε of the space-query-time product from 1{ε2

to 1{ε. Finally, Gu and Xu [GX15] adapted the framework of the approximate diameter
algorithm of Weimann and Yuster [WY16] to obtain the first p1` εq-approximate distance
oracle of Op1q query time in the Word RAM. The oracle of Gu and Xu preprocessing time
and space are O

`

n log n
`

p1{εq2 log3 n` 2Op1{εq
˘˘

and O
`

n log n
`

p1{εq log n` 2Op1{εq
˘˘

re-
spectively.

1.3 Geometric intersection graphs

A geometric intersection graph is the intersection graph of a set of geometric objects, i.e.,
its vertices correspond to objects and edges to pairwise intersections. Some common classes
of these graphs are intersection graphs of:

• intervals in the real line, called interval graphs,

• unit disks, called unit-disk graphs,

• arbitrary disks, called disk graphs,

• disks that intersect only on their boundaries, called coin graphs,

• curves, called string graphs,

• axis-aligned line segments,

• arbitrary line segments,

• d-dimensional axis-aligned boxes, and

• d-dimensional axis-aligned unit hypercubes.

Figure 1.5: Intervals, arbitrary line segments, axis-aligned rectangles, and strings.

Throughout the thesis, we assume that the dimension d is a constant. Although some
families of geometric intersection graphs, such as interval graphs [BL76] and arbitrary coin

9

graphs (i.e., planar graphs), can be recognized in polynomial time (i.e., given a graph, de-
termine whether it belongs to a certain family) most cannot. Specifically, the recognition
problem has been proved to be NP-hard for unit-disk graphs2 and for coin graphs of unit
disks [BK98], for disk graphs and for coin graphs of constant maximum-to-minimum radii
ratio [BK95], for arbitrary disk graphs [HK01], and for intersection graphs of arbitrary
segments [KM89]. Moreover, recognizing a string graph is NP-complete [SSŠ03], which
is also true for other families of graphs, such as intersection graphs of axis-aligned seg-
ments [KM94], of d-dimensional axis-aligned boxes, where d ě 2 [Kra94, Yan82, Coz82],
and of d-dimensional axis-aligned unit-hypercubes, where d is 2 or 3 [Yan82].

Embedding geometric intersection graphs (i.e., given a graph G, create a set S drawn
from a given family of objects, such that the geometric intersection graph of S is isomorphic
to G) is difficult as well. For example, McDiarmid and Müller [MM13] proved that to draw

a disk graph on an integer grid, such that each radius is an integer, 22Ωpnq
bits are necessary.

Their result also holds for unit-disk graphs and intersection graphs of arbitrary segments.
Kratochv́ıl and Matoušek [KM91] showed that there are string graphs that require an
exponential number of intersections between their curves. We assume henceforth that
geometric graphs are represented implicitly by the set of their corresponding objects (e.g.,
a unit-disk graph is represented by the set of the coordinates of its disks’s centers).

1.3.1 Unit-disk graphs

Since unit-disk graphs can model ad-hoc communication networks, such as that in Fig-
ure 1.1(a), and admit many efficient shortest-path algorithms, we make a separate survey
for them here.

Single-source shortest paths. Roditty and Segal [RS11] used the ideas of Chan and
Efrat [CE01] to reduce the unweighted version of SSSP to dynamic nearest-neighbor
searching. Thus, by employing the data structure of Chan [Cha10a], they obtained an
O
`

n log6 n
˘

-time algorithm. They also reduced the weighted version of SSSP to halfspace

range searching in the three-dimensional space [AE99] and solved the problem in O
`

n4{3`ε
˘

time.

Cabello and Jejčič [CJ15] improved both results. For the unweighted case, they em-
ployed Delaunay triangulation and static additively weighted Voronoi diagrams to pro-
vide an O pn log nq-time algorithm. For the weighted case, dynamic Voronoi diagrams are
needed, so employing the data structure of Kaplan et al. [KMR`17] yields a solution of
nearly O

`

n log12 n
˘

time.

Diameter and distance oracles. Gao and Zhang [GZ05] extended well-separated pair
decompositions (WSPD), a well-known technique for proximity problems in computational

2Recognizing unit-disk graphs is actually hard for the existential theory of the reals [KM12].

10

geometry [CK95], from the Euclidean to the weighted unit-disk graph metric. Then,
they employed such a WSPD to compute a p1 ` εq-approximation of the diameter and
to build an O p1q-query-time p1 ` εq-approximate distance oracle of near-linear space in
O
`

p1{εq3n3{2
?

log n
˘

time.

1.3.2 Other geometric intersection graphs

Single-source shortest paths. Chan and Efrat’s techniques [CE01] imply that SSSP
in unweighted, undirected geometric intersection graphs can be reduced to dynamic data
structuring problems. For example, in disk graphs, dynamic additively weighted nearest-
neighbor searching data structures are required, and the problem can be solved in nearly
O
`

n log12 n
˘

time [KMR`17]. Moreover, in unweighted, directed disk graphs, Kaplan et

al. [KMRS15] showed that SSSP can be solved in O pn log nq time, after O
`

n log6 n
˘

-time
preprocessing.

All-pairs shortest paths. There are two general methods for solving APSP in un-
weighted, undirected geometric intersection graphs. The first runs an SSSP algorithm n
times as explained above, thus solving the problem in disk graphs in nearly O

`

n2 log12 n
˘

time [KMR`17]. The second uses biclique covers [FM95, AAAS94], which are related to
static, offline intersection searching data structures (e.g., as noted in [Cha10b]), to sparsify
the intersection graph and solve APSP therein. For example, sparsifying an intersection
graph of d-dimensional boxes (respectively a disk graph) with that method would produce
O
`

n logd n
˘

(respectively O
`

n3{2`ε
˘

[APS93]) edges, leading thus to an O
`

n2 logd n
˘

-time

(respectively O
`

n5{2`ε
˘

-time) algorithm.

Diameter and distance oracles. Few results are known for diameter and distance
oracles in geometric intersection graphs except for some special cases, such as interval
graphs, where we can find the diameter [Ola90] and build an O p1q-query-time distance
oracle [Coh98, ST99] in linear time.

1.4 New results

Even though geometric intersection graphs do admit much better algorithms for shortest-
path problems than general graphs do, many issues remain. The main issues we study in
this thesis are the following.

• In unweighted unit-disk graphs, APSP can be solved inO pn2 log nq time [CJ15]. How-
ever, in planar graphs, which can be viewed as intersection graphs of disks that only
touch on boundaries, the problem can be solved in slightly subquadratic time [Cha12].

11

• In unweighted, undirected geometric intersection graphs, the general methods that
reduce SSSP and APSP to geometric problems require solving either dynamic inter-
section detection [CE01] or static, offline intersection searching, both of which are
harder than static, offline intersection detection.

• In planar graphs, we can p1` εq-approximate the diameter [WY16] and build Op1q-
query-time p1` εq-approximate distance oracles in near-linear time [GX15], but the
dependency on 1{ε is exponential, and there are multiple (four) logarithmic factors.

• In weighted unit-disk graphs, it takes nearly O
`

n3{2
˘

time [GZ05] to compute a
p1`εq-approximation of the diameter and build Op1q-query-time p1`εq-approximate
distance oracles. However, in planar graphs, only near-linear time is needed for both
problems.

1.4.1 Single-source and all-pairs shortest paths

Unweighted unit-disk graphs. In Chapter 3, we show that we can preprocess an un-
weighted unit-disk graph of n vertices in O pn log nq time, such that the shortest-path
tree from any source can be found in linear time. Consequently, we can solve APSP in
quadratic time, improving upon Cabello and Jejčič [CJ15]. Our algorithm uses a grid-based
approach and exploits a linear-time Graham-scan-like procedure [PS85] for computing up-
per envelopes of unit disks that are presorted with respect to the coordinates of their
centers.

New Result 1. (SSSP and APSP in unweighted unit-disk graphs) We can preprocess an
unweighted unit-disk graph of n vertices in O pn log nq time, such that we can solve SSSP
for any given source in linear time. Consequently, we can solve APSP in quadratic time.

Then, we use our SSSP algorithm, bit tricks, and a simple shifted grid strategy [HM85]
to provide a slightly-subquadratic-time algorithm that computes implicitly the shortest
paths of all pairs of vertices and the diameter. Using shifted grids is standard in geometric
approximation algorithms, but here we adapt that technique in a new and interesting way
to obtain an exact solution.

New Result 2. (APSP in slightly subquadratic time in unweighted unit-disk graphs) We
can compute an implicit representation of the shortest paths of all pairs of vertices and the

diameter of an unweighted unit-disk graph of n vertices in O
´

n2
b

log logn
logn

¯

time.

Unweighted, undirected geometric intersection graphs. In Chapter 4, we provide
a simple and general APSP algorithm for unweighted, undirected geometric intersection
graphs by a reduction to static, offline intersection detection: given a query object, decide
whether there is an input object that intersects it (and report one if the answer is yes). Our

12

solution uses simpler data structures than the other two general methods, which reduce
the problem to dynamic intersection detection and to static, offline, intersection searching
respectively.

New Result 3. (APSP in unweighted, undirected geometric intersection graphs) We
can solve APSP in an intersection graph of n disks in O pn2 log nq time, axis-aligned

line segments in O pn2 log log nq time, arbitrary line segments in O
´

n7{3 log1{3 n
¯

time,

d-dimensional axis-aligned boxes in O
`

n2 logd´1.5 n
˘

time for d ě 2, d-dimensional axis-

aligned unit hypercubes in O pn2 log log nq time for d “ 3 and O
`

n2 logd´3 n
˘

for d ě 4,

and fat triangles of roughly equal size in O
`

n2 log4 n
˘

time.

We can also solve SSSP in unweighted intersection graphs of n axis-aligned line segments
in O pn log nq time by a reduction to decremental orthogonal point location. Our approach
is similar to that of Chan and Efrat [CE01], but simpler because we study the unweighted
version of the problem.

New Result 4. (SSSP in unweighted intersection graphs of axis-aligned line segments)
We can solve SSSP in an unweighted intersection graph of n axis-aligned line segments in
O pn log nq time.

1.4.2 Diameter and distance oracles

Weighted, undirected planar graphs. In Chapter 5, we show how to compute a
p1 ` εq-approximation of the diameter of a non-negatively-weighted, undirected planar
graph of n vertices in O pn log n plog n` p1{εq5qq time. Hence, we improve upon the
O
`

n
`

p1{εq4 log4 n` 2Op1{εq
˘˘

-time algorithm of Weimann and Yuster [WY16] in two re-
gards.

First, we eliminate the exponential dependency on 1{ε, by adapting and specializ-
ing Cabello’s recent abstract-Voronoi-diagram-based technique [Cab17a] for approximation
purposes. Compared with his algorithm, which had to deal with the general case of site
weights being real numbers, our version of Voronoi diagrams is much simplified because in
the approximate setting we can map the site weights to small integers. Second, we shave off
two logarithmic factors by choosing a better sequence of error parameters in the recursion
and by employing the multiple shortest paths data structure of Klein [Kle05].

New Result 5. (Approximate diameter in weighted, undirected planar graphs) We can
compute a p1 ` εq-approximation of the diameter of a non-negatively-weighted, undirected
planar graph of n vertices in O pn log n plog n` p1{εq5qq time.

In the Word RAM, we use similar techniques to improve upon the results of [Tho04a,
Kle02, KKS11, KST13] by presenting the first p1 ` εq-approximate distance oracle with

op1{εq query time and rO
`

p1{εqOp1qn
˘

preprocessing time and space. The only previous

13

oracle with op1{εq query time, given by Gu and Xu [GX15], had exponential dependency
on 1{ε in the latter.

New Result 6. (Approximate distance oracles in weighted, undirected planar graphs)
We can construct a p1 ` εq-approximate distance oracle for a non-negatively-weighted,
undirected planar graph of n vertices with O

`

n log2 n plog n` p1{εq5q
˘

preprocessing time,

O
`

p1{εqn log2 n
˘

space, and O plog p1{εqq query time in the Word RAM.

Weighted unit-disk graphs. In Chapter 6, we show how to obtain the first near-linear-
time p1 ` εq-approximation algorithm for the diameter of a weighted unit-disk graph of
n vertices. Namely, our algorithm runs in O

`

n log2 n
˘

time, for any constant ε ą 0, and

considerably improves over the near-O
`

n3{2
˘

-time algorithm of Gao and Zhang [GZ05].
Using similar ideas, we develop a p1` εq-approximate distance oracle of O p1q query time
with a similar improvement in the preprocessing time, specifically from near O

`

n3{2
˘

to

O
`

n log3 n
˘

.

The above problems are addressed in planar graphs with divide-and-conquer methods
based on the concept of shortest-path separator: a set of O p1q shortest paths with common
root, such that the removal of their vertices decomposes the graph into O p1q disjoint,
induced subgraphs whose sizes are at most a constant fraction of the size of the original
graph. Even though such separators are not directly applicable to unit-disk graphs (because
a path therein may “cross” a separator over an edge), we show that we can still use them.
Specifically, we first find a planar O p1q-spanner H of the given unit-disk graph G (i.e.,
H is a planar subgraph of G such that distHrs, ts ď O p1q ¨ distGrs, ts for any two vertices
s, t of G) and then compute shortest-path separators therein. Although the spanner has
O p1q approximation factor, we show that we can still obtain p1 ` εq-approximate results
by using the geometrical properties of unit-disk graphs.

New Result 7. (Approximate diameter in weighted unit-disk graphs) Given a set S of n
planar points, we can compute in O

`

p1{εq5n log2 n` p1{εq10
˘

time a p1`εq-approximation
of the diameter of its weighted unit-disk graph.

New Result 8. (Approximate distance oracles in weighted unit-disk graphs) Given
a set S of n planar points, we can construct a p1 ` εq-approximate distance oracle for
its weighted unit-disk graph with O

`

p1{εq5n log3 n` p1{εq6n log p1{εq
˘

preprocessing time,
O pp1{εq4n log nq space, and Op1q query time.

As a further application, we employ our new distance oracle, along with additional ideas,
to solve the p1 ` εq-approximate all-pairs bounded-leg shortest paths (apBLSP) problem.
Given a set S of n planar points, we define GďL to be the subgraph of the complete
Euclidean graph of S that contains only edges of weight at most L. Then, we want to
preprocess S, such that given two points s, t P S and any positive number L, we can
quickly compute a p1` εq-approximation of length of the s-to-t shortest path in GďL (i.e.,
the shortest path under the restriction that each leg of the trip has length bounded by

14

L). To see the connection of apBLSP with the earlier problems, note that for each fixed
L, GďL is a weighted unit-disk graph, after rescaling the radii. One important difference
however, is that L is not fixed in apBLSP, so we want to be able to answer queries for any
of the

`

n
2

˘

combinatorially different L’s.

Bose et al. [BMN`04] introduced the problem and described a method with O pn5q

preprocessing time, O pn2 log nq space, and O plog nq query time. Roditty and Segal [RS11]
improved the preprocessing time to roughly O pn3q and the query time to O plog log nq.
They also gave a data structure for the variation of the problem in general weighted,
directed graphs with rO pn2.5q space and rO pn4q preprocessing time. Duan and Pettie [DP08]
improved the space and the preprocessing time of Roditty and Segal’s result in general
graphs to rO pn2q and rO pn3q respectively. In a recent independent work that appeared
after the conference version of this paper, Duan and Ren [DR18] presented the first data
structure for the problem in general graphs with subcubic preprocessing time, namely
rO pn2.6865q (the space remains near quadratic).

We apply our p1` εq-approximate distance oracle for weighted unit-disk graphs, along
with additional new ideas, in Section 6.2 to obtain the first data structure for p1 ` εq-
approximate apBLSP in the Euclidean metric that breaks the cubic preprocessing barrier
given by Roditty and Segal: namely, we obtain nearly rO pn2.667q preprocessing time, while

the space and query time remain rO pn2q and O plog log nq respectively as in [RS11]. With
fast matrix multiplication, we can further reduce the preprocessing time to O pn2.579q,
assuming a polynomial bound on the spread, i.e., the ratio of the maximum to the minimum
Euclidean distance over all pairs of points in V . We define the spread of the point set to
be the ratio of the maximum-to-minimum pairwise Euclidean distance.

New Result 9. (Approximate all-pairs bounded-leg shortest paths) Given a set S of n
planar points of spread W , we can construct a data structure for the p1`εq-approximate ap-
BLSP problem with O

`

p1{εq6n3´1{ω log5
pnW q

˘

preprocessing time, O pp1{εqn2 log nq space,
and O plog log n` logp1{εqq query time.

Finally, we conclude with some open problems on shortest paths in geometric intersec-
tion graphs in Chapter 7.

15

Chapter 2

Preliminaries

2.1 Model of computation

Throughout the thesis, except for Section 5.3, we use the standard (real) RAM model of
computation. Specifically, we have random access to an array of words, each storing one of
the following: a real number, a Θ plog nq-bit integer (where n is the input size), or a pointer
to another word. Moreover, we can perform any standard arithmetic operation, such as
addition, subtraction, multiplication, division, and comparison, that involves a constant
number of words in constant time. In Chapter 6, we assume that we can compute square
roots of real numbers exactly in constant time. In Chapter 3, we assume that we can
compute the floor of an input real number in constant time.

In Chapters 3 and 4, we assume that we can also support custom operations in pδ log nq-
bit words in O p1q time, where 0 ă δ ă 1 is a constant, after opnq preprocessing time. To
do so, we perform the desired operation to each of the 2δ logn “ nδ possible inputs and
store the results in a lookup table (assuming that each operation can naively be performed
in logOp1q n time).

In Section 5.3, we work in the Word RAM model of computation, where the input
values are assumed to be w-bit integers (w ě log n). We assume that standard arithmetic
and bit-wise logical operations on w-bit integers take constant time.

2.2 Graphs and shortest-path problems

A graph G “ pV,Eq consists of a set V of vertices and a set E of pair of vertices, called
edges, which can be either directed or undirected and either weighted or unweighted (i.e,
have unit weight). Assuming that the vertices of a graph G “ pV,Eq are numbered
0, . . . , n ´ 1, we can represent G either with an n ˆ n adjacency matrix A, where each
Ari, js denotes whether pi, jq P E, or with a collection of adjacency lists, where the i-th

16

list contains each j with pi, jq P E. Both representations can naturally be extended to
incorporate weights.

Given a graph G “ pV,Eq and two vertices s, t P S, an s-to-t path π in G is a sequence
of vertices p0p1 ¨ ¨ ¨ p`, with p0 “ s, p` “ t, and ppi, pi`1q P E for each pi, pi`1. The length
of π is defined as

ř

iwppi, pi`1q, where wppi, pi`1q is the weight of the edge ppi, pi`1q. A
shortest path πGrs, ts of s and t in G is defined as an s-to-t path of minimum length, which
we denote by distGrs, ts. Let predGrs, ts be t’s predecessor on such a path. We define the
shortest-path tree T psq of s P V to be a spanning tree of G rooted at s, such that the s-to-t
shortest-path distance in T psq corresponds to distGrs, ts for each t P V .

Below, we give definitions of some standard shortest-path problems in a graph G “

pV,Eq.

• Single-source shortest paths (SSSP): Given a source s P S, compute distGrs, ts and
predGrs, ts for each t P V .

• All-pairs shortest paths (APSP): Compute distGrs, ts and predGrs, ts for each s, t P V .

• Diameter : Compute maxs,tPV distGrs, ts.

• Wiener index : Compute
ř

s,tPV distGrs, ts.

• Center and radius : Compute c “ arg minsPV maxtPV distGrs, ts and mintPV distGrc, ts
respectively.

• Farthest neighbors and eccentricities : Compute f “ arg maxtPV distGrs, ts and distGrs, f s
respectively for each s P V .

• Bichromatic closest pair : Given subsets A,B Ď V , compute minaPA,bPB distGra, bs.

• Distance oracle: Preprocess G such that given s, t P V , we can find distGrs, ts and
predGrs, ts.

• All-pairs bounded-leg shortest paths (apBLSP): Preprocess G such that given s, t P V
and a number L, we can find distGďLrs, ts, where GďL is the subgraph of G that
contains only the edges of weight at most L.

2.3 Breadth-first search

The classical breadth-first search (BFS) is a simple algorithm that, among other problems,
can also solve SSSP in unweighted graphs. Given a graph G “ pV,Eq of n vertices and
m edges and a source s P V , BFS computes the s-to-t shortest-path distance distGrs, ts of
each t P V from s and its predecessor predGrs, ts on a s-to-t shortest path. Specifically,
BFS repeats the same procedure in n´ 1 steps, where in the beginning of each step ` it is

17

assumed that all vertices at distance at most ` ´ 1 from s have been discovered. We call
the rest undiscovered vertices and those at distance exactly `´ 1 from s frontier vertices.
Then, we visit every edge pz, tq incident to a frontier vertex z, and if t is undiscovered,
we set its distance from s to ` and its predecessor to z. In the end of step `, the frontier
vertices are replaced by those at distance ` from s, and step ``1 begins. See Algorithm 2.1
for the pseudocode. We use a modification of BFS in Chapters 3 and 4 to solve SSSP and
APSP in unweighted unit-disk graphs and unweighted, undirected geometric intersection
graphs respectively.

Algorithm 2.1: BFS(G, s), where G “ pV,Eq

1 distGrs, ss “ 0
2 distGrs, ts “ 8, @ t P V ´ tsu
3 predGrs, ts “ NULL, @ t P V
4 F “ tsu
5 for ` “ 1 to n´ 1 do
6 F 1 “ ∅
7 for each z P F do
8 for each edge pz, tq P E do
9 if distGrts “ 8 then

10 distGrs, ts “ `
11 predGrs, ts “ z
12 F 1 “ F 1 Y ttu

13 F “ F 1

14 return distGrs, ¨s and predGrs, ¨s

Theorem 2.1. (Breadth-first search) Given an unweighted graph G “ pV,Eq of n vertices
and m edges, BFS can solve SSSP in Opm` nq time.

Proof. We prove that BFS correctly solves SSSP with the following inductive hypothesis:
at the end of each step ` all vertices at distance at most ` from s have been discovered.
For the base case, ` “ 0, our claim is trivially true. From the hypothesis, at the end of
each step `´1, all vertices at distance at most `´1 from s have been discovered. A vertex
at distance ` from s must share an edge with a vertex at distance `´ 1, but by the end of
step ` we have properly processed all such edges. Each vertex is a frontier in exactly one
step, so each edge is processed twice. Thus the total time is O pm` nq.

2.4 Graham’s scan for pseudoline arrangements

Graham’s scan [Gra72, dBCvKO08] is a well-known algorithm in computational geometry
for computing the convex hull of a planar point set. If we have presorted the points with

18

respect to their x-coordinates, Graham’s scan takes linear time. By duality [dBCvKO08],
Graham’s scan can also build the upper envelope of a line arrangement whose lines are
presorted with respect to their slopes in linear time. Generally, the upper envelope of a
set of curves consists of their portions that are visible from the point p0,8q if the curves
are viewed as opaque objects. Here, we describe Graham’s scan in a more general way, to
compute the upper envelope of a pseudoline family (see Figure 2.1): a set of curves, such
that any two of them cross each other at most once, and any vertical line intersects every
curve exactly once.

The pseudocode of the more general version of Graham’s scan is given in Algorithm 2.2.
We invoke the following theorem in Chapter 3 as a subroutine for computing shortest-path
trees in unweighted unit-disk graphs.

(a) (b)

Figure 2.1: A pseudoline arrangement and its upper envelope.

Theorem 2.2. (Graham’s scan for pseudoline arrangements) Given n pseudolines and
their order at x “ ´8, we can compute the upper envelope of their arrangement in O pntq
time, assuming that we can compute the intersection point, if any, of two pseudolines in
Optq time.

Proof Sketch. The correctness of the algorithm can be proven with a simple induction.
For the running time, notice that in each iteration i of the main loop of the algorithm
there are three cases: we (a) ignore the i-th pseudoline (Line 5), (b) push it in the stack
(Lines 8 and 14), or (c) pop the stack’s top element (Line 17). The number of iterations
of the inner loop is bounded by the number of pops, which in turn can be bounded by the
linear number of pushes. Also, in every step of the inner loop, we spend O ptq time to find
intersections of pseudolines (Lines 11 and 12).

2.5 Planar separators and decomposition trees

A separator of a planar graph G “ pV,Eq is a subset V 1 of V , such that the removal of
its vertices decomposes G into at least two disjoint, induced subgraphs. If the size of each
is at most a constant fraction α ă 1 of that of G, the separator is said to be α-balanced.
Lipton and Tarjan [LT79] and Miller [Mil86] showed that in any planar graph of n vertices,

19

Algorithm 2.2: GrahamScan(P)

input : An array P of n pseudolines, ordered with respect to their y-values at
x “ ´8

output: A stack S of the pseudolines of P that participate in the upper
envelope of its arrangement

1 S.PUSHpP r0sq

2 for i “ 1 to n´ 1 do
3 while true do
4 if P ris and S.TOP do not intersect then
5 break
6 else
7 if S.NEXT-TOP “ NULL then
8 S.PUSHpP risq
9 break

10 else
11 Let v be the intersection point of S.TOP and S.NEXT-TOP
12 Let w be the intersection point of S.TOP and P ris
13 if w lies to the right of v then
14 S.PUSHpP risq
15 break

16 else
17 S.POP

18 return S

we can compute a 2{3-balanced separator of O p
?
nq size in linear time. The former [LT79,

Lemma 2] also proved that given any spanning tree T in a triangulated planar graph,
there are two paths R and Q that stem from the root of T , such that the removal of their
vertices decomposes G into two disjoint planar subgraphs of 2n{3 vertices each. Moreover,
R and Q can be computed in linear time [LT79, Steps 1, 8, and 9 in Section 3]. If T is a
shortest-path tree, we say that C “ RYQ is a shortest-path separator (notice though that
the size of C could be as big as n).

In Chapter 5, we employ the following lemma based on [LT79] to compute a p1 ` εq-
approximation of the diameter of a non-negatively-weighted, undirected planar graph and
construct p1` εq-approximate distance oracles for it.

Lemma 2.3. (Shortest-path separators in planar graphs) Given a triangulated planar
graph G and a shortest-path tree T , we can compute two paths R and Q that stem from the
root of T in linear time, such that C “ R YQ is a 2{3-balanced shortest-path separator.

Given a planar graph, we can apply any α-balanced shortest-path separator (where

20

α ă 1 is a constant), remove its vertices, and recursively handle every ensuing subgraph,
thus producing a decomposition tree T with the following properties.

• Each node µ of T is associated with a subset V pµq Ď V . The subsets V pνq over all
children ν of µ are disjoint and contained in V pµq. If µ is the root, V pµq “ V . If µ is
a leaf, V pµq has O p1q size.

• Each non-leaf node µ of T is associated with a set of paths, called separator paths,
which are classified as either “internal” or “external”. The internal separator paths
cover precisely all vertices of V pµq´

Ť

child ν of µ V
pνq, while the external are outside of

V pµq.

• For each child ν of a non-leaf node µ, every neighbor of the vertices of V pνq in H is
either in V pνq or in one of the (internal or external) separator paths at µ.

Similarly to Kawarabayashi, Sommer, and Thorup [KST13, Section 3.1], we can con-
struct such a tree T in O pn log nq time with the extra properties that (i) its height is
O plog nq, and (ii) each non-leaf node µ has O p1q separator paths. We apply these decom-
position trees to solve p1 ` εq-approximate shortest-path problems in weighted unit-disk
graphs in Chapter 6.

2.6 Abstract Voronoi diagrams

Klein [Kle89] introduced the concept of abstract Voronoi diagrams to unify the treat-
ment of various Voronoi diagrams in the plane. We use the more recent definition of
Cabello [Cab17b, Section 4]. Let S be a set of abstract sites. The abstract bisector of
each ordered pair ps, tq with s, t P S is a pair pAJps, tq,ADps, tqq where AJps, tq is a sim-
ple planar curve that bounds the open region ADps, tq. Intuitively, the points on AJps, tq
are equidistant (with respect to some distance function) to s and t, while the points in
ADps, tq are strictly closer to s than to t. The abstract Voronoi region of each s P S is
defined as AVRps, Sq “

Ş

tPS´tsu ADps, tq. Then, the abstract Voronoi diagram of S is

naturally defined as AVDpSq “ IR2
´
Ť

sPS AVRps, Sq.

A system of abstract bisectors tpAJps, tq,ADps, tqq | s, t P S, s ‰ tu is admissible if it
satisfies the following properties.

• For each s, t P S with s ‰ t:

– AJps, tq “ AJpt, sq and

– IR2 is the disjoint union of AJps, tq, ADps, tq, and ADpt, sq.

• There exists a special point p8 P IR2 such that AJps, tq for each s, t P S passes
through it.

21

• For each set S 1 of three sites of S:

– AVRps, S1q is path-connected for each s P S 1 and

– IR2
“
Ť

sPS1 AVRps, S1q, where A is the closure of A Ă IR2.

For a system of admissible abstract bisectors, the corresponding abstract Voronoi dia-
gram is a planar graph with a fixed embedding [KLN09, Theorem 10]. Thus, it is composed
of abstract Voronoi nodes (of degree at least three) and arcs. Klein et al. [KMM93] showed
how to construct such an abstract Voronoi diagram by extending a standard randomized
incremental construction algorithm for Euclidean Voronoi diagrams [CS89, Mul94]. Their
algorithm requires an expected number of O pn log nq or a worst-case number of O pn2q

elementary operations, where n is the number of sites. An elementary operation therein
is the computation of the abstract Voronoi diagram of any four sites. Moreover, in that
algorithm each abstract Voronoi node (respectively arc) is represented with a pointer to
an abstract Voronoi node (respectively arc) of an abstract Voronoi diagram of four sites.
We use abstract Voronoi diagrams to compute a p1` εq-approximation of the diameter of
non-negatively-weighted, undirected planar graphs in Chapter 5.

2.7 Sparse neighborhood covers

The concept of sparse neighborhood covers was introduced by Awerbuch and Peleg [AP90]
in the context of distributed computing. Given a graph G “ pV,Eq and two integers β
and r, a pβ, rq-sparse neighborhood cover is a collection of subsets V1, V2, . . . , Vk, for some
k ą 0, of V with the following properties:

• The subgraph of G induced by each Vi has radius at most O prq.

• Each vertex u P V belongs in at most β subsets Vi.

• For every u P V , there is some Vi that contains each v P V with distGru, vs ď r.

If G is a planar graph of n vertices, Busch et al. [BLT07] showed how to construct
such a cover with β “ O p1q (thus, of linear size). Kawarabayashi et al. [KST13] proved
that the construction takes O pn log nq time. We employ sparse neighborhood covers in
Chapters 5 and 6 to construct p1 ` εq-approximate distance oracles for non-negatively-
weighed, undirected planar graphs and for weighted unit-disk graph respectively.

2.8 Well-separated pair decompositions

The well-separated pair decomposition (WSPD) is a well-known technique in computational
geometry, introduced by Callahan and Kosaraju [CK95] to address proximity problems in

22

the Euclidean (or any Lp) metric. We give here a definition of WSPD that holds not
only for the Euclidean, but for any metric space pS, dq, where S is a set of elements, and
d is the distance function defined on S ˆ S. Let diampS 1q “ maxs1,s2PS1 dps1, s2q, and
let dpS1, S2q “ mins1PS1,s2PS2 dps1, s2q, where S 1, S1, S2 Ď S. Two subsets A and B of S
are called c-well-separated for some c ą 0, if maxtdiampAq,diampBqu ď cdpA,Bq. See
Figure 2.2 for an example.

Figure 2.2: A 2-well-separated pair of points in the Euclidean space.

Given a metric space pS, dq and a parameter c, a c-well-separated pair decomposition is
a set of pairs P “ tP1, P2, . . . , Pku, where Pi “ pAi, Biq, with the following properties.

• For each i,

– Ai, Bi Ď S,

– Ai XBi “ H, and

– pAi, Biq is c-well-separated.

• For each a, b P S, there is a unique i with a P Ai and b P Bi.

For the Euclidean metric and any c ą 1, Callahan and Kosaraju showed how to con-
struct a c-WSPD of a linear number of pairs in near-linear time, sparking thus near-
linear-time WSPD-based algorithms for many problems, such as k-nearest neighbors, N -
body potential fields, geometric spanners, and approximate minimum spanning trees.
See [CK95, Kle08] for more details.

Gao and Zhang [GZ05] extended the concept of WSPDs to the weighted unit-disk-
graph metric pS, dq, where each element of S is a vertex of a unit-disk graph G, and
dp¨, ¨q corresponds to distGr¨, ¨s. Specifically, they gave an O pc4n log nq-time algorithm
that constructs a c-WSPD of O pc4n log nq pairs under the new metric. By choosing two
representatives a P A and b P B for each pA,Bq P P and computing distGra, bs, the
distance of any two vertices of G can be p1{cq-approximated with the distance of one of
these representative pairs. Gao and Zhang showed how to find that representative pair in
O p1q time and used that scheme to devise many shortest-path results, such as a p1 ` εq-
approximation algorithm for the diameter and p1` εq-approximate distance oracles.

By setting c “ 1{ε, we have the following lemma, which we use in Chapter 6 as a
subroutine in our shortest-path solutions for weighted unit-disk graphs.

Lemma 2.4. (WSPD in unit-disk graphs) Given a set S of n planar points, we can find a
set of O pp1{εq4n log nq pairs of them in O pp1{εq4n log nq time, such that the shortest-path

23

distance between any two vertices in the weighted unit-disk graph of S can be p1 ` εq-
approximated by the shortest-path distance between one of these pairs, which can be found
in O p1q time.

24

Chapter 3

Single-source and all-pairs shortest
paths in unit-disk graphs

In this chapter, we study the single-source shortest paths (SSSP) and the all-pairs shortest
paths (APSP) problem in unweighted unit-disk graphs of n vertices. We show that, after
presorting the disk centers, we can solve SSSP from any source in linear time, thus improv-
ing upon the O pn log nq-time algorithm of Cabello and Jejčič [CJ15]. Moreover, we give the

first slightly-subquadratic-time APSP algorithm, running in O
´

n2
b

log logn
logn

¯

time. Specif-

ically, our algorithm computes an implicit representation of all pairwise shortest paths. In
the same amount of time, we can also compute the diameter of the graph.

The results of this chapter have been presented in ISAAC 2016 [CS16].

Definitions. Recall that an unweighted unit-disk graph G is the intersection graph of a
set of unit-diameter disks in the plane. That is, vertices correspond to a set S of planar
points, namely the centers of the disks, and there is an unweighted edge between every two
points of S at Euclidean distance at most one. We assume that G is represented implicitly
by S (thus, only linear space is required to store it) and that without loss of generality it
is connected.

Let S be a set of planar points, and let G be the unweighted unit-disk graph they
define. Then, for any s, t P S, we denote a s-to-t shortest path in G by πrs, ts and its
length by distrs, ts. We also refer to distrs, ts as shortest-path distance or simply distance.
Let pred rs, ts be t’s predecessor on πrs, ts. Also, we define the shortest-path tree T psq
of s P S to be a spanning tree of G rooted at s, such that for each t P S, the s-to-t
shortest-path distance in T psq corresponds to distrs, ts. We are interested in the following
fundamental shortest-path problems in G.

• The single-source shortest paths (SSSP) problem, i.e., given a source s P S, compute
distrs, ts and pred rs, ts for each t P S.

25

• The all-pairs shortest paths (APSP) problem, i.e., compute distrs, ts and pred rs, ts
for each s, t P S or an implicit representation that supports their retrieval in O p1q
time.

Background and overview of techniques. Roditty and Segal [RS11] used the ideas
of Chan and Efrat [CE01] to reduce SSSP in unweighted unit-disk graphs to dynamic
nearest-neighbor searching. Therefore, by employing the data structure of Chan [Cha10a],
they obtained an O

`

n log6 n
˘

-time algorithm. Cabello and Jejčič [CJ15] solved SSSP
in O pn log nq time by first computing the Delaunay triangulation of the given point set
and then repeatedly performing nearest-neighbor queries. Thus, their approach needs
Ω pn log nq time even after presorting. According to [CJ15], Efrat has also observed an
alternative grid-based O pn log nq-time algorithm, but his suggested solution used Efrat et
al.’s [IK01] semi-dynamic data structure, which also inherently requires Ω pn log nq time
even excluding presorting. Instead, we present a simple method that solves SSSP from any
source in linear time, after presorting the given point set. Our algorithm uses a grid-based
approach and exploits a linear-time Graham-scan-like procedure [PS85] for computing up-
per envelopes of unions of unit disks that are presorted with respect to their centers.

Then, as an intermediary step for our slightly-subquadratic-time APSP algorithm, we
extend our SSSP algorithm to the multiple-sources shortest paths (MSSP) problem. In
MSSP we want to find the shortest-path tree of many sources that lie in a cluster, i.e., in a
common grid cell. Now we have to compute not just one but many upper envelopes, one for
each source, which we formalize as a preprocessed universe problem. That is, preprocess a
set of unit disks (a “universe”), such that given any subset of that universe, we can compute
its upper envelope in slightly sublinear time. Note that the input subset and the output
can be encoded with a linear number of bits, thus with a slightly sublinear number of
words. We provide a solution by properly using bit tricks and lookup tables, hence making
an unusual addition to the relatively recent research direction of preprocessed universe
problems (e.g., see [CM11, BM11, EM13, CL15]).

We finally provide the first slightly-subquadratic-time APSP algorithm for unweighted
unit-disk graphs, by drawing inspiration from the planar graphs case [Cha12, WN13b].
Therein, balanced separators1 are used to decompose the given graph into regions of poly-
logarithmic size, each then handled with table-lookup techniques. Unfortunately, that
approach cannot be applied directly in a unit-disk graph because for one thing such a
graph might contain large cliques. However, we show that we can address cliques with our
MSSP algorithm and replace separators with a simple shifted-grid strategy [HM85], which
is standard for geometric approximation algorithms but here is used to design an exact
solution.

1A balanced separator of a graph H is a subset of its vertices whose removal separates it into a small
number of vertex disjoint subgraphs, such that the size of each is at most a constant fraction of that of H.

26

3.1 SSSP in linear time after presorting

In this section we show that given a set S of n planar points, which have been presorted
with respect to their x- and y-coordinates, we can compute the shortest-path tree from any
s P S in the weighted unit-disk graph of S in linear time. First, we construct a uniform
grid of square cells, each of side length 1?

2
. We call two cells c and c1 neighbors if and only

if their minimum Euclidean distance is at most one. Thus, the number of neighbors of a
cell is upper-bounded by a constant. See Figure 3.1.

1√
2

Figure 3.1: A uniform 8 ˆ 8 grid and the neighbors of the cell in the fourth row and column
(grey).

Then, we devise a BFS-like approach, similar to that in Section 2.3. See Algorithm 3.1
for the pseudocode. Specifically, we perform n ´ 1 steps, where in the beginning of each
step `, we assume that we have properly processed each t P S at distance at most ` ´ 1
from s. We call the rest of the points undiscovered and those at distance exactly `´1 from
s frontier. As in classical BFS, we want to find every undiscovered point that shares an
edge with a frontier point, but inspecting all edges incident to the latter ones would require
quadratic total time. However, in unit-disk graphs an edge exists only between points at
Euclidean distance at most one. Hence, it suffices to consider each pair pc, c1q, where c is a
cell that contains frontier points and c1 a neighbor of c, and find every undiscovered point
t in S X c1, such that there exists a frontier point z in S X c with }z ´ t} ď 1 (Line 10 in
Algorithm 3.1). To do so, we would like to solve the following subproblem.

Subproblem 3.1. (Intersection detection of unit disks in linear time) Consider a set
of nr red points below a horizontal line h and another set of nb blue points above h, both
presorted by x. Find for each blue point a red point at Euclidean distance at most one from
it (if any). The total time should be linear.

In our application, the red points are the frontier points of SXc, the blue points are the
undiscovered points of S X c1, and h is any horizontal line that separates c from c1. Since
c and c1 are either horizontally or vertically separated, we assume the former without loss
of generality.

27

Algorithm 3.1: UnitSSSP(S, s)

1 build a uniform grid of of square cells, each of side length 1?
2

2 distrs, ss “ 0
3 distrs, ts “ 8, @ t P S ´ tsu
4 pred rs, ts “ NULL, @ t P S
5 F “ tsu
6 for ` “ 1 to n´ 1 do
7 F 1 “ ∅
8 for each grid cell c that contains a frontier point do
9 for each neighbor c1 of c do

10 for each undiscovered point t P S X c1, s.t. D frontier point z P S X c
with }z ´ t} ď 1 do

11 distrs, ts “ `
12 pred rs, ts “ z
13 F 1 “ F 1 Y ttu

14 F “ F 1

15 return distrs, ¨s and predrs, ¨s

Lemma 3.1. (Intersection detection of unit disks in linear time) We can solve Subprob-
lem 3.1 in O pnr ` nbq time.

Proof. Consider a unit disk centered at each red point, and let U be the part of the upper
envelope of these disks (i.e., the boundary of their union) that lies above h. Then, a blue
point is at Euclidean distance at most one from any red point if and only if it lies below
U . See Figure 3.2(a)-(c).

Consider the part of the boundary of each unit disk that lies above h. There is at most
one intersection between any two such parts (and can be found in constant time), so we can
add two line segments at the endpoints of each, such that no intersections take place below
h, to obtain a pseudoline family as defined in Section 2.4. Furthermore, we can ensure
that the y-order of the pseudolines at x “ ´8 coincides with the x-order of the red points,
which are presorted. See Figure 3.2(d)-(f). Thus, we can compute the upper envelope U 1

of that family in linear time with the Graham-scan-like algorithm of Theorem 2.2, as in
Section 2.4. Since U 1 corresponds to U above h, with a linear scan we can find for each
blue point whether it is below U 1, and if so, return a red point whose unit disk contains
it.

Crucial to upper-bounding the running time of our algorithm is the number of steps a
cell is visited, i.e., we perform an operation on any of its points.

Lemma 3.2. (Cell visits in SSSP) Each cell is visited only a constant number of times.

28

h

(a)

h

(b)

h

(c)

h

(d)

h

x = −∞ x =∞

(e)

h

x = −∞ x =∞

(f)

Figure 3.2: (a), (b), (c) A set of red and blue points, the unit disks centered at the former, and
the part of the upper envelope U of these disks above h. (d), (e), (f) The part of each unit disk
above h, the corresponding pseudoline family, and its upper envelope U 1.

Proof. A cell c is visited whenever a point of either (i) c or (ii) a neighbor c1 of c is in the
frontier. The diameter of c is one, so the first time any of its points enters the frontier, the
rest will do so either in the same or in the next step. Thus, c is visited in case (i) at most
twice because each point is in the frontier exactly once. That, along with the fact that c
has Op1q neighbors, implies that c is visited Op1q times in case (ii) as well.

New Result 1. (SSSP and APSP in unweighted unit-disk graphs) We can preprocess an
unweighted unit-disk graph of n vertices in O pn log nq time, such that we can solve SSSP
for any given source in linear time. Consequently, we can solve APSP in quadratic time.

Proof. In unit-disk graphs, there is an edge between two points if and only if their Eu-
clidean distance is at most one, so our algorithm derives its correctness from that of BFS.
Initially assigning points to grid cells can be done in linear time (without hashing because
of presortedness), so by Lemmas 3.1 and 3.2, the total time of our algorithm is also linear.
Applying our algorithm once per vertex, we can also solve APSP in quadratic time.

3.2 Multiple-sources shortest paths in linear time

Now we extend our SSSP algorithm of Section 3.1 for the multiple-sources shortest paths
(MSSP) problem, where we want to compute the shortest-path trees of multiple sources
s1, . . . , sk for some parameter k to be determined later. We assume that all sources lie in
a cluster, i.e., in the same grid cell. The MSSP algorithm we describe here will be used
by our slightly-subquadratic-time APSP algorithm in Section 3.3. Our approach to solve
MSSP, inspired by the APSP result of Chan [Cha12, Section 3], is to simultaneously run
a BFS-like algorithm for all k sources, but avoid a factor-k slowdown by using bit-packing
tricks.

29

Each t P S is now associated with k distances, so we maintain a vector distrts that
contains distrs1, ts and distrsi, ts ´ distrs1, ts for each source si. Since all sources lie in a
unit-diameter square, the triangle inequality implies that these differences are in t´1, 0, 1u.
Hence, distrts can be encoded with O plog n` kq bits. We will show later how to encode
t’s predecessors (in Lemma 3.6).

We perform n ´ 1 steps, where in each step ` and for each source si, we assume that
we have properly processed each t P S at distance at most ` ´ 1 from si. We call the rest
of the points si-undiscovered and those at distance exactly `´ 1 from it si-frontier. Thus,
throughout the algorithm we maintain for each t P S, a k-bit vector frontier rts, where the
i-th bit denotes whether t is an si-frontier point, and another k-bit vector undiscovered rts,
similarly defined.

As in our SSSP algorithm, in every step ` we consider each cell c that has frontier points
(for any source). First, we construct a bit vector frontier crsis for each source si, where
the j-th bit denotes whether the j-th point in the x-ordered sequence of the points of c
is si-frontier. Then, we want to find a k-bit vector output c,c1rsis for each neighbor c1 of c,
where the j-th bit denotes whether the j-th point in the x-ordered sequence of the points
of S X c1 is at Euclidean distance at most one from any si-frontier point in S X c. We also
want to compute a data structure pred c,c1rsis that supports the following kind of queries:
given any point t P SX c1, find in constant time t’s predecessor on the si-to-t shortest path
if it lies in S X c. See Algorithm 3.2 for the pseudocode.

Algorithm 3.2: UnitMSSP(S, s1, s2, . . . , sk)

1 build a uniform grid of square cells, each of side length 1?
2

2 for t P S do
3 initialize distrts, frontier rts, undiscovered rts
4 for ` “ 1 to n´ 1 do
5 for each grid cell c that contains a frontier point for any source do
6 for each source si do
7 build frontier crsis
8 for each neighbor c1 of c do
9 build output c,c1rsis

10 build pred c,c1rsis
11 for each point t of c1 do
12 update distrts, frontier rts, undiscovered rts

13 for each source si do
14 merge pred ¨,¨rsis into a single data structure pred rsis

15 return distrs1, ¨s, . . . , distrsk, ¨s and predrs1s, . . . ,predrsks

We now show how to build each vector frontier cr¨s in linear total time (Line 7 in Algo-
rithm 3.2). We can similarly use output c,c1r¨s to update distr¨s, frontier r¨s, and undiscovered r¨s
(Line 12 in Algorithm 3.2).

30

Lemma 3.3. (Frontier points) Given a cell c and a parameter g with kg ď log n, we can
construct frontiercr¨s in linear total time.

Proof. We divide the points of c into chunks of g consecutive points each, collect the g k-bit
vectors frontier rp1s, . . . ,frontier rpgs of the points p1, . . . , pg of each chunk j, and transpose
them to generate k g-bit vectors frojrs1, s, . . . , frojrsks, where the z-th bit of frojrsis is equal
to the i-th bit of frontier rpzs. For each source si, we concatenate fro1rsis, fro2rsis, . . . to
generate frontier crsis. The transposition involves merely shuffling bits between words and
can be straightforwardly implemented in constant time with table lookup if kg ď δ log n,
where 0 ă δ ă 1 is a constant, after opnq preprocessing time as explained in Section 2.1.

To build the vectors output c,c1r¨s (Line 9 in Algorithm 3.2), we cannot apply the linear-
time approach of Lemma 3.1 for each source because that would lead to O pnkq total time.
Instead, we would like to solve k instances of an extended version of Subproblem 3.1 in
linear total time.

Subproblem 3.2. (Intersection detection of unit disks in sublinear time) Consider a
universe R of nr red points below a horizontal line h and another universe B of nb blue
points above h, both presorted by x. Preprocess R and B such that given any subset Q Ď R,
we can determine for each blue point whether there is a red point of Q at distance at most
one from it in sublinear total time.

By sublinear here we mean O
´

nr`nb
polylogn

¯

, where O plog nq is the word size. Note that

we can represent (a) the input subset Q as an nr-bit vector, where the j-th bit denotes
whether the j-th red point is in Q, and (b) the output as an nb-bit vector, where the j-th
bit denotes whether the j-th blue point is at distance at most one from a red point in Q.

Thus we can pack the two vectors with O
´

nr
logn

¯

and O
´

nb
logn

¯

words respectively.

In our case, the red points are the si-frontier points in c and the blue ones are all points
of c1, while the input and output vectors are frontier crsis and output c,c1rsis, respectively.
As we have seen in the proof of Lemma 3.1, the key to solving Subproblem 3.1 lies in
constructing upper envelopes, so we first focus on the following subproblem.

Subproblem 3.3. (Upper envelopes of unit disks in slightly sublinear time) Consider a
universe R of nr red points below a horizontal line h, presorted by x. Preprocess R such
that given any subset Q Ď R, we can compute the upper envelope of the unit disks of the
red points of Q (specifically, the part above h) in sublinear time.

Note that again we can represent the input and the output with a sublinear number

of words, namely O
´

nr
logn

¯

. Specifically, the input is represent as above and the output

as a nr-bit vector, where the j-th bit denotes whether the unit disk of the j-th red point
participates in the relevant upper envelope.

31

h

(a)

h

(b)

h

(c)

h

(d)

h

(e)

h

(f)

Figure 3.3: (a) The chunks of eight points for g “ 3. (b), (c), (d) The small upper envelope of all
points of each chunk. (e) The three small upper envelopes superimposed. (f) The upper envelope
of the small upper envelopes.

Lemma 3.4. (Upper envelopes of unit disks in slightly sublinear time) We can solve

Subproblem 3.3 with O pnr log nr ` nr2
gq preprocessing and O

´

nr
log g
g

¯

query time for any

given g ď log n.

Proof. In the preprocessing phase, we divide the red points into O
´

nr
g

¯

chunks, which lie

in O
´

nr
g

¯

disjoint slabs (regions bounded by two vertical lines) of at most g consecutive

points each. For each red point, consider a unit disk centered at it. For each of the O p2gq
possible subsets of the points of each chunk, we compute the upper envelope of the relevant
unit disks (specifically, the part that lies above h), called small upper envelope, in O pgq
time as in the proof of Lemma 3.1. We represent each with a g-bit vector and store all
such vectors in a lookup table. The preprocessing time is O pnr2

gq. See Figure 3.3.

Given a subset of the red points, we can compute the upper envelope U of their unit
disks (specifically, the part that lies above h) by merging the small upper envelopes of
the relevant subset of each chunk. Since the chunks are vertically separated, any two of

these O
´

nr
g

¯

small upper envelopes intersect each other at most once. Thus, similarly

to the proof of Lemma 3.1, we can view the family of small upper envelopes as a family
of pseudolines and apply the Graham-scan-like procedure of Theorem 2.2 to compute the
upper envelope U 1 of their arrangement. We can find the intersection point between two
small upper envelopes with binary search in O plog gq time as in [OvL81], so U 1 can be

constructed in O
´

nr
g
¨ log g

¯

time. In O
´

nr
logn

¯

additional time, we can create the desired

bit-vector representation for U .

32

Lemma 3.5. (Intersection detection of unit-disks in slightly sublinear time) We can solve

Subproblem 3.2 with O pnr2
gg ` nbgq preprocessing and O

´

nr ` nb
log g
g

¯

query time for any

given g ď log n.

Proof. We build upon the method in the proof of Lemma 3.4. Specifically, we first perform

the steps of the preprocessing phase therein and then divide the blue points into O
´

nb
g

¯

chunks, which lie in that many disjoint slabs of at most g consecutive points each. See
Figure 3.4(a). For the rest of the proof, any reference to small upper envelopes is to
those constructed in the proof of Lemma 3.4, and any reference to slabs is to those that
correspond to the blue points. We store the following extra structures.

1. For each small upper envelope e and each slab σ that contains at least one of its
vertices, we compute a g-bit vector where the j-th bit denotes whether the j-th
blue point in σ is below e. We store all these vectors in a lookup table. There are

O
´

nr
g

2g
¯

small upper envelopes each with O pgq vertices, so the total time for this

step is O pnr2
ggq. See Figure 3.4(b).

2. For each slab σ, consider the unit disks centered at each blue point therein. We
compute the O pg2q-complexity arrangement of these O pgq disks and then build a
point location structure [PS85] for it in O pg2q time. Moreover, we record for each
face of the arrangement a g-bit vector where the j-th bit denotes whether that face

is inside the unit disk of the j-th blue point. There are O
´

nb
g

¯

slabs, so this step

takes O pnbgq time. See Figure 3.4(c).

To answer a query, we first construct the upper envelope E of the O
´

nr
g

¯

relevant

small upper envelopes as described in the proof of Lemma 3.1. We determine, for each
blue point, whether it is below E by scanning the slabs from left to right. Consider the
next slab σ and each small upper envelope e that contributes arcs to E in σ. We compute
a bit vector vσ,e where the j-th bit denotes whether the j-th blue point in σ is below e, as
follows.

1. If σ contains at least one vertex of e, then vσ,e has already been precomputed and
lies in the lookup table of σ.

2. If σ contains no vertices of e, then only one unit disk contributes arcs to e inside
σ. Let q be the center of that disk. We can determine vσ,e in O plog gq time by first
querying the point location data structure of σ with q and then finding the bit vector
of that face in the lookup table of σ.

33

h

(a)

h

1 0 1

(b)

0 1 0

0 1 1

1 1 1
0 0 1

1 0 1

1 0 0

1 1 0

(c)

Figure 3.4: (a) The chunks of eight red and seven blue points. (b) The small upper envelope e of
the unit disks of all red points of the (bottom) leftmost chunk and the bit vector for the vertex
of e in the (top) leftmost slab. (c) The arrangement of the unit disks of the blue points of the
(top) leftmost slab and the bit vectors of its faces.

Finally, we take the bitwise-or of the bit vectors vσ,e over each small upper envelope e
that contributes to E in σ. The total number of bitwise-or operations and point location

queries is O
´

nr`nb
g

¯

, yielding O
´

nr`nb
g

log g
¯

total query time.

As explained earlier, we want to query the data structure of Lemma 3.5 with each
source si to build output c,c1rsis (Line 9 in Algorithm 3.2) in linear total time. Thus, by

setting g “ k log k, we have that these queries can be performed in O
´

kpnr ` nbq
log g
g

¯

“

O pnr ` nbq total time.

To implement the predecessor data structure pred c,c1rsis for each source si (Line 10 in
Algorithm 3.2), we need to augment the data structure of Lemma 3.5 to also find, for each
blue point, one witness (if it exists), i.e., a red point at Euclidean distance at most one
from it.

Lemma 3.6. (Predecessors) We can extend the data structure in Lemma 3.5, such that
given any blue point, we can report one witness (if it exists) in constant time.

Proof. We build upon the proof of Lemma 1. First, in the lookup tables we build in the
preprocessing phase therein (Step 1), we also record witnesses for the true bits of each
g-bit vector, which we store in a pg log gq-bit witness vector. Consider a query and a slab
σ and remember that the upper envelope E constructed in that query consists of pieces of
small upper envelopes. We divide each slab σ (of the blue points) into subslabs by drawing
vertical lines at the endpoints of these pieces. Then, we mark the rightmost blue point b

of each subslab, which can be found by binary searches in O
´

nr`nb
g

log g
¯

total time. If

a small upper envelope e participating in E has vertices in a subslab τ of σ, we create a
pointer from b to vσ,e, else to the red point whose unit disk contributes the only arc of e
inside τ . For each non-empty subslab, we also create pointers for its blue points to it.

Given any blue point q (assuming without loss of generality that it has a witness), we
can retrieve the pointer to its subslab τ , find the pointer of the marked blue point b of q,
and then follow b’s pointer to the small upper envelope e in τ . If e has at least one vertex

34

in τ , we then look up q’s witness with respect to vτ,e. Otherwise, we return the pointer of
b to the red point that contributes the only arc of e in τ .

h

(a)

h

(b)

Figure 3.5: (a) The witness vector for the leftmost slab of blue points and the small upper
envelope of all red points of the (bottom) leftmost chunk. (b) An upper envelope, the marked
blue points, the subslabs, and the corresponding pointers (pointers to vσ,e are shown as pointers
to e).

It is straightforward to merge pred ¨,¨rsis of each source si into a data structure pred rsis,
such that the predecessor of any t P S in the si-to-t shortest path can be found in constant
time.

Now we extend Lemma 3.2 for the case of multiple sources. The definition of visiting
a cell is the same as in Section 3.1.

Lemma 3.7. (Cell visits in MSSP) If the k source points are in the same cell, our
algorithm visits each cell a constant number of times.

Proof. For any two sources s and s1 in the same cell, we know from the triangle inequality
that distsrps and dists1rps can differ by at most one. Thus, the first time a point of a cell
enters the frontier of any source, it will enter the frontier of the rest of the sources either
in the same or in the next step of the algorithm. The rest of the proof is as the one of
Lemma 3.2.

We have kg ď log n and g “ k log k, so we set k “ O
´b

logn
log logn

¯

. Hence, we obtain the

following theorem, whose its correctness stems from that of BFS.

Theorem 3.8. (Multiple-sources shortest paths in unweighted unit-disk graphs) We can
preprocess, in O

`

n log n` n2Opk log kq
˘

time, an unweighted unit-disk graph of n vertices,
such that we can compute an implicit representation of the shortest-path trees from any

k ď
b

logn
log logn

source points that lie in a cluster of unit diameter in linear time.

By implicit representation, we mean that we can retrieve distrs, ts and pred rs, ts for any
s, t P S in constant time.

35

r

1

Figure 3.6: A shifted grid (boundary points in blue).

3.3 APSP in slightly subquadratic time

We finally present our slightly-subquadratic-time APSP algorithm for unweighted unit-
disk graphs. First, we build a grid composed of square cells, called supercells, with side
length r, where r ą 1?

2
is a parameter to be specified later. We say that a point p P S

is a boundary point if it is at Euclidean distance at most one from the boundary of some
supercell. See Figure 3.6. To find such a translation with only a few number of boundary
points, we use the standard shifted grid strategy of Hochbaum and Maass [HM85].

Lemma 3.9. (Shifted grid) We can find a translation of S in O pnr2q time, such that the
number of boundary points is O

`

n
r

˘

.

Proof. First, we build the grid and then we shift the points of S by a random vector
ρ P R “ t1, . . . , ru2. The probability that a point s P S is a boundary point after shifting
is equal to that of ρ lying in two fixed rows or columns in R, which is upper-bounded by
4
r
. Hence, the expected number of boundary points is O

`

n
r

˘

.

To derandomize, we can try every vector in r P R, count the number of boundary points
βρ of the ensuing translation of S, and return arg minρPR βρ in O pnr2q total time.

Then, our algorithm proceeds in four steps.

1. We first compute the shortest paths from the O
`

n
r

˘

boundary points in O
´

n2

r

¯

total

time with our linear-time SSSP algorithm of Theorem 1.

2. Next, for each supercell γi that contains more than a points or more than b bound-
ary points, where a and b are parameters to be set later, we compute the shortest
paths from all points in S X γi with our MSSP algorithm of Section 3.2 as follows.

36

First, we decompose γi into O pr2q cells of diameter one and then group its points

into O
´

|SXγi|
k

` r2
¯

clusters of size at most k. The number of supercells with more

than a points is O
`

n
a

˘

, and the number of supercells with more than b boundary

points is O
`

n
rb

˘

. Hence, the total time for this step is O
´

ř

i

´

|SXγi|
k

` r2
¯

¨ n
¯

“

O
``

n
k
`
`

n
a
` n

rb

˘

r2
˘

¨ n
˘

“ O
´

n2

k
` n2r2

a
` n2r

b

¯

.

3. For each supercell γi with at most a points and at most b boundary points, we
compute the shortest paths between all pairs of points in S X γi. We do so with a
naive cubic-time APSP algorithm on S X γi, after adding an extra weighted edge
between each boundary point u in γi and each point p P S X γi, with weight disturps,
which we have computed in Step 1. These extra edges take care of the possibil-
ity that the shortest paths may not stay inside γi. The total time for this step is
O pp

ř

i |S X γi|
3q “ O p

ř

i |S X γi|a
2q “ O pna2q.

4. Last, for each supercell γi with at most a points and at most b boundary points, we
compute an implicit representation of the shortest path between each p P S X γi and
q P S ´ γi. Such a path must pass through a boundary point in γi, so we want to
find minutdistru, ps ` distru, qsu over all boundary points u in γi.

We describe a table lookup method inspired by the APSP algorithm for planar graphs
in [Cha12]. Specifically, for each connected component of the unit-disk graph of SXγi,
we pick a representative boundary point repppq (if one exists). Then, for each q P
S´γi, we define signaturerqs to be the vector that contains distru, qs´distrreppuq, qs
over all boundary points u in γi. Notice that we have computed these values in
Step 1. The distance between each u and reppuq is at most O pr2q, so from the triangle
inequality, distru, qs ´ distrreppuq, qs is bounded by O pr2q. Hence, each signaturerqs

can be encoded with O pb log rq bits, and we can generate them all in O
´

n2

r

¯

total

time.

Let signatureurqs “ distru, qs ´ distrreppuq, qs. Then, for each p P S X γi and each
q P S ´ γi, we have that

min
u
tdistru, ps`distru, qsu “ distrrepppq, qs ` min

u:reppuq“repppq
tdistru, ps` signatureurqsu.

For each p P S X γi and each possible signature, we can precompute the minimum in
the right-hand side and store all of them in a lookup table in |S X γi|2

Opb log rq time,
for a total of n2Opb log rq time. Then, given p P S X γi and q P S ´ γi, we can find
distrs, ts and pred rs, ts with table lookup in constant time.

The running time of the entire algorithm is

O

ˆ

nr2
` n log n` n2Opk log kq

`
n2

r
`
n2

k
`
n2r2

a
`
n2r

b
` na2

` n2Opb log rq

˙

.

37

To balance the fourth and the fifth term, we set k “ r. For the fourth and the seventh,
we set r “

?
b, so the running time becomes

O

ˆ

nb` n log n` n2Opb log bq
`
n2

?
b
`
n2b

a
` na2

˙

.

Thus, by setting a “ b3{2 and b “ ε logn
log logn

, where ε ą 0 is a small constant, such that the

second and the eighth terms get absorbed by the others, we obtain O
´

n2
b

log logn
logn

¯

total

time. Our algorithm can retrieve any shortest-path distance in constant time and any
shortest path in time proportional to its size.

To compute the diameter, we change Step 4 as follows. For each p P S X γi and
each possible signature, we now find the point q P S ´ γi whose signature maximizes

distrrepppq, qs. All these maximums can be computed in O
´

n2

r

¯

total time by scanning

the distance values from all boundary points.

New Result 2. (APSP in unweighted unit-disk graphs) We can compute an implicit
representation of the shortest paths of all pairs of vertices and the diameter of an unweighted

unit-disk graph of n vertices in O
´

n2
b

log logn
logn

¯

time.

38

Chapter 4

Single-source and all-pairs shortest
paths in geometric intersection
graphs

We present in this chapter a simple and general algorithm for the all-pairs shortest paths
(APSP) problem in unweighted geometric intersection graphs. Specifically we reduce the
problem to the design of static data structures for offline intersection detection. Con-
sequently we can solve APSP in unweighted intersection graphs of n arbitrary disks in
O pn2 log nq time, axis-aligned line segments in O pn2 log log nq time, arbitrary line segments

in O
´

n7{3 log1{3 n
¯

time, d-dimensional axis-aligned unit hypercubes in O pn2 log log nq

time for d “ 3 and O
`

n2 logd´3 n
˘

time for d ě 4, and d-dimensional axis-aligned boxes in

O
`

n2 logd´1.5 n
˘

time for d ě 2.

The results of this chapter have been presented in WADS 2017 [CS17a].

Definitions. Recall that an unweighted, undirected geometric intersection graph G is
the intersection graph of a set S of geometric objects. That is, vertices correspond to
objects and edges to pairwise intersections. We assume that we can determine in constant
time if any two objects intersect each other, that G is represented implicitly by S (thus it
can be stored with only linear space), and that G, without loss of generality, is connected.

Let S be a set of objects, and let G be the unweighted, undirected geometric intersection
graph they define. Then, for any s, t P S, we denote a s-to-t shortest path in G by πrs, ts
and its length by distrs, ts. We also refer to distrs, ts as shortest-path distance or simply
distance. Let pred rs, ts be t’s predecessor on πrs, ts. Also, we define the shortest-path tree
T psq of s P S to be a spanning tree of G rooted at s, such that for each t P S, the s-to-t
shortest-path distance in T psq corresponds to distrs, ts. We want to solve the following
classical shortest-path problems in G.

39

• The single-source shortest paths (SSSP) problem, i.e., given a source s P S, compute
distrs, ts and pred rs, ts for each t P S (equivalently, compute T psq).

• The all-pairs shortest paths (APSP) problem, i.e., compute distrs, ts and pred rs, ts
for each s, t P S (equivalently, compute T psq for each s P S).

Background and overview of techniques. We provide a simple and general APSP
algorithm by a reduction to static, offline intersection detection: given a query object,
decide whether there is an input object that intersects it (and report one if the answer is
yes). First, given the shortest-path tree from a source vertex s as a guide, we show how
to generate the shortest-path tree from an adjacent source vertex s1 quickly. To do so, we
exploit the fact that distances from s1 are approximately known up to ˘1 and employ the
right geometric data structures. Then, we generate the shortest-path trees of all vertices by
visiting them in an order prescribed by a spanning tree. Some form of this simple idea has
appeared before for general graphs (e.g., see [ACIM99, Cha12]), but it has been somehow
overlooked by previous researchers in the context of geometric APSP.

Our solution compares favorably with the two previous general methods for the prob-
lem. The first runs an SSSP algorithm from every source independently by a reduction to
dynamic data structuring problems, e.g., as observed by Chan and Efrat [CE01]. Actually,
the reduction is much simplified in the unweighted, undirected setting. However, dynamic
data structures for geometric intersection or range searching usually are more complicated
and have slower query times than their static counterparts, sometimes by multiple loga-
rithmic factors. For example, the arbitrary disk case employs dynamic data structures for
additively weighted nearest-neighbor search. Thus, solving the problem that way takes

nearly O
´

n2 log12`op1q n
¯

time [KMR`17], while our approach requires only O pn2 log nq

time.

The second general approach employs biclique covers [FM95, AAAS94] to sparsify the
intersection graph and then applies an SSSP algorithm from each vertex. However, biclique
covers are related to static, offline intersection searching (e.g., as noted in [Cha10b]), which
is generally harder than intersection detection. For example, for d-dimensional boxes, the
sparsified graph has O

`

n logd n
˘

edges, leading to an O
`

n2 logd n
˘

-time algorithm, but our

solution requires O
`

n2 logd´1.5 n
˘

time. For arbitrary disks, the complexity of the biclique

covers is even worse (O
`

n3{2`ε
˘

[APS93]), leading to an O
`

n5{2`ε
˘

-time algorithm, which
is much slower than our O pn2 log nq solution.

We also solve SSSP in unweighted intersection graphs of n axis-aligned line segments
in Opn log nq time by a reduction to decremental orthogonal point location. Our approach
is similar to that of Chan and Efrat [CE01], but simpler because we study the unweighted
version of the problem.

40

4.1 Reducing SSSP to decremental intersection de-

tection

We now show how to reduce SSSP in unweighted, undirected geometric intersection graphs
to decremental intersection detection. We give a BFS-like approach, similar to that in
Section 2.3. See Algorithm 4.1 for the pseudocode. Specifically, we perform n ´ 1 steps,
where in the beginning of each step `, we assume that we have properly processed each
t P S at distance at most ` ´ 1 from s. We call the rest of the objects undiscovered
and those at distance exactly ` ´ 1 from s frontier. As in classical BFS, we want to find
every undiscovered object that shares an edge with a frontier object, but inspecting all
edges incident to the latter ones would require quadratic total time. However, in geometric
intersection graphs, an edge between two objects exists if and only if they intersect each
other, so it suffices to find for each undiscovered object one, if any, frontier object that
intersects it. To do so, we would like to solve the following subproblem.

Subproblem 4.1. (Intersection Detection) Preprocess a set of input objects into a data
structure, such that we can quickly decide if a given query object intersects any input object,
and, if it does, report any such object.

An object is undiscovered only until we find a frontier object that intersects it, so we
can employ a decremental intersection detection data structure for the former objects and
query it in each step of the algorithm with the latter. Whenever we detect an intersection,
we properly set the distance and predecessor of the relevant undiscovered object and delete
it from the data structure.

Theorem 4.1. (SSSP in unweighted, undirected geometric intersection graphs) We can
solve SSSP in an unweighted, undirected geometric intersection graph of n vertices in
OpDI pn, nqq time, where DI pn,mq is the required time to construct a decremental inter-
section detection data structure of n objects and perform n deletions and m queries.

Proof. In unweighted, undirected geometric intersection graphs, there is an edge between
two objects if and only if they intersect, so the correctness of our algorithm follows from
that of BFS. The running time is dominated by the time required to construct, update, and
query the decremental intersection detection data structure of the undiscovered objects.
Initially, each object except the source is undiscovered, and once we delete it from the data
structure, we never reinsert it. Thus, the total number of deletions is Opnq. There are two
cases for a query with a frontier object z. If an undiscovered object t that intersects z is
returned, we delete t from the data structure and never reinsert it, so this case happens
once for each t P S. If nothing is returned, z does not perform any other queries in that step
and, since z is a frontier point only once, this case also happens once @ z P S. Thus, the
total number of queries is Opnq, implying that our algorithm takes O pDI pn, nqq time.

41

Algorithm 4.1: GeoSSSP(S, s)

1 distrs, ss “ 0
2 distrs, ts “ 8, @ t P S ´ tsu
3 pred rs, ts “ NULL, @ t P S
4 build a decremental intersection detection data structure for S ´ tsu
5 F “ tsu
6 for ` “ 1 to n´ 1 do
7 F 1 “ ∅
8 for each z P F do
9 while true do

10 query the data structure with z and let t be the answer
11 if t not NULL then
12 distrs, ts “ `
13 pred rs, ts “ z
14 delete t from the data structure
15 F 1 “ F 1 Y ttu

16 else
17 break

18 F “ F 1

19 return distrs, ¨s and predrs, ¨s

Application to axis-aligned line segments. For intersection graphs of axis-aligned
line segments, we need a decremental intersection data structure for horizontal input seg-
ments and vertical query segments. Vertical input segments and horizontal query segments
can be handled with a symmetrical structure. We can use the data structure of either Giy-
ora and Kaplan [GK09, Theorem 5.3] or of Blelloch [Ble08, Theorem 6.1], both of which
support vertical ray shooting queries and insertions and deletions of horizontal segments
in logarithmic time. Thus DI pn, nq “ O pn log nq.

New Result 4. (SSSP in unweighted intersection graphs of axis-aligned line segments)
We can solve SSSP in an unweighted intersection graph of n axis-aligned line segments in
O pn log nq time.

The above theorem can easily be extended to any set of line segments with a constant
number of different orientations by constructing one instance of the data structure of Giyora
and Kaplan or of Blelloch per orientation.

Remark : Recently, Chan and Tsakalidis [CT18] improved the results of Giyora and Kaplan

and of Blelloch to support vertical ray shooting queries in O
´

logn
log logn

¯

time and updates in

near O
`?

log n
˘

time, assuming that the coordinates are polynomially-bounded integers.

Consequently, the time bound in New Result 4 can be improved to O
´

n ¨ logn
log logn

¯

.

42

4.2 Reducing APSP to static, offline intersection de-

tection

Here, we reduce APSP in unweighted, undirected geometric intersection graphs to static,
offline intersection detection. We first build an arbitrary spanning tree T0 of G, root it at
an arbitrary object s0 P S, and compute the shortest-path tree of s0. Then, we visit each
object s of T0 in a pre-order manner and compute its shortest-path tree by using that of
s1 as a guide, where s1 is the parent of s in T0. See Algorithm 4.2 for the pseudocode.

Algorithm 4.2: GeoAPSP(S)

1 build the unweighted, undirected geometric intersection graph G of S
2 compute any spanning tree T0 of G and root it at any s0 P S
3 compute T ps0q

4 for each s P S ´ ts0u following a pre-order traversal of T0 do
5 compute T psq by using T ps1q as a guide, where s1 is the parent of s in T0

6 return T p¨q

It remains to describe how to compute the shortest-path tree from an object s P S, given
the shortest-path tree from its parent s1 in T0 (Line 5 in Algorithm 4.2). We first notice
that from the triangle inequality and from distrs, s1s “ 1, if distrs1, zs “ ` for some z P S,
then `´ 1 ď distrs, zs ď `` 1. That is, we already have an ˘1-additive approximation of
the distances from s; see Figure 4.1. To compute the exact distances from s, we devise a
BFS-like algorithm of n´1 steps, similarly to that of the previous section, but now in each
step `, we do not have to consider all undiscovered objects. Specifically, the ˘1-additive
approximation of the distances from s implies that the only undiscovered objects that can
be at distance ` from it are the ones at distance ` ´ 1, `, or ` ` 1 from s1. We call these
candidate objects. Thus, we need to find for each candidate whether there is any frontier
object that intersects it, i.e., solve the intersection detection problem (Subproblem 4.1).
However, contrary to the previous section, the input (frontier objects) here is static, and
the queries (candidate objects) are offline, i.e., are all given in advance. The pseudocode
is presented in Algorithm 4.3.

s

s′

z1

`− 1 ≤ dist[s, z] ≤ ` + 1

dist[s, z]

`

Figure 4.1: ˘1-additive approximation.

43

Algorithm 4.3: GeoGuideSSSPpS, s, T ps1qq

1 distrs, ss “ 0
2 distrs, zs “ 8 @ z P S ´ tsu
3 pred rs, zs “ NULL @ z P S
4 for ` “ 0 to n´ 1 do
5 A` “ tz | distrs

1, zs “ `u
6 for ` “ 1 to n´ 1 do
7 F “ tz P S | distrs, zs “ `´ 1u
8 C “ A`´1 Y A` Y A``1

9 build a static, offline intersection detection data structure for F and C
10 for t P C do
11 if distrs, ts “ 8 then
12 query the data structure for t
13 let w be the answer
14 if w not NULL then
15 distrs, ts “ `
16 pred rs, ts “ w

17 return T psq

Theorem 4.2. (Computing shortest-path trees with ˘1-additive approximation) Given
a set S of n objects and the shortest-path tree of s1 P S in the unweighted, undirected
intersection graph of S, we can compute the shortest-path tree from an neighbor s P S of s1

in OpSI pn, nqq time, where SI pn,mq is the time to construct a static, offline intersection
detection data structure for n objects and query it m times. We assume that SI pn1,m1q `

SI pn2,m2q ď SI pn1 ` n2,m1 `m2q.

Proof. As discussed above, the ˘1 approximation of the distances from s implies that the
candidate objects are the only undiscovered objects that need to be considered in each
step. That, along with the argument in the proof of Theorem 19, yields the correctness of
our algorithm. Let n` (respectively m`) be the number of frontier (respectively candidate)
objects in the step ` of our algorithm. An object is a frontier object exactly once and a
candidate object at most thrice, i.e.,

řn´1
`“1 n` ď n and

řn´1
`“1 m` ď 3n. Thus, the time to

compute the shortest-path tree from s is O
`
řn´1
`“1 SI pn`,m`q

˘

“ O pSIpn, nqq.

Theorem 4.3. (APSP in unweighted, undirected geometric intersection graphs) We can
solve APSP in an unweighted geometric intersection graph of n objects in O pn2 ` nSI pn, nqq
time, where SI p¨, ¨q is as in Theorem 3.8.

Proof. In Lines 1–3 of Algorithm 4.2, we can build G, find a spanning tree T0, and compute
the shortest-path tree from s0 naively in O pn2q total time. By Theorem 3.8, each of the
n´ 1 iterations of Line 3 of Algorithm 4.2 takes O pSI pn, nqq time .

44

Figure 4.2: A set of input disks (solid), their additively weighted Voronoi diagram (not an
accurate one), and two query disks (dashed).

4.2.1 Applications

In this section, we use known results to provide static, offline intersection detection data
structures for a family of geometric objects and then apply Theorem 4.3 to solve APSP in
the corresponding intersection graphs. Let SIp¨, ¨q be as in Theorem 3.8.

Arbitrary disks in the plane. Given a set of n disks, we create an additively weighted
Voronoi diagram and a point location data structure for the cells of that diagram. The sites
are the disk centers, and the weight of each site is equal to the radius of the corresponding
disk, i.e., the distance between a site p corresponding to a disk of radius rp and a point q is
defined as dpp, qq “ ||p´q||´rp. To detect an intersection of a query disk with an input disk
of radius rq that is centered at q, we can find the input point p that minimizes dpp, qq and
check whether dpp, qq ď rq. Employing the additively-weighted Voronoi diagram algorithm
of Fortune [For87] together with the point location data structure of Edelsbrunner et
al. [EGS86], we have SI pn, nq “ O pn log nq. See Figure 4.2.

Theorem 4.4. We can solve APSP in an unweighted intersection graph of n disks in
O pn2 log nq time.

Axis-aligned line segments in the plane. To construct a static, offline intersection
data structure for n axis-aligned line segments we can without loss of generality consider
only horizontal input segments and only vertical query segments. We build the vertical
decomposition of the former and store it in a point location data structure. Then, given
a vertical query segment, we perform a point location query with its endpoints. If they
lie in the same cell, there is no intersection. Otherwise, we pick the cell that contains the
bottom endpoint of the query segment and report the input segment that bounds its upper
side. See Figure 4.3.

45

Figure 4.3: A set of horizontal input segments (solid), its vertical decomposition (dotted), and
two query vertical segments (dashed).

The point location data structure we employ is the static orthogonal point location
data structure of Chan [Cha13, Theorem 2.1], requiring O pn log logUq preprocessing and
O plog logUq query time for n input segments, where U is the universe size. By presorting
all coordinates in O pn log nq time and replacing each coordinate with its rank, we ensure
that U “ n. Hence, SI pn, nq “ O pn log log nq.

Theorem 4.5. We can solve APSP in an unweighted intersection graph of n axis-aligned
line segments in O pn2 log log nq time.

The result can be easily be extended to any set of line segments with a constant num-
ber of different orientations by constructing one instance of Chan’s data structure per
orientation.

Arbitrary line segments. Chazelle’s O
´

n4{3 log1{3 n
¯

-time algorithm [Cha93, Theo-

rem 4.4] for counting the number of intersections among n line segments can be ex-
tended to count the number of intersections between n red (input) line segments and
n blue (offline query) line segments. In fact, the algorithm can decide whether each
blue segment intersects any red segment, and if so, report one such red segment. Thus,

SI pn, nq “ O
´

n4{3 log1{3 n
¯

.

Theorem 4.6. We can solve APSP in an unweighted intersection graph of n arbitrary line

segments in O
´

n7{3 log1{3 n
¯

time.

Axis-aligned boxes in d dimensions. Offline rectangle intersection counting in n axis-
aligned rectangles in the plane is known to be reducible [EO82] to offline orthogonal range
counting, for which Chan and Pătraşcu [CP10, Corollary 2.3] have given an O

`

n
?

log n
˘

-
time algorithm, assuming that all coordinates have been presorted. Thus, we can decide for
each query box whether it intersects any input box. In Section 4.3, we adapt the technique
of Chan and Pătraşcu to construct a data structure that can also report such an input box if
it exists. Hence, after presorting in O pn log nq time, we have that SI pn, nq “ O

`

n
?

log n
˘

.

46

For axis-aligned boxes in d ě 3 dimensions, we use standard range trees [EM81] with the
above planar base case to obtain SI pn, nq “ O

`

n logd´1.5 n
˘

.

Theorem 4.7. We can solve APSP in an unweighted intersection graph of n d-dimensional
axis-aligned boxes in O

`

n2 logd´1.5 n
˘

time, for d ě 3.

Axis-aligned unit hypercubes in d dimensions. We can construct more efficient
static, offline data structures when the n boxes are unit hypercubes. Specifically, we first
build a uniform grid with unit side length and then solve the problem inside each grid cell
separately. Each input or query unit hypercube participates in at most a constant (2d)
number of grid cells, and inside each of them, it is effectively unbounded along d sides. We
assume without loss of generality that each input box is of the form p´8, a1sˆ¨ ¨ ¨ˆp´8, ads
and that each query box is of the form rb1,8qˆ¨ ¨ ¨ˆrbd,8q. Thus, the problem reduces to
offline dominance detection: decide for each query point pb1, . . . , bdq whether it is dominated
by some input point pa1, . . . , adq, and, if yes report one such input point.

For d “ 3, the algorithm of Gupta et al. [GJSD97, Theorem 3.1] answers n offline
dominance reporting queries in O ppn`Kq log logUq time, where n is the input size, and
K is the total output size, assuming that all coordinates are integers bounded by U . Thus, n
offline dominance detection queries can be answered in O pn log logUq time. By presorting
all coordinates in O pn log nq time and replacing each with its rank, we ensure that U “ n.
Hence, SIpn, nq “ O pn log log nq. For d ě 4, Afshani et al. [ACT14, Remark in Section 5]
(following Chan et al. [CLP11]) has given a deterministic algorithm to answer n offline
dominance reporting queries in O

`

n logd´3 n`K
˘

time, where n is the input size, and K
is the total output size. It can be checked that n offline dominance detection queries can
be answered in O

`

n logd´3 n
˘

time.

Theorem 4.8. We can solve APSP in an unweighted intersection graph of n d-dimensional
axis-aligned unit hypercubes in O pn2 log log nq time for d “ 3 and in O

`

n2 logd´3 n
˘

time
for d ě 4.

Fat triangles in the plane. Given n fat triangles (i.e., triangles that have bounded
inradius-to-circumradius1 ratios) of roughly equal sizes, Katz [Kat97, Theorem 4.1 (i)] has
shown how to construct an intersection reporting data structure of O

`

n log4 n
˘

prepro-

cessing and O
`

log3 n`K log2 n
˘

query time, where n is the input size, and K is the total

output size (here K ď 1). Hence, SI pn, nq “ O
`

n log4 n
˘

.

Theorem 4.9. We can solve APSP in an unweighted intersection graph of n fat triangles
of roughly equal sizes in O

`

n2 log4 n
˘

time.

1The inradius of a triangle is the radius of the biggest circle that can be drawn inside it. The circum-
radius of a triangle is the radius of the the circle that passes through its three vertices.

47

4.3 Static, offline rectangle intersection detection

We now show how to construct a data structure for the static, offline rectangle intersection
detection problem: given a set of n input and query rectangles, find for each query rectangle
one, if any, input rectangle that intersects it. We assumed the existence of such a structure
to obtain the APSP algorithm of Theorem 4.7 for unweighted, undirected graphs of d-
dimensional boxes. As depicted in Figure 4.4, we can easily reduce that problem [EM81]
to the following subproblems:

(i) Axis-aligned line segment intersection detection: finding some input horizontal/vertical
segment that intersects a query vertical/horizontal segment.

(ii) Orthogonal range detection: finding some input point inside a query rectangle.

(iii) Rectangle stabbing detection: finding some input rectangle that contains a query
point).

Figure 4.4: Axis-aligned line segment intersection detection, orthogonal range detection, and
rectangle stabbing detection. The input rectangles are solid, while the query rectangles are
dashed.

In Section 4.2.1, we showed how to answer n offline queries of type (i) in O pn log logUq
time, assuming that the coordinates of the vertices of the rectangles are integers bounded
by U . Also, Babenko et al. [BGKS15] have already described how to adapt Chan and
Pătraşcu’s technique [CP10] to answer n offline queries of type (ii) in O

`

n
?

log n
˘

time.
Babenko et al. actually solved the range successor problem, which is equivalent to finding
the lowest point in a 3-sided query rectangle unbounded from above—it is easy to see that
4-sided orthogonal range detection reduces to this problem. We now describe how to adapt
Chan and Pătraşcu’s technique to answer n offline queries of type (iii) in O

`

n
?

log n
˘

time.
Chan et al. [CLP11] noted a similar result but only for the case of disjoint rectangles.

Theorem 4.10. (Rectangle Stabbing Detection) Given n input axis-aligned rectangles
and n planar query points with presorted coordinates, we can report for each query point,
an input rectangle, if any, that contains it in O

`

n
?

log n
˘

time.

Proof. We use words of w “ δ log n bits, where 0 ă δ ă 1 is a constant. Also, we assume,
without loss of generality, that all y-coordinates are distinct.

48

Special case: all x-coordinates are small integers bounded by s. We employ
a divide-and-conquer scheme that resembles a binary interval tree in the x-axis and bit-
packing techniques. The input of our algorithm is the list of the x-coordinates of the vertices
of the input rectangles and of the query points, presorted by y. Thus, it can be packed with
O ppn log sq{wq words. The output is represented as the list of the minimum and maximum
x-coordinates of a rectangle, if any, that contains each query point in bottom-to-top order.
Hence, it can also be packed with O ppn log sq{wq words.

Let R be the set of input rectangles and Q that of query points. First, we find the
vertical line x “ m that divides the x-universe into two halves of length s{2. Let Rm be
the subset of rectangles that intersect that line. The union of Rm is a y-monotone polygon
or multiple such polygons, and we can find it by computing the left/right envelope of the
vertical line segments of the input rectangles. Eppstein and Muthukrishnan [EM01] have
shown how to do that in O p|Rm|q time, assuming that the coordinates have been pre-sorted
in x and y. In our case, the latter has already been done, and to obtain the former we
employ counting sort in O p|Rm| ` sq time. Then, we solve the problem for Rm and Q with
a bottom-to-top scan, using O ppn log sq{wq additional word operations.

Next, let R` (respectively Rr) be the subset of rectangles completely to the left (re-
spectively right) of x “ m and Q` (respectively Qr) the subset of query points to the left
(respectively right) of y “ m. We recursively solve the subproblem for R` and Q` and the
subproblem for Rr and Qr. The input to either subproblem can be formed by a linear scan
using O ppn log sq{wq word operations, and the output can be merged by another linear
scan using O ppn log sq{wq word operations.

Excluding the cost of computing the unions of the Rm’s, the total running time is
O
`

pn log2 sq{w ` s log s
˘

since there are O plog sq levels of recursion. Each rectangle lies
in exactly one subset Rm over the entire recursion tree, so the total cost of computing the
unions of the Rm’s is Opnq.

One remaining issue is that the output only records the x-coordinates of the reported
rectangles. To retrieve the y-coordinates, we first partition the original set of input rect-
angles into O ps2q classes with common minimum and maximum x-coordinates. For each
query point, we have identified one class which contains an answer. For each class χ, we
can gather its input rectangles Rχ and query points Qχ, both pre-sorted by y, and answer
these queries. This is a 1-dimensional problem in y (finding an input interval containing
each query point), which is a special case of the above-mentioned envelope problem and
can be solved in O p|Rχ| ` |Qχ|q time, thus the total time over all classes χ is linear. We
conclude that the special case case can be solved in O

`

n` pn log2 sq{w
˘

time, assuming
that n ě s2.

General case. We again use a divide-and-conquer approach, but this time in a degree-s-
segment-tree manner. We use s´ 1 vertical lines to divide the plane into s slabs each with
Opn{sq rectangle vertices and query points. Each rectangle can be divided into at most
three parts, where the left (respectively right) part is contained in one of the s slabs, and

49

the middle part has x-coordinates aligned with the dividing vertical lines. For all middle
parts, we can round the x-coordinates of the query points to align with the dividing lines
and apply the algorithm for the above special case in Opn ` pn log2 sq{wq time. For the
left and right parts, if n ě s2, we recursively solve the subproblems inside the s slabs. We
can combine the answers in linear time.

Each rectangle and each query point participates in Oplogs nq recursive calls. The total
time is thus Oppn`pn log2 sq{wq¨plog n{ log sqq. Setting log s “

?
w yields Opnplog nq{

?
wq,

assuming that n ě 2Ωp
?
wq. Since w “ δ log n, where 0 ă δ ă 1 is a constant, we can

perform each of the above word operations in constant time with table lookup, after an
initial precomputation in opnq time (see Section 2.1). We can also handle the base case,
n “ s2, in linear total time with brute force.

As explained in the beginning of this section, we can use our static, offline rectangle
stabbing detection data structure of Theorem 4.10 to construct a data structure for static,
offline rectangle intersection detection.

Corollary 4.11. (Static, offline rectangle intersection detection) Given n input and n
query axis-aligned rectangles with presorted coordinates, we can report an input rectangle
for each query rectangle (if it exists) that intersects it in O

`

n
?

log n
˘

time.

50

Chapter 5

Approximate diameter and distance
oracles in planar graphs

In this chapter, we study approximate shortest-path problems in planar graphs. Namely, we
present anO pn log n plog n` p1{εq5qq-time algorithm that computes a p1`εq-approximation
of the diameter of a non-negatively-weighted, undirected planar graph of n vertices. There-
fore, we improve upon the O

`

n
`

p1{εq4 log4 n` 2Op1{εq
˘˘

-time algorithm of Weimann and
Yuster [WY16] in two regards. First, we eliminate the exponential dependency on 1{ε by
adapting and specializing Cabello’s recent Voronoi-diagram-based technique [Cab17a] for
approximation purposes. Second, we shave off two logarithmic factors by choosing a better
sequence of error parameters in the recursion and by employing the multiple shortest paths
data structure of Klein [Kle05].

Moreover, using similar techniques we obtain a variant of Gu and Xu’s p1`εq-approximate
distance oracle [ISAAC 2015] with polynomial dependency on 1{ε in the preprocessing time
and space and O plogp1{εqq query time.

The results of this chapter have been presented in ESA 2017 [CS17b].

Definitions. Let G “ pV,Eq be a non-negatively-weighted, undirected planar graph, i.e.,
a graph that can be drawn in the plane, such that edges intersect only at their endpoints.
We also refer to V and E as V pGq and EpGq respectively. Let G˚ be the dual of G, i.e.,
the graph whose vertices correspond to faces of G (and vice versa), and there is an edge
between two vertices of G˚ if and only if the corresponding faces in G share a common
edge. We assume that G and any graph under discussion in this chapter is triangulated
(we can triangulate naively in linear time) and comes with a fixed embedding (we can find
such an embedding in linear time [HT74]).

For any u, v P V , we denote a u-to-v shortest path in G by πGru, vs and its length
by distGru, vs. We also refer to distGru, vs as shortest-path distance or simply distance.
Let predGru, vs be v’s predecessor on πGru, vs. The shortest-path tree of each u P V is a

51

spanning tree of G rooted at u, such that the u-to-v shortest-path distance for each v P V
in that tree corresponds to distGrs, ts. We are interested in the following shortest-path
problems in G.

• Computing a p1 ` εq-approximation of various parameters of G, such as the di-
ameter (i.e., maxu,vPV distGru, vs), the radius (i.e., minuPV maxvPV distGru, vs), the
Wiener index (i.e.,

ř

u,vPV distGru, vs), the eccentricity of each vertex u P V (i.e.,
maxvPV distGru, vs), et cetera.

• Constructing approximate distance oracles, i.e., data structures that support the
following query: given any s, t P V , compute a value rd with distGrs, ts ď rd ď p1 `

εqdistGrs, ts and the predecessor of t in an s-to-t path of length rd.

Background and overview of techniques.

Diameter. Since Frederickson [Fre87] presented an O pn2q-time exact diameter al-
gorithm (by solving APSP) for non-negatively-weighted planar graphs of n vertices, a
natural question arose as to whether the diameter can be computed in truly subquadratic
time. Eppstein [Epp99] gave a partial answer for the unweighted case by proving that if
the diameter is constant, it can be found in linear time. Later, Chan [Cha12] and Wulff-
Nilsen [WN10] developed two slightly-subquadratic-time solutions (for arbitrary diameter),

both requiring O
´

n2 ¨
log logn

logn

¯

time in unweighted graphs. The algorithm of Wulff-Nilsen

also works for the weighted case but in O
´

n2 ¨
plog lognq4

logn

¯

time.

In 2017, Cabello [Cab17a] (full paper in [Cab17b]) made a breakthrough by giving an
rO
`

n11{6
˘

-expected-time algorithm, where rO pfpnqq denotes O
´

fpnq logOp1q n
¯

. His tech-

niques are as interesting as the result itself, for they involved a seemingly alien concept to
planar graphs, Voronoi diagrams, originating from computational geometry. Gawrychowski
et al. [GKM`18], again using Voronoi diagrams, derandomized Cabello’s algorithm and im-

proved its running time to rO
`

n5{3
˘

.

In the approximate setting, faster algorithms are known for undirected planar graphs.
The linear-time SSSP algorithm of Henzinger et al. [HKRS97] can trivially compute a
2-approximation, while Berman et al. [BK07] developed a (3/2)-approximation algorithm
of O

`

n3{2
˘

time. Weimann and Yuster [WY16], in a breakthrough, presented the first

p1` εq-approximation algorithm, running in rO
`

n
`

p1{εq4 log4 n` 2Op1{εq
˘˘

time. However,
that does not settle the problem because of the exponential dependency on 1{ε and of the
multiple (four) log n factors.

We show that Cabello’s technique of employing Voronoi diagrams in planar graphs
can be combined nicely with Weimann and Yuster’s recursive scheme to eliminate the
2Op1{εq factor from the running time of the latter. Compared with Cabello’s approach,

52

which had to deal with the general case of site weights being real numbers, our version of
Voronoi diagrams is much simplified because in the approximate setting we can map the
site weights to small integers. We also eliminate two of the four logarithmic factors, by
using a better sequence of error parameters in the recursion and by employing the multiple
shortest paths data structure of Klein [Kle05].

Specifically, we describe in Section 5.1 an efficient p1` εq-approximate farthest neigh-
bor data structure in planar graphs by employing Voronoi diagrams. Then, we describe
in Section 5.2 how to use that data structure in the framework of Weimann and Yuster
to compute a p1` εq-approximation of the length of the longest shortest path distance of
every graph encountered during the recursion.

Distance oracles. Thorup [Tho04a], in a seminal paper, gave a p1 ` εq-approximate
distance oracle for non-negatively-weighted, undirected planar graphs of n vertices, requir-
ing O

`

p1{εq2n log3 n
˘

preprocessing time, O pp1{εqn log nq space, and O p1{εq query time.
That oracle was later simplified by Klein [Kle02]. Kawarabayashi et al. [KKS11] con-
structed an oracle of linear space but O

`

p1{εq2 log2 n
˘

query time, and then Kawarabayashi
et al. [KST13] improved the dependency on 1{ε of the space-query-time product from 1{ε2

to 1{ε. In the Word RAM, Gu and Xu [GX15] combined the techniques of the above results
with those of Weimann and Yuster [WY16] for the approximate diameter problem to obtain
the first distance oracle with constant query time (independent of both n and ε). How-
ever, the preprocessing time and space of their data structure have exponential dependency
on 1{ε (they are O

`

n log n
`

p1{εq2 log3 n` 2Op1{εq
˘˘

and O
`

n log n
`

p1{εq log n` 2Op1{εq
˘˘

respectively).

We employ techniques similar to those of our diameter algorithm to develop in the
Word RAM the first p1 ` εq-approximate distance oracle with op1{εq query time and

O
´

p1{εqOp1q n logOp1q n
¯

preprocessing time and space. Specifically, the preprocessing time

and space of our oracle are O
`

n log2 n plog n` p1{εq5q
˘

and O
`

p1{εqn log2 n
˘

respectively,
and the query time is O plog p1{εqq. Although we slightly increase the query time of the or-
acle of Gu and Xu (from O p1q to O plog p1{εqq), we significantly improve its preprocessing
time and space by eliminating the exponential dependency on 1{ε.

In Section 5.3.1 we construct an oracle of additive stretch, and then in Section 5.3.2 we
show how to use that oracle along with existing techniques, namely scaling [KST13, GX15],
to obtain our p1` εq-approximate distance oracles.

5.1 A farthest-neighbor data structure

Here, we want to construct a data structure for the following farthest-neighbor problem
in planar graphs, which is crucial in obtaining our diameter algorithm in Section 5.2. Let
rW s “ t0, 1, . . . ,W ´ 1u for an integer W ą 0.

53

Problem 5.1. (Farthest neighbor) Let H “ pV,Eq be a triangulated planar graph of n
vertices with a fixed embedding. Also, let X be a set of b vertices on the boundary of its
outer face, and let U be a subset of V . Finally, let H` be the graph that is obtained by
adding to H a vertex z0 and an edge of unspecified weight from z0 to each x P X.

Construct a data structure that supports the following kind of queries for a fixed integer
W : given a weight `pz0, xq P rW s for each edge pz0, xq, where x P X, find the distance to the
farthest neighbor of z0 in H` among the vertices of U , i.e., compute maxuPU distH`pz0, uq.

Cabello [Cab17b, Theorem 21] employed Voronoi diagrams in planar graphs to develop

a farthest-neighbor data structure with rO pn2b3 ` b4q preprocessing time and rO pb log bq
expected query time, under a non-degeneracy assumption. His result works for the more
general version of Problem 5.1 where the weight `p¨q of each edge pz0, xq px P Xq is a
real number. We show that when these weights are instead small integers, we can employ
Voronoi diagrams in a simpler way to construct a farthest-neighbor data structure in time
only near linear in n. Moreover, our query time does not have any log n factors.

5.1.1 Defining Voronoi diagrams in planar graphs

The concepts of standard geometric Voronoi diagrams can easily be extended to the planar
graph H “ pV,Eq from the setting of Problem 5.1. Each site s is a pair pvs, wsq, where
vs is its placement (i.e., a vertex of H), and ws is its weight. Given a set of sites S, the
graphic Voronoi region of s P S in H is defined as VRps, Sq “ tu P V | distHrvs, us ` ws ď
distHrvt, us ` wt, @ t P S ´ tsuu, i.e., as the set of all vertices closer to s than to any other
site under the weighted metric. Then, the (additively weighted) graphic Voronoi diagram
VDpSq of S in H is simply the collection of VRps, Sq over all s P S. See Figure 5.1(a)-(b).
Since we discuss Voronoi diagrams only in H, we drop the subscripts and refer to distr¨, ¨s,
VRp¨, ¨q, and VDp¨q from now on.

Henceforth, we assume that S is a set of b sites, each placed at a vertex on the
boundary of the infinite face of H. We assume that S is generic, i.e., for each s, t P S and
u P V , we have distru, vss`ws ‰ distru, vts`wt. We also assume that S is non-redundant1,
i.e., each region of the graphic Voronoi diagram of S is non-empty. We ensure that every
Voronoi diagram under discussion later is associated with a generic and non-redundant set
of sites. We define the bisector bisps, tq of every s, t P S to be the set of the duals of the
edges in tpu, vq P E | distru, vss`ws ă distru, vts`wt and distrv, vts`wt ă distrv, vss`wsu.
In other words, bisps, tq is composed of the duals of the edges whose endpoints are not both
closer to the same site. From [Cab17b, Lemma 10], each such bisector is a simple cycle in
H˚. See Figure 5.1(c).

As explained in Section 2.6, Klein [Kle89] introduced the framework of abstract
Voronoi diagrams to unify the treatment of various Voronoi diagrams in the plane. Cabello

1Cabello [Cab17b] used the term independent in his paper.

54

defined a system of abstract bisectors as

#

ˆ

bisps, tq,
´

Ť

vPVRps,ts,tuq v
˚

¯˝
˙

| s, t P S, s ‰ t

+

,

where v˚ is the dual face of v P V , A is the closure of A Ă IR2, and A˝ is the interior of
A. Also, Cabello showed [Cab17b, Lemma 12] that his system of abstract bisectors fulfills
Klein’s admissibility axioms, as long as S is generic and non-redundant. Thus, as men-
tioned in Section 2.6, the graphic Voronoi diagram of S can be implicitly represented as
a planar graph with a fixed combinatorial embedding of O pbq Voronoi arcs and Voronoi
nodes (an explicit representation would require O pnq time). Each such Voronoi arc is a
contiguous portion of a bisector (thus, a simple path in H˚), and each Voronoi node is
a vertex of H˚ incident to three Voronoi arcs. Henceforth, every reference to a Voronoi
diagram is to the implicit representation of the corresponding graphic Voronoi diagram in
H. See Figure 5.1(d).

We can compute the Voronoi diagram of S with the following algorithm of Klein et
al. [KMM93, Theorem 1], which is an extension of a standard randomized incremental
construction algorithm for Euclidean Voronoi diagrams [CS89, Mul94]. The worst-case
running time of that algorithm is quadratic. Also, each Voronoi arc (respectively, node)
is represented with a pointer to a Voronoi arc (respectively, node) in the Voronoi diagram
of four sites of S [Cab17b, Section 4]. We state the result of Klein et al. tailored for our
setting.

(a) (b)

v∞

(c)

v∞

(d)

Figure 5.1: (a) Five sites (the coloured vertices) of a planar graph. (b) Their graphic Voronoi
diagram. (c) A bisector of the blue and red sites. (d) The Voronoi diagram of the five sites.

Theorem 5.1. (Via abstract Voronoi diagrams) Let H be a triangulated planar graph
with a fixed embedding, and let S be a generic and non-redundant set of b sites placed on
vertices on the boundary of its outer face. We can construct the Voronoi diagram of S with
an expected number of O pb log bq or a worst-case number of O pb2q elementary operations.
Here, an elementary operation is the computation of the Voronoi diagram of any four sites
of S.

5.1.2 Constructing Voronoi diagrams in planar graphs

We now show how to perform the elementary operations of the Voronoi diagrams algorithm
of Theorem 5.1, i.e., compute the Voronoi diagram of any four sites of a given generic and

55

non-redundant set S 1 Ď S. For the rest of this section, we assume that each s P S 1 is
assigned a weight drawn from rW s. We also assume that without loss of generality all
subsets of at most four sites of S are generic and non-redundant (we can easily find those
that are not and ignore them).

As Cabello did, we first compute all possible bisectors for each pair of sites of S. Our
approach builds upon that of [Cab17b, Lemma 17] and requires only O pnW q time, whereas
Cabello’s needed O pn2q time for site weights being real numbers. Also, we can return a
pointer to a bisector in O p1q time instead of O plog nq time.

Lemma 5.2. (Bisectors) Let H be a triangulated planar graph with a fixed embedding, and
let S be a set of b sites placed on vertices on the boundary of its outer face with unspecified
weights. Given two sites s, t P S, there are O pW q distinct bisectors in the family of
bisppvs, wsq, pvt, wtqq over all possible weights ws and wt drawn from rW s. Moreover, we
can compute all of them in O pnW q total time, such that given weights ws, wt P rW s for
any generic and non-redundant set of two sites s, t P S, we can return a pointer to their
bisector in O p1q time.

Proof. Assuming without loss of generality that ws ě wt, we can write bisppvs, wsq, pvt, wtqq
as bisppvs, wq, pvt, 0qq, where w “ ws ´ wt P rW s. Thus, there are O pW q distinct bisectors
in that family. We represent each such bisector with a linked list that contains its edges
(which form a cycle) in clockwise order.

In the preprocessing phase, we find the shortest-path trees from vs and vt in linear
time [HKRS97] and compute the value ηu “ distrvt, us´distrvs, us for each u P V . For each
of the O pW q values of w, we find with a linear scan every edge uv P E, such that w ă ηu
and w ą ηv, and insert its dual to the linked list of bisppvs, wq, pvt, 0qq. We might need to
rearrange that list in linear time. Finally, we store all these lists in a table, such that given
weights ws, wt P rW s, where without loss of generality ws ě wt, for any two sites s, t P S,
we can return a pointer to the linked list of bisppvs, ws ´ wtq, pvt, 0qq in O p1q time.

Next, we show how to compute all Voronoi diagrams of any three sites of S in O pnW 2q

time. We improve upon the approach of Cabello [Cab17b, Lemma 18], requiring O pn2q

time for site weights being real numbers, and we also simplify it, as we employ neither
line arrangements nor amortization. We can return a pointer to a Voronoi diagram of any
three sites of S in O p1q time instead of O plog nq.

Lemma 5.3. (Voronoi diagrams of 3 sites) Let H be a triangulated planar graph with
a fixed embedding, and let S be a set of b sites placed on vertices on the boundary of its
outer face with unspecified weights. Given three sites s, t, q P S, there are O pW 2q distinct
Voronoi diagrams in the family VDptpvs, wsq, pvt, wtq, pvq, wqquq over all possible weights
ws, wt, and wq drawn from rW s. Moreover, we can compute all of them in O pnW 2q total
time, such that given weights ws, wt, wq P rW s for any generic and non-redundant set of
three sites s, t, q P S, we can return a pointer to their Voronoi diagram in O p1q time.

56

Proof. As in the proof of Lemma 5.2, assuming without loss of generality that ws, wt ě
wq, we can write VDptpvs, wsq, pvt, wtq, pvq, wqquq as VDptpvs, w

1
sq, pvt, w

1
tq, pvq, 0quq, where

w1s “ ws ´ wq, w
1
t “ wt ´ wq P rW s. Hence, that family of Voronoi diagrams has size

O pW 2q. According to [Cab17b, Lemma 13], a Voronoi diagram of three sites has at most
one Voronoi node (besides v8), which we represent with a pointer. Also, each Voronoi
arc is a contiguous portion e˚1 , e

˚
2 , . . . , e

˚
k for some k, of the bisector of ps, tq, ps, qq, or

pt, qq [Cab17b, Section 5.2]. Thus, we represent that arc with pointers to e˚1 , to e˚k, and to
the relevant bisector.

In the preprocessing phase, we invoke Lemma 5.2 to compute and store all bisectors
of ps, tq, ps, qq, and pt, qq in O pnW q time. Then we find the shortest-path trees from vs,
vt, and vq in linear time [HKRS97], and we compute for each vertex u P V the values
ηstu “ distrvs, us´distrvt, us, η

qt
u “ distpvq, uq´distpvt, uq, and ηsqu “ distpvs, uq´distpvq, uq.

For each of the O pW 2q values of w1s and w1t, we use the η values to find with a linear
clockwise scan that starts at v8 the first and the last edge puvq˚ (i.e., the dual of uv P E)
of bisps, tq such that u P VRps, ts, t, quq and v P VRpt, ts, t, qu). If these edges exist, we
properly create the pointers for a Voronoi arc and then repeat with bisps, qq and bispt, qq.
If VDpts, t, quq has three Voronoi arcs, we can find and store a pointer to its Voronoi node
in O p1q time by determining the vertex of H˚ where these arcs meet. Last, we store a
pointer to each computed Voronoi diagram in a two-dimensional table, such that given
weights ws, wt, wq P rW s, where without loss of generality ws, wt ě wq, we can return
pointers to the node and to the arcs of VDptpvs, ws ´ sqq, pvt, wt ´ wqq, pvq, 0quq in O p1q
time.

We now give provide a data structure that given any four sites of S, constructs
their Voronoi diagram, thus supporting the elementary operation of the Voronoi diagrams
algorithm of Theorem 5.1. The proof is similar to that in [Cab17b, Lemma 19], but using
Lemmas 5.2 and 5.3 for bisectors and Voronoi diagrams of three sites respectively, we
achieve O pnb3W 2q preprocessing time instead of rO pn2b3q. Also, the query time here is
O p1q instead of O plog nq. The proof we give below is a paraphrase of that of Cabello, and
we include it for the sake of completeness.

Lemma 5.4. (Voronoi diagrams of 4 sites) Let H be a triangulated planar graph with a
fixed embedding, and let S be a set of b sites placed on vertices on the boundary of its outer
face with unspecified weights. We can construct in O pnb3W 2q time a data structure that
supports the following kind of queries: given a generic and non-redundant set of four sites
of S, whose weights are drawn from rW s, we can return a pointer to their Voronoi diagram
in O p1q time.

Proof. In the preprocessing phase, we apply the methods of Lemmas 5.2 and 5.3 to compute
all distinct bisectors (respectively Voronoi diagrams) of any two (respectively three) sites
of S in O pnW 2q time. Let s, t, q, r be four given sites of S with weights drawn from rW s.
We assume without loss of generality that the clockwise order of the four sites on the

57

boundary of the outer face of S is s, t, r, q. For each pair s, t we check in constant time
whether bisps, tq fully participates in VDpts, t, quq and VDpts, t, ruq.

If that is so, then bisps, tq encloses exactly the vertices of H that are closest to s than
to any of the other three sites, i.e., the vertices of VRps, ts, t, q, ruq. Thus, VDpts, t, q, ruq
is composed of bisps, tq and VDptt, q, ruq, and we can easily generate its Voronoi nodes
and arcs. Notice that in this case, the part of the Voronoi diagram that is restricted in
the interior faces of H (i.e., the diagram after “deleting v8 and its adjacent edges) is not
connected. See Figure 5.2(a).

Else, no bisector fully bounds a Voronoi region. In other words, the part of the
Voronoi diagram that is restricted in the interior faces of H is connected. That implies
that VDpts, t, q, ruq has two Voronoi nodes, besides v8 (remember that H˚ is triangulated).
See Figure 5.2(b). There are two cases for these nodes. First, they are the meeting points
of each bisps, ¨q and of each bispr, ¨q, respectively (Figure 5.2(c)). Second, they are the
meeting points of each bispq, ¨q and of each bispt, ¨q, respectively (Figure 5.2(d)).

We can determine which case we are in by finding whether bisps, rq participates in
VDpts, t, q, ruq. Notice that the intersection of VRps, ts, r, quq and VRps, ts, r, tuq gives
VRps, ts, r, t, quq because these two Voronoi diagrams contain each bisector bisps, ¨q. Thus,
we can find the Voronoi nodes v and v1 of VDpts, r, quq and VDpts, r, tuq respectively, and
compare the order of v8, v1, and v along bisps, rq. That can be done in constant time
after linear preprocessing time per bisector. If it is clockwise, we are in the first case (see
Figure 5.2(e)); else, we are in the second (see Figure 5.2(f)). After determining the case
we are in, we can generate the Voronoi nodes and arcs of VDpts, t, q, ruq by properly using
the information of the relevant Voronoi diagrams of triples of sites.

Combining the above lemma with the Voronoi diagram algorithm of Theorem 5.1,
we obtain a data structure that given any generic and non-redundant set S 1 Ď S, whose
weights are drawn from rW s, computes their Voronoi diagram. Its preprocessing time

is O pnb3W 2q, while the structure of Cabello required rO pn2b3q construction time real site
weights. Also, the query time here is O pb log bq expected, while that of Cabello had multiple
log n factors.

Theorem 5.5. (Voronoi diagram data structure) Let H be a triangulated planar graph
with a fixed embedding, and let S be a set of b sites placed on vertices on the boundary
of its outer face with unspecified weights. We can construct in O pnb3W 2q time a data
structure that supports the following kind of queries: given a generic and non-redundant
set S 1 Ď S, whose weights are drawn from rW s, we can compute the Voronoi diagram of
S 1 in O pb log bq expected or O pb2q worst-case time.

5.1.3 Constructing the farthest-neighbor data structure

Before describing our farthest-neighbor data structure for Problem 5.1, we state the follow-
ing lemma, taken almost verbatim from [Cab17b, Corollary 6]. Given a cycle γ in H˚, let

58

s

t

r

q

v∞

(a)

s

t

r

q

v∞

(b)

s

t

r

q

v∞

(c)

s

t

r

q

v∞

(d)

s

t

r

q

v∞

v

v′

(e)

s

t

r

q

v∞

v′v

(f)

Figure 5.2: (a) A Voronoi diagram where a bisector bounds a Voronoi region. (b) Parts of the
bisectors of consecutive sites when no bisector bounds a Voronoi region. (c)-(d) The Voronoi
diagram for the two cases of (b). (e)-(f) The dual faces of the vertices in VRps, ts, t, q, ruq (gray),
VDpts, r, quq (bold), VDpts, r, tuq (dotted), and bisps, rq (blue), for the two cases of (b).

Vintpγ,Hq be the set of vertices of H enclosed by it. For a vertex v0 P V , a v0-star-shaped
cycle γ in H˚ is a cycle that encloses the shortest path from v0 to every v P Vintpγ,Hq.

Lemma 5.6. (Preprocessing for farthest-neighbor queries) Let v0 be a vertex of H. As-
sume that each vertex u of H has a cost cpuq ą 0, and let Π “ tπ1, . . . , π`u be a family
of simple paths in H˚ with a total of h edges, counted with multiplicity. After O pn` hq
preprocessing time, we can answer the following kind of queries in O pkq time: given a
v0-star-shaped cycle γ in H˚, described as a concatenation of k subpaths from Π, return
maxuPVintpγ,Hq

cpuq.

Proof Sketch. For each pair ei and ej of consecutive edges of a path in Π, we define χ
`

e˚i , e
˚
j

˘

to be the maximum cost of the vertices in the region “sandwiched” between the shortest
paths from v0 to an endpoint of the dual edges of ei and ej. Then, a query can be reduced
to O pkq range maximum queries in the sequence of these χp¨, ¨q numbers of each such path.
See [Cab17b] for more details.

Theorem 5.7. (Farthest neighbor) We can construct a farthest-neighbor data structure
for Problem 5.1 with O pnb3W 2q preprocessing time and O pb2q query time.

Proof. Let S be a set of b sites as in Section 5.1.1, i.e., each s P S is placed at a vertex of
X. The weights of the sites of S are unspecified. We construct the Voronoi diagram data
structure of Theorem 5.5 and then apply Lemma 5.2 to compute all bisectors of each pair
of sites. For each s P S we assign a cost cspuq “ distpvs, uq to each u P U and cspuq “ 0

59

to each u P V ´ U . Then, we construct the data structure of Lemma 5.6, where Π is the
set of all bisps, ¨q, ` “ bW , h “ nbW , and k “ b. Note that for any s, t P S, bisps, tq is an
s-star-shaped cycle in H˚ because VRps, ts, tuq is a connected subtree of the shortest-path
tree of s with the same root. To avoid degeneracies, we arbitrarily order the edges of H
that are incident to vertices of X and perturb the weight of the i-th such edge by adding
to it a number ρ ¨ i, where ρ ą 0 is infinitesimal. We also compute the shortest path tree
from every x P X. The preprocessing time is O pnb3W 2q.

In a query, we create naively in O pb2q time a set S 1 Ď S by deleting from S each site
s with `pz0, vsq ą `pz0, vtq ` distrvs, vts for some t P S, ensuring that S 1 is non-redundant.
Also the perturbation in the preprocessing guarantees that S 1 is generic. For each s1 P S 1

we set ws1 equal to `pz0, vs1q and then query the data structure of Theorem 5.5 to compute
the Voronoi diagram of S 1 in O pb2q worst-case time (we do not need the faster O pb log bq
randomized bound here). For each s1 P S 1 the boundary of VRps1, S1) is the concatenation
of at most b subpaths of the bisectors bisps1, ¨q because each Voronoi arc is a contiguous part
of a bisector, as mentioned earlier. Thus, we can find maxuPVRps1,S1q distps1, uq by employing
Lemma 5.6. Finally, we return the maximum of these distances, for a total of O pb2q query
time.

5.2 Approximate diameter

Given a non-negatively-weighted, undirected planar graph G of N vertices and of diameter
∆, we show how to compute a p1 ` O pεqq-approximation of ∆, which is equivalent to

computing an O pε∆q-additive approximation. Let r∆ be a 2-approximation of ∆, which
we can compute in linear time [HKRS97].

We adapt the recursive scheme of Weimann and Yuster [WY16]. The input to our
algorithm is a non-negatively-weighted, undirected planar graph G whose vertices are either
marked or unmarked, and the output is an O pε∆q-additive approximation of the longest
shortest-path distance of any two marked vertices of G. In the first recursive call, we have
G “ G, all vertices of G are marked, and n “ N . Let G1 and G2 be two of G’s subgraphs
such that each marked vertex of G lies in at least one of them. We denote by d pG1, G2, Gq
the longest shortest-path distance in G between a marked vertex in G1 and another in
G2. Notice that d pG,G,Gq “ maxtd pG1, G2, Gq , d pG1, G1, Gq , d pG2, G2, Gqu. We make
the following assumption for the distances between marked vertices of G, which states the
distance in G between any marked vertices is an O pε∆q-additive approximation of their
distance in G.

Assumption 5.1. (Distances between marked vertices) For every two marked vertices
s, t of G, we have distGrs, ts ď distGrs, ts ď distGrs, ts ` ε∆.

Recall that a separator of a planar graph is a subset of its vertices whose removal
decomposes it into at least two disjoint, induced subgraphs. If the size of each is at most

60

a constant fraction α of that of the original graph, the separator is said to be α-balanced.
Moreover, if the vertices of the separator are the vertices of shortest paths with common
root, it is called shortest-path separator.

Our algorithm performs the following steps.

1. Find an α-balanced shortest-path separator C of G, for some constant α ă 1, such
that the removal of its vertices decomposes G into two disjoint subgraphs A and B.
Let Gin “ AY C and Gout “ B Y C. See Section 5.2.1.

2. Compute an O pε∆q-additive approximation of d pGin, Gout, Gq. See Section 5.2.2.

3. Unmark each vertex of C in both Gin and Gout (these vertices appear in both graphs,
so we have already considered all such pairs of marked vertices). Augment Gin with
extra (unmarked) vertices and edges into a non-negatively-weighted, undirected pla-
nar graph G`in which satisfies Assumption 5.1 and its size is roughly the same as the
number of marked vertices of Gin. Construct a similarly defined graph G`out for Gout

and recursively solve the problem in G`in and G`out. See Section 5.2.3.

4. Return max

d pGin, Gout, Gq , d
`

G`in, G
`
in, G

`
in

˘

, d
`

G`out, G
`
out, G

`
out

˘ (

.

5.2.1 Decomposing G

As explained in Section 2.5, to compute the shortest-path separator C in Step 1 we first
find the shortest-path tree T from any marked vertex w0 of G in linear time [HKRS97].
There are two root paths R and Q in T , which can be computed in linear time, such that
the removal of their vertices decomposes G into two disjoint planar subgraphs A and B
of at most 2n{3 vertices each. However, the size of C “ R Y Q can be as big as n. See
Figure 5.3(a)-(b). Let Gin “ AY C and Gout “ B Y C.

5.2.2 Approximating d pGin, Gout, Gq

Let Min (respectively Mout) be the set of marked vertices of Gin (respectively Gout). We
want to O pε∆q-additively approximate the distance from each v P Mout to its farthest
neighbor in Min (i.e., maxuPMin

mincPCtdistGrv, cs`distGrc, usu), and return the maximum.
To do that, we would like to construct the farthest-neighbor data structure of Theorem 5.7
with H “ Gin, X “ C, and U “Min. Then, for each v PMout we want to query that data
structure with z0 “ v, X 1 “ X, and `pz0, x

1q “ distGrz0, x
1s for each x1 P X 1. However,

there are two issues with that approach. First, C could have Opnq vertices, thus leading
to superlinear total time. Second, the edge weights `pz0, x

1q, where x1 P X 1, for each
query are not necessarily small integers (because the distances distGrz0, x

1s are in general
non-negative numbers).

61

(a)

B

A

R Q

w0

(b)

w0

ε∆̃

(c)

O
(
ε∆̃

)

w0

v

uc

p

(d)

Figure 5.3: (a) A planar graph. (b) A shortest-path separator (its vertices on the pink back-
ground) and the resulting decomposition. The vertices of A are on the blue background (similarly
for B). The vertices of Gin are on the blue and pink background (similarly for Gout). (c) The
portals (red vertices). (d) Detour through portals.

For the first issue, we show that by increasing the error by O pε∆q, it suffices to choose
only a small subset of the vertices of C. Specifically, we build a set P of O p1{εq vertices,
called portals, and route any v-to-u shortest path through them, where v P Mout and
u PMin. To construct P , we start from the root of C and perform a linear walk in the 8r∆-
prefix of both R and Q (as mentioned above, r∆ is a 2-approximation of ∆). Notice that the
diameter of G can be much bigger than ∆ because when we recursively solve the problem
in G`in and G`out only the distances between marked vertices are approximately preserved.
With these walks, we select O p1{εq portals on each path, such that any consecutive pair
of them is at distance ε∆ thereon and discard any duplicates. See Figure 5.3(c). Let

62

d1 pGin, Gout, Gq “ maxvPMout,uPMin
minpPP tdistGrv, ps ` distGrp, usu.

Lemma 5.8. (Approximation with portals) We have d pGin, Gout, Gq ď d1 pGin, Gout, Gq ď
d pGin, Gout, Gq ` ε∆.

Proof. Since d1 pGin, Gout, Gq corresponds to a path in G, we have that d pGin, Gout, Gq ď
d1 pGin, Gout, Gq. Let v P Mout and u P Min be such that distGru, vs “ d pGin, Gout, Gq.
Recall that from Assumption 5.1 we have distGrs, ts ď distGrs, ts ď distGrs, ts ` ε∆ for any
two marked vertices s, t of G. Since distGrs, ts ď ∆, we have distGrs, ts ď p1` εq∆.

Let c P C be a vertex that the v-to-u shortest path in G crosses and assume without
loss of generality that c P R. We now show that c lies in 8r∆-prefix of R. All of v, u,
and w0 are marked, so the w0-to-v and the v-to-u shortest paths are of length at most
p1` εq∆. Since c lies on the v-to-u shortest path, the length of the v-to-c shortest path is
also upper-bounded by p1 ` εq∆. Hence, the concatenation of the w0-to-v and the v-to-c

shortest paths has length 2p1 ` εq∆, which is indeed smaller than 8r∆ for ε ă 1 (since

∆ ď 2r∆).

Let p P P be the portal on R that is closest to c. From the way we built P , we have
distGrp, cs ď ε∆. The triangle inequality implies that distGrv, ps ď distGru, cs`distGrc, ps ď
distGru, cs ` ε∆ and distGrp, us ď distGrc, us ` ε∆. Using these inequalities, we have
d1 pGin, Gout, Gq “ distGrv, ps`distGrp, us ď distGrv, cs`distGrc, us`ε∆ ď distGrv, us`ε∆ ď

d pGin, Gout, Gq ` ε∆. See Figure 5.3(d).

For the second issue, we show how to ensure that whenever we query the data structure
of Theorem 5.7 each `pz0, xq (x P Xq is a small integer. We assume that without loss of
generality 1{ε is an integer. First, we compute the shortest-path tree in G from every p P P
in O pp1{εqnq time [HKRS97] and create a value d̂rv, ps for each v PMout and p P P by first

rounding distGrv, ps to the closest multiple of εr∆ and then dividing it with that number.

If distGrv, ps ě 4r∆, then distGrv, ps will be irrelevant in approximating d1 pGin, Gout, Gq.

Thus, in this case we set pdrv, ps “ 4{ε. Notice that now pdrv, ps P r4{εs. We divide (but

not round) every edge weight of Gin by εr∆ and denote the resulting graph by pGin. Let
pd “ εr∆ ¨ maxvPMout,uPMin

minpPP tpdrv, ps ` dist
pGin
rp, usu. Thus, we have d pGin, Gout, Gq ď

pd ď d pGin, Gout, Gq ` ε∆.

We can finally construct the farthest-neighbor data structure of Theorem 5.7 with
H “ pGin, X “ P , U “ Min, b “ O p1{εq, and W “ 4{ε. For each v P Mout, we query the
data structure with z0 “ v, X “ P , and `pz0, xq “ d̂Grv, xs, where x P X, and multiply

the answer by εr∆. The total time to O pε∆q-additively approximate d pGin, Gout, Gq is
O pnb3W 2 ` nb2q “ O pp1{εq5nq.

Contrary to our approach, Weimann and Yuster [WY16] employed a brute-force
search, after observing that there are only 2Op1{εq combinatorially different vertices of Min

and Mout (in terms of their vectors of distances to the portals).

63

5.2.3 Recursively solving the problem in G`in and G`out

The vertices on C appear in both Gin and Gout, so we have already considered all such pairs
of marked vertices and can unmark them in both graphs. Then, we need to augment Gin

into a graph G`in to ensure that Assumption 5.1 is satisfied, i.e., distGrs, ts ď distG`
in
rs, ts ď

distGrs, ts`ε∆ for any two marked vertices s, t of G`in. Also, we need to ensure that the size
of G`in is roughly the same as the number of marked vertices of Gin. We want to augment
Gout to a similarly defined graph G`out and use recursion in G`in and G`out.

We start at the common root of R and Q and select with a linear walk on their
8r∆-prefices 1{ε1 of their vertices, called dense portals, where ε1 ! ε is a parameter to be
set later, such that any consecutive pair of them is at distance ε1∆ thereon. The union
Bin of the p1{ε1q2 shortest paths in Gout of every pair of dense portals has at most p1{ε1q4

vertices of degree more than two. That is guaranteed by generating these shortest paths
with the data structure of Klein [Kle05], which ensures that any two of them share at most
a common subpath (see Theorem 5.10). Thus, we can shrink the rest to obtain a planar
graph B1in. Then, we unmark the vertices of B1in and create a new graph G1in “ Gin Y B1in
of |V pGq| ` p1{ε1q4 vertices. Its size can be reduced to β ` p1{ε1q4, where β ď 2|V pGq|{3
is the set of vertices of V pGinq ´ V pCq. To do so, we delete each non-dense-portal c and
redirect each edge cu, where u P V pGinq ´ V pCq, from c to its closest dense portal p and
change its weight to distGrp, us. We also create an edge between every consecutive pair
s, t of dense portals on R and Q with weight distGrs, ts. Notice that all these edges can be
created without affecting the planarity. Let G`in be the ensuing graph. See Figure 5.4.

Lemma 5.9. (Recursion with dense portals) For any two marked vertices u, v of G`in, we
have distGrs, ts ď distG`

in
rs, ts ď distGrs, ts `O pε

1∆q.

Proof. A path in G`in corresponds to a path in G, and u and v are marked in both G and
G`in. Thus, distGru, vs ď distG`

in
ru, vs. If πru, vs uses only edges incident to vertices in

V pGinq ´ V pCq, then it also exists in G`in, and we trivially have distGru, vs “ distG`
in
ru, vs.

Otherwise, we assume without loss of generality that πru, vs is composed of the u-to-c
shortest path in Gin, the c-to-c1 shortest path in G (which either lies entirely in Gin or
not), and the c1-to-v shortest path in Gin, where c P R and p P Q. As in the proof of

Lemma 5.8, we can show that c and c1 lie in the 8r∆-prefix of R and Q respectively, i.e.,
distGrw0, cs, distGrw0, c

1s ď 8r∆, where w0 is the common root of P and Q. Let p and p1 be
the closest dense portals to c and c1 respectively, so distGrc, ps, distGrc

1, p1s ď ε1∆. From the
way we deleted the non-dense-portals and redirected their incident edges, there is a u-to-p
path in G`in of length at most distGru, cs ` distGrc, ps ď distGru, cs ` ε

1∆ and a p1-to-v path
of length at most distGrp

1, c1s ` distGrc
1, vs ď distGrc

1, vs ` ε1∆.

If the c-to-c1 shortest path in G does not lie entirely in Gin, then from the way we
constructed B`in, we know distG`

in
rp, p1s ď distGoutrc, c

1s ` distGoutrp, cs ` distGoutrp
1, c1s ď

distGrc, c
1s ` 2ε1∆. Otherwise, let the c-to-c1 shortest path in G be composed of the c-to-x

64

O
(
ε′∆̃

)

(a) (b)

v0

(c)

v0

v0v0

(d)

Figure 5.4: (a) The dense portals (purple vertices) for the planar graph of Figure 5.3(a). (b)-(c)
The graphs Bin and B1in, respectively (on the grey background). (d) The graph G`in.

shortest path in R, the x-to-x1 shortest path in V pGinq ´ V pCq, and the x1-to-c1 shortest
path in Q, where x P R and x1 P Q. We can similarly show that in this case we also have
distG`

in
rp, p1s ď distGrc, c

1s ` 2ε1∆.

Therefore, the concatenation of the u-to-p, p-to-p1, and p1-to-v shortest paths in G`in
yields a path of length distG`

in
ru, ps`distG`

in
rp, p1s`distG`

in
rp1, vs ď distGin

ru, cs`distGrc, c
1s`

distGin
rc1, vs `O pε1∆q ď distGru, vs `O pε

1∆q.

It remains to show how to construct B1in and how to set ε1. For the first, contrary
to Weimann and Yuster, who constructed B1in explicitly in O pp1{ε1qnq time, we employ a
method based on the multiple shortest paths data structure of Klein [Kle05].

65

Theorem 5.10. (Augmented graph) We can build B1in in O pn log n` p1{ε1q4 log nq time.

Proof. As Klein showed, we can construct an implicit representation of the shortest-path
tree T puq of each vertex u on the boundary of the outer face of Gin in O pn log nq total
time. The order of the children w1, w2, . . . , wk for some k ą 0, of a vertex v in T puq is
specified as follows: wi is left of wj if and only if vwi occurs in Gin strictly between vwi
and vp in a counterclockwise traversal that starts at vp, where p is v’s parent in T puq.
Klein used a persistent [DSST89] version of dynamic trees [ST83] to represent the T puq’s,
so we can find the u-to-v shortest-path distance, for any v P V pGinq, in O plog nq time.
We want to augment Klein’s data structure to also support the following two queries on
each T puq: (i) find the lowest common ancestor of any two vertices; and (ii) find the level
ancestor of any vertex and any level. We can accommodate both queries in O plog nq time
by merely replacing the dynamic trees with the (persistent) top-tree structures of Alstrup
et al. [AHLT05].

To build B1in, we construct the modified version of Klein’s data structure for Gout,
after redrawing it in linear time (if needed), such that the vertices of C lie on the outer
face, and properly query it to find all vertices of Gout of degree more than two in Bin,
which, as argued before, are O pp1{ε1q4q. There are three cases for each pair of shortest
paths between dense portals: they (i) do not intersect, (ii) intersect only at one vertex, or
(iii) share a common subpath. For any four dense portals a, b, c, and d, assuming without
loss of generality that the latter case holds for πGra, bs and πGrc, ds and that c is between
a and b on the boundary of the outer face of Gin, we want to find the first and the last
vertices, p1 and p2, on that subpath.

We find p1 with a binary search on πGra, bs and Tc (finding p2 is similar). Let p1 and
p2 be initially set to a and b respectively, and let p be the vertex midway between p1 and
p2 on πGra, bs, which can be found by a level ancestor query on Ta. We want to determine
whether p is (i) between p1 and p2 (i.e., on πGrc, ds), (ii) between a and p1, or (iii) between
p2 and b. To do so, we find the lowest common ancestor lca of p and d on Tc. If lca “ p,
we are in case (i) because p is on πGrc, ds. See Figure 5.5(a) and (c). Else, we perform a
level ancestor query for p and d to find the children p̂ and d̂ of lca that lie on πrp, lcas and
πrd, lcas, respectively, and compare their order around lca. If p̂ is to the left of d̂, we are in
case (ii), else we are in case (iii). See Figure 5.5(b) and (d). For case (i) or (iii) we recurse
with p1 “ p, for case (ii) with p2 “ p, and we stop when p1 “ p2. Once we have processed
every pair of dense portals, we shrink the vertices of V pGoutq of degree at most two with
a linear scan, thus obtaining B1in.

Finally, Weimann and Yuster used a fixed constant for ε1 throughout their algo-
rithm. There are O plogNq recursion levels, and the error accumulates, hence they set
ε1 “ ε{ logN . However, with that choice of ε1, the four O p1{ε1q factors of the size of B1in
lead to four O plogNq factors in the running time of their solution. Instead, we make ε1

adaptive (i.e., dependent on the current input size n), namely equal to ε{n1{8, thus shaving
off two logN factors, while retaining the 1`O pεq approximation factor, as we show next.

66

a c b d

p1 p2p

(a)

a c b d

p1 p2

p

(b)
c

p

d

(c)

c

lca

dp

p̂ d̂

(d)

Figure 5.5: (a), (c) p lies between p1 and p2. (b), (d) p lies between a and p1.

5.2.4 Analyzing our algorithm

Approximation factor. As described in Section 5.2.2, for each node µ of the recursion

tree we compute an O pε∆q-additive approximation of d
´

G
pµq
in , G

pµq
out, G

pµq
¯

, where Gpµq is

the graph associated with µ, and G
pµq
in and G

pµq
out are the two graphs created by decomposing

Gpµq, as in Section 5.2.1. As explained in Section 5.2.3, from the way we apply recursion,

in each child ν of µ we have d
´

G
pνq
in , G

pνq
out, G

pνq
¯

ď d
´

G
pµq
in , G

pµq
out, G

pµq
¯

` O pε1∆q and∣∣∣V ´

G
pνq
in

¯
∣∣∣ ď p2{3q∣∣∣V ´

G
pµq
in

¯
∣∣∣` O pp1{ε1q4q, where ε1 “ ε

M
∣∣∣V ´

G
pµq
in

¯
∣∣∣1{8. At the root κ of

the recursion tree, we have Gpκq “ G, while in each leaf λ,
∣∣∣V `

Gpλq
˘

∣∣∣ “ Θ pp1{εq4q.

Thus, the additive error of our algorithm is O pε∆q`O p
ř

i εi∆q, where εi “ ε{n
1{8
i for

some sequence n1, n2, . . . , nk that satisfies ni´1{3 ď ni ď 2ni´1{3`O pp1{εiq
4q with n1 “ N

and nk “ Θ pp1{εq4q. Since ni decreases at least exponentially, εi grows likewise. Hence,
ř

i εi is similar to a geometric series and can be upper-bounded by the last term, which is
O
`

ε3{2
˘

. We conclude that the additive error is O pε∆q, implying that the approximation
factor of our algorithm is 1 ` O pεq. That can be refined to 1 ` ε after adjusting ε by a
constant factor.

Assumption 5.1 is true. We now show that for any two marked vertices u and v of a
graph G encountered during the recursion, we have distGru, vs ď distGru, vs ď distGru, vs `
ε∆.

Fix a non-leaf node ν of T and its parent µ, such that u and v are marked in both
and Gpνq “ G. As explained in Section 5.2.3, from the way we use recursion, we have

67

distGpµqru, vs ď distGpνqru, vs ď distGpµqru, vs ` O pε1∆q, where ε1 “ ε{|V pGpµqq|1{8. At the

root κ of the recursion tree, Gpκq “ G, while in each leaf λ,
∣∣∣V `

Gpλq
˘

∣∣∣ “ O pp1{εq4q.

Thus, we have that distGru, vs ď distGru, vs ď distGru, vs ` O p
ř

i εi∆q, where εi “

ε{n
1{8
i , for some sequence n1, n2, . . . , nk that satisfies ni´1{3 ď ni ď 2ni´1{3 ` O pp1{εiq

4q

with n1 “ N and nk “ Θ pp1{εq4q. As above,
ř

i εi can be upper-bounded by O
`

ε3{2
˘

.

Hence, for any two marked vertices u and v of Gpµq, we have distGru, vs ď distGru, vs ď
distGru, vs `O

`

ε3{2∆
˘

, thus proving (a stronger version of) the assumption.

Running time. In a graph of size n, the running time T pnq of our algorithm satisfies
the following inequality:

T pnq ď max
1{3ďαď2{3

`

T
`

αn`O
`

p1{εq4
?
n
˘˘

` T
`

p1´ αqn`O
`

p1{εq4
?
n
˘˘

`

O
`

n
`

log n` p1{εq5
˘˘˘

.

In the base case, there are O pε4Nq graphs of O pp1{εq4q vertices each, so we need
O pp1{εq4Nq time [Fre87]. For n “ N , we have T pNq “ O pN logN plogN ` p1{εq5qq,
which is the total time of our algorithm.

New Result 5. (Approximate diameter in weighted, undirected planar graphs) We can
compute a p1 ` εq-approximation of the diameter of a non-negatively-weighted, undirected
planar graph of n vertices in O pn log n plog n` p1{εq5qq time.

Remarks :

• Gawrychowski et al. [GKM`18] recently improved Cabello’s algorithm [Cab17b] for
computing the diameter in planar graphs exactly. Their algorithm is deterministic
instead of randomized and requires rO

`

n5{3
˘

time instead of rO
`

n11{6
˘

. It is likely
that their techniques can be used to shave off some 1{ε factors.

• An interesting consequence of our result is that we can compute the exact diameter
of an unweighted planar graph in O

`

n log n
`

log n`∆Op1q
˘˘

time, where ∆ is the
diameter, simply by setting ε near 1{∆. If one wants running time near linear in n,
the best previous result we are aware of was by Eppstein [Epp99] and had exponential
dependence in ∆ (namely, the time bound is O

`

n2Op∆ log ∆q
˘

). Note that our result
beats Cabello’s or Gawrychowski et al.’s algorithm when the diameter is smaller than
nδ for some constant δ.

By keeping track throughout the algorithm of the distance of each vertex to its farthest
neighbor, we can compute a p1 ` εq-approximation of its eccentricity. Hence, we can also
compute a p1`εq-approximation of the radius (i.e., the minimum eccentricity) of the graph.

68

Corollary 5.11. (Approximate eccentricities, farthest neighbors, and radius in weighted,
undirected planar graphs) Given a non-negatively weighted, undirected planar graph of n
vertices, we can compute a p1`εq-approximation of the radius of the graph and of the eccen-
tricity of each node (and an approximate farthest neighbor) in O pn log n plog n` p1{εq5qq
time.

5.3 Approximate distance oracles

To construct an approximate distance oracle in the Word RAM, we build upon the general
framework of the oracles of Kawarabayashi et al. [KST13] and of Gu and Xu [GX15].
Specifically, given a non-negatively-weighted, undirected planar graph G of N vertices and
of diameter ∆, we focus on constructing a distance oracle with additive stretch O pε∆q,
i.e., a data structure that supports the following kind of queries: given for any two vertices
u and v of G, return a value d̃ with distGpu, vq ď d̃ ď distGpu, vq ` O pε∆q. Then, we can
obtain a p1`εq-approximate distance oracle with an approach based on sparse neighborhood

covers, defined in Section 2.7. Let r∆ be a 2-approximation of ∆.

5.3.1 Distance oracles with additive stretch

The decomposition tree. We recursively decompose G, as in Sections 5.2.1 and 5.2.3,
but now we also store the ensuing graphs in a recursive decomposition tree T with the
following properties.

• T has degree two and height O plogNq.

• Each non-leaf node µ of T is associated with a graph Gpµq. The graph of each child
of µ has at most 2|V

`

Gpµq
˘

|{3` O pp1{ε1q4q vertices, where ε1 “ ε{|V
`

Gpµq
˘

|1{8. At

the root κ of T , Gpκq “ G, and at each leaf, λ |V
`

Gpλq
˘

| “ O pp1{ε1q4q.

• Each non-leaf node µ of T is also associated with a shortest-path separator Cpµq. We
call a vertex of Gpµq marked if and only if it does not lie in Cpνq of any ancestor ν of
µ. Each marked vertex of Gpµq that is not on Cpµq is contained in the graph of one
child of µ.

• Fix a non-leaf node ν of T and let µ be its parent. For each pair of marked vertices
of Gpνq, we have distGpµqru, vs ď distGpνqru, vs ď distGpµqru, vs `O pε

1∆q.

Our data structure. In each non-leaf node µ of T , we find in linear time, as in
Section 5.2.2, a set P pµq of 1{ε portals on Cpµq, such that for any two marked vertices
u, v P V

`

Gpµq
˘

on different sides of Cpµq,

69

distGpµqru, vs ď minpPP pµqtdistGpµqru, ps ` distGpµqrp, vsu ď distGpµqru, vs `O pε∆q.

Then, we run an SSSP algorithm from each p P P pµq. Let ν1 and ν2 be the children of
µ. For every marked vertex v of ν1, we create a value d̂Gpµqrv, ps P r4{εs as in Section 5.2.

We also divide every edge weight of Gpµq by εr∆. Thus,

distGpµqru, vs ď εr∆ ¨minpPP pµqtd̂Gpµqru, ps ` distGpµqrp, vsu ď distGpµqru, vs `O pε∆q.

We create a set S of O p1{εq sites with unspecified weights in Gpν2q, place each at
a vertex of P . Also, we perturb the weights of the edges incident to the sites as in
Section 5.2.2. Then, we construct for Gpν2q and S a data structure for Voronoi diagrams,
similarly to that of Theorem 5.5, in O pp1{εq5nq time. For each marked vertex v of ν1, we
construct an empty set P 1 and insert to it every p P P pµq, such that the last edge on the
v-to-p shortest path in Gpµq does not lie in Gpν2q, which we can determine by inspecting
p’s shortest-path tree. Next, we query the data structure of Theorem 5.5 to construct the
Voronoi diagram in Gpν2q of a set S 1 Ď S of sites placed at the vertices of P 1, where the
weight of each s1 P S is equal to d̂Grv, vs1s. Notice that from the perturbation and from
the choice of P 1, we have that S 1 is generic and non-redundant. Finally, we build for that
Voronoi diagram the vertex location data structure of [GMWWN18, Section 6]. That data
structure preprocesses once in O pbnq time and space a planar graph of n vertices and a
set of b sites with unspecified weights that lie on the boundary of its outer face to support
the following operation: preprocess any given Voronoi diagram of a subset of these sites
in O pbq time and space, such that the site that contains a given vertex can be found in
O plog bq time. In our application, b “ 1{ε, so we need O pp1{εqnq total time and space for
preprocessing all Voronoi diagrams related to the marked vertices of Gpν1q.

Given two vertices u and v, we find in O p1q time the lowest node µ of T where both
are marked (that can be done with linear preprocessing time). If none exists, u and v
must reside in a leaf, and we return their shortest-path distance by looking up the distance
matrix therein (which we can precompute). Else, we assume without loss of generality
that u P V

`

Gpν2q
˘

and v P V
`

Gpν1q
˘

, where ν1 and ν2 are the children of µ, and that

we have computed the Voronoi diagram in Gpν2q for sites and weights prescribed by v.
Then, we query, in O plog p1{εqq time, the vertex location data structure for that Voronoi
diagram to find the site p therein whose Voronoi region contains u. Finally, we return
rd “ εr∆ ¨ pdistGpµqrv, ps ` distGpν2qrp, usq.

Additive stretch. We now show that for any two vertices u, v of G, our oracle returns
a value rd with distGru, vs ď rd ď distGru, vs `O pε∆q.

Fix a non-leaf node ν of T and its parent µ, such that u and v are marked in both.
From the way we use recursion, we have distGpµqru, vs ď distGpνqru, vs ď distGpµqru, vs `
O pε1∆q, where ε1 “ ε{|V pGpµqq|1{8. At the root κ of the recursion tree, Gpκq “ G, while at

each leaf λ,
∣∣∣V `

Gpλq
˘

∣∣∣ “ Θ pp1{εq4q. Also, from the way we approximate distGpµqru, vs, we

have distGpµqru, vs ď rd ď distGpµqru, vs `O pε∆q.

70

Thus, the value rd that our oracle returns is such that distGru, vs ď rd ď distGru, vs `

O pε∆q ` O p
ř

i εi∆q, where εi “ ε{n
1{8
i , for some sequence n1, n2, . . . , nk that satisfies

ni´1{3 ď ni ď 2ni´1{3`O pp1{εiq
4q with n1 “ N and nk “ Θ pp1{εq4q. As in Section 5.2.4,

ř

i εi can be upper-bounded by O
`

ε3{2
˘

, hence yielding the lemma.

Preprocessing time and space. The preprocessing time T pnq and space Spnq satisfy
the following recurrence relations:

T pnq ď max
1{3ďαď2{3

`

T
`

αn`O
`

p1{εq4
?
n
˘˘

` T
`

p1´ αqn`O
`

p1{εq4
?
n
˘˘

`

O
`

n
`

log n` p1{εq5
˘˘˘

,

Spnq ď max
1{3ďαď2{3

`

S
`

αn`O
`

p1{εq4
?
n
˘˘

` S
`

p1´ αqn`O
`

p1{εq4
?
n
˘˘

`O pp1{εqnq
˘

.

In the base case, there are O pε4Nq graph of O p1{ε4q vertices each, so we need to
spend O pp1{εq4Nq time. For N “ n, we have T pNq “ O pN plogN plogN ` p1{εq5qqq and
SpNq “ O pp1{εqN logNq , which are the total preprocessing time and space requirements,
respectively, of our oracle of additive stretch.

Theorem 5.12. (Oracle of additive stretch) Given a non-negatively weighted, undirected
planar graph of n vertices and of diameter ∆, we can construct for it an oracle of O pε∆q
additive stretch with O

`

n
`

log2 n plog n` p1{εq5q
˘˘

preprocessing time, O
`

p1{εqn log2 n
˘

space, and O plog p1{εqq query time.

5.3.2 Approximate distance oracles

Now we show how to use our oracle of additive stretch as a building block to construct a p1`
εq-approximate distance oracle by using an existing technique based on sparse neighborhood
covers. Recall that from Section 2.7 we have the following lemma.

Lemma 5.13. (Sparse neighborhood covers in planar graphs) Given a planar graph G “
pV,Eq of n vertices and an integer r, we can construct a collection of subsets Vi of V in
O pn log nq time, such that (i) the diameter of the subgraph of G induced by each Vi is at
most 24r´ 18, (ii) every vertex resides in O p1q subsets Vi, and (iii) for every vertex v, the
set of all vertices at distance at most r from v is contained in at least one of the Vi’s.

Our approach is similar to those of Kawarabayashi et al. [KST13] and of Gu and
Xu [GX15]. Specifically, we first assume without loss of generality that each edge of G has
weight at least one That can be ensured by dividing every edge weight with the minimum.
Then, for every scale r P

20, 21, . . . , 2log ∆
(

, we consider the graph Gprq that ensues after
deleting the edges of G of weight at least 24r and contracting those of weight at most

71

r{N2. Thus, each edge appears in the graphs of O plogNq scales, which we can identify
in that much time. Let R be the set that contains each scale r such that Gprq has at
least one edge. For each r P R, we construct Gprq and the sparse neighborhood cover of
Lemma 5.13 for it, hence obtaining a collection of subsets V

prq
i . Then, for the induced

graph of Gprq of each such subset, we build our distance oracle of O pεrq additive stretch
of Theorem 5.12. Finally, we build the 2-approximate distance oracle of O pN logNq space
and O p1q query time of Thorup [Tho04a] in O

`

N log3N
˘

time. We assume that ε ě 2{N
because otherwise we can just run a linear-time SSSP algorithm [HKRS97].

Given two vertices of u and v, we obtain a 2-approximation d of the u-to-v distance by
querying the oracle of Thorup [Tho04a]. Then, we compute the most significant bit [FW93]
(this is where we need the assumption of the Word RAM) of d to identify a scale r such
that r{2 ď d ď r in constant time. Finally, we visit the oracle of each of the O p1q subsets

V
prq
j that contain u, compute an approximation pdj of additive stretch of the u-to-v distance

therein, and set rd to be the minimum of the values pdj ` εr{2.

Approximation factor. We now show that for any two vertices u, v of G, our oracle
returns a value rd with distGru, vs ď rd ď p1`O pεqqdistGru, vs.

We first claim that r P R. To see this, recall that in Gprq all edges of weight at least
24r have been deleted and those of weight at most r{n2 have been contracted. Notice that
the former edges do not participate in the u-to-v shortest path in G because the length
of that path is at most r. Since the diameter of Gprq is at most 24r ´ 18, these edges are
not used in any shortest path therein. Let L be the largest summation of distances in any
contracted path of Gprq. Since ε ą 2{N , we have L ď r{N ď εr{2. The length of the u-to-v
shortest path in G is at least r{2, so not all of its edges are contracted in Gprq, i.e., r P R.
This also shows that distGprqru, vs ď distGru, vs ď distGprqru, vs ` εr{2.

From the first property of sparse neighborhood covers, we know that there is at least
one subset V

prq
i that contains both u and v, such that the induced subgraph of Gprq has

diameter at most 24r´18. From the third, we have distGprqi
ru, vs “ distGprqru, vs. Moreover,

for the u-to-v distance pdi returned by our oracle of additive stretch for Gprqi , we have

distGprqi
ru, vs ď pdi ď distGprqi

ru, vs `O pεrq. Combining everything, distGru, vs ď pdi ` εr{2 ď

distGru, vs `O pεdistGru, vsq ď p1`O pεqqdistGru, vs.

By adjusting ε by a constant factor, the approximation factor of our oracle can become
1` ε.

Time and space analysis. The preprocessing time is dominated by the time required
to build the oracles of additive stretch for the graphs Gprqi associated with the sparse neigh-
borhood cover of Gprq for each scale r P R (the same applies for the space). Each such oracle
can be constructed in O

`

n
`

log2 n plog n` p1{εq5q
˘˘

time, where n is the number of vertices

72

of the corresponding graph. Since each edge of G appears in O plogNq graphs Gprqi , the sum-
mation of n’s over all oracles of additive stretch is O pN logNq. Therefore, the total prepro-
cessing time and space of our p1`εq-approximate oracle is O

`

N
`

log2N plogN ` p1{εq5q
˘˘

and O
`

p1{εqN log2N
˘

respectively. The query time is O plog p1{εqq because we spend
O p1q time to find the appropriate scale and query O p1q oracles of additive stretch, each
in O plog p1{εqq time.

New Result 6. (Approximate distance oracle) We can construct a p1` εq-approximate
distance oracle for a non-negatively-weighted, undirected planar graph of n vertices with
O
`

n log2 n plog n` p1{εq5q
˘

preprocessing time,

O
`

p1{εqn log2 n
˘

space, and O plog p1{εqq query time in the Word RAM.

73

Chapter 6

Approximate shortest paths and
distance oracles in weighted unit-disk
graphs

We consider in this chapter p1` εq-approximate shortest path problems in weighted unit-
disk graphs. We develop the first near-linear time p1` εq-approximation algorithm for the
diameter of weighted unit-disk graphs of n vertices, running in O

`

n log2 n
˘

time for any

constant ε ą 0. Hence, we considerably improve upon the near-O
`

n3{2
˘

-time algorithm
of Gao and Zhang [GZ05]. Using similar ideas, we develop a p1` εq-approximate distance
oracle of O p1q query time for these graphs with a likewise improvement in the preprocessing
time, specifically from near O

`

n3{2
˘

to O
`

n log3 n
˘

. We also obtain similar new results for
a number of related problems in the weighted unit-disk graph metric, such as the radius
and the bichromatic closest pair.

As a further application, we employ our new distance oracle, along with additional
ideas, to solve the p1`εq-approximate all-pairs bounded-leg shortest paths (apBLSP) prob-
lem for a set of n planar points with O pn2 log nq space, O plog log nq query, and near
O pn2.579q preprocessing time, for any constant ε ą 0, improving thus the near-cubic pre-
processing time bound by Roditty and Segal [RS11].

The results of this chapter will be presented in SoCG 2018 [CS18].

Definitions. Let G “ pV,Eq be graph. For any u, v P V , we denote a u-to-v shortest
path in G by πGru, vs and its length by distGru, vs. We also refer to distGru, vs as shortest-
path distance or simply distance. Let predGru, vs be v’s predecessor on πGru, vs. The
shortest-path tree of each u P V is a spanning tree of G rooted at u, such that the u-to-v
shortest-path distance for each v P V in that tree corresponds to distGrs, ts.

As mentioned in previous chapters, a weighted unit-disk graph G is defined as the
intersection graph of a set of n unit-diameter disks in the plane. That is, vertices correspond

74

to a set S of planar points (the centers of the disks), and there is an edge between every
two points of S at Euclidean distance at most one (of weight equal to that distance). We
assume that G is represented implicitly by S, so only O pnq space is required to store it.
We are interested in the following fundamental shortest-path problems in G.

• Computing a p1` εq-approximation of various parameters of G, such as the diameter
(i.e., maxs,tPS distGrs, ts), the radius (i.e., minsPS maxtPS distGrs, ts), the bichromatic
closest pair distance of two subsets A,B Ď S (i.e., minaPA, bPB distGra, bs), et cetera.

• Designing approximate distance oracles, i.e., data structures that support the follow-
ing query: given any s, t P V , compute a value rd with distGrs, ts ď rd ď p1`εqdistGrs, ts

and the predecessor of t in an s-to-t path of length rd.

Finally, we study the all-pairs bounded-leg shortest paths (apBSLP) problem. Given a
set S of n planar points, we define GďL to be the subgraph of the complete Euclidean graph
of S that contains only edges of weight at most L. Then, we want to preprocess S, such
that given two points s, t P S and any positive number L, we can quickly compute a p1`εq-
approximation of the length of the s-to-t shortest path in GďL (i.e., the shortest path under
the restriction that each leg of the trip has length bounded by L). To see the connection of
apBLSP with the earlier problems, note that GďL for each fixed L is a weighted unit-disk
graph, after rescaling the radii. One important difference however is that L is not fixed in
apBLSP, and we want to answer queries for any of the

`

n
2

˘

combinatorially different L’s.

Background and overview of techniques. Now, we discuss the technical challenges
that arise when trying to address p1` εq-approximate shortest-path problems in weighted
unit-disk graphs. For now, we assume that ε ą 0 is a constant.

Planar graph techniques. In weighted planar graphs, there are many results on devel-
oping p1 ` εq-approximate distance oracles and p1 ` εq-approximate diameter algorithms
as we have discussed in Chapter 5. For the oracles problem, the data structures of Tho-
rup [Tho04a] require rO pnq preprocessing time and space and O p1q query time, where
rO pfpnqq denotes O

´

fpnq logOp1q n
¯

(see [Kle02, KST13, GX15, CS17b] for subsequent

work). For the diameter problem, Weimann and Yuster’s algorithm [WY16] requires
O
`

n log4 n
˘

time, which was improved to O
`

n log2 n
˘

as we have shown in Chapter 5
(we have also shown how to eliminate the exponential dependency on 1{ε).

All the above approximation results for planar graphs rely heavily on shortest-path
separators : a set of shortest paths with common root, such that the removal of their
vertices decomposes the graph into at least two disjoint subgraphs. Unfortunately, such
separators do not seem directly applicable to unit-disk graphs, and not only because the
latter may be dense. Indeed, by grid rounding we can construct a sparse weighted graph
pG, such that it (i) approximately preserves distances in the original unit-disk graph G
(e.g., see the proof of Lemma 6.2), and (ii) is “nearly planar”, in the sense that each edge

75

intersects at most a constant number of other edges. However, even for such a graph it is
not clear how to define a shortest-path separator that divides it cleanly into an inside and
an outside because edges may “cross” over the separator. At least one prior paper [YXD12]
worked on extending shortest-path separators to unit-disk graphs, but the construction was
complicated and achieved only constant approximation factors.

Gao and Zhang’s WSPD-based technique. As mentioned in Section 2.8, Gao and
Zhang [GZ05], in a seminal paper, obtained the first nontrivial set of results on shortest-
path problems in weighted unit-disk graphs. To do so, they adapted a familiar technique
in computational geometry, namely the well-separated pair decomposition (WSPD), intro-
duced by Callahan and Kosaraju [CK95] for solving proximity problems in the Euclidean
(or Lp) metric. Gao and Zhang proposed a new variant of WSPDs for the weighted unit-
disk graph metric and proved that any set of n planar points has a WSPD of near-linear,
namely O pn log nq, size under the new definition.

Consequently, Gao and Zhang obtained a p1 ` εq-approximate distance oracle with
O pn log nq size andOp1q query time. Unfortunately, the preprocessing time, O

`

n3{2
?

log n
˘

,
is quite high, and becomes the bottleneck when the technique is applied to offline problems,
such as computing the diameter. However, the issue is not constructing the WSPD itself,
which can be done in near-linear time, but computing the shortest-path distances of a
near-linear number of vertex pairs in the “nearly planar” graph pG mentioned above. That
computation takes almost n3{2 time by showing that pG has a balanced separator [MTV91,
EMT95] and adapting a known exact distance oracle for planar graphs [ACC`96].

Our technique. To obtain a near-linear-time p1 ` εq-approximation diameter algo-
rithm and p1 ` εq-distance oracles with near-linear preprocessing time in weighted unit-
disk graphs, we follow a conceptually simple approach: we just employ known shortest-
path separator techniques from the planar-graphs case [Tho04a, KST13]! However, we find
shortest-path separators not in the given unit-disk graph G, but in a planar O p1q-spanner
H of G. Fortunately, such spanners are already known to exist in unit-disk graphs [LCW02]
and were also used by Gao and Zhang [GZ05]. Specifically, we apply divide-and-conquer
over the decomposition tree that results by recursively decomposing H with shortest-path
separators.

Although the above plan may sound obvious in hindsight, the details are tricky to
get right. For example, how could the use of an O p1q-spanner eventually lead to 1 ` ε
approximation factor? The known divide-and-conquer approaches for planar graphs select
a small number of vertices, called portals , along each separator and compute distances
from each with a single-source shortest paths (SSSP) algorithm. That works well because
a shortest path in a planar graph crosses a separator only at vertices. In our case, however,
we need to use the original (non-planar, unit-disk) graph G when computing distances from
portals, but therein a shortest path could “cross” the separator over an edge. We show
that we can nevertheless re-route such a path to pass through a separator vertex without
increasing the length by much, by using the fact that H is an O p1q-spanner.

76

6.1 Approximate diameter and distance oracles

Let S be a set of planar points whose weighted unit-disk graph G has diameter ∆. A key
subproblem in both (i) computing a p1 ` εq-approximation of the diameter of G and (ii)
building a p1`εq-approximate distance oracle for G is the construction of a distance oracle
with additive stretch O pε∆q: a data structure, such that given any s, t P S, we can quickly

compute a value rd with distGrs, ts ď rd ď distGrs, ts`O pε∆q. This is because we can apply
such an oracle, along with existing techniques, to address the two original problems, as
we show in Section 6.1.3. In Section 6.1.1 we give two preliminary ingredients and then
describe our oracle of additive stretch in Section 6.1.2.

6.1.1 Preliminaries

The first ingredient we need is the existence of a planar spanner with constant stretch
factor in any weighted unit-disk graph.

Lemma 6.1. (Planar spanner) Given a set S of n planar points, we can find a subgraph
H of its weighted unit-disk graph G in O pn log nq time, such that H is a (i) planar graph
and (ii) c-spanner of G, i.e., for every s, t P S, distGrs, ts ď distHrs, ts ď cdistGrs, ts for
some constant c ą 0.

Li, Calinescu, and Wan [LCW02] proved the above lemma with c “ 2.42 by simply
building the Delaunay triangulation of the given points and discarding edges of weight
more than one. However, the analysis of the stretch factor c is nontrivial.

The second ingredient is an efficient algorithm for the single-source shortest paths
(SSSP) problem in weighted unit-disk graphs. The currently best exact result is due

to Cabello and Jejčič [CJ15], requires O
´

n log12`op1q n
¯

time and employs complicated

dynamic data structures for additively weighted Voronoi diagrams [Cha10a, KMR`17].
For our purposes though, it suffices to consider the p1 ` O pεqq-approximate version of
the problem instead, i.e., given a set of points S and a source s P S, compute a path of
length rdrs, ts for each t P S, such that distGrs, ts ď rdrs, ts ď p1 ` O pεqqdistGrs, ts. Our

algorithm first finds a sparse graph pG that p1`O pεqq-approximately preserves distances in

G, i.e., for any s, t P S, there are vertices cs, ct of pG, such that distGrs, ts ď dist
pGrcs, cts ď

p1` O pεqqdistGrs, ts). Then, it runs Dijkstra’s algorithm in pG. Sparsification in weighted
unit-disk graphs has been used before (e.g., see [GZ05, Section 4.2]).

Lemma 6.2. (Approximate SSSP) Given a set S of n planar points, we can solve the
p1 ` εq-approximate SSSP problem in its weighted unit-disk graph G in O pp1{εq2n log nq
time.

Proof. First, we build a uniform grid of side length ε and construct a sparse weighted
graph pG by placing a vertex at each non-empty grid cell and an edge between every two

77

such cells c and c1 iff there exist points p P c and p1 P c1 with }p ´ p1} ď 1. The weight
of that edge is equal to the maximum Euclidean distance of c and c1. Each grid cell has
at most O pp1{εq2q neighbors, so pG has at most O pp1{εq2nq edges and can be constructed
in O pp1{εq2n log nq time with a Euclidean bichromatic closest pair algorithm [PS85] over
O pp1{εq2nq pairs of grid cells.

Let s and t be two points of S. If }s ´ t} ď 1, we can trivially return }s ´ t}.
Otherwise, let p0p1 ¨ ¨ ¨ p`, with p0 “ s and p` “ t, be the shortest path in G from s to t.
Two consecutive edges therein have lengths whose sum is at least one because otherwise
we could take a short-cut and obtain a shorter path. Thus, distGrs, ts ě t`{2u. Consider

the path c0c1 ¨ ¨ ¨ c` in pG, where each ci is the cell that contains pi. Since, for each ci, ci`1,
}pi ´ pi`1} ď dist

pGrci, ci`1s ď }pi ´ pi`1} `O pεq, it follows that distGrs, ts ď dist
pGrc0, c`s ď

distGrs, ts `O pε`q ď p1`O pεqqdistGrs, ts.

Given a source s P S, we can invoke Dijkstra’s algorithm in pG to compute the shortest
path tree from s and return rdrs, ts “ distGrcs, ct] for each t P S, where cs and ct are
the grid cells that contain s and t, respectively. From the previous paragraph, we have
distGrs, ts ď rdrs, ts ď p1 ` O pεqqdistGrs, ts. We can easily modify our algorithm to also

find, for each t P S, an s-to-t path in G of length rdrs, ts, by appending s and t at the

ends of the s-to-t shortest path in pG and replacing each ci and ci`1 with the bichromatic
closest pair of ppS X ciq, pS X ci`1qq in G. Notice that these pairs have been found while

constructing pG.

6.1.2 Distance oracles with additive stretch

We now describe a distance oracle with additive stretch for an arbitrary weighted, undi-
rected graph G “ pV,Eq of n vertices and of diameter ∆ that has the following properties,
which are the only ones needed from weighted unit-disk graphs.

(I) There exists a planar c-spanner H of G, for some constant c ą 0.

(II) For any induced subgraph of G with n1 vertices, the p1 ` εq-approximate
SSSP problem can be solved in T pn1q time, for some function T p¨q such
that T pn1q{n1 is nondecreasing.

(III) Every edge weight in G is at most ε∆.

If G is a weighted unit-disk graph, Lemmas 6.1 and 6.2 imply (I) and (II), respectively,
where c “ 2.42 and T pn1q “ O pp1{εq2n1 log n1q, and (III) holds as long as ∆ ě 1{ε.

Shortest-path separators in H. Although G may not have nice shortest-path
separators, we know by planarity that H does. Thus, as described in Section 2.5, we apply a
known shortest-path separator decomposition for H, namely the version of Kawarabayashi,
Sommer, and Thorup [KST13, Section 3.1], to compute in O pn log nq time a decomposition
tree T with the following properties.

78

• T has Op1q degree and Oplog nq height.

• Each node µ of T is associated with a subset V pµq Ď V . The subsets V pνq over all
children ν of µ are disjoint and contained in V pµq. If µ is the root, V pµq “ V ; if µ is
a leaf, V pµq has Op1q size.

• Each non-leaf node µ of T is associated with a set of Op1q paths, called separator
paths, which are classified as “internal” and “external”. The internal separator paths
cover precisely all vertices of V pµq´

Ť

child ν of µ V
pνq, while the external are outside of

V pµq.

• For each child ν of a non-leaf node µ, every neighbor of the vertices of V pνq in H is
either in V pνq or in one of the (internal or external) separator paths at µ.

• Each separator path is a shortest path in H and, in particular, has length at most
the diameter ∆pHq of H (which is at most c∆).

Our data structure. To construct an additive oracle with O pε∆q stretch for G,
we construct the above decomposition tree T and augment it with extra information, as
follows. Let µ be an internal node of T and σ one of its internal separator paths. Since σ
has length at most ∆pHq ď c∆, we can select, with a linear walk, a set of O p1{εq vertices
thereon, called portals, such that each consecutive pair of them is at distance at most ε∆
on it.

Let P pµq denote the set of all portals over all internal separator paths at a non-leaf
node µ of T . For each such node and for each p P P pµq and v P V pµq, we invoke O p1{εq

times the SSSP algorithm from Property (II) to compute a p1`εq-approximation, rdµrp, vs,
of the shortest-path distance from p to v in the subgraph of G induced by V pµq. Then,
for each leaf µ, we just find and store all pairwise distances in the subgraph of G that is
induced by V pµq. Overall, our oracle requires O pp1{εqT pnq ¨ log nq preprocessing time and
O pp1{εqn ¨ log nq space.

Query algorithm. Given two vertices s, t P V , we first identify all O plog nq nodes
µ in T , such that both s P V pµq and t P V pµq To do so, we trivially start from the
root and go down the tree along a path. For each such non-leaf node µ, we compute a
value rδµrs, ts “ minpPP pµq

rdµrs, ps ` rdµrp, ts
(

in O p1{εq time. If µ is a leaf, rdµrs, ts is the

exact shortest-path distance in the subgraph of G induced by V pµq, which we have already
computed. Finally we return the minimum, rδrs, ts, over all rδµrs, ts. The total query time
is O pp1{εq log nq.

Stretch analysis. We want to prove that for any s, t P V , the value rdrs, ts that

our oracle returns is such that distGrs, ts ď rdrs, ts ď distGrs, ts ` O pε∆q. The left side of

79

u

t

s

V (ν)

w

πv

V (µ)

σ

π(u, v)

(a)

u

t

s

V (ν)

w

πv

V (µ)

σ

π(u, v)

(b)

w

π′

σ′p

V (µ′)

s

t

(c)

Figure 6.1: Detour through a vertex of a separator path σ in Claim 6.1, where σ may be internal,
as in (a), or external, as in (b). Detour through a portal in Claim 6.2 in (c).

the inequality clearly holds because rdrs, ts corresponds to the length of an s-to-t path in
a subgraph of G. To prove the right side, let π be the shortest s-to-t path in G, and let
µ be the lowest node in T , such that all vertices of π lie in V pµq. We assume that µ is a
non-leaf node because otherwise we have already computed distGrs, ts exactly.

Although π is a path in the (not necessarily planar) graph G, not H, we show that
it is possible to re-route it to pass through a vertex on a separator path of µ without
increasing its length by much.

Claim 6.1. (Detour through a separator vertex) There exists an s-to-t path π1 in G that
(i) passes through some vertex w on a separator path of µ, (ii) uses only vertices of V pµq

(except maybe for w itself) and (iii) has length at most distGrs, ts ` 2cε∆.

Proof. We assume that none of the vertices on π lie on a separator path of µ because
otherwise we can just set π1 “ π. Let ν be the child of µ with s P V pνq, let u be the last
vertex on π that lies in V pνq (note that u ‰ t, by definition of µ), and let v be the next
vertex after u thereon. By Property (I) of G, there is a path πu,v from u to v in H of length
at most c ¨ (the weight of uv), which is at most cε∆ by Property (III). Let w be the first
vertex on πu,v that lies outside of V pνq, which exists since v is outside of V pνq. Then, from
the fourth property of T , we know that w must be on an (internal or external) separator
path σ of µ. Thus, we set π1 to be the path that goes from s to u along π, then from u to w
along πu,v (which uses only vertices in V pνq as intermediates), then back from w to u along
πu,v, and finally from u to t along π. See Figure 6.1(a) (where σ is internal) and 6.1(b)
(where σ is external).

Next, we note how to further re-route π to pass through a portal.

Claim 6.2. (Detour through a portal) There exists another s-to-t path π2 in G that (i)
passes through a portal p on a separator path σ1 of µ1, where µ1 is some ancestor of µ, (ii)
uses only vertices of V pµ

1q, and (iii) has length at most distGrs, ts ` p2c` 2qε∆.

80

Proof. Let w be as in Claim 6.1, and let µ1 be the lowest ancestor of µ with w P V pµ
1q.

Notice that if w P V pµq, then σ “ σ1. Then w must be on an internal separator path σ1 in
µ1, whose existence is guaranteed by the third property of T . Let p be the portal on σ1

that is closest to w. Thus, the p-to-w distance on σ1 is at most O pε∆q. We set π2 to be
the path the goes from s to w along π1, then from w to p along σ1 and back from p to w,
and, finally, from w to u along π1. See Figure 6.1(c).

Let µ1 be as in Claim 6.2. It follows that rδrs, ts ď rδµ1rs, ts ď rdµ1rs, ps ` rdµ1rp, ts ď
distGrs, ts `O pε∆q.

Theorem 6.3. (General distance oracles of additive stretch) Given a weighted graph G
of n vertices and of diameter ∆ that satisfies Properties (I)–(III), along with the sub-
graph H from Property (I), we can construct for it a distance oracle of O pε∆q additive
stretch, O pp1{εqT pnq log nq preprocessing time, O pp1{εqn log nq space, and O pp1{εq log nq
query time.

As we explained earlier, weighted unit-disk graphs satisfy Properties (I)-(III) of G, so
we have the following theorem.

Corollary 6.4. (Distance oracles of additive stretch in unit-disk graphs) Given a set S
of n planar points, such that the weighted unit-disk graph of S has diameter ∆ ě 1{ε, we
can construct for that graph a distance oracle of O pε∆q additive stretch, O

`

p1{εq3n log2 n
˘

preprocessing time, O pp1{εqn log nq space, and O pp1{εq log nq query time.

6.1.3 Applications

We now describe how to employ Corollary 6.4 to compute a p1 ` εq-approximation of the
diameter of a unit-disk graph and how to build a p1 ` εq-approximate distance oracle for
it. Let S be a set of planar points, let G be the weighted unit-disk graph defined by S,
and let H be an O p1q-planar spanner of G.

Approximate diameter. Recall that as explained in Section 2.8, to approximate
the diameter ofG, we can find a set ofO pp1{εq4n log nq pairs of points of S inO pp1{εq4n log nq
time, such that the shortest-path distance between any two vertices in G can be p1 ` εq-
approximated by the shortest-path distance between one of these pairs, which can be found
in O p1q time.

First, we compute in O pn log nq time [PS85] the Euclidean diameter ∆0 of S. If
∆0 ě 1{ε, then ∆ ě 1{ε, and, to compute a p1 ` εq-approximation of ∆, we can query
the oracle of Corollary 6.4 of O pε∆q additive stretch with all O pp1{εq4n log nq pairs of
Lemma 2.4 and return the maximum. Thus the approximation factor is 1 ` O pεq. The
total time required for this case is O ppp1{εq4n log n ¨ p1{εq log nq.

81

If 1 ă ∆0 ă 1{ε, the problem is more straightforward because we can construct the

sparsified graph pG from the proof of Lemma 6.2, which preserves distances approximately,
and then run a standard all-pairs shortest paths (APSP) algorithm therein. Since pG has
pn “ O pp∆0{εq

2q “ O pp1{εq4q vertices and pm “ O pp1{εq2pnq “ O pp1{εq6q edges, we need
O ppn2 log pn` pmpnq “ O pp1{εq10q time for this case. Finally, if ∆0 ă 1, the unit-disk graph
is a complete Euclidean graph, so we just return ∆0.

New Result 7. (Approximate diameter) Given a set S of n planar points, we can compute
in O

`

p1{εq5n log2 n` p1{εq10
˘

time a p1` εq-approximation of the diameter of its weighted
unit-disk graph.

Remark : It is probably possible to avoid WSPDs by combining our techniques with those
of Weimann and Yuster for planar graphs [WY16]. However, the ε dependency would
increase to 2Op1{εq.

Approximate distance oracles. To build a distance oracle of p1`εq-approximation
factor for a weighted unit-disk graph, we employ the oracle of Corollary 6.4 of O pε∆q addi-
tive stretch as a building block using a known technique, called sparse neighborhood covers,
as described in Section 2.8 and also used in Section 5.3. We restate that lemma as follows.

Lemma 6.5. (Sparse neighborhood cover) Given a weighted planar graph H of n vertices
and a value r, we can construct, in O pn log nq time, a collection of subsets Vi of V , such
that (i) the diameter of the subgraph of H induced by each V is O prq, (ii) every vertex
resides in O p1q subsets, and (iii) for every vertex v, the set of all vertices at distance at
most r from v in H is contained in at least one of the Vi’s.

Every shortest-path distance in G is upper bounded by n, so we first apply the above
lemma to H for each value of r P t20, 21, . . . , 2lognu. Thus, we obtain collections of sub-

sets V
prq
i and then build the distance oracle of Corollary 6.4 for the weighted unit-disk

graph of each V
prq
i . The total preprocessing time and space over all O plog nq choices of

r is O
`

log n ¨ p1{εq3n log2 n
˘

and O plog n ¨ p1{εqn log nq respectively. Given s, t P S, we

consider each r and each subset V
prq
i that contains both s and t, query the oracle for V

prq
i ,

and return the minimum. The total query time over all O plog nq choices of r and Op1q

choices of V
prq
i (Lemma 6.5(ii)) is O plog n ¨ p1{εq log nq.

If distGrs, ts ě 1{ε, let r ě c{ε be such that distGrs, ts P pr{2c, r{cs. Then, each vertex
on the shortest path from s to t in G is at distance at most cdistGrs, ts ď r from s in

H, so it is contained in a common subset V
prq
i . Hence, we approximate distGrs, ts with an

additive error of O pεrq “ O pεdistGrs, tsq, obtaining thus 1`O pεq approximation factor.

If 1 ă distGrs, ts ă 1{ε, we simply build the sparsified graph pG from the proof
of Lemma 6.2, which preserves distances approximately. Then, from every vertex, we
pre-compute the distances to all grid cells at Euclidean distance at most 1{ε by running

82

Dijkstra’s algorithm on a subgraph of pG with n1 “ O p1{εq4q vertices and O pp1{εq2n1q “
O pp1{εq6q edges in O pp1{εq6 logp1{εqq time. The total preprocessing time and space over
all sources is O pp1{εq6n logp1{εqq and O pp1{εq4nq respectively. Finally, if distGrs, ts ď 1,
the shortest-path distance of s and t is their Euclidean distance. We do not know a priori
which of the cases we are in, so we try all of them and return the minimum distance found.

New Result 8. (Approximate distance oracles in weighted unit-disk graphs) Given
a set S of n planar points, we can construct a p1 ` εq-approximate distance oracle for
its weighted unit-disk graph with O

`

p1{εq5n log3 n` p1{εq6n log p1{εq
˘

preprocessing time,
O pp1{εq4n log nq space, and Op1q query time.

To reduce the query time, we can combine the above method with Gao and Zhang’s
WSPD-based oracle [GZ05, Section 5.1], which requiresO p1q query time andO pp1{εqn log nq
space. Its construction time is dominated by finding p1 ` εq-approximate shortest-path
distances for O pp1{εq4n log nq pairs, but we can compute these distances by querying our
oracle of Theorem 8 in O

`

p1{εq4n log n ¨ p1{εq log2 n
˘

total time.

Corollary 6.6. (Approximate distance oracle with O p1q query time) Given a set S of n
planar points, we can construct a p1` εq-approximate distance oracle for its weighted unit-
disk graph with O

`

p1{εq5n log3 n` p1{εq6n logp1{εq
˘

preprocessing time, O pp1{εq4n log nq
space, and O p1q query time.

Similarly, we can use the distance oracle of Theorem 8 to improve Gao and Zhang’s
results for other distance-related problems on weighted unit-disk graphs:

Corollary 6.7. (Approximate radius and bichromatic closest pair) Given a set S of n
planar points, we can compute a p1` εq-approximation of the radius of the weighted unit-
disk graph G of S or of the bichromatic closest pair distance of two given subsets A,B Ď S
in G in O

`

p1{εq5n log3 n` p1{εq6n logp1{εq
˘

time.

Remarks :

• For the sake of simplicity, we did not optimize the polyp1{ε, log nq factors.

• Our distance oracle in Theorem 8 can be easily modified to report an approximate
shortest path, not just its distance, in additional time proportional to the number of
edges in the path. To do so, every time we find approximate shortest distances in a
subgraph from a portal, we also store its approximate shortest-path tree.

• The same approach gives p1` Opεqq-approximation results for unweighted unit-disk
graphs, assuming that the diameter and the distances of the query vertices ex-
ceed Ωp1{εq. Specifically, Lemma 2.4 can be modified for the unweighted case, but
the error now has an extra additive term of 4 ` Opεq [GZ05, Lemma 6.2], which
can be ignored under our assumption. Also, we need to replace the SSSP algo-
rithm of Lemma 6.2 with the O pn log nq-time exact SSSP algorithm by Cabello and
Jejčič [CJ15] or by Chan and Skrepetos [CS16].

83

6.2 Approximate apBLSP

In this section, we study the p1 ` εq-approximate apBSLP problem. Given a set S of n
planar points, let G be its complete weighted Euclidean graph, let w1, w2, . . . , wN , where
N “

`

n
2

˘

, be the weights of the edges of G in non-decreasing order, and let Gi be the
subgraph of G that contains only the edges of weight at most wi. We can assume that
w1 ě 1. Otherwise, we can impose that assumption by simply translating and rescaling S
in linear time. We want to preprocess S into a data structure, such that we can quickly
answer p1` εq-approximate bounded-leg distance queries, i.e., given s, t P S and a positive
number L, compute a p1 ` εq-approximation of distGirs, ts, where i is the largest integer
with wi ď L. First, we briefly review the previous methods of Bose et al. [BMN`04] and
of Roditty and Segal [RS11], in Section 6.2.1, and then describe our own approach, in
Section 6.2.2.

6.2.1 Previous methods

Let s, t P S, and let cps, tq be the minimum index, such that s and t are connected in
Gcps,tq. Since each Gi is a subgraph of Gi`1, we have distGrs, ts ď distGN´1rs, ts ď ¨ ¨ ¨ ď

distGcps,tqrs, ts. Moreover, the s-to-t shortest path in any Gi with i ą cps, tq must have
an edge of weight at least wcps,tq, so distGrs, ts ě wcps,tq. Any shortest path has at most
n´1 edges, thus distGcps,tqrs, ts ď pn´1qdistGrs, ts. Therefore, as Roditty and Segal [RS11,
Section 2] noticed, we can compute and store a p1`εq-approximation of the s-to-t shortest-
path distance for each s, t P S in only O plog1`ε nq graphs, such that a bounded-leg distance
query can be answered with a binary search in O plog log1`ε nq time.

Specifically, for every s, t P S and j P t0, 1, . . . , rlog1`ε nsu, let Ijps, tq be the set of
indices of the graphs Gi, such that p1 ` εqjdistGrs, ts ď distGirs, ts ď p1 ` εqj`1distGrs, ts.
If Ijps, tq ‰ H, we create two values mjps, tq and `jps, tq, where the former is any index
therein and the latter is equal to wmjps,tq. Else, mjps, tq and `jps, tq are undefined. The
total space required over all pairs of S is O pn2 log1`ε nq. Then, given a positive number
L, we can find the largest i among the mjps, tq’s such that wi ď L with a binary search
over the `jps, tq’s in O plog log1`ε nq time and return a p1` εq-approximation of the s-to-t
shortest-path distance in Gi.

To compute a possible index for mjps, tq for every s, t P S and j P t0, 1, . . . , rlog1`ε nsu,
Roditty and Segal performed O pn2 log1`ε nq independent binary searches, each making
O plog nq p1` εq-approximate bounded-leg distance queries (i.e., a query to find a p1` εq-
approximation of the s-to-t shortest-path distance in some graph Gi). Instead, we group
the queries for all s, t, j into O plog n ¨ log1`ε nq rounds of n2 offline queries each, where
“offline” means that the queries in every round are given in advance.

Lemma 1. (Framework for approximate apBLSP) Given a set S of n planar points, we can
construct a data structure for the p1`εq-approximate apBLSP problem of O pp1{εqn2 log nq

84

space, O plog log n` logp1{εqq query, and O
`

Tofflinepn, n
2, 1` εq ¨ p1{εq log2 n

˘

preprocessing
time, where Tofflinepn

1, q1, 1 ` ε1q denotes the total time for answering q offline p1 ` ε1q-
approximate bounded-leg distance queries for an n1-point set.

Naively we could construct in near linear time a sparse p1`εq-spanner of every graph
Gi and then run Dijkstra’s algorithm therein to answer each query (a similar idea was used
by Roditty and Segal). Thus a near-cubic bound would be obtained for Tofflinepn, n

2, 1`εq.
Instead, we show that by employing our p1`εq-approximate distance oracle of Corollary 6.6
for weighted unit-disk graphs as a subroutine, we can obtain a truly subcubic bound on
Tofflinepn, n

2, 1` εq, as we next describe.

6.2.2 Improved method

To obtain our improved method, we view the problem of answering for each s, t P S and
j P t0, 1, . . . , rlog1`ε nsu n2 approximate offline bounded-leg distance queries as the problem
of constructing and querying the following offline semi-dynamic (actually insertion-only)
distance oracle.

Subproblem 1. (Semi-dynamic approximate distance oracles) Given an arbitrary graph
of n vertices with edge weights in r1,8q, we want to perform an offline sequence of q
operations, each of which is either an edge insertion, or a query to compute a p1 ` εq-
approximation of the shortest-path distance between two vertices. Let Tdynpn, q, 1 ` εq be
the complexity of this problem.

We could reduce our problem to Subproblem 1 by naively inserting the O pn2q edges
of G in increasing order of weight to an initially empty graph and mix that sequence of
insertions with the given sequence of bounded-leg distance queries. Hence, we would have
that Tofflinepn, n

2, 1` εq “ O pTdynpn, n
2, 1` εqq.

We propose a better reduction that employs a simple periodic rebuilding trick. First,
we divide the sequence of the q edge insertions and queries into O pq{rq phases of at most r
operations each, where r is a parameter to be set later. At the beginning of each phase, the
current graph is a weighted unit-disk graph (after rescaling), so we can build the p1 ` εq-
approximate distance oracle of Corollary 6.6 in O

`

p1{εq5n log3 n
˘

time. Then we query
that oracle in O pr2q total time to approximate the shortest-path distances between all pairs
of vertices that are involved in the upcoming r operations (i.e., are endpoints of the edges
to be inserted, or belong to the pairs to be queried). We build the complete graph over
these at most 2r vertices with the approximate shortest-path distances as edge weights.
Each phase can then be handled by r edge insertions/queries on this smaller graph in
O pTdynp2r, r, 1` εqq time. The resulting approximation factor is at most p1`εq2 “ 1`Θpεq.
Thus, for q “ n2 we get the following bound:

Tofflinepn, n
2, 1`Θpεqq “ O

ˆ

n2

r
¨
`

p1{εq5n log3 n` r2
` Tdynp2r, r, 1` εq

˘

˙

. (6.1)

85

To solve Subproblem 1, we could do nothing during insertions and in each query re-
run Dijkstra’s algorithm from scratch, thus obtaining Tdynp2r, r, 1 ` εq “ Opr3q. Then by
setting r “ p1{εq5{3n1{3 log n, we can obtain a still better bound Tofflinepn, n

2, 1 ` Θpεqq “
O
`

p1{εq10{3n8{3 log2 n
˘

, which is truly subcubic.

Actually, by using fast matrix multiplication and additional techniques, we can es-
tablish a better bound on Tofflinepn, n

2, 1 ` Θpεqq. Our idea is to recursively divide phases
into subphases, as in the proof of the following lemma. (Note that this lemma actually
holds for general graphs. Although (semi-)dynamic shortest paths have been extensively
studied in the literature, we are unable to find this particular result.)

Lemma 6.8. (A semi-dynamic approximate distance oracle) We can solve Subprob-
lem 1 in Tdynp2r, r, 1 ` Θpεqq “ O

`

p1{εqrω log r logW
˘

total time, where ω is the matrix-

multiplication exponent and W is an upper bound on the maximum (finite) shortest-path
distances.

Proof. Let H be the input graph of 2r vertices, and let H 1 be the graph that results from
performing toH all edge insertions of the first r{2 operations. We run theO

`

p1{εqrω logW
˘

-
time p1 ` εq-approximate APSP algorithm of Zwick [Zwi02] on H and H 1 and answer all
distance queries therein. Then, we construct two graphs H1 and H2 of r vertices each,
where H1 (respectively H2) is the complete graph over all vertices that are involved in the
first (respectively last) r{2 operations. We set each edge weight in H1 (respectively H2) to
be a p1`εq-approximation of the shortest-path distance of its endpoints in H (respectively
H 1) (which we have already computed), increasing thus the error by a 1`ε factor. Finally,
we apply recursion in H1 and H2.

The running time of our approach is Tdynp2r, r, p1 ` εqiq ď 2Tdynpr, r{2, p1 ` εqi`1q `

O
`

p1{εqrω logW
˘

, where initially i “ 1. Thus, Tdynp2r, r, p1`εqq “ O
`

p1{εqrω log r logW
˘

.
The approximation factor is p1` εqlog r “ 1`Θpε log rq, which can be refined to 1`Θ pεq,
by resetting εÐ ε{ log r.

Combining (6.1) with the above lemma gives

Tofflinepn, n
2, 1`Θpεqq “ O

ˆ

n2

r

`

p1{εq5n log3 n` p1{εqrω log r logW
˘

˙

.

Setting r “ n1{ω yields Tofflinepn, n
2, 1 ` Θpεqq “ O

`

p1{εq5n3´1{ω log3
pnW q

˘

, where W ď

nW , and W is the spread of S, i.e., the ratio of the maximum-to-minimum pairwise
Euclidean distance.

New Result 9. (Approximate all-pairs bounded leg shortest paths) Given a set S of n
planar points of spread W , we can construct a data structure for the p1`εq-approximate ap-
BLSP problem with O

`

p1{εq6n3´1{ω log5
pnW q

˘

preprocessing time, O pp1{εqn2 log nq space,
and O plog log n` logp1{εqq query time.

86

The current best bound on the matrix-multiplication exponent [Vas12, Le 14] is ω ă
2.373, which gives a preprocessing time of O

`

p1{εq6n2.579 log5
pnW q

˘

.

Remark : For the sake of simplicity, we did not optimize the polyp1{ε, logpnW qq factors. It
might be possible to avoid the dependency on the spread W by using known techniques,
such as balanced quadtrees.

87

Chapter 7

Open problems

Although many shortest-path problems in geometric intersection graphs were studied in
this thesis, quite a few remain open. Next, we discuss some of them. Let n be the number
of vertices of each graph under consideration.

A big open problem is that of computing the diameter of a planar graph exactly
in near linear time. The recent algorithms of Cabello [Cab17a] and of Gawrychowski et

al. [GMWWN18], both employing Voronoi diagrams, require rO
`

n11{6
˘

and rO
`

n5{3
˘

time

respectively, where rO pfpnqq denotes O
´

fpnq logOp1q n
¯

.

Open Problem 1. Compute the diameter of a planar graph in near linear time.

A similar problem concerns the exact computation of the diameter of a weighted unit-
disk graph. The fastest known way to do so is to employ the SSSP algorithm of Cabello
and Jejčič [CJ15] from each vertex of the graph in nearly O

`

n2 log12 n
˘

total time and
return the maximum distance found. Thus, developing an exact truly-subquadratic-time
algorithm is an intriguing challenge.

Open Problem 2. Compute the diameter of a weighted unit-disk graph in truly sub-
quadratic time.

All results in this thesis concerned static shortest-path problems (i.e., the input never
changes), but sometimes it is necessary to study the dynamic version of these problems,
where edges and/or vertices may be inserted and/or deleted. For example, in a country
road network, a road may have to be closed for a time to undergo construction. In unit-disk
graphs no such results are known, while in planar graphs dynamic distance oracles have
been studied both in the exact [KMNS12] and the approximate setting [KS98, ACG12,
ACD`16]. However, the query and update times therein are polynomials of the input size
or of the maximum edge weight.

Open Problem 3. Construct a dynamic distance oracle for a planar or unit-disk graph
with polylogarithmic query and update times.

88

Another important problem, stemming from ad-hoc communication networks, is rout-
ing. Therein, we want to assign a label and a routing table to each node of a graph, such
that a routing scheme can use them to transmit a message from a source to a destination
node quickly. Sometimes, the routing scheme also needs a header. Ideally, the labels, the
routing tables, and the headers are composed of only a few bits, and the routing scheme
quickly devises a path whose length is close to optimal. In non-negatively-weighted, di-
rected planar graphs, Thorup’s [Tho04a] p1 ` εq-approximate routing scheme uses labels,
routing tables, and headers of O plog nq bits. However, in weighted unit-disk graphs, the
best p1` εq-approximate routing scheme, due to Kaplan et al. [KMRS18], requires labels,
routing tables, and headers of O plog nq, O

`

p1{εq5 log2 n log2 ∆
˘

, and O plog n log ∆q bits
respectively, where ∆ is the diameter of the graph.

Open Problem 4. Construct a p1 ` εq-approximate routing scheme for a weighted unit-
disk graph that uses labels, routing tables, and headers of O plog nq bits.

The SSSP problem in weighted unit-disk graphs needs heavy machinery, namely
data structures for dynamic nearest-neighbor searching [Cha10b], and requires nearly
O
`

n log12 n
˘

time. However, for the unweighted case we have presented in Chapter 3
a simple approach that solves the problem in linear time, after presorting the disk centers.
Moreover, in weighted planar graphs, the SSSP algorithm of Henzinger et al. [HKRS97]
takes only linear time.

Open Problem 5. Solve SSSP in a weighted unit-disk graph in O pn log nq time.

So far we studied only planar graphs with non-negative edge weights, where the
algorithm of Henzinger et al. [HKRS97] addresses SSSP in linear time. However, for the
more general case of negative edge weights, the best SSSP algorithm, due to Klein et

al.[KMW10], runs in O
´

n ¨ log2 n
log logn

¯

time.

Open Problem 6. Solve SSSP in a planar graph with negative edge weights in linear time.

It is interesting to investigate whether we can remove the two logarithmic factors from
our p1 ` εq-approximation algorithm of Chapter 5 for the diameter of a non-negatively-
weighted, undirected planar graph. The first logarithmic factor stems from adapting the
recursive scheme of Weimann and Yuster [WY16] of O plog nq depth, but there exist re-
cursive approaches in planar graphs that require only a sublogarithmic number of levels.
For example, the SSSP algorithm and the p1`εq-approximate distance oracle of Henzinger
et al. [HKRS97] and Kawarabayashi et al. [KST13] respectively use a recursion of only
O plog˚ nq levels. The second logarithmic factor of our algorithm originates from the mul-
tiple shortest paths data structure of Klein [Kle05], which we used to repeatedly compute
shortest-path distances between a small number of pairs of vertices.

Open Problem 7. Compute a p1` εq-approximation of the diameter of a non-negatively-
weighted, undirected planar graph in o

`

n log2 n
˘

time, where ε ą 0 is a constant.

89

Our diameter algorithm of Chapter 5 works only for the undirected case, so extend-
ing it for directed planar graphs would be a natural research direction. Our algorithm
relies heavily on a Voronoi-diagram-based technique and on the framework of Weimann
and Yuster’s solution. While the former works in the directed setting as well, the latter
does not. The first issue is that there is no known linear-time algorithm that computes
an rOp1q-approximation of the diameter of a directed planar graph, but it is likely that
such an algorithm exists. The second issue is that given a shortest path separator in a
directed planar graph, it is not known how to approximate the length of the longest short-
est path between two vertices in different sides of the separator in near linear time. To
circumnavigate that issue, we could use techniques similar to those of Thorup [Tho04a] for
constructing p1` εq-approximate distance oracles for weighted, directed planar graphs.

Open Problem 8. Compute a p1` εq-approximation of the diameter of a non-negatively
weighted, directed planar graph in near-linear time.

In Chapter 5, we also presented a p1` εq-approximate distance oracle of O plog p1{εqq

query time and rO
`

p1{εqOp1qn
˘

space. One could try to further reduce the query time to
constant, which is what the oracle of Gu and Xu [GX15] achieves, but by increasing the
dependency on 1{ε in its space to exponential. Another direction worth considering would
be improving the space to linear, as the oracle of Kawarabayashi et al. [KKS11] does, but
at the expense of polylogarithmic in n query time.

Open Problem 9. Construct a p1 ` εq-approximate distance oracle for a non-negatively

weighted, undirected planar graph with rO
`

p1{εqOp1qn
˘

space and O p1q query time or with
linear space and O plog p1{εqq query time.

In Chapter 6, we constructed a p1 ` εq-approximate distance oracle for a weighted
unit-disk graph with O p1q query time and near O

`

n log2 n
˘

space. One logarithmic fac-
tor stems from employing sparse neighborhood covers and another from storing p1 ` εq-
approximations of the distances of roughly O pn log nq pairs of vertices. These pairs are
produced by constructing a WSPD with the algorithm of Gao and Zhang [GZ05].

Open Problem 10. Construct a p1` εq-approximate distance oracle for a weighted unit-
disk graph with linear space and Op1q query time.

Our algorithm of Chapter 4 for the APSP problem in unweighted intersection graphs

of arbitrary line segments requires O
´

n7{3 log1{3 n
¯

time. That is because we employed the

data structure of Chazelle [Cha93] for intersection detection of line segments. However, it
is likely that using instead techniques similar to those of Matoušek [Mat93] for Hopcroft’s
problem, the time could be improved to O

`

n7{3 log log n
˘

or better.

Open Problem 11. Solve APSP in an unweighted intersection graph of arbitrary line

segments in o
´

n7{3 log1{3 n
¯

time.

90

Finally, it is worth mentioning that the focus of this thesis was on theoretical results.
As explained in Chapter 1, many real-world applications, such as geographical informa-
tion systems and ad-hoc communication networks, utilize shortest-path algorithms and
data structures. Thus, another research direction is to find more practical variants of our
techniques.

91

References

[AAAS94] Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Subhash Suri. Can
visibility graphs be represented compactly? Discrete & Computational
Geometry, 12(3):347–365, 1994.

[ABCP98] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg.
Near-linear time construction of sparse neighborhood covers. SIAM
Journal on Computing, 28(1):263–277, 1998.

[ACC`96] Srinivasa Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel
H. M. Smid, and Christos D. Zaroliagis. Planar spanners and approximate
shortest path queries among obstacles in the plane. In Proceedings of the
4th European Symposium on Algorithms (ESA), pages 514–528, 1996.

[ACD`16] Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Goldberg, and
Renato F. Werneck. On dynamic approximate shortest paths for planar
graphs with worst-case costs. In Proceedings of the 27th ACM-SIAM
Symposium on Discrete algorithms (SODA), pages 740–753, 2016.

[ACG12] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic
approximate distance oracles for planar graphs via forbidden-set distance
labels. In Proceedings of the 44th ACM Symposium on Theory of
Computing (STOC), pages 1199–1218, 2012.

[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani.
Fast estimation of diameter and shortest paths (without matrix
multiplication). SIAM Journal on Computing, 28(4):1167–1181, 1999.

[ACT14] Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis.
Deterministic rectangle enclosure and offline dominance reporting on the
RAM. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming (ICALP), pages 77–88, 2014.

[ADD`93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José
Soares. On sparse spanners of weighted graphs. Discrete & Computational
Geometry, 9(1):81–100, 1993.

92

[AE99] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its
relatives. Contemporary Mathematics, 223:1–56, 1999.

[AF90] Miklos Ajtai and Ronald Fagin. Reachability is harder for directed than
for undirected finite graphs. The Journal of Symbolic Logic,
55(1):113–150, 1990.

[AGM97] Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs
shortest path problem. Journal of Computer and System Sciences,
54(2):255–262, 1997.

[AGW15] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
Subcubic equivalences between graph centrality problems, APSP and
diameter. In Proceedings of the 26th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1681–1697, 2015.

[AHLT05] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel
Thorup. Maintaining information in fully dynamic trees with top trees.
ACM Transactions on Algorithms, 1(2):243–264, 2005.

[AMOT90] Ravindra K. Ahuja, Kurt Mehlhorn, James Orlin, and Robert E. Tarjan.
Faster algorithms for the shortest path problem. Journal of the ACM,
37(2):213–223, 1990.

[AP90] Baruch Awerbuch and David Peleg. Sparse partitions. In Proceedings of
the 31st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 503–513, 1990.

[APS93] Pankaj K. Agarwal, Marco Pellegrini, and Micha Sharir. Counting circular
arc intersections. SIAM Journal on Computing, 22(4):778–793, 1993.

[BCPDB03] John M. Boyer, Pier Francesco Cortese, Maurizio Patrignani, and
Giuseppe Di Battista. Stop minding your P ’s and Q’s: Implementing a
fast and simple DFS-based planarity testing and embedding algorithm. In
Proceedings of the 11th International Symposium on Graph Drawing (GD),
pages 25–36, 2003.

[BDEG15] Michael J. Bannister, William E. Devanny, David Eppstein, and
Michael T. Goodrich. The galois complexity of graph drawing: Why
numerical solutions are ubiquitous for force-directed, spectral, and circle
packing drawings. Journal of Graph Algorithms and Applications,
19(2):619–656, 2015.

[BFLO06] Krists Boitmanis, Kārlis Freivalds, Pēteris Lediņš, and Rūdolfs Opmanis.
Fast and simple approximation of the diameter and radius of a graph. In
Proceedings of the 5th International Workshop on Experimental and
Efficient Algorithms (WEA), pages 98–108, 2006.

93

[BGKS15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and
Tatiana A. Starikovskaya. Wavelet trees meet suffix trees. In Proceedings
of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 572–591, 2015.

[BK95] Heinz Breu and David G. Kirkpatrick. On the complexity of recognizing
intersection and touching graphs of disks. In Proceedings of the 2nd
International Symposium on Graph Drawing (GD), pages 88–98, 1995.

[BK98] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is
NP-hard. Computational Geometry, 9(1-2):3–24, 1998.

[BK07] Piotr Berman and Shiva Prasad Kasiviswanathan. Faster approximation
of distances in graphs. In Proceedings of the 10th International Symposium
on Algorithms and Data Structures (WADS), pages 541–552, 2007.

[BK10] Surender Baswana and Telikepalli Kavitha. Faster algorithms for all-pairs
approximate shortest paths in undirected graphs. SIAM Journal on
Computing, 39(7):2865–2896, 2010.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms.
Journal of Computer and System Sciences, 13(3):335–379, 1976.

[Ble08] Guy E. Blelloch. Space-efficient dynamic orthogonal point location,
segment intersection, and range reporting. In Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
894–903, 2008.

[BLT07] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Improved sparse
covers for graphs excluding a fixed minor. In Proceedings of the 26th ACM
Symposium on Principles of Distributed Computing (PODC), pages 61–70,
2007.

[BM04] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified
Opnq planarity by edge addition. Journal of Graph Algorithms and
Applications, 8(2):241–273, 2004.

[BM11] Kevin Buchin and Wolfgang Mulzer. Delaunay triangulations in
Opsortpnqq time and more. Journal of the ACM, 58(2):6, 2011.

[BMN`04] Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel H. M. Smid,
and Norbert Zeh. Approximating geometric bottleneck shortest paths.
Computational Geometry, 29(3):233–249, 2004.

94

[BS06] Surender Baswana and Sandeep Sen. Approximate distance oracles for
unweighted graphs in expected O pn2q time. ACM Transactions on
Algorithms (TALG), 2(4):557–577, 2006.

[Cab06] Sergio Cabello. Many distances in planar graphs. In Proceedings of the
17th ACM-SIAM Symposium on Discrete Algorithm (SODA), pages
1213–1220, 2006.

[Cab12] Sergio Cabello. Many distances in planar graphs. Algorithmica,
62(1-2):361–381, 2012.

[Cab17a] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of
pairwise distances in planar graphs. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2143–2152, 2017.

[Cab17b] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of
pairwise distances in planar graphs. CoRR, abs/1702.07815v1, 2017.

[CDW17] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast
and compact exact distance oracle for planar graphs. In Proceedings of the
58th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 962–973, 2017.

[CE01] Timothy M. Chan and Alon Efrat. Fly cheaply: On the minimum fuel
consumption problem. Journal of Algorithms, 41(2):330–337, 2001.

[CGS99] Boris V. Cherkassky, Andrew V. Goldberg, and Craig Silverstein. Buckets,
heaps, lists, and monotone priority queues. SIAM Journal on Computing,
28(4):1326–1346, 1999.

[Cha93] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete &
Computational Geometry, 9(2):145–158, 1993.

[Cha08] Timothy M. Chan. All-pairs shortest paths with real weights in
O pn3{ log nq time. Algorithmica, 50(2):236–243, 2008.

[Cha10a] Timothy M. Chan. A dynamic data structure for 3-D convex hulls and
2-D nearest neighbor queries. Journal of the ACM, 57(3):16:1–16:15, 2010.

[Cha10b] Timothy M. Chan. More algorithms for all-pairs shortest paths in
weighted graphs. SIAM Journal on Computing, 39(5):2075–2089, 2010.

[Cha12] Timothy M. Chan. All-pairs shortest paths for unweighted undirected
graphs in opmnq time. ACM Transactions on Algorithms, 8:1–17, 2012.

95

[Cha13] Timothy M. Chan. Persistent predecessor search and orthogonal point
location on the word RAM. ACM Transactions on Algorithms, 9(3):22,
2013.

[Che14] Shiri Chechik. Approximate distance oracles with constant query time. In
Proceedings of the 46th ACM Symposium on Theory of Computing
(STOC), pages 654–663, 2014.

[CJ15] Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of
unit disks. Computational Geometry, 48(4):360–367, 2015.

[CK95] Paul B. Callahan and S. Rao Kosaraju. A decomposition of
multidimensional point sets with applications to k-nearest-neighbors and
n-body potential fields. Journal of the ACM, 42(1):67–90, 1995.

[CL15] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via
additive combinatorics. In Proceedings of the 47th ACM Symposium on
Theory of Computing (STOC), pages 31–40, 2015.

[CLP11] Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal
range searching on the RAM, revisited. In Proceedings of the 27th Annual
ACM Symposium on Computational Geometry (SoCG), pages 1–10, 2011.

[CLR`14] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck,
Robert E. Tarjan, and Virginia Vassilevska Williams. Better
approximation algorithms for the graph diameter. In Proceedings of the
26th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1041–1052, 2014.

[CM11] Bernard Chazelle and Wolfgang Mulzer. Computing hereditary convex
structures. Discrete & Computational Geometry, 45(4):796–823, 2011.

[CMSV17] Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu.
Negative-weight shortest paths and unit capacity minimum cost flow in
O
`

m10{7 logW
˘

time. In Proceedings of the 28th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 752–771, 2017.

[Coh98] Edith Cohen. Fast algorithms for constructing t-spanners and paths with
stretch t. SIAM Journal on Computing, 28(1):210–236, 1998.

[Coz82] Margaret B. Cozzens. Higher and Multi-Dimensional Analogues of Interval
Graphs. PhD thesis, Rutgers The State University of New Jersey, 1982.

[CP10] Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline
orthogonal range counting, and related problems. In Proceedings of the
21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
161–173, 2010.

96

[CR10] Sergio Cabello and Günter Rote. Obnoxious centers in graphs. SIAM
Journal on Discrete Mathematics, 24(4):1713–1730, 2010.

[CS89] Kenneth L. Clarkson and Peter W. Shor. Applications of random
sampling in computational geometry, II. Discrete & Computational
Geometry, 4(5):387–421, 1989.

[CS03] Charles R. Collins and Kenneth Stephenson. A circle packing algorithm.
Computational Geometry, 25(3):233–256, 2003.

[CS16] Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in
unit-disk graphs in slightly subquadratic time. In Proceedings of the 27th
International Symposium on Algorithms and Computation (ISAAC), pages
24:1–24:13, 2016.

[CS17a] Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in
geometric intersection graphs. In Proceeding of the 15th International
Symposium on Algorithms and Data Structures (WADS), pages 253–264,
2017.

[CS17b] Timothy M. Chan and Dimitrios Skrepetos. Faster approximate diameter
and distance oracles in planar graphs. In Proceeding of the 25th European
Symposium on Algorithms (ESA), pages 25:1–25:13, 2017.

[CS18] Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths
and distance oracles in weighted unit-disk graphs. In Proceedings of the
34th Annual ACM Symposium on Computational Geometry (SoCG), 2018.
(to appear).

[CT18] Timothy M. Chan and Konstantinos Tsakalidis. Dynamic planar
orthogonal point location in sublogarithmic time. In Proceedings of the
34th Annual ACM Symposium on Computational Geometry (SoCG), 2018.
(to appear).

[CW16] Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal
vectors, and more: Quickly derandomizing Razborov-Smolensky. In
Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1246–1255, 2016.

[CX00] Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In
Proceedings of the 32nd ACM Symposium on Theory of Computing
(STOC), pages 469–478, 2000.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H.
Overmars. Computational Geometry: Algorithms and Applications, 3rd
Edition. Springer, 2008.

97

[dFdM12] Hubert de Fraysseix and Patrice Ossona de Mendez. Trémaux trees and
planarity. European Journal of Combinatorics, 33(3):279–293, 2012.

[dFdMR06] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl.
Trémaux trees and planarity. International Journal of Foundations of
Computer Science, 17(5):1017–1030, 2006.

[DFPP90] Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41–51, 1990.

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths.
SIAM Journal on Computing, 29(5):1740–1759, 2000.

[Dia69] Robert B. Dial. Algorithm 360: Shortest-path forest with topological
ordering [H]. Communications of the ACM, 12(11):632–633, 1969.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[Dji96] Hristo N. Djidjev. Efficient algorithms for shortest path queries in planar
digraphs. In Proceedings of the 22nd International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), pages 151–165,
1996.

[Dob90] Wlodzimierz Dobosiewicz. A more efficient algorithm for the min-plus
multiplication. International Journal of Computer Mathematics,
32(1-2):49–60, 1990.

[DP08] Ran Duan and Seth Pettie. Bounded-leg distance and reachability oracles.
In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 436–445, 2008.

[DR18] Ran Duan and Hanlin Ren. Approximating all-pair bounded-leg shortest
path and apsp-af in truly-subcubic time. In Proceedings of the 45th
International Colloquium on Automata, Languages, and Programming
(ICALP), 2018. (to appear).

[DSST89] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. Journal of Computer and System
Sciences, 38(1):86–124, 1989.

[EGS86] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal
point location in a monotone subdivision. SIAM Journal on Computing,
15(2):317–340, 1986.

[EM81] Herbert Edelsbrunner and Hermann A. Maurer. On the intersection of
orthogonal objects. Information Processing Letters, 13(4/5):177–181, 1981.

98

[EM01] David Eppstein and S. Muthukrishnan. Internet packet filter management
and rectangle geometry. In Proceedings of the 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 827–835, 2001.

[EM13] Esther Ezra and Wolfgang Mulzer. Convex hull of points lying on lines in
opn log nq time after preprocessing. Computational Geometry,
46(4):417–434, 2013.

[EMT95] David Eppstein, Gary L. Miller, and Shang-Hua Teng. A deterministic
linear time algorithm for geometric separators and its applications.
Fundamenta Informaticae, 22(4):309–329, 1995.

[EO82] Herbert Edelsbrunner and Mark H. Overmars. On the equivalence of some
rectangle problems. Information Processing Letters, 14(3):124–127, 1982.

[Epp99] David Eppstein. Subgraph isomorphism in planar graphs and related
problems. Journal of Graph Algorithms and Applications, 3(3):283–309,
1999.

[FM95] Tomás Feder and Rajeev Motwani. Clique partitions, graph compression
and speeding-up algorithms. Journal of Computer and System Sciences,
51(2):261–272, 1995.

[For87] Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Algorithmica, 2:153–174, 1987.

[FR06] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight
edges, shortest paths, and near linear time. Journal of Computer and
System Sciences, 72(5):868–889, 2006.

[Fre76] Michael L. Fredman. New bounds on the complexity of the shortest path
problem. SIAM Journal on Computing, 5:83–89, 1976.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16:1004–1022, 1987.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM,
34(3):596–615, 1987.

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information
theoretic bound with fusion trees. Journal of Computer and System
Sciences, 47(3):424–436, 1993.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms
for minimum spanning trees and shortest paths. Journal of Computer and
System Sciences, 48(3):533–551, 1994.

99

[Gar85] Harold N. Garbow. Scaling algorithms for network problems. Journal of
Computer and System Sciences, 31(2):148–168, 1985.

[GJSD97] Prosenjit Gupta, Ravi Janardan, Michiel H. M. Smid, and Bhaskar
DasGupta. The rectangle enclosure and point-dominance problems
revisited. International Journal of Computational Geometry and
Applications, 7(5):437–455, 1997.

[GK09] Yoav Giora and Haim Kaplan. Optimal dynamic vertical ray shooting in
rectilinear planar subdivisions. ACM Transactions on Algorithms, 5(3):28,
2009.

[GKM`18] Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren
Weimann. Voronoi diagrams on planar graphs, and computing the
diameter in deterministic rO

`

n5{3
˘

time. In Proceedings of the 29th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 495–514,
2018.

[GM97] Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with
small integer length edges. Information and Computation, 134(2):103–139,
1997.

[GMWWN18] Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian
Wulff-Nilsen. Better tradeoffs for exact distance oracles in planar graphs.
In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 515–529, 2018.

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem.
SIAM Journal on Computing, 24(3):494–504, 1995.

[Goo95] Michael T. Goodrich. Planar separators and parallel polygon
triangulation. Journal of Computer and System Sciences, 51(3):374–389,
1995.

[Gra72] Ronald L. Graham. An efficient algorithm for determining the convex hull
of a finite planar set. Information Processing Letters, 1(4):132–133, 1972.

[GT89] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for
network problems. SIAM Journal on Computing, 18(5):1013–1036, 1989.

[GX15] Qian-Ping Gu and Gengchun Xu. Constant query time
p1` εq-approximate distance oracle for planar graphs. In Proceedings of
the 26th International Symposium on Algorithms and Computation
(ISAAC), pages 625–636, 2015.

100

[GZ05] Jie Gao and Li Zhang. Well-separated pair decomposition for the
unit-disk graph metric and its applications. SIAM Journal on Computing,
35(1):151–169, 2005.

[Hag00] Torben Hagerup. Improved shortest paths on the word RAM. In
Proceedings of the 27th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 61–72, 2000.

[Han01] Yijie Han. Improved fast integer sorting in linear space. In Proceedings of
the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
793–796, 2001.

[Han04] Yijie Han. Improved algorithm for all pairs shortest paths. Information
Processing Letters, 91(5):245–250, 2004.

[Han08] Yijie Han. An O
`

n3plog log n{ log nq5{4
˘

time algorithm for all pairs
shortest path. Algorithmica, 51(4):428–434, 2008.

[HK01] Petr Hliněnỳ and Jan Kratochv́ıl. Representing graphs by disks and balls
(a survey of recognition-complexity results). Discrete Mathematics,
229(1-3):101–124, 2001.

[HKRS97] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
Faster shortest-path algorithms for planar graphs. Journal of Computer
and System Sciences, 55(1):3–23, 1997.

[HM85] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for
covering and packing problems in image processing and VLSI. Journal of
the ACM, 32(1):130–136, 1985.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of
the ACM, 21(4):549–568, 1974.

[HT12] Yijie Han and Tadao Takaoka. An O
`

n3 log log n{ log2 n
˘

time algorithm
for all pairs shortest paths. In Proceedings of the 13th Scandinavian
Symposium on Algorithm Theory (SWAT), pages 131–141, 2012.

[IK01] Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck
matching and related problems. Algorithmica, 31(1):1–28, 2001.

[INSWN11] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian
Wulff-Nilsen. Improved algorithms for min cut and max flow in undirected
planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 313–322, 2011.

[Joh77] Donald B. Johnson. Efficient algorithms for shortest paths in sparse
networks. Journal of the ACM, 24(1):1–13, 1977.

101

[Kat97] Matthew J. Katz. 3-D vertical ray shooting and 2-D point enclosure,
range searching, and arc shooting amidst convex fat objects.
Computational Geometry, 8(6):299–316, 1997.

[KKS11] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer.
Linear-space approximate distance oracles for planar, bounded-genus and
minor-free graphs. In Proceedings of the 38th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 135–146, 2011.

[Kle89] Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of
Lecture Notes in Computer Science. Springer, 1989.

[Kle02] Philip N. Klein. Preprocessing an undirected planar network to enable
fast approximate distance queries. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 820–827,
2002.

[Kle05] Philip N. Klein. Multiple-source shortest paths in planar graphs. In
Proceedings of the Sixteenth Annual Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 146–155, 2005.

[Kle08] Rolf Klein. Well separated pair decomposition. Encyclopedia of
Algorithms, pages 1–5, 2008.

[KLN09] Rolf Klein, Elmar Langetepe, and Zahra Nilforoushan. Abstract Voronoi
diagrams revisited. Computational Geometry, 42(9):885–902, 2009.

[KM89] Jan Kratochv́ıl and Jǐŕı Matoušek. NP-hardness results for intersection
graphs. Commentationes Mathematicae Universitatis Carolinae,
30(4):761–773, 1989.

[KM91] Jan Kratochv́ıl and Jǐŕı Matoušek. String graphs requiring exponential
representations. Journal of Combinatorial Theory, Series B, 53(1):1–4,
1991.

[KM94] Jan Kratochv́ıl and Jiŕı Matoušek. Intersection graphs of segments.
Journal of Combinatorial Theory, Series B, 62(2):289–315, 1994.

[KM12] Ross J. Kang and Tobias Müller. Sphere and dot product representations
of graphs. Discrete & Computational Geometry, 47(3):548–568, 2012.

[KMM93] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental
construction of abstract Voronoi diagrams. Computational Geometry,
3(3):157–184, 1993.

102

[KMNS12] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir.
Submatrix maximum queries in Monge matrices and Monge partial
matrices, and their applications. In Proceedings of the 23rd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 338–355, 2012.

[KMR`17] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha
Sharir. Dynamic planar Voronoi diagrams for general distance functions
and their algorithmic applications. In Proceedings of the 28th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2495–2504, 2017.

[KMRS15] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth.
Spanners and reachability oracles for directed transmission graphs. In
Proceedings of the 31st International Symposium on Computational
Geometry (SoCG), volume 34, 2015.

[KMRS18] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth.
Routing in unit disk graphs. Algorithmica, 80(3):830–848, 2018.

[KMS13] Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive
separator decompositions for planar graphs in linear time. In Proceedings
of the 44th ACM Symposium on Theory of Computing (STOC), pages
505–514, 2013.

[KMW10] Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in
directed planar graphs with negative lengths: A linear-space
O
`

n log2 n
˘

-time algorithm. ACM Transactions on Algorithms (TALG),
6(2):30, 2010.

[Kra94] Jan Kratochv́ıl. A special planar satisfiability problem and a consequence
of its NP-completeness. Discrete Applied Mathematics, 52(3):233–252,
1994.

[KS98] Philip N. Klein and Sairam Subramanian. A fully dynamic approximation
scheme for shortest paths in planar graphs. Algorithmica, 22(3):235–249,
1998.

[KST13] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More
compact oracles for approximate distances in undirected planar graphs. In
Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 550–563, 2013.

[LCW02] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed
construction of a planar spanner and routing for ad hoc wireless networks.
In Proceedings of the 21st Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), volume 3, pages 1268–1277, 2002.

103

[Le 14] François Le Gall. Powers of tensors and fast matrix multiplication. In
Proceedings of the 39th International Symposium on Symbolic and
Algebraic Computation (ISSAC), pages 296–303, 2014.

[LG12] François Le Gall. Faster algorithms for rectangular matrix multiplication.
In Proceedings of the 53rd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 514–523, 2012.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics, 36(2):177–189,
1979.

[Mat93] Jǐŕı Matoušek. Range searching with efficient hierarchical cuttings.
Discrete & Computational Geometry, 10(2):157–182, 1993.

[Mat96] Jǐŕı Matoušek. On the distortion required for embedding finite metric
spaces into normed spaces. Israel Journal of Mathematics, 93(1):333–344,
1996.

[Mil86] Gary L. Miller. Finding small simple cycle separators for 2-connected
planar graphs. Journal of Computer and System Sciences, 32(3):265–279,
1986.

[MM13] Colin McDiarmid and Tobias Müller. Integer realizations of disk and
segment graphs. Journal of Combinatorial Theory, Series B,
103(1):114–143, 2013.

[Moh93] Bojan Mohar. A polynomial time circle packing algorithm. Discrete
Mathematics, 117(1-3):257–263, 1993.

[MS12] Shay Mozes and Christian Sommer. Exact distance oracles for planar
graphs. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 209–222, 2012.

[MTV91] Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified
geometric approach to graph separators. In Proceedings of the 32nd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 538–547,
1991.

[Mul94] Ketan Mulmuley. Computational geometry - an introduction through
randomized algorithms. Prentice Hall, 1994.

[MWN10] Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs
with real lengths in O

`

n log2 n{ log log n
˘

time. In Proceedings of the 18th
European Symposium on Algorithms (ESA), pages 206–217, 2010.

104

[Nus11] Yahav Nussbaum. Improved distance queries in planar graphs. In
Proceedings of the 12th International Symposium on Algorithms and Data
Structures (WADS), pages 642–653, 2011.

[Ola90] Stephan Olariu. A simple linear-time algorithm for computing the center
of an interval graph. International Journal of Computer Mathematics,
34(3-4):121–128, 1990.

[OvL81] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations
in the plane. Journal of Computer and System Sciences, 23:166–204, 1981.

[Pǎt11] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM
Journal on Computing, 40(3):827–847, 2011.

[Pet04] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted
graphs. Theoretical Computer Science, 312(1):47–74, 2004.

[PR05] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for
real-weighted undirected graphs. SIAM Journal on Computing,
34(6):1398–1431, 2005.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry -
An Introduction. Texts and Monographs in Computer Science. Springer,
1985.

[Ram97] Rajeev Raman. Recent results on the single-source shortest paths
problem. ACM SIGACT News, 28(2):81–87, 1997.

[RS11] Liam Roditty and Michael Segal. On bounded leg shortest paths
problems. Algorithmica, 59(4):583–600, 2011.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions
of approximate distance oracles and spanners. In Proceedings of the 32nd
International Colloquium on Automata, Languages, and Programming
(ICALP), pages 261–272, 2005.

[RVW13] Liam Roditty and Virginia Vassilevska Williams. Fast approximation
algorithms for the diameter and radius of sparse graphs. In Proceedings of
the 44th ACM Symposium on Theory of Computing (STOC), pages
515–524, 2013.

[San05] Piotr Sankowski. Shortest paths in matrix multiplication time. In
Proceedings of the 13th European Symposium on Algorithms (ESA), pages
770–778, 2005.

105

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of
the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
138–148, 1990.

[Sei95] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of Computer and System Sciences,
51(3):400–403, 1995.

[Som14] Christian Sommer. Shortest-path queries in static networks. ACM
Computing Surveys, 46(4):45, 2014.

[SSŠ03] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing
string graphs in NP. Journal of Computer and System Sciences,
67(2):365–380, 2003.

[ST83] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic
trees. Journal of Computer and System Sciences, 26(3):362–391, 1983.

[ST99] Alan P. Sprague and Tadao Takaoka. Op1q query time algorithm for all
pairs shortest distances on interval graphs. International Journal of
Foundations of Computer Science, 10(04):465–472, 1999.

[Sub95] Sairam Subramanian. Parallel and dynamic shortest-path algorithms for
sparse graphs. PhD thesis, Brown University, 1995.

[SZ99] Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs
with integer weights. In Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 605–614, 1999.

[Tak92] Tadao Takaoka. A new upper bound on the complexity of the all pairs
shortest path problem. Information Processing Letters, 43(4):195–199,
1992.

[Tak98] Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path
problem. Algorithmica, 20(3):309–318, 1998.

[Tak04] Tadao Takaoka. A faster algorithm for the all-pairs shortest path problem
and its application. In Proceedings of the 10th International Conference
on Computing and Combinatorics (COCOON), pages 278–289, 2004.

[Tak05] Tadao Takaoka. An O pn3 log log n{ log nq time algorithm for the all-pairs
shortest path problem. Information Processing Letters, 96(5):155–161,
2005.

[Tho99] Mikkel Thorup. Undirected single-source shortest paths with positive
integer weights in linear time. Journal of the ACM, 46(3):362–394, 1999.

106

[Tho00] Mikkel Thorup. On RAM priority queues. SIAM Journal on Computing,
30(1):86–109, 2000.

[Tho03] Mikkel Thorup. Integer priority queues with decrease key in constant time
and the single source shortest paths problem. In Proceedings of the 31st
ACM Symposium on Theory of Computing (STOC), pages 149–158, 2003.

[Tho04a] Mikkel Thorup. Compact oracles for reachability and approximate
distances in planar digraphs. Journal of the ACM, 51(6):993–1024, 2004.

[Tho04b] Mikkel Thorup. Integer priority queues with decrease key in constant time
and the single source shortest paths problem. Journal of Computer and
System Sciences, 69(3):330–353, 2004.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of
the ACM, 52(1):1–24, 2005.

[Vas12] Virginia Vassilevska Williams. Multiplying matrices faster than
Coppersmith–Winograd. In Proceedings of the 44th Symposium on Theory
of Computing (STOC), pages 887–898, 2012.

[vEB77] Peter van Emde Boas. Preserving order in a forest in less than logarithmic
time and linear space. Information processing letters, 6(3):80–82, 1977.

[vEBKZ76] Peter van Emde Boas, Robert Kaas, and Erik Zijlstra. Design and
implementation of an efficient priority queue. Mathematical Systems
Theory, 10(1):99–127, 1976.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than
Coppersmith-Winograd. In Proceedings of the 44th ACM Symposium on
Theory of Computing (STOC), pages 887–898, 2012.

[Wil14] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In
Proceedings of the 46th ACM Symposium on Theory of Computing
(STOC), pages 664–673, 2014.

[WN10] Christian Wulff-Nilsen. Algorithms for planar graphs and graphs in metric
spaces. PhD thesis, University of Copenhagen, 2010.

[WN13a] Christian Wulff-Nilsen. Approximate distance oracles with improved
query time. In Proceedings of the 24th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 539–549, 2013.

[WN13b] Christian Wulff-Nilsen. Constant time distance queries in planar
unweighted graphs with subquadratic preprocessing time. Computational
Geometry, 46(7):831–838, 2013.

107

[WY16] Oren Weimann and Raphael Yuster. Approximating the diameter of
planar graphs in near linear time. ACM Transactions on Algorithms
(TALG), 12(1):12, 2016.

[Yan82] Mihalis Yannakakis. The complexity of the partial order dimension
problem. SIAM Journal on Algebraic Discrete Methods, 3(3):351–358,
1982.

[YXD12] Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay
routing labeling scheme for unit disk graphs. Computational Geometry,
45(7):305–325, 2012.

[Zwi01] Uri Zwick. Exact and approximate distances in graphs – a survey. In
Proceedings of the 9th European Symposium on Algorithms (ESA), pages
33–48, 2001.

[Zwi02] Uri Zwick. All pairs shortest paths using bridging sets and rectangular
matrix multiplication. Journal of the ACM, 49(3):289–317, 2002.

[Zwi06] Uri Zwick. A slightly improved sub-cubic algorithm for the all pairs
shortest paths problem with real edge lengths. Algorithmica,
46(2):181–192, 2006.

108

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	General graphs
	Planar graphs
	Geometric intersection graphs
	Unit-disk graphs
	Other geometric intersection graphs

	New results
	Single-source and all-pairs shortest paths
	Diameter and distance oracles

	Preliminaries
	Model of computation
	Graphs and shortest-path problems
	Breadth-first search
	Graham's scan for pseudoline arrangements
	Planar separators and decomposition trees
	Abstract Voronoi diagrams
	Sparse neighborhood covers
	Well-separated pair decompositions

	Single-source and all-pairs shortest paths in unit-disk graphs
	SSSP in linear time after presorting
	Multiple-sources shortest paths in linear time
	APSP in slightly subquadratic time

	Single-source and all-pairs shortest paths in geometric intersection graphs
	Reducing SSSP to decremental intersection detection
	Reducing APSP to static, offline intersection detection
	Applications

	Static, offline rectangle intersection detection

	Approximate diameter and distance oracles in planar graphs
	A farthest-neighbor data structure
	Defining Voronoi diagrams in planar graphs
	Constructing Voronoi diagrams in planar graphs
	Constructing the farthest-neighbor data structure

	Approximate diameter
	Decomposing G
	Approximating d(Gin, Gout, G)
	Recursively solving the problem in Gin+ and Gout+
	Analyzing our algorithm

	Approximate distance oracles
	Distance oracles with additive stretch
	Approximate distance oracles

	Approximate shortest paths and distance oracles in weighted unit-disk graphs
	Approximate diameter and distance oracles
	Preliminaries
	Distance oracles with additive stretch
	Applications

	Approximate apBLSP
	Previous methods
	Improved method

	Open problems
	References

